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Abstract. We investigate the problem of monitoring partially observ-
able systems with nondeterministic and probabilistic dynamics. In such
systems, every state may be associated with a risk, e.g., the probabil-
ity of an imminent crash. During runtime, we obtain partial information
about the system state in form of observations. The monitor uses this
information to estimate the risk of the (unobservable) current system
state. Our results are threefold. First, we show that extensions of state
estimation approaches do not scale due the combination of nondetermin-
ism and probabilities. While exploiting a geometric interpretation of the
state estimates improves the practical runtime, this cannot prevent an
exponential memory blowup. Second, we present a tractable algorithm
based on model checking conditional reachability probabilities. Third,
we provide prototypical implementations and manifest the applicability
of our algorithms to a range of benchmarks. The results highlight the
possibilities and boundaries of our novel algorithms.

1 Introduction

Runtime assurance is essential in the deployment of safety-critical (cyber-
physical) systems [12,29,45,49,50]. Monitors observe system behavior and indi-
cate when the system is at risk to violate system specifications. A critical aspect
in developing reliable monitors is their ability to handle noisy or missing data.
In cyber-physical systems, monitors observe the system state via sensors, i.e.,
sensors are an interface between the system and the monitor. A monitor has
to base its decision solely on the obtained sensor output. These sensors are not
perfect, and not every aspect of a system state can be measured.

This paper considers a model-based approach to the construction of monitors
for systems with imprecise sensors. Consider Fig. 1(b). We assume a model for
the environment together with the controller. Typically, such a model contains
both nondeterministic and probabilistic behavior, and thus describes a Markov
decision process (MDP): In particular, the sensor is a stochastic process [56] that
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translates the environment state into an observation. For example, this could be a
perception module on a plane that during landing estimates the movements of an
on-ground vehicle, as depicted in Fig. 1(a). Due to lack of precise data, the vehicle
movements itself may be most accurately described using nondeterminism.

We are interested in the associated state risk of the current system state.
The state risk may encode, e.g., the probability that the plane will crash with
the vehicle within a given number of steps, or the expected time until reaching
the other side of the runway. The challenge is that the monitor cannot directly
observe the current system state. Instead, the monitor must infer from a trace
of observations the current state risk. This cannot be done perfectly as the sys-
tem state cannot be inferred precisely. Rather, we want a sound, conservative
estimate of the system state. More concretely, for a fixed resolution of the non-
determinism, the trace risk is the weighted sum over the probability of being
in a state having observed the trace, times the risk imposed by this state. The
monitoring problem is to decide whether for any possible scheduler resolving the
nondeterminism the trace risk of a given trace exceeds a threshold.

Monitoring of systems that contain either only probabilistic or only nonde-
terministic behavior is typically based on filtering. Intuitively, the monitor then
estimates the current system states based on the model. For purely nondeter-
ministic systems (without probabilities) a set of states needs to be tracked, and
purely probabilistic systems (without nondeterminism) require tracking a dis-
tribution over states. This tracking is rather efficient. For systems that contain
both probabilistic and nondeterministic behavior, filtering is more challenging.
In particular, we show that filtering on MDPs results in an exponential memory
blowup as the monitor must track sets of distributions. We show that a reduc-
tion based on the geometric interpretation of these distributions is essential for
practical performance, but cannot avoid the worst-case exponential blowup. As a
tractable alternative to filtering, we rephrase the monitoring problem as the com-
putation of conditional reachability probabilities [9]. More precisely, we unroll
and transform the given MDP, and then model check this MDP. This alternative
approach yields a polynomial-time algorithm. Indeed, our experiments show the
feasibility of computing the risk by computing conditional probabilities. We also
show benchmarks on which filtering is a competitive option.

Contribution and Outline. This paper presents the first runtime monitoring
for systems that can be adequately abstracted by a combination of probabili-
ties and nondeterminism and where the system state is partially observable. We
describe the use case, show that typical filtering approaches in general fail to deal
with this setting, and show that a tractable alternative solution exists. In Sect. 3,
we investigate forward filtering, used to estimate the possible system states in
partially observable settings. We show that this approach is tractable for sys-
tems that have probabilistic or nondeterministic uncertainty, but not for systems
that have both. To alleviate the blowup, Sect. 4 discusses an (often) efficacious
pruning strategy and its limitations. In Sect. 5 we consider model checking as
a more tractable alternative. This result utilizes constructions from the analysis
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Fig. 1. A probabilistic world and sensor model represented by two MDPs for the sce-
nario of an airplane in landing approach with on-ground vehicle movements.

of partially observable MDPs and model checking MDPs with conditional prop-
erties. In Sect. 6 we present baseline implementations of these algorithms, on
top of the open-source model checker Storm, and evaluate their performance.
The results show that the implementation allows for monitoring of a variety of
MDPs, and reveals both strengths and weaknesses of both algorithms. We start
with a motivating example and review related work at the end of the paper.

Motivating Example. Consider a scenario where an autonomous airplane is
in its final approach, i.e., lined up with a designated runway and descending for
landing, see Fig. 1(a). On the ground, close to the runway, maintenance vehicles
may cross the runway. The airplane tracks the movements of these vehicles and
has to decide, depending on the movements of the vehicles, whether to abort
the landing. To simplify matters, assume that the airplane (P) is tracking the
movement of one vehicle (V) that is about to cross the runway. Let us further
assume that P tracks V using a perception module that can only determine the
position of the vehicle with a certain accuracy [33], i.e., for every position of V,
the perception module reports a noisy variant of the position of V. However, it
is important to know that the plane obtains a sequence of these measurements.
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Figure 1 illustrates the dynamics of the scenario. The world model describing
the movements of V and P is given in Fig. 1(c), where D2,D1, and D0 define
how close P is to the runway, and R, M , and L define the position of V. Depend-
ing on what information V perceives about P, given by the atomic proposition
{(p)rogress}, and what commands it receives {(w)ait}, it may or may not cross
the runway. The perception module receives the information about the state of
the world and reports with a certain accuracy (given as a probability) the posi-
tion of V. The (simple) model of the perception module is given in Fig. 1(d). For
example, if P is in zone D2 and V is in R then there is high chance that the per-
ception module returns that V is on the runway. The probability of incorrectly
detecting V’s position reduces significantly when P is in D0.

A monitor responsible for making the decision to land or to perform a go-
around based on the information computed by the perception module, must take
into consideration the accuracy of this returned information. For example, if the
sequence of sensor readings passed to the monitor is the sequence τ = Ro ·Ro ·Mo,
and each state is mapped to a certain risk, then how risky is it to land after
seeing τ? If, for instance, the world is with high probability in state 〈M,D0〉, a
very risky state, then the plane should go around. In the paper, we address the
question of computing the risk based on this observation sequence. We will use
this example as our running example.

2 Monitoring with Imprecise Sensors

In this section, we formalize the problem of monitoring with imprecise sensors
when both the world and sensor models are given by MDPs. We start with a
recap of MDPs, define the monitoring problem for MDPs, and finally show how
the dynamics of the system under inspection can be modeled by an MDP defined
by the composition of two MDPs of the sensors and world model of the system.

2.1 Markov Decision Processes

For a countable set X, let Distr(X) ⊂ (X → [0, 1]) define the set of all distribu-
tions over X, i.e., for d ∈ Distr(X) it holds that Σx∈Xd(x) = 1. For d ∈ Distr(X),
let the support of d be defined by supp(d) := {x | d(x) > 0}. We call a distribu-
tion d Dirac, if |supp(d)| = 1.

Definition 1 (Markov decision process). A Markov decision process is a
tuple M = 〈S, ι,Act, P,Z, obs〉, where S is a finite set of states, ι ∈ Distr(S)
is an initial distribution, Act is a finite set of actions, P : S × Act → Distr(S)
is a partial transition function, Z is a finite set of observations, and obs : S →
Distr(Z) is a observation function.

Remark 1. The observation function can also be defined as a state-action obser-
vation function obs : S × Act → Distr(Z). MDPs with state-action observation
function can be easily transformed into equivalent MDPs with a state observation
function using auxiliary states [19]. Throughout the paper we use state-action
observations to keep (sensor) models concise.
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For a state s ∈ S, we define AvAct(s) = {α | P (s, α) �= ⊥}. W.l.o.g.,
|AvAct(s)| ≥ 1. If all distributions in M are Dirac, we refer to M as a
Kripke structure (KS). If |AvAct(s)| = 1 for all s ∈ S, we refer to M as
a Markov chain (MC). When Z = S, we refer to M as fully observable and
omit Z and obs from its definition. A finite path in an MDP M is a sequence
π = s0a0s1 . . . sn ∈ S × (

Act × S
)∗ such that for every 0 ≤ i < n it holds that

P (si, ai)(si+1) > 0 and ι(s0) > 0. We denote the set of finite paths of M by
ΠM. The length of the path is given by the number of actions along the path.
The set Πn

M for some n ∈ N denotes the set of finite paths of length n. We use π↓
to denote the last state in π. We omit M whenever it is clear from the context.
A trace is a sequence of observations τ = z0 . . . zn ∈ Z+. Every path induces a
distribution over traces.

As standard, any nondeterminism is resolved by means of a scheduler.

Definition 2 (Scheduler). A scheduler for an MDP M is a function
σ : ΠM → Distr(Act) with supp(σ(π)) ⊆ AvAct(π↓) for every π ∈ ΠM.

We use Sched(M) to denote the set of schedulers. For a fixed scheduler σ ∈
Sched(M), the probability Prσ(π) of a path π (under the scheduler σ) is the
product of the transition probabilities in the induced Markov chain. For more
details we refer the reader to [8].

2.2 Formal Problem Statement

Our goal is to determine the risk that a system is exposed to having observed a
trace τ ∈ Z+. Let r : S → R≥0 map states in M to some risk in R≥0. We call
r a state-risk function for M. This function maps to the risk that is associated
with being in every state. For example, in our experiments, we flexibly define the
state risk using the (expected reward extension of the) temporal logic PCTL [8],
to define the probability of reaching a fail state. For example, we can define risk
as the probability to crash within H steps. The use of expected rewards allows
for even more flexible definitions.

Intuitively, to compute this risk of the system we need to determine the
current system state having observed τ , considering both the probabilistic and
nondeterministic context. To this end, we formalize the (conditional) probabil-
ities and risks of paths and traces. Let Prσ(π | τ) define the probability of a
path π, under a scheduler σ, having observed τ . Since a scheduler may define
many paths that induce the observation trace τ , we are interested in the weighted
risk over all paths, i.e.,

∑
π∈Π

|τ|
M

Prσ(π | τ) · r(π↓). The monitoring problem for
MDPs then conservatively over-approximates the risk of a trace by assuming
an adversarial scheduler, that is, by taking the supremum risk estimate over all
schedulers1.

1 We later see in Lemma 8 that this is indeed a maximum.
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The Monitoring Problem. Given an MDP M, a state-risk r : S → R≥0,
an observation trace τ ∈ Z+, and a threshold λ ∈ [0,∞), decide Rr(τ) > λ,
where the weighted risk function Rr : Z+ → R≥0 is defined as

Rr(τ) := sup
σ∈Sched(M)

∑

π∈Π
|τ|
M

Prσ(π | τ) · r(π↓).

The conditional probability Prσ(π | τ) can be characterized using Bayes’ rule2:

Prσ(π | τ) =
Pr(τ | π) · Prσ(π)

Prσ(τ)
.

The probability Pr(τ | π) of a trace τ for a fixed path π is obstr(π)(τ), where

obstr(s) := obs(s), obstr(παs′) := {τ · z 
→ obstr(π)(τ) · obs(s′)(z)},

when |π| = |τ |, and obstr(π)(τ) = 0 otherwise. The probability Prσ(τ) of a trace τ
is

∑
π Prσ(π) · Pr(τ | π).

We call the special variant with λ = 0 the qualitative monitoring problem.
The problems are (almost) equivalent on Kripke structures, where considering a
single path to an adequate state suffices. Details are given in [36, Appendix].

Lemma 1. For Kripke structures the monitoring and qualitative monitoring
problems are logspace interreducible.

In the next sections we present two types of algorithms for the monitoring
problem. The first algorithm is based on the widespread (forward) filtering app-
roach [44]. The second is new algorithm based on model checking conditional
probabilities. While filtering approaches are efficacious in a purely nondetermin-
istic or a purely probabilistic setting, it does not scale on models such as MDPs
that are both probabilistic and nondeterministic. In those models, model check-
ing provides a tractable alternative. Before going into details, we first connect
the problem statement more formally to our motivating example.

2.3 An MDP Defining the System Dynamics

We show how the weighted risk for a system given by a world and sensor model
can be formalized as a monitoring problem for MDPs. To this end, we define the
dynamics of the world and sensors that we use as basis for our monitor as the
following joint MDP.

For a fully observable world MDP E = 〈SE , ιE ,ActE , PE〉 and a sensor MDP
S = 〈SS , ιS , SE , PS ,Z, obs〉, where obs is state-action based, the inspected sys-
tem is defined by an MDP �〈E ,S〉� = 〈SJ , ιJ ,ActE , PJ ,Z, obsJ 〉 being the syn-
chronous composition of E and S:

2 For conciseness we assume throughout the paper that 0
0

= 0.
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Fig. 2. A run with its observations of the inspected system �〈E , S〉� where E and S are
the models given in Fig. 1.

– SJ := SE × SS ,
– ιJ is defined as ιJ (〈u, s〉) := ιE(u) · ιS(s) for each u ∈ SE and s ∈ SS ,
– PJ : SJ × ActE → Distr(SJ ) such that for all 〈u, s〉 ∈ SJ and α ∈ ActE ;

PJ (〈u, s〉, α) = du,s ∈ Distr(SJ ),

where for all u′ ∈ SE and s′ ∈ SS : du,s(〈u′, s′〉) = PE(u, α)(u′) · PS(s, u)(s′),
– obsJ : SJ → Distr(Z) with obsJ : 〈u, s〉 
→ obs(s, u).

In Fig. 2 we illustrate a run of �〈E ,S〉� for the world and sensor MDPs pre-
sented in Fig. 1. We particularly show the observations of the joint MDP given
by the distributions over the observations for each transition in the run (we omit-
ted the probabilistic transitions for simplicity). The observations of the MDP M
present the output of the sensor upon a path through M. These observations in
turn are the inputs to a monitor on top of the system. The role of the monitor
is then to compute the risk of being in a critical state based on the received
observations.

3 Forward Filtering for State Estimation

We start by showing why standard forward filtering does not scale well on MDPs.
We briefly show how filtering can be used to solve the monitoring problem for
purely nondeterministic systems (Kripke structures) or purely probabilistic sys-
tems (Markov Chains). Then, we show why for MDPs, the forward filtering needs
to manage, although finite but an exponential set of distributions. In Sect. 4 we
present a new improved variant of forward filtering for MDPs based on filtering
with vertices of the convex hull. In Sect. 5 we present a new polynomial-time
model checking-based algorithm for solving the problem.

3.1 State Estimators for Kripke Structures.

For Kripke structures, we maintain a set of possible states that agree with the
observed trace. This set of states is inductively characterized by the function
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estKS : Z+ → 2S which we define formally below. For an observation trace τ ,
estKS(τ) defines the set of states that can be reached with positive probabil-
ity. This set can be computed by a forward state traversal [31]. To illustrate
how estKS(τ) is computed for τ , consider the underlying Kripke structure of
the inspected system �〈E ,S〉� for our running example in Fig. 1 (to make this a
Kripke structure, we remove the probabilities). Consider further the observation
trace τ = Ro · Mo · Lo. Since �〈E ,S〉� has only one initial state 〈〈R,D2〉, sense〉
and Ro is observable with a positive probability in this state, estKS(Ro) =
{〈〈R,D2〉, sense〉}. As Mo is observed next, estKS(Ro · Mo) computes the states
reached from 〈〈R,D2〉, sense〉 and where Mo can be observed with a positive
probability, i.e., estKS(Ro · Mo) = {〈〈R,D1〉, sense〉, 〈〈R,M1〉, sense〉}. Finally,
the current state having observed Ro ·Mo ·Lo may be one of the states estKS(τ) =
{〈〈M,D1〉, sense〉, 〈〈L,D1〉, sense〉, 〈〈L,D0〉, sense〉, 〈〈M,D0〉, sense〉}, which
especially shows that we might be in the high-risk world state 〈M,D0〉.
Definition 3 (KS state estimator). For KS = 〈S, ι,Act, P,Z, obs〉, the state
estimation function estKS : Z+ → 2S is defined as

estKS(z) := {s ∈ S | ι(s) > 0 ∧ obs(s)(z) > 0}
estKS(τ · z) :=

{
s′ ∈ S | ∃s ∈ estKS(τ), ∃α ∈ Act, P (s, α)(s′) > 0 ∧ obs(s′)(z) > 0

}
.

For a Kripke structure KS and a given trace τ , the monitoring problem can
be solved by computing estKS(τ), using [31] and Lemma 1.

Lemma 2. For a Kripke stucture KS = 〈S, ι,Act, P,Z, obs〉, a trace τ ∈ Z+, and
a state-risk function r : S → R≥0, it holds that Rr(τ) = max

s∈estKS(τ)
r(s). Computing

Rr(τ) requires time O(|τ | · |P |) and space O(|S|).
A proof can be found in [36, Appendix]. The time and space requirements follow
directly from the inductive definition of estKS which resembles solving a forward
state traversal problem in automata [31]. In particular, the algorithm allows
updating the result after extending τ in O(|P |).

3.2 State Estimators for Markov Chains

For Markov chains, in addition to tracking the potential reachable system states,
we also need to take the transition probabilities into account. When a system
is (observation-)deterministic, we can adapt the notion of beliefs, similar to
RVSE [54], and similar to the construction of belief MDPs for partially observable
MDPs, cf. [53]:

Definition 4 (Belief). For an MDP M with a set of states S, a belief bel is
a distribution in Distr(S).

In the remainder of the paper, we will denote the function S → {0} by 0 and
the set Distr(S) ∪ {0} by Bel. A state estimator based on Bel is then defined as
follows [51,54,57]3:
3 For the deterministic case, we omit the unique action for brevity.
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Definition 5 (MC state estimator). For MC = 〈S, ι,Act, P,Z, obs〉, a trace
τ ∈ Z+ the state estimation function estMC : Z+ → Bel is defined as

estMC(z) :=

⎧
⎨

⎩

{
s 
→ ι(s)·obs(s)(z)∑

ŝ∈S

ι(ŝ)·obs(ŝ)(z)

} ∃s ∈ S. ι(s) · obs(z) > 0,

0 otherwise.

estMC(τ · z) :=

⎧
⎪⎨

⎪⎩
s′ 
→

∑
s∈S

estMC(τ)(s) · P (s, s′) · obs(s′)(z)
∑
s∈S

estMC(τ)(s) · ( ∑
ŝ∈S

P (s, ŝ) · obs(ŝ)(z)
)

⎫
⎪⎬

⎪⎭

To illustrate how estMC is computed, consider again our system in Fig. 1
and assume that the MDP has only the actions labeled with {p} (reducing it
to the Markov chain induced by the a scheduler that only performs the {p}
actions). Again we consider the observation trace τ = Ro · Mo · Lo and compute
estMC(τ). For the first observation Ro, and since there is only one initial state,
it follows that estMC(Ro) = {〈R,D2〉 
→ 1}4. From 〈R,D2〉 and having observed
Mo we can reach the states 〈R,D1〉 and 〈M,D1〉 with probabilities estMC(Ro ·
Mo) = {〈R,D1〉 
→ 1

2 · 1
3

1
2 · 1

3+ 1
2 · 3

4
= 4

13 , 〈M,D1〉 
→ 1
2 · 3

4
1
2 · 1

3+ 1
2 · 3

4
= 9

13}. Finally, from
the later two states, when observing Lo, the states 〈M,D0〉 and 〈L,D0〉 can be
reached with probabilities estMC(Ro · Mo · Lo) = {〈M,D0〉 
→ 0.0001, 〈L,D0〉 
→
0.999}. Notice that although the state 〈R,D0〉 can be reached from 〈R,D1〉, the
probability of being in this state is 0 since the probability of observing Lo in this
state is obs(〈R,D0〉)(Lo) = 0.

Lemma 3. For a Markov chain MC = 〈S, ι,Act, P,Z, obs〉, a trace τ ∈ Z+, and
a state-risk function r : S → R≥0, it holds that Rr(τ) =

∑
s∈S estMC(τ)(s) · r(s).

Computing Rr(τ) can be done in time O(|τ | · |S| · |P |) , and using |S| many
rational numbers. The size of the rationals5 may grow linearly in τ .

Proof Sketch. Since the system is deterministic, there is a unique scheduler σ,
thus Rr(τ) =

∑
π∈Π

|τ|
MC

Prσ(π | τ) ·r(π↓) by definition. We can show by induction
over the length of τ that Prσ(π | τ) = estMC(τ)(π↓) and conclude that Rr(τ) =∑

π∈Π
|τ|
M

estMC(τ)(π↓) · r(π↓) =
∑

s∈S estMC(τ)(s) · r(s) because estMC(τ)(s) = 0

for all s ∈ S for which there is no path π ∈ Π
|τ |
M with π↓ = s. The complexity

follows from the inductive definition of estMC that requires in each inductive step
to iterate over all transitions of the system and maintain a belief over the states
of the system. ��

3.3 State Estimators for Markov Decision Processes

In an MDP, we have to account for every possible resolution of nondeterminism,
which means that a belief can evolve into a set of beliefs:
4 We omit the (single) sensor state for conciseness.
5 To avoid growth, one may use fixed-precision numbers that over-approximate the

probability of being in any state—inducing a growing (but conservative) error.
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Definition 6 (MDP state estimator). For an MDP M = 〈S, ι,Act,
P,Z, obs〉, a trace τ ∈ Z+, and a state-risk function r : S → R≥0, the state
estimation function estMDP : Z+ → 2Bel is defined as

estMDP(z) = {estMC(z)},

estMDP(τ · z) =
{

bel′ ∈ Bel
∣∣∣ ∃bel ∈ estMDP(τ). bel′ ∈ estup

MDP(bel, z)
}

,

and where bel′ ∈ estup
MDP(bel, z) if there exists ςbel : S → Distr(Act) such that:

∀s′.bel′(s′) =

∑
s∈S

bel(s) · ∑
α∈Act

ςbel(s)(α) · P (s, α, s′) · obs(s′)(z)
∑
s∈S

bel(s) · ∑
α∈Act

ςbel(s)(α) · ∑
ŝ∈S

P (s, α, ŝ) · obs(ŝ)(z)
.

The definition conservatively extends both Definition 3 and Definition 5. Fur-
thermore, we remark that we do not restrict how the nondeterminism is resolved:
any distribution over actions can be chosen, and the distributions may be dif-
ferent for different traces.

Consider our system in Fig. 1. For the trace τ = Ro · Mo · Lo, estMDP(τ) is
computed as follows. First, when observing Ro, the state estimator computes
the initial belief set estMDP(Ro) = {{〈R,D2〉 
→ 1}}. From this set of beliefs,
when observing Mo, a set estMDP(Ro · Mo) can be computed since all transi-
tions ∅, {p}, {w}, {p,w} (as well as their convex combinations) are possible from
〈R,D2〉. One of these beliefs is for example {〈R,D1〉 
→ 4

13 , 〈M,D1〉 
→ 9
13} when

a scheduler takes the transition {p} (as was computed in our example for the
Markov chain case). Having additionally observed Lo a new set estMDP(RoMoLo)
of beliefs can be computed based on the beliefs in estMDP(RoMo). For exam-
ple from the belief {〈R,D1〉 
→ 4

13 , 〈M,D1〉 
→ 9
13}, two of the new beliefs

are {〈L,D0〉 
→ 0.999, 〈M,D0〉 
→ 0.0001} and {〈M,D1〉 
→ 0.0287, 〈M,D0〉 
→
0.0001, 〈L,D0〉 
→ 0.9712}. The first belief is reached by a scheduler that takes
a transition {p} at both 〈R,D1〉 and 〈M,D1〉. Notice that the belief does not
give a positive probability to the state 〈R,D0〉 because Lo cannot be observed
in this state. The second belief is reached by considering a scheduler that takes
transition {p} at 〈M,D1〉 and transition ∅ at 〈R,D1〉.
Theorem 1. For an MDP M = 〈S, ι,Act, P,Z, obs〉, a trace τ ∈
Z+, and a state-risk function r : S → R≥0, it holds that Rr(τ) =
supbel∈estMDP(τ)

∑
s∈S bel(s) · r(s).

Proof Sketch. For a given trace τ , each (history-dependent, randomizing) sched-
uler induces a belief over the states of the Markov chain induced by the scheduler.
Also, each belief in estMDP(τ) corresponds to a fixed scheduler, namely that one
used to compute the belief recursively (i.e., an arbitrary randomizing memory-
less scheduler for every time step). Once a scheduler σ and its corresponding
belief bel is fixed, or vice versa, we can show using induction over the length of
τ that

∑
π∈Π

|τ|
M

Prσ(π | τ) · r(π↓) =
∑

s∈S bel(s) · r(s). ��
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Fig. 3. Beliefs in R
n on M for τ = z0z0, z0z0z0 and z0z0z1, respectively.

4 Convex Hull-Based Forward Filtering

In this section, we show that we can use a finite representation for estMDP(τ),
but that this representation is exponentially large for some MDPs.

4.1 Properties of estMDP(τ ).

First, observe that 0 never maximizes the risk. Furthermore, 0 is closed
under updates, i.e., estup

MDP(0, z) = {0}. We can thus w.l.o.g. assume that
0 �∈ estMDP(τ). Second, observe that estMDP(τ) �= ∅ if Prσ(τ) > 0.

We can interpret a belief bel ∈ Bel as point in (a bounded subset of) R
(|S|−1).

We are in particular interested in convex sets of beliefs. A set B ⊆ Bel is convex if
the convex hull CH(B) of B, i.e. all convex combination of beliefs in B6, coincides
with B, i.e., CH(B) = B. For a set B ⊆ Bel, a belief bel ∈ B is an interior belief
if it can be expressed as convex combination of the beliefs in B \{bel}. All other
beliefs are (extremal) points or vertices. Let the set V(B) ⊆ B denote the set of
vertices of the convex hull of B.

Example 1. Consider Fig. 3(a). All observation are Dirac, and only states s2

and s4 have observation z1. The beliefs having observed z0z0 are distributions
over s1, s3, and can thus be depicted in a one-dimensional simplex. In particu-
lar, we have V(estMDP(z0z0)) = {{s1 
→ 1}, {s1 
→ 3/4, s3 
→ 1/4}}, as depicted in
Fig. 3(b). The six beliefs having observed z0z0z0 are distributions over s0, s1, s3,
depicted in Fig. 3(c). Five out of six beliefs are vertices. The belief having
observed z0z0z1 is in Fig. 3(d).

Remark 2. Observe that we illustrate the beliefs over only the states estKS(τ).
We therefore call |estKS(τ)| the dimension of estMDP(τ).

From the fundamental theorem of linear programming [47, Ch. 7] it immediately
follows that the trace risk Rτ is obtained at a vertex of the beliefs of estMDPτ .
We obtain the following refinement over Theorem 1:
6 That is, CH(B) = {∑

bel∈B w(bel) · bel | for all w ∈ R
B
≥0 with

∑
w(bel) = 1}.
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Theorem 2. For every τ and r: Rr(τ) = max
bel∈V(estMDP(τ))

∑
s∈S bel(s) · r(s).

Lemma 5 below clarifies that this maximum indeed exists.
We make some observations that allow us to compute the vertices more effi-

ciently: Let estup
MDP(B, z) denote

⋃
bel∈B estup

MDP(bel, z). From the properties of
convex sets [18, Ch. 2], we make the following observations: If B is convex,
estup

MDP(B, z) is convex, as all operations in computing a new belief are convex-
set preserving7. Furthermore, if B has a finite set of vertices, then estup

MDP(B, z)
has a finite set of vertices. The following lemma which is based on the observa-
tions above clarifies how to compute the vertices:

Lemma 4. For a convex set of beliefs B with a finite set of vertices and an
observation z:

V(estup
MDP(B, z)) = V(estup

MDP(V(B), z)).

By induction and using the facts above we obtain:

Lemma 5. Any V(estMDP(τ)) is finite.

A monitor thus only needs to track the vertices. Furthermore, estup
MDP(B, z) can

be adapted to compute only vertices by limiting ςbel to S → Act.

4.2 Exponential Lower Bounds on the Relevant Vertices

We show that a monitor in general cannot avoid an exponential blow-up in the
beliefs it tracks. First observe that updating bel yields up to

∏
s |Act(s)| new

beliefs (vertex or not), a prohibitively large number. The number of vertices is
also exponential:

Lemma 6. There exists a family of MDPs Mn with 2n + 1 states such that
|V(estMDP(τ))| = 2n for every τ with |τ | > 2.

Proof Sketch. We construct Mn with n = 3, that is, M3 in Fig. 4(a). For this
MDP and τ = AAA, |V(estMDP(τ))| = 23. In particular, observe how the belief
factorizes into a belief within each component Ci = {hi, li} and notice that Mn

has components C1 to Cn. In particular, for each component, the belief being that
we are with probability mass 1/n (for n = 3, 1/3) in the ’low’ state li or the ’high’
state hi. We depict the beliefs in Fig. 4(b,c,d). Thus, for any τ with |τ | > 2 we can
compactly represent V(estMDP(τ)) as bit-strings of length n. Concretely, the belief

{h1, l2, l3 
→ 1/3, l1, h2, h3 
→ 0} maps to 100, and
{h1, l2, h3 
→ 1/3, l1, h2, l3 
→ 0} maps to 101.

These are exponentially many beliefs for bit strings of length n. ��
One might ask whether a symbolic encoding of an exponentially large set

may result in a more tractable approach to filtering. While Theorem 2 allows
7 The scaling is called a projection.
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Fig. 4. Construction for the correctness of Lemma 6.

to compute the associated risk from a set of linear constraints with standard
techniques, it is not clear whether the concise set of constraints can be efficiently
constructed and updated in every step. We leave this concern for future work.

In the remainder we investigate whether we need to track all these beliefs.
First, when the monitor is unaware of the state-risk, this is trivially unavoid-
able. More precisely, all vertices may induce the maximal weighted trace risk by
choosing an appropriate state-risk:

Lemma 7. For every τ and every bel ∈ V(estMDP(τ)) there exists an r s.t.
∑

s∈S

bel(s) · r(s) ≥ max
bel′∈V(estMDP(τ))\{bel}

∑

s∈S

bel′(s) · r(s) with max
bel∈∅

= −∞.

Proof Sketch. We construct r such that r(s) > r(s′) if bel(s) > bel(s′). ��
Second, even if the monitor is aware of the state risk r, it may not be able to

prune enough vertices to avoid exponential growth. The crux here is that while
some of the current beliefs may induce a smaller risk, an extension of the trace
may cause the belief to evolve into a belief that induces the maximal risk.

Theorem 3. There exist MDPs Mn a τ with B := V(estMDP(τ)) and a state-
risk r such that |B| = 2n and for all bel ∈ B exists τ ′ ∈ Z+ with Rr(τ · τ ′) >
supbel∈B′

∑
s bel(s) · r(s), where B′ = estup

MDP(B \ {bel}, τ ′).
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It is helpful to understand this theorem as describing the outcome of a game
between monitor and environment: The statement says if the monitor decides to
drop some vertices from estMDPτ , the environment may produce an observation
trace τ ′ that will lead the monitor to underestimate the weighted risk at Rr(τ ·τ ′).

Proof Sketch. We extend the construction of Fig. 4(a) with choices to go to a
final state. The full proof sketch can be found in [36, Appendix].

4.3 Approximation by Pruning

Finally, we illustrate that we cannot simply prune small probabilities from
beliefs. This indicates that an approximative version of filtering for the mon-
itoring problem is nontrivial. Reconsider observing z0z0 in the MDP of Fig. 3,
and, for the sake of argument, let us prune the (small) entry s3 
→ 1/4 to 0. Now,
continuing with the trace z0z0z1, we would update the beliefs from before and
then conclude that this trace cannot be observed with positive probability. With
pruning, there is no upper bound on the difference between the computed Rτ

and the actual Rτ . Thus, forward filtering is, in general, not tractable on MDPs.

5 Unrolling with Model Checking

We present a tractable algorithm for the monitoring problem. Contrary to filter-
ing, this method incorporates the state risk. We briefly consider the qualitative
case. An algorithm that solves that problem iteratively guesses a successor such
that the given trace has positive probability, and reaches a state with sufficient
risk. The algorithm only stores the current and next state and a counter.

Theorem 4. The Monitoring Problem with λ = 0 is in NLOGSPACE.

This result implies the existence of a polynomial time algorithm, e.g., using a
graph-search on a graph growing in |τ |. There also is a deterministic algorithm
with space complexity O(log2(|M|+ |τ |)), which follows from applying Savitch’s
Theorem [46] , but that algorithm has exponential time complexity.

We now present a tractable algorithm for the quantitative case, where we
need to store all paths. We do this efficiently by storing an unrolled MDP with
these paths using ideas from [9,19]. In particular, on this MDP, we can effi-
ciently obtain the scheduler that optimizes the risk by model checking rather
than enumerating over all schedulers explicitly. We give the result before going
into details.

Theorem 5. The Monitoring Problem (with λ > 0) is P-complete.

The problem is P-hard, as unary-encoded step-bounded reachability is P-hard [41].
It remains to show a P-time algorithm8, which is outlined below. Roughly, the algo-
rithm constructs an MDP M′′′ from M in three conceptual steps, such that the
8 On first sight, this might be surprising as step-bounded reachability in MDPs is

PSPACE-hard and only quasi-polynomial. However, our problem gets a trace and
therefore (assuming that the trace is not compressed) can be handled in time polyno-
mial in the length of the trace.
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Fig. 5. Polynomial-time algorithm for solving Problem 1 illustrated.

maximal probability of reaching a state in M′′′ coincides with the Rr(τ). The for-
mer can be solved by linear programming in polynomial time. The downside is that
even in the best case, the memory consumption grows linearly in |τ |.

We outline the main steps of the algorithm and exemplify them below: First,
we transform M into an MDP M′ with deterministic state observations, i.e.,
with obs′ : S → Z. This construction is detailed in [19, Remark 1], and runs in
polynomial time. The new initial distribution takes into account the initial obser-
vation and the initial distribution. Importantly, for each path π and each trace τ ,
obstr(π)(τ) is preserved. From here, the idea for the algorithm is a tailored adap-
tion of the construction for conditional reachability probabilities in [9]. We ensure
that r(s) ∈ [0, 1] by scaling r and λ accordingly. Now, we construct a new MDP
M′′ = 〈S′′, ι′′,Act′′, P ′′〉 with state space S′′ := (S′×{0, . . . , |τ |−1})∪{⊥,�} and
an n-times unrolled transition relation. Furthermore, from the states 〈s, |τ |−1〉,
there is a single outgoing action that with probability r(s) leads to � and with
probability 1 − r(s) leads to ⊥. Observe that the risk is now the supremum
of conditioned reachability probabilities over paths that reach �, conditioned
by the trace τ . The MDP M′′ is only polynomially larger. Then, we construct
MDP M′′′ by copying M′′ and replacing (part of) the transition relation P ′′

by P ′′′ such that paths π with τ �∈ obstr(π) are looped back to the initial state
(resembling rejection sampling). Formally,

P ′′′(〈s, i〉, α) =

{
P ′′(〈s, i〉, α) if obs′(s) = τi,

ι otherwise.

The maximal conditional reachability probability in M′′ is the maximal reacha-
bility probability in M ′′′ [9]. Maximal reachability probabilities can be computed
by solving a linear program [43], and can thus be computed in polynomial time.

Example 2. We illustrate the construction in Fig. 5. In Fig. 5(a), we depict an
MDP M, with ι = {s0, s1 
→ 1/2}. Furthermore, let τ = z0z0 and let r(s0) = 1
and r(s1) = 2. Let obs(s0) = {z0 
→ 1} and obs(s1) = {z0 
→ 1/4, z1 
→ 3/4}.
State s1 has two possible observations, so we split s1 into s1 and s2 in MDP
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M′, each with their own observations. Any transition into s1 is now split. As
|τ | = 2, we unroll the MDP M′ into MDP M′′ to represent two steps, and
add goal and sink states. After rescaling, we obtain that r(s0) = 1/2, whereas
r(s1) = r(s2) = 2/2 = 1, and we add the appropriate outgoing transitions to
the states s1

∗. In a final step, we create MDP M′′′ from M′′: we reroute all
probability mass that does not agree with the observations to the initial states.
Now, Rr(z0z0) is given by the probability to reach, in M′′′, in an unbounded
number of steps, �.

The construction also implies that maximizing over a finite set of schedulers,
namely the deterministic schedulers with a counter from 0 to |τ |, suffices. We
denote this class ΣDC(|τ |). Formally, a scheduler is in ΣDC(k) if for all π, π′:

(
π↓ = π′↓ ∧ (|π| = |π′| ∨ (|π| > k ∧ |π′| > k)

))
implies σ(π) = σ(π′).

Lemma 8. For every τ , it holds that

Rr(τ) = max
σ∈ΣDC(|τ |)

∑

π∈Π
|τ|
M

Prσ(π | τ) · r(π↓).

The crucial idea underpinning this lemma is that memoryless schedulers suffice
for the unrolling, and that the states of the unrolling can be uniquely mapped to
a state and the length of the history for every π through M. By reducing step-
bounded reachability we can also show that this set of schedulers is necessary [4].

6 Empirical Evaluation

Implementation. We provide prototype implementations for both filtering- and
model-checking-based approaches from Sect. 3, built on top of the probabilistic
model checker Storm [30]. We provide a schematic setup of our implementation
in Fig. 6. As input, we consider a symbolic description of MDPs with state-
based observation labels, based on an extended dialect of the Prism language.
We define the state risk in this MDP via a temporal property (given as a PCTL

formula), and obtain the concrete state-risk by model checking. We take a seed
that yields a trace using the simulator. For the experiments, actions are resolved
uniformly in this simulator9. The simulator iteratively feeds observations into
the monitor, running either of our two algorithms (implemented in C++). After
each observation zi, the monitor computes the risk Ri having observed z0 . . . zi.
We flexibly combine these components via a Python API10.

For filtering as in Sect. 4, we provide a sparse data structure for beliefs that is
updated using only deterministic schedulers. This is sufficient, see Lemma 4. To
further prune the set of beliefs, we implement an SMT-driven elimination [48]
9 This is not an assumption but rather our evaluation strategy.

10 Available at https://github.com/monitoring-MDPs/premise.

https://github.com/monitoring-MDPs/premise
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Fig. 6. Schematic setup for prototype mapping stream z0 . . . zk to stream R0 . . . Rk.

of interior beliefs, inside of the convex hull11. We construct the unrolling as
described in Sect. 5 and apply model checking via any sparse engines in Storm.

Reproducibility. We archived a container with sources, benchmarks, and scripts
to reproduce our experiments: https://doi.org/10.5281/zenodo.4724622.

Set-Up. For each benchmark described below, we sampled 50 random traces
using seeds 0–49 of lengths up to |τ | = 500. We are interested in the prompt-
ness, that is, the delay of time between getting an observation zi and returning
corresponding risk ri, as well as the cumulative performance obtained by sum-
ming over the promptness along the trace. We use a timeout of 1 second for
this query. We compare the forward filtering (FF) approach with and without
convex hull (CH) reduction, and the model unrolling approach (UNR) with two
model checking engines of Storm: exact policy iteration (EPI, [43]) and opti-
mistic value iteration (OVI, [28]). All experiments are run on a MacBook Pro
MV962LL/A, using a single core. The memory limit of 6GB was not violated.
We use Z3 [38] as SMT-solver [11] for the convex hull reduction.

Benchmarks. We present three benchmark families, all MDPs with a combination
of probabilities, nondeterminism and partial observability.

Airport-A is as in Sect. 1, but with a higher resolution for both ground vehicle
in the middle lane and the plane. Airport-B has a two-state sensor model with
stochastic transitions between them.

Refuel-A models robots with a depleting battery and recharging stations. The
world model consists of a robot moving around in a D×D grid with some ded-
icated charging cells, where each action costs energy. The risk is to deplete the
battery within a fixed horizon. Refuel-B is a two-state sensor variant.

Evade-I is inspired by a navigation task in a multi-agent setting in a D×D grid.
The monitored robot moves randomly, and the risk is defined as the probability
of crashing with the other robot. The other robot has an internal incentive in
the form of a cardinal direction, and nondeterministically decides to move or

11 Advanced algorithms like Quickhull [10] are not without significant adaptions appli-
cable as the set of beliefs can be degenerate (roughly, a set without full rank).

https://doi.org/10.5281/zenodo.4724622
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Table 1. Performance for promptness of online monitoring on various benchmarks.

CH Forward Filtering Unrolling

Id Name Inst |S| |P | |τ | N T
avg

T
max

B
avg

B
max

D
avg

D
max

N T
avg

T
max

|Su|
avg

|Su|
max

1 airport-A 7,50,30 20910 114143
100 50 0.01 0.01 4.5 7 4.6 7 50 0.04 0.11 524 599

500 50 0.01 0.01 1.0 1 1.0 1 50 0.01 0.01 1075 1258

2 airport-B 3,50,30 20232 106012
100 0 50 0.09 0.16 556 629

500 0 50 0.01 0.01 1460 1647

3 airport-B 7,50,30 41820 308474
100 0 50 0.14 0.33 1000 1183

500 0 11 0.02 0.02 2097 2297

4 refuel-A 12,50 45073 2431691
100 50 0.01 0.01 2.2 4 2.8 5 50 0.01 0.05 325 409

500 50 0.01 0.01 1.5 4 1.7 5 50 0.01 0.19 1071 2409

5 refuel-B 12,50 90145 9725277
100 50 0.06 0.23 4.2 8 5.6 10 50 0.04 0.17 608 732

500 50 0.01 0.01 2.9 8 3.3 10 46 0.04 0.09 2171 4688

6 evade-I 15 377101 2022295
100 50 0.01 0.02 2.6 10 3.3 4 49 0.01 0.06 332 363

500 50 0.01 0.01 2.4 5 3.4 4 45 0.08 0.90 1655 1891

7 evade-V 5,3 1001 5318
100 26 0.01 0.01 1.0 1 1.0 1 50 0.00 0.02 134 241

500 25 0.01 0.01 1.0 1 1.0 1 50 0.00 0.01 538 671

8 evade-V 6,3 2161 11817
100 1 0.01 0.01 1.0 1 1.0 1 50 0.02 0.32 319 861

500 1 0.01 0.01 1.0 1 1.0 1 49 0.01 0.02 777 1484

to uniformly randomly change its incentive. The monitor observes everything
except the incentive of the other robot. Evade-V is an alternative navigation
task: Contrary to above, the other robot does not have an internal state and
indeed navigates nondeterministically in one of the cardinal directions. We only
observe the other robot location is within the view range.

Results. We split our results in two tables. In Table 1, we give an ID for every
benchmark name and instance, along with the size of the MDP (nr. of states
|S| and transitions |P |) our algorithms operate on. We consider the promptness
after prefixes of length |τ |. In particular, for forward filtering with the convex
hull optimization, we give the number N of traces that did not time out before,
and consider the average Tavg and maximal time Tmax needed (over all sampled
traces that did not time-out before). Furthermore, we give the average, Bavg,
and maximal, Bmax, number of beliefs stored (after reduction), and the average,
Davg, and maximal, Dmax, dimension of the belief support. Likewise, for unrolling
with exact model checking, we give the number N of traces that did not time
out before, and we consider average Tavg and maximal time Tmax, as well as the
average size and maximal number of states of the unfolded MDP.

In Table 2, we consider for the benchmarks above the cumulative perfor-
mance. In particular, this table also considers an alternative implementation for
both FF and UNR. We use the IDs to identify the instance, and sum for each
prefix of length |τ | the time. For filtering, we recall the number of traces N that
did not time out, the average and maximal cumulative time along the trace,
the average cumulative number of beliefs that were considered, and the average
cumulative number of beliefs eliminated. For the case without convex hull, we
do not eliminate any vertices. For unrolling, we report average Tavg and maxi-
mal cumulative time using EPI, as well as the time required for model building,
Bld% (relative to the total time, per trace). We compare this to the average
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Table 2. Summarized performance for online monitoring

FF w/o CH FF w/ CH UNR (EPI) UNR (OVI)

Id |τ | N T
avg

T
max

B
avg

N T
avg

T
max

B
avg

E
avg

N T
avg

T
max

Bld%

avg
Bld%

max
N T

avg
T

max

1 100 0 50 0.9 1.1 493 241 50 2.9 3.6 6 56 50 0.0 0.1

500 0 50 3.7 4.3 1040 316 50 7.5 10.7 21 24 50 0.4 0.8

2 100 0 0 50 3.7 4.7 6 54 50 0.1 0.1

500 0 0 50 11.9 17.1 18 23 50 0.6 0.8

3 100 0 0 50 7.6 10.6 5 55 50 0.1 0.2

500 0 0 11 21.3 28.7 19 23 50 0.9 1.7

4 100 1 0.9 0.9 1473 50 0.7 0.8 241 138 50 0.7 1.0 35 69 50 0.0 0.1

500 1 0.9 0.9 1873 50 3.4 3.7 868 226 50 5.6 21.2 57 67 50 0.5 0.9

5 100 0 50 7.4 10.7 442 2267 50 2.5 4.4 32 57 50 0.1 0.2

500 0 50 16.5 42.2 1781 4249 46 19.5 64.2 55 70 50 1.3 2.3

6 100 13 0.7 2.9 2055 50 1.1 4.8 273 160 49 0.5 2.0 34 65 47 0.0 0.1

500 2 4.4 6.8 20524 50 5.1 11.5 1237 632 45 22.4 53.6 13 29 43 0.5 0.7

7 100 13 0.1 0.5 274 26 0.8 1.2 106 11 50 0.4 1.0 19 45 48 0.0 0.1

500 13 0.1 0.5 674 25 3.7 4.2 505 7 50 1.3 4.4 46 58 47 0.2 0.3

8 100 0 1 1.3 1.3 124 109 50 1.5 7.0 15 39 36 0.4 5.6

500 0 1 4.3 4.3 524 109 49 4.9 28.1 37 56 35 0.7 6.4

and maximal cumulative time for using OVI (notice that building times remain
approximately the same).

Discussion. The results from our prototype show that conservative (sound) pre-
dictive modeling of systems that combine probabilities, nondeterminism and
partial observability is within reach with the methods we proposed and state-
of-the-art algorithms. Both forward filtering and an unrolling-based approaches
have their merits. The practical results thus slightly diverge from the complexity
results in Sect. 3.1, due to structural properties of some benchmarks. In par-
ticular, for airport-A and refuel-A, the nondeterminism barely influences
the belief, and so there is no explosion, and consequentially the dimension of
the belief is sufficiently small that the convex hull can be efficiently computed.
Rather than the number of states, this belief dimension makes evade-V a dif-
ficult benchmark12. If many states can be reached with a particular trace, and
if along these paths there are some probabilistic states, forward filtering suffers
significantly. We see that if the benchmark allows for efficacious forward filter-
ing, it is not slowed down in the way that unrolling is slower on longer traces.
For UNR, we observe that OVI is typically the fastest, but EPI does not suffer
from the numerical worst-cases as OVI does. If an observation trace is unlikely,
the unrolled MDP constitutes a numerically challenging problem, in particular
for value-iteration based model checkers, see [27]. For FF, the convex hull com-
putation is essential for any dimension, and eliminating some vertices in every
step keeps the number of belief states manageable.

12 The max dimension =1 in evade-V is only over the traces that did not time-out.
The dimension when running in time-outs is above 5.



572 S. Junges et al.

7 Related Work

We are not the first to consider model-based runtime verification in the presence
of partial observability and probabilities. Runtime verification with state estima-
tion on hidden Markov models (HMM)—without nondeterminism has been stud-
ied for various types of properties [51,54,57] and has been extended to hybrid
systems [52]. The tool Prevent focusses on black-box systems by learning an
HMM from a set of traces. The HMM approximates (with only convergence-in-
the-limit guarantees) the actual system [6], and then estimates during runtime
the most likely trace rather than estimating a distribution over current states.
Extensions consider symmetry reductions on the models [7]. These techniques
do not make a conservative (sound) risk estimation. The recent framework for
runtime verification in the presence of partial observability [23] takes a more
strict black-box view and cannot provide state estimates. Finally, [26] chooses to
have partial observability to make monitoring of software systems more efficient,
and [58] monitors a noisy sensor to reduce energy consumption.

State beliefs are studied when verifying HMMs [59], where the question
whether a sequence of observations likely occurs, or which HMM is an adequate
representation of a system [37]. State beliefs are prominent in the verification of
partially observable MDPs [16,32,40], where one can observe the actions taken
(but the problem itself is to find the right scheduler). Our monitoring problem
can be phrased as a special case of verification of partially observable stochastic
games [20], but automatic techniques for those very general models are lack-
ing. Likewise, the idea of shielding (pre)computes all action choices that lead
to safe behavior [3,5,15,24,34,35]. For partially observable settings, shielding
again requires to compute partial-information schedulers [21,39], contrary to
our approach. Partial observability has also been studied in the context of diag-
nosability, studying if a fault has occurred (in the past) [14], or what actions
uncover faults [13]. We, instead assume partial observability in which we do
detect faults, but want to estimate the risk that these faults occur in the future.

The assurance framework for reinforcement learning [42] implicitly allows
for stochastic behavior, but cannot cope with partial observability or nondeter-
minism. Predictive monitoring has been combined with deep learning [17] and
Bayesian inference [22], where the key problem is that the computation of an
imminent failure is too expensive to be done exactly. More generally, learning
automata models has been motivated with runtime assurance [1,55]. Testing
approaches statistically evaluate whether traces are likely to be produced by a
given model [25]. The approach in [2] studies stochastic black-box systems with
controllable nondeterminism and iteratively learns a model for the system.

8 Conclusion

We have presented the first framework for monitoring based on a trace of obser-
vations on models that combine nondeterminism and probabilities. Future work
includes heuristics for approximate monitoring and for faster convex hull com-
putations, and to apply this work to gray-box (learned) models.
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vided by Boeing in the DARPA Assured Autonomy program.
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Abstract. We revisit the symbolic verification of Markov chains with
respect to finite horizon reachability properties. The prevalent approach
iteratively computes step-bounded state reachability probabilities. By
contrast, recent advances in probabilistic inference suggest symbolically
representing all horizon-length paths through the Markov chain. We ask
whether this perspective advances the state-of-the-art in probabilistic
model checking. First, we formally describe both approaches in order
to highlight their key differences. Then, using these insights we develop
Rubicon, a tool that transpiles Prism models to the probabilistic infer-
ence tool Dice. Finally, we demonstrate better scalability compared to
probabilistic model checkers on selected benchmarks. All together, our
results suggest that probabilistic inference is a valuable addition to the
probabilistic model checking portfolio, with Rubicon as a first step
towards integrating both perspectives.

1 Introduction

Systems with probabilistic uncertainty are ubiquitous, e.g., probabilistic pro-
grams, distributed systems, fault trees, and biological models. Markov chains
replace nondeterminism in transition systems with probabilistic uncertainty, and
probabilistic model checking [4,7] provides model checking algorithms. A key
property that probabilistic model checkers answer is: What is the (precise) prob-
ability that a target state is reached (within a finite number of steps h)? Contrary
to classical qualitative model checking and approximate variants of probabilistic
model checking, precise probabilistic model checking must find the total proba-
bility of all paths from the initial state to any target state.
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(a) Motivating factory Markov chain with si = [[ ci = 0 ]], ti = [[ ci = 1 ]].

const double p1, p2, p3, q1, q2, q3;
module F1
c1 : bool init false;

[a] !c1 -> p1: (c′
1=1) +1−p1: (c′

1=0);

[a] c1 -> q1: (c′
1=0) +1−q1: (c′

1=1);
endmodule
module F2 = F1[c1=c2,p1=p2,q1=q2]
module F3 = F1[c1=c3,p1=p3,q1=q3]
label "allStrike" = c1 & c2 & c3;

(b) A Prism model of (a) with 3 factories.
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Fig. 1. Motivating example. Figure 1(c) compares the performance of Rubicon ( ),
Storm’s explicit engine ( ), Storm’s symbolic engine ( ) and Prism ( )
when invoked on a (b) with arbitrarily fixed (different) constants for pi, qi and horizon
h = 10. Times are in seconds, with a time-out of 30 min.

Nevertheless, the prevalent ideas in probabilistic model checking are gener-
alizations of qualitative model checking. Whereas qualitative model checking
tracks the states that can reach a target state (or dually, that can be reached
from an initial state), probabilistic model checking tracks the i-step reachability
probability for each state in the chain. The i+1-step reachability can then be
computed via multiplication with the transition matrix. The scalability concern
is that this matrix grows with the state space in the Markov chain. Mature model
checking tools such as Storm [36], Modest [34], and Prism [51] utilize a variety
of methods to alleviate the state space explosion. Nevertheless various natural
models cannot be analyzed by the available techniques.

In parallel, within the AI community a different approach to representing a
distribution has emerged, which on first glance can seem unintuitive. Rather than
marginalizing out the paths and tracking reachability probabilities per state, the
probabilistic AI community commonly aggregates all paths that reach the target
state. At its core, inference is then a weighted sum over all these paths [16].
This hinges on the observation that this set of paths can often be stored more
compactly, and that the probability of two paths that share the same prefix or
suffix can be efficiently computed on this concise representation. This inference
technique has been used in a variety of domains in the artificial intelligence
(AI) and verification communities [9,14,27,39], but is not part of any mature
probabilistic model checking tools.

This paper theoretically and experimentally compares and contrasts these
two approaches. In particular, we describe and motivate Rubicon, a probabilistic
model checker that leverages the successful probabilistic inference techniques. We
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begin with an example that explains the core ideas of Rubicon followed by the
paper structure and key contributions.

Motivating Example. Consider the example illustrated in Fig. 1(a). Suppose
there are n factories. Each day, the workers at each factory collectively decide
whether or not to strike. To simplify, we model each factory (i) with two states,
striking (ti) and not striking (si). Furthermore, since no two factories are identi-
cal, we take the probability to begin striking (pi) and to stop striking (qi) to be
different for each factory. Assuming that each factory transitions synchronously
and in parallel with the others, we query: “what is the probability that all the
factories are simultaneously striking within h days?”

Despite its simplicity, we observe that state-of-the-art model checkers like
Storm and Prism do not scale beyond 15 factories.1 For example, Fig. 1(b)
provides a Prism encoding for this simple model (we show the instance with
3 factories), where a Boolean variable ci is used to encode the state of each
factory. The “allStrike” label identifies the target state. Figure 1(c) shows the
run time for an increasing number of factories. While all methods eventually
time out, Rubicon scales to systems with an order of magnitude more states.

Why is This Problem Hard? To understand the issue with scalability, observe
that tools such as Storm and Prism store the transition matrix, either explicitly
or symbolically using algebraic decision diagrams (ADDs). Every distinct entry
of this transition matrix needs to be represented; in the case of ADDs using a
unique leaf node. Because each factory in our example has a different probability
of going on strike, that means each subset of factories will likely have a unique
probability of jointly going on strike. Hence, the transition matrix then will
have a number of distinct probabilities that is exponential in the number of
factories, and its representation as an ADD must blow up in size. Concretely,
for 10 factories, the size of the ADD representing the transition matrix has 1.9
million nodes. Moreover, the explicit engine fails due to the dense nature of the
underlying transition matrix. We discuss this method in Sect. 3.

How to Overcome This Limitation? This problematic combinatorial explosion
is often unnecessary. For the sake of intuition, consider the simple case where
the horizon is 1. Still, the standard transition matrix representations blow up
exponentially with the number of factories n. Yet, the probability of reaching
the “allStrike” state is easy to compute, even when n grows: it is p1 · p2 · · · pn.

Rubicon aims to compute probabilities in this compact factorized way by
representing the computation as a binary decision diagram (BDD). Figure 1(d)
gives an example of such a BDD, for three factories and a horizon of one. A key
property of this BDD, elaborated in Sect. 3, is that it can be interpreted as a
parametric Markov chain, where the weight of each edge corresponds with the
probability of a particular factory striking. Then, the probability that the goal
state is reached is given by the weighted sum of paths terminating in T : for this
instance, there is a single such path with weight p1 ·p2 ·p3. These BDDs are tree-
like Markov-chains, so model checking can be performed in time linear in the size
1 Section 6 describes the experimental apparatus and our choice of comparisons.
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of the BDD using dynamic programming. Essentially, the BDD represents the
set of paths that reach a target state—an idea common in probabilistic inference.

To construct this BDD, we propose to encode our reachability query sym-
bolically as a weighted model counting (WMC) query on a logical formula. By
compiling that formula into a BDD, we obtain a diagram where computing the
query probability can be done efficiently (in the size of the BDD). Concretely
for Fig. 1(d), the BDD represents the formula c

(1)
1 ∧ c

(1)
2 ∧ c

(1)
3 , which encodes

all paths through the chain that terminate in the goal state (all factories strike
on day 1). For this example and this horizon, this is a single path. WMC is a
well-known strategy for probabilistic inference and is currently the among the
state-of-the-art approaches for discrete graphical models [16], discrete probabilis-
tic programs [39], and probabilistic logic programs [27].

In general, the exponential growth of the number of paths might seem like
it dooms this approach: for n = 3 factories and horizon h = 1, we need to
only represent 8 paths, but for h = 2, we would need to consider 64 different
paths, and so on. However, a key insight is that, for many systems – such as
the factory example – the structural compression of BDDs allows a concise rep-
resentation of exponentially many paths, all while being parametric over path
probabilities (see Sect. 4). To see why, observe that in the above discussion, the
state of each factory is independent of the other factories: independence, and
its natural generalizations like conditional and contextual independence, are the
driving force behind many successful probabilistic inference algorithms [47]. Suc-
cinctly, the key advantage of Rubicon is that it exploits a form of structure that
has thus far been under-exploited by model checkers, which is why it scales to
more parallel factories than the existing approaches on the hard task. In Sect. 6
we consider an extension to this motivating example that adds dependencies
between factories. This dependency (or rather, the accompanying increase in
the size of the underlying MC) significantly decreases scalability for the existing
approaches but negligibly affects Rubicon.

This leads to the task: how does one go from a Prism model to a concise BDD
efficiently? To do this, Rubicon leverages a novel translation from Prism models
into a probabilistic programming language called Dice (outlined in Sect. 5).

Contribution and Structure. Inspired by the example, we contribute concep-
tual and empirical arguments for leveraging BDD-based probabilistic inference
in model checking. Concretely:

1. We demonstrate fundamental advantages in using probabilistic inference on
a natural class of models (Sect. 1 and 6).

2. We explain these advantages by showing the fundamental differences between
existing model checking approaches and probabilistic inference (Sect. 3 and 4).
To that end, Sect. 4 presents probabilistic inference based on an operational
and a logical perspective and combines these perspectives.

3. We leverage those insights to build Rubicon, a tool that transpiles Prism to
Dice, a probabilistic programming language (Sect. 5).



Model Checking Finite-Horizon Markov Chains with Probabilistic Inference 581

0,0

0,1

1,0

1,1

0.4 0.4

0.6

0.6

0.5

0.5

0.5

0.5

(a) Toy-example M

0,0

0,1

1,0

1,1

p p

1−p

1−p

q

1−q

q1−q

(b) pMC M′

y
y′

x

x′ x′ x′x′

00.6 0.4 0.5

(c) For M: P as ADD

Fig. 2. (a) MC toy example (b) (distinct) pMC toy example (c) ADD transition matrix

4. We demonstrate that Rubicon indeed attains an order-of-magnitude scaling
improvement on several natural problems including sampling from parametric
Markov chains and verifying network protocol stabilization (Sect. 6).

Ultimately we argue that Rubicon makes a valuable contribution to the port-
folio of probabilistic model checking backends, and brings to bear the extensive
developments on probabilistic inference to well-known model checking problems.

2 Preliminaries and Problem Statement

We state the problem formally and recap relevant concepts. See [7] for details. We
sometimes use p̄ to denote 1−p. A Markov chain (MC) is a tuple M = 〈S, ι, P, T 〉
with S a (finite) set of states, ι ∈ S the initial state, P : S → Distr(S) the
transition function, and T a set of target states T ⊆ S, where Distr(S) is the set
of distributions over a (finite) set S. We write P (s, s′) to denote P (s)(s′) and call
P a transition matrix. The successors of s are Succ(s) = {s′ | P (s, s′) > 0}. To
support MCs with billions of states, we may describe MCs symbolically, e.g., with
Prism [51] or as a probabilistic program [42,48]. For such a symbolic description
P, we denote the corresponding MC with [[P ]]. States then reflect assignments
to symbolic variables.

A path π = s0 . . . sn is a sequence of states, π ∈ S+. We use π↓ to denote
the last state sn, and the length of π above is n and is denoted |π|. Let Pathsh

denote the paths of length h. The probability of a path is the product of the
transition probabilities, and may be defined inductively by Pr(s) = 1, Pr(π ·
s) = Pr(π) · P (π↓, s). For a fixed horizon h and set of states T , let the set
[[ s→♦≤hT ]] = {π | π0 = s ∧ |π| ≤ h ∧ π↓ ∈ T ∧ ∀i < |π|. πi 
∈ T} denote paths
from s of length at most h that terminate at a state contained in T . Furthermore,
let PrM(s |= ♦≤hT ) =

∑
π∈[[ s→♦≤hT ]] Pr(π) describe the probability to reach

T within h steps. We simplify notation when s = ι and write [[♦≤hT ]] and
PrM(♦≤hT ), respectively. We omit M whenever that is clear from the context.
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Formal Problem: Given an MC M and a horizon h, compute PrM(♦≤hT ).

Example 1. For conciseness, we introduce a toy example MC M in Fig. 2(a).
For horizon h = 3, there are three paths that reach state 〈1,0〉: For example the
path 〈0, 0〉〈0, 1〉〈1, 0〉 with corresponding reachability probability 0.4 · 0.5. The
reachability probability PrM(♦≤3{〈1, 0〉}) = 0.42.

It is helpful to separate the topology and the probabilities. We do this by
means of a parametric MC (pMC) [22]. A pMC over a fixed set of parameters
p generalises MCs by allowing for a transition function that maps to Q[p], i.e.,
to polynomials over these variables [22]. A pMC and a valuation of parameters
u : p → R describe a MC by replacing p with u in the transition function P
to obtain P [u]. If P [u](s) is a distribution for every s, then we call u a well-
defined valuation. We can then think about a pMC M as a generator of a set of
MCs {M[u] | u well-defined}. Figure 2(b) shows a pMC; any valuation u with
u(p),u(q) ∈ [0, 1] is well-defined. We consider the following associated problem:

Parameter Sampling: Given a pMC M, a finite set of well-defined valu-
ations U , and a horizon h, compute PrM[u ](♦≤hT ) for each u ∈ U .

We recap binary decision diagrams (BDDs) and their generalization into
algebraic decision diagrams (ADDs, a.k.a. multi-terminal BDDs). ADDs over a
set of variables X are directed acyclic graphs whose vertices V can be partitioned
into terminal nodes Vt without successors and inner nodes Vi with two successors.
Each terminal node is labeled with a polynomial over some parameters p (or
just to constants in Q), val : Vt → Q[p], and each inner node Vi with a variable,
var : Vi → X. One node is the root node v0. Edges are described by the two
successor functions E0 : Vi → V and E1 : Vi → V . A BDD is an ADD with
exactly two terminals labeled T and F . Formally, we denote an ADD by the tuple
〈V, v0,X, var, val, E0, E1〉. ADDs describe functions f : B

X → Q[p] (described by
a path in the underlying graph and the label of the corresponding terminal node).
As finite sets can be encoded with bit vectors, ADDs represent functions from
(tuples of) finite sets to polynomials.

Example 2. The transition matrix P of the MC in Fig. 2(a) maps states, encoded
by bit vectors, 〈x, y〉, 〈x′, y′〉 to the probabilities to move from state 〈x, y〉 to
〈x′, y′〉. Figure 2(c) shows the corresponding ADD.2

3 A Model Checking Perspective

We briefly analyze the de-facto standard approach to symbolic probabilistic
model checking of finite-horizon reachability probabilities. It is an adaptation of
qualitative model checking, in which we track the (backward) reachable states.
This set can be thought of as a mapping from states to a Boolean indicating
whether a target state can be reached. We generalize the mapping to a func-
tion that maps every state s to the probability that we reach T within i steps,
2 The ADD also depends on the variable order, which we assume fixed for conciseness.
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state horizon h
0 1 2 3

〈0,0〉 0 0 0.2 0.42
〈0,1〉 0 0.5 0.75 0.875
〈1,0〉 1 1 1 1
〈1,1〉 0 0.5 0.75 0.875

(a) PrM(♦≤h{〈0,1〉})

y

x

1 0.2 0.75

(b) PrM(♦≤2{〈0,1〉}) as ADD

Fig. 3. Bounded reachability and symbolic model checking for the MC M in Fig. 2(a).

denoted PrM(s |= ♦≤iT ). First, it is convenient to construct a transition relation
in which the target states have been made absorbing, i.e., we define a matrix
with A(s, s′) = P (s, s′) if s 
∈ T and A(s, s′) = [s = s′]3 otherwise. The following
Bellman equations characterize that aforementioned mapping:

Pr
M

(
s |= ♦≤0T

)
= [s ∈ T ],

Pr
M

(
s |= ♦≤iT

)
=

∑

s′∈Succ(s)

A(s, s′) · Pr
M

(s′ |= ♦≤i−1T ) with i > 0.

The main aspect model checkers take from these equations is that to compute
the h-step reachability from state s, one only needs to combine the h−1-step
reachability from any state s′ and the transition probabilities P (s, s′). We define
a vector T with T (s) = [s ∈ T ]. The algorithm then iteratively computes and
stores the i step reachability for i = 0 to i = h, e.g. by computing A3 · T
using A · (A · (A ·T )). This reasoning is thus inherently backwards and implicitly
marginalizing out paths. In particular, rather than storing the i-step paths that
lead to the target, one only stores a vector x = Ai ·T that stores for every state
s the sum over all i-long paths from s.

Explicit representations of matrix A and vector x require memory at least in
the order |S|.4 To overcome this limitation, symbolic probabilistic model checking
stores both A and Ai · T as an ADD by considering the matrix as a function
from a tuple 〈s, s′〉 to A(s, s′), and x as a function from s to x(s) [2].

Example 3. Reconsider the MC in Fig. 2(a). The h-bounded reachability proba-
bility PrM(♦≤h{〈1, 0〉}) can be computed as reflected in Fig. 3(a). The ADD for
P is shown in Fig. 2(c). The ADD for x when h = 2 is shown in Fig. 3(b).

The performance of symbolic probabilistic model checking is directly gov-
erned by the sizes of these two ADDs. The size of an ADD is bounded from
below by the number of leafs. In qualitative model checking, both ADDs are
in fact BDDs, with two leafs. However, for the ADD representing A, this lower
bound is given by the number of different probabilities in the transition matrix.
In the running example, we have seen that a small program P may have an
underlying MC [[P ]] with an exponential state space S and equally many dif-
ferent transition probabilities. Symbolic probabilistic model checking also scales
3 Where [x]=1 if x holds and 0 otherwise.
4 Excluding e.g., partial exploration or sampling which typically are not exact.
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Fig. 4. The computation tree for M and horizon 3 and its compression. We label states
as s=〈0,0〉, t=〈0,1〉, u=〈1,0〉, v=〈1,1〉. Probabilities are omitted for conciseness.

badly on some models where A has a concise encoding but x has too many
different entries.5 Therefore, model checkers may store x partially explicit [49].

The insights above are not new. Symbolic probabilistic model checking has
advanced [46] to create small representations of both A and x. In competitions,
Storm often applies a bisimulation-to-explicit method that extracts an explicit
representation of the bisimulation quotient [26,36]. Finally, game-based abstrac-
tion [32,44] can be seen as a predicate abstraction technique on the ADD level.
However, these methods do not change the computation of the finite horizon
reachability probabilities and thus do not overcome the inherent weaknesses of
the iterative approach in combination with an ADD-based representation.

4 A Probabilistic Inference Perspective

We present four key insights into probabilistic inference. (1) Sect. 4.1 shows
how probabilistic inference takes the classical definition as summing over the
set of paths, and turns this definition into an algorithm. In particular, these
paths may be stored in a computation tree. (2) Sect. 4.2 gives the traditional
reduction from probabilistic inference to the classical weighted model counting
(WMC) problem [16,57]. (3) Sect. 4.3 connects this reduction to point (1) by
showing that a BDD that represents this WMC is bisimilar to the computation
tree assuming that the out-degree of every state in the MC is two. (4) Sect. 4.4
describes and compares the computational benefits of the BDD representation.
In particular, we clarify that enforcing an out-degree of two is a key ingredient
to overcoming one of the weaknesses of symbolic probabilistic model checking:
the number of different probabilities in the underlying MC.

4.1 Operational Perspective

The following perspective frames (an aspect of) probabilistic inference as a model
transformation. By definition, the set of all paths – each annotated with the
transition probabilities – suffices to extract the reachability probability. These
sets of paths may be represented in the computation tree (which is itself an MC).

5 For an interesting example of this, see the “Queue” example in Sect. 6.
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Example 4. We continue from Example 1. We put all paths of length three in
a computation tree in Fig. 4(a) (cf. the caption for state identifiers). The three
paths that reach the target are highlighted in red. The MC is highly redundant.
We may compress to the MC in Fig. 4(b).

Definition 1. For MC M and horizon h, the computation tree (CT)
CT(M, h) = 〈Pathsh, ι, P ′, T ′〉 is an MC with states corresponding to paths in M,
i.e., PathsM

h , initial state ι, target states T ′ = [[♦≤hT ]], and transition relation

P ′(π, π′) =

{
P (π↓, s) if π↓ /∈ T ∧ π′ = π.s,

[π↓ ∈ T ∧ π′ = π] otherwise.
(1)

The CT contains (up to renaming) the same paths to the target as the original
MC. Notice that after h transitions, all paths are in a sink state, and thus we can
drop the step bound from the property and consider either finite or indefinite
horizons. The latter considers all paths that eventually reach the target. We
denote the probability mass of these paths with PrM(s |= ♦T ) and refer to [7]
for formal details.6 Then, we may compute bounded reachability probabilities in
the original MC by analysing unbounded reachability in the CT:

PrM(♦≤hT ) = PrCT(M,h)(♦≤hT ′) = PrCT(M,h)(♦T ′).

The nodes in the CT have a natural topological ordering. The unbounded reach-
ability probability is then computed (efficiently in CT’s size) using dynamic pro-
gramming (i.e., topological value iteration) on the Bellman equation for s 
∈ T :

PrM(s |= ♦T ) =
∑

s′∈Succ(s) P (s, s′) · PrM(s′ |= ♦T ).

For pMCs, the right-hand side naturally is a factorised form of the solution
function f that maps parameter values to the induced reachability probability, i.e.
f(u) = PrM[u](♦≤hT ) [22,24,33]. For bounded reachability (or acyclic pMCs),
this function amounts to a sum over all paths with every path reflected by a term
of a polynomial, i.e., the sum is a polynomial. In sum-of-terms representation,
the polynomial can be exponential in the number of parameters [5].

For computational efficiency, we need a smaller representation of the CT. As
we only consider reachability of T , we may simplify [43] the notion of (weak)
bisimulation [6] (in the formulation of [40]) to the following definition.

Definition 2. For M with states S, a relation R ⊆ S × S is a (weak) bisim-
ulation (with respect to T ) if sRs′ implies PrM(s |= ♦T ) = PrM(s′ |= ♦T ).
Two states s, s′ are (weakly) bisimilar (with respect to T ) if PrM(s |= ♦T ) =
PrM(s′ |= ♦T )

Two MCs M,M′ are bisimilar, denoted M ∼ M′ if the initial states are bisimilar
in the disjoint union of the MCs. It holds by definition that if M ∼ M′, then
PrM(♦T ) = PrM′(♦T ′). The notion of bisimulation can be lifted to pMCs [33].

6 Alternatively, on acyclic models, a large step bound h > |S| suffices.
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Idea 1: Given a symbolic description P of a MC [[P ]], efficiently construct
a concise MC M that is bisimilar to CT([[P ]], h).

Indeed, the (compressed) CT in Fig. 4(b) and Fig. 4(a) are bisimilar. We remark
that we do not necessarily compute the bisimulation quotient of CT([[P ]], h).

4.2 Logical Perspective

The previous section defined weakly bisimilar chains and showed computational
advantages, but did not present an algorithm. In this section we frame the finite
horizon reachability probability as a logical query known as weighted model count-
ing (WMC). In the next section we will show how this logical perspective yields
an algorithm for constructing bisimilar MCs.

Weighted model counting is well-known as an effective reduction for prob-
abilistic inference [16,57]. Let ϕ be a logical sentence over variables C. The
weight function WC : C → R≥0 assigns a weight to each logical variable. A
total variable assignment η : C → {0, 1} by definition has weight weight(η) =∏

c∈C WC(c)η(c) + (1 − WC(c)) · (1 − η(c)). Then the weighted model count for
ϕ given W is WMC(ϕ,WC) =

∑
η|=ϕ weight(η). Formally, we desire to compute

a reachability query using a WMC query in the following sense:

Idea 2: Given an MC M, efficiently construct a predicate ϕC
M,h and a

weight-function WC such that PrM(♦≤hT ) = WMC(ϕC
M,h,WC).

Consider initially the simplified case when the MC M is binary : every state has
at most two successors. In this case producing (ϕC

M,h,WC) is straightforward:

Example 5. Consider the MC in Fig. 2(a), and note that it is binary. We intro-
duce logical variables called state/step coins C = {cs,i | s ∈ S, i < h} for every
state and step. Assignments to these coins denote choices of transitions at par-
ticular times: if the chain is in state s at step i, then it takes the transition to
the lexicographically first successor of s if cs,i is true and otherwise takes the
transition to the lexicographically second successor. To construct the predicate
ϕC

M,3, we will need to write a logical sentence on coins whose models encode
accepting paths (red paths) in the CT in Fig. 4(a).

We start in state s = 〈0, 0〉 (using state labels from the caption of Fig. 4). We
order states as s = 〈0, 0〉 < t = 〈0, 1〉 < u = 〈1, 0〉 < v = 〈1, 1〉. Then, cs,0 is true
if the chain transitions into state s at time 0 and false if it transitions to state
t at time 0. So, one path from s to the target node 〈1, 0〉 is given by the logical
sentence (cs,0 ∧ ¬cs,1 ∧ ct,2). The full predicate ϕC

M,3 is therefore:

ϕC
M,3 = (cs,0 ∧ ¬cs,1 ∧ ct,2) ∨ (¬cs,0 ∧ ct,1) ∨ (¬cs,0 ∧ ¬ct,1 ∧ cv,2).
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Each model of this sentence is a single path to the target. This predicate ϕC
M,h

can clearly be constructed by considering all possible paths through the chain,
but later on we will show how to build it more efficiently.

Finally, we fix WC : The weight for each coin is directly given by the transition
probability to the lexicographically first successor: for 0 ≤ i < h, WC(cs,i) = 0.6
and WC(ct,i) = WC(cv,i) = 0.5. The WMC is indeed 0.42, reflecting Example 1.

When the MC is not binary, it suffices to limit the out-degree of an MC to be
at most two by adding auxiliary states, hence binarizing all transitions, cf. [38].

4.3 Connecting the Operational and the Logical Perspective

Now that we have reduced bounded reachability to weighted model counting,
we reach a natural question: how do we perform WMC?7 Various approaches
to performing WMC have been explored; a prominent approach is to compile
the logical function into a binary decision diagram (BDD), which supports fast
weighted model counting [21]. In this paper, we investigate the use of a BDD-
driven approach for two reasons: (i) BDDs admit straightforward support for
parametric models. (ii) BDDs provide a direct connection between the logical and
operational perspectives. To start, observe that the graph of the BDD, together
with the weights, can be interpreted as an MC:

Definition 3. Let ϕX be a propositional formula over variables X and <X an
ordering on X. Let BDD(ϕX , <X) = 〈V, v0,X, var, val, E0, E1〉 be the correspond-
ing BDD, and let W be a weight function on X with 0 ≤ W (x) ≤ 1. We define the
MC BDDMC(ϕX , <X ,W ) = 〈S, ι, P, T 〉 with S = V , ι = v0, P (s) = {E0(s) 
→
W (var(s)), E1(s) 
→ 1 − W (var(s))} and T = {v ∈ V | val(v) = 1}.
These BDDs are intimately related to the computation trees discussed before. For
a binary MC M, the tree CT(M, h) is binary and can be considered as a (not
necessarily reduced) BDD. More formally, let us construct BDDMC(ϕC

M,h, <C ,).
We fix a total order on states. Then we fix state/step coins C = {cs,i | s ∈ S, i <
h} and the weights as in Example 5. Finally, let <C be an order on C such that
i < j implies cs,i<Ccs,j . Then:

CT(M, h) ∼ BDDMC(ϕC
M,h, <C ,W ). (2)

In the spirit of Idea 1, we thus aim to construct BDDMC(ϕC
M,h, <C ,W ), a repre-

sentation as outlined in Idea 2, efficiently. Indeed, the BDD (as MC) in Fig. 4(c)
is bisimilar to the MC in Fig. 4(b).

Idea 3: Represent a bisimilar version of the computation tree using a BDD.

7 In this paper, we concentrate on reductions to exact WMC, leaving approximate
approaches for future work [14].
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Fig. 5. Two computation trees for the motivating example in Sect. 1.

4.4 The Algorithmic Benefits of BDD Construction

Thus far we have described how to construct a binarized MC bisimilar to the
CT. Here, we argue that this construction has algorithmic benefits by filling in
two details. First, the binarized representation is an important ingredient for
compact BDDs. Second, we show how to choose a variable ordering that ensures
that the BDDs grow linearly in the horizon. In sum,

Idea 4: WMC encodings of binarized Markov Chains may increase compres-
sion of computation trees.

To see the benefits of binarized transitions, we return to the factory exam-
ple in Sect. 1. Figure 5(a) gives a bisimilar computation tree for the 3-factory
h = 1 example. However, in this tree, the states are unfactorized : each node in
the tree is a joint configuration of factories. This tree has 8 transitions (one for
each possible joint state transition) with 8 distinct probabilities. On the other
hand, the bisimilar computation tree in Fig. 1(d) has binarized transitions: each
node corresponds to a single factory’s state at a particular time-step, and each
transition describes an update to only a single factory. This binarization enables
the exploitation of new structure: in this case, the independence of the facto-
ries leads to smaller BDDs, that is otherwise lost when considering only joint
configurations of factories.

Recall that the size of the ADD representation of the transition function is
bounded from below by the number of distinct probabilities in the underlying
MC: in this case, this is visualized by the number of distinct outgoing edge
probabilities from all nodes in the unfactorized computation tree. Thus, a good
binarization can have a drastically positive effect on performance. For the run-
ning example, rather than 2n different transition probabilities (with n factories),
the system now has only 4 · n distinct transition probabilities!
Causal Orderings. Next, we explore some of the engineering choices Rubicon
makes to exploit the sequential structure in a MC when constructing the BDD for
a WMC query. First, note that the transition matrix P (s, s′) implicitly encodes
a distribution over state transition functions, S → S. To encode P as a BDD,
we must encode each transition as a logical variable, similar to the situation in
Sect. 4.2. In the case of binary transitions this is again easy. In the case of non-
binary transitions, we again introduce additional logical variables [16,27,39,57].
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This logical function has the following form:

fP : {0, 1}C → (S → S). (3)

Whereas the computation tree follows a fixed (temporal) order of states,
BDDs can represent the same function (and the same weighted model count)
using an arbitrary order. Note that the BDD’s size and structure drastically
depends both on the construction of the propositional formula and the order of
the variables in that encoding. We can bound the size of the BDD by enforcing
a variable order based on the temporal structure of the original MC. Specifically,
given h coin collections C = C×. . .×C, one can generate a function f describing
the h-length paths via repeated applications of fP :

f : {0, 1}C → Pathsh f(C1, . . . , Ch) =
(

fP (Ch) ◦ . . . ◦ fP (C1)
)

(ι) (4)

Let ψ denote an indicator for the reachability property as a function over paths,
ψ : Pathsh → {0, 1} with ψ(π) = [π ∈ [[♦≤hT ]]]. We call predicates formed
by composition with fP , i.e., ϕ = ψ ◦ fP , causal encodings and orderings on
ci,t ∈ C that are lexicographically sorted in time, t1 < t2 =⇒ ci,t1 < cj,t2 ,
causal orderings. Importantly, causally ordered / encoded BDDs grow linearly in
horizon h, [61, Corollary 1]. More precisely, let ϕC

M,h be causally encoded where
|C| = h ·m. The causally ordered BDD for ϕC

M,h has at most h · |S ×Sψ| ·m ·2m

nodes, where |Sψ| = 2 for reachability properties.8 However, while the worst-case
growth is linear in the horizon, constructing that BDD may induce a super-linear
cost in the size, e.g., function composition using BDDs is super-linear!

Figure 5(b) shows the motivating factory example with 2 factories and h = 2.
The variables are causally ordered: the factories in time step 1 occur before the
factories in time step 2. For n factories, a fixed number f(n) of nodes are added to
the BDD upon each iteration, guaranteeing growth on the order O(f(n)·h). Note
the factorization that occurs: the BDD has node sharing (node c

(2)
2 is reused)

that yields additional computational benefits.

Summary and Remaining Steps. The operational view highlights that we want to
compute a transformation of the original input MC M. The logical view presents
an approach to do so efficiently: By computing a BDD that stores a predicate
describing all paths that reach the target, and interpreting and evaluating the
(graph of the) BDD as an MC. In the following section, we discuss the two steps
that we follow to create the BDD: (i) From P generate P ′ such that CT([[P ]], h) ∼
[[P ′ ]]. (ii) From P ′ generate M such that M = [[P ′ ]].

5 RUBICON

We present Rubicon which follows the two steps outlined above. For exposition,
we first describe a translation of monolithic Prism programs to Dice programs
8 Generally, it is the smallest number of states required for a DFA to recognize ψ.
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module main
x : [0.. 1] init 0;
y : [0.. 2] init 1;
[] x=0 & y<2 -> 0.5 :x’=1 + 0.5 :y’=y+1;
[] y=2 -> 1:y’=y-1;
[] x=1 & y!=2 -> 1:x’=y & y’=x;

endmodule
property: P=? [F<=2 (x=0 & y=2)]

(a) Prism program with reachability query

〈0, 0〉 〈0, 1〉 〈0, 2〉

〈1, 0〉 〈1, 1〉 〈1, 2〉

1/2

1/2

1/2

1/2

1

1

1

1

(b) Underlying MC

let s = init() in // init state
let T = hit(s) in // init target
let (s, T) = if !T

then let s’ = step(s) in (s’, hit(s’))
else (s, T) in

let (s, T) = if !T then
then let s’ = step(s) in (s’, hit(s’))
else (s, T) in

T

(c) Main Dice program for h=2

fun init() { (0,1) }
fun hit((x,y)) { x ==0 && y == 2 }
fun step((x,y)) {
if x==0 && y<2 then

if flip 0.5 then (1,y) else (x,y+1)
else if y==2 then (x,y-1)
else if x==1 && y!=1 then (y,x)
else (x,y)

}

(d) Dice auxiliary functions

Fig. 6. From Prism to Dice using Rubicon.

and then extend this translation to admit modular programs. Technical steps
and extensions are deferred to [38, Appendix].

Dice Preliminaries. We give a brief description of Dice, a probabilistic pro-
gramming language (PPL) introduced in [39]. A PPL is a programming language
augmented with a primitive notion of random choice: for instance, in Dice, a
Bernoulli random variable is introduced by the syntax flip 0.5. The syntax
of Dice is similar to the programming language OCaml: local variables are intro-
duced by the syntax let x = e1 in e2, where e1 and e2 are expressions, i.e.,
sub-programs. Dice supports procedures, bounded integers, bounded loops, and
standard control flow via if-statements.

One goal of a PPL is to perform probabilistic inference: compute the prob-
ability that the program returns a particular value. Inference on the tiny Dice
program let x = flip 0.1 in x would yield that true is returned with proba-
bility 0.1. The Dice compiler performs probabilistic inference via weighted model
counting and BDD compilation. In doing so, it accomplishes the non-trivial tasks
of: (i) choosing a logical encoding for probabilistic programs (ii) establishing
good variable orderings (iii) efficiently manipulating and constructing BDDs (iv)
performing WMC . For details, we refer the reader to [39].

Rubicon uses Dice to effectively construct a BDD and perform WMC on a
Dice program that reflects a description of some computation tree. This imple-
mentation exploits the structure that was described in Sect. 4.4: in particular, the
BDD generated in Fig. 5(b) is exactly the BDD that will be generated by Dice
from the output of Rubicon. The variable ordering used by Dice is given by
the order in which program variables are introduced, and Rubicon’s translation
was designed with this variable ordering in mind.

Transpiling Prism to Dice. We present the core translation routine imple-
mented in Rubicon. We note that the ultimate performance of Rubicon is
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heavily dependent on the quality of this translation. We evaluate the perfor-
mance in the next section.

The Prism specification language consists of one or more reactive modules
(or partially synchronized state machines) that may interact with each other. Our
example in Fig. 1(b) illustrates fully synchronized state machines. While Prism
programs containing multiple modules can be flattened into a single monolithic
program, this yields an exponential blow-up: If one flattens the n modules in
Fig. 1(b) to a single module, the resulting program has 2n updates per command.
This motivates our direct translation of PRISM programs containing multiple
modules.

Monolithic Prism Programs. We explain most ideas on Prism programs that
consist of a single “monolithic” module before we address the modular translation
at the end of the subsection. A module has a set of bounded variables, and the
valuations of these variables span the state space of the underlying MC. Its
transitions are described by guarded commands of the form:

[act] guard → p1 : update1 + . . . . . . + pn : updaten

The action name act is only relevant in the modular case and can be ignored for
now. The guard is a Boolean expression over the module’s variables. If the guard
evaluates to true for some state (a valuation), then the module evolves into one
of the n successor states by updating its variables. An update is chosen according
to the probability distribution given by the expressions p1, . . . , pn. In every state
enabling the guard, the evaluation of p1, . . . , pn must sum up to one. A set of
guards overlap if they all evaluate to true on a given state. The semantics of
overlapping guards in the monolithic setting is to first uniformly select an active
guard and then apply the corresponding stochastic transition. Finally, a self-loop
is implicitly added to states without an enabled guard.

Example 6. We present our translation primarily through example. In Fig. 6(a),
we give a Prism program for a MC. The program contains two variables x and
y, where x is either zero or one, and y between zero and two. There are thus 6
different states. We denote states as tuples with the x- and y-value. We depict
the MC in Fig. 6(b). From state 〈0, 0〉, (only) the first guard is enabled and thus
there are two transitions, each with probability a half: one in which x becomes
one and one in which y is increased by one. Finally, there is no guard enabled in
state 〈1, 1〉, resulting in an implicit self-loop.

Translation. All Dice programs consist of two parts: a main routine, which is
run by default when the program starts, and function declarations that declare
auxiliary functions. We first define the auxiliary functions. For simplicity let us
temporarily assume that no guards overlap and that probabilities are constants,
i.e., not state-dependent.

The main idea in the translation is to construct a Dice function step that,
given the current state, outputs the next state. Because a monolithic Prism
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module main
x : [0.. 2] init 1;
y : [0.. 2] init 1;
[] x>1 -> 1:x’=y&y’=x;
[] y<2 -> 1:x’=min(x+1,2);
endmodule

(a)

fun step((x,y)) {
let aEn =(x>1) in
let bEn =(y<2) in
let act = selectFrom(aEn, bEn) in
if act==1 then (y,x)
else if act==2 then (min(x+1,2),y)
else (x,y)} ...

(b)

Fig. 7. Prism program with overlapping guards and its translation (conceptually).

module m1
x : [0..1] init 0;
[a] x=1 -> 1:x’=1-y;
[b] x=0 -> 1:x’=0;
endmodule
module m2
y : [0..1] init 0;
[b] y=1 -> 0.5:y’=0 +0.5:y’=1;
[c] true -> 1:x’=1-x;
endmodule

(a)

fun step((x,y)) {
let aEn =(x==1) in
let bEn =(x=0 &&y=1) in
let cEn =true in
let act =selectFrom(aEn, bEn, cEn) in
if act==1 then (1-y, y)
else if act==2 then (0, flip 0.5)
else if act==3 then (1-x, y)
else (x, y)

}

(b)

Fig. 8. Modular Prism and resulting Dice step function.

program is almost a sequential program, in its most basic version, the step func-
tion is straightforward to construct using built-in Dice language primitives: we
simply build a large if-else block corresponding to each command. This block
iteratively considers each command’s guard until it finds one that is satisfied.
To perform the corresponding update we flip a coin – based on the probabilities
corresponding to the updates – to determine which update to perform. If no
command is enabled, we return the same state in accordance with the implicit
self-loop. Figure 6(d) shows the program blocks for the Prism program from
Fig. 6(a) with target state [[x = 0, y = 2 ]]. There are two other important auxil-
iary functions. The init function simply returns the initial state by translating
the initialization statements from Prism, and the hit function checks whether
the current state is a target state that is obtained from the property.

Now we outline the main routine, given for this example in Fig. 6(c). This
function first initializes the state. Then, it calls step 2 times, checking on each
iteration using hit if the target state is reached. Finally, we return whether we
have been in a target state. The probability to return true corresponds to the
reachability probability on the underlying MC specified by the Prism program.
Overlapping Guards. Prism allows multiple commands to be enabled in the
same state, with semantics to uniformly at random choose one of the enabled
commands to evaluate. Dice has no primitive notion of this construct.9 We
illustrate the translation in Fig. 7(a) and Fig. 7(b). It determines which guards
aEn, bEn, cEn are enabled. Then, we randomly select one of the commands which
are enabled, i.e., we uniformly at random select a true bit from a given tuple

9 One cannot simply condition on selecting an enabled guard as this redistributes
probability mass over all paths and not only over paths with the same prefix.



Model Checking Finite-Horizon Markov Chains with Probabilistic Inference 593

of bits. We store the index of that bit and use it to execute the corresponding
command.
Modular Prism Programs. For modular Prism programs, the action names at
the front of Prism commands are important. In each module, there is a set of
action names available. An action is enabled if each module that contains this
action name has (at least) one command with this action whose guard is satisfied.
Commands with an empty action are assumed to have a globally unique action
name, so in that case the action is enabled iff the guard is enabled. Intuitively,
once an action is selected, we randomly select a command per module in all mod-
ules containing this action name. Our approach resembles that for overlapping
guards described above. See Fig. 8 for an intuitive example. To automate this,
the updates require more care, cf. [38] for details.
Implementation. Rubicon is implemented on top of Storm’s Python API and
translates Prism to Dice fully automatically. Rubicon supports all MCs in the
Prism benchmark suite and a large set of benchmarks from the Prism website
and the QVBS [35], with the note that we require a single initial state and ignore
reward declarations. Furthermore, we currently do not support the hide/restrict
process-algebraic compositions and some integer operations.

6 Empirical Comparisons

We compare and contrast the performance of Storm against Rubicon to empir-
ically demonstrate the following strengths and weaknesses:10

Explicit Model Checking (Storm) represents the MC explicitly in a sparse
matrix format. The approach suffers from the state space explosion, but has
been engineered to scale to models with many states. Besides the state space,
the sparseness of the transition matrix is essential for performance.

Symbolic Model Checking (Storm) represents the transition matrix and
the reachability probability as an ADD. This method is strongest when the
transition matrix and state vector have structure that enables a small ADD
representation, like symmetry and sparsity.

Rubicon represents the set of paths through the MC as a (logical) BDD. This
method excels when the state space has structure that enables a compact
BDD representation, such as conditional independence, and hence scales well
on examples with many (asymmetric) parallel processes or queries that admit
a compact representation.

The sources, benchmarks and binaries are archived.11
There is no clear-cut model checking technique that is superior to others (see

QCOMP [12]). We demonstrate that, while Rubicon is not competitive on some

10 All experiments were conducted with Storm version 1.6.0 on the same server with
512 GB of RAM, using a single thread of execution. Time was reported using the
built-in Unix time utility; the total wall-clock time is reported.

11 http://doi.org/10.5281/zenodo.4726264 and http://github.com/sjunges/rubicon.

http://doi.org/10.5281/zenodo.4726264
http://github.com/sjunges/rubicon
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Fig. 9. Scaling plots comparing Rubicon ( ), Storm’s symbolic engine ( ), and
Storm’s explicit engine ( ). An “(R)” in the caption denotes random parameters.

commonly used benchmarks [52], it improves a modern model checking portfolio
approach on a significant set of benchmarks. Below we provide several natural
models on which Rubicon is superior to one or both competing methods. We
also evaluated Rubicon on standard benchmarks, highlighting that Rubicon
is applicable to models from the literature. We see that Rubicon is effective on
Herman (elaborated below), has mixed results on BRP [38, Appendix], and is
currently not competitive on some other standard benchmarks (NAND, EGL,
LeaderSync). While not exhaustive, our selected benchmarks highlight specific
strengths and weaknesses of Rubicon. Finally, a particular benefit of Rubicon
is fast sampling of parametric chains, which we demonstrate on Herman and
our factory example.

Scaling Experiments. In this section, we describe several scaling experiments
(Fig. 9), each designed to highlight a specific strength or weakness.

Weather Factories. First, Fig. 9(a) describes a generalization of the motivating
example from Sect. 1. In this model, the probability that each factory is on strike
is dependent on a common random event: whether or not it is raining. The rain
on each day is dependent on the previous day’s weather. We plot runtime for
an increasing number of factories for h=10. Both Storm engines eventually fail
due to the state explosion and the number of distinct probabilities in the MC.
Rubicon is orders of magnitude faster in comparison, highlighting that it does
not depend on complete independence among the factories. Figure 9(b) shows
a more challenging instance where the weather includes wind which, each day,
affects whether or not the sun will shine, which in turn affects strike probability.

Herman. Herman is based on a distributed protocol [37] that has been well-
studied [1,53] and which is one of the standard benchmarks in probabilistic
model checking. Rather than computing the expected steps to ‘stabilization’, we
consider the step-bounded probability of stabilization. Usually, all participants in
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the protocol flip a coin with the same bias. The model is then highly symmetric,
and hence is amenable to symbolic representation with ADDs. Figures 9(c) and
9(e) show how the methods scale on Herman examples with 13 and 17 parallel
processes. We observe that the explicit approach scales very efficiently in the
number of iterations but has a much higher up-front model-construction cost,
and hence can be slower for fewer iterations.

To study what happens when the coin biases vary over the protocol partici-
pants, we made a version of the Herman protocol where each participant’s bias
is randomly chosen, which ruins the symmetry and so causes the ADD-based
approaches to scale significantly worse (Figs. 9(d) and 9(f), and 9(g)); we see
that symbolic ADD-based approaches completely fail on Herman 17 and Her-
man 19 (the curve terminating denotes a memory error). Rubicon and the
explicit approach are unaffected by varying parameters.

Queues. The Queues model has K queues of capacity Q where every step, tasks
arrive with a particular probability. Three queues are of type 1, the others of
type 2. We ask the probability that all queues of type 1 and at least one queue
of type 2 is full within k steps. Contrary to the previous models, the ADD
representation of the transition matrix is small. Figure 9(h) shows the relative
scaling on this model with K = 8 and Q = 3. We observe that ADDs quickly
fail due to inability to concisely represent the probability vector x from Sect. 3.
Rubicon outperforms explicit model checking until h = 10.

Sampling Parametric Markov Chains. We evaluate performance for the
pMC sampling problem outlined in Sect. 2. Table 1 gives for four models the time
to construct the BDD and to perform WMC, as well as the time to construct
an ADD in Storm and to perform model checking with this ADD. Finally,
we show the time for Storm to compute the solution function of the pMC
(with the explicit representation). The pMC sampling in Storm – symbolic and
explicit – computes the reachability probabilities with concrete probabilities.
Rubicon, in contrast, constructs a ‘parametric’ BDD once, amortizing the cost
of repeated efficient evaluation. The ‘parametric BDD’ may be thought of as a
solution function, as discussed in Sect. 4.1. Storm cannot compute these solution
functions as efficiently. We observe in Table 1 that fast parametric sampling is
realized in Rubicon: for instance, after a 40s up-front compilation of the factories
example with 15 factories, we have a solution function in factorized form and it
costs an order of magnitude less time to draw a sample. Hence, sampling and
computation of solution functions of pMCs is a major strength of Rubicon.

7 Discussion, Related Work, and Conclusion

We have demonstrated that the probabilistic inference approach to probabilis-
tic model checking can improve scalability on an important class of problems.
Another benefit of the approach is for sampling pMCs. These are used to evaluate
e.g., robustness of systems [1], or to synthesise POMDP controllers [41]. Many
state-of-the-art approaches [17,19,24] require the evaluation of various instanti-
ated MCs, and Rubicon is well-suited to this setting. More generally, support
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Table 1. Sampling performance comparison and pMC model checking, time in seconds.

Model Rubicon Storm (w/ ADD) Storm (explicit)
Build WMC Build Solve pMC solving

Herman R 13 (h = 10) 3 <1 32 18 >1800
Herman R 17 (h = 10) 45 28 >1800 – >1800
Factories 12 (h = 15) 2 <1 59 286 >1800
Factories 15 (h = 15) 40 4 >1800 – >1800

of inference techniques opens the door to a variety of algorithms for additional
queries, e.g., computing conditional probabilities [3,8].

An important limitation of probabilistic inference is that only finitely many
paths can be stored. For infinite horizon properties in cyclic models, an infi-
nite set of arbitrarily long paths would be required. However, as standard in
probabilistic model checking, we may soundly approximate infinite horizons.
Additionally, the inference algorithm in Dice does not support a notion of non-
determinism. It thus can only be used to evaluate MCs, not Markov decision pro-
cesses. However, [61] illustrates that this is not a conceptual limitation. Finally,
we remark that Rubicon achieves its performance with a straightforward trans-
lation. We are optimistic that this is a first step towards supporting a larger
class of models by improving the transpilation process for specific problems.

Related Work. The tight connection with inference has been recently inves-
tigated via the use of model checking for Bayesian networks, the prime model
in probabilistic inference [56]. Bayesian networks can be described as probabilis-
tic programs [10] and their operational semantics coincides with MCs [31]. Our
work complements these insights by studying how symbolic model checking can
be sped up by probabilistic inference.

The path-based perspective is tightly connected to factored state spaces. Fac-
tored state spaces are often represented as (bipartite) Dynamic Bayesian net-
works. ADD-based model checking for DBNs has been investigated in [25], with
mixed results. Their investigation focuses on using ADDs for factored state
space representations. We investigate using BDDs representing paths. Other
approaches also investigated a path-based view: The symbolic encoding in [28]
annotates propositional sub-formulae with probabilities, an idea closer to ours.
The underlying process implicitly constructs an (uncompressed) CT leading to
an exponential blow-up. Likewise, an explicit construction of a computation
tree without factorization is considered in [62]. Compression by grouping paths
has been investigated in two approximate approaches: [55] discretises probabil-
ities and encodes into a satisfiability problem with quantifiers and bit-vectors.
This idea has been extended [60] to a PAC algorithm by purely propositional
encodings and (approximate) model counting [14]. Finally, factorisation exploits
symmetries, which can be exploited using symmetry reduction [50]. We highlight
that the latter is not applicable to the example in Fig. 1(d).
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There are many techniques for exact probabilistic inference in various forms
of probabilistic modeling, including probabilistic graphical models [20,54]. The
semantics of graphical models make it difficult to transpile Prism programs,
since commonly used operations are lacking. Recently, probabilistic program-
ming languages have been developed which are more amenable to transpila-
tion [13,23,29,30,59]. We target Dice due to the technical development that it
enables in Sect. 4, which enabled us to design and explain our experiments. Clos-
est related to Dice is ProbLog [27], which is also a PPL that performs inference
via WMC; ProbLog has different semantics from Dice that make the transla-
tion less straightforward. The paper [61] uses an encoding similar to Dice for
inferring specifications based on observed traces. ADDs and variants have been
considered for probabilistic inference [15,18,58], which is similar to the process
commonly used for probabilistic model checking. The planning community has
developed their own disjoint sets of methods [45]. Some ideas from learning have
been applied in a model checking context [11].

8 Conclusion

We present Rubicon, bringing probabilistic AI to the probabilistic model check-
ing community. Our results show that Rubicon can outperform probabilistic
model checkers on some interesting examples, and that this is not a coincidence
but rather the result of a significantly different perspective.
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Abstract. Partially-Observable Markov Decision Processes (POMDPs)
are a well-known stochastic model for sequential decision making under
limited information. We consider the EXPTIME-hard problem of syn-
thesising policies that almost-surely reach some goal state without ever
visiting a bad state. In particular, we are interested in computing the
winning region, that is, the set of system configurations from which a
policy exists that satisfies the reachability specification. A direct appli-
cation of such a winning region is the safe exploration of POMDPs by,
for instance, restricting the behavior of a reinforcement learning agent to
the region. We present two algorithms: A novel SAT-based iterative app-
roach and a decision-diagram based alternative. The empirical evaluation
demonstrates the feasibility and efficacy of the approaches.

1 Introduction

Partially observable Markov decision processes (POMDPs) constitute the stan-
dard model for agents acting under partial information in uncertain environ-
ments [34,52]. A common problem is to find a policy for the agent that maxi-
mizes a reward objective [36]. This problem is undecidable, yet, well-established
approximate [27], point-based [43], or Monte-Carlo-based [49] methods exist.
In safety-critical domains, however, one seeks a safe policy that exhibits strict
behavioral guarantees, for instance in the form of temporal logic constraints [44].
The aforementioned methods are not suitable to deliver provably safe policies.
In contrast, we employ almost-sure reach-avoid specifications, where the proba-
bility to reach a set of avoid states is zero, and the probability to reach a set of
goal states is one. Our Challenge 1 is to compute a policy that adheres to such
specifications. Furthermore, we aim to ensure the safe exploration of a POMDP,
with safe reinforcement learning [23] as direct application. Challenge 2 is then
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to compute a large set of safe policies for the agent to choose from at any state
of the POMDP. Such sets of policies are called permissive policies [21,31].

POMDP Almost-Sure Reachability Verification. Let us remark that in POMDPs,
we cannot directly observe in which state we are, but we are in general able to
track a belief, i.e., a distribution over states that describes where in the POMDP
we may be. The belief allows us to formulate the following verification task:

For a POMDP, sets of target and avoid states, and a belief, does a policy
exist such that we reach the target states without ever visiting a bad state?

The underlying EXPTIME-complete problem requires—in general—policies
with access to memory of exponential size in the number of states [4,18]. For
safe exploration and, e.g., to support nested temporal properties, the ability to
solve this problem for each belief in the POMDP is essential.

We base our approaches on the concept of a winning region, also referred to
as controllable or attractor regions. Such regions are sets of winning beliefs from
which a policy exists that guarantees to satisfy an almost-sure specification.
The verification task relates three concrete problems which we tackle in this
paper: (1) Decide whether a belief is winning, (2) compute the maximal winning
region, and (3) compute a large yet not necessarily maximal winning region. We
now outline our two approaches. First, we directly exploit model checking for
MDPs [5] using belief abstractions. The second, much faster approach iteratively
exploits satisfiability solving (SAT) [8]. Finally, we define a scheme to enable safe
reinforcement learning [23] for POMDPs, referred to as shielding [2,30].

MDP Model Checking. A prominent approach gives the semantics of a POMDP
via an (infinite) belief MDP whose states are the beliefs in the POMDP [36].
For almost-sure specifications, it is sufficient to consider belief-supports rather
than beliefs. In particular, two beliefs with the same support are either both in a
winning region or not [47]. We abstract a belief MDP into a finite belief-support
MDP, whose states are the support of beliefs. The (maximal) winning region are
(all) states of the belief-support MDP from which one can almost surely reach
a belief support that contains a goal state without visiting belief support states
that contain an avoid state.

To find a winning region in the POMDP, we thus just have to solve almost-
sure reachability in this finite MDP. The number of belief supports, however, is
exponentially large in the number of POMDP states, threatening the efficient
application of explicit state verification approaches. Symbolic state space rep-
resentations are a natural option to mitigate this problem [7]. We construct a
symbolic description of the belief support MDP and apply state-of-the-art sym-
bolic model checking. Our experiments show that this approach (referred to as
MDP Model Checking) does in general not alleviate the exponential blow-up.

Incremental SAT Solving. While the belief support model exploits the structure
of the belief support MDP by using a symbolic state space representation, it does
not exploit elementary properties of the structure of winning regions. To overcome
the scalability challenge, we aim to exploit information from the original POMDP,
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rather than working purely on the belief-support MDP. In a nutshell, our app-
roach computes thewinning regions in a backward fashion by optimistically search-
ing policies without memory on the POMDP level. Concretely, starting from the
belief support states that shall be reached almost-surely, further states are added
to the winning region if we quickly can find a policy that reaches these states with-
out visiting those that are to avoid. We search for these policies by incrementaly
employing an encoding based on SAT solving. This symbolic encoding avoids an
expensive construction of the belief support MDP. The computed winning region
directly translates to sufficient constraints on the set of safe policies, i.e., each pol-
icy satisfying these constraints satisfies, by construction, the specification. The key
idea is to successively add short-cuts corresponding to already known safe policies.
These changes to the structure of the POMDP are performed implicitly on the SAT
encoding. The resulting scalable method is sound, but not complete by itself. How-
ever, it can be rendered complete by trading off a certain portion of the scalability;
intuitively one would eventually search for policies with larger amounts of memory.

Shielding. An agent that stays within a winning region is guaranteed to adhere
to the specification. In particular, we shield (or mask) any action of the agent
that may lead out of the winning region [1,39,42]. We stress that the shape of
the winning region is independent of the transition probabilities or rewards in
the POMDP. This independence means that the only prior knowledge we need to
assume is the topology, that is, the graph of the POMDP. A pre-computation of
the winning region thus yields a shield and allows us to restrict an agent to safely
explore environments, which is the essential requirement for safe reinforcement
learning [22,23] of POMDPs. The shield can be used with any RL agent [2].

Comparison with the State-of-the-Art. Similar to our approach, [15] solves almost-
sure specifications using SAT. Intuitively, the aim is to find a so-called simple pol-
icy that is Markovian (aka memoryless). Such a policy may not exist, yet, the
method can be applied to a POMDP that has an extended state space to account
for finite memory [33,37]. There are three shortcomings that our incremental SAT
approach overcomes. First, one needs to pre-define the memory a policy has at
its disposal, as well as a fixed lookahead on the exploration of the POMDP. Our
encoding does not require to fix these hyperparameter a priori. Second, the app-
roach is only feasible if small memory bounds suffice. Our approach scales to mod-
els that require policies with larger memory bounds. Third, the approach finds a
single simple policy starting from a pre-defined initial state. Instead, we find a
large winning region. For safe exploration, this means that we may exclude many
policies and never explore important parts of the system, harming the final per-
formance of the agent. Shielding MDPs is not new [2,9,10,30]. However, those
methods do neither take partial observability into account, nor can they guaran-
tee reaching desirable states. Nam and Alur [39] cover partial observability and
reachability, but do not account for stochastic uncertainty.

Experiments. To showcase the feasibility of our method, we adopted a number of
typical POMDP environments. We demonstrate that our method scales better
than the state of the art. We evaluate the shield by letting an agent explore the
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POMDP environment according to the permissive policy, thereby enforcing the
satisfaction of the almost-sure specification. We visualize the resulting behavior
of the agent in those environments with a set of videos.

Contributions. Our paper makes four contributions: (1) We present an incre-
mental SAT-based approach to compute policies that satisfy almost-sure prop-
erties. The method scales to POMDPs whose belief-support states count billions;
(2) The novel approach is able to find large winning regions that yield permis-
sive policies. (3) We implement a straightforward approach that constructs the
belief-support symbolically using state-of-the-art model checking. We show that
its completeness comes at the cost of limited scalability. (4) We construct a
shield for almost-sure specifications on POMDPs which enforces at runtime that
no unsafe states are visited and that, under mild assumptions, the agent almost-
surely reaches the set of desirable states.

Further Related Work. Chatterjee et al. compute winning regions for minimizing
a reward objective via an explicit state representation [17], or consider almost-
sure reachability using an explicit state space [16,51]. The problem of determin-
ing any winning policy can be cast as a strong cyclic planning problem, proposed
earlier with decision diagrams [7]. Indeed, our BDD-based implementation on the
belief-support MDP can be seen as a reimplementation of that approach.

Quantitative variants of reach-avoid specifications have gained attention in,
e.g., [11,28,40]. Other approaches restrict themselves to simple policies [3,33,45,
58]. Wang et al. [55] use an iterative Satisfiability Modulo Theories (SMT) [6]
approach for quantitative finite-horizon specifications, which requires computing
beliefs. Various general POMDP approaches exist, e.g., [26,27,29,48,49,54,56].
The underlying approaches depend on discounted reward maximization and can
satisfy almost-sure specifications with high reliability. However, enforcing prob-
abilities that are close to 0 or 1 requires a discount factor close to 1, drastically
reducing the scalability of such approaches [28]. Moreover, probabilities in the
underlying POMDP need to be precisely given, which is not always realistic [14].

Another line of work (for example [53]) uses an idea similar to winning regions
with uncertain specifications, but in a fully observable setting. Finally, comple-
mentary to shielding, there are approaches that guide reinforcement learning
(with full observability) via temporal logic constraints [24,25].

2 Preliminaries and Formal Problem

We briefly introduce POMDPs and their semantics in terms of belief MDPs, before
formalising and studying the problem variants outlined in the introduction. We
present belief-support MDPs as a finite abstraction of infinite belief MDPs.

We define the support supp(μ) = {x ∈ X | μ(x) > 0} of a discrete probability
distribution μ and denote the set of all distributions with Distr(X).

Definition 1 (MDP). A Markov decision process (MDP) is a tuple M =
〈S,Act, μinit,P〉 with a set S of states, an initial distribution μinit ∈ Distr(S), a
finite set Act of actions, and a transition function P : S × Act → Distr(S).
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Let posts(α) = supp(P(s, α)) denote the states that may be the successors of the
state s ∈ S for action α ∈ Act under the distribution P(s, α). If posts(α) = {s}
for all actions α, s is called absorbing.

Definition 2 (POMDP). A partially observable MDP (POMDP) is a tuple
P = 〈M, Ω, obs〉 with M = 〈S,Act, μinit,P〉 the underlying MDP with finite
S, Ω a finite set of observations, and obs : S → Ω an observation function.
We assume that there is a unique initial observation, i.e., that |{obs(s) | s ∈
supp(μinit)}| = 1.

More general observation functions obs : S → Distr(Ω) are possible via a
(polynomial) reduction [17]. A path through an MDP is a sequence π, π =
(s0, α0)(s1, α1) . . . sn of states and actions. such that si+1 ∈ postsi

(αi) for
αi ∈ Act and 0 ≤ i < n. The observation function obs applied to a path yields
an observation(-action) sequence obs(π) of observations and actions.

For modeling flexibility, we allow actions to be unavailable in a state (e.g.,
opening doors is only available when at a door), and it turned out to be crucial
to handle this explicitly in the following algorithms. Technically, the transition
function is a partial function, and the enabled actions are a set EnAct(s) = {α ∈
Act | posts(α) �= ∅}. To ease the presentation, we assume that states s, s′ with
the same observation share a set of enabled actions EnAct(s) = EnAct(s′).

Definition 3 (Policy). A policy σ : (S×Act)∗×S → Distr(Act) maps a path π
to a distribution over actions. A policy is observation-based, if for each two paths
π, π′ it holds that obs(π) = obs(π′) ⇒ σ(π) = σ(π′). A policy is memoryless,
if for each π, π′ it holds that last(π) = last(π′) ⇒ σ(π) = σ(π′). A policy is
deterministic, if for each π, σ(π) is a Dirac distribution, i.e., if |supp(σ(π))| = 1.

Policies resolve nondeterminism and partial observability by turning a (PO)MDP
into the induced infinite discrete-time Markov chain whose states are the finite
paths of the (PO)MDP. Probability measures are defined on this Markov chain.

For POMDPs, a belief describes the probability of being in certain state based
on an observation sequence. Formally, a belief b is a distribution b ∈ Distr(S)
over the states. A state s with positive belief b(s) > 0 is in the belief support,
s ∈ supp(b). Let Prσ

b(S′) denote the probability to reach a set S′ ⊆ S of states
from belief b under the policy σ. More precisely, Prσ

b(S′) denotes the probability
of all paths that reach S′ from b when nondeterminism is resolved by σ.

The policy synthesis problem usually consists in finding a policy that satisfies
a certain specification for a POMDP. We consider reach-avoid specifications, a
subclass of indefinite horizon properties [46]. For a POMDP P with states S,
such a specification is ϕ = 〈REACH,AVOID〉 ⊆ S × S. We assume that states
in AVOID and in REACH are (made) absorbing and REACH ∩ AVOID = ∅.

Definition 4 (Winning). A policy σ is winning for ϕ from belief b in
(PO)MDP P iff Prσ

b(AVOID) = 0 and Prσ
b(REACH) = 1, i.e., if it reaches

AVOID with probability zero and REACH with probability one (almost-surely)
when b is the initial state. Belief b is winning for ϕ in P if there exists a winning
policy from b.
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We omit P and ϕ whenever it is clear from the context and simply call b winning.

Problem 1: Given a POMDP, a belief b, and a specification ϕ, decide
whether b is winning and find a policy σ that is winning from b.

The problem is EXPTIME-complete [18]. Contrary to MDPs, it is not sufficient
to consider memoryless policies.

Model checking queries for POMDPs often rely on the analysis of the belief
MDP. Indeed, we may analyse this generally infinite model. Let us first recap
a formal definition of the belief MDP, using the presentation from [11]. In the
following, let P(s, α, z) :=

∑
s′∈S [obs(s′)=z] · P(s, α, s′) denote the probability1

to move to (a state with) observation z from state s using action α. Then,
P(b, α, z) :=

∑
s∈S b(s) · P(s, α, z) is the probability to observe z after taking α

in b. We define the belief obtained by taking α from b, conditioned on observing z:

update(b|α, z)(s′) :=
[obs(s′)=z] · ∑

s∈S b(s) · P(s, α, s′)
P(b, α, z)

. (1)

Definition 5 (Belief MDP). The belief MDP of POMDP P = 〈M, Ω, obs〉
where M = 〈S,Act, μinit,P〉 is the MDP BelMDP(P) := 〈B,Act,PB, μinit〉 with
B = Distr(S), and transition function PB given by

PB(b, α, b′) :=

{
P(b, α, obs(b′)) if b′ = update(b|α, obs(b′)),
0 otherwise.

Due to (1) and the unique initial observation, we may restrict the beliefs to B =⋃
z∈Ω Distr({s | obs(s) = z}), that is, each belief state has a unique associated

observation. We can lift specifications to belief MDPs: Avoid-beliefs are the set
of beliefs b such that supp(b) ∩ AVOID �= ∅, and reach-beliefs are the set of
beliefs b such that supp(b) ⊆ REACH.

Towards obtaining a finite abstraction, the main algorithmic idea is the fol-
lowing. For the qualitative reach-avoid specifications we consider, the belief prob-
abilities are irrelevant—only the belief support is important [47].

Lemma 1. For winning belief b, belief b′ with supp(b) = supp(b′) is winning.

Consequently, we can abstract the belief MDP into a finite belief support MDP.

Definition 6 (Belief-Support MDP). For a POMDP P = 〈M, Ω, obs〉 with
M = 〈S,Act, μinit,P〉, the finite state space of a belief-support MDP PB is
B =

{
b ⊆ S | ∀s, s′ ∈ b : obs(s) = obs(s′)

}
where each state is the support of

a belief state. Action α in state b leads (with an irrelevant positive probability
p > 0) to a state b′, if

b′ ∈
{ ⋃

s∈b

posts(α) ∩ {s | obs(s) = z} | z ∈ Ω
}

.

1 We use Iverson brackets: [x] = 1 if x holds and 0 otherwise.
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Thus, transitions between states within b and b′ are mimicked in the POMDP.
Equivalently, the following clarifies the belief-support MDP as an abstraction of
the belief MDP: there are transitions with action α between b and b′, if there
exists beliefs b, b′ with supp(b) = b and supp(b′) = b′, such that b′ ∈ postb(α).
We lift the specification as before:

Definition 7 (Lifted specification). For ϕ = 〈AVOID,REACH〉, we define
ϕB = 〈AVOIDB ,REACHB〉 with AVOIDB = {b | b ∩ AVOID �= ∅}, and
REACHB = {b | b ⊆ REACH}.

We obtain the following lemma, which follows from the fact that almost-sure
reachability is a graph property2.

Lemma 2. If belief b is winning in the POMDP P for ϕ, then the support
supp(b) is winning in the belief-support MDP PB for ϕB.

Lemma 2 yields an equivalent reformulation of Problem 1 for belief supports:

Problem 1 (equivalent): Given a POMDP P, belief b, and specification
ϕ, decide whether supp(b) is winning for ϕB in the belief-support MDP PB .

3 Winning Regions

This section provides the observations on winning regions, a key concept for this
paper. An important consequence of Lemma2 and the reformulation of Prob-
lem 1 to the belief-support MDP is that the initial distribution of the POMDP
is no longer relevant. Winning policies for individual beliefs may be composed
to a policy that is winning for all of these beliefs, using the individual action
choices.

Lemma 3. If the policies σ and σ′ are winning for the belief supports b and b′,
respectively, then there exists a policy σ′′ that is winning for both b and b′.

While this statement may seem trivial on the MDP (or equivalently on beliefs),
we notice that it does not hold for POMDP states. As a natural consequence,
we are able to consider winning beliefs without referring to a specific policy.

Definition 8 (Winning region). Let σ be a policy. A set Wσ
ϕ ⊆ B of belief

supports is a winning region for ϕ and σ, if σ is winning from each b ∈ Wσ
ϕ . A

set Wϕ ⊆ B is a winning region for ϕ, if every b ∈ Wϕ is winning. The region
containing all winning beliefs is the maximal winning region3.

2 Although the probabilities are not relevant to compute almost-sure reachabil-
ity, it is important to notice that almost-sure reachability is different from sure-
reachability [5]: For almost-sure reachability, there can be an infinite path that
never reaches the target, as long as the probability mass over all those paths is
0. Almost-sure reachability can, however, be expressed as sure-reachability in a par-
ticular game-setting [47].

3 In some literature, winning region always refers to a maximal winning region.
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Observe that the maximal winning region in MDPs exists for qualitative reach-
ability, but not for quantitative reachability, which we do not consider here.

Problem 2: Given a POMDP P and a specification ϕ, find the maximal
winning region Wϕ.

Using this definition of winning regions, we are able to reformulate Problem 1
by asking whether the support of some belief b is in the winning region.

Part of Problem 1 was to compute a winning policy. Below, we study the
connection between the winning region and winning policies. We are interested
in subsets of the maximal winning region that exhibit two properties:

Definition 9 (Deadlock-free). A set W of belief-supports W ⊆ B is
deadlock-free, if for every b ∈ W , an action α ∈ EnAct(b) exists such that
postb(α) ⊆ W .

Definition 10 (Productive). A set of belief supports W ⊆ B is productive
(towards a set REACHB), if from every b ∈ W , there exists a (finite) path
π = b0α1b1 . . . bn from b0 to bn ∈ REACHB with bi ∈ W and postbi

(α) ⊆ W for
all 1 ≤ i ≤ n.

Every productive region is deadlock-free, as REACH-states are absorbing. The
maximal winning region is productive towards REACHB (and thus deadlock-
free) by definition. Intuitively, while a deadlock-free region ensures that one
never has to leave the region, any productive winning region ensures that from
every belief support within this region there is a policy to stay in the winning
region and that can almost-surely reach a REACH-state. In particular, to find a
winning policy (Challenge 1) or for the purpose of safe exploration (Challenge 2),
it is sufficient to find a productive subset of the maximal winning region. We
detail on this insight in Sect. 6.

Problem 3: Given a POMDP P and a specification ϕ, find a (large) pro-
ductive winning region Wϕ.

To allow a compact representation of winning regions, we exploit that for any
belief support b′ ⊆ b it holds that postb′(α) ⊆ postb(α) for all actions α ∈ Act,
that is, the successors of b′ are contained in the successors of b.

Lemma 4. For winning belief support b, b′ ⊆ b is winning.

4 Iterative SAT-Based Computation of Winning Regions

We devise an approach for iteratively computing an increasing sequence of pro-
ductive winning regions. The approach delivers a compact symbolic encoding
of winning regions: For a belief (or belief-support) state from a given winning
region, we can efficiently decide whether the outcome of an action emanating
from the state stays within the winning region.

Key ingredient is the computation of so-called memoryless winning policies.
We start this section by briefly recapping how to compute such policies directly
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Fig. 1. Cheese-Maze example to explain memoryless policies and shortcuts

on the POMDP, before we build an efficient incremental approach on top of this
base method. In particular, we first present a naive iterative algorithm based on
the notion of shortcuts, then describe how to implicitly add shortcuts within the
encoding, and then finally combine the ideas to an efficient algorithm.

4.1 One-Shot Approach to Find Small Policies from a Single Belief

We aim to solve Problem 1 and determine a winning policy. The number of
policies is exponential in the actions and the (exponentially many) belief support
states. Searching among doubly exponentially many possibilities is intractable in
general. However, Chatterjee et al. [15] observe that often much simpler winning
policies exist and provides a one-shot approach to find them. The essential idea
is to search only for memoryless observation-based policies σ : Ω → Distr(Act)
that are winning for the (initial) belief support b.

Example 1. Consider the small Cheese-POMDP [35] in Fig. 1(a). States are cells,
actions are moving in the cardinal directions (if possible), and observations are
the directions with adjacent cells, e.g., the boldface states 6, 7, 8 share an obser-
vation. We set REACH = {10} and AVOID = {9, 11}. From belief support
b = {6, 8} there is no memoryless winning policy—In states {6, 8} we have to
go north, which prevents us from going south in state 7. However, we can find a
memoryless winning policy for {1, 5}, see Fig. 1(b).

This problem is NP-complete, and it is thus natural to encode the problem as a
satisfiability query in propositional logic. We mildly adapt the original encoding
of winning policies [15]. We introduce three sets of Boolean variables: Az,α, Cs

and Ps,j . If a policy takes action α ∈ Act with positive probability upon obser-
vation z ∈ Ω, then and only then, Az,α is true. If under this policy a state s ∈ S
is reached from some initial belief support bι with positive probability, then and
only then, Cs is true. We define a maximal rank k to ensure the productivity.
For each state s and rank 0 ≤ j ≤ k, variable Ps,j indicates rank j for s, that
is, a path from s leads to s′ ∈ REACH within j steps.4 A winning policy is
then obtained by finding a satisfiable solution (via a SAT solver) to the conjunc-
tion Ψϕ

P (bι, k) of the constraints (2a)–(5), where S? = S \ (
AVOID ∪ REACH

)
.

4 Notice that a state s can have multiple ‘ranks’ in this encoding. Its rank is the
smallest j such that Ps,j is true.
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∧

s∈bι

Cs (2a)
∧

z∈Ω

( ∨

α∈EnAct(z)

Az,α

)
(2b)

The initial belief support is clearly reachable (2a). The conjunction in (2b)
ensures that in every observation, at least one action is taken.

∧

s∈AVOID

¬Cs ∧
∧

s∈S
α∈EnAct(s)

(
Cs ∧ Aobs(s),α →

∧

s′∈posts(α)

Cs′
)

(3)

The conjunction (3) ensures that for any model for these formulas, the set of
states {s ∈ S | Cs = true} is reachable, does not overlap with AVOID, and is
transitively closed under reachability (for the policy described by Az,α).

∧

s∈S?

Cs → Ps,k (4)

∧

s �∈REACH

¬Ps,0 ∧
∧

s∈S?
1≤j≤k

Ps,j ↔
( ∨

α∈EnAct(s)

(
Aobs(s),α ∧ ( ∨

s′∈posts(α)

Ps′,j−1

)))
(5)

Conjunction (4) states that any state that is reached almost-surely reaches a
state in REACH, i.e., that there is a path (of length at most) k to the target.
Conjunctions (5) describe a ranking function that ensures the existence of this
path. Only states in REACH have rank zero, and a state with positive probability
to reach a state with rank j−1 within a step has rank at most j.

By [15, Thm. 2], it holds that the conjunction Ψϕ
P (bι, k) of the con-

straints (2a)–(5) is satisfiable, if there is a memoryless observation-based pol-
icy such that ϕ is satisfied. If k = |S|, then the reverse direction also holds. If
k < |S|, we may miss states with a higher rank. Large values for k are practically
intractable [15], as the encoding grows significantly with k. Pandey and Rinta-
nen [41] propose extending SAT-solvers with a dedicated handling of ranking
constraints.

In order to apply this to small-memory policies, one can unfold log(m) bits of
memory of such a policy into an m times larger POMDP [15,33], and then search
for a memoryless policy in this larger POMDP. Chatterjee et al. [15] include a
slight variation to this unfolding, allowing smaller-than-memoryless policies by
enforcing the same action over various observations.

4.2 Iterative Shortcuts

We exploit the one-shot approach to create a naive iterative algorithm that con-
structs a productive winning region. The iterative algorithm avoids the following
restrictions of the one-shot approach. (1) In order to increase the likelihood of
finding winning policies, we do not restrict ourselves to small-memory policies,
and (2) we do not have to fix a maximal rank k. These modifications allow us
to find more winning policies, without guessing hyper-parameters. As we do not
need to fix the belief-state, those parts of the winning region that are easy to
find for the solver are encountered first.
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The One-Shot Approach on Winning Regions. To understand the naive iterative
algorithm, it is helpful to consider the previous encoding in the light of Problem
3, i.e., finding productive winning regions. Consider first the interpretation of
the variables. Indeed, observe that we have found the same winning policy for
all states s where Cs is true. Consequentially, any belief support bz = {s |
Cs true ∧ obs(s) = z} is winning.

Lemma 5. If σ is winning for b and b′, then σ is also winning for b ∪ b′.

This lemma is somewhat dual to Lemma 4, but requires a fixed policy. The
constraints (3) and ensure that a winning-region is deadlock-free. The constraints
(4) and (5) ensure productivity of the winning region.

Adding Shortcuts Explicitly. The key idea is that we iteratively add short-cuts
in the POMDP that represent known winning policies. We find a winning policy
σ for some belief states in the first iteration, and then add a fresh action ασ

to all (original) POMDP states: This action leads – with probability one – to
a REACH state, if the state is in the wining belief-support under policy σ.
Otherwise, the action leads to an AVOID state.

Definition 11. For POMDP P = 〈M, Ω, obs〉 where M = 〈S,Act, μinit,P〉
and a policy σ with associated winning region Wσ

ϕ , and assuming w.l.o.g., � ∈
REACH and ⊥ ∈ AVOID, we define the shortcut POMDP P{σ} = 〈M′, Ω, obs〉
with M′ = 〈S,Act′, μinit,P′〉, Act′ = Act∪{ασ}, P′(s, α) = P(s, α) for all s ∈ S
and α ∈ Act, and P′(s, ασ) = {� �→ [{s} ∈ W σ

ϕ ],⊥ �→ [{s} �∈ W σ
ϕ ]}.

Lemma 6. For a POMDP P and policy σ, the (maximal) winning regions for
P{σ} and P coincide.

First, adding more actions will not change a winning belief-support to be not
winning. Furthermore, by construction, taking the novel action will only lead to
a winning belief-support whenever following σ from that point onwards would
be a winning policy. The key benefit is that adding shortcuts may extend the
set of belief-support states that win via a memoryless policy. This observation
also gives rise to the following extension to the one-shot approach.

Example 2. We continue with Example 1. If we add shortcuts, we can now find
a memoryless winning policy for b = {6, 8}, depicted in Fig. 1(c).

Iterative Shortcuts to Extend a Winning Region. The idea is now to run the one-
shot approach, extract the winning region, add the shortcuts to the POMDP, and
rerun the one-shot approach. To make the one-shot approach applicable in this
setting, it only needs one change: Rather than fixing an initial belief-support,
we ask for an arbitrary new belief-support to be added to the states that we
have previously covered. We use a data structure Win such that Win(z) encodes
all winning belief supports with observation z. Internally, the data structure
stores maximal winning belief supports (w.r.t. set inclusion, see also Lemma 4)
as bit-vectors. By construction, for every b ∈ Win(z), a winning region exists,
i.e., conceptually, there is a shortcut-action leading to REACH.
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Algorithm 1 Naive construction of winning regions
Input: POMDP P, reach-avoid specification ϕ
Output: Winning region encoded in Win
Win(z) ← {s ∈ REACH | obs(s) = z} for all z ∈ Ω
Φ ← Encode(P, ϕ, Win) � Create encoding (2b),(3),(6),(7).
while ∃η s.t. η |= Φ do � Call an SMT solver

Win(z) ← Win(z) ∪ {b | s ∈ b iff η(Cs)} for all z ∈ Ω
P ← P{ση} � Extend POMDP with Def. 11

� with ση policy encoded by η.
Φ ← Encode(P, ϕ, Win)

We extend the encoding (in partial preparation of the next subsection) and
add a variable Uz ∈ b that is true if the policy is winning in a belief support
that is not yet in Win(z). We replace (2a) with:
∨

z∈Ω

Uz ∧
∧

z∈Ω
Win(z)=∅

(
Uz ↔

∨

s∈S
obs(s)=z

Cs

)
∧

∧

z∈Ω
Win(z) �=∅

(
Uz ↔

∧

X∈Win(z)

∨

s∈S\X
obs(s)=z

Cs

)

(6)

For an observation z for which we have not found a winning belief support
yet, finding a policy from any state s with obs(s) updates the winning region.
Otherwise, it means finding a winning policy for a belief support that is not
subsumed by a previous one (6).

Real-Valued Ranking. To avoid setting a maximal path length, we use unbounded
(real) variables Rs rather than Boolean variables for the ranking [57]. This relax-
ation avoids the growth of the encoding and admits arbitrarily large ranks with
a fixed-size encoding into difference logic. This logic is an extension to proposi-
tional logic that can be checked using an SMT solver [6].

∧

s∈S?

Cs →
( ∨

α∈EnAct(s)

(
Aobs(s),α ∧ ( ∨

s′∈posts(α)

Rs > Rs′
)))

(7)

We replace (4) and (5): A state must have a successor state with a lower rank –
as before, but with real-valued ranks (7).

Algorithm. Together, the algorithm is given in Algorithm1. We initialize the
winning region based on the specification, then encode the POMDP using the
(modified) one-shot encoding. As long as the SMT solver finds policies that are
winning for a new belief-support, we add those belief supports to the winning
region. In each iteration, Win contains a winning region. Once we find no more
policies that extend the winning region on the extended POMDP, we terminate.

The algorithm always terminates because the set of winning regions is finite,
but in general does not solve Problem 2. Formally, the maximal winning region
is a greatest fixpoint [5] and we iterate from below, i.e., the fixpoint that we find
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will be the smallest fixpoint (of the operation that we implement). However, iter-
ating from above requires to reason that none of the doubly-exponentially many
policies is winning for a particular belief support state; whereas our approach
profits from finding simple strategies early on. Unfolding of memory as discussed
earlier also makes this algorithm complete, yet, suffers from the same blow-up.
A main advantage is that the algorithm often avoids the need for unfolding when
searching for a winning policy or large winning regions.

Next, we address two weaknesses: First, the algorithm currently creates a new
encoding in every iteration, yielding significant overhead. Second, the algorithm
in many settings requires adding a bit of memory to realize behavior where in
a particular observation, we first want to execute an action α and then follow
a shortcut from the state (with the same observation) reached from there. We
adapt the encoding to explicitly allow for these (non-memoryless) policies.

4.3 Incremental Encoding of Winning Regions

In this section, instead of naively adjusting the POMDP, we realize the idea of
adding shortcuts directly on the encoding. This encoding is the essential step
towards an efficacious approach for solving Problem 3. We find winning states
based on a previous solution, and instead of adding actions, we allow the solver
to decide following individual policies from each observation. In Sect. 4.4, we
embed this encoding into an improved algorithm.

Our encoding represents an observation-based policy that can decide to take
a shortcut, which means that it follows a previously computed winning policy
from there (implicitly using Lemma 3). In addition to Az,α, Cs and Rs from the
previous encoding, we use the following variables: The policy takes shortcuts in
states s where Ds is true. For each observation, we must take the same shortcut,
referred to by a positive integer-valued index Iz. More precisely, Iz refers to a
shortcut from a previously computed (fragment of a) winning region stored in
Win(z)Iz

. The policy may decide to switch, that is, to follow a shortcut after
taking an action starting in a state with observation z. If Fz is true, the policy
takes some action from z-states and from the next state, we take a shortcut. The
encoding thus implicitly represents policies that are not memoryless but rather
allow for a particular type of memory.
The conjunction of (6) and (8)–(13) yields the encoding Φϕ

P(Win):
∧

z∈Ω

( ∨

α∈EnAct(z)

Az,α

)
∧

∧

s∈AVOID

¬Cs ∧ ¬Ds (8)

∧

s∈S
α∈EnAct(s)

(
Cs ∧ Aobs(s),α ∧ ¬Fobs(s) →

∧

s′∈posts(α)

Cs′
)

(9)

∧

s∈S
α∈EnAct(s)

(
Cs ∧ Aobs(s),α ∧ Fobs(s) →

∧

s′∈posts(α)

Ds′
)

(10)

Similar to (2b), (3), we select at least one action and AVOID-states should not
be reached (8). States reached are closed under the transitive closure, however,
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Algorithm 2 Naive construction of winning regions with incremental encoding
Input: POMDP P, reach-avoid specification ϕ
Output: Winning region encoded in Win
Win(z) ← {s ∈ REACH | obs(s) = z} for all z ∈ Ω
Φ ← Encode(P, ϕ, Win) � Create encoding (6),(8)–(13).
while ∃η s.t. η |= Φ do � Call an SMT solver

Win(z) ← Win(z) ∪ {b | s ∈ b iff η(Cs)} for all z ∈ Ω
Φ ← Encode(P, ϕ, Win)

only if we do not switch to taking a shortcut (9). Furthermore, we mark the
states reached after switching (10) and need to select a shortcut for these states.

∧

s∈S

(
Ds → Iobs(s) > 0

) ∧
∧

z∈Ω

Iz ≤ |Win(z)| (11)

∧

z∈Ω
0<i≤|Win(z)|

∧

s∈S\Win(z)i

obs(s)=z

Ds → Iz �= i (12)

If we reach a state s after switching, then we must pick a shortcut. We can only
pick an index that reflects a found winning region (11). If we pick this shortcut
reflecting a winning region (fragment) for observation z, then we are winning
from the states in Win(z)i, but not from any other state s with that observation.
Thus, for s �∈ Win(z)i, if we are going to follow any shortcut (that is, Ds holds),
we should not pick this particular shortcut encoded by Iz (because it will lead
to an AVOID-state). In terms of the policy: Taking this previously computed
policy from state s is not (known to) lead us to a REACH-state (12). Finally,
we update the ranking to account for shortcuts.

∧

s∈S?

Cs →
( ∨

α∈EnAct(s)

(
Aobs(s),α ∧ ( ∨

s′∈posts(α)

Rs > Rs′
)) ∨ Fobs(s)

)
(13)

We make a slight adaption to (7): Either we have a successor state with a lower
rank (as before) or we follow a shortcut—which either leads to the target or to
violating the specification (13). We formalize the correctness of the encoding:

Lemma 7. If η |= Φϕ
P(Win), then for every observation z, the belief support

bz = {s | η(Cs) = true, obs(s) = z} is winning.

Algorithm 2 is a straightforward adaption of Algorithm1 that avoids adding
shortcuts explicitly (and uses the updated encoding). As before, the algorithm
terminates and solves Problem 3. We conclude:

Theorem 1. In any iteration, Algorithm2 computes a productive winning region.

4.4 An Incremental Algorithm

We adapt the algorithm sketched above to exploit the incrementality of modern
SMT solvers. Furthermore, we aim to reduce the invocations of the solver by
finding some extensions to the winning region via a graph-based algorithm.
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Algorithm 3 Incremental construction of winning regions
Input: POMDP P, reach-avoid specification ϕ
Output: Winning region encoded in Win
Win(z) ← {s ∈ REACH | obs(s) = z} for all z ∈ Ω
Win ← GraphPreprocessing(Win)
Φfix ← Encodefix(P, ϕ, Win) � Create encoding (8)–(13)
Φinc ← Encodeinc(P, ϕ, Win) � Encode (6)
while ∃η s.t. η |= Φfix ∧ Φinc do � Call an SMT solver, fix η

do � Extend policy
Φη ← ∧{Az,α | η(Uz) ∧ η(Az,α)} � Part. fix policy

while ∃η s.t. η |= Φfix ∧ Φvar ∧ Φη � Call SMT, fix η
Win(z) ← Win(z) ∪ {B | s ∈ B iff η(Cs)} for all z ∈ Ω
Win ← GraphPreprocessing(Win)
Φfix ← Φfix ∧ Encode(11)(12)(P, ϕ, Win) � Update: (11),(12)
Φinc ← Encodeinc(P, ϕ, Win) � Encode (6)

Graph-Based Preprocessing. To reduce the number of SMT invocations, we
employ polynomial-time graph-based heuristics. The first step is to use (fully
observable) MDP model checking on the POMDP as follows: find all states that
under each (not necessarily observation-based) policy reach an AVOID-state
with positive probability, and make them absorbing. Then, we find all states
that under each policy reach a REACH-state almost-surely. Then, we iteratively
search for winning observations and use them to extend the REACH-states. An
observation z is winning, if the belief-support {s | obs(s) = z} is winning. We
start with a previously determined winning region W. We iteratively update W
by adding states bz = {s | obs(s) = z} for some observation z, if there is an
action α such that from every s ∈ bz, it holds posts(α) ⊆ W. The iterative
updates are interleaved with MDP model checking on the POMDP as described
above until we find a fixpoint.

Optimized Algorithm. We improve Algorithm 2 along four dimensions to obtain
Algorithm 3. First, we employ fewer updates of the winning region: We aim to
extend the policy as much as possible, i.e., we want the SMT-solver to find more
states with the same observation that are winning under the same policy. There-
fore, we fix the variables for action choices that yield a new winning policy, and
let the SMT solver search whether we can extend the corresponding winning
region by finding more states and actions that are compatible with the partial
policy. Second, we observe that between (outer) iterations, large parts of the
encoding stay intact, and use an incremental approach in which we first push
all the constraints from the POMDP onto the stack, then all the constraints
from the winning region, and finally a constraint that asks for progress. After
we found a new policy, we pop the last constraint from the stack, add new con-
straints regarding the winning region (notice that the old constraints remain
intact), and push new constraints that ask for extending the winning region
to the stack. We refresh the encoding periodically to avoid unnecessary clutter-
ing. Third, further constraints (1) make the usage of shortcuts more flexible—we
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allow taking shortcuts either immediately or after the next action, and (2) enable
an even more incremental encoding with some minor technical reformulations.
Fourth, we add the graph-preprocessing discussed above during the outer itera-
tion.

5 Symbolic Model Checking for the Belief-Support MDP

In this section, we briefly describe how we encode a given POMDP into a belief-
support MDP to employ symbolic, off-the-shelf probabilistic model checking. In
particular, we employ symbolic (decision-diagram, DD) representations of the
belief-support MDP as we expect this MDP to be huge. Constructing that DD
representation effectively is not entirely trivial. Instead, we advocate construct-
ing a (modular) symbolic description of the belief support MDP. Concretely,
we automatically generate a model description in the MDP modeling language
JANI [13],5 and then apply off-the-shelf model checking on the JANI description.

Conceptually, we create a belief-support MDP with auxiliary states to allow
for a concise encoding.6 We use this auxiliary state b̂ to describe for any transition
the conditioning on the observation. Concretely, a single transition P(b, α, b′) in
the belief-support MDP is reflected by two transitions P(b, α, b̂) and P(b̂, α⊥, b′)
in our encoding, where α⊥ is a unique dummy action. We encode states using
triples 〈belsup, newobs, lact〉. belsup is a bit vector with entries for every state
s that we use to encode the belief support. Variables newobs and lact store
an observation and an action and are relevant only for the auxiliary states.
Technically, we now encode the first transition from b with the nondeterministic
action α to b̂. P(b, α) then yields (with arbitrary positive) probability a new
observation that will reflect the observation obs(b′). We store α and obs(b′) in
lact and newobs, respectively. The second step is a single deterministic (dummy)
action updating belsup while taking into account newobs. The step also resets
lact and newobs.

The encoding of the transitions as follows: For the first step, we create nonde-
terministic choices for each action α and observation z. We guard these choices
with z meaning that the edge is only applicable to states having observation z,
i.e., the guard is

∨
s∈S,obs(s)=z belsup(s). With these guarded edges, we define

the destinations: With an arbitrary7 probability p, we go to an observation z1 if
there is at least one state in s ∈ belsup which has a successor state s′ ∈ posts(α)
with obs(s′) = z1.

5 The description here works on a network of synchronized state machines as is also
common in the PRISM language.

6 The usage of message passing or indexed assignments in JANI would circumvent the
need for intermediate states, but is to the best of our knowledge not supported by
decision-diagram based model checkers.

7 We leave this a parametric probability in model building to reduce the number of
different probabilities, as this is beneficial for the size of the decision diagram that
Storm constructs – it will only have leafs 0, p, 1. Technically, such MDPs are not
necessarily well-defined but we can employ model checking on the graph structure.
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The following pseudocode reflects the first step in the transition encoding. The
syntax is as follows: take an action if a Boolean guard is satisfied, then updates
are executed with probability prob. An example for a guard is an observation z.

takeα if z then

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

prob
( ∨

s∈S
P(s,α,z1)>0

belsup(s) ? p : 0
)
:

newobs ← z1

lact ← α

. . . . . .

prob
( ∨

s∈S
P(s,α,zn)>0

belsup(s) ? p : 0
)
:

newobs ← zn

lact ← α

The second step synchronously updates each state s′ in the POMDP indepen-
dently: The entry belsup(s′) is set to true if obs(s) = newobs and if there is a
state s currently true in (the old) belsup with s′ ∈ posts(lact). The step thus
can be captured by the following pseudocode for each s′:

takeα⊥ if true thenprob1 : belsup(s′) ← ( ∨

s
P(s, lact, s′) > 0

) ∧ obs(s′)

Finally, whenever the dummy action α⊥ is executed, we also reset the variables
newobs and lact. The resulting encoding thus has transitions in the order of
|S| + |Ω|2 · |maxz∈Ω EnAct(z)|.

6 Almost-Sure Reachability Shields in POMDPs

In this section, we define a shield for POMDPs – towards the application of safe
exploration (Challenge 2) – that blocks actions which would lead an agent out
of a winning region. In particular, the shield imposes restrictions on policies to
satisfy the reach-avoid specification. Technically, we adapt so-called permissive
policies [21,31] for a belief-support MDP. To force an agent to stay within a
productive winning region Wϕ for specification ϕ, we define a ϕ-shield ν : b →
2Act such that for any winning b for ϕ we have ν(b) ⊆ {α ∈ Act | postb(α) ⊆
Wϕ}, i.e., an action is part of the shield ν(b) if it exclusively leads to belief
support states within the winning region.

A shield ν restricts the set of actions an arbitrary policy may take8. We
call such restricted policies admissible. Specifically, let bτ be the belief sup-
port after observing an observation sequence τ . Then policy σ is ν-admissible if
supp(σ(τ)) ⊆ ν(bτ ) for every observation-sequence τ . Consequently, a policy is
not admissible if for some observation sequence τ , the policy selects an action
α ∈ Act which is not allowed by the shield.

Some admissible policies may choose to stay in the winning region without
progressing towards the REACH states. Such a policy adheres to the avoid-part
of the specification, but violates the reachability part. To enforce progress, we

8 While memory policies based on the belief (support) are sufficient to ensure almost-
sure reachability, the goal is to shield other policies that do not necessarily fall in
this restricted class.
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Fig. 2. Video stills from simulating a shielded agent on three different benchmarks.

adapt a notion of fairness. A policy is fair if it takes every action infinitely often
at any belief support state that appears infinitely often along a trace [5]. For
example, a policy that randomizes (arbitrarily) over all actions is fair–we notice
that most reinforcement learning policies are therefore fair.

Theorem 2. For a ϕ-shield ν and a winning belief support b, any fair ν-
admissible policy satisfies ϕ from b.

We give a proof (sketch) in [32, Appendix]. The main idea is to show that
the induced Markov chain of any admissible policy has only bottom SCCs that
contain REACH-states.

Remark 1. If ϕ is a safety specification (where Prσ
b(AVOID) = 0 suffices), we

can rely on deadlock-free winning regions rather than productive winning regions
and drop the fairness assumption.

7 Empirical Evaluation

We investigate the applicability of our incremental approach (Algorithm3) to
Challenge 1 and Challenge 2, and compare with our adaption and implementa-
tion of the one-shot approach [15], see Sect. 4.1. We also employ the MDP model-
checking approach from Sect. 5. Experiments, videos, source code are archived9.

Setting. We implemented the one-shot algorithm, our incremental algorithm,
and the generation of the JANI description of the belief support MDP into the
model checker Storm [19] on top of the SMT solver z3 [38]. To compare with
the one-shot algorithm for Problem 1, that is, for finding a policy from the
initial state, we add a variant of Algorithm3. Intuitively, any outer iteration
starts with an SMT-check to see whether we find a policy covering the initial
states. We realize the latter by fixing (temporarily) the Cs-variables. In the first
iteration, this configuration and its resulting policy closely resemble the one-
shot approach. For the MDP model-checking approach, we use Storm (from
the C++ API) with the dd engine and default settings.

For the experiments, we use a MacBook Pro MV962LL/A, a single core, no
randomization, and use a 6 GB memory limit. The time-out (TO) is 15 min.
9 http://doi.org/10.5281/zenodo.4784940 or on http://github.com/sjunges/shielding-

POMDPs.

http://doi.org/10.5281/zenodo.4784940
http://github.com/sjunges/shielding-POMDPs
http://github.com/sjunges/shielding-POMDPs
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Baseline. We compare with the one-shot algorithm including the graph-based
preprocessing to identify more winning observations. We use two setups: (1) We
(manually, a-priori) search for optimal hyper-parameters for each instance. We
search for the smallest amount of memory possible, and for the smallest maximal
rank k (being a multiplicative of five) that yields a result. Guessing parameters
as an “oracle” is time-consuming and unrealistic. We investigate (2) the perfor-
mance of the one-shot algorithm by fixing the hyper-parameters to two memory-
states and k = 30. These parameters provide results for most benchmarks.

Benchmarks. Our benchmarks involve agents operating in N×N grids, inspired
by, e.g., [12,15,20,50,51]. See Fig. 2 for video stills of simulating the following
benchmarks. Rocks is a variant of rock sample. The grid contains two rocks which
are either valuable or dangerous to collect. To find out with certainty, the rock
has to be sampled from an adjacent field. The goal is to collect a valuable rock,
bring it to the drop-off zone, and not collect dangerous rocks. Refuel concerns a
rover that shall travel from one corner to the other, while avoiding an obstacle
on the diagonal. Every movement costs energy and the rover may recharge at
recharging stations to its full battery capacity E. It receives noisy information
about its position and battery level. Evade is a scenario where a robot needs to
reach a destination and evade a faster agent. The robot has a limited range of
vision (R), but may scan the whole grid instead of moving. A certain safe area
is only accessible by the robot. Intercept is inverse to Evade in the sense that
the robot aims to meet an agent before it leaves the grid via one of two available
exits. On top of the view radius, the agent observes a corridor in the center of the
grid. Avoid is a related scenario where a robot shall keep distance to patrolling
agents that move with uncertain speed, yielding partial information about their
position The robot may exploit their predefined routes. Obstacle contains static
obstacles where the robot needs to reach the exit. Its initial state and movement
are uncertain, and it only observes whether the current position is a trap or exit.

Results for Challenge 1. Table 1 details the numerical benchmark results. For
each benchmark instance (columns), we report the name and relevant charac-
teristics: the number of states (|S|), the number of transitions (#Tr, the edges
in the graph described by the POMDP), the number of observations (|Ω|), and
the number of belief support states (|b|). For the incremental method, we pro-
vide the run time (Time, in seconds), the number of outer iterations (#Iter.)
in Algorithm 3, and the number of invocations of the SMT solver (#solve), and
the approximate size of the winning region (|W|). We then report these numbers
when searching for a policy that wins from the initial state. For the one-shot
method, we provide the time for the optimal parameters (on the next line)–TOs
reflect settings in which we did not find any suitable parameters, and the time
for the preset parameters (2,30), or N/A if no policy can be found with these
parameters. Finally, for (belief-support) MDP model checking, we give only the
run times.

The incremental algorithm finds winning policies for the initial state without
guessing parameters and is often faster versus the one-shot approach with an
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Table 1. Numerical results towards solving Problem 1 and Problem 3.

Inst. Rocks (N) Refuel (N ,E) Evade (N ,R) Avoid (N ,R) Intercept (N ,R) Obstacle (N)

4 6 6,8 7,7 6,2 7,2 6,3 7,4 7,1 7,2 6 8

|S| 331 816 270 302 4232 8108 5976 13021 4705 4705 37 65

#Tr 3484 7292 1301 1545 28866 57570 14373 33949 18049 18049 224 421

|Ω| 65 74 36 35 2202 4172 3300 8584 2002 2598 4 4

|b| 3.5e5 7.7e25 5.6e14 7.4e19 1.1e8 4.4e11 1.1e15 2.9e17 6.4e10 2.7e9 1.1e9 2.9e17

in
c
re

m
e
n
ta

l

fi
x
p
o
in

t Time 19 753 6 3 142 613 167 745 116 86 2 30

#Iter. 36 284 40 30 4 6 3 4 8 8 68 150

#solve 1702 13650 1023 528 681 1129 629 1027 1171 976 839 4291

|W| 3.5e5 7.7e25 1.2e11 2.1e8 1.0e8 4.2e11 1.1e15 2.9e17 9.2e4 2.9e4 4.1e7 3.8e14

in
it

ia
l

Time 17 226 2 2 49 576 10 40 11 2 <1 <1

#Iter. 29 65 2 4 1 1 1 1 2 1 10 12

#solve 1215 2652 62 80 1 1 1 1 81 1 114 229

|W| 4.4e4 1.8e13 8.4e6 3.7e4 5.0e7 1.0e11 3.7e5 6.9e10 6.2e3 2.1e3 4.1e5 4.5e9

1
-s

h
o
t

o
p
t Time 120 TO 2 <1 12 270 22 53 8 1 1 195

Mem,k 2,10 ? 2,15 2,15 1,20 1,30 1,30 1,25 2,10 1,10 6,10 5,50

fi
x

Time TO TO 11 37 TO TO TO TO 28 18 N/A N/A

MDP Time 400 TO 219 MO TO TO TO TO TO TO 6 MO

oracle providing optimal parameters, and significantly faster than the one-shot
approach with reasonably fixed parameters. In detail, Rocks shows that we can
handle large numbers of iterations, solver invocations, and winning regions. The
incremental approach scales to larger models, see e.g., Avoid. Refuel shows a
large sensitivity of the one-shot method on the lookahead (going from 15 to 30
increases the runtime), while Evade shows sensitivity to memory (from 1 to 2).
In contrast, the incremental approach does not rely on user-input, yet deliv-
ers comparable performance on Refuel or Avoid. It suffers slightly on Evade,
where the one-shot approach has reduced overhead. We furthermore conclude
that off-the-shelf MDP model checking is not a fast alternative. Its advantage
is the guarantee to find the maximal winning region, however, for our bench-
marks, maximal winning regions (empirically) coincide with the results from the
incremental fixpoint approach.

Results for Challenge 2. Winning regions obtained from running incrementally
to a fixpoint are significantly larger than when running them only until an initial
winning policy is found (cf. the table), but requires extra computational effort.

If a shielded agent moves randomly through the grid-worlds, the larger win-
ning regions indeed induce more permissiveness, that is, freedom to move for the
agent (cf. the videos, Fig. 2). This observation can also be quantified. In Table 2,
we compare the two different types of shields. For both, we give average and stan-
dard deviation over permissiveness over 250 paths. We choose to approximate per-
missiveness along a path as the number of cumulative actions allowed by the per-
missive scheduler along a path, divided by the number of cumulative actions avail-
able in the POMDP along that path. As the shield is correct by construction, each
run indeed never visits avoid states and eventually reaches the target (albeit after
many steps). This statement is not true for the unshielded agents.
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Table 2. Quantification of permissiveness using fraction of allowed actions.

Inst. Rocks (N) Refuel (N ,E) Evade (N ,R) Avoid (N ,R) Intercept (N ,R) Obstacle (N)

4 6 6,8 7,7 6,2 7,2 6,3 7,4 7,1 7,2 6 8

initial
avg 0.85 0.81 0.43 0.36 0.62 0.50 0.51 0.56 0.45 0.47 0.68 0.74

stdev 0.066 0.070 0.046 0.014 0.046 0.043 0.013 0.019 0.037 0.047 0.040 0.047

fixpoint
avg 0.88 0.89 0.77 0.73 0.86 0.87 0.78 0.80 0.78 0.84 0.73 0.73

stdev 0.060 0.037 0.037 0.024 0.015 0.016 0.015 0.017 0.078 0.070 0.036 0.059

8 Conclusion

We provided an incremental approach to find POMDP policies that satisfy
almost-sure reachability specifications. The superior scalability is demonstrated
on a string of benchmarks. Furthermore, this approach allows to shield agents in
POMDPs and guarantees that any exploration of an environment satisfies the
specification, without needlessly restricting the freedom of the agent. We plan to
investigate a tight interaction with state-of-the-art reinforcement learning and
quantitative verification of POMDPs. For the latter, we expect that an explicit
approach to model checking the belief-support MDP can be feasible.
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51. Svorenová, M., et al.: Temporal logic motion planning using POMDPs with parity
objectives: case study paper. In: HSCC, pp. 233–238. ACM (2015)

52. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press, Cam-
bridge (2005)

53. Turchetta, M., Berkenkamp, F., Krause, A.: Safe exploration for interactive
machine learning. In: NeurIPS, pp. 2887–2897 (2019)

54. Walraven, E., Spaan, M.T.J.: Accelerated vector pruning for optimal POMDP
solvers. In: AAAI, pp. 3672–3678. AAAI Press (2017)

55. Wang, Y., Chaudhuri, S., Kavraki, L.E.: Bounded policy synthesis for POMDPs
with safe-reachability objectives. In: AAMAS, pp. 238–246. IFAAMAS (2018)

56. Wierstra, D., Foerster, A., Peters, J., Schmidhuber, J.: Solving deep memory
POMDPs with recurrent policy gradients. In: de Sá, J.M., Alexandre, L.A., Duch,
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Abstract. We present a detailed study of roundoff errors in probabilistic
floating-point computations. We derive closed-form expressions for the
distribution of roundoff errors associated with a random variable, and
we prove that roundoff errors are generally close to being uncorrelated
with their generating distribution. Based on these theoretical advances,
we propose a model of IEEE floating-point arithmetic for numerical
expressions with probabilistic inputs and an algorithm for evaluating this
model. Our algorithm provides rigorous bounds to the output and error
distributions of arithmetic expressions over random variables, evaluated
in the presence of roundoff errors. It keeps track of complex dependen-
cies between random variables using an SMT solver, and is capable of
providing sound but tight probabilistic bounds to roundoff errors using
symbolic affine arithmetic. We implemented the algorithm in the PAF
tool, and evaluated it on FPBench, a standard benchmark suite for the
analysis of roundoff errors. Our evaluation shows that PAF computes
tighter bounds than current state-of-the-art on almost all benchmarks.

1 Introduction

There are two common sources of randomness in a numerical computation (a
straight-line program). First, the computation might be using inherently noisy
data, for example from analog sensors in cyber-physical systems such as robots,
autonomous vehicles, and drones. A prime example is data from GPS sensors,
whose error distribution can be described very precisely [2] and which we study in
some detail in Sect. 2. Second, the computation itself might sample from random
number generators. Such probabilistic numerical routines, known as Monte-Carlo
methods, are used in a wide variety of tasks, such as integration [34,42], opti-
mization [43], finance [25], fluid dynamics [32], and computer graphics [30]. We
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call numerical computations whose input values are sampled from some proba-
bility distributions probabilistic computations.

Probabilistic computations are typically implemented using floating-point
arithmetic, which leads to roundoff errors being introduced in the computation.
To strike the right balance between the performance and energy consumption
versus the quality of the computed result, expert programmers rely on either
a manual or automated floating-point error analysis to guide their design deci-
sions. However, the current state-of-the-art approaches in this space have pri-
mary focused on worst-case roundoff error analysis of deterministic computa-
tions. So what can we say about floating-point roundoff errors in a probabilistic
context? Is it possible to probabilistically quantify them by computing confidence
intervals? Can we, for example, say with 99% confidence that the roundoff error
of the computed result is smaller than some chosen constant? What is the dis-
tribution of outputs when roundoff errors are taken into account? In this paper,
we explore these and similar questions. To answer them, we propose a rigorous
– that is to say sound – approach to quantifying roundoff errors in probabilis-
tic computations. Based on this approach, we develop an automatic tool that
efficiently computes an overapproximate probabilistic profile of roundoff errors.

As an example, consider the floating-point arithmetic expression (X +Y )÷Y ,
where X and Y are random inputs represented by independent random variables.
In Sect. 4, we first show how the computation in finite-precision of a single arith-
metic operation such as X + Y can be modeled as (X + Y )(1 + ε), where ε is
also a random variable. We then show how this random variable can be computed
from first principles and why it makes sense to view (X + Y ) and (1 + ε) as inde-
pendent expressions, which in turn allows us to easily compute the distribution of
(X + Y )(1 + ε). The distribution of ε depends on that of X + Y , and we there-
fore need to evaluate arithmetic operations between random variables. When the
operands are independent – as in X + Y – this is standard [48], but when the
operands are dependent – as in the case of the division in (X + Y ) ÷ Y – this is a
hard problem. To solve it, we adopt and improve a technique for soundly bound-
ing these distributions described in [3]. Our improvement comes from the use of an
SMT solver to reason about the dependency between (X + Y ) and Y and remove
regions of the state-space with zero probability. We describe this in Sect. 6.

We can thus soundly bound the output distribution of any probabilistic com-
putation, such as (X +Y )÷Y , performed in floating-point arithmetic. This gives
us the ability to perform probabilistic range analysis and prove rigorous asser-
tions like: 99% of the outputs of a floating-point computation are smaller than a
given constant bound. In order to perform probabilistic roundoff error analysis
we develop symbolic affine arithmetic in Sect. 5. This technique is combined with
probabilistic range analysis to compute conditional roundoff errors. Specifically,
we over-approximate the maximal error conditioned on the output landing in the
99% range computed by the probabilistic range analysis, meaning conditioned
on the computations not returning an outlier.

We implemented our model and algorithms in a tool called PAF (for Prob-
abilistic Analysis of Floating-point errors). We evaluated PAF on the standard
floating-point benchmark suite FPBench [11], and compared its range and error
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analysis with the worst-case roundoff error analyzer FPTaylor [46,47] and the
probabilistic roundoff error analyzer PrAn [36]. We present the results in Sect. 7,
and show that FPTaylor’s worst-case analysis is often overly pessimistic in the
probabilistic setting, while PAF also generates tighter probabilistic error bounds
than PrAn on almost all benchmarks.

We summarize our contributions as follows:

(i) We derive a closed-form expression (6) for the distribution of roundoff errors
associated with a random variable. We prove that roundoff errors are gen-
erally close to being uncorrelated with their input distribution.

(ii) Based on these results we propose a model of IEEE 754 floating-point arith-
metic for numerical expressions with probabilistic inputs.

(iii) We evaluate this model by developing a new algorithm for rigorously bound-
ing the output range and roundoff error distributions of floating-point arith-
metic expressions with probabilistic inputs.

(iv) We implement this model in the PAF tool,1 and perform probabilistic range
and roundoff error analysis on a standard benchmark suite. Our comparison
with the current state-of-the-art shows the advantages of our approach in
terms of computing tighter, and yet still rigorous, probabilistic bounds.

2 Motivating Example

GPS sensors are inherently noisy. Bornholt [1] shows that the conditional prob-
ability of the true coordinates given a GPS reading is distributed according to a
Rayleigh distribution. Interestingly, since the density of any Rayleigh distribu-
tion is always zero at x = 0, it is extremely unlikely that the true coordinates lie
in a small neighborhood of those given by the GPS reading. This leads to errors,
and hence the sensed coordinates should be corrected by adding a probabilistic
error term which, on average, shifts the observed coordinates into an area of high
probability for the true coordinates [1,2]. The latitude correction is given by:

TrueLat = GPSLat + ((radius ∗ sin(angle)) ∗ DPERM), (1)

where radius is Rayleigh distributed, angle uniformly distributed, GPSLat is
the latitude, and DPERM a constant for converting meters into degrees.

A developer trying to strike the right balance between resources, such as
energy consumption or execution time, versus the accuracy of the computation,
might want to run a rigorous worst-case floating-point analysis tool to determine
which floating-point format is accurate enough to process GPS signals. This is
mandatory if the developer requires rigorous error bounds holding with 100%
certainty. The problem when analyzing a piece of code involving (1) is that the
Rayleigh distribution has [0,∞) as its support, and any worst-case roundoff error
analysis will return an infinite error bound in this situation. To get a meaningful
(numeric) error bound, we need to truncate the support of the distribution. The
most conservative truncation is [0,max ], where max is the largest representable
number (not causing an overflow) at the target floating-point precision format.
1 PAF is open source and publicly available at https://github.com/soarlab/paf.

https://github.com/soarlab/paf
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Table 1. Roundoff error analysis for the probabilistic latitude correction of (1).

Precision Max FPTaylor PAF 100% PAF 99.9999%

Absolute Meters

Double ≈10307 4.3e+286 4.3e+286 4.1e−15 4.5e−10

Single ≈1038 2.1e+26 2.1e+26 3.7e−06 4.1e−1

Half ≈104 2.5e−2 2.5e−2 2.4e−2 2667

In Table 1, we report a detailed roundoff error analysis of (1) implemented
in IEEE 754 double-, single-, and half-precision formats, with GPSLat set to
the latitude of the Greenwich observatory. With each floating-point format, we
associate the range [0,max ] of the truncated Rayleigh distribution. We compute
worst-case roundoff error bounds for (1) with the state-of-the-art error analyzer
FPTaylor [47] and with our tool PAF by setting the confidence interval to 100%.
As expected, the error bounds from the two tools are identical. Finally, we com-
pute the 99.9999% conditional roundoff error using PAF. This value is an upper
bound to the roundoff error conditioned on the computation having landed in
an interval capturing 99.9999% of all possible outputs. Column Absolute gives
the error in degrees and Meters in meters (1◦ ≈111km).

By looking at the results obtained without our probabilistic error analysis
(columns FPTaylor and PAF 100%), the developer might erroneously conclude
that half-precision format is the most appropriate to implement (1) because it
results in the smallest error bound. However, with the information provided by
the 99.9999% conditional roundoff error, the developer can see that the average
error is many orders of magnitude smaller than the worst-case scenarios. Armed
with this information, the developer can conclude that with a roundoff error of
roughly 40 cm (4.1e−1 ms) when correcting 99.9999% of GPS latitude readings,
working in single-precision is an adequate compromise between efficiency and
accuracy of the computation.

This motivates the innovative concept of probabilistic precision tuning, evolv-
ed from standard worst-case precision tuning [5,12], to determine which floating-
point format is the most appropriate for a given computation. As an example, let
us do a probabilistic precision tuning exercise for the latitude correction compu-
tation of (1). We truncate the Rayleigh distribution in the interval [0, 10307], and
assume we can tolerate up to 1e−5 roundoff error (roughly 1 m). First, we man-
ually perform worst-case precision tuning using FPTaylor to determine that the
minimal floating-point format not violating the given error bound needs 1022 man-
tissa and 11 exponent bits. Such large custom format is prohibitively expensive,
in particular for devices performing frequent GPS readings, like smartphones or
smartwatches. Conversely, when we manually perform probabilistic precision tun-
ing using PAF with a confidence interval set to 99.9999%, we determine we need
only 22 mantissa and 11 exponent bits. Thanks to PAF, the developer can provide
a custom confidence interval of interest to the probabilistic precision tuning rou-
tine to adjust for the extremely unlikely corner cases like the ones we described for
(1), and ultimately obtain more optimal tuning results.
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3 Preliminaries

3.1 Floating-Point Arithmetic

Given a precision p ∈ N and an exponent range [emin, emax] � {n | n ∈
N ∧ emin ≤ n ≤ emax}, we define F(p, emin, emax), or simply F if there is no
ambiguity, as the set of extended real numbers

F �
{

(−1)s2e

(
1 +

k

2p

)∣∣∣∣ s ∈ {0, 1}, e ∈ [emin, emax], 0 ≤ k < 2p

}
∪ {−∞, 0,∞}

Elements z = z(s, e, k) ∈ F will be called floating-point representable numbers
(for the given precision p and exponent range [emin, emax]) and we will use the
variable z to represent them. The variable s will be called the sign, the variable
e the exponent, and the variable k the significand of z(s, e, k).

Next, we introduce a rounding map Round : R → F that rounds to nearest
(or to −∞/∞ for values smaller/greater than the smallest/largest finite element
of F) and follows any of the IEEE 754 rounding modes in case of a tie. We will
not worry about which choice is made since the set of mid-points will always have
probability zero for the distributions we will be working with. All choices are thus
equivalent, probabilistically speaking, and what happens in a tie can therefore
be left unspecified. We will denote the extended real line by R � R ∪ {−∞,∞}.
The (signed) absolute error function errabs : R → R is defined as: errabs(x) =

x−Round(x). We define the sets 
z, z� �
= {y ∈ R | Round(y) = Round(z)}. Thus

if z ∈ F, then 
z, z� is the collection of all reals rounding to z. As the reader will
see, the basic result of Sect. 4 (Eq. (5)) is expressed entirely using the notation

z, z� which is parametric in the choice of the Round function. It follows that
our results apply to rounding modes other that round-to-nearest with minimal
changes. The relative error function errrel : R \ {0} → R is defined by

errrel(x) =
x − Round(x)

x
.

Note that errrel(x) = 1 on 
0, 0� \ {0}, errrel(x) = ∞ on 
 − ∞,−∞� and
errrel(x) = −∞ on 
∞,∞�. Recall also the fact [26] that −2−(p+1) < errrel(x) <
2−(p+1) outside of 
0, 0�∪
−∞,−∞�∪
∞,∞�. The quantity 2−(p+1) is usually
called the unit roundoff and will be denoted by u.

For z1, z2 ∈ F and op ∈ {+,−,×,÷} an (infinite-precision) arithmetic oper-
ation, the traditional model of IEEE 754 floating-point arithmetic [26,39] states
that the finite-precision implementation opm of op must satisfy

z1 opm z2 = (z1 op z2)(1 + δ) |δ| ≤ u, (2)

We leave dealing with subnormal floating-point numbers to future work. The
model given by Eq. (2) stipulates that the implementation of an arithmetic
operation can induce a relative error of magnitude at most u. The exact size of
the error is, however, not specified and Eq. (2) is therefore a non-deterministic
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model of computation. It follows that numerical analyses based on Eq. (2) must
consider all possible relative errors δ and are fundamentally worst-case analyses.
Since the output of such a program might be the input of another, one should
also consider non-deterministic inputs, and this is indeed what happens with
automated tools for roundoff error analysis, such as Daisy [12] or FPTaylor [46,
47], which require for each variable of the program a (bounded) range of possible
values in order to perform a worst-case analysis (cf. GPS example in Sect. 2).

In this paper, we study a model formally similar to Eq. (2), namely

z1 opm z2 = (z1 op z2)(1 + δ) δ ∼ dist. (3)

The difference is that δ is now distributed according to dist, a probability distribu-
tion whose support is [−u, u]. In other words, we move from a non-deterministic
to a probabilistic model of roundoff errors. This is similar to the ‘Monte Carlo
arithmetic’ of [41], but whilst op. cit. postulates that dist is the uniform distri-
bution on [−u, u], we compute dist from first principles in Sect. 4.

3.2 Probability Theory

To fix the notation and be self-contained, we present some basic notions of
probability theory which are essential to what follows.

Cumulative Distribution Functions and Probability Density Func-
tions. We assume that the reader is (at least intuitively) familiar with the notion
of a (real) random variable. Given a random variable X we define its Cumulative
Distribution Function (CDF) as the function c(t) � P [X ≤ t]. If there exists a
non-negative integrable function d : R → R such that

c(t) � P [X ≤ t] =
∫ t

−∞
d(t) dt

then we call d(t) the Probability Density Function (PDF) of X. If it exists,
then it can be recovered from the CDF by differentiation d(t) = ∂

∂tc(t) by the
fundamental theorem of calculus.

Not all random variables have a PDF: consider the random variable which
takes value 0 with probability 1/2 and value 1 with probability 1/2. For this
random variable it is impossible to write P [X ≤ t] =

∫
d(t) dt. Instead, we will

write the distribution of such a variable using the so-called Dirac delta measure
at 0 and 1 as 1/2δ0 + 1/2δ1. It is possible for a random variable to have a PDF
covering part of its distribution – its continuous part – and a sum of Dirac
deltas covering the rest of its distribution – its discrete part. We will encounter
examples of such random variables in Sect. 4. Finally, if X is a random variable
and f : R → R is a measurable function, then f(X) is a random variable. In
particular errrel(X) is a random variable which we will describe in Sect. 4.

Arithmetic on Random Variables. Suppose X,Y are independent random
variables with PDFs fX and fY , respectively. Using the arithmetic operations we
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can form new random variables X +Y,X −Y,X ×Y,X ÷Y . The PDFs of these
new random variables can be expressed as operations on fX and fY , which can
be found in [48]. It is important to note that these operations are only valid if X
and Y are assumed to be independent. When an arithmetic expression containing
variable repetitions is given a random variable interpretation, this independence
can no longer be assumed. In the expression (X +Y )÷Y the sub-term (X +Y )
can be interpreted by the formulas of [48] if X,Y are independent. However, the
sub-terms X + Y and Y cannot be interpreted in this way since X + Y and Y
are clearly not independent random variables.

Soundly Bounding Probabilities. The constraint that the distribution of
a random variable must integrate to 1 makes it impossible to order random
variables in the ‘natural’ way: if P [X ∈ A] ≤ P [Y ∈ A], then P [Y ∈ Ac] ≤
P [X ∈ Ac], i.e., we cannot say that X ≤ Y if P [X ∈ A] ≤ P [Y ∈ A]. This
means that we cannot quantify our probabilistic uncertainty about a random
variable by sandwiching it between two other random variables as one would do
with reals or real-valued functions. One solution is to restrict the sets used in
the comparison, i.e., declare that X ≤ Y iff P [X ∈ A] ≤ P [Y ∈ A] for A ranging
over a given set of ‘test subsets’. Such an order can be defined by taking as ‘test
subsets’ the intervals (−∞, x] [44]. This order is called the stochastic order. It
follows from the definition of the CDF that this order can be defined by simply
saying that X ≤ Y iff cX ≤ cY , where cX and cY are the CDFs of X and Y ,
respectively. If it is possible to sandwich an unknown random variable X between
known lower and upper bounds Xlower ≤ X ≤ Xupper using the stochastic order
then it becomes possible to give sound bounds to the quantities P [X ∈ [a, b]] via

P [X ∈ [a, b]] = cX(b) − cX(a) ≤ cXupper
(b) − cXlower

(a)

P-Boxes and DS-Structures. As mentioned above, giving a random variable
interpretation to an arithmetic expression containing variable repetitions cannot
be done using the arithmetic of [48]. In fact, these interpretations are in general
analytically intractable. Hence, a common approach is to give up on soundness
and approximate such distributions using Monte-Carlo simulations. We use this
approach in our experiments to assess the quality of our sound results. However,
we will also provide sound under- and over-approximations of the distribution of
arithmetic expressions over random variables using the stochastic order discussed
above. Since Xlower ≤ X ≤ Xupper is equivalent to saying that cXlower

(x) ≤
cX(x) ≤ cXupper

(x), the fundamental approximating structure will be a pair of
CDFs satisfying c1(x) ≤ c2(x). Such a structure is known in the literature as
a p-box [19], and has already been used in the context of probabilistic roundoff
errors in related work [3,36]. The data of a p-box is equivalent to a pair of
sandwiching distributions for the stochastic order.

A Dempster-Shafer structure (DS-structure) of size N is a collection (i.e., set)
of interval-probability pairs {([x0, y0], p0), ([x1, y2], p1), .., ([xN , yN ], pN )} where∑N

i=0 pi = 1. The intervals in the collection might overlap. One can always
convert a DS-structure to a p-box and back again [19], but arithmetic operations
are much easier to perform on DS-structures than on p-boxes ([3]), which is why
we will use DS-structures in the algorithm described in Sect. 6.
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4 Distribution of Floating-Point Roundoff Errors

Our tool PAF computes probabilistic roundoff errors by conditioning the max-
imization of symbolic affine form (presented in Sect. 5) on the output of the
computation landing in a confidence interval. The purpose of this section is to
provide the necessary probabilistic tools to compute these intervals. In other
words, this section provides the foundations of probabilistic range analysis. All
proofs can be found in the extended version [7].

4.1 Derivation of the Distribution of Rounding Errors

Recall the probabilistic model of Eq. (3) where op is an infinite-precision
arithmetic operation and opm its finite-precision implementation:

z1 opm z2 = (z1 op z2)(1 + δ) δ ∼ dist.

Let us also assume that z1, z2 are random variables with known distributions.
Then z1 op z2 is also a random variable which can (in principle) be computed.
Since the IEEE 754 standard states that z1 opm z2 is computed by rounding the
infinite precision operation z1 op z2, it is a completely natural consequence of
the standard to require that δ is simply be given by

δ = errrel(z1 op z2)

Thus, dist is the distribution of the random variable errrel(z1 op z2). More gen-
erally, if X is a random variable with know distribution, we will show how to
compute the distribution dist of the random variable

errrel(X) =
X − Round(X)

X
.

We choose to express the distribution dist of relative errors in multiples of the
unit roundoff u. This choice is arbitrary, but it allows us to work with a dis-
tribution on the conceptually and numerically convenient interval [−1, 1], since
the absolute value of the relative error is strictly bounded by u (see Sect. 3.1),
rather than the interval [−u, u].

To compute the density function of dist, we proceed as described in Sect. 3.2
by first computing the CDF c(t) and then taking its derivative. Recall first from
Sect. 3.1 that errrel(x) = 1 if x ∈ 
0, 0� \ {0}, errrel(x) = ∞ if x ∈ 
 − ∞,−∞�,
errrel(x) = −∞ if x ∈ 
∞,∞�, and −u ≤ errrel(x) ≤ u elsewhere. Thus:

P [errrel(X) = −∞] = P
[
X ∈ 
∞,∞�]

P [errrel(X) = 1] = P
[
X ∈ 
0, 0�]

P [errrel(X) = ∞] = P
[
X ∈ 
 − ∞,−∞�]

In other words, the probability measure corresponding to errrel has three discrete
components at {−∞}, {1}, and {∞}, which cannot be accounted for by a PDF
(see Sect. 3.2). It follows that the probability measure dist is given by

distc + P
[
X∈
0, 0�]

δ1 + P
[
X∈
 − ∞,−∞�]

δ∞ + P
[
X∈
∞,∞�]

δ−∞ (4)
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Fig. 1. Theoretical vs. empirical error distribution, clockwise from top-left: (i) Eq.
(5) for Unif(2, 4) 3 bit exponent, 4 bit significand, (ii) Eq. (5) for Unif(2, 4) in half-
precision, (iii) Eq. (6) for Unif(7, 8) in single-precision, (iv) Eq. (6) for Unif(4, 5) in
single-precision, (v) Eq. (6) for Unif(4, 32) in single-precision, (vi) Eq. (6) for Norm(0, 1)
in single-precision.

where distc is a continuous measure that is not quite a probability measure
since its total mass is 1 − P [X ∈ 
0, 0�] − P [X∈
 − ∞,−∞�] − P [X∈
∞,∞�].
In general, distc integrates to 1 in machine precision since P [X ∈ 
0, 0�] is of
the order of the smallest positive floating-point representable number, and the
PDF of X rounds to 0 way before it reaches the smallest/largest floating-point
representable number. However in order to be sound, we must in general include
these three discrete components to our computations. The density distc is given
explicitly by the following result whose proof can already be found in [9].

Theorem 1. Let X be a real random variable with PDF f . The continuous part
distc of the distribution of errrel(X) has a PDF given by

d(t) =
∑

z∈F\{−∞,0,∞}
1
z,z�

(
z

1 − tu

)
f

(
z

1 − tu

)
u |z|

(1 − tu)2
, (5)

where 1A(x) is the indicator function which returns 1 if x ∈ A and 0 otherwise.

Figure 1 (i) and (ii) shows an implementation of Eq. (5) applied to the distri-
bution Unif(2, 4), first in very low precision (3 bit exponent, 4 bit significand) and
then in half-precision. The theoretical density is plotted alongside a histogram
of the relative error incurred when rounding 100,000 samples to low precision
(computed in double-precision). The reported statistic is the K-S (Kolmogorov-
Smirnov) test which measures the likelihood that a collection of samples were
drawn from a given distribution. This test reports that we cannot reject the
hypothesis that the samples are drawn from the corresponding density. Note
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how in low precision the term in 1
(1−tu)2 induces a visible asymmetry on the

central section of the distribution. This effect is much less pronounced in half-
precision.

For low precisions, say up to half-precision, it is computationally feasible
to explicitly go through all floating-point numbers and compute the density of
the roundoff error distribution dist directly from Eq. (5). However, this rapidly
becomes prohibitively computationally expensive for higher precisions (since the
number of floating-point representable numbers grows exponentially).

4.2 High-Precision Case

As the working precision increases, a regime changes occurs: on the one hand
it becomes practically impossible to enumerate all floating-point representable
numbers as done in Eq. (5), but on the other hand sufficiently well-behaved den-
sity functions are numerically close to being constant at the scale of an interval
between two floating-point representable numbers. We exploit this smoothness
to overcome the combinatorial limit imposed by Eq. (5).

Theorem 2. Let X be a real random variable with PDF f . The continuous part
distc of the distribution of errrel(X) has a PDF given by dc(t) = dhp(t) + R(t)
where dhp(t) is the function on [−1, 1] defined by

dhp(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
1−tu

emax−1∑
s,e=emin+1

∫ (−1)s2e(2−u)

(−1)s2e(1−u)
|x|

2e+1 f(x) dx |t| ≤ 1
2

1
1−tu

emax−1∑
s,e=emin+1

∫ (−1)s2e( 1
|t| −u)

(−1)s2e(1−u)
|x|

2e+1 f(x) dx 1
2 < |t| ≤ 1

(6)

and R(t) is an error whose total contribution |R|�∫ 1

−1
|R(t)|dt can be bounded by

|R| ≤ P [Round(X) = z(s, emin, k)] + P [Round(X) = z(s, emax, k)] +

3
4

(
∑

s,emin<e<emax

|f ′(ξe,s)ξe,s + f(ξe,s)| 22e

2p

)

where for each exponent e and sign s, ξe,s is a point in [z(s, e, 0), z(s, e, 2p − 1)]
if s = 0 and in [z(s, e, 2p − 1), z(s, e, 0)] if s = 1.

Note how Eq. (6) reduces the sum over all floating-point representable num-
bers in Eq. (5) to a sum over the exponents by exploiting the regularity of f .
Note also that since f is a PDF, it usually decreases very quickly away from 0,
and its derivative decreases even quicker and |R| thus tends to be very small and
|R| → 0 as the precision p → ∞.

Figure 1 shows Eq. (6) for: (i) the distribution Unif(7, 8) where large signif-
icands are more likely, (ii) the distribution Unif(4, 5) where small significands
are more likely, (iii) the distribution Unif(4, 32) where significands are equally
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likely, and (iv) the distribution Norm(0, 1) with infinite support. The graphs show
the density function given by Eq. (6) in single-precision versus a histogram of
the relative error incurred when rounding 1,000,000 samples to single-precision
(computed in double-precision). The K-S test reports that we cannot reject the
hypothesis that the samples are drawn from the corresponding distributions.

4.3 Typical Distribution

Fig. 2. Typical distribution.

The distributions depicted in graphs (ii), (v)
and (vi) of Fig. 1 are very similar, despite being
computed from very different input distributions.
What they have in common is that their input
distributions have the property that all signif-
icands in their supports are equally likely. We
show that under this assumption, the distribution
of roundoff errors given by Eq. (5) converges to
a unique density as the precision increases, irre-
spective of the input distribution! Since signifi-
cands are frequently equiprobable (it is the case for a third of our benchmarks),
this density is of great practical importance. If one had to choose ‘the’ canonical
distribution for roundoff errors, we claim that the density given below should be
this distribution, and we therefore call it the typical distribution; we depict it in
Fig. 2 and formalize it with the following theorem, which can mostly be found
in [9].

Theorem 3. If X is a random variable such that P [Round(X) = z(s, e, k0)] =
1
2p for any significand k0, then

dtyp(t) � lim
p→∞ d(t) =

{
3
4 |t| ≤ 1

2
1
2

(
1
t − 1

)
+ 1

4

(
1
t − 1

)2 |t| > 1
2

(7)

where d(t) is the exact density given by Eq. (5).

4.4 Covariance Structure

The result above can be interpreted as saying that if X is such that all man-
tissas are equiprobable, then X and errrel(X) are asymptotically independent
(as p → ∞). Much more generally, we now show that if a random variable X
has a sufficiently regular PDF, it is close to being uncorrelated from errrel(X).
Formally, we prove that the covariance

Cov(X, errrel(X)) = E [X.errrel(X)] − E [X] E [errrel(X)] (8)

is small, specifically of the order of u. Note that the expectation in the first
summand above is taken w.r.t. the joint distribution of X and errrel(X).

The main technical obstacles to proving that the expression above is small
are that E [errrel(X)] turns out to be difficult to compute (we only manage to
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bound it) and that the joint distribution P [X ∈ A ∧ errrel(X) ∈ B] does not have
a PDF since it is not continuous w.r.t. the Lebesgue measure on R

2. Indeed, it
is supported by the graph of the function errrel which has a Lebesgue measure
of 0. This does not mean that it is impossible to compute the expectation

E [X.errrel(X)] =
∫

R2
xut dP (9)

but it is necessary to use some more advanced probability theory. We will make
the simplifying assumption that the density of X is constant on each interval

z, z� in order to keep the proof manageable. In practice this is an extremely good
approximation. Without this assumption, we would need to add an error term
similar to that of Theorem 2 to the expression below. This is not conceptually
difficult, but it is messy, and would distract from the main aim of the following
theorem which is to bound E [errrel(X)], compute E [X.errrel(X)], and show that
the covariance between X and errrel(X) is typically of the order of u.

Theorem 4. If the density of X is piecewise constant on intervals 
z, z�, then

(
L − E [X] K

u

6

)
≤ Cov(X, errrel(X)) ≤

(
L − E [X] K

4u

3

)

where L =
∑
s,e

f((−1)s2e)(−1)s22e 3u2

2 and K =
emax−1∑

s,e=emin+1

∫ (−1)s2e(2−u)

(−1)s2e(1−u)
|x|

2e+1

f(x) dx.

If the distribution of X is centered (i.e., E [X] = 0) then L is the exact value of
the covariance, and it is worth noting that L is fundamentally an artifact of the
floating-point representation and is due to the fact that the intervals 
2e, 2e� are
not symmetric. More generally, for E [X] of the order of, say, 2, the covariance
will be small (of the order of u) as K ≤ 1 (since |x| ≤ 2e+1 in each summand).
For very large values of E [X] it is worth noting that there is a high chance
that L is also be very large, partially canceling E [X]. An illustration of this
is given by the doppler benchmark examined in Sect. 7, an outlier as it has an
input variable with range [20, 20000]. Nevertheless, even for this benchmark the
bounds of Theorem 4 still give a small covariance of the order of 0.001.

4.5 Error Terms and P-Boxes

In low-precision we can use the exact formula Eq. (5) to compute the error distri-
bution. However, in high-precision, approximations (typically extremely good)
like Eqs. (6) and (7) must be used. In order to remain sound in the implemen-
tation of our model (see Sect. 6) we must account for the error made by this
approximation. We have not got the space to discuss the error made by Eq. (7),
but taking the term |R| of Theorem 2 as an illustration, we can use the notion
of p-box described in Sect. 3.2 to create an object which soundly approximates
the error distribution. We proceed as follows: since |R| bounds the total error
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accumulated over all t ∈ [−1, 1], we can soundly bound the CDF c(t) of the error
distribution given by Eq. (6) by using the p-box

c−(t) = max(0, c(t) − |R|) and c+(t) = min(1, c(t) + |R|)

5 Symbolic Affine Arithmetic

In this section, we introduce symbolic affine arithmetic, which we employ to gen-
erate the symbolic form for the roundoff error that we use in Sect. 6.3. Affine
arithmetic [6] is a model for range analysis that extends classic interval arith-
metic [40] with information about linear correlations between operands. Sym-
bolic affine arithmetic extends standard affine arithmetic by keeping the coeffi-
cients of the noise terms symbolic. We define a symbolic affine form as

x̂ = x0 +
n∑

i=1

xiεi, where εi ∈ [−1, 1]. (10)

We call x0 the central symbol of the affine form, while xi are the symbolic
coefficients for the noise terms εi. We can always convert a symbolic affine form
to its corresponding interval representation. This can be done using interval
arithmetic or, to avoid precision loss, using a global optimizer.

Affine operations between symbolic forms follow the usual rules, such as

αx̂ + βŷ + ζ = αx0 + βy0 + ζ +
n∑

i=1

(αxi + βyi)εi

Non-linear operations cannot be represented exactly using an affine form. Hence,
we approximate them like in standard affine arithmetic [49].

Sound Error Analysis with Symbolic Affine Arithmetic. We now show
how the roundoff errors get propagated through the four arithmetic operations.
We apply these propagation rules to an arithmetic expression to accurately keep
track of the roundoff errors. Since the (absolute) roundoff error directly depends
on the range of a computation, we describe range and error together as a pair
(range: Symbol, êrr: Symbolic Affine Form). Here, range represents the
infinite-precision range of the computation, while êrr is the symbolic affine form
for the roundoff error in floating-point precision. Unary operators (e.g., rounding)
take as input a (range, error form) pair, and return a new output pair; binary
operators take as input two pairs, one per operand. For linear operators, the
ranges and errors get propagated using the standard rules of affine arithmetic.

For the multiplication, we distribute each term in the first operand to every
term in the second operand:

(x, êrrx) ∗ (y, êrry) = (x*y, x ∗ êrry + y ∗ êrrx + êrrx ∗ êrry)

The output range is the product of the input ranges and the remaining terms
contribute to the error. Only the last (quadratic) expression cannot be repre-
sented exactly in symbolic affine arithmetic; we bound such non-linearities using
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a global optimizer. The division is computed as the term-wise multiplication of
the numerator with the inverse of the denominator. Hence, we need the inverse
of the denominator error form, and then we can proceed as for multiplication. To
compute the inverse, we leverage the symbolic expansion used in FPTaylor [46].

Finally, after every operation we apply the unary rounding operator from
Eq. (2). The infinite-precision range is not affected by rounding. The rounding
operator appends a fresh noise term to the symbolic error form. The coefficient
for the new noise term is the (symbolic) floating-point range given by the sum
of the input range with the input error form.

Fig. 3. Toolflow of PAF.

6 Algorithm and Implementation

In this section, we describe our probabilistic model of floating-point arithmetic
and how we implement it in a prototype named PAF (for Probabilistic Analysis
of Floating-point errors). Figure 3 shows the toolflow of PAF.

6.1 Probabilistic Model

PAF takes as input a text file describing a probabilistic floating-point compu-
tation and its input distributions. The kinds of computations we support are
captured with this simple grammar:

t ::= z | xi | t opm t z ∈ F, i ∈ N, opm ∈ {+,−,×,÷}
Following [8,31], we interpret each computation t given by the grammar as a
random variable. We define the interpretation map �−� over the computation
tree inductively. The base case is given by �z(s, e, k)� � (−1)s2e(1 + k2−p)
and �xi� � Xi, where the real numbers �z(s, e, k)� are understood as constant
random variables and each Xi is a random input variable with a user-specified
distribution. Currently, PAF supports several well-known distributions out-of-
the-box (e.g., uniform, normal, exponential), and the user can also define custom
distributions as piecewise functions. For the inductive case �t1 opm t2�, we put
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the lessons from Sect. 4 to work. Recall first the probabilistic model from Eq.
(3):

x opm y = (x op y)(1 + δ), δ ∼ dist

In Sect. 4.1, we showed that dist should be taken as the distribution of the actual
roundoff errors of the random elements (x op y). We therefore define:

�t1 opm t2� � (�t1� op �t2�) × (1 + errrel(�t1� op �t2�)) (11)

To evaluate the model of Eq. (11), we first use the appropriate closed-form
expression Eqs. (5) to (7) derived in Sect. 4 to evaluate the distribution of the
random variable errrel(�t1� op �t2�)—or the corresponding p-box as described
in Sect. 4.5. We then use Theorem 4 to justify evaluating the multiplication oper-
ation in Eq. (11) independently—that is to say by using [48]—since the roundoff
process is very close to being uncorrelated to the process generating it. The
validity of this assumption is also confirmed experimentally by the remarkable
agreement of Monte-Carlo simulations with this analytical model.

We now introduce the algorithm for evaluating the model given in Eq. (11).
The evaluation performs an in-order (LNR) traversal of the Abstract Syntax
Tree (AST) of a computation given by our grammar, and it feeds the results
to the parent level along the way. At each node, it computes the probabilistic
range of the intermediate result using the probabilistic ranges computed for its
children nodes (i.e., operands). We first determine whether the operands are
independent or not (Ind? branch in the toolflow), and we either apply a cheaper
(i.e., no SMT solver invocations) algorithm if they are independent (see below) or
a more involved one (see Sect. 6.2) if they are not. We describe our methodology
at a generic intermediate computation in the AST of the expression.

We consider two distributions X and Y discretized into DS-structures DSX

and DSY (Sect. 3.2), and we want to derive the DS-structure DSZ for Z =
X op Y , op ∈ {+,−,×,÷}. Together with the DS-structures of the operands, we
also need the traces traceX and traceY containing the history of the operations
performed so far, one for each operand. A trace is constructed at each leaf of the
AST with the input distributions and their range. It is then propagated to the
parent level and populated at each node with the current operation. Such history
traces are critical when dealing with dependent operations since they allow us
to interrogate an SMT solver about the feasibility of the current operation, as
we describe in the next section. When the operands are independent, we simply
use the arithmetic operations on independent DS-structures [3].

6.2 Computing Probabilistic Ranges for Dependent Operands

When the operands are dependent, we start by assuming that the dependency is
unknown. This assumption is sound because the dependency of the operation is
included in the set of unknown dependencies, while the result of the operation is
no longer a single distribution but a p-box. Due to this “unknown assumption”,
the CDFs of the output p-box are a very pessimistic over-approximation of
the operation, i.e., they are far from each other. Our key insight is to use an
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Algorithm 1. Dependent Operation Z = X op Y

1: function dep op(DSX , op , DSY , traceX , traceY )
2: DSZ = list()
3: for all ([x1, x2], px) ∈ DSX do
4: for all ([y1, y2], py) ∈ DSY do
5: [z1, z2] = [x1, x2] op [y1, y2] � operation between intervals
6: [z′

1, z
′
2] = SMT.prune([z1, z2])

7: if SMT.check(traceX ∧ traceY ∧ [x1, x2] ∧ [y1, y2]) is SAT then
8: pZ = unknown-probability
9: else

10: pZ = 0

11: DSZ .append(([z′
1, z

′
2], pZ))

12: traceZ = traceX ∪ traceY ∪ {Z = X op Y }
13: return DSZ , traceZ

SMT solver to prune infeasible combinations of intervals from the input DS-
structures, which prunes regions of zero probability from the output p-box. This
probabilistic pruning using a solver squeezes together the CDFs of the output
p-box, often resulting in a much more accurate over-approximation. With the
solver, we move from an unknown to a partially known dependency between the
operands. Currently, PAF supports the Z3 [17] and dReal [23] SMT solvers.

Algorithm 1 shows the pseudocode of our algorithm for computing the proba-
bilistic output range (i.e., DS-structure) for dependent operands. When dealing
with dependent operands, interval arithmetic (line 5) might not be as precise
as in the independent case. Hence, we use an SMT solver to prune away any
over-approximations introduced by interval arithmetic when computing with
dependent ranges (line 6); this use of the solver is orthogonal to the one dealing
with probabilities. On line 7, we check with an SMT solver whether the current
combination of ranges [x1, x2] and [y1, y2] is compatible with the traces of the
operands. If the query is satisfiable, the probability is strictly greater than zero
but currently unknown (line 8). If the query is unsatisfiable, we assign a proba-
bility of zero to the range in DSZ (line 10). Finally, we append a new range to
the DS-structure DSZ (line 11). Note that the loops are independent, and hence
in our prototype implementation we run them in parallel.

After this algorithm terminates, we still need to assign probability values to
all the unknown-probability ranges in DSZ . Since we cannot assign an exact
value, we compute a range of potential values [pzmin

, pzmax
] instead. This com-

putation is encoded as a linear programming routine exactly as in [3].

6.3 Computing Conditional Roundoff Error

The final step of our toolflow computes the conditional roundoff error by com-
bining the symbolic affine arithmetic error form of the computation (see Sect. 5)
with the probabilistic range analysis described above. The symbolic error form
gets maximized conditioned on the results of all the intermediate operations
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Algorithm 2. Conditional Roundoff Error Computation

1: function cond err(DSS, errorForm, confidence)
2: allRanges = list()
3: for all DSi ∈ DSS do
4: focals = sorted(DSi, key = prob, order = descending)
5: accumulator = 0
6: ranges = Ø
7: for all ([x1, x2], px) ∈ focals do
8: accumulator = accumulator + px

9: ranges = ranges ∪ [x1, x2]
10: if accumulator ≥ confidence then
11: allRanges.append(ranges)
12: break
13: error = maximize(errorForm, allRanges)
14: return error

landing in the given confidence interval (e.g., 99%) of their respective ranges
(computed as described in the previous section). Note that conditioning only on
the last operation of the computation tree (i.e., the AST root) would lead to
extremely pessimistic over-approximation since all the outliers in the intermedi-
ate operations would be part of the maximization routine. This would lead to our
tool PAF computing pessimistic error bounds typical of worst-case analyzers.

Algorithm 2 shows the pseudocode of the roundoff error computation algo-
rithm. The algorithm takes as input a list DSS of DS-structures (one for each
intermediate result range in the computation), the generated symbolic error
form, and a confidence interval. It iterates over all intermediate DS-structures
(line 3), and for each it determines the ranges needed to support the chosen confi-
dence intervals (lines 4–12). In each iteration, it sorts the list of range-probability
pairs (i.e., focal elements) of the current DS-structure by their probability value
in a descending order (line 4). This is a heuristic that prioritizes the focal ele-
ments with most of the probability mass and avoids the unlikely outliers that
cause large roundoff errors into the final error computation. With the help of an
accumulator (line 8), we keep collecting focal elements (line 9) until the accumu-
lated probability satisfies the confidence interval (line 10). Finally, we maximize
the error form conditioned to the collected ranges of intermediate operations (line
13). The maximization is done using the rigorous global optimizer Gelpia [24].

7 Experimental Evaluation

We evaluate PAF (version 1.0.0) on the standard FPBench benchmark suite [11,
20] that uses the four basic operations we currently support {+,−,×,÷}. Many
of these benchmarks were also used in recent related work [36] that we compare
against. The benchmarks come from a variety of domains: embedded software
(bsplines), linear classifications (classids), physics computations (dopplers), fil-
ters (filters), controllers (traincars, rigidBody), polynomial approximations of



Roundoff Error Analysis of Probabilistic Floating-Point Computations 643

functions (sine, sqrt), solving equations (solvecubic), and global optimizations
(trids). Since FPBench has been primarily used for worst-case roundoff error
analysis, the benchmarks come with ranges for input variables, but they do
not specify input distributions. We instantiate the benchmarks with three well-
known distributions for all the inputs: uniform, standard normal distribution,
and double exponential (Laplace) distribution with σ = 0.01 which we will call
‘exp’. The normal and exp distributions get truncated to the given range. We
assume single-precision floating-point format for all operands and operations.

To assess the accuracy and performance of PAF, we compare it with PrAn
(commit 7611679 [10]), the current state-of-the-art tool for automated analysis
of probabilistic roundoff errors [36]. PrAn currently supports only uniform and
normal distributions. We run all 6 tool configurations and report the best result
for each benchmark. We fix the number of intervals in each discretization to 50 to
match PrAn. We choose 99% as the confidence interval for the computation of our
conditional roundoff error (Sect. 6.3) and of PrAn’s probabilistic error. We also
compare our probabilistic error bounds against FPTaylor (commit efbbc83 [21]),
which performs worst-case roundoff error analysis, and hence it does not take
into account the distributions of the input variables. We ran our experiments in
parallel on a 4-socket 2.2 GHz 8-core Intel Xeon E5-4620 machine.

Table 2 compares roundoff errors reported by PAF, PrAn, and FPTaylor.
PAF outperforms PrAn by computing tighter probabilistic error bounds on
almost all benchmarks, occasionally by orders of magnitude. In the case of uni-
form input distributions, PAF provides tighter bounds for 24 out of 27 bench-
marks, for 2 benchmarks the bounds from PrAn are tighter, while for sqrt they
are the same. In the case of normal input distributions, PAF provides tighter
bounds for all the benchmarks. Unlike PrAn, PAF supports probabilistic output
range analysis as well. We present these results in the extended version [7].

In Table 2, of particular interest are benchmarks (10 for normal and 18 for
exp) where the error bounds generated by PAF for the 99% confidence interval
are at least an order of magnitude tighter than the worst-case bounds generated
by FPTaylor. For such a benchmark and input distribution, PAF’s results inform
a user that there is an opportunity to optimize the benchmark (e.g., by reducing
precision of floating-point operations) if their use-case can handle at most 1% of
inputs generating roundoff errors that exceed a user-provided bound. FPTaylor’s
results, on the other hand, do not allow for a user to explore such fine-grained
trade-offs since they are worst-case and do not take probabilities into account.

In general, we see a gradual reduction of the errors transitioning from uniform
to normal to exp. When the input distributions are uniform, there is a significant
chance of generating a roundoff error of the same order of magnitude as the worst-
case error, since all inputs are equally likely. The standard normal distribution
concentrates more than 99% of probability mass in the interval [−3, 3], resulting
in the long tail phenomenon, where less than 0.5% of mass spreads in the interval
[3,∞]. When the normal distribution gets truncated in a neighborhood of zero
(e.g., [0, 1] for bsplines and filters) nothing changes with respect to the uniform
case—there is still a high chance of committing errors close to the worst-case.
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Table 2. Roundoff error bounds reported by PAF, PrAn, and FPTaylor given uniform
(uni), normal (norm), and Laplace (exp) input distributions. We set the confidence
interval to 99% for PAF and PrAn, and mark the smallest reported roundoff errors for
each benchmark in bold. Asterisk (*) highlights a difference of more than one order of
magnitude between PAF and FPTaylor.

Benchmark Uniform Normal Exp FpTaylor

PAF PrAn PAF PrAn PAF

bspline0 5.71e−08 6.12e−08 5.71e−08 6.12e−08 5.71e−08 5.72e−08

bspline1 1.86e−07 2.08e−07 1.86e−07 2.08e−07 6.95e−08 1.93e−07

bspline2 1.94e−07 2.13e−07 1.94e−07 2.13e−07 2.11e−08 2.10e−07

bspline3 4.22e−08 4.65e−08 4.22e−08 4.65e−08 7.62e−12* 4.22e−08

classids0 6.93e−06 8.65e−06 4.45e−06 8.64e−06 1.70e−06 6.85e−06

classids1 3.71e−06 4.63e−06 2.68e−06 4.62e−06 7.62e−07 3.62e−06

classids2 5.23e−06 7.32e−06 3.85e−06 7.32e−06 1.46e−06 5.15e−06

doppler1 7.95e−05 1.17e−04 5.08e−07* 1.17e−04 4.87e−07* 6.10e−05

doppler2 1.43e−04 2.45e−04 6.61e−07* 2.45e−04 6.28e−07* 1.11e−04

doppler3 4.55e−05 5.12e−05 9.11e−07* 5.12e−05 8.95e−07* 3.41e−05

filter1 1.25e−07 2.03e−07 1.25e−07 2.03e−07 5.43e−09* 1.25e−07

filter2 7.93e−07 1.01e−06 6.13e−07 1.01e−06 2.90e−08* 7.93e−07

filter3 2.34e−06 2.86e−06 2.05e−06 2.87e−06 1.09e−07* 2.23e−06

filter4 4.15e−06 5.20e−06 4.15e−06 5.20e−06 4.61e−07 3.81e−06

rigidbody1 1.74e−04 1.58e−04 6.14e-06* 1.58e−04 4.80e−07* 1.58e−04

rigidbody2 1.96e−02 9.70e−03 5.99e-05* 9.70e−03 9.55e−07* 1.94e−02

sine 2.37e−07 2.40e−07 2.37e−07 2.40e−07 1.49e−08* 2.38e−07

solvecubic 1.78e−05 1.83e−05 6.84e−06 1.83e−05 2.76e−06 1.60e−05

sqrt 1.54e−04 1.54e-04 1.10e−06* 1.54e−04 2.46e−07* 1.51e−04

traincars1 1.76e−03 1.96e−03 8.26e−04 1.96e−03 4.50e−04 1.74e−03

traincars2 1.04e−03 1.36e−03 3.61e−04 1.36e−03 2.83e−05* 9.46e−04

traincars3 1.75e−02 2.29e−02 9.56e−03 2.29e−02 8.95e−04* 1.80e−02

traincars4 1.81e−01 2.30e−01 8.87e−02 2.30e−01 7.33e−03* 1.81e−01

trid1 6.01e−03 6.03e−03 1.58e−05* 6.03e−03 1.58e−05* 6.06e−03

trid2 1.03e−02 1.17e−02 2.42e−05* 1.17e−02 2.43e−05* 1.03e−02

trid3 1.75e−02 1.95e−02 6.80e−05* 1.95e−02 6.77e−05* 1.75e−02

trid4 2.69e−02 2.88e−02 2.64e−04* 3.03e−02 2.64e−04* 2.66e−02

However, when the normal distribution gets truncated to a wider range (e.g.,
[−100, 100] for trids), then the outliers causing large errors are very rare events,
not included in the 99% confidence interval. The exponential distribution further
compresses the 99% probability mass in the tiny interval [−0.01, 0.01], so the long
tails effect is common among all the benchmarks.
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Fig. 4. CDFs of the range (left) and error (right) distributions for the benchmark
traincars3 for uniform (top), normal (center), and exp (bottom).

The runtimes of PAF vary between 10 min for small benchmarks, such as
bsplines, to several hours for benchmarks with more than 30 operations, such
as trid4 ; they are always less than two hours, except for trids with 11 h and
filters with 6 h. The runtime of PAF is usually dominated by Z3 invocations,
and the long runtimes are caused by numerous Z3 timeouts that the respective
benchmarks induce. The runtimes of PrAn are comparable to PAF since they
are always less than two hours, except for trids with 3 h, sqrt with 3 h, and sine
with 11 h. Note that neither PAF nor PrAn are memory intensive.

To assess the quality of our rigorous (i.e., sound) results, we implement Monte
Carlo sampling to generate both roundoff error and output range distributions.
The procedure consists of randomly sampling from the provided input distribu-
tions, evaluating the floating-point computation in both the specified and high-
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precision (e.g., double-precision) floating-point regimes to measure the roundoff
error, and finally partitioning the computed errors into bins to get an approx-
imation (i.e., histogram) of the PDF. Of course, Monte Carlo sampling does
not provide rigorous bounds, but is a useful tool to assess how far the rigorous
bounds computed statically by PAF are from an empirical measure of the error.

Figure 4 shows the effects of the input distributions on the output and round-
off error ranges of the traincars3 benchmark. In the error graphs (right column),
we show the Monte Carlo sampling evaluation (yellow line) together with the
error bounds from PAF with 99% confidence interval (red plus symbol) and
FPTaylor’s worst-case bounds (green crossmark). In the range graphs (left col-
umn), we also plot PAF’s p-box over-approximations. We can observe that in the
case of uniform inputs the computed p-boxes overlap at the extrema of the out-
put range. This phenomenon makes it impossible to distinguish between 99% and
100% confidence intervals, and hence as expected the bound reported by PAF is
almost identical to FPTaylor’s. This is not the case for normal and exponential
distributions, where PAF can significantly improve both the output range and
error bounds over FPTaylor. This again illustrates how pessimistic the bounds
from worst-case tools can be when the information about the input distributions
is not taken into account. Finally, the graphs illustrate how the p-boxes and
error bounds from PAF follow their respective empirical estimations.

8 Related Work

Our work draws inspiration from probabilistic affine arithmetic [3,4], which aims
to bound probabilistic uncertainty propagated through a computation; a similar
goal to our probabilistic range analysis. This was recently extended to polyno-
mial dependencies [45]. On the other hand, PAF detects any non-linear depen-
dency supported by the SMT solver. While these approaches show how to bound
moments, we do not consider moments but instead compute conditional roundoff
error bounds, a concern specific to the analysis of floating-point computations.
Finally, the concentration of measure inequalities [4,45] provides bounds for (pos-
sibly very large) problems that can be expressed as sums of random variables,
for example multiple increments of a noisy dynamical system, but are unsuitable
for typical floating-point computations (such as FPBench benchmarks).

The most similar approach to our work is the recent static probabilistic
roundoff error analysis called PrAn [36]. PrAn also builds on [3], and inherits the
same limitations in dealing with dependent operations. Like us, PrAn hinges on
a discretization scheme that builds p-boxes for both the input and error distribu-
tions and propagates them through the computation. The question of how these
p-boxes are chosen is left open in the PrAn approach. In contrast, we take the
input variables to be user-specified random variables, and show how the distri-
bution of each error term can be computed directly and exactly from the random
variables generating it (Sect. 4). Furthermore, unlike PrAn, PAF leverages the
non-correlation between random variables and the corresponding error distribu-
tion (Sect. 4.4). Thus, PAF performs the rounding in Eq. (3) as an independent
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operation. Putting these together leads to PAF computing tighter probabilistic
roundoff error bounds than PrAn, as our experiments show (Sect. 7).

The idea of using a probabilistic model of rounding errors to analyze deter-
ministic computations can be traced back to Von Neumann and Goldstine [51].
Parker’s so-called ‘Monte Carlo arithmetic’ [41] is probably the most detailed
description of this approach. We, however, consider probabilistic computations.
For this reason, the famous critique of the probabilistic approach to roundoff
errors [29] does not apply to this work. Our preliminary report [9] presents some
early ideas behind this work, including Eqs. (5) and (7) and a very rudimentary
range analysis. However, this early work manipulated distributions unsoundly,
could not handle any repeated variables, and did not provide any roundoff error
analysis. Recently, probabilistic roundoff error models have also been investi-
gated using the concentration of measure inequalities [27,28]. Interestingly, this
means that the distribution of errors in Eq. (3) can be left almost completely
unspecified. However, as in the case of related work from the beginning of this
section [4,45], concentration inequalities are very ill-suited to the applications
captured by the FPBench benchmark suite.

Worst-case analysis of roundoff errors has been an active research area with
numerous published approaches [12–16,18,22,33,35,37,38,46,47,50]. Our sym-
bolic affine arithmetic used in PAF (Sect. 5) evolved from rigorous affine arith-
metic [14] by keeping the coefficients of the noise terms symbolic, which often
leads to improved precision. These symbolic terms are very similar to the first-
order Taylor approximations of the roundoff error expressions used in FPTay-
lor [46,47]. Hence, PAF with the 100% confidence interval leads to the same
worst-case roundoff error bounds as computed by FPTaylor (Sect. 7).
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Abstract. We study reinforcement learning for the optimal control of
Branching Markov Decision Processes (BMDPs), a natural extension of
(multitype) Branching Markov Chains (BMCs). The state of a (discrete-
time) BMCs is a collection of entities of various types that, while
spawning other entities, generate a payoff. In comparison with BMCs,
where the evolution of a each entity of the same type follows the same
probabilistic pattern, BMDPs allow an external controller to pick from
a range of options. This permits us to study the best/worst behaviour of
the system. We generalise model-free reinforcement learning techniques
to compute an optimal control strategy of an unknown BMDP in the
limit. We present results of an implementation that demonstrate the
practicality of the approach.

1 Introduction

Branching Markov Chains (BMCs), also known as Branching Processes, are
natural models of population dynamics and parallel processes. The state of a
BMC consists of entities of various types, and many entities of the same type
may coexist. Each entity can branch in a single step into a (possibly empty) set
of entities of various types while disappearing itself. This assumption is natural,
for instance, for annual plants that reproduce only at a specific time of the year,
or for bacteria, which either split or die. An entity may spawn a copy of itself,
thereby simulating the continuation of its existence.

The offspring of an entity is chosen at random among options according to a
distribution that depends on the type of the entity. The type captures significant
differences between entities. For example, stem cells are very different from
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regular cells; parallel processes may be interruptible or have different privileges.
The type may reflect characteristics of the entities such as their age or size.

Although entities coexist, the BMC model assumes that there is no
interaction between them. Thus, how an entity reproduces and for how long
it lives is the same as if it were the only entity in the system. This assumption
greatly improves the computational complexity of the analysis of such models
and is appropriate when the population exists in an environment that has
virtually unlimited resources to sustain its growth. This is a common situation
that holds when a species has just been introduced into an environment, in an
early stage of an epidemic outbreak, or when running jobs in cloud computing.

BMCs have a wide range of applications in modelling various physical
phenomena, such as nuclear chain reactions, red blood cell formation, population
genetics, population migration, epidemic outbreaks, and molecular biology.
Many examples of BMC models used in biological systems are discussed in [12].

Branching Markov Decision Processes (BMDPs) extend BMCs by allowing
a controller to choose the branching dynamics for each entity. This choice is
modelled as nondeterministic, instead of random. This extension is analogous to
how Markov Decision Processes (MDPs) generalise Markov chains (MCs) [24].
Allowing an external controller to select a mode of branching allows us to study
the best/worst behaviour of the examined model.

As a motivating example, let us discuss a simple model of cloud computing. A
computation may be divided into tasks in order to finish it faster, as each server
may have different computational power. Since the computation of each task
depends on the previous one, the total running time is the sum of the running
times of each spawned task as well as the time needed to split and merge the
result of each computation into the final solution. As we shall see, the execution
of each task is not guaranteed to be successful and is subject to random delays.
Specifically, let us consider the following model with two different types (T and
S), and two actions (a1 and a2). This BMDP consists of the main task, T , that
may be split (action a1) into three smaller tasks, for simplicity assumed to be
of the same type S, and this split and merger of the intermediate results takes
1 hour (1h). Alternatively (action a2), we can execute the whole task T on the
main server, but it will be slow (8 h). Task S can (action a1) be run on a reliable
server in 1.6 h or (action a2) an unreliable one that finishes after 1 h (irrespective
of whether or not the computation is completed successfully), but with a 40%
chance we need to rerun this task due to the server crashing. We can represent
this model formally as:

T
a1−→ SSS [1h] S

a1−→ ε [1.6h]

T
a2−→ ε [8h] S

a2−→ 40% : S or 60% : ε [1h]

We would like to know the infimum of the expected running time (i.e. the
expected running time when optimal decisions are made) of task T . In this case
the optimal control is to pick action a1 first and then actions a1 for all tasks
S with a total running time of 5.8 h. The expected running time when picking
actions a2 for S instead would be 1 + 3 · 1/0.6 = 6 [hours].
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Let us now assume that the execution of tasks S for action a1 may be
interrupted with probability 30% by a task of higher priority (type H). Moreover,
these H tasks may be further interrupted by tasks with even higher priority (to
simplify matters, again modelled by type H). The computation time of T is
prolonged by 0.1 h for each H spawned. Our model then becomes:

T
a1−→ SSS [1h] S

a1−→ 30% : H or 70% : ε [1.6h] H
∗−→ 30% : HH or

T
a2−→ ε [8h] S

a2−→ 40% : S or 60% : ε [1h] 70% : ε [0.1h]

As we shall see, the expected total running time of H can be calculated by
solving the equation x = 0.3(x + x) + 0.1, which gives x = 0.25 [hour]. So the
expected running time of S using action a1 increases by 0.3 ·0.25 = 0.075 [hour].
This is enough for the optimal strategy of running S to become a2. Note that if
the probability of H being interrupted is at least 50% then the expected running
time of H becomes ∞.

When dealing with a real-life process, it is hard to come up with a
(probabilistic and controlled) model that approximates it well. This requires
experts to analyse all possible scenarios and estimate the probability of outcomes
in response to actions based on either complex calculations or the statistical
analysis of sufficient observational data. For instance, it is hard to estimate the
probability of an interrupt H occurring in the model above without knowing
which server will run the task, its usual workload and statistics regarding the
priorities of the tasks it executes. Even if we do this estimation well, unexpected
or rare events may happen that would require us to recalibrate the model as we
observe the system under our control.

Instead of building such a model explicitly first and fixing the probabilities
of possible transitions in the system based on our knowledge of the system or
its statistics, we advocate the use of reinforcement learning (RL) techniques [27]
that were successfully applied to finding optimal control for finite-state Markov
Decision Processes (MDPs). Q-learning [30] is a well-studied model-free RL
approach to compute an optimal control strategy without knowing about the
model apart from its initial state and the set of actions available in each of
its states. It also has the advantage that the learning process converges to the
optimal control while exploiting along the way what it already knows. While the
formulation of the Q-learning algorithm for BMDPs is straightforward, the proof
that it works is not. This is because, unlike the MDPs with discounted rewards
for which the original Q-learning algorithm was defined, our model does not have
an explicit contraction in each step, nor does boundedness of the optimal values
or one-step updates hold. Similarly, one cannot generalise the result from [11]
that estimates the time needed for the Q-learning algorithm to converge within
ε of the optimal values with high probability for finite-state MDPs.

1.1 Related Work

The simplest model of BMCs are Galton-Watson processes [31], discrete-time
models where all entities are of the same type. They date as far back as 1845 [14]
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and were used to explain why some aristocratic family surnames became extinct.
The generalisation of this model to multiple types of entities was first studied
in 1940s by Kolmogorov and Sevast’yanov [17]. For an overview of the results
known for BMCs, see e.g. [13] and [12]. The precise computational complexity
of decision problems about the probabilities of extinction of an arbitrary BMC
was first established in [9]. The problem of checking if a given BMC terminates
almost surely was shown in [5] to be strongly polynomial. The probability of
acceptance of a run of a BMC by a deterministic parity tree automaton was
studied in [4] and shown to be computable in PSPACE and in polynomial time
for probabilities 0 or 1. In [16] a generalisation of the BMCs was considered that
allowed for limited synchronisation of different tasks.

BMDPs, a natural generalisation of BMCs to a controlled setting, have been
studied in the OR literature e.g., [23,26]. Hierarchical MDPs (HMDPs) [10]
are a special case of BMDPs where there are no cycles in the offspring graph
(equivalently, no cyclic dependency between types). BMDPs and HMDPs have
found applications in manpower planning [29], controlled queuing networks [2,
15], management of livestock [20], and epidemic control [1,25], among others. The
focus of these works was on optimising the expected average, or the discounted
reward over a run of the process, or optimising the population growth rate.
In [10] the decision problem whether the optimal probability of termination
exceeds a threshold was studied: it was shown to be solvable in PSPACE and
at least as hard as the square-root sum problem, but one can determine if the
optimal probability is 0 or 1 in polynomial time. In [7], it was shown that the
approximation of the optimal probability of extinction for BMDPs can be done
in polynomial time. The computational complexity of computing the optimal
expected total cost before extinction for BMDPs follows from [8] and was shown
there to be computable in polynomial time via a linear program formulation.
The problem of maximising the probability of reaching a state with an entity of
a given type for BMDPs was studied in [6]. In [28] an extension of BMDPs with
real-valued clocks and timing constraints on productions was studied.

1.2 Summary of the Results

We show that an adaptation of the Q-learning algorithm converges almost surely
to the optimal values for BMDPs under mild conditions: all costs are positive
and each Q-value is selected for update independently at random. We have
implemented the proposed algorithm in the tool Mungojerrie [21] and tested
its performance on small examples to demonstrate its efficiency in practice. To
the best of our knowledge, this is the first time model-free RL has been used for
the analysis of BMDPs.

2 Problem Definitions

2.1 Preliminaries

We denote by N the set of non-negative integers, by R the set of reals, by
R+ the set of positive reals, and by R≥0 the set of non-negative reals. We let
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R̃+ = R+ ∪ {∞}, and R̃≥0 = R≥0 ∪ {∞}. We denote by |X| the cardinality
of a set X and by X∗ (Xω) the set of all possible finite (infinite) sequences of
elements of X. Finite sequences are also called lists.

Vectors and Lists. We use x̄, ȳ, c̄ to denote vectors and x̄i or x̄(i) to denote its
i-th entry. We let 0̄ denote a vector with all entries equal to 0; its size may vary
depending on the context. Likewise 1̄ is a vector with all entries equal to 1. For
vectors x̄, ȳ ∈ R̃

n
≥0, x̄ ≤ ȳ means xi ≤ yi for every i, and x̄ < ȳ means x̄ ≤ ȳ and

xi �= yi for some i. We also make use of the infinity norm ‖x̄‖∞ = maxi |x̄(i)|.
We use α, β, γ to denote finite lists of elements. For a list α = a1, a2, . . . , ak

we write αi for the i-th element ai of list α and |α| for its length. For two lists
α and β we write α · β for their concatenation. The empty list is denoted by ε.

Probability Distributions. A finite discrete probability distribution over a
countable set Q is a function μ : Q→[0, 1] such that

∑
q∈Q μ(q)=1 and its

support set supp(μ)= {q ∈ Q |μ(q)>0} is finite. We say that μ ∈ D(Q) is a
point distribution if μ(q)=1 for some q ∈ Q.

Markov Decision Processes. Markov decision processes [24], are a well-studied
formalism for systems exhibiting nondeterministic and probabilistic behaviour.

Definition 1. A Markov decision process (MDP) is a tuple M = (S,A, p, c)
where:

– S is the set of states;
– A is the set of actions;
– p : S × A → D(S) is a partial function called the probabilistic transition

function; and
– c : S × A → R is the cost function.

We say that an MDP M is finite (discrete) if both S and A are finite
(countable). We write A(s) for the set of actions available at s, i.e., the set
of actions a for which p(s, a) is defined. In an MDP M, if the current state is
s, then one of the actions in A(s) is chosen nondeterministically. If the chosen
action is a then the probability of reaching state s′ ∈ S in the next step is
p(s, a)(s′) and the cost incurred is c(s, a).

2.2 Branching Markov Decision Processes

We are now ready to define (multitype) BMDPs.

Definition 2. A branching Markov decision process (BMDP) is a tuple B =
(P,A, p, c) where:

– P is a finite set of types;
– A is a finite set of actions;
– p : P × A → D(P ∗) is a partial function called the probabilistic transition

function where every D(·) is a finite discrete probability distribution; and
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– c : P × A → R+ is the cost function.

We write A(q) for the set of actions available to an entity of type q ∈ P , i.e., the
set of actions a for which p(q, a) is defined. A Branching Markov Chain (BMC)
is simply a BMDP with just one action available for each type.

Let us first describe informally how BMDPs evolve. A state of a BMDP B
is a list of elements of P that we call entities. A BMDP starts at some initial
configuration, α0 ∈ P ∗, and the controller picks for one of the entities one of the
actions available to an entity of its type. In the new configuration α1, this one
entity is replaced by the list of new entities that it spawned. This list is picked
according to the probability distribution p(q, a) that depends both on the type
of the entity, q, and the action, a, performed on it by the controller. The process
proceeds in the same manner from α1, moving to α2, and from there to α3, etc.
Once the state ε is reached, i.e., when no entities are present in the system, the
process stays in that state forever.

Definition 3 (Semantics of BMDP). The semantics of a BMDP B =
(P,A, p, c) is an MDP MB = (StatesB,ActionsB,ProbB,CostB) where:

– StatesB = P ∗ is the set of states;
– ActionsB = N × A is the set of actions;
– ProbB : StatesB × ActionsB → D(StatesB) is the probabilistic transition

function such that, for α ∈ StatesB and (i, a) ∈ ActionsB, we have that
ProbB(α, (i, a)) is defined when i ≤ |α| and a ∈ A(αi); moreover

ProbB(α, (i, a))(α1 . . . αi−1 · β · αi+1 . . .) = p(αi, a)(β),

for every β ∈ P ∗ and 0 in all other cases.
– CostB : StatesB × ActionsB → R+ is the cost function such that

CostB(α, (i, a)) = c(αi, a).

For a given BMDP B and states α ∈ StatesB, we denote by ActionsB(α) the
set of actions (i, a) ∈ ActionsB, for which ProbB(α, (i, a)) is defined.

Note that our semantics of BMDPs assumes an explicit listing of all the
entities in a particular order similar to [10]. One could, instead, define this as
a multi-set or simply a vector just counting the number of occurrences of each
entity as in [23]. As argued in [10], all these models are equivalent to each other.
Furthermore, we assume that the controller expands a single entity of his choice
at the time rather all of them being expanded simultaneously. As argued in [32],
that makes no difference for the optimal values of the expected total cost that
we study in this paper, provided that all transitions’ costs are positive.

2.3 Strategies

A path of a BMDP B is a finite or infinite sequence

π = α0, ((i1, a1), α1), ((i2, a2), α2), ((i3, a3), α3), . . .
∈ StatesB × ((ActionsB×StatesB)∗ ∪ (ActionsB×StatesB)ω),
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consisting of the initial state and a finite or infinite sequence of action and state
pairs, such that ProbB(αj , (ij , aj))(αj+1) > 0 for any 0 ≤ j ≤ |π|, where |π| is
the number of actions taken during path π. (|π| = ∞ if the path is infinite.) For
a path π, we denote by πA(j) = (ij , aj) the j-th action taken along path π, by
πS(j)(= αj) the j-th state visited, where πS(0)(= α0) is the initial state, and by
π(j)(= α0, ((i1, a1), α1), . . . , ((ij , aj), αj)) the first j action-state pairs of π.

We call a path of infinite (finite) length a run (finite path). We write RunsB
(FPathB) for the sets of all runs (finite paths) and RunsB,α (FPathB,α) for the
sets of all runs (finite paths) that start at a given initial state α ∈ StatesB, i.e.,
paths π with πS(0) = α. We write last(π) for the last state of a finite path π.

A strategy in BMDP B is a function σ : FPathB → D(ActionsB) such that,
for all π ∈ FPathB, supp(σ(π)) ⊆ ActionsB(last(π)). We write ΣB for the set
of all strategies. A strategy is called static, if it always applies an action to the
first entity in any state and for all entities of the same type in any state it
picks the same action. A static strategy τ is essentially a function of the form
σ : P → A, i.e., for an arbitrary π ∈ FPathB, we have τ(π) = (1, σ(last(π)1))
whenever last(π) �= ε.

A strategy σ ∈ ΣB and an initial state α induce a probability measure over
the set of runs of BMDP B in the following way: the basic open sets of RunsB
are of the form π · (ActionsB ×StatesB)ω, where π ∈ FPathB, and the measure of
this open set is equal to

∏|π|−1
i=0 σ(π(i))(πA(i+1)) · ProbB(πS(i), πA(i+1))(πS(i+1))

if πS(0) = α and equal to 0 otherwise. It is a classical result of measure theory
that this extends to a unique measure over all Borel subsets of RunsB and we
will denote this measure by Pσ

B,α.
Let f : RunsB → R̃+ be a function measurable with respect to Pσ

B,α. The
expected value of f under strategy σ when starting at α is defined as E

σ
B,α {f} =∫

RunsB
f dPσ

B,α (which can be ∞ even if the probability that the value of f

is infinite is 0). The infimum expected value of f in B when starting at α is
defined as V∗(α)(f) = infσ∈ΣB E

σ
B,α {f}. A strategy, σ̂, is said to be optimal

if E
σ̂
B,α {f} = V∗(α)(X) and ε-optimal if E

σ̂
B,α {f} ≤ V∗(α)(f) + ε. Note that

ε-optimal strategies always exists by definition. We omit the subscript B, e.g.,
in StatesB, ΣB, etc., when the intended BMDP is clear from the context.

For a given BMDP B and N ≥ 0 we define TotalN (π), the cumulative cost
of a run π after N steps, as TotalN (π) =

∑N−1
i=0 Cost(πS(i), πA(i+1)). For a

configuration α ∈ States and a strategy σ ∈ Σ, let ETotalN (B, α, σ) be the
N -step expected total cost defined as ETotalN (B, α, σ) = E

σ
B,α

{
TotalN

}
and

the expected total cost be ETotal∗(B, α, σ) = limN→∞ ETotalN (B, α, σ). This
last value can potentially be ∞. For each starting state α, we compute the
optimal expected cost over all strategies of a BMDP starting at α, denoted by
ETotal∗(B, α), i.e.,

ETotal∗(B, α) = inf
σ∈ΣB

ETotal(B, α, σ).
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As we are going to prove in Theorem4.b that, for any α ∈ States, we have

ETotal∗(B, α) =
|α|∑

i=1

ETotal∗(B, αi).

This justifies focusing on this value for initial states that consist of a single entity
only, as we will do in the following section.

3 Fixed Point Equations

Following [8], we define here a linear equation system with a minimum operator
whose Least Fixed Point solution yields the desired optimal values for each type
of a BMDP with non-negative costs. This system generalises the Bellman’s
equations for finite-state MDPs. We use a variable xq for each unknown
ETotal∗(B, q) where q ∈ P . Let x̄ be the vector of all xq,whereq ∈ P . The
system has one equation of the form xq = Fq(x̄) for each type q ∈ P , defined as

xq = min
a∈A(q)

(
c(q, a) +

∑

α∈P ∗
p(q, a)(α)

∑

i≤|α|
xαi

)
. (♠)

We denote the system in vector form by x̄ = F (x̄). Given a BMDP, we can
easily construct its associated system in linear time. Let c̄∗ ∈ R̃

n
≥0 denote the

n-dimensional vector of ETotal∗(B, q)’s where n = |P |. Let us define x̄0 = 0̄,
x̄k+1 = F k+1(0̄) = F (x̄k), for k ≥ 0.

Theorem 4. The following hold:

(a) The map F : R̃
n
≥0 → R̃

n
≥0 is monotone and continuous (and so 0̄ ≤ x̄k ≤

x̄k+1 for all k ≥ 0).
(b) c̄∗ = F (c̄∗).
(c) For all k ≥ 0, x̄k ≤ c̄∗.
(d) For all c̄′ ∈ R̃

n
≥0, if c̄′ = F (c̄′), then c̄∗ ≤ c̄′.

(e) c̄∗ = limk→∞ x̄k.

Proof.

(a) All equations in the system F (x) are minimum of linear functions with non-
negative coefficients and constants, and hence monotonicity and continuity
are preserved.

(b) It suffices to show that once action a is taken when starting with a single
entity q and, as a result, q is replaced by α with probability p(q, a)(α), then
the expected total cost is equal to:

c(q, a) +
∑

i≤|α|
ETotal∗(B, αi) . (♣)
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This is because then the expected total cost of picking action a when at
q is just a weighted sum of these expressions with weights p(q, a)(α) for
offspring α. And finally, to optimise the cost, one would pick an action a
with the smallest such expected total cost showing that

ETotal∗(B, q) = min
a∈A(q)

(
c(q, a) +

∑

α∈P ∗
p(q, a)(α)

∑

i≤|α|
ETotal∗(B, αi)

)

indeed holds.
Now, to show (♣), consider an ε-optimal strategy σi for a BMDP that starts
at αi. It can easily be composed into a strategy σ that starts at α just by
executing σ1 first until all descendants of α1 die out, before moving on to
σ2, etc. If one of these strategies, σi, never stops executing then, due to the
assumption that all costs are positive, the expected total cost when starting
with αi has to be infinite and so has to be the overall cost when starting
with α (as all descendants of αi have to die out before the overall process
terminates), so (♣) holds. This shows that c(q, a) +

∑
i≤|α| ETotal∗(B, xαi

)
can be achieved when starting at α. At the same time, we cannot do better
because that would imply the existence of a strategy σ′ for one of the entities
σj with a better cost than its optimal cost ETotal∗(B, αj).

(c) Since x̄0 = 0̄ ≤ c̄∗ and due to (b), it follows by repeated application of F to
both sides of this inequality that x̄k ≤ F (c̄∗) = c̄∗, for all k ≥ 0.

(d) Consider any fixed point c̄′ of the equation system F (x̄). We will prove that
c̄∗ ≤ c̄′. Let us denote by σ′ a static strategy that picks for each type an
action with the minimum value of operator F in c̄′, i.e., for each entity
q we choose σ′(q) = arg mina∈A(q)

(
c(q, a) +

∑
α∈P ∗ p(q, a)(α)

∑
i≤|α| c̄

′
αi

)
,

where we break ties lexicographically.
We now claim that, for all k ≥ 0, ETotalk(B, q, σ′) ≤ c̄′

q holds. For k = 0,
this is trivial as ETotalk(B, q, σ′) = 0 ≤ c̄′

q. For k > 0, we have that

ETotalk(B, q, σ′)
(1)

≤ c(q, σ′(q))+
∑

α∈P ∗
p(q, σ′(q))(α)

∑

i≤|α|
ETotalk−1(B, αi, σ

′)

(2)

≤ c(q, σ′(q)) +
∑

α∈P ∗
p(q, σ′(q))(α)

∑

i≤|α|
c̄′
αi

(3)
= min

a∈A(q)

(
c(q, a) +

∑

α∈P ∗
p(q, a)(α)

∑

i≤|α|
c̄′
αi

)
(4)
= c̄′

q

where (1) follows from the fact that after taking action σ′(q) first, there
are only k − 1 steps left of the BMDP B that would need to be distributed
among the offspring α of q somehow. Allowing for k−1 steps for each of the
entities αi is clearly an overestimate of the actual cost. (2) follows from the
inductive assumption. (3) follows from the definition of σ′. The last equality,
(4), follows from the fact that c̄′ is a fixed point of F .
Finally, for every q ∈ P , from the definition we have c̄∗

q = ETotal∗(B, q) ≤
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ETotal∗(B, q, σ′) = limk→∞ ETotalk(B, q, σ′) and each element of the last
sequence was just shown to be ≤ c̄′

q.
(e) We know that x̄∗ = limk→∞ x̄k exists in R̃

n
≥0 because it is a monotonically

non-decreasing sequence (note that some entries may be infinite). In fact
we have x̄∗ = limk→∞ F k+1(0̄) = F (limk→∞ F k(0̄)), and thus x̄∗ is a fixed
point of F . So from (d) we have c̄∗ ≤ x̄∗. At the same time, due to (c), we
have x̄k ≤ c̄∗ for all k ≥ 0, so x̄∗ = limk→∞ x̄k ≤ c̄∗ and thus limk→∞ x̄k =
c̄∗.


�
The following is a simple corollary of Theorem 4.

Corollary 5. In BMDPs, there exists an optimal static control strategy σ∗.

Proof. It is enough to pick as σ∗, the strategy σ′ from Theorem 4.d, for c̄′ = c̄∗.
We showed there that for all k ≥ 0 and q ∈ P we have ETotalk(B, q, σ∗) ≤ c̄′

q.
So ETotal∗(B, q, σ∗) = limk→∞ ETotalk(B, q, σ∗) ≤ c̄∗

q = ETotal∗(B, q), so in
fact ETotal∗(B, q, σ∗) = ETotal∗(B, q) has to hold as clearly ETotal∗(B, q, σ∗) ≥
ETotal∗(B, q). 
�

Note that for a BMDPs with a fixed static strategy σ (or equivalently BMCs),
we have that F (x̄) = Bσx̄ + c̄σ, for some non-negative matrix Bσ ∈ R

n×n
≥0 , and

a positive vector c̄σ > 0 consisting of all one step costs c(q, σ(q)). We will refer
to F as Fσ in such a case and exploit this fact later in various proofs.

We now show that c̄∗ is in fact essentially a unique fixed point of F .

Theorem 6. If F (x̄) = x̄ and x̄q < ∞ for some q ∈ P then x̄q = c̄∗
q .

Proof. By Corollary 5, there exists an optimal static strategy, denoted by σ∗,
which yields the finite optimal reward vector c̄∗.

We clearly have that x̄ = F (x̄) ≤ Fσ∗(x̄), because σ∗ is just one possible pick
of actions for each type rather than the minimal one as in (♠). Furthermore,

Fσ∗(x̄) = Bσ∗ x̄ + bσ∗

≤ Bσ∗(Bσ∗ x̄ + bσ∗) + bσ∗

= B2
σx̄ + (Bσ∗ + 1)b∗

σ

≤ . . . ≤ lim
k→∞

Bk
σ∗ x̄ +

( ∞∑

k=0

Bk
σ∗

)
bσ∗ .

Note that c̄∗ = (
∑∞

k=0 Bk
σ∗)bσ∗ , because

c̄∗ = lim
k→∞

F k(0̄) = lim
k→∞

F k
σ∗(0̄) = lim

k→∞

k∑

i=0

Bi
σ∗bσ∗ .

Due to Theorem 4.d, we know that c̄∗
q ≤ x̄q < ∞, so all entries in the q-th

row of Bk
σ∗ have to converge to 0 as k → ∞, because otherwise the q-th row
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of
∑∞

k=0 Bk
σ∗ would have at least one infinite value and, as a result, the q-th

position of c̄∗ = (
∑∞

k=0 Bk
σ∗)bσ∗ would also be infinite as all entries of bσ∗ are

positive. Therefore, limk→∞(Bk
σ∗ x̄)q = 0 and so

x̄q ≤ ( lim
k→∞

Bk
σ∗ x̄)q + ((

∞∑

k=0

Bk
σ∗)bσ∗)q = c̄∗

q .

The proof is now complete. 
�

4 Q-learning

We next discuss the applicability of Q-learning to the computation of the fixed
point defined in the previous section.

Q-learning [30] is a well-studied model-free RL approach to compute an
optimal strategy for discounted rewards. Q-learning computes so-called Q-values
for every state-action pair. Intuitively, once Q-learning has converged to the fixed
point, Q(s, a) is the optimal reward the agent can get while performing action a
after starting at s. The Q-values can be initialised arbitrarily, but ideally they
should be close to the actual values. Q-learning learns over a number of episodes,
each consisting of a sequence of actions with bounded length. An episode can
terminate early if a sink-state or another non-productive state is reached. Each
episode starts at the designated initial state s0. The Q-learning process moves
from state to state of the MDP using one of its available actions and accumulates
rewards along the way. Suppose that in the i-th step, the process has reached
state si. It then either performs the currently (believed to be) optimal action
(so-called exploitation option) or, with probability ε, picks uniformly at random
one of the actions available at si (so-called exploration option). Either way, if
ai, ri, and si+1 are the action picked, reward observed and the state the process
moved to, respectively, then the Q-value is updated as follows:

Qi+1(si, ai) = (1 − λi)Qi(si, ai) + λi(ri + γ · max
a

Qi(si+1, a)) ,

where λi ∈ ]0, 1[ is the learning rate and γ ∈ ]0, 1] is the discount factor. Note the
model-freeness: this update does not depend on the set of transitions nor their
probabilities. For all other pairs s, a we have Qi+1(s, a) = Qi(s, a), i.e., they are
left unchanged. Watkins and Dayan showed the convergence of Q-learning [30].

Theorem 7 (Convergence [30]). For γ < 1, bounded rewards ri and learning
rates 0 ≤ λi < 1 satisfying:

∞∑

i=0

λi = ∞ and
∞∑

i=0

λ2
i < ∞,

we have that Qi(s, a) → Q(s, a) as i → ∞ for all s, a ∈ S×A almost surely if all
(s, a) pairs are visited infinitely often.
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However, in the total reward setting that corresponds to Q-learning with
discount factor γ = 1, Q-learning may not converge, or converge to incorrect
values. However, it is guaranteed to work for finite-state MDPs in the setting of
undiscounted total reward with a target sink-state under the assumption that
all strategies reach that sink-state almost surely. The assumption that we make
instead is that every transition of BMDP incurs a positive cost. This guarantees
that a process that does not terminate almost surely generates an expected
infinite reward in which case the Q-learning will coverage (or rather diverge) to
∞, so our results generalise these existing results for Q-learning.

We adopt the Q-learning algorithm to minimise cost as follows. Each episode
starts at the designated initial state q0 ∈ P . The Q-learning process moves from
state to state of the BMDP using one of its available actions and accumulates
costs along the way. Suppose that, in the i-th step, the process has reached state
α. It then selects uniformly at random one of the entities of α, e.g., the j-th
one, αj and either performs the currently (believed to be) optimal action or,
with probability ε, picks an action uniformly at random among all the actions
available for αj . If c and β denote the observed cost and entities spawned by this
action, respectively, then the Q-value of the pair αj , ai are updated as follows:

Qi+1(αj , ai) = (1 − λi)Qi(αj , ai) + λi

(
c +

|β|∑

i=1

min
a∈A(βi)

Qi(βi, a)
)
.

and all other Q-values are left unchanged. In the next section we show that Q-
learning almost surely converges (diverges) to the optimal finite (respectively,
infinite) value of c̄∗ almost surely under rather mild conditions.

5 Convergence of Q-Learning for BMDPs

We show almost sure convergence of the Q-learning to the optimal values c̄∗ in
a number of stages. We first focus on the case when all optimal values in c̄∗ are
finite. In such a case, we show a weak convergence of the expected optimal values
for BMCs to the unique fixed-point c̄∗, as defined in Sect. 3. To establish this,
we show that the expected Q-values are monotonically decreasing (increasing) if
we start with Q-values κc̄∗ for κ > 1 (κ < 1). This convergence from above and
below gives us convergence in expectation using the squeeze theorem.

We then establish almost sure convergence to c̄∗ by proving a contraction
argument, with the extra assumption that the selection of the Q-value to update
is done independently at random in each step.

In the next step, we extend this result to BMDPs, first establishing that
Q-learning will almost surely converge to the region of the Q-values less than or
equal to c̄∗. We then show that, when considering the pointwise limes inferior
values of the sequences of Q-values, there is no point in that region such that
every ε-ball around it has a non-zero probability to be represented in the limes
inferior. This establishes that c̄∗ is the fixed point the Q-values converge against.
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Only at the very end, we show that Q-learning also converges (or rather
diverges) to the optimal value even if that value happens to be infinite. We then
turn to a type with non-finite optimal value and provide an argument for the
divergence to ∞ of its corresponding Q-value.

We assume that all the Q-values are stored in a vector Q of size (|P | · |A|).
We also use Q(q, a) to refer to the entry for type q ∈ P and action a ∈ A(q). We
introduce the target for Q operator, T , that maps a Q-values vector Q to:

T (Q)(q, a) = c(q, a) +
∑

α∈Q∗
p(q, a)(α)

|α|∑

i=1

min
ai∈A(αi)

Q(αi, ai) .

We call T the ‘target’, because, when the Q(q, a) value is updated, then

E(Qi+1(q, a)) = (1 − λi)Qi(q, a) + λiT (Qi)(q, a)

holds, whereas otherwise Qi+1(q, a) = Qi(q, a).
Thus, when Q(q, a) is selected for update with a chance of pq,a, we have that

E(Qi+1(q, a)) = (1 − λipq,a)Qi(q, a) + λipq,aT (Qi)(q, a) . (♥)

5.1 Convergence for BMCs with Finite c̄∗

Since BMCs have only one action, we omit mentioning it for ease of notation.
Note that for BMCs, the target for the Q-values is a simple affine function:

T (Q)(q) = c(q) +
∑

α∈P ∗
p(q)(α)

|α|∑

i=1

Q(αi).

And it coincides with operator F as defined in Sect. 3. Therefore, due to
Theorem 6, T (Q) has a unique fixed point which is c̄∗. Moreover, T (Q) = BQ+c̄,
where B is a non-negative matrix and c̄ is a vector of one step costs c(q), which
are all positive.

Naturally, applying T to a non-negative vector Q or multiplying it by B are
monotone: Q ≥ Q′ → T (Q) ≥ T (Q′) and BQ ≥ BQ′. Also, due to the linearity
of T , E(T (Q)) = T (E(Q)) holds, where Q is a random vector.

We now start with a lemma describing the behaviour of Q-learning for initial
Q-values when they happen to be equal to κc̄∗ for some κ ≥ 1.

Lemma 8. Let Q0 = κc̄∗ for a scalar factor κ ≥ 1. Then the following holds
for all i ∈ N,

c̄∗ ≤ T (E(Qi)) ≤ E(Qi+1) ≤ E(Qi),

assuming that Q-value to be updated in each step is selected independently at
random.
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Proof. We show this by induction. For the induction basis (i = 0), we have that
c̄∗ ≤ Q0 by definition.

As c̄∗ is the fixed-point of T , we have T (c̄∗) = c̄∗, and the monotonicity of T
provides T (c̄∗) ≤ T (Q0). At the same time

T (Q0) = T (κc̄∗) = Bκc̄∗ + c̄

= κ(Bc̄∗ + c̄) − κc̄ + c̄

= κc̄∗ − (κ − 1)c̄
= Q0 − (κ − 1)c̄ ≤ Q0.

This provides c̄∗ ≤ T (E(Q0)) ≤ E(Q0). Finally, T (E(Q0)) ≤ E(Q0) entails
for a learning rate λ0 ∈ [0, 1] that T (E(Q0)) ≤ E(Q1) ≤ E(Q0) due to (♥).

For the induction step (i �→ i + 1), we use the induction hypothesis

c̄∗ ≤ T (E(Qi)) ≤ E(Qi+1) ≤ E(Qi).

The monotonicity of T and c̄∗ ≤ E(Qi+1) ≤ E(Qi) imply that T (c̄∗) ≤
T (E(Qi+1)) ≤ T (E(Qi)) holds. With T (c̄∗) = c̄∗ (from the fixed point equations)
and the induction hypothesis, c̄∗ ≤ T (E(Qi+1)) ≤ E(Qi+1) follows.

Using T (E(Qi+1)) = E(T (Qi+1)), this provides E(T (Qi+1)) ≤ E(Qi+1),
which implies with λi+1 ∈ [0, 1] that

T (E(Qi+1)) = E(T (Qi+1)) ≤ E(Qi+2) ≤ E(Qi+1)

holds, completing the induction step. 
�
By simply replacing all ≤ with ≥ in the above proof, we can get the following

for all initial Q-values that happen to be κc̄∗ where κ ≤ 1:

Lemma 9. Let Q0 = κc̄∗ for a scalar factor κ ∈ [0, 1]. Then the following
holds for all i ∈ N, assuming that the Q-value to update in each step is selected
independently at random: c̄∗ ≥ T (E(Qi)) ≥ E(Qi+1) ≥ E(Qi). 
�

We now first establish that the distance between Q and c̄∗ can be upper
bounded by the distance between Q and T (Q) with a fixed linear factor μ > 0.

Lemma 10. There exists a constant μ > 0 such that
∑

q∈P

|(Q − T (Q)(q)| ≥ μ
∑

q∈P

|(Q − c̄∗(q)|

when Q0 = κc̄∗.

Proof. We show this for κ > 1. The proof for κ < 1 is similar, and there is
nothing to show for κ = 1.

We first consider the linear programme with a variable for each type with
the following constraints for some fixed δ > 0:

Q ≥ c̄∗, T (Q) ≤ Q, and
∑

q∈P

Q(q) =
∑

q∈P

c̄∗(q) + δ.
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An example solution to this constraint system is Q = (1 + δ∑
q∈P c̄∗(q) )c̄

∗.
We then find a solution minimising the objective

∑
q∈P |(Q−T (Q)(p)|, noting

that all entries are non-negative due to the first constraint. This is expressed by
adding 2|P | constraints

xq ≥ Q(q) − T (Q)(q)
xq ≥ T (Q)(q) − Q(q)

and minimising
∑

q∈P xq.
As c̄∗ is the only fixed-point of T , and

∑
q∈P Q(q) =

∑
q∈P c̄∗(q) + δ implies

that, for an optimal solution Q∗, Q∗ �= c̄∗, we have that
∑

q∈P

|(Q∗ − T (Q∗)(q)| > 0.

Due to the constraint Q ≥ c̄∗, we always have Q = c̄∗ + QΔ for some QΔ > 0̄.
We can now re-formulate this linear programme to look for QΔ instead of Q:

QΔ ≥ 0̄,

BQΔ ≤ QΔ, and
∑

q∈P

QΔ(q) = δ,

with the objective to minimise
∑

q∈P |(QΔ − BQΔ)(q)|.
The optimal solution Q∗

Δ to this linear programme gives an optimal value
Q∗ = c̄∗+Q∗

Δ for the former and, vice versa, the value Q∗ for the former provides
an optimal solution Q∗

Δ − c̄∗ for the latter, and these two solutions have the same
value in their respective objective function.

Thus, while the former constraint system is convenient to show that the value
of the objective function is positive, the latter constraint system is, except for∑

q∈P QΔ(q) = δ, linear. This means that any optimal solution for δ = δ1 can
be obtained from the optimal solution for δ = δ2 just by rescaling it by δ1/δ2. It
follows that the optimal value of the objective function is linear in δ, e.g., there
exists μ > 0 such that its value is μδ. 
�

We now show that the sequence of Q-values updates converges in expectation
to c̄∗ when Q0 = κc̄∗.

Lemma 11. Let Q0 = κc̄∗ where κ ≥ 0. Then, assuming that each type-action
pair is selected for update with a minimal probability pmin in each step, and that∑∞

i=0 λi = ∞, then limi→∞ E(Qi) = c̄∗ holds.

Proof. We proof this for κ ≥ 1. A similar proof shows this for any κ ∈ [0, 1].
Lemma 8 provides that all E(Qi) satisfy the constraints E(Qi) ≥ c̄∗ and
T (E(Qi)) ≤ E(Qi).
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Let pmin be the smallest probability any Q-value is selected with in each
update step. Due to Lemma 10, there is a fixed constant μ > 0 such that

∑

q∈P

|Qi(q) − T (Qi)(q)| ≥ μ
∑

q∈P

|Qi(q) − c̄∗(q)| .

By taking the expected value of both sides and the fact that c̄∗ ≤ T (E(Qi)) ≤
E(Qi+1) ≤ E(Qi) due to Lemma 8, we get

∑

q∈P

E(Qi)(q) − T (E(Qi))(q) ≥ μ
∑

q∈P

E(Qi)(q) − c̄∗(q),

then due to (♥) we have
∑

q∈P

E(Qi)(q) − E(Qi+1)(q) ≥ μpminλi

∑

q∈P

E(Qi)(q) − c̄∗(q),

and finally just by rearranging these terms we get
∑

q∈P

E(Qi+1)(q) − c̄∗(q) ≤ (1 − μpminλi)
∑

q∈P

E(Qi)(q) − c̄∗(q) .

Note that all summands are positive by Lemma 8.
With

∑∞
i=0 λi = ∞, we get that

∑∞
i=0 μpminλi = ∞, because pmin and μ

are fixed positive values. This implies that
∏∞

i=0(1 − μpminλi) = 0 and so the
distance between E(Qi) and c̄∗ converges to 0. 
�
Lemma 11 suffices to show convergence of Q-values in expectation.

Theorem 12. When each Q-value is selected for an update with a minimal
probability pmin in each step, and

∑∞
i=0 λi = ∞, then limi→∞ E(Qi) = c̄∗ holds

for every starting Q-values Q0 ≥ 0̄.

Proof. We first note that none of the entries of c̄∗ can be 0. This implies that
there is a scalar factor κ ≥ 0 such that 0̄ ≤ Q0 ≤ κc̄∗. As the Qi are monotone
in the entries of Q0, and as the property holds for Q′

0 = 0̄ = 0 · c̄∗ and Q′′
0 = κc̄∗

by Lemma 11, the squeeze theorem implies that it also holds for Q0. 
�
Convergence of the expected value is a weaker property than expected

convergence, which also explains why our assumptions are weaker than in
Theorem 7. With the common assumption of sufficiently fast falling learning
rates,

∑∞
i=0 λi

2 < ∞, we will now argue that the pointwise limes inferior of the
sequence of Q-values almost surely converges to c̄∗. This will later allow us to
infer convergence of the actual sequence of Q-values to c̄∗.

Theorem 13. When each Q-value is selected for update with a minimal
probability pmin in each step,

∞∑

i=0

λi = ∞ and
∞∑

i=0

λ2
i < ∞,

then limi→∞ Qi = c̄∗ holds almost surely for every starting Q-values Q0 ≥ 0̄.
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Proof. We assume for contradiction that, for some Q̂ �= c̄∗, there is a non-zero
chance of a sequence {Qi}i∈N0 such that

– ‖Q̂ − lim infi→∞ Qi‖∞ < ε′ for all ε′ > 0, and
– there is a type q such that Q̂(q) < T (Q̂)(q).

Then there must be an ε > 0 such that Q̂(q)+3ε < T (Q̂−2ε · 1̄)(q). We fix such
an ε > 0.

Now we have the assumption that the probability of ‖Q̂−lim infn→∞ Qi‖∞ <
ε is positive. Then, in particular, the chance that, at the same time,
lim infi→∞ Qi > Q̂ − ε · 1̄ and lim infi→∞ Qi < Q̂ + ε · 1̄, is positive.

Thus, there is a positive chance that the following holds: there exists an nε

such that, for all i > nε, Qi ≥ Q̂ − 2ε · 1̄. This implies

T (Qi)(q) ≥ T (Q̂ − 2ε · 1̄)(q) > Q̂(q) + 3ε.

Thus, the expected limit value of Qi(q) is at least Q̂(q) + 3ε, for every tail of
the update sequence. Now, we can use Q̂−2ε as a bound on the estimation of the
updates in Q-learning as Qi ≥ Q̂ − 2ε · 1̄ holds. At the same time, the variation
of the sum of the updates goes to 0 when

∑
i = 0∞λ2

i is bounded. Therefore, it
cannot be that lim infi→∞ Qi < Q̂ + ε · 1̄ holds; a contradiction.

We note that if, for a Q-values Q ≥ 0̄, there is a q ∈ P with Q(q′) < c̄∗(q′),
then there is a q ∈ P with Q(q) < T (Q)(q) and Q(q) < c̄∗(q). This is because,
for the Q-values Q′ with Q′(q) = min{Q(q), c̄∗(q)} for all q ∈ Q, Q′ < c̄∗. Thus,
there must be a type q ∈ P such that κ = Q′(q)

c̄∗(q) < 1 is minimal, and Q′ ≥ κc̄∗.
As we have shown before, T (κc̄∗) = κc̄∗ − (κ−1)c̄, such that the following holds:

T (Q)(q) ≥ T (Q′)(q) ≥ T (κc̄∗)(q) = κc̄∗(q) + (1 − κ)c(q) > c̄∗(q) = Q(q).

Thus, we have that lim infi→∞ Qi ≥ c̄∗ holds almost surely. With
limi→∞ E(Qi) = c̄∗, it follows that limi→∞ Qi = c̄∗. 
�

5.2 Convergence for BMDPs and Finite c̄∗

We start with showing that, for BMDPs, the pointwise limes superior of each
sequence is almost surely less than or equal to c̄∗. We then proceed to show that
the limes inferior of a sequence is almost surely c̄∗, which together implies almost
sure convergence.

Lemma 14. When each Q-value of BMDP is selected for update with a
minimal probability pmin in each step,

∑∞
i=0 λi = ∞,

∑∞
i=0 λ2

i < ∞, then
lim supi→∞ Qi ≤ c̄∗ holds almost surely for every starting Q-values Q0 ≥ 0̄.

Proof. To show the property for the limes superior, we fix an optimal static
strategy σ∗ that exists due to Corollary 5.

We define an BMC obtained by replacing each type q in the BMDP with
A(q) = {a1, . . . , ak}, by k types (q, a1), . . . , (q, ak) with one action, where each
type q′ is replaced by the type-action pair (q′, σ∗(q′)).
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It is easy to see that a type (q, σ∗(q)) for the resulting BMC has the same
value as the type q and the type-action pair (q, σ∗(q)) in the BMDP that we
started with.

When identifying these corresponding type-action pairs, we can look at the
same sampling for the BMDP and the BMC, leading to sequences Q0, Q1, Q2, . . .
and Q′

0, Q
′
1, Q

′
2, . . ., respectively, where Q0 = Q′

0.
It is easy to see by induction that Qi ≤ Q′

i. Considering that {Q′
i}i∈N almost

surely converges to c̄∗ by Theorem 13, we obtain our result. 
�
Theorem 15. When each Q-value of an BMDP is selected for update with a
minimal probability pmin,

∑∞
i=0 λi = ∞,

∑∞
i=0 λ2

i < ∞, then limi→∞ Qi = c̄∗

holds almost surely for every starting Q-values Q0 ≥ 0̄.

Proof. As a first simple corollary from Lemma 14, we get the same result for the
limes inferior (as lim inf ≤ lim sup must hold).

We now assume for contradiction that, for some vector Q̂ < c̄∗, there is a
non-zero chance of a sequence {Qi}i∈N such that ‖Q̂ − lim infn→∞ Qi‖∞ < ε′

for all ε′ > 0.
As Q̂ is below the fixed point of T , there must be one type-action pair

(q, σ∗(q)) such that Q̂(q, σ∗(q)) < T (Q̂)(q, σ∗(q)) (cf. the proof of Theorem13).
Moreover, there must be an ε > 0 such that

Q̂(q, σ∗(q)) + 3ε < T (Q̂ + 2ε · 1̄)(q, σ∗(q)).

We fix such an ε > 0.
Now we assume that the probability of ‖Q̂−lim infn→∞ Qi‖∞ < ε is positive.

Then the chance that, simultaneously, lim infi→∞ Qi(q, σ∗(q)) > Q̂(q, σ∗(q)) − ε

and lim infi→∞ Qi(q, σ∗(q)) < Q̂(q, σ∗(q)) + ε, is positive.
Thus, there is a positive chance that the following holds: there exists an nε

such that, for all i > nε we have Qi ≥ Q̂ − 2ε · 1̄. This entails

T (Qi)(q, σ∗(q)) ≥ T (Q̂ − 2ε · 1̄)(q, σ∗(q)) > Q̂(q, σ∗(q)) + 3ε.

Thus, the expected limit value of Qi(q, σ∗(a)) is at least Q̂(q, σ∗(a)) + 3ε, for
every tail of the update sequence. Now, we can use T (Q̂ − 2ε · 1̄)(q, σ∗(a)) as
a bound on the estimation of T (Q)(q, σ∗(q)) during the update of the Q-value
of the type-action pair (q, σ∗(q)). At the same time, the variation of the sum of
the updates goes to 0 when

∑∞
i=0 λ2

i is bounded. Therefore, it cannot be that
lim infi→∞ Qi(q, σ∗(a)) < Q̂(q, σ∗(a)) + ε holds; a contradiction. 
�

5.3 Divergence

We now show divergence of Q(q) to ∞ when at least one of the entries of c̄∗(q)
is infinite. First due to Theorem6 and its proof we have that c̄∗ =

∑∞
i=0 Bic̄ for

some non-negative B and positive c̄. Therefore c̄∗ is monotonic in B for BMCs.
Likewise, the value of c̄∗ for a BMDP depends only on the cost function and the
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expected number of successors of each type spawned: Two BMDPs with same
cost functions and the expected numbers of successors have the same fixed point
c̄∗. Thus, if a type q with one action spawns either exactly one q or exactly
one q′ with a chance of 50% each, or if it spawns 10 successors of type q and
another 10 or type q′ with a chance of 5%, while dying without offspring with
a chance of 95%, both lead to identical matrices B and so the same c̄∗ (though
this difference may impact the performance of Q-learning).

Naturally, raising the number of expected number of successors of any type
for any type-action pair strictly raises c̄∗, while lowering it reduces c̄∗, and for
every set of expected numbers, the value of c̄∗ is either finite or infinite.

Let us consider a set of parameters at the fringe of finite vs. infinite c̄∗, and
let us choose them pointwise not larger than the parameters from the BMC or
BMDP under consideration. As the fixed point from Sect. 3 is clearly growing
continuously in the parameter values, this set of expected successors leads to a
c̄∗ which is not finite.

We now look at the family of parameter values that lead to α ∈ [0, 1[ times the
expected successors from our chosen parameter at the fringe between finite and
infinite values, and refer to it as the α-BMDP. Let also c̄∗

α denote the fixed point
for the reduced parameters. As the solution to the fixed point grows continuously,
so does c̄∗

α. Moreover, if c̄∗
1 = limα→1 c̄∗

α was finite, then c̄∗ would be finite as
well, because then c̄∗

1 = c̄∗.
Clearly, for all parameters α ∈ [0, 1[, the Q-values of an α-BMC or α-BMDP

converge against c̄∗
α. Thus, the Q-values for the BMC or BMDP we have started

with converges against a value, which is at least supα∈[0,1[ c̄
∗
α. As this is not a

finite value, Q-learning diverges to ∞.

6 Experimental Results

We implemented the algorithm described in the previous section in the formal
reinforcement learning tool Mungojerrie [21], a C++-based tool which
reads BMDPs described in an extension of the PRISM language [18]. The tool
provides an interface for RL algorithms akin to that of [3] and invokes a linear
programming tool (GLOP) [22] to compute the optimal expected total cost based
on the optimality equations (♠).

6.1 Benchmark Suite

The BMDPs on which we tested Q-learning are listed in Table 1. For each model,
the numbers of types in the BMDP, are given. Table 1 also shows the total cost
(as computed by the LP solver), which has full access to the BMDP. This is
followed by the estimate of the total cost computed by Q-learning and the time
taken by learning. The learner has several hyperparameters: ε is the exploration
rate, α is the learning rate, and tol is the tolerance for Q-values to be considered
different when selecting an optimal strategy. Finally, ep-l is the maximum episode
length and ep-n is the number of episodes. The last two columns of Table 1
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report the values of ep-l and ep-n when they deviate from the default values. All
performance data are the averages of three trials with Q-learning. Since costs
are undiscounted, the value of a state-action pair computed by Q-learning is a
direct estimate of the optimal total cost from that state when taking that action.

Table 1. Q-learning results. The default values of the learner hyperparameters are:
ε = 0.1, α = 0.1, tol= 0.01, ep-l= 30, and ep-n= 20000. Times are in seconds.

Name Types Optimal cost Estimated cost Time (avg.) ep-l ep-n

cloud1 3 5 5.026 0.369

cloud2 4 5 5.016 0.369

bacteria1 3 2.5 2.514 0.374

bacteria2 3 1.34831 1.413 0.387

protein 3 6 5.067 0.372

frozenSmall 16 1.84615 1.740 2.834 100

rand68 10 150.432 154.400 0.402

rand283 9 4 4 0.075 1000

rand945 19 212 208.177 10.756 200 40000

rand3242 43 4 4.372 5.960 100

rand6417 62 10 10 12.498 50

Models cloud1 and cloud2 are based on the motivating example given in
the introduction. Examples bacteria1 and bacteria2 model the population
dynamics of a family of two bacteria [28] subject to two treatments. The objective
is to determine which treatment results in the minimum expected cost to
extinction of the bacteria population. The protein example models a stochastic
Petri net description [19] corresponding to a protein synthesis example with
entities corresponding to active and inactive genes and proteins. The example
frozenSmall [3] is similar to classical frozen lake example, except that one of
the holes result in branching the process in two entities. Entities that fall in
the target cell become extinct. The objective is to determine a strategy that
results in a minimum number of steps before extinction. Finally, the remaining
5 examples are randomly created BMDP instances.

7 Conclusion

We study the total reward optimisation problem for branching decision processes
with unknown probability distributions, and give the first reinforcement learning
algorithm to compute an optimal policy. Extending Q-learning is hard, even
for branching processes, because they lack a central property of the standard
convergence proof: as the value range of the Q-table is not a priori bounded
for a given starting table Q0, the variation of the disturbance is not bounded.



Reinforcement Learning for Branching Markov Decision Processes 671

This looks like a more substantial obstacle than the one Q-learning faces
when maximising undiscounted rewards for finite-state MDPs, and it is well
known that this defeats Q-learning. So it is quite surprising that we could
not only show that Q-learning works for branching processes, but extend these
results to branching decision processes, too. Finally, in the previous section, we
have demonstrated that our Q-learning algorithm works well on examples of
reasonable size even with default hyperparameters, so it is ready to be applied
in practice without the need for excessive hyperparameter tuning.
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14. Heyde, C.C., Seneta, E.: I. J. Bienaymé: Statistical Theory Anticipated. Springer,
Heidelberg (1977). https://doi.org/10.1007/978-1-4684-9469-3

15. Jo, K.Y.: Optimal control of service in branching exponential queueing networks.
In: 26th IEEE Conference on Decision and Control, vol. 26, pp. 1092–1097. IEEE
(1987)

16. Kiefer, S., Wojtczak, D.: On probabilistic parallel programs with process creation
and synchronisation. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS,
vol. 6605, pp. 296–310. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19835-9 28

17. Kolmogorov, A.N., Sevastyanov, B.A.: The calculation of final probabilities for
branching random processes. Doklady Akad. Nauk. U.S.S.R. (N.S.) 56, 783–786
(1947)

18. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

19. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution
of the chemical master equation. J. Chem. Phys. 124(4), 044104+ (2006)

20. Nielsen, L.R., Kristensen, A.R.: Markov decision processes to model livestock
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Abstract. We present Cameleer, an automated deductive verification
tool for OCaml. We leverage on the recently proposed GOSPEL (Generic
OCaml SPEcification Language) to attach rigorous, yet readable, behav-
ioral specification to OCaml code. The formally-specified program is fed
to our toolchain, which translates it into an equivalent one in WhyML,
the programming and specification language of the Why3 verification
framework. We report on successful case studies conducted in Cameleer.
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1 Introduction

Over the past decades, we have witnessed a tremendous development in the field
of deductive software verification [11], the practice of turning the correctness of
code into a mathematical statement and then prove it. Interactive proof assis-
tants have evolved from obscure and mysterious tools into de facto standards
for proving industrial-size projects. On the other end of the spectrum, the so-
called SMT revolution and the development of reusable intermediate verification
infrastructures contributed decisively to the development of practical automated
deductive verifiers.

Despite all the advances in deductive verification and proof automation, lit-
tle attention has been given to the family of functional languages [27]. Let us
consider, for instance, the OCaml language. It is well suited for verification, given
its well-defined semantics, clear syntax, and state-of-the-art type system. Yet,
the community still lacks an easy to use framework for the specification and
verification of OCaml code. The working programmers must either re-implement
their code in a proof-aware language (and then rely on code extraction), or they
must turn themselves into interactive frameworks. Cameleer fills the gap, being
a tool for the deductive verification of programs written in OCaml, with a clear
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focus on proof automation. Cameleer uses the recently proposed GOSPEL [5], a
specification language for OCaml. We advocate here the vision of the specifying
programmer : the person who writes the code should also be able to naturally pro-
vide suitable specification. GOSPEL terms are written in a subset of the OCaml
language, which makes them more appealing to the regular programmer. More-
over, we believe specification and implementation should co-exist and evolve
together, which is exactly the approach followed in Cameleer.

Cameleer takes as input a GOSPEL-annotated OCaml program and translates
it into an equivalent counterpart in WhyML, the programming and specifica-
tion language of the Why3 framework [16]. Why3 is a toolset for the deductive
verification of software, clearly oriented towards automated proof. A distinctive
feature of Why3 is that it interfaces with several different off-the-shelf theorem
provers, namely SMT solvers.

Contributions. To the best of our knowledge, Cameleer is the first deductive
verification tool for annotated OCaml programs. It handles a realistic subset of
the language, and its interaction with the Why3 verification framework greatly
increases proof automation. Our set of case studies successfully verified with the
Cameleer tool constitutes, by itself, an important contribution towards building
a comprehensive body of verified OCaml codebases. Finally, it is worth noting
that the original presentation of GOSPEL was limited to the specification of
interface files. In the scope of this work, we have extended it to include imple-
mentation primitives, such as loop invariants and ghost code (i.e., code that has
no computational purpose and is used only to ease specification and proof effort)
evolving GOSPEL from an interface specification language into a more mature
proof language.

2 Illustrative Example – Binary Search

Higher-Order Implementation. Fig. 1 presents an implementation of binary
search, where the comparison function, cmp, is given as an argument to the
main function. For the sake of readability, we give the type of arguments and
return value of function binary search, but these can be inferred by the OCaml
compiler.

The function contract is given after its definition as a GOSPEL annotation,
written within comments of the form (*@ ... *). The first line names the
returned value. Next, the first precondition establishes that the cmp is a total
pre order following the OCaml convention: if x is smaller than y, then cmp x y
< 0; if x is greater than y, then cmp x y > 0; finally, cmp x y = 0 if x and y
are equal values1. It is worth noting that GOSPEL, hence Cameleer, assumes cmp
to be a pure function (i.e., a function without any form of side-effects). The
second precondition requires the array to be sorted according to the cmp rela-
tion. Finally, the last two clauses capture the possible outcomes of execution: the
regular postcondition (ensures clause) states the returned index is within the
bounds of a and its value is equal to v; the exceptional postcondition (raises)
1 For the sake of space, we omit the definition of predicate is total pre order.
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Fig. 1. Binary search implemented as a functor.

states that whenever exception Not found is raised, there is no such index within
bounds whose value is equal to v. As usual in deductive verification, the presence
of the while loop requires one to supply a loop invariant. Here, it boils down to
the two invariant clauses, which state the limits of the search space are always
within the bounds of a and that for every index i for which a.(i) is equal to v,
then i must be within the limits of the current search space. We also provide a
decreasing measure (variant) in order to prove loop termination.

Assuming file binary search.ml contains the program of Fig. 1, starting a
proof with Cameleer is as easy as typing cameleer binary search.ml in a ter-
minal. Users are immediately presented with the Why3 IDE, where they can con-
duct the proof. Twelve verification conditions are generated for binary search:
two for loop invariant initialization, four loop invariant preservation (two for each
branch of if..then..else), two for safety (check division by zero and index in
array bounds), two for loop termination (one for each branch), and finally one
for each postcondition. All of these are easily discharged by SMT solvers.

Functor-Based Implementation. The implementation in Fig. 2 depicts (the skele-
ton of) an alternative implementation of the binary search routine. Instead of
passing the comparison function as an argument of binary search, here the
functor Make takes as argument a module of type OrderedType, which provides
a monomorphic comparison function over a type t. This is the same approach
found in the OCaml standard library, namely in the Set and Map modules. The
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@logic attribute instructs Cameleer that cmp is both a programming and logical
function. This is what allows us to provide the axiom about the behavior of cmp.

Other than the call to Ord.cmp, the implementation and specification of
binary search does not change, hence we omit it here. When fed into Cameleer,
the functorial implementation generates the exact same twelve verification con-
ditions as the higher-order counterpart, all of them easily discharged as well.
Thus, the use of a functor does not impose any verification burden, showing the
flexibility of Cameleer to handle different idiomatic OCaml programming styles.

Fig. 2. Binary search implemented as a functor.

OCaml +
GOSPEL

OCaml AST
ppxlib

WhyML AST
Cameleer

Why3 Logic

Why3

Alt-Ergo CVC4Z3Why3 errorOCaml error

Fig. 3. Cameleer verification workflow.

3 Implementation

Cameleer Workflow. Figure 3 depicts the verification workflow of the Cameleer
tool. We use the GOSPEL toolchain2, in order to parse and manipulate (via the
ppxlib library) the abstract syntax tree of the GOSPEL-annotated OCaml pro-
gram. A dedicated parser and type-checker (extended to handle implementation
features) treat GOSPEL special comments and attach the generated specifica-
tion to nodes in the OCaml AST. Cameleer translates the decorated AST into an

2 https://github.com/ocaml-gospel/gospel.

https://github.com/ocaml-gospel/gospel
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equivalent WhyML representation, which is then fed to Why3. The Why3 type-
and-effect system might reject the input program, in which case the reported
error is propagated back to the level of the original OCaml code. Otherwise, if
the translated program fits Why3 requirements, the underlying VCGen computes
a set of verification conditions that can then be discharged by different solvers.
Throughout all this pipeline, the user only has to write the OCaml code and
GOSPEL specification (represented in Fig. 3 as a full-lined box), while every other
element is automatically generated (dash-lined boxes). The user never needs to
manipulate or even care about the generated WhyML program. In short, the
Cameleer user intervenes in the beginning and in the end of the process, i.e., in
the initial specifying phase and in the last step, helping Why3 to close the proof.
Our development effort currently amounts to 1.8K non-blank lines of OCaml
code.

Translation into WhyML. The core of Cameleer is a translation from GOSPEL-
annotated OCaml code into WhyML. In order to guide our implementation effort,
we have defined such a translation as a set of inductive inference rules between
the source and target languages [26]. Here, rather than focusing on more funda-
mental aspects, we give a brief overview of how the translation works in practice.

OCaml and WhyML are both dialects of the ML-family, sharing many syn-
tactic and semantics traits. Hence, translation of OCaml expressions and decla-
rations into WhyML is rather straightforward: GOSPEL annotations are readily
translated into WhyML specification, while supported OCaml programming con-
structions (including ghost code) are easily mapped into semantically-equivalent
WhyML constructions. Consider, for instance the following piece of OCaml code:

type ’a non_empty_list = { self: ’a list }
(*@ invariant self <> [] *)

let[@ghost] hd (l: ’a non_empty_list) = match l with
| [] -> assert false
| x :: _ -> x

(*@ r = hd l
ensures match l with

| [] -> false
| x :: _ -> r = x *)

For such case, Cameleer generates the following WhyML program:

type non_empty_list ’a = { self: list ’a }
invariant { self <> Nil }

let ghost hd (l: non_empty_list ’a)
returns { r -> match l with

| Nil -> false
| Cons x _ -> x = r end }

= match l with
| Nil -> absurd
| Cons x _ -> x end
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Other than the small syntactic differences, the generated WhyML program is
identically to the original OCaml one. In particular, the @ghost annotation gen-
erates a ghost function in WhyML, while the assert false expression (which is
treated in a special way by the OCaml type-checker) is translated into the absurd
construction, with the same semantics. Supplied annotations, in this case post-
condition and type invariant, are readily mapped into equivalent specification.

The translation of the OCaml module language is more interesting and
involved. A WhyML program is a list of modules, a module is a list of top-level
declarations, and declarations can be organized within scopes, the WhyML unit
for namespaces management. However, there is no dedicated syntax for functors
on the Why3 side. These are represented, instead, as modules containing only
abstract symbols [17]. Thus, when translating OCaml functors into WhyML, we
need to be more creative. If we consider, for instance, the Make functor from
Fig. 2, Cameleer will generate the following WhyML program:

scope Make
scope Ord
type t

val function cmp t t : int
axiom total_pre_order: is_total_pre_order cmp

end

let binary_search a v = ...
end

The functor argument Ord is encoded as a nested scope inside Make. This means
the binary search implementation can access any symbol from the Ord names-
pace, via name qualification (e.g., Ord.t and Ord.cmp).

Interaction with Why3 . One distinguishing feature of the Why3 architecture is
that it can be extended to accommodate new front-end languages [32, Chap. 4].
Building on the devised OCaml to WhyML translation scheme, we use the Why3
API to build an in-memory representation of the WhyML program. We also
register OCaml as an admissible input language for Why3, which amounts to
instructing Why3 to recognize .ml files as a valid input format and triggering
our translation in such case. Following this integration, we can use any Why3
tool, out of the box, to process a .ml file. We are currently using the extract
and session tools: the latter to gather statistics about number of generated
verification conditions and proof time; the former to erase ghost code.

Limitations of Using Why3 . The WhyML specification sub-language and
GOSPEL are similar. Moreover, they share some fundamental principles, namely
the arguments of functions are not aliased by construction and each data struc-
ture carries an implicit representation predicate. However, one can use GOSPEL
to formally specify OCaml programs which cannot be translated into WhyML.
This is evident when it comes to recursive mutable data structures. Consider,
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for instance, the cell type from the Queue module of the OCaml standard
library3:

type ’a cell = Nil | Cons of { content: ’a; mutable next: ’a cell }

As we attempt to translate such data type, Why3 emits the following error:

This field has non-pure type, it cannot be used in a recursive
type definition

Recursive mutable data types are beyond the scope of Why3’s type-and-effect
discipline [14], since these can introduce arbitrary memory aliasing which breaks
the bounded-mutability principle of Why3 (i.e., all aliases must be statically-
known). The solution would be to resort to an axiomatic memory model of
OCaml in Why3, or to employ a richer program logic, e.g., Separation Logic [28]
or Implicit Dynamic Frames [31]. We describe such an extension as future work
(Sect. 6).

4 Evaluation

In order to assess the usability and performance of Cameleer, we have put
together a test suite of over 1000 lines of OCaml code. The reported case studies
are all automatically verified. To build our gallery of verified programs we used
a combination of Alt-Ergo 2.4.0, CVC4 1.8, and Z3 4.8.6. Figure 4 summarizes
important metrics about our verified case studies: the number of generated ver-
ification conditions for each example; the total lines of OCaml code, GOSPEL
specification, and lines of ghost (these are also included in the number of OCaml
LOC), respectively; the time it takes (in seconds) to replay a proof; and finally,
if the proof is immediately discharged, i.e., no extra user effort is required other
than writing down suitable specification.

Our test bed includes OCaml implementations issued from realistic and mas-
sively used programming libraries: the List.fold left iterator and Stack mod-
ule from the OCaml standard library; the Leftist Heap implementation from
ocaml-containers4; finally, the applicative Queue module from OCamlgraph5.
We have used Cameleer to verify programs of different nature. These include:
numerical programs (e.g., binary multiplication and fast exponentiation); sorting
and searching (e.g., binary search and insertion sort); logical algorithms (con-
version of a propositional formula into conjunctive normal form); array scanning
(finding duplicate values in an array of integers); small-step iterators; data struc-
tures implemented as functors (e.g., Pairing Heaps and Binary Search Trees);
historical algorithms (checking a large routine by Turing, Boyer-Moore’s major-
ity algorithm, FIND by Hoare, and binary tree same fringe); examples in Rustain
Leino’s forthcoming textbook “Program Proofs”; and higher-order implementa-
tions (height of a binary tree computed in CPS). Both small-step iterators and

3 https://caml.inria.fr/pub/docs/manual-ocaml/libref/Queue.html.
4

https://github.com/c-cube/ocaml-containers/blob/master/src/core/CCHeap.ml
5

https://github.com/backtracking/ocamlgraph/blob/master/src/lib/persistentQueue.ml

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Queue.html
https://github.com/c-cube/ocaml-containers/blob/master/src/core/CCHeap.ml
https://github.com/backtracking/ocamlgraph/blob/master/src/lib/persistentQueue.ml
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Fig. 4. Summary of the case studies verified with the Cameleer tool.

the list fold function use a modular approach to reason about iteration [18].
Our largest case study to date is a toy compiler from arithmetic expressions
to a stack machine, while Union Find features the most involved, but very ele-
gant, specification. The former is inspired by the presentation in Nielsons’ text-
book [25]; the latter follows recently proposed specification techniques [7,12] to
achieve fully automatic proofs of correctness and termination.

The runtimes shown in Fig. 4 were measured by averaging over ten runs
on a Lenovo Thinkpad X1 Carbon 8th Generation, running Linux Mint 20.1,
OCaml 4.11.1, and Why3 1.3.3 (developer version). They show that Cameleer can
effectively verify realistic OCaml code in a decent amount of time. Following good
practices in deductive verification, Cameleer allows the user to write ghost code in
order to ease proof and specification. The number of lines of ghost code in Fig. 4
stands for ghost fields in record types, ghost functions, and lemma functions.
In particular, the arithmetic compiler example uses lemma functions to prove,
by induction, results about semantics preservation. Finally, case studies marked
with required some form of manual interaction in the Why3 IDE [9]. These
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are very simple proofs by induction (of auxiliary lemmas) and case analysis, in
order to better guide SMT solvers.

From our experience developing this gallery of verified programs, we believe
the required annotation effort is reasonable, although non-negligible. Some case
studies, namely the Heap implementations, feature a considerable amount of lines
of GOSPEL specification. However, these are classic definitions (e.g., minimum
element) and results (e.g., the root of the Heap is the minimum element), which
are easily adapted to any variant of Heap implementation.

5 Related Work

Automated Deductive Verification. One can cite Why3, F* [1], Dafny [23], and
Viper [24] as successful automated deductive verification tools. Formal proofs are
conducted in the proof-aware language of these frameworks, and then executable
reliable code can be automatically extracted. In the Cameleer project, we chose
to develop a verification tool that accepts as input a program written directly in
OCaml, instead of a dedicated proof language. This obviates the need to re-write
entire OCaml codebases (e.g., libraries), just for the sake of verification.

Regarding tools that tackle the verification of programs written in main-
stream languages, one can cite Frama-C [21] (for the C language), VeriFast [20]
(C and Java), Nagini [10] (Python), Leon [22] (Scala), Spec# [3] (C#), and
Prusti [2] (Rust). Despite the remarkable case studies verified with these tools,
programs written in the these languages can quickly degenerate into a night-
mare of pointer manipulation and tricky semantics issues. We argue the OCaml
language presents a number of features that make it a better target for formal
verification.

Finally, language-based approaches offer an alternative path to the verifica-
tion of software. Liquid Haskell [34] extends standard Haskell types with Liquid
Types [29], a form of refinement types [30], in order to prove properties about
realistic Haskell programs [33]. In this approach, verification conditions are gen-
erated and discharged during type-checking. This is also its major weakness: in
order to remain decidable, the expressiveness of the refinement language is hin-
dered. In Cameleer, the use of GOSPEL allows us to provide rich specification to
relevant case studies, while still achieving good proof automation results.

Deductive Verification of OCaml Programs. Prior to our work, CFML [4] and
coq-of-ocaml [8] were the only available tools for the deductive verification of
OCaml-written code, via translation into the Coq proof language. On one hand,
CFML features an embedding of a higher-order Separation Logic in Coq, together
with a characteristic formulae generator. On the other hand, coq-of-ocaml
compiles non-mutable OCaml programs to pure Gallina code. These two tools
have been successfully applied to the verification of non-trivial case studies, such
as the correctness and worst-case amortized complexity bound of cycle detection
algorithm [19], as well as part of the Tezos’ blockchain protocol6. However, they

6 https://clarus.github.io/coq-of-ocaml/examples/tezos/.

https://clarus.github.io/coq-of-ocaml/examples/tezos/
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still require a tremendous level of expertise and manual effort from users. Also, no
behavioral specification is provided with the OCaml implementation. The user
must write specification at the level of the generated code, which breaks our
vision that implementation and specification must coexist and evolve together.

The VOCaL project aims at developing a mechanically verified OCaml
library [6]. One of the main novelties of this project is the combined use of
three different verification tools: Why3, CFML, and Coq. The GOSPEL specifi-
cation language was developed in the scope of this project, as a tool-agnostic
language that could be manipulated by any of the three mentioned frameworks.
Up to this point, the three mentioned tools were only using GOSPEL for inter-
face specification, and not as a proof language. We believe the Cameleer approach
nicely complements the existing toolchains [13] in the VOCaL ecosystem.

6 Conclusions and Future Work

In this paper we presented Cameleer, a tool for automated deductive verification
of OCaml programs, with bounded mutability. We use the recently proposed
GOSPEL language, which we also extended in the scope of this work, in order to
attach formal specification to an OCaml program. Cameleer fulfills a gap in the
OCaml community, by providing programmers with a tool to directly specify and
verify their implementations. By departing from the interactive-based approach,
we believe Cameleer can be an important step towards bringing more OCaml
programmers to include formal methods techniques in their daily routines.

The core of Cameleer is a translation from OCaml annotated code into
WhyML. The two languages share many common traits (both in their syntax and
semantics), so it makes sense to target this intermediate verification language in
the first major iteration of Cameleer. We have successfully applied our tool and
approach to the verification of several case studies. These include implementa-
tions issued from existing libraries, and scale up to data structures implemented
as functors and tricky effectful computations. In the future, we intend to apply
Cameleer to the verification of even larger case studies.

What We Do Not Support. Currently, we target a subset of the OCaml language
which roughly corresponds to caml-light, with basic support for the module
language (including functors). Also, WhyML limits effectful computations to the
cases where alias is information statically known, which limits our support for
higher-order functions and mutable recursive data structures. Adding support for
the objective layer of the OCaml language would require a major extension to the
GOSPEL language and a redesign of our translation into WhyML. Nonetheless,
Why3 has been used in the past to verify Java-written programs [15], so in
principle an encoding of OCaml objects in WhyML is possible.

We do not support some of the more advanced type features in OCaml, namely
Generalized Algebraic Data Types (GADTs) and polymorphic variants. One
way to support such constructions would to be extend the type system of Why3
itself, which would likely mean a considerable redesign of the WhyML language.
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Another possible route is to extend the core of Cameleer with the ability to
translate OCaml code into other, richer, verification frameworks.

Interface with Viper and CFML. In order to augment the class of OCaml programs
we can treat, we plan on extending Cameleer to target the Viper infrastructure
and the CFML tool. On one hand, Viper is an intermediate verification language
based on Separation Logic but oriented towards SMT-based software verification,
allowing one to automatically verify heap-dependent programs. On the other
hand, the CFML tool allows one to verify effectful higher-order programs. We
plan on extending the CFML translation engine, in order to take source-code
level GOSPEL annotations into account. Since it targets the rich proof language
and type system of Coq, it can in principle be extended to reason about GADTs
and other advanced OCaml features. Even if it relies on an interactive proof
assistant, CFML provides a comprehensive tactics library that eases proof effort.

Our ultimate goal is to grow Cameleer to a verification tool that can simul-
taneously benefit from the best features of different intermediate verification
frameworks. Our motto: we want Cameleer to be able to verify parts of OCaml
code using Why3, others with Viper, and some very specific functions with CFML.
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Abstract. Multi-threaded unit tests for high-performance thread-safe
data structures typically do not test all behaviour, because only a single
scheduling of threads is witnessed per invocation of the unit tests. Model
checking such unit tests allows to verify all interleavings of threads. These
tests could be written in or compiled to LLVM IR. Existing LLVM IR
model checkers like divine and Nidhugg, use an LLVM IR interpreter
to determine the next state. This paper introduces llmc, a multi-core
explicit-state model checker of multi-threaded LLVM IR that translates
LLVM IR to LLVM IR that is executed instead of interpreted. A test
suite of 24 tests, stressing data structures, shows that on average llmc
clearly outperforms the state-of-the-art tools divine and Nidhugg.

1 Introduction

High-performance software often uses thread-safe data structures to allow mul-
tiple threads access to the data, without corrupting it. Unit tests for such data
structures typically do not test all behaviour, because the thread scheduler of
the run-time environment non-deterministically chooses only a single interleav-
ing. Thus, only a single trace is witnessed each time the unit test is invoked. If
we would model check [1] these unit tests, we can witness all possible traces by
exploring all thread schedules. Because it does not depend on the run-time envi-
ronment, model checking can become part of a continuous integration pipeline,
enabling push-button verification of multi-threaded software.

These thread-safe data structures can be written in or compiled to LLVM IR,
the intermediate representation of the LLVM Project [2]. The LLVM Project is
a collection of modular and reusable compiler and toolchain technologies. Many
front-ends for LLVM IR exist, for example for C, C++, Java, Ruby, and Rust,
potentially allowing an LLVM IR model checker to be usable for many languages.

1.1 Related Work

Model checkers that operate on LLVM IR already exist, for example divine,
Nidhugg, RCMC and LLBMC. divine [3] is a stateful multi-core model checker
of multi-threaded LLVM IR. It has many features such as capturing I/O during
model checking, SC and TSO memory models, library support such as libc and
libpthread. Input programs are linked with divine’s operating system layer,
DiOS, and are interpreted as a whole on the DiVM virtual machine.
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 690–703, 2021.
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divine detects memory operations to thread-private memory, by traversing
the heap on-the-fly and recognizing if a memory-object is either known only to
one thread or to multiple [4]. In the former case, memory operations to that
memory-object can be collapsed, i.e. joined with the previous instruction.

Nidhugg [5] is a stateless multi-core model checker of multi-threaded LLVM
IR that uses an LLVM IR interpreter. It features a sophisticated partial-order
reduction, rfsc [6], that categorizes traces according to which read reads from
which write and traverses only one trace in each category. In practice this reduc-
tion is quite powerful. However, Nidhugg comes with a caveat: because Nidhugg
is stateless, common prefixes of traces are traversed once per trace instead of
once in total. This down-side of a stateless approach becomes more pronounced
with longer and more often occurring common traces. Moreover, Nidhugg might
not terminate in the presence of infinite loops.

RCMC [7] is also a stateless LLVM IR model checker. During execution within
its LLVM IR interpreter, it keeps track of a happens-before graph of all observed
memory operations. Using this, RCMC can determine the possible values a read
can observe, without simply executing all interleavings of all threads. Unlike
Nidhugg, it does not support heap memory and is only released in binary form.

CBMC [8] is a bounded model checker for C and C++ programs, using SMT
solving to check for memory safety, exceptions, undefined behaviour and asser-
tions. Loops and recursion are a problem for CBMC when their bound cannot
be determined: one needs to set an upper bound on the number of unwindings.

LLBMC [9] is similar to CBMC, using SMT-solving to find bugs, but only
for single-threaded C/C++ programs and it operates on LLVM IR.

Other, less related tools include SMACK [10], SeaHorn [11] and KLEE [12].

1.2 Contribution

This paper introduces llmc 0.2, a stateful multi-core model checker of multi-
threaded LLVM IR. Instead of using an LLVM IR interpreter like divine,
Nidhugg and llmc 0.1 [13], it transforms input LLVM IR to LLVM IR that
implements the dmc api, the next-state interface to the model checker dmc [14].
We call this transformation process ll2dmc and combined with dmc (Fig.
1), it allows for up to three orders of magnitude higher throughput (states/s)
than divine. At present, llmc lacks sophisticated state space reductions, caus-
ing state space sizes of roughly two orders of magnitude larger than divine. We
compared llmc to divine and Nidhugg using a test suite covering various data
structures. Overall, despite the lack of sophisticated reductions, llmc is on aver-
age an order of magnitude faster than divine and ∼3.8x faster than Nidhugg.
Additionally, llmc is able to compute the state spaces of the tests where divine
or Nidhugg fail.

Fig. 1. The flow of how an LLVM IR input program is verified in llmc.
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2 LLMC: Low-Level Model Checker

This section explains how the transformation process (ll2dmc) transforms the
input LLVM IR of a program to LLVM IR that implements the dmc api. llmc
supports LLVM IR compiled from C and C++, by handling a number of builtins
(e.g. __atomic_* for atomic memory operations), part of libpthread (for thread
support), libc (e.g. for memory allocation) and global constructors.

2.1 DMC Model Checker

Fig. 2. DMC model checker

The model created by ll2dmc is given to dmc
to explore. Dmc interacts with the model via the
dmc api (NextState API and dtree API com-
bined) as illustrated in Fig. 2: after requesting
the initial state from the model, dmc continues
to request successor states, until the state space
has been generated. A state is a vector of 32-bit
integers; two states need not be of the same length.

The states are stored in the concurrent com-
pression tree dtree [14], allowing lossless com-
pression, fast insertion and duplicate detection of
states. When inserted, states are given a unique
StateID. A StateID can be stored in states as
well, thus allowing the creation of a DAG of states: a root-state and sub-states.
Additionally, dtree allows incremental updates to a state, without having the
actual contents of the state and it allows partial reconstruction of states. This
delta interface uses the StateID to identify states and can avoid needless copy-
ing of entire states, increasing performance. Dmc exposes these dtree features
as part of the dmc api [14].

2.2 Input Language to LL2DMC: LLVM IR

To understand how llmc handles input LLVM IR [2], we briefly explain it here.
LLVM IR supports control flow by way of basic blocks. Basic blocks are a list of
instructions that execute sequentially. The last instruction of a basic block is a
terminator instruction, such as a branch (jump) instruction or return statement.

LLVM IR uses single static assignment form for register values. To support
data flow depending on control flow, φ-nodes exist. These nodes are instructions
at the beginning of a basic block that take a value depending on the basic block
from which was jumped to the basic block containing the φ-nodes.

2.3 Output of LL2DMC: Model Implementing DMC API

The output of ll2dmc is a model that implements the NextState API part
of the dmc api of the model checker dmc [14]. The NextState API requires
two interfaces from a model: one to communicate the initial state and one to
generate next states, given a state.
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The initial state of a model generated by ll2dmc is as if one just started
the program: registers are unused, global memory is initialized to 0 and a call to
the global constructor (@llvm.global_ctors) is set up. Global constructors are
functions that are called before main, which are used to initialize memory and
miscellaneous initialization, such that the executable is set up properly before
main is invoked. Having the initial state in this manner, allows the global con-
structor to be part of the state space and thus be checked as well.

Starting with the initial state, dmc will keep asking the model to generate
the next states for a given state, by invoking the next-state interface of the
model, until there are no more new states of which to request next states. Given
a state, the next-state interface determines the states reachable from that state.
In the case of a model generated by ll2dmc, first the global constructors of the
modelled program are explored, thus faults in global constructors are detected.
When the global constructors are completed, a call to main is set up. At this
point, the exploration is performed until no new states are visited.

2.4 State Space Exploration

This section describes the next-state function and how it is generated from LLVM
IR. Figure 3 describes what a state looks like. A state contains information not
unlike what an operating system keeps track of [15]. All instructions are mapped
to a unique index, such that the PC (program counter) uniquely identifies the
current position in code. The field Thread Results holds the return values of
finished threads; the field #threads specifies the number of threads in the current
state. The remainder of the state constitutes a list of per-thread data.

Each thread has its own PC and can independently manipulate it by function
calls or branching. Status fields are used to indicate whether the thread/program
is running, done or failed. Each thread has its own set of Registers , the current
state of LLVM IR registers. The size of Registers is determined by the function
requiring the largest number of LLVM IR registers. Function calls manipulate
these registers and the list of stack frames described by Previous frame .

A Field is a StateID to a sub-state, as described in Sect. 2.1. The separation
into a root-state and sub-states allows sub-states to grow and the state storage
component of dmc, dtree, to compress them using tree compression [14]. It also
allows the use of the delta interface: a write to memory can be simply translated

Fig. 3. A description of the state used by llmc.
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to a single, efficient call, taking the current Memory index, the offset to write to
and the new data. The resulting index can be written to Memory .

A single LLVM IR instruction in the program is translated to many LLVM IR
instructions in the model. We will distinguish LLVM IR registers in the model
from registers in the source program by calling the former model-registers. In
general, a single LLVM IR instruction is translated to a single step with three
phases: In the Preamble phase, operands to the source LLVM IR instruction
are remapped to model-registers and loaded from Registers or Memory . In the
Action phase, the source LLVM IR instruction is cloned, with the operands
remapped to the LLVM IR model-registers set up during the Preamble phase.
In the Epilogue phase, if the source LLVM IR instruction assigns a value to a
register, the value returned by the cloned instruction is written to Registers .

Listing 1 illustrates how a step is performed as part of the next-state function.
Multiple steps can be performed as part of the same transition (line 8), as long
as the changes are local to the thread (line 4). This is explained in more detail
in Sect. 2.5. The step function is called for every thread in the state vector.

2.4.1 Register Manipulation
Note that the Registers are not separated into a sub-state, like Memory . We
chose this such that simple register manipulating LLVM IR instructions would
have no need for an indirection and directly translate to an identical instruction,
with its operands mapped such that they are loaded from the Registers and the
return value of the instruction written back to the corresponding register. This
allows us to trivially collapse such instructions, combining the Preamble phases,
requiring dependencies only to be loaded once.

2.4.2 Memory Instructions
Memory instructions such as loads and stores can be directly mapped to the
delta interface, reading or writing only a part of the Memory sub-state. There is
no distinction between memory allocated on the stack (alloca) and on the heap

Listing 1 In the next-state function, the step function is called for each thread.

1 void step(StateVector sv, int threadID)
2 bool onlyLocal = true; # true while handling commutative instructions
3 bool emit = false; # set to true when new state is to be emitted
4 while(sv.threads[threadID].pc > 0 and onlyLocal)
5 switch(sv.threads[threadID].pc)
6 case 0: break; # not running, do nothing
7 case SomePC: # PC of first instruction of group
8 # statically collapsed instructions: preamble, action, epilogue
9 # sv.threads[threadID].pc, onlyLocal and emit may change

10 ...
11 if(emit) MC.insert(sv); # emit new state if needed
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(malloc): both allocate memory by growing the Memory sub-state. The returned
pointer describes which thread created the memory and the offset within the
sub-state. Any thread can write to and read from any such memory location.
At present, memory cannot be freed, so free has no effect. Because of the tree
compression, this has no detrimental effect on memory usage, but does mean
llmc currently does not detect free-related bugs.

2.4.3 Branching, Function Calls and Threading
To support control flow in llmc, the PC can be changed to the index assigned to
the first instruction in the target basic block. If the target basic block contains
φ-nodes, those registers are updated to the value corresponding to the basic
block we are branching from.

Function calls set up a new stack frame with the current Registers , PC and
where to write the return value, then pushes it to the linked list of frames pointed
to by Previous frame . A return from a function pops the top frame from the
list of frames, copies the Registers into the state vector, updates the PC and
writes the return value into the right register. There is no bound on the number
of frames; the last frame has Previous frame set to 0, indicating no next frame.

Threads are created (pthread_create) by enlarging the root state with
enough space to fit another thread and incrementing #threads . When a thread
is done, it is marked as such, but not removed from the state vector. This is to
retain the memory allocated by a thread. Due to the compression of dtree, it has
little impact on the memory foot print of the state space. The return value from
the thread is added to Thread results , where it can be read (pthread_join).

2.5 State Space Reduction

Instructions that only have an effect local to a thread do not change the
behaviour of another thread. Such instructions are commutative; their respective
ordering is not relevant. Thus, such instructions can be collapsed with the pre-
vious or next instruction. For example, instructions that read and write only to
registers of a thread are local instructions and do not influence another thread.
Branching and function calls are other such commutative instructions.

llmc collapses commutative instructions statically as well as dynamically. The
latter is needed to collapse instructions after conditional control flow, because
statically the condition is unknown. On-the-fly, the condition is evaluated, the
branch taken and it is determined if the next instruction can be collapsed.

2.5.1 Thread-Private Memory llmc collapses all such commutative
instructions, with the important exception of memory operations on memory
only accessible to the current thread (memory operations to memory accessible
to other threads are never collapsed). This requires knowledge on what memory
each thread can access, which llmc currently does not track. divine imple-
ments [4] this by traversing the memory graph in every state, using a run-time



696 F. I. van der Berg

type system to identify pointers and how to follow them (edges); each allocation
yields a node.

Nidhugg uses a partial-order-reduction [6] that takes into account from which
write a value read by a read originates. In this process, memory operations to
thread-private memory are indeed collapsed, because a read can read only a
single value: the last value written by the thread itself. The current version of
llmc does not feature an on-the-fly state space reduction for memory operations.
Instead, we preprocess the input LLVM IR and statically annotate memory oper-
ations that cannot be proven to be local to a thread. While this does reduce the
state space, because many operations are to stack variables that remain thread-
private, it can only approach the on-the-fly reductions of divine and Nidhugg.

3 Evaluation

Table 1 shows a feature comparison between the tools mentioned in Sect. 1.1.
The table shows that RCMC and CBMC do not support dynamic memory in
the presence of multiple threads. This limits their usability for our use case,
model checking multi-threaded tests of data structures, since numerous thread-
safe data structures use dynamic memory. Furthermore, RCMC, CBMC and
LLBMC do not support infinite loops and only have limited support for spin-
locks. More complex infinite loops like appending a new node in the Michael-
Scott queue [17] using compare-and-swap are not supported. Thus, we focus on
an experimental comparison between llmc, divine and Nidhugg on execution
time, memory footprint of the state space and scalability across multiple threads,
since all three tools support using multiple threads for model checking.

Table 1. A feature comparison between the tools mentioned in Sect. 1.1.
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divine [3] 4.4.2 (5494190) LLVM IR STa ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Nidhugg [5] 0.2 (45664bc) LLVM IR STPWAa ✓ ✓ ✓ ∼d ✓ ✓ ✓ ✓ ✓ ✓

RCMC [7] n/a LLVM IR (W)RC11 ✓ ∼b ∼c ∼d ✓ ✓ ✓

CBMC [8] 5.10 (ef00f47) C/C++ STPa ✓ ∼b ∼c ∼d ✓ ✓ ✓ ✓

LLBMC [9] 2013.1 LLVM IR n/a ✓ ∼c ∼d ✓ ✓ ✓

LLMC [13] 0.1 LLVM IR STPa ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LLMC 0.2 (a732c63) LLVM IR Sa ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
a Models [16]: S) Sequentially consistent; T) TSO; P) PSO; W) POWER; A) ARM.
b Not supported in combination with threads.
c Only trivial spin-locks are supported.
d Threads within global constructors not supported.
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We ran our experiments on a Dell R930 with 4 E7-8890-v4 CPUs totaling 96
cores and 2TiB RAM. All sources were compiled using GCC 9.3.0.

3.1 Test Suite

We tested the tools using four real-world concurrent LLVM IR data structures,
one concurrent algorithm and one protocol. Sources for all tests are available
online1. We instantiate the tests with various combinations of threads and num-
ber of elements inserted, processed or dequeued. All combinations are listed
later, in Table 2. These six tests cover different classes of problem types, differ-
ent shapes of state spaces, and serve to illustrate the strengths and weaknesses
of the tools:

– SortedLinkedList illustrates a concurrency problem where a number of
elements are inserted by a number of threads, with a single outcome: all paths
converge to one state. Elements can be inserted throughout the chain.

– LinkedList , similar to SortedLinkedList , but with various outcomes,
because the list is not sorted. It has high contention on the head of the chain.

– Prefixsum is a concurrent approach to determine all sums up to any index
in an array. It highlights the ability of the model checker to determine thread-
private memory, because the two-pass prefixsum algorithm actually partitions
the problem into separate per-thread problems that require no communication
and one single-threaded part.

– Hashmap illustrates a concurrency problem where a key is inserted using
compare-and-swap, followed by either atomically storing the value or busy-
waiting on the value, if the key already exists (findOrPut [18]). The latter
involves atomically loading the value until a non-empty value is loaded.

– MSQ is the well-known Michael-Scott queue [17]. It is similar to LinkedList
, with the addition of dequeue operations, which may return nothing when

the queue is empty. The dequeuer can be made blocking by calling dequeue
until it successfully dequeues an element; this is done in 2 and .

– Philosophers is the Dining Philosophers Problem [19], a commonly used
protocol to illustrate issues in concurrent resource management. It involves
P philosophers and P forks; each philosopher grabs their left fork, then the
right, then puts the right fork back, then the left. This is repeated R times.
The crux is that each fork is a shared resource for two philosophers. For our
tests suite, this illustrates contention on multiple elements in a single array.

These tests highlight the strengths and weaknesses of each tool using real-
world data structures and algorithms. The well-known Michael-Scott queue
for example is used in many software packages. They reflect different kinds of
state spaces: LinkedList focuses on “wide” state spaces, with many end states;
SortedLinkedList examples state spaces that go wide, but converge into a
single end state; Prefixsum highlights the model-checker’s ability to detect
thread-local memory: model checkers that can detect this have a narrow state
space, otherwise a model checker will explore all interleavings.
1 https://github.com/bergfi/llmc/tree/cav2021/tests/performance.

https://github.com/bergfi/llmc/tree/cav2021/tests/performance
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3.2 Observations and Considerations

For each model, we verified that all expected end states were reachable. For
example for 1 , we manually verified that all 8!/(4!4!) = 70 possible outcomes of
the linked list were generated.

We witnessed divine returning varying state space sizes across different runs
on the same test when using multiple threads, indicating a concurrency problem.
It also occasionally crashed, most often when using 192 threads. Even though this
indicates the answers divine gives might not be correct, we opted to include the
results, assuming they would at least provide an indication of the performance.

Furthermore, we did run RCMC on a number of tests. RCMC often runs out
of memory before crashing; likely the result of an infinite loop. For even some
small tests, it could not finish within 100x the time other tools needed.

3.3 Experimental Results

Figure 4 shows the results of llmc compared to divine on state space explo-
ration time (4a) and Nidhugg on wall-clock time (4b) when applied to the models
from Table 2. These graphs indicate relative performance: the uppermost (blue)
line for example indicates the line where llmc is 100x faster. Figure 4c compares
llmc (lower data points) and divine (upper data points) on the memory com-
pression of the state spaces they generate. Figure 4d compares llmc (upper data
points) and divine (lower data points) on the throughput of states per second.

3.3.1 LLMC vs DIVINE
Looking at the results in Fig. 4a, we see that llmc outperforms divine by at
least 5x in all test cases except Prefixsum and two SortedLinkedList tests.
llmc suffers in the Prefixsum tests because of the lack of dynamic thread-
private memory detection. This results in significantly larger state spaces, up to
three orders of magnitude for 4 , as seen in Fig. 4c.

Comparing the sorted and non-sorted linked list cases, we notice llmc
is able to outperform divine in the non-sorted cases by higher factors than the
sorted cases. This difference can be explained by that the two tools generate more
similarly sized state spaces for non-sorted cases, but not for sorted cases.
For example, llmc generates ∼14.4x more states than divine for 4 , but only
∼2.2x more for 4 . This highlights llmc is lacking a reduction technique, which
works for divine in the sorted cases, but not as well for the non-sorted cases.

For the two Hashmap cases that both tools completed, llmc outperforms
divine by 8.4x and 157x. Since the hash map is a single global memory object all
threads can access, llmc does not have the disadvantage of lacking a dynamic
thread-private memory reduction. divine crashed for the two other test cases.

divine is unable to complete two of the four Michael-Scott queue tests,
crashing out, the others are verified 86x and 272x faster by llmc than by divine.

As the complexity of the Philosopher test cases increases, llmc increasingly
outperforms divine. The two tools generate similarly sized state state spaces,
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Fig. 4. All experimental results, see Table 2 for a legend. Results above the DNF line
mean the tool on the y-axis Did Not Finish, not supporting the test.

because the high contention leaves relatively few memory instructions to be
collapsed by divine’s reduction, thus levelling the playing field.

In summary, llmc is able to outperform divine in most of the test cases,
mostly between 10x–100x faster, with an outlier as high as 2450x faster ( ).
This highlights the performance difference, as on average llmc visits ∼1.4M

Table 2. The six tests with various combinations of number of threads and ele-
ments, totaling 24 input programs. MSQ configurations describe a combination of
Enqueuers and ([B]locking) Dequeuers in parallel (‖) and sequential (;).
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states per second (∼8.5M states/s for ), where divine visits ∼4k states per
second (Fig. 4d).

3.3.2 LLMC vs Nidhugg
Moving on to Fig. 4b, we notice Nidhugg is unable to complete any of the
Michael-Scott queue , Hashmap or Philosopher test cases. This is because
Nidhugg supports neither the __atomic_* instructions needed for the Michael-
Scott queue nor the spin-lock used in the Hashmap and Philosopher
tests. We tried Nidhugg’s transformation capabilities to transform the spin-lock
to an assume statement, thus limiting the traces traversed to the ones where
the condition of the spin-lock holds, but the generated LLVM IR was invalid
and could not be used. Additionally, we tried an experimental version (7b8be8a)
with a changelog containing potential fixes to no avail.

We see that Nidhugg outperforms llmc in the Prefixsum test cases con-
sistently by multiple orders of magnitude: Nidhugg traverses only a single trace
for each of these test cases. This highlights the strength of Nidhugg in its ability
to conclude that each read can only read a single value. Without this technique,
llmc needs to exhaustively go through all interleavings of the threads.

For the linked list, sorted and non-sorted , we see that as the cases get
bigger, llmc is able to outperform Nidhugg. This highlights the disadvantage
of stateless model checking: bigger state spaces tend to cause more common
prefixes of paths, which causes more work for stateless model checking.

3.3.3 Scalability

Fig. 5. Scalability comparison of
divine , llmc , Nidhugg .

Figure 5 shows the results for various num-
ber of threads for SortedLinkedList3.9 3 ,
chosen for the performance similarity of
the three tools. The graph shown is typ-
ical: other test expose similar patterns as
the one we highlight here. divine does
not scale well in the number of threads:
its peak performance lies typically around
4 or 8 threads, confirmed by the divine
developers2. Nidhugg expectedly does scale
very well, as threads just execute a spe-
cific trace, with hardly and communication.
llmc shows some scalability, but a ∼4x
improvement using 192 threads leaves a lot
of room for improvement3.

2 https://divine.fi.muni.cz/trac/ticket/44.
3 https://github.com/bergfi/dmc/issues/1.

https://divine.fi.muni.cz/trac/ticket/44
https://github.com/bergfi/dmc/issues/1
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3.3.4 DMC and DTREE
We highlight one aspect of the performance of llmc: the underlying model
checker dmc and its storage component dtree [14]. In Figure 4c, we notice
that although llmc on average generates state spaces of an order of magnitude
larger compared to divine, it uses two orders of magnitude less memory per
state, due to dtree. Furthermore, dtree allows to apply a delta to a state
without reconstructing the entire state. Since states are typically ∼2kiB in these
tests, this significantly avoids copying memory and increases performance.

4 Conclusion

We have introduced llmc 0.24, the multi-threaded low-level model checker that
model checks software via LLVM IR. It translates the input LLVM IR into a
model LLVM IR that implements the dmc api, the API of the high-performance
model checker dmc. This allows llmc to execute the model’s next-state func-
tion, instead of interpreting the input LLVM IR, like divine and Nidhugg. We
compared llmc to these tools using a test suite of 24 tests, covering various
data structures. llmc outperforms divine and Nidhugg up to three orders of
magnitude, while other tests have shown areas for improvement. Averaging the
results of all completed tests, llmc is an order of magnitude faster than divine
and ∼3.4x faster than Nidhugg. divine and Nidhugg are unable to complete 4
and 12 tests, respectively, due to crashing or not supporting infinite loops or
__atomic_* library calls.

Future Work. llmc will benefit most from a state space reduction technique that
collapses memory instructions to thread-private memory. We aim to integrate
this as part of a memory emulation layer that also adds support for relaxed
memory models. Even without the dynamic reduction technique, the results
show that llmc in its current form is a high performing tool to model check
software.
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Abstract. A program verifier produces reliable results only if both the
logic used to justify the program’s correctness is sound, and the imple-
mentation of the program verifier is itself correct. Whereas it is common
to formally prove soundness of the logic, the implementation of a veri-
fier typically remains unverified. Bugs in verifier implementations may
compromise the trustworthiness of successful verification results. Since
program verifiers used in practice are complex, evolving software systems,
it is generally not feasible to formally verify their implementation.

In this paper, we present an alternative approach: we validate suc-
cessful runs of the widely-used Boogie verifier by producing a certificate
which proves correctness of the obtained verification result. Boogie per-
forms a complex series of program translations before ultimately generat-
ing a verification condition whose validity should imply the correctness
of the input program. We show how to certify three of Boogie’s core
transformation phases: the elimination of cyclic control flow paths, the
(SSA-like) replacement of assignments by assumptions using fresh vari-
ables (passification), and the final generation of verification conditions.
Similar translations are employed by other verifiers. Our implementa-
tion produces certificates in Isabelle, based on a novel formalisation of
the Boogie language.

1 Introduction

Program verifiers are tools which attempt to prove the correctness of an imple-
mentation with respect to its specification. A successful verification attempt is,
however, only meaningful if both the logic used to justify the program’s correct-
ness is sound, and the implementation of the program verifier is itself correct. It
is common to formally prove soundness of the logic, but the implementations of
program verifiers typically remain unverified. As is standard for complex software
systems, bugs in verifier implementations can and do arise, potentially raising
doubts as to the trustworthiness of successful verification results.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 704–727, 2021.
https://doi.org/10.1007/978-3-030-81688-9_33
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One way to close this gap is to prove a verifier’s implementation correct.
However, such a once-and-for-all approach faces serious challenges. Verifying
an existing implementation bottom-up is not practically feasible because such
implementations tend to be large and complex (for instance, the Boogie ver-
ifier [29] consists of over 30K lines of imperative C# code), use a variety of
libraries, and are typically written in efficient mainstream programming lan-
guages which themselves lack a formalisation. Alternatively, one could develop
a verifier that is correct by construction. However, this approach requires the
verifier to be (re-)implemented in an interactive theorem prover (ITP) such as
Coq [14] or Isabelle [24]. This precludes the free choice of implementation lan-
guage and paradigm, exploitation of concurrency, and possibility of tight inte-
gration with standard compilers and IDEs, which is often desirable for program
verifiers [4,5,13,26]. Both verification approaches substantially impede software
maintenance, which is problematic since verifiers are often rapidly-evolving soft-
ware projects (for instance, the Boogie repository [1] contains more than 5000
commits).

To address these challenges, in this work we employ a different approach.
Instead of verifying the implementation once and for all, we validate specific
runs of the verifier by automatically producing a certificate which proves the
correctness of the obtained verification result. Our certificate generation formally
relates the input and output of the verifier, but does so largely independently of
its implementation, which can freely employ complex languages, algorithms, or
optimisations. Our certificates are formal proofs in Isabelle, and so checkable by
an independent trusted tool; their guarantees for a certified run of the verifier
are as strong as those provided by a (hypothetical) verified verifier.

We apply our novel verifier validation approach to the widely-used Boogie
verifier, which verifies programs written in the intermediate verification language
Boogie. The Boogie verifier is a verification condition generator : it verifies pro-
grams by generating a verification condition (VC), whose validity is then dis-
charged by an SMT solver. Certifying a verifier run requires proving that valid-
ity of the VC implies the correctness of the input program. Certification of the
validity-checking of the VC is an orthogonal concern; our results can be combined
with work in that area [11,15,19] to obtain end-to-end guarantees.

Like many automatic verifiers, Boogie is a translational verifier : it performs
a sequence of substantial Boogie-to-Boogie translations (phases), simplifying the
task and output of the final efficient VC computation [6,18]. The key challenges
in certifying runs of the Boogie tool are to certify each of these phases, includ-
ing final VC generation. In particular, we present novel techniques for making
the following three key phases (and many smaller ones) of Boogie’s tool chain
certifying:

1. The elimination of loops (more precisely, cycles in the CFG) by reducing the
correctness of loops to checking loop invariants (CFG-to-DAG phase)

2. The replacement of assignments by (SSA-style) introduction of fresh variables
and suitable assume statements (passification phase)
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3. The final generation of the VC, which includes the erasure and logical encod-
ing of Boogie’s polymorphic type system [33] (VC phase).

The certification of such verifier phases is related to existing work on com-
piler verification [34] and validation [8,41,42]. However, the translations and the
certified property we tackle here are fundamentally different from those in com-
pilers. Compilers typically require that each execution of the target program
corresponds to an execution of the source program. In contrast, the encoding of
a program in a translational verifier typically has intentionally more executions
(for instance, allows more non-determinism). Moreover, translational verifiers
need to handle features not present in standard programming languages such as
assume statements and background theories. Prior work on validating such veri-
fier phases has been limited in the supported language and extent of the formal
guarantee; we discuss comparisons in detail in Sect. 8.

Contributions. Our paper makes the following technical contributions.

1. The first formal semantics for a significant subset of Boogie (including axioms,
polymorphism, type constructors), mechanised in Isabelle.

2. A validation technique for two core program-to-program translations occur-
ring in verifiers (CFG-to-DAG and passification).

3. A validation technique for the VC phase, handling polymorphism erasure and
Boogie’s type system encoding [31], for which no prior formal proof exists.

4. A version of the Boogie implementation that produces certificates for a sig-
nificant subset of Boogie.

Making the Boogie verifier certifying is an important result, reducing the
trusted code base for a wide variety of verification tools implemented via encod-
ings into Boogie, e.g. Dafny [31], VCC [13], Corral [28], and Viper [35]. Moreover,
the technical approach we present here can in future be applied to the certifica-
tion of the translations performed by these tools, and those based on comparable
intermediate verification languages such as Frama-C [26] and Krakatoa [17] based
on Why3 [16] and Prusti [4] and VerCors [10] based on Viper [35].

Outline. Section 2 explains at a high-level, how our validation approach is struc-
tured for the different phases. Section 3 introduces a formal semantics for Boogie.
Sections 4, 5 and 6 present our validation of the CFG-to-DAG, passification, and
VC phases, respectively. Section 7 evaluates our certificate-producing version of
Boogie. Section 8 discusses related work. Section 9 concludes. Further details are
available in our accompanying technical report (hereafter, TR) [37].

2 Approach

A Boogie program consists of a set of procedures, each with a specification and
a procedure body in the form of a (reducible) control-flow-graph (CFG), whose
blocks contain basic commands; we present the formal details in the next section.
Boogie verifies each procedure modularly, desugaring procedure calls according
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Fig. 1. Key phases of verification in Boogie and their certification. The solid edges show
Boogie’s transformations on a procedure body; each node Gi represents a control-flow-
graph. Our final certificate (dashed edge) is constructed by formally linking the three
phase certificates represented by the dotted edges. Each of the three phase certificates
also incorporate extra smaller transformations that we do not show here.

to their specifications. Verification is implemented via a series of phases: program-
to-program translations and a final computation of a VC to be checked by an
SMT solver. Our goal is to formally certify (per run of Boogie) that validity of
this VC implies the correctness of the original procedure.

To keep the complexity of certificates manageable, our technical approach is
modular in three dimensions: decomposing our formal goal per procedure in the
Boogie program, per phase of the Boogie verification, and per block in the CFG
of each procedure. This modularity makes the full automation of our certification
proofs in Isabelle practical. In the following, we give a high-level overview of this
modular structure; the details are presented in subsequent sections.

Procedure Decomposition. Boogie has no notion of a main program or an overall
program execution. A Boogie program is correct if each of its procedures is
individually correct (that is, the procedure body has no failing traces, as we
make precise in the next section). Boogie computes a separate VC for each
procedure, and we correspondingly validate the verification of each procedure
separately.

Phase Decomposition. We break our overall validation efforts down into per-
phase sub-problems. In this paper, we focus on the following three most substan-
tial and technically-challenging of these sequential phases, illustrated in Fig. 1.
(1) The CFG-to-DAG phase translates a (possibly-cyclic) CFG to an acyclic CFG
(cf. Sect. 4). This phase substantially alters the CFG structure, cutting loops
using annotated loop invariants to over-approximate their executions. (2) The
passification phase eliminates imperative updates by transforming the code into
static single assignment (SSA) form and then replacing assignments with con-
straints on variable versions (cf. Sect. 5). Both of these phases introduce extra
non-determinism and assume statements (which, if implemented incorrectly could
make verification unsound by masking errors in the program). (3) The final VC
phase translates the acyclic, passified CFG to a verification condition that, in
addition to capturing the weakest precondition, encodes away Boogie’s polymor-
phic type system [33].

We construct certificates for each of these key phases separately (depicted
by the blue dotted lines in Fig. 1). For each phase, we certify that if the target
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of the translation phase is correct (a correct Boogie program for the first two
phases; a valid VC for the VC phase) then the source (program) of the phase is
correct. This modular approach lets us focus the proof strategy for each phase
on its conceptually-relevant concerns, and provides robustness against changes
to the verifier since at most the certification of the changed phases may need
adjustment. Logically, our per-phase certificates are finally glued together to
guarantee the analogous end-to-end property for the entire pipeline, depicted by
the green dashed edge in Fig. 1. For our certificates, we import the input and
output programs (and VC) of each key phase from Boogie into Isabelle; we do
not reimplement any of Boogie’s phases inside Isabelle.

The certificates of the key phases also incorporate various smaller transfor-
mations between the key phases, such as peephole optimisation. Our work also
validates these smaller transformations, but we focus the presentation on the key
phases in this paper. Boogie also performs several smaller translation steps prior
to the CFG-to-DAG phase. These include transforming ASTs to corresponding
CFGs, optimisations such as dead variable elimination, and desugaring proce-
dure calls using their specifications (via explicit assert, assume, and havoc state-
ments). Our approach applies analogously to these initial smaller phases, but our
current implementation certifies only the pipeline of all phases from the (input
to the) CFG-to-DAG phase onwards. Thus, our certificate relates Boogie’s VC
to the original source AST program so long as these prior translation steps are
correct.

CFG Decomposition. When tackling the certification of each phase, we further
break down validation of a procedure’s CFG in the source program of the phase
into sub-problems for each block in the CFG. We prove two results for each block
in the source CFG:

1. Local block lemmas: We prove an independent lemma for each source CFG
block in isolation, relating the executions through the block with the corre-
sponding block in the target program (or the VC generated for that block, in
the case of the VC phase). In particular, this lemma implies that if the target
block has no failing executions (or the VC generated for that block holds, for
the VC phase), neither does the source block for corresponding input states.

2. Global block theorems: We show analogous per-block results concerning all
executions from this block onwards extending to the end of the procedure in
question; we build these compositionally by reverse-topological traversal of
either the source or target CFGs, as appropriate. The global block theorem
for the entry block establishes correctness of the phase.

This decomposition separates command-level reasoning (local block lemmas)
from CFG-level reasoning (global block theorems). It enables concise lemmas
and proofs in Isabelle and makes each comprehensible to a human.
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3 A Formal Semantics for Boogie

Our certificates prove that the validity of a VC generated by Boogie formally
implies correctness of the Boogie CFG-to-DAG source program. This proof relies
crucially on a formal semantics for Boogie itself. Our first contribution is the first
such formal semantics for a significant subset of Boogie, mechanised in Isabelle.
Our semantics uses the Boogie reference manual [29], the presentation of its type
system [33], and the Boogie implementation for reference; none of those provide
a formal account of the language. For space reasons, we explain only the key
concepts of our detailed formalisation here; more details are provided in App.
A of the TR [37] and the full Isabelle mechanisation is available as part of our
accompanying artifact [36].

3.1 The Boogie Language

Boogie programs consist of a set of top-level declarations of global variables
and constants (the global data), axioms, uninterpreted (polymorphic) functions,
type constructors, and procedures. A procedure declaration includes parameter,
local-variable, and result-variable declarations (the local data), a pre- and post-
condition, and a procedure body given as a CFG.1 CFGs are formalised as usual
in terms of basic blocks (containing a possibly-empty list of basic commands),
and edges; semantically, execution after a basic block continues via any of its
successors non-deterministically.

Fig. 2. The syntax of our formalised Boogie subset, where τ , e, and c, denote the types,
expressions, and basic commands respectively; control-flow is handled via CFGs over
the basic commands. bop and uop denote binary and unary operations, respectively.

The types, expressions, and basic commands in our Boogie subset are shown
in Fig. 2. We support the primitive types Int and Bool ; types obtained via
declared type constructors are uninterpreted types; the sets of values such types
denote are constrained only via Boogie axioms and assume commands. Moreover,
types can contain type variables (for instance, to specify polymorphic functions).

Boogie expression syntax is largely standard (e.g. including typical arithmetic
and boolean operations). Old-expressions old(e) evaluate the expression e w.r.t.
the current local data and the global data as it was in the pre-state of the
1 Source-level procedure specifications also include modifies clauses, declaring a set of

global variables the procedure may modify. As we tackle Boogie programs after pro-
cedure calls have been desugared, there are no modifies clauses in our formalisation.
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procedure execution. Boogie expressions also include universal and existential
value quantification (written ∀x : τ. e and ∃x : τ. e), as well as universal and
existential type quantification (written ∀ty t. e and ∃ty t. e). In the latter, t is
bound in e and quantifies over closed Boogie types (i.e. types that do not contain
any type variables).

Basic commands form the single-steps of traces through a Boogie CFG;
sequential composition is implicit in the list of basic commands in a CFG basic
block and further control flow (including loops) is prescribed by CFG edges.
Boogie’s basic commands are assumes, asserts, assignments, and havocs; havoc x
non-deterministically assigns a value matching the type of variable x to x.

The main Boogie features not supported by our subset are maps and other
primitive types such as bitvectors. Boogie maps are polymorphic and impredica-
tive, i.e. one can define maps that contain themselves in their domain. Giving
a semantic model for such maps in a proof assistant such as Isabelle or Coq is
non-trivial; we aim to tackle this issue in the future. Modelling bitvectors will
be simpler, although maintaining full automation may require some additional
work.

3.2 Operational Semantics

Values and State Model. Our formalisation embeds integer and boolean values
shallowly as their Isabelle counterparts; an Isabelle carrier type for all abstract
values (those of uninterpreted types) is a parameter of our formalisation. Each
uninterpreted type is (indirectly) associated with a non-empty subset of abstract
values via a type interpretation map T from abstract values to (single) types;
particular interpretations of uninterpreted types can be obtained via different
choices of type interpretation T .

One can understand Boogie programs in terms of the sets of possible traces
through each procedure body. Traces are (as usual) composed of sequences of
steps according to the semantics of basic commands and paths through the CFG;
these can be finite or infinite (representing a non-terminating execution). A trace
may halt in three cases: (1) an exit block of the procedure is reached in a state
satisfying the procedure’s postcondition (a complete trace),2 (2) an assert A
command is reached in a state not satisfying assertion A (a failing trace), or
(3) an assume A command is reached in a state not satisfying A (a trace which
goes to magic and stops). Our formalisation correspondingly includes three kinds
of Boogie program states: a distinguished failure state F, a distinguished magic
state M, and normal states N((os, gs, ls)). A normal state is a triple of partial
mappings from variables to values for the old global state (for the evaluation of
old-expressions), the (current) global state, and the local state, respectively.

Expression Evaluation. An expression e evaluates to value v if the (big-step)
judgement T , Λ, Γ,Ω � 〈e,N(ns)〉 ⇓ v holds in the context (T , Λ, Γ,Ω). Here, T
2 The case of the postcondition not holding is subsumed under point (2), since Boogie

checks postconditions by generating extra assert statements.
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Fig. 3. Running example in source code and CFG representation, respectively.

is a type interpretation (as above), Λ is a variable context : a pair (G,L) of type
declarations for the global (G) and local (L) data. Γ is a function interpretation,
which maps each function name to a semantic function mapping a list of types
and a list of values to a return value. The type substitution Ω maps type variables
to types.

The rules defining this judgement can be found in App. A.2 of the TR [37].
For example, the following rule expresses when a universal type quantification
evaluates to true (t is bound to the quantified type and may occur in e):

∀τ. closed(τ) =⇒ T , Λ, Γ,Ω(t 	→ τ) � 〈e,ns〉 ⇓ true

T , Λ, Γ,Ω � 〈∀ty t. e,ns〉 ⇓ true

The premise requires one to show that the expression e reduces to true for every
possible type τ that is closed. In general, expression evaluation is possible only
for well-typed expressions; we also formalise Boogie’s type system and (for the
first time) prove its type safety for expressions in Isabelle.

Command and CFG Reduction. The (big-step) judgement T , Λ, Γ,Ω � 〈c, s〉 →
s′ defines when a command c reduces in state s to state s′; the rules are in
App. A.3 of the TR [37]. This reduction is lifted to lists of commands cs to
model the semantics of a single trace through a CFG block (the judgement
T , Λ, Γ,Ω � 〈cs, s〉 [→] s′). The operational semantics of CFGs is modelled by
the (small-step) judgement T , Λ, Γ,Ω,G � δ →CFG δ′, expressing that the CFG
configuration δ reduces to configuration δ′ in the CFG G. A CFG configuration
is either active or final. An active configuration is given by a tuple (inl(bn), s),
where bn is the block identifier indicating the current position of the execution
and s is the current state. A final configuration consists of a tuple (inr(()), s) for
state s (and unit value ()) and is reached at the end of a block that has either
no successors, or is in a magic or failure state.
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Fig. 4. The CFG-to-DAG phase applied to the running example (source is left, target
is right). The back-edge (the red edge from B5 to B1 in the left CFG) is eliminated.
The blue commands are new. A is given by j >= 0 ∧ (i = 0 ⇒ j > 0).

3.3 Correctness

A procedure is correct if it has no failing traces. This is a partial correctness
semantics; a procedure body whose traces never leave a loop is trivially cor-
rect provided that no intermediate assert commands fail. Procedure correctness
relies on CFG correctness. A CFG G is correct w.r.t. a postcondition Q and a
context (T , Λ, Γ,Ω) in an initial normal state N(ns) if the following holds for all
configurations (r, s′):

T , Λ, Γ,Ω,G � (inl(entry(G)),N(ns)) →∗
CFG (r, s′) =⇒ [s′ �= F ∧

(r = inr(()) =⇒ (∀ns ′. s′ = N(ns ′) =⇒ T , Λ, Γ,Ω � 〈Q,N(ns ′)〉 ⇓ true))]

where entry(G) is the entry block of G and →∗
CFG is the reflexive-transitive closure

of the CFG reduction. The postcondition is needed only if a final configuration
is reached in a normal state, while failing states must be unreachable. Whenever
we omit Q, we implicitly mean the postcondition to be simply true. In our tool,
we consider only empty initial mappings Ω, since we do not support procedure
type parameters (lifting our work to this feature will be straightforward).

For a procedure p to be correct w.r.t. a context, its body CFG must be correct
w.r.t. the same context and p’s postcondition, for all initial normal states N(ns)
that satisfy p’s precondition and which respect the context. For ns to respect a
context, it must be well-typed and must satisfy the axioms when restricted to its
constants. We say that p is correct, if it is correct w.r.t. all well-formed contexts,
which must have a well-typed function interpretation and a type interpretation
that inhabits every uninterpreted closed type (and only those).

Running Example. We will use the simple CFG of Fig. 3 as a running example,
intended as body of a procedure with trivial (true) pre- and post-conditions.
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The code includes a simple loop with a declared loop invariant, which functions
as a classical Floyd/Hoare-style inductive invariant, and for the moment can
be considered as an implicit assert statement at the loop head. The CFG has
infinite traces: those which start from any state in which i is negative. Traces
starting from a state in which i is zero go to magic; they do not reach the loop.
The program is correct (has no failing traces): all other initial states will result
in traces that satisfy the loop invariant and the final assert statement. If we
removed the initial assume statement, however, there would be failing traces: the
loop invariant check would fail if i were initially zero.

4 The CFG-to-DAG Phase

In this section, we present the validation for the CFG-to-DAG phase in the
Boogie verifier. This phase is challenging as it changes the CFG structure, inserts
additional non-deterministic assignments and assume statements, and must do
so correctly for arbitrary (reducible) nested loop structures, which can include
unstructured control flow (e.g. jumps out of loops).

4.1 CFG-to-DAG Phase Overview

The CFG-to-DAG phase applies to every loop head block identified by Boo-
gie’s implementation and any back-edges from a block reachable from the loop
head block back to the loop head (following standard definitions for reducible
CFGs [21]). Figure 4 illustrates the phase’s effect on our running example. Block
B1 is the (only) loop head here, and the edge from B5 to it the only back-edge
(completing looping paths via B2 and B3 or B2 and B4). An assert A state-
ment starting a loop head (like B1) is interpreted as declaring A to be the loop
invariant.3 The CFG-to-DAG phase performs the following steps:

1. Accumulate a set XH of all (local and global) variables assigned-to on any
looping path from the loop head back to itself. In our example, XH is {i, j}.

2. Move the assert A statement declaring a loop invariant (if any) from the
loop head to the end of each preceding block (in our example: B0 and B5).

3. Insert havoc statements at the start of the loop head block per variable in XH ,
followed by a single assume A statement (preceding any further statements).

4. For each block with a back-edge to the loop head, delete the back-edge; if this
leaves the block with no successors, append assume false to its commands.4

The havoc-then-assume sequence introduced in step 3 can be understood as
generating traces for arbitrary values of XH satisfying the loop invariant A,
3 In general, multiple asserts at the beginning of a loop head may form the invariant.
4 Omitting assume false if there are no successors would be incomplete, since otherwise

the postcondition would have to be satisfied.
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effectively over-approximating the set of states reachable at the loop head in the
original program. In particular, the remnants of any originally looping path (e.g.
B′

1, B′
2, B′

3, B′
5) enforce that any non-failing trace starting from any such state

must (due to the assert added to block B′
5 in step 2) result in a state which

re-establishes the loop invariant. Such paths exist only to enforce this inductive
step (analogously to the premise of a Hoare logic while rule); so long as the
assert succeeds, we can discard these traces via step 4.

While we illustrate this step on a simple CFG, in general a loop head may
have multiple back-edges, looping structures may nest, and edges may exit multi-
ple loops. For the above translation to be correct, the CFG must be reducible and
loop heads and corresponding back-edges identified accurately, which is complex
in general. Importantly (but perhaps surprisingly), our work makes this phase
of Boogie certifying without explicitly verifying (or even defining) these notions.

4.2 CFG-to-DAG Certification: Local Block Lemmas

We define first our local block lemmas for this phase. Recall that these prove
that if executing the statements of a target block yields no failing executions,
the same holds for the corresponding source block; this result is trivial for source
blocks other than loop heads and their immediate predecessors, since these are
unchanged in this phase. To enable eventual composition of our block lemmas,
we need to also reflect the role of the assume and assert statements employed
in this phase. The formal statement of our local block lemmas is as follows5:

Theorem 1 (CFG-to-DAG Local Block Lemma). Let B be a source block
with commands csS, whose corresponding target block has commands csT . If B is
a loop head, let XH be as defined in CFG-to-DAG step 1 (and empty otherwise)
and let Apre be its loop invariant (or true otherwise). If B is a predecessor of a
loop head, let Apost be the loop invariant of its successor (and true otherwise).
Then, if:

1. T , Λ, Γ,Ω � 〈csS ,N(ns1)〉 [→] s′
1

2. ∀s′
2. T , Λ, Γ,Ω � 〈csT ,N(ns2)〉 [→] s′

2 =⇒ s′
2 �= F

3. Apre is satisfied in ns1, and ns2 differs from ns1 only on variables in XH and
variables not defined in Λ

then: s′
1 �= F and if s′

1 is a normal state, then (1) Apost is satisfied in s′
1, and (2)

if no assume false was added at the end of csT , then there is a target execution
in csT from N(ns2) that reaches a normal state that differs from s′

1 only on
variables not defined in Λ.

The gist of this lemma is to capture locally the ideas behind the four steps of
the phase. For example, consequence (1) reflects that after the transformation,
any blocks that were previously predecessors of a loop head (B′

0 and B′
5 in our

running example) will have an assert statement checking for the corresponding
invariant (and so if the target program has no failing traces, in each trace this
invariant will be true at that point).
5 We omit some details regarding well-typedness, handled fully in our formalisation.
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Fig. 5. The passification phase applied to the branch in the running example with the
result on the right. The final (green) commands in B′′

3 and B′′
4 are the synchronisation

commands. At the uppermost blocks shown here, the current versions of i and j are
i1 and j2, respectively. The full CFGs are shown in App. B of the TR [37].

4.3 CFG-to-DAG Certification: Global Block Theorems

We lift our certification to all traces through the source and target CFGs; the
statement of the corresponding global block theorems is similar to that of local
block theorems lifted to CFG executions, and for space reasons we do not present
it here, but it is included in our Isabelle formalisation. In particular, we prove
for each block (working in reverse topological order through the target CFG
blocks) that if executions starting in the target CFG block never fail, neither do
any executions starting from the corresponding source CFG block, and looping
paths modify at most the variables havoced according to step 3 of the phase.

The major challenge in these proofs is reasoning about looping paths in
the source CFG, since these revisit blocks. To solve this challenge, we perform
inductive arguments per loop head in terms of the number of steps remaining in
the trace in question.6 Our global block theorem for a block B then carries as
an assumption an induction hypothesis for each loop that contains B. Proving
a global block theorem for the origin of a back-edge is taken care of by applying
the corresponding induction hypothesis.

This proof strategy works only if we have obtained the induction hypothesis
for the loop head before we use the global block theorem of the origin of a
back-edge (otherwise we cannot discharge the block theorem’s hypothesis). In
other words, our proof implicitly shows the necessary requirement that loop
heads (as identified by Boogie) dominate all back-edges reaching them without us
formalising any notion of domination, CFG reducibility, or any other advanced
graph-theoretic concept. This shows a major benefit of our validation approach
over a once-and-for-all verification of Boogie itself: our proofs indirectly check
that the identification of loop heads and back-edges guarantees the necessary
semantic properties without being concerned with how Boogie’s implementation
computes this information.

6 This may seem insufficient since traces can be infinite, but importantly a failing
trace is always finite, and our theorems need only eliminate the chance of failing
traces.
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Our approach applies equally to nested loops and more-generally to reducible
CFG structures; all corresponding induction hypotheses are carried through
from the visited loop heads. The requirement that no more than the havoced
variables XH are modified in the source program is easily handled by showing
that variables modified in an inner loop are a subset of those in outer loops.
As for all of our results, our global block lemmas are proven automatically in
Isabelle per Boogie procedure, providing per-run certificates for this phase.

5 The Passification Phase

In this section, we describe the validation of the passification phase in the Boo-
gie verifier. Unlike the previous phase, passification makes no changes to the
CFG structure, but makes substantial changes to the program states (via SSA-
like renamings), substantially increases non-determinism, and employs assume

statements to re-tame the sets of possible traces.

5.1 Passification Phase Overview

The main goal of passification is to eliminate assignments such that a more effi-
cient VC can be ultimately generated [6,18,30]. In the Boogie verifier, this is
implemented as a single transformation phase that can be thought of as two
independent steps. Firstly, the source CFG is transformed into static single
assignment (SSA) form, introducing versions (fresh variables) for each origi-
nal program variable such that each version is assigned at most once in any
program trace. In a second step, variable assignments are completely eliminated :
each assignment command x := e is replaced by assume x = e. Havoc statements
are simply removed; their effect is implicit in the fact that a new variable version
is used (via the SSA step) after such a statement.

Figure 5 shows the effect of this phase on four blocks of our running example
(the full figure of the target CFG is shown in App. B of the TR [37]). The
commands inserted just before the join block (here, B′′

5 ) introduce a consistent
variable version (here, j4) for use in the join block. It is convenient to speak of
target variables in terms of their source program counterparts: we say e.g. that
j has version 4 on entry to block B′

5.
Compared to traces through the source program, the space of variable values

in a trace through the target program is initially much larger; each version may,
on entry to the CFG, have an arbitrary value. For example, j4 may have any
value on entry to B′′

2 ; traces in which its value does not correspond to the con-
straint of the assume statements in B′′

3 or B′′
4 will go to magic and not reach B′′

5 .
Importantly, however, not all traces go to magic; enough are preserved to simu-
late the executions of the original program: each assume statement constrains the
value of exactly one variable version, and the same version is never constrained
more than once. Capturing this delicate argument formally is the main challenge
in certifying this step.
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As extra parts of the passification phase, the Boogie verifier performs constant
propagation and desugars old-expressions (using variable versions appropriate to
the entry point of the CFG). We omit their descriptions here for brevity, but our
implementation certifies them.

5.2 Passification Certification: Local Block Lemmas

To validate the passification phase, it is sufficient to show that each source execu-
tion is simulated by a corresponding target execution, made precise by construct-
ing a relation between the states in these executions. Such forward simulation
arguments are standard for proving correctness of compilers for deterministic
languages. However, the situation here is more complex due to the fact that
the target CFG has a much wider space of traces: the values of each versioned
variable in the target program are initially unconstrained, meaning traces exist
for all of their combinations. On the other hand, many of these traces do not
survive the assume statements encountered in the target program. Picking the
correct single trace or state to simulate a particular source execution would
require knowledge of all variable assignments that are going to happen, which
is not possible due to non-determinism and would preclude the block-modular
proof strategies that our validation approach employs.

Instead, we generalise this idea to relating each single source state s with a
set T of corresponding target program states. We define variable relations VR at
each point in a trace, making explicit the mappings used in the SSA step between
source program variables and their corresponding versions. For example, on entry
to block B′

2 in the source version of our running example (correspondingly B′′
2

in the target), the VR relation relates i to i1 and j to j2. All states t ∈ T must
precisely agree with s w.r.t. VR (e.g., s(i) = t(i1), s(j) = t(j2)). On the other
hand, our sets of states T are defined to be completely unconstrained (besides
typing) for future variable versions. For example, for every t ∈ T at the same
point in our example, there will be states in T assigning each possible value (of
the same type) to i2 (and otherwise agreeing with t).

More precisely, for a set of variables X, we say that a set of states T constrains
at most X w.r.t. variable context Λ if, for every t ∈ T , z /∈ X, z is in Λ, and value
v of z’s type, we have t[z 	→ v] ∈ T . In other words, the set T is closed under
arbitrary changes to values of all variables in Λ but not in X. We construct our
sets T such that they constrain at most current and past versions of program
variables. It is this fact that enables us to handle subsequent assume statements
in the target program and, in particular, to show that the set of possible traces
in the target program never becomes empty while there are possible traces in
the source program. For example, when relating the source command j := j+1

in B′
3 with the target command assume j3 = j2 + 1 in block B′′

3 , we use the fact
that our set of states does not constrain j3 to prove that, although many traces
go to magic at this point, for a non-empty set of states T ′ ⊆ T (those in which
j3 has the “right” value equal to j2 + 1), execution continues in the target.
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We now make these notions more precise by showing the definition of our
local block lemmas for the passification phase (See footnote 5).

Theorem 2 (Passification Local Block Lemma). Let B be a source block
with commands cs, whose corresponding target block has commands cs ′; let VR

and V ′
R be the variable relations at the beginning and end of B, respectively. Let

X be a set of variable versions, and N(ns) be a normal state. Let T be a non-
empty set of normal states such that N(ns) agrees with T according to VR, and
T constrains at most X w.r.t. Λ2. Furthermore, let Y be the variable versions
corresponding to the targets of assignment and havoc statements in cs. If both

1. A,Λ1, Γ,Ω � 〈cs,N(ns)〉 [→] s′ ∧ s′ �= M
2. X ∩ Y = ∅
then there exists a non-empty set of normal states T ′ ⊆ T s.t. T ′ constrains at
most X � Y w.r.t. Λ2 and for each t′ ∈ T ′, there exists a state t′∗ s.t.

1. A,Λ2, Γ,Ω � 〈cs2, t
′〉 [→] t′∗ ∧ (s′ = F =⇒ t′∗ = F)

2. If s′ is a normal state, then s′ and t′ are related w.r.t. V ′
R (and t′∗ = t′).

This lemma captures our generalised notion of forward simulation appropriately.
The first conclusion expresses that the target does not get stuck and that failures
are preserved, while the second shows that if the source execution neither fails nor
stops then the resulting states are related. Note that premise 2 is essential in the
proof to guarantee that the assume statements introduced by passification do not
eliminate the chance to simulate source executions; the condition expresses that
the variable versions newly constrained do not intersect with those previously
constrained. To prove these lemmas over the commands in a single block, we are
forced to check that the same version is not constrained twice.

5.3 Passification Certification: Global Block Theorems

As for all phases, we lift our local block lemmas to theorems certifying all exe-
cutions starting from a particular block, and thus, ultimately, to entire CFGs.
For the passification phase, most of the conceptual challenges are analogous
to those of the local block lemmas; we similarly employ VR relations between
source variables and their corresponding target versions. To connect with our
local block lemmas (and build up our global block theorems, which we do back-
wards through the CFG structure), we repeatedly require the key property that
the set of variable versions constrained in our executions so far is disjoint from
those which may be constrained by a subsequent assume statement (cf. premise 2
of our local block lemma above). Concretely tracking and checking disjointness
of these concrete sets of variables is simple, but turns out to get expensive in
Isabelle when the sets are large.

We circumvent this issue with our own global versioning scheme (as opposed
to the versions used by Boogie, which are independent for different source vari-
ables): according to the CFG structure, we assign a global version number verG(x)
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to each variable x in the target program such that, if x is constrained in a target
block B′ and y is constrained in another target block B′′ reachable from B′,
then verG(x) < verG(y). Such a consistent global versioning always exists in the
target programs generated by Boogie because the only variables not constrained
exactly once in the program are those used to synchronise executions (i.e. j4

in Fig. 5), which always appear right before branches are merged. We can now
encode our disjointness properties much more cheaply: we simply compare the
maximal global version of all already-constrained variables with the minimal
global version of those (potentially) to be constrained. Since we represent vari-
ables as integers in the mechanisation, we directly use our global version as the
variable name for the target program; there is no need for an extra lookup table.
Note that (readability aside) it makes no difference which variables names are
used in intermediate CFGs; we ultimately care only about validating the original
CFG.

6 The VC Phase

In this section, we present the validation of the VC phase in the Boogie verifier.
This phase has two main aspects: (1) it encodes and desugars all aspects of the
Boogie type system, employing additional uninterpreted functions and axioms to
express its properties [33]; program expression elements such as Boogie functions
are analogously desugared in terms of these additional uninterpreted functions,
creating a non-trivial logical gap between expressions as represented in the VC
and those from the input program. (2) It performs an efficient (block-by-block)
calculation of a weakest precondition for the (acyclic, passified) CFG, resulting
in a formula characterising its verification requirements, subject to background
axioms and other hypotheses.

6.1 VC Structure

The generated VC has the following overall structure (represented as a shallow
embedding in our certificates)7:

∀ VC quantifiers
︸ ︷︷ ︸

type encoding parameters,
functions, variable values

. ( VC assumptions
︸ ︷︷ ︸

type encoding,
func./var./prog. axioms

=⇒ CFG WP)

The VC quantifies over parameters required for the type encoding, as well as
VC counterparts representing the variable values and functions in the Boogie
program. The VC body is an implication, whose premise contains: (1) assump-
tions that axiomatise the type encoding parameters, (2) axioms expressing the
typing of Boogie variables and functions, and (3) assumptions directly relating

7 Note that top-level quantification over functions is implicit in the (first-order) SMT
problem generated by Boogie; we quantify explicitly in our Isabelle representation.
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to axioms explicitly declared in the Boogie program. The conclusion of the impli-
cation is an optimised version of the weakest (liberal) precondition (WP) of the
CFG.8

6.2 Boogie’s Logical Encoding of the Boogie Type System

We first briefly explain Boogie’s logical encoding of its own type system. Values
and types are represented at the VC level by two uninterpreted carrier sorts
V and T . An uninterpreted function typ from V to T maps each value to the
representation of its type. Boogie type constructors are each modelled with an
(injective) uninterpreted function C with return sort T and taking arguments
(per constructor parameter) of sort T . For example, a type constructor List(t)
is represented by a VC function from T to T . Projection functions are also
generated for each type constructor (Cπ

i for each type argument at position i),
e.g. mapping the representation of a type List(t) to the representation of type t.

This encoding is then used in the VC to recover Boogie typing constraints for
the untyped VC terms. Recovering the constraints is not always straightforward
due to optimisations performed by Boogie. For example, the VC translation
of the Boogie expression ∀ty t. ∀x : List(t). e no longer quantifies over types;
all original occurrences of t in e having been translated to Listπ1 (typ(x)). This
optimisation reflects that this particular type quantification is redundant, since
t can be recovered from the type of x.9

6.3 Working from VC Validity

Our certificates assume that the generated VC is valid (certifying the validity-
checking of the VC by an SMT solver is an orthogonal concern). However, con-
necting VC validity back to block-level properties about the specific program
requires a number of technical steps. We need to construct Isabelle-level seman-
tic values to instantiate the top-level quantifiers in the VC such that the corre-
sponding VC assumptions (left-hand side of the VC) can be proved and, thus,
validity of the corresponding WP can be deduced. Moreover, we must ensure
that our instantiation yields a WP whose validity implies correctness of the Boo-
gie program. For example, a top-level VC quantifier modelling a Boogie function
f must be instantiated with a mathematical function that behaves in the same
way as f for arguments of the correct type.

We instantiate the carrier sort V for values in the VC with the corresponding
type denoting Boogie values in our formalisation; the carrier sort T for types
is instantiated to be all Boogie types that do not contain free variables (i.e.
closed types). Constructing explicit models for the quantified functions used to

8 One difference in our version of the Boogie verifier is that we switched off the gen-
eration of extra variables introduced to report error traces [32]; these are redundant
for programs that do not fail and further complicate the VC structure.

9 Note that in the VC the quantification over x ranges over all values of sort V . An
implication is used to consider only those x for which typ(x) = List(Listπ1 (typ(x))).
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model Boogie’s type system (satisfying, e.g., suitable inverse properties for the
projection functions) is straightforward. For the VC-level variable values, we can
directly instantiate the corresponding values in the initial Boogie program state.

VC-level functions representing those declared in the Boogie program are
instantiated as (total) functions which, for input values of appropriate type (the
arguments and output are untyped values of sort V ), are defined simply to return
the same values as the corresponding function in our model. However, perhaps
surprisingly, Boogie’s VC embedding of functions logically requires functions to
return values of the specified return type even if the input values do not have the
types specified by the function. In such cases, we define the instantiated function
to return some value of the specified type, which is possible since in well-formed
contexts every closed type has at least one value in our model.

After our instantiation, we need to prove the hypotheses of the VC’s impli-
cation; in particular that all axioms (both those generated by the type system
encoding and those coming from the program itself) are satisfied. The former
are standard and simple to prove (given the work above), while the latter largely
follow from the assumption that each declared axiom must be satisfied in the
initial state restricted to the constants. The only remaining challenge is to relate
VC expressions with the evaluation of corresponding Boogie expressions; an issue
which also arises (and is explained) below, where we show how to connect validity
of the instantiated WP to the program.

6.4 Certifying the VC Phase

Boogie’s weakest precondition calculation is made size-efficient by the usage
of explicit named constants for the weakest preconditions wp(B, true) for each
block B, which is defined in terms of the named constants for its successor blocks.
For example, in Fig. 5, wp(B′′

2 , true) is given by ivc
1 �= 0 =⇒ wp(B′′

3 , true) ∧
wp(B′′

4 , true). Here ivc
1 is the value that we instantiated for the variable i1.

We exploit this modular construction of the generated weakest precondition
for the local and global block theorems. We prove for each block B with com-
mands cs the following local block lemma:

Theorem 3 (VC Phase Local Block Lemma).
If A,Λ, Γ,Ω � 〈cs,N(ns)〉 [→] s′ and wp(B, true) holds, then s′ �= F and if s′ is
a normal state, then ∀Bsuc ∈ successors(B). wp(Bsuc , true).

Once one has proved this lemma for all blocks in the CFG, combining them
to obtain the corresponding global block theorems (via our usual reverse walk
of the CFG) is straightforward. The main challenge is in decomposing the proof
for the local block lemma itself for a block B, for which we outline our approach
next.

By this phase, the first command in B must be either an assume e or an
assert e command. In the former case, we rewrite wp(B, true) into the form
evc =⇒ H, where evc is the VC counterpart of e and where H corresponds
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to the weakest precondition of the remaining commands. This rewriting may
involve undoing certain optimisations Boogie’s implementation performed on the
formula structure. Next, we need to prove that e evaluates to evc (see below).
Hence, if e evaluates to true (the execution does not go to magic) then H must
be true, and we can continue inductively. The argument for assert e is similar
but where we rewrite the VC to evc ∧ H (i.e. evc and H must both hold); if e
evaluates to evc, we know that the execution does not fail.

Proving that e evaluates to evc arises in both cases and also in our previous
discharging of VC hypotheses. Note that, in contrast to e, evc is not a Boogie
expression, but a shallowly embedded formula that includes the instantiations of
quantified variables we constructed above. Showing this property works largely
on syntax-driven rules that relate a Boogie expression with its VC counterpart,
except for extra work due to mismatching function signatures and optimisations
that Boogie made either to the formula structure or via the type system encoding
(cf. Sect. 6.2). We handle some of these cases by showing that we can rewrite
the formula back into the unoptimised standard form we require for our syntax-
driven rules and in other cases we directly work with the optimised form. Both
cases are automated using Isabelle tactics.

This concludes our discussion of the certification of Boogie’s three key phases.
Combining the three certificates yields an end-to-end proof that the validity of
the generated verification conditions implies the correctness of the input program,
that is, that the given verification run is sound.

7 Implementation and Evaluation

In this section, we evaluate our certifying version of the Boogie verifier [36],
which produces Isabelle certificates proving the correctness of Boogie’s pipeline
for programs it verifies.

We have implemented our validation tool as a new C# module compiled with
Boogie. We instrumented Boogie’s codebase to call out to our module, which
allows us to obtain information that we can use to validate the key phases, and
extended parts of the codebase to extract information more easily. Moreover, we
disabled counter-example related VC features and the generation of VC axioms
for any built-in types and operators that we do not support. We added or changed
fewer than 250 non-empty, uncommented lines of code across 11 files in the
existing Boogie implementation.

Given an input file verified by Boogie, our work produces an Isabelle certifi-
cate per procedure p that certifies the correctness of the corresponding CFG-to-
DAG source CFG as represented internally in Boogie. The generation and check-
ing of the certificate is fully automatic, without any user input. We use a combi-
nation of custom and built-in Isabelle tactics. In addition to the three key phases
we describe in detail, our implementation also handles several smaller transforma-
tions made by Boogie, such as constant propagation. Our tool currently supports
the default options of Boogie (only) and does not support advanced source-level
attributes (for instance, to selectively force procedures to be inlined).



Formally Validating a Practical Verification Condition Generator 723

Table 1. Selection of algorithmic examples with the lines of code (LOC), the number
of procedures (#P), the time it takes for Isabelle to check the certficate in seconds (the
average of 5 runs on a Lenovo T480 with 32 GB, i7-8550U 1.8 GhZ, Ubuntu 18.04 on
the Windows Subsystem for Linux), and the certificate size expressed as the number
of non-empty lines of Isabelle.

Name LOC #P Time [s] Size

TuringFactorial 29 1 19.4 1986
Find 27 2 27.3 2100
DivMod 69 2 28.4 4753
Summax [27] 23 1 19.1 1953
MaxOfArray [12] 22 1 19.9 1944
SumOfArray [12] 22 1 18.7 1534
Plateau [12] 50 1 22.9 2019
WelfareCrook [12] 52 1 39.4 2528
ArrayPartitioning [12] 57 2 27.6 3514
DutchFlag [12] 76 2 52.8 3994

We evaluated our work in two ways. Firstly, to evaluate the applicability
of our certificate generation, we automatically collected all input files with at
least one procedure from Boogie’s test suite [1] which verify successfully and
which either use no unsupported features or are easily desugared (by hand) into
versions without them. This includes programs with procedure calls since Boogie
simply desugars these in an early stage. For programs employing attributes, we
checked whether the program still verifies without attributes, and if so we also
kept these. In total, this yields 100 programs from Boogie’s test suite. Secondly,
we collected a corpus of ten Boogie programs which verify interesting algorithms
with non-trivial specifications: three from Boogie’s test suite and seven from the
literature [12,27]. Where needed we manually desugared usages of Boogie maps
(which we do not yet support) using type declarations, functions, and axioms.

Of the 100 programs from Boogie’s test suite, we successfully generate cer-
tificates in 96 cases. The remaining 4 cases involve special cases that we do not
handle yet. For 2 of them, extending our work is straightforward: one special
case includes a naming clash and the other case can be amended by using a more
specific version of a helper lemma. The remaining two fail because of our incom-
plete handling of function calls in the VC phase when combined with coercions
between VC integers or booleans and their Boogie counterparts. Handling this
is more challenging but is not a fundamental issue.

For the corpus of 10 examples, Table 1 shows the generated certificate size
and the time for Isabelle to check their validity.10 The ratio of certificate size to
code size ranges from 41 to 89; this rather large ratio emphasises the substantial
work in formally validating the substantial work which Boogie’s implementation

10 The time to generate the certificate is not included, but is negligible here.
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performs. Optimisations to further reduce the ratio are possible. The validation
of certificates takes usually under one second per line of code. While these times
are not short, they are acceptable since certificate generation needs to run only
for (verified) release versions of the program in question.

8 Related Work

Several works explore the validation of program verifiers. Garchery et al. [20]
validate VC rewritings in the Why3 VC generator [16]. Unlike our work, they do
not connect VCs with programs and do not handle the erasure of polymorphic
types. Strub et al. [39] validate part of a previous version of the F* verifier [40]
by generating a certificate for the F* type checker itself, which type checks
programs by generating VCs. Like us, they assume the validity of the generated
VC itself, but they do not consider program-to-program transformations such
as ours. Another approach is taken by Aguirre [2] who shows how one can map
proofs of the VC back to correctness of an F* program. They prove a once-and-
for-all result, but the approach could be lifted to a validation approach using
the proof-producing capability of SMT solvers [7]. Lifting the approach would
require extending the work to handle classical instead of constructive VC proofs.

There is some work on proving VC generator implementations correct once
and for all, although none of the proven tools are used in practice. Homeier and
Martin [23] prove a VC generator correct in HOL for an executable language
and a simpler VC phase than Boogie’s. Herms et al. [22] prove a VC genera-
tor inspired by Why3 correct in Coq. However, some more-challenging aspects
of Why3’s VC transformation and polymorphic type system are not handled.
Vogels et al. [44] prove a toolchain for a Boogie-like language correct in Coq,
including passification and VC phases. However, the language is quite limited:
without unstructured control flow, loops (i.e. no need for a CFG-to-DAG phase),
functions, or polymorphism (i.e. no type encoding). Verifiers other than VC
generators, include the verified Verasco static analyzer [25], which supports a
realistic subset of C, but whose performance is not yet on par with unverified,
industrial analyzers.

Validation has also been explored in other settings. Alkassar et al. [3] adjust
graph algorithms to produce witnesses that can be then used by verified valida-
tors to check whether the result is correct. In the context of compiler correctness,
many validation techniques express a per-run validator in Coq, prove it correct
once-and-for-all [8,41,43], and then extract executable code (the extraction must
be trusted). In the verified CompCert compiler [34], such validators have been
used in combination with the once-and-for-all approach. Validators are used for
phases that can be more easily validated than proved correct once and for all.
One such example related to our certification of the passification phase is the
validation of the SSA phase [8], dealing also with versioned variables in the tar-
get (but not with assume statements that prune executions). In contrast to our
work, they require an explicit notion of CFG domination and they do not use a
global versioning scheme to efficiently check that two parts of the CFG constrain
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disjoint versions. Our versioning idea is similar to a technique used for the valida-
tion of a dominator relation in a CFG [9], which assigns intervals to basic blocks
(as opposed to assigning versions to variables) to efficiently determine whether a
block dominates another one. The validation of the Cogent compiler [38] follows
a similar approach to ours in that it generates proofs in Isabelle.

9 Conclusion

We have presented a novel verifier validation approach, and applied it successfully
to three key phases of the Boogie verifier, providing formal underpinnings for
both the language and its verifier for the first time. Our work demonstrates that
it is feasible to provide strong formal guarantees regarding the verification results
of practical VC generators written in modern mainstream languages.

In the future, we plan to extend our supported subset of Boogie, e.g.
to include procedure calls and bitvectors. Supporting Boogie’s potentially-
impredicative maps is the main open challenge: maps can take other maps as
input, potentially including themselves. The challenge with this feature is to
still be able to express a type in Isabelle capturing all Boogie values despite the
potentially-cyclic nature of map types. In practice, however, this may not be
required in full generality: we have observed that Boogie front-ends rarely use
maps that contain maps of the same type as input. Therefore, we plan to extend
our technique to support a suitably-expressive restricted form of Boogie maps.
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Abstract. Verification of instruction encoders and decoders is essential
for formalizing manipulation of machine code. The existing approaches
cannot guarantee the critical consistency property, i.e., that an encoder
and its corresponding decoder are mutual inverses of each other. We
observe that consistent encoder-decoder pairs can be automatically
derived from bijections inherently embedded in instruction formats.
Based on this observation, we develop a framework for writing specifica-
tions that capture these bijections, for automatically generating encoders
and decoders from these specifications, and for formally validating the
consistency and soundness of the generated encoders and decoders by
synthesizing proofs in Coq and discharging verification conditions using
SMT solvers. We apply this framework to a subset of X86-32 instructions
to illustrate its effectiveness in these regards. We also demonstrate that
the generated encoders and decoders have reasonable performance.

Keywords: Formalized instruction formats · Verified parsing ·
Program synthesis · Proof synthesis · Translation validation

1 Introduction

Software that manipulates machine code such as compilers, OS kernels and
binary analysis tools, relies on instruction encoders and decoders for extract-
ing structural information of instructions from machine code and for translating
such information back into binary forms. Because of the sheer amount of instruc-
tions provided by any instruction set architecture (ISA) and the complexity of
instruction formats, it is extremely tedious and error-prone to implement instruc-
tion encoders and decoders by hand. Therefore, the literature contains abundant
work on automatic generation of instruction encoders and decoders, often from
specifications written in a formal language capable of concisely and accurately
characterizing instruction formats on various ISAs [7,12,15].

Unfortunately, the above approaches generate little formal guarantee, there-
fore not suitable for rigorous analysis or verification of machine code. In those
settings, instruction encoders and decoders are expected to be consistent, i.e.,
any encoder and its corresponding decoder are inverses of each other, and sound,
i.e., they meet formal specifications of instruction formats that human could eas-
ily understand and check.
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Consistency is essential for verification of machine code because it guaran-
tees that manipulation and reasoning over the abstract syntax of instructions
can be mirrored precisely onto their binary forms. For example, verification of
assemblers requires that instruction decoding reverts the assembling (encod-
ing) process [20]. However, the previously proposed approaches to verifying
instruction encoders and decoders all fail to establish consistency: to handle the
complexity of instruction formats (especially that of CISC architectures), they
employ expressive but ambiguous specifications such as context-free grammars
or variants of regular expressions, from which it is impossible to derive consistent
encoders and decoders. A representative example is the bidirectional grammar
proposed by Tan and Morrisett [18]. It is an extension of regular expressions
for writing instruction specifications from which verified encoders and decoders
can be generated. However, because of the ambiguity of such specifications, two
different abstract instructions may be encoded into the same bit string (i.e., a
sequence of bits). When the decoder is deterministic, not all encoded instructions
can be decoded back to the original instructions.

In this paper, we present an approach to automatic construction of instruc-
tion encoders and decoders that are verified to be consistent and sound. It is
based on the observation that an instruction format inherently implies a bijec-
tion between abstract instructions and their binary forms that manifests as the
determinacy of instruction decoding in actual hardware. This is true even for the
most complicated CISC architectures. From a well-designed instruction specifica-
tion that precisely captures this bijection, we are able to extract an appropriate
representation of instructions, a pair of instruction encoder and decoder between
this representation and the binary forms of instructions, and the consistency and
soundness proofs of the encoder and decoder.

Based on the above ideas, we develop a framework for automatically generat-
ing consistent and sound instruction encoders and decoders. It extends the app-
roach to specifying and generating instruction encoders and decoders proposed
by Ramsey and Fernández [15] with mechanisms for validating their soundness
and consistency by using theorem provers and SMT solvers. The framework con-
sists of the following components (which are also our technical contributions):

– A specification language for describing instruction formats. This language
is deliberately weaker in expressiveness than regular expressions while strong
enough for describing instruction formats on common ISAs. Different from the
existing ISA specification languages, it is rich enough for precisely capturing
the syntactical structures of instructions and their operands, which implicitly
encode a bijection between the abstract and the binary representations of
instructions.

– The algorithms for automatically generating encoders and decoders from
instruction specifications. Given any instruction specification, they generate
an abstract syntax of instructions, a partial function from the abstract syntax
to bit strings (i.e., an encoder) and a partial function from bit strings to the
abstract syntax (i.e., a decoder). The generated definitions are formalized in
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the Coq theorem prover so that the encoder and decoder can be formally
validated later.

– The algorithms for automatically validating the consistency and soundness of
the generated encoders and decoders. Given any instruction specification, they
synthesize the consistency and soundness proofs for the generated encoder
and decoder in Coq. This is possible because the bijection implied by the
original specification guarantees that the encoder and decoder are inverses
of each other, under the requirement that the binary “shapes” of different
instructions or operands do not overlap with each other. This requirement is
inherently satisfied by any instruction format, and can be easily proved with
SMT solvers.

To demonstrate the effectiveness of our framework, we have applied it to a
subset of 32-bit X86 instructions. In the rest of this paper, we first introduce
relevant background information for this work and discuss the inadequacy of the
existing work in Sect. 2. We then give an overview of our framework in Sect. 3
by further elaborating on the points above. After that, we discuss the definition
of our specification language and the ideas supporting its design in Sect. 4. In
the two subsequent sections Sect. 5 and Sect. 6, we discuss the algorithms for
automatically generating and validating encoders and decoders. In Sect. 7, we
present the evaluation of our framework. Finally, we discuss related work and
conclude in Sect. 8.

2 Background

For our approach to work, the specification language we use must support the
instruction formats on contemporary RISC and CISC architectures. In this
section, we first introduce the key characteristics of these formats and then
present a running example. We conclude this section by exposing the inadequacy
of the existing approaches in capturing the bijections between the abstract and
binary forms of instructions.

2.1 The Characteristics of Instruction Formats

Opcode ModRM SIB Disp Imms

Mod[7:6] Reg op[5:3] RM[2:0] Scale[7:6] Index[5:3] Base[2:0]

Fig. 1. The format of 32-bit X86 instructions

Instruction formats on CISC architectures may vary in length and structure
even for the same type of instructions and may contain complex dependencies
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between their operands. In contrast, instructions on RISC architectures usually
have fixed formats which are largely subsumed by CISC formats. Therefore, we
focus on handling CSIC formats in this paper.

We use the format of 32-bit X86 instructions as an example to illustrate the
complex characteristics of CISC instructions. It is depicted in Fig. 1. An instruc-
tion is divided into a sequence of tokens where each token is one or more bytes
playing a particular role. The first token Opcode partially or fully determines
the basic type of the instruction; it may be one to three bytes long. Follow-
ing Opcode is an one-byte token ModRM. ModRM is further divided into
a sequence of fields where a field f [n1 : n2] represents a segment of the token
named f that occupies the n2-th to n1-th bits in that token. Depending on the
value of Opcode, ModRM may or may not exist. When it exists, the value
of Reg op[5:3] may contain the encoded representation of a register operand.
Another operand of the instruction may be an addressing mode. It is collectively
determined by the values of Mod[7:6], RM[2:0], the token SIB (scaled index
byte) and the displacement Disp following ModRM. Finally, the instruction
may have an operand of immediate values in the token Imms.

For simplicity of our discussion, we have omitted some details such as the
optional prefixes of instructions in Fig. 1. However, this simplified form is already
enough to expose the key characteristics and complexity of CISC instruction
formats (some of which also manifest in RISC). We summarize them below:

1. Instructions as Composition of Components: At the abstract level, an instruc-
tion consists of a collection of components. Each component serves a specific
purpose and concretely corresponds to certain fields or tokens in the instruc-
tion format. For example, the constituents of 32-bit X86 instructions can be
classified into four different kinds of components (marked with different colors
in Fig. 1): the component determining the types of instructions (Opcode),
the component denoting register operands (Reg op[5:3]), the component
denoting addressing modes (Mod[7:6], RM[2:0], SIB and Disp) and the
component denoting immediate values (Imms).

2. Variance of Components: The concrete forms of components vary in different
ways. A component may correspond to a single token (e.g., Opcode and
Imms), a single field (e.g., Reg op[5:3]), a mixing of fields and tokens (e.g.,
addressing modes), or other forms not shown here. Moreover, the abstract
and concrete forms of a single type of components can also vary significantly
such as the different addressing modes supported by X86 (as we shall see in
detail in the following section).

3. Interleaving of Components. In most cases, there are clear sequential orders
between the concrete representations of components. For example, the com-
ponent of addressing modes immediately follows that of opcode and precedes
that of immediate values. In the other cases, components may be interleaved
with each other. For example, the component of register operands is inter-
leaved with the component of addressing modes.

4. Dependencies between and in Components : The existence and forms of compo-
nents are affected by the dependencies between each other and between their
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own fields or tokens. For example, if an instruction does not take any argu-
ment, then the value of its Opcode determines that there is no token follow-
ing Opcode. For another example, when Mod[7:6] contains the value 0b11,
the addressing mode is simply a register operand. Otherwise, the addressing
mode may further depends on the values in SIB and Disp.

Note that, despite the above complexity, an instruction format is designed to
inherently embed a (partial) bijection between the binary forms of instructions
and their abstract representation as the composition of components. This is to
ensure the determinacy of instruction decoding in hardware. This bijection is
the central property to be investigated in this work.

2.2 A Running Example

Table 1. The different forms of addressing modes

AddrMode Mod RM Scale Index Base Disp

r 0b11 r – – – –

(r) 0b00 r �= 0b100 ∧r �= 0b101 – – – –

(d) 0b00 0b101 – – – d

(s ∗ i + b) 0b00 0b100 s i �= 0b100 b �= 0b101 –

. . . . . . . . . . . . . . . . . . . . .

We present an example of encoding the add instruction to concretely illustrate
the characteristics of the X86 instruction format. It will be used as a running
example for the rest of the paper. The operands of add may have many forms.
For simplicity, we only consider two cases: 1) the first operand is a register while
the second one is an addressing mode, and 2) the first operand is an addressing
mode while the second one is an immediate value.

In the first case, Opcode is 0x03, indicating that ModRM exists and the
first operand is encoded in its Reg op field. The addressing mode has over 23
combinations because of the dependencies and constraints over their fields. We
list only some of the combinations in Table 1, where - indicates that this field
or token does not exist. The first row shows the direct addressing mode r where
Mod is 0b11 and RM contains the encoded register operand r. The following
three rows shows different kinds of indirect addressing modes. They are valid
only if Mod is 0b00 and further constraints are satisfied. For example, the
second row shows the indirect addressing mode (r) where r is encoded in RM.
In this case, r must neither be ESP (encoded as 0b100) nor be EBP (encoded
as 0b101). Similarly, the addressing mode (s ∗ i + b) requires that RM must be
0b100, Index must not be 0b100 and Base must not be 0b101.

In the second case, Opcode is 0x81, indicating that ModRM exists, the
first operand is an addressing mode, and the second operand is an immediate
value following it. Here, Reg Op must be 0b000.
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Opcode:
0x03

Mod:
0b00

Reg op:
0b011

RM:
0b100

Scale:
0b10

Index:
0b001

Base:
0b100

(a) add (4,%ecx,%esp), %ebx

Opcode:
0x03

Mod:
0b00

Reg op:
0b011

RM:
0b101

Disp:
0x88

(b) add 0x88, %ebx

Opcode:
0x81

Mod:
0b00

Reg op:
0b000

RM:
0b011

Imms:
0x66

(c) add $0x66, (%ebx)

Fig. 2. Some concrete examples of instruction encoding

We demonstrate the concrete examples of encoding add (4,%ecx,%esp), %ebx,
add 0x88, %ebx and add $0x66, (%ebx) in Fig. 2 where %ebx and %ecx are
encoded into 0b011 and 0b001, respectively (the order of operands is reversed
because we use the AT&T assembly syntax). Note how the forms of operands
change significantly depending on the different values in the related fields. Note
also, despite such complex dependencies, a bit string representing a valid add
instruction corresponds to a unique combination of components.

2.3 Inadequacy of the Existing Approaches

The existing approaches to specifying instructions are either 1) too general and
allow ambiguity or 2) too low-level and break the component-based abstrac-
tion we just described. Either way, they fail to capture the inherent bijection
embedded in an instruction format.

The bidirectional grammars [18] demonstrate the first kind of inadequacy.
They contain the alternation grammar Alt g1 g2 for matching a bit string s
when either the sub-grammar g1 or g2 matches s. The ambiguity arises when
both g1 and g2 match s: in this case, the same s corresponds to two different
internal representations. Therefore, bidirectional grammars cannot encode bijec-
tions in general. The same can be said for other work on verified parsing based
on ambiguous grammars. We shall discuss them in detail in Sect. 8.

The Specification Language for Encoding and Decoding (or SLED) demon-
strates the second kind of inadequacy [15]. It is a language for describing trans-
lations between symbolic and binary representations of machine instructions.
On the surface, SLED takes the component-based view in specifying instruc-
tions. However, SLED specifications are interpreted through a normalization
process by which every component is flattened into a sequence of tokens. After
that, the structural information of components is completely lost. As a result,
users can only derive encoders from the normalized specifications. They need
to write decoders by using completely different specifications called “matching
statements.” This inability to generate matching encoders and decoders from a
single specification is a common phenomenon in other approaches to ISA speci-
fications.
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In summary, no existing approach can precisely capture the bijections inher-
ently embedded in instruction formats. This is the main intellectual problem we
try to tackle in this paper. We shall elaborate on our solution to this problem
in the remaining sections.

3 An Overview of the Framework
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S : instruction specifications (in CSLED)

G : algorithms for generating formal definitions and proofs (in C++)

A : abstract syntax of instructions (on paper and in Coq)

S : relational specifications of instructions (on paper and in Coq)

E and D : encoders and decoders (in Coq)

Fig. 3. The framework

We develop a framework for automatic generation of verified encoders and
decoders that are consistent and sound. It is depicted in Fig. 3. To generate
formally verified encoders and decoders, users first need to write down a speci-
fication of instructions S in a language called CSLED (or CoreSLED). CSLED
is an enhancement to SLED for characterizing the bijection between the binary
forms and the abstract syntax of instructions. Roughly speaking, S consists of a
collection of class definitions, each of which defines a unique type of components
that form instructions or their operands; the “top-most” class defines the type of
instructions. Each class is associated with a set of patterns to uniquely determine
a bijection between the binary and abstract forms of components in that class.
Note that this bijection exists only when certain well-formedness conditions for
patterns are satisfied. We shall elaborate on these ideas in Sect. 4.

From S, the following definitions are generated and translated into Coq:

– The abstract syntax of instructions A. It is a collection of algebraic data types
corresponding to the classes defined in S.

– A relational specification of S called S. For each class, S contains a binary
predicate that precisely captures the relation between components of that
class and their binary forms. We write R[[K]] k l to denote that the component
k of class K has the binary form l.
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Then, S is fed into a collection of algorithms G to generate the following
definitions and proofs in Coq:

– An encoder E and a decoder D. The encoder is a set of partial functions—one
for each class—from the abstract syntax of that class to bit strings. We write
EK(k) = �l� to denote that l is the result of encoding a component k of class
K where �� denotes the some constructor of the option type. Conversely, the
decoder is a set of partial functions from bit strings to the abstract syntax.
We write DK(l++l′) = �(k, l′)� to denote the decoding of the bit string l into
a component k of class K where ++ is the append operation of bit strings.
Here, the tailing bit string l′ represents the remaining bits after decoding the
first component.

– The proof of consistency between the encoder and decoder. The consistency
theorems are stated as the mutual inversion between the encoder and decoder:

∀ K k l l′, EK(k) = �l� =⇒ DK(l++l′) = �(k, l′)�.
∀ K k l l′, DK(l++l′) = �(k, l′)� =⇒ EK(k) = �l�.

Their Coq proofs are automatically generated by inspecting the logical struc-
ture of classes and patterns in S. For this, we need to derive a very important
property: the decoder always decodes a bit string l back to the same sequence
of components. We achieve this goal by combining proofs in Coq with SMT
solving of verification conditions that are automatically derived from well-
formed specifications.

– The proof of soundness of the encoder and decoder. The soundness theorems
are stated as follows:

∀ K k l l′, EK(k) = �l� =⇒ R[[K]] k l.

∀ K k l l′, DK(l++l′) = �(k, l′)� =⇒ R[[K]] k l.

As we shall see later, EK and R[[K]] are both defined recursively on the defi-
nition of classes in S. Their main difference is that the former is a function
while the latter is a relation. Therefore, it is easy to prove the first soundness
theorem by induction on k. By using the second consistency theorem and the
first soundness theorem, we can easily prove the second soundness theorem.

As we shall see in the following sections, the actual implementations of encoders
and decoders and their consistency and soundness theorems are more compli-
cated than presented here. Nevertheless, the above discussion covers the high-
level ideas of our framework.

Note that in Fig. 3, S and G are not formalized and hence not in the trusted
base. The consistency and soundness of E and D are independently validated
by using Coq and SMT solvers. If the validation of either property fails, the
framework reports a failed attempt to generate the encoder and decoder. This
often indicates that the instruction specification is not well-formed.
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4 The Specification Language

The key idea underlying the design of CSLED is to record explicitly the struc-
tures of components in instruction specifications, instead of normalizing them
into tokens as did in SLED. In this way, CSLED specifications accurately cap-
ture the key characteristics of instruction formats described in Sect. 2.1, hence
the bijections embedded in instruction formats. In this section, we present the
syntax of CSLED, explain the ideas underlying its design, and use the run-
ning example to illustrate how CSLED specifications are written. We also intro-
duce the syntactical and relational interpretations of CSLED specifications and
present the well-formedness conditions for the bijections to exist.

4.1 The Syntax

S ::= 〈empty〉
| S D

D ::= token tid = T ;

| field fid = F ;

| class kid = K;

T ::= (n)

F ::= tid(n1 : n2)

K ::= B
| K | B

B ::= constr cid [aid ] (P)

(a) Definitions

P ::= J
| P;J

J ::= A
| J &A

A ::= O
| cls %i

O ::= ε:tid

| fid = n

| fid �= n

| fld %i

| O & O
| O ; O

(b) Patterns

Fig. 4. The syntax of CSLED

The syntax of CSLED is shown in Fig. 4. A CSLED specification (denoted by
S) consists of a list of definitions (denoted by D). The three kinds of definitions
are for tokens (denoted by T ), fields (denoted by F) and classes (denoted by K).
Every definition is bound to a unique identifier where tid , fid and kid represents
the identifiers of tokens, fields and classes, respectively.

Tokens represent consecutive segments of bytes and are the basic elements for
forming instructions. They are necessary for distinguishing the same sequence of
bytes with different interpretations. Their definitions have the form (n) where n
must be divisible by 8 which denotes a token of n-bits or n/8 bytes. Definitions
of fields have the form tid(n1 : n2) which denotes a field occupying the n2-th to
n1-th bits in the token tid .
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Classes represent specific types of components. They play a central role in
the specifications by accurately capturing the component-based abstraction we
discussed in Sect. 2.1. A class consists of a collection of branches (denoted by B)
each of which denotes a possible form of components in the class. Definitions of
branches have the form constr cid [aid ] (P) where cid is a unique identifier for
the branch (denoting a constructor) and [aid ] is a list of fid or kid denoting the
sub-components or fields for constructing a component (i.e., the arguments to
the constructor). These arguments capture the nested structures of components
where a bigger component may be constructed from smaller ones or basic fields.

A branch is associated with a single pattern P. A pattern plays two roles: it
determines the types of a sequence of tokens that concretely forms components
of this branch, and it describes a relation between these tokens (and their fields)
with the abstract arguments of the branch. This relation essentially encodes the
bijection between the abstract and binary forms of components in this branch.

At the top-most level, P is a sequence of judgments (denoted by J ) separated
by ;, such that J1; . . . ;Jn matches a sequence of tokens concretely represented
by a bit string l if and only if l = l1++l2++ . . . ++ln and Ji matches li for 1 ≤
i ≤ n. This sequential pattern is enough for relating abstract and binary forms
of components when each Ji (and li) corresponds to a single (sub-)component.
However, according to the discussion in Sect. 2.1, components may be interleaved
with each other and Ji may correspond to multiple components. Therefore, a
judgment is a conjunction of atomic patterns (denoted by A) each of which
matches an interleaved component. In case there is no interleaving, a judgment
reduces to a single atomic pattern.

An atomic pattern has two forms: cls %i for relating a sequence of tokens
to the i-th argument in [aid ] of the corresponding branch which must be a class,
and O for relating tokens to field arguments in [aid ] and for further constraining
the fields of these tokens. The O patterns are called basic patterns. Among them
ε:tid matches any token of type tid ; fid = n (fid �= n) matches a token with
the field fid whose value is (is not) the constant n; similar to cls %i, fld %i
relates the i-th argument in [aid ] of the branch which must be a field to the
concrete value of the field in the matching token. The last two cases of basic
patterns indicate that arbitrary sequencing and interleaving of basic patterns
are allowed. Despite such free interleaving, a basic pattern can only match with
sequences of tokens of the same length and of a unique type because we require
that O1 & O2 be well-formed only if both O1 and O2 match sequences of tokens
with the same type. Therefore, basic patterns have the same expressiveness as
SLED specifications in their normalized forms [15].

In contrast to basic patterns, judgments and atomic patterns are much more
expressive as they may match tokens of different lengths and forms. This is
because a class pattern cls %i can match components of a class K with mul-
tiple branches, each of which may have different patterns. By introducing class
patterns into atomic patterns, we are able to represent the complete structures
of components and establish bijections from these structures. This is the key
improvement we made in CSLED compared to SLED.
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4.2 The CSLED Specification of the Running Example

token Opcode = (8); token Disp = (32); token Imms = (32);
token ModRM = (8); token SIB = (8);

field opcode = Opcode(7 : 0); field disp = Disp(31 : 0);
field imms = Imms(31 : 0); field mod = ModRM (7 : 6);
field reg op = ModRM (5 : 3); field rm = ModRM (2 : 0);
field scale = SIB(7 : 6); field index = SIB(5 : 3);
field base = SIB(2 : 0);

class Addrmode =
| constr addr r [rm] (mod = 0b11 & fld %1)
| constr addr ir [rm] (mod = 0b00 & rm �= 0b100 & rm �= 0b101 & fld %1)
| constr addr disp [disp] (mod = 0b00 & rm = 0b101; fld %1)
| constr addr sib [scale, index , base]

(mod = 0b00 & rm = 0b100;

fld %1 & fld %2 & fld %3 & index �= 0b100 & base �= 0b101)
. . .

class Instruction =
| constr AddGvEv [reg op,Addrmode] (opcode = 0x03; fld %1 & cls %2)
| constr AddEvIz [Addrmode, imms]

(opcode = 0x81; reg op = 0b000 & cls %1; fld %2)
. . .

Fig. 5. The CSLED specification of the running example

The CSLED specification of our running example is depicted in Fig. 5. The
Addrmode class specifies the possible addressing modes. Its branches are trans-
lated from the addressing modes described in Table 1 one by one, such that their
patterns exactly match the binary structures of components in the correspond-
ing branches. For instance, the branch addr sib is translated from the fourth
addressing mode in Table 1. Its pattern is a sequence of two judgment. The first
judgment is a conjunction of two basic patterns that are the required constraints
on the fields mod and rm of ModRM described in Table 1. Therefore, it must
match the single token ModRM . The second judgment is a conjunction of basic
patterns that constrain the fields index and base of SIB and relate arguments
of addr sib with the concrete values in the fields scale, index and base. Because
these patterns all constrain the fields of SIB , the second judgment must match
the single token SIB .

Similarly, the Instruction class specifies the instructions. Its two branches
characterize the two kinds of add instructions described in Sect. 2.2. Note
how conjunctions between the basic patterns for reg op and class patterns for
Addrmode are used to describe the interleaving of register operands and address-
ing modes. Note also that in every branch of Addrmode the first pattern matches
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the token ModRM , and in any branch of Instruction the token Opcode is always
followed by Addrmode. Therefore, ModRM always follows Opcode as desired.

By this example, we demonstrate the critical feature of CSLED: because the
syntax of CSLED is designed to precisely describe instruction formats in ISA
manuals, it implicitly captures the embedded bijections. Note that, because of
its faithfulness to the ISA manuals, CSLED’s syntax contains full details about
instruction encoding by nature. However, it is not hard to imagine this syntax
being refined to the client’s syntax through another straightforward bijection. In
fact, this is how we anticipate clients will use CSLED in practice, e.g., to build
verified assemblers for X86.

4.3 Interpretation of CSLED Specifications

From a CSLED specification S, we extract 1) a collection of data types for
representing the abstract syntax of components, and 2) a collection of binary
relations between these data types and bit strings for representing the mappings
between the abstract and concrete forms of components.

Data Types of Components. We use the operator T[[−]] to denote the inter-
pretation of basic fields and classes into data types. The translation for fields are
simple: given a field definition field fid = tid(n1 : n2), T[[fid ]] = 〈n1 − n2 + 1〉
where 〈n〉 represent an unsigned binary integer of n bits. Note that we do not
further translate the values of fields as they have straightforward interpreta-
tions (such as the mapping from bits to registers described in Sect. 2.1). The
interpretation of classes is only slightly more involved. Given a class definition
class kid = K, T[[kid ]] is an algebraic data type named kid . For each branch
constr cid [aid1, . . . , aidn] P of K, there is a constructor cid for kid that takes
n arguments of types T[[aid1]], . . . , T[[aidn]].

Relations Derived from CSLED. The translation of CSLED specifications
into relations is defined in Fig. 6. Here, BS denotes the type of bit strings.
When aids = [aid1, . . . , aidn] we write T[[aids]] to denote the product type of
T[[aid1]], . . . , T[[aidn]]. We use ≡ to denote the definitional equality.

The function R[[aid ]] translates a type of components associated with aid into
a binary relation between its abstract representation and bit strings, where aid
may denote a field or a class. The definition for field components is straightfor-
ward. R[[kid ]] k l holds iff there is a branch of kid whose interpretation relates k
and l , which further requires (by the third rule in Fig. 6) that k is constructed
by using the constructor of that branch and the pattern of the branch relates
the arguments of the constructor to l . The latter relation is defined by Rp[[−,−]]
such that Rp[[P, aids]] args l holds iff P matches l and the arguments args satisfy
the constraints enforced by P and aids. More specifically, Rp[[P;J , aids]] args l
holds iff P matches a prefix of l and J matches the rest of l . The definition of
Rp[[J &A]] is slightly different in that Rp[[J &A, aids]] args l holds iff A matches
the whole l and J matches a prefix of l. This is necessary for describing the
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Fig. 6. Translation of CSLED specifications into relations

interleaving of components. Furthermore, certain constraints need to be satis-
fied for deriving a bijection as shall discuss in Sect. 4.4. Rp[[O1;O2, aids]] and
Rp[[O1&O2, aids]] are not shown in Fig. 6 because they are defined the same as
Rp[[P;J , aids]] and Rp[[J &A, aids]], respectively. Rp[[fid = n, aids]] args l holds
iff l is a token containing fid whose value is n; similar for Rp[[fid �= n, aids]].
Rp[[fld %i, aids]] holds iff the i-th argument in args matches with the concrete
value found in l ; same for Rp[[cls %i, aids]]. Note how the last two definitions
make use of args for getting the values of arguments.

4.4 Well-Formedness of Specifications

The binary relation we define in the last section denotes a bijection only when the
CSLED specification under investigation satisfies certain well-formedness condi-
tions. These conditions guarantee that, given any bit string l, there is at most one
abstract object related to l via the defined binary relation. Well-formedness is
the composition of three properties which we call disjointness, compatibility, and
uniqueness. We give and explain their definitions below. The logic for checking
these conditions is embedded in the generation algorithms we will discuss in the
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next section and will be exploited for the validation of the generated encoders
and decoders.

Disjointness. Given a pattern P1&P2, it satisfies disjointness if P1 and P2

match disjoint fields.1 To understand this, suppose P1 and P2 relate different
abstract arguments a1 and a2 to overlapping bits in a bit string l. Then, we
cannot determine if the values in the overlapping bits are for a1 or a2. Hence,
the derived binary relation cannot possibly be a bijection. Disjointness rules out
such possibility.

Compatibility. We call the types of sequences of tokens a pattern P matches
the “shapes” of P. Given a pattern P1&P2, it satisfies compatibility if every
possible shape of P1 is in a prefix of every possible shape of P2 when P2 is a class
pattern (and vice versa). Enforcing compatibility simplifies the interpretation of
P1&P2 when P1 or P2 is a class pattern with multiple branches that may match
bit strings with different shapes. Compatibility makes sense because for common
instruction formats it is always the case that the components matched by P1 are
embedded in the longest common prefixes of all the possible shapes of P2 when
P2 is a class pattern (and vice versa). For example, in the example depicted
in Fig. 2, Reg op is always embedded into the common prefix of all the possible
shapes of addressing modes, i.e., the ModRM token.

Uniqueness. Given a class pattern K, it satisfies uniqueness if for any bit string
l, at most one of its branches matches l. Uniqueness is essential for ensuring the
determinacy of decoders in presences of class patterns. Fortunately, it implicitly
holds for common instruction formats as they are designed with determinacy
of decoding in mind. To concretely check the uniqueness implied by instruction
formats, we first define the structural condition for a branch with pattern P as
the conjunction of the statically known constraints in P, denoted by [[P]]cond.
We then require that no structure conditions for any two branches of a class
can be satisfied simultaneously. This requirement allows us to uniquely deter-
mine the branch used to construct a class component. For example, the struc-
tural conditions of the first three branches of Addrmode are (mod = 0b11),
(mod = 0b00 & rm �= 0b100 & rm �= 0b101) and (mod = 0b00 & rm = 0b101).
Obviously, any pairwise combination of these conditions cannot possibly be sat-
isfied. This is true even if we consider all the branches of Addrmode. Therefore,
there is at most one way to decode any addressing mode.

5 Generation of Encoders and Decoders

We discuss the algorithm for generating encoders and decoders from CSLED
specifications. The structures of these encoders and decoders closely match the
relations derived from specifications. Furthermore, every operation in an encoder
has a counterpart in the corresponding decoder, and vice versa.
1 We abuse the notation by using P to denote suitable patterns such as J , A or O.
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5.1 Generation of Encoders

Fig. 7. Generation of encoders from patterns

From every class K, we extract an encoder EK for its components. It is a partial
function that takes two arguments—a component k and a bit string l representing
the result previously generated by encoders—and outputs an updated bit string
if the encoding succeeds. We shall write EK(k, l) = �l′� to denote that l′ is the
result of encoding k on top of l.

EK(k, l) is defined by recursion on the structure of k. For every branch B
of K, we generate a piece of Coq code from the pattern P of B for encoding
k. We then insert it into the definition of EK(k, l). We write GE[[P, bs, args]] to
denote the code snippet so generated, where bs is the name of the generated
bit string at this point and args contains the names of the arguments to the
constructor. GE[[P, bs , args]] is defined in Fig. 7 where we use the option monad
for sequencing the encoding operations. The first case is obvious. Code generated
by GE[[fid = n, bs, args]] writes the constant n into the field associated with fid .
GE[[fid �= n, bs , args]] checks whether the corresponding field contains the constant
n and returns none if the checking fails. GE[[fld %i, bs , args]] writes the value of
the i-th argument into the corresponding field. GE[[cls %i, bs, args]] calls the
encoder for the class corresponding to cls %i. GE[[O1 ; O2, bs, args]] encodes its
two parts recursively and concatenates the results together, where first n(bs, n)
returns the first n bits in bs and skip n(bs, n) skips the first n bits in bs and
returns the remaining ones. GE[[O1&O2, bs, args]] first encodes data matching O1,
and then passes the result to the encoding for O2. The last two cases are similar.
Note that if the generated code occurs at the beginning of a branch, then bs
coincides with the input argument l. Otherwise, bs denotes intermediate results.
As we can see, all these cases follow the logical structure of CLSED specifications
we have described before.
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5.2 Generation of Decoders

From every class K, we extract a decoder DK. It is a partial function such that
DK(l) = �(k, l1, l2)� holds iff l = l′++l2, l′ is the binary representation of k,
and l1 is the result of inverting the encoding operation, i.e., setting every bit the
decoder touches in l′ to 0. This extra return value is introduced to help with the
verification as we shall see in Sect. 6.

Fig. 8. Generation of decoders from patterns

The first step of DK is to decide which branch of K should be chosen for
decoding l. It can be done by checking the structural conditions derived from
the patterns of branches (which we have introduced in Sect. 4.4) against l. Specif-
ically, for the pattern P of each branch of K, we translate its structural condition
[[P]]cond into a decision procedure in Coq (a function returning boolean values) in
a straightforward manner. We then insert an if-statement to check if [[P]]cond can
be satisfied. If so, we start the decoding process for this branch. Otherwise, we
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repeatedly check other branches until a matching case is found. Note also that
by uniqueness, there is at most one structural condition that can be satisfied.
Therefore, DK is deterministic in choosing branches.

Once a matching branch is found, we use the algorithm GD[[P, bs , args]] (the
counterpart of GE[[P, bs, args]]) to generate a piece of Coq code for decoding
the arguments of this branch. It is defined in Fig. 8. Similar to encoding, the
generated code snippet follows the logical structure of CSLED specifications.
The function clearfid bs set the bits of the field fid in bs to 0. Note that the
decoding operations are exactly the inversion of those in Fig. 7. Note also that
the fourth and fifth cases in Fig. 8 are responsible for decoding the arguments
and storing them in argi . By applying the corresponding constructor to these
arguments, we get the output component k, which together with the two values
returned by GD form the final output of DK .

5.3 Generation for the Running Example

We show the representative cases of the generated encoder and decoder for our
running example in Fig. 9. They include the encoding and decoding procedures
for the fourth branch of Addrmode (the most complicated one). We can see that
the encoding and decoding operations are exactly the inverses of each other. The
encoder first writes the fields in ModRM and then those in SIB . Conversely,
the decoder first reads the fields in ModRM and then those in SIB . Finally, it
forms the component and returns the reverted and remaining bits. The function
BF addr sib is the decision procedure generated from the structural condition
for the fourth branch of Addrmode. We also show the encoding and decoding
procedures for the first add instruction in Fig. 9. Their structures are very similar
to those of Addrmode.

6 Validation of Encoders and Decoders

In this section, we discuss how to exploit the logical structure of and the well-
formedness conditions for CSLED specifications to automatically synthesize the
proofs of consistency and soundness for encoders and decoders.

6.1 Synthesizing the Proof of Consistency

The consistency between encoders and decoders is composed of two properties
and stated as follows:

Theorem 1 (Consistency between Encoders and Decoders). Given any
class K, its encoder EK and decoder DK are consistent with each other if they
invert each other. That is, the following properties hold:

∀ k l r l′, valid inputK(l) =⇒ EK(k, l) = �r� =⇒ DK(r++l′) = �(k, l, l′)�.
∀ k l r l′, DK(r++l′) = �(k, l, l′)� =⇒ EK(k, l) = �r�.
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Definition encode_addrmode instance input :=
match instance with
...
| addr_sib arg1 arg2 arg3 ⇒
(* Encode ModRM *)
let ModRM := input in
let tmp := write_mod ModRM b["00"] in
let tmp := write_rm tmp b[ "100"] in
let result0 := tmp in
(* Encode SIB *)
let SIB := zeros 8 in
let tmp := write_scale SIB arg1 in
let tmp := write_index tmp arg2 in
let tmp := write_base tmp arg3 in
let index := read_index tmp in
let base := read_base tmp in
do _ ← assert(index �= b["100"]);
do _ ← assert(base �= b["101"]);
let result1 := tmp in
(* Concatenate the results of

encoding ModRM and SIB *)
Some (result0++result1)

| ...
end.

Definition decode_addrmode bs :=
...
if BF_addr_sib bs then
(* Revert the encoding of ModRM *)
let ori := clear_mod bs in
let ori := clear_rm ori in
let ori1 := ori in
do remains ← skipn bs 8; (* Skip ModRM *)
(* Decode SIB to get the arguments

and revert the encoding of SIB *)
let bs := remains in
let arg3 := read_base bs in
let ori := clear_base bs in
let arg2 := read_index ori in
let ori := clear_index ori in
let arg1 := read_scale ori in
let ori := clear_scale ori in
let ori2 := ori in
do remains ← skipn bs 8; (* Skip SIB *)
(* Return the result *)
Some(addr_sib arg1 arg2 arg3,

ori1++ori2, remains)
else if BF_addr_r bs then ...

...

Definition encode_instr instance input :=
match instance with
| AddGvEv arg1 arg2 ⇒

...
let tmp := write_reg_op ModRM arg1 in
do tmp ← encode_addrmode arg2 tmp;
...

| ...
end.

Definition decode_instr bs :=
if BF_AddGvEv bs then

...
do arg2, ori, remains ←

decode_addrmode bs;
let arg1 := read_reg_op ori in
let ori := clear_reg_op ori in
...

Definition BF_addr_sib bs :=
let ModRM := firstn bs 8 in
(* mod = 0b00 ∧ rm = 0b100 *)
let result0 :=

(ModRM & b["11000111"]) = b["00000100"] in
let tmp := skipn bs 8 in
let SIB := firstn tmp 8 in
(* index �= 0b100 *)
let result10 :=

(SIB & b["00111000"]) �= b["00100000"] in
(* base �= 0b101 *)
let result11 :=

(SIB & b["00000111"]) �= b["00000101"] in
result0 ∧ result10 ∧ result11.

Definition BF_AddGvEv bs :=
let Opcode := firstn bs 8 in
(Opcode & b["11111111"]) = b["00000011"].

Fig. 9. Encoders and decoders generated from the running example

We first discuss how the proof for the first property in Theorem 1 is generated.
Here, the assumption valid inputK(l) asserts that all the bits in l that may be
modified by EK must be 0. This is necessary to ensure that the decoder can
revert the resulting bit string back to its initial state by setting them to 0 (i.e.,
the second result of decoding is the same as l).

The proof proceeds by induction on the structure of k. For each branch
B with the pattern P, we generate a lemma and its proof that the decision
procedure generated from [[P]]cond as described in Sect. 5.2 always returns true
given any bit string generated by the encoder for P. With this lemma, the proof
for the “symmetric” case where the decoder takes the same branch as the encoder
reduces to proving that the encoder and decoder generated from P are inverses
of each other. This proof is straightforward by the definitions of GE and GD
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in Sect. 5. An important point to note is that, for any pattern cls %i, we need
to recursively apply the consistency lemma for its corresponding class, which
in turn requires us to establish a valid input assumption. By the disjointness
property in Sect. 4.4, we can easily conclude that the encoding of sub-components
does not interfere with each other, thereby the desired valid input assumption
can be derived.

To finish the proof, we need to show that the “asymmetric” cases are not
possible. For each asymmetric branch B′ with the pattern P ′, we have that
[[P ′]]cond holds by the decision procedure guarding this branch. Furthermore,
by the above reasoning, [[P]]cond holds. We hence have that the conjunction
of [[P]]cond and [[P ′]]cond holds. However, this contradicts with the uniqueness
property given in Sect. 4.4. Therefore, the decoder can never go into a branch
different from the encoder. Continue with our running example, suppose we
are proving the consistency of the encoder and decoder for Addrmode. Further
suppose we are working on the branch with the constructor addr sib. Then, the
verification condition for the asymmetric case with the constructor addr r is

∀bs, (readmod bs = 0b00 ∧ readrm bs = 0b100 . . .) ∧ (readmod bs = 0b11)

which cannot possibly hold (for simplicity we omit the conditions for index and
base). We note that such condition can be easily checked by any SMT solver
with the theory of bit-vectors, and we use Z3 [5] to validate them. This checking
can also be directly formalized in Coq, which we plan to do in the future.

Finally, the second property in Theorem 1 can be proved by induction on k
in a similar fashion. We elide a discussion of its proof.

6.2 Synthesizing the Proof of Soundness

As we have discussed in Sect. 4.3, the relational specifications extracted from
CSLED specifications are tightly related to the actual instruction formats. Thus,
it is reasonable to check the soundness of the generated encoders and decoders
against these specifications. The relational specifications are easily translated
into Coq definitions and we shall use the same notations. The soundness of
encoders and decoders is then stated as follows:

Theorem 2 (Soundness of Encoders and Decoders). Given any class K,
its encoder EK is sound if the following property holds:

∀ k l r l′, EK(k, l) = �r� =⇒ R[[K]] k r.

Similarly, its encoder DK is sound if the following holds:

∀ k l r l′, DK(r++l′) = �(k, l, l′)� =⇒ R[[K]] k r.

The soundness of encoder is easily proved by induction on the structure of k. We
need to exploit the well-formedness conditions of CSLED specifications as for
the consistency proofs at relevant points. The soundness of decoder is a corollary
of the soundness of encoder and the second consistency property.
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7 Evaluation

Besides the CSLED language, our framework has two major parts: 1) the algo-
rithms for generating encoders, decoders and their proofs and 2) a Coq library
containing the definitions and properties of basic types (including bits, bytes
and bit strings) and a collection of automation tactics (Ltac definitions) for
proof synthesis. The generation algorithms amount to 5,193 lines of C++ code
(excluding comments and empty lines, and likewise for the following statistics).
The Coq library amounts to 1,036 lines of Coq code (written in Coq 8.11.0 and
counted using coqwc). We also make use of the monad definitions and some basic
data formats in CompCert’s library [13]. The whole framework took six person
months to develop.

Table 2. The lines of generated Coq code

Component Lines of definitions Lines of proofs

Relational specification 1762 0

AST, encoder and decoder 5677 0

Verification conditions 37011 4402

Consistency proof 295 30841

Soundness proof 60 7193

Total 44805 42436

To evaluate the effectiveness of our framework, we have written a CSLED
specification for a total of 186 representative X86-32 instructions which cover the
operands with the most complicated formats (e.g., addressing modes) and are
sufficient for supporting the assembling process in CompCert’s X86-32 backend.
The specification is very succinct, containing only 260 lines of CSLED code.
From this specification, our framework automatically generates around 87k lines
of Coq code which form the verified encoder and decoder. The lines of Coq
definitions and proofs for individual components are shown in Table 2. Note that
the verification conditions account for a major part of the definitions because
we need to consider all the possible combinations of structural conditions for
the proofs of consistency and soundness. The Coq proofs related to verification
conditions are for identifying the concrete forms of structural conditions. As
expected, the consistency proof is the most complicated one among all the proofs.

To evaluate the performance of the generated encoder and decoder, we ran-
domly generate four sets of instructions, encode them into bit strings, and decode
the bit strings back. The executable encoder and decoder are obtained by extract-
ing Coq definitions into OCaml programs and compiling with OCaml 4.08.0.
We repeat this experiment for 30 times on a machine with Intel(R) i7-4980HQ
CPU@2.8 GHz and 16 GB memory. For comparison, we conduct the same experi-
ments on the hand-written encoder and decoder in the X86-32 back-end of Com-
pCertELF [20]. The results are shown in Table 3. For each test case, it shows the
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Table 3. Performance evaluation

No. of Instr. CSLED Hand-Written

Enc. Time (s) Dec. Time (s) Enc. Time (s) Dec. Time (s)

Med Var.(%) Med Var.(%) Med Var.(%) Med Var.(%)

6000 0.32 0.00 0.56 0.00 0.01 0.00 0.01 0.00

12000 0.64 0.00 1.12 0.00 0.01 0.00 0.02 0.00

18000 0.98 0.03 1.70 0.15 0.02 0.00 0.03 0.01

60000 3.11 0.16 5.43 0.01 0.08 0.00 0.09 0.01

numbers of randomly generated instructions and the median time (in seconds)
and the variance (in percentage) for encoding and decoding. We observe that
the automatically generated encoder and decoder perform reasonably well, but
significantly slower than the hand-written ones. This is because 1) the hand-
written encoder and decoder in CompCertELF currently supports significantly
less instructions (about 20) than the CLSED ones due to the complexity in man-
ual implementation, and 2) the hand-written ones are manually optimized while
the auto-generated ones are not optimized at all. We plan to solve the above
issues by optimizing our generation algorithms in the future.

8 Related Work and Conclusion

We compare our framework with existing work on specification languages of
instruction sets, verified parsing and pretty printing, and formalized ISAs.

There exists a lot of work on developing languages for specifying ISAs. Their
major deficiency is the lack of formal guarantees. For example, the nML specifi-
cation language employs attribute grammars to describe instruction sets [7]. For
another example, EEL uses machine independent primitives to provide syntac-
tic and semantic information of instructions [12]. The most relevant work in this
category is the SLED language which our CSLED is based upon [15]. The pat-
terns in SLED can only describe constraints on tokens and fields. By contrast,
CSLED contains class patterns for accurately characterizing the structures of
components. This extension enables CSLED to capture the bijection between
the abstract and concrete forms of instructions.

Instruction decoding and encoding are special cases of parsing and pretty
printing, respectively. Although there was early work on verifying that pars-
ing and pretty-printing are inverses of each other by formulating them as bijec-
tions [1,10], this requirement was perceived as too strong [16]. Most of the recent
work on verified parsing and pretty printing are dedicated to verify parser gener-
ators based on context-free grammars, regular expressions, parser combinators,
or general data formats [3,11,17]. Some of them are also specialized work on
verifying the encoder-decoder pairs [6,14,19,21]. They mostly deal with gen-
eral and ambiguous grammars or specifications where bijection is difficult (if not
impossible) to establish. By contrast, we intentionally restrict the expressiveness
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of CSLED specifications to make proving consistency possible. Specifically, the
syntax presented in Fig. 4 implies that CSLED specifications can only match
sequences of tokens with finite lengths and shapes, making it strictly weaker
than regular expressions, yet sufficiently strong for precisely capture the com-
mon instruction formats.

There is also abundant work on the development of formal ISA specifications
(e.g., [2,4,8,9]). However, almost all of them focus on the problem of rigorously
defining the semantics of ISAs (such as their sequential behaviors, concurrency
models and interrupt behaviors). Although formalized encoders or decoders (or
both) are sometimes generated (e.g., in Coq or Isabelle/HOL), there is no formal
verification of the soundness or consistency of instruction encoding and decoding
which only concerns the syntax of instructions.

In this paper, we have presented a framework for specifying instruction for-
mats and for automatically generating and verifying encoders and decoders based
on such specifications. The verified encoders and decoders are consistent with
each other (being inverses of each other) and sound (conforming to high-level
specifications). Consistency is provable in our framework because our specifica-
tions capture the bijections inherently embedded in instruction formats. In the
future, we would like to apply this framework to a major part of X86-32 and X86-
64 instructions and also to other ISAs, thereby to demonstrate the versatility
and scalability of our framework.
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Abstract. Several automatic verification tools have been recently devel-
oped to verify subsets of LLVM’s optimizations. However, none of these
tools has robust support to verify memory optimizations.

In this paper, we present the first SMT encoding of LLVM’s mem-
ory model that 1) is sufficiently precise to validate all of LLVM’s intra-
procedural memory optimizations, and 2) enables bounded translation
validation of programs with up to hundreds of thousands of lines of code.
We implemented our new encoding in Alive2, a bounded translation val-
idation tool, and used it to uncover 21 new bugs in LLVM memory opti-
mizations, 10 of which have been already fixed. We also found several
inconsistencies in LLVM IR’s official specification document (LangRef)
and fixed LLVM’s code and the document so they are in agreement.

1 Introduction

Ensuring that LLVM is correct is crucial for the safety and reliability of the
software ecosystem. There has been significant work towards this goal including,
e.g., formally specifying the semantics of the LLVM IR (intermediate represen-
tation). This entails describing precisely what each instruction does and how
it handles special cases such as integer overflows, division by zero, or deref-
erencing out-of-bounds pointers [8,24,26,29,47]. There has also been work on
automatic verification of classes of optimizations, such as peephole optimiza-
tions [25,31], semi-automated proofs [48], translation validation [20,35,42,44],
and fuzzing [23,46]. All this work uncovered several hundred bugs in LLVM.

While there has been great success in improving correctness of scalar opti-
mizations, current verification tools only support basic memory optimizations, if
any. Since memory operations can take a significant fraction of a program’s run
time, memory optimizations are very important for performance. The implemen-
tation of these optimizations and related pointer analyses tends to be complex,
which further justifies the investment in verifying them.

Verifying programs with memory operations is very challenging and it is hard
to scale automatic verification tools that handle these. The main issue lies with
pointer aliasing: which objects does a given memory operation access? Without
any prior information, a verifier must consider that each operation may load or
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store from any live object (global variables and stack/heap allocations). This
creates a big case split for the underlying constraint solver to (attempt to) solve.

Since automatic verification of the source code of memory optimizations is
out of reach at the moment, we focus on bounded translation validation [30,
40] (BTV) instead. (Bounded) translation validation consists in verifying that
an optimization was correct for a particular input program (up to a bounded
unrolling of loops) rather than verifying its correctness for all input programs.

In this paper, we present the first SMT encoding of LLVM’s memory
model [24] that is precise enough to validate all of LLVM’s intraprocedural mem-
ory optimizations. The design of the encoding was guided by practical insights of
the common aliasing cases in BTV to achieve better performance. For example,
we observed that in most cases we can cheaply infer whether a pointer aliases
with a locally-allocated or a global object (but not both). Therefore, our encod-
ing case-splits itself on this property rather than leaving that to the SMT solver,
as we can cheaply resolve the case split for over 95% of the cases.

The second contribution of this paper is a new semantics for heap allocation
for the verification of optimizations for real-world C/C++ programs. Although
LLVM’s memory model has a reasonable semantics for heap allocations [24], we
realized it was not suitable for verifying optimizations. In some programming
styles, the result of functions such as malloc is not checked against NULL and
the resulting pointer is dereferenced right away. Since malloc can return NULL
in some executions, we could end up proving that some undesirable optimiza-
tions were correct since the program triggers undefined behavior in at least one
execution. We propose a new semantics for heap allocations in this paper that
is better suited for the verification of optimizations.

The third contribution is the identification of approximations to the SMT
encoding such that it is still sufficiently precise to verify (and find bugs) in
LLVM’s memory optimizations. This is possible since for translation validation
we only need to be as precise as LLVM’s static analyses (e.g., in the encoding
of aliasing rules), and therefore we do not need to consider extremely precise
analyses nor arbitrary transformations. Compilers have limited reasoning power
by construction in order to keep compilation time reasonable.

We implemented our new SMT encoding of LLVM’s memory model in
Alive2 [30], a bounded translation validation tool for LLVM. We used Alive2
to find and report 21 previously unknown bugs in LLVM memory optimizations,
10 of which have already been fixed.

To summarize, the contributions of this paper are as follows.

1. The first SMT encoding of LLVM’s memory model that is precise enough to
verify all of LLVM’s intraprocedural memory optimizations.

2. A new semantics for heap allocations for the verification of optimizations of
real-world C/C++ programs (Sect. 5.1).

3. A set of approximations to the SMT encoding to further improve the perfor-
mance of verification without introducing false positives or false negatives in
practice (Sect. 9).
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4. Thorough evaluation of LLVM’s memory model against LLVM’s implemen-
tation, which uncovered deviations from the model (Sect. 10.3).

5. Identification of 21 previously unknown bugs in LLVM. We present a few
examples in Sect. 10.1.

2 Overview

Consider the functions below in C:1 a source (original) function on the left and
a target (optimized) function on the right. According to the semantics of high-
level languages, and also of LLVM IR, a pointer received as argument or a callee
cannot guess the address of a memory region allocated within a function. That
is, pointer q is not aliased with p, r, nor touched by g(p+1). Although the caller
of f may guess the address of q in practice, that behavior is excluded by the
language semantics because p’s object (provenance) cannot be a fresh one like q.
If p happens to alias q, accessing such pointer triggers undefined behavior (UB).

1 int f(int *p) {
2 int *q = malloc (4);
3 *q = 42;
4 int *r = g(p+1);
5 *r = 37;
6 return *q;
7 }

1′ int f(int *p) {
2′ // q removed
3′

4′ int *r = g(p+1);
5′ *r = 37;
6′ return 42;
7′ }

The provenance rules allow LLVM to forward the stored value in line 3 to line
6, and therefore line 6′ simply returns 42. As the value stored to *q is not used
anymore and pointer q does not escape, LLVM also removes the heap allocation.

Next we show how to verify this example. Note that we do not require the two
programs to be aligned; the example is aligned to make it easier to understand.

2.1 Verifying the Example Transformation

We start by defining two auxiliary functions that encode the effect of memory
operations on the program state. Let state S = (m,ub) be a pair, where m is a
memory and ub a boolean that tracks whether the program has already executed
UB or not. Let p be the accessed pointer, and v the stored value. The definition
of functions load and store is as follows:

load p S ::= ( load(p, S.m) , (S.m, S.ub ∨ ¬ deref(p, sizeof(∗p), S.m) ))

store p v S ::= ( store(p, v, S.m) , S.ub ∨ ¬ deref(p, sizeof(∗p), S.m) )

load returns a pair with the loaded value and the updated state, where ub
is further constrained to ensure that pointer p is dereferenceable for at least the
size of the loaded type. Similarly, store returns the updated state. The gray
boxes ( · · · ) encode SMT expressions; we describe these in the next section.
1 We use the syntax of C for many of the examples in this paper to make them easier

to read, even though we consider the semantics of LLVM IR.
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Table 1. States and axioms after executing each of the lines of f.

# Inputs: p, m0, ub0 # Inputs: p′, m′
0, ub′

0

2 S1 := (m0, ub0) A1 := q is fresh 2′ -

3 S2 := store q 42 S1 3′ -

4
S3 := (mg, S2.ub ∨ ubg)

A2 := r is not aliased with q ∧ mg agrees with S2.m on q
4′ S′

1 := (m′
g, ub′

0 ∨ ub′
g)

5 S4 := store r 37 S3 5′ S′
2 := store r′ 37 S′

1

6 O := load q S4 6′ O′ := (42, S′
2)

1. Encoding the output states. Table 1 shows the state after executing each of
the programs’ lines. p, m0, and ub0 are SMT variables for the input pointer, and
function f caller’s memory and UB flag, respectively. The target’s corresponding
variables are primed. Meta variables are upper-cased and SMT variables are
lower-cased.

On line 2, q is assigned a pointer to a new object (encoded in axiom A1). On
line 3, ‘*q = 42’ updates the state using store.

On line 4, the return value, output memory, and UB of g(p+1) are repre-
sented with fresh variables r, mg, and ubg, respectively. Axiom A2 encodes the
provenance rules: the return value cannot alias with locally non-escaped point-
ers (q) and only the remaining objects are modified. Line 4′ does not need these
axioms because there are no locally-allocated objects in the target function.

Finally, the outputs O and O′ are a pair of return value and state.

2. Relating the source and target’s states. To prove correctness of a transforma-
tion, we must first establish refinement between the input states of the source/-
target functions. Refinement (�) is used rather than equality because it is allowed
for the source’s caller to give less defined inputs than the target’s.

Ain := p � p′ ∧ m0 � m′
0 ∧ (ub′

0 =⇒ ub0)

The inputs and outputs of function calls are also related using refinement.
For any pair of calls in the source and target functions, if the target’s inputs
refine those of the source, the target’s output also refines the source’s output.
The example only has one function call pair:

Acall :=
(

S2.m � m′
0 ∧ p + 1 � p′ + 1 =⇒ mg � m′

g ∧ r � r′ ∧ (ub′
g =⇒ ubg)

)

We can now state the correctness theorem for the example transformation.
For any input, if the axioms hold, the output of the target must refine that of
the source for some internal nondeterminism in the source (e.g., the address of
pointer q). Output is refined iff (i) the source triggers UB, or (ii) the target
triggers no UB, and the target’s return value and memory refine those of the
source.
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∀p, p′, m0, m
′
0, ub0, ub′

0, mg, m
′
g, ubg, ub′

g . ∃q . (A1 ∧ A2 ∧ Ain ∧ Acall) =⇒ O � O′

2.2 Efficiently Encoding LLVM’s Memory Model and Refinement

We now present our key ideas for efficiently encoding LLVM’s memory model
and refinement (the gray boxes) in SMT, which is one of our main contributions.

1. Pointers. We represent a pointer as a pair (bid, o) of a block id (i.e., its
provenance) and an offset within, so that we can easily detect out-of-bound
accesses: accessing (bid, o) in memory m triggers UB unless 0 ≤ o < m[bid].size,
from which deref((bid, o), sz,m) naturally follows.

2. Bounding the number of blocks. Our first observation is that we can safely
bound the number of memory blocks for bounded translation validation since
loops are unrolled for a fixed number of iterations. As a result, we can use a
(fixed-length) bit-vector to encode block ids.

For the example source function, four blocks are sufficient: three for pointers
p, q, r as they may all point to different blocks, and an extra to represent all the
other blocks that are not syntactically present but are accessible by function g.

For the sake of simplifying the example, we ignore that p, q, r may be null.
Our model does not make such assumption; we explain later how null is handled.

3. Aliasing rules. Several of the aliasing rules are encoded for free as we can
distinguish most blocks by construction. First, we use the most significant bit of
the block ids to distinguish local (1) from non-local (0) blocks. Second, we assign
constant ids whenever possible (e.g., global variables and stack allocations).

For the example source function, (without loss of generality) we set the block
ids of q, p and the extra block to 100(2), 000(2), and 011(2) (in binary format),
respectively. However, we cannot fix the block id of r and instead give the con-
straint that it should be either 000(2) or 001(2) since r may alias with p but not
with q. This establishes the alias constraints in A1 and A2 for free.

4. Memory accesses. In order to leverage the fact that each pointer may range
over a small number of blocks as seen above, we use one SMT array per block
(from an offset to a byte) instead of using a single global array (from a pointer
to a byte). For the latter, it becomes harder to exploit non-aliasing guarantees
since all stores to different blocks are grouped together.

For the example source function, m0 consists of four arrays m
(100)
0 , m

(000)
0 ,

m
(001)
0 , m

(011)
0 for the four blocks. Then since q’s block id is 100(2), store q 42 S1

at line 3 only updates the array m
(100)
0 , leaving the others unchanged. Similarly,

store r 2 S3 at line 5 only updates m
(000)
0 and m

(001)
0 using the SMT if-then-else

expression on r’s block id. Finally, load q S4 at line 6 reads from the updated
array at 100(2), thereby easily realizing that the read value is 42.



SMT Encoding of LLVM’s Memory Model for Bounded TV 757

5. Refinement. The value/memory refinement � is defined based on a mapping
between source and target blocks, which we efficiently encode leveraging the
alignment information between source and target as much as possible (Sect. 7).

3 LLVM’s Memory Model

In this section, we give a brief introduction to LLVM’s memory model [24]. In
this paper we only consider logical pointers (i.e., integer-to-pointer casts are not
supported) and a single address space.

Memory Block. A memory block is the unit of memory allocation: each stack or
global variable has a distinct block, and heap allocation functions like malloc
create a fresh block each time they are called. Each block is uniquely identified
with a non-negative integer (bid), and has associated properties, including size,
alignment, whether it can be written to, whether it is alive, allocation type (heap,
stack, global), physical address, and value.

Pointer. A pointer is defined as a triple (bid, off, attrs), where off is an offset
within the block bid, and attrs is a set of attributes that constrain dereference-
ability and which operations are allowed.

Pointer arithmetic operations (gep) only change the offset, with bid and attrs
being carried over. Unlike C, an offset is allowed to go out-of-bounds (OOB). Such
pointer, however, cannot be dereferenced like in C (triggers undefined behavior—
UB), but can be used for pointer comparisons for example.

LLVM supports several pointer attributes. For example, a readonly pointer
p cannot be used to store data. However, it is possible to use a non-readonly
pointer q to store data to the same location as p (provided the block is writable).
A nocapture pointer cannot escape from a function. For example, when a func-
tion returns, no global variable may have a nocapture pointer stored (otherwise
it is UB).

LLVM has three constant pointers. The null pointer is defined as (0, 0, ∅).
Block 0 is defined as zero sized and not alive. The undef2 pointer is defined
as (β, δ, ∅), with β, δ being fresh variables for each observation of the pointer.
There is also a poison3 pointer.

Instructions. We consider the following LLVM memory-related instructions:

– Memory access: load, store
– Memory allocation: malloc, calloc, realloc, alloca (stack allocation)
– Lifetime: start_lifetime (for stack blocks), free (stack/heap deallocation)

2 In LLVM, undef values are arbitrary values of a given type with the additional
property that they can yield a different value each time they are observed. undef
values can be replaced with any value of the same type, except poison values.

3 A poison value taints whole expression trees (e.g., poison + 1 = poison), and
branching on it is UB. Similarly, dereferencing a poison pointer is UB.
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– Pointer-related: gep (pointer arithmetic), icmp (pointer comparison)
– Library functions: memcpy, memset, memcmp, strlen
– Others: ptrtoint (pointer-to-integer cast), call (function call).

Unsupported memory instructions are: integer-to-pointer casts, and atomic
and volatile memory accesses.

4 Encoding Memory Blocks and Pointers in SMT

We describe our new encoding of LLVM’s memory model in SMT over the next
few sections. We use the theories of UFs (uninterpreted functions), BVs (bit-
vectors), and arrays with lambdas [7], with first order quantification. Moreover,
we consider that the scope of verification is a single function without loops (or
where loops have been previously unrolled).

4.1 Memory Blocks

Each memory block is assigned a distinct identifier (a bit-vector number). We
further split memory blocks into local and non-local. Local blocks are all those
that are allocated within the function under consideration, either on the stack
or the heap. Non-local blocks are the remaining ones, including global variables,
heap/stack allocations in callers and heap allocations in callees (stack allocations
in callees are not observable, since they are deallocated when the called function
returns, hence there is no need to consider them).

We use the most significant bit (MSB) to encode whether a block is local (1)
or non-local (0). This representation allows the null block to have bid = 0 and
be non-local. We refer to the short block id, or b̃id, to refer to bid without the
MSB. This is used in cases where it has already been established whether the
block is local or not. Example with 4-bit block ids:

int g; // bid(g) = 0001
void f(int *p) { // bid(p) = 0xyz (with xyz = arbitrary)

int a[2]; // bid(a) = 1000
int *q = malloc(4); // bid(q) = 1001

}

The separation of local and non-local block ids is an efficient way to encode
the constraint that pointers of these groups cannot alias with each other. In the
example above, argument p cannot alias with either a or q.

As we only consider functions without loops, block ids can be statically
assigned for each allocation site.

4.2 Pointers

A pointer ptr = (bid, off, attrs) is encoded as a single bit-vector consisting in
the concatenation of the three elements. The offset is interpreted as a signed
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number (which is why blocks cannot be larger than half of the address space).
Each attribute (such as readonly) is encoded with a bit. Example with 2-bit
block ids and offsets, and a single attribute (we use . to visually separate the
elements):

void f(char readonly *p, char *q) { // p = 0x.ab.1, q = 0y.cd.0
char *r = p + 2; // r = 0x.(ab+2).1
char *s = q + 3; // s = 0y.(cd+3).0
char *t = malloc(4); // t = 10.00.0

}

Let õff be a truncated offset where the least significant bits corresponding to
the greatest common divisor of the alignment and sizes of all memory operations
are removed. For example, if all operations are 4-byte aligned and they access
either 4- or 8-byte values, then õff has less 2 bits than off (as these are guaranteed
to be always zero when accessing the memory).

4.3 Block Properties

Each block has seven associated properties: size, alignment, read-only, liveness,
allocation type (heap, stack, global), physical address, and value. Block proper-
ties are looked up and updated by memory operations. For example, when doing
a store, we need to check if the access is within the bounds of the block.

Except for liveness and value, properties are fixed at allocation time. Liveness
is encoded with a bit-vector (one bit per block), and value with arrays (indexed
on õff). We use a multi-memory encoding, where we have one array per bid.

The encoding of fixed properties differs for local and non-local blocks. For
non-local blocks, we use a UF symbol per property, taking b̃id as argument.
For local blocks, we cannot use UFs because for the refinement check some of
these would have to be quantified (c.f. Sect. 7) and most, if not all, SMT solvers
do not support quantification of UF symbols. Therefore, we encode each of the
remaining properties of local blocks as an if-then-else (ITE) expression, which is
tailored for each use (e.g., each time an operation needs to lookup a local block’s
size, we build an ITE expression for the given b̃id).

Using ITE expressions to encode properties is less concise than using UFs.
However, it is not a disaster for two reasons. Firstly, we only need to consider
the local blocks that have been allocated beforehand, since the program cannot
access blocks allocated afterward. Secondly, pointers are usually not fully arbi-
trary. Oftentimes we know statically which type of block they refer to, and even
what is the block id, given that pointer arithmetic operations do not change the
block id. Therefore, the ITE expressions are usually small in practice. Example
with 4-bit block ids and offsets of a source program:

int g; // g = 0001.0000, size_src(001) = 4
void f() {

char p[2]; // p = 1000.0000
char q[3]; // q = 1001.0000
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char *r = ... p or q or g ...
r[2] = 0;
char t[1]; // t = 1010.0000

}

The store in this program is only well defined if the size of block pointed by
r is greater than 2. This is encoded in SMT as follows:

ite(islocal(r), ite(b̃id(r) = 0, 2, 3), sizesrc(b̃id(r))) > 2

Function islocal(p) is encoded with the SMT extract expression to fetch the
MSB of the pointer. Similarly, b̃id(p) extracts the relevant bits from a pointer.
The expression for local blocks only needs to consider local blocks 0 and 1, since
block 2 (t) is only allocated afterward. This allows a simple single pass through
the code to generate optimized ITE expressions.

Value. Value is defined as an array from short offset to byte (described later
in Sect. 6.1). For non-local blocks, only those that are constant are initialized
with the respective value. The remaining blocks are allowed to take almost any
value. The exception is for pointers: non-local blocks cannot initially have local
pointers stored, since the calling environment cannot fabricate local pointers.

Local blocks are initialized with poison values using a constant array (i.e.,
an array that yields the same value for all indexes).

4.4 Physical Addresses

If a program observes addresses (through, e.g., pointer-to-integer casting), we
need additional constraints to ensure that addresses of blocks that overlap in
time are disjoint. Since we are doing translation validation, we have two programs
with potentially different sets of locally allocated blocks. Therefore, we need to
ensure that non-local blocks’ addresses are disjoint from those of local blocks of
both programs. This makes the disjointness constraints quite complex.

As an optimization, we split the address space in two: local blocks have
MSB = 1 and non-locals have MSB = 0. Since the encoding of address disjointness
is quadratic in the worst case (cross-product of blocks), halving the number of
blocks is significant. This optimization, however, is an under-approximation of
the program’s behavior (Sect. 9). After investigating LLVM’s optimizations, we
believe it is highly unlikely this approximation will cause false negatives.

If a program does not observe any pointer’s physical address, neither the
block’s physical address property nor the disjointness axioms are instantiated.
However, when dereferencing a pointer, we need to check if the physical address
is sufficiently aligned. When physical addresses are not created, we resort to
checking alignment of both of the pointer’s block and offset. Since in this case
physical addresses are not observed (and therefore not constrained by the pro-
gram using, e.g., pointer comparisons), a block’s physical address can take any
value, and therefore blocks and offsets must be both sufficiently aligned to ensure
that physical pointers are aligned in all program executions. This argument jus-
tifies why we can soundly discard physical addresses.
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Table 2. Comparison of two semantics for pointer comparison.

Integer comparison Non-deterministic

Fold p = q to false if p.bid �= q.bid No Yes

Fold p + i = q + i to p = q Yes No

Fold (int)p = (int)q to p = q Yes No

Fold p < q ∧ p �= q to p < q Yes No

Fold p < q ∧ q �= null to p < q Yes Potentially

Run-time aliasing checks Yes Correct, but not useful

Analysis of pointers cast from integers Harder Easy

4.5 Pointer Comparison

Given two pointers p and q, if a program learns that q is placed right after
p in memory, the program can potentially change the contents of q without
the compiler realizing it. Detecting the existence of such code is impossible in
general, hence restricting the ways a program can learn the layout of objects in
memory is important to make pointer analyses fast yet precise.

A way the memory layout can leak is through pointer comparison. For exam-
ple, what should p < q return if these point to different memory blocks? If it is a
well-defined operation (i.e., simply compares their integer values), it leaks mem-
ory layout information. An alternative is to return a non-deterministic value to
prevent layout leaks, the formal semantics of which is defined at [24].

We found that there are pros and cons of both semantics for the comparison of
pointers of different blocks, and that neither of them covers all optimizations that
LLVM performs. Table 2 summarizes the effects on each of the optimizations.

We decided to implement the integer comparison semantics, as LLVM per-
forms all the optimizations above and its alias analyses (AA) mostly give up
when they encounter an integer-to-pointer cast. In summary, we have to remove
the first optimization from LLVM to make it sound. Additionally, we make it
harder to improve LLVM’s AA algorithms w.r.t. to pointers cast from integers.

4.6 Bounding the Maximum Number of Blocks

Since we assume that programs do not have loops, we can statically bound the
maximum number of both local and non-local blocks a program may observe.

The maximum number of local blocks in the source and target programs,
respectively, Nsrc

local and N tgt
local, is computed by counting the number of heap and

stack allocation instructions. Note that this is an upper-bound because not all
allocation sites may be reachable in practice.

For non-local blocks, we cannot see their definitions as with local blocks,
except for global variables. Nevertheless, we can still bound the maximum num-
ber of observed blocks. It is sufficient to count the number of instructions that
may return non-local pointers, such as function calls and pointer loads. In addi-
tion, we consider a null block when needed (if the null pointer may be observed).
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To encode the behavior of source and target programs, we need Nsrc
nonlocal +

N tgt
nonlocal non-local blocks in the worst case, as all referenced pointers may be dis-

tinct. However, correct transformations will not have the target program observe
more blocks than the source. If the target observes a pointer to a non-local block
that was not observed in the source, we can set that pointer to poison because
its value is not restricted by the source. Therefore, Nsrc

nonlocal non-local blocks
are sufficient to allow the target to exhibit an incorrect behavior.

The bit-width of b̃id is: w
˜bid

= �log2(max(Nsrc
nonlocal,max(Nsrc

local, N
tgt
local)))�.

When only local or non-local pointers are used, wbid = w
˜bid

, as we know statically
if the pointer is local or not. Otherwise, wbid = w

˜bid
+ 1.

5 Memory Allocation

In LLVM, memory blocks can be allocated on the stack (alloca), in the heap
(e.g., malloc, calloc, etc.), or as global variables. It is surprisingly non-trivial to
find a semantics for memory allocations that allows all of LLVM’s optimizations,
and rejects undesired transformations. For example, we have to support alloca-
tion removal and splitting, introduce new stack allocations and new constant
global variables, etc. We explore multiple semantics and show their merits and
shortcomings in the context of proving correctness of program transformations.

5.1 Heap Allocation

Heap allocation is done through functions such as malloc, calloc, C++’s new
operator, etc. We describe semantics for malloc; remaining functions can be
described in terms of it.

First of all, it is important to note that there are two common idioms used
in practice by C programmers when doing memory allocation:

int *p = malloc(4);
*p = 0;

int *p = malloc(4);
if (p) { *p = 0; }

In some programs, like the example on the left, malloc is assumed to never
return null, say non-null assumption. This is mainly because the program does
not consume too much memory and it is expected that the computer has enough
memory/swap space. In other programs like the one on the right, malloc is
expected to sometimes return null, say may-null assumption. Therefore, the
program performs null-ness checks.

Since both programming styles are prevalent, we would like optimizations to
be correct for both. This is non-trivial, as the two assumptions are conflicting:
with the non-null assumption, it is sound to eliminate null checks, but not with
the may-null assumption. We now explore several possible semantics to find one
that works for both programming styles.



SMT Encoding of LLVM’s Memory Model for Bounded TV 763

A. Malloc always succeeds. Based on the non-null assumption, in this seman-
tics we only consider executions where there is enough space for all allocations
to succeed. Regardless of whether the target uses more or less memory than
the source, all calls to malloc yield non-null pointers. Therefore, for example,
deleting unused malloc calls is allowed.

However, removing null checks of malloc is also allowed in this semantics.
For example, optimizing the right example above into the left one is sound. This
transformation, however, is obviously undesirable.

B. Malloc only succeeds if there is enough free space. To solve the problem just
described, based on the may-null assumption, we can simulate the behavior of
dynamic memory allocation and define malloc to return a pointer to a newly
created block if there is an empty space in memory, and null otherwise. This
semantics prevents the removal of null checks of malloc as it may return null.

However, this semantics does not explain removal of unused allocations. It
aligns both source and target programs’ allocations such that any change in the
allocation sequence disrupts the program alignment and thus makes verification
fail. For example, the following transformation removing unused malloc instruc-
tions and replacing comparisons of their output with null is not supported:

int *x = malloc(4);
if (x != nullptr) { ... } ⇒ // remove x (unused)

if (true) { ... }

In case there were 0 bytes left in memory, x would be null, but since LLVM
assumes that the program cannot observe the state of the allocator it folds
the comparison x != nullptr to true after eliminating the allocation. This
optimization would be flagged as incorrect in this semantics.

LLVM assumes very little about the run-time behavior of memory allocators.
This is to support, for instance, garbage collectors, where an allocation may fail
but if repeated it may succeed because memory was reclaimed in between. This
explains why LLVM folds comparisons with null of unused memory blocks, and
also contradicts the linear view of allocations of this semantics.

C. Malloc non-deterministically returns null. This semantics abstracts
the behavior of the memory allocator by (1) allowing malloc to non-
deterministically return null even if there is available space, and (2) only consid-
ering executions where there is enough space for all allocations to succeed. This
semantics prevents the removal of null checks of malloc, which fixes the short-
comings of semantics A, and also allows the removal of unused allocations, which
fixes those of semantics B. However, this semantics is too weak and therefore
allows other undesirable transformations, like the following:

p = malloc(4);
*p = 0; ⇒ exit();

For the sake of proving refinement (Sect. 7), we need just one trace triggering
UB (i.e., one particular realization of the non-deterministic choices) for a given
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Pointer representation Byte offset1 p?

0 Integral valuePoison bits Padding

Pointer byte:

Non-pointer byte:

MSB LSB

Fig. 1. Bit-wise representation of a byte. A pointer byte is poison if ‘p?’ is zero. A
non-pointer byte tracks poison bit-wise.

input to be able to transform the source program into anything for that input.
Informally speaking, refinement always picks the worst-case execution for each
input. Since the source program executes UB when p is null, it is correct to
transform the source into any program although that is obviously undesirable.

This semantics is too weak in practice since many programs are written
without null checks, either assuming the program will not run out of memory,
or assuming the program will terminate if it runs out memory. It is not reasonable
in practice to allow compilers to break all such programs.

Our Solution. As we have seen, there is no single semantics that both allows all
desired transformations and rejects undesired ones. While semantics B prevents
desired optimizations like allocation removal, semantics A and C allow undesired
optimizations, but in a complementary way. For example, removing null checks of
malloc is allowed in A but not in C. On the other hand, transforming an access
of a malloc-allocated block without a null check beforehand into arbitrary code
is allowed in C but not in A.

Therefore, we obtain a good semantics by requiring both A and C: an opti-
mization is correct if it passes the refinement criteria with each of the two
semantics. Intuitively, this definition requires the compiler to support the two
considered coding styles: semantics A supports the non-null assumption, while
semantics C the may-null assumption.

5.2 Stack Allocation

The semantics of alloca, the stack-allocation instruction, is slightly different
from that of malloc. LLVM assumes that stack allocations always succeed, since
the program will likely crash if there is a stack overflow. That is, alloca never
returns a null pointer.

LLVM performs more optimizations on stack allocations than on heap ones.
For example, LLVM can split an allocation into multiple smaller ones or increase
the alignment. These transformations can increase memory consumption.

6 Encoding Loads and Stores in SMT

We encode the value of memory blocks with several arrays (one per bid): from
short offset to byte. We next give the definition of byte and the encoding of
memory accessing instructions in SMT.
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6.1 Byte

There are two types of bytes: pointer bytes and non-pointer bytes, cf. Fig. 1.
A pointer byte has the most significant bit (MSB) set to one. The following

bit states whether the byte is poison or not. Next is the pointer representation
as described in Sect. 4.2 (bid, off, attrs).

Pointers are often longer than one byte, so when storing a pointer to memory
we write multiple consecutive bytes. Each of these bytes records the same pointer,
but with a different byte offset (the last bits of the byte) to distinguish between
the partial bytes of the pointer.

For non-pointer bytes, we track whether each of the bits is poison or not.
This is not required for pointers, since LLVM does not allow pointer values to
be manipulated bit-wise. Non-pointer values can be manipulated bit-wise (e.g.,
using vectors with element types smaller than 8 bits). Each bit of the integral
value is only significant if the corresponding poison bit is zero.

6.2 Load and Store Instructions

Load and store instructions are trivially encoded using SMT arrays. These arrays
store bytes as described in the previous section. We next describe how LLVM
values are encoded to and decoded from our byte representation.

We define two functions, ty⇓(v) and ty⇑(b), which convert a value v into a
byte array and a byte array b back to value, respectively. We show below ty⇓(v)
when v �= poison. isz stands for the integer type with bit-width sz. If sz is not
a multiple of 8 bits, v is zero-extended first. When v is poison, all poison bits
are set to one. BitVec(n, b) stands for number n with bit-width b. Pointer’s byte
offset is 3 bits because we assume 64-bit pointers.

isz⇓(v) or float⇓(v) = λi. 0 ++ 08 ++ bitrepr(v)[8×i . . . 8×(i + 1) − 1] ++ padding
ty∗⇓(v) = λi. 12 ++ bitrepr(v) ++ BitVec(i, 3)

isz⇑(b) and float⇑(b) return poison if any bit is poison, or if any of the
bytes is a pointer. Otherwise, these functions return the concatenation of the
integral values of the bytes.

ty∗⇑(b) returns poison if any of the bytes is poison or not a pointer, there
is more than one distinct pointer value in b, or one of the bytes has an incorrect
byte offset (they have to be consecutive, from zero to byte size minus one).
An exception is reading a non-pointer zero byte, which is interpreted as a null
pointer byte. This allows initialization of, e.g., arrays with null pointers with
memset (which is an idiom commonly used in LLVM IR).

6.3 Multi-array Memory

As already described, we use a multi-array encoding for memory, with one array
per block id, each indexed on õff. A simpler encoding would have used a single
array indexed on ptr. The multi-array encoding is beneficial when we can cheaply
compute small aliasing sets for each memory access. In that case, we reduce the
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Fig. 2. Type definitions and variable naming conventions.

Fig. 3. Refinement of value and final state.

case-splitting work on bid that the SMT solver needs to do, and it enables further
formula simplifications like store forwarding.

The multi-array encoding may, however, end up in a larger encoding overall if
several of the accesses may alias with too many blocks. For load operations that
alias multiple blocks the resulting expression is a linear combination of the loads
of each block, e.g., ite(bid = 0, load(m0, õff), ite(bid = 1, load(m1, õff), . . .)).
In this case, it would be more compact to use the single-array encoding. Note
that even if we do not know the specific block id, we often know whether a
pointer refers to a local or non-local block (e.g., pointers received as argument
have unknown block id, but are known to be non-local), and hence splitting the
memory in two is usually a good idea (c.f. Sect. 10).

We perform several optimizations that are enabled with this multi-array
encoding. We do partial-order reduction (POR) to shrink the potential alias-
ing of pointers with unknown block id. For example, consider a function with
two pointer arguments (x and y) and one global variable. We assign bid = 1 to
the global variable. Then, we estipulate that x can only alias blocks with bid ≤ 2,
which is sufficient to access the global variable or another unknown block. Argu-
ment y is also constrained to only alias blocks with bid ≤ 3, allowing it to alias
with the global variable, the same block as x, or a different block. The same is
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Fig. 4. Refinement of memory and pointers.

done for function calls that return pointers. This POR technique greatly reduces
the potential aliasing of unknown pointers without losing precision.

7 Verifying Correctness of Optimizations

To verify correctness of LLVM optimizations, we establish a refinement relation
between source (or original) and target (or optimized) functions. Equivalence is
not used due to undefined behavior and nondeterminism. Compilers are allowed
to reduce the set of possible behaviors from the source.

Given functions fsrc and ftgt, set of input and output variables Isrc/Itgt and
O (which include, e.g., memory and the return value), and set of non-determinism
variables Nsrc/Ntgt, fsrc is refined by ftgt iff:

∀Isrc, Itgt, Otgt . valid(Isrc, Itgt) ∧ Isrc � Itgt ∧ ∃Nsrc .presrc(Isrc, Nsrc) ∧(∃Ntgt .pretgt(Itgt, Ntgt) ∧ �ftgt�(Itgt, Ntgt) = Otgt

)

=⇒ (∃Nsrc .presrc(Isrc, Nsrc) ∧ �fsrc�(Isrc, Nsrc) �st Otgt)

Predicate valid(Isrc, Itgt) encodes the global precondition of the input mem-
ory and arguments such as disjointness of non-local blocks. Function’s precon-
ditions, presrc and pretgt, include the constraint for disjointness of local blocks.
The existential presrc constrains the input such that the source function has at
least one possible execution. �st is the refinement between final states.

Figure 2 shows the definition of final program state which is a tuple of return
value, return memory, and UB. A memory is a function from block id to a mem-
ory block. A memory block has seven attributes that are described in Sect. 4.3.
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Figure 3 shows the definition of refinement of value and final state. For point-
ers, we cannot simply use equality because local pointers in source and target are
internal to each of the functions. Even if they have the same block identifier, they
may refer to different allocation sites in the functions (value-ptr). Similarly,
the refinement of the final state should consider this difference between local
pointers. To address this, we track a mapping μ between escaped local blocks of
the two functions (described next).

7.1 Refinement of Memory

Checking refinement of non-local memory blocks is simple as blocks are the same
in the source and target functions (e.g., global variables have the same ids in the
two functions). Therefore, one just needs to compare blocks of source and target
functions with the same id pairwise.

Checking refinement of local blocks is harder but needed when, e.g., the
function returns a locally-allocated heap block. This is legal, but block ids in the
two functions may not be equal as allocations may have happened in a different
order. Therefore, we cannot simply compare local blocks with the same ids.

To check refinement of local blocks, we need to align the two functions’
allocations, i.e., we need to find a correspondence between local blocks of the
two functions. We introduce a mapping μ ∈ BlockID �→ BlockID between target
and source local block ids.

Local blocks become related on function calls and return statements, which
is when local pointers may be observed. For example, if a function is called with
a pointer to a local block as the first argument, μ should relate that pointer with
the first argument of an equivalent function call in the target function.

Figure 4 gives the definition of memory refinement, M �µ
mem M ′, as well

as other related relations between memory blocks and pointers. The first rule
pointer describes refinement between source pointer p and target pointer p′

with respect to μ. The following four rules define refinement between bytes b and
b′. In rule byte-nonptr, ‘a | b’ is the bitwise OR operation, and it is used to
check the equality of only those bits that are not poison. Predicate isZeroByte(b)
holds if b is a null pointer or if it is a zero-valued non-pointer byte. This is needed
because stores of null pointers can be optimized to memset instructions.

Rules bytes and block define refinement between memory blocks’ values
and memory blocks, respectively. Rule memory-map describes memory refine-
ment with respect to local block mapping μ. M [bid] stands for the memory block
with block id bid.

The well-formedness of μ is established in the refinement rules for function
calls and return statements. We show these for function calls in the next section.
We note that there might be multiple well-formed μ due to non-determinism.
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Fig. 5. Refinement between function arguments.

8 Function Calls

A call to an unknown function may change the memory arbitrarily (except for,
e.g., constant variables and non-escaped local blocks). The outputs in the source
and target are, however, related: if the target’s inputs refine those of the source,
refinement holds between their outputs as well. Alive2 already supported func-
tion calls; this section shows how it was extended to support memory.

Let (Min, vin) and (Mout, vout) be the input and output of a function call
in the source, and their primed versions, (M ′

in, v′
in) and (M ′

out, v
′
out), those of a

function call in the target. Let μin be a local block mapping before executing
the calls. To state that the outputs are refined if the inputs are refined, we add
the following formula to the target’s precondition:

(
Min �µin

mem M ′
in ∧ ∀i . vin[i] �µin,sz[i]

arg v′
in[i]

)
=⇒ (

Mout �µout
mem M ′

out ∧ vout �µout v′
out

)

A call to a function with a pointer to a local block as argument escapes this
block, as the callee may, e.g., store that pointer to a global variable. Moreover,
any pointer stored in this block also escapes as the callee may traverse the block
and grab any pointer stored there, and do so transitively. The updated mapping
μout = extend(μin,Min,M ′

in, vin, v′
in) returns μin updated with the relationship

between the newly escaped blocks in source and target functions.
Figure 5 shows the definition of refinement between function call arguments

in source and target programs. The first rule relates non-pointer arguments.
The second one handles pointers that have escaped before these calls. The third
rule handles local pointers of blocks that did not escape before these calls, and
therefore we need to check if the contents of these block are refined.

The fourth refinement rule handles byval pointer arguments. These argu-
ments get a freshly allocated block and the contents of the pointer are copied
from the pointer’s offset onwards.

9 Approximating Program Behavior

In order to speedup verification, we approximate programs’ behaviors, which can
result in false positives and false negatives. We believe none of these approxima-
tions has a significant impact for two reasons: (1) we only need to be as precise as
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LLVM’s static analyses, i.e., we do not need to support arbitrary optimizations,
and (2) we do not consider the compiler to be malicious (which may not be true
in certain contexts). Moreover, we conducted an extensive evaluation to support
these claims, on which we report in the next section.

Under-Approximations

1. Physical addresses of local memory blocks have the MSB set to 1, and non-
locals set to 0. This is reasonable if we assume the compiler is not malicious
and therefore will not exploit our approximation.

2. We do not consider the case where a (portion of a) global variable is initially
undef , only poison or a regular value.

3. Library functions strlen, memcmp, and bcmp are unrolled for a constant
number of times. A precondition is added to constrain the input to be smaller
than the unroll factor. In the case of strlen, the input pointer is often a
constant array. We compute the result straight away in this case.

Over-Approximations. The set of local blocks that escape (e.g., whose address
is stored into a global variable) is computed per function. This may over-
approximate the set of escaped pointers at times because, e.g., a pointer may
only escape in a particular branch. LLVM also computes the set of escaped
pointers per function.

10 Evaluation

We implemented our new memory model in Alive2 [30]. The implementation of
the memory model consists in about 3.0 KLoC plus an additional 0.4 KLoC for
static analyses for optimization.

We run two set of experiments to both validate our implementation and
the formal semantics, and to identify bugs in LLVM. First, we did translation
validation of LLVM’s unit tests (test/Transforms) to increase confidence that
we match LLVM’s behavior in practice. Second, we run five benchmarks: bzip2,
gzip, oggenc, ph7, and SQLite3.

Benchmarks were compiled with -O3. Moreover, we disabled type-based alias-
ing because there is no formal model for this feature yet. During compilation, we
emitted pairs of IR files before and after each intra-procedural optimization. We
discarded syntactically equal pairs as well as pairs without memory operations.

We used a machine with two Intel Xeon E5-2630 v2 CPUs (total of 12 cores).
We set Z3’s timeout to 1min and memory limit to 1 GB. Loops were unrolled
once. We used LLVM from 11/Dec (5e31e22) and Z3 [33] from 16/Dec (11477f).

10.1 LLVM Unit Tests

LLVM’s Transforms unit test suite consists in 6,600 tests totaling 36,600 func-
tions. Alive2 takes about 2.5 h (in parallel) to validate these. By running LLVM’s
unit tests, we found 21 new bugs in memory optimizations.
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Table 3. Statistics and results for the single-file benchmarks.

Program LoC Pairs Time (hours) Correct Incorrect TO OOM Unsupported
pairs

bzip2 5.1k 2.3k 1.9 316 9 574 175 1.2k

gzip 5.3k 2.6k 2.0 908 4 922 45 737

oggenc 48k 1.8k 2.0 433 5 617 49 701

ph7 43k 5.6k 3.4 1.2K 23 1.5K 15 2.8k

sqlite3 141k 12k 7.5 2.2k 38 2.2K 48 7.8k

We show below an example of a bug we found. This optimization was shrink-
ing the store from 64 to 32 bits, which is incorrect since the last 32 bits were not
copied. This happened because of the mismatch in the load/store’s sizes.

// i32 *x, *y, *z;
i32 *p = (*x < *y ? x : y);
*(i64*)z = *(i64*)p;


⇒
// i32 *x, *y, *z;
i32 r = (*x < *y ? *x : *y);
*z = r;

10.2 Benchmarks

Table 3 shows the statistics and results for translation validation. The Pairs
column indicates the number of source/optimized function pairs considered for
validation. We discarded pairs where the two functions were syntactically equal,
as the transformation is then trivially correct. The last column indicates the
number of skipped pairs because they use features Alive2 does not yet support.

All the 79 incorrect pairs are due to mismatches between LLVM and the
formal semantics. Of these, 74 are related with incorrect handling of undef and
poison values, and the remaining 5 are caused by incorrect load type punning
optimizations. This shows that our tool has no false positives.

10.3 Specification Bugs

While testing our tool, we found a mismatch in the semantics of the nonnull
attribute between LLVM’s documentation and LLVM’s code. The documenta-
tion specified that passing a null pointer to a nonnull argument triggered UB.
However, as illustrated below, LLVM adds nonnull to a pointer that may be
poison. This is incorrect because poison can be optimized into any value includ-
ing null.

p = gep inbounds q, 1
f(p) ⇒ p = gep inbounds q, 1

f(nonnull p) ; UB if p poison
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We proposed a new semantics to the LLVM developers, where non-
conforming pointers would be considered poison rather than UB. This was
accepted and we have contributed patches to fix the docs and the incorrect
optimizations.

10.4 Alias Sets

To show that splitting the memory into multiple arrays is beneficial, we gathered
statistics of the alias sets in our benchmarks. More than 96% of the dereferenced
pointers turned out to be only local or non-local, but not both. This shows that
splitting the memory into local and non-local simplifies the memory encoding.

We also counted the number of memory blocks pointers may alias with. Half
of the pointers were aliased with just one block. About 80% of the pointers
aliased with at most 3 blocks. This is much less than the median number of
blocks functions have. The median of the number of memory blocks was 7 ∼ 13
(varying over programs), and only 10% of the functions had fewer than 3 blocks.

11 Related Work

Semantics of LLVM IR. The official LLVM IR’s specification is written in
prose [1]. Vellvm [47] and K-LLVM [29] formalized large subsets of the IR in
Coq and K, respectively. [26] clarifies the semantics of undef and poison and
proposes a new freeze instruction. [24] formalizes various memory instructions
of LLVM. [32] presents a C memory model that supports compilation to that
LLVM model.

Translation validation. [38] presents a translation validation infrastructure for
GCC’s intermediate language, using a set of arithmetic/aliasing rules for show-
ing equivalence. LLVM-MD [44] and Peggy [42] verify LLVM optimizations by
showing equivalence of source and targets with rewrite rules/equality axioms.
They suffer, however, from incomplete axioms for aliasing.

In order to simplify the work of translation validation tools, it is possible
to extend the compiler to produce hints (witnesses) [18,36,38,41]. One of these
tools, Crellvm [20], is formally verified in Coq.

Verifying programs with memory using SMT solvers. SMT solvers have been
used before to check equivalence of programs with memory [11,14,21,25,31]. [12]
give an encoding of some (but not all) aliasing constraints needed to do transla-
tion validation of assembly generated by C compilers.

Other memory models encoded in SMT include one for Solidity (Etherium
smart contracts) [16], and for separation logic [37,39]. Several verification tools
include SAT/SMT-based (partial) memory models for C [2,9,10] and Java [43].

Several automatic software verification tools, often based on CHCs (con-
strained Horn clauses), support memory programs [6,13]. For example, both Sea-
Horn and Cascade use a field-sensitive alias analysis to split the memory [15,45].
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SLAyer [4] is an automatic tool for analyzing memory safety of a C program
using Z3. Smallfoot [3] verifies assertions written in separation logic.

There have been recent advances in speeding up verification of (SMT) array
programs [17,22], from which we could likely benefit.

CompCert [27] splits the memory into local (private) and non-local (public)
blocks, similarly to what we do, but assumes that allocations never fail [28]. Work
on verifying peephole optimizations for CompCert does not support memory [34].

To support integer-to-pointer casts in CompCert, [5] proposes extending inte-
ger values to carry block ids as well. In this model, arithmetic on pointer values
yields a symbolic expression. [19] makes the pointer-to-integer cast an instruction
that assigns a physical address to the block. Neither of these models supports
several optimizations performed by LLVM.

12 Conclusion

We presented the first SMT encoding of LLVM’s memory model that is suffi-
ciently precise to validate all of LLVM’s intra-procedural memory optimizations.

Using our new encoding, we found and reported 21 previously unknown bugs
in LLVM memory optimizations, 10 of which have already been fixed.
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Abstract. In recent years, there has been significant progress in the
development and industrial adoption of static analyzers, specifically of
abstract interpreters. Such analyzers typically provide a large, if not
huge, number of configurable options controlling the analysis precision
and performance. A major hurdle in integrating them in the software-
development life cycle is tuning their options to custom usage scenarios,
such as a particular code base or certain resource constraints.

In this paper, we propose a technique that automatically tailors an
abstract interpreter to the code under analysis and any given resource
constraints. We implement this technique in a framework, tAIlor, which
we use to perform an extensive evaluation on real-world benchmarks.
Our experiments show that the configurations generated by tAIlor are
vastly better than the default analysis options, vary significantly depend-
ing on the code under analysis, and most remain tailored to several sub-
sequent code versions.

1 Introduction

Static analysis inspects code, without running it, in order to prove properties or
detect bugs. Typically, static analysis approximates code behavior, for instance,
because checking the correctness of most properties is undecidable. Performance
is another important reason for this approximation. Typically, the closer the
approximation is to the actual code behavior, the less efficient and the more
precise the analysis is, that is, the fewer false positives it reports. For less tight
approximations, the analysis tends to become more efficient but less precise.

Recent years have seen tremendous progress in the development and indus-
trial adoption of static analyzers. Notable successes include Facebook’s Infer [7,8]
and AbsInt’s Astrée [5]. Many popular analyzers, such as these, are based on
abstract interpretation [12], a technique that abstracts the concrete program
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 777–800, 2021.
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semantics and reasons about its abstraction. In particular, program states are
abstracted as elements of abstract domains. Most abstract interpreters offer a
wide range of abstract domains that impact the precision and performance of
the analysis. For instance, the Intervals domain [11] is typically faster but less
precise than Polyhedra [16], which captures linear inequalities among variables.

In addition to the domains, abstract interpreters usually provide a large
number of other options, for instance, whether backward analysis should be
enabled or how quickly a fixpoint should be reached. In fact, the sheer number of
option combinations (over 6M in our experiments) is bound to overwhelm users,
especially non-expert ones. To make matters worse, the best option combinations
may vary significantly depending on the code under analysis and the resources,
such as time or memory, that users are willing to spend.

In light of this, we suspect that most users resort to using the default options
that the analysis designer pre-selected for them. However, these are definitely
not suitable for all code. Moreover, they do not adjust to different stages of
software development, e.g., running the analysis in the editor should be much
faster than running it in a continuous integration (CI) pipeline, which in turn
should be much faster than running it prior to a major release. The alternative of
enabling the (in theory) most precise analysis can be even worse, since in practice
it often runs out of time or memory as we show in our experiments. As a result,
the widespread adoption of abstract interpreters is severely hindered, which is
unfortunate since they constitute an important class of practical analyzers.

Our Approach. To address this issue, we present the first technique that auto-
matically tailors a generic abstract interpreter to a custom usage scenario. With
the term custom usage scenario, we refer to a particular piece of code and specific
resource constraints. The key idea behind our technique is to phrase the prob-
lem of customizing the abstract-interpretation configuration to a given usage
scenario as an optimization problem. Specifically, different configurations are
compared using a cost function that penalizes those that prove fewer properties
or require more resources. The cost function can guide the configuration search of
a wide range of existing optimization algorithms. This problem of tuning abstract
interpreters can be seen as an instance of the more general problem of algorithm
configuration [31]. In the past, algorithm configuration has been used to tune
algorithms for solving various hard problems, such as SAT solving [32,33], and
more recently, training of machine-learning models [3,18,52].

We implement our technique in an open-source framework called tAIlor
1,

which configures a given abstract interpreter for a given usage scenario using a
given optimization algorithm. As a result, tAIlor enables the abstract inter-
preter to prove as many properties as possible within the resource limit without
requiring any domain expertise on behalf of the user.

Using tAIlor, we find that tailored configurations vastly outperform the
default options pre-selected by the analysis designers. In fact, we show that
this is possible even with very simple optimization algorithms. Our experiments
1 The tool implementation is found at https://github.com/Practical-Formal-

Methods/tailor and an installation at https://doi.org/10.5281/zenodo.4719604.

https://github.com/Practical-Formal-Methods/tailor
https://github.com/Practical-Formal-Methods/tailor
https://doi.org/10.5281/zenodo.4719604
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also demonstrate that tailored configurations vary significantly depending on
the usage scenario—in other words, there cannot be a single configuration that
fits all scenarios. Finally, most of the generated configurations remain tailored
to several subsequent code versions, suggesting that re-tuning is only necessary
after major code changes.

Contributions. We make the following contributions:

1. We present the first technique for automatically tailoring abstract interpreters
to custom usage scenarios.

2. We implement our technique in an open-source framework called tAIlor.
3. Using a state-of-the-art abstract interpreter, Crab [25], with millions of con-

figurations, we show the effectiveness of tAIlor on real-world benchmarks.

2 Overview

We now illustrate the workflow and tool architecture of tAIlor and provide
examples of its effectiveness.

Terminology. In the following, we refer to an abstract domain with all its
options (e.g., enabling backward analysis or more precise treatment of arrays
etc.) as an ingredient.

As discussed earlier, abstract interpreters typically provide a large number of
such ingredients. To make matters worse, it is also possible to combine different
ingredients into a sequence (which we call a recipe) such that more properties are
verified than with individual ingredients. For example, a user could configure the
abstract interpreter to first use Intervals to verify as many properties as possible
and then use Polyhedra to attempt verification of any remaining properties. Of
course, the number of possible configurations grows exponentially in the length
of the recipe (over 6M in our experiments for recipes up to length 3).

Workflow. The high-level architecture of tAIlor is shown in Fig. 1. It takes
as input the code to be analyzed (i.e., any program, file, function, or fragment),
a user-provided resource limit, and optionally an optimization algorithm. We
focus on time as the constrained resource in this paper, but our technique could
be easily extended to other resources, such as memory.

The optimization engine relies on a recipe generator to generate a fresh recipe.
To assess its quality in terms of precision and performance, the recipe evaluator
computes a cost for the recipe. The cost is computed by evaluating how precise
and efficient the abstract interpreter is for the given recipe. This cost is used by
the optimization engine to keep track of the best recipe so far, i.e., the one that
proves the most properties in the least amount of time. tAIlor repeats this
process for a given number of iterations to sample multiple recipes and returns
the recipe with the lowest cost.

Zooming in on the evaluator, a recipe is processed by invoking the abstract
interpreter for each ingredient. After each analysis (i.e., one ingredient), the
evaluator collects the new verification results, that is, the verified assertions. All
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Fig. 1. Overview of our framework.

verification results that have been achieved so far are subsequently shared with
the analyzer when it is invoked for the next ingredient. Verification results are
shared by converting all verified assertions into assumptions. After processing
the entire recipe, the evaluator computes a cost for the recipe, which depends
on the number of unverified assertions and the total analysis time.

In general, there might be more than one recipe tailored to a particular
usage scenario. Näıvely, finding one requires searching the space of all recipes.
Section 4.3 discusses several optimization algorithms for performing this search,
which tAIlor already incorporates in its optimization engine.

Examples. As an example, let us consider the usage scenario where a user runs
the Crab abstract interpreter [25] in their editor for instant feedback during
code development. This means that the allowed time limit for the analysis is very
short, say, 1 s. Now assume that the code under analysis is a program file2 of the
multimedia processing tool ffmpeg, which is used to evaluate the effectiveness of
tAIlor in our experiments. In this file, Crab checks 45 assertions for common
bugs, i.e., division by zero, integer overflow, buffer overflow, and use after free.

Analysis of this file with the default Crab configuration takes 0.35 s to
complete. In this time, Crab proves 17 assertions and emits 28 warnings about
the properties that remain unverified. For this usage scenario, tAIlor is able to
tune the abstract-interpreter configuration such that the analysis time is 0.57 s
and the number of verified properties increases by 29% (i.e., 22 assertions are
proved). Note that the tailored configuration uses a completely different abstract
domain than the one in the default configuration. As a result, the verification
results are significantly better, but the analysis takes slightly longer to complete
(although remaining within the specified time limit). In contrast, enabling the
most precise analysis in Crab verifies 26 assertions but takes over 6 min to
complete, which by far exceeds the time limit imposed by the usage scenario.

While it takes tAIlor 4.5 s to find the above configuration, this is time well
invested; the configuration can be re-used for several subsequent code versions.
In fact, in our experiments, we show that generated configurations can remain

2 https://github.com/FFmpeg/FFmpeg/blob/master/libavformat/idcin.c

https://github.com/FFmpeg/FFmpeg/blob/master/libavformat/idcin.c


Automatically Tailoring Abstract Interpretation to Custom Usage Scenarios 781

tailored for at least up to 50 subsequent commits to a file under version control.
Given that changes in the editor are typically much more incremental, we expect
that no re-tuning would be necessary at all during an editor session. Re-tuning
may be beneficial after major changes to the code under analysis and can happen
offline, e.g., between editor sessions, or in the worst case overnight.

As another example, consider the usage scenario where Crab is integrated
in a CI pipeline. In this scenario, users should be able to spare more time for
analysis, say, 5 min. Here, let us assume that the analyzed code is a program
file3 of the curl tool for transferring data by URL, which is also used in our
evaluation. The default Crab configuration takes 0.23 s to run and only verifies
2 out of 33 checked assertions. tAIlor is able to find a configuration that takes
7.6 s and proves 8 assertions. In contrast, the most precise configuration does
not terminate even after 15 min.

Both scenarios demonstrate that, even when users have more time to spare,
the default configuration cannot take advantage of it to improve the verification
results. At the same time, the most precise configuration is completely impracti-
cal since it does not respect the resource constraints imposed by these scenarios.

3 Background: A Generic Abstract Interpreter

Many successful abstract interpreters (e.g., Astrée [5], C Global Surveyor [53],
Clousot [17], Crab [25], IKOS [6], Sparrow [46], and Infer [8]) follow the generic
architecture in Fig. 2. In this section, we describe its main components to show
that our approach should generalize to such analyzers.

Memory Domain. Analysis of low-level languages such as C and LLVM-bitcode
requires reasoning about pointers. It is, therefore, common to design a memory
domain [42] that can simultaneously reason about pointer aliasing, memory con-
tents, and numerical relations between them.

Pointer domains resolve aliasing between pointers, and array domains reason
about memory contents. More specifically, array domains can reason about indi-
vidual memory locations (cells), infer universal properties over multiple cells, or
both. Typically, reasoning about individual cells trades performance for precision
unless there are very few array elements (e.g., [22,42]). In contrast, reasoning
about multiple memory locations (summarized cells) trades precision for per-
formance. In our evaluation, we use Array smashing domains [5] that abstract
different array elements into a single summarized cell. Logico-numerical domains
infer relationships between program and synthetic variables, introduced by the
pointer and array domains, e.g., summarized cells.

Next, we introduce domains typically used for proving the absence of
runtime errors in low-level languages. Boolean domains (e.g., flat Boolean,
BDDApron [1]) reason about Boolean variables and expressions. Non-relational
domains (e.g., Intervals [11], Congruence [23]) do not track relations among dif-
ferent variables, in contrast to relational domains (e.g., Equality [35], Zones [41],

3 https://github.com/curl/curl/blob/master/lib/cookie.c

https://github.com/curl/curl/blob/master/lib/cookie.c
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Fig. 2. Generic architecture of an abstract interpreter.

Octagons [43], Polyhedra [16]). Due to their increased precision, relational
domains are typically less efficient than non-relational ones. Symbolic domains
(e.g., Congruence closure [9], Symbolic constant [44], Term [21]) abstract com-
plex expressions (e.g., non-linear) and external library calls by uninterpreted
functions. Non-convex domains express disjunctive invariants. For instance, the
DisInt domain [17] extends Intervals to a finite disjunction; it retains the scala-
bility of the Intervals domain by keeping only non-overlapping intervals. On the
other hand, the Boxes domain [24] captures arbitrary Boolean combinations of
intervals, which can often be expensive.

Fixpoint Computation. To ensure termination of the fixpoint computation,
Cousot and Cousot introduce widening [12,14], which usually incurs a loss of
precision. There are three common strategies to reduce this precision loss, which
however sacrifice efficiency. First, delayed widening [5] performs a number of
initial fixpoint-computation iterations in the hope of reaching a fixpoint before
resorting to widening. Second, widening with thresholds [37,40] limits the number
of program expressions (thresholds) that are used when widening. The third
strategy consists in applying narrowing [12,14] a certain number of times.

Forward and Backward Analysis. Classically, abstract interpreters analyze
code by propagating abstract states in a forward manner. However, abstract
interpreters can also perform backward analysis to compute the execution states
that lead to an assertion violation. Cousot and Cousot [13,15] define a forward-
backward refinement algorithm in which a forward analysis is followed by a back-
ward analysis until no more refinement is possible. The backward analysis uses
invariants computed by the forward analysis, while the forward analysis does not
explore states that cannot reach an assertion violation based on the backward
analysis. This refinement is more precise than forward analysis alone, but it may
also become very expensive.
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Algorithm 1: Optimization engine.
1 Function Optimize(P , rmax , lmax , idom , iset , recinit , GenerateRecipe,

Accept) is
2 // Phase 1 (optimize domains)
3 recbest := reccurr := recinit

4 costbest := costcurr := Evaluate(P , rmax , recbest)
5 for l := 1 to lmax do
6 for i := 1 to idom · l do
7 recnext := GenerateRecipe(reccurr , l)
8 costnext := Evaluate(P , rmax , recnext)
9 if costnext < costbest then

10 recbest , costbest := recnext , costnext

11 if Accept(costcurr , costnext) then
12 reccurr , costcurr := recnext , costnext

13 // Phase 2 (optimize settings)
14 for i := 1 to iset do
15 recmut := MutateSettings(recbest)
16 costmut := Evaluate(P , rmax , recmut)
17 if costmut < costbest then
18 recbest , costbest := recmut , costmut

19 return recbest

Intra- and Inter-procedural Analysis. An intra-procedural analysis analyzes
a function ignoring the information (i.e., call stack) that flows into it, while an
inter-procedural analysis considers all flows among functions. The former is much
more efficient and easy to parallelize, but the latter is usually more precise.

4 Our Technique

This section describes the components of tAIlor in detail; Sects. 4.1, 4.2, 4.3
explain the optimization engine, recipe evaluator, and recipe generator (Fig. 1).

4.1 Recipe Optimization

Algorithm 1 implements the optimization engine. In addition to the code P
and the resource limit rmax , it also takes as input the maximum length of the
generated recipes lmax (i.e., the maximum number of ingredients), a function to
generate new recipes GenerateRecipe (i.e., the recipe generator from Fig. 1),
and four other parameters, which we explain later.

A tailored recipe is found in two phases. The first phase aims to find the
best abstract domain for each ingredient, while the second tunes the remaining
analysis settings for each ingredient (e.g., whether backward analysis should
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be enabled). Parameters idom and iset control the number of iterations of each
phase. Note that we start with a search for the best domains since they have the
largest impact on the precision and performance of the analysis.

During the first phase, the algorithm initializes the best recipe recbest with
an initial recipe recinit (line 3). The cost of this recipe is evaluated with function
Evaluate, which implements the recipe evaluator from Fig. 1. The subsequent
nested loop (line 5) samples a number of recipes, starting with the shortest
recipes (l := 1) and ending with the longest recipes (l := lmax ). The inner loop
generates idom ingredients for each ingredient in the recipe (i.e., idom · l total
iterations) by invoking function GenerateRecipe, and in case a recipe with
lower cost is found, it updates the best recipe (lines 9–10). Several optimization
algorithms, such as hill climbing and simulated annealing, search for an optimal
result by mutating some of the intermediate results. Variable reccurr stores inter-
mediate recipes to be mutated, and function Accept decides when to update it
(lines 11–12).

As explained earlier, the purpose of the first phase is to identify the best
sequence of abstract domains. The second phase (lines 13–18) focuses on tuning
the other settings of the best recipe so far. This is done by randomly mutating
the best recipe via MutateSettings (line 15), and updating the best recipe if
better settings are found (lines 17–18). After exploring iset random settings, the
best recipe is returned to the user (line 19).

4.2 Recipe Evaluation

The recipe evaluator from Fig. 1 uses a cost function to determine the quality
of a fresh recipe with respect to the precision and performance of the abstract
interpreter. This design is motivated by the fact that analysis imprecision and
inefficiency are among the top pain points for users [10].

Therefore, the cost function depends on the number of generated warnings
w (that is, the number of unverified assertions), the total number of assertions
in the code wtotal , the resource consumption r of the analyzer, and the resource
limit rmax imposed on the analyzer:

cost(w,wtotal , r, rmax ) =

⎧
⎪⎨

⎪⎩

w +
r

rmax

wtotal
, if r ≤ rmax

∞, otherwise

Note that w and r are measured by invoking the abstract interpreter with the
recipe under evaluation. The cost function evaluates to a lower cost for recipes
that improve the precision of the abstract interpreter (due to the term w/wtotal).
In case of ties, the term r/rmax causes the function to evaluate to a lower cost
for recipes that result in a more efficient analysis. In other words, for two recipes
resulting in equal precision, the one with the smaller resource consumption is
assigned a lower cost. When a recipe causes the analyzer to exceed the resource
limit, it is assigned infinite cost.
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4.3 Recipe Generation

In the literature, there is a broad range of optimization algorithms for different
application domains. To demonstrate the generality and effectiveness of tAIlor,
we instantiate it with four adaptations of three well-known optimization algo-
rithms, namely random sampling [38], hill climbing (with regular restarts) [48],
and simulated annealing [36,39]. Here, we describe these algorithms in detail,
and in Sect. 5, we evaluate their effectiveness.

Before diving into the details, let us discuss the suitability of different kinds
of optimization algorithms for our domain. There are algorithms that leverage
mathematical properties of the function to be optimized, e.g., by computing
derivatives as in Newton’s iterative method. Our cost function, however, is eval-
uated by running an abstract interpreter, and thus, it is not differentiable or
continuous. This constraint makes such analytical algorithms unsuitable. More-
over, evaluating our cost function is expensive, especially for precise abstract
domains such as Polyhedra. This makes algorithms that require a large number
of samples, such as genetic algorithms, less practical.

Now recall that Algorithm 1 is parametric in how new recipes are generated
(with GenerateRecipe) and accepted for further mutations (with Accept).
Instantiations of these functions essentially constitute our search strategy for
a tailored recipe. In the following, we discuss four such instantiations. Note
that, in theory, the order of recipe ingredients matters. This is because any
properties verified by one ingredient are converted into assumptions for the next,
and different assumptions may lead to different verification results. Therefore,
all our instantiations are able to explore different ingredient orderings.

Random Sampling. Random sampling (rs) just generates random recipes of a
certain length. Function Accept always returns false as each recipe is generated
from scratch, and not as a result of any mutations.

Domain-Aware Random Sampling. rs might generate recipes containing
abstract domains of comparable precision. For instance, the Octagons domain is
typically strictly more precise than Intervals. Thus, a recipe consisting of these
domains is essentially equivalent to one containing only Octagons.

Now, assume that we have a partially ordered set (poset) of domains that
defines their ordering in terms of precision. An example of such a poset for a
particular abstract interpreter is shown in Fig. 3. An optimization algorithm can
then leverage this information to reduce the search space of possible recipes.
Given such a poset, we therefore define domain-aware random sampling (dars),
which randomly samples recipes that do not contain abstract domains of com-
parable precision. Again, Accept always returns false.

Simulated Annealing. Simulated annealing (sa) searches for the best recipe by
mutating the current recipe reccurr in Algorithm 1. The resulting recipe (recnext),
if accepted on line 12, becomes the new recipe to be mutated. Algoirthm 2
shows an instantiation of GenerateRecipe, which mutates a given recipe such
that the poset precision constraints are satisfied (i.e., there are no domains of
comparable precision). A recipe is mutated either by adding new ingredients with
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Algorithm 2: A recipe-generator instantiation.
1 Function GenerateRecipe(rec, lmax ) is
2 act := RandomAction({ADD: 0.2, MOD: 0.8}))
3 if act = ADD ∧ Len(rec) < lmax then
4 ingrnew := RandomPosetLeastIncomparable(rec)
5 recmut := AddIngredient(rec, ingrnew )

6 else
7 ingr := RandomIngredient(rec)
8 actm := RandomAction({GT: 0.5, LT: 0.3, INC: 0.2})
9 if actm = GT then

10 ingrnew := PosetGreaterThan(ingr)
11 else if actm = LT then
12 ingrnew := PosetLessThan(ingr)
13 else
14 recrem := RemoveIngredient(rec, ingr)
15 ingrnew := RandomPosetLeastIncomparable(recrem)

16 recmut := ReplaceIngredient(rec, ingr , ingrnew )

17 if ¬PosetCompatible(recmut) then
18 recmut := GenerateRecipe(rec, lmax )

19 return recmut

20% probability or by modifying existing ones with 80% probability (line 2). The
probability of adding ingredients is lower to keep recipes short.

When adding a new ingredient (lines 4–5), Algorithm 2 calls Random-

PosetLeastIncomparable, which considers all domains that are incompara-
ble with the domains in the recipe. Given this set, it randomly selects from the
domains with the least precision to avoid adding overly expensive domains. When
modifying a random ingredient in the recipe (lines 7–16), the algorithm can
replace its domain with one of three possibilities: a domain that is immediately
more precise (i.e., not transitively) in the poset (via PosetGreaterThan), a
domain that is immediately less precise (via PosetLessThan), or an incompa-
rable domain with the least precision (via RandomPosetLeastIncompara-

ble). If the resulting recipe does not satisfy the poset precision constraints, our
algorithm retries to mutate the original recipe (lines 17–18).

For simulated annealing, Accept returns true if the new cost (for the
mutated recipe) is less than the current cost. It also accepts recipes whose cost
is higher with a certain probability, which is inversely proportional to the cost
increase and the number of explored recipes. That is, recipes with a small cost
increase are likely to be accepted, especially at the beginning of the exploration.

Hill Climbing. Our instantiation of hill climbing (hc) performs regular restarts.
In particular, it starts with a randomly generated recipe that satisfies the poset
precision constraints, generates 10 new valid recipes, and restarts with a random
recipe. Accept returns true only if the new cost is lower than the best cost,
which is equivalent to the current cost.
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5 Experimental Evaluation

To evaluate our technique, we aim to answer the following research questions:

RQ1: Is our technique effective in tailoring recipes to different usage scenarios?
RQ2: Are the tailored recipes optimal?
RQ3: How diverse are the tailored recipes?
RQ4: How resilient are the tailored recipes to code changes?

5.1 Implementation

We implemented tAIlor by extending Crab [25], a parametric framework for
modular construction of abstract interpreters4. We extended Crab with the
ability to pass verification results between recipe ingredients as well as with the
four optimization algorithms discussed in Sect. 4.3.

Table 1 shows all settings and values used in our evaluation. The first three
settings refer to the strategies discussed in Sect. 3 for mitigating the precision loss
incurred by widening. For the initial recipe, tAIlor uses Intervals and the Crab

default values for all other settings (in bold in the table). To make the search more
efficient, we selected a representative subset of all possible setting values.

Crab uses a DSA-based [26] pointer analysis and can, optionally, reason
about array contents using array smashing. It offers a wide range of logico-
numerical domains, shown in Fig. 3. The bool domain is the flat Boolean
domain, ric is a reduced product of Intervals and Congruence, and term(int)
and term(disInt) are instantiations of the Term domain with intervals and
disInt, respectively. Although Crab provides a bottom-up inter-procedural
analysis, we use the default intra-procedural analysis; in fact, most analyses
deployed in real usage scenarios are intra-procedural due to time constraints [10].

5.2 Benchmark Selection

For our evaluation, we systematically selected popular and (at some point) active
C projects on GitHub. In particular, we chose the six most starred C repositories

Table 1. Crab settings and their possible values as used in our experiments. Default
settings are shown in bold.

Setting Possible values

NUM DELAY WIDEN {1, 2, 4, 8, 16}
NUM NARROW ITERATIONS {1,2, 3, 4}
NUM WIDEN THRESHOLDS {0, 10, 20, 30, 40}
Backward Analysis {OFF,ON }
Array Smashing {OFF ,ON}
Abstract Domains All domains in Fig. 3

4
Crab is available at https://github.com/seahorn/crab.

https://github.com/seahorn/crab
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Table 2. Overview of projects.

Project Description

curl Tool for transferring data by URL

darknet Convolutional neural-network framework

ffmpeg Multimedia processing tool

git Distributed version-control tool

php-src PHP interpreter

redis Persistent in-memory database

with over 300 commits that we could successfully build with the Clang-5.0 com-
piler. We give a short description of each project in Table 2.

For analyzing these projects, we needed to introduce properties to be verified.
We, thus, automatically instrumented these projects with four types of assertions
that check for common bugs; namely, division by zero, integer overflow, buffer
overflow, and use after free. Introducing assertions to check for runtime errors
such as these is common practice in program analysis and verification.

As projects consist of different numbers of files, to avoid skewing the results
in favor of a particular project, we randomly and uniformly sampled 20 LLVM-
bitcode files from each project, for a total of 120. To ensure that each file was
neither too trivial nor too difficult for the abstract interpreter, we used the num-
ber of assertions as a complexity indicator and only sampled files with at least 20
assertions and at most 100. Additionally, to guarantee all four assertion types
were included and avoid skewing the results in favor of a particular assertion
type, we required that the sum of assertions for each type was at least 70 across
all files—this exact number was largely determined by the benchmarks.

Overall, our benchmark suite of 120 files totals 1346 functions, 5557 assertions
(on average 4 assertions per function), and 667927 LLVM instructions (Table 3).

5.3 Results

We now present our experimental results for each research question. We performed
all experiments on a 32-core Intel ®Xeon®E5-2667 v2CPU@3.30 GHzmachine
with 264 GB of memory, running Ubuntu 16.04.1 LTS.

boxes

term(disInt)

disInt

polyhedra

octagons

zones term(int) ric

intervals bool

Fig. 3. Comparing logico-numerical domains in Crab. A domain d1 is less precise than
d2 if there is a path from d1 to d2 going upward, otherwise d1 and d2 are incomparable.
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Table 3. Benchmark characteristics (20 files per project). The last three columns show
the number of functions, assertions, and LLVM instructions in the analyzed files.

Project Functions Assertions LLVM instructions

curl 306 787 50 541

darknet 130 958 55 847

ffmpeg 103 888 27 653

git 218 768 102 304

php-src 268 1031 305 943

redis 321 1125 125 639

Total 1346 5557 667 927

RQ1: Is Our Technique Effective in Tailoring Recipes to Different
Usage Scenarios? We instantiated tAIlor with the four optimization algo-
rithms described in Sect. 4.3: rs, dars, sa, and hc. We constrained the analysis
time to simulate two usage scenarios: 1 s for instant feedback in the editor, and
5 min for feedback in a CI pipeline. We compare tAIlor with the default recipe
(def), i.e., the default settings in Crab as defined by its designer after careful
tuning on a large set of benchmarks over the years. def uses a combination
of two domains, namely, the reduced product of Boolean and Zones. The other
default settings are in Table 1.

For this experiment, we ran tAIlor with each optimization algorithm on
the 120 benchmark files, enabling optimization at the granularity of files. Each
algorithm was seeded with the same random seed. In Algorithm 1, we restrict
recipes to contain at most 3 domains (lmax = 3) and set the number of iterations
for each phase to be 5 and 10 (idom = 5 and iset = 10).

The results are presented in Fig. 4, which shows the number of assertions
that are verified with the best recipe found by each algorithm as well as by
the default recipe. All algorithms outperform the default recipe for both usage
scenarios, verifying almost twice as many assertions on average. The random-
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Fig. 4. Comparison of the number of assertions verified with the best recipe generated
by each optimization algorithm and with the default recipe, for varying timeouts.
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Fig. 5. Comparison of the number of assertions verified by a tailored vs. the default
recipe.
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Fig. 6. Comparison of the total time (in sec) that each algorithm requires for all iter-
ations, for varying timeouts.

sampling algorithms are shown to find better recipes than the others, with dars

being the most effective. Hill climbing is less effective since it gets stuck in local
cost minima despite restarts. Simulated annealing is the least effective because
it slowly climbs up the poset toward more precise domains (see Algorithm 2).
However, as we explain later, we expect the algorithms to converge on the number
of verified assertions for more iterations.

Figure 5 gives a more detailed comparison with the default recipe for the
time limit of 5 min. In particular, each horizontal bar shows the total number of
assertions verified by each algorithm. The orange portion represents the asser-
tions verified by both the default recipe and the optimization algorithm, while
the green and red portions represent the assertions only verified by the algo-
rithm and default recipe, respectively. These results show that, in addition to
verifying hundreds of new assertions, tAIlor is able to verify the vast majority
of assertions proved by the default recipe, regardless of optimization algorithm.

In Fig. 6, we show the total time each algorithm takes for all iterations. dars

takes the longest. This is due to generating more precise recipes thanks to its
domain knowledge. Such recipes typically take longer to run but verify more
assertions (as in Fig. 4). On average, for all algorithms, tAIlor requires only
30 s to complete all iterations for the 1-s timeout and 16 min for the 5-min
timeout. As discussed in Sect. 2, this tuning time can be spent offline.



Automatically Tailoring Abstract Interpretation to Custom Usage Scenarios 791

dars rs hc sa

0

700

1,400

953 944 914 912974 977 944 933

N
u
m
b
er

of
ve

ri
fi
ed

as
se

rt
io
n
s

40 iterations 80 iterations

Fig. 7. Comparison of the number of assertions verified with the best recipe generated
by the different optimization algorithms, for different numbers of iterations.

Figure 7 compares the total number of assertions verified by each algorithm
when tAIlor runs for 40 (idom = 5 and iset = 10) and 80 (idom = 10 and iset =
20) iterations. The results show that only a relatively small number of additional
assertions are verified with 80 iterations. In fact, we expect the algorithms to
eventually converge on the number of verified assertions, given the time limit
and precision of the available domains.

As dars performs best in this comparison, we only evaluate dars in the
remaining research questions. We use a 5-min timeout.

RQ1 takeaway: tAIlor verifies between 1.6–2.1× the assertions of
the default recipe, regardless of optimization algorithm, timeout, or
number of iterations. In fact, even very simple algorithms (such as rs)
significantly outperform the default recipe.

RQ2: Are the Tailored Recipes Optimal? To check the optimality of the
tailored recipes, we compared them with the most precise (and least efficient)
Crab configuration. It uses the most precise domains from Fig. 3 (i.e., bool,
polyhedra, term(int), ric, boxes, and term(disInt)) in a recipe of 6 ingre-
dients and assigns the most precise values to all other settings from Table 1. We
generously gave a 30-min timeout to this recipe.

For 21 out of 120 files, the most precise recipe ran out of memory (264 GB).
For 86 files, it terminated within 5 min, and for 13, it took longer (within
30 min)—in many cases, this was even longer than tAIlor’s tuning time in
Fig. 6. We compared the number of assertions verified by our tailored recipes
(which do not exceed 5 min) and by the most precise recipe. For the 86 files that
terminated within 5 min, our recipes prove 618 assertions, whereas the most pre-
cise recipe proves 534. For the other 13 files, our recipes prove 119 assertions,
whereas the most precise recipe proves 98.

Consequently, our (in theory) less precise and more efficient recipes prove
more assertions in files where the most precise recipe terminates. Possible expla-
nations for this non-intuitive result are: (1) Polyhedra coefficients may overflow,
in which case the constraints are typically ignored by abstract interpreters, and
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Fig. 8. Effect of different settings on the precision and performance of the abstract
interpreter. (dw: NUM DELAY WIDEN, ni: NUM NARROW ITERATIONS, wt: NUM WIDEN -

THRESHOLDS, as: array smashing, b: backward analysis, d: abstract domain, o: ingredi-
ent ordering).

(2) more precise domains with different widening operations may result in less
precise results [2,45].

We also evaluated the optimality of tailored recipes by mutating individual
parts of the recipe and comparing to the original. In particular, for each setting
in Table 1, we tried all possible values and replaced each domain with all other
comparable domains in the poset of Fig. 3. For example, for a recipe including
zones, we tried octagons, polyhedra, and intervals. In addition, we tried
all possible orderings of the recipe ingredients, which in theory could produce
different results. We observed whether these changes resulted in a difference in
the precision and performance of the analyzer.

Figure 8 shows the results of this experiment, broken down by setting. Equal
(in orange) indicates that the mutated recipe proves the same number of asser-
tions within ±5 s of the original. Positive (in green) indicates that it either proves
more assertions or the same number of assertions at least 5 s faster. Negative (in
red) indicates that the mutated recipe either proves fewer assertions or the same
number of assertions at least 5 seconds slower.

The results show that, for our benchmarks, mutating the recipe found by
tAIlor rarely led to an improvement. In particular, at least 93% of all mutated
recipes were either equal to or worse than the original recipe. In the majority
of these cases, mutated recipes are equally good. This indicates that there are
many optimal or close-to-optimal solutions and that tAIlor is able to find one.

RQ2 takeaway: As compared to the most precise recipe, tAIlor

verified more assertions across benchmarks where the most precise
recipe terminated. Furthermore, mutating recipes found by tAIlor

resulted in improvement only for less than 7% of recipes.

RQ3: How Diverse are the Tailored Recipes? To motivate the need for
optimization, we must show that tailored recipes are sufficiently diverse such that
they could not be replaced by a well-crafted default recipe. To better understand
the characteristics of tailored recipes, we manually inspected all of them.
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Fig. 9. Occurrence of domains (in %) in the best recipes for all assertion types.

tAIlor generated recipes of length greater than 1 for 61 files. Out of these,
37 are of length 2 and 24 of length 3. For 77% of generated recipes, NUM DELAY -
WIDEN is not set to the default value of 1. Additionally, 55% of the ingredients
enable array smashing, and 32% enable backward analysis.

Figure 9 shows how often (in percentage) each abstract domain occurs in a
best recipe found by tAIlor. We observe that all domains occur almost equally
often, with 6 of the 10 domains occurring in between 9% and 13% of recipes. The
most common domain was bool at 18%, and the least common was intervals
at 4%. We observed a similar distribution of domains even when instrumenting
the benchmarks with only one assertion type, e.g., checking for integer overflow.

We also inspected which domain combinations are frequently used in the tai-
lored recipes. One common pattern is combinations between bool and numerical
domains (18 occurrences). Similarly, we observed 2 occurrences of term(disInt)
together with zones. Interestingly, the less powerful variants of combining
disInt with zones (3 occurrences) and term(int) with zones (6 occurrences)
seem to be sufficient in many cases. Finally, we observed 8 occurrences of
polyhedra or octagons with boxes, which are the most precise convex and
non-convex domains. Our approach is, thus, not only useful for users, but also
for designers of abstract interpreters by potentially inspiring new domain com-
binations.

RQ3 takeaway: The diversity of tailored recipes prevents replacing
them with a single default recipe. Over half of the tailored recipes
contain more than one ingredient, and ingredients use a variety of
domains and their settings.

RQ4: How Resilient are the Tailored Recipes to Code Changes? We
expect tailored recipes to be resilient to code changes, i.e., to retain their opti-
mality across several changes without requiring re-tuning. We now evaluate if a
recipe tailored for one code version is also tailored for another, even when the
two versions are 50 commits apart.

For this experiment, we took a random sample of 60 files from our benchmarks
and retrieved the 50 most recent commits per file. We only sampled 60 out of
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Fig. 10. Difference in the safe assertions across commits.

120 files as building these files for each commit is quite time consuming—it can
take up to a couple of days. We instrumented each file version with the four
assertion types described in Sect. 5.2. It should be noted that, for some files, we
retrieved fewer than 50 versions either because there were fewer than 50 total
commits or our build procedure for the project failed on older commits. This is
also why we did not run this experiment for over 50 commits.

We analyzed each file version with the best recipe, Ro, found by tAIlor for
the oldest file version. We compared this recipe with new best recipes, Rn, that
were generated by tAIlor when run on each subsequent file version. For this
experiment, we used a 5-min timeout and 40 iterations.

Note that, when running tAIlor with the same optimization algorithm and
random seed, it explores the same recipes. It is, therefore, very likely that recipe
Ro for the oldest commit is also the best for other file versions since we only
explore 40 different recipes. To avoid any such bias, we performed this experiment
by seeding tAIlor with a different random seed for each commit. The results
are shown in Fig. 10.

In Fig. 10, we give a bar chart comparing the number of files per commit
that have a positive, equal, and negative difference in the number of verified
assertions, where commit 0 is the oldest commit and 49 the newest. An equal
difference (in orange) means that recipe Ro for the oldest commit proves the
same number of assertions in the current file version, fn, as recipe Rn found by
running tAIlor on fn. To be more precise, we consider the two recipes to be
equal if they differ by at most 1 verified assertion or 1% of verified assertions since
such a small change in the number of safe assertions seems acceptable in practice
(especially given that the total number of assertions may change across commits).
A positive difference (in green) means that Ro achieves better verification results
than Rn, that is, Ro proves more assertions safe (over 1 assertion or 1% of the
assertions that Rn proves). Analogously, a negative difference (in red) means
that Ro proves fewer assertions. We do not consider time here because none of
the recipes timed out when applied on any file version.

Note that the number of files decreases for newer commits. This is because
not all files go forward by 50 commits, and even if they do, not all file versions
build. However, in a few instances, the number of files increases going forward
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in time. This happens for files that change names, and later, change back, which
we do not account for.

For the vast majority of files, using recipe Ro (found for the oldest commit)
is as effective as using Rn (found for the current commit). The difference in safe
assertions is negative for less than a quarter of the files tested, with the average
negative difference among these files being around 22% (i.e., Ro proved 22%
fewer assertions than Rn in these files). On the remaining three quarters of the
files tested however, Ro proves at least as many assertions as Rn, and thus, Ro

tends to be tailored across code versions.
Commits can result in both small and large changes to the code. We therefore

also measured the average difference in the number of verified assertions per
changed line of code with respect to the oldest commit. For most files, regardless
of the number of changed lines, we found that Ro and Rn are equally effective,
with changes to 1000 LOC or more resulting in little to no loss in precision. In
particular, the median difference in safe assertions across all changes between
Ro and Rn was 0 (i.e., Ro proved the same number of assertions safe as Rn),
with a standard deviation of 15 assertions. We manually inspected a handful
of outliers where Ro proved significantly fewer assertions than Rn (difference
of over 50 assertions). These were due to one file from git where Ro is not as
effective because the widening and narrowing settings have very low values.

RQ4 takeaway: For over 75% of files, tAIlor’s recipe for a previous
commit (from up to 50 commits previous) remains tailored for future
versions of the file, indicating the resilience of tailored recipes across
code changes.

5.4 Threats to Validity

We have identified the following threats to the validity of our experiments.

Benchmark Selection. Our results may not generalize to other bench-
marks. However, we selected popular GitHub projects from different application
domains (see Table 2). Hence, we believe that our benchmark selection mitigates
this threat and increases generalizability of our findings.

Abstract Interpreter and Recipe Settings. For our experiments, we only
used a single abstract interpreter, Crab, which however is a mature and actively
supported tool. The selection of recipe settings was, of course, influenced by the
available settings in Crab. Nevertheless, Crab implements the generic archi-
tecture of Fig. 2, used by most abstract interpreters, such as those mentioned
at the beginning of Sect. 3. We, therefore, expect our approach to generalize to
such analyzers.

Optimization Algorithms. We considered four optimization algorithms, but
in Sect. 4.3, we explain why these are suitable for our application domain. More-
over, tAIlor is configurable with respect to the optimization algorithm.
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Assertion Types. Our results are based on four types of assertions. However,
these cover a wide range of runtime errors that are commonly checked by static
analyzers.

6 Related Work

The impact of different abstract-interpretation configurations has been previ-
ously evaluated [54] for Java programs and partially inspired this work. To the
best of our knowledge, we are the first to propose tailoring abstract interpreters
to custom usage scenarios using optimization.

However, optimization is a widely used technique in many engineering dis-
ciplines. In fact, it is also used to solve the general problem of algorithm confi-
guration [31], of which there exist numerous instantiations, for instance, to
tune hyper-parameters of learning algorithms [3,18,52] and options of constraint
solvers [32,33]. Existing frameworks for algorithm configuration differ from ours
in that they are not geared toward problems that are solved by sequences of
algorithms, such as analyses with different abstract domains. Even if they were,
our experience with tAIlor shows that there seem to be many optimal or close-
to-optimal configurations, and even very simple optimization algorithms such as
rs are surprisingly effective (see RQ2); similar observations were made about
the effectiveness of random search in hyper-parameter tuning [4].

In the rest of this section, we focus on the use of optimization in program
analysis. It has been successfully applied to a number of program-analysis prob-
lems, such as automated testing [19,20], invariant inference [50], and compiler
optimizations [49].

Recently, researchers have started to explore the direction of enriching pro-
gram analyses with machine-learning techniques, for example, to automatically
learn analysis heuristics [27,34,47,51]. A particularly relevant body of work is
on adaptive program analysis [28–30], where existing code is analyzed to learn
heuristics that trade soundness for precision or that coarsen the analysis abstrac-
tions to improve memory consumption. More specifically, adaptive program anal-
ysis poses different static-analysis problems as machine-learning problems and
relies on Bayesian optimization to solve them, e.g., the problem of selectively
applying unsoundness to different program components (e.g., different loops in
the program) [30]. The main insight is that program components (e.g., loops)
that produce false positives are alike, predictable, and share common proper-
ties. After learning to identify such components for existing code, this technique
suggests components in unseen code that should be analyzed unsoundly.

In contrast, tAIlor currently does not adjust soundness of the analysis.
However, this would also be possible if the analyzer provided the corresponding
configurations. More importantly, adaptive analysis focuses on learning analysis
heuristics based on existing code in order to generalize to arbitrary, unseen code.
tAIlor, on the other hand, aims to tune the analyzer configuration to a custom
usage scenario, including a particular program under analysis. In addition, the
custom usage scenario imposes user-specific resource constraints, for instance by
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limiting the time according to a phase of the software-engineering life cycle. As
we show in our experiments, the tuned configuration remains tailored to several
versions of the analyzed program. In fact, it outperforms configurations that are
meant to generalize to arbitrary programs, such as the default recipe.

7 Conclusion

In this paper, we have proposed a technique and framework that tailors a generic
abstract interpreter to custom usage scenarios. We instantiated our framework
with a mature abstract interpreter to perform an extensive evaluation on real-
world benchmarks. Our experiments show that the configurations generated by
tAIlor are vastly better than the default options, vary significantly depend-
ing on the code under analysis, and typically remain tailored to several subse-
quent code versions. In the future, we plan to explore the challenges that an
inter-procedural analysis would pose, for instance, by using a different recipe for
computing a summary of each function or each calling context.
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optimization. In: NIPS, pp. 2546–2554 (2011)

4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. JMLR
13, 281–305 (2012)

5. Blanchet, B., et al.: A static analyzer for large safety-critical software. In: PLDI,
pp. 196–207. ACM (2003)

6. Brat, G., Navas, J.A., Shi, N., Venet, A.: IKOS: a framework for static analysis
based on abstract interpretation. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM
2014. LNCS, vol. 8702, pp. 271–277. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10431-7 20

7. Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety
of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 459–465. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20398-5 33

8. Calcagno, C., et al.: Moving fast with software verification. In: Havelund, K., Holz-
mann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 3–11. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-17524-9 1

9. Chang, B.-Y.E., Leino, K.R.M.: Abstract interpretation with alien expressions and
heap structures. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 147–163.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30579-8 11

https://perspicuous-computing.science
https://perspicuous-computing.science
http://www.inrialpes.fr/pop-art/people/bjeannet/bjeannet-forge/bddapron
http://www.inrialpes.fr/pop-art/people/bjeannet/bjeannet-forge/bddapron
https://doi.org/10.1007/978-3-319-10431-7_20
https://doi.org/10.1007/978-3-319-10431-7_20
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-540-30579-8_11


798 M. N. Mansur et al.

10. Christakis, M., Bird, C.: What developers want and need from program analysis:
an empirical study. In: ASE, pp. 332–343. ACM (2016)

11. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: ISOP, pp. 106–130. Dunod (1976)

12. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977)

13. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
JLP 13, 103–179 (1992)

14. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation. In: Bruynooghe, M., Wirsing, M. (eds.)
PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-55844-6 142

15. Cousot, P., Cousot, R.: Refining model checking by abstract interpretation. Autom.
Softw. Eng. 6, 69–95 (1999)

16. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL, pp. 84–96. ACM (1978)

17. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
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38. Mátyáš, I.: Random optimization. Avtomat. i Telemekh. 26, 246–253 (1965)
39. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-

tion of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–
1092 (1953)

40. Mihaila, B., Sepp, A., Simon, A.: Widening as abstract domain. In: Brat, G.,
Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 170–184. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-4 12
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Abstract. We develop machine-checked verifications of the full func-
tional correctness of C implementations of the eponymous graph algo-
rithms of Dijkstra, Kruskal, and Prim. We extend Wang et al.’s Cer-
tiGraph platform to reason about labels on edges, undirected graphs,
and common spatial representations of edge-labeled graphs such as adja-
cency matrices and edge lists. We certify binary heaps, including Floyd’s
bottom-up heap construction, heapsort, and increase/decrease priority.

Our verifications uncover subtle overflows implicit in standard text-
book code, including a nontrivial bound on edge weights necessary to
execute Dijkstra’s algorithm; we show that the intuitive guess fails and
provide a workable refinement. We observe that the common notion that
Prim’s algorithm requires a connected graph is wrong: we verify that
a standard textbook implementation of Prim’s algorithm can compute
minimum spanning forests without finding components first. Our verifi-
cation of Kruskal’s algorithm reasons about two graphs simultaneously:
the undirected graph undergoing MSF construction, and the directed
graph representing the forest inside union-find. Our binary heap verifi-
cation exposes precise bounds for the heap to operate correctly, avoids a
subtle overflow error, and shows how to recycle keys to avoid overflow.

Keywords: Separation logic · Graph algorithms · Coq · VST

1 Introduction

Dijkstra’s eponymous shortest-path algorithm [22] finds the cost-minimal paths
from a distinguished source vertex to all reachable vertices in a directed graph.
Prim’s [61] and Kruskal’s [42] algorithms return minimal spanning trees for undi-
rected graphs. Binary heaps are the first priority queue one typically encoun-
ters. These algorithms/structures are classic and ubiquitous, appearing widely
in textbooks [20,33,36,65,66,68] and in real routing protocol libraries.

In addition to decades of use and textbook analysis, recent efforts have ver-
ified one or more of these algorithms in proof assistants and formally proved
c© The Author(s) 2021
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claims about their behavior [12,15,30,45,53]. A reasonable person might think
that all that can be said, has been. However, we have found that textbook code
glosses over a cornucopia of issues that routinely crop up in real-world settings:
under/overflows, integration with performant data structures, manual memory
(de-)allocation, error handling, casts, memory alignment, etc. Further, previous
verification efforts with formal checkers often operate within idealized formal
environments, which likewise leads them to ignore the same kinds of issues.

In our work, we provide C implementations of each of these algorithms/data
structures, and prove in Coq [71] the functional correctness of the same with
respect to the formal semantics of CompCert C [50]. By “functional correctness”
we mean natural algorithmic specifications; we do not prove resource bounds.
Although our C code is developed from standard textbooks, we uncover several
subtleties that are absent from the algorithmic and formal methods literature:

§3.2 an overflow in Dijkstra’s algorithm, avoiding which requires a nontrivial
refinement to the algorithm’s precondition to bound edge weights;

§4.2 that the specification of Prim’s algorithm can be improved to apply to
disconnected graphs without any change to textbook (pseudo-)code;

§4.2 the presence of a wholly unneeded line of (pseduo-)code in Prim’s algo-
rithm, and an associated unneeded function argument;

§5 several potential overflows in binary heaps equipped with Floyd’s linear-
time build-heap function and an edit-priority operation.

We wish to develop general and reusable techniques for verifying graph-
manipulating programs written in real programming languages. This is a sig-
nificant challenge, and so we choose to leverage and/or extend three large exist-
ing proof developments to state and prove the full functional correctness of our
code in Coq: CompCert; the Verified Software Toolchain [4] (VST) separation
logic [59] deductive verifier; and our own previous efforts [73], hereafter dubbed
the CertiGraph project. Our primary extensions are to the third, and include:

§2.1 pure/abstract reasoning for graphs with edge labels, (e.g., a distinguished
edge-label value for “infinity” that indicates invalid/absent edges);

§2.2 spatial representations and associated reasoning for edge-labeled graphs
(several flavors of adjacency matrices as well as edge lists);

§2.3 pure reasoning for undirected graphs (e.g., notions of connectedness).

We prove that our pure machinery and our spatial machinery are well-isolated
from each other by verifying several implementations (of each of Dijkstra and
Prim) that represent graphs differently in memory but reuse the entire pure
portion of the proof. Likewise, we show that our spatial reasoning is generic
by reusing graph representations across Dijkstra and Prim. Our verification of
Kruskal proves that we can reason about two graphs simultaneously: a directed
graph with vertex labels for union-find and an undirected graph with edge labels
for which we are building a spanning forest. In addition to our verification of
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Dijkstra, Prim, and Kruskal, we develop increased lemma support for the preex-
isting CertiGraph union-find example [73]. Our extension to “base VST” (e.g.,
verifications without graphs) primarily consists of our verified binary heap.

The remainder of this paper is organized as follows:

§2 We explain our extensions to CertiGraph: edge-labeled graphs, spatial rep-
resentations of such graphs, and undirected graphs.

§3 We explain our verification of Dijkstra’s algorithm in some detail, discuss
a potential overflow, and refine the precondition to avoid it.

§4 We overview our verifications of the Minimum Spanning Tree/Forest algo-
rithms of Prim and Kruskal, focusing on high-level points such as our
improved novel specification of Prim’s.

§5 We overview our verification of binary heaps, including a discussion of
Floyd’s bottom-up heap construction and the edit priority operation.

§6 We briefly discuss engineering, e.g. statistics for our formal development.
§7 We discuss related work, outline future research directions, and conclude.

Our results are completely machine-checked in Coq and publicly available [1].

2 Extensions to CertiGraph

We begin with the briefest of introductions to CertiGraph’s core structure and
then detail the extensions we make to various levels of CertiGraph in service of
our Dijkstra, Prim, and Kruskal verifications. Ignoring modularity and eliding
elements not used in this work, a mathematical graph in CertiGraph is a tuple:
(V, E , vvalid, evalid, src, dst, vlabel, elabel, sound). Here V/E are the car-
rier types of vertices/edges, vvalid/evalid place restrictions specifying whether
a vertex/edge is valid1, and src/dst : E → V map edges to their source/des-
tination. Labels are allowed on vertices and edges, and a soundness condition
allows custom application-specific restrictions [73]. Mathematical graphs connect
to graphs in computer memory via spatial predicates in separation logic.

2.1 Pure Reasoning for Adjacency Matrix-Represented Graphs

Two of our algorithms operate over graphs represented as adjacency matrices.
Not every legal graph can be represented as an adjacency matrix, so we develop a
unified, reusable, and extendable soundness condition SoundAdjMat that a graph
must satisfy in order for it to be represented as an adjacency matrix.

SoundAdjMat is parameterized by the graph’s size and a distinguished
number inf. We restrict most fields in the tuple: (V = Z, E = Z × Z,
vvalid = λv. 0 ≤ v < size, evalid = . . ., src = fst , dst = snd , vlabel,
elabel, sound = . . .). We also restrict the carrier type of vertex labels to unit

1 Validity denotes presence in the graph: e.g., if we are using Z as the carrier type V,
and have only 7 vertices, then vvalid(x) is probably the proposition 0 ≤ x < 7).
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and edge labels to Z. We require the parameters size and inf be strictly posi-
tive and representable on the machine. Most critical, however, is the semantics
of evalid: a valid edge must have a machine-representable label and that label
cannot have value inf; an invalid edge must have label inf. Last, the graph
must be finite.

The restriction on edge labels is necessary because we are working with
labeled adjacency matrices on a real system: we need to set aside a distinguished
number inf such that edgeweight inf indicates the absence of an edge. We can-
not prescribe some inf because client needs can vary widely. For instance, our
verifications of Dijkstra’s and Prim’s algorithms require subtly different infs.

SoundAdjMat guarantees spatial representability as an adjacency matrix,
but it can be extended with further algorithm-specific restrictions before being
plugged in for sound. Dijkstra’s algorithm requires nonnegative edge weights,
and—as we will discuss in §3.2—nontrivial restrictions on size and inf.

2.2 New Spatial Representations for Edge-Labeled Graphs

We give predicates for adjacency matrices and edge lists for edge-labeled graphs.

Adjacency Matrices. Adjacency matrices enable efficient label access for edge-
labeled graphs. We support three common adjacency matrix representations: a
stack-allocated 2D array int graph[size][size], a stack-allocated 1D array
int graph[size×size], and a heap-allocated 2D array int **graph. To the
casual observer, these are essentially interchangeable, but that is a mistake when
thinking spatially. Apart from the arithmetic that the second flavor uses to access
cells, there is a more subtle point: the first and second enjoy a contiguous block
of memory, but the third does not: it is an allocated “spine” with pointers to
separately-allocated rows. For a taste, the spatial representation of the first is:

arr addr(ptr , i , size) Δ= ptr + (i × size)
array(ptr , list) Δ= ∗

i∈[0,|list|)
(ptr + i) �→ list [i ])

arr rep(γ, i , ptr) Δ= let row := graph2mat(γ)[i ] in
array(arr addr(ptr , i , |row |), row)

graph rep(γ, g addr , ) Δ= ∗
v∈γ

arr rep(γ, v , g addr)

We use the separation logic ∗ in its iterated form to say that the arrays are
separate in memory. We elide details relating to object sizes, pointer alignment,
and so forth, although our formal proofs handle such matters. Of particular
note are graph2mat, which performs two projections to drag out the graph’s
nested edge labels into a 2D matrix, and arr addr , which in this instance simply
computes the address of any legal row i from the base address of the graph.
Notice that this graph rep predicate ignores its third argument. To represent a
heap-allocated 2D array we can still use graph2mat but can no longer use address
arithmetic; the third parameter is then a list of pointers to the row sub-arrays.



Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 805

While ironing out these spatial wrinkles, we develop utilities that easily
unfold and refold our adjacency matrices, thus smoothing user experience when
reading and writing arrays and cells. Of course these utilities themselves vary by
flavor of representation, but the net effect is that users of our adjacency matrices
really can be agnostic to the style of representation they are using (see §3.1).

Edge Lists. Edge lists are the representation of choice for sparse graphs. Our C
implementation defines an edge as a struct containing src, dst, and weight,
and defines a graph as a struct containing the graph’s size, edge count, and an
array of edges. Our spatial representation follows this pattern:

graph rep(γ, g addr ,e addr) Δ=
(
g addr �→ (|γ.V |, |γ.E|, e addr)

) ∗ array(e addr , γ.E)

2.3 Undirectedness in a Directed World

The CertiGraph library presented in [73] supports only directed graphs, and, as
we have seen, bakes direction-reliant idioms such as src and dst deep into its
development. Our challenge is to add support for undirected graphs atop of this.

Our approach is to observe that every directed graph can be treated as an
undirected graph by ignoring edge direction. We develop a lightweight layer of
“undirected flavored” definitions atop of the existing “directed flavored” defini-
tions, state and prove connections between these, and then build the undirected
infrastructure we need. The result is that we retain full access to CertiGraph’s
graph theory formalizations modulo some mathematical bridging.

Our basic “undirected flavored” definitions are standard [20]. Vertices u and v
are adjacent if there is an edge between them in either direction; vertices are
self-adjacent. A valid upath (undirected path) is list of valid vertices that form a
pairwise-adjacent chain. Two vertices are connected when a valid upath features
them as head and foot (essentially the transitive closure of adjacenct).

The definitions above sync up with preexisting “directed flavored” definitions.
Intuitively, undirectedness is more lax than directedness, and so it is unsurprising
that these connections are straightforward weakenings of directed properties. We
next give standard definitions [20] that culminate in minimum spanning forest,
which is exactly our postcondition of both Prim’s and Kruskal’s algorithms.2

An undirected cycle (ucycle) is a valid non-empty upath whose first and last
vertices are equal. A connected graph means that any two valid vertices are
connected. is partial graph f g means everything in f is in g. We proceed:

1 Definition uforest g :=

2 (∀ e, evalid g e → strong_evalid g e) ∧
3 (∀ p l, ¬ucycle g p l).

4 Definition spanning g g’ :=

5 ∀ u v, connected g u v ↔ connected g’ u v.

2 That Prim’s postcondition has a forest may raise an eyebrow. See §4.2.
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6 Definition spanning_uforest f g :=

7 is_partial_graph f g ∧ uforest f ∧ spanning f g.

The strong evalid predicate means that the src and dst of the edge are also
valid, so e.g., a valid edge cannot point to a deleted/absent vertex. The second
conjunct of uforest is critical: a forest has no undirected cycles. The other
definitions are straightforward from there, and minimum spanning forest f g
means that no other spanning forest has lower total edge cost than f.

Our undirected work is also compatible with our new developments in §2.1
and §2.2. An adjacency matrix-representable undirected graph has all the pure
properties discussed in SoundAdjMat, and also has symmetry across the left
diagonal. We extend SoundAdjMat into SoundUAdjMat by requiring that all valid
edges have src ≤ dst. This effectively “turns off” the matrix on one half of the
diagonal and avoids double-counting. Prim’s algorithm uses SoundUAdjMat and
places no further restrictions. Further, spatial representations and fold/unfold
utilities are shared across directed and undirected adjacency matrices.

3 Shortest Path

We verify a standard C implementation of Dijkstra’s algorithm. We first sketch
our proof in some detail with an emphasis on our loop invariants, then uncover
and remedy a subtle overflow bug, and finish with a discussion of related work.

3.1 Verified Dijkstra’s Algorithm in C

Figure 1 shows the code and proof sketch of Dijkstra’s algorithm. Red text is
used in the figure to highlight changes compared to the annotation immediately
prior. Our code is implemented exactly as suggested by CLRS [20], so we refer
readers there for a general discussion of the algorithm. The adjacency-matrix-
represented graph γ of size vertices is passed as the parameter g along with the
source vertex src and two allocated arrays dist and prev. The spatial predicate
array(x,v), which connects an array pointer x with its contents v, is standard and
unexciting. PQ(pq, heap) is the spatial representation of our priority queue (PQ)
and Item(i, (key , pri , data)) lays out a struct that we use to interact with the PQ;
we leave the management of the PQ to the operations described in§ 5. Of greater
interest is AdjMat(g, γ), which as explained in §2.2, links the concrete memory
values of g to an abstract mathematical graph γ, which in turn exposes an
interface in the language of graph theory (e.g., vertices, edges, labels). Graph γ
contains the general adjacency matrix restrictions given in §2.1 along with some
further Dijkstra-specific restrictions to be explained in §3.2. We verify Dijkstra
three times using different adjacency-matrix representations as explained in §2.2.
Thanks to some careful engineering, the C code and the Coq verification are both
almost completely agnostic to the form of representation. The only variation
between implementations is when reading a cell (line 15), so we refactor this out
into a straightforward helper method and verify it separately; accordingly, the
proof bases for the three variants differ by less than 1%.
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1 void dijkstra (int **g, int src , int *dist ,

2 int *prev , int size , int inf {

3 //
{

AdjMat(g, γ) ∗ array(dist, ) ∗ array(prev, ) ∧ src ∈ γ ∧ connected(γ, src)
}

4 Item* temp = (Item*) mallocN( sizeof(Item ));

5 int* keys = mallocN (size * sizeof (int ));

6 PQ* pq = pq_make(size); int i, u, cost;

7 for (i = 0; i < size; i++)

8 { dist[i] = inf; prev[i] = inf; keys[i] = pq_push(pq,inf ,i); }

9 dist[src]= 0; prev[src]= src; pq_edit_priority(pq,keys[src],0);

10 while (pq_size(pq) > 0) {

11 //

⎧⎪⎪⎨
⎪⎪⎩

∃dist , prev , popped , heap. AdjMat(g, γ) ∗ PQ(pq, heap) ∗ Item(temp, ) ∗
array(dist, dist) ∗ array(prev, prev) ∗ array(keys, keys) ∧
linked correctly(γ, heap, keys, dist , popped) ∧
dijk correct(γ, src, popped , prev , dist)

⎫⎪⎪⎬
⎪⎪⎭

12 pq_pop(pq, temp); u = temp ->data;

13 for (i = 0; i < size; i++) {

14 //

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∃dist ′, prev ′, heap′. AdjMat(g, γ) ∗ PQ(pq, heap′) ∗
array(dist, dist ′) ∗ array(prev, prev ′) ∗ array(keys, keys) ∗
Item(temp, (keys[u], dist[u], u)) ∧ min(dist[u], heap′) ∧
linked correctly(γ, heap′, keys, dist ′, popped � {u}) ∧
dijk correct weak(γ, src, popped � {u}, prev ′, dist ′, i, u)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

15 cost = getCell(g, u, i);

16 if (cost < inf) {

17 if (dist[i] > dist[u] + cost) {

18 dist[i] = dist[u] + cost; prev[i] = u;

19 pq_edit_priority(pq, keys[i], dist[i]);

20 }}}} //

⎧⎨
⎩

∃dist ′′, prev ′′. AdjMat(g, γ) ∗ PQ(pq, ∅) ∗ Item(temp, ) ∗
array(dist, dist ′′) ∗ array(prev, prev ′′) ∗ array(keys, keys) ∧
∀dst . dst ∈ γ → inv popped(γ, src, γ.V , prev ′′, dist ′′, dst)

⎫⎬
⎭

21 freeN (temp); pq_free (pq); freeN (keys); return; }

Fig. 1. C code and proof sketch for Dijkstra’s algorithm.

Dijkstra’s algorithm uses a PQ to greedily choose the cheapest unoptimized
vertex on line 12. The best-known distances to vertices are expected to improve
as various edges are relaxed, and such improvements need to be logged in the
PQ: Dijkstra’s algorithm implicitly assumes that its PQ supports the additional
operation decrease priority. Our “advanced” PQ (§5.3) supports this opera-
tion in logarithmic time with the pq edit priority function3.

The first nine lines are standard setup. The keys array, assigned on line 8,
is thereafter a mathematical constant. The pure predicate linked correctly con-
tains the plumbing connecting the various mathematical arrays. The verifica-
tion turns on the loop invariants on lines 11 and 14. The pure while invariant

3 Because decrease priority is relatively complex to implement, several popular
workarounds (e.g. [12]) use simpler PQs at the cost of decreased performance.
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dijk correct(γ, src, popped , prev , dist) essentially unfolds into:

∀dst . dst ∈ γ → inv popped(γ, src, popped , prev , dist , dst) ∧
inv unpopped(γ, src, popped , prev , dist , dst) ∧
inv unseen(γ, src, popped , prev , dist , dst)

That is, a destination vertex dst falls into one of three categories:

1. inv popped : if dst ∈ popped , then dst has been fully processed, i.e., dst is
reachable from src via a globally-optimal path p whose vertices are all in
popped . Path p has been logged in prev and p’s cost is given in dist .

2. inv unpopped : if dst 	∈ popped , but its known distance is less than inf, then
dst is reachable in one step from a popped vertex mom. This route is locally
optimal: we cannot improve the cost via an alternate popped vertex. More-
over, prev logs mom as the best-known way to reach dst , and dist logs the
path cost via mom as the best-known cost.

3. inv unseen: if dst 	∈ popped and its known distance is inf, then there is no
edge from any popped vertex to dst ; in other words, dst is located deeper in
the graph than has yet been explored.

After line 12, the above invariant is no longer true: a minimum-cost item u has
been popped from the PQ, and so the dist and prev arrays need to be updated to
account for this pop. The for loop does exactly this repair work. Its pure invari-
ant dijk correct weak(γ, src, popped , prev , dist , u, i) essentially unfolds into:
(∀dst . dst ∈ γ → inv popped(γ, src, popped , prev , dist , dst)

) ∧(∀dst . 0 ≤ dst < i → inv unpopped(γ, src, popped , prev , dist , dst) ∧
inv unseen(γ, src, popped , prev , dist , dst)

) ∧(∀dst . i ≤ dst < size → inv unpopped weak(γ, src, popped , prev , dist , dst , u) ∧
inv unseen weak(γ, src, popped , prev , dist , dst , u)

)

We now have five cases, many of which are familiar from dijk correct :

1. inv popped : as before; if dst ∈ popped , then it has been fully processed.
For all “previously-popped vertices” (i.e., except for u), this is trivial from
dijk correct . For u itself, we reach the heart of Dijkstra’s correctness: the
locally-optimal path to the cheapest unpopped vertex is globally optimal.

2. inv unpopped (less than i): as before; if dst is reachable in one hop from a
popped vertex mom, where now mom could be u. Initially this is trivial since
i = 0, and we restore it as i increments by updating costs when they can be
improved, as on lines 18 and 19.

3. inv unseen (less than i): as before; some previously unseen neighbors of u
may be transferred to unpopped status. This is also restored as i increments.

4. inv unpopped weak (between i and size): if dst is reachable in one hop from
a previously-popped vertex mom, with potentially further improvements pos-
sible via u. As i increments, we strengthen it into inv unpopped after consid-
ering whether routing via u improves the best-known cost to dst .



Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 809

5. inv unseen weak (between i and size): no edge exists from any previously-
popped vertex to dst , but there may be one from u. As i increments, we
consider whether routing via u reveals a path to dst . This is strengthened
into inv unpopped if so, and into inv unseen if not.

At the end of the for loop the fourth and fifth cases fall away (i = size), and
the PQ and the dist and prev arrays finish “catching up” to the pop on line 12.
This allows us to infer the while invariant dijk correct , and thus continue the
while loop. The while loop itself breaks when all vertices have been popped and
processed. The second and third clauses of the while loop invariant dijk correct
then fall away, as seen on line 20: all vertices satisfy inv popped , and are either
optimally reachable or altogether unreachable. We are done.

3.2 Overflow in Dijkstra’s Algorithm

Dijkstra’s algorithm clearly cannot work when a path cost is more than INT MAX.
A reasonable-looking restriction is to bound edge costs by

⌊
INT MAX
size−1

⌋
, since the

longest optimal path has size−1 links and so the most expensive possible path
costs no more than INT MAX. However, this has two flaws.

First, since we are writing real code in C, rather than pseudocode in an
idealized setting, we must reserve some concrete int value inf for “infinity”.
Suppose we set inf = INT MAX, and that size − 1 divides INT MAX. Now the
longest path can have cost (size − 1) ·

⌊
INT MAX
size−1

⌋
= INT MAX = inf. This creates

an unpleasant ambiguity: we cannot tell if the farthest vertex is unreachable, or
if it is reachable with legitimate cost INT MAX. We need to adjust our maximum
edge weights to leave room for inf; using

⌊
INT MAX−1
size−1

⌋
solves this first issue.

Second, even though the best-known distances start at inf (see line 8) and
only ever decrease from there, the code can overflow on lines 17 and 18. Consider
applying Dijkstra’s algorithm on a 32-bit unsigned machine to the graph in
Fig. 2. The size of the graph is 3 nodes, and the proposed edge-weight upper
bound is

⌊
INT MAX−1
size−1

⌋
=

⌊
(232−1)−1

3−1

⌋
= 231 − 1, for example as in the graph

pictured in Fig. 2. A glance at the figure shows that the true distance from the
source A to vertices B and C are 231 −1 and 232 −2 respectively. Both values are
representable with 32 bits, and neither distance is inf = 232 − 1, so näıvely all
seems well. Unfortunately, Dijkstra’s algorithm does not exactly work like that.

After processing vertices A and B, 231 − 1 and 232 − 2 are the costs reflected
in the dist array for B and C respectively—but unfortunately vertex C is still in
the priority queue. After vertex C is popped on line 12, we fetch its neighbors in
the for loop; the cost from C to B (231 − 1) is fetched on line 15. On line 17 the
currently optimal cost to B (231 − 1) is compared with the sum of the optimal
cost to C (232 − 2) plus the just-retrieved cost of the edge from C to B (231 − 1).
Näıvely, (232 − 2) + (231 − 1) is greater than the currently optimal cost 231 − 1,
so the algorithm should stick with the latter. However, (232 − 2) + (231 − 1)
overflows, with

(
(232 − 2) + (231 − 1)

)
mod 232 = 231 − 3, which is less than
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A B C231 − 1 231 − 1

231 − 1

Fig. 2. A graph that will result in overflow on a 32-bit machine.

231 − 1! Thus the code decides that a new cheaper path from A to B exists (in
particular, A�B�C�B) and then trashes the dist and prev arrays on line 18.

Our code uses signed int rather than unsigned int so we have undefined
behavior rather than defined-but-wrong behavior, but the essence of the overflow
is identical. We ensure that the “probing edge” does not overflow by restricting
the maximum edge cost further, from

⌊
INT MAX−1
size−1

⌋
to

⌊
INT MAX
size

⌋
. In Fig. 2, edge

weights should be bounded by
⌊

232−1
3

⌋
= 1,431,655,765; call this value w. Sup-

pose we change the edge weights in Fig. 2 from 231 − 1 to w. Now vertex B has
distance w and C has distance 2 ·w. When we remove C from the priority queue,
the comparison on line 17 is between the known best cost to B (i.e., w) and the
candidate best cost to B via C (i.e., 3 · w = 232 − 1 = INT MAX). There is no
overflow, so the candidate is rejected and the code behaves as advertised.

We fold these new restrictions into the mathematical graph γ. In addition
to the bounds discussed above, we require a few other more straightforward
bounds: edge costs be non-negative, as is typical for Dijkstra; 4·size ≤ INT MAX,
to ensure that the multiplication in the malloc on line 5 does not overflow;
and that

⌊
INT MAX
size

⌋ · (size − 1) < inf, so no valid path has cost inf. These
bounds are optimal: if the input is any less restricted, the postcondition will fail.
The last restriction on inf is not sufficient when size = 1, so in that special
case we further require that any (self-loop) edges cost less than inf. Whenever
0 < 4·size ≤ INT MAX, the restrictions on inf are satisfiable with inf

Δ=INT MAX.

3.3 Related Work on Dijkstra in Algorithms and Formal Methods

We were not able to find a reference that gives a robust, precise, and full descrip-
tion of the overflow issue we describe above. Dijkstra’s original paper [22] ignores
the issue, as do the standard textbooks Introduction to Algorithms (a.k.a. CLRS)
by Cormen et al. [20] and Algorithm Design by Kleinberg and Tardos [38].
Sedgewick’s book on graph algorithms in C [66] sidesteps the overflow in line 17
by requiring weights be in double, which does have a well-defined positive infin-
ity value and cannot overflow in the traditional sense; Sedgewick and Wayne’s
Algorithms textbook in Java does the same [67]. However, Sedgewick’s sidestep
entails enduring the inevitable round-off intrinsic to floating-point arithmetic,
and so his algorithm computes approximate optimal costs rather than exact ones.
Sedgewick does not specify any bounds on input edge weights, and accordingly
does not (and cannot) provide any bound on this accumulated error. Sedgewick
is silent on how to handle an int-weighted input graph. Skiena’s Algorithm
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Design Manual [68] contains code with exactly the bug we identify: he uses inte-
ger weights and does not specify any bounds. To its credit, Heineman et al.’s
Algorithms in a Nutshell [33] takes int edge weights as inputs and mentions
overflow as a possibility. Heineman et al. hustle their way around this overflow
by performing the arithmetic in line 17 in long. However, this cast does not
really handle the problem in a fundamental way: if edge weights are given in
long rather than int, then it would be necessary to cast to long long; if edge
weights are given in long long, then Heineman’s hustle breaks as there is no big-
ger type to which to cast. Moreover, Heineman et al. do not bound edge weights,
so when the cumulative edge weights are too high their code fails silently.

Chen verified Dijkstra in Mizar [15], Gordon et al. formalized the reachability
property in HOL [29], Moore and Zhang verified it in ACL2 [53], Mange and
Kuhn verified it in Jahob [52], Filliâtre in Why3 [25], and Klasen verified it in
KeY [37]. Liu et al. took an alternative SMT-based approach to verify a Java
implementation of Dijkstra [51]. The most recent effort (2019) is by Lammich et
al., working within Isabelle/HOL, although they only return the weight of the
shortest path rather than the path itself [45]. In general the previous mechanized
proofs on Dijkstra verify code defined within idealized formal environments, e.g.
with unbounded integers rather than machine ints and a distinguished non-
integer value for infinity. No previous work mentions the overflow we uncover.

4 Minimum Spanning Trees

Here we discuss our verifications of the classic MST algorithms Prim and
Kruskal. Although our machine-checked proofs are about real C code, in this
section we take a higher-level approach than we did in §3, focusing on our
key algorithmic findings and overall experience. Accordingly, we only provide
pseudocode for Prim’s algorithm rather than a decorated program and do not
show any code for Kruskal’s. Our development contains our C code and formal
proofs [1].

4.1 Prim’s Algorithm

We put the pseudocode for Prim’s algorithm in Fig. 3; the code on the left-hand
side is directly from CLRS, whereas the code on the right omits line 5 and will
be discussed in §4.2. Note that line 12 contains an implicit call to the PQ’s
edit priority. Since the pseudocode only compares keys (i.e., edge weights)
rather than doing arithmetic on them à la Dijkstra, there are no potential over-
flows and it is reasonable to set INF to INT MAX in C.

Indeed, our initial verifications of C code were largely “turning the crank”
once we had the definitions and associated lemma support for pure/abstract
undirected graphs, forests, etc. discussed in §2.3. Accordingly, our initial con-
tribution was a demonstration that this new graph machinery was sufficient
to verify real code. We also proved that our extensions to CertiGraph from §2
were generic rather than verification-specific by reusing much pure and spatial
reasoning that had been originally developed for our verification of Dijkstra.
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Fig. 3. Left: Prim’s algorithm from CLRS [20]. Right: the same omitting line 5.

4.2 Prim’s Algorithm Handles Multiple Components Out
of the Box

Textbook discussions of Prim’s algorithm are usually limited to single-component
input graphs (a.k.a. connected graphs), producing a minimum spanning tree. It
is widely believed that Prim’s is not directly applicable to graphs with multiple
components, which should produce a minimum spanning forest. For example,
both Rozen [65] and Sedgewick et al. [66,67] leave the extension to multiple
components as a formal exercise for the reader, whereas Kepner and Gilbert
suggest that multiple-component graphs should be handled by first finding the
components and then running Prim on each component [36].

After we completed our initial verification, a close examination of our formal
invariants showed us that the algorithm exactly as given by standard textbooks
will properly handle multi-component graphs in a single run. The confusion
starts because, in a fully connected graph, any vertex u removed from the PQ
on line 8 must have u.key < INF; i.e., u must be immediately reachable from
the spanning tree that is in the process of being built. However, nothing in the
code relies upon this connectedness fact! All we need is that u is the “closest
vertex” to the “current component.” If u.key = INF and u is a minimum of the
PQ, then it simply means that the “previous component” is done, and we have
started spanning tree construction on a new unconnected component “rooted”
at u, yielding a forest. The node u’s parent will remain NIL, at it was after the
setup loop on line 4, indicating that it is the root of a spanning tree. Its key will
be INF rather than 0, but the keys are internal to Prim’s algorithm: clients only
get back the spanning forest as encoded in the parent pointers4.

Having made this discovery, we updated our proofs to support the new weaker
precondition, which is what we currently formally verify in Coq [71]. A little fur-
ther thought led to the realization that since Prim can handle arbitrary numbers

4 The keys simply record the edge-weight connecting a vertex to its candidate parent;
recall that line 12 is really a call to the PQ’s edit priority. If a client wishes to
know this edge weight, it can simply look up the edge in the graph.
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of components, the initialization of the root’s key in line 5 is in fact unneces-
sary. Accordingly, if we remove this line and the associated function argument
r from MST-PRIM (i.e., the code on the right half of Fig. 3), the algorithm still
works correctly. Moreover, the program invariants become simpler because we
no longer need to treat a specified vertex (r) in a distinguished manner. Our
formal development verifies this version of the algorithm as well [1].

4.3 Related Work on Prim in Algorithms and Formal Methods

Prim’s algorithm was in fact first developed by the Czech mathematician Vojtěch
Jarńık in 1930 [35] before being rediscovered by Robert Prim in 1957 [61] and a
third time by Edsger W. Dijkstra in 1959 [22]. Both Prim’s and Dijkstra’s treat-
ment explicitly assumes a connected graph; although we cannot read Czech, some
time with Google translate suggests that Jarńık’s treatment probably does the
same. The textbooks we surveyed [20,36,38,65–68] seem to derive from Prim’s
and/or Dijkstra’s treatment. More casual references such as Wikipedia [3] and
innumerable lecture slides are presumably derived from the textbooks cited. We
have not found any references that state that Prim’s algorithm without modi-
fication applies to multi-component graphs, even when executable code is pro-
vided: e.g., Heineman et al. provide C++ code that aligns closely with our
C code [33], but do not mention that their code works equally well on multi-
component graphs. Sadly, many sources promulgate the false proposition that
modifications to the algorithm are needed to handle multi-component graphs
(e.g., [3,36,65–67]). Likewise, we have found no reference that removes the ini-
tialization step (line 5 in Fig. 3) from the standard algorithm.

Prim’s algorithm has been the focus of a few previous formalization efforts.
Guttman formalised and proved the correctness of Prim’s algorithm using Stone-
Kleene relation algebras in Isabelle/HOL [30]. He works in an idealized formal
environment that does not require the development of explicit data structures;
his code does not appear to be executable. Lammich et al. provided a verification
of Prim’s algorithm [45]. Lammich et al. also work within the idealized formal
environment of Isabelle/HOL, but, in contrast to Guttman, develop efficient
purely functional data structures and extract them to executable code. Both
Guttman and Lammich explicitly require that the input graph be connected.

4.4 Kruskal’s Algorithm

Although Kruskal’s algorithm is sometimes presented as taking connected graphs
and producing spanning trees, the literature also discusses the more general
case of multi-component input graphs and spanning forests. However, Kruskal
has only recently been the focus of formal verification efforts, partly because it
relies on the notoriously difficult-to-verify union-find algorithm; fortunately, the
CertiGraph project has an existing fully-verified union-find implementation that
we can leverage [73]. Kruskal also requires a sorting function; we implemented
heapsort as explained in §5.2. Kruskal is optimized for compact representations
of sparse graphs, so the O(1) space cost of heapsort is a reasonable fit.
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The primary interest of our verification of Kruskal is in our proof engineering.
Kruskal inputs graphs as edge lists rather than adjacency matrices. In addition
to requiring an addition to our spatial graph predicate menu, this means that
Kruskal’s input graphs can have multiple edges between a given pair of vertices
(i.e., a “multigraph”). Pleasingly, we can reuse most of the undirected graph
definitions (§2.3), demonstrating that they are generic and reusable.

Another challenge is integrating the pre-existing CertiGraph verification of
union-find. We are pleased to say that no change was required for CertiGraph’s
existing union-find definitions, lemmas, specifications and verification. Kruskal
actually manipulates two graphs simultaneously: a directed graph with vertex
labels (to store parent pointers and ranks) within union-find, and an undirected
multigraph with edge labels (for which the algorithm is constructing a spanning
forest). Beyond showing that CertiGraph was capable of this kind of systems-
integration challenge, we had to develop additional lemma support to bridge the
directed notion of “reachability,” used within the directed union-find graph to
the undirected notion of “connectedness,” used in the MSF graph (§2.3).

4.5 Related Work on Kruskal in Algorithms and Formal Methods

Joseph Kruskal published his algorithm in 1956 [42] and it has appeared in
numerous textbooks since (e.g., [20,38,66,68]). Kruskal’s algorithm is usually
preferred over Prim’s for sparse graphs, and is sometimes presented as “the
right choice” when confronted with multi-component graphs under the mistaken
assumption that Prim’s first requires a component-finding initial step.

Guttman generalized minimum spanning tree algorithms using Stone relation
algebras [31], and provided a proof of Kruskal’s algorithm formatted in said alge-
bras. Like in his work on Prim’s [30], Guttmann works within Isabelle/HOL and
does not include concrete data structures such as priority-queues and union-find,
instead capturing their action as equivalence relations in the underlying algebras.
In Guttmann’s Kruskal paper, he mentions that his Prim paper axiomatizes the
fact that “every finite graph has a minimum spanning forest,” which he is then
able to prove using his Kruskal algorithm. Interestingly, our Prim verification
needs the same fact, but we prove it directly.

In a similar vein, Haslbeck et al. verified Kruskal’s algorithm [32] by building
on Lammich et al.’s earlier work on Prim [45]. Like Lammich et al., Haslbeck et
al. work within Isabelle/HOL with a focus on purely functional data structures.

One of the stumbling blocks in verifying Kruskal’s algorithm is the need
to verify union-find. In addition to CertiGraph [73], two recent efforts to certify
union-find are by Charguéraud and Pottier, who also prove time complexity [14];
and by Filliâtre [26], whose proof benefits from a high degree of automation.

5 Verified Binary Heaps in C

A binary heap embeds a heap-ordered tree in an array and uses arithmetic on
indices to navigate between a parent and its left and right children [20]. In addi-
tion to providing the standard insert and remove-min/remove-max operations
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(depending on whether it is a min- or max-ordered heap) in logarithmic time,
binary heaps can by upgraded to support two nontrivial operations. First, Floyd’s
heapify function builds a binary heap from an unordered array in linear time,
and as a related upgrade, heapsort performs a worst-case linearithmic-time sort
using only constant additional space. Second, binary heaps can be upgraded to
support logarithmic-time decrease- and increase-priority operations, which
we generalize straightforwardly into edit priority.

Binary heaps are a good fit for our graph algorithms because Dijkstra’s
and Prim’s algorithms need to edit priorities, and a constant-space heapsort
is appropriate for the sparse edge-list-represented graphs typically targeted by
Kruskal’s. The C language has poor support for polymorphic higher-order func-
tions, and a binary heap that supports edit priority is half as fast as a binary
heap that does not. Accordingly, we implement binary heaps in C three times:

Name Heap order edit priority heapify Payload
basic min no yes void*
advanced min yes no int
Kruskal max no yes int, int (i.e., unboxed)

Priorities are of type int. The Kruskal-specific implementation is stripped down
to the bare minimum required to implement heapsort (e.g., it does not support
insert). We next overview these verifications in three parts: basic heap opera-
tions, heapify and heapsort operations, and the edit priority operation.

5.1 The Basic Heap Operations of Insertion and Min/Max-Removal

Because we are juggling three implementations, we take some care to factor
our verification to maximize reuse. First, each C implementation has its own
exchange and comparison functions that handle the nitty-gritty of the payload
and choose between a min or max heap. The following lines are from the “basic”
implementation, in which the “payload” (data field) is of type void*:

5 void exch(unsigned int j, unsigned int k, Item arr []) {

6 int priority = arr[j]. priority; void* data = arr[j].data;

7 arr[j]. priority = arr[k]. priority; arr[j]. data = arr[k].data;

8 arr[k]. priority = priority; arr[k]. data = data; }

9 int less(unsigned int j, unsigned int k, Item arr []) {

10 return (arr[j]. priority <= arr[k]. priority ); }

These C functions are specified as refinements of Gallina functions that exchange
polymorphic data in lists and compare objects in an abstract preordered set; we
verify them in VST after a little irksome engineering. The payoff is that the key
heap operations, which, following Sedgewick [66], we call swim and sink, can
use identical C code (up to alpha renaming) in all three implementations:

11 void swim(unsigned int k, Item arr []) {

12 while (k > ROOT_IDX && less (k, PARENT(k), arr)) {

13 exch(k, PARENT(k), arr); k = PARENT(k); } }

14 void sink (unsigned int k, Item arr[], unsigned int available) {
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15 while (LEFT_CHILD(k) < available) {

16 unsigned j = LEFT_CHILD(k);

17 if (j+1 < available && less(j+1, j, arr)) j++;

18 if (less(k, j, arr)) break; exch(k, j, arr); k = j; } }

These functions involve a number of complexities, both at the algorithms level
and at the semantics-of-C level. At the C level, there is the potential for a rather
subtle bug in the macros ROOT IDX, PARENT, etc. Abstractly, these are simple: the
root is in index 0; the children of x at roughly 2x and the parent at roughly x

2 ,
with ±1 as necessary. The danger is thinking that because the variables are
unsigned int, all arithmetic will occur in this domain; in fact we must force
the associated constants into unsigned int as well:

1 #define ROOT_IDX 0u

2 #define PARENT(x) (x-1u)/2u

3 #define LEFT_CHILD(x) (2u*x)+1u

4 #define RIGHT_CHILD(x) 2u*(x+1u)

A second C-semantics issue is the potential for overflow within LEFT CHILD and
RIGHT CHILD (as well as the increments on line 17), and underflow within the
PARENT macro (if x should ever be 0). To avoid this overflow, the precondi-
tion of sink requires that when k is in bounds (i.e., k < available), then
2 · (available−1) ≤ max unsigned. An edge case occurs when deleting the last
element from a heap (k = available); we then require 2 · k ≤ max unsigned.

At the algorithmic level, both the swim and sink functions involve nontrivial
loop invariants; sink is complicated by the further need to support Floyd’s
heapify, during which a large portion of the array is unordered. Accordingly,
we build Gallina models of both functions and show that they restore heap order
given a mostly-ordered input heap. There are two different versions of “mostly-
ordered”. Specifically, swim uses a “bottom-up” version:

5 Definition weak_heapOrdered2 (L : list A) (j : nat) : Prop :=

6 (∀ i b, i �= j → nth_error L i = Some b →
7 ∀ a, nth_error L (parent i) = Some a → a � b) ∧
8 (grandsOk L j root_idx ).

whereas sink uses a “top-down” version:

9 Definition weak_heapOrdered_bounded (L:list A) (k:nat) (j:nat) :=

10 (∀ i a, i ≥ k → i �= j → nth_error L i = Some a →
11 (∀ b, nth_error L (left_child i) = Some b → a � b) ∧
12 (∀ c, nth_error L (right_child i) = Some c → a � c)) ∧
13 (grandsOk L j k).

The parameter j indicates a “hole”, at which the heap may not be heap-ordered;
grandsOk bridges this hole by ordering the parent and the children of j:

1 Definition grandsOk (L : list A) (j : nat) (k : nat) : Prop :=

2 j �= root_idx → parent j ≥ k →
3 ∀ gs bb , parent gs = j → nth_error L gs = Some bb →
4 ∀ a, nth_error L (parent j) = Some a → a � bb.

The parameter k is used to support Floyd’s heapify: it bounds the portion of
the list in which elements are heap-ordered (with the exception of j). The proofs
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that the Gallina swim and sink can restore (bounded) heap-orderedness involve a
number of edge cases, but given the above definitions go through. The invariants
of the C versions of swim and sink are stated via the associated Gallina versions,
thereby delegating all heap-ordering proofs to the Gallina versions.

The insertion and remove functions we verify are in fact “non-checking”
versions (insert nc and remove nc): their preconditions assume there is room
in the heap to add or an item in the heap to remove. In the context of Dijkstra
and Prim, these preconditions can be proven to hold. The associated verifications
involve a little separation logic hackery (specifically, to Frame away the “junk”
part of the heap-array from the “live” part), but are straightforward using VST.
We avoid the overflow issue in sink by bounding the maximum capacity of the
heap: 4 ≤ 12 · capacity ≤ max unsigned; the magic number 12 comes from the
size of the underlying data structure in C. We require users to prove this bound
on heap creation, and thereafter handle it under the hood.

5.2 Bottom-Up Heapify and Heapsort

Floyd’s bottom-up procedure for constructing a binary heap in linear time, and
using a binary heap to sort, are classics of the literature [20,66]. Happily, while
the asymptotic bound on heap construction is nontrivial, the implementations
of both are basically repeated calls to sink (and exchanges to remove the root):

19 void build_heap(Item arr[], unsigned int size) {

20 unsigned int start = PARENT(size);

21 while (1) { sink(start , arr , size);

22 if (start == 0) break; start --; } }

23 void heapsort_rev(Item* arr , unsigned int size) {

24 build_heap(arr ,size);

25 while (size > 1) { size --;

26 exch(ROOT_IDX , size , arr); sink(ROOT_IDX , arr , size); } }

Given that in §5.1 we already generalized the specification for sink to han-
dle a portion of the array being unordered, the verification of these functions
is straightforward. There is, however, the possibility of a subtle underflow on
line 20, in the case when building an empty heap (i.e., size = 0). In turn,
this means that heapsort rev as given above cannot sort empty lists; in our
“basic” implementation we strengthen the precondition accordingly, whereas
in our “Kruskal” implementation we add a line before 24 that returns when
size = 0. We use a max-heap for Kruskal because heapsort yields a reverse
sorted list.

5.3 Modifying an Element’s Priority

To support edit-priority, each live item is associated not only with its usual int
priority but also given a unique unsigned int “key”, generated during insert
and returned to the client. The binary heap internally maintains a secondary
array key table that maps each key to the current location of the associated
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item within the primary heap array. The client calls edit priority by supplying
the key for the item that it wishes to modify, which the binary heap looks up in
the key table to locate the item in the heap array before calling sink or swim.
To keep everything linked together, the key table is modified during exchange.

To generate the keys on insert, we store a key field within each heap-item in
the main array. These keys are initialized to 0..(capacity − 1), and thereafter
are never modified other than when two cells are swapped during exchange. An
invariant can then be maintained that the keys from the “live” and “junk” parts
have no duplicates. On insertion, we “recycle” the key of the first “junk” item,
which is by the invariant known to be appropriately fresh.

5.4 Related Work on Binary Heaps in Algorithms and Formal
Methods

J. W. J. Williams published the binary heap data structure, along with heap-
sort, in June 1964 [28]. Floyd proposed his linear-time bottom-up method to
construct such heaps that December [27]. Since then, binary heaps, including
Floyd’s construction and heapsort, have become a staple of the introductory
data structure diet [20]. On the other hand, standard textbooks are surprisingly
vague on the implementation of edit priority [20,38,66], and completely silent
on the generation of fresh keys during insertion. Our method above of “recycling
keys” avoids a subtle overflow in a näıve approach, and does not appear in the
literature we examined. The näıve idea is to have a global counter starting at
0, which is then increased on each insert. Unfortunately, this is unsound: during
(very) long runs involving both insert and remove-min, this key counter will
overflow. Although overflow is defined in C for unsigned int, this overflow is
fatal algorithmically: multiple live items could be assigned the same key.

Binary heaps have been verified several times in the literature. They were
problem 2 of the VACID-0 benchmark [49], and solved in this regard as well
by the Why3 team [69]. These solutions did not implement bottom-up heap
construction or edit priority. Summers verified heapsort in Viper, again without
bottom-up heap construction [56]. Lammich verified Introsort, which includes a
heapsort subroutine [44]. Previous formal work ignores nitty-gritty C issues such
as the difference between signed and unsigned arithmetic. We believe we are the
first formally verified binary heap to support edit-priority.

6 Engineering Considerations

Verifying real code is meaningfully harder than verifying toy implementations.
On top of such challenges, verifying graph algorithms requires a significant
amount of mathematical machinery: there are many plausible ways to define
basic notions such as reachability, but not all of them can handle the challenges
of verifying real code [72]. Moreover, we would like our mathematical, spatial,
and verification machinery to be generic and reusable.
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All of the above suggests that it is important to work within existing for-
mal proof developments due a strong desire to not reinvent very large wheels
(the existing proof bases we work with contain hundreds of thousands of lines
of formal proof). We chose to work with the CompCert certified compiler [50];
the Verified Software Toolchain [4], which provides significant tactic support
for separation logic-based deductive verification of CompCert C programs; and
the CertiGraph framework [73], which provides much pure and spatial reason-
ing support for verifying graph-manipulating programs within VST. We did so
because these frameworks can handle the challenges of real code and because the
CertiGraph included several fully verified implementations of union-find that we
wished to reuse in our verification of Kruskal’s algorithm.

Modular formal proof development involves major software engineering chal-
lenges [64]. Accordingly, we took care factoring our extensions to CertiGraph into
generic and reusable pieces. This factoring allows us to reuse machinery between
verifications, including in the mathematical, spatial, and verification levels. So,
e.g., we share significant pure and spatial machinery between Dijkstra, Prim,
and Kruskal. Moreover, we maintain good separation between pure and spatial
reasoning. So, e.g., both our Dijkstra and Prim verifications can handle multiple
spatial variants of adjacency matrices without significant change.

On the other hand, working within existing developments involves some chal-
lenges, primarily in that some design decisions have been already made and are
hard to change. Moreover, our verifications tickled numerous bugs within VST,
including: overly-aggressive automatic entailment simplifying, poor error mes-
sages, improper handling of C structs, and performance issues. We have been
fortunate that the VST team has been willing to work with us to fix such bugs,
although some work still remains. Performance remains one area of focus: for
example, checking our verification of Kruskal with a 3.7 GHz processor and 32 gb
of memory takes more than 22 min even after all of the generic pure and spatial
reasoning has been checked, i.e. approximately 7 s per line of C code (includ-
ing whitespace and comments). This performance is unviable for verifying an
industrial-sized application of equivalent difficulty: e.g., it would take 13 years
for Coq to check the proof for 1,000,000 lines of C. Before some optimizations
to our proof structure, the time was significantly longer still.

Our contributions to CertiGraph include pieces that are reused repeatedly
and pieces that are more bespoke. Below, we give a sense of both the size of our
development (lines of formal Coq proof) and the mileage we get out of our own
work via reuse. Items “added with +” are very similar (within 1%) of each other;
Prim #4 is the version that does not set the root, i.e. on the right in Fig. 3.
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Name Used LoC
MathAdjMat 7x 165
Undirected 5x 2,139
MathUAdjMat 4x 1,024
SpaceAdjMat1+2+3 7x 499
EdgeListGraph 1x 911
MathDijkGraph 3x 165
DijkPureProof 3x 2,124
UndirectedUF 1x 183
BinaryHeapModel 1x 1,870
Total (pure/spatial) 9,080

Name LoC
DijkSpec1+2+3 301
VerifDijk1+2+3 3,554
PrimSpec1+2+3+4 508
VerifPrim1+2+3+4 7,455
KruskalSpec 302
VerifKruskal 1,606
VerifHeapSort 568
VerifBasicBinaryHeap 777
VerifAdvBinaryHeap 2,253
Total (verifications) 17,234

In total we have 26,314 novel lines of Coq proof to verify 1,155 lines of C code
divided among 12 files, including 3 variants of Dijkstra, 4 variants of Prim, 1 of
Kruskal (which includes its heapsort), and 2 binary heaps.

7 Concluding Thoughts: Related and Future Work

We have already discussed work directly related to Dijkstra’s (§3.3), Prim’s
(§4.3), and Kruskal’s (§4.5) algorithms, as well as binary heaps (§5.4). Summa-
rizing briefly to the point of unreasonableness, our observations about Dijkstra’s
overflow and Prim’s specification are novel, and existing formal proofs focus on
code working within idealized environments rather than handling the real-world
considerations that we do. We have also discussed the three formal developments
we build upon and extend: CompCert, VST, and CertiGraph (Sect. 6). Our goal
now is to discuss mechanized graph reasoning and verification more broadly.

Reasoning About Mathematical Graphs. There is a 30+ year history of mech-
anizing graph theory, beginning at least with Wong [74] and Chou [19] and
continuing to the present day; Wang discusses many such efforts [72, §3.3]. The
two abstract frameworks that seem closest to ours are those by Noschinski [58];
and by Lammich and Nipkow [45]. The latter is particularly related to our work,
because they too start with a directed graph library and must extend it to handle
undirected graphs so that they can verify Prim’s algorithm.

More-Automated Verification. Broadly speaking, mechanized verification of soft-
ware falls in a spectrum between more-automated-but-less-precise verifications
and less-automated-but-more-precise verifications. Although VST contains some
automation, we fall within the latter camp. In the former camp, landmark ini-
tial separation logic [63] tools such as Smallfoot [7] have grown into Facebook’s
industrial-strength Infer [11]. Other notable relatively-automated separation
logic-based tools include HIP/SLEEK [17], Bedrock [18], KIV [24], VerCors [9],
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and Viper [57]. More-automated solutions that use techniques other than sepa-
ration logic include Boogie [6], Blast [8], Dafny [48], and KeY [2]. In Sect. 3.3
we discuss how some of these more-automated approaches have been applied to
verify Dijkstra’s algorithm. Petrank and Hawblitzel’s Boogie-based verification
of a garbage collector [60], Bubel’s KeY-based verification of the Schorr-Waite
algorithm, and Chen et al.’s Tarjan’s strongly connected components algorithm
in (among others) Why3 [16] are three examples of more-automated verifica-
tion of graph algorithms. Müller verified binomial (not binary) heaps in Viper,
although his implementation did not support an edit-priority function [55]. The
VOCAL project has verified a number of data structures, including binary and
other heaps (all without edit-priority) and union-find [13].

We are not confident that more-automated tools would be able to repli-
cate our work easily. We prove full functional correctness, whereas many more-
automated tools prove only more limited properties. Moreover, our full functional
correctness results rely upon a meaningful amount of domain-specific knowledge
about graphs, which automated tools usually lack. Even if we restrict ourselves
to more limited domains such as overflows, several more automated efforts did
not uncover the overflow that we described in Sect. 3.3. The proof that certain
bounds on edge weights and inf suffice depends on an intimate understanding of
Dijkstra’s algorithm (in particular, that it explores one edge beyond the optimum
paths); overall the problem seems challenging in highly-automated settings. The
more powerful specification we discover for Prim’s algorithm in Sect. 4.2 is like-
wise not something a tool is likely to discover: human insight appears necessary,
at least given the current state of machine learning techniques.

In contrast, several of the potential overflows in our binary heap might
be uncovered by more-automated approaches, especially those related to the
PARENT and LEFT CHILD macros from Sect. 5.1. Although the arithmetic involves
both addition/subtraction and multiplication/division, we suspect a tool such
as Z3 [54] could handle it. Moreover, a sufficiently-precise tool would probably
spot the necessity of forcing the internal constants into unsigned int. The issue
of sound key generation described in Sect. 5.3 might be a bit trickier. On the
one hand, unsigned int overflow is defined in C, so real code sometimes relies
upon it. Accordingly, merely observing that the counter could overflow does not
guarantee that the code is necessarily buggy. On the other hand, some tools
might flag it anyway out of caution (i.e. right answer, wrong reason).

Less-Automated Verification. Although as discussed above some more-
automated tools have been applied to verify graph algorithms, the problem
domain is sufficiently complex that many of the verifications discussed in Sect.
3.3, Sect. 4.3, and Sect. 4.5 use less-automated techniques. Two basic approaches
are popular. The “shallow embedding” approach is to write the algorithm in the
native language of a proof assistant. The “deep embedding” approach is to write
the algorithm in another language whose semantics has been precisely defined in
the proof assistant. VST uses a deep embedding, and so we do too; one of VST’s
more popular competitors in the deep embedding style is “Iris Proof Mode” [39].
In contrast, Lammich et al. have produced a series of results verifying a vari-
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ety of graph algorithms using a shallow embedding (e.g., [32,43,45–47]). From
a bird’s-eye view Lammich et al.’s work is the most related to our results in
this paper: they verify all three algorithms we do and are able to extract fully-
executable code, even if sometimes their focus is a bit different, e.g. on novel
purely-functional data structures such as a priority queue with edit priority.

Pen-and-Paper Verification of Graph Algorithms. We use separation logic [63]
as our base framework. Initial work on graph algorithms in separation logic was
minimal; Bornat et al. is an early example [10]. Hobor and Villard developed
the technique of ramification to verify graph algorithms [34], using a particular
“star/wand” pattern to express heap update. Wang et al. later integrated rami-
fication into VST as the CertiGraph project we use [73]. Krishna et al. [40] have
developed a flow algebraic framework to reason about local and global proper-
ties of flow graphs in the program heap; their flow algebra is mainly used to
tackle local reasoning of global graphs in program heaps. Flow algebras should
be compatible with existing separation logics; implementation and integration
with the Iris project appears to be work in progress [41].

Krishna et al. are interested in concurrency [40]; Raad et al. provide another
example of pen-and-paper reasoning about concurrent graph algorithms [62].

Future Work. We see several opportunities for decreasing the effort and/or
increasing the automation in our approach. At the level of Hoare tuples, we see
opportunities for improved VST tactics to handle common cases we encounter in
graph algorithms. At the level of spatial predicates, we can continue to expand
our library of graph constructions, for example for adjacency lists. We also
believe there are opportunities to increase modularity and automation at the
interface between the spatial and the mathematical levels, e.g. we sometimes
compare C pointers to heap-represented graph nodes for equality, and due to the
nature of our representations this equality check will be well-defined in C when
the associated nodes are present in the mathematical graph, so this check should
pass automatically.

We believe that more automation is possible at the level of mathematical
graphs: for example reachability techniques based on regular expressions over
matrices and related semirings [5,23,70]. We are also intrigued by the recent
development of various specialized graph logics such as by Costa et al. [21] and
hope that these kinds of techniques will allow us to simplify our reasoning. The
key advantage of having end-to-end machine-checked examples such as the ones
we presented above is that they guide the automation efforts by providing precise
goals that are known to be strong enough to verify real code.

Conclusion. We extend the CertiGraph library to handle undirected graphs
and several flavours of graphs with edge labels, both at the pure and at the
spatial levels. We verify the full functional correctness of the three classic graph
algorithms of Dijkstra, Prim, and Kruskal. We find nontrivial bounds on edge
costs and infinity for Dijkstra and provide a novel specification for Prim. We
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verify a binary heap with Floyd’s heapify and edit priority. All of our code
is in CompCert C and all of our proofs are machine-checked in Coq.
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14. Charguéraud, A., Pottier, F.: Verifying the correctness and amortized complexity
of a union-find implementation in separation logic with time credits. J. Autom.
Reason. 62, 331–365 (2019)

15. Chen, J.C.: Dijkstra’s shortest path algorithm. JFM 15, 237–247 (2003)
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Gillian, Part II: Real-World Verification for
JavaScript and C

Abstract. We introduce verification based on separation logic to Gillian,
a multi-language platform for the development of symbolic analysis tools
which is parametric on the memory model of the target language. Our
work develops a methodology for constructing compositional memory
models for Gillian, leading to a unified presentation of the JavaScript and
C memory models. We verify the JavaScript and C implementations of the
AWS Encryption SDK message header deserialisation module, specifically
designing common abstractions used for both verification tasks, and find
two bugs in the JavaScript and three bugs in the C implementation.

1 Introduction

Separation logic (SL) [25,40] introduced compositional program verification us-
ing Hoare reasoning. Current analysis tools based on ideas from SL include:
the automatic tool Infer [8,9] used inside Facebook to find lightweight bugs in
Java/C/C++/Obj-C programs; the semi-automatic tool Verifast [26], which
provides full verification for fragments of C and Java; the semi-automatic tool
JaVerT [21], which provides bug-finding and verification for JavaScript (JS) pro-
grams; and the Viper architecture [36,35], which provides a verification backend
for multiple programming languages, including Java, Rust, and Python. Our goal
is to introduce verification based on SL to Gillian [19], a multi-language platform
for symbolic analysis, integrating bug-finding and verification in the spirit of
JaVerT and targeting many languages in the spirit of Viper.

Gillian currently supports three types of program analysis: symbolic test-
ing, verification and bi-abduction. In [19], the focus was on symbolic testing,
parametrised on complete concrete and symbolic memory models of the target
language (TL), and underpinned by a core symbolic execution engine with strong
mathematical foundations. Gillian analysis is done on GIL, an intermediate goto
language parametric on a set of memory actions, which describe the fundamental
ways in which TL programs interact with their memories. To instantiate Gillian
to a new TL, a tool developer must: (1) identify the set of the TL memory actions
and implement the TL memory models using these actions; and (2) provide a
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trusted compiler from the TL to GIL, which preserves the TL memory models and
the semantics. In [19], Gillian was instantiated to JS and C, and used to find bugs
in two real-world data-structure libraries, Buckets.js [43] and Collections-C [41].
Here, we introduce compositional memory models for Gillian, extend Gillian anal-
ysis with verification based on separation logic, adapt Gillian-JS and Gillian-C
to this compositional setting, and provide verified specifications of the JS and C
implementations of the deserialisation module of the AWS Encryption SDK.

The compositional Gillian memory models (§2) are given by the tool developer
for each TL instantiation. They are based on partial memories, and formulated us-
ing core predicates and the associated consumer and producer actions. Core
predicates describe fundamental units of TL memories: e.g., a property of a JS
object and a C block cell. Consumers and producers, respectively, frame off and
frame on the TL memory resource described by the core predicates. Partiality
and frame are familiar concepts from SL [25,40,11]. What is perhaps less familiar
is our emphasis on negative resource: i.e., the resource known to be absent from
the partial memory. For example, in JS, a new extensible object is known not to
contain any property; and, in C, a freed block is known not to be in memory and
a cell is known not to exist beyond the block bound. We introduce a methodology
for designing Gillian compositional memory models, and apply it to JS and C (§3),
resulting in a unexpected similarity between the two models. Our compositional
JS memory models follow those given in work on a JS program logic [24] and the
JaVerT tool [21], where negative resource was essential for frame preservation,
inspired by the use of negative resource to capture stability properties in the
CAP concurrent separation logic [14], now used in Iris [27]. Our compositional C
memory models are based on the complete CompCert memory model [31]. Despite
a large body of work on separation logic for C, we were unable to find a partial
C memory model that captures the negative resource in its entirety. The nearest
is probably the CH20 formalism [29], which handles freed locations but not block
bounds. Negative resource for freed locations has also been used in incorrectness
logic [39], and for block bounds in a program logic for WebAssembly [48].

We build Gillian verification on top of our compositional memory models.
In particular, using the core predicates, we design an assertion language for
writing function specifications in separation logic and, using the consumers and
producers, we build a fully parametric spatial entailment engine which enables
the use of function specifications in symbolic execution. Gillian also supports
user-defined predicates, which allow tool developers to identify the TL language
interface familiar to code developers, and code developers to describe and prove
properties about the particular data structures in their programs.

We extend Gillian-JS and Gillian-C to enable verification, introducing the JS
and C compositional memory models, and using the same trusted compilers as
in [19]. With these instantiations, we provide functionally-correct, verified specifi-
cations of the message header deserialisation module of the AWS Encryption SDK
JS and C implementations (§4, §5). This is stable, critical, industry-grade code
(~200loc for JS, ~950loc for C), which uses advanced language features to manipu-
late complex data structures. To verify this code, we create language-independent
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predicates to capture the message header, which we then connect without modifi-
cation to both JS and C memories, giving specifications for the module functions.
We also build a library of associated lemmas, used for the verification of both
implementations. The verification itself required a substantial improvement of
the reasoning capabilities of Gillian, especially when it came to handling arrays
of symbolic size. We discovered two bugs in the JS implementation: one a form
of prototype poisoning, predicted theoretically in our paper on JaVerT [21]; and
another that allowed third parties to potentially alter authenticated, non-secret
data. We have also discovered three bugs in the C implementation: one which
allowed some malformed headers to be parsed as correct; one over-allocation; and
one undefined behaviour. All of these bugs have been fixed.

2 Gillian Verification

We introduce Gillian verification based on separation logic (§2.2), extending the
GIL execution engine presented in [19] with compositional memory models (§2.1).

2.1 Compositional Memory Models

GIL is a simple goto intermediate language whose syntax is given below. It is
parametric on a set of TL memory actions, A 3 α, given per instantiation by
the tool developer. GIL values, v ∈ Val , contain numbers, strings, booleans,
uninterpreted symbols (used, e.g., to represent memory locations), simple types
(e.g., numbers, strings), function identifiers and lists of values. GIL expressions,
e ∈ Expr , contain values, program variables, and unary and binary operators (e.g.
addition, list concatenation); GIL symbolic expressions, ê ∈ Êxpr , are analogous
except that symbolic variables, x̂ ∈ X̂ , are used instead of program variables.

GIL Syntax

v ∈ Val , i, j, n ∈ N | s ∈ S | b ∈ B | ς ∈ U | τ ∈ T | f ∈ F | v ∈ List(Val)
e ∈ Expr , v | x ∈ X | 	e | e1 ⊕ e2 ê ∈ Êxpr , v | x̂ ∈ X̂ | 	ê | ê1 ⊕ ê2

c ∈ Cmd , x := e | ifgoto e i | x := e(e′) | x := α(e) | func ∈ Func , f(x){c}
x := uSym/iSym(e) | return e | fail e | vanish p ∈ Prog = P!(Func)

GIL commands, c ∈ Cmd , contain variable assignment, conditional goto,
function call, memory actions, allocation of uninterpreted/interpreted symbols,
function return, error termination and path cutting. A GIL function, f(x){c},
comprises an identifier f ∈ F , a formal parameter x3, and a body given by a list
of commands c. A GIL program is a set of GIL functions with unique identifiers.

GIL execution is defined in terms of state models, which are parametric
on a value set, V ⊇ Val , and a set of memory actions, A. We distinguish
the Boolean value set, Π ⊂ V, and refer to π ∈ Π as a context. State mod-
els expose an interface consisting of state actions, A ] AS , where the actions
3 The implementation supports multiple parameters.
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Memory Action - Success
cmd(p, cs, i) = x := α(e)

σ.evale (−) v σ.α(v) (σ′, v′)S

σ′.setVarx (v′) σ′′

p ` 〈σ, cs, i〉  〈σ′′, cs, i+1〉S

Memory Action - Error
cmd(p, cs, i) = x := α(e)

σ.evale (−) v σ.α(v) (σ′, v′)r

r 6= S o = (if r = E then E else M)

p ` 〈σ, cs, i〉  〈σ′, cs, i〉o(v
′)

Fig. 1: GIL Execution Semantics: Memory Actions

AS = {setVarx}x∈X∪{setStore, getStore}∪{evale}e∈Expr∪{assume, uSym, iSym}
address store management, expression evaluation, branching, and allocation.

Definition 1 (State Model). A state model, S(V, A) , 〈|S|, ea〉, comprises: a
set of states σ = 〈µ, ρ, π〉 ∈ |S|, containing a memory µ, a variable store ρ, and
a (satisfiable) context π4; and an action execution function, ea : (A ] AS) →
|S| → V ⇀ P(|S| × V ×R), with the result r ∈ R = {S, E ,M} denoting success,
non-correctible error, or missing information error, pretty-printed σ.α(v) →
{(σi, vi)ri |i∈I} for all outcomes and σ.α(v)  (µi, σi)

ri for a specific outcome,
with countable I. The value set of concrete state models is the set of GIL values,
Val5; the value set of symbolic state models is the set of symbolic expressions, Êxpr .

Definition 2 (GIL Execution Semantics). Given a state model S, the GIL
execution semantics has judgements of the form:

p ` 〈σ, cs, i〉o  S 〈σ′, cs ′, j〉o
′

with: call stacks, cs ∈ CallS; command indexes, i, j ∈ N; and outcomes, o ∈ O.

The GIL execution semantics is standard for a goto language, except that it is
parametrised by the memory actions. Call stacks capture function-related control
flow, with cmd(p, cs, i) denoting the i-th command of the currently executing
function (cf. [33] for details). Outcomes, o ∈ O , S | N(v) | E(v) | M(v), indicate
how the execution is to proceed: S states that it can continue; N(v) states that it
terminated normally with return value v; and E(v) and M(v) state that it failed
with either a non-correctible or missing information error described by v. We
give the rules for memory action execution in Figure 1; all can be found in [33].

Compositional Memory Models. We move from whole-program memory
models [19] to compositional memory models by introducing memory core predi-
cates, γ ∈ Γ , which represent the fundamental units of the TL memory model
(e.g., a memory cell). Core predicates take two lists of parameters, in-parameters
(or ins), denoted vi, and out-parameters (or outs), denoted vo, such that from the
ins we can learn the outs. This concept is similar to predicate parameter modes

4 States also include allocators (cf. [33] for details), elided to limit clutter.
5 Note that the only satisfiable concrete context is true, meaning that concrete contexts
can be elided and concrete states can be viewed as memory-store pairs, 〈µ, ρ〉.
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of [37] and we use it to implement a parametric spatial entailment engine. An
example of a core predicate is the cell assertion, x 7→ v, which captures a cell in
memory at address x having value v. Its in-parameter is x, and its out-parameter
is v, because, if we know x, we can find v by looking it up in the memory.

With each core predicate γ ∈ Γ , we associate a consumer and a producer
memory action, denoted by consγ and prodγ respectively, to obtain the set of
predicate actions AΓ =

⋃
γ∈Γ {consγ , prodγ}, whose meaning is discussed shortly.

Definition 3 (Compositional Memory Model). Given value set V and core
predicate set Γ , a compositional memory model, M(V, Γ ) , 〈|M |,Wf , eaΓ 〉,
comprises: (1) a partial commutative monoid (PCM)6, |M | = (|M |, •,0), where
0 denotes the (indivisible) empty memory; (2) a well-formedness relation, Wf ⊆
|M | ×Π, with Wfπ(µ) denoting that memory µ is well-formed in (satisfiable)
context π; and (3) a predicate action execution function, ea Γ : AΓ×|M |×V×Π ⇀
P(|M | × V ×Π ×R), pretty-printed µ.α(v)π →

{
(µi, vi)

ri
πi |i∈I

}
for all outcomes

and µ.α(v)π  (µi, vi)
ri
πi for a specific outcome, with countable I. The value set

of concrete memory models is the set of GIL values, Val ; the value set of symbolic
memory models is the set of symbolic expressions, Êxpr .

We discuss the most important properties that the components of compo-
sitional memory models must satisfy; a full list is available in [33]. The PCM
requirement is well-known from separation logic [40,11]. Well-formedness holds
only for satisfiable contexts, and describes the separation of symbolic resource and
any further TL-specific well-formedness criteria (cf. §3). It must be monotonic
with respect to context strengthening, compatible with the PCM composition,
and the empty memory must be well-formed in any satisfiable context. The action
execution function, µ.α(v)π →

{
(µi, vi)

ri
πi |i∈I

}
, denotes that, in a memory µ that

is well-formed in the context π, executing action α with parameter v yields a
countable number of branches characterised by the non-overlapping7, satisfiable
contexts πi, each of which implies π and makes the corresponding memory µi well-
formed, and all of which together cover π (i.e., π ⇒

∨
i∈I πi). This last property

means that memory actions do not drop paths, which is essential for verification.
The intuition behind consumers and producers is that consumers frame off

the core predicate resource (CPR), uniquely determined by the core predicate ins,
and the producers frame it on. The following properties capture this intuition.
First, we define the CPR of a core predicate γ〈vi · vo〉 as the memory resulting
from its production in 0, which must succeed in any satisfiable context:

π SAT =⇒ 0.prodγ(vi · vo)π  (γ〈vi · vo〉, true)Sπ ∧ γ〈vi · vo〉 6= 0.

overloading notation for the core predicate and its resource. Moreover, we require
that any successful production frames on the CPR:

µ.prodγ(vi · vo)π  (µ′, true)Sπ′ =⇒ µ′ = µ • γ〈vi · vo〉
6 A PCM, X = 〈X, •,0〉, comprises a carrier set X (overloaded for simplicity), a partial,
associative, and commutative composition operator •, and unit element 0.

7 Note that this requirement makes concrete memory actions deterministic.
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and also that producers cannot return missing information errors, as they are
meant to succeed precisely when the CPR is missing. The consumers, on the
other hand, must succeed if and only if the CPR is present in memory:

µ.consγ(vi)π  (µ′, vo)
S
π′ =⇒ π′ ` µ = µ′ • γ〈vi · vo〉

π ` µ = µ′ • γ〈vi · vo〉 ∧ Wfπ(µ) =⇒ µ.consγ(vi)π  (µ′, vo)
S
π

with the resulting context π′ having enough information to isolate the CPR8.
Interestingly, erroneous executions cannot be fully characterised in terms of
CPR presence or absence, because of TL-specific error cases: for example, in C,
attempting to either get or set the value of a block cell that is beyond the block
bound raises an out-of-bounds error (cf. §3). What we require instead is that
consumed CPR can always be re-produced, that producers fail in a memory in
which consumers succeed, and that producers succeed in a memory in which
consumers return a missing information error (and vice versa for the latter):

µ.consγ(vi)π  (µ′, vo)
S
π′ =⇒ µ′.prodγ(vi · v′o)π′  (µ′′, true)Sπ′

µ.consγ(vi)π  (µ′, vo)
S
π′ =⇒ µ.prodγ(vi · −)π  (µ, false)Eπ′

µ.consγ(vi)π  (µ, false)Mπ′ ⇐⇒ µ.prodγ(vi · vo)π  (µ • γ〈vi · vo〉, true)Sπ′

The properties given so far allow us, for example, to prove that well-formed
memories cannot contain duplicated CPR. The final property below requires that
non-missing executions of consumers and erroneous executions of producers must
be frame-preserving, with the former formulated as follows:

µ.consγ(vi)π  (µ′, vo)
r
π′ ∧ r 6=M ∧ (π′′ ⇒ π′) ∧ Wfπ′′(µ • µf )

=⇒ (µ • µf ).consγ(vi)π′′  (µ′ • µf , vo)rπ′′

where π′′ effectively maintains well-formedness constraints for µ, adds on further
ones required for µ • µf to be defined and also isolates the consumed CPR.
Note that neither missing executions of consumers nor successful executions of
producers can be frame preserving, as framing on the appropriate CPR could
result in success for the former, and a duplicated resource error for the latter.

Using the consumers and producers, we are able to derive getter and setter
actions, A , {getγ , setγ : γ ∈ Γ}, which perform frame-preserving CPR lookup
and mutation, as given below. We discuss getters and setters further in §3, in the
context of our JS and C instantiations.

Getter: Success
µ.consγ(vi)π  (µ′, vo)

S
π′

µ′.prodγ(vi · vo)π′  (µ′′, true)Sπ′

µ.getγ(vi)π  (µ′′, vo)
S
π′

Setter: Success
µ.consγ(vi)π  (µ′,−)Sπ′

µ′.prodγ(vi · vo)π′  (µ′′, true)Sπ′

µ.setγ(vi · vo)π  (µ′′, true)Sπ′

Getter: Non-Success
µ.consγ(vi)π  (µ, false)rπ′ r 6= S

µ.getγ(vi)π  (µ, false)rπ′

Setter: Non-Success
µ.consγ(vi)π  (µ, false)rπ′ r 6= S

µ.setγ(vi · vo)π  (µ, false)rπ′

8 The π ` . . . denotes reasoning under context π. In the concrete case, it can be ignored.
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Compositional State Models. Compositional memory models lift to compo-
sitional state models, in a similar way to the lifting of the complete memory
models illustrated in [19]; see [33] for details. Here, we focus on memory action
execution, which is lifted as follows to state action execution, given a memory
model M(V, Γ ) and α ∈ AΓ ]A:

ea(α, 〈µ, ρ, π〉, v) , {(〈µ′, ρ, π′〉, v′)r | µ.α(v)π  (µ′, v′)rπ′}.

Observe how the context of the state is passed to the memory execution function,
which may then strengthen it before passing it back to the resulting state. We
can show that the PCM and well-formedness relation on memories lift to a PCM
and well-formedness relation on states, and that state action execution maintains
properties analogous to those given for memory models.

2.2 GIL Verification

We give an overview of Gillian verification based on separation logic (SL); see [33]
for details. We describe GIL assertions, parameterised by the core predicates
of the TL, define assertion satisfiability in a novel, parametric way using the
core predicate producers, and provide a mechanism for using verified function
specifications in GIL execution. GIL Assertion Syntax

p, q ∈ A , emp | p ∗ q | γ〈êi · êo〉 | δ〈êi · êo〉
P,Q ∈ Asrt , {p ∧ π | p ∈ A, π ∈ Π}
pred ∈ Pred , pred δ〈x̂i · x̂o〉 := P1; ... ;Pn;

A compositional memory model
with core predicates Γ induces
an SL-assertion language given on
the right. GIL memory assertions,
p, q ∈ A, are formed using the
empty assertion, the separating conjunction, the core predicates, and user-defined
predicates, whose names come from a dedicated set, ∆ 3 δ. The empty assertion
and the separating conjunction are standard. Core predicate assertions are lifted
from memory core predicates. User-defined predicates, introduced by example in
§3 and §4, are used by tool developers to characterise the interface of the TL, and
by code developers to describe the data structures in their programs. They have
in- and out-parameters like core predicates, and can have multiple definitions,
separated by a semi-colon. Assertions, P,Q ∈ Asrt , extend memory assertions
with pure first-order assertions, π, conflated with Boolean symbolic expressions.

Satisfiability. To define assertion satisfiability, we lift memory consumers and
producers from core predicates to memory assertions, denoted by µ.consθ(p) and
µ.prodθ(p), and then to states and arbitrary assertions, denoted by σ.consθ(P )
and σ.prodθ(P ), using substitutions θ : X̂ 7→ V (extended to symbolic expres-
sions inductively, in the standard way) to map core predicate assertions, with
parameters given by symbolic expressions, to the core predicates of the memory
model, with parameters given by values. We highlight the successful base case
of the memory assertion consumers, where the returned context requires the
out-parameters of the assertion to match the ones found in memory:

µ.consγ(θ(êi))π  (µ′, v′o)
S
π′ π′′ = (π′ ∧ v′o = θ(êo))) π′′ SAT

µ.consθ(γ〈êi · êo〉)π  (µ′, true)Sπ′′
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and the successful consumption of an arbitrary assertion P = p ∧ π:

µ′.consθ(p)π′  (µ′′, true)Sπ′′ π′′ ` θ(π)
〈µ′, ρ, π′〉.consθ(p ∧ π)  (〈µ′′, ρ, π′′〉, true)S

Definition 4 (Satisfiability). The satisfiability relation, stating that memory
µ′ and context π′ satisfy assertion p ∧ π under substitution θ, is defined by:

µ′, π′, θ |= p ∧ π ⇐⇒ 0.prodθ(p)true  (µp, true)
S
πp ∧ π

′ ` (µ′ = µp ∧ πp ∧ θ(π))

and is lifted to states as: 〈µ′, ρ, π′〉, θ |= p ∧ π if and only if µ′, π′, θ |= p ∧ π.

In Definition 4, the production, when successful, creates the (unique) memory
µp that corresponds to the resource of the assertion p, with its (unique) well-
formedness constraints, πp. In the concrete case, as the only allowed context is true,
the formulation simplifies to the more intuitive 0.prodθ(p) → (µ′, true)S ∧ θ(π).

Specifications. Gillian function specifications have the form {x̂, P}f(x){Q}ê,
where f is the function identifier, x is the function parameter, x̂ is the symbolic
variable holding the value of x, P is the pre-condition, Q is the post-condition, and
ê is the return value of the function, with the following, well-known, constraints:

1. program variables do not appear in the pre- or the post-condition, and the
function parameter x is accessed using the symbolic variable x̂;

2. symbolic variables that appear in a pre-condition are implicitly universally
quantified, and can be re-used in the corresponding post-condition; and

3. symbolic variables that appear only in a post-condition are implicitly exis-
tentially quantified.

We extend GIL programs with function specifications, accessible via p.specs,
and the GIL execution semantics with rules for folding and unfolding user-defined
predicates, as well as with a rule for calling function specifications, the success
case of which is given below. Gillian verifies a specification {x̂, P}f(x){Q}ê if,
given the identity substitution θ̂ and a symbolic state σ̂ with store {x 7→ θ̂(x̂)}
such that σ̂, θ̂ |= P , the symbolic execution of f starting from σ̂ always terminates,
for all final symbolic states σ̂i there exists some θ̂i ≥ θ̂ such that σ̂i, θ̂i |= Q, and
the corresponding return value equals θ̂i(ê) under the context of σ̂i. We can prove
that if Gillian verifies a specification, then its standard SL interpretation holds.

Spec Call - Success
cmd(p, cs, i) = y := e(e′) with θ function call with substitution θ
σ.evale (−) f σ.evale′ (−) v′ get function id and parameter value
{x̂, P}f(x){Q}ê ∈ p.specs get one of the function specifications
θ′ = θ[x̂ 7→ v′] extend substitution with parameter value
σ.consθ′(P ) → {(σj , true)S |j∈J} consume pre-condition
j ∈ J select a branch
σj .prodθ′ (Q) (σ′

j , true)
S produce post-condition

σ′
j .setVary (θ

′(ê)) σ′ assign return value
p ` 〈σ, cs, i〉  〈σ′, cs, i+1〉
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Note that for this rule to succeed, the consumption of P must succeed. The rule
is slightly simplified for presentation. First, it assumes to have the substitution
upfront; in the implementation, we have a unification algorithm that, starting
from the function parameter and using the consumers, learns the substitution.
Second, it assumes that the post-condition does not introduce fresh symbolic
variables; these are handled using allocators and added to the substitution.

Remark. Due to space constraints, we have not been able to give the full tech-
nical details of Gillian verification. These are available in the Gillian technical
report [33], where we demonstrate that the overall GIL execution using composi-
tional memory models is frame-preserving (up to the usual renaming of allocated
memory locations) and prove a standard verification soundness result.

3 Compositional Memory Models: JavaScript and C

We present the compositional memory models of JS and C, giving the basic
actions and core predicates, and some of the user-defined predicates that capture
the intuitive interfaces of these languages. The key ideas behind compositional
JS memory models were introduced in the JaVerT project [21,20,22]; we transfer
them to Gillian. We introduce the compositional C memory models, building
on the concrete block-offset memory model of CompCert [31], simplifying the
presentation.9 In doing so, we highlight a striking similarity between the JS and
C models that is the result of our emphasis on negative resource.

The JS and C concrete compositional memory models are made up of
building blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocksbuilding blocks that are assigned a unique location (or identifier) from a set
of uninterpreted symbols, L ⊂ U : for JS, the building blocks are the extensible
objects; for C, they are the blocks of linear memory of a given size. Each building
block is divided into at least one componentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponentcomponent. For JS, each object has three
components: a property table, h : S ⇀ Val , partially mapping property names
(strings) to values; a domain, d : P(S), discussed shortly; and metadata, m : Val ,
which keeps track of internal JS properties for that object [22]. For C, each block
has two components: the block contents k : N⇀ Val , partially mapping offsets
(natural numbers) to values; and a bound, n : N, discussed shortly. Finally, the
memory unitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunitsunits are, intuitively, the parts of the memory components that cannot
be separated further: for JS, these are single object properties, domains, and
metadata; for C, these are single block cells and bounds. These memory units
directly correspond to the core predicates given in Definitions 6 and 7.

Compositional memory models must keep track of negative resource, which
can come from two sources: allocation and deallocation. For JS and C, the
negative information originating from allocation has infinite representation: in
JS, a freshly created object is known to not have any properties; in C, a freshly
allocated block of a given size in C is known not to have offsets beyond that size.
This infinite information is captured, for JS, by the object domain whose meaning
9 We assume that values have the same size in memory and omit permissions. Gillian-C
implements the full models, eliding the concurrency-related aspects of permissions.
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is that any property not in the domain is absent, and, for C, by the block bound
whose meaning is that any accesses beyond that bound result in a buffer overrun
error. The negative information originating from deallocation is easier to handle,
tracked by a dedicated uninterpreted symbol, ∅ ∈ U . In JS, deallocation is at the
unit level: only object properties are deleted. This is captured by extending the
co-domain of property tables with ∅: that is, h : S ⇀ Val∅. In C, deallocation is
at the building-block level: only entire blocks can be deleted. This is captured by
extending the co-domain of blocks with ∅, indicating that a block has been freed.

Due to compositionality, any building block, component or unit can be missingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissingmissing.
In the theory, we capture this either implicitly, via absence from the domain of a
mapping (e.g., a missing object property for JS or a missing block cell for C), or
explicitly, using the symbol ⊥ (e.g. a missing domain, metadata, or bound).

Definition 5 (Compositional JS and CMemories). The PCMs of composi-
tional concrete JS and C memories, |MJS| and |MC|, are given by the sets

µ ∈ |MJS| : L⇀ ((S ⇀ Val∅)× P(S)⊥ × Val⊥),
µ ∈ |MC| : L⇀ ((N⇀ Val)× N⊥)∅,

composition defined as disjoint union, and empty memory ∅. The PCMs of
compositional symbolic JS and C memories, |M̂JS| and |M̂C|, are given by the sets

µ̂ ∈ |M̂JS| : Êxpr ⇀ ((Êxpr ⇀ Êxpr)× Êxpr⊥ × Êxpr⊥),
µ̂ ∈ |M̂C| : Êxpr ⇀ ((Êxpr ⇀ Êxpr)× Êxpr⊥)∅,

with composition defined as (syntactic) disjoint union, and empty memory ∅.

In the above definition, symbolic memory models are simple liftings of the
concrete ones. In the implementation, we employ heavy optimisation: for example,
in Gillian-C, we have developed a complex tree representation of symbolic blocks
inspired by [29], enabling tractable reasoning about arrays of symbolic size.

Well-formedness of concrete memories addresses the relationship between
positive and negative information, given for JS and C below:

Wf JS(µ) , ∀(h, d,−) ∈ codom(µ). d 6= ⊥ =⇒ dom(h) ⊆ d
Wf C(µ) , ∀(k, n) ∈ codom(µ). n 6= ⊥ =⇒ dom(k) ⊆ [0, n)

Well-formedness of symbolic memories additionally has to address separation
of locations and separation in any other mappings with symbolic expressions
in its domain (e.g. object properties for JS and offsets for C). We give the
well-formedness criterion for the symbolic C memory:

Ŵf C
π(µ̂) , π `

∧
l̂,l̂′∈dom(µ̂)

l̂ 6≡l̂′

l̂ 6= l̂′ ∧
∧

(k̂,−)∈codom(µ̂)

ô,ô′∈dom(k̂),ô 6≡ô′

ô 6= ô′ ∧
∧

(k̂,n̂)∈codom(µ̂)

ô∈dom(k̂),n̂ 6=⊥

ô < n̂

For our JS and C instantiations, the core predicates follow straightforwardly
from the units of their memory models.
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CConsCell - Found
µ(l) = (k, n) k(o) = v

k′ = k \ {o} µ′ = µ[l 7→ (k′, n)]

µ.consCell([l, o]) (µ′, v)S

SConsCell - Use After Free
µ̂(l̂′) = ∅ π′ = (l̂ = l̂′) (π ∧ π′) SAT

µ̂.consCell ([l̂, ô])π  (µ̂, false)Eπ∧π′

SConsCell - Found
µ̂(l̂′) = (k̂, n̂) k̂(ô′) = v̂

π′ = ([l̂, ô] = [l̂′, ô′]) (π ∧ π′) SAT
k̂′ = k̂ \ {ô′} µ̂′ = µ̂[l̂′ 7→ (k̂′, n̂)]

µ̂.consCell ([l̂, ô])π  (µ̂′, v̂)Sπ∧π′

SConsCell - Missing Cell
µ̂(l̂′) = (k̂, n̂)

πk = (l̂ = l̂′) ∧ ô /∈ dom(k̂)
πn = (n̂ = ⊥) ∨ (n̂ ≥ ô) (π ∧ πk ∧ πn) SAT

µ̂.consCell ([l̂, ô])π  (µ̂, false)Mπ∧πk∧πn

Fig. 2: Selected rules for the consCell consumer.

Definition 6 (JS Core Predicates). JS has three core predicates, γJS ∈ ΓJS:
– the object-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-propertyobject-property predicate, (l̂, p̂) 7→ v̂, which states that property p̂ of object
at location l̂ contains value v̂ (including ∅ denoting property absence);

– the domaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomaindomain predicate, domain(l̂, d̂), which states that object at location l̂ has
no properties outside the finite set d̂;

– the metadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadatametadata predicate, metadata(l̂, m̂), which states that object at location l̂
has metadata m̂.

Definition 7 (C Core Predicates). C has three core predicates, γC ∈ ΓC
10:

– the cell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicatecell predicate, (l̂, ô) 7→ v̂, which states that the cell at offset ô in the block
at location l̂ contains value v̂ (which, this time, does not include ∅);

– the bounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicatebounds predicate, bound(l̂, n̂) , which states that any cell beyond offset n̂
in block at location l̂ is not there;

– the freed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicatefreed predicate, l̂ 7→ ∅, which states that block at location l̂ has been freed.

We illustrate the C predicate action execution functions, ea C and êa C, respec-
tively, with a selection of rules for the C cell-predicate consumer, consCell, given in
Figure 2. The remaining rules, as well as the rules for their JS counterparts, ea JS

and êa JS, can be found in the Gillian technical report [33]. With this information,
we can define the compositional concrete and symbolic JS and C memory models.

Definition 8 (JS Memory Models). The compositional concrete and symbolic
JS memory models are defined, respectively, as MJS(Val , ΓJS) = 〈|MJS|,Wf JS, ea JS〉
and M̂JS(Êxpr , ΓJS) = 〈|M̂JS|, Ŵf JS, êa JS〉.

Definition 9 (C Memory Models). The compositional concrete and symbolic
C memory models are defined, respectively, as MC(Val , ΓJS) = 〈|MC|,Wf C, ea C〉
and M̂C(Êxpr , ΓJS) = 〈|M̂C|, Ŵf C, êa C〉.
10 In full C and the Gillian-C implementation, memory values may be of different sizes,

and holes may exist between these values due to alignment restrictions. To address
this, the implemented cell assertion carries additional information related to, e.g.,
size and type, similarly to that of [4], and there also exists a hole core predicate.
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The getters and setters for JS and C are defined using the methodology
described in §2. In particular, the JS getters and setters are given by AJS =
{getProp, setProp, getDomain, setDomain, getMetadata, setMetadata}, and the sum-
mary of the execution of the symbolic getProp(l̂, p̂) getter is illustrated below:

Similarly, the C getters and setters are given by AC = {getCell, setCell, getBound,
setBound, getFreed, setFreed} and the summary of the execution of the symbolic
getCell(l̂, ô) getter is illustrated below:

The similarities in the two diagrams are evident, with the main difference being
that JS getters do not throw errors, whereas C getters do.

User-defined JS and C Predicates. Core predicates describe fundamental
units of the TL memory model. On top, user-defined predicates build layers
of abstraction to describe memory components and building blocks, standard
library interfaces, all the way to complex data structures for particular code
such as the AWS message header. Using Gillian notation, we present some of the
JS and C user-defined predicates; in this notation: ∗ and ∧ are conflated to ∗,
with automatic differentiation between spatial and pure assertions11; predicate
definitions are separated with a semi-colon; and logical variables are prefixed with
the # symbol and are implicitly existentially quantified in predicate definitions.

Gillian-JS inherits many user-defined predicates from JaVerT [21], including
simple ones for describing JS objects and their properties, as well as advanced
ones for specifying scoping, function closures and prototype chains. We focus
here on the new FrozenObject(o, proto, pvs) predicate, which describes a frozen
object12 o with prototype proto and property-value pairs pvs. We first define the
predicate FrozenObjectProps(o, pvs) to grab the resource of the object properties:

pred FrozenObjectProps(o, pvs) : pvs = [ ];
pvs = [#p, #v] :: #rpvs * DataPropConst(o, #p, #v) *
FrozenObjectProps(o, #rpvs);

where DataPropConst(o,#p,#v) states that the object o has a non-writable prop-
erty #p with value #v. We then add information about the object prototype and
its non-extensibility using the JSObject(o, proto, ext) predicate, and also state
that the object has no properties other than pvs using the domain core predicate:
11 From the separation logic literature, the pure assertions can be regarded as dotted.
12 A JS object is frozen if it cannot be extended and all its properties are non-writable.
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pred FrozenObject(o, proto, pvs) :
JSObject(o, proto, false) * FrozenObjectProps(o, pvs) *
FirstProj(pvs, #ps) * ListToSet(#ps, #pss) * domain(o, #pss)

where FirstProj(pvs,#ps) means that the list #ps is the first projection of the
list of pairs pvs, and ListToSet(#ps,#pss) means that the elements of the list
#ps form the set #pss.

Gillian-C, on the other hand, comes with user-defined predicates capturing,
for example, arrays and blocks in memory, as well as automatically-generated
predicates describing C structs, with support for nested structs. In particular, the
array(b, off, c) predicate describes a contiguous fragment of a block b, starting
from offset off, with contents described by the mathematical list c:

array(b, off, c) : c = [];
(b, off) -> #c * array(b, off+1, #d) * c = #c :: #d

and the block(b, c) predicate captures an entire C block with contents c:

block(b, c) : array(b, 0, c) * bound(b, |c|)

In the implementation, arrays also exist as core predicates. This allows us to
reason about arrays automatically in the symbolic memory (e.g., to split an array
into sub-arrays), supported by our tree representation of symbolic blocks, instead
of requiring manual application of lemmas.

Finally, we illustrate automatically generated struct-related predicates us-
ing the aws_byte_cursor structure given below, which contains two fields: an
unsigned integer len; and a nullable pointer to an array of 8-bit unsigned inte-
gers buf. This struct is used for traversing the AWS message header (cf. §4), and
is intended to capture an array in memory that starts at buf and has length len.

struct aws_byte_cursor { pred struct_aws_byte_cursor(cur, len, buf) :
size_t len; (cur == [#b, #o]) * ((#b, #o) -int64-> len) *
uint8_t *buf; ((#b, #o +p 8) -int64-> buf) *

} is_ptr_or_null(buf)

The generated predicate describes the struct’s layout in memory and gives basic
typing information: it states that an aws_byte_cursor, starting from the position
given by the pointer cur, occupies 16 bytes in memory (8 + 8, given by the type
annotation int64), with the first 8 bytes taken by len, and the second 8 bytes
(note the pointer addition +p) taken by buf, which is either a pointer or null.

4 AWS Encryption SDK Message Header Specification

The encrypted data handled by the AWS Encryption SDK is stored within a
structure called a message [3]. The message format has two versions of similar
complexity: we verify version 1; version 2 was introduced very recently. Messages
consist of a header, a body, and a footer. Here, we describe only the structure of
the header, as we are verifying header deserialisation.
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The AWS Encryption SDK message header is a sequence of bytes (buffer)
divided into sections, as illustrated below; above each section is its length in bytes.

Our approach is to abstract the header contents into a list and formulate pure
predicates that describe its structure in a language-independent way. This allows
us to then use the same abstractions as part of further, language-dependent,
abstractions for both JS and C. Our design of the abstractions was informed by
existing code annotations found in the implementations, which describe simple
first-order properties of the code and, in the case of C, can also link to the
CBMC [30] bounded model checker. However, these annotations are limited by
the expressivity of JS and C, particularly when it comes to reflecting on the
memory contents. Our predicates have no such limitations.

We narrow down our exposition to the encryption context, as it illustrates well
the language-independent and language-dependent aspects of our specification,
and is also the section in which we discovered bugs in both implementations.

Pure Specification of the Encryption Context. The encryption context
(EC) is a sequence of bytes that describes a set of key-value pairs. Its structure
is given in the diagram below.

The first two bytes represent the number of key-value pairs, denoted by KC,
and the rest describe the KC key-value pairs themselves. Keys and values are
represented by sequences of bytes and, as they are of variable length, are serialised
by first having two bytes that represent the length, followed by that many bytes
of the actual key or value; we refer to this pattern as a field, and to a sequence of
n fields as an n-element. Then, a key-value pair is serialised as a 2-field element,
and all of the key-value pairs form a sequence of KC 2-field elements.

We specify the EC by building layers of abstraction, from fields to elements to
element sequences to the EC, each of which can either be complete, incomplete
(partial, but with correct structure), or malformed (with incorrect structure).
In the implementation, these are specified separately and are joined together in
appropriate over-arching abstractions. Here, we focus on complete variants only.

The Field(buf, pos, fld, len) predicate states that the buffer (list of bytes) buf,
at index pos, holds a field with contents fld (list of bytes) and total length len:
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pred Field(buf, pos, fld, len) :
(0 <= pos) * (#rFL = sub(buf, pos, 2)) *
UInt16(#rFL, #fL) *
(fld = sub(buf, pos+2, #fL)) *
(len = 2+#fL) * (pos+len <= |buf|)

This predicate uses the GIL operator sub(l, s, n), which returns the sublist of list l
starting from index s and of length n, and also the UInt16(rn, n) predicate, which
states that n is a 16-bit big-endian interpretation of the raw 2-byte list rn. The
Element(buf, pos, fC, elem, len) predicate states that buffer buf at index pos holds
a sequence of fC fields, with contents elem (a list of the appropriate field contents)
and total length len. It is defined similarly to a standard linked-list predicate,
with the ‘link’ being the fact that the list members are contiguous in memory:

pred Element(buf, pos, fC, elem, len) :
(fC = 0) * (0 <= pos) * (pos <= |buf|) * (elem = [ ]) * (len = 0);
(0 < fC) * Field(buf, pos, #fld, #fL) * Element(buf, pos+#fL, fC-1, #rFs,
#rL) * (elem = #fld :: #rFs) * (len = #fL+#rL)

Next, analogously to Element, we define the Elements(buf, pos, eC, fC, elems, len)

predicate, which states that the buffer buf, at index pos, holds a sequence of
eC elements, each with fC fields, with contents elems (a list of the appropriate
element contents) and of total length len. Finally, the EncryptionContext(buf, KVs)
predicate states that the entire buffer buf is an EC with key-value pairs KVs, with
all keys being unique:

pred EncryptionContext(buf, KVs) : (buf = [ ]) * (KVs = [ ]);
(#rKC = sub(buf, 0, 2)) * UInt16(#rKC, #KC) * (0 < #KC) *
Elements(buf, 2, #KC, 2, KVs, #len) *
FirstProj(KVs, #Ks) * Unique(#Ks) * (2+#len = |buf|)

Next, we show how this pure specification of the EC contents can be connected
without modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modificationwithout modification to both the JS and C memories.

Encryption Context in JS. In JS, the EC is serialised as an ArrayBuffer,
which is a raw binary data buffer in memory, and accessed using a Uint8Array,
which is a view on top of that ArrayBuffer starting from a given offset and of a
given length, treating the raw data underneath as 8-bit unsigned integers. This
Uint8Array view is similar in function to the aws_byte_cursor C structure (cf. §3).
Abstracting ArrayBuffer contents to lists, we connect these data structures in JS
memory to our pure EC specification (cf. Figure 3, top and centre):

pred JSSerEC(o, EC, KVs) :
Uint8Array(o, #aBuf, #off, #len) * ArrayBuffer(#aBuf, #data) *
(EC = sub(#data, #off, #len)) * EncryptionContext(EC, KVs)

In JS, the EC is deserialised into a frozen JS object with prototype null,
whose properties represent the keys and hold the values. This is done by converting
the keys and the values to UTF-8 strings, and is specified as follows:

pred JSDeserEC(o, KVs) : toUtf8(KVs, #sKVs) * FrozenObject(o, null, #sKVs)

where toUtf8 converts the list KVs point-wise to strings, obtaining #sKVs.
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Fig. 3: Serialised Encryption Context: language-independent pure part (red;
middle) and language-specific resource (green; JS above, C below)

{ JSSerEC(eEC, #EC, #KVs) }
function decodeEncryptionContext(eEC)

{ PRE-CONDITION * JSDeserEC(ret, #KVs) }

Finally, the specification of the
decodeEncryptionContext function
states that the EC deserialisation
is performed correctly.

Encryption Context in C. In C, the EC is serialised as a block in memory,
and is traversed using an AWS byte cursor. Using the auto-generated predicate
given in §3, we define the aws_byte_cursor(cur, buf, c) predicate, stating that
cur points to a byte cursor which has access to an array starting from buf, and
holding contents c, making the length implicit:

pred aws_byte_cursor(cur, buf, c) :
struct_aws_byte_cursor(cur, #len, buf) * (buf = [#b, #off]) *
array(#b, #off, c) * (#len = |c|)

A serialised EC can then be described as a valid byte cursor whose contents
represent the EC key-value pairs (cf. Figure 3, centre and bottom):

pred CSerEC(cur, buf, EC, KVs) :
aws_byte_cursor(cur, buf, EC) * EncryptionContext(EC, KVs)

In C, the EC is deserialised into an AWS hash table, whose keys and values
directly correspond to the key/value pairs of the EC, specified as follows, eliding
the internal structure of the hash tables due to space constraints:

pred CDeserEC(ht, KVs) : valid_hash_table(ht, KVs)

The specification of the EC deserialisation function is more complex than for
JS. In particular, the byte cursor that originally pointed to the EC ends up shifted
to the end of the byte buffer, exposing the array underneath the CSerEC predicate.

{ empty_hash_table(ec) * CSerEC(cur, #buf, #EC, #KVs) }
int aws_cryptosdk_enc_ctx_deserialize(

struct aws_hash_table *ec, struct aws_byte_cursor *cur)
{ (ret = 0) * CDeserEC(ec, #KVs) * (#buf = [#b, #off]) *

array(#b, #off, #EC) * aws_byte_cursor(cur, #buf +p |#EC|, [ ]) }
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5 AWS Encryption SDK Message Header Verification

Using Gillian-JS and Gillian-C, together with the specifications given in §4, we
verify full functional correctness of the header deserialisation module of the AWS
Encryption SDK JS [2] (~200loc) and C [1] (~950loc) implementations. In par-
ticular, we verify that the deserialisation of a complete header is correct, and the
deserialisation of an incomplete or a malformed header raises an appropriate error.

Verification Effort and Performance. The JS verification took 3 person-
months and the C verification took 2 person-months, with the latter taking
less time because a large part of the infrastructure developed for JS could be
re-used. We substantially improved the first-order solver of Gillian to reason
automatically about complex operations on lists of symbolic length, first used in
the modelling of JS ArrayBuffers and then for C dynamic arrays. We created a
collection of language-independent predicates and lemmas about their inductive
properties (~1.2kloc) that cover the project-specific AWS header, but also re-
usable first-order concepts such as list element uniqueness, projections of lists
of pairs, conversion from bytes to numbers, and conversion from raw bytes to
strings. Similarly, we also had to create language-dependent abstractions and
associated lemmas for the JS and C manipulation of the AWS message header
(~1.2kloc). Finally, we had to: annotate the code with specifications and loop
invariants, with the latter often having more than twenty components; manually
apply lemmas to prove numerous complex entailments; and manually unfold
user-defined predicates at times (the folding is automated) (~1.1kloc).

On a machine with an Intel Core i7-4980HQ CPU 2.80 GHz, DDR3 RAM
16GB, and a 256GB solid-state hard-drive running macOS, the JS verification
takes approximately 45 seconds and the C verification takes approximately six
minutes. The C time is longer, in part due to the larger codebase, but mainly due
to the complexity of the implementation of the full C memory model, which is
able to reason about arrays of symbolic size. This requires frequent satisfiability
checks and (for the moment) branching on non-zero array size. These times could
both be improved with the implementation of basic merging techniques.

JS Verification: Bugs/Improvements. We discovered two bugs and improved
one function implementation to link better with the underlying data structure.

– In the decodeEncryptionContext function, the object representing the de-
serialised EC originally had prototype Object.prototype which, in this case,
due to the prototype inheritance of JavaScript, meant that if an EC key
coincided with a property of Object.prototype, an error would be thrown
incorrectly. This bug was predicted theoretically in [21], and has since been
found in several real-world libraries [42], including cash and jQuery.

– In the same function, in one of the branches the deserialised EC was returned
non-frozen, which constituted a potential vulnerability in that third parties
could alter non-secret, but authenticated data.

– The readElements(eC, fC, buf, pos) function, which reads eC elements with
fC fields from buffer buf at index pos into a JS array of arrays, was misaligned
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with the underlying data structures. Its parameters were non-intuitive (it
received eC ·fC, buf, and pos), and used complex array operations to re-form
the final return value. We re-implemented this function to construct the
returned array of arrays efficiently, simplifying specification and verification,
and our implementation was integrated into the codebase.

JS Verification: Caveats. Our JS verification is correct up to the following
caveats. First, as the AWS SDK JS implementation is written in TypeScript,
we elide types to obtain JS; this could be automated, potentially generating
predicates from the types. Next, some ES6 features, such as patterns in function
parameters, are not yet supported by Gillian-JS; these we rewrite to ES5 Strict,
preserving their meaning. Next, we use axiomatic specifications of the ArrayBuffer,
DataView, and UInt8Array ES6 built-in libraries, as well as of the Object.freeze
and Array.prototype.map built-in functions. These would ideally be accompanied
with implementations, tested against the official Test262 test suite [16] and verified
against their specifications. Finally, as Gillian does not support higher-order
reasoning, we axiomatise the toUtf8 function, passed into the deserialisation
module as a parameter, as an injective function from raw bytes to JS strings.

C Verification: Bugs. We discovered three bugs: one logical error; one undefined
behaviour; and one over-allocation.

– The deserialisation of the EC mishandled the case when there is not enough
data to read it entirely, continuing to read the EDK instead of reporting an
error. This allows some malformed headers to be parsed as well-formed.

– The function aws_byte_cursor_advance, when called with a NULL cursor
and a length of 0, resulted in NULL+ 0 being computed, which is undefined
behaviour, although not problematic for most compilers.

– The deserialised EC was stored using aws_string, which extends C strings
with certain metadata. It is implemented using a structure that includes a
flexible array member. We discovered that string creation over-allocated this
array by 8 bytes, because our (correct) predicate describing aws_strings
was not allowing the verification to go through.

C Verification: Caveats. Our C verification is correct up to the following
caveats. First, we do not use the aws_byte_cursor_advance_nospec function,
which advances the byte cursor, but also uses complex computation to protect
against the Spectre bug. We instead use aws_byte_cursor_advance, which has
equivalent behaviour, as our specifications are not expressive enough to capture
this distinction. Next, we axiomatise the functions of the AWS hash tables and
array list libraries, as their verification is of comparable complexity to the entire
deserialisation module. Finally, the AWS allocators of the C implementation,
which are passed into some of the functions, contain pointers to memory man-
agement functions; this is higher-order in nature. In the verification, we assume
those functions are malloc, calloc, and realloc.
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6 Related Work

The literature explores many techniques and tools for verifying JS [44,18,22,21]
and C [23,26,28,13,7]. We describe: multi-language verification architectures; JS
and C verification tools based on separation logic; C memory models related to
our models; and other analyses applied to the AWS Encryption SDK.

Multi-Language Verification Architectures. The multi-language verifica-
tion architectures closest to Gillian are coreStar [6] and Viper [36,35]. Both of
these architectures were designed to serve as verification back-ends for TLs and
both have at their core a simple intermediate representation with a dedicated
symbolic execution engine13. However, they work with the TL in different ways.

In coreStar, TL core assertions are modelled as abstract predicates and
memory actions as function calls. The function specifications play the role of
our consumer and producer actions. The user also has to provide logical axioms,
describing properties of the abstract predicates. The Gillian equivalent of these
axioms are the implementations of the memory actions using consumers and
producers, which can be optimised, but require understanding of the inner
workings of Gillian. Like Gillian, coreStar’s symbolic execution engine is
parametric on the underlying logical theory and can thus be used to reason
about any memory model representable using abstract predicates. It is, however,
unclear how efficiently this can be done. coreStar has been used inside the tool
jStar [15], which has verified implementations of several Java design patterns
but was not pushed to more complex Java code. In [21], the authors observed
that coreStar was not able to handle tractably even simple JS programs.

Unlike Gillian and coreStar, Viper [35,36] comes with a fixed interme-
diate language, also called Viper. The user encodes their memory model and
corresponding core assertions into the memory model and assertion language of
Viper. A key advantage of Viper lies in its expressive permission model, which
includes fractional, recursive, and abstract read permissions, as well as in its
support for custom mathematical domains, which enable users to extend Viper
with their own first-order theories, tailored to the data structures at hand. Viper
has mechanisms similar to our consumer and producer actions, called inhale and
exhale. Viper can reason about both sequential and concurrent programs, and
has been used to verify programs written in Java, Go, Rust, and Python, but
not JS and C. In fact, it is not clear to us how difficult it would be to use Viper
to reason about JS objects and the linear memory of C, as neither can be simply
expressed using the static objects natively provided by Viper.

Semi-automatic JS and C Verification Tools. There are very few ver-
ification tools for JS based on separation logic. For example, JaVerT [21]
has been used to verify simple sequential data-structure algorithms. Its succes-
sor, JaVerT 2.0 [22], provides whole-program symbolic testing, verification
and bi-abductive reasoning [10], unified by a core symbolic execution engine.

13 Viper includes both a symbolic execution engine and a verification condition generator
based on Boogie [5] for its intermediate language.
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JaVerT 2.0 verification is more efficient than JaVerT verification, but has
still only been applied to simple data-structure algorithms. Gillian [19] builds on
JaVerT 2.0, taking the highly non-trivial step of designing the intermediate
language, correctness results, and implementation to be parametric on the TL
memory models. Despite this generalisation, Gillian substantially outperforms
JaVerT 2.0, both for symbolic testing [19] and for verification.

Verifast [26] and the tool in [7] are prominent examples of semi-automatic
tools that provide functionally-correct verification of C programs using separation-
logic specifications. These tools work with C fragments and simplified memory
models. While the tool in [7] has not been applied to real-world code, Verifast
has been used to verify, e.g., an implementation of a Policy Enforcement Point
(PEP) for Network Admission Control scenarios [38]. One difference between
these tools and Gillian is that Gillian specifications can express negative resource,
allowing us to differentiate missing resource errors from use-after-free errors.
However, Verifast, unlike Gillian, supports reasoning about concurrent programs.
There is also much work on using theorem provers to verify both sequential
and concurrent C code using separation logic: see, for example, the DeepSpec
project [45] and the Iris project [47], which we do not describe here.

Related Formal C Memory Models. Our compositional C memory models
were inspired by CompCert [32] and the CH20 formalisation of Krebbers [29].
In particular, our concrete C model is adapted from the complete model of
CompCert, which supports reasoning about programs that access in-memory
data representations. This feature is used by the AWS deserialisation algorithm,
which reads the buffer contents at the byte-granularity.

We present our compositional symbolic C memory model in this paper as a
simple lifting of the concrete one. Our implementation is more complex, however,
representing blocks as trees holding symbolic values and combining the concepts
of memory trees and abstract values from the concrete memory model of the
CH2O formalisation. Although not mentioned in [29], CH2O does keep track of
some negative resource in that it maintains freed locations, but not block bounds.

Analysis of the AWS Encryption SDK. Amazon has recently directed con-
siderable effort towards the formal analyses of their codebase, with a number of
tools incorporated into their CI pipeline. For example, the main cryptographic
algorithms of the AWS Encryption SDK have certified implementations in the
specification language Cryptol [17], underpinned by SAW [12]. These implemen-
tations, however, have not yet been proven equivalent to the corresponding C
implementation. In addition, the C implementation of the AWS Encryption SDK
includes a symbolic test suite run using CBMC [30]. This implementation makes
heavy use of the aws-c-common data-structure library, which is annotated with
first-order assertions checked by CBMC. CBMC is a mature, industrial-strength
tool, likely to outperform and have broader coverage than the symbolic test-
ing of Gillian-C, with substantially fewer annotations than Gillian verification.
However, as CBMC is a bounded model checker, it provides weaker correctness
guarantees and is not compositional. Its expressivity is also somewhat constrained
by the expressivity of the C runtime. For example, it does not allow reasoning
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about the size of allocated memory. Gillian specifications have this expressivity,
as highlighted by the discovered over-allocation bug. The subtle logical bug
found by Gillian also demonstrates the importance of being able to express full,
functionally-correct specifications. We believe there has been no previous analysis
of the JS implementation of AWS Encryption SDK.

7 Conclusions

We have introduced compositional verification to the Gillian platform. Our work
includes a methodology for designing compositional TL memory models, distin-
guishing negative resource from missing resource and using the JS and C memory
models as demonstrator examples. It also includes a novel, parametric approach
to assertion interpretation, independent of the TL, enabling compositional use
of function specifications in verification. We have been able to push the Gillian
verification to self-contained, critical, real-world AWS JS and C code. The bugs
and suggestions for code improvements that arose during this verification process
have all been accepted by the developers and incorporated into the codebase. To
our knowledge, this is the first time that industry-grade JS code has been fully
verified and the first time that, in one verification platform, the same abstractions
were used to verify industry code from languages as different as JS and C. The
artifact accompanying this paper can be found at [34], and the entire Gillian
development at [46]. In future, we will publish correctness results for Gillian
verification [33], as part of an in-depth theoretical study of program correctness
and incorrectness for symbolic testing, verification and bi-abductive reasoning
being developed in Gillian.

Acknowledgments. We thank AWS engineers and Mike Dodds from Galois
for several inspiring meetings which led to our focus on verifying the JS imple-
mentation of the AWS Encryption SDK message header deserialisation module.
We would especially like to thank Ryan Emery for many detailed discussions
about his JS code. We thank the reviewers, whose comments have improved
the overall quality of the paper. Gardner and Maksimović were supported by
the EPSRC Fellowship ‘VetSpec: Verified Trustworthy Software Specification’
(EP/R034567/1). Fragoso Santos was supported by national funds through Fun-
dação para a Ciência e a Tecnologia (UIDB/50021/2020, INESC-ID multi-annual
funding) and project INFOCOS (PTDC/CCI-COM/32378/2017). Ayoun was
supported by a Department of Computing PhD Scholarship from Imperial.

References

1. Amazon Web Services: AWS Encryption SDK: C Implementation.
https://github.com/aws/aws-encryption-sdk-c (2020)

2. Amazon Web Services: AWS Encryption SDK: JS Implementation.
https://github.com/aws/aws-encryption-sdk-javascript (2020)



848 P. Maksimović et al.

3. Amazon Web Services: AWS Encryption SDK: Message Format.
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-
format.html (2020)

4. Appel, A.W., Blazy, S.: Separation Logic for Small-Step Cminor. In: TPHOL (2007)
5. Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A Modular

Reusable Verifier for Object-Oriented Programs. In: de Boer, F.S., Bonsangue, M.M.,
Graf, S., de Roever, W.P. (eds.) FMCO (2005)

6. Botinčan, M., Distefano, D., Dodds, M., Grigore, R., Naudžiūnienė, D., Parkinson,
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Abstract. In this industrial case study we describe a new network
troubleshooting analysis used by VPC Reachability Analyzer, an
SMT-based network reachability analysis and debugging tool. Our trou-
bleshooting analysis uses a formal model of AWS Virtual Private Cloud
(VPC) semantics to identify whether a destination is reachable from a
source in a given VPC configuration. In the case where there is no feasi-
ble path, our analysis derives a blocked path: an infeasible but otherwise
complete path that would be feasible if a corresponding set of VPC con-
figuration settings were adjusted.

Our blocked path analysis differs from other academic and commercial
offerings that either rely on packet probing (e.g., tcptrace) or provide
only partial paths terminating at the first component that rejects the
packet. By providing a complete (but infeasible) path from the source to
destination, we identify for a user all the configuration settings they will
need to alter to admit that path (instead of requiring them to repeatedly
re-run the analysis after making partial changes). This allows users to
refine their query so that the blocked path is aligned with their intended
network behavior before making any changes to their VPC configuration.

1 Introduction

This paper describes a new network connectivity troubleshooting analysis used
by VPC Reachability Analyzer, a service that analyzes Amazon Web Ser-
vices’ (AWS) Virtual Private Cloud (VPC) configurations.

VPCs are user-configured networks of virtual compute devices and resources.
AWS VPC offers dozens of networking components and controls to give users
flexibility in configuring their networks. Access to these resources is logically
isolated within virtual networks configured by the users. As VPCs grow in size
and complexity, users can increasingly benefit from automation to identify and
resolve misconfigurations, as well as to validate that applications maintain secu-
rity and availability invariants through infrastructure changes.

VPC Reachability Analyzer uses the Tiros [2] formal model of AWS
VPC networking semantics to identify whether a destination is reachable from a
source in a given VPC configuration. If the destination is reachable, then Tiros

identifies a feasible path from the source to the destination, where a path is
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 851–862, 2021.
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a sequence of network components associated with incoming and/or outgoing
packet header assignments (protocol, addresses, ports). The outgoing packet
header of one component is the incoming packet header of the next component.
Paths may also identify relevant VPC configuration details such as the specific
routes, firewall rules, or other settings admitting the packet at each step. Each
component in a VPC may accept or reject incoming and outgoing packet headers;
a feasible path is a path in which every component on the path accepts both its
incoming and outgoing packet header.

Tiros’s analysis is static, i.e., Tiros does not inject traffic into VPC con-
figurations, and is complete for the subset of AWS VPC semantics it supports:
if there exists a path connecting the source and destination, Tiros will find it.
Since 2018, Tiros has powered the commercially available Network Reachabil-
ity assessment in Amazon Inspector [1], statically identifying ports on EC2
Instances (virtual machines) accessible outside of their VPCs.

In this work, we extend Tiros by introducing a new diagnostic blocked path
analysis when there is not a feasible path, to help users understand why their
query is infeasible. A blocked path is a path as defined above, in which at least
one component rejects its incoming or outgoing packet, along with one or more
blocking reasons: elements of the VPC configuration preventing one or more
components on the path from accepting packets. The blocked path identifies a
sufficient set of blocking reasons, such that if each were addressed the query
would be satisfiable.

Previous tools for connectivity diagnosis typically provide a partial path,
up to the first component/rule that rejects the packet; in some cases those tools
also identify a single blocking reason. Remediations based on a partial path may
address that initial blocking reason only to discover that remediations are still
necessary, or that the remediation may be working towards a path that the
user ultimately will reject. Providing a complete blocked path connecting the
source and destination allows users to ensure that their intent is aligned with
our diagnosis before taking any corrective actions.

Our contributions in this work are:

1. Identifying the notion of a blocked path as a useful medium for conveying a
network diagnosis and aligning it with a user’s intent,

2. Demonstrating how blocked paths can be efficiently derived at scale,
3. Describing VPC Reachability Analyzer, a commercial tool based on

these insights.

2 Background

2.1 Related Works

Many previous works have proposed network reachability diagnosis tools, includ-
ing both widely-used industry tools and academic literature. These tools can be
broadly divided into model-based and non-model-based approaches.
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Non-model-based network diagnostic tools include system applications such
as iptrace and tcptrace, commercial tools such as Cisco Packet Tracer [7],
and academic works such as Tulip [12]. These tools trace live packets through
a network or routing device, identifying the sequence of addresses of devices
that accept the packet. Packet tracing tools lack visibility into the configuration
settings that block and route packets.

Model-based tools [2,5,6,13,16] statically analyze reachability between a
specified source and destination in a network or routing device. Rather than
transmitting live packets, these tools use formal methods such as constraint
solvers to rigorously identify feasible paths. Existing model-based tools provide
control-plane level information when there is a feasible path, but produce either
no information for unreachable paths, or identify only the first (out of potentially
many) reasons why a path is blocked.

Our blocked path analysis is based on deriving minimal correction subsets
(described below), which several previous works have proposed for general-
purpose SAT-based error diagnosis or repair [4,8,9,17].

2.2 Minimal Correction Subsets

The blocked path analysis we describe in Sect. 3 relies on two related concepts:
Maximal Satisfiable Subsets (MSS) and Minimal Correction Subsets (MCS),
which we define below. Following the definitions from [14]:

Definition 1 (MSS). S ⊆ F is a Maximal Satisfiable Subset of constraints F
iff S is satisfiable and ∀c ∈ F \ S,S ∪ {c} is unsatisfiable.

Definition 2 (MCS). C ⊆ F is a Minimal Correction Subset of constraints F
iff F \ C is satisfiable and ∀c ∈ C, (F \ C) ∪ {c} is unsatisfiable.

The complement of an MCS, F \ MCS(F), is guaranteed to be a maximal
satisfiable subset of F ; for this reason the MCS is sometimes called the coMSS.1

In general, the MCS and MSS are not guaranteed to be unique. There is
a close connection between the definition of a Maximal Satisfiable Subset and
MaxSAT [10]: The largest MSS (and therefore smallest MCS) corresponds to
a solution to MaxSAT. Indeed, one approach for computing the MCS is to
compute MaxSAT and take the complement. Efficient algorithms for directly
computing the (not necessarily smallest) MCS without computing MaxSAT are
available and are typically much faster than computing MaxSAT; a good survey
of MCS algorithms including an empirical evaluation can be found in [14].

In constraint optimization problems, it is common to consider hard and soft
constraints, in which only the soft constraints may be relaxed. Definition 2
assumes that all constraints are soft, but can be easily extended to support

1 Note that a minimal correction subset is a distinct concept from an unsatisfi-
able core [11]. An unsatisfiable core is always unsatisfiable, but its complement
F \ CORE(F) is not guaranteed to be satisfiable; in contrast, an MCS may or
may not be satisfiable, but its complement is guaranteed to be satisfiable.
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a mix of soft and hard constraints (where the MCS must contain only soft con-
straints). In this case, the MCS is only well defined if the hard constraints are
satisfiable.

In Sect. 4, we will use a function computeMCS(Soft ,Hard) that supports
both hard and soft constraints. computeMCS returns a minimal correction set
C = MCS(Soft ∪ Hard), with C ⊆ Soft . Our implementation of computeMCS

uses a simple binary search, similar to FastDiag [4], or Algorithm BFD from [14].
We add activation literals to the soft constraints to allow the underlying solver
instance to be re-used incrementally while testing different subsets of soft con-
straints for satisfiability.

2.3 Network Reachability

We use the SMT-encoding of AWS VPC network semantics previously described
in Tiros [2]. In this section, we briefly review this graph-based encoding; we refer
readers to [2] for more details.

We take as input a configuration describing one or more user VPCs, and a
user-specified reachability query, consisting of a source and destination compo-
nent in the VPC. For example, the source of the query may be an internet gate-
way, and the destination may be an EC2 Instance. A query may also optionally
specify additional constraints, such as the protocol, a range of source or destina-
tion addresses or ports for the packet, or an intermediate component that must
(or must not) be on the path.

Packet Header
protocol bv:8
srcAdr bv:32
dstAdr bv:32
srcPort bv:16
dstPort bv:16

((dstAdr �= 10.0.1.15) =⇒ ¬edge1)

((srcAdr �= 10.0.1.15) =⇒ ¬edge2)

Fig. 1. Simplified example symbolic graph representation of a VPC (left), with sym-
bolic packet header consisting of bitvectors (right). Edges in the graph are associated
with theory atoms, and are traversable only if those atoms are assigned true. Two
example constraints, enforcing that a network interface is only accessible if the packet
is addressed to/from that interface are shown. These constraints relate edge atoms in
the symbolic graph to the bitvectors in the symbolic packet header to enforce AWS
VPC semantics.
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We encode VPC configurations as constrained symbolic graphs using the
SMT solver MonoSAT [3], with fixed-width bitvectors representing the pro-
tocol, port, and addressing information in a symbolic packet header. Figure 1
shows a symbolic graph along with a packet header and example constraints.

VPC components are represented as a nodes in the symbolic graph. Each
component has semantics governing which packets it will accept; these seman-
tics are encoded as constraints that restrict which edges incident to that com-
ponent’s node are traversible, depending on the assignment of the packet header
variables. A satisfying assignment to the full set of constraints corresponds to a
feasible path. In such an assignment, the bitvector variable assignments provide
the packet header(s) and the graph theory model provides a path of network
component nodes connecting the source and destination of the user’s query.

Some components (such as NAT gateways) transform and retransmit packets.
Tiros supports this by unrolling the VPC configuration graph into multiple
copies with separate packet header variables. Edges from packet-transforming
components connect to their components in the next unrolled section of the
graph. Tiros unrolls the graph to a sufficient depth to model the behavior of
the components for each query.

Query source and destination reachability is enforced with a single graph
theory reachability predicate requiring a feasible path in the VPC configuration
graph from the source to the destination of the query. Query restrictions requir-
ing intermediate components are enforced using additional reachability predi-
cates. Query restrictions requiring that a given resource not occur on a path are
enforced by excluding that resource from the VPC configuration graph repre-
sentation. Packet header restrictions are enforced using bitvector constraints.

If the constraints are satisfiable, Tiros extracts a reachable path satisfying
the query from the satisfying assignment to the constraints. In the next section,
we will discuss how we extend Tiros to also provide diagnostic feedback in the
case where the constraints are unsatisfiable.

3 Blocked Paths for Network Configuration Diagnosis

We introduce the notion of blocked path for analyzing infeasible network connec-
tions. As shown in Fig. 2, a blocked path is an infeasible but otherwise complete
path from a source to a destination, in which one or more edges or nodes are
annotated with blocking reasons: configuration settings or network semantics
that explain why that transition in the path is infeasible.

Unlike a live packet trace, a blocked path continues past components that
reject or redirect the packet so as to reach the user’s intended destination, poten-
tially transiting through multiple infeasible steps along the way.

Definition 3 (Blocked path).

1. A blocked path is a complete (but infeasible) path from a source to a destina-
tion in a network, satisfying the user’s query.
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2. A blocked path is actionable: it is a path that could, with the right control
plane configuration adjustments, be a feasible path.

3. A blocked path identifies a sufficient set of blocking reasons (network seman-
tics or control-plane settings) that would need to be addressed to admit the
packet along that blocked path. This may include multiple blocking reasons
along the path, as opposed to just the first blocking reason.

Fig. 2. Two alternative blocked paths from an EC2 instance to an internet gateway.
These blocked paths take different routes, and have different blocking reasons (shown
in red) that explain why those paths are infeasible. In the first blocked path, there
are two blocking reasons: the security group egress rule rejects packets destined for
the Internet, and the internet gateway requires that the source instance must have a
public IP address. Note that although the packet would be rejected by the security
group, the blocked path continues past the security group to identify a complete (but
infeasible) path to the internet gateway. The second blocked path transitions through
an intermediate NAT gateway, which satisfies the security group rule and also has a
public IP address. However, this path is still blocked, because the route table does not
have an applicable route to the NAT gateway.

Validating User Intent

Showing a complete path from the source to destination, along with all the rele-
vant configuration settings blocking that path, allows users to confirm that this
course of action matches their intended network behavior before making any
changes. However, in many cases there are multiple ways to adjust a configura-
tion to admit a path, resulting in different blocked paths.
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For example, Fig. 2 shows two example blocked paths to an internet gate-
way from an EC2 instance lacking a public IP address. Our analysis might ini-
tially produce for the user the shorter blocked path. Two remediation steps are
required to admit this shorter path: The user must adjust the security group
rule of the instance to admit egress packets to the public internet, and the user
must also associate a public IP address with the source instance. Upon seeing
the complete blocked path, the user may immediately determine that this would
be the wrong solution for their network.

If the proposed blocked path doesn’t match the user’s intent, we allow users
to submit a refined query so as to generate an alternative blocked path. For
instance, the user may specify allowed address or port ranges for the packet, or
specify components that must or must not appear on the path. Similarly, the
user may submit a refined query specifying that a NAT gateway must be an
intermediate component on the path. In this case, we might produce the longer
blocked path from Fig. 2.

Actionable Blocked Paths

In some cases, there may not exist any combination of VPC configuration adjust-
ments that would allow a query to be satisfied. For example, under typical con-
ditions in VPCs, route tables cannot be adjusted to redirect packets that are
destined for a local address within the VPC. It is possible for users to specify
queries that cannot be satisfied without violating this local route restriction.

In principle, it is possible to derive a blocked path with non-user-configurable
blocking reasons, however the resulting paths may behave in misleading or con-
fusing ways, and in general will not be possible for users to actually achieve
in any real configuration of their VPC. If possible, we want to ensure that the
path contains only user-configurable blocking reasons, so that we produce an
actionable finding for users. However, we still want to be able to provide useful
diagnostics in cases where no actionable blocked path is possible (e.g., to explain
to the user that the local route restriction will prevent their path).

In Sect. 4, we describe how we determine when it is not possible to produce a
blocked path without including non-configurable blocking reasons. In this case,
we produce a partial path up to that first non-configurable blocking reason.

Additionally, in some cases a user may specify a query that remains unsat-
isfiable even if all of the network semantics in our model are relaxed. This can
occur if the user specifies components that do not exist, or that are in isolated,
disconnected networks (for which no relaxation of the edge constraints will admit
a path). In this case, our blocked path analysis fails, and Tiros falls back on
other techniques to produce diagnostic information.

In Sect. 5 we show that in most cases, our analysis succeeds and produces an
actionable blocked path.



858 S. Bayless et al.

4 Deriving Blocked Paths from Unsatisfiable Queries

We group VPC configuration semantics into three disjoint sets of constraints:
(U ∪ N ∪ H). Set U contains constraints that enforce user-configurable control-
plane settings (such as a user-defined route or firewall rule), while set N con-
tains non-configurable for user-visible network semantics (such as the local route
restriction).

Set H contains elements of the constraints that are either not user-visible
(such as internal implementation details) or that should never be relaxed (such
as the reachability predicate or any other constraints defined by the user’s query).
For example, many of our constraints involve containment comparisons between
CIDRs and bitvectors representing IP addresses. An individual CIDR compari-
son is encoded as a fresh literal represnting the truth value of the comparison,
along with multiple clauses that enforce the comparison semantics. The interme-
diate clauses that enforce the comparison semantics are implementation details
that we include in set H, ensuring they are not included in the blocking reasons.

When a query is unsatisfiable, we derive a blocked path and corresponding
blocking reasons from a Maximal Satisfiable Subset and Minimal Correction
Subset of (U ∪ N ∪ H), with set H being treated as hard constraints that must
not be included in the MCS.

If possible, we want to produce an MCS containing only configurable blocking
reasons from U . This ensures that the resulting blocked path is actionable. If we
directly compute the MCS of the full constraint set U ∪N ∪H, with both U and
N as soft constraints, non-configurable constraints from N may be included in
the MCS even in cases where there exists an MCS containing only constraints
from U . On the other hand, we still want to be able to produce an MCS in the
case where the non-configurable and hard constraints (N∪H) are, by themselves,
unsatisfiable.

In Algorithm 1, we resolve this by breaking the computation of the MCS into
two steps, initially computing an MCS of N ∪ H, and only allowing constraints
from N into the blocking reasons if MCS(N ∪ H) is non-empty.

When N ∪ H is satisfiable, Algorithm 1 produces a blocked path that only
contains the configurable blocking reasons from U .

Algorithm 1 constructs two correction sets, MCSN ⊆ N and MCSU ⊆ U ,
with MCSN∪MCSU a valid MCS of (U∪N∪H). We then extract a path p from a
satisfying assignment to the corresponding MSS (U ∪N ∪H)\(MCSN ∪MCSU ).
Finally, as shown below, we return either a complete or a partial blocked path,
by associating blocking reasons from the MCS with nodes on that path.

Algorithm 1 relies on two helper methods, ExtractPath and BuildPath.
ExtractPath retrieves the satisfying theory model (a sequence of edges) for
the query reachability predicate from a satifiable formula, using the graph theory
in the SMT-solver MonoSAT, and associates packet header assignments with
each step of that path from the corresponding bitvector assignments. BuildPath

maps the literals of the MCS to descriptive strings representing blocking reasons,
and associates those strings with steps on the blocked path.
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Algorithm 1. Blocked Path Analysis
1: function DeriveBlockedPath(U, N, H) � Precondition: U ∪ N ∪ H is UNSAT.
2: if UNSAT(H) then
3: throw Error: No blocked path can be produced.
4: else
5: // Note: If N ∪ H is SAT, then MCSN = ∅.
6: MCSN ← computeMCS(N, H)
7: // Note: (N ∪ H) \ MCSN is SAT; MCSU is well-defined.
8: MCSU ← computeMCS(U, (N ∪ H) \ MCSN )
9: p ← ExtractPath((U ∪ N ∪ H) \ (MCSN ∪ MCSU ))

10: return BuildPath(p, MCSN , MCSU )
11: end if
12: end function

We can see that MCSN ∪MCSU meets the definition of a minimal correction
set of U ∪ N ∪ H by observing that:

SAT((U ∪ N ∪ H \ (MCSN )) \ (MCSN ∪ MCSU )) line 8

=⇒ SAT((U ∪ N ∪ H) \ (MCSN ∪ MCSU )))

∀c ∈ MCSN , UNSAT((N ∪ H) \ (MCSN \ {c}) line 6

∀c ∈ MCSU , UNSAT((U ∪ N ∪ H) \ (MCSU \ {c})) line 8

=⇒ ∀c ∈ (MCSN ∪ MCSU ), UNSAT((U ∪ N ∪ H) \ ((MCSN ∪ MCSU ) \ {c}))

If N ∪ H is satisfiable, then MCSN is empty and MCSU , containing only
configurable constraints, is an MCS of (U ∪ N ∪ H). In this case, BuildPath

constructs a complete blocked path consisting entirely of configurable blocking
reasons.

If N ∪ H is unsatisfiable, then MCSN is non-empty and MCSN ∪ MCSU

contains at least one non-actionable constraints. In this case, the path p may
behave unexpectedly and may not be realizable in a VPC configuration after
adjustment. If MCSN is non-empty, BuildPath forms the blocked path as
above, but returns only the prefix of that blocked path up to and including the
first edge or node associated with a non-actionable setting.

Above, we discussed the cases where N ∪ H is satisfiable or unsatisfiable.
There is also a third possibility: The hard constraints H, representing the con-
straints enforcing the user’s query or implementation details of our model, may
by themselves be unsatisfiable. For example, H may be unsatisfiable if the user
specifies a source and destination that are in separate, disconnected networks.

If H is unsatisfiable, Algorithm 1 fails, and is unable to produce even a
partial blocked path. In this case, we fall back on other techniques to provide
useful diagnostic information for users. In practice, the typical reason that H is
unsatisfiable is that the source and destination are in disconnected VPCs (so the
reachability constraint is unsatisfiable). We use a static analysis pass to identify
this case and handle it separately in our service.
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In the case that Algorithm 1 produces a complete (resp. partial) blocked
path, the underlying MCS algorithm guarantees that the blocked path will have
the fewest possible number of blocking reasons from among all complete (resp.
partial) blocked paths. In general this blocked path is not unique.

In our implementation of Algorithm 1, the graph-based decision heuristic in
MonoSAT will prioritize finding shortest-length paths in most cases, but does
not guarantee that a shortest-length path is always found.

5 Evaluation

VPC Reachability Analyzer, a commercial offering available from AWS
since December 2020, uses the blocked path analysis we have described to derive
findings for queries between unreachable endpoints.

To demonstrate the practical impact of this blocked path analysis, we ran-
domly selected 1000 unreachable queries processed by VPC Reachability

Analyzer. We executed the blocked path analysis for those queries on an
‘m5.24xlarge’ EC2 instance using GNU Parallel [15], running Amazon Linux
2, using MonoSAT version 1.6.0.
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Fig. 3. Number of blocking reasons per blocked path (among the 63% of unreachable
queries for which the blocked path analysis produced a complete blocked path). 97%
percent of blocked paths have three or fewer blocking reasons; 60% have just a single
blocking reason.

Excluding the time to complete the blocked path analysis, the average time
required to initially determine satisfiability of the constraints was 2.1 s (P50:
1.7 s, P99: 7.4 s). The blocked path analysis was as fast or faster than the initial
solving time, requiring 0.3 s on average (P50: 0.05 s, P99: 6.6 s).

As described in Sect. 4, in some cases, the blocked path analysis can pro-
duce only a partial path, or no results at all. Of those 1000 unreachable queries,
63.2% resulted in complete blocked paths, 7.4% resulted in partial blocked paths,
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and the remainder (29.4%) produced no analysis (in which case VPC Reach-

ability Analyzer applies other techniques so that it can still provide useful
diagnostics).2

As can be seen in Fig. 3, most blocked paths have just one blocking reason,
and 97% have at most three. This demonstrates that our analysis produces
actionable, concise findings on real production data, a key requirement of a
useful diagnosis service.

6 Conclusion

The blocked path analysis we have introduced provides key advantages over
previous network diagnostic techniques. By showing users a blocked path from
a source to a destination, we allows users the opportunity to refine their query
such that their intended path is aligned with our analysis. Furthermore, showing
all blocking reasons on a blocked path allows users to understand the VPC
configuration adjustments necessary to realize a path for their query.

Our blocked path analysis is a fully static analysis (requiring no packets to be
injected into the network), can be computed efficiently using standard techniques
from the formal methods literature, and is now used successfully in production
by VPC Reachability Analyzer.
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Abstract. This paper presents a new framework to synthesize lower-
bounds on the worst-case cost for non-deterministic integer loops. As
in previous approaches, the analysis searches for a metering function
that under-approximates the number of loop iterations. The key novelty
of our framework is the specialization of loops, which is achieved by
restricting their enabled transitions to a subset of the inputs combined
with the narrowing of their transition scopes. Specialization allows us
to find metering functions for complex loops that could not be handled
before or be more precise than previous approaches. Technically, it is
performed (1) by using quasi-invariants while searching for the metering
function, (2) by strengthening the loop guards, and (3) by narrowing the
space of non-deterministic choices. We also propose a Max-SMT encoding
that takes advantage of the use of soft constraints to force the solver look
for more accurate solutions. We show our accuracy gains on benchmarks
extracted from the 2020 Termination and Complexity Competition by
comparing our results to those obtained by the LoAT system.

1 Introduction

One of the most important problems in program analysis is to automatically –and
accurately– bound the cost of program’s executions. The first automated analy-
sis was developed in the 70s [24] for a strict functional language and, since then,
a plethora of techniques has been introduced to handle the peculiarities of the
different programming languages (see, e.g., for Integer programs [5], for Java-like
languages [2,19], for concurrent and distributed languages [16], for probabilistic
programs [15,18], etc.) and to increase their accuracy (see, e.g., [10,14,21,22]).
The vast majority of these techniques have focused on inferring upper bounds on
the worst-case cost, since having the assurance that none execution of the pro-
gram will exceed the inferred amount of resources (e.g., time, memory, etc.) has
crucial applications in safety-critical contexts. On the other hand, lower bounds
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on the best-case cost characterize the minimal cost of any program execution
and are useful in task parallelization (see, e.g., [3,9,10]). There are a third type
of important bounds which are the focus of this work: lower bounds on the worst-
case cost, they bound the worst-case cost from below. Their main application
is that, together with the upper bounds on worst-case, allow us to infer tighter
worst-case cost bounds (when they coincide ensuring that the inferred cost is
exact) what can be crucial in safety-critical contexts. Besides, lower bounds on
the worst-case cost will give us families of inputs that lead to an expensive cost,
what could be used to detect performance bugs. In what follows, we use the
acronyms LBw and LBb to refer to worst-case and best-case lower-bounds, resp.

State-of-the-Art in LBw. An important difference between LBw and LBb is
that, while the best-case must consider all program runs, LBw holds for (usually
infinite) families of the most expensive program executions. This is why the
techniques applicable to LBb inference (e.g., [3,9,10]) are not useful for LBw

in general, since they would provide too inaccurate (low) results. The state-of-
the-art in LBw inference is [12,13] (implemented in the LoAT system) which
introduces a variation of ranking functions, called metering functions, to under-
estimate the number of iterations of simple loops, i.e., loops without branching
nor nested loops. The core of this method is a simplification technique that allows
treating general loops (with branchings and nested loops) by using the so-called
acceleration: that replaces a transition representing one loop iteration by another
rule that collects the effect of applying several consecutive loop iterations using
the original rule. Asymptotic lower bounds are then deduced from the resulting
simplified programs using a special-purpose calculus and an SMT encoding.

Motivation. Our work is motivated by the limitation of state-of-the-art methods
when, by treating each simple loop separately, a LBw bound cannot be found
or it is too imprecise. For example, consider the interleaved loop in Fig. 1, that
is a simplification of the benchmark SimpleMultiple .koat from the Termination
and Complexity competition. Its transition system appears to the right (the
transition system is like a control-flow graph (CFG) in which the transitions τ
are labeled with the applicability conditions and with the updates for the vari-
ables, primed variables denote the updated values). In every iteration x or y can
decrease by one, and these behaviors can interleave. The worst case is obtained
for instance when x is decreased to 0 (x iterations) and then y is decreased to 0
(y iterations), resulting in x + y iterations, or when y is first decreased to 1 and
then x to −1, etc. The approach in [12,13] accelerates independently both τ1

and τ4, resulting in accelerated versions τa
1 = x ≥ −1 ∧ y > 0 ∧ x′ = −1 ∧ y′ = y

with cost x + 1 and τa
4 = x ≥ 0 ∧ y ≥ 0 ∧ x′ = x ∧ y′ = 0 with cost y. Applying

one accelerated version results in that the other accelerated version cannot be
applied because of the final values of the variables. Thus, the overall knowledge
extracted from the loop is that it can iterate x+1 or y times, whereas the precise
LBw is x+y iterations. Our challenge for inferring more precise LBw is to devise
a method that can handle all loop transitions simultaneously, as disconnecting
them leads to a semantics loss that cannot be recovered by acceleration.
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wh i l e ( x >= 0 && y > 0) {
i f (∗ ) {

x = x − 1 ;
} e l s e {

y = y − 1 ;
}

}

�0

�1

�e

τ0 : x′ = x ∧ y′ = y

τ1 : x ≥ 0 ∧ y > 0
∧ x′ = x − 1
∧ y′ = y

τ4 : x ≥ 0 ∧ y > 0
∧ x′ = x
∧ y′ = y − 1

τ3 : y ≤ 0
∧ x′ = x
∧ y′ = y

τ2 : x < 0
∧ x′ = x
∧ y′ = y

Fig. 1. Interleaved loop (left) and its representation as a transition system (right)

Non-Termination and LBw. Our work is inspired by [17], which introduces the
powerful concept of quasi-invariant to find witnesses for non-termination. A
quasi-invariant is an invariant which does not necessarily hold on initialization,
and can be found as in template-based verification [23]. Intuitively, when there
is a loop in the program that can be mapped to a quasi-invariant that forbids
executing any of the outgoing transitions of the loop, then the program is non-
terminating. This paper leverages such powerful use of quasi-invariants and Max-
SMT in non-termination analysis to the more difficult problem of LBw inference.
Non-termination and LBw are indeed related properties: in both cases we need
to find witnesses, resp., for non-terminating the loop and for executing at least
a certain number of iterations. For LBw, we additionally need to provide such
under-estimation for the number of iterations and search for LBw behaviors that
occur for a class of inputs rather than for a single input instantiation (since the
LBw for a single input is a concrete (i.e., constant) cost, rather than a parametric
LBw function as we are searching for). Instead, for non-termination, it is enough
to find a non-terminating input instantiation.

Our Approach. A fundamental idea of our approach is to specialize loops in
order to guide the search of the metering functions of complex loops, avoiding the
inaccuracy introduced by disconnecting them into simple loops. To this purpose,
we propose specializing loops by combining the addition of constraints to their
transitions with the restriction of the valid states by means of quasi-invariants.
For instance, for the loop in Fig. 1, our approach automatically narrows τ1 by
adding x > 0 (so that x is decreased until x = 0) and τ4 by adding x ≤ 0 (so that
τ4 can only be applied when x = 0). This specialized loop has lost many of the
possible interleavings of the original loop but keeps the worst case execution of
x+y iterations. These specialized guards do not guarantee that the loop executes
x + y iterations in every possible state, as the loop will finish immediately for
x < 0 or y ≤ 0, thus our approach also infers the quasi-invariant x ≥ 0 ∧ x ≤ y.
Combining the specialized guards and the quasi-invariant, we can assure that
when reaching the loop in a valid state according to the quasi-invariant, x + y
is a lower bound on the number of iterations of the loop, i.e., its cost. Using
quasi-invariants that include all (invariant) inequalities syntactically appearing
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in loop transitions might work for the case of loops with single path. However, for
the general case, the specialized guards usually lead to essential quasi-invariants
that do not appear in the original loop. The specialization achieved by adding
constraints could be also applied in the context of non-termination to increase
the accuracy of [17], as only quasi-invariants were used. Therefore, we argue that
our work avoids the precision loss caused by the simplification in [12,13] and,
besides, introduces a loop specialization technique that can also be applied to
gain precision in non-termination analysis [17].

Contributions. Briefly, our main theoretical and practical contributions are:

1. In Sect. 3 we introduce several semantic specializations of loops that enable
the inference of local metering functions for complex loops by: (1) restricting
the input space by means of automatically generated quasi-invariants, (2)
narrowing transition guards and (3) narrowing non-deterministic choices.

2. We propose a template-based method in Sect. 4 to automate our technique
which is effectively implemented by means of a Max-SMT encoding. Whereas
the use of templates is not new [6], our encoding has several novel aspects
that are devised to produce better lower-bounds, e.g., the addition of (soft)
constraints that force the solver look for larger lower-bound functions.

3. We implement our approach in the LOBER system and evaluate it on bench-
marks from the Integer Transition Systems category of the 2020 Termination
and Complexity Competition (see Sect. 5). Our experimental results when
compared to the existing system LoAT [12] are promising: they show further
accuracy of LOBER in challenging examples that contain complex loops.

2 Background

This section introduces some notation on the program representation and recalls
the notion of LBw we aim at inferring.

2.1 Program Representation

Our technique is applicable to sequential non-deterministic programs with inte-
ger variables and commands whose updates can be expressed in linear (inte-
ger) arithmetic. We assume that the non-determinism originates from non-
deterministic assignments of the form “x:=nondet();”, where x is a program
variable and nondet() can be represented by a fresh non-deterministic variable
u. This assumption allows us to also cover non-deterministic branching, e.g.,
“if (*){..} else {..}” as it can be expressed by introducing a non-deterministic
variable u and rewriting the code as “u:=nondet(); if (u≥0){..} else {..}”.

Our programs are represented using transition systems, in particular using
the formalization of [17] that simplifies the presentation of some formal aspects
of our work. A transition system (abbrev. TS) is a tuple S = 〈x̄, ū,L, T , Θ〉,
where x̄ is a tuple of n integer program variables, ū is a tuple of integer (non-
deterministic) variables, L is a set of locations, T is a set of transitions, and Θ is
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a formula that defines the valid input and is specified by a conjunction of linear
constraints of the form ā·x̄+b�0 where � ∈ {>,<,=,≥,≤}. A transition is of the
form (�, �′,R) ∈ T such that �, �′ ∈ L, and R is a formula over x̄, ū and x̄′ that is
specified by a conjunction of linear constraints of the form ā · x̄+ b̄ · ū+ c̄ · x̄′ +d�0
where � ∈ {>,<,=,≥,≤}, and primed variables x̄′ represent the values of the
unprimed corresponding variables after the transition. We sometimes write R as
R(x̄, ū, x̄′), use R(x̄) to refer to the constraints that involve only variables x̄ (i.e.,
the guard), and use R(x̄, ū) to refer to the constraints that involve only variables
ū and (possibly) x̄. W.l.o.g., we may assume that constraints involving primed
variables are of the form x′

i = ā · x̄ + b̄ · ū + c. This is because non-determinism
can be moved to R(x̄, ū) – if a primed variable x′

i appears in any expression that
is not of this form, we replace x′

i by a fresh non-deterministic variable ui in such
expressions and add the equality x′

i = ui. We require that for any x̄ satisfying
R(x̄), there are ū satisfying R(x̄, ū), formally

∀x̄.∃ū. R(x̄) → R(x̄, ū) (1)

This guarantees that for any state x̄ satisfying the condition, there are values for
the non-deterministic variables ū such that we can make progress. A transition
that does not satisfy this condition is called invalid. Note that (1) does not refer
to x̄′ since they are set in a deterministic way, once the values of x̄ and ū are
fixed. W.l.o.g., we assume that all coefficients and free constants, in all linear
constraints, are integer; and that there is a single initial location �0 ∈ L with no
incoming transitions, and a single final location �e with no outgoing transitions.

Example 1. The TS graphically presented in Fig. 1 is expressed as follows, con-
sidering that all inputs are valid (Θ = true):

S ≡ 〈 {x, y}, ∅, {�0, �1, �e},
{(�0, �1, x′ = x ∧ y′ = y),
(�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x − 1 ∧ y′ = y),
(�1, �e, x < 0 ∧ x′ = x ∧ y′ = y),
(�1, �e, y ≤ 0 ∧ x′ = x ∧ y′ = y),
(�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x ∧ y′ = y − 1)}, true〉

A configuration C is a pair (�, σ) where � ∈ L and σ : x̄ �→ Z is a mapping
representing a state. We abuse notation and use σ to refer to ∧n

i=1xi = σ(xi),
and also write σ′ for the assignment obtained from σ by renaming the variables
to primed variables. There is a transition from (�, σ1) to (�′, σ2) iff there is
(�, �′,R) ∈ T such that ∃ū.σ1 ∧ σ′

2 |= R. A (valid) trace t is a (possibly infinite)
sequence of configurations (�0, σ0), (�1, σ1), . . . such that σ0 |= Θ, and for each i
there is a transition from (�i, σi) to (�i+1, σi+1). Traces that are infinite or end
in a configuration with location �e are called complete. A configuration (�, σ),
where � �= �e, is blocking iff

σ �|=
∨

(�,�′,R)∈T
R(x̄) (2)
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A TS is non-blocking if no trace includes a blocking configuration. We assume
that the TS under consideration is non-blocking, and thus any trace is a prefix
of a complete one. Throughout the paper, we represent a TS as a CFG, and
analyze its strongly connected components (SCC) one by one. An SCC is said
to be trivial if it has no edge.

2.2 Lower-Bounds

For simplicity, we assume that an execution step (a transition) costs 1. Under
this assumption, the cost of a trace t is simply its length len(t) where the length
of an infinite trace is ∞. In what follows, the set of all configurations is denoted
by C, the set of all valid complete traces (using a transition system S) when
starting from configuration C ∈ C is denoted by TracesS(C), and R≥0 = {k ∈
R | k ≥ 0} ∪ {∞}. For a non-empty set M ⊆ R≥0, sup M is the least upper
bound of M and inf M is the greatest lower bound of M . The worst-case cost
of an initial configuration C is the cost of the most expensive complete trace
starting from C and the best-case cost is the less expensive complete trace.

Definition 1 (worst- and best-case cost). Let S be a TS. Its worst-case
cost function wcS : C → R≥0 is wcS(C) = sup {len(t) | t ∈ TracesS(C)} and its
best-case cost function bcS : C → R≥0 is bcS(C) = inf {len(t) | t ∈ TracesS(C)}.
Clearly, wcS and bcS are not computable. Our goal in this paper is to auto-
matically find a lower-bound function ρ : Z

n → R≥0 such that for any initial
configuration C = (�0, σ) we have wcS(C) ≥ ρ(σ(x̄)), i.e., it is an LBw. An LBb

would be a function ρ : Z
n → R≥0 that ensures that bcS(C) ≥ ρ(x̄) for any

initial configuration C = (�0, σ). In what follows, for a function ρ(x̄), we let
‖ρ(x̄)‖ = �max(0, ρ(x))� to map all negative valuations of ρ to zero.

Example 2. Consider the TS S = 〈{x}, {u}, {�0, �1, �e}, T , true〉 with transitions:

T ≡ { τ1 = (�0, �1, x ≥ 0),
τ2 = (�1, �1, x > 0 ∧ x′ = x − u ∧ u ≥ 1 ∧ u ≤ 2),
τ3 = (�1, �e, x ≤ 0 ∧ x′ = x) }

S contains a loop at �1 where variable x is non-deterministically decreased by 1
or 2. From any initial configuration C0 = (�0, σ0), the longest possible complete
trace decreases x by 1 in every iteration with τ2, therefore wcS(C0) = ‖σ0(x)‖+2
because of the ‖σ0(x)‖ iterations in �1 plus the cost of τ1 and τ3. The most precise
lower bound for wcS is ρ(x) = ‖x‖ + 2, although ρ(x) = ‖x‖ or ρ(x) = ‖x − 2‖
are also valid lower bounds. The shortest complete trace from C0 decreases x

by 2 in every iteration, so bcS(C0) = ‖σ0(x)
2 ‖ + 2. There are several valid lower

bounds for bcS(C0) like ρ(x) = ‖x
2‖ + 2, ρ(x) = ‖x

2‖, or ρ(x) = 2.

3 Local Lower-Bound Functions

Focus on Local Bounds. Existing techniques and tools for cost analysis (e.g., [1,
12]) work by inferring local (iteration) bounds for those parts of the TS that
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correspond to loops, and then combining these bounds by propagating them
“backwards” to the entry point in order to obtain a global bound. For example,
suppose that our program consists of the following two loops:

a s s e r t ( x>0 && z >0);
wh i l e ( z > 0) { x=x+z ; z−−; }
wh i l e ( x > 0) x−−;

where the second loop makes x iterations (when considering the value of x just
before executing the loop), and the first loop makes z iterations and increments
x by z in each iteration. We are interested in inferring a global function that
describes the total number of iterations of both loops, in terms of the input values
x0 and z0. While both loops have linear complexity locally, i.e., iteration bounds
z and x, the second one has quadratic complexity w.r.t the initial values. This
can be inferred automatically from the local bounds z and x by inferring how the
value of x changes in the first loop, and then rewriting x in terms of the initial
values to e = x0 + z0·(z0−1)

2 (e.g., by solving corresponding recurrence relations).
Now the global cost would be e plus the cost of the first loop z0. Rewriting the
loop bound x as above is done by propagating it backwards to the entry point,
and there are several techniques in the literature for this purpose that can be
directly adopted in our setting to produce global bounds. These techniques can
infer global bounds for nested-loops as well, given the iteration bounds of each
loop. Thus, we focus on inferring local lower-bounds on the number of iterations
that non-nested loops (more precisely, parts of the TS that correspond to loops)
can make, and assume that they can be rewritten to global bounds by adopting
the existing techniques of [1,12] (our implementation indeed could be used as a
black-box which provides local lower-bounds to these tools). Namely, we aim at
inferring, for each non-nested loop, a function ‖ρ(x̄)‖ = �max(0, ρ(x))� that is a
(local) LBw on its number of iterations, i.e., whenever the loop is reached with
values v̄ for the variables x̄, it is possible to make at least ‖ρ(v̄)‖ iterations.

Loops and TSs. For ease of presentation, we first consider a special case of TSs
in which all locations, except the initial and exit ones define loops, and Sect. 3.6
explains how the techniques can be used for the general case. In particular, we
consider that each non-trivial SCC consists of a single location � and at least one
transition, and we call it loop �. Transitions from � to � are called loop transitions
and their guards are called loop guards, and transitions from � to �′ �= � are called
exit transitions. The number of iterations of a loop � in a trace t is defined as the
number of transitions from � to �, which we refer to as the cost of loop � as well
(since we are assuming that the cost of transitions is always 1, see Sect. 2.2).
The notions of best-case and worst-case cost in Definition 1 naturally extend to
the cost of a loop �, i.e., we can ask what is the best-case and worst-case number
of iterations of a given loop.

Overview of the Section. The overall idea of our approach is to specialize each
loop �, by restricting the initial values and/or adding constraints to its tran-
sitions, such that it becomes possible to obtain a metering function for the



870 E. Albert et al.

specialized loop. A function that is a LBb of the specialized loop is by definition
a LBw of loop �, as it does not necessarily hold for all execution traces but rather
for the class of restricted ones. Technically, inferring a LBb of a (specialized) loop
is done by inferring a metering function ρ [13], such that whenever the (special-
ized) loop is reached with a state σ, it is guaranteed to make at least ‖ρ(σ(x̄))‖
iterations. Besides, specialization is done in such away that the TS obtained by
putting all specialized loops together is non-blocking, i.e., there is an execution
that is either non-terminating or reaches the exit location, and thus the cost of
this execution is, roughly, the sum of the costs of all (specialized) loops that are
traversed. The rest of this section is organized as follows. In Sect. 3.1 we general-
ize the basic definition of metering function for simple loops from [12] to general
types of loops and explore its limitations. Then, in the following 3 sections, we
explain how to overcome these limitations by means of the following special-
izations: using quasi-invariants to narrow the set of input values (Sect. 3.2);
narrowing loop guards to make loop transitions mutually exclusive and force
some execution order between them (Sect. 3.3); and narrowing the space of non-
deterministic choices to force longer executions (Sect. 3.4). Sect. 3.5 states the
conditions, to be satisfied when specializing loops, in order to guarantee that the
TS obtained by putting all specialized loops together is non-blocking.

3.1 Metering Functions

Metering functions were introduced by [13], as a tool for inferring a lower-bound
on the number of iterations that a given loop can make. The definition is analogue
to that of (linear) ranking function which is often used to infer upper-bounds on
the number of iterations. The definition as given in [13] considers a loop with
a single transition, and assumes that the exit condition is the negation of its
guard. We start by generalizing it to our notion of loop.

Definition 2 (Metering function). We say that a function ρ� is a metering
function for a loop � ∈ L, if the following conditions are satisfied

∀x̄, ū, x̄′. R → ρ�(x̄) − ρ�(x̄′) ≤ 1 for each (�, �,R) ∈ T (3)
∀x̄, ū, x̄′. R → ρ�(x̄) ≤ 0 for each (�, �′,R) ∈ T (4)

Intuitively, Condition (3) requires ρ� to decrease at most by 1 in each iteration,
and Condition (4) requires ρ� to be non-positive when leaving the loop.

Assuming (�, σ) is a reachable configuration in S, it is easy to see that loop
� will make at least ‖ρ�(σ(x̄))‖ iterations when starting from (�, σ). We require
(�, σ) to be reachable in S since we are interested only in non-blocking executions.
Typically, we are interested in linear metering functions, i.e., of the form ρ�(x̄) =
ā · x̄ + a0, since they are easier to infer and cover most loops in practice. Non-
linear lower-bound functions will be obtained when rewriting these local linear
lower-bounds in terms of the initial input at location �0 (see beginning of Sect. 3)
and by composing nested loops (see Sect. 3.6).
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Example 3 (Metering function). Consider the following loop on location �1 that
decreases x (τ1) until it takes non-positive values and exits to �2 (τ2):

τ1 = (�1, �1, x ≥ 0 ∧ x′ = x − 1) τ2 = (�1, �2, x < 0 ∧ x′ = x)

The function ρ�1(x) = x + 1 is a valid metering function because it decreases by
exactly 1 in τ1 and becomes non-positive when τ2 is applicable (x < 0 → x+1 ≤
0, Condition (3) of Definition 2). The function ρ′

�1
(x) = x

2 is also metering
because its value decreases by less than 1 when applying τ1 (x

2 − x−1
2 = 1

2 ≤ 1)
and becomes non-positive in τ2. Even a function as ρ′′

�1
(x) = 0 is trivially meter-

ing, as it satisfies (3) and (4). Although all of them are valid metering func-
tions, ρ�1(x) is preferable as it is more accurate (i.e., larger) and thus captures
more precisely the number of iterations of the loop. Note that functions like
ρ∗

�1
(x) = 2x or ρ∗∗

�1
(x) = x + 5 are not metering because they do not verify (3)

(because 2x − 2(x − 1) = 2 �≤ 1 for ρ∗
�1

) or (4) (because x < 0 �→ x + 5 ≤ 0 for
ρ∗∗

�1
).

3.2 Narrowing the Set of Input Values Using Quasi-Invariants

Metering functions typically exist for loops with simple loop guards. However,
when guards involve more than one inequality they usually do not exist in a
simple (linear) form. This is because such loops often include several exit transi-
tions with unrelated conditions, where each one corresponds to the negation of
an inequality of the guard. It is unlikely then that a non-trivial (linear) function
satisfies (4) for all exit transitions. This is illustrated in the next example.

Example 4. Consider the following loop that iterates on �1 if x ≥ 0 ∧ y > 0, and
exits when x < 0 or y ≤ 0:

τ1 = (�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x − 1 ∧ y′ = y)
τ2 = (�1, �2, x < 0 ∧ x′ = x ∧ y′ = y)
τ3 = (�1, �2, y ≤ 0 ∧ x′ = x ∧ y′ = y)

Intuitively, this loop executes x + 1 transitions, but ρ�1(x, y) = x + 1 is not a
valid metering function because it does not satisfy (4) for τ3: y ≤ 0 �→ x+1 ≤ 0.
Moreover, no other function depending on x (e.g., x

2 , x − 2, etc.) will be a valid
metering function, as it will be impossible to prove (4) for τ3 only from the
information y ≤ 0 on its guard. The only valid metering function for this loop
will be the trivial one ρ�1(x, y) = c with c ≤ 0, which does not provide any
information about the number of iterations of the loop.

Our proposal to overcome the imprecision discussed above is to consider
only a subset of the input values s.t. conditions (3,4) hold in the context of the
corresponding reachable states. For example, the reachable states might exclude
some of the exit transitions, i.e., it is guaranteed that they are never used, and
then (4) is not required to hold for them. A metering function in this context is a
LBb of the loop when starting from that specific input, and thus it is a LBw (i.e.,
not necessarily best-case) of the loop when the input values are not restricted.
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Technically, our analysis materializes the above idea by relying on quasi-
invariants [17]. A quasi-invariant for a loop � is a formula Q� over x̄ such that

∀x̄, ū, x̄′. Q�(x̄) ∧ R → Q�(x̄′) for each (�, �,R) ∈ T (5)
∃x̄. Q�(x̄) (6)

Intuitively, Q� is similar to an inductive invariant but without requiring it to
hold on the initial states, i.e., once Q� holds it will hold during all subsequent
visits to �. This also means that for executions that start in states within Q�, it
is guaranteed that Q� is an over-approximation of the reachable states. Condi-
tion (6) is used to avoid quasi-invariants that are false. Given a quasi-invariant
Q� for �, we say that ρ� is a metering function for � if the following holds

∀x̄, ū, x̄′. Q�(x̄) ∧ R → ρ�(x̄) − ρ�(x̄′) ≤ 1 for each (�, �,R) ∈ T (7)
∀x̄, ū, x̄′. Q�(x̄) ∧ R → ρ�(x̄) ≤ 0 for each (�, �′,R) ∈ T (8)

Intuitively, these conditions state that (3,4) hold in the context of the states
induced by Q�. Assuming that (�, σ) is reachable in S and that σ |= Q�, loop �
will make at least ‖ρ�(σ(x̄))‖ iterations in any execution that starts in (�, σ).

Example 5. Recall that the loop in Example 4 only admitted trivial metering
functions because of the exit transition τ3. It is easy to see that Q�1 ≡ x < y
verifies (5,6), because y is not modified in τ1 and x decreases, and thus it is a
quasi-invariant. In the context of Q�1 , function ρ�1(x, y) = x + 1 is metering
because when taking τ3 the value of x is guaranteed to be negative, i.e., τ3

satisfies (8) because x < y ∧ y ≤ 0 → x + 1 ≤ 0. Notice that ρ�1(x, y) = x + 1
will still be a valid metering function considering other quasi-invariants of the
form Q′

�1
≡ y > c with c ≥ 0, as they would completely disable transition τ3.

3.3 Narrowing Guards

The loops that we have considered so far consist of a single loop transition,
what makes easier to find a metering function. This is because there is only
one way to modify the program variables (with some degree of non-determinism
induced by the non-deterministic variables). However, when we allow several
loop transitions, we can have loops for which a non-trivial metering function
does not exist even when narrowing the set of input values.

Example 6. Consider the extension of the loop in Example 4 with a new transi-
tion τ4 that decrements y (it corresponds to the example in Sect. 1):

τ1 = (�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x − 1 ∧ y′ = y)
τ4 = (�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x ∧ y′ = y − 1)
τ2 = (�1, �2, x < 0 ∧ x′ = x ∧ y′ = y)
τ3 = (�1, �2, y ≤ 0 ∧ x′ = x ∧ y′ = y)

The most precise LBw of this loop is ‖ρ�1(x, y)‖ where ρ�1(x, y) = x + y. As
mentioned, this corresponds, e.g., to an execution that uses τ1 until x = 0, i.e., x
times, and then τ4 until y = 0, i.e., y times. It is easy to see that if we start from
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a state that satisfies x ≥ 0∧x ≤ y, then it will be satisfied during the particular
execution that we just described. Moreover, assuming that Q�1 ≡ x ≥ 0 ∧ x ≤ y
is a quasi-invariant, it is easy to show that together with ρ�1 we can verify (7,8),
and thus ρ�1 will be a metering function. However, unfortunately, Q�1 is not
a quasi-invariant since the above loop can make executions other than the one
described above (e.g., decreasing y to 1 first and then x to 0).

Our idea to overcome this imprecision is to narrow the set of states for
which loop transitions are enabled, i.e., strengthening loop guards by additional
inequalities. This, in principle, reduces the number of possible executions, and
thus it is more likely to find a metering function (or a better quasi-invariant),
because now they have to be valid for fewer executions. For example, this might
force an execution order between the different paths, or even disable some tran-
sitions by narrowing their guard to false. Again, a metering function for the
specialized loop is not a valid LBb of the original loop, but rather its a valid
LBw that is what we are interested in. Next, we state the requirements that
such narrowing should satisfy. The choice of a narrowing that leads to longer
executions is discussed in Sect. 4.

A guard narrowing for a loop transition τ ∈ T is a formula Gτ (x̄), over
variables x̄. A specialization of a loop is obtained simply by adding these formulas
to the corresponding transitions. Conditions (5)-(8) can be specialized to hold
only for executions that use the specialized loop as follows. Suppose that for a
loop � ∈ L we are given a narrowing Gτ for each loop transition τ , then Q� and ρ�

are quasi-invariant and metering function resp. for the corresponding specialized
loop if the following conditions hold

∀x̄, ū, x̄′. Q�(x̄) ∧ Gτ (x̄) ∧ R → Q�(x̄
′) for each (�, �, R) ∈ T (9)

∃x̄. Q�(x̄) (10)
∀x̄, ū, x̄′. Q�(x̄) ∧ Gτ (x̄) ∧ R → ρ�(x̄) − ρ�(x̄

′) ≤ 1 for each (�, �, R) ∈ T (11)
∀x̄. Q�(x̄) ∧ R(x̄) → ρ�(x̄) ≤ 0 for each (�, �′, R) ∈ T (12)

Conditions (9,10) guarantee that Q� is a non-empty quasi-invariant for the spe-
cialized loop, and conditions (11,12) guarantee that ρ� is a metering function
for the specialized loop in the context of Q�. However, in this case, function ρ�

induces a lower-bound on the number of iterations only if the specialized loop is
non-blocking for states in Q�. This is illustrated in the following example.

Example 7. Consider the loop from Example 3 where we have specialized the
guard of τ1 by adding x ≥ 5:

τ1 = (�1, �1, x ≥ 0 ∧ x ≥ 5 ∧ x′ = x − 1) τ2 = (�1, �2, x < 0 ∧ x′ = x)

With this specialized guard and considering Q�1 ≡ true, the metering function
ρ�1(x) = x + 1 still satisfies (11,12), and Q�1 trivially satisfies (9,10). However,
ρ�1 is not a valid measure of the number of transitions executed because the loop
gets blocked whenever x takes values 0 ≤ x ≤ 5, and thus it will never execute
x + 1 transitions.
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To guarantee that the specialized loop is non-blocking for states in Q�, it is
enough to require the following condition to hold

∀x̄. Q�(x̄) →
∨

τ=(�,�,R)∈T
(R(x̄) ∧ Gτ (x̄))

∨

τ=(�,�′,R)∈T
R(x̄) (13)

Intuitively, it states that from any state in Q� we can make progress, either by
making a loop iteration or exiting the loop. Assuming that (�, σ) is reachable in
S and that σ |= Q�, the specialized loop � will make at least ‖ρ�(σ(x̄))‖ iterations
in any execution that starts in (�, σ). This also means that the original loop can
make at least ‖ρ�(σ(x̄))‖ iterations in any execution that starts in (�, σ).

Example 8. In Example 6, we have seen that if Q�1 ≡ x ≤ y ∧ x ≥ 0 was a
quasi-invariant, then function ρ�1(x, y) = x+ y becomes metering. We can make
Q�1 a quasi-invariant by specializing the guards of the loop in transitions τ1 and
τ4 to force the following execution with x + y iterations: first use τ1 until x = 0
(x iterations) and then use τ4 until y = 0 (y iterations). This behavior can be
forced by taking Gτ1 ≡ x > 0 and Gτ4 ≡ x ≤ 0. With Gτ1 we assure that x
stops decreasing when x = 0, and with Gτ4 we assure that τ4 is used only when
x = 0. Now, Q�1 ≡ x ≤ y ∧ x ≥ 0 and ρ�1(x, y) = x + y are valid quasi-invariant
and metering, resp. Function ρ�1 decreases by exactly 1 in τ1 and τ4, is trivially
non-positive in τ2 because that transition is indeed disabled (x ≥ 0 from Q�1

and x < 0 from the guard) and is non-positive in τ3 (x ≤ y∧y ≤ 0 → x+y ≤ 0).
Regarding Q�1 , it verifies (9,10), and more importantly, the loop in �1 is non-
blocking w.r.t Q�1 , Gτ1 , and Gτ4 , i.e., Condition (13) holds.

3.4 Narrowing Non-deterministic Choices

Loop transitions that involve non-deterministic variables, might give rise to exe-
cutions of different lengths when starting from the same input values. Since we
are interested in LBw, we are clearly searching for longer executions. However,
since our approach is based on inferring LBb, we have to take all executions into
account which might result in less precise, or even trivial, LBw.

Example 9. Consider a modification of the loop in Example 6 in which the vari-
able x in τ1 is decreased by a non-deterministic positive quantity u:

τ1 = (�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x − u ∧ u ≥ 1 ∧ y′ = y)

The effect of this non-deterministic variable u is that τ1 can be applied x times
if we always take u = 1, �x

2 � times if we always take u = 2 or even only once if
we take u > x. As a consequence, ρ�1(x, y) = x + y is no longer a valid metering
function because x can decrease by more than 1 in τ1. Moreover, Q�1 ≡ x ≤
y ∧ x ≥ 0 is not a quasi-invariant anymore since x′ = x − u ∧ u ≥ 1 does not
entail x′ ≥ 0. In fact, no metering function involving x will be valid in τ1 because
x can decrease by any positive amount.

To handle this complex situation, we propose narrowing the space of non-
deterministic choices, and thus metering functions should be valid wrt. fewer
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executions and more likely be found and be more precise. Next we state the
requirements that such narrowing should satisfy. The choice of a narrowing that
leads to longer executions is discussed in Sect. 4.

A non-deterministic variables narrowing for a loop transition τ ∈ T is a
formula Uτ (x̄, ū), over variables x̄ and ū, that is added to τ to restrict the choices
for variables ū. A specialized loop is now obtained by adding both Gτ and Uτ

to the corresponding transitions. Suppose that for loop � ∈ L, in addition to
Gτ , we are also given Uτ for each of its loop transitions τ . For Q� and ρ� to
be quasi-invariant and metering function for the specialized loop �, we require
conditions (9)-(13) to hold but after adding Uτ to the left-hand side of the
implications in (9) and (11). Besides, unlike narrowing of guards, narrowing of
non-deterministic choices might make a transition invalid, i.e., not satisfying
Condition (1), and thus ‖ρ�(x̄)‖ cannot be used as a lower-bound on the number
of iterations. To guarantee that specialized transitions are valid we require, in
addition, the following condition to hold

∀x̄∃ū. Q�(x̄) ∧ R(x̄) ∧ Gτ (x̄) → R(x̄, ū) ∧ Uτ (x̄, ū) for each (�, �, R) ∈ T (14)

This condition is basically (1) taking into account the inequalities introduced by
the corresponding narrowings. Assuming that (�, σ) is reachable in S and that
σ |= Q�, the specialized loop � will make at least ‖ρ�(σ(x̄))‖ iterations in any
execution that starts in (�, σ), which also means, as before, that the original loop
can make at least ‖ρ�(σ(x̄))‖ iterations in any execution that starts in (�, σ).

Example 10. To solve the problems shown in Example 9 we need to narrow
the non-deterministic variable u to take bounded values that reflect the worst-
case execution of the loop. Concretely, we need to take Uτ1 ≡ u ≤ 1, which
combined with u ≥ 1 entails u = 1 so x decreases by exactly 1 in τ1. Consider-
ing the narrowing Uτ1 , the resulting loop is equivalent to the one presented in
Example 8 so we could obtain the precise metering function ρ�1(x, y) = x + y
with the quasi-invariant Q�1 ≡ x ≤ y ∧ x ≥ 0. Note that (14) holds for
τ1 because u = 1 makes the consequent true for every value of x and y:
∀x̄∃ū. (x ≤ y ∧ x ≥ 0) ∧ (x ≥ 0 ∧ y > 0) ∧ x > 0 → u ≥ 1 ∧ u ≤ 1

3.5 Ensuring the Feasibility of the Specialized Loops

In order to enable the propagation of the local lower-bounds back to the input
location (as we have discussed at the beginning of Sect. 3), we have to ensure that
there is actually an execution that starts in �0 and passes through the specialized
loop. In other words, we have to guarantee that when putting all specialized loops
together, they still form a non-blocking TS for some set of input values. We
achieve this by requiring that the quasi-invariants of the preceding loops ensure
that the considered quasi-invariant for this loop also holds on initialization (i.e.,
it is an invariant for the considered context). Technically, we require, in addition
to (9)-(14), the following conditions to hold for each loop �:

∀x̄, ū, x̄′. Q�′(x̄) ∧ R → Q�(x̄′) for each (�′, �,R) ∈ T (15)
∀x̄. Q�0 → Θ (16)
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Condition (15) means that transitions entering loop �, strengthened with the
quasi-invariant of the preceding location �′, must lead to states within the quasi-
invariant Q�. Condition (16) guarantees that Q�0 defines valid input values, i.e.,
within the initial condition Θ.

Theorem 1 (soundness). Given Q� for each non-exit location � ∈ L, nar-
rowings Gτ and Uτ for each loop transition τ ∈ T , and function ρ� for each loop
location �, such that (9)-(16) are satisfied, it holds:

1. The TS S ′ obtained from S by adding Gτ and Uτ to the corresponding tran-
sitions, and changing the initial condition to Q�0 , is non-blocking.

2. For any complete trace t of S ′, if C = (�, σ) is a configuration in t, then t
includes at least ‖ρ�(σ(x̄))‖ visits to � after C (i.e., ‖ρ�(x̄)‖ is a lower-bound
function on the number of iterations of the loop defined by location �).

The proof of this soundness result is straightforward: it follows as a sequence of
facts using the definitions of the conditions (9)-(16) given in this section.

We note that when there is an unbounded overlap between the guards of the
loop transitions and the guards of exit transitions, it is likely that a non-trivial
metering function does not exist because it must be non-positive on the over-
lapping states. To overcome this limitation, instead of using the exit transitions
in (12), we can use ones that correspond to the negation of the guards of loop
transitions, and thus it is ensured that they do not overlap. However, we should
require (13) to hold for the original exit transitions as well in order to ensure
that the non-blocking property holds. Another way to overcome this limitation
is to simply strengthen the exit transitions by the negation of the guards.

As a final comment, we note that it is not needed to assume that the TS S
that we start with is non-blocking (even though we have done so in Sect. 2.1
for clarity). This is because our formalization above finds a subset of S (S ′ in
Theorem 1) that is non-blocking, which is enough to ensure the feasibility of the
local lower-bounds. This is useful not only for enlarging the set of TSs that we
accept as input, but also allows us to start the analysis from any subset of S
that includes a path from �0 to the exit location. For example, it can be used to
remove trivial execution paths from S, or concentrate on ones that include more
sequences of loops (since we are interested in LBw).

3.6 Handling General TSs

So far we have considered a special case of TSs in which all locations, except
the entry and exit ones, are multi-path loops. Next we explain how to handle
the general case. It is easy to see that we can allow locations that correspond to
trivial SCCs. These correspond to paths that connect loops and might include
branching as well. For such locations, there is no need to infer metering functions
or apply any specialization, we only need to assign them quasi-invariants that
satisfy (15) to guarantee that the overall specialized TS is non-blocking.

The more elaborated case is when the TS includes non-trivial SCCs that do
not form a multi-path loop. In such case, if a SCC has a single cut-point, we
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can unfold its edges and transform it into a multi-path following the techniques
of [1]. It is important to note that when merging two transitions, the cost of the
new one is the sum of their costs. In this case the number of iterations is still
a lower-bound on the cost of the loop, however, we might get a better one by
multiplying it by the minimal cost of its transitions.

If a SCC cannot be transformed into a multi-path loop by unfolding its
transitions, then it might correspond to a nested loop, and, in such case, we
can recover the nesting structure and consider them as separated TSs that are
“called” from the outer one using loop extraction techniques [25]. Each inner-loop
is then analyzed separately, and replaced (in the original TS, where is “called”)
by a single edge with its lower-bound as cost for that edge, and then the outer is
analyzed taking that cost into account. Besides, to guarantee that the specialized
program corresponds to a valid execution, we require the quasi-invariant of the
inner loop to hold in the context of the quasi-invariant of the outer loop. This
approach is rather standard in cost analysis of structured programs [1,3,12].

Another issue is how to compose the (local) lower-bounds of the specialized
loops into a global-lower bound. For this, we can rely on the techniques [1,3]
that rewrite the local lower-bounds in terms of the input values by relying on
invariant generation and recurrence relations solving.

4 Inference Using Max-SMT

This section presents how metering functions and narrowings can be inferred
automatically using Max-SMT, namely how to automatically infer all Gτ , Uτ ,
Q�, and ρ� such that (9)-(16) are satisfied. We do it in a modular way, i.e., we
seek Gτ , Uτ , Q�, and ρ� for one loop at a time following a (reversed) topological
order of the SCCs, as we describe next. Recall that (16) is required only for loops
connected directly to �0, and w.l.o.g. we assume there is only one such loop.

4.1 A Template-Based Verification Approach

We first show how the template-based approach of [6,17] can be used to find Gτ ,
Uτ , and Q� by representing them as template constraint systems, i.e., each is a
conjunction of linear constraints where coefficients and constants are unknowns.
Also, ρ� is represented as a linear template function ā · x̄ + a0 where (a0, ā) are
unknowns. Then, the problem is to find concrete values for the unknowns such
that all formulas generated by (9)-(16) are satisfied:

– Each ∀-formula generated by (9)-(16), except those of (14) that we handle
below, can be viewed as an ∃∀ problem where the ∃ is over the unknowns of the
templates and the ∀ is over (some of) the program variables. It is well-known
that solving such an ∃∀ problem, i.e., finding values for the unknowns, can be
done by translating it into a corresponding ∃ problem over the existentially
quantified variables (i.e., the unknowns) using Farkas’ lemma [20], which can
then be solved using an off-the-shelf SMT solver.
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– To handle (14) we follow [17], and eliminate ∃ū using the skolemization
ui = ā · x̄ + a0 where (a0, ā) are fresh unknowns (different for each ui).
This allows handling it using Farkas’ lemma as well. However, in addition,
when solving the corresponding ∃ problem we require all (a0, ā) to be integer.
This is because the domain of program variables is the integers, and picking
integer values for all (a0, ā) guarantees that the values of any x′

i that depends
on ū will be integer as well1.

The size of templates for Gτ , Uτ , and Q�, i.e., the number of inequalities, is
crucial for precision and performance. The larger the size is, the more likely
that we get a solution if one exists, but also the worse the performance is (as
the corresponding SMT problem will include more constraints and variables). In
practice, one typically starts with templates of size 1, and iteratively increases
it by 1 when failing to find values for the unknowns, until a solution is found or
the bound on the size is reached.

Alternatively, we can use the approach of [17] to construct Gτ , Uτ , and Q�

incrementally. This starts with templates of size 1, but instead of requiring all (9)-
(16) to hold, the conditions generated by (12) are marked as soft constraints
(i.e., we accept solutions in which they do not hold) and use Max-SMT to get
a solution that satisfies as many of such soft conditions as possible. If all are
satisfied, we are done, if not, we use the current solution to instantiate the
templates, and then add another template inequality to each of them and repeat
the process again. This means that at any given moment, each template will
include at most one inequality with unknowns. Finally, to guarantee progress
from one iteration to another, soft conditions that hold at some iteration are
required to hold at the next one, i.e., they become hard.

The use of (12) as soft constraint is based on the observation [12] that when
seeking a metering function, the problematic part is often to guarantee that
it is negative on exit transitions, which is normally achieved by adding quasi-
invariants that are incrementally inferred. By requiring (12) to be soft we handle
more exit transitions as the quasi-invariant gets stronger until all are covered.

4.2 Better Quality Solutions

The precision can also be affected by the quality of the solution picked by the
SMT solver for the corresponding ∃ problem. Since there might be many meter-
ing functions that satisfy (9)-(16), we are interested in narrowing the search
space of the SMT solver in order to find more accurate ones, i.e., lead to longer
executions. Next we present some techniques for this purpose.

Enabling More Loop Transitions. We are interested in guard narrowings that
keep as many loop transitions as possible, since such narrowings are more likely

1 Because we assumed that constraints involving primed variables are of the form
x′

i = ā · x̄ + b̄ · ū + c.
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to generate longer executions. This can be done by requiring the following to
hold

∃x̄.
∨

τ=(�,�,R)∈T
(Q�(x̄) ∧ R(x̄) ∧ Gτ (x̄)) (17)

We also use Max-SMT to require a solution that satisfies as many disjuncts as
possible and thus eliminating less loop transitions (if Q�(x̄) ∧ R(x̄) ∧ Gτ (x̄) is
false for a transition τ , then it is actually disabled). Note that this condition
can be used instead of (10) that requires the quasi-invariant to be non-empty.

Larger Metering Functions. We are interested in metering functions that lead
to longer executions. One way to achieve this is to require metering functions to
be ranking as well, i.e., in addition to (11) we require the following to hold

∀x̄, ū, x̄′.Q�(x̄)∧Gτ (x̄)∧Uτ (x̄, ū)∧R→ρ�(x̄)−ρ�(x̄
′) ≥ 1 for each (�, �, R) ∈ T (18)

∀x̄, ū.Q�(x̄) ∧ Gτ (x̄) ∧ R(x̄) → ρ�(x̄) ≥ 0 for each (�, �, R) ∈ T (19)

These new conditions are added as soft constraints, and we use Max-SMT to
ask for a solution that satisfies as many conditions as possible.

Unbounded Metric Functions. We are interested in metering functions that do
not have an upper bound, since otherwise they will lead to constant lower-bound
functions. For example, for a loop with a transition x ≥ 0 ∧ x′ = x − 1, we want
to avoid quasi-invariants like x ≤ 5 which would make the metering function x
bounded by 5. For this, we rely on the following lemma.

Lemma 1. A function ρ(x̄) = ā · x̄ + a0 is unbounded over a polyhedron P, iff
ā · ȳ is positive on at least one ray ȳ of the recession cone of P.

It is known that for a polyhedron P given in constraints representation, its
recession cone cone(P) is the set specified by the constraints of P after removing
all free constants. Now we can use the above lemma to require that the metering
function ρ�(x̄) = ā · x̄ + ā0 is unbounded in the quasi-invariant Q� by requiring
the following condition to hold

∃x̄. cone(Q�) ∧ ā · x̄ > 0 (20)

where cone(Q�) is obtained from the template of Q� by removing all (unknowns
corresponding to) free constants, i.e., it is the recession cone of Q�.

Note that all encodings discussed in this section generate non-linear SMT
problems, because they either correspond to ∃∀ problems that include templates
on the left-hand side of implications, or to ∃ problems over templates that include
both program variables and unknowns.

Finally, it is important to note that the optimizations described provide the-
oretical guarantees to get better lower bounds: the one that adds (18,19) leads to
a bound that corresponds exactly to the worst-case execution (of the specialized
program), and the one that uses (20) is essential to avoid constant bounds.
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5 Implementation and Experimental Evaluation

We have implemented a LOwer-Bound synthesizER, named LOBER, that can
be used from an online web interface at http://costa.fdi.ucm.es/lober. LOBER is
built as a pipeline with the following processes: (1) it first reads a KoAT file [5]
and generates a corresponding set of multi-path loops, by extracting parts of the
TS that correspond to loops [25], applying unfolding, and inferring loop sum-
maries to be used in the calling context of nested loops, as explained in Sect. 3.6;
(2) it then encodes in SMT the conditions (9)–(13) defined through the paper, for
each loop separately, by using template generation, a process that involves sev-
eral non-trivial implementations using Farkas’ lemma (this part is implemented
in Java and uses Z3 [8] for simple (linear) satisfiability checks when produc-
ing the Max-SMT encoding); (3) the problem is solved using the SMT solver
Barcelogic [4], as it allows us to use non-linear arithmetic and Max-SMT capa-
bilities in order to assert soft conditions and implement the solutions described
in Sect. 4; (4) in order to guarantee the correctness of our system results, we
have added to the pipeline an additional checker that proves that the obtained
metering function and quasi-invariants verify conditions (9)–(13) by using Z3. To
empirically evaluate the results of our approach, we have used benchmarks from
the Termination Problem Data Base (TPDB), namely those from the category
Complexity ITS that contains Integer Transition Systems. We have removed
non-terminating TSs and terminating TSs whose cost is unbounded (i.e., the
cost depends on some non-deterministic variables and can be arbitrarily high)
or non-linear, because they are outside the scope of our approach. In total, we
have considered a set of 473 multi-path loops from which we have excluded 13
that were non-linear. Analyzing these 473 programs took 199 min, an average of
25 sec by program, approximately. For 255 of them, it took less than 1 s.

Table 1 illustrates our results and compares them to those obtained by the
LoAT [12,13] system, which also outputs a pair (ρ,Q) of a lower-bound function
ρ and initial conditions Q on the input for which ρ is a valid lower-bound.
In order to automatically compare the results obtained by the two systems,
we have implemented a comparator that first expresses costs as functions f :
N → R≥0 over a single variable n and then checks which function is greater. To
obtain this unary cost function from the results (ρ, Q), we use convex polyhedra
manipulation libraries to maximize the obtained cost ρ wrt. Q ∧ −n ≤ xi ≤ n,
where xi are the TS variables, and express that maximized expressions in terms of
n. Therefore, f(n) represents the maximum cost when the variables are bounded
by |xi| ≤ n and satisfy the corresponding initial condition Q, a notion very
similar to the runtime complexity used in [12,13]. Once we have both unary
linear costs f1(n) = k1n + d1 and f2(n) = k2n + d2, we compare them in n ≥ 0
by inspecting k1 and k2.

Each row of the table contains the number of loops for which both tools
obtain the same result (=), the number of loops where LOBER is better than
LoAT (>) and the number of loops where LoAT is better than LOBER (<). The
subcategories are obtained directly from the name of the innermost folder, except
for the cases in which this folder contains too few examples that we merge them

http://costa.fdi.ucm.es/lober
https://github.com/TermCOMP/TPDB
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Table 1. Results of the experiments.

Benchmark set Total = > < Benchmark set Total = > <

Brockschmidt 16 FGPSF09/Misc 20 16 3 1

c-examples/ABC 33 33 0 0 KoAT-2013 10 10 0 0

c-examples/SPEED 29 25 4 0 KoAT-2014 14 14 0 0

c-examples/WTC 45 39 4 2 SAS10 46 40 1 5

c-examples/Misc 9 9 0 0 Flores-Montoya 16 176 158 16 2

costa 6 5 1 0 Hark 20

FGPSF09/Beerendonk 28 24 4 0 Ben Amram Genaim 10 7 2 1

FGPSF09/patrs 18 16 2 0 Nils 2019 16 16 0 0

all in a Misc folder in the parent directory. The total number of loops that are
considered in each subcategory appears in column Total. Brockschmidt 16

and Hark 20 have their first row empty as all their results are contained in their
subcategories. Globally, both tools behave the same in 412 programs (column
“=”), obtaining equivalent linear lower bounds in 376 of them and a constant
lower bound in the remaining ones. Our tool LOBER achieves a better accuracy in
37 programs (column “>”), while LoAT is more precise in 11 programs (column
“<”). Let us discuss the two sets of programs in which both tools differ. As
regards the 37 examples for which we get better results, we have that LoAT
crashes in 4 cases and it can only find a constant lower bound in 1 example
while our tool is able to find a path of linear length by introducing the necessary
quasi-invariants. For the remaining 32 loops, both tools get a linear bound,
but LOBER finds one that leads to an unboundedly longer execution: 18 of
these loops correspond to cases that have implicit relations between the different
execution paths (like our running examples) and require semantic reasoning; for
the remaining 14, we get a better set of quasi-invariants. The following techniques
have been needed to get such results in these 37 better cases (note that (i) is
not mutually exclusive with the others):

(i) 1 needs narrowing non-deterministic choices,
(ii) 5 do not need quasi-invariants nor guard narrowing,
(iii) 14 need quasi-invariants only,
(iv) 18 need both quasi-invariants and guard narrowing (in 3 of them this is

only used to disable transitions).

Therefore, this shows experimentally the relevance of all components within our
framework and its practical applicability thanks to the good performance of the
Max-SMT solver on non-linear arithmetic problems. In general, for all the set of
programs, we can solve 308 examples without quasi-invariants and 444 without
guard-narrowing. The intersection of these two sets is: 298 examples (63% of the
programs), that leaves 175 programs that need the use of some of the proposed
techniques to be solved.

As regards the 11 examples for which we get worse results than LoAT, we
have two situations: (1) In 6 cases, the SMT-solver is not able to find a solution.
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We noticed that too many quasi-invariants were required, what made the SMT
problem too hard. To improve our results, we could start, as a preprocessing step,
from a quasi-invariant that includes all invariant inequalities that syntactically
appear in the loop transitions, something similar to what is done by LoAT when
inferring what they call conditional metering function [12]. This is left for future
experimentation. (2) In the other 5 cases, our tool finds a linear bound but with a
worse set of quasi-invariants, which makes the LoAT bound provide unboundedly
longer executions. We are investigating whether this can be improved by adding
new soft constraints that guide the solver to find these better solutions. Finally,
let us mention that, for the 13 problems that LoAT gives a non-linear bound
and have been excluded from our benchmarks as justified above, we get a linear
bound for the 12 that have a polynomial bound (of degree 2 or more), and a
constant bound for the additional one that has a logarithmic lower bound. This
is the best we can obtain as our approach focuses on the inference of precise
local linear bounds, as they constitute the most common type of loops.

All in all, we argue that our experimental results are promising: we triple
LoAT in the number of benchmarks for which we get more accurate results
and, besides, many of those examples correspond to complex loops that lead to
worse results when disconnecting transitions. Besides, we see room for further
improvement, as most examples for which LoAT outperforms us could be handled
as accurately as them with better quasi-invariants (that is somehow a black-box
component in our framework). Syntactic strategies that use invariant inequalities
that appear in the transitions, like those used in LoAT, would help, as well as
further improvements in SMT non-linear arithmetic.

Application Domains. The accuracy gains obtained by LOBER have applications
in several domains in which knowing the precise cost can be fundamental. This is
the case for predicting the gas usage [26] of executing smart contracts, where gas
cost amounts to monetary fees. The caller of a transaction needs to include a gas
limit to run it. Giving a too low gas limit can end in an “out of gas” exception
and giving a too high gas limit can end in a “not enough eth (money)” error.
Therefore having a tighter prediction is needed to be safe on both sides. Also,
when the UB is equal to the LB, we have an exact estimation, e.g., we would know
precisely the runtime or memory consumption of the most costly executions. This
can be crucial in safety-critical applications and has been used as well to detect
potential vulnerabilities such as denial-of-service attacks. In https://apps.dtic.
mil/sti/pdfs/AD1097796.pdf, vulnerabilities are detected in situations in which
both bounds do not coincide. For instance, in password verification programs, if
the UB and LB differ due to a difference on the delays associated to how many
characters are right in the guessed password, this is identified as a potential
attack.

6 Related Work and Conclusions

We have proposed a novel approach to synthesize precise lower-bounds from
integer non-deterministic programs. The main novelties are on the use of loop

https://apps.dtic.mil/sti/pdfs/AD1097796.pdf
https://apps.dtic.mil/sti/pdfs/AD1097796.pdf
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specialization to facilitate the task of finding a (precise) metering function and
on the Max-SMT encoding to find larger (better) solutions. Our work is related
to two lines of research: (1) non-termination analysis and (2) LB inference.
In both kinds of analysis, one aims at finding classes of inputs for which the
program features a non-terminating behavior (1) or a cost-expensive behavior
(2). Therefore, techniques developed for non-termination might provide a good
basis for developing a LB analysis. In this sense, our work exploits ideas from
the Max-SMT approach to non-termination in [17]. The main idea borrowed
from [17] has been the use of quasi-invariants to specialize loops towards the
desired behavior: in our case towards the search of a metering function, while
in theirs towards the search of a non-termination proof. However, there are
fundamental differences since we have proposed other new forms of loop spe-
cialization (see a more detailed comparison in Sect. 1) and have been able to
adapt the use of Max-SMT to accurately solve our problem (i.e., find larger
bounds). As mentioned in Sect. 1, our loop specialization technique can be
used to gain precision in non-termination analysis [17]. For instance, in this
loop: “while (x>=0 and y>=0) {if (∗) {x++; y−−;} else {x−−;y++;}}” no sub
SCC (considering only one of the transitions) is non-terminating and no quasi-
invariant can be found to ensure we will stay in the loop (when considering both
transitions), hence cannot be handled by [17]. Instead if we narrow the transi-
tions by adding y >= x in the if-condition (and hence x > y in the else), we can
prove that x >= 0 ∧ y >= 0 ∧ x + y = 1 is quasi-invariant, which allow us to
prove non-termination in the way of [17] (as we will stay in the loop forever).

As regards LB inference, the current state-of-the-art is the work by Frohn et
al. [12,13] that introduces the notion of metering function and acceleration. Our
work indeed tries to recover the semantic loss in [12,13] due to defining metering
functions for simple loops and combining them in a later stage using accelera-
tion. Technically, we only share with this work the basic definition of metering
function in Sect. 3.1. Indeed, the definition in conditions (3) and (4) already
generalizes the one in [12,13] since it is not restricted to simple loops. This
definition is improved in the following sections with several loop specializations.
While [12,13] relies on pure SMT to solve the problem, we propose to gain preci-
sion using Max-SMT. We believe that similar ideas could be adapted by [12,13].
Due to the different technical approaches underlying both frameworks, their
accuracy and efficiency must be compared experimentally wrt. the LoAT system
that implements the ideas in [12,13]. We argue that the results in Sect. 5 justify
the important gains of using our new framework and prove experimentally that,
the fact that we do not lose semantic relations in the search of metering func-
tions is key to infer LB for challenging cases in which [12,13] fails. Originally,
the LoAT [12,13] system only accelerated simple loops by using metering func-
tions, so the overall precision of the lower bound relied on obtaining valid and
precise metering functions. However, the framework in [12,13] is independent of
the accelerating technique applied. In order to increase the number of simple
loops that can be accelerated, Frohn [11] proposes a calculus to combine differ-
ent conditional acceleration techniques (monotonic increase/decrease, eventual
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increase/decrease, and metering functions). These conditional acceleration tech-
niques assume that all the iterations of the loop verify some condition ϕ, and
the calculus applies the techniques in order and extract those conditions ϕ from
fragments of the loop guard. Although more precise and powerful, the combined
acceleration calculus considers only simple loops, so it does not solve the preci-
sion loss when the loop cost involves several interleaved transitions. Moreover,
the techniques in [11] are integrated into LoAT, so the experimental evaluation
in Sect. 5 compares our approach to the framework in [12,13] extended with
several techniques to accelerate loops (not only metering functions).

Finally, our approach presents similarities to the CTL* verification for ITS
in [7] as both extend transition guards of the original ITS. The difference is
that in [7] the added constraints only contain newly created prophecy vari-
ables and the transitions to modify are detected directly using graph algorithms;
whereas our SMT-based approach adds constraints only over existing variables
to satisfy the properties that characterize a good metering function. Addition-
ally, both approaches differ both in the goal (CTL* verification vs. inference of
lower-bounds) and the technologies applied (CTL model checkers vs. Max-SMT
solvers).
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Abstract. We introduce new algorithms for computing non-termination
sensitive control dependence (NTSCD) and decisive order dependence
(DOD). These relations on vertices of a control flow graph have many
applications including program slicing and compiler optimizations. Our
algorithms are asymptotically faster than the current algorithms. We
also show that the original algorithms for computing NTSCD and DOD
may produce incorrect results. We implemented the new as well as fixed
versions of the original algorithms for the computation of NTSCD and
DOD. Experimental evaluation shows that our algorithms dramatically
outperform the original ones.

1 Introduction

Control dependencies between program statements are studied since 70’s.
They have important applications in compiler optimizations [12,14,16], pro-
gram analysis [9,19,36], and program transformations, especially program slic-
ing [1,9,22,26,37]. Slicing is used in many areas including testing, debugging,
parallelization, reverse engineering, program analysis and verification [17,28].

Informally, two statements in a program are control dependent if one directly
controls the execution of the other in some way. This is typically the case for
if statements and their bodies. Control dependencies are nowadays classified as
weak (non-termination insensitive) if they assume that a given program always
terminates, or as strong (non-termination sensitive) if they do not have this
assumption [13]. We illustrate the difference on the control flow graph in Fig.
1. Node a controls whether b or c (and then d) is going to be executed, so b, c,
and d are control dependent on a (the convention is to display dependence as
edges in the “controls” direction). Similarly, b controls the execution of c and d,
as these nodes may be bypassed by going from b to e. Note also that d controls
whether d is going to be executed in the future and thus is control dependent on
itself. However, c does not control d as any path from c hits d. All dependencies
mentioned so far are weak, namely standard control dependencies as defined by
Ferrante et al. [16]. Weak control dependence assumes that the program always
terminates, in particular, that the loop over d cannot iterate forever. As a result,
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a

b

c d

e

Fig. 1. An example of a control flow graph and control dependencies (red edges).
The dotted dependencies are additional non-termination sensitive control dependencies.
(Color figure online)

e is reached by all executions and thus it is not weakly control dependent on any
node. However, e is strongly control dependent on b and d. Indeed, if we assume
that some executions can loop over d forever, then reaching e is controlled clearly
by d and also by b as it can send the execution directly to e.

This paper is concerned with the computation of two prominent strong
control dependencies introduced by Ranganath et al. [32,33], namely non-
termination sensitive control dependence (NTSCD) and decisive order depen-
dence (DOD). NTSCD is studied in Sect. 3, which follows after preliminaries in
Sect. 2. We first recall the definition of NTSCD and the algorithm of Ranganath
et al. [33] for its computation. Then we show a flaw in the algorithm and suggest a
fix. Finally, we introduce a new algorithm for the computation of NTSCD. Given
a control flow graph with |V | nodes, the new algorithm runs in time O(|V |2),
while the algorithm of Ranganath et al. runs in time O(|V |4 · log |V |) and its
fixed version in time O(|V |5). We show a NTSCD relation of size Θ(|V |2), which
means that our algorithm is asymptotically optimal.

The DOD relation captures the cases when one node controls the execution
order of two other nodes. Roughly speaking, nodes {b, c} are DOD on a whenever
all executions passing through a eventually reach both b and c and a controls
which is reached first. Ranganath et al. [33] proved that the relation is empty
for reducible graphs [21], i.e., graphs where every cycle has a single entry point.
Control flow graphs of structured programs are reducible, but irreducible graphs
may arise for example in the following situations [11,33,35]:

– unstructured coding by a human, which is rather rare nowadays,
– compilation into unstructured code representation like JVM bytecode,
– tail call recursion optimization during compilation,
– when the control flow graph is interprocedural – in this case, irreducibility

may be introduced by recursion or exceptions handling,
– by reversing a control flow graph containing, for example, break statements
– when the control flow graph is not generated from program, but, e.g., from a

finite state machine.

The DOD relation is important (together with NTSCD) when we want to slice
possibly non-terminating programs with irreducible control flow graphs and pre-
serve their termination properties as well as data integrity [1,33]. This is a
common requirement when slicing is used as a preprocessing step before pro-
gram verification [9,23,26], worst-case execution time analysis [29], information
flow analysis [18,19], analysis of concurrent programs [18] with busy-waiting
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synchronization or synchronization where possible spurious wake-ups of threads
are guarded by loops (e.g., programs using the pthread library), and analysis of
reactive systems and generic state-based models [2,24,33].

The DOD relation is studied in Sect. 4, where we recall its definition, discuss
the Ranganath et al.’s algorithm for DOD [33], and show that this algorithm
also contains a flaw. Fortunately, this flaw can be easily fixed without changing
the complexity of the algorithm. Further, we develop a theory that underpins
our new algorithm for the computation of DOD. Due to the space limitations,
proofs of theorems can be found only in the extended version of this paper [8].
The new algorithm, presented at the end of the section, computes DOD in time
O(|V |3), while the original as well as the fixed version of the Ranganath et al.’s
algorithm runs in O(|V |5 · log |V |). We show a DOD relation of size Θ(|V |3),
which means that our algorithm is again asymptotically optimal.

Section 5 focuses on control closures (CC) introduced by Danicic et al. [33],
which generalize control dependence to arbitrary directed graphs. It is known
that the strong (i.e., non-termination sensitive) control closure for a set of nodes
containing the starting node is equivalent to the closure under NTSCD and DOD
relations. Hence, our algorithms for NTSCD and DOD can be used to compute
strong CC in time O(|V |3) on control flow graphs, while the original algorithm
by Danicic et al. [13] runs in O(|V |4).

Our theoretical contribution to computation of strong control dependencies
is summarized in Table 1. Section 6 presents experimental evaluation showing
that our algorithms are indeed dramatically faster than the original ones. The
paper is concluded with Sect. 7.

1.1 Related Work

The first paper concerned with control dependence is due to Denning and Den-
ning [15], who used control dependence to certify that flow of information in a
program is secure. Weiser [37], Ottenstein and Ottenstein [30], and Ferrante et
al. [16] used control dependence in program slicing, which is also the motivation
for the most of the latter research in this area. These “classical” papers study
control dependence in terminating programs with a unique exit node eventually
reached by every execution. These restrictions have been gradually removed.

Table 1. Overview of discussed algorithms and their complexities on CFGs

Relation/closure Algorithm Complexity

NTSCD Original algorithm by Ranganath et al. [33] O(|V |4 · log |V |)
(Sect. 3) Fixed algorithm by Ranganath et al. [33] O(|V |5)

New algorithm O(|V |2)

DOD Original algorithm by Ranganath et al. [33] O(|V |5 · log |V |)
(Sect. 4) Fixed algorithm by Ranganath et al. [33] O(|V |5 · log |V |)

New algorithm O(|V |3)

Strong CC Original algorithm by Danicic et al. [13] O(|V |4)

(Sect. 5) New NTSCD-and-DOD-based algorithm O(|V |3)
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Podgurski and Clarke [31] defined the first strong control dependence that
does not assume termination of the program.1 However, their definitions and
algorithms still require programs to have a unique exit node.

Bilardi and Pingal [5] introduced a framework that uses generalized domi-
nance relation on graphs. In their framework, they are able to compute Podgurski
and Clarke’s control dependence in O(|E|+|V |2) time for a directed graph (V,E)
with a unique exit node. In theory, NTSCD could be computed in their frame-
work. However, computing augmented post-dominator tree – the central data
structure of their framework – requires the unique exit node as it starts with
post-dominator tree and, mainly, is much more complicated compared to our
algorithm for NTSCD [5].

Chen and Rosu [10] introduced a parametric approach where loops can be
annotated with information about termination. The resulting control depen-
dence is somewhere between the classical and Podgurski and Clarke’s control
dependence, the two being the extremes.

The notion of NTSCD and DOD was founded in works of Ranganath et al.
[32,33] in order to slice reactive systems, e.g., operating systems or controllers of
embedded devices. They generalized also classical (non-termination insensitive)
control dependence to graphs without the unique exit point (further investigated,
e.g., by Androutsopoulos et al. [3]) and provided several relaxed versions of DOD.

Danicic et al. [13] introduced weak and strong control closures (CC) that
generalize weak and strong control dependence (thus also NTSCD) to arbitrary
graphs. They provide algorithms for the computation of minimal closures that
run in O(|V |3) (weak CC) and O(|V |4) (strong CC) on graph with |V | nodes.

An orthogonal study of control dependence that arises between statements
in different procedures (e.g., due to calls to exit()) was carried out by Loyall
and Mathisen [27], Harrold et al. [20], and Sinha et al. [34].

2 Preliminaries

A finite directed graph is a pair G = (V,E), where V is a finite set of nodes and
E ⊆ V × V is a set of edges. If there is an edge (m,n) ∈ E, then n is called
a successor of m, m is a predecessor of n, and the edge is an outgoing edge of
m. Given a node n, Successors(n) and Predecessors(n) denote the sets of all its
successors and predecessors, respectively. A path from a node n1 is a nonempty
finite or infinite sequence n1n2 . . . ∈ V + ∪V ω of nodes such that there is an edge
(ni, ni+1) ∈ E for each pair ni, ni+1 of adjacent nodes in the sequence. A path
is called maximal if it cannot be prolonged, i.e., it is infinite or the last node of
the path has no outgoing edge. A node m is reachable from a node n if there
exists a finite path such that its first node is n and its last node is m.

We say that a graph is a cycle, if it is isomorphic to a graph (V,E) where
V = {n1, . . . , nk} for some k > 0 and E = {(n1, n2), (n2, n3), . . . , (nk−1, nk),
1 Podgurski and Clarke [31] called their control dependence weak control dependence

as it is a superset of classical control dependence. Nowadays, we use the terms weak
and strong precisely in the opposite meaning [13].
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(nk, n1)}. A cycle unfolding is a path in the cycle that contains each node pre-
cisely once.

In this paper, we consider programs represented by control flow graphs, where
nodes correspond to program statements and edges model the flow of control
between the statements. As control dependence reflects only the program struc-
ture, our definition of a control flow graph does not contain any statements.
Our definition also does not contain any start or exit nodes as these are not
important for the problems we study in this paper.

Definition 1 (Control flow graph, CFG). A control flow graph (CFG) is a
finite directed graph G = (V,E) where each node v ∈ V has at most two outgoing
edges. Nodes with exactly two outgoing edges are called predicate nodes or simply
predicates. The set of all predicates of a CFG G is denoted by Predicates(G).

3 Non-termination Sensitive Control Dependence

This section recalls the definition of NTSC by Ranganath et al. [32] and their
algorithm for computing NTSCD. Then we show that the algorithm can produce
incorrect results and introduce a new algorithm that is asymptotically faster.

Definition 2 (Non-termination sensitive control dependence,NTSCD).
Given a CFG G = (V,E), a node n ∈ V is non-termination sensitive control
dependent (NTSCD) on a predicate node p ∈ Predicates(G), written p NTSCD−−−→ n,
if p has two successors s1 and s2 such that

– all maximal paths from s1 contain n, and
– there exists a maximal path from s2 that does not contain n.

3.1 Algorithm of Ranganath et al. [33] for NTSCD

The algorithm is presented in Algorithm 1. Its central data structure is a two-
dimensional array S where for each node n and for each predicate node p with
successors r and s, S[n, p] always contains a subset of {tpr, tps}. Intuitively, tpr

should be added to S[n, p] if n appears on all maximal paths from p that start
with the prefix pr. The workbag holds the set of nodes n for which some S[n, p]
value has been changed and this change should be propagated. The first part of
the algorithm initializes the array S with the information that each successor
r of a predicate node p is on all maximal paths from p starting with pr. The
main part of the algorithm then spreads the information about the reachability
on all maximal paths in the forward manner. Finally, the last part computes the
NTSCD relation according to Definition 2 and with use of the information in S.

The algorithm runs in time O(|E| · |V |3 · log |V |) [33] for a CFG G = (V,E).
The log |V | factor comes from set operations. Since every node in CFG has at
most 2 outgoing edges, we can simplify the complexity to O(|V |4 · log |V |).

Although the correctness of the algorithm has been proved [32, Theorem 7],
Fig. 2 presents an example where the algorithm provides an incorrect answer.



892 M. Chalupa et al.

Algorithm 1: The NTSCD algorithm by Ranganath et al. [33]
Input: a CFG G = (V, E)
Output: a potentially incorrect NTSCD relation stored in ntscd

1 Set S[n, p] = ∅ for all n ∈ V and p ∈ Predicates(G) // Initialization

2 workbag ← ∅
3 for p ∈ Predicates(G) do
4 for r ∈ Successors(p) do
5 S[r, p] ← {tpr}
6 workbag ← workbag ∪ {r}
7

8 while workbag �= ∅ do // Computation of S
9 n ← pop from workbag

10 if Successors(n) = {s} for some s �= n then // One successor case

11 for p ∈ Predicates(G) do
12 if S[n, p] � S[s, p] �= ∅ then
13 S[s, p] ← S[s, p] ∪ S[n, p]
14 workbag ← workbag ∪ {s}
15 if |Successors(n)| > 1 then // Multiple successors case

16 for m ∈ V do
17 if |S[m, n]| = |Successors(n)| then
18 for p ∈ Predicates(G) � {n} do
19 if S[n, p] � S[m, p] �= ∅ then
20 S[m, p] ← S[m, p] ∪ S[n, p]
21 workbag ← workbag ∪ {m}
22

23 ntscd ← ∅ // Computation of NTSCD

24 for n ∈ V do
25 for p ∈ Predicates(G) do
26 if 0 < |S[n, p]| < |Successors(p)| then
27 ntscd ← ntscd ∪ {p NTSCD−−−→ n}

The first part of the algorithm initializes S as shown in the figure and sets
workbag to {2, 6, 3, 4}. Then any node from workbag can be popped and pro-
cessed. Let us apply the policy used for queues: always pop the oldest element in
workbag . Hence, we pop 2 and nothing happens as the condition on line 17 is not
satisfied for any m. This also means that the symbol t12 is not propagated any
further. Next we pop 6, which has no effect as 6 has no successor. By processing
3 and 4, t23 and t24 are propagated to S[5, 2] and 5 is added to the workbag .
Finally, we process 5 and set S[6, 2] to {t23, t24}. The final content of S is pro-
vided in the figure. Unfortunately, the information in S is sound but incomplete.
In other words, if tpr ∈ S[n, p], then n is indeed on all maximal paths from p
starting with pr, but the opposite implication does not hold. In particular, t12 is
missing in S[5, 1] and S[6, 1]. Consequently, the last part of the algorithm com-
putes an incorrect NTSCD relation: it correctly identifies 1 NTSCD−−−→ 2, 2 NTSCD−−−→ 3,
and 2 NTSCD−−−→ 4, but it also incorrectly produces 1 NTSCD−−−→ 6 and misses 1 NTSCD−−−→ 5.



Fast Computation of Strong Control Dependencies 893

1

2

3 4

5

6

S after initialization
S[2, 1] = {t12}
S[6, 1] = {t16}
S[3, 2] = {t23}
S[4, 2] = {t24}

final S when nodes are popped in order
2, 6, 3, 4, 5 (oldest first) 3, 4, 2, 5, 6 (correct)
S[2, 1] = {t12} S[2, 1] = {t12}
S[6, 1] = {t16} S[3, 2] = {t23}
S[3, 2] = {t23} S[4, 2] = {t24}
S[5, 2] = {t23, t24} S[5, 1] = {t12}
S[6, 2] = {t23, t24} S[6, 1] = {t12, t16}

S[6, 2] = {t23, t24}

Fig. 2. An example that shows the incorrectness of the NTSCD algorithm by Ran-
ganath et al. [33]. Solid red edges depict the dependencies computed by the algorithm
when it always pops the oldest element in workbag . The crossed dependence is incorrect.
The dotted dependence is missing in the result.

A necessary condition to get the correct result is to process 2 only after 3, 4
are processed and S[5, 6] = {t23, t24}. For example, one obtains the correct S
(also shown in the figure) when the nodes are processed in the order 3, 4, 2, 5, 6.

The algorithm is clearly sensitive to the order of popping nodes from workbag .
We are currently not sure whether for each CFG there exists an order that
leads to the correct result. An easy way to fix the algorithm is to ignore the
workbag and repeatedly execute the body of the while loop (lines 10–21) for all
n ∈ V until the array S reaches a fixpoint. However, this modification would
slow down the algorithm substantially. Computing the fixpoint needs O(|V |3)
iterations over the loop body (lines 10–21 excluding lines 14 and 21 handling the
workbag) and one iteration of this loop body needs O(|V |2). Hence, the overall
time complexity of the fixed version is O(|V |5).

3.2 New Algorithm for NTSCD

We have designed and implemented a new algorithm computing NTSCD. Our
algorithm is correct, significantly simpler and asymptotically faster than the
original algorithm of Ranganath et al. [33].

The new algorithm calls for each node n a procedure that identifies all
NTSCD dependencies of n on predicate nodes. The procedure works in the fol-
lowing steps.

1. Color n red.
2. Pick an uncolored node such that it has some successors and they all are red.

Color the node red. Repeat this step until no such node exists.
3. For each predicate node p that has a red successor and an uncolored one,

output p NTSCD−−−→ n.
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Algorithm 2: The new NTSCD algorithm
Input: a CFG G = (V, E)
Output: the NTSCD relation stored in ntscd

1 Procedure visit(n) // Auxiliary procedure

2 n.counter ← n.counter − 1
3 if n.counter = 0 ∧ n.color �= red then
4 n.color ← red
5 for m ∈ Predecessors(n) do
6 visit(m)

7

8 Procedure compute(n) // Coloring the graph red for a given n
9 for m ∈ V do

10 m.color ← uncolored
11 m.counter ← |Successors(m)|
12 n.color ← red
13 for m ∈ Predecessors(n) do
14 visit(m)

15

16 ntscd ← ∅ // Computation of NTSCD

17 for n ∈ V do
18 compute(n)
19 for p ∈ Predicates(G) do
20 if p has a red successor and an uncolored successor then
21 ntscd ← ntscd ∪ {p NTSCD−−−→ n}

Unlike the Ranganath et al.’s algorithm which works in a forward manner, our
algorithm spreads the information about the reachability of n on all maximal
paths in the backward direction starting from n.

The algorithm is presented in Algorithm 2. The procedure compute(n)
implements the first two steps mentioned above. In the second step, it does
not search over all nodes to pick the next node to color. Instead, it maintains
the count of uncolored successors for each node. Once the count drops to 0 for a
node, the node is colored red and the search continues with predecessors of this
node. The third step is implemented directly in the main loop of the algorithm.

To prove that the algorithm is correct, we basically need to show that when
compute(n) finishes, a node m is red iff all maximal paths from m contain n.
We start with a simple observation.

Lemma 1. After compute(n) finishes, a node m is red if and only if m = n
or m has a positive number of successors and all of them are red.

Proof. For each node m, the counter is initialized to the number of its successors
and it is decreased by calls to visit(m) each time a successor of m gets red. When
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the counter drops to 0 (i.e., all successors of the node are red), the node is colored
red. Therefore, if m is red, it got red either on line 12 and m = n, or m �= n
and m is red because all its successors got red (it must have a positive number
of successors, otherwise the counter could not be 0 after its decrement). In the
other direction, if m = n, it gets red on line 12. If it has a positive number of
successors which all get red, the node is colored red by the argument above. ��
Theorem 1. After compute(n) finishes, for each node m it holds that m is
red if and only if all maximal paths from m contain n.

Proof. (“⇐=”) We prove this implication by contraposition. Assume that m is
an uncolored node. Lemma 1 implies that each uncolored node has an uncolored
successor (if it has any). Hence, we can construct a maximal path from m con-
taining only uncolored nodes simply by always going to an uncolored successor,
either up to infinity or up to a node with no successors. This uncolored maximal
path cannot contain n which is red.

(“=⇒”) For the sake of contradiction, assume that there is a red node m and
a maximal path from m that does not contain n. Lemma 1 implies that all nodes
on this path are red. If the maximal path is finite, it has to end with a node
without any successor. Lemma 1 says that such a node can be red if and only if
it is n, which is a contradiction. If the maximal path is infinite, it must contain
a cycle since the graph is finite. Let r be the node on this cycle that has been
colored red as the first one. Let s be the successor of r on the cycle. Recall that
r �= n as the maximal path does not contain n. Hence, node r could be colored
red only when all its successors including s were already red. This contradicts
the fact that r was colored red as the first node on the cycle. ��

To determine the complexity of our algorithm on a CFG (V,E), we first
analyze the complexity of one run of compute(n). The lines 9–11 iterate over
all nodes. The crucial observation is that the procedure visit is called at most
once for each edge (m,m′) ∈ E of the graph: to decrease the counter of m
when m′ gets red. Hence, the procedure compute(n) runs in O(|V |+ |E|). This
procedure is called on line 18 for each node n. Finally, lines 20–21 are executed
for each pair of node n and predicate node p. This gives us the overall complexity
O((|V | + |E|) · |V | + |V |2) = O((|V | + |E|) · |V |). Since in control flow graphs it
holds |E| ≤ 2|V |, the complexity can be simplified to O(|V |2).

Note that our algorithm is asymptotically optimal as there are CFGs with
NTSCD relations of size Θ(|V |2). For example, the CFG in Fig. 3 has |V | = 2k+1
nodes and the corresponding NTSCD relation

{ni
NTSCD−−−→ mj | i, j ∈ {1, . . . , k}} ∪ {ni

NTSCD−−−→ ni+1 | i ∈ {1, . . . , k − 1}}

is of size k2 + k − 1 ∈ Θ(|V |2).
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n1 n2 n3 . . . nk

m1 m2 m3 . . . mk

e

Fig. 3. A CFG with |V | nodes that has the NTSCD relation of size Θ(|V |2).

p

a b

Fig. 4. An example of an irreducible CFG. There are no NTSCD dependencies, but a
and b are DOD on p.

4 Decisive Order Dependence

There are control dependencies not captured by NTSCD. For example, consider
the CFG in Fig. 4. Nodes a and b are not NTSCD on p as they lie on all maximal
paths from p. However, p controls which of a and b is executed first. Ranganath
et al. [33] introduced the DOD relation to capture such dependencies.

Definition 3 (Decisive order dependence, DOD). Let G = (V,E) be a
CFG and p, a, b ∈ V be three distinct nodes such that p is a predicate node
with successors s1 and s2. Nodes a, b are decisive order-dependent (DOD) on p,
written p DOD−−→ {a, b}, if

– all maximal paths from p contain both a and b,
– all maximal paths from s1 contain a before any occurrence of b, and
– all maximal paths from s2 contain b before any occurrence of a.

The importance of DOD for slicing of irreducible programs is discussed in
the introduction.

4.1 Algorithm of Ranganath et al. [33] for DOD

Ranganath et al. provided an algorithm that computes the DOD relation for a
given CFG G = (V,E) in time O(|V |4 · |E| · log |V |) which amounts to O(|V |5 ·
log |V |) on CFGs [33, Fig. 7]. The algorithm contains one unclear point. For each
triple of nodes p, a, b ∈ V such that p ∈ Predicates(G) and a �= b, the algorithm
executes the following check and if it succeeds, then p DOD−−→ {a, b} is reported:

reachable(a, b,G) ∧ reachable(b, a,G) ∧ dependence(p, a, b,G) (1)
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p

a b c

Fig. 5. An example that shows the incorrectness of the DOD algorithm by Ranganath
et al. [33]

The procedure dependence(p, a, b,G) returns true iff a is on all maximal paths
from one successor of p before any occurrence of b and b is on all maximal
paths from the other successor of p before any occurrence of a. The procedure
reachable is specified only by words [33, description of Fig. 7] as follows:

reachable(a, b,G) returns true if b is reachable from a in the graph G.

Unfortunately, this algorithm can provide incorrect results. For example, con-
sider the CFG in Fig. 5. Nodes p, a, b satisfy the formula (1): a appears on all
maximal paths from one successor of p (namely a) before any occurrence of b,
and b appears on all maximal paths from the other successor of p (which is b)
before any occurrence of a. At the same time, a and b are reachable from each
other. However, it is not true that p DOD−−→ {a, b}, because a and b do not lie on
all maximal paths from p (the first condition of Definition 3 is violated).

The algorithm can be fixed by modifying the procedure reachable(a, b,G)
to return true if b is on all maximal paths from a. The modified procedure can
be implemented with use of the procedure compute(b) of Algorithm 2. As the
procedure compute(b) runs in O(|V | + |E|), the modification does not increase
the overall complexity of the algorithm. By comparing the fixed and the original
version of reachable(a, b,G), one can readily confirm that the original version
produces supersets of DOD relations.

4.2 New Algorithm for DOD: Crucial Observations

As in the case of NTSCD, we have designed a new algorithm for the computation
of DOD, which is relatively simple and asymptotically faster than the DOD
algorithm of Ranganath et al. [33].

Given a CFG, our algorithm first computes for each predicate p the set Vp of
nodes that are on all maximal paths from p. The definition of DOD implies that
only pairs of nodes in Vp can be DOD on p. For every predicate p we build an
auxiliary graph Ap with nodes Vp and from this graph we get all pairs of nodes
that are DOD on p. The graph Ap is defined as follows.

Definition 4 (V ′-interval [13]). Given a CFG G = (V,E) and a subset V ′ ⊆
V , a path n1 . . . nk such that k ≥ 2, n1, nk ∈ V ′, and ∀1 < i < k : ni �∈ V ′ is
called a V ′-interval from n1 to nk in G.

In other words, a V ′-interval is a finite path with at least one edge that has
the first and the last node in V ′ but no other node on the path is in V ′.
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Definition 5 (Graph Ap
2). Given a CFG G = (V,E), a predicate node p ∈

Predicates(G) and the subset Vp ⊆ V of nodes that are on all maximal paths
from p, the Ap = (Vp, Ep) is the graph where

Ep = {(x, y) | there exists a Vp -interval from x to y in G}.

In this subsection, we describe the connections between these graphs and
DOD that underpin our algorithm. The proofs of the theorems can be found in
the extended version of this paper [8].

Given a predicate p of a CFG G, the graph Ap does not have to be a CFG as
nodes in Ap can have more than two successors. However, Ap preserves exactly
all possible orders of the first occurrences of nodes in Vp on maximal paths in G
starting from p. More precisely, for each maximal path from p in G, there exists
a maximal path from p in Ap with the same order of the first occurrences of all
nodes in Vp, and vice versa. Further, it turns out that there are no nodes DOD
on p unless Ap has the right shape.

Definition 6 (Right shape of Ap ). Given a CFG G, a predicate node p ∈
Predicates(G) and the graph Ap = (Vp, Ep), we say that Ap has the right shape
if it consists only of a cycle and the node p with at least two edges going to some
nodes on the cycle (i.e., the nodes of Vp � {p} can be labeled n1, . . . , nk such
that Ep = {(n1, n2), (n2, n3), . . . , (nk−1, nk), (nk, n1)}∪{(p, ni) | i ∈ I} for some
I ⊆ {1, . . . , k} with |I| ≥ 2).

Figure 6 depicts an Ap which has the right shape. In the following text, we
work only with Ap graphs in the right shape.

Let s1 and s2 be the two successors of p in G. Note that s1 and s2 may, but
do not have to be in Ap. To compute the pairs of nodes that are DOD on p,
we need to know all possible orders of the first occurrences of nodes in Vp on
the maximal paths in G starting in s1 and s2. Hence, for each successor si we
compute the set Si of nodes that appear as the first node of Vp on some maximal
path from si in G. Formally, for i ∈ {1, 2}, we define

Si = {n ∈ Vp | there exists a path si . . . n ∈ (V � Vp)∗.Vp in G}.

The nodes in S1 ∪ S2 are exactly all the successors of p in Ap. Further, the
maximal paths from the nodes of Si in Ap reflect exactly all possible orders
of the first occurrences of nodes in Vp on maximal paths in G starting in si.
If S1 and S2 are not disjoint, then there exist two maximal paths in G, one
starting in s1 and the other in s2, that differ only in prefixes of nodes outside
Vp. The definition of DOD implies that there are no nodes DOD on p in this
case. Therefore we assume that S1 and S2 are disjoint.

The nodes in Si divide the cycle of Ap into si-strips, which are parts of the
cycle starting with a node from Si and ending before the next node of Si.

2 Graph Ap can be defined as the graph induced by Vp in terms of Danicic et al. [13].
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p

n1 n2 n3 n4

n5n6n7n8

s1-strips (blue):
n1n2n3n4n5n6

n7n8

s2-strips (red):
n2n3n4

n5n6n7n8n1

Fig. 6. An example of Ap in the right shape. Strips are computed for S1 = {n1, n7}
(blue nodes) and S2 = {n2, n5} (red nodes). (Color figure online)

Definition 7 (si-strip). Let i ∈ {1, 2}. An si-strip is a path n . . . m ∈ Si.(Vp �
Si)∗ in Ap such that the successor of m in Ap is a node in Si.

An example of Ap with si-strips is in Fig. 6. The si-strips directly say which
pairs of nodes of Vp are in the same order on all maximal paths from si in G.
In particular, a node a is before any occurrence of node b on all maximal paths
from a successor s of p in G if and only if there is an s-strip containing both a
and b where a is before b. As a corollary, we get the following theorem:

Theorem 2. Let p be a predicate with successors s1, s2 such that Ap has the
right shape and S1 ∩ S2 = ∅. Then nodes a, b ∈ Vp are DOD on p if and only if

– there exists an s1-strip in Ap that contains a before b and
– there exists an s2-strip in Ap that contains b before a.

Consider again the Ap in Fig. 6. The theorem implies that nodes n1, n5 are
DOD on p as they appear in s1-strip n1n2n3n4n5n6 and in s2-strip n5n6n7n8n1

in the opposite order. Nodes n1, n6 are DOD on p for the same reason.
With use of the previous theorem, we can find a regular language over Vp

such that there exist nodes a, b DOD on p iff some unfolding of the cycle in Ap

is in the language.

Theorem 3. Let p be a predicate with successors s1, s2 such that Ap has the
right shape and S1 ∩ S2 = ∅. Further, let U = Vp � (S1 ∪ S2). There are some
nodes a, b DOD on p if and only if the cycle in Ap has an unfolding of the form
S1.U

∗.(S2.U
∗)∗.S2.U

∗.(S1.U
∗)∗.

Finally, an unfolding of the mentioned form can be directly used for the
computation of nodes that are DOD on p.

Theorem 4. Let p be a predicate with successors s1, s2 such that Ap has the
right shape and S1 ∩ S2 = ∅. Further, let Ap have an unfolding of the form
S1.U

∗.(S2.U
∗)∗.S2.U

∗.(S1.U
∗)∗ where U = Vp � (S1 ∪ S2). Then there is exactly

one path m1 . . . mi ∈ S1.U
∗.S2 and exactly one path o1 . . . oj ∈ S2.U

∗.S1 on the
cycle. Moreover, p DOD−−→ {a, b} if and only if m1 . . . mi−1 contains a and o1 . . . oj−1

contains b (or the other way round).
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Algorithm 3: The algorithm computing Vn for all nodes n

Input: a CFG G = (V, E)
Output: Vn = {m ∈ V | m is on all maximal paths from n} for all n ∈ V

1 Procedure visit(n, r) // Auxiliary procedure

2 n.counter ← n.counter − 1
3 if n.counter = 0 ∧ r �∈ Vn then
4 Vn ← Vn ∪ {r}
5 for m ∈ Predecessors(n) do
6 visit(m, r)

7

8 Procedure compute(n) // ‘Coloring the graph red’ for a given n
9 for m ∈ V do

10 m.counter ← |Successors(m)|
11 Vn ← Vn ∪ {n}
12 for m ∈ Predecessors(n) do
13 visit(m, n)

14

15 Procedure computeVps // Computation of sets Vn for all nodes n
16 for n ∈ V do
17 Vn ← ∅
18 for n ∈ V do
19 compute(n)

4.3 New Algorithm for DOD: Pseudocode and Complexity

Our DOD algorithm is shown in Algorithms 3 and 4. As nearly all applications
of DOD need also NTSCD, we present the algorithm with a simple extension
(gray lines with asterisks) that simultaneously computes NTSCD.

The DOD algorithm starts at line 20 of Algorithm 4. The first step is to
compute the sets Vp for all predicate nodes p of a given CFG G. The computation
of predicate nodes can be found in Algorithm 3. It is a slightly modified version
of Algorithm 2. Recall that the procedure compute(n) of Algorithm 2 marks red
every node such that all maximal paths from the node contain n. The procedure
compute(n) of Algorithm 3 does in principle the same, but instead of the red
color it marks the nodes with the identifier of the node n. Every node m collects
these marks in set Vm. After we run compute(n) for all the nodes n in the
graph, each node m has in its set Vm precisely all nodes that are on all maximal
paths from m. For the computation of DOD, only the sets Vp for predicate nodes
p are needed, but the extension computing NTSCD may use all these sets.

When the sets Vp are calculated, we compute DOD (and NTSCD) depen-
dencies for each predicate node separately by procedures computeDOD(p)
and computeNTSCD(p). The procedure computeDOD(p) first constructs the
graph Ap with the use of buildAp(p). Nodes of the graph are these of Vp. To
compute edges, we trigger depth-first search in G from each n ∈ Vp. If we find
a node m ∈ Vp, we add the edge (n,m) to the graph Ap and stop the search on
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Algorithm 4: The new DOD algorithm which computes also
NTSCD if the gray lines are included (computeVps is given in Algo-
rithm 3)

Input: a CFG G = (V, E)
Output: the DOD relation stored in dod (and NTSCD stored in ntscd)

1 Procedure computeDOD(p) // Computation of DOD for predicate p
2 Ap ← buildAp(p) // Get the graph Ap

3 if Ap does not have the right shape then
4 return ∅
5 S1, S2 ← computeS1S2(p) // Get the sets S1, S2

6 if S1 ∩ S2 �= ∅ then
7 return ∅
8 n1n2 . . . nt ← unfoldCycle(Ap, S1) // Unfold the cycle of Ap

9 U ← Vp � (S1 ∪ S2)
10 if n1n2 . . . nt �∈ (S1.U

∗)+.(S2.U
∗)+.(S1.U

∗)∗ then // Apply Thm. 3

11 return ∅
12 m1 . . . mi ← extract(n1n2 . . . nt, S1.U

∗.S2) // Apply Thm. 4

13 o1 . . . oj ← extract(n1n2 . . . nt, S2.U
∗.S1)

14 return
{
p DOD−−→ {a, b} | a ∈ {m1, . . . , mi−1}, b ∈ {o1, . . . , oj−1}

}

15

*16 Procedure computeNTSCD(p) // Computation of NTSCD for

predicate p
*17 {s1, s2} ← Successors(p)
*18 return {p NTSCD−−−→ n | n ∈ (Vs1 � Vs2) ∪ (Vs2 � Vs1)}
19

20 computeVps // Computation of DOD and NTSCD for all nodes

21 dod ← ∅
*22 ntscd ← ∅
23 for p ∈ Predicates(G) do
24 dod ← dod ∪ computeDOD(p)

*25 ntscd ← ntscd ∪ computeNTSCD(p)

this path. When the graph Ap is constructed, we check whether it has the right
shape. If not, we return ∅ as there are no nodes DOD on p in this case.

The next step is to compute the sets S1 and S2. Again, we apply a similar
depth-first search as in the construction of Ap described above. If the sets S1, S2

are not disjoint, we return ∅ as there are no nodes DOD on p.
Then we unfold the cycle in Ap from an arbitrary node in S1, compute the

set U , and check whether the unfolding matches (S1.U
∗)+.(S2.U

∗)+.(S1.U
∗)∗.

Note that any unfolding starting in S1 matches this language iff the cycle has
an unfolding of the form S1.U

∗.(S2.U
∗)∗.S2.U

∗.(S1.U
∗)∗ of Theorem 3. Hence,

we return ∅ if the check fails.
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Fig. 7. A CFG with |V | nodes that has the DOD relation of size Θ(|V |3).

Finally, we extract the paths of the form S1.U
∗.S2 and S2.U

∗.S1 from the
unfolding. Note that the last node of the latter path can be the first node of the
unfolding. Finally, we compute the DOD dependencies according to Theorem 4.

The procedure computeNTSCD(p) used for the computation of NTSCD
simply follows Definition 2: it makes dependent on p each node that is on all
maximal paths from the successor s1 but not on all maximal paths from the
successor s2 or symmetrically for s2 and s1.

As the correctness of our algorithm comes directly from the observations
made in the previous subsection, it remains only to analyze its complexity. The
procedure computeVps consists of two cycles in sequence. The first cycle runs
in O(|V |). The second cycle calls O(|V |)-times the procedure compute(n). This
procedure is essentially identical to the procedure of the same name in Algo-
rithm 2 and so is its time complexity, namely O(|V | + |E|). Note that sets can
be represented by bitvectors and therefore adding an element and checking the
presence of an element in a set are constant-time. Overall, the procedure com-

puteVps runs in O(|V | · (|V | + |E|)), which is O(|V |2) for CFGs.
Now we discuss the complexity of the procedure computeDOD(p). Creat-

ing the graph Ap requires calling depth-first search O(|V |) times, which yields
O(|V | · |E|) in total. Computation of S1, S2 requires another two calls of depth-
first search, which is in O(|E|). When sets are represented as bitvectors, checking
that S1 and S2 are disjoint is in O(|V |). Unfolding the cycle, matching the unfold-
ing to the language (line 10), and the procedure extract run also in O(|V |).
The construction of the DOD relation on line 14 is in O(|V |2). Altogether, com-

puteDOD(p) runs in O(|V | · |E| + |V |2) which simplifies to O(|V |2) for CFGs.
computeDOD is called O(|V |) times, so the overall complexity of computing

DOD for a CFG G = (V,E) is O(|V |3). If we compute also NTSCD, we make
O(|V |) extra calls to computeNTSCD(p), where one call takes O(|V |) time.
Therefore, the asymptotic complexity of computing NTSCD with DOD does not
change from computing DOD only.

Our algorithm running in time O(|V |3) is asymptotically optimal as there
exist graphs with DOD relations of size Θ(|V |3). For example, the CFG in Fig. 7
has |V | = 4k + 1 nodes and the corresponding DOD relation
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{qi
DOD−−→ {nj ,ml} | i ∈ {1, . . . , k + 1}, j, l ∈ {1, . . . , k}}

is of size k3 + k2 ∈ Θ(|V |3).

5 Comparison to Control Closures

In 2011, Danicic et al. [13] introduced control closures (CC) that generalize con-
trol dependence from CFGs to arbitrary graphs. In particular, strong control
closure, which is sensitive to non-termination, generalizes strong control depen-
dence including NTSCD and DOD.

Definition 8 (Strongly control-closed set). Let G = (V,E) be a CFG and
let U ⊆ V . The set U is strongly control-closed3 in G if and only if for every
node v ∈ V � U that is reachable in G from a node in U , one of these holds:

– there is no node in U reachable from v or
– there exists a node u ∈ U such that all maximal paths from v contain u and

it is the first node from U on all these paths.

In other words, whenever we leave a strongly control-closed set, we either
cannot return back or we have to return back to the set in a certain node.

Definition 9 (Strong control closure, strong CC). Let G = (V,E) be a
CFG and V ′ ⊆ V . A strong control closure (strong CC) of V ′ is a strongly
control-closed set U ⊇ V ′ such that there is no strongly control-closed set U ′

satisfying U � U ′ ⊇ V ′.

Danicic et al. present an algorithm for the computation of strong control
closures running in O(|V |4) [13, Theorem 66]. In fact, the algorithm uses a
procedure Γ that is very similar to our procedure compute(n) of Algorithm 2.

We can also define the closure of a set of nodes under NTSCD and DOD.

Definition 10 (NTSCD and DOD closure). Let G = (V,E) be a CFG. A
NTSCD and DOD closure of a set V ′ ⊆ V is the smallest set U ⊇ V ′ satisfying

(n ∈ U ∧ p NTSCD−−−→ n) =⇒ p ∈ U and (a, b ∈ U ∧ p DOD−−→ {a, b}) =⇒ p ∈ U.

Definition 10 directly provides an algorithm computing the NTSCD and DOD
closure of a given set V ′ ⊆ V . Roughly speaking, if we represent the NTSCD
relation with edges and the DOD relation with hyperedges in a directed hyper-
graph with nodes V , the closure computation amounts to gathering backward
reachable nodes from V ′.
3 We adjusted the definition to the fact that predicates in our CFGs always have two

outgoing edges (i.e., they are complete in terms of Danicic et al. [13]). The original
definition [13] works with CFGs where each predicate has at most two successors
and considers also paths that may end in a predicate with less than two successors.
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Danicic et al. [13, Lemmas 93 and 94] proved that for a CFG G = (V,E) with
a distinguished start node from which all nodes in V are reachable and a subset
U ⊆ V such that start ∈ U , the set U is strongly control-closed iff it is closed
under NTSCD and DOD. Hence, on graphs with such a start node, the strong
CC of a set V ′ containing the start node can be computed also by computing
its NTSCD and DOD closure. Computation of the NTSCD and DOD closure
runs in O(|V |3) as the backward reachability is dominated by the computation
of NTSCD and DOD relations.

A substantial difference between the algorithm for strong CC by Danicic et
al. [13] and our algorithm is that we are able to compute DOD and NTSCD
separately, whereas the former is not. Moreover, our algorithm for NTSCD and
DOD closure is asymptotically faster.

6 Experimental Evaluation

We implemented our algorithms for the computation of NTSCD, DOD, and the
NTSCD and DOD closure in C++ on top of the LLVM [25] infrastructure. The
implementation is a part of the library for program analysis and slicing called
DG [6], which is used for example in the verification and test generation tool
Symbiotic [7]. We also implemented the original Ranganath et al.’s algorithms
for NTSCD and DOD, the fixed versions of these algorithms from Subsects. 3.1
and 4.1, and the algorithm for the computation of strong CC by Danicic et al.

In the implementation of the strong CC algorithm by Danicic et al. [13], we
use our procedure compute(n) of Algorithm 2 to implement the function Γ .
This should have only a positive effect as this procedure is more efficient than
iterating over all edges in a copy of the graph and removing them [13].

In our experiments, we use CFGs of functions (where nodes of the CFG
represent basic blocks of the function) obtained in the following way. We took all
benchmarks from the Competition on Software Verification (SV-COMP) 2020.4

These benchmarks contain many artificial or generated code, but also a lot of
real-life code, e.g., from the Linux project. Each source code file was compiled
with clang into LLVM and preprocessed by the -lowerswitch pass to ensure
that every basic block has at most two successors. Then we extracted individual
functions and removed those with less than 100 basic blocks, as the computation
of control dependence runs swiftly on small graphs. Because it is possible that
one function is present in multiple benchmarks, the next step was to remove
these duplicate functions. For every function, we computed the number of nodes
and edges in its CFG, and performed DFS on the CFG to obtain the number
of tree, forward, cross and back edges, and the depth of the DFS tree. If two or
more functions shared the name and all the computed numbers, we kept only
one such function. Note that this process may have removed also a function that
was not a duplicate of some other, but only with a low probability. At the end,
we were left with 2440 functions. The biggest function has 27851 basic blocks.
Table 2 shows the distribution of the sizes of the generated CFGs.
4 https://github.com/sosy-lab/sv-benchmarks, tag svcomp20.

https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks
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Table 2. The numbers of considered CFGs by their sizes. The size of a CFG is the
number of its nodes, which is the number of basic blocks of the corresponding function.

size number size number size number

100 – 199 1713 500 – 599 35 900 – 999 3

200 – 299 355 600 – 699 29 1000 – 1999 23

300 – 399 159 700 – 799 18 2000 – 9999 22

400 – 499 73 800 – 899 7 ≥ 10000 3

Fig. 8. Comparison of the running times of the new NTSCD algorithm and the incor-
rect (left) and the fixed (right) versions of the original NTSCD algorithm. TO stands
for timeout.

The experiments were run on machines with AMD EPYC CPU with the
frequency 3.1 GHz. Each benchmark run was constrained to 1 core and 8 GB
of RAM. We used the tool Benchexec [4] to enforce resources isolation and to
measure their usage. All presented times are CPU times. We set the timeout to
100 s for each algorithm run.

In the following, original algorithms refers to the algorithms of Ranganath
et al. (we distinguish between the incorrect and the fixed versions when needed)
and new algorithms refers to the algorithms introduced in this paper.

NTSCD Algorithms. In the first set of experiments, we compared the new
algorithm for NTSCD against the incorrect and the fixed version of the original
NTSCD algorithm. Although it seems that comparing to the incorrect version
is meaningless, we did not want to compare only to the fixed version as the
provided fix slows down the algorithm.

The results are depicted in Fig. 8. On the left scatter plot, there is the
comparison of the new algorithm to the incorrect original algorithm and on
the right scatter plot we compare to the fixed original algorithm. As we can see,
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Fig. 9. Comparison of the running times of the new and the (fixed) original DOD
algorithm. We use the considered benchmarks (left) and random graphs with 500 nodes
and the number of edges specified by the x-axis (right).

the new algorithm outperforms the original algorithm significantly. The incorrect
original algorithm produced a wrong NTSCD relation in 98.6 % of the considered
benchmarks. The fixed version of the original algorithm returned precisely the
same NTSCD relations as the new algorithm. We can also see that the scatter
plot on the right contains more timeouts of the original algorithm. It supports
the claim that the fix slows down the original algorithm.

DOD Algorithms. We compared the new DOD algorithm to the fixed version
of the original DOD algorithm. As the fix does not change the asymptotic com-
plexity of the original algorithm, we do not compare the new algorithm with the
incorrect version of the original algorithm. The results of the experiments are
displayed in Fig. 9 (left). We can see that the new algorithm is again very fast.
In fact, the results resemble the results of the pure NTSCD algorithm, which is
basically the part of the DOD algorithm that computes Vp sets. It benefits from
early checks that detect predicate nodes with no DOD dependencies.

As mentioned in the introduction, DOD is empty for structured programs
as their CFGs are reducible. We do not know precisely how many of the 2440
considered functions have irreducible CFGs, but we know that 2373 of them use
goto statements. DOD relations for 12 functions was non-empty, which means
that CFGs of these functions are irreducible. Note that there may have been
other irreducible CFGs with empty DOD relation.

Additionally, we tested the DOD algorithms on randomly generated graphs,
where we can expect that irreducible graphs emerge more often. Figure 9 (right)
shows the results for graphs that have 500 nodes and 50, 100, 150, . . . randomly
distributed edges (such that every node has at most two successors). Each pre-
sented running time is in fact an average of 10 measurements with different
random graphs. We can see that the new algorithm is agnostic to the number of
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Fig. 10. Comparison of the running times of the strong CC algorithm by Danicic et
al. [13] and our algorithm for the NTSCD and DOD closure.

edges. Its running time in this experiment ranges from 4.12 · 10−3 to 8.89 · 10−3

seconds. The original DOD algorithm does not scale well with the increasing
number of edges.

Strong CC Algorithm. We also compare the strong CC algorithm of Dani-
cic et al. [13] against our NTSCD and DOD closure algorithm on sets of nodes
containing a distinguished start node, where these two algorithms produce equiv-
alent results. For these experiments, we need a starting set that is going to be
closed. We decided to run these experiments on the considered functions that
have at least two exit points. The starting set consists of the node representing
the entry point and the node representing one of the exit points. The closure of
this set contains all nodes that may influence getting to the other exit points.
The results are shown on the scatter plot in Fig. 10. Our algorithm clearly out-
performs the strong CC algorithm.

7 Conclusion

We studied algorithms for the computation of strong control dependence,
namely non-termination sensitive control dependence (NTSCD) and decisive
order dependence (DOD) by Ranganath et al. [33] and strong control closures
(strong CC) by Danicic et al. [13] on control flow graphs where each branching
statement has two successors. We have demonstrated flaws in the original algo-
rithms for computation of NTSCD and DOD and we have suggested corrections.
Moreover, we have introduced new algorithms for NTSCD, DOD, and strong CC
that are asymptotically faster. All the mentioned algorithms have been imple-
mented and our experiments confirm dramatically better performance of the new
algorithms.
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M.R.: A unifying theory of control dependence and its application to arbitrary
program structures. Theor. Comput. Sci. 412(49), 6809–6842 (2011). https://doi.
org/10.1016/j.tcs.2011.08.033

14. Darte, A., Silber, G.-A.: Temporary arrays for distribution of loops with control
dependences. In: Bode, A., Ludwig, T., Karl, W., Wismüller, R. (eds.) Euro-Par
2000. LNCS, vol. 1900, pp. 357–367. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-44520-X 47

15. Denning, D.E., Denning, P.J.: Certification of programs for secure information ow.
Commun. ACM 20(7), 504–513 (1977). https://doi.org/10.1145/359636.359712

16. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987).
https://doi.org/10.1145/24039.24041

https://doi.org/10.1016/j.ipl.2007.10.002
https://doi.org/10.1016/j.ipl.2007.10.002
https://doi.org/10.1145/2501654.2501667
https://doi.org/10.1145/2501654.2501667
https://doi.org/10.1007/978-3-642-00593-0_15
https://doi.org/10.1007/978-3-642-00593-0_15
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1145/231379.231435
https://doi.org/10.1007/978-3-030-59152-6_33
https://doi.org/10.1007/978-3-030-72013-1_31
https://arxiv.org/abs/2011.01564
https://arxiv.org/abs/2011.01564
https://doi.org/10.1007/978-3-030-34968-4_6
https://doi.org/10.1007/11823230_25
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1016/j.tcs.2011.08.033
https://doi.org/10.1016/j.tcs.2011.08.033
https://doi.org/10.1007/3-540-44520-X_47
https://doi.org/10.1007/3-540-44520-X_47
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/24039.24041


Fast Computation of Strong Control Dependencies 909

17. Gallagher, K., Binkley, D.: Program slicing. In: FoSM 2008, pp. 58–67 (2008).
https://doi.org/10.1109/FOSM.2008.4659249

18. Giffhorn, D.: Slicing of concurrent programs and its application to information flow
control. Ph.D. thesis, Karlsruhe Institute of Technology (2012). http://digbib.ubka.
uni-karlsruhe.de/volltexte/1000028814

19. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information ow control based on program dependence graphs. Int. J. Inf. Sec.
8(6), 399–422 (2009). https://doi.org/10.1007/s10207-009-0086-1

20. Harrold, M.J., Rothermel, G., Sinha, S.: Computation of interprocedural control
dependence. In: ISSTA 1998, pp. 11–20. ACM (1998). https://doi.org/10.1145/
271771.271780

21. Hecht, M.S., Ullman, J.D.: Characterizations of reducible ow graphs. J. ACM
21(3), 367–375 (1974). https://doi.org/10.1145/321832.321835

22. Horwitz, S., Reps, T.W., Binkley, D.W.: Interprocedural slicing using dependence
graphs. ACM Trans. Program. Lang. Syst. 12(1), 26–60 (1990). https://doi.org/
10.1145/77606.77608

23. Khanfar, H., Lisper, B., Masud, A.N.: Static backward program slicing for safety-
critical systems. In: de la Puente, J.A., Vardanega, T. (eds.) Ada-Europe 2015.
LNCS, vol. 9111, pp. 50–65. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-19584-1 4
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Abstract. We present a novel verification technique to prove properties
of a class of array programs with a symbolic parameter N denoting the
size of arrays. The technique relies on constructing two slightly different
versions of the same program. It infers difference relations between the
corresponding variables at key control points of the joint control-flow
graph of the two program versions. The desired post-condition is then
proved by inducting on the program parameter N , wherein the differ-
ence invariants are crucially used in the inductive step. This contrasts
with classical techniques that rely on finding potentially complex loop
invaraints for each loop in the program. Our synergistic combination of
inductive reasoning and finding simple difference invariants helps prove
properties of programs that cannot be proved even by the winner of
Arrays sub-category in SV-COMP 2021. We have implemented a proto-
type tool called Diffy to demonstrate these ideas. We present results
comparing the performance of Diffy with that of state-of-the-art tools.

1 Introduction

Software used in a wide range of applications use arrays to store and update
data, often using loops to read and write arrays. Verifying correctness properties
of such array programs is important, yet challenging. A variety of techniques
have been proposed in the literature to address this problem, including inference
of quantified loop invariants [20]. However, it is often difficult to automatically
infer such invariants, especially when programs have loops that are sequentially
composed and/or nested within each other, and have complex control flows.
This has spurred recent interest in mathematical induction-based techniques for
verifying parametric properties of array manipulating programs [11,12,42,44].
While induction-based techniques are efficient and quite powerful, their Achilles
heel is the automation of the inductive argument. Indeed, this often becomes
the limiting step in applications of induction-based techniques. Automating the
induction step and expanding the class of array manipulating programs to which
induction-based techniques can be applied forms the primary motivation for our
work. Rather than being a stand-alone technique, we envisage our work being
used as part of a portfolio of techniques in a modern program verification tool.
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We propose a novel and practically efficient induction-based technique that
advances the state-of-the-art in automating the inductive step when reasoning
about array manipulating programs. This allows us to automatically verify inter-
esting properties of a large class of array manipulating programs that are beyond
the reach of state-of-the-art induction-based techniques, viz. [12,42]. The work
that comes closest to us is Vajra [12], which is part of the portfolio of tech-
niques in VeriAbs [1] – the winner of SV-COMP 2021 in the Arrays Reach
sub-category. Our work addresses several key limitations of the technique imple-
mented in Vajra, thereby making it possible to analyze a much larger class of
array manipulating programs than can be done by VeriAbs. Significantly, this
includes programs with nested loops that have hitherto been beyond the reach
of automated techniques that use mathematical induction [12,42,44].

A key innovation in our approach is the construction of two slightly differ-
ent versions of a given program that have identical control flow structures but
slightly different data operations. We automatically identify simple relations,
called difference invariants, between corresponding variables in the two versions
of a program at key control flow points. Interestingly, these relations often turn
out to be significantly simpler than inductive invariants required to prove the
property directly. This is not entirely surprising, since the difference invariants
depend less on what individual statements in the programs are doing, and more
on the difference between what they are doing in the two versions of the pro-
gram. We show how the two versions of a given program can be automatically
constructed, and how differences in individual statements can be analyzed to
infer simple difference invariants. Finally, we show how these difference invari-
ants can be used to simplify the reasoning in the inductive step of our technique.

We consider programs with (possibly nested) loops manipulating arrays,
where the size of each array is a symbolic integer parameter N (> 0)1. We
verify (a sub-class of) quantified and quantifier-free properties that may depend
on the symbolic parameter N . Like in [12], we view the verification problem as
one of proving the validity of a parameterized Hoare triple {ϕ(N)} PN {ψ(N)}
for all values of N (> 0), where arrays are of size N in the program PN , and N
is a free variable in ϕ(·) and ψ(·).

To illustrate the kind of programs that are amenable to our technique, con-
sider the program shown in Fig. 1(a), adapted from an SV-COMP benchmark.
This program has a couple of sequentially composed loops that update arrays
and scalars. The scalars S and F are initialized to 0 and 1 respectively before
the first loop starts iterating. Subsequently, the first loop computes a recurrence
in variable S and initializes elements of the array B to 1 if the corresponding
elements of array A have non-negative values, and to 0 otherwise. The outermost
branch condition in the body of the second loop evaluates to true only if the
program parameter N and the variable S have same values. The value of F is
reset based on some conditions depending on corresponding entries of arrays A
and B. The pre-condition of this program is true; the post-condition asserts that
F is never reset in the second loop.

1 For a more general class of programs supported by our technique, please see [13].
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// assume(true)
1. S = 0; F = 1;
2. for(i = 0; i< N; i++) {
3. S = S + 1;
4. if ( A[i] >= 0 ) B[i] = 1;
5. else B[i] = 0;
6. }
7. for(j = 0; j< N; j++) {
8. if(S == N) {
9. if ( A[j] >= 0 && !B[j] ) F = 0;
10. if ( A[j] < 0 && B[j] ) F = 0;
11. }
12.}
// assert(F == 1)

(a)

// assume(true)
1. S = 0;
2. for(i=0; i<N; i++) A[i] = 0;
3. for(j=0; j<N; j++) S = S + 1;
4. for(k=0; k<N; k++) {
5. for(l=0; l<N; l++) A[l] = A[l] + 1;
6. A[k] = A[k] + S;
7. }
// assert(forall x in [0,N), A[x]==2*N)

(b)

Fig. 1. Motivating examples

State-of-the-art techniques find it difficult to prove the assertion in this pro-
gram. Specifically, Vajra [12] is unable to prove the property, since it cannot
reason about the branch condition (in the second loop) whose value depends on
the program parameter N . VeriAbs [1], which employs a sequence of techniques
such as loop shrinking, loop pruning, and inductive reasoning using [12] is also
unable to verify the assertion shown in this program. Indeed, the loops in this
program cannot be merged as the final value of S computed by the first loop
is required in the second loop; hence loop shrinking does not help. Also, loop
pruning does not work due to the complex dependencies in the program and the
fact that the exact value of the recurrence variable S is required to verify the
program. Subsequent abstractions and techniques applied by VeriAbs from its
portfolio are also unable to verify the given post-condition. VIAP [42] translates
the program to a quantified first-order logic formula in the theory of equality
and uninterpreted functions [32]. It applies a sequence of tactics to simplify and
prove the generated formula. These tactics include computing closed forms of
recurrences, induction over array indices and the like to prove the property. How-
ever, its sequence of tactics is unable to verify this example within our time limit
of 1 min.

Benchmarks with nested loops are a long standing challenge for most veri-
fiers. Consider the program shown in Fig. 1(b) with a nested loop in addition
to sequentially composed loops. The first loop initializes entries in array A to
0. The second loop aggregates a constant value in the scalar S. The third loop
is a nested loop that updates array A based on the value of S. The entries of
A are updated in the inner as well as outer loop. The property asserts that on
termination, each array element equals twice the value of the parameter N .

While the inductive reasoning of Vajra and the tactics in VIAP do not sup-
port nested loops, the sequence of techniques used by VeriAbs is also unable to
prove the given post-condition in this program. In sharp contrast, our prototype
tool Diffy is able to verify the assertions in both these programs automati-
cally within a few seconds. This illustrates the power of the inductive technique
proposed in this paper.
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The technical contributions of the paper can be summarized as follows:

– We present a novel technique based on mathematical induction to prove inter-
esting properties of a class of programs that manipulate arrays. The crucial
inductive step in our technique uses difference invariants from two slightly
different versions of the same program, and differs significantly from other
induction-based techniques proposed in the literature [11,12,42,44].

– We describe algorithms to transform the input program for use in our induc-
tive verification technique. We also present techniques to infer simple dif-
ference invariants from the two slightly different program versions, and to
complete the inductive step using these difference invariants.

– We describe a prototype tool Diffy that implements our algorithms.
– We compare Diffy vis-a-vis state-of-the-art tools for verification of C pro-

grams that manipulate arrays on a large set of benchmarks. We demonstrate
that Diffy significantly outperforms the winners of SV-COMP 2019, 2020
and 2021 in the Array Reach sub-category.

2 Overview and Relation to Earlier Work

In this section, we provide an overview of the main ideas underlying our tech-
nique. We also highlight how our technique differs from [12], which comes closest
to our work. To keep the exposition simple, we consider the program PN , shown
in the first column of Fig. 2, where N is a symbolic parameter denoting the sizes
of arrays a and b. We assume that we are given a parameterized pre-condition
ϕ(N), and our goal is to establish the parameterized post-condition ψ(N), for
all N > 0. In [12,44], techniques based on mathematical induction (on N) were
proposed to solve this class of problems. As with any induction-based technique,
these approaches consist of three steps. First, they check if the base case holds,
i.e. if the Hoare triple {ϕ(N)} PN {ψ(N)} holds for small values of N , say
1 ≤ N ≤ M , for some M > 0. Next, they assume that the inductive hypoth-
esis {ϕ(N − 1)} PN−1 {ψ(N − 1)} holds for some N ≥ M + 1. Finally, in
the inductive step, they show that if the inductive hypothesis holds, so does
{ϕ(N)} PN {ψ(N)}. It is not hard to see that the inductive step is the most
crucial step in this style of reasoning. It is also often the limiting step, since not
all programs and properties allow for efficient inferencing of {ϕ(N)} PN {ψ(N)}
from {ϕ(N − 1)} PN−1 {ψ(N − 1)}.

Like in [12,44], our technique uses induction on N to prove the Hoare triple
{ϕ(N)} PN {ψ(N)} for all N > 0. Hence, our base case and inductive hypothesis
are the same as those in [12,44]. However, our reasoning in the crucial inductive
step is significantly different from that in [12,44], and this is where our primary
contribution lies. As we show later, not only does this allow a much larger class of
programs to be efficiently verified compared to [12,44], it also permits reasoning
about classes of programs with nested loops, that are beyond the reach of [12,44].
Since the work of [12] significantly generalizes that of [44], henceforth, we only
refer to [12] when talking of earlier work that uses induction on N .

In order to better understand our contribution and its difference vis-a-vis the
work of [12], a quick recap of the inductive step used in [12] is essential. The



Diffy: Inductive Reasoning of Array Programs Using Difference Invariants 915

for(i=0; i<N; i++)

for(j=0; j<N; j++)

x = x + N*N;
a[i] = a[i] + N;

PN

b[j] = x + j;

for(i=0; i<N-1; i++)

for(j=0; j<N-1; j++)

x = x + N*N;
a[i] = a[i] + N ;

b[j] = x + j;

x = x + N*N;
a[N-1] = a[N-1]+N;

b[N-1] = x + N-1;

for(i=0; i<N-1; i++)

for(j=0; j<N-1; j++)

x = x + N*N;
a[i] = a[i] + N ;

b[j] = x+N*N+ j;

x = x + N*N ;
a[N-1] = a[N-1]+N;

b[N-1] = x + N-1;

QN−1

peel(PN )

for(i=0; i<N-1; i++)

for(j=0; j<N-1; j++)

x=x+(N-1)*(N-1);
a[i] = a[i] + N-1;

x = x + N*N;
a[N-1] = a[N-1]+N;

PN−1

∂PN

for(k=0; k<N-1; k++)
b[k] = b[k] +
(N-1)*(2*N-1)+N*N;

x = 0; x = 0; x = 0; x = 0;

b[j] = x + j;

for(i=0; i<N-1; i++)

x = x + 2*N-1;
a[i] = a[i] + 1;

b[N-1] = x + N-1;

// ϕ(N) = true

//ψ(N) =
(∀j. b[j] = j + N3)

Fig. 2. Pictorial depiction of our program transformations

inductive step in [12] crucially relies on finding a “difference program” ∂PN and a
“difference pre-condition” ∂ϕ(N) such that: (i) PN is semantically equivalent to
PN−1; ∂PN , where ‘;’ denotes sequential composition of programs2, (ii) ϕ(N) ⇒
ϕ(N − 1) ∧ ∂ϕ(N), and (iii) no variable/array element in ∂ϕ(N) is modified by
PN−1. As shown in [12], once ∂PN and ∂ϕ(N) satisfying these conditions are
obtained, the problem of proving {ϕ(N)} PN {ψ(N)} can be reduced to that of
proving {ψ(N − 1) ∧ ∂ϕ(N)} ∂PN {ψ(N)}. This approach can be very effective
if (i) ∂PN is “simpler” (e.g. has fewer loops or strictly less deeply nested loops)
than PN and can be computed efficiently, and (ii) a formula ∂ϕ(N) satisfying
the conditions mentioned above exists and can be computed efficiently.

The requirement of PN being semantically equivalent to PN−1; ∂PN is a very
stringent one, and finding such a program ∂PN is non-trivial in general. In fact,
the authors of [12] simply provide a set of syntax-guided conditionally sound
heuristics for computing ∂PN . Unfortunately, when these conditions are violated
(we have found many simple programs where they are violated), there are no
known algorithmic techniques to generate ∂PN in a sound manner. Even if a pro-
gram ∂PN were to be found in an ad-hoc manner, it may be as “complex” as PN

itself. This makes the approach of [12] ineffective for analyzing such programs.
As an example, the fourth column of Fig. 2 shows PN−1 followed by one possible
∂PN that ensures PN (shown in the first column of the same figure) is semanti-
cally equivalent to PN−1; ∂PN . Notice that ∂PN in this example has two sequen-
tially composed loops, just like PN had. In addition, the assignment statement in
the body of the second loop uses a more complex expression than that present
in the corresponding loop of PN . Proving {ψ(N − 1) ∧ ∂ϕ(N)} ∂PN {ψ(N)}

2 Although the authors of [12] mention that it suffices to find a ∂PN that satisfies
{ϕ(N)} PN−1; ∂PN {ψ(N)}, they do not discuss any technique that takes ϕ(N) or
ψ(N) into account when generating ∂PN .
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may therefore not be any simpler (perhaps even more difficult) than proving
{ϕ(N)} PN {ψ(N)}.

In addition to the difficulty of computing ∂PN , it may be impossible to find
a formula ∂ϕ(N) such that ϕ(N) ⇒ ϕ(N −1) ∧ ∂ϕ(N), as required by [12]. This
can happen even for fairly routine pre-conditions, such as ϕ(N) ≡ (∧N−1

i=0 A[i] =
N

)
. Notice that there is no ∂ϕ(N) that satisfies ϕ(N) ⇒ ϕ(N − 1) ∧ ∂ϕ(N) in

this case. In such cases, the technique of [12] cannot be used at all, even if PN ,
ϕ(N) and ψ(N) are such that there exists a trivial proof of {ϕ(N)} PN {ψ(N)}.

The inductive step proposed in this paper largely mitigates the above prob-
lems, thereby making it possible to efficiently reason about a much larger class
of programs than that possible using the technique of [12]. Our inductive step
proceeds as follows. Given PN , we first algorithmically construct two programs
QN−1 and peel(PN ), such that PN is semantically equivalent to QN−1; peel(PN ).
Intuitively, QN−1 is the same as PN , but with all loop bounds that depend on N
now modified to depend on N −1 instead. Note that this is different from PN−1,
which is obtained by replacing all uses (not just in loop bounds) of N in PN by
N − 1. As we will see, this simple difference makes the generation of peel(PN )
significantly simpler than generation of ∂PN , as in [12]. While generating QN−1

and peel(PN ) may sound similar to generating PN−1 and ∂PN [12], there are fun-
damental differences between the two approaches. First, as noted above, PN−1

is semantically different from QN−1. Similarly, peel(PN ) is also semantically dif-
ferent from ∂PN . Second, we provide an algorithm for generating QN−1 and
peel(PN ) that works for a significantly larger class of programs than that for
which the technique of [12] works. Specifically, our algorithm works for all pro-
grams amenable to the technique of [12], and also for programs that violate
the restrictions imposed by the grammar and conditional heuristics in [12]. For
example, we can algorithmically generate QN−1 and peel(PN ) even for a class of
programs with arbitrarily nested loops – a program feature explicitly disallowed
by the grammar in [12]. Third, we guarantee that peel(PN ) is “simpler” than
PN in the sense that the maximum nesting depth of loops in peel(PN ) is strictly
less than that in PN . Thus, if PN has no nested loops (all programs amenable to
analysis by [12] belong to this class), peel(PN ) is guaranteed to be loop-free. As
demonstrated by the fourth column of Fig. 2, no such guarantees can be given
for ∂PN generated by the technique of [12]. This is a significant difference, since
it greatly simplifies the analysis of peel(PN ) vis-a-vis that of ∂PN .

We had mentioned earlier that some pre-conditions ϕ(N) do not admit any
∂ϕ(N) such that ϕ(N) ⇒ ϕ(N − 1) ∧ ∂ϕ(N). It is, however, often easy to
compute formulas ϕ′(N −1) and Δϕ′(N) in such cases such that ϕ(N) ⇒ ϕ′(N −
1) ∧ Δϕ′(N), and the variables/array elements in Δϕ′(N) are not modified by
either PN−1 or QN−1. For example, if we were to consider a (new) pre-condition
ϕ(N) ≡ ( ∧N−1

i=0 A[i] = N
)

for the program PN shown in the first column of
Fig. 2, then we have ϕ′(N − 1) ≡ ( ∧N−2

i=0 A[i] = N
)

and Δϕ′(N) ≡ (
A[N − 1] =

N
)
. We assume the availability of such a ϕ′(N − 1) and Δϕ′(N) for the given

ϕ(N). This significantly relaxes the requirement on pre-conditions and allows a
much larger class of Hoare triples to be proved using our technique vis-a-vis that
of [12].



Diffy: Inductive Reasoning of Array Programs Using Difference Invariants 917

The third column of Fig. 2 shows QN−1 and peel(PN ) generated by our algo-
rithm for the program PN in the first column of the figure. It is illustrative to
compare these with PN−1 and ∂PN shown in the fourth column of Fig. 2. Notice
that QN−1 has the same control flow structure as PN−1, but is not semanti-
cally equivalent to PN−1. In fact, QN−1 and PN−1 may be viewed as closely
related versions of the same program. Let VQ and VP denote the set of vari-
ables of QN−1 and PN−1 respectively. We assume VQ is disjoint from VP, and
analyze the joint execution of QN−1 starting from a state satisfying the pre-
condition ϕ′(N − 1), and PN−1 starting from a state satisfying ϕ(N − 1). The
purpose of this analysis is to compute a difference predicate D(VQ, VP, N − 1)
that relates corresponding variables in QN−1 and PN−1 at the end of their joint
execution. The above problem is reminiscent of (yet, different from) translation
validation [4,17,24,40,46,48,49], and indeed, our calculation of D(VQ, VP, N −1)
is motivated by techniques from the translation validation literature. An impor-
tant finding of our study is that corresponding variables in QN−1 and PN−1

are often related by simple expressions on N , regardless of the complexity of
PN , ϕ(N) or ψ(N). Indeed, in all our experiments, we didn’t need to go beyond
quadratic expressions on N to compute D(VQ, VP, N − 1).

Once the steps described above are completed, we have Δϕ′(N), peel(PN )
and D(VQ, VP, N − 1). It can now be shown that if the inductive hypothesis,
i.e. {ϕ(N − 1)} PN−1 {ψ(N − 1)} holds, then proving {ϕ(N)} PN {ψ(N)}
reduces to proving {Δϕ′(N) ∧ ψ′(N −1)} peel(PN ) {ψ(N)}, where ψ′(N −1) ≡
∃VP

(
ψ(N − 1) ∧ D(VQ, VP, N − 1)

)
. A few points are worth emphasizing here.

First, if D(VQ, VP, N − 1) is obtained as a set of equalities, the existential quan-
tifier in the formula ψ′(N − 1) can often be eliminated simply by substitu-
tion. We can also use quantifier elimination capabilities of modern SMT solvers,
viz. Z3 [39], to eliminate the quantifier, if needed. Second, recall that unlike
∂PN generated by the technique of [12], peel(PN ) is guaranteed to be “sim-
pler” than PN , and is indeed loop-free if PN has no nested loops. Therefore,
proving {Δϕ′(N) ∧ ψ′(N − 1)} peel(PN ) {ψ(N)} is typically significantly sim-
pler than proving {ψ(N − 1) ∧ ∂ϕ(N)} ∂PN {ψ(N)}. Finally, it may hap-
pen that the pre-condition in {Δϕ′(N) ∧ ψ′(N − 1)} peel(PN ) {ψ(N)} is not
strong enough to yield a proof of the Hoare triple. In such cases, we need to
strengthen the existing pre-condition by a formula, say ξ′(N − 1), such that
the strengthened pre-condition implies the weakest pre-condition of ψ(N) under
peel(PN ). Having a simple structure for peel(PN ) (e.g., loop-free for the entire
class of programs for which [12] works) makes it significantly easier to com-
pute the weakest pre-condition. Note that ξ′(N − 1) is defined over the vari-
ables in VQ. In order to ensure that the inductive proof goes through, we need
to strengthen the post-condition of the original program by ξ(N) such that
ξ(N − 1) ∧ D(VQ, VP, N − 1) ⇒ ξ′(N − 1). Computing ξ(N − 1) requires a
special form of logical abduction that ensures that ξ(N − 1) refers only to vari-
ables in VP . However, if D(VQ, VP, N − 1) is given as a set of equalities (as
is often the case), ξ(N − 1) can be computed from ξ′(N − 1) simply by sub-
stitution. This process of strengthening the pre-condition and post-condition
may need to iterate a few times until a fixed point is reached, similar to what
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happens in the inductive step of [12]. Note that the fixed point iterations may
not always converge (verification is undecidable in general). However, in our
experiments, convergence always happened within a few iterations. If ξ′(N − 1)
denotes the formula obtained on reaching the fixed point, the final Hoare triple
to be proved is {ξ′(N − 1) ∧ Δϕ′(N) ∧ ψ′(N − 1)} peel(PN ) {ξ(N) ∧ ψ(N)},
where ψ′(N − 1) ≡ ∃VP

(
ψ(N − 1) ∧ D(VQ, VP, N − 1)

)
. Having a simple (often

loop-free) peel(PN ) significantly simplifies the above process.
We conclude this section by giving an overview of how QN−1 and peel(PN )

are computed for the program PN shown in the first column of Fig. 2. The second
column of this figure shows the program obtained from PN by peeling the last
iteration of each loop of the program. Clearly, the programs in the first and
second columns are semantically equivalent. Since there are no nested loops in
PN , the peels (shown in solid boxes) in the second column are loop-free program
fragments. For each such peel, we identify variables/array elements modified in
the peel and used in subsequent non-peeled parts of the program. For example,
the variable x is modified in the peel of the first loop and used in the body
of the second loop, as shown by the arrow in the second column of Fig. 2. We
replace all such uses (if needed, transitively) by expressions on the right-hand
side of assignments in the peel until no variable/array element modified in the
peel is used in any subsequent non-peeled part of the program. Thus, the use of
x in the body of the second loop is replaced by the expression x + N * N in the
third column of Fig. 2. The peeled iteration of the first loop can now be moved
to the end of the program, since the variables modified in this peel are no longer
used in any subsequent non-peeled part of the program. Repeating the above
steps for the peeled iteration of the second loop, we get the program shown in
the third column of Fig. 2. This effectively gives a transformed program that
can be divided into two parts: (i) a program QN−1 that differs from PN only
in that all loops are truncated to iterate N − 1 (instead of N) times, and (ii) a
program peel(PN ) that is obtained by concatenating the peels of loops in PN in
the same order in which the loops appeared in PN . It is not hard to see that PN ,
shown in the first column of Fig. 2, is semantically equivalent to QN−1; peel(PN ).
Notice that the construction of QN−1 and peel(PN ) was fairly straightforward,
and did not require any complex reasoning. In sharp contrast, construction of
∂PN , as shown in the bottom half of fourth column of Fig. 2, requires non-trivial
reasoning, and produces a program with two sequentially composed loops.

3 Preliminaries and Notation

We consider programs generated by the grammar shown below:

PB ::= St
St ::= St ; St | v := E | A[E] := E | if(BoolE) then St else St |

for (� := 0; � < UB; � := �+1) {St}
E ::= E op E | A[E] | v | � | c | N

op ::= + | - | * | /
UB ::= UB op UB | � | c | N

BoolE ::= E relop E | BoolE AND BoolE | NOT BoolE | BoolE OR BoolE
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Formally, we consider a program PN to be a tuple (V,L,A,PB, N), where V
is a set of scalar variables, L ⊆ V is a set of scalar loop counter variables, A
is a set of array variables, PB is the program body, and N is a special symbol
denoting a positive integer parameter of the program. In the grammar shown
above, we assume that A ∈ A, v ∈ V \ L, � ∈ L and c ∈ Z. We also assume
that each loop L has a unique loop counter variable � that is initialized at the
beginning of L and is incremented by 1 at the end of each iteration. We assume
that the assignments in the body of L do not update �. For each loop L with
termination condition � < UB, we require that UB is an expression in terms of
N , variables in L representing loop counters of loops that nest L, and constants
as shown in the grammar. Our grammar allows a large class of programs (with
nested loops) to be analyzed using our technique, and that are beyond the reach
of state-of-the-art tools like [1,12,42].

We verify Hoare triples of the form {ϕ(N)} PN {ψ(N)}, where the for-
mulas ϕ(N) and ψ(N) are either universally quantified formulas of the form
∀I (α(I,N) ⇒ β(A,V, I,N)) or quantifier-free formulas of the form η(A,V, N).
In these formulas, I is a sequence of array index variables, α is a quantifier-free
formula in the theory of arithmetic over integers, and β and η are quantifier-free
formulas in the combined theory of arrays and arithmetic over integers.

For technical reasons, we rename all scalar and array variables in the program
in a pre-processing step as follows. We rename each scalar variable using the well-
known Static Single Assignment (SSA) [43] technique, such that the variable
is written at (at most) one location in the program. We also rename arrays
in the program such that each loop updates its own version of an array and
multiple writes to an array element within the same loop are performed on
different versions of that array. We use techniques for array SSA [30] renaming
studied earlier in the context of compilers, for this purpose. In the subsequent
exposition, we assume that scalar and array variables in the program are already
SSA renamed, and that all array and scalar variables referred to in the pre- and
post-conditions are also expressed in terms of SSA renamed arrays and scalars.

4 Verification Using Difference Invariants

The key steps in the application of our technique, as discussed in Sect. 2, are

A1: Generation of QN−1 and peel(PN ) from a given PN .
A2: Generation of ϕ′(N − 1) and Δϕ′(N) from a given ϕ(N).
A3: Generation of the difference invariant D(VQ, VP, N − 1), given ϕ(N − 1),

ϕ′(N − 1), QN−1 and PN−1.
A4: Proving {Δϕ′(N) ∧ ∃VP

(
ψ(N −1) ∧ D(VQ, VP, N −1)

)} peel(PN ) {ψ(N)},
possibly by generation of ξ′(N − 1) and ξ(N) to strengthen the pre- and
post-conditions, respectively.

We now discuss techniques for solving each of these sub-problems.



920 S. Chakraborty et al.

4.1 Generating QN −1 and peel(PN )

The procedure illustrated in Fig. 2 (going from the first column to the third
column) is fairly straightforward if none of the loops have any nested loops
within them. It is easy to extend this to arbitrary sequential compositions of
non-nested loops. Having all variables and arrays in SSA-renamed forms makes
it particularly easy to carry out the substitution exemplified by the arrow shown
in the second column of Fig. 2. Hence, we don’t discuss any further the generation
of QN−1 and peel(PN ) when all loops are non-nested.

for(�1=0; �1<N ; �1++)

for(�2=0; �2<N ; �2++)
L2L1

B1

B2

B3

Fig. 3. A generic nested loop

The case of nested loops is, how-
ever, challenging and requires addi-
tional discussion. Before we present
an algorithm for handling this case,
we discuss the intuition using an
abstract example. Consider a pair of
nested loops, L1 and L2, as shown in
Fig. 3. Suppose that B1 and B3 are
loop-free code fragments in the body
of L1 that precede and succeed the
nested loop L2. Suppose further that the loop body, B2, of L2 is loop-free. To
focus on the key aspects of computing peels of nested loops, we make two sim-
plifying assumptions: (i) no scalar variable or array element modified in B2 is
used subsequently (including transitively) in either B3 or B1, and (ii) every scalar
variable or array element that is modified in B1 and used subsequently in B2, is
not modified again in either B1, B2 or B3. Note that these assumptions are made
primarily to simplify the exposition. For a detailed discussion on how our tech-
nique can be used even with some relaxations of these assumptions, the reader
is referred to [13]. The peel of the abstract loops L1 and L2 is as shown in Fig. 4.
The first loop in the peel includes the last iteration of L2 in each of the N − 1
iterations of L1, that was missed in QN−1. The subsequent code includes the last
iteration of L1 that was missed in QN−1.

for(�1=0; �1<N − 1; �1++)

for(�2=0; �2<N ; �2++)

B2

B2

B1

B3

Fig. 4. Peel of the nested loop

Formally, we use the notation L1(N) to
denote a loop L1 that has no nested loops
within it, and its loop counter, say �1,
increases from 0 to an upper bound that is
given by an expression in N . Similarly, we use
L1(N, L2(N)) to denote a loop L1 that has
another loop L2 nested within it. The loop
counter �1 of L1 increases from 0 to an upper
bound expression in N , while the loop counter
�2 of L2 increases from 0 to an upper bound
expression in �1 and N . Using this notation,
L1(N, L2(N, L3(N))) represents three nested
loops, and so on. Notice that the upper bound expression for a nested loop can
depend not only on N but also on the loop counters of other loops nesting it.
For notational clarity, we also use LPeel(Li, a, b) to denote the peel of loop Li
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consisting of all iterations of Li where the value of �i ranges from a to b-1, both
inclusive. Note that if b-a is a constant, this corresponds to the concatenation
of (b-a) peels of Li.

for(�1=0; �1<UL1(N-1); �1++)
LPeel(L2, UL2(�1,N-1), UL2(�1,N))

LPeel(L1, UL1(N-1), UL1(N))

Fig. 5. Peel of L1(N, L2(N))

We will now try to see how we can
implement the transformation from the
first column to the second column of
Fig. 2 for a nested loop L1(N, L2(N)).
The first step is to truncate all loops
to use N − 1 instead of N in the upper
bound expressions. Using the notation introduced above, this gives the loop
L1(N-1, L2(N-1)). Note that all uses of N other than in loop upper bound
expressions stay unchanged as we go from L1(N, L2(N)) to L1(N-1, L2(N-1)).
We now ask: Which are the loop iterations of L1(N, L2(N)) that have been missed
(or skipped) in going to L1(N-1, L2(N-1))? Let the upper bound expression of
L1 in L1(N, L2(N)) be UL1(N), and that of L2 be UL2(�1, N). It is not hard to
see that in every iteration �1 of L1, where 0 ≤ �1 < UL1(N − 1), the iterations
corresponding to �2 ∈ {UL2(�1, N − 1), . . . , UL2(�1, N) − 1} have been missed. In
addition, all iterations of L1 corresponding to �1 ∈ {UL1(N −1), . . . , UL1(N)−1}
have also been missed. This implies that the “peel” of L1(N, L2(N)) must
include all the above missed iterations. This peel therefore is the program frag-
ment shown in Fig. 5.

for(�1=0; �1<UL1(N-1); �1++) {
for(�2=0; �2<UL2(�1,N-1); �2++)

LPeel(L3, UL3(�1,�2,N-1), UL3(�1,�2,N))
LPeel(L2, UL2(�1,N-1), UL2(�1,N))

}
LPeel(L1, UL1(N-1), UL1(N))

Fig. 6. Peel of L1(N, L2(N, L3(N)))

Notice that if UL2 (�1 ,N)
- UL2 (�1 ,N-1) is a constant
(as is the case if UL2(�1,N) is
any linear function of �1 and
N), then the peel does not have
any loop with nesting depth 2.
Hence, the maximum nesting
depth of loops in the peel is
strictly less than that in L1(N,
L2(N)), yielding a peel that is “simpler” than the original program. This argu-
ment can be easily generalized to loops with arbitrarily large nesting depths.
The peel of L1(N, L2(N, L3(N))) is as shown in Fig. 6.

for(i=0; i<N; i++)

for(j=0; j<N; j++)

A[i][j] = N;

(a)

for(i=0; i<N-1; i++)

A[i][N-1] = N;

for(j=0; j<N; j++)

A[N-1][j] = N;

(b)

Fig. 7. (a) Nested Loop & (b) Peel

As an illustrative example,
let us consider the program in
Fig. 7(a), and suppose we wish
to compute the peel of this pro-
gram containing nested loops.
In this case, the upper bounds
of the loops are UL1(N) =
UL2(N) = N . The peel is shown
in Fig. 7(b) and consists of two sequentially composed non-nested loops. The
first loop takes into account the missed iterations of the inner loop (a single
iteration in this example) that are executed in PN but are missed in QN−1. The
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Algorithm 1. GenQandPeel(PN : program)
1: Let sequentially composed loops in PN be in the order L1, L2, . . ., Lm;
2: for each loop Li ∈ TopLevelLoops(PN ) do
3: 〈QLi

, RLi
〉 ← GenQandPeelForLoop(Li);

4: while ∃v.use(v) ∈ QLi
∧ def(v) ∈ RLj

, for some 1 ≤ j < i ≤ N do � v is var/array element

5: Substitute rhs expression for v from RLj
in QLi

; � If RLj
is a loop, abort

6: QN−1 ← QL1 ; QL2 ; . . . ; QLm ;

7: peel(PN ) ← RL1 ; RL2 ; . . . ; RLm ;

8: return 〈QN−1, peel(PN )〉;
9: procedure GenQandPeelForLoop(L: loop)
10: Let UL(N) be the UB expression of loop L;
11: QL ← L with N − 1 substituted for N in all UB expressions (including for nested loops);
12: if L has subloops then
13: t ← nesting depth of inner-most nested loop in L;
14: Rt+1 ← empty program with no statements;
15: for k = t; k ≥ 2; k-- do
16: for each subloop SLj in Li at nesting depth k do � Ordered SL1, SL2, . . ., SLj

17: RSLj
← LPeel(SLj , USLj

(�1, . . . , �k−1, N − 1), USLj
(�1, . . . , �k−1, N));

18: Rk ← for (i=0; i<ULk−1(N − 1); i++) { Rk+1;RSL1;RSL2;...;RSLj
};

19: RL ← R2; LPeel(L, UL(N − 1), UL(N));
20: else
21: RL ← LPeel(L, UL(N − 1), UL(N));

22: return 〈QL, RL〉;

second loop takes into account the missed iterations of the outer loop in QN−1

compared to PN .
Generalizing the above intuition, Algorithm 1 presents function GenQand-

Peel for computing QN−1 and peel(PN ) for a given PN that has sequentially
composed loops with potentially nested loops. Due to the grammar of our pro-
grams, our loops are well nested. The method works by traversing over the
structure of loops in the program. In this algorithm QLi

and RLi
represent the

counterparts of QN−1 and peel(PN ) for loop Li. We create the program QN−1

by peeling each loop in the program and then propagating these peels across
subsequent loops. We identify the missed iterations of each loop in the pro-
gram PN from the upper bound expression UB. Recall that the upper bound
of each loop Lk at nesting depth k, denoted by ULk

is in terms of the loop
counters � of outer loops and the program parameter N . We need to peel
ULk

(�1, �2, . . . , �k−1, N) − ULk
(�1, �2, . . . , �k−1, N − 1) number of iterations from

each loop, where �1 ≤ �2 ≤ . . . ≤ �k−1 are counters of the outer nesting loops.
As discussed above, whenever this difference is a constant value, we are guaran-
teed that the loop nesting depth reduces by one. It may so happen that there
are multiple sequentially composed loops SLj at nesting depth k and not just
a single loop Lk. At line 2, we iterate over top level loops and call function
GenQandPeelForLoop(Li) for each sequentially composed loop Li in PN . At
line 11 we construct QL for loop L. If the loop L has no nested loops, then the
peel is the last iterations computed using the upper bound in line 21 For nested
loops, the loop at line 15 builds the peel for all loops inside L following the above
intuition. The peels of all sub-loops are collected and inserted in the peel of L
at line 19. Since all the peeled iterations are moved after QL of each loop, we
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need to repair expressions appearing in QL. The repairs are applied by the loop
at line 4. In the repair step, we identify the right hand side expressions for all
the variables and array elements assigned in the peeled iterations. Subsequently,
the uses of the variables and arrays in QLi

that are assigned in RLj
are replaced

with the assigned expressions whenever j < i. If RLj
is a loop, this step is more

involved and hence currently not considered. Finally at line 8, the peels and Qs
of all top level loops are stitched and returned.

Note that lines 4 and 5 of Algorithm 1 implement the substitution repre-
sented by the arrow in the second column of Fig. 2. This is necessary in order to
move the peel of a loop to the end of the program. If either of the loops Li or
Lj use array elements as index to other arrays then it can be difficult to identify
what expression to use in QLi

for the substitution. However, such scenarios are
observed less often, and hence, they hardly impact the effectiveness of the tech-
nique on programs seen in practice. The peel RLj

, from which the expression to
be substituted in QLi

has to be taken, itself may have a loop. In such cases, it
can be significantly more challenging to identify what expression to use in QLi

.
We use several optimizations to transform the peeled loop before trying to iden-
tify such an expression. If the modified values in the peel can be summarized
as closed form expressions, then we can replace the loop in the peel with its
summary. For example, consider the peeled loop, for ( �1 =0; �1 < N; �1 ++) {
S = S + 1; }. This loop is summarized as S = S + N; before it can be moved
across subsequent code. If the variables modified in the peel of a nested loop are
not used later, then the peel can be trivially moved. In many cases, the loop in
the peel can also be substituted with its conservative over-approximation. We
have implemented some of these optimizations in our tool and are able to verify
several benchmarks with sequentially composed nested loops. It may not always
be possible to move the peel of a nested loop across subsequent loops but we have
observed that these optimizations suffice for many programs seen in practice.

Theorem 1. Let QN−1 and peel(PN ) be generated by application of function
GenQandPeel from Algorithm 1 on program PN . Then PN is semantically
equivalent to QN−1; peel(PN ).

Lemma 1. Suppose the following conditions hold;

– Program PN satisfies our syntactic restrictions (see Sect. 3).
– The upper bound expressions of all loops are linear expressions in N and in

the loop counters of outer nesting loops.

Then, the max nesting depth of loops in peel(PN ) is strictly less than that in PN .

Proof. Let ULk
(�1, . . . , �k−1, N) be the upper bound expression of a loop

Lk at nesting depth k. Suppose ULk
= c1.�1 + · · · ck−1.�k−1 + C.N +

D, where c1, . . . ck−1, C and D are constants. Then ULk
(�1, . . . , �k−1, N) −

ULk
(�1, . . . �k−1, N − 1) = C, i.e. a constant. Now, recalling the discussion in

Sect. 4.1, we see that LPeel(Lk, Uk(�1, . . . ,�k−1, N − 1), Uk(�1, . . . ,�k−1, N))
simply results in concatenating a constant number of peels of the loop Lk. Hence,
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the maximum nesting depth of loops in LPeel( Lk, Uk(�1, . . . , �k−1, N − 1),
Uk(�1, . . . , �k−1, N)) is strictly less than the maximum nesting depth of loops
in Lk.

Suppose loop L with nested loops (having maximum nesting depth t) is passed
as the argument of function GenQandPeelForLoop (see Algorithm 1). In
line 15 of function GenQandPeelForLoop, we iterate over all loops at nesting
depth 2 and above within L. Let Lk be a loop at nesting depth k, where 2 ≤ k ≤ t.
Clearly, Lk can have at most t − k nested levels of loops within it. Therefore,
when LPeel is invoked on such a loop, the maximum nesting depth of loops
in the peel generated for Lk can be at most t − k − 1. From lines 18 and 19
of function GenQandPeelForLoop, we also know that this LPeel can itself
appear at nesting depth k of the overall peel RL. Hence, the maximum nesting
depth of loops in RL can be t − k − 1 + k, i.e. t − 1. This is strictly less than the
maximum nesting depth of loops in L. ��
Corollary 1. If PN has no nested loops, then peel(PN ) is loop-free.

4.2 Generating ϕ′(N − 1) and Δϕ′(N)

Given ϕ(N), we check if it is of the form
∧N−1

i=0 ρi, where ρi is a formula on
the ith elements of one or more arrays, and scalars used in PN . If so, we infer
ϕ′(N − 1) to be

∧N−2
i=0 ρi and Δϕ′(N) to be ρN−1 (assuming variables/array

elements in ρN−1 are not modified by QN−1). Note that all uses of N in ρi are
retained as is (i.e. not changed to N −1) in ϕ′(N −1). In general, when deriving
ϕ′(N − 1), we do not replace any use of N in ϕ(N) by N − 1 unless it is the
limit of an iterated conjunct as discussed above. Specifically, if ϕ(N) doesn’t
contain an iterated conjunct as above, then we consider ϕ′(N − 1) to be the
same as ϕ(N) and Δϕ′(N) to be True. Thus, our generation of ϕ′(N − 1) and
Δϕ′(N) differs from that of [12]. As discussed earlier, this makes it possible to
reason about a much larger class of pre-conditions than that admissible by the
technique of [12].

4.3 Inferring Inductive Difference Invariants

Once we have PN−1, QN−1, ϕ(N−1) and ϕ′(N−1), we infer difference invariants.
We construct the standard cross-product of programs QN−1 and PN−1, denoted
as QN−1 ×PN−1, and infer difference invariants at key control points. Note that
PN−1 and QN−1 are guaranteed to have synchronized iterations of correspond-
ing loops (both are obtained by restricting the upper bounds of all loops to use
N − 1 instead of N). However, the conditional statements within the loop body
may not be synchronized. Thus, whenever we can infer that the corresponding
conditions are equivalent, we synchronize the branches of the conditional state-
ment. Otherwise, we consider all four possibilities of the branch conditions. It
can be seen that the net effect of the cross-product is executing the programs
PN−1 and QN−1 one after the other.
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We run a dataflow analysis pass over the constructed product graph to infer
difference invariants at loop head, loop exit and at each branch condition. The
only dataflow values of interest are differences between corresponding variables
in QN−1 and PN−1. Indeed, since structure and variables of QN−1 and PN−1 are
similar, we can create the correspondence map between the variables. We start
the difference invariant generation by considering relations between correspond-
ing variables/array elements appearing in pre-conditions of the two programs.
We apply static analysis that can track equality expressions (including disjunc-
tions over equality expressions) over variables as we traverse the program. These
equality expressions are our difference invariants.

We observed in our experiments the most of the inferred equality expressions
are simple expressions of N (atmost quadratic in N). This not totally surprising
and similar observations have also been independently made in [4,15,24]. Note
that the difference invariants may not always be equalities. We can easily extend
our analysis to learn inequalities using interval domains in static analysis. We
can also use a library of expressions to infer difference invariants using a guess-
and-check framework. Moreover, guessing difference invariants can be easy as
in many cases the difference expressions may be independent of the program
constructs, for example, the equality expression v = v′ where v ∈ PN−1 and
v′ ∈ QN−1 does not depend on any other variable from the two programs.

For the example in Fig. 2, the difference invariant at the head of the
first loop of QN−1 × PN−1 is D(VQ, VP, N − 1) ≡ (x′ − x = i × (2 × N − 1)
∧ ∀i ∈ [0, N − 1), a′[i] − a[i] = 1), where x, a ∈ VP and x′, a′ ∈ VQ. Given
this, we easily get x′ − x = (N − 1) × (2 × N − 1) when the first loop termi-
nates. For the second loop, D(VQ, VP, N − 1) ≡ (∀j ∈ [0, N − 1), b′[j] − b[j] =
(x′ − x) + N2 = (N − 1)× (2 × N − 1) + N2).

Note that the difference invariants and its computation are agnostic of the
given post-condition. Hence, our technique does not need to re-run this analysis
for proving a different post-condition for the same program.

4.4 Verification Using Inductive Difference Invariants

We present our method Diffy for verification of programs using inductive dif-
ference invariants in Algorithm 2. It takes a Hoare triple {ϕ(N)} PN {ψ(N)}
as input, where ϕ(N) and ψ(N) are pre- and post-condition formulas. We check
the base in line 1 to verify the Hoare triple for N = 1. If this check fails,
we report a counterexample. Subsequently, we compute QN−1 and peel(PN ) as
described in Sect. 4.1 using the function GenQandPeel from Algorithm 1. At
line 4, we compute the formulas ϕ′(N −1) and Δϕ′(N) as described in Sect. 4.2.
For automation, we analyze the quantifiers appearing in ϕ(N) and modify the
quantifier ranges such that the conditions in Sect. 4.2 hold. We infer difference
invariants D(VQ, VP, N − 1) on line 5 using the method described in Sect. 4.3,
wherein VQ and VP are sets of variables from QN−1 and PN−1 respectively.
At line 6, we compute ψ′(N − 1) by eliminating variables VP from PN−1 from
ψ(N − 1) ∧ D(VQ, VP, N − 1). At line 7, we check the inductive step of our anal-
ysis. If the inductive step succeeds, then we conclude that the assertion holds.
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Algorithm 2. Diffy( {ϕ(N)} PN {ψ(N)} )
1: if {ϕ(1)} P1 {ψ(1)} fails then � Base case for N=1
2: return “Counterexample found!”;

3: 〈QN−1, peel(PN )〉 ← GenQandPeel(PN );
4: 〈ϕ′(N − 1), Δϕ′(N)〉 ← FormulaDiff(ϕ(N)); � ϕ(N) ⇒ ϕ′(N − 1) ∧ Δϕ′(N)
5: D(VQ, VP, N − 1) ← InferDiffInvs(QN−1, PN−1, ϕ′(N − 1), ϕ(N − 1));
6: ψ′(N − 1) ← QE(VP, ψ(N − 1) ∧ D(VQ, VP, N − 1));
7: if {ψ′(N − 1) ∧ Δϕ′(N)} peel(PN ) {ψ(N)} then
8: return True; � Verification Successful
9: else
10: return Strengthen(PN , peel(PN ), ϕ(N), ψ(N), ψ′(N − 1), Δϕ′(N), D(VQ, VP, N));

11: procedure Strengthen(PN , peel(PN ), ϕ(N), ψ(N), ψ′(N − 1), Δϕ′(N), D(VQ, VP, N))
12: χ(N) ← ψ(N);
13: ξ(N) ← True;
14: ξ′(N − 1) ← True;
15: repeat
16: χ′(N − 1) ← WP(χ(N), peel(PN )); � Dijkstra’s WP for loop free code
17: if χ′(N − 1) = ∅ then
18: if peel(PN ) has a loop then
19: return Diffy({ξ′(N − 1) ∧ Δϕ′(N) ∧ ψ′(N − 1)} peel(PN ) {ξ(N) ∧ ψ(N)});
20: else
21: return False; � Unable to prove

22: χ(N) ← QE(VQ, χ′(N) ∧ D(VQ, VP, N));
23: ξ(N) ← ξ(N) ∧ χ(N);
24: ξ′(N − 1) ← ξ′(N − 1) ∧ χ′(N − 1);
25: if {ϕ(1)} P1 {ξ(1)} fails then
26: return False; � Unable to prove

27: if {ξ′(N − 1) ∧ Δϕ′(N) ∧ ψ′(N − 1)} peel(PN ) {ξ(N) ∧ ψ(N)} holds then
28: return True; � Verification Successful

29: until timeout;
30: return False;

If that is not the case then, we try to iteratively strengthen both the pre- and
post-condition of peel(PN ) simultaneously by invoking Strengthen.

The function Strengthen first initializes the formula χ(N) with ψ(N) and
the formulas ξ(N) and ξ′(N − 1) to True. To strengthen the pre-condition of
peel(PN ), we infer a formula χ′(N − 1) using Dijkstra’s weakest pre-condition
computation of χ(N) over the peel(PN ) in line 16. It may happen that we are
unable to infer such a formula. In such a case, if the program peel(PN ) has
loops then we recursively invoke Diffy at line 19 to further simplify the pro-
gram. Otherwise, we abandon the verification effort (line 21). We use quantifier
elimination to infer χ(N − 1) from χ′(N − 1) and D(VQ, VP, N − 1)) at line 6.

The inferred pre-conditions χ(N) and χ′(N −1) are accumulated in ξ(N) and
ξ′(N −1), which strengthen the post-conditions of PN and QN−1 respectively in
lines 23–24. We again check the base case for the inferred formulas in ξ(N) at
line 25. If the check fails we abandon the verification attempt at line 26. If the
base case succeeds, we then proceed to the inductive step. When the inductive
step succeeds, we conclude that the assertion is verified. Otherwise, we continue
in the loop and try to infer more pre-conditions untill we run out of time.

The pre-condition in Fig. 2 is φ(N) ≡ True and the post-condition is ψ(N) ≡
∀j ∈ [0, N), b[j] = j + N3). At line 4, φ′(N − 1) and Δφ′(N − 1) are computed
to be True. D(VQ, VP, N − 1) is the formula computed in Sect. 4.3. At line 6,
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Table 1. Summary of the experimental results. S is successful result. U is inconclusive
result. TO is timeout.

Program Diffy Vajra VeriAbs VIAP

Category S U TO S U S TO S U TO

Safe C1 110 110 0 0 110 0 96 14 16 1 93

Safe C2 24 21 0 3 0 24 5 19 4 0 20

Safe C3 23 20 3 0 0 23 9 14 0 23 0

Total 157 151 3 3 110 47 110 47 20 24 113

Unsafe C1 99 98 1 0 98 1 84 15 98 0 1

Unsafe C2 24 24 0 0 17 7 19 5 22 0 2

Unsafe C3 23 20 3 0 0 23 22 1 0 23 0

Total 146 142 4 0 115 31 125 21 120 23 3

ψ′(N −1) ≡ (∀j ∈ [0, N − 1), b′[j] = j + (N − 1)3 + (N − 1) × (2 × N − 1) + N2 =
j + N3). The algortihm then invokes Strengthen at line 10 which infers the
formulas χ′(N − 1) ≡ (x′ = (N − 1)3) at line 16 and χ(N) ≡ (x = N3) at line 22.
These are accumulated in ξ′(N −1) and ξ(N), simultaneosuly strengthening the
pre- and post-condition. Verification succeeds after this strengthening iteration.

The following theorem guarantees the soundness of our technique.

Theorem 2. Suppose there exist formulas ξ′(N) and ξ(N) and an integer M >
0 such that the following hold

– {ϕ(N)} PN {ψ(N) ∧ ξ(N)} holds for 1 ≤ N ≤ M , for some M > 0.
– ξ(N) ∧ D(VQ, VP, N) ⇒ ξ′(N) for all N > 0.
– {ξ′(N − 1) ∧ Δϕ′(N) ∧ ψ′(N − 1)} peel(PN ) {ξ(N) ∧ ψ(N)} holds for all

N ≥ M , where ψ′(N − 1) ≡ ∃VP

(
ψ(N − 1) ∧ D(VQ, VP, N − 1)

)
.

Then {ϕ(N)} PN {ψ(N)} holds for all N > 0.

5 Experimental Evaluation

We have instantiated our technique in a prototype tool called Diffy. It is written
in C++ and is built using the LLVM(v6.0.0) [31] compiler. We use the SMT solver
Z3(v4.8.7) [39] for proving Hoare triples of loop-free programs. Diffy and the
supporting data to replicate the experiments are openly available at [14].

Setup. All experiments were performed on a machine with Intel i7-6500U CPU,
16 GB RAM, running at 2.5 GHz, and Ubuntu 18.04.5 LTS operating system.
We have compared the results obtained from Diffy with Vajra(v1.0) [12],
VIAP(v1.1) [42] and VeriAbs(v1.4.1-12) [1]. We choose Vajra which also
employs inductive reasoning for proving array programs and verify the bench-
marks in its test-suite. We compared with VeriAbs as it is the winner of the
arrays sub-category in SV-COMP 2020 [6] and 2021 [7]. VeriAbs applies a
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Fig. 8. Cactus Plots (a) All Safe Benchmarks (b) All Unsafe Benchmarks

sequence of techniques from its portfolio to verify array programs. We compared
with VIAP which was the winner in arrays sub-category in SV-COMP 2019 [5].
VIAP also employs a sequence of tactics, implemented for proving a variety of
array programs. Diffy does not use multiple techniques, however we choose to
compare it with these portfolio verifiers to show that it performs well on a class
of programs and can be a part of their portfolio. All tools take C programs in the
SV-COMP format as input. Timeout of 60 s was set for each tool. A summary
of the results is presented in Table 1.

Benchmarks. We have evaluated Diffy on a set of 303 array benchmarks,
comprising of the entire test-suite of [12], enhanced with challenging benchmarks
to test the efficacy of our approach. These benchmarks take a symbolic parameter
N which specifies the size of each array. Assertions are (in-)equalities over array
elements, scalars and (non-)linear polynomial terms over N . We have divided
both the safe and unsafe benchmarks in three categories. Benchmarks in C1
category have standard array operations such as min, max, init, copy, compare
as well as benchmarks that compute polynomials. In these benchmarks, branch
conditions are not affected by the value of N , operations such as modulo and
nested loops are not present. There are 110 safe and 99 unsafe programs in the
C1 category in our test-suite. In C2 category, the branch conditions are affected
by change in the program parameter N and operations such as modulo are used
in these benchmarks. These benchmarks do not have nested loops in them. There
are 24 safe and unsafe benchmarks in the C2 category. Benchmarks in category
C3 are programs with atleast one nested loop in them. There are 23 safe and
unsafe programs in category C3 in our test-suite. The test-suite has a total of
157 safe and 146 unsafe programs.

Analysis. Diffy verified 151 safe benchmarks, compared to 110 verified by
Vajra as well as VeriAbs and 20 verified by VIAP. Diffy was unable to
verify 6 safe benchmarks. In 3 cases, the smt solver timed out while trying to
prove the induction step since the formulated query had a modulus operation
and in 3 cases it was unable to compute the predicates needed to prove the
assertions. Vajra was unable to verify 47 programs from categories C2 and
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Fig. 9. Cactus plots (a) Safe C1 benchmarks (b) Unsafe C1 benchmarks

C3. These are programs with nested loops, branch conditions affected by N ,
and cases where it could not compute the difference program. The sequence
of techniques employed by VeriAbs, ran out of time on 47 programs while
trying to prove the given assertion. VeriAbs proved 2 benchmarks in category
C2 and 3 benchmarks in category C3 where Diffy was inconclusive or timed
out. VeriAbs spends considerable amount of time on different techniques in its
portfolio before it resorts to Vajra and hence it could not verify 14 programs
that Vajra was able to prove efficiently. VIAP was inconclusive on 24 programs
which had nested loops or constructs that could not be handled by the tool. It
ran out of time on 113 benchmarks as the initial tactics in its sequence took up
the allotted time but could not verify the benchmarks. Diffy was able to verify
all programs that VIAP and Vajra were able to verify within the specified time
limit.

The cactus plot in Fig. 8(a) shows the performance of each tool on all safe
benchmarks. Diffy was able to prove most of the programs within three sec-
onds. The cactus plot in Fig. 9(a) shows the performance of each tool on safe
benchmarks in C1 category. Vajra and Diffy perform equally well in the C1
category. This is due to the fact that both tools perform efficient inductive rea-
soning. Diffy outperforms VeriAbs and VIAP in this category. The cactus
plot in Fig. 10(a) shows the performance of each tool on safe benchmarks in the
combined categories C2 and C3, that are difficult for Vajra as most of these
programs are not within its scope. Diffy out performs all other tools in cate-
gories C2 and C3. VeriAbs was an order of magnitude slower on programs it
was able to verify, as compared to Diffy. VeriAbs spends significant amount
of time in trying techniques from its portfolio, including Vajra, before one of
them succeeds in verifying the assertion or takes up the entire time allotted to it.
VIAP took 70 seconds more on an average as compared to Diffy to verify the
given benchmark. VIAP also spends a large portion of time in trying different
tactics implemented in the tool and solving the recurrence relations in programs.

Our technique reports property violations when the base case of the analy-
sis fails for small fixed values of N . While the focus of our work is on proving
assertions, we report results on unsafe versions of the safe benchmarks from our
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test-suite. Diffy was able to detect a property violation in 142 unsafe programs
and was inconclusive on 4 benchmarks. Vajra detected violations in 115 pro-
grams and was inconclusive on 31 programs. VeriAbs reported 125 programs as
unsafe and ran out of time on 21 programs. VIAP reported property violation
in 120 programs, was inconclusive on 23 programs and timed out on 3 programs.

The cactus plot in Fig. 8(b) shows the performance of each tool on all unsafe
benchmarks. Diffy was able to detect a violation faster than all other tools and
on more benchmarks from the test-suite. Figure 9(b) and Fig. 10(b) give a finer
glimpse of the performance of these tools on the categories that we have defined.
In the C1 category, Diffy and Vajra have comparable performance and Diffy

disproves the same number of benchmarks as Vajra and VIAP. In C2 and C3
categories, we are able to detect property violations in more benchmarks than
other tools in less time.

To observe any changes in the performance of these, we also ran them with an
increased time out of 100 seconds (Fig. 11). Performance remains unchanged for
Diffy, Vajra and VeriAbs on both safe and unsafe benchmarks, and of VIAP

on unsafe benchmarks. VIAP was able to additionally verify 89 safe programs
in categories C1 and C2 with the increased time limit.
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6 Related Work

Techniques Based on Induction. Our work is related to several efforts that apply
inductive reasoning to verify properties of array programs. Our work subsumes
the full-program induction technique in [12] that works by inducting on the
entire program via a program parameter N . We propose a principled method
for computation and use of difference invariants, instead of computing difference
programs which is more challenging. An approach to construct safety proofs
by automatically synthesizing squeezing functions that shrink program traces is
proposed in [27]. Such functions are not easy to synthesize, whereas difference
invariants are relatively easy to infer. In [11], the post-condition is inductively
established by identifying a tiling relation between the loop counter and array
indices used in the program. Our technique can verify programs from [11], when
supplied with the tiling relation. [44] identifies recurrent program fragments for
induction using the loop counter. They require restrictive data dependencies,
called commutativity of statements, to move peeled iterations across subsequent
loops. Unfortunately, these restrictions are not satisfied by a large class of pro-
grams in practice, where our technique succeeds.

Difference Computation. Computing differences of program expressions has been
studied for incremental computation of expensive expressions [35,41], optimizing
programs with arrays [34], and checking data-structure invariants [45]. These
differences are not always well suited for verifying properties, in contrast with
the difference invariants which enable inductive reasoning in our case.

Logic Based Reasoning. In [21], trace logic that implicitly captures inductive
loop invariants is described. They use theorem provers to introduce and prove
lemmas at arbitrary control locations in the program. Unlike their technique, we
focus primarily on universally quantified and quantifier-free properties, although
a restricted class of existentially quantified properties can be handled by our
technique (see [13] for more details). VIAP [42] translates the program to an
quantified first-order logic formula using the scheme proposed in [32]. It uses
a portfolio of tactics to simplify and prove the generated formulas. Dedicated
solvers for recurrences are used whereas our technique adapts induction for han-
dling recurrences.

Invariant Generation. Several techniques generate invariants for array programs.
QUIC3 [25], FreqHorn [9,19] infer universally quantified invariants over arrays for
Constrained Horn Clauses (CHCs). Template-based techniques [8,23,47] search
for inductive quantified invariants by instantiating parameters of a fixed set
of templates. We generate relational invariants, which are often easier to infer
compared to inductive quantified invariants for each loop.

Abstraction-Based Techniques. Counterexample-guided abstraction refinement
using prophecy variables for programs with arrays is proposed in [36]. Veri-

Abs [1] uses a portfolio of techniques, specifically to identify loops that can
be soundly abstracted by a bounded number of iterations. Vaphor [38] trans-
forms array programs to array-free Horn formulas to track bounded number of
array cells. Booster [3] combines lazy abstraction based interpolation [2] and
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acceleration [10,28] for array programs. Abstractions in [16,18,22,26,29,33,37]
implicitly or explicitly partition the range array indices to infer and prove facts
on array segments. In contrast, our method does not rely on abstractions.

7 Conclusion

We presented a novel verification technique that combines generation of dif-
ference invariants and inductive reasoning. Difference invariants relate corre-
sponding variables and arrays from the two versions of a program and are often
easy to infer and prove. We have instantiated these techniques in our proto-
type Diffy. Experiments shows that Diffy out-performs the tools that won
the Arrays sub-category in SV-COMP 2019, 2020 and 2021. Although we have
focused on universal and quantifier-free properties in this paper, the technique
applies to some classes of existential properties as well. The interested reader
is referred to [13] for more details. Investigations in using synthesis techniques
for automatic generation of difference invariants to verify properties of array
manipulating programs is a part of future work.
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21. Georgiou, P., Gleiss, B., Kovács, L.: Trace logic for inductive loop reasoning. In:
Proceedings of FMCAD, pp. 255–263 (2020)

22. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array
operations. In: Proceedings of POPL, pp. 338–350 (2005)

23. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: Proceedings of POPL, pp. 235–246 (2008)

24. Gupta, S., Rose, A., Bansal, S.: Counterexample-guided correlation algorithm for
translation validation. Proc. OOPSLA 4, 1–29 (2020)

25. Gurfinkel, A., Shoham, S., Vizel, Y.: Quantifiers on demand. In: Lahiri, S.K., Wang,
C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 248–266. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01090-4 15
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Jovanović, Dejan II-266
Junges, Sebastian I-856, II-553, II-577,

II-602

Kaminski, Benjamin Lucien II-524
Katoen, Joost-Pieter I-443, I-856, II-524
Keshmiri, Shawn I-566
Khedr, Haitham I-287
Kim, Dongjoo II-752
Kim, Jinwoo I-84
Kim, Sharon I-491
Kimberly, Greg II-209
Kincaid, Zachary I-46, II-51
Klas̆ka, David II-887
Kokologiannakis, Michalis I-427
Koskinen, Eric I-742
Kothari, Yugesh I-201
Kovács, Laura I-317
Kremer, Gereon II-231
Kulczynski, Mitja II-289
Kura, Satoshi II-75

Lal, Ratan I-566
Lange, Julien I-403
Launchbury, N. II-851
Lee, Insup I-249
Lee, Jaehun I-491
Lee, Juneyoung II-752
Lefaucheux, Engel II-172
Leow, Wei Xiang II-801
Leutgeb, Lorenz II-99
Li, Jianlin I-201
Li, Meng I-767
Li, Pengfei II-728
Li, Yangge I-580
Lin, Anthony W. II-243
Lin, Wang I-467
Lin, Zhengyao II-477
Liu, Jiaxiang II-149
Liu, Zhiming I-467
Lluch Lafuente, Alberto II-411
Lonsing, Florian II-461
Lopes, Nuno P. II-752
Lopez, Diego Manzanas I-263
Lyu, Deyun I-595

Ma, Lei I-595
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