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Abstract. We investigate the problem of monitoring partially observ-
able systems with nondeterministic and probabilistic dynamics. In such
systems, every state may be associated with a risk, e.g., the probabil-
ity of an imminent crash. During runtime, we obtain partial information
about the system state in form of observations. The monitor uses this
information to estimate the risk of the (unobservable) current system
state. Our results are threefold. First, we show that extensions of state
estimation approaches do not scale due the combination of nondetermin-
ism and probabilities. While exploiting a geometric interpretation of the
state estimates improves the practical runtime, this cannot prevent an
exponential memory blowup. Second, we present a tractable algorithm
based on model checking conditional reachability probabilities. Third,
we provide prototypical implementations and manifest the applicability
of our algorithms to a range of benchmarks. The results highlight the
possibilities and boundaries of our novel algorithms.

1 Introduction

Runtime assurance is essential in the deployment of safety-critical (cyber-
physical) systems [12,29,45,49,50]. Monitors observe system behavior and indi-
cate when the system is at risk to violate system specifications. A critical aspect
in developing reliable monitors is their ability to handle noisy or missing data.
In cyber-physical systems, monitors observe the system state via sensors, i.e.,
sensors are an interface between the system and the monitor. A monitor has
to base its decision solely on the obtained sensor output. These sensors are not
perfect, and not every aspect of a system state can be measured.

This paper considers a model-based approach to the construction of monitors
for systems with imprecise sensors. Consider Fig. 1(b). We assume a model for
the environment together with the controller. Typically, such a model contains
both nondeterministic and probabilistic behavior, and thus describes a Markov
decision process (MDP): In particular, the sensor is a stochastic process [56] that
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translates the environment state into an observation. For example, this could be a
perception module on a plane that during landing estimates the movements of an
on-ground vehicle, as depicted in Fig. 1(a). Due to lack of precise data, the vehicle
movements itself may be most accurately described using nondeterminism.

We are interested in the associated state risk of the current system state.
The state risk may encode, e.g., the probability that the plane will crash with
the vehicle within a given number of steps, or the expected time until reaching
the other side of the runway. The challenge is that the monitor cannot directly
observe the current system state. Instead, the monitor must infer from a trace
of observations the current state risk. This cannot be done perfectly as the sys-
tem state cannot be inferred precisely. Rather, we want a sound, conservative
estimate of the system state. More concretely, for a fixed resolution of the non-
determinism, the trace risk is the weighted sum over the probability of being
in a state having observed the trace, times the risk imposed by this state. The
monitoring problem is to decide whether for any possible scheduler resolving the
nondeterminism the trace risk of a given trace exceeds a threshold.

Monitoring of systems that contain either only probabilistic or only nonde-
terministic behavior is typically based on filtering. Intuitively, the monitor then
estimates the current system states based on the model. For purely nondeter-
ministic systems (without probabilities) a set of states needs to be tracked, and
purely probabilistic systems (without nondeterminism) require tracking a dis-
tribution over states. This tracking is rather efficient. For systems that contain
both probabilistic and nondeterministic behavior, filtering is more challenging.
In particular, we show that filtering on MDPs results in an exponential memory
blowup as the monitor must track sets of distributions. We show that a reduc-
tion based on the geometric interpretation of these distributions is essential for
practical performance, but cannot avoid the worst-case exponential blowup. As a
tractable alternative to filtering, we rephrase the monitoring problem as the com-
putation of conditional reachability probabilities [9]. More precisely, we unroll
and transform the given MDP, and then model check this MDP. This alternative
approach yields a polynomial-time algorithm. Indeed, our experiments show the
feasibility of computing the risk by computing conditional probabilities. We also
show benchmarks on which filtering is a competitive option.

Contribution and Outline. This paper presents the first runtime monitoring
for systems that can be adequately abstracted by a combination of probabili-
ties and nondeterminism and where the system state is partially observable. We
describe the use case, show that typical filtering approaches in general fail to deal
with this setting, and show that a tractable alternative solution exists. In Sect. 3,
we investigate forward filtering, used to estimate the possible system states in
partially observable settings. We show that this approach is tractable for sys-
tems that have probabilistic or nondeterministic uncertainty, but not for systems
that have both. To alleviate the blowup, Sect. 4 discusses an (often) efficacious
pruning strategy and its limitations. In Sect. 5 we consider model checking as
a more tractable alternative. This result utilizes constructions from the analysis
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Fig. 1. A probabilistic world and sensor model represented by two MDPs for the sce-
nario of an airplane in landing approach with on-ground vehicle movements.

of partially observable MDPs and model checking MDPs with conditional prop-
erties. In Sect. 6 we present baseline implementations of these algorithms, on
top of the open-source model checker STORM, and evaluate their performance.
The results show that the implementation allows for monitoring of a variety of
MDPs, and reveals both strengths and weaknesses of both algorithms. We start
with a motivating example and review related work at the end of the paper.

Motivating Example. Consider a scenario where an autonomous airplane is
in its final approach, i.e., lined up with a designated runway and descending for
landing, see Fig. 1(a). On the ground, close to the runway, maintenance vehicles
may cross the runway. The airplane tracks the movements of these vehicles and
has to decide, depending on the movements of the vehicles, whether to abort
the landing. To simplify matters, assume that the airplane (P) is tracking the
movement of one vehicle (V) that is about to cross the runway. Let us further
assume that P tracks V using a perception module that can only determine the
position of the vehicle with a certain accuracy [33], i.e., for every position of V,
the perception module reports a noisy variant of the position of V. However, it
is important to know that the plane obtains a sequence of these measurements.
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Figure 1 illustrates the dynamics of the scenario. The world model describing
the movements of V and P is given in Fig. 1(c), where Do, Dy, and Dy define
how close P is to the runway, and R, M, and L define the position of V. Depend-
ing on what information V perceives about P, given by the atomic proposition
{(p)rogress}, and what commands it receives {(w)ait}, it may or may not cross
the runway. The perception module receives the information about the state of
the world and reports with a certain accuracy (given as a probability) the posi-
tion of V. The (simple) model of the perception module is given in Fig. 1(d). For
example, if P is in zone Dy and V is in R then there is high chance that the per-
ception module returns that V is on the runway. The probability of incorrectly
detecting V’s position reduces significantly when P is in Dy.

A monitor responsible for making the decision to land or to perform a go-
around based on the information computed by the perception module, must take
into consideration the accuracy of this returned information. For example, if the
sequence of sensor readings passed to the monitor is the sequence 7 = R, R, -M,,
and each state is mapped to a certain risk, then how risky is it to land after
seeing 77 If, for instance, the world is with high probability in state (M, D), a
very risky state, then the plane should go around. In the paper, we address the
question of computing the risk based on this observation sequence. We will use
this example as our running example.

2 DMonitoring with Imprecise Sensors

In this section, we formalize the problem of monitoring with imprecise sensors
when both the world and sensor models are given by MDPs. We start with a
recap of MDPs, define the monitoring problem for MDPs, and finally show how
the dynamics of the system under inspection can be modeled by an MDP defined
by the composition of two MDPs of the sensors and world model of the system.

2.1 Markov Decision Processes

For a countable set X, let Distr(X) C (X — [0, 1]) define the set of all distribu-
tions over X, i.e., for d € Distr(X) it holds that X,cxd(x) = 1. For d € Distr(X),
let the support of d be defined by supp(d) := {z | d(z) > 0}. We call a distribu-
tion d Dirac, if |supp(d)| = 1.

Definition 1 (Markov decision process). A Markov decision process is a
tuple M = (S, 1,Act, P,Z,obs), where S is a finite set of states, ¢ € Distr(.S)
is an initial distribution, Act is a finite set of actions, P: S x Act — Distr(.5)
is a partial transition function, Z is a finite set of observations, and obs: S —
Distr(Z) is a observation function.

Remark 1. The observation function can also be defined as a state-action obser-
vation function obs: S x Act — Distr(Z). MDPs with state-action observation
function can be easily transformed into equivalent MDPs with a state observation
function using auxiliary states [19]. Throughout the paper we use state-action
observations to keep (sensor) models concise.
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For a state s € S, we define AvAct(s) = {a | P(s,a) # L}. W.lo.g.,
|AvAct(s)| > 1. If all distributions in M are Dirac, we refer to M as a
Kripke structure (KS). If |AvAct(s)|] = 1 for all s € S, we refer to M as
a Markov chain (MC). When Z = S, we refer to M as fully observable and
omit Z and obs from its definition. A finite path in an MDP M is a sequence
T = S0apS1-..5, € S X (Act X S)* such that for every 0 < i < n it holds that
P(s;,a:)(si41) > 0 and t(sg) > 0. We denote the set of finite paths of M by
IIq. The length of the path is given by the number of actions along the path.
The set II}, for some n € N denotes the set of finite paths of length n. We use 7
to denote the last state in 7. We omit M whenever it is clear from the context.
A trace is a sequence of observations 7 = zg...z, € ZT. Every path induces a
distribution over traces.

As standard, any nondeterminism is resolved by means of a scheduler.

Definition 2 (Scheduler). A scheduler for an MDP M is a function
o: ITng — Distr(Act) with supp(o(m)) C AvAct(r)) for every m € Ilp.

We use Sched(M) to denote the set of schedulers. For a fixed scheduler o €
Sched(M), the probability Pr,(m) of a path 7 (under the scheduler o) is the
product of the transition probabilities in the induced Markov chain. For more
details we refer the reader to [8].

2.2 Formal Problem Statement

Our goal is to determine the risk that a system is exposed to having observed a
trace 7 € ZT. Let r: S — R>o map states in M to some risk in R>q. We call
r a state-risk function for M. This function maps to the risk that is associated
with being in every state. For example, in our experiments, we flexibly define the
state risk using the (expected reward extension of the) temporal logic PCTL 8],
to define the probability of reaching a fail state. For example, we can define risk
as the probability to crash within H steps. The use of expected rewards allows
for even more flexible definitions.

Intuitively, to compute this risk of the system we need to determine the
current system state having observed 7, considering both the probabilistic and
nondeterministic context. To this end, we formalize the (conditional) probabil-
ities and risks of paths and traces. Let Pr, (7 | 7) define the probability of a
path m, under a scheduler o, having observed 7. Since a scheduler may define
many paths that induce the observation trace 7, we are interested in the weighted
risk over all paths, i.e., ZWGH‘/&‘ Pro(m | 7) - (7). The monitoring problem for

MDPs then conservatively over-approximates the risk of a trace by assuming
an adversarial scheduler, that is, by taking the supremum risk estimate over all
schedulers'.

1 We later see in Lemma 8 that this is indeed a maximum.
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The Monitoring Problem. Given an MDP M, a state-risk r: S — R>,
an observation trace 7 € Z*, and a threshold X € [0, 00), decide R,.(7) > A,

where the weighted risk function R,: ZT — R is defined as
R.(1) = sup Z Pro(m | 7)-r(my).

o€ Sched(M
( )WEH_‘,\;‘

The conditional probability Pr, (7 | 7) can be characterized using Bayes’ rule?:

Pr(7 | 7) - Prg(m)
Pr,(7) '

The probability Pr(7 | 7) of a trace 7 for a fixed path 7 is obs (7)(7), where

Pro(m|7) =

obsy (s) := obs(s), obsy(mas’) := {7z — obsy(m)(T) - obs(s")(2)},

when |7| = |7, and obs(7)(7) = 0 otherwise. The probability Pr,(7) of a trace 7
is Y Pro(m)-Pr(r|m).

We call the special variant with A = 0 the qualitative monitoring problem.
The problems are (almost) equivalent on Kripke structures, where considering a
single path to an adequate state suffices. Details are given in [36, Appendix].

Lemma 1. For Kripke structures the monitoring and qualitative monitoring
problems are logspace interreducible.

In the next sections we present two types of algorithms for the monitoring
problem. The first algorithm is based on the widespread (forward) filtering app-
roach [44]. The second is new algorithm based on model checking conditional
probabilities. While filtering approaches are efficacious in a purely nondetermin-
istic or a purely probabilistic setting, it does not scale on models such as MDPs
that are both probabilistic and nondeterministic. In those models, model check-
ing provides a tractable alternative. Before going into details, we first connect
the problem statement more formally to our motivating example.

2.3 An MDP Defining the System Dynamics

We show how the weighted risk for a system given by a world and sensor model
can be formalized as a monitoring problem for MDPs. To this end, we define the
dynamics of the world and sensors that we use as basis for our monitor as the
following joint MDP.

For a fully observable world MDP &£ = (Sg, g, Acte, Pe) and a sensor MDP
S = (Ss,ts,S¢, Ps,Z,0bs), where obs is state-action based, the inspected sys-
tem is defined by an MDP [(£,S)] = (S7,t7,Acte, P7,Z,0bss) being the syn-
chronous composition of £ and S:

2 For conciseness we assume throughout the paper that % =0.
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Fig. 2. A run with its observations of the inspected system [(£,S)] where £ and S are
the models given in Fig. 1.

- Sj = Sg X Ss,
— 17 is defined as t7((u, s)) := tg(u) - ts(s) for each u € Sg and s € S,
— P7: S7 x Actg — Distr(S7) such that for all (u,s) € S7 and a € Actg;

Ps({u,s),a) =dy,s € Distr(Sy),

where for all v’ € Sg and s’ € Ss: dy s((v/, s)) = Pe(u, ) (w') - Ps(s,u)(s'),
obsz: Sz — Distr(Z) with obsy: (u,s) — obs(s,u).

In Fig. 2 we illustrate a run of [(£,S)] for the world and sensor MDPs pre-
sented in Fig. 1. We particularly show the observations of the joint MDP given
by the distributions over the observations for each transition in the run (we omit-
ted the probabilistic transitions for simplicity). The observations of the MDP M
present the output of the sensor upon a path through M. These observations in
turn are the inputs to a monitor on top of the system. The role of the monitor
is then to compute the risk of being in a critical state based on the received
observations.

3 Forward Filtering for State Estimation

We start by showing why standard forward filtering does not scale well on MDPs.
We briefly show how filtering can be used to solve the monitoring problem for
purely nondeterministic systems (Kripke structures) or purely probabilistic sys-
tems (Markov Chains). Then, we show why for MDPs, the forward filtering needs
to manage, although finite but an exponential set of distributions. In Sect. 4 we
present a new improved variant of forward filtering for MDPs based on filtering
with vertices of the convex hull. In Sect.5 we present a new polynomial-time
model checking-based algorithm for solving the problem.

3.1 State Estimators for Kripke Structures.

For Kripke structures, we maintain a set of possible states that agree with the
observed trace. This set of states is inductively characterized by the function
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estks: Zt — 29 which we define formally below. For an observation trace T,
estks(7) defines the set of states that can be reached with positive probabil-
ity. This set can be computed by a forward state traversal [31]. To illustrate
how estks(7) is computed for 7, consider the underlying Kripke structure of
the inspected system [(£,S)] for our running example in Fig.1 (to make this a
Kripke structure, we remove the probabilities). Consider further the observation
trace T = R, - M, - L,. Since [(£,S)] has only one initial state ((R, Ds), sense)
and R, is observable with a positive probability in this state, estks(R,) =
{{{R, Dq), sense)}. As M, is observed next, estks(R, - M,) computes the states
reached from ((R, Ds), sense) and where M, can be observed with a positive
probability, i.e., estks(R, - M,) = {{(R, D1), sense), ((R, My), sense) }. Finally,
the current state having observed R, - M, - L, may be one of the states estks(7) =
{{{M, Dy), sense), ({(L, D), sense), ({L,Dq), sense), ({M,Dy), sense)}, which
especially shows that we might be in the high-risk world state (M, D).

Definition 3 (KS state estimator). For KS = (S,, Act, P,Z,obs), the state
estimation function estgs: Z+ — 2% is defined as

estks(z) := {s € S| t(s) > 0 Aobs(s)(z) > 0}
estks(7 - 2) 1= {s/ € S| 3s € estis(7), I € Act, P(s,)(s") > 0 A obs(s')(z) > O}.

For a Kripke structure KS and a given trace 7, the monitoring problem can
be solved by computing estks(7), using [31] and Lemma 1.

Lemma 2. For a Kripke stucture KS = (S, 1, Act, P,Z,0bs), a trace T € Z*, and
a state-risk functionr: S — Rxq, it holds that R.(7) = max r(s). Computing

s€estks(T)
R, (1) requires time O(|7] - |P|) and space O(]S|).

A proof can be found in [36, Appendix|. The time and space requirements follow
directly from the inductive definition of estks which resembles solving a forward
state traversal problem in automata [31]. In particular, the algorithm allows
updating the result after extending 7 in O(|P)).

3.2 State Estimators for Markov Chains

For Markov chains, in addition to tracking the potential reachable system states,
we also need to take the transition probabilities into account. When a system
is (observation-)deterministic, we can adapt the notion of beliefs, similar to
RVSE [54], and similar to the construction of belief MDPs for partially observable
MDPs, cf. [53]:

Definition 4 (Belief). For an MDP M with a set of states S, a belief bel is
a distribution in Distr(S).

In the remainder of the paper, we will denote the function S — {0} by 0 and
the set Distr(S) U {0} by Bel. A state estimator based on Bel is then defined as
follows [51,54,57]3:

3 For the deterministic case, we omit the unique action for brevity.
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Definition 5 (MC state estimator). For MC = (S,:, Act, P,Z,0bs), a trace
T € Z the state estimation function estyc: Zt — Bel is defined as

{s w} Jds € S. 1(s) - obs(z) > 0,

eStMc(Z) = sesL(S obs(4)(
0 otherwise.
%estMC(T)(s) - P(s,s') - obs(s')(2)
estuc(7-2) =< s — %:SestMC(T)(S) , (%:SP(S’g) - obs(3)(2))

To illustrate how estyc is computed, consider again our system in Fig.1
and assume that the MDP has only the actions labeled with {p} (reducing it
to the Markov chain induced by the a scheduler that only performs the {p}
actions). Again we consider the observation trace 7 = R, - M, - L, and compute
estmc (7). For the first observation R,, and since there is only one initial state,
it follows that estmc(R,) = {(R, D2) — 1}*. From (R, Ds) and having observed
M, we can reach the states (R, D1> and (M, D1) with probabilities estmc (R, -

1.1
M,) = {(R,D;) % = £,(M,Dy) — % = 2}. Finally, from
the later two states, when observing L,, the states (M, Dy) and (L, Dy) can be
reached with probabilities estyc(R, - M, - L,) = {(M, Dy) — 0.0001, (L, Dg) —
0.999}. Notice that although the state (R, Dg) can be reached from (R, D;), the
probability of being in this state is 0 since the probability of observing L, in this

state is obs((R, Dy))(L,) = 0.

Lemma 3. For a Markov chain MC = (S, 1, Act, P,Z,obs), a trace T € Z%, and
a state-risk function r: S — R, it holds that R.(T) = ) g estmc(7)(s) - 7(s).
Computing R,.(T) can be done in time O(|r| - |S| - |P|) , and using |S| many
rational numbers. The size of the rationals® may grow linearly in 7.

Proof Sketch. Since the system is deterministic, there is a unique scheduler o,
thus R,.(1) = Zwenh‘fc' Pro(m | 7)-r(m)) by definition. We can show by induction
over the length of 7 that Pr,(m | 7) = estmc(7)(m)) and conclude that R, (1) =
> enls) estmc (7)(m)) - (7)) = > cqestmc(T)(s) - r(s) because estpmc(7)(s) =0

for all s € S for which there is no path = € H‘ 7| with m = s. The complexity
follows from the inductive definition of estyc that requires in each inductive step
to iterate over all transitions of the system and maintain a belief over the states
of the system. a

3.3 State Estimators for Markov Decision Processes

In an MDP, we have to account for every possible resolution of nondeterminism,
which means that a belief can evolve into a set of beliefs:

* We omit the (single) sensor state for conciseness.
5 To avoid growth, one may use fixed-precision numbers that over-approximate the
probability of being in any state—inducing a growing (but conservative) error.
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Definition 6 (MDP state estimator). For an MDP M = (S, Act,
P,Z,0bs), a trace T € Z%, and a state-risk function r: S — Rxo, the state
estimation function estypp: ZT — 2B is defined as

estmpp(z) = {estmc(2)},

estmpp (7 - 2) = {bel’ € Bel ‘ Jbel € estmpp (7). bel’ € estK,‘,’DP(bel,z)},

and where bel’ € estyron(bel, 2) if there exists gpei: S — Distr(Act) such that:

ST bel(s) - Y. chel(s)(@) - P(s,a,s") - obs(s’)(z)

, /N sES aEAct
Vs'.bel'(s') = %:Sbel(s) : g t§bel(s)(a) ; %P(s,a,é) -obs(3)(2)

The definition conservatively extends both Definition 3 and Definition 5. Fur-
thermore, we remark that we do not restrict how the nondeterminism is resolved:
any distribution over actions can be chosen, and the distributions may be dif-
ferent for different traces.

Consider our system in Fig. 1. For the trace 7 = R, - M, - L,, estmpp(7) is
computed as follows. First, when observing R,, the state estimator computes
the initial belief set estmpp(R,) = {{(R,D2) + 1}}. From this set of beliefs,
when observing M,, a set estmpp(R, - M,) can be computed since all transi-
tions 0, {p}, {w}, {p, w} (as well as their convex combinations) are possible from
(R, D3). One of these beliefs is for example {(R, D1) — =5, (M, Dy) — %} when
a scheduler takes the transition {p} (as was computed in our example for the
Markov chain case). Having additionally observed L, a new set estypp (RoM,Lo)
of beliefs can be computed based on the beliefs in estmpp(R,M,). For exam-
ple from the belief {(R,D1) — &, (M,D;) — 2}, two of the new beliefs
are {(L, Dg) — 0.999, (M, Dy) — 0.0001} and {(M, Dy) — 0.0287, (M, Dy) —
0.0001, (L, Do) — 0.9712}. The first belief is reached by a scheduler that takes
a transition {p} at both (R, D) and (M, D;). Notice that the belief does not
give a positive probability to the state (R, Dg) because L, cannot be observed
in this state. The second belief is reached by considering a scheduler that takes
transition {p} at (M, D) and transition @) at (R, D1).

Theorem 1. For an MDP M = (S)i,Act,P,Z,obs), a trace T €
Z*, and a state-risk function r: S — Rso, it holds that R.(1) =

Supbe|€eStMDp(T) ZSES bel(S) ' 7"(3)

Proof Sketch. For a given trace 7, each (history-dependent, randomizing) sched-
uler induces a belief over the states of the Markov chain induced by the scheduler.
Also, each belief in estmpp(7) corresponds to a fixed scheduler, namely that one
used to compute the belief recursively (i.e., an arbitrary randomizing memory-
less scheduler for every time step). Once a scheduler o and its corresponding
belief bel is fixed, or vice versa, we can show using induction over the length of

7 that Zweﬂj\;‘ Pro(m | 7)-7(m) = > ,cqbel(s) -7(s). O
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4 Convex Hull-Based Forward Filtering

In this section, we show that we can use a finite representation for estypp(7),
but that this representation is exponentially large for some MDPs.

4.1 Properties of estpmpp(T).

First, observe that 0 never maximizes the risk. Furthermore, 0 is closed
under updates, i.e., estypp(0,2) = {0}. We can thus w.lo.g. assume that
0 ¢ estmpp (7). Second, observe that estypp(7) # 0 if Pr,(7) > 0.

We can interpret a belief bel € Bel as point in (a bounded subset of ) R(S1=1),
We are in particular interested in convex sets of beliefs. A set B C Bel is convex if
the convex hull CH(B) of B, i.e. all convex combination of beliefs in B%, coincides
with B, i.e., CH(B) = B. For a set B C Bel, a belief bel € B is an interior belief
if it can be expressed as convex combination of the beliefs in B\ {bel}. All other
beliefs are (extremal) points or vertices. Let the set V(B) C B denote the set of
vertices of the convex hull of B.

Ezample 1. Consider Fig.3(a). All observation are Dirac, and only states so
and s4 have observation ~;. The beliefs having observed zyzy are distributions
over s1,S3, and can thus be depicted in a one-dimensional simplex. In particu-
lar, we have V(estmpp(z020)) = {{s1 +— 1}, {s1 — 3/4,s3 — 1/4}}, as depicted in
Fig. 3(b). The six beliefs having observed zpzpzg are distributions over sq, s1, s3,
depicted in Fig.3(c). Five out of six beliefs are vertices. The belief having
observed zpzpz: is in Fig. 3(d).

Remark 2. Observe that we illustrate the beliefs over only the states estks(7).
We therefore call |estks(7)| the dimension of estypp (7).

From the fundamental theorem of linear programming [47, Ch. 7] it immediately
follows that the trace risk R, is obtained at a vertex of the beliefs of estyppT.
We obtain the following refinement over Theorem 1:

¢ That is, CH(B) = {>_,,c5 w(bel) - bel | for all w € R, with 3" w(bel) = 1}.
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Theorem 2. For every 7 and r: R,(7) = max > scg bel(s) - r(s).
beleV (estmpp (7))
Lemma 5 below clarifies that this maximum indeed exists.

We make some observations that allow us to compute the vertices more effi-
ciently: Let estyp(B, z) denote Jyocp estypp (bel, z). From the properties of
convex sets [18, Ch. 2], we make the following observations: If B is convex,
estypp (B, 2) is convex, as all operations in computing a new belief are convex-
set preserving”. Furthermore, if B has a finite set of vertices, then estyipp (B, 2)
has a finite set of vertices. The following lemma which is based on the observa-
tions above clarifies how to compute the vertices:

Lemma 4. For a convex set of beliefs B with a finite set of vertices and an
observation z:
V(estyipp (B, 2)) = V(estyipp(V(B), 2)).-

By induction and using the facts above we obtain:
Lemma 5. Any V(estmpp(7)) is finite.

A monitor thus only needs to track the vertices. Furthermore, estyiyp(B, z) can
be adapted to compute only vertices by limiting ¢pef to S — Act.

4.2 Exponential Lower Bounds on the Relevant Vertices

We show that a monitor in general cannot avoid an exponential blow-up in the
beliefs it tracks. First observe that updating bel yields up to [], |Act(s)| new
beliefs (vertex or not), a prohibitively large number. The number of vertices is
also exponential:

Lemma 6. There exists a family of MDPs M, with 2n + 1 states such that
[V(estmpp (7))| = 2" for every T with |T| > 2.

Proof Sketch. We construct M,, with n = 3, that is, M3 in Fig. 4(a). For this
MDP and 7 = AAA, |V(estmpp(7))| = 23. In particular, observe how the belief
factorizes into a belief within each component C; = {h;,;} and notice that M.,
has components C7 to C,,. In particular, for each component, the belief being that
we are with probability mass 1/n (for n = 3,1/3) in the "low’ state I; or the "high’
state h;. We depict the beliefs in Fig. 4(b,c,d). Thus, for any 7 with |7| > 2 we can
compactly represent V(estmpp (7)) as bit-strings of length n. Concretely, the belief

{h1,12,13 — 1/3,11, ha, h3 — 0} maps to 100, and
{hl,l27 hg = 1/3,11, hg, ld = 0} maps to 101.
These are exponentially many beliefs for bit strings of length n. a

One might ask whether a symbolic encoding of an exponentially large set
may result in a more tractable approach to filtering. While Theorem 2 allows

" The scaling is called a projection.
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(a) Ms. Observations Z = Act with obs(s, ) = a if & # B and obs(s, B) =
A for every s. Initial belief is A, all probabilities are 1, unless stated

otherwise.

(1/3,0) (0,1/3) (1/3,0) (0,1/3) (1/8,0) (0, 1/3)
ll ......... I R, .h:1 l2 h2 l3 ................. .}7:3
(b) Beliefs after AA
W0 m g o0 0. Wl .
l1 hl l2 h2 l3 h?
(c) Beliefs after AAA
R . . T . 0. 39 %
ll hl lz h2 l3 h3

(d) Beliefs after AAAA™

Fig. 4. Construction for the correctness of Lemma 6.

to compute the associated risk from a set of linear constraints with standard
techniques, it is not clear whether the concise set of constraints can be efficiently
constructed and updated in every step. We leave this concern for future work.

In the remainder we investigate whether we need to track all these beliefs.
First, when the monitor is unaware of the state-risk, this is trivially unavoid-
able. More precisely, all vertices may induce the maximal weighted trace risk by
choosing an appropriate state-risk:

Lemma 7. For every T and every bel € V(estmpp (7)) there exists an r s.t.

bel(s) - r(s) > max bel’(s) - r(s) with max = —oo.
SGZS ( ) ( )7 beI’EV(estMDp(‘r))\{bel}; ( ) ( ) belef)
Proof Sketch. We construct r such that r(s) > r(s’) if bel(s) > bel(s’). |

Second, even if the monitor is aware of the state risk r, it may not be able to
prune enough vertices to avoid exponential growth. The crux here is that while
some of the current beliefs may induce a smaller risk, an extension of the trace
may cause the belief to evolve into a belief that induces the maximal risk.

Theorem 3. There exist MDPs M, a T with B := V(estmpp(7)) and a state-
risk r such that |B| = 2™ and for all bel € B exists 7/ € ZT with R.(t - 7') >
SUDpeic 5 25 Del(s) - 7(s), where B’ = estyypp(B \ {bel}, 7).
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It is helpful to understand this theorem as describing the outcome of a game
between monitor and environment: The statement says if the monitor decides to
drop some vertices from estypp7, the environment may produce an observation
trace 7 that will lead the monitor to underestimate the weighted risk at R,.(7-7").

Proof Sketch. We extend the construction of Fig.4(a) with choices to go to a
final state. The full proof sketch can be found in [36, Appendix].

4.3 Approximation by Pruning

Finally, we illustrate that we cannot simply prune small probabilities from
beliefs. This indicates that an approximative version of filtering for the mon-
itoring problem is nontrivial. Reconsider observing zpzp in the MDP of Fig. 3,
and, for the sake of argument, let us prune the (small) entry sz — 1/4 to 0. Now,
continuing with the trace zgzpz;, we would update the beliefs from before and
then conclude that this trace cannot be observed with positive probability. With
pruning, there is no upper bound on the difference between the computed R
and the actual R,. Thus, forward filtering is, in general, not tractable on MDPs.

5 Unrolling with Model Checking

We present a tractable algorithm for the monitoring problem. Contrary to filter-
ing, this method incorporates the state risk. We briefly consider the qualitative
case. An algorithm that solves that problem iteratively guesses a successor such
that the given trace has positive probability, and reaches a state with sufficient
risk. The algorithm only stores the current and next state and a counter.

Theorem 4. The Monitoring Problem with A\ =0 is in NLOGSPACE.

This result implies the existence of a polynomial time algorithm, e.g., using a
graph-search on a graph growing in |7|. There also is a deterministic algorithm
with space complexity O(log?(]M|+|7|)), which follows from applying Savitch’s
Theorem [46] , but that algorithm has exponential time complexity.

We now present a tractable algorithm for the quantitative case, where we
need to store all paths. We do this efficiently by storing an unrolled MDP with
these paths using ideas from [9,19]. In particular, on this MDP, we can effi-
ciently obtain the scheduler that optimizes the risk by model checking rather
than enumerating over all schedulers explicitly. We give the result before going
into details.

Theorem 5. The Monitoring Problem (with A > 0) is P-complete.

The problem is P-hard, as unary-encoded step-bounded reachability is P-hard [41].
It remains to show a P-time algorithm®, which is outlined below. Roughly, the algo-
rithm constructs an MDP M from M in three conceptual steps, such that the

8 On first sight, this might be surprising as step-bounded reachability in MDPs is
PSPACE-hard and only quasi-polynomial. However, our problem gets a trace and
therefore (assuming that the trace is not compressed) can be handled in time polyno-
mial in the length of the trace.
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(d) M

Fig. 5. Polynomial-time algorithm for solving Problem 1 illustrated.

maximal probability of reaching a state in M"’ coincides with the R,.(7). The for-
mer can be solved by linear programming in polynomial time. The downside is that
even in the best case, the memory consumption grows linearly in |7|.

We outline the main steps of the algorithm and exemplify them below: First,
we transform M into an MDP M’ with deterministic state observations, i.e.,
with obs’: S — Z. This construction is detailed in [19, Remark 1], and runs in
polynomial time. The new initial distribution takes into account the initial obser-
vation and the initial distribution. Importantly, for each path 7 and each trace 7,
obsy () (7) is preserved. From here, the idea for the algorithm is a tailored adap-
tion of the construction for conditional reachability probabilities in [9]. We ensure
that r(s) € [0,1] by scaling r and A accordingly. Now, we construct a new MDP
M = (8" Act”, P") with state space S” := (S’ x{0,...,|r|-1})U{L, T} and
an n-times unrolled transition relation. Furthermore, from the states (s, |7|—1),
there is a single outgoing action that with probability r(s) leads to T and with
probability 1 — r(s) leads to L. Observe that the risk is now the supremum
of conditioned reachability probabilities over paths that reach T, conditioned
by the trace 7. The MDP M” is only polynomially larger. Then, we construct
MDP M" by copying M" and replacing (part of) the transition relation P”
by P such that paths 7 with 7 ¢ obsy, () are looped back to the initial state
(resembling rejection sampling). Formally,

PI/I(<S7i>,Ol) _ P//(<8,i>,04) if Obs/(ig) = T,

L otherwise.
The maximal conditional reachability probability in M” is the maximal reacha-
bility probability in M [9]. Maximal reachability probabilities can be computed
by solving a linear program [43], and can thus be computed in polynomial time.

Ezample 2. We illustrate the construction in Fig.5. In Fig.5(a), we depict an
MDP M, with ¢ = {so, s1 — 1/2}. Furthermore, let 7 = zpzp and let r(sp) = 1
and r(s1) = 2. Let obs(sg) = {z0 — 1} and obs(s1) = {z0 — /4,2, — 3/4}.
State s; has two possible observations, so we split s; into s; and sp in MDP
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M’ each with their own observations. Any transition into s; is now split. As
|7| = 2, we unroll the MDP M’ into MDP M” to represent two steps, and
add goal and sink states. After rescaling, we obtain that r(sg) = /2, whereas
r(s1) = r(s2) = 2/2 = 1, and we add the appropriate outgoing transitions to
the states sl. In a final step, we create MDP M’ from M": we reroute all
probability mass that does not agree with the observations to the initial states.
Now, R, (z020) is given by the probability to reach, in M’ in an unbounded
number of steps, T.

The construction also implies that maximizing over a finite set of schedulers,
namely the deterministic schedulers with a counter from 0 to ||, suffices. We
denote this class Xpc(|7|). Formally, a scheduler is in X'pc (k) if for all «, 7'

(m =7  A(jx|=|7"| V(7] > kA|x'| > k))) implies o(7) = o(n’).

Lemma 8. For every T, it holds that

R.(T = max Pro(m | 71)-r(m).
0 = s 3 Prrln)rm)
Tl

The crucial idea underpinning this lemma is that memoryless schedulers suffice
for the unrolling, and that the states of the unrolling can be uniquely mapped to
a state and the length of the history for every m through M. By reducing step-
bounded reachability we can also show that this set of schedulers is necessary [4].

6 Empirical Evaluation

Implementation. We provide prototype implementations for both filtering- and
model-checking-based approaches from Sect. 3, built on top of the probabilistic
model checker STORM [30]. We provide a schematic setup of our implementation
in Fig.6. As input, we consider a symbolic description of MDPs with state-
based observation labels, based on an extended dialect of the Prism language.
We define the state risk in this MDP via a temporal property (given as a PCTL
formula), and obtain the concrete state-risk by model checking. We take a seed
that yields a trace using the simulator. For the experiments, actions are resolved
uniformly in this simulator?. The simulator iteratively feeds observations into
the monitor, running either of our two algorithms (implemented in C++). After
each observation z;, the monitor computes the risk R; having observed zg ... 2;.
We flexibly combine these components via a Python API'C.

For filtering as in Sect. 4, we provide a sparse data structure for beliefs that is
updated using only deterministic schedulers. This is sufficient, see Lemma 4. To
further prune the set of beliefs, we implement an SMT-driven elimination [48]

9 This is not an assumption but rather our evaluation strategy.
10" Available at https://github.com/monitoring-MDPs/premise.
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iterative process

input
State risk Model r: S = Rsg ’ <internal memory> after zg...z;_1
—| — 7 T
t ls heck HEEEEEEEEEEEEE Y T e e
emporal spec checker : Forw. Filter uses) Convex :
MDP ' Sec. 4 Hull 0 gk
—
(Prism lang.) \> System obs z; | Unrolling | uses , Model | R;
> |
- —"|Simulator ! Sec. 5 checking
Seed [ w
Monitor

Fig. 6. Schematic setup for prototype mapping stream zp ...z to stream Ry ... Rg.

of interior beliefs, inside of the convex hull'!. We construct the unrolling as
described in Sect. 5 and apply model checking via any sparse engines in STORM.

Reproducibility. We archived a container with sources, benchmarks, and scripts
to reproduce our experiments: https://doi.org/10.5281/zenodo.4724622.

Set-Up. For each benchmark described below, we sampled 50 random traces
using seeds 0-49 of lengths up to || = 500. We are interested in the prompt-
ness, that is, the delay of time between getting an observation z; and returning
corresponding risk r;, as well as the cumulative performance obtained by sum-
ming over the promptness along the trace. We use a timeout of 1 second for
this query. We compare the forward filtering (FF) approach with and without
convex hull (CH) reduction, and the model unrolling approach (UNR) with two
model checking engines of STORM: exact policy iteration (EPI, [43]) and opti-
mistic value iteration (OVI, [28]). All experiments are run on a MacBook Pro
MV962LL/A, using a single core. The memory limit of 6GB was not violated.
We use Z3 [38] as SMT-solver [11] for the convex hull reduction.

Benchmarks. We present three benchmark families, all MDPs with a combination
of probabilities, nondeterminism and partial observability.

AIRPORT-A is as in Sect. 1, but with a higher resolution for both ground vehicle
in the middle lane and the plane. AIRPORT-B has a two-state sensor model with
stochastic transitions between them.

REFUEL-A models robots with a depleting battery and recharging stations. The
world model consists of a robot moving around in a Dx D grid with some ded-
icated charging cells, where each action costs energy. The risk is to deplete the
battery within a fixed horizon. REFUEL-B is a two-state sensor variant.

EvADE-I is inspired by a navigation task in a multi-agent setting in a Dx D grid.
The monitored robot moves randomly, and the risk is defined as the probability
of crashing with the other robot. The other robot has an internal incentive in
the form of a cardinal direction, and nondeterministically decides to move or

11 Advanced algorithms like Quickhull [10] are not without significant adaptions appli-
cable as the set of beliefs can be degenerate (roughly, a set without full rank).
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Table 1. Performance for promptness of online monitoring on various benchmarks.

CH Forward Filtering Unrolling
Id Name Inst 1S| |P| |7||N T T B B D D|N T T |Si |S4

avg max avg max avg max avg max  ,uo max

100|50 0.01 0.01 45 7 46 7 50 0.04 0.11 524 599

1 AIRPORT-A 7,50,30 | 20910 114143
50050 0.01 0.01 1.0 1 1.0 1|50 0.01 0.01 1075 1258

-

2 AIRPORT-B 3,50,30 | 20232 106012 100 -0 50 0.09 016 556 629
500 O 50 0.01 0.01 1460 1647
1 .14 033 1 11

3 AIRPORT-B 7,50,30 | 41820 308474 00} 0 50 0 0.33 11000 1183
500 0O 11 0.02 0.02 2097 2297

5 5 5

4 REFUEL-A 12,50 45073 2431691 10050 0.01 0.01 22 4 28 5 50 0.01 0.05 325 409
50050 0.01 0.01 1.5 4 1.7 5|50 0.01 0.19 1071 2409

5 REFUEL-B 12,50 90145 9795277 100|50 0.06 0.23 42 8 5.6 10 50 0.04 0.17 608 732
50050 0.01 0.01 2.9 8 3.3 10|46 0.04 0.09 2171 4688

1.0
1.0

50 0.02 0.32 319 861
49 0.01 0.02 777 1484

6 mvADE- 15 377101 2022295 100|50 0.01 0.02 2.6 10 3.3 4 49 0.01 0.06 332 363
50050 0.01 0.01 24 5 3.4 4|45 0.08 0.90 1655 1891
7 EvaDE-V 53 1001 5318 00|26 0.01 0.01 1.0 1.0 1|50 0.00 0.02 134 241
500 | 2 1/50 0.00 0.01 538 671

1

1

1

5 0.01 0.01 1.0 1 1.0
100 1 0.01 0.01 1.0 1
1 1

8 EVADE-V 6,3 2161 11817
0.01 0.01 1.0

to uniformly randomly change its incentive. The monitor observes everything
except the incentive of the other robot. EVADE-V is an alternative navigation
task: Contrary to above, the other robot does not have an internal state and
indeed navigates nondeterministically in one of the cardinal directions. We only
observe the other robot location is within the view range.

Results. We split our results in two tables. In Table 1, we give an ID for every
benchmark name and instance, along with the size of the MDP (ur. of states
|S| and transitions |P|) our algorithms operate on. We consider the promptness
after prefixes of length |7|. In particular, for forward filtering with the convex
hull optimization, we give the number N of traces that did not time out before,
and consider the average T,y and maximal time Ti,.x needed (over all sampled
traces that did not time-out before). Furthermore, we give the average, Bayg,
and maximal, Bp,ax, number of beliefs stored (after reduction), and the average,
D,yg, and maximal, Dy,ay, dimension of the belief support. Likewise, for unrolling
with exact model checking, we give the number N of traces that did not time
out before, and we consider average T,y and maximal time T,ax, as well as the
average size and maximal number of states of the unfolded MDP.

In Table2, we consider for the benchmarks above the cumulative perfor-
mance. In particular, this table also considers an alternative implementation for
both FF and UNR. We use the IDs to identify the instance, and sum for each
prefix of length |7| the time. For filtering, we recall the number of traces N that
did not time out, the average and maximal cumulative time along the trace,
the average cumulative number of beliefs that were considered, and the average
cumulative number of beliefs eliminated. For the case without convex hull, we
do not eliminate any vertices. For unrolling, we report average T.,s and maxi-
mal cumulative time using EPI, as well as the time required for model building,
Bld” (relative to the total time, per trace). We compare this to the average
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Table 2. Summarized performance for online monitoring

FF w/o CH FF w/ CH UNR (EPI) UNR (OVI)
Id |7f| N T T B/N T T B E|N T T BW* Bd* N T T

avg max avg avg max avg avg avg max  avg max avg max

1 100 50 09 1.1 493 241/50 2.9 3.6 6 5650 0.0 0.1
500 50 3.7 4.3 1040 31650 7.5 10.7 21 24150 0.4 0.8

2 100 0 50 3.7 4.7 6 54150 0.1 0.1
500 0 50 11.9 17.1 18 2350 0.6 0.8

0 50 7.6 10.6 5 55150 0.1 0.2

500 0 11 21.3 28.7 19 23150 09 1.7

0.9 09 1473/50 0.7 0.8 241 138 /50 0.7 1.0 35 6950 0.0 0.1
0.9 09 1873/50 34 3.7 868 226 50 5.6 21.2 57 67150 0.5 0.9
50 7.4 10.7 442 226750 2.5 4.4 32 57150 0.1 0.2
50 16.5 42.2 1781 4249|46 19.5 64.2 55 70150 1.3 2.3

500

w
—
(==l
[=}
© OolF MO Ol OO0 ©

500

6 10013 0.7 29 2055 50 1.1 4.8 273 160/49 0.5 2.0 34 6547 0.0 0.1
500 2 4.4 6.8 20524 50 5.1 11.5 1237 632|45 22.4 53.6 13 29143 0.5 0.7
7 100/13 0.1 0.5 27426 08 12 106 11/50 0.4 1.0 19 45148 0.0 0.1
50013 0.1 0.5 67425 3.7 4.2 505 750 13 44 46 5847 0.2 0.3
8 100| O 1 1.3 1.3 124 109/50 1.5 7.0 15 3936 0.4 5.6
500 O 1 43 43 524 10949 49 28.1 37 56|35 0.7 6.4

and maximal cumulative time for using OVI (notice that building times remain
approximately the same).

Discussion. The results from our prototype show that conservative (sound) pre-
dictive modeling of systems that combine probabilities, nondeterminism and
partial observability is within reach with the methods we proposed and state-
of-the-art algorithms. Both forward filtering and an unrolling-based approaches
have their merits. The practical results thus slightly diverge from the complexity
results in Sect. 3.1, due to structural properties of some benchmarks. In par-
ticular, for AIRPORT-A and REFUEL-A, the nondeterminism barely influences
the belief, and so there is no explosion, and consequentially the dimension of
the belief is sufficiently small that the convex hull can be efficiently computed.
Rather than the number of states, this belief dimension makes EVADE-V a dif-
ficult benchmark'?. If many states can be reached with a particular trace, and
if along these paths there are some probabilistic states, forward filtering suffers
significantly. We see that if the benchmark allows for efficacious forward filter-
ing, it is not slowed down in the way that unrolling is slower on longer traces.
For UNR, we observe that OVI is typically the fastest, but EPI does not suffer
from the numerical worst-cases as OVI does. If an observation trace is unlikely,
the unrolled MDP constitutes a numerically challenging problem, in particular
for value-iteration based model checkers, see [27]. For FF, the convex hull com-
putation is essential for any dimension, and eliminating some vertices in every
step keeps the number of belief states manageable.

12 The max dimension =1 in EVADE-V is only over the traces that did not time-out.
The dimension when running in time-outs is above 5.
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7 Related Work

We are not the first to consider model-based runtime verification in the presence
of partial observability and probabilities. Runtime verification with state estima-
tion on hidden Markov models (HMM )—without nondeterminism has been stud-
ied for various types of properties [51,54,57] and has been extended to hybrid
systems [52]. The tool Prevent focusses on black-box systems by learning an
HMM from a set of traces. The HMM approximates (with only convergence-in-
the-limit guarantees) the actual system [6], and then estimates during runtime
the most likely trace rather than estimating a distribution over current states.
Extensions consider symmetry reductions on the models [7]. These techniques
do not make a conservative (sound) risk estimation. The recent framework for
runtime verification in the presence of partial observability [23] takes a more
strict black-box view and cannot provide state estimates. Finally, [26] chooses to
have partial observability to make monitoring of software systems more efficient,
and [58] monitors a noisy sensor to reduce energy consumption.

State beliefs are studied when verifying HMMs [59], where the question
whether a sequence of observations likely occurs, or which HMM is an adequate
representation of a system [37]. State beliefs are prominent in the verification of
partially observable MDPs [16,32,40], where one can observe the actions taken
(but the problem itself is to find the right scheduler). Our monitoring problem
can be phrased as a special case of verification of partially observable stochastic
games [20], but automatic techniques for those very general models are lack-
ing. Likewise, the idea of shielding (pre)computes all action choices that lead
to safe behavior [3,5,15,24,34,35]. For partially observable settings, shielding
again requires to compute partial-information schedulers [21,39], contrary to
our approach. Partial observability has also been studied in the context of diag-
nosability, studying if a fault has occurred (in the past) [14], or what actions
uncover faults [13]. We, instead assume partial observability in which we do
detect faults, but want to estimate the risk that these faults occur in the future.

The assurance framework for reinforcement learning [42] implicitly allows
for stochastic behavior, but cannot cope with partial observability or nondeter-
minism. Predictive monitoring has been combined with deep learning [17] and
Bayesian inference [22], where the key problem is that the computation of an
imminent failure is too expensive to be done exactly. More generally, learning
automata models has been motivated with runtime assurance [1,55]. Testing
approaches statistically evaluate whether traces are likely to be produced by a
given model [25]. The approach in [2] studies stochastic black-box systems with
controllable nondeterminism and iteratively learns a model for the system.

8 Conclusion

We have presented the first framework for monitoring based on a trace of obser-
vations on models that combine nondeterminism and probabilities. Future work
includes heuristics for approximate monitoring and for faster convex hull com-
putations, and to apply this work to gray-box (learned) models.
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Abstract. We revisit the symbolic verification of Markov chains with
respect to finite horizon reachability properties. The prevalent approach
iteratively computes step-bounded state reachability probabilities. By
contrast, recent advances in probabilistic inference suggest symbolically
representing all horizon-length paths through the Markov chain. We ask
whether this perspective advances the state-of-the-art in probabilistic
model checking. First, we formally describe both approaches in order
to highlight their key differences. Then, using these insights we develop
RUBICON, a tool that transpiles PRisM models to the probabilistic infer-
ence tool Dice. Finally, we demonstrate better scalability compared to
probabilistic model checkers on selected benchmarks. All together, our
results suggest that probabilistic inference is a valuable addition to the
probabilistic model checking portfolio, with RUBICON as a first step
towards integrating both perspectives.

1 Introduction

Systems with probabilistic uncertainty are ubiquitous, e.g., probabilistic pro-
grams, distributed systems, fault trees, and biological models. Markov chains
replace nondeterminism in transition systems with probabilistic uncertainty, and
probabilistic model checking [4,7] provides model checking algorithms. A key
property that probabilistic model checkers answer is: What is the (precise) prob-
ability that a target state is reached (within a finite number of steps h)? Contrary
to classical qualitative model checking and approximate variants of probabilistic
model checking, precise probabilistic model checking must find the total proba-
bility of all paths from the initial state to any target state.
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P = p1 ap = Pn = Pn qn =

(a) Motivating factory Markov chain with s; = [¢; =0],¢t; = [¢; = 1].

const double pi, p2, P3, q1, G2, 43;
module F1

c1 :bool init false;
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endmodule 4

module F2 = Fi[ci=co,p1=p2,q1=¢q2] 0 [&

module F3 = Fil[ci=c3,p1=p3,q1=q3] 5 10 15 20
label "allStrike" = ¢ & c2 & c3;

# Parallel Chains
(b) A PrisM model of (a) with 3 factories.  (c) Relative scaling.

Fig. 1. Motivating example. Figure 1(c) compares the performance of RUBICON (—x—),
STORM’s explicit engine (—e—), STORM’s symbolic engine (—=—) and PRISM ( )
when invoked on a (b) with arbitrarily fixed (different) constants for p;, ¢; and horizon
h = 10. Times are in seconds, with a time-out of 30 min.

Nevertheless, the prevalent ideas in probabilistic model checking are gener-
alizations of qualitative model checking. Whereas qualitative model checking
tracks the states that can reach a target state (or dually, that can be reached
from an initial state), probabilistic model checking tracks the i-step reachability
probability for each state in the chain. The i+1-step reachability can then be
computed via multiplication with the transition matriz. The scalability concern
is that this matrix grows with the state space in the Markov chain. Mature model
checking tools such as STORM [36], Modest [34], and PRisM [51] utilize a variety
of methods to alleviate the state space explosion. Nevertheless various natural
models cannot be analyzed by the available techniques.

In parallel, within the AI community a different approach to representing a
distribution has emerged, which on first glance can seem unintuitive. Rather than
marginalizing out the paths and tracking reachability probabilities per state, the
probabilistic AT community commonly aggregates all paths that reach the target
state. At its core, inference is then a weighted sum over all these paths [16].
This hinges on the observation that this set of paths can often be stored more
compactly, and that the probability of two paths that share the same prefix or
suffix can be efficiently computed on this concise representation. This inference
technique has been used in a variety of domains in the artificial intelligence
(AI) and verification communities [9,14,27,39], but is not part of any mature
probabilistic model checking tools.

This paper theoretically and experimentally compares and contrasts these
two approaches. In particular, we describe and motivate RUBICON, a probabilistic
model checker that leverages the successful probabilistic inference techniques. We
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begin with an example that explains the core ideas of RUBICON followed by the
paper structure and key contributions.

Motivating Example. Consider the example illustrated in Fig. 1(a). Suppose
there are n factories. Each day, the workers at each factory collectively decide
whether or not to strike. To simplify, we model each factory (i) with two states,
striking (¢;) and not striking (s;). Furthermore, since no two factories are identi-
cal, we take the probability to begin striking (p;) and to stop striking (g;) to be
different for each factory. Assuming that each factory transitions synchronously
and in parallel with the others, we query: “what is the probability that all the
factories are simultaneously striking within h days?”

Despite its simplicity, we observe that state-of-the-art model checkers like
STORM and PRISM do not scale beyond 15 factories.! For example, Fig. 1(b)
provides a PRISM encoding for this simple model (we show the instance with
3 factories), where a Boolean variable ¢; is used to encode the state of each
factory. The “allStrike” label identifies the target state. Figure 1(c) shows the
run time for an increasing number of factories. While all methods eventually
time out, RUBICON scales to systems with an order of magnitude more states.

Why is This Problem Hard? To understand the issue with scalability, observe
that tools such as STORM and PRISM store the transition matrix, either explicitly
or symbolically using algebraic decision diagrams (ADDs). Every distinct entry
of this transition matrix needs to be represented; in the case of ADDs using a
unique leaf node. Because each factory in our example has a different probability
of going on strike, that means each subset of factories will likely have a unique
probability of jointly going on strike. Hence, the transition matrix then will
have a number of distinct probabilities that is exponential in the number of
factories, and its representation as an ADD must blow up in size. Concretely,
for 10 factories, the size of the ADD representing the transition matrix has 1.9
million nodes. Moreover, the explicit engine fails due to the dense nature of the
underlying transition matrix. We discuss this method in Sect. 3.

How to Overcome This Limitation? This problematic combinatorial explosion
is often unnecessary. For the sake of intuition, consider the simple case where
the horizon is 1. Still, the standard transition matrix representations blow up
exponentially with the number of factories n. Yet, the probability of reaching
the “allStrike” state is easy to compute, even when n grows: it is p1 - ps - -« Pp.

RUBICON aims to compute probabilities in this compact factorized way by
representing the computation as a binary decision diagram (BDD). Figure 1(d)
gives an example of such a BDD, for three factories and a horizon of one. A key
property of this BDD, elaborated in Sect. 3, is that it can be interpreted as a
parametric Markov chain, where the weight of each edge corresponds with the
probability of a particular factory striking. Then, the probability that the goal
state is reached is given by the weighted sum of paths terminating in 7": for this
instance, there is a single such path with weight p1 - ps - p3. These BDDs are tree-
like Markov-chains, so model checking can be performed in time linear in the size

1 Section 6 describes the experimental apparatus and our choice of comparisons.
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of the BDD using dynamic programming. Essentially, the BDD represents the
set of paths that reach a target state—an idea common in probabilistic inference.

To construct this BDD, we propose to encode our reachability query sym-
bolically as a weighted model counting (WMC) query on a logical formula. By
compiling that formula into a BDD, we obtain a diagram where computing the
query probability can be done efficiently (in the size of the BDD). Concretely

for Fig.1(d), the BDD represents the formula cgl) A cél) A cgl), which encodes
all paths through the chain that terminate in the goal state (all factories strike
on day 1). For this example and this horizon, this is a single path. WMC is a
well-known strategy for probabilistic inference and is currently the among the
state-of-the-art approaches for discrete graphical models [16], discrete probabilis-
tic programs [39], and probabilistic logic programs [27].

In general, the exponential growth of the number of paths might seem like
it dooms this approach: for n = 3 factories and horizon h = 1, we need to
only represent 8 paths, but for h = 2, we would need to consider 64 different
paths, and so on. However, a key insight is that, for many systems — such as
the factory example — the structural compression of BDDs allows a concise rep-
resentation of exponentially many paths, all while being parametric over path
probabilities (see Sect. 4). To see why, observe that in the above discussion, the
state of each factory is independent of the other factories: independence, and
its natural generalizations like conditional and contextual independence, are the
driving force behind many successful probabilistic inference algorithms [47]. Suc-
cinctly, the key advantage of RUBICON is that it exploits a form of structure that
has thus far been under-exploited by model checkers, which is why it scales to
more parallel factories than the existing approaches on the hard task. In Sect. 6
we consider an extension to this motivating example that adds dependencies
between factories. This dependency (or rather, the accompanying increase in
the size of the underlying MC) significantly decreases scalability for the existing
approaches but negligibly affects RUBICON.

This leads to the task: how does one go from a PRISM model to a concise BDD
efficiently? To do this, RUBICON leverages a novel translation from PRISM models
into a probabilistic programming language called Dice (outlined in Sect. 5).

Contribution and Structure. Inspired by the example, we contribute concep-
tual and empirical arguments for leveraging BDD-based probabilistic inference
in model checking. Concretely:

1. We demonstrate fundamental advantages in using probabilistic inference on
a natural class of models (Sect. 1 and 6).

2. We explain these advantages by showing the fundamental differences between
existing model checking approaches and probabilistic inference (Sect. 3 and 4).
To that end, Sect. 4 presents probabilistic inference based on an operational
and a logical perspective and combines these perspectives.

3. We leverage those insights to build RUBICON, a tool that transpiles PRISM to
Dice, a probabilistic programming language (Sect. 5).
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(a) Toy-example M (b) pMC M’ (c) For M: P as ADD

Fig. 2. (a) MC toy example (b) (distinct) pMC toy example (¢) ADD transition matrix

4. We demonstrate that RUBICON indeed attains an order-of-magnitude scaling
improvement on several natural problems including sampling from parametric
Markov chains and verifying network protocol stabilization (Sect. 6).

Ultimately we argue that RUBICON makes a valuable contribution to the port-
folio of probabilistic model checking backends, and brings to bear the extensive
developments on probabilistic inference to well-known model checking problems.

2 Preliminaries and Problem Statement

We state the problem formally and recap relevant concepts. See [7] for details. We
sometimes use p to denote 1—p. A Markov chain (MC) is a tuple M = (S, P,T)
with S a (finite) set of states, ¢« € S the initial state, P: S — Distr(S) the
transition function, and T a set of target states T C S, where Distr(S) is the set
of distributions over a (finite) set S. We write P(s, s’) to denote P(s)(s") and call
P a transition matriz. The successors of s are Succ(s) = {s’ | P(s,s’) > 0}. To
support MCs with billions of states, we may describe MCs symbolically, e.g., with
PRrIsM [51] or as a probabilistic program [42,48]. For such a symbolic description
P, we denote the corresponding MC with [P]. States then reflect assignments
to symbolic variables.

A path ™ = sp...sy is a sequence of states, 7 € ST. We use 7| to denote
the last state s,, and the length of m above is n and is denoted |7|. Let Pathsy,
denote the paths of length h. The probability of a path is the product of the
transition probabilities, and may be defined inductively by Pr(s) = 1, Pr(rw -
s) = Pr(m) - P(m|,s). For a fixed horizon h and set of states T, let the set
[s—0SMT] ={n|mo=sAlr| <hAm €TAVi<]|nr|. m & T} denote paths
from s of length at most h that terminate at a state contained in 7T'. Furthermore,
let Pry(s = OShT) = 2 ore[s—o<nr Pr(m) describe the probability to reach

T within h steps. We simplify notation when s = ¢ and write [O="T'] and
Pra(OSMT), respectively. We omit M whenever that is clear from the context.
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Formal Problem: Given an MC M and a horizon h, compute Pr g (O="T).

Ezample 1. For conciseness, we introduce a toy example MC M in Fig.2(a).
For horizon h = 3, there are three paths that reach state (1,0): For example the
path (0,0)(0,1)(1,0) with corresponding reachability probability 0.4 - 0.5. The
reachability probability Pra(0=2{(1,0)}) = 0.42.

It is helpful to separate the topology and the probabilities. We do this by
means of a parametric MC (pMC) [22]. A pMC over a fixed set of parameters
p generalises MCs by allowing for a transition function that maps to Q[p], i.e.,
to polynomials over these variables [22]. A pMC and a wvaluation of parameters
u: p — R describe a MC by replacing p with w in the transition function P
to obtain Plu]. If P[u](s) is a distribution for every s, then we call u a well-
defined valuation. We can then think about a pMC M as a generator of a set of
MCs {M[u] | u well-defined}. Figure 2(b) shows a pMC; any valuation u with
u(p), u(q) € [0, 1] is well-defined. We consider the following associated problem:

Parameter Sampling: Given a pMC M, a finite set of well-defined valu-
ations U, and a horizon h, compute PrM[u](QShT) for each u € U.

We recap binary decision diagrams (BDDs) and their generalization into
algebraic decision diagrams (ADDs, a.k.a. multi-terminal BDDs). ADDs over a
set of variables X are directed acyclic graphs whose vertices V' can be partitioned
into terminal nodes Vi without successors and inner nodes V; with two successors.
Each terminal node is labeled with a polynomial over some parameters p (or
just to constants in Q), val: V; — Q[p], and each inner node V; with a variable,
var: V; — X. One node is the root node vy. Edges are described by the two
successor functions Ey: V; — V and E;: V; — V. A BDD is an ADD with
exactly two terminals labeled T" and F'. Formally, we denote an ADD by the tuple
(V,vg, X, var,val, Ey, E1). ADDs describe functions f: BX — Q[p] (described by
a path in the underlying graph and the label of the corresponding terminal node).
As finite sets can be encoded with bit vectors, ADDs represent functions from
(tuples of) finite sets to polynomials.

Ezample 2. The transition matrix P of the MC in Fig. 2(a) maps states, encoded
by bit vectors, (x,y),{z’,y’) to the probabilities to move from state (z,y) to
(z',y'). Figure2(c) shows the corresponding ADD.?

3 A Model Checking Perspective

We briefly analyze the de-facto standard approach to symbolic probabilistic
model checking of finite-horizon reachability probabilities. It is an adaptation of
qualitative model checking, in which we track the (backward) reachable states.
This set can be thought of as a mapping from states to a Boolean indicating
whether a target state can be reached. We generalize the mapping to a func-
tion that maps every state s to the probability that we reach T" within ¢ steps,

2 The ADD also depends on the variable order, which we assume fixed for conciseness.
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state horizon h
oj1] 2] 3 a
(0,0)[0] 0 [0.2]0.42
(0,1)]0]0.5|0.75|0.875
(1,0)(1] 1| 1 1
(1,1)|0]0.5|0.75]0.875 .
() Prac(0=*{(0)})  (b) Pras(0=*{(0.1)}) as ADD

Fig. 3. Bounded reachability and symbolic model checking for the MC M in Fig. 2(a).

denoted Pra(s = OSUT). First, it is convenient to construct a transition relation
in which the target states have been made absorbing, i.e., we define a matrix
with A(s, s') = P(s,s') if s ¢ T and A(s,s’) = [s = s']> otherwise. The following

Bellman equations characterize that aforementioned mapping:
?\/{ (s |F O=T) = [s € TY,

Pr (sEOST) = > Als,) Pr(s' | OSIT) with i > 0.

s’ €Succ(s)

The main aspect model checkers take from these equations is that to compute
the h-step reachability from state s, one only needs to combine the h—1-step
reachability from any state s’ and the transition probabilities P(s, s’). We define
a vector T with T'(s) = [s € T|. The algorithm then iteratively computes and
stores the i step reachability for i = 0 to i = h, e.g. by computing A% - T
using A-(A-(A-T)). This reasoning is thus inherently backwards and implicitly
marginalizing out paths. In particular, rather than storing the i-step paths that
lead to the target, one only stores a vector & = A*- T that stores for every state
s the sum over all i-long paths from s.

Explicit representations of matrix A and vector @ require memory at least in
the order |S|.* To overcome this limitation, symbolic probabilistic model checking
stores both A and A* - T as an ADD by considering the matrix as a function
from a tuple (s, s’) to A(s,s’), and x as a function from s to x(s) [2].

Ezample 3. Reconsider the MC in Fig. 2(a). The h-bounded reachability proba-
bility Pra(0="{(1,0)}) can be computed as reflected in Fig. 3(a). The ADD for
P is shown in Fig. 2(c). The ADD for & when h = 2 is shown in Fig. 3(b).

The performance of symbolic probabilistic model checking is directly gov-
erned by the sizes of these two ADDs. The size of an ADD is bounded from
below by the number of leafs. In qualitative model checking, both ADDs are
in fact BDDs, with two leafs. However, for the ADD representing A, this lower
bound is given by the number of different probabilities in the transition matrix.
In the running example, we have seen that a small program P may have an
underlying MC [P] with an exponential state space S and equally many dif-
ferent transition probabilities. Symbolic probabilistic model checking also scales

3 Where [z]=1 if 2 holds and 0 otherwise.
4 Excluding e.g., partial exploration or sampling which typically are not exact.
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e — 588 g;;g {ss} {s3,..., stov}
sssu
s - et <->> sstv {s} 5 J?sst 51:)}
~ stu ’
st @ __» stvu . X 7 N
stv > stvv {st} > {stu, ..., s3u}
(a) CT(M,3) (b) CT(M, 3) compressed  (c) Predicate as BDD

Fig. 4. The computation tree for M and horizon 3 and its compression. We label states
as s=(0,0), t=(0,1), u=(1,0),v=(1,1). Probabilities are omitted for conciseness.

badly on some models where A has a concise encoding but x has too many
different entries.® Therefore, model checkers may store x partially explicit [49].

The insights above are not new. Symbolic probabilistic model checking has
advanced [46] to create small representations of both A and «. In competitions,
STORM often applies a bisimulation-to-explicit method that extracts an explicit
representation of the bisimulation quotient [26,36]. Finally, game-based abstrac-
tion [32,44] can be seen as a predicate abstraction technique on the ADD level.
However, these methods do not change the computation of the finite horizon
reachability probabilities and thus do not overcome the inherent weaknesses of
the iterative approach in combination with an ADD-based representation.

4 A Probabilistic Inference Perspective

We present four key insights into probabilistic inference. (1) Sect.4.1 shows
how probabilistic inference takes the classical definition as summing over the
set of paths, and turns this definition into an algorithm. In particular, these
paths may be stored in a computation tree. (2) Sect.4.2 gives the traditional
reduction from probabilistic inference to the classical weighted model counting
(WMCQC) problem [16,57]. (3) Sect.4.3 connects this reduction to point (1) by
showing that a BDD that represents this WMC is bisimilar to the computation
tree assuming that the out-degree of every state in the MC is two. (4) Sect. 4.4
describes and compares the computational benefits of the BDD representation.
In particular, we clarify that enforcing an out-degree of two is a key ingredient
to overcoming one of the weaknesses of symbolic probabilistic model checking;:
the number of different probabilities in the underlying MC.

4.1 Operational Perspective

The following perspective frames (an aspect of) probabilistic inference as a model
transformation. By definition, the set of all paths — each annotated with the
transition probabilities — suffices to extract the reachability probability. These
sets of paths may be represented in the computation tree (which is itself an MC).

5 For an interesting example of this, see the “Queue” example in Sect. 6.
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Ezxample 4. We continue from Example 1. We put all paths of length three in
a computation tree in Fig.4(a) (cf. the caption for state identifiers). The three
paths that reach the target are highlighted in red. The MC is highly redundant.
We may compress to the MC in Fig.4(b).

Definition 1. For MC M and horizon h, the computation tree (CT)
CT(M, h) = (Pathsp,t, P',T') is an MC with states corresponding to paths in M,
i.e., Pathsflw, initial state v, target states T' = [OS"T], and transition relation

P(m,,s) ifm ¢ TAT =m.s,
[r) e T AT =m] otherwise.

Pl(ﬂ—ﬂr/) = { (1)

The CT contains (up to renaming) the same paths to the target as the original
MC. Notice that after h transitions, all paths are in a sink state, and thus we can
drop the step bound from the property and consider either finite or indefinite
horizons. The latter considers all paths that eventually reach the target. We
denote the probability mass of these paths with Pra (s = OT) and refer to [7]
for formal details.® Then, we may compute bounded reachability probabilities in
the original MC by analysing unbounded reachability in the CT:

Pra(OS"T) = Prerun (O0SMT") = Preran) (OT).

The nodes in the CT have a natural topological ordering. The unbounded reach-
ability probability is then computed (efficiently in CT’s size) using dynamic pro-
gramming (i.e., topological value iteration) on the Bellman equation for s & T"

Pra(s = OT) = X s esuce(s) P(8:8") - Praa(s” |= OT).

For pMCs, the right-hand side naturally is a factorised form of the solution
function f that maps parameter values to the induced reachability probability, i.e.
f(u) = Pra)(0="T) [22,24,33]. For bounded reachability (or acyclic pMCs),
this function amounts to a sum over all paths with every path reflected by a term
of a polynomial, i.e., the sum is a polynomial. In sum-of-terms representation,
the polynomial can be exponential in the number of parameters [5].

For computational efficiency, we need a smaller representation of the CT. As
we only consider reachability of 7', we may simplify [43] the notion of (weak)
bisimulation [6] (in the formulation of [40]) to the following definition.

Definition 2. For M with states S, a relation R C S x S is a (weak) bisim-
ulation (with respect to T) if sRs' implies Prap(s | OT) = Prap(s’ E OT).
Two states s,s' are (weakly) bisimilar (with respect to T) if Pra(s = OT) =
Pram(s’ = OT)

Two MCs M, M’ are bisimilar, denoted M ~ M’ if the initial states are bisimilar
in the disjoint union of the MCs. It holds by definition that if M ~ M’, then
Pry(OT) = Pray (OT”). The notion of bisimulation can be lifted to pMCs [33].

5 Alternatively, on acyclic models, a large step bound h > |S| suffices.



586 S. Holtzen et al.

Idea 1: Given a symbolic description P of a MC [P], efficiently construct
a concise MC M that is bisimilar to CT([P], h).

Indeed, the (compressed) CT in Fig.4(b) and Fig.4(a) are bisimilar. We remark
that we do not necessarily compute the bisimulation quotient of CT([P ], h).

4.2 Logical Perspective

The previous section defined weakly bisimilar chains and showed computational
advantages, but did not present an algorithm. In this section we frame the finite
horizon reachability probability as a logical query known as weighted model count-
ing (WMC). In the next section we will show how this logical perspective yields
an algorithm for constructing bisimilar MCs.

Weighted model counting is well-known as an effective reduction for prob-
abilistic inference [16,57]. Let ¢ be a logical sentence over variables C. The
weight function We: C — R assigns a weight to each logical variable. A
total variable assignment n: C — {0,1} by definition has weight weight(n) =
[lece Wele)n(e) + (1 —Wel(e)) - (1 —n(c)). Then the weighted model count for
o given W is WMC(p, We) = Zn\=sﬂ weight(n). Formally, we desire to compute
a reachability query using a WMC query in the following sense:

Idea 2: Given an MC M, efficiently construct a predicate w%’h and a
weight-function W such that Pra, (OS"T) = WMC((pJC\‘/[’h, We).

Consider initially the simplified case when the MC M is binary: every state has
at most two successors. In this case producing (cpg,l n, We) is straightforward:

Ezample 5. Consider the MC in Fig.2(a), and note that it is binary. We intro-
duce logical variables called state/step coins C = {cs; | s € S,i < h} for every
state and step. Assignments to these coins denote choices of transitions at par-
ticular times: if the chain is in state s at step 4, then it takes the transition to
the lexicographically first successor of s if ¢z ; is true and otherwise takes the
transition to the lexicographically second successor. To construct the predicate
go/(f/l’:s, we will need to write a logical sentence on coins whose models encode
accepting paths (red paths) in the CT in Fig. 4(a).

We start in state s = (0, 0) (using state labels from the caption of Fig. 4). We
order states as s = (0,0) <t =(0,1) <u = (1,0) < v = (1,1). Then, ¢, ¢ is true
if the chain transitions into state s at time 0 and false if it transitions to state
t at time 0. So, one path from s to the target node (1,0) is given by the logical
sentence (5.0 A —¢s.1 A ¢g,2). The full predicate @%’3 is therefore:

@%‘473 = (cs0 Nes1 Aer2) V (mes0 Aera) V (mes,0 A et A ey 2).
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Each model of this sentence is a single path to the target. This predicate gp%lﬁ
can clearly be constructed by considering all possible paths through the chain,
but later on we will show how to build it more efficiently.

Finally, we fix W¢: The weight for each coin is directly given by the transition
probability to the lexicographically first successor: for 0 < i < h, W¢(cs;) = 0.6
and We(er ;) = We(ey,i) = 0.5. The WMC is indeed 0.42, reflecting Example 1.

When the MC is not binary, it suffices to limit the out-degree of an MC to be
at most two by adding auxiliary states, hence binarizing all transitions, cf. [38].

4.3 Connecting the Operational and the Logical Perspective

Now that we have reduced bounded reachability to weighted model counting,
we reach a natural question: how do we perform WMC?7 Various approaches
to performing WMC have been explored; a prominent approach is to compile
the logical function into a binary decision diagram (BDD), which supports fast
weighted model counting [21]. In this paper, we investigate the use of a BDD-
driven approach for two reasons: (i) BDDs admit straightforward support for
parametric models. (ii) BDDs provide a direct connection between the logical and
operational perspectives. To start, observe that the graph of the BDD, together
with the weights, can be interpreted as an MC:

Definition 3. Let ¢X be a propositional formula over variables X and <x an
ordering on X . Let BDD(pX, <x) = (V,vg, X, var,val, Ey, E1) be the correspond-
ing BDD, and let W be a weight function on X with 0 < W (x) < 1. We define the
MC BDDpc (e, <x,W) = (S, P,T) with S =V, 1 = vy, P(s) = {Eo(s) —
W (var(s)), E1(s) — 1 —W(var(s))} and T = {v € V | val(v) = 1}.

These BDDs are intimately related to the computation trees discussed before. For
a binary MC M, the tree CT(M,h) is binary and can be considered as a (not
necessarily reduced) BDD. More formally, let us construct BDD|\/|C(<,0/C\,1JL7 <o)
We fix a total order on states. Then we fix state/step coins C = {cs; | s € S,i <
h} and the weights as in Example 5. Finally, let <¢ be an order on C such that
i < 7 implies ¢, ;<ccs ;. Then:

CT(M, h) ~ BDDmc(¢Sqp: <o W). (2)

In the spirit of Idea 1, we thus aim to construct BDDMC(@%,h, <c, W), a repre-
sentation as outlined in Idea 2, efficiently. Indeed, the BDD (as MC) in Fig. 4(c)
is bisimilar to the MC in Fig. 4(b).

Idea 3: Represent a bisimilar version of the computation tree using a BDD.

" In this paper, we concentrate on reductions to exact WMC, leaving approximate
approaches for future work [14].
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(a) Unfactorized computation tree for (h=1,n=3). (b) Factorized (h=2,n=2).

Fig. 5. Two computation trees for the motivating example in Sect. 1.

4.4 The Algorithmic Benefits of BDD Construction

Thus far we have described how to construct a binarized MC bisimilar to the
CT. Here, we argue that this construction has algorithmic benefits by filling in
two details. First, the binarized representation is an important ingredient for
compact BDDs. Second, we show how to choose a variable ordering that ensures
that the BDDs grow linearly in the horizon. In sum,

Idea 4: WMC encodings of binarized Markov Chains may increase compres-
sion of computation trees.

To see the benefits of binarized transitions, we return to the factory exam-
ple in Sect. 1. Figure5(a) gives a bisimilar computation tree for the 3-factory
h = 1 example. However, in this tree, the states are unfactorized: each node in
the tree is a joint configuration of factories. This tree has 8 transitions (one for
each possible joint state transition) with 8 distinct probabilities. On the other
hand, the bisimilar computation tree in Fig. 1(d) has binarized transitions: each
node corresponds to a single factory’s state at a particular time-step, and each
transition describes an update to only a single factory. This binarization enables
the exploitation of new structure: in this case, the independence of the facto-
ries leads to smaller BDDs, that is otherwise lost when considering only joint
configurations of factories.

Recall that the size of the ADD representation of the transition function is
bounded from below by the number of distinct probabilities in the underlying
MC: in this case, this is visualized by the number of distinct outgoing edge
probabilities from all nodes in the unfactorized computation tree. Thus, a good
binarization can have a drastically positive effect on performance. For the run-
ning example, rather than 2" different transition probabilities (with n factories),
the system now has only 4 - n distinct transition probabilities!

Causal Orderings. Next, we explore some of the engineering choices RUBICON
makes to exploit the sequential structure in a MC when constructing the BDD for
a WMC query. First, note that the transition matrix P(s,s’) implicitly encodes
a distribution over state transition functions, S — S. To encode P as a BDD,
we must encode each transition as a logical variable, similar to the situation in
Sect. 4.2. In the case of binary transitions this is again easy. In the case of non-
binary transitions, we again introduce additional logical variables [16,27,39,57].
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This logical function has the following form:
fpi{0,1}9 — (5 — 9). 3)

Whereas the computation tree follows a fixed (temporal) order of states,
BDDs can represent the same function (and the same weighted model count)
using an arbitrary order. Note that the BDD’s size and structure drastically
depends both on the construction of the propositional formula and the order of
the variables in that encoding. We can bound the size of the BDD by enforcing
a variable order based on the temporal structure of the original MC. Specifically,
given h coin collections C = C'x...x C, one can generate a function f describing
the h-length paths via repeated applications of fp:

£:{0,1}€ — Paths, f(cl,...,ch):<fp(ch)o...ofp(cl))(b) (4)

Let 1 denote an indicator for the reachability property as a function over paths,
¥: Paths, — {0,1} with ¢(7) = [r € [OS"T]]. We call predicates formed
by composition with fp, i.e., ¢ = 9 o fp, causal encodings and orderings on
cip € C that are lexicographically sorted in time, t1 < to = ¢ty < Cjtys
causal orderings. Importantly, causally ordered / encoded BDDs grow linearly in
horizon h, [61, Corollary 1]. More precisely, let <pjc\v,17 ,, be causally encoded where
|C| = h-m. The causally ordered BDD for gajc\:t,h has at most h-|S x Sy|-m-2™
nodes, where | Sy | = 2 for reachability properties.® However, while the worst-case
growth is linear in the horizon, constructing that BDD may induce a super-linear
cost in the size, e.g., function composition using BDDs is super-linear!

Figure 5(b) shows the motivating factory example with 2 factories and h = 2.
The variables are causally ordered: the factories in time step 1 occur before the
factories in time step 2. For n factories, a fixed number f(n) of nodes are added to
the BDD upon each iteration, guaranteeing growth on the order O(f(n)-h). Note
the factorization that occurs: the BDD has node sharing (node 652)
that yields additional computational benefits.

is reused)

Summary and Remaining Steps. The operational view highlights that we want to
compute a transformation of the original input MC M. The logical view presents
an approach to do so efficiently: By computing a BDD that stores a predicate
describing all paths that reach the target, and interpreting and evaluating the
(graph of the) BDD as an MC. In the following section, we discuss the two steps
that we follow to create the BDD: (i) From P generate P’ such that CT([P ], h) ~
[P']. (ii) From P’ generate M such that M = [P’].

5 RuBIicoN

We present RUBICON which follows the two steps outlined above. For exposition,
we first describe a translation of monolithic PRISM programs to Dice programs

8 Generally, it is the smallest number of states required for a DFA to recognize 1.
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module main

x : [0..1] init O0; 1/2 /1/—2\)
y : [0..2] init 1; (0,0) ———(0,1) (0,2)
[1 x=0 & y<2 -> 0.5:x’=1 + 0.5:y’=y+1; ~ 1 -
[1 y=2 -> 1:y’=y-1; 1/2l { 1/2l
[ x=1 & y'=2 -> 1:x’=y & y’=x;
endmodule (1,0) 1 Ci(LlM;(LQ)
property: P=7 [F<=2 (x=0 & y=2)]
(a) PrIsM program with reachability query (b) Underlying MC
let s = init() in // init state fun init() { (0,1) }
let T = hit(s) in // init target fun hit((x,y)) { x ==0 && y == 2}
let (s, T) =if IT fun step((x,y)) {
then let s’ =step(s) in (s’, hit(s’)) if x==0 && y<2 then
else (s, T) in if flip 0.5 then (1,y) else (x,y+1)
let (s, T) =if !T then else if y==2 then (x,y-1)
then let s’ =step(s) in (s’, hit(s’)) else if x==1 &&y!=1 then (y,x)
else (s, T) in else (x,y)
T }
(c) Main Dice program for h=2 (d) Dice auxiliary functions

Fig. 6. From PRrisM to Dice using RUBICON.

and then extend this translation to admit modular programs. Technical steps
and extensions are deferred to [38, Appendix]|.

Dice Preliminaries. We give a brief description of Dice, a probabilistic pro-
gramming language (PPL) introduced in [39]. A PPL is a programming language
augmented with a primitive notion of random choice: for instance, in Dice, a
Bernoulli random variable is introduced by the syntax f1ip 0.5. The syntax
of Dice is similar to the programming language 0Caml: local variables are intro-
duced by the syntax let x = e; in eo, where e; and ey are expressions, i.e.,
sub-programs. Dice supports procedures, bounded integers, bounded loops, and
standard control flow via if-statements.

One goal of a PPL is to perform probabilistic inference: compute the prob-
ability that the program returns a particular value. Inference on the tiny Dice
program let x = flip 0.1 in x would yield that true is returned with proba-
bility 0.1. The Dice compiler performs probabilistic inference via weighted model
counting and BDD compilation. In doing so, it accomplishes the non-trivial tasks
of: (i) choosing a logical encoding for probabilistic programs (ii) establishing
good variable orderings (iii) efficiently manipulating and constructing BDDs (iv)
performing WMC . For details, we refer the reader to [39].

RUBICON uses Dice to effectively construct a BDD and perform WMC on a
Dice program that reflects a description of some computation tree. This imple-
mentation exploits the structure that was described in Sect. 4.4: in particular, the
BDD generated in Fig. 5(b) is exactly the BDD that will be generated by Dice
from the output of RUBICON. The variable ordering used by Dice is given by
the order in which program variables are introduced, and RUBICON’s translation
was designed with this variable ordering in mind.

Transpiling PRISM to Dice. We present the core translation routine imple-
mented in RUBICON. We note that the ultimate performance of RUBICON is
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heavily dependent on the quality of this translation. We evaluate the perfor-
mance in the next section.

The PRISM specification language consists of one or more reactive modules
(or partially synchronized state machines) that may interact with each other. Our
example in Fig. 1(b) illustrates fully synchronized state machines. While PRISM
programs containing multiple modules can be flattened into a single monolithic
program, this yields an exponential blow-up: If one flattens the n modules in
Fig. 1(b) to a single module, the resulting program has 2™ updates per command.
This motivates our direct translation of PRISM programs containing multiple
modules.

Monolithic Prism Programs. We explain most ideas on PRISM programs that
consist of a single “monolithic” module before we address the modular translation
at the end of the subsection. A module has a set of bounded variables, and the
valuations of these variables span the state space of the underlying MC. Its
transitions are described by guarded commands of the form:

[act] guard — p;:update; +...... + p,, : update,,

The action name act is only relevant in the modular case and can be ignored for
now. The guard is a Boolean expression over the module’s variables. If the guard
evaluates to true for some state (a valuation), then the module evolves into one
of the n successor states by updating its variables. An update is chosen according
to the probability distribution given by the expressions p1,...,p,. In every state
enabling the guard, the evaluation of py,...,p, must sum up to one. A set of
guards owverlap if they all evaluate to true on a given state. The semantics of
overlapping guards in the monolithic setting is to first uniformly select an active
guard and then apply the corresponding stochastic transition. Finally, a self-loop
is implicitly added to states without an enabled guard.

Ezxample 6. We present our translation primarily through example. In Fig. 6(a),
we give a PRISM program for a MC. The program contains two variables x and
y, where z is either zero or one, and y between zero and two. There are thus 6
different states. We denote states as tuples with the z- and y-value. We depict
the MC in Fig. 6(b). From state (0, 0), (only) the first guard is enabled and thus
there are two transitions, each with probability a half: one in which = becomes
one and one in which y is increased by one. Finally, there is no guard enabled in
state (1, 1), resulting in an implicit self-loop.

Translation. All Dice programs consist of two parts: a main routine, which is
run by default when the program starts, and function declarations that declare
auxiliary functions. We first define the auxiliary functions. For simplicity let us
temporarily assume that no guards overlap and that probabilities are constants,
i.e., not state-dependent.

The main idea in the translation is to construct a Dice function step that,
given the current state, outputs the next state. Because a monolithic PRISM
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fun step((x,y)) {
let aEn =(x>1) in
let bEn =(y<2) in
let act = selectFrom(aEn, bEn) in
if act==1 then (y,x)
else if act==2 then (min(x+1,2),y)

else (x,y)} ...
(a) ! (b)

module main

x : [0..2] init 1;

y : [0..2] init 1;

[1 x>1 -> 1:x’=y&y’=x;

[l y<2 -> 1:x’=min(x+1,2);
endmodule

Fig. 7. PrisM program with overlapping guards and its translation (conceptually).

module mi fun step((x,y)) {
x : [0..1] init 0; let aEn =(x==1) in
[a]l x=1 -> 1:x’=1-y; let bEn =(x=0 &&y=1) in
[b] x=0 -> 1:x’=0; let cEn =true in
endmodule let act =selectFrom(aEn, bEn, cEn) in
module m2 if act==1 then (1-y, y)
y : [0..1] init O; else if act==2 then (0, flip 0.5)
[b] y=1 -> 0.5:y’=0 +0.5:y°=1; else if act==3 then (1-x, y)
[c] true -> 1:x’=1-x; else (x, y)
endmodule }
(a) (b)

Fig. 8. Modular PrisM and resulting Dice step function.

program is almost a sequential program, in its most basic version, the step func-
tion is straightforward to construct using built-in Dice language primitives: we
simply build a large if-else block corresponding to each command. This block
iteratively considers each command’s guard until it finds one that is satisfied.
To perform the corresponding update we flip a coin — based on the probabilities
corresponding to the updates — to determine which update to perform. If no
command is enabled, we return the same state in accordance with the implicit
self-loop. Figure6(d) shows the program blocks for the PRISM program from
Fig. 6(a) with target state [# = 0,y = 2]. There are two other important auxil-
iary functions. The init function simply returns the initial state by translating
the initialization statements from PRISM, and the hit function checks whether
the current state is a target state that is obtained from the property.

Now we outline the main routine, given for this example in Fig. 6(c). This
function first initializes the state. Then, it calls step 2 times, checking on each
iteration using hit if the target state is reached. Finally, we return whether we
have been in a target state. The probability to return true corresponds to the
reachability probability on the underlying MC specified by the PRISM program.

Overlapping Guards. PRISM allows multiple commands to be enabled in the
same state, with semantics to uniformly at random choose one of the enabled
commands to evaluate. Dice has no primitive notion of this construct.” We
illustrate the translation in Fig.7(a) and Fig. 7(b). It determines which guards
aEn, bEn, cEn are enabled. Then, we randomly select one of the commands which
are enabled, i.e., we uniformly at random select a true bit from a given tuple

9 One cannot simply condition on selecting an enabled guard as this redistributes
probability mass over all paths and not only over paths with the same prefix.
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of bits. We store the index of that bit and use it to execute the corresponding
command.

Modular Prism Programs. For modular PRISM programs, the action names at
the front of PRISM commands are important. In each module, there is a set of
action names available. An action is enabled if each module that contains this
action name has (at least) one command with this action whose guard is satisfied.
Commands with an empty action are assumed to have a globally unique action
name, so in that case the action is enabled iff the guard is enabled. Intuitively,
once an action is selected, we randomly select a command per module in all mod-
ules containing this action name. Our approach resembles that for overlapping
guards described above. See Fig.8 for an intuitive example. To automate this,
the updates require more care, cf. [38] for details.

Implementation. RUBICON is implemented on top of STORM’s Python API and
translates PRISM to Dice fully automatically. RUBICON supports all MCs in the
PRrIsM benchmark suite and a large set of benchmarks from the PRISM website
and the QVBS [35], with the note that we require a single initial state and ignore
reward declarations. Furthermore, we currently do not support the hide/restrict
process-algebraic compositions and some integer operations.

6 Empirical Comparisons

We compare and contrast the performance of STORM against RUBICON to empir-
.10

ically demonstrate the following strengths and weaknesses:

Explicit Model Checking (STORM) represents the MC explicitly in a sparse
matrix format. The approach suffers from the state space explosion, but has
been engineered to scale to models with many states. Besides the state space,
the sparseness of the transition matrix is essential for performance.

Symbolic Model Checking (STORM) represents the transition matrix and
the reachability probability as an ADD. This method is strongest when the
transition matrix and state vector have structure that enables a small ADD
representation, like symmetry and sparsity.

RUBICON represents the set of paths through the MC as a (logical) BDD. This
method excels when the state space has structure that enables a compact
BDD representation, such as conditional independence, and hence scales well
on examples with many (asymmetric) parallel processes or queries that admit
a compact representation.

The sources, benchmarks and binaries are archived.!!
There is no clear-cut model checking technique that is superior to others (see
QCOMP [12]). We demonstrate that, while RUBICON is not competitive on some

10° All experiments were conducted with STORM version 1.6.0 on the same server with
512 GB of RAM, using a single thread of execution. Time was reported using the
built-in Unix time utility; the total wall-clock time is reported.

Y http://doi.org/10.5281 /zenodo.4726264 and http://github.com /sjunges/rubicon.
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Fig. 9. Scaling plots comparing RUBICON (—8—), STORM’s symbolic engine (——), and
STORM’s explicit engine ( ). An “(R)” in the caption denotes random parameters.

commonly used benchmarks [52], it improves a modern model checking portfolio
approach on a significant set of benchmarks. Below we provide several natural
models on which RUBICON is superior to one or both competing methods. We
also evaluated RUBICON on standard benchmarks, highlighting that RuBICON
is applicable to models from the literature. We see that RUBICON is effective on
HERMAN (elaborated below), has mixed results on BRP [38, Appendix|, and is
currently not competitive on some other standard benchmarks (NAND, EGL,
LeaderSync). While not exhaustive, our selected benchmarks highlight specific
strengths and weaknesses of RUBICON. Finally, a particular benefit of RUBICON
is fast sampling of parametric chains, which we demonstrate on HERMAN and
our factory example.

Scaling Experiments. In this section, we describe several scaling experiments
(Fig.9), each designed to highlight a specific strength or weakness.

Weather Factories. First, Fig.9(a) describes a generalization of the motivating
example from Sect. 1. In this model, the probability that each factory is on strike
is dependent on a common random event: whether or not it is raining. The rain
on each day is dependent on the previous day’s weather. We plot runtime for
an increasing number of factories for h=10. Both STORM engines eventually fail
due to the state explosion and the number of distinct probabilities in the MC.
RUBICON is orders of magnitude faster in comparison, highlighting that it does
not depend on complete independence among the factories. Figure 9(b) shows
a more challenging instance where the weather includes wind which, each day,
affects whether or not the sun will shine, which in turn affects strike probability.

Herman. Herman is based on a distributed protocol [37] that has been well-
studied [1,53] and which is one of the standard benchmarks in probabilistic
model checking. Rather than computing the expected steps to ‘stabilization’, we
consider the step-bounded probability of stabilization. Usually, all participants in
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the protocol flip a coin with the same bias. The model is then highly symmetric,
and hence is amenable to symbolic representation with ADDs. Figures 9(c) and
9(e) show how the methods scale on Herman examples with 13 and 17 parallel
processes. We observe that the explicit approach scales very efficiently in the
number of iterations but has a much higher up-front model-construction cost,
and hence can be slower for fewer iterations.

To study what happens when the coin biases vary over the protocol partici-
pants, we made a version of the Herman protocol where each participant’s bias
is randomly chosen, which ruins the symmetry and so causes the ADD-based
approaches to scale significantly worse (Figs.9(d) and 9(f), and 9(g)); we see
that symbolic ADD-based approaches completely fail on Herman 17 and Her-
man 19 (the curve terminating denotes a memory error). RUBICON and the
explicit approach are unaffected by varying parameters.

Queues. The Queues model has K queues of capacity @@ where every step, tasks
arrive with a particular probability. Three queues are of type 1, the others of
type 2. We ask the probability that all queues of type 1 and at least one queue
of type 2 is full within k£ steps. Contrary to the previous models, the ADD
representation of the transition matrix is small. Figure 9(h) shows the relative
scaling on this model with K = 8 and @ = 3. We observe that ADDs quickly
fail due to inability to concisely represent the probability vector ® from Sect. 3.
RUBICON outperforms explicit model checking until h = 10.

Sampling Parametric Markov Chains. We evaluate performance for the
pMC sampling problem outlined in Sect. 2. Table 1 gives for four models the time
to construct the BDD and to perform WMC, as well as the time to construct
an ADD in STORM and to perform model checking with this ADD. Finally,
we show the time for STORM to compute the solution function of the pMC
(with the explicit representation). The pMC sampling in STORM — symbolic and
explicit — computes the reachability probabilities with concrete probabilities.
RUBICON, in contrast, constructs a ‘parametric’ BDD once, amortizing the cost
of repeated efficient evaluation. The ‘parametric BDD’ may be thought of as a
solution function, as discussed in Sect. 4.1. STORM cannot compute these solution
functions as efficiently. We observe in Table 1 that fast parametric sampling is
realized in RUBICON: for instance, after a 40s up-front compilation of the factories
example with 15 factories, we have a solution function in factorized form and it
costs an order of magnitude less time to draw a sample. Hence, sampling and
computation of solution functions of pMCs is a major strength of RUBICON.

7 Discussion, Related Work, and Conclusion

We have demonstrated that the probabilistic inference approach to probabilis-
tic model checking can improve scalability on an important class of problems.
Another benefit of the approach is for sampling pMCs. These are used to evaluate
e.g., robustness of systems [1], or to synthesise POMDP controllers [41]. Many
state-of-the-art approaches [17,19,24] require the evaluation of various instanti-
ated MCs, and RUBICON is well-suited to this setting. More generally, support
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Table 1. Sampling performance comparison and pMC model checking, time in seconds.

Model RuUBICON StorM (w/ ADD) | STORM (explicit)
Build | WMC | Build | Solve pMC solving

Herman R 13 (h =10) | 3 <1 32 18 >1800

Herman R 17 (h = 10) | 45 28 >1800 | - >1800

Factories 12 (h =15) |2 <1 59 286 >1800

Factories 15 (h = 15) | 40 4 >1800 | - >1800

of inference techniques opens the door to a variety of algorithms for additional
queries, e.g., computing conditional probabilities [3,8|.

An important limitation of probabilistic inference is that only finitely many
paths can be stored. For infinite horizon properties in cyclic models, an infi-
nite set of arbitrarily long paths would be required. However, as standard in
probabilistic model checking, we may soundly approximate infinite horizons.
Additionally, the inference algorithm in Dice does not support a notion of non-
determinism. It thus can only be used to evaluate MCs, not Markov decision pro-
cesses. However, [61] illustrates that this is not a conceptual limitation. Finally,
we remark that RUBICON achieves its performance with a straightforward trans-
lation. We are optimistic that this is a first step towards supporting a larger
class of models by improving the transpilation process for specific problems.

Related Work. The tight connection with inference has been recently inves-
tigated via the use of model checking for Bayesian networks, the prime model
in probabilistic inference [56]. Bayesian networks can be described as probabilis-
tic programs [10] and their operational semantics coincides with MCs [31]. Our
work complements these insights by studying how symbolic model checking can
be sped up by probabilistic inference.

The path-based perspective is tightly connected to factored state spaces. Fac-
tored state spaces are often represented as (bipartite) Dynamic Bayesian net-
works. ADD-based model checking for DBNs has been investigated in [25], with
mixed results. Their investigation focuses on using ADDs for factored state
space representations. We investigate using BDDs representing paths. Other
approaches also investigated a path-based view: The symbolic encoding in [28]
annotates propositional sub-formulae with probabilities, an idea closer to ours.
The underlying process implicitly constructs an (uncompressed) CT leading to
an exponential blow-up. Likewise, an explicit construction of a computation
tree without factorization is considered in [62]. Compression by grouping paths
has been investigated in two approzimate approaches: [55] discretises probabil-
ities and encodes into a satisfiability problem with quantifiers and bit-vectors.
This idea has been extended [60] to a PAC algorithm by purely propositional
encodings and (approximate) model counting [14]. Finally, factorisation exploits
symmetries, which can be exploited using symmetry reduction [50]. We highlight
that the latter is not applicable to the example in Fig. 1(d).
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There are many techniques for exact probabilistic inference in various forms
of probabilistic modeling, including probabilistic graphical models [20,54]. The
semantics of graphical models make it difficult to transpile PRISM programs,
since commonly used operations are lacking. Recently, probabilistic program-
ming languages have been developed which are more amenable to transpila-
tion [13,23,29,30,59]. We target Dice due to the technical development that it
enables in Sect. 4, which enabled us to design and explain our experiments. Clos-
est related to Dice is ProbLog [27], which is also a PPL that performs inference
via WMC; ProbLog has different semantics from Dice that make the transla-
tion less straightforward. The paper [61] uses an encoding similar to Dice for
inferring specifications based on observed traces. ADDs and variants have been
considered for probabilistic inference [15,18,58], which is similar to the process
commonly used for probabilistic model checking. The planning community has
developed their own disjoint sets of methods [45]. Some ideas from learning have
been applied in a model checking context [11].

8 Conclusion

We present RUBICON, bringing probabilistic Al to the probabilistic model check-
ing community. Our results show that RUBICON can outperform probabilistic
model checkers on some interesting examples, and that this is not a coincidence
but rather the result of a significantly different perspective.
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Abstract. Partially-Observable Markov Decision Processes (POMDPs)
are a well-known stochastic model for sequential decision making under
limited information. We consider the EXPTIME-hard problem of syn-
thesising policies that almost-surely reach some goal state without ever
visiting a bad state. In particular, we are interested in computing the
winning region, that is, the set of system configurations from which a
policy exists that satisfies the reachability specification. A direct appli-
cation of such a winning region is the safe exploration of POMDPs by,
for instance, restricting the behavior of a reinforcement learning agent to
the region. We present two algorithms: A novel SAT-based iterative app-
roach and a decision-diagram based alternative. The empirical evaluation
demonstrates the feasibility and efficacy of the approaches.

1 Introduction

Partially observable Markov decision processes (POMDPs) constitute the stan-
dard model for agents acting under partial information in uncertain environ-
ments [34,52]. A common problem is to find a policy for the agent that maxi-
mizes a reward objective [36]. This problem is undecidable, yet, well-established
approximate [27], point-based [43], or Monte-Carlo-based [49] methods exist.
In safety-critical domains, however, one seeks a safe policy that exhibits strict
behavioral guarantees, for instance in the form of temporal logic constraints [44].
The aforementioned methods are not suitable to deliver provably safe policies.
In contrast, we employ almost-sure reach-avoid specifications, where the proba-
bility to reach a set of avoid states is zero, and the probability to reach a set of
goal states is one. Our Challenge 1 is to compute a policy that adheres to such
specifications. Furthermore, we aim to ensure the safe exploration of a POMDP,
with safe reinforcement learning [23] as direct application. Challenge 2 is then
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to compute a large set of safe policies for the agent to choose from at any state
of the POMDP. Such sets of policies are called permissive policies [21,31].

POMDP Almost-Sure Reachability Verification. Let us remark that in POMDPs,
we cannot directly observe in which state we are, but we are in general able to
track a belief, i.e., a distribution over states that describes where in the POMDP
we may be. The belief allows us to formulate the following verification task:

For a POMDP, sets of target and avoid states, and a belief, does a policy
exist such that we reach the target states without ever visiting a bad state?

The underlying EXPTIME-complete problem requires—in general—policies
with access to memory of exponential size in the number of states [4,18]. For
safe exploration and, e.g., to support nested temporal properties, the ability to
solve this problem for each belief in the POMDP is essential.

We base our approaches on the concept of a winning region, also referred to
as controllable or attractor regions. Such regions are sets of winning beliefs from
which a policy exists that guarantees to satisfy an almost-sure specification.
The verification task relates three concrete problems which we tackle in this
paper: (1) Decide whether a belief is winning, (2) compute the mazimal winning
region, and (3) compute a large yet not necessarily maximal winning region. We
now outline our two approaches. First, we directly exploit model checking for
MDPs [5] using belief abstractions. The second, much faster approach iteratively
exploits satisfiability solving (SAT) [8]. Finally, we define a scheme to enable safe
reinforcement learning [23] for POMDPs, referred to as shielding [2,30].

MDP Model Checking. A prominent approach gives the semantics of a POMDP
via an (infinite) belief MDP whose states are the beliefs in the POMDP [36].
For almost-sure specifications, it is sufficient to consider belief-supports rather
than beliefs. In particular, two beliefs with the same support are either both in a
winning region or not [47]. We abstract a belief MDP into a finite belief-support
MDP, whose states are the support of beliefs. The (maximal) winning region are
(all) states of the belief-support MDP from which one can almost surely reach
a belief support that contains a goal state without visiting belief support states
that contain an avoid state.

To find a winning region in the POMDP, we thus just have to solve almost-
sure reachability in this finite MDP. The number of belief supports, however, is
exponentially large in the number of POMDP states, threatening the efficient
application of explicit state verification approaches. Symbolic state space rep-
resentations are a natural option to mitigate this problem [7]. We construct a
symbolic description of the belief support MDP and apply state-of-the-art sym-
bolic model checking. Our experiments show that this approach (referred to as
MDP Model Checking) does in general not alleviate the exponential blow-up.

Incremental SAT Solving. While the belief support model exploits the structure
of the belief support MDP by using a symbolic state space representation, it does
not exploit elementary properties of the structure of winning regions. To overcome
the scalability challenge, we aim to exploit information from the original POMDP,
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rather than working purely on the belief-support MDP. In a nutshell, our app-
roach computes the winning regions in a backward fashion by optimistically search-
ing policies without memory on the POMDP level. Concretely, starting from the
belief support states that shall be reached almost-surely, further states are added
to the winning region if we quickly can find a policy that reaches these states with-
out visiting those that are to avoid. We search for these policies by incrementaly
employing an encoding based on SAT solving. This symbolic encoding avoids an
expensive construction of the belief support MDP. The computed winning region
directly translates to sufficient constraints on the set of safe policies, i.e., each pol-
icy satisfying these constraints satisfies, by construction, the specification. The key
idea is to successively add short-cuts corresponding to already known safe policies.
These changes to the structure of the POMDP are performed implicitly on the SAT
encoding. The resulting scalable method is sound, but not complete by itself. How-
ever, it can be rendered complete by trading off a certain portion of the scalability;
intuitively one would eventually search for policies with larger amounts of memory.

Shielding. An agent that stays within a winning region is guaranteed to adhere
to the specification. In particular, we shield (or mask) any action of the agent
that may lead out of the winning region [1,39,42]. We stress that the shape of
the winning region is independent of the transition probabilities or rewards in
the POMDP. This independence means that the only prior knowledge we need to
assume is the topology, that is, the graph of the POMDP. A pre-computation of
the winning region thus yields a shield and allows us to restrict an agent to safely
explore environments, which is the essential requirement for safe reinforcement
learning [22,23] of POMDPs. The shield can be used with any RL agent [2].

Comparison with the State-of-the-Art. Similar to our approach, [15] solves almost-
sure specifications using SAT. Intuitively, the aim is to find a so-called simple pol-
icy that is Markovian (aka memoryless). Such a policy may not exist, yet, the
method can be applied to a POMDP that has an extended state space to account
for finite memory [33,37]. There are three shortcomings that our incremental SAT
approach overcomes. First, one needs to pre-define the memory a policy has at
its disposal, as well as a fixed lookahead on the exploration of the POMDP. Our
encoding does not require to fix these hyperparameter a priori. Second, the app-
roach is only feasible if small memory bounds suffice. Our approach scales to mod-
els that require policies with larger memory bounds. Third, the approach finds a
single simple policy starting from a pre-defined initial state. Instead, we find a
large winning region. For safe exploration, this means that we may exclude many
policies and never explore important parts of the system, harming the final per-
formance of the agent. Shielding MDPs is not new [2,9,10,30]. However, those
methods do neither take partial observability into account, nor can they guaran-
tee reaching desirable states. Nam and Alur [39] cover partial observability and
reachability, but do not account for stochastic uncertainty.

Ezxperiments. To showcase the feasibility of our method, we adopted a number of
typical POMDP environments. We demonstrate that our method scales better
than the state of the art. We evaluate the shield by letting an agent explore the
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POMDP environment according to the permissive policy, thereby enforcing the
satisfaction of the almost-sure specification. We visualize the resulting behavior
of the agent in those environments with a set of videos.

Contributions. Our paper makes four contributions: (1) We present an incre-
mental SAT-based approach to compute policies that satisfy almost-sure prop-
erties. The method scales to POMDPs whose belief-support states count billions;
(2) The novel approach is able to find large winning regions that yield permis-
sive policies. (3) We implement a straightforward approach that constructs the
belief-support symbolically using state-of-the-art model checking. We show that
its completeness comes at the cost of limited scalability. (4) We construct a
shield for almost-sure specifications on POMDPs which enforces at runtime that
no unsafe states are visited and that, under mild assumptions, the agent almost-
surely reaches the set of desirable states.

Further Related Work. Chatterjee et al. compute winning regions for minimizing
a reward objective via an explicit state representation [17], or consider almost-
sure reachability using an explicit state space [16,51]. The problem of determin-
ing any winning policy can be cast as a strong cyclic planning problem, proposed
earlier with decision diagrams [7]. Indeed, our BDD-based implementation on the
belief-support MDP can be seen as a reimplementation of that approach.

Quantitative variants of reach-avoid specifications have gained attention in,
e.g., [11,28,40]. Other approaches restrict themselves to simple policies [3,33,45,
58]. Wang et al. [55] use an iterative Satisfiability Modulo Theories (SMT) [6]
approach for quantitative finite-horizon specifications, which requires computing
beliefs. Various general POMDP approaches exist, e.g., [26,27,29,48,49,54,56].
The underlying approaches depend on discounted reward maximization and can
satisfy almost-sure specifications with high reliability. However, enforcing prob-
abilities that are close to 0 or 1 requires a discount factor close to 1, drastically
reducing the scalability of such approaches [28]. Moreover, probabilities in the
underlying POMDP need to be precisely given, which is not always realistic [14].

Another line of work (for example [53]) uses an idea similar to winning regions
with uncertain specifications, but in a fully observable setting. Finally, comple-
mentary to shielding, there are approaches that guide reinforcement learning
(with full observability) via temporal logic constraints [24,25].

2 Preliminaries and Formal Problem

We briefly introduce POMDPs and their semantics in terms of belief MDPs, before
formalising and studying the problem variants outlined in the introduction. We
present belief-support MDPs as a finite abstraction of infinite belief MDPs.

We define the support supp(u) = {z € X | u(z) > 0} of a discrete probability
distribution x4 and denote the set of all distributions with Distr(X).

Definition 1 (MDP). A Markov decision process (MDP) is a tuple M =
(S, Act, tinit, P) with a set S of states, an initial distribution pinie € Distr(S), a
finite set Act of actions, and a transition function P: S x Act — Distr(S).
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Let post,(a) = supp(P(s, «)) denote the states that may be the successors of the
state s € S for action o € Act under the distribution P(s, «). If post,(«) = {s}
for all actions «, s is called absorbing.

Definition 2 (POMDP). A partially observable MDP (POMDP) is a tuple
P = (M, 2,0bs) with M = (S, Act, pinis, P) the underlying MDP with finite
S, {2 a finite set of observations, and obs: S — {2 an observation function.
We assume that there is a unique initial observation, i.e., that |{obs(s) | s €

supp (finit) H = 1.

More general observation functions obs: S — Distr(f2) are possible via a
(polynomial) reduction [17]. A path through an MDP is a sequence w, m =
(s0,0)(s1,01)...5, of states and actions. such that s;;; € post, (a;) for
a; € Act and 0 < i < n. The observation function obs applied to a path yields
an observation(-action) sequence obs(w) of observations and actions.

For modeling flexibility, we allow actions to be unavailable in a state (e.g.,
opening doors is only available when at a door), and it turned out to be crucial
to handle this explicitly in the following algorithms. Technically, the transition
function is a partial function, and the enabled actions are a set EnAct(s) = {a €
Act | post,(a) # 0}. To ease the presentation, we assume that states s, s’ with
the same observation share a set of enabled actions EnAct(s) = EnAct(s’).

Definition 3 (Policy). A policy o: (S x Act)* xS — Distr(Act) maps a path ©
to a distribution over actions. A policy is observation-based, if for each two paths
m, ' it holds that obs(mw) = obs(n’") = o(w) = o(x’). A policy is memoryless,
if for each m, 7' it holds that last(w) = last(n’) = o(n) = o(x’). A policy is
deterministic, if for each w, o(m) is a Dirac distribution, i.e., if |supp(o(m))| = 1.

Policies resolve nondeterminism and partial observability by turning a (PO)MDP
into the induced infinite discrete-time Markov chain whose states are the finite
paths of the (PO)MDP. Probability measures are defined on this Markov chain.

For POMDPs, a belief describes the probability of being in certain state based
on an observation sequence. Formally, a belief b is a distribution b € Distr(S)
over the states. A state s with positive belief b(s) > 0 is in the belief support,
s € supp(b). Let Pry(S’) denote the probability to reach a set S’ C S of states
from belief b under the policy o. More precisely, Prg (S’) denotes the probability
of all paths that reach S’ from b when nondeterminism is resolved by o.

The policy synthesis problem usually consists in finding a policy that satisfies
a certain specification for a POMDP. We consider reach-avoid specifications, a
subclass of indefinite horizon properties [46]. For a POMDP P with states S,
such a specification is ¢ = (REACH, AVOID) C S x S. We assume that states
in AVOID and in REACH are (made) absorbing and REACH N AVOID = ().

Definition 4 (Winning). A policy o is winning for ¢ from belief b in
(PO)MDP P iff Pri(AVOID) = 0 and Pry(REACH) = 1, i.e., if it reaches
AVOID with probability zero and REACH with probability one (almost-surely)
when b is the initial state. Belief b is winning for ¢ in P if there exists a winning
policy from b.
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We omit P and ¢ whenever it is clear from the context and simply call b winning.

Problem 1: Given a POMDP, a belief b, and a specification ¢, decide
whether b is winning and find a policy ¢ that is winning from b.

The problem is EXPTIME-complete [18]. Contrary to MDPs, it is not sufficient
to consider memoryless policies.

Model checking queries for POMDPs often rely on the analysis of the belief
MDP. Indeed, we may analyse this generally infinite model. Let us first recap
a formal definition of the belief MDP, using the presentation from [11]. In the
following, let P(s, v, 2) := > cg[obs(s’)=2] - P(s,a,s’) denote the probability!
to move to (a state with) observation z from state s using action a. Then,
P(b,a, z) := ) .5 b(s) - P(s,q, z) is the probability to observe z after taking a
in b. We define the belief obtained by taking a from b, conditioned on observing z:

[obs(s")=z] - > ,cq b(s) - P(s, 0, 8")

update(b|a, 2)(s') := P b0 2) : (1)

Definition 5 (Belief MDP). The belief MDP of POMDP P = (M, {2, obs)
where M = (S, Act, pinit, P) is the MDP BeIMDP(P) := (B, Act, Pg, ftinit) with
B = Distr(S), and transition function Pg given by

Py(b,a,b') = {P(b,a,obs(b’)) if b = deate(b|a,obs(b’)),
0 otherwise.

Due to (1) and the unique initial observation, we may restrict the beliefs to B =
U.co Distr({s | obs(s) = z}), that is, each belief state has a unique associated
observation. We can lift specifications to belief MDPs: Avoid-beliefs are the set
of beliefs b such that supp(b) N AVOID # 0, and reach-beliefs are the set of
beliefs b such that supp(b) C REACH.

Towards obtaining a finite abstraction, the main algorithmic idea is the fol-
lowing. For the qualitative reach-avoid specifications we consider, the belief prob-
abilities are irrelevant—only the belief support is important [47].

Lemma 1. For winning belief b, belief b’ with supp(b) = supp(b’) is winning.

Consequently, we can abstract the belief MDP into a finite belief support MDP.
Definition 6 (Belief-Support MDP). For a POMDP P = (M, (2, 0bs) with
M = (S, Act, pinit, P), the finite state space of a belief-support MDP Pg is
B ={bC S |Vs,s € b:obs(s) = obs(s')} where each state is the support of

a belief state. Action « in state b leads (with an irrelevant positive probability
p>0) to a state v, if

b e { U posts(a) N {s|obs(s) =2} |z € Q}

s€b

! We use Iverson brackets: [x] = 1 if  holds and 0 otherwise.
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Thus, transitions between states within b and b’ are mimicked in the POMDP.
Equivalently, the following clarifies the belief-support MDP as an abstraction of
the belief MDP: there are transitions with action o between b and ', if there
exists beliefs b, b’ with supp(b) = b and supp(b’) = V', such that b’ € post, ().
We lift the specification as before:

Definition 7 (Lifted specification). For ¢ = (AVOID, REACH), we define
v = (AVOIDp,REACHpg) with AVOIDg = {b | b N AVOID # 0}, and
REACHg = {b| b C REACH}.

We obtain the following lemma, which follows from the fact that almost-sure
reachability is a graph property?.

Lemma 2. If belief b is winning in the POMDP P for ¢, then the support
supp(b) is winning in the belief-support MDP Pg for ¢p.

Lemma 2 yields an equivalent reformulation of Problem 1 for belief supports:

Problem 1 (equivalent): Given a POMDP P, belief b, and specification
, decide whether supp(b) is winning for ¢ 5 in the belief-support MDP Pp.

3 Winning Regions

This section provides the observations on winning regions, a key concept for this
paper. An important consequence of Lemma 2 and the reformulation of Prob-
lem 1 to the belief-support MDP is that the initial distribution of the POMDP
is no longer relevant. Winning policies for individual beliefs may be composed
to a policy that is winning for all of these beliefs, using the individual action
choices.

Lemma 3. If the policies o and o' are winning for the belief supports b and V',
respectively, then there exists a policy o’ that is winning for both b and b'.

While this statement may seem trivial on the MDP (or equivalently on beliefs),
we notice that it does not hold for POMDP states. As a natural consequence,
we are able to consider winning beliefs without referring to a specific policy.

Definition 8 (Winning region). Let o be a policy. A set W7 C B of belief
supports is a winning region for ¢ and o, if o is winning from each b € W7. A
set W, C B is a winning region for ¢, if every b € W, is winning. The region

containing all winning beliefs is the maximal winning region®.

2 Although the probabilities are not relevant to compute almost-sure reachabil-
ity, it is important to notice that almost-sure reachability is different from sure-
reachability [5]: For almost-sure reachability, there can be an infinite path that
never reaches the target, as long as the probability mass over all those paths is
0. Almost-sure reachability can, however, be expressed as sure-reachability in a par-
ticular game-setting [47].

3 In some literature, winning region always refers to a mazimal winning region.
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Observe that the maximal winning region in MDPs exists for qualitative reach-
ability, but not for quantitative reachability, which we do not consider here.

Problem 2: Given a POMDP P and a specification ¢, find the maximal
winning region W,,.

Using this definition of winning regions, we are able to reformulate Problem 1
by asking whether the support of some belief b is in the winning region.

Part of Problem 1 was to compute a winning policy. Below, we study the
connection between the winning region and winning policies. We are interested
in subsets of the maximal winning region that exhibit two properties:

Definition 9 (Deadlock-free). A set W of belief-supports W C B is
deadlock-free, if for every b € W, an action o € EnAct(b) ewxists such that
post, (o) CW.

Definition 10 (Productive). A set of belief supports W C B is productive
(towards a set REACHpg), if from every b € W, there exists a (finite) path
7 = boayby ... by, from by to b, € REACHp with b; € W and post,, (o) C W for
alll1 <i<n.

Every productive region is deadlock-free, as REACH-states are absorbing. The
maximal winning region is productive towards REACHg (and thus deadlock-
free) by definition. Intuitively, while a deadlock-free region ensures that one
never has to leave the region, any productive winning region ensures that from
every belief support within this region there is a policy to stay in the winning
region and that can almost-surely reach a REACH-state. In particular, to find a
winning policy (Challenge 1) or for the purpose of safe exploration (Challenge 2),
it is sufficient to find a productive subset of the maximal winning region. We
detail on this insight in Sect. 6.

Problem 3: Given a POMDP P and a specification ¢, find a (large) pro-
ductive winning region W,,.

To allow a compact representation of winning regions, we exploit that for any
belief support & C b it holds that post, (o) C post,(a) for all actions o € Act,
that is, the successors of b’ are contained in the successors of b.

Lemma 4. For winning belief support b, b’ C b is winning.

4 Iterative SAT-Based Computation of Winning Regions

We devise an approach for iteratively computing an increasing sequence of pro-
ductive winning regions. The approach delivers a compact symbolic encoding
of winning regions: For a belief (or belief-support) state from a given winning
region, we can efficiently decide whether the outcome of an action emanating
from the state stays within the winning region.

Key ingredient is the computation of so-called memoryless winning policies.
We start this section by briefly recapping how to compute such policies directly
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Fig. 1. Cheese-Maze example to explain memoryless policies and shortcuts

on the POMDP, before we build an efficient incremental approach on top of this
base method. In particular, we first present a naive iterative algorithm based on
the notion of shortcuts, then describe how to implicitly add shortcuts within the
encoding, and then finally combine the ideas to an efficient algorithm.

4.1 One-Shot Approach to Find Small Policies from a Single Belief

We aim to solve Problem 1 and determine a winning policy. The number of
policies is exponential in the actions and the (exponentially many) belief support
states. Searching among doubly exponentially many possibilities is intractable in
general. However, Chatterjee et al. [15] observe that often much simpler winning
policies exist and provides a one-shot approach to find them. The essential idea
is to search only for memoryless observation-based policies o: {2 — Distr(Act)
that are winning for the (initial) belief support b.

Ezample 1. Consider the small Cheese-POMDP [35] in Fig. 1(a). States are cells,
actions are moving in the cardinal directions (if possible), and observations are
the directions with adjacent cells, e.g., the boldface states 6, 7,8 share an obser-
vation. We set REACH = {10} and AVOID = {9,11}. From belief support
b = {6,8} there is no memoryless winning policy—In states {6,8} we have to
go north, which prevents us from going south in state 7. However, we can find a
memoryless winning policy for {1,5}, see Fig. 1(b).

This problem is NP-complete, and it is thus natural to encode the problem as a
satisfiability query in propositional logic. We mildly adapt the original encoding
of winning policies [15]. We introduce three sets of Boolean variables: A, ,, Cs
and P; ;. If a policy takes action a € Act with positive probability upon obser-
vation z € {2, then and only then, A, , is true. If under this policy a state s € §
is reached from some initial belief support b, with positive probability, then and
only then, C; is true. We define a maximal rank k to ensure the productivity.
For each state s and rank 0 < j < k, variable P ; indicates rank j for s, that
is, a path from s leads to s’ € REACH within j steps.* A winning policy is
then obtained by finding a satisfiable solution (via a SAT solver) to the conjunc-
tion W5 (b,, k) of the constraints (2a)—(5), where S; = S\ (AVOID U REACH).

4 Notice that a state s can have multiple ‘ranks’ in this encoding. Its rank is the
smallest j such that P; ; is true.
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N C- (2a) AV Al (2b)

sSEb, 2€82  a€EnAct(z)

The initial belief support is clearly reachable (2a). The conjunction in (2b)
ensures that in every observation, at least one action is taken.

A —Cc. ~ A (C’S/\Aobs(s)7a—> A CS/) (3)

s€ AVOID ses s’ €post (a)
a€EnAct(s)
The conjunction (3) ensures that for any model for these formulas, the set of
states {s € S | Cs = true} is reachable, does not overlap with AVOID, and is
transitively closed under reachability (for the policy described by A, ).

N\ Cs— Poy (4)
sES?
/\ -FPso A /\Ps,j<—>< \/ (Aobs(s),a N \/ Py 1) ) (5)
s¢REACH SES? acEnAct(s) s’ €post(a)
1<j<k

Conjunction (4) states that any state that is reached almost-surely reaches a
state in REACH, i.e., that there is a path (of length at most) &k to the target.
Conjunctions (5) describe a ranking function that ensures the existence of this
path. Only states in REACH have rank zero, and a state with positive probability
to reach a state with rank j—1 within a step has rank at most j.

By [15, Thm. 2], it holds that the conjunction Wj(b,,k) of the con-
straints (2a)—(5) is satisfiable, if there is a memoryless observation-based pol-
icy such that ¢ is satisfied. If k = |S], then the reverse direction also holds. If
k < |S|, we may miss states with a higher rank. Large values for k are practically
intractable [15], as the encoding grows significantly with k. Pandey and Rinta-
nen [41] propose extending SAT-solvers with a dedicated handling of ranking
constraints.

In order to apply this to small-memory policies, one can unfold log(m) bits of
memory of such a policy into an m times larger POMDP [15,33], and then search
for a memoryless policy in this larger POMDP. Chatterjee et al. [15] include a
slight variation to this unfolding, allowing smaller-than-memoryless policies by
enforcing the same action over various observations.

4.2 TIterative Shortcuts

We exploit the one-shot approach to create a naive iterative algorithm that con-
structs a productive winning region. The iterative algorithm avoids the following
restrictions of the one-shot approach. (1) In order to increase the likelihood of
finding winning policies, we do not restrict ourselves to small-memory policies,
and (2) we do not have to fix a maximal rank k. These modifications allow us
to find more winning policies, without guessing hyper-parameters. As we do not
need to fix the belief-state, those parts of the winning region that are easy to
find for the solver are encountered first.
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The One-Shot Approach on Winning Regions. To understand the naive iterative
algorithm, it is helpful to consider the previous encoding in the light of Problem
3, i.e., finding productive winning regions. Consider first the interpretation of
the variables. Indeed, observe that we have found the same winning policy for
all states s where C; is true. Consequentially, any belief support b, = {s |
Cs true Aobs(s) = z} is winning,.

Lemma 5. If o is winning for b and b, then o is also winning for bUV'.

This lemma is somewhat dual to Lemma4, but requires a fixed policy. The
constraints (3) and ensure that a winning-region is deadlock-free. The constraints
(4) and (5) ensure productivity of the winning region.

Adding Shortcuts Fxplicitly. The key idea is that we iteratively add short-cuts
in the POMDP that represent known winning policies. We find a winning policy
o for some belief states in the first iteration, and then add a fresh action a,
to all (original) POMDP states: This action leads — with probability one — to
a REACH state, if the state is in the wining belief-support under policy o.
Otherwise, the action leads to an AVOID state.

Definition 11. For POMDP P = (M, {2,0bs) where M = (S, Act, ptinit, P)
and a policy o with associated winning region W, and assuming w.l.o.g., T €
REACH and 1. € AVOID, we define the shortcut POMDP P{c} = (M’, 2, obs)
with M" = (S, Act’, pinit, P’), Act’ = ActU{a,}, P'(s,a) = P(s,a) foralls € S
and a € Act, and P'(s,a,) = {T + [{s} e W], L [{s} € W7]}.

Lemma 6. For a POMDP P and policy o, the (mazimal) winning regions for
P{o} and P coincide.

First, adding more actions will not change a winning belief-support to be not
winning. Furthermore, by construction, taking the novel action will only lead to
a winning belief-support whenever following o from that point onwards would
be a winning policy. The key benefit is that adding shortcuts may extend the
set of belief-support states that win via a memoryless policy. This observation
also gives rise to the following extension to the one-shot approach.

Example 2. We continue with Example 1. If we add shortcuts, we can now find
a memoryless winning policy for b = {6, 8}, depicted in Fig. 1(c).

Iterative Shortcuts to Extend a Winning Region. The idea is now to run the one-
shot approach, extract the winning region, add the shortcuts to the POMDP, and
rerun the one-shot approach. To make the one-shot approach applicable in this
setting, it only needs one change: Rather than fixing an initial belief-support,
we ask for an arbitrary new belief-support to be added to the states that we
have previously covered. We use a data structure Win such that Win(z) encodes
all winning belief supports with observation z. Internally, the data structure
stores maximal winning belief supports (w.r.t. set inclusion, see also Lemma4)
as bit-vectors. By construction, for every b € Win(z), a winning region exists,
i.e., conceptually, there is a shortcut-action leading to REACH.
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Algorithm 1 Naive construction of winning regions

Input: POMDP P, reach-avoid specification ¢
Output: Winning region encoded in Win
Win(z) <« {s € REACH | obs(s) = z} for all z € 2

& — Encode(P, ¢, Win) > Create encoding (2b),(3),(6),(7).
while In s.t. n = & do > Call an SMT solver
Win(z) < Win(z) U{b| s € biff n(Cs)} for all z € 2
P — Ploy} > Extend POMDP with Def. 11

> with o, policy encoded by 7.
& — Encode(P, ¢, Win)

We extend the encoding (in partial preparation of the next subsection) and
add a variable U, € b that is true if the policy is winning in a belief support
that is not yet in Win(z). We replace (2a) with:

Voo n A (e Voa) n A (e AV )

zEN z€Q2 ses z€Q2 XeEWin(z) seS\X
Win(z)=0 obs(s)=z2 Win(z)#0 obs(s)=z

(6)

For an observation z for which we have not found a winning belief support
yet, finding a policy from any state s with obs(s) updates the winning region.
Otherwise, it means finding a winning policy for a belief support that is not
subsumed by a previous one (6).

Real-Valued Ranking. To avoid setting a maximal path length, we use unbounded
(real) variables R, rather than Boolean variables for the ranking [57]. This relax-
ation avoids the growth of the encoding and admits arbitrarily large ranks with
a fixed-size encoding into difference logic. This logic is an extension to proposi-
tional logic that can be checked using an SMT solver [6].

A C=(V HAaswanr(V B>R) (7)

SES? acEnAct(s) s’epost (a)

We replace (4) and (5): A state must have a successor state with a lower rank —
as before, but with real-valued ranks (7).

Algorithm. Together, the algorithm is given in Algorithm 1. We initialize the
winning region based on the specification, then encode the POMDP using the
(modified) one-shot encoding. As long as the SMT solver finds policies that are
winning for a new belief-support, we add those belief supports to the winning
region. In each iteration, Win contains a winning region. Once we find no more
policies that extend the winning region on the extended POMDP, we terminate.

The algorithm always terminates because the set of winning regions is finite,
but in general does not solve Problem 2. Formally, the maximal winning region
is a greatest fixpoint [5] and we iterate from below, i.e., the fixpoint that we find
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will be the smallest fixpoint (of the operation that we implement). However, iter-
ating from above requires to reason that none of the doubly-exponentially many
policies is winning for a particular belief support state; whereas our approach
profits from finding simple strategies early on. Unfolding of memory as discussed
earlier also makes this algorithm complete, yet, suffers from the same blow-up.
A main advantage is that the algorithm often avoids the need for unfolding when
searching for a winning policy or large winning regions.

Next, we address two weaknesses: First, the algorithm currently creates a new
encoding in every iteration, yielding significant overhead. Second, the algorithm
in many settings requires adding a bit of memory to realize behavior where in
a particular observation, we first want to execute an action « and then follow
a shortcut from the state (with the same observation) reached from there. We
adapt the encoding to explicitly allow for these (non-memoryless) policies.

4.3 Incremental Encoding of Winning Regions

In this section, instead of naively adjusting the POMDP, we realize the idea of
adding shortcuts directly on the encoding. This encoding is the essential step
towards an efficacious approach for solving Problem 3. We find winning states
based on a previous solution, and instead of adding actions, we allow the solver
to decide following individual policies from each observation. In Sect.4.4, we
embed this encoding into an improved algorithm.

Our encoding represents an observation-based policy that can decide to take
a shortcut, which means that it follows a previously computed winning policy
from there (implicitly using Lemma 3). In addition to A, o, Cs and R from the
previous encoding, we use the following variables: The policy takes shortcuts in
states s where D, is true. For each observation, we must take the same shortcut,
referred to by a positive integer-valued index I,. More precisely, I, refers to a
shortcut from a previously computed (fragment of a) winning region stored in
Win(z)r.. The policy may decide to switch, that is, to follow a shortcut after
taking an action starting in a state with observation z. If F, is true, the policy
takes some action from z-states and from the next state, we take a shortcut. The
encoding thus implicitly represents policies that are not memoryless but rather
allow for a particular type of memory.
The conjunction of (6) and (8)—-(13) yields the encoding &% (Win):

AV 4.) A A -~Ca-D, (8)

2€82  a€EnAct(z) s€ AVOID
/\ (Cé A Aobs(s),a A= obs(s) - /\ Cs/) (9)
aEEsneAs::t(s) s'€post, ()
/\ (Cs A Aobs(s),oe A Fobs(s) - /\ DS’) (10)
seS s’ €post ()
a€EnAct(s)

Similar to (2b), (3), we select at least one action and AVOID-states should not
be reached (8). States reached are closed under the transitive closure, however,



Enforcing Almost-Sure Reachability in POMDPs 615

Algorithm 2 Naive construction of winning regions with incremental encoding
Input: POMDP P, reach-avoid specification ¢
Output: Winning region encoded in Win
Win(z) <« {s € REACH | obs(s) = z} for all z € 2
& — Encode(P, ¢, Win) > Create encoding (6),(8)—(13).
while In s.t. n = & do > Call an SMT solver
Win(z) < Win(z) U{b| s € biff n(Cs)} for all z € 2
¢ — Encode(P, ¢, Win)

only if we do not switch to taking a shortcut (9). Furthermore, we mark the
states reached after switching (10) and need to select a shortcut for these states.

N (Ds = L) >0) A\ L < [Win(2)] (11)
seS zZ€N
A N D. — L #i (12)

zZEN s€S\Win(z);
0<i<|Win(z)|  obs(s)=z

If we reach a state s after switching, then we must pick a shortcut. We can only
pick an index that reflects a found winning region (11). If we pick this shortcut
reflecting a winning region (fragment) for observation z, then we are winning
from the states in Win(z);, but not from any other state s with that observation.
Thus, for s € Win(z);, if we are going to follow any shortcut (that is, D, holds),
we should not pick this particular shortcut encoded by I, (because it will lead
to an AVOID-state). In terms of the policy: Taking this previously computed
policy from state s is not (known to) lead us to a REACH-state (12). Finally,
we update the ranking to account for shortcuts.

/\ Os - ( \/ (Aobs(s),oz A ( \/ Rs > Rs’)) \ Fobs(s)) (13)
sES? a€EnAct(s) s’ €post(a)

We make a slight adaption to (7): Either we have a successor state with a lower
rank (as before) or we follow a shortcut—which either leads to the target or to
violating the specification (13). We formalize the correctness of the encoding:

Lemma 7. If n E @;’;(Win), then for every observation z, the belief support
b, = {s | n(Cs) = true,obs(s) = z} is winning.

Algorithm 2 is a straightforward adaption of Algorithm 1 that avoids adding
shortcuts explicitly (and uses the updated encoding). As before, the algorithm
terminates and solves Problem 3. We conclude:

Theorem 1. In any iteration, Algorithm 2 computes a productive winning region.

4.4 An Incremental Algorithm

We adapt the algorithm sketched above to exploit the incrementality of modern
SMT solvers. Furthermore, we aim to reduce the invocations of the solver by
finding some extensions to the winning region via a graph-based algorithm.
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Algorithm 3 Incremental construction of winning regions
Input: POMDP P, reach-avoid specification ¢
Output: Winning region encoded in Win
Win(z) <« {s € REACH | obs(s) = z} for all z € 2
Win < GraphPreprocessing(Win)

Dax — Encodesx (P, ¢, Win) > Create encoding (8)—(13)
Dinc — Encodeinc(P, ¢, Win) > Encode (6)
while 3 s.t. n = @Pax A Pinc do > Call an SMT solver, fix n
do > Extend policy

Dy — NMAza | nU2) An(Aza)} > Part. fix policy
while 35 s.t. n E Paix A Pvar A Dy > Call SMT, fix n

Win(z) «— Win(z) U{B | s € B iff n(Cs)} for all z € 2

Win «— GraphPreprocessing(Win)

Pix — Pax A Encodei1y(12) (P, ¢, Win) > Update: (11),(12)
Dinc — Encodeinc(P, ¢, Win) > Encode (6)

Graph-Based Preprocessing. To reduce the number of SMT invocations, we
employ polynomial-time graph-based heuristics. The first step is to use (fully
observable) MDP model checking on the POMDP as follows: find all states that
under each (not necessarily observation-based) policy reach an AVOID-state
with positive probability, and make them absorbing. Then, we find all states
that under each policy reach a REACH-state almost-surely. Then, we iteratively
search for winning observations and use them to extend the REACH-states. An
observation z is winning, if the belief-support {s | obs(s) = z} is winning. We
start with a previously determined winning region W. We iteratively update W
by adding states b, = {s | obs(s) = z} for some observation z, if there is an
action a such that from every s € b, it holds post (o) C W. The iterative
updates are interleaved with MDP model checking on the POMDP as described
above until we find a fixpoint.

Optimized Algorithm. We improve Algorithm 2 along four dimensions to obtain
Algorithm 3. First, we employ fewer updates of the winning region: We aim to
extend the policy as much as possible, i.e., we want the SMT-solver to find more
states with the same observation that are winning under the same policy. There-
fore, we fix the variables for action choices that yield a new winning policy, and
let the SMT solver search whether we can extend the corresponding winning
region by finding more states and actions that are compatible with the partial
policy. Second, we observe that between (outer) iterations, large parts of the
encoding stay intact, and use an incremental approach in which we first push
all the constraints from the POMDP onto the stack, then all the constraints
from the winning region, and finally a constraint that asks for progress. After
we found a new policy, we pop the last constraint from the stack, add new con-
straints regarding the winning region (notice that the old constraints remain
intact), and push new constraints that ask for extending the winning region
to the stack. We refresh the encoding periodically to avoid unnecessary clutter-
ing. Third, further constraints (1) make the usage of shortcuts more flexible—we
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allow taking shortcuts either immediately or after the next action, and (2) enable
an even more incremental encoding with some minor technical reformulations.
Fourth, we add the graph-preprocessing discussed above during the outer itera-
tion.

5 Symbolic Model Checking for the Belief-Support MDP

In this section, we briefly describe how we encode a given POMDP into a belief-
support MDP to employ symbolic, off-the-shelf probabilistic model checking. In
particular, we employ symbolic (decision-diagram, DD) representations of the
belief-support MDP as we expect this MDP to be huge. Constructing that DD
representation effectively is not entirely trivial. Instead, we advocate construct-
ing a (modular) symbolic description of the belief support MDP. Concretely,
we automatically generate a model description in the MDP modeling language
JANI [13],%> and then apply off-the-shelf model checking on the JANI description.

Conceptually, we create a belief-support MDP with auxiliary states to allow
for a concise encoding.® We use this auxiliary state b to describe for any transition
the conditioning on the observation. Concretely, a single transition P (b, a, ') in
the belief-support MDP is reflected by two transitions P (b, ov, b) and P (b, a1, )
in our encoding, where o is a unique dummy action. We encode states using
triples (belsup, newobs, lact). belsup is a bit vector with entries for every state
s that we use to encode the belief support. Variables newobs and lact store
an observation and an action and are relevant only for the auxiliary states.
Technically, we now encode the first transition from b with the nondeterministic
action a to b. P(b,a) then yields (with arbitrary positive) probability a new
observation that will reflect the observation obs(b'). We store « and obs(b') in
lact and newobs, respectively. The second step is a single deterministic (dummy)
action updating belsup while taking into account newobs. The step also resets
lact and newobs.

The encoding of the transitions as follows: For the first step, we create nonde-
terministic choices for each action a and observation z. We guard these choices
with z meaning that the edge is only applicable to states having observation z,
i.e., the guard is Vses,obs(s)=z belsup(s). With these guarded edges, we define

the destinations: With an arbitrary” probability p, we go to an observation z; if
there is at least one state in s € belsup which has a successor state s’ € post,(«)
with obs(s’) = 2.

5 The description here works on a network of synchronized state machines as is also
common in the PRISM language.

5 The usage of message passing or indezed assignments in JANT would circumvent the
need for intermediate states, but is to the best of our knowledge not supported by
decision-diagram based model checkers.

7 We leave this a parametric probability in model building to reduce the number of
different probabilities, as this is beneficial for the size of the decision diagram that
STORM constructs — it will only have leafs 0, p, 1. Technically, such MDPs are not
necessarily well-defined but we can employ model checking on the graph structure.
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The following pseudocode reflects the first step in the transition encoding. The
syntax is as follows: take an action if a Boolean guard is satisfied, then updates
are executed with probability prob. An example for a guard is an observation z.

newobs < z
prob (\/ cs belsup(s) ?p:0): !
P(s,0,21)>0 lact «+ «
take o if z then
newobs «— z,

prob (\/ s belsup(s) ?p:0):
P(s,a,2,)>0 lact «— «

The second step synchronously updates each state s’ in the POMDP indepen-
dently: The entry belsup(s’) is set to true if obs(s) = newobs and if there is a
state s currently true in (the old) belsup with s’ € post,(lact). The step thus
can be captured by the following pseudocode for each s':

take o) iftrue then probl : belsup(s') « (\/ P(s,1lact,s’) > 0) Aobs(s’)

Finally, whenever the dummy action « is executed, we also reset the variables
newobs and lact. The resulting encoding thus has transitions in the order of
IS + [£2]? - | max,e o EnAct(2)).

6 Almost-Sure Reachability Shields in POMDPs

In this section, we define a shield for POMDPs — towards the application of safe
exploration (Challenge 2) — that blocks actions which would lead an agent out
of a winning region. In particular, the shield imposes restrictions on policies to
satisfy the reach-avoid specification. Technically, we adapt so-called permissive
policies [21,31] for a belief-support MDP. To force an agent to stay within a
productive winning region W, for specification ¢, we define a (-shield v: b —
24¢ guch that for any winning b for ¢ we have v(b) C {a € Act | post,(a) C
W}, ie., an action is part of the shield v(b) if it exclusively leads to belief
support states within the winning region.

A shield v restricts the set of actions an arbitrary policy may take®. We
call such restricted policies admissible. Specifically, let b, be the belief sup-
port after observing an observation sequence 7. Then policy o is v-admissible if
supp(o (1)) C v(b;) for every observation-sequence 7. Consequently, a policy is
not admissible if for some observation sequence 7, the policy selects an action
a € Act which is not allowed by the shield.

Some admissible policies may choose to stay in the winning region without
progressing towards the REACH states. Such a policy adheres to the avoid-part
of the specification, but violates the reachability part. To enforce progress, we

8 While memory policies based on the belief (support) are sufficient to ensure almost-
sure reachability, the goal is to shield other policies that do not necessarily fall in
this restricted class.
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Fig. 2. Video stills from simulating a shielded agent on three different benchmarks.

adapt a notion of fairness. A policy is fair if it takes every action infinitely often
at any belief support state that appears infinitely often along a trace [5]. For
example, a policy that randomizes (arbitrarily) over all actions is fair-we notice
that most reinforcement learning policies are therefore fair.

Theorem 2. For a p-shield v and a winning belief support b, any fair v-
admissible policy satisfies @ from b.

We give a proof (sketch) in [32, Appendix]. The main idea is to show that
the induced Markov chain of any admissible policy has only bottom SCCs that
contain REACH-states.

Remark 1. If ¢ is a safety specification (where Prg(AVOID) = 0 suffices), we
can rely on deadlock-free winning regions rather than productive winning regions
and drop the fairness assumption.

7 Empirical Evaluation

We investigate the applicability of our incremental approach (Algorithm 3) to
Challenge 1 and Challenge 2, and compare with our adaption and implementa-
tion of the one-shot approach [15], see Sect. 4.1. We also employ the MDP model-
checking approach from Sect. 5. Experiments, videos, source code are archived®.

Setting. We implemented the one-shot algorithm, our incremental algorithm,
and the generation of the JANI description of the belief support MDP into the
model checker STORM [19] on top of the SMT solver z3 [38]. To compare with
the one-shot algorithm for Problem 1, that is, for finding a policy from the
initial state, we add a variant of Algorithm 3. Intuitively, any outer iteration
starts with an SMT-check to see whether we find a policy covering the initial
states. We realize the latter by fixing (temporarily) the Cs-variables. In the first
iteration, this configuration and its resulting policy closely resemble the one-
shot approach. For the MDP model-checking approach, we use STORM (from
the C++4 API) with the dd engine and default settings.

For the experiments, we use a MacBook Pro MV962LL/A, a single core, no
randomization, and use a 6 GB memory limit. The time-out (TO) is 15 min.

9 http://doi.org/10.5281/zenodo.4784940 or on http://github.com/sjunges/shielding-
POMDPs.
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Baseline. We compare with the one-shot algorithm including the graph-based
preprocessing to identify more winning observations. We use two setups: (1) We
(manually, a-priori) search for optimal hyper-parameters for each instance. We
search for the smallest amount of memory possible, and for the smallest maximal
rank k (being a multiplicative of five) that yields a result. Guessing parameters
as an “oracle” is time-consuming and unrealistic. We investigate (2) the perfor-
mance of the one-shot algorithm by fixing the hyper-parameters to two memory-
states and k = 30. These parameters provide results for most benchmarks.

Benchmarks. Our benchmarks involve agents operating in N XN grids, inspired
by, e.g., [12,15,20,50,51]. See Fig.2 for video stills of simulating the following
benchmarks. Rocks is a variant of rock sample. The grid contains two rocks which
are either valuable or dangerous to collect. To find out with certainty, the rock
has to be sampled from an adjacent field. The goal is to collect a valuable rock,
bring it to the drop-off zone, and not collect dangerous rocks. Refuel concerns a
rover that shall travel from one corner to the other, while avoiding an obstacle
on the diagonal. Every movement costs energy and the rover may recharge at
recharging stations to its full battery capacity E. It receives noisy information
about its position and battery level. Evade is a scenario where a robot needs to
reach a destination and evade a faster agent. The robot has a limited range of
vision (R), but may scan the whole grid instead of moving. A certain safe area
is only accessible by the robot. Intercept is inverse to Fvade in the sense that
the robot aims to meet an agent before it leaves the grid via one of two available
exits. On top of the view radius, the agent observes a corridor in the center of the
grid. Awoid is a related scenario where a robot shall keep distance to patrolling
agents that move with uncertain speed, yielding partial information about their
position The robot may exploit their predefined routes. Obstacle contains static
obstacles where the robot needs to reach the exit. Its initial state and movement
are uncertain, and it only observes whether the current position is a trap or exit.

Results for Challenge 1. Table1 details the numerical benchmark results. For
each benchmark instance (columns), we report the name and relevant charac-
teristics: the number of states (|S|), the number of transitions (#Tr, the edges
in the graph described by the POMDP), the number of observations (|{2|), and
the number of belief support states (|b|). For the incremental method, we pro-
vide the run time (Time, in seconds), the number of outer iterations (#Iter.)
in Algorithm 3, and the number of invocations of the SMT solver (#solve), and
the approximate size of the winning region (|WW|). We then report these numbers
when searching for a policy that wins from the initial state. For the one-shot
method, we provide the time for the optimal parameters (on the next line)-TOs
reflect settings in which we did not find any suitable parameters, and the time
for the preset parameters (2,30), or N/A if no policy can be found with these
parameters. Finally, for (belief-support) MDP model checking, we give only the
run times.

The incremental algorithm finds winning policies for the initial state without
guessing parameters and is often faster versus the one-shot approach with an
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Table 1. Numerical results towards solving Problem 1 and Problem 3.

Inst. | Rocks (N) Refuel (N,E) | Evade (N,R) | Avoid (N,R) |Intercept (N,R) | Obstacle (N)
4 6 6,8 7,7 6,2 7,2 6,3 7,4 7.1 7,2 6 8
|S| 331 | 816 270 302 4232|8108 5976 13021 | 4705 4705 37 65
#Tr 3484 | 7292 1301 1545 28866 | 57570 | 14373 | 33949 |18049 | 18049 |224 |421
192| 65 74 36 35 2202 | 4172 3300 | 8584 2002 2598 4 4
|b] 3.585 | 7.7E25 | 5.6E14 | 7.4£19 | 1.1E8 |4.4r11  1.1E15 | 2.917 | 6.4E10 | 2.7E9 1.1E9 | 2.917
. | Time |19 753 6 3 142 613 167 745 116 86 2 30
_ ‘g #lter. | 36 284 40 30 4 6 3 4 8 8 68 150
g 2‘ #solve | 1702 | 13650 | 1023 528 681 1129 629 1027 1171 976 839 4291
g W] 3.5E5 | 7.7825 | 1.2811 | 2.18 |1.0E8 |4.2811 | 1.1E15 | 2.9817 |9.2E4 | 2.9r4 4.1E7 | 3.8E14
4 Time |17 226 2 2 49 576 10 40 11 2 <1 <1
£F | #lter. 29 |65 2 4 1 1 1 1 2 1 0 |12
E | #solve | 1215 2652 |62 80 1 1 1 1 81 1 114 229
W] 4.4r84 | 1.8813 |8.486 |3.7E4 |5.0e7 |1.0E11 |3.7E5 |6.9810|6.2E3 |2.1E3 4.1E5 | 4.5E9
8 8 Time | 120 TO 2 <1 12 270 22 53 8 1 1 195
G 0 [Memk 210 |? 2,15 |215 (120 1,30 [1,30 |1,25 |2,10 |1,10 |6,10 |5,50
=& |Time |TO |TO |11 37 TO |TO |TO | TO |28 18 N/A | N/A

MDP | Time |400 | TO

219 [MO [TO |TO [TO |TO TO [TO [6 |MO

oracle providing optimal parameters, and significantly faster than the one-shot
approach with reasonably fixed parameters. In detail, Rocks shows that we can
handle large numbers of iterations, solver invocations, and winning regions. The
incremental approach scales to larger models, see e.g., Avoid. Refuel shows a
large sensitivity of the one-shot method on the lookahead (going from 15 to 30
increases the runtime), while Evade shows sensitivity to memory (from 1 to 2).
In contrast, the incremental approach does not rely on user-input, yet deliv-
ers comparable performance on Refuel or Awvoid. It suffers slightly on Fvade,
where the one-shot approach has reduced overhead. We furthermore conclude
that off-the-shelf MDP model checking is not a fast alternative. Its advantage
is the guarantee to find the maximal winning region, however, for our bench-
marks, maximal winning regions (empirically) coincide with the results from the
incremental fixpoint approach.

Results for Challenge 2. Winning regions obtained from running incrementally
to a fixpoint are significantly larger than when running them only until an initial
winning policy is found (cf. the table), but requires extra computational effort.

If a shielded agent moves randomly through the grid-worlds, the larger win-
ning regions indeed induce more permissiveness, that is, freedom to move for the
agent (cf. the videos, Fig. 2). This observation can also be quantified. In Table 2,
we compare the two different types of shields. For both, we give average and stan-
dard deviation over permissiveness over 250 paths. We choose to approximate per-
missiveness along a path as the number of cumulative actions allowed by the per-
missive scheduler along a path, divided by the number of cumulative actions avail-
able in the POMDP along that path. As the shield is correct by construction, each
run indeed never visits avoid states and eventually reaches the target (albeit after
many steps). This statement is not true for the unshielded agents.



622

8

We

S. Junges et al.

Table 2. Quantification of permissiveness using fraction of allowed actions.

Inst. Rocks (N) | Refuel (N,E) | Evade (N,R) | Avoid (N,R) | Intercept (N,R) | Obstacle (N)
4 6 6,8 77 6,2 7,2 6,3 7.4 7,1 7,2 6 8
avg | 0.85|0.81 |0.43 0.36 |0.62 0.50 |0.51 |0.56 |0.45 |0.47 0.68 | 0.74
stdev | 0.066 | 0.070 | 0.046 | 0.014 | 0.046 | 0.043 | 0.013|0.019 |0.037 | 0.047 0.040 | 0.047
avg |0.88 0.89 |0.77 |0.73 |0.86 0.87 |0.78 [0.80 |0.78 |0.84 0.73 | 0.73

av]
fixpoint
P stdev | 0.060 | 0.037 | 0.037 | 0.024 |0.015|0.016 | 0.015|0.017 |0.0780.070 0.036 | 0.059

initial

Conclusion

provided an incremental approach to find POMDP policies that satisfy

almost-sure reachability specifications. The superior scalability is demonstrated
on a string of benchmarks. Furthermore, this approach allows to shield agents in
POMDPs and guarantees that any exploration of an environment satisfies the
specification, without needlessly restricting the freedom of the agent. We plan to
investigate a tight interaction with state-of-the-art reinforcement learning and
quantitative verification of POMDPs. For the latter, we expect that an explicit
approach to model checking the belief-support MDP can be feasible.
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Abstract. We present a detailed study of roundoff errors in probabilistic
floating-point computations. We derive closed-form expressions for the
distribution of roundoff errors associated with a random variable, and
we prove that roundoff errors are generally close to being uncorrelated
with their generating distribution. Based on these theoretical advances,
we propose a model of IEEE floating-point arithmetic for numerical
expressions with probabilistic inputs and an algorithm for evaluating this
model. Our algorithm provides rigorous bounds to the output and error
distributions of arithmetic expressions over random variables, evaluated
in the presence of roundoff errors. It keeps track of complex dependen-
cies between random variables using an SMT solver, and is capable of
providing sound but tight probabilistic bounds to roundoff errors using
symbolic affine arithmetic. We implemented the algorithm in the PAF
tool, and evaluated it on FPBench, a standard benchmark suite for the
analysis of roundoff errors. Our evaluation shows that PAF computes
tighter bounds than current state-of-the-art on almost all benchmarks.

1 Introduction

There are two common sources of randomness in a numerical computation (a
straight-line program). First, the computation might be using inherently noisy
data, for example from analog sensors in cyber-physical systems such as robots,
autonomous vehicles, and drones. A prime example is data from GPS sensors,
whose error distribution can be described very precisely [2] and which we study in
some detail in Sect. 2. Second, the computation itself might sample from random
number generators. Such probabilistic numerical routines, known as Monte-Carlo
methods, are used in a wide variety of tasks, such as integration [34,42], opti-
mization [43], finance [25], fluid dynamics [32], and computer graphics [30]. We
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call numerical computations whose input values are sampled from some proba-
bility distributions probabilistic computations.

Probabilistic computations are typically implemented using floating-point
arithmetic, which leads to roundoff errors being introduced in the computation.
To strike the right balance between the performance and energy consumption
versus the quality of the computed result, expert programmers rely on either
a manual or automated floating-point error analysis to guide their design deci-
sions. However, the current state-of-the-art approaches in this space have pri-
mary focused on worst-case roundoff error analysis of deterministic computa-
tions. So what can we say about floating-point roundoff errors in a probabilistic
context? Is it possible to probabilistically quantify them by computing confidence
intervals? Can we, for example, say with 99% confidence that the roundoff error
of the computed result is smaller than some chosen constant? What is the dis-
tribution of outputs when roundoff errors are taken into account? In this paper,
we explore these and similar questions. To answer them, we propose a rigorous
— that is to say sound — approach to quantifying roundoff errors in probabilis-
tic computations. Based on this approach, we develop an automatic tool that
efficiently computes an overapproximate probabilistic profile of roundoff errors.

As an example, consider the floating-point arithmetic expression (X +Y)+Y,
where X and Y are random inputs represented by independent random variables.
In Sect. 4, we first show how the computation in finite-precision of a single arith-
metic operation such as X + Y can be modeled as (X + Y)(1 + ¢), where ¢ is
also a random variable. We then show how this random variable can be computed
from first principles and why it makes sense to view (X +Y') and (1 + ¢) as inde-
pendent expressions, which in turn allows us to easily compute the distribution of
(X +Y)(1 + ¢). The distribution of € depends on that of X 4+ Y, and we there-
fore need to evaluate arithmetic operations between random variables. When the
operands are independent — as in X + Y — this is standard [48], but when the
operands are dependent — as in the case of the division in (X +Y) =Y —thisis a
hard problem. To solve it, we adopt and improve a technique for soundly bound-
ing these distributions described in [3]. Our improvement comes from the use of an
SMT solver to reason about the dependency between (X +Y') and Y and remove
regions of the state-space with zero probability. We describe this in Sect. 6.

We can thus soundly bound the output distribution of any probabilistic com-
putation, such as (X +Y)+Y, performed in floating-point arithmetic. This gives
us the ability to perform probabilistic range analysis and prove rigorous asser-
tions like: 99% of the outputs of a floating-point computation are smaller than a
given constant bound. In order to perform probabilistic roundoff error analysis
we develop symbolic affine arithmetic in Sect. 5. This technique is combined with
probabilistic range analysis to compute conditional roundoff errors. Specifically,
we over-approximate the maximal error conditioned on the output landing in the
99% range computed by the probabilistic range analysis, meaning conditioned
on the computations not returning an outlier.

We implemented our model and algorithms in a tool called PAF (for Prob-
abilistic Analysis of Floating-point errors). We evaluated PAF on the standard
floating-point benchmark suite FPBench [11], and compared its range and error
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analysis with the worst-case roundoff error analyzer FPTaylor [46,47] and the
probabilistic roundoff error analyzer PrAn [36]. We present the results in Sect. 7,
and show that FPTaylor’s worst-case analysis is often overly pessimistic in the
probabilistic setting, while PAF also generates tighter probabilistic error bounds
than PrAn on almost all benchmarks.

We summarize our contributions as follows:

(i) We derive a closed-form expression (6) for the distribution of roundoff errors
associated with a random variable. We prove that roundoff errors are gen-
erally close to being uncorrelated with their input distribution.

(ii) Based on these results we propose a model of IEEE 754 floating-point arith-
metic for numerical expressions with probabilistic inputs.

(iii) We evaluate this model by developing a new algorithm for rigorously bound-
ing the output range and roundoff error distributions of floating-point arith-
metic expressions with probabilistic inputs.

(iv) We implement this model in the PAF tool,* and perform probabilistic range
and roundoff error analysis on a standard benchmark suite. Our comparison
with the current state-of-the-art shows the advantages of our approach in
terms of computing tighter, and yet still rigorous, probabilistic bounds.

2 DMotivating Example

GPS sensors are inherently noisy. Bornholt [1] shows that the conditional prob-
ability of the true coordinates given a GPS reading is distributed according to a
Rayleigh distribution. Interestingly, since the density of any Rayleigh distribu-
tion is always zero at x = 0, it is extremely unlikely that the true coordinates lie
in a small neighborhood of those given by the GPS reading. This leads to errors,
and hence the sensed coordinates should be corrected by adding a probabilistic
error term which, on average, shifts the observed coordinates into an area of high
probability for the true coordinates [1,2]. The latitude correction is given by:

TruelLat = GPSLat + ((radius * sin(angle)) % DPERM), (1)

where radius is Rayleigh distributed, angle uniformly distributed, GPSLat is
the latitude, and DPERM a constant for converting meters into degrees.

A developer trying to strike the right balance between resources, such as
energy consumption or execution time, versus the accuracy of the computation,
might want to run a rigorous worst-case floating-point analysis tool to determine
which floating-point format is accurate enough to process GPS signals. This is
mandatory if the developer requires rigorous error bounds holding with 100%
certainty. The problem when analyzing a piece of code involving (1) is that the
Rayleigh distribution has [0, o) as its support, and any worst-case roundoff error
analysis will return an infinite error bound in this situation. To get a meaningful
(numeric) error bound, we need to truncate the support of the distribution. The
most conservative truncation is [0, maz], where maz is the largest representable
number (not causing an overflow) at the target floating-point precision format.

! PAF is open source and publicly available at https://github.com/soarlab/paf.
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Table 1. Roundoff error analysis for the probabilistic latitude correction of (1).

Precision | Max | FPTaylor | PAF 100% | PAF 99.9999%
Absolute | Meters
Double | ~1037 | 4.3¢+286 | 4.3e4+286 |4.le—15 |4.5e—10
Single ~10%8 | 2.1e+26 |2.1e+26 |3.7e—06 |4.le—1
Half ~10* | 25e—2 |2.5e—2 2.4e—2 | 2667

In Table 1, we report a detailed roundoff error analysis of (1) implemented
in IEEE 754 double-, single-, and half-precision formats, with GPSLat set to
the latitude of the Greenwich observatory. With each floating-point format, we
associate the range [0, maz] of the truncated Rayleigh distribution. We compute
worst-case roundoff error bounds for (1) with the state-of-the-art error analyzer
FPTaylor [47] and with our tool PAF by setting the confidence interval to 100%.
As expected, the error bounds from the two tools are identical. Finally, we com-
pute the 99.9999% conditional roundoff error using PAF. This value is an upper
bound to the roundoff error conditioned on the computation having landed in
an interval capturing 99.9999% of all possible outputs. Column Absolute gives
the error in degrees and Meters in meters (1° ~111km).

By looking at the results obtained without our probabilistic error analysis
(columns FPTaylor and PAF 100%), the developer might erroneously conclude
that half-precision format is the most appropriate to implement (1) because it
results in the smallest error bound. However, with the information provided by
the 99.9999% conditional roundoff error, the developer can see that the average
error is many orders of magnitude smaller than the worst-case scenarios. Armed
with this information, the developer can conclude that with a roundoff error of
roughly 40 cm (4.1e—1ms) when correcting 99.9999% of GPS latitude readings,
working in single-precision is an adequate compromise between efficiency and
accuracy of the computation.

This motivates the innovative concept of probabilistic precision tuning, evolv-
ed from standard worst-case precision tuning [5,12], to determine which floating-
point format is the most appropriate for a given computation. As an example, let
us do a probabilistic precision tuning exercise for the latitude correction compu-
tation of (1). We truncate the Rayleigh distribution in the interval [0, 103°7], and
assume we can tolerate up to le—5 roundoff error (roughly 1m). First, we man-
ually perform worst-case precision tuning using FPTaylor to determine that the
minimal floating-point format not violating the given error bound needs 1022 man-
tissa and 11 exponent bits. Such large custom format is prohibitively expensive,
in particular for devices performing frequent GPS readings, like smartphones or
smartwatches. Conversely, when we manually perform probabilistic precision tun-
ing using PAF with a confidence interval set to 99.9999%, we determine we need
only 22 mantissa and 11 exponent bits. Thanks to PAF, the developer can provide
a custom confidence interval of interest to the probabilistic precision tuning rou-
tine to adjust for the extremely unlikely corner cases like the ones we described for
(1), and ultimately obtain more optimal tuning results.
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3 Preliminaries

3.1 Floating-Point Arithmetic

Given a precision p € N and an exponent range [emin,€maz] = {n | n €
N A emin <1 < emaz}, we define F(p, €min, €maz), or simply F if there is no
ambiguity, as the set of extended real numbers

F£ {(—1)326 (1 + Qkp)

Elements z = z(s,e,k) € F will be called floating-point representable numbers
(for the given precision p and exponent range [emin, €maz]) and we will use the
variable z to represent them. The variable s will be called the sign, the variable
e the exponent, and the variable k the significand of z(s, e, k).

Next, we introduce a rounding map Round : R — F that rounds to nearest
(or to —oo/oo for values smaller/greater than the smallest/largest finite element
of IF) and follows any of the IEEE 754 rounding modes in case of a tie. We will
not worry about which choice is made since the set of mid-points will always have
probability zero for the distributions we will be working with. All choices are thus
equivalent, probabilistically speaking, and what happens in a tie can therefore
be left unspecified. We will denote the extended real line by R £ R U {—00, 00}.
The (signed) absolute error function erra,s : R — R is defined as: errus(z) =

x—Round(z). We define the sets | z, z| = {y € R | Round(y) = Round(z)}. Thus
if z € F, then |z, z] is the collection of all reals rounding to z. As the reader will
see, the basic result of Sect.4 (Eq. (5)) is expressed entirely using the notation
|z, z] which is parametric in the choice of the Round function. It follows that
our results apply to rounding modes other that round-to-nearest with minimal
changes. The relative error function erry : R\ {0} — R is defined by

s €{0,1}, e € [emins €maz], 0 < k < 2”} U {—00,0,00}

2 — Round(x)

errye () = .

Note that erryi(z) = 1 on [0,0] \ {0}, errya(z) = 0o on | — 0o, —c0] and
errye () = —o00 on |00, 00]. Recall also the fact [26] that —2~ P+ < err g (x) <
2-(P*+1) outside of |0,0]U | — o0, —00] U |00, 00]. The quantity 2+ is usually
called the unit roundoff and will be denoted by u.

For z1,29 € F and op € {4+, —, X, +} an (infinite-precision) arithmetic oper-
ation, the traditional model of IEEE 754 floating-point arithmetic [26,39] states
that the finite-precision implementation op, of op must satisfy

21 opn 22 = (21 0p 22)(1 +9) 6] < u, (2)

We leave dealing with subnormal floating-point numbers to future work. The
model given by Eq. (2) stipulates that the implementation of an arithmetic
operation can induce a relative error of magnitude at most u. The exact size of
the error is, however, not specified and Eq. (2) is therefore a non-deterministic
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model of computation. It follows that numerical analyses based on Eq. (2) must
consider all possible relative errors § and are fundamentally worst-case analyses.
Since the output of such a program might be the input of another, one should
also consider non-deterministic inputs, and this is indeed what happens with
automated tools for roundoff error analysis, such as Daisy [12] or FPTaylor [46,
47], which require for each variable of the program a (bounded) range of possible
values in order to perform a worst-case analysis (¢f. GPS example in Sect. 2).
In this paper, we study a model formally similar to Eq. (2), namely

21 0pn 22 = (21 op 22)(1 + ) § ~ dist. (3)

The difference is that § is now distributed according to dist, a probability distribu-
tion whose support is [—u, u]. In other words, we move from a non-deterministic
to a probabilistic model of roundoff errors. This is similar to the ‘Monte Carlo
arithmetic’ of [41], but whilst op. cit. postulates that dist is the uniform distri-
bution on [—u,u], we compute dist from first principles in Sect. 4.

3.2 Probability Theory

To fix the notation and be self-contained, we present some basic notions of
probability theory which are essential to what follows.

Cumulative Distribution Functions and Probability Density Func-
tions. We assume that the reader is (at least intuitively) familiar with the notion
of a (real) random variable. Given a random variable X we define its Cumulative
Distribution Function (CDF) as the function c(t) £ P[X < t]. If there exists a
non-negative integrable function d : R — R such that

t
c(t) 2 P[X < {] :/ d(t) dt

then we call d(t) the Probability Density Function (PDF) of X. If it exists,

then it can be recovered from the CDF by differentiation d(t) = %c(t) by the

fundamental theorem of calculus.

Not all random variables have a PDF: consider the random variable which
takes value 0 with probability 1/2 and value 1 with probability /2. For this
random variable it is impossible to write P[X < t] = [ d(t) dt. Instead, we will
write the distribution of such a variable using the so-called Dirac delta measure
at 0 and 1 as /26 + 1/20;. It is possible for a random variable to have a PDF
covering part of its distribution — its continuous part — and a sum of Dirac
deltas covering the rest of its distribution — its discrete part. We will encounter
examples of such random variables in Sect. 4. Finally, if X is a random variable
and f : R — R is a measurable function, then f(X) is a random variable. In
particular err.e;(X) is a random variable which we will describe in Sect. 4.

Arithmetic on Random Variables. Suppose X,Y are independent random
variables with PDF's fx and fy, respectively. Using the arithmetic operations we
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can form new random variables X +Y, X —Y, X x Y, X + Y. The PDFs of these
new random variables can be expressed as operations on fx and fy, which can
be found in [48]. It is important to note that these operations are only valid if X
and Y are assumed to be independent. When an arithmetic expression containing
variable repetitions is given a random variable interpretation, this independence
can no longer be assumed. In the expression (X +Y) +Y the sub-term (X +Y)
can be interpreted by the formulas of [48] if X, Y are independent. However, the
sub-terms X + Y and Y cannot be interpreted in this way since X +Y and Y
are clearly not independent random variables.

Soundly Bounding Probabilities. The constraint that the distribution of
a random variable must integrate to 1 makes it impossible to order random
variables in the ‘natural’ way: if P[X € A] < P[Y € A], then P[Y € A9 <
P[X € A°, i.e., we cannot say that X < Y if P[X € A] < P[Y € A]. This
means that we cannot quantify our probabilistic uncertainty about a random
variable by sandwiching it between two other random variables as one would do
with reals or real-valued functions. One solution is to restrict the sets used in
the comparison, i.e., declare that X <Y iff P[X € A] <P[Y € A] for A ranging
over a given set of ‘test subsets’. Such an order can be defined by taking as ‘test
subsets’ the intervals (—oo,x] [44]. This order is called the stochastic order. It
follows from the definition of the CDF that this order can be defined by simply
saying that X <Y iff cx < cy, where cx and cy are the CDFs of X and Y,
respectively. If it is possible to sandwich an unknown random variable X between
known lower and upper bounds Xjpyper < X < Xypper using the stochastic order
then it becomes possible to give sound bounds to the quantities P [X € [a, b]] via

PIX € [a,b]] = ex(b) — ex(a) < exppe, (0) = Ex1p4e, (@)

P-Boxes and DS-Structures. As mentioned above, giving a random variable
interpretation to an arithmetic expression containing variable repetitions cannot
be done using the arithmetic of [48]. In fact, these interpretations are in general
analytically intractable. Hence, a common approach is to give up on soundness
and approximate such distributions using Monte-Carlo simulations. We use this
approach in our experiments to assess the quality of our sound results. However,
we will also provide sound under- and over-approximations of the distribution of
arithmetic expressions over random variables using the stochastic order discussed
above. Since Xjpper < X < Xypper is equivalent to saying that cx,,,.,.(z) <
cx(z) < ex,,,.. (), the fundamental approximating structure will be a pair of
CDFs satisfying ¢1(z) < ca(z). Such a structure is known in the literature as
a p-box [19], and has already been used in the context of probabilistic roundoff
errors in related work [3,36]. The data of a p-box is equivalent to a pair of
sandwiching distributions for the stochastic order.

A Dempster-Shafer structure (DS-structure) of size N is a collection (i.e., set)
of interval-probability pairs {([zo, yo,p0), ([21,¥2],p1), -, ([Tn,yn],pn)} Where
Zf;o p; = 1. The intervals in the collection might overlap. One can always
convert a DS-structure to a p-box and back again [19], but arithmetic operations
are much easier to perform on DS-structures than on p-boxes ([3]), which is why
we will use DS-structures in the algorithm described in Sect. 6.
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4 Distribution of Floating-Point Roundoff Errors

Our tool PAF computes probabilistic roundoff errors by conditioning the max-
imization of symbolic affine form (presented in Sect.5) on the output of the
computation landing in a confidence interval. The purpose of this section is to
provide the necessary probabilistic tools to compute these intervals. In other
words, this section provides the foundations of probabilistic range analysis. All
proofs can be found in the extended version [7].

4.1 Derivation of the Distribution of Rounding Errors

Recall the probabilistic model of Eq. (3) where op is an infinite-precision
arithmetic operation and op, its finite-precision implementation:

21 0pn 22 = (21 0p 22)(1 4 9) 0 ~ dist.

Let us also assume that z1, zo are random variables with known distributions.
Then 21 op 29 is also a random variable which can (in principle) be computed.
Since the IEEE 754 standard states that z; op, 22 is computed by rounding the
infinite precision operation z; op zs, it is a completely natural consequence of
the standard to require that § is simply be given by

0 = errpei (21 op 22)

Thus, dist is the distribution of the random variable erre(z1 op 2z2). More gen-
erally, if X is a random variable with know distribution, we will show how to
compute the distribution dist of the random variable

_ X — Round(X)
=

We choose to express the distribution dist of relative errors in multiples of the
unit roundoff w. This choice is arbitrary, but it allows us to work with a dis-
tribution on the conceptually and numerically convenient interval [—1, 1], since
the absolute value of the relative error is strictly bounded by u (see Sect. 3.1),
rather than the interval [—u, u].

To compute the density function of dist, we proceed as described in Sect. 3.2
by first computing the CDF ¢(t) and then taking its derivative. Recall first from
Sect. 3.1 that errei(z) =1 if = € [0,0] \ {0}, erryel(z) = 0 if z € | — 00, —0],
erryel () = —o0 if € |00, 00], and —u < errye () < u elsewhere. Thus:

errye (X)

P lerrye(X) = —oc] =P [X € |_oo,oo—|] Plerra(X)=1]=P[X € |_0,0—|]
Plerr,a(X) =00 =P [X € | — oo, —oo”

In other words, the probability measure corresponding to err,. has three discrete
components at {—oo}, {1}, and {oo}, which cannot be accounted for by a PDF
(see Sect.3.2). It follows that the probability measure dist is given by

dist. + P[X€(0,0]] 61 + P [X €| — 00, —00|] 6o + P[X € |00,00]] 6_0c (4)
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Fig. 1. Theoretical vs. empirical error distribution, clockwise from top-left: (i) Eq.
(5) for Unif(2,4) 3 bit exponent, 4 bit significand, (ii) Eq. (5) for Unif(2,4) in half-
precision, (iii) Eq. (6) for Unif(7,8) in single-precision, (iv) Eq. (6) for Unif(4,5) in
single-precision, (v) Eq. (6) for Unif(4, 32) in single-precision, (vi) Eq. (6) for Norm(0, 1)
in single-precision.

where dist. is a continuous measure that is not quite a probability measure
since its total mass is 1 —P[X € [0,0]] - P[X €| — o0, —¢]] — P[X €| 00, 0]].
In general, dist. integrates to 1 in machine precision since P[X € [0,0]] is of
the order of the smallest positive floating-point representable number, and the
PDF of X rounds to 0 way before it reaches the smallest/largest floating-point
representable number. However in order to be sound, we must in general include
these three discrete components to our computations. The density dist. is given
explicitly by the following result whose proof can already be found in [9].

Theorem 1. Let X be a real random variable with PDF f. The continuous part
dist. of the distribution of erry)(X) has a PDF given by

d(t) = > e <1—Ztu> ! <1—2tu> (1li|;|¢)2’ 5)

zEF\{—00,0,00}

where 1 4(x) is the indicator function which returns 1 if x € A and 0 otherwise.

Figure1 (i) and (ii) shows an implementation of Eq. (5) applied to the distri-
bution Unif(2, 4), first in very low precision (3 bit exponent, 4 bit significand) and
then in half-precision. The theoretical density is plotted alongside a histogram
of the relative error incurred when rounding 100,000 samples to low precision
(computed in double-precision). The reported statistic is the K-S (Kolmogorov-
Smirnov) test which measures the likelihood that a collection of samples were
drawn from a given distribution. This test reports that we cannot reject the
hypothesis that the samples are drawn from the corresponding density. Note
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how in low precision the term in m induces a visible asymmetry on the
central section of the distribution. This effect is much less pronounced in half-
precision.

For low precisions, say up to half-precision, it is computationally feasible
to explicitly go through all floating-point numbers and compute the density of
the roundoff error distribution dist directly from Eq. (5). However, this rapidly
becomes prohibitively computationally expensive for higher precisions (since the
number of floating-point representable numbers grows exponentially).

4.2 High-Precision Case

As the working precision increases, a regime changes occurs: on the one hand
it becomes practically impossible to enumerate all floating-point representable
numbers as done in Eq. (5), but on the other hand sufficiently well-behaved den-
sity functions are numerically close to being constant at the scale of an interval
between two floating-point representable numbers. We exploit this smoothness
to overcome the combinatorial limit imposed by Eq. (5).

Theorem 2. Let X be a real random variable with PDF f. The continuous part
dist. of the distribution of errye1(X) has a PDF given by d.(t) = dpp(t) + R(¢)
where dpp(t) is the function on [—1,1] defined by

emax—1 ;
maz ~1)%2°(2—w) |x
! _Z. +1 L[((—l)SQC((l—u) 2|e+‘1 f(fl:) d‘T ‘t| S
dnp(t) = (6)
e -1 sqe( 1
maz D2 (h-w) |
1—1tu Z f—l)“?e(l‘ilu) 2|€+‘1 f(I) dx % < ‘t| < 1

s,e=€min+1

1
2

and R(t) is an error whose total contribution |R| éf_11|1’~2(t)|dt can be bounded by

|R| < P[Round(X) = 2(s, emin, k)] + P[Round(X) = 2(s, €maz, k)] +
2e

f;( > |f'<fe,s>5e,s+f<ee,s>|22p>

S,emin<e€<Emax

where for each exponent e and sign s, & s is a point in [z(s,e,0), z(s, e, 2P — 1)]
if s=0 and in [2(s,e,2P — 1),2(s,¢,0)] if s = 1.

Note how Eq. (6) reduces the sum over all floating-point representable num-
bers in Eq. (5) to a sum over the exponents by exploiting the regularity of f.
Note also that since f is a PDF, it usually decreases very quickly away from 0,
and its derivative decreases even quicker and | R| thus tends to be very small and
|R| — 0 as the precision p — oo.

Figure 1 shows Eq. (6) for: (i) the distribution Unif(7,8) where large signif-
icands are more likely, (ii) the distribution Unif(4,5) where small significands
are more likely, (iii) the distribution Unif(4,32) where significands are equally
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likely, and (iv) the distribution Norm(0, 1) with infinite support. The graphs show
the density function given by Eq. (6) in single-precision versus a histogram of
the relative error incurred when rounding 1,000,000 samples to single-precision
(computed in double-precision). The K-S test reports that we cannot reject the
hypothesis that the samples are drawn from the corresponding distributions.

4.3 Typical Distribution

The distributions depicted in graphs (ii), (v)
and (vi) of Fig.1 are very similar, despite being
computed from very different input distributions. .|
What they have in common is that their input =
distributions have the property that all signif- =
icands in their supports are equally likely. We
show that under this assumption, the distribution

of roundoff errors given by Eq. (5) converges to B
a unique density as the precision increases, irre-
spective of the input distribution! Since signifi-
cands are frequently equiprobable (it is the case for a third of our benchmarks),
this density is of great practical importance. If one had to choose ‘the’ canonical
distribution for roundoff errors, we claim that the density given below should be
this distribution, and we therefore call it the typical distribution; we depict it in
Fig. 2 and formalize it with the following theorem, which can mostly be found
in [9].

e N

Fig. 2. Typical distribution.

Theorem 3. If X is a random variable such that P[Round(X) = z(s, e, ko)] =
2%, for any significand ky, then

Y

duyp(£) 2 T d(t) = { < 7)

poo TE-n+i(t-1)" 11>

(SIS

where d(t) is the exact density given by Eq. (5).

4.4 Covariance Structure

The result above can be interpreted as saying that if X is such that all man-
tissas are equiprobable, then X and err,(X) are asymptotically independent
(as p — 00). Much more generally, we now show that if a random variable X
has a sufficiently regular PDF, it is close to being uncorrelated from err;q(X).
Formally, we prove that the covariance

Cov(X,errpel(X)) = E[X.errye1(X)] — E [X] E [errpe (X)) (8)

is small, specifically of the order of u. Note that the expectation in the first
summand above is taken w.r.t. the joint distribution of X and err,e (X).

The main technical obstacles to proving that the expression above is small
are that E [err,;o(X)] turns out to be difficult to compute (we only manage to
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bound it) and that the joint distribution P[X € A A errye1(X) € B] does not have
a PDF since it is not continuous w.r.t. the Lebesgue measure on R2. Indeed, it
is supported by the graph of the function err,,; which has a Lebesgue measure
of 0. This does not mean that it is impossible to compute the expectation

E[X.err.q(X)] = /R? zut dP (9)

but it is necessary to use some more advanced probability theory. We will make
the simplifying assumption that the density of X is constant on each interval
| z, z] in order to keep the proof manageable. In practice this is an extremely good
approximation. Without this assumption, we would need to add an error term
similar to that of Theorem 2 to the expression below. This is not conceptually
difficult, but it is messy, and would distract from the main aim of the following
theorem which is to bound E [errye(X)], compute E [X .errye1(X)], and show that
the covariance between X and erre (X) is typically of the order of w.

Theorem 4. If the density of X is piecewise constant on intervals |z, z], then

(L ~E[X] K%) < Cov(X, errye (X)) < (L ~E[X] K?)

soe so2e 3u> emgz 1 —1)°2°(2—u) |z
where L = Y f((—1)%2¢)(=1)522¢3%> gpd K = A
f(x) dz. 7

s,e=€min+1

If the distribution of X is centered (i.e., E[X] = 0) then L is the exact value of
the covariance, and it is worth noting that L is fundamentally an artifact of the
floating-point representation and is due to the fact that the intervals [2¢,2°] are
not symmetric. More generally, for E [X] of the order of, say, 2, the covariance
will be small (of the order of u) as K < 1 (since |z| < 2¢T! in each summand).
For very large values of E[X] it is worth noting that there is a high chance
that L is also be very large, partially canceling E[X]. An illustration of this
is given by the doppler benchmark examined in Sect. 7, an outlier as it has an
input variable with range [20, 20000]. Nevertheless, even for this benchmark the
bounds of Theorem 4 still give a small covariance of the order of 0.001.

4.5 Error Terms and P-Boxes

In low-precision we can use the exact formula Eq. (5) to compute the error distri-
bution. However, in high-precision, approximations (typically extremely good)
like Egs. (6) and (7) must be used. In order to remain sound in the implemen-
tation of our model (see Sect.6) we must account for the error made by this
approximation. We have not got the space to discuss the error made by Eq. (7),
but taking the term |R| of Theorem 2 as an illustration, we can use the notion
of p-box described in Sect. 3.2 to create an object which soundly approximates
the error distribution. We proceed as follows: since |R| bounds the total error
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accumulated over all ¢ € [—1, 1], we can soundly bound the CDF ¢(t) of the error
distribution given by Eq. (6) by using the p-box

¢ (t) = max(0, c(t) — |R]) and ¢t (t) = min(1, c(t) + |R|)

5 Symbolic Affine Arithmetic

In this section, we introduce symbolic affine arithmetic, which we employ to gen-
erate the symbolic form for the roundoff error that we use in Sect.6.3. Affine
arithmetic [6] is a model for range analysis that extends classic interval arith-
metic [40] with information about linear correlations between operands. Sym-
bolic affine arithmetic extends standard affine arithmetic by keeping the coeffi-
cients of the noise terms symbolic. We define a symbolic affine form as

T =x9+ ZCEM, where ¢; € [-1,1]. (10)
i=1

We call zy the central symbol of the affine form, while x; are the symbolic
coefficients for the noise terms ¢;. We can always convert a symbolic affine form
to its corresponding interval representation. This can be done using interval
arithmetic or, to avoid precision loss, using a global optimizer.

Affine operations between symbolic forms follow the usual rules, such as

ai + B+ (= axg+ Byo + ( + Z (ax; + Byi )€
i—1

Non-linear operations cannot be represented exactly using an affine form. Hence,
we approximate them like in standard affine arithmetic [49].

Sound Error Analysis with Symbolic Affine Arithmetic. We now show
how the roundoff errors get propagated through the four arithmetic operations.
We apply these propagation rules to an arithmetic expression to accurately keep
track of the roundoff errors. Since the (absolute) roundoff error directly depends
on the range of a computation, we describe range and error together as a pair
(range: Symbol, érr: Symbolic Affine Form). Here, range represents the
infinite-precision range of the computation, while érr is the symbolic affine form
for the roundoff error in floating-point precision. Unary operators (e.g., rounding)
take as input a (range, error form) pair, and return a new output pair; binary
operators take as input two pairs, one per operand. For linear operators, the
ranges and errors get propagated using the standard rules of affine arithmetic.

For the multiplication, we distribute each term in the first operand to every
term in the second operand:

(x, €rry) * (y, €riy) = (X*y, X * €Ty + Y * €Ty, + €77y * €TTy)

The output range is the product of the input ranges and the remaining terms
contribute to the error. Only the last (quadratic) expression cannot be repre-
sented exactly in symbolic affine arithmetic; we bound such non-linearities using
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a global optimizer. The division is computed as the term-wise multiplication of
the numerator with the inverse of the denominator. Hence, we need the inverse
of the denominator error form, and then we can proceed as for multiplication. To
compute the inverse, we leverage the symbolic expansion used in FPTaylor [46].

Finally, after every operation we apply the unary rounding operator from
Eq. (2). The infinite-precision range is not affected by rounding. The rounding
operator appends a fresh noise term to the symbolic error form. The coefficient
for the new noise term is the (symbolic) floating-point range given by the sum
of the input range with the input error form.

PAF] [~ [ &
Yo o= ¥g - Yes
Vi S
Input File |f{><J distribution
x=Distrib(Range) | > L3
= p-box
Mo

Fig. 3. Toolflow of PAF.

6 Algorithm and Implementation

In this section, we describe our probabilistic model of floating-point arithmetic
and how we implement it in a prototype named PAF (for Probabilistic Analysis
of Floating-point errors). Figure 3 shows the toolflow of PAF.

6.1 Probabilistic Model

PAF takes as input a text file describing a probabilistic floating-point compu-
tation and its input distributions. The kinds of computations we support are
captured with this simple grammar:

tu=z|xi|topat zeF,ieN, op, € {+,—,x,+}

Following [8,31], we interpret each computation t given by the grammar as a
random variable. We define the interpretation map [—] over the computation
tree inductively. The base case is given by [z(s,e, k)] = (—1)%2¢(1 + k27P)
and [x;] £ X;, where the real numbers [z(s, e, k)] are understood as constant
random variables and each X; is a random input variable with a user-specified
distribution. Currently, PAF supports several well-known distributions out-of-
the-box (e.g., uniform, normal, exponential), and the user can also define custom
distributions as piecewise functions. For the inductive case [t opy t2], we put
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the lessons from Sect.4 to work. Recall first the probabilistic model from Eq.

(3):
x opn ¥y = (z op y)(1+9), d ~ dist

In Sect. 4.1, we showed that dist should be taken as the distribution of the actual
roundoff errors of the random elements (z op y). We therefore define:

[t1 opu t2] = ([t1] op [t2]) x (1 +errra([t4] op [t2])) (11)

To evaluate the model of Eq. (11), we first use the appropriate closed-form
expression Eqs. (5) to (7) derived in Sect.4 to evaluate the distribution of the
random variable erry([t1] op [to])—or the corresponding p-box as described
in Sect. 4.5. We then use Theorem 4 to justify evaluating the multiplication oper-
ation in Eq. (11) independently—that is to say by using [48]—since the roundoff
process is very close to being uncorrelated to the process generating it. The
validity of this assumption is also confirmed experimentally by the remarkable
agreement of Monte-Carlo simulations with this analytical model.

We now introduce the algorithm for evaluating the model given in Eq. (11).
The evaluation performs an in-order (LNR) traversal of the Abstract Syntax
Tree (AST) of a computation given by our grammar, and it feeds the results
to the parent level along the way. At each node, it computes the probabilistic
range of the intermediate result using the probabilistic ranges computed for its
children nodes (i.e., operands). We first determine whether the operands are
independent or not (Ind? branch in the toolflow), and we either apply a cheaper
(i.e., no SMT solver invocations) algorithm if they are independent (see below) or
a more involved one (see Sect. 6.2) if they are not. We describe our methodology
at a generic intermediate computation in the AST of the expression.

We consider two distributions X and Y discretized into DS-structures DSy
and DSy (Sect.3.2), and we want to derive the DS-structure DSz for Z =
XopY, op € {+,—, x,=}. Together with the DS-structures of the operands, we
also need the traces tracex and tracey containing the history of the operations
performed so far, one for each operand. A trace is constructed at each leaf of the
AST with the input distributions and their range. It is then propagated to the
parent level and populated at each node with the current operation. Such history
traces are critical when dealing with dependent operations since they allow us
to interrogate an SMT solver about the feasibility of the current operation, as
we describe in the next section. When the operands are independent, we simply
use the arithmetic operations on independent DS-structures [3].

6.2 Computing Probabilistic Ranges for Dependent Operands

When the operands are dependent, we start by assuming that the dependency is
unknown. This assumption is sound because the dependency of the operation is
included in the set of unknown dependencies, while the result of the operation is
no longer a single distribution but a p-box. Due to this “unknown assumption”,
the CDFs of the output p-box are a very pessimistic over-approximation of
the operation, i.e., they are far from each other. Our key insight is to use an



Roundoff Error Analysis of Probabilistic Floating-Point Computations 641

Algorithm 1. Dependent Operation Z = X op Y

1: function DEP_OP(DSXx, op , DSy, tracex,tracey)
2: DSz = list()

3 for all ([z1,z2],p.) € DSx do

4 for all ([y1,y2],py) € DSy do

5: [21, z2] = [z1,22] oD [y1,¥2] > operation between intervals
6: [21,25] = SMT.prune([z1, z2])

7 if SMT.check(tracex Atracey A [z1,z2] A [y1,y2]) is SAT then
8 pz = unknown-probability

9: else

10: Pz = 0

11: DSz .append((|z1, 23], pz))

12: tracez = tracex Utracey U{Z = X op Y}

13: return DSz, tracez

SMT solver to prune infeasible combinations of intervals from the input DS-
structures, which prunes regions of zero probability from the output p-box. This
probabilistic pruning using a solver squeezes together the CDFs of the output
p-box, often resulting in a much more accurate over-approximation. With the
solver, we move from an unknown to a partially known dependency between the
operands. Currently, PAF supports the Z3 [17] and dReal [23] SMT solvers.

Algorithm 1 shows the pseudocode of our algorithm for computing the proba-
bilistic output range (i.e., DS-structure) for dependent operands. When dealing
with dependent operands, interval arithmetic (line 5) might not be as precise
as in the independent case. Hence, we use an SMT solver to prune away any
over-approximations introduced by interval arithmetic when computing with
dependent ranges (line 6); this use of the solver is orthogonal to the one dealing
with probabilities. On line 7, we check with an SMT solver whether the current
combination of ranges [z1, 2] and [y1, y2] is compatible with the traces of the
operands. If the query is satisfiable, the probability is strictly greater than zero
but currently unknown (line 8). If the query is unsatisfiable, we assign a proba-
bility of zero to the range in DSz (line 10). Finally, we append a new range to
the DS-structure DSz (line 11). Note that the loops are independent, and hence
in our prototype implementation we run them in parallel.

After this algorithm terminates, we still need to assign probability values to
all the unknown-probability ranges in DSz. Since we cannot assign an exact
value, we compute a range of potential values [p.,...,Pz,...] instead. This com-
putation is encoded as a linear programming routine exactly as in [3].

6.3 Computing Conditional Roundoff Error

The final step of our toolflow computes the conditional roundoff error by com-
bining the symbolic affine arithmetic error form of the computation (see Sect. 5)
with the probabilistic range analysis described above. The symbolic error form
gets maximized conditioned on the results of all the intermediate operations
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Algorithm 2. Conditional Roundoff Error Computation

1: function COND_ERR(DSS, errorForm, confidence)
2: allRanges = list()

3 for all DS; € DSS do

4: focals = sorted(DS;, key = prob, order = descending)
5: accumulator = 0

6: ranges = @

7 for all ([z1,z2],pz) € focals do

8 accumulator = accumulator + py

9: ranges = ranges U [z1, T2]

10: if accumulator > confidence then
11: allRanges.append(ranges)

12: break

13: error = mazimize(errorForm,all Ranges)
14: return error

landing in the given confidence interval (e.g., 99%) of their respective ranges
(computed as described in the previous section). Note that conditioning only on
the last operation of the computation tree (i.e., the AST root) would lead to
extremely pessimistic over-approximation since all the outliers in the intermedi-
ate operations would be part of the maximization routine. This would lead to our
tool PAF computing pessimistic error bounds typical of worst-case analyzers.
Algorithm 2 shows the pseudocode of the roundoff error computation algo-
rithm. The algorithm takes as input a list DSS of DS-structures (one for each
intermediate result range in the computation), the generated symbolic error
form, and a confidence interval. It iterates over all intermediate DS-structures
(line 3), and for each it determines the ranges needed to support the chosen confi-
dence intervals (lines 4-12). In each iteration, it sorts the list of range-probability
pairs (i.e., focal elements) of the current DS-structure by their probability value
in a descending order (line 4). This is a heuristic that prioritizes the focal ele-
ments with most of the probability mass and avoids the unlikely outliers that
cause large roundoff errors into the final error computation. With the help of an
accumulator (line 8), we keep collecting focal elements (line 9) until the accumu-
lated probability satisfies the confidence interval (line 10). Finally, we maximize
the error form conditioned to the collected ranges of intermediate operations (line
13). The maximization is done using the rigorous global optimizer Gelpia [24].

7 Experimental Evaluation

We evaluate PAF (version 1.0.0) on the standard FPBench benchmark suite [11,
20] that uses the four basic operations we currently support {+, —, x, +}. Many
of these benchmarks were also used in recent related work [36] that we compare
against. The benchmarks come from a variety of domains: embedded software
(bsplines), linear classifications (classids), physics computations (dopplers), fil-
ters (filters), controllers (traincars, rigidBody), polynomial approximations of
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functions (sine, sqrt), solving equations (solvecubic), and global optimizations
(trids). Since FPBench has been primarily used for worst-case roundoff error
analysis, the benchmarks come with ranges for input variables, but they do
not specify input distributions. We instantiate the benchmarks with three well-
known distributions for all the inputs: uniform, standard normal distribution,
and double exponential (Laplace) distribution with ¢ = 0.01 which we will call
‘exp’. The normal and exp distributions get truncated to the given range. We
assume single-precision floating-point format for all operands and operations.

To assess the accuracy and performance of PAF, we compare it with PrAn
(commit 7611679 [10]), the current state-of-the-art tool for automated analysis
of probabilistic roundoff errors [36]. PrAn currently supports only uniform and
normal distributions. We run all 6 tool configurations and report the best result
for each benchmark. We fix the number of intervals in each discretization to 50 to
match PrAn. We choose 99% as the confidence interval for the computation of our
conditional roundoff error (Sect.6.3) and of PrAn’s probabilistic error. We also
compare our probabilistic error bounds against FPTaylor (commit efbbc83 [21]),
which performs worst-case roundoff error analysis, and hence it does not take
into account the distributions of the input variables. We ran our experiments in
parallel on a 4-socket 2.2 GHz 8-core Intel Xeon E5-4620 machine.

Table 2 compares roundoff errors reported by PAF, PrAn, and FPTaylor.
PAF outperforms PrAn by computing tighter probabilistic error bounds on
almost all benchmarks, occasionally by orders of magnitude. In the case of uni-
form input distributions, PAF provides tighter bounds for 24 out of 27 bench-
marks, for 2 benchmarks the bounds from PrAn are tighter, while for sqrt they
are the same. In the case of normal input distributions, PAF provides tighter
bounds for all the benchmarks. Unlike PrAn, PAF supports probabilistic output
range analysis as well. We present these results in the extended version [7].

In Table?2, of particular interest are benchmarks (10 for normal and 18 for
exp) where the error bounds generated by PAF for the 99% confidence interval
are at least an order of magnitude tighter than the worst-case bounds generated
by FPTaylor. For such a benchmark and input distribution, PAF’s results inform
a user that there is an opportunity to optimize the benchmark (e.g., by reducing
precision of floating-point operations) if their use-case can handle at most 1% of
inputs generating roundoff errors that exceed a user-provided bound. FPTaylor’s
results, on the other hand, do not allow for a user to explore such fine-grained
trade-offs since they are worst-case and do not take probabilities into account.

In general, we see a gradual reduction of the errors transitioning from uniform
to normal to exp. When the input distributions are uniform, there is a significant
chance of generating a roundoff error of the same order of magnitude as the worst-
case error, since all inputs are equally likely. The standard normal distribution
concentrates more than 99% of probability mass in the interval [—3, 3], resulting
in the long tail phenomenon, where less than 0.5% of mass spreads in the interval
[3,00]. When the normal distribution gets truncated in a neighborhood of zero
(e.g., [0, 1] for bsplines and filters) nothing changes with respect to the uniform
case—there is still a high chance of committing errors close to the worst-case.
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Table 2. Roundoff error bounds reported by PAF, PrAn, and FPTaylor given uniform
(uni), normal (norm), and Laplace (exp) input distributions. We set the confidence
interval to 99% for PAF and PrAn, and mark the smallest reported roundoff errors for
each benchmark in bold. Asterisk (*) highlights a difference of more than one order of

magnitude between PAF and FPTaylor.

Benchmark | Uniform Normal Exp FpTaylor
PAF PrAn PAF PrAn PAF
bspline0 5.71e—08|6.12e—08 |5.71e—08 |6.12e—08|5.71e—08 |5.72e—08
bsplinel 1.86e—07 | 2.08¢—07 |1.86e—07 | 2.08¢—07|6.95e—08 |1.93e—07
bspline2 1.94e—07 | 2.13e—07 |1.94e—07 2.13e—07|2.11e—08 |2.10e—07
bspline3 4.22e—08 | 4.65e—08 | 4.22e—08 |4.65¢—08|7.62e—12* | 4.22¢—08
classids0 6.93e—06 | 8.65e—06 |4.45e—06 |8.64e—06|1.70e—06 |6.85e—06
classidsl 3.71e—06 | 4.63e—06 |2.68e—06 |4.62e—06|7.62e—07 |3.62e—06
classids2 5.23e—06 | 7.32e—06 |3.85e—06 |7.32¢—06|1.46e—06 |5.15e—06
dopplerl 7.95e—05 | 1.17e—04 | 5.08e—07* | 1.17e—04 | 4.87e—07* | 6.10e—05
doppler2 1.43e—04 | 2.45e—04 |6.61e—07* | 2.45e—04 | 6.28e—07* | 1.11e—04
doppler3 4.55e—05 | 5.12¢e—05 |9.11e—07* | 5.12¢—05 | 8.95e—07* | 3.41e—05
filterl 1.25e—07 | 2.03e—07 | 1.25e—07 |2.03e—07 | 5.43e—09* | 1.25e—07
filter2 7.93e—07 | 1.01e—06 |6.13e—07 | 1.01e—06 | 2.90e—08%* | 7.93e—07
filter3 2.34e—06 | 2.86e—06 |2.05e—06 |2.87¢—06|1.09e—07* | 2.23e—06
filter4 4.15e—06 | 5.20e—06 |4.15e—06 |5.20e—06|4.61e—07 | 3.81e—06
rigidbodyl | 1.74e—04 | 1.58e—04 | 6.14e-06* | 1.58¢—04 | 4.80e—07* | 1.58¢—04
rigidbody?2 | 1.96e—02 |9.70e—03 | 5.99e-05* | 9.70e—03 | 9.55e—07* | 1.94e—02
sine 2.37e—07 | 2.40e—07 |2.37e—07 |2.40e—07 | 1.49e—08%* | 2.38¢—07
solvecubic | 1.78e—05|1.83e—05 | 6.84e—06 |1.83e—05|2.76e—06 | 1.60e—05
sqrt 1.54e—04 | 1.54e-04 | 1.10e—06* | 1.54e—04 | 2.46e—07* | 1.51e—04
traincarsl |1.76e—03|1.96e—03 |8.26e—04 |1.96e—03|4.50e—04 |1.74e—03
traincars2 |1.04e—03|1.36e—03 |3.61e—04 |1.36e—03|2.83e—05* | 9.46e—04
traincars3 | 1.75e—02 | 2.29e—02 | 9.56e—03 |2.29e—02 | 8.95e—04* | 1.80e—02
traincars4 | 1.81e—01 | 2.30e—01 |8.87e—02 |2.30e—01|7.33e—03* | 1.81e—01
tridl 6.01e—03 | 6.03¢—03 | 1.58e—05* | 6.03e—03 | 1.58e—05* | 6.06e—03
trid2 1.03e—02 | 1.17e—02 |2.42e—05* | 1.17e—02 | 2.43e—05* | 1.03e—02
trid3 1.75e—02 | 1.95¢—02 | 6.80e—05* | 1.95e—02 | 6.77e—05% | 1.75e—02
trid4 2.69e—02 | 2.88¢—02 |2.64e—04* | 3.03e—02 | 2.64e—04* | 2.66e—02

However, when the normal distribution gets truncated to a wider range (e.g.,
[—100, 100] for trids), then the outliers causing large errors are very rare events,
not included in the 99% confidence interval. The exponential distribution further
compresses the 99% probability mass in the tiny interval [—0.01,0.01], so the long
tails effect is common among all the benchmarks.
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Fig.4. CDFs of the range (left) and error (right) distributions for the benchmark
traincars8 for uniform (top), normal (center), and exp (bottom).

The runtimes of PAF vary between 10min for small benchmarks, such as
bsplines, to several hours for benchmarks with more than 30 operations, such
as trid4; they are always less than two hours, except for trids with 11h and
filters with 6 h. The runtime of PAF is usually dominated by Z3 invocations,
and the long runtimes are caused by numerous Z3 timeouts that the respective
benchmarks induce. The runtimes of PrAn are comparable to PAF since they
are always less than two hours, except for trids with 3h, sqgrt with 3h, and sine
with 11h. Note that neither PAF nor PrAn are memory intensive.

To assess the quality of our rigorous (i.e., sound) results, we implement Monte
Carlo sampling to generate both roundoff error and output range distributions.
The procedure consists of randomly sampling from the provided input distribu-
tions, evaluating the floating-point computation in both the specified and high-
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precision (e.g., double-precision) floating-point regimes to measure the roundoff
error, and finally partitioning the computed errors into bins to get an approx-
imation (i.e., histogram) of the PDF. Of course, Monte Carlo sampling does
not provide rigorous bounds, but is a useful tool to assess how far the rigorous
bounds computed statically by PAF are from an empirical measure of the error.

Figure 4 shows the effects of the input distributions on the output and round-
off error ranges of the traincars3 benchmark. In the error graphs (right column),
we show the Monte Carlo sampling evaluation (yellow line) together with the
error bounds from PAF with 99% confidence interval (red plus symbol) and
FPTaylor’s worst-case bounds (green crossmark). In the range graphs (left col-
umn), we also plot PAF’s p-box over-approximations. We can observe that in the
case of uniform inputs the computed p-boxes overlap at the extrema of the out-
put range. This phenomenon makes it impossible to distinguish between 99% and
100% confidence intervals, and hence as expected the bound reported by PAF is
almost identical to FPTaylor’s. This is not the case for normal and exponential
distributions, where PAF can significantly improve both the output range and
error bounds over FPTaylor. This again illustrates how pessimistic the bounds
from worst-case tools can be when the information about the input distributions
is not taken into account. Finally, the graphs illustrate how the p-boxes and
error bounds from PAF follow their respective empirical estimations.

8 Related Work

Our work draws inspiration from probabilistic affine arithmetic [3,4], which aims
to bound probabilistic uncertainty propagated through a computation; a similar
goal to our probabilistic range analysis. This was recently extended to polyno-
mial dependencies [45]. On the other hand, PAF detects any non-linear depen-
dency supported by the SMT solver. While these approaches show how to bound
moments, we do not consider moments but instead compute conditional roundoff
error bounds, a concern specific to the analysis of floating-point computations.
Finally, the concentration of measure inequalities [4,45] provides bounds for (pos-
sibly very large) problems that can be expressed as sums of random variables,
for example multiple increments of a noisy dynamical system, but are unsuitable
for typical floating-point computations (such as FPBench benchmarks).

The most similar approach to our work is the recent static probabilistic
roundoff error analysis called PrAn [36]. PrAn also builds on [3], and inherits the
same limitations in dealing with dependent operations. Like us, PrAn hinges on
a discretization scheme that builds p-boxes for both the input and error distribu-
tions and propagates them through the computation. The question of how these
p-boxes are chosen is left open in the PrAn approach. In contrast, we take the
input variables to be user-specified random variables, and show how the distri-
bution of each error term can be computed directly and exactly from the random
variables generating it (Sect.4). Furthermore, unlike PrAn, PAF leverages the
non-correlation between random variables and the corresponding error distribu-
tion (Sect.4.4). Thus, PAF performs the rounding in Eq. (3) as an independent
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operation. Putting these together leads to PAF computing tighter probabilistic
roundoff error bounds than PrAn, as our experiments show (Sect. 7).

The idea of using a probabilistic model of rounding errors to analyze deter-
ministic computations can be traced back to Von Neumann and Goldstine [51].
Parker’s so-called ‘Monte Carlo arithmetic’ [41] is probably the most detailed
description of this approach. We, however, consider probabilistic computations.
For this reason, the famous critique of the probabilistic approach to roundoff
errors [29] does not apply to this work. Our preliminary report [9] presents some
early ideas behind this work, including Egs. (5) and (7) and a very rudimentary
range analysis. However, this early work manipulated distributions unsoundly,
could not handle any repeated variables, and did not provide any roundoff error
analysis. Recently, probabilistic roundoff error models have also been investi-
gated using the concentration of measure inequalities [27,28]. Interestingly, this
means that the distribution of errors in Eq. (3) can be left almost completely
unspecified. However, as in the case of related work from the beginning of this
section [4,45], concentration inequalities are very ill-suited to the applications
captured by the FPBench benchmark suite.

Worst-case analysis of roundoff errors has been an active research area with
numerous published approaches [12-16,18,22,33,35,37,38,46,47,50]. Our sym-
bolic affine arithmetic used in PAF (Sect. 5) evolved from rigorous affine arith-
metic [14] by keeping the coefficients of the noise terms symbolic, which often
leads to improved precision. These symbolic terms are very similar to the first-
order Taylor approximations of the roundoff error expressions used in FPTay-
lor [46,47]. Hence, PAF with the 100% confidence interval leads to the same
worst-case roundoff error bounds as computed by FPTaylor (Sect. 7).
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Abstract. We study reinforcement learning for the optimal control of
Branching Markov Decision Processes (BMDPs), a natural extension of
(multitype) Branching Markov Chains (BMCs). The state of a (discrete-
time) BMCs is a collection of entities of various types that, while
spawning other entities, generate a payoff. In comparison with BMCs,
where the evolution of a each entity of the same type follows the same
probabilistic pattern, BMDPs allow an external controller to pick from
a range of options. This permits us to study the best/worst behaviour of
the system. We generalise model-free reinforcement learning techniques
to compute an optimal control strategy of an unknown BMDP in the
limit. We present results of an implementation that demonstrate the
practicality of the approach.

1 Introduction

Branching Markov Chains (BMCs), also known as Branching Processes, are
natural models of population dynamics and parallel processes. The state of a
BMC consists of entities of various types, and many entities of the same type
may coexist. Each entity can branch in a single step into a (possibly empty) set
of entities of various types while disappearing itself. This assumption is natural,
for instance, for annual plants that reproduce only at a specific time of the year,
or for bacteria, which either split or die. An entity may spawn a copy of itself,
thereby simulating the continuation of its existence.

The offspring of an entity is chosen at random among options according to a
distribution that depends on the type of the entity. The type captures significant
differences between entities. For example, stem cells are very different from
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regular cells; parallel processes may be interruptible or have different privileges.
The type may reflect characteristics of the entities such as their age or size.

Although entities coexist, the BMC model assumes that there is no
interaction between them. Thus, how an entity reproduces and for how long
it lives is the same as if it were the only entity in the system. This assumption
greatly improves the computational complexity of the analysis of such models
and is appropriate when the population exists in an environment that has
virtually unlimited resources to sustain its growth. This is a common situation
that holds when a species has just been introduced into an environment, in an
early stage of an epidemic outbreak, or when running jobs in cloud computing.

BMCs have a wide range of applications in modelling various physical
phenomena, such as nuclear chain reactions, red blood cell formation, population
genetics, population migration, epidemic outbreaks, and molecular biology.
Many examples of BMC models used in biological systems are discussed in [12].

Branching Markov Decision Processes (BMDPs) extend BMCs by allowing
a controller to choose the branching dynamics for each entity. This choice is
modelled as nondeterministic, instead of random. This extension is analogous to
how Markov Decision Processes (MDPs) generalise Markov chains (MCs) [24].
Allowing an external controller to select a mode of branching allows us to study
the best/worst behaviour of the examined model.

As a motivating example, let us discuss a simple model of cloud computing. A
computation may be divided into tasks in order to finish it faster, as each server
may have different computational power. Since the computation of each task
depends on the previous one, the total running time is the sum of the running
times of each spawned task as well as the time needed to split and merge the
result of each computation into the final solution. As we shall see, the execution
of each task is not guaranteed to be successful and is subject to random delays.
Specifically, let us consider the following model with two different types (T and
S), and two actions (a; and ag). This BMDP consists of the main task, T, that
may be split (action a;) into three smaller tasks, for simplicity assumed to be
of the same type S, and this split and merger of the intermediate results takes
lhour (1h). Alternatively (action az), we can execute the whole task T on the
main server, but it will be slow (8h). Task S can (action a1) be run on a reliable
server in 1.6 h or (action as) an unreliable one that finishes after 1 h (irrespective
of whether or not the computation is completed successfully), but with a 40%
chance we need to rerun this task due to the server crashing. We can represent
this model formally as:

T % 555 [1h] RN [1.6h]
T2 ¢ [8h] S 2, 40% : S or 60% : € [1h]

We would like to know the infimum of the expected running time (i.e. the
expected running time when optimal decisions are made) of task 7'. In this case
the optimal control is to pick action a; first and then actions a; for all tasks
S with a total running time of 5.8 h. The expected running time when picking
actions ay for S instead would be 1+ 3-1/0.6 = 6 [hours].
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Let us now assume that the execution of tasks S for action a; may be
interrupted with probability 30% by a task of higher priority (type H). Moreover,
these H tasks may be further interrupted by tasks with even higher priority (to
simplify matters, again modelled by type H). The computation time of T is
prolonged by 0.1h for each H spawned. Our model then becomes:

T 8SS [1h) S -*530%:H or 70%:e [1.6h] H - 30%:HH or
T2 ¢ [8h] S 2% 40% : S or 60% : € [1h] 70% : € [0.1h]

As we shall see, the expected total running time of H can be calculated by
solving the equation z = 0.3(x + z) + 0.1, which gives = 0.25 [hour]. So the
expected running time of S using action a; increases by 0.3-0.25 = 0.075 [hour].
This is enough for the optimal strategy of running S to become ay. Note that if
the probability of H being interrupted is at least 50% then the expected running
time of H becomes oco.

When dealing with a real-life process, it is hard to come up with a
(probabilistic and controlled) model that approximates it well. This requires
experts to analyse all possible scenarios and estimate the probability of outcomes
in response to actions based on either complex calculations or the statistical
analysis of sufficient observational data. For instance, it is hard to estimate the
probability of an interrupt H occurring in the model above without knowing
which server will run the task, its usual workload and statistics regarding the
priorities of the tasks it executes. Even if we do this estimation well, unexpected
or rare events may happen that would require us to recalibrate the model as we
observe the system under our control.

Instead of building such a model explicitly first and fixing the probabilities
of possible transitions in the system based on our knowledge of the system or
its statistics, we advocate the use of reinforcement learning (RL) techniques [27]
that were successfully applied to finding optimal control for finite-state Markov
Decision Processes (MDPs). Q-learning [30] is a well-studied model-free RL
approach to compute an optimal control strategy without knowing about the
model apart from its initial state and the set of actions available in each of
its states. It also has the advantage that the learning process converges to the
optimal control while exploiting along the way what it already knows. While the
formulation of the Q-learning algorithm for BMDPs is straightforward, the proof
that it works is not. This is because, unlike the MDPs with discounted rewards
for which the original Q-learning algorithm was defined, our model does not have
an explicit contraction in each step, nor does boundedness of the optimal values
or one-step updates hold. Similarly, one cannot generalise the result from [11]
that estimates the time needed for the QQ-learning algorithm to converge within
€ of the optimal values with high probability for finite-state MDPs.

1.1 Related Work

The simplest model of BMCs are Galton-Watson processes [31], discrete-time
models where all entities are of the same type. They date as far back as 1845 [14]
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and were used to explain why some aristocratic family surnames became extinct.
The generalisation of this model to multiple types of entities was first studied
in 1940s by Kolmogorov and Sevast’yanov [17]. For an overview of the results
known for BMCs, see e.g. [13] and [12]. The precise computational complexity
of decision problems about the probabilities of extinction of an arbitrary BMC
was first established in [9]. The problem of checking if a given BMC terminates
almost surely was shown in [5] to be strongly polynomial. The probability of
acceptance of a run of a BMC by a deterministic parity tree automaton was
studied in [4] and shown to be computable in PSPACE and in polynomial time
for probabilities 0 or 1. In [16] a generalisation of the BMCs was considered that
allowed for limited synchronisation of different tasks.

BMDPs, a natural generalisation of BMCs to a controlled setting, have been
studied in the OR literature e.g., [23,26]. Hierarchical MDPs (HMDPs) [10]
are a special case of BMDPs where there are no cycles in the offspring graph
(equivalently, no cyclic dependency between types). BMDPs and HMDPs have
found applications in manpower planning [29], controlled queuing networks [2,
15], management of livestock [20], and epidemic control [1,25], among others. The
focus of these works was on optimising the expected average, or the discounted
reward over a run of the process, or optimising the population growth rate.
In [10] the decision problem whether the optimal probability of termination
exceeds a threshold was studied: it was shown to be solvable in PSPACE and
at least as hard as the square-root sum problem, but one can determine if the
optimal probability is 0 or 1 in polynomial time. In [7], it was shown that the
approximation of the optimal probability of extinction for BMDPs can be done
in polynomial time. The computational complexity of computing the optimal
expected total cost before extinction for BMDPs follows from [8] and was shown
there to be computable in polynomial time via a linear program formulation.
The problem of maximising the probability of reaching a state with an entity of
a given type for BMDPs was studied in [6]. In [28] an extension of BMDPs with
real-valued clocks and timing constraints on productions was studied.

1.2 Summary of the Results

We show that an adaptation of the Q-learning algorithm converges almost surely
to the optimal values for BMDPs under mild conditions: all costs are positive
and each Q-value is selected for update independently at random. We have
implemented the proposed algorithm in the tool MUNGOJERRIE [21] and tested
its performance on small examples to demonstrate its efficiency in practice. To
the best of our knowledge, this is the first time model-free RL has been used for
the analysis of BMDPs.

2 Problem Definitions

2.1 Preliminaries

We denote by N the set of non-negative integers, by R the set of reals, by
Ry the set of positive reals, and by R>g the set of non-negative reals. We let
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Ry = R, U {0}, and @20 = R>o U {oco}. We denote by |X| the cardinality
of a set X and by X* (X*) the set of all possible finite (infinite) sequences of
elements of X. Finite sequences are also called lists.

Vectors and Lists. We use T, 7, ¢ to denote vectors and Z; or Z(4) to denote its
i-th entry. We let 0 denote a vector with all entries equal to 0; its size may vary
depending on the context. Likewise 1 is a vector with all entries equal to 1. For
vectors z,y € R, £ < y means x; < y; for every ¢, and £ < y means z < ¢ and
x; # y; for some i. We also make use of the infinity norm ||Z||,. = max; |Z(4)].
We use «, 8,7 to denote finite lists of elements. For a list a = a1, aq,...,ax
we write «; for the i-th element a; of list « and |«| for its length. For two lists
a and B we write a - 3 for their concatenation. The empty list is denoted by e.

Probability Distributions. A finite discrete probability distribution over a
countable set @ is a function p : @—[0,1] such that > o pu(g)=1 and its
support set supp(p)={q € Q| u(q)>0} is finite. We say that p € D(Q) is a
point distribution if u(q)=1 for some ¢ € Q.

Markov Decision Processes. Markov decision processes [24], are a well-studied
formalism for systems exhibiting nondeterministic and probabilistic behaviour.

Definition 1. A Markov decision process (MDP) is a tuple M = (S, A,p,c)
where:

— S is the set of states;

— A is the set of actions;

-p: S xA— D(S) is a partial function called the probabilistic transition
function; and

- ¢: S5 x A— R is the cost function.

We say that an MDP M is finite (discrete) if both S and A are finite
(countable). We write A(s) for the set of actions available at s, i.e., the set
of actions a for which p(s,a) is defined. In an MDP M, if the current state is
s, then one of the actions in A(s) is chosen nondeterministically. If the chosen
action is a then the probability of reaching state s’ € S in the next step is
p(s,a)(s") and the cost incurred is ¢(s, a).

2.2 Branching Markov Decision Processes
We are now ready to define (multitype) BMDPs.

Definition 2. A branching Markov decision process (BMDP) is a tuple B =
(P, A, p,c) where:

— P is a finite set of types;

— A is a finite set of actions;

- p: PxA— D(P*) is a partial function called the probabilistic transition
function where every D(-) is a finite discrete probability distribution; and
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- c¢: Px A— Ry is the cost function.

We write A(q) for the set of actions available to an entity of type ¢ € P, i.e., the
set of actions a for which p(g,a) is defined. A Branching Markov Chain (BMC)
is simply a BMDP with just one action available for each type.

Let us first describe informally how BMDPs evolve. A state of a BMDP B
is a list of elements of P that we call entitiecs. A BMDP starts at some initial
configuration, o’ € P*, and the controller picks for one of the entities one of the
actions available to an entity of its type. In the new configuration a!, this one
entity is replaced by the list of new entities that it spawned. This list is picked
according to the probability distribution p(g, a) that depends both on the type
of the entity, ¢, and the action, a, performed on it by the controller. The process
proceeds in the same manner from o', moving to o2, and from there to o3, etc.
Once the state € is reached, i.e., when no entities are present in the system, the
process stays in that state forever.

Definition 3 (Semantics of BMDP). The semantics of a BMDP B =
(P, A,p,c) is an MDP Mp = (Statesp, Actionsg, Probg, Costg) where:

— Statesg = P* is the set of states;

— Actionsg = N x A is the set of actions;

— Probg : Statesg x Actionsg — D(Statesg) is the probabilistic transition
function such that, for a € Statesg and (i,a) € Actionsg, we have that
Probg(a, (i,a)) is defined when i < |a| and a € A(a;); moreover

Probg(a, (i,a)) (a1 ... ;-1 - B ajy1...) = play, a)(B),

for every B € P* and 0 in all other cases.
— Costg : Statesg x Actionsg — R is the cost function such that

Costp(a, (i,a)) = c(ay, a).

For a given BMDP B and states a € Statesg, we denote by Actionss(a) the
set of actions (i,a) € Actionsp, for which Probg(c, (i,a)) is defined.

Note that our semantics of BMDPs assumes an explicit listing of all the
entities in a particular order similar to [10]. One could, instead, define this as
a multi-set or simply a vector just counting the number of occurrences of each
entity as in [23]. As argued in [10], all these models are equivalent to each other.
Furthermore, we assume that the controller expands a single entity of his choice
at the time rather all of them being expanded simultaneously. As argued in [32],
that makes no difference for the optimal values of the expected total cost that
we study in this paper, provided that all transitions’ costs are positive.

2.3 Strategies
A path of a BMDP B is a finite or infinite sequence

m=a’ ((i1,a1),a), ((iz, az), 0?), ((i3, az), *), ...
€ Statesp x ((Actionspx Statesg)™ U (Actionsg x Statesp)),
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consisting of the initial state and a finite or infinite sequence of action and state
pairs, such that Probg(a?, (ij,a;))(a?*) > 0 for any 0 < j < |r|, where |r| is
the number of actions taken during path 7. (J7| = oo if the path is infinite.) For
a path m, we denote by m4(;) = (i, a;) the j-th action taken along path m, by
Ts() (= a’) the j-th state visited, where 7g(o)(= ) is the initial state, and by
7(5)(= a® ((i1,a1),a'),...,((ij,a;),a’)) the first j action-state pairs of .

We call a path of infinite (finite) length a run (finite path). We write Runsg
(F'Pathg) for the sets of all runs (finite paths) and Runsg . (FPathg ) for the
sets of all runs (finite paths) that start at a given initial state o € Statesg, i.e.,
paths 7 with 7g) = a. We write last(r) for the last state of a finite path .

A strategy in BMDP B is a function o : FPathg — D(Actionsg) such that,
for all m# € FPathg, supp(o(r)) C Actionsg(last(m)). We write Y for the set
of all strategies. A strategy is called static, if it always applies an action to the
first entity in any state and for all entities of the same type in any state it
picks the same action. A static strategy 7 is essentially a function of the form
o: P — A ie., for an arbitrary 7 € FPathg, we have 7(w) = (1,0 (last(n)1))
whenever last(m) # e.

A strategy o € X and an initial state « induce a probability measure over
the set of runs of BMDP B in the following way: the basic open sets of Runsg

are of the form 7 - (Actionsp x Statesg)®, where m € F'Pathg, and the measure of

this open set is equal to [ o(7(i))(wa(i41)) - Probs(ms(y, Ta+1)(Ts(i41))

if mg(0) = a and equal to 0 otherwise. It is a classical result of measure theory
that this extends to a unique measure over all Borel subsets of Runsg and we
will denote this measure by Pg .

Let f : Runsz — R, be a function measurable with respect to Pg - The
expected value of f under strategy o when starting at « is defined as Ef , {f}=
/ Runsss f dPg, (which can be oo even if the probability that the value of f
is infinite is 0). The infimum expected value of f in B when starting at « is
defined as Vi(a)(f) = infyex, B, {f}. A strategy, 7, is said to be optimal
if ]E%,a {f} = Vi(o)(X) and e-optimal if EZ,Q {f} < Vi(a)(f) + €. Note that
e-optimal strategies always exists by definition. We omit the subscript B, e.g.,
in Statesg, X, etc., when the intended BMDP is clear from the context.

For a given BMDP B and N > 0 we define Totaly (), the cumulative cost
of a run 7 after N steps, as Totaly(w) = Zﬁigl Cost(ms(iy; Ta(i+1)). For a
configuration a € States and a strategy o € X, let ETotaly (B, «,0) be the
N-step expected total cost defined as ETotaly (B, «,0) = E%M{Total]v} and
the expected total cost be ETotal,(B,«,0) = limy_ . ETotaly (B, «, o). This
last value can potentially be oo. For each starting state «, we compute the
optimal expected cost over all strategies of a BMDP starting at «, denoted by
ETotal. (B, a), i.e.,

ETotal.(B,a) = inf ETotal(B,«,0).
oceXn
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As we are going to prove in Theorem 4.b that, for any a € States, we have

||
ETotal, (B, «) = ZETotal*(B, a;).

i=1

This justifies focusing on this value for initial states that consist of a single entity
only, as we will do in the following section.

3 Fixed Point Equations

Following [8], we define here a linear equation system with a minimum operator
whose Least Fized Point solution yields the desired optimal values for each type
of a BMDP with non-negative costs. This system generalises the Bellman’s
equations for finite-state MDPs. We use a variable z, for each unknown
ETotal, (B, q) where ¢ € P. Let & be the vector of all x,,whereq € P. The
system has one equation of the form z, = F;,(Z) for each type ¢ € P, defined as

zo= min (e(ga)+ > pla.a)@) Y wa,) - ()

A
a€A(q) acP* i<||

We denote the system in vector form by z = F(Z). Given a BMDP, we can
easily construct its associated system in linear time. Let ¢* € R%, denote the

n-dimensional vector of ETotal,(B,q)’s where n = |P|. Let us define z° = 0,
gl = FRHL(0) = F(z%), for k > 0.

Theorem 4. The following hold:

IA

(a) The map F : R%, — RZ, is monotone and continuous (and so 0 < z*
L for all k > 0).

(b) ¢ = F(c").

(¢c) For allk >0, zk < é*.

(d) For alld € RY, if ¢ = F(¢), thenc* < 2.

(e) & =limy_ o T".

Proof.

(a) All equations in the system F'(x) are minimum of linear functions with non-
negative coefficients and constants, and hence monotonicity and continuity
are preserved.

(b) It suffices to show that once action a is taken when starting with a single
entity ¢ and, as a result, ¢ is replaced by a with probability p(q, a)(«), then
the expected total cost is equal to:

c(g,a) + Z ETotal. (B, «;) . ()

i<|af



Reinforcement Learning for Branching Markov Decision Processes 659

This is because then the expected total cost of picking action a when at
q is just a weighted sum of these expressions with weights p(q,a)(«) for
offspring «. And finally, to optimise the cost, one would pick an action a
with the smallest such expected total cost showing that

ETotal,(B,q) = min (c(q,a) + Z (g, a)(a) Z ETotal, (B, ai))

A
a€A(g) acP* i<|e|

indeed holds.

Now, to show (&), consider an e-optimal strategy o; for a BMDP that starts
at «;. It can easily be composed into a strategy o that starts at « just by
executing o first until all descendants of a; die out, before moving on to
09, etc. If one of these strategies, o;, never stops executing then, due to the
assumption that all costs are positive, the expected total cost when starting
with «; has to be infinite and so has to be the overall cost when starting
with « (as all descendants of a; have to die out before the overall process
terminates), so (&) holds. This shows that c(q,a) + -, |, ETotal. (B, zq,)
can be achieved when starting at a. At the same time, we cannot do better
because that would imply the existence of a strategy o’ for one of the entities
o; with a better cost than its optimal cost ETotal, (5, c;).

Since 2° = 0 < ¢* and due to (b), it follows by repeated application of F' to
both sides of this inequality that z* < F(¢*) = ¢*, for all k > 0.

Consider any fixed point & of the equation system F'(Z). We will prove that
c* < . Let us denote by ¢’ a static strategy that picks for each type an
action with the minimum value of operator F' in &, i.e., for each entity

q we choose 0’(q) = argminge a(q) (c(q, a) + Y qep- P(;a)() Zi§|a| E;i>,
where we break ties lexicographically.

We now claim that, for all k¥ > 0, ETotalg (B, q,0") < ¢ holds. For k = 0,
this is trivial as ETotali(B,q,0’) = 0 < €. For k > 0, we have that

ETotali(B,4,0") © e(,0'@)+ 3 p(a,0"(@))(e) 3 Eotaly_1(B,as,0")

agP* i<|al|

(%) c(q,0'(q)) + Z p(g, 0’ (9))(a) Z T,

aep* i<|o]

9 min (clg.0)+ Y plea)e) Y e, ) L,

A
a€Alq) ac P~ i<|a]

where (1) follows from the fact that after taking action o’(g) first, there
are only k — 1 steps left of the BMDP B that would need to be distributed
among the offspring « of ¢ somehow. Allowing for k& — 1 steps for each of the
entities «; is clearly an overestimate of the actual cost. (2) follows from the
inductive assumption. (3) follows from the definition of o’. The last equality,
(4), follows from the fact that & is a fixed point of F.

Finally, for every q € P, from the definition we have ¢; = ETotal.(B,q) <
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ETotal, (B, ¢,0") = limy_ ETotal, (B, q,0’) and each element of the last
sequence was just shown to be < ¢.

(e) We know that 7* = limy_, ¥ exists in @20 because it is a monotonically
non-decreasing sequence (note that some entries may be infinite). In fact
we have Z* = limg o, F*11(0) = F(limy_ F¥(0)), and thus z* is a fixed
point of F. So from (d) we have ¢ < Z*. At the same time, due to (c), we
have zF < &* for all k > 0, so * = limy_,00 2 < & and thus limy_,. Z° =

c*.

The following is a simple corollary of Theorem 4.

Corollary 5. In BMDPs, there exists an optimal static control strateqy o*.

Proof. Tt is enough to pick as o*, the strategy o’ from Theorem 4.d, for & = ¢*.
We showed there that for all k > 0 and ¢ € P we have ETotal,(B,q,0%) < E;.
So ETotal.(B,q,0") = limy_.o ETotaly(B,q,0*) < ¢, = ETotal.(B,q), so in
fact ETotal, (B, q,0*) = ETotal.(B, ¢) has to hold as clearly ETotal,(B,¢,0*) >
ETotal, (B, q). O

Note that for a BMDPs with a fixed static strategy o (or equivalently BMCs),
we have that F(Z) = B,Z + ¢, for some non-negative matrix B, € RZ;", and
a positive vector ¢, > 0 consisting of all one step costs c(q,o(q)). We will refer
to I as F, in such a case and exploit this fact later in various proofs.

We now show that ¢* is in fact essentially a unique fixed point of F'.
Theorem 6. If F(z) =2 and T, < o< for some q € P then T, = .

Proof. By Corollary 5, there exists an optimal static strategy, denoted by o*,
which yields the finite optimal reward vector ¢*.
We clearly have that T = F(Z) < F,«(Z), because ¢* is just one possible pick
of actions for each type rather than the minimal one as in (#). Furthermore,
F,«(T) = BorT + by»
S Bcr* (Ba'*j + ba’*) + ba*
= B2% + (B + )b

<...< lim Bb7 ( B )b,
<o fim Bra s (35

k=0
Note that ¢* = (32, BX.)bs+, because

¢ = lim F*(0) = lim F* (0) = lim ZBZ

k—oo k—oo k—o0

Due to Theorem4.d, we know that ¢; < z; < oo, so all entries in the g-th

row of B, have to converge to 0 as k — oo, because otherwise the g-th row
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of ZZOZO Bk, would have at least one infinite value and, as a result, the g-th
position of ¥ = (3°72, BE.)b,+ would also be infinite as all entries of b,~ are
positive. Therefore, limy_o(BX.2), = 0 and so

T k—oo

Ty < (lim BE.2), + (O BE)bge), = c5.
k=0
The proof is now complete. a

4 Q-learning

We next discuss the applicability of Q-learning to the computation of the fixed
point defined in the previous section.

Q-learning [30] is a well-studied model-free RL approach to compute an
optimal strategy for discounted rewards. Q-learning computes so-called Q-values
for every state-action pair. Intuitively, once Q-learning has converged to the fixed
point, Q(s, a) is the optimal reward the agent can get while performing action a
after starting at s. The Q-values can be initialised arbitrarily, but ideally they
should be close to the actual values. Q-learning learns over a number of episodes,
each consisting of a sequence of actions with bounded length. An episode can
terminate early if a sink-state or another non-productive state is reached. Each
episode starts at the designated initial state sg. The Q-learning process moves
from state to state of the MDP using one of its available actions and accumulates
rewards along the way. Suppose that in the i-th step, the process has reached
state s;. It then either performs the currently (believed to be) optimal action
(so-called ezploitation option) or, with probability €, picks uniformly at random
one of the actions available at s; (so-called exploration option). Either way, if
a;, 13, and s;41 are the action picked, reward observed and the state the process
moved to, respectively, then the Q-value is updated as follows:

Qiv1(si,ai) = (1= X)Qi(si,ai) + Ni(ri + - mgXQi(SiHva)) ;

where \; €10, 1] is the learning rate and v €0, 1] is the discount factor. Note the
model-freeness: this update does not depend on the set of transitions nor their
probabilities. For all other pairs s, a we have Q;11(s,a) = Q;(s, a), i.e., they are
left unchanged. Watkins and Dayan showed the convergence of Q-learning [30].

Theorem 7 (Convergence [30]). Fory < 1, bounded rewards r; and learning
rates 0 < \; < 1 satisfying:

oo oo
Z)\i =00 andZ)\? < 00,
i=0 i=0

we have that Q;(s,a) — Q(s,a) as i — oo for all s,a € SXA almost surely if all
(s,a) pairs are visited infinitely often.
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However, in the total reward setting that corresponds to Q-learning with
discount factor v = 1, @-learning may not converge, or converge to incorrect
values. However, it is guaranteed to work for finite-state MDPs in the setting of
undiscounted total reward with a target sink-state under the assumption that
all strategies reach that sink-state almost surely. The assumption that we make
instead is that every transition of BMDP incurs a positive cost. This guarantees
that a process that does not terminate almost surely generates an expected
infinite reward in which case the Q-learning will coverage (or rather diverge) to
00, so our results generalise these existing results for Q-learning.

We adopt the Q-learning algorithm to minimise cost as follows. Each episode
starts at the designated initial state qg € P. The Q-learning process moves from
state to state of the BMDP using one of its available actions and accumulates
costs along the way. Suppose that, in the i-th step, the process has reached state
a. It then selects uniformly at random one of the entities of «, e.g., the j-th
one, o; and either performs the currently (believed to be) optimal action or,
with probability €, picks an action uniformly at random among all the actions
available for o;. If ¢ and 3 denote the observed cost and entities spawned by this
action, respectively, then the Q-value of the pair a;, a; are updated as follows:

18]
Qit1(y,a;) = (1= X)Qi(eyy,a;) + Ni(c+ Zaefgi(%_) Qi(Bi,a)).
i=1 ‘

and all other Q-values are left unchanged. In the next section we show that Q-
learning almost surely converges (diverges) to the optimal finite (respectively,
infinite) value of & almost surely under rather mild conditions.

5 Convergence of Q-Learning for BMDPs

We show almost sure convergence of the Q-learning to the optimal values ¢* in
a number of stages. We first focus on the case when all optimal values in ¢* are
finite. In such a case, we show a weak convergence of the expected optimal values
for BMCs to the unique fixed-point ¢*, as defined in Sect. 3. To establish this,
we show that the expected Q-values are monotonically decreasing (increasing) if
we start with Q-values x¢* for £ > 1 (k < 1). This convergence from above and
below gives us convergence in expectation using the squeeze theorem.

We then establish almost sure convergence to ¢* by proving a contraction
argument, with the extra assumption that the selection of the Q-value to update
is done independently at random in each step.

In the next step, we extend this result to BMDPs, first establishing that
Q-learning will almost surely converge to the region of the Q-values less than or
equal to ¢*. We then show that, when considering the pointwise limes inferior
values of the sequences of Q-values, there is no point in that region such that
every e-ball around it has a non-zero probability to be represented in the limes
inferior. This establishes that ¢* is the fixed point the Q-values converge against.
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Only at the very end, we show that Q-learning also converges (or rather
diverges) to the optimal value even if that value happens to be infinite. We then
turn to a type with non-finite optimal value and provide an argument for the
divergence to oo of its corresponding Q-value.

We assume that all the Q-values are stored in a vector @ of size (|P| - |A|).
We also use Q(g, a) to refer to the entry for type ¢ € P and action a € A(q). We
introduce the target for Q operator, T, that maps a Q-values vector @ to:

|ex|

T(Q)(q,a) = c(g,a) + Z Z min  Q(wy,a;) .

acQ* a;€A(ay)

We call T the ‘target’, because, when the Q(g,a) value is updated, then

E(Qit1(g,a)) = (1 = X)Qi(q,a) + MT(Q4)(q, a)

holds, whereas otherwise Q;+1(q,a) = Q;(g, a).
Thus, when Q(q, a) is selected for update with a chance of pg o, we have that

E(Qiv1(g,a)) = (1 — Aipg,a)Qi(q, a) + Aipg,a T(Qi)(q, a) . (©)

5.1 Convergence for BMCs with Finite ¢*

Since BMCs have only one action, we omit mentioning it for ease of notation.
Note that for BMCs, the target for the Q-values is a simple affine function:

||

T@Q)(q) =c(@)+ Y p(@)(a) > Q).
=1

aeP*

And it coincides with operator F' as defined in Sect.3. Therefore, due to
Theorem 6, T'(Q) has a unique fixed point which is ¢*. Moreover, T'(Q) = BQ+-¢,
where B is a non-negative matrix and ¢ is a vector of one step costs ¢(q), which
are all positive.

Naturally, applying T to a non-negative vector ) or multiplying it by B are
monotone: Q > Q' — T(Q) > T(Q') and BQ > BQ'. Also, due to the linearity
of T, E(T(Q)) = T(E(Q)) holds, where @ is a random vector.

We now start with a lemma describing the behaviour of Q-learning for initial
Q-values when they happen to be equal to k¢* for some k > 1.

Lemma 8. Let Q¢ = k¢* for a scalar factor k > 1. Then the following holds
for alli e N,

¢t <T(E(Q:)) <E(Qi+1) <E(Qi),

assuming that Q-value to be updated in each step is selected independently at
random.
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Proof. We show this by induction. For the induction basis (i = 0), we have that
¢* < Qo by definition.

As ¢* is the fixed-point of T, we have T'(¢*) = ¢*, and the monotonicity of T'
provides T'(¢*) < T'(Qop). At the same time

T(Qo) =T (kc*) = Bkc* + ¢
= k(B¢ +¢) —kc+ ¢
=rc —(k—1)c
= Qo — (k—1)¢ < Qo.
This provides ¢* < T(E(Qp)) < E(Qo). Finally, T(E(Qop)) < E(Qo) entails

for a learning rate Ag € [0,1] that T(E(Qo)) < E(Q1) < E(Qo) due to (V).
For the induction step (i — i + 1), we use the induction hypothesis

¢ <T(E(Q:)) < E(Qi+1) < E(Q:).

The monotonicity of T" and ¢* < E(Q;+1) < E(Q;) imply that T(c*) <
T(E(Qi+1)) < T(E(Q;)) holds. With T'(¢*) = &* (from the fixed point equations)
and the induction hypothesis, ¢* < T(E(Q;+1)) < E(Q;+1) follows.

Using T(E(Qit+1)) = E(T(Qi+1)), this provides E(T(Qi+1)) < E(Qit1),
which implies with A; 1 € [0, 1] that

T(E(Qi+1)) = E(T(Qi+1)) < E(Qiv2) < E(Qi1)
holds, completing the induction step. a

By simply replacing all < with > in the above proof, we can get the following
for all initial Q-values that happen to be k¢* where x < 1:

Lemma 9. Let Qo = k&* for a scalar factor k € [0,1]. Then the following
holds for all i € N, assuming that the Q-value to update in each step is selected
independently at random: ¢* > T(E(Q:)) > E(Qi+1) > E(Q;). O

We now first establish that the distance between () and ¢* can be upper
bounded by the distance between @ and T'(Q) with a fixed linear factor p > 0.

Lemma 10. There exists a constant p > 0 such that
D@ -T@@] = n)_ [(Q—e(q)
qeP qeP
when Qg = KC*.
Proof. We show this for k > 1. The proof for x < 1 is similar, and there is
nothing to show for k = 1.

We first consider the linear programme with a variable for each type with
the following constraints for some fixed § > 0:

Q>¢".T(Q) <Q,and ) Qq) =Y () +4.

qeP qeP
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An example solution to this constraint system is Q = (1 + ﬁ)é*.
qEP
We then find a solution minimising the objective > . p [(@—T'(Q)(p)|, noting
that all entries are non-negative due to the first constraint. This is expressed by

adding 2| P| constraints

rq > Qq) —T(Q)(q)
zq > T(Q)(q) — Q)

and minimising >° . p 2.
As ¢* is the only fixed-point of T, and }° . p Q(q) = >_,cp €*(q) + 0 implies
that, for an optimal solution Q*, @* # ¢*, we have that

Y@ =T(@)(a)| > 0.

qeEP

Due to the constraint Q > ¢*, we always have Q = ¢* 4+ Q4 for some QA > 0.
We can now re-formulate this linear programme to look for @ o instead of @:

QA > 67
BQA < QA,al’ld

> Qalg) =4,

qeP

with the objective to minimise ) . p [(Qa — BQa)(q)|-

The optimal solution @% to this linear programme gives an optimal value
Q" = ¢c*+Q7% for the former and, vice versa, the value Q* for the former provides
an optimal solution Q% —c* for the latter, and these two solutions have the same
value in their respective objective function.

Thus, while the former constraint system is convenient to show that the value
of the objective function is positive, the latter constraint system is, except for
qup QAa(q) = 0, linear. This means that any optimal solution for 6 = §; can
be obtained from the optimal solution for § = d- just by rescaling it by d1/d2. It
follows that the optimal value of the objective function is linear in §, e.g., there
exists pu > 0 such that its value is pd. O

We now show that the sequence of Q-values updates converges in expectation
to ¢* when Qg = kc*.

Lemma 11. Let Qg = k¢" where k > 0. Then, assuming that each type-action
pair is selected for update with a minimal probability pmin in each step, and that
Se o Ai = 00, then lim; o E(Q;) = ¢* holds.

Proof. We proof this for k > 1. A similar proof shows this for any x € [0, 1].
Lemma8 provides that all E(Q;) satisfy the constraints E(Q;) > ¢* and

T(E(Qi)) < E(Qi).
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Let pmin be the smallest probability any Q-value is selected with in each
update step. Due to Lemma 10, there is a fixed constant p > 0 such that

D 1Qi(a) —T(@) ()] = 1> 1Qi(g) — e (g)] -

qeP qeP

By taking the expected value of both sides and the fact that ¢* < T(E(Q;)) <
E(Qi+1) < E(Q;) due to Lemma 8, we get

> E@Qi)(g) — TE(Q:)(q) > 1> E(Qi)(g) — & (q),

qeP qeP

then due to (V) we have

Z E(Ql)(Q) - E(QH—l)(Q) > ,Ufpmin/\i Z E(Qz)(Q) —c (Q)y

q€P ey

and finally just by rearranging these terms we get

Z E(Qi+1)(q) — ¢ (q) < (1 — ppminAi) Z E(Qi)(q) —c"(q) -

qeP qeP

Note that all summands are positive by Lemma 8.

With Y72 A = 0o, we get that Y .o ipminAi = 00, because pyin and p
are fixed positive values. This implies that H;’io(l — upminAi) = 0 and so the
distance between E(Q;) and ¢* converges to 0. O

Lemma 11 suffices to show convergence of Q-values in expectation.

Theorem 12. When each Q-value is selected for an update with a minimal
probability pmin in each step, and Y ;= A, = 00, then lim; .o E(Q;) = ¢* holds
for every starting Q-values Qg > 0.

*

Proof. We first note that none of the entries of ¢* can be 0. This implies that
there is a scalar factor £ > 0 such that 0 < Qo < k&*. As the @; are monotone
in the entries of Qo, and as the property holds for Qf, =0 = 0-¢* and Qf = rkc*
by Lemma 11, the squeeze theorem implies that it also holds for Q. O

Convergence of the expected value is a weaker property than expected
convergence, which also explains why our assumptions are weaker than in
Theorem 7. With the common assumption of sufficiently fast falling learning
rates, Z?io A2 < 00, we will now argue that the pointwise limes inferior of the
sequence of Q-values almost surely converges to ¢*. This will later allow us to
infer convergence of the actual sequence of Q-values to ¢*.

Theorem 13. When each Q-value is selected for wupdate with a minimal
probability pmin in each step,

o oo
Z’\i =00 andZ)\f < 00,
i=0 i=0

then lim;_.o, Q; = ¢* holds almost surely for every starting Q-values Qg > 0.
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Proof. We assume for contradiction that, for some @ # ¢*, there is a non-zero
chance of a sequence {Q;}ien, such that

— |Q = liminf; o Qilloe < & for all &’ > 0, and
— there is a type ¢ such that Q(q) < T(Q)(q).

Then there must be an & > 0 such that Q(q) + 3¢ < T(@ —2¢-1)(q). We fix such
an € > 0. R

Now we have the assumption that the probability of ||Q —liminf,, . Qe <
¢ is positive. Then, in particular, the chance that, at the same time,
liminf; oo Qi > Q — e -1 and liminf; .. Q; < Q + ¢ - 1, is positive.

Thus, there is a positive chance that the following holds: there exists an n.
such that, for all i > n., Q; > Q — 2¢ - 1. This implies

T(Q:)(q) > T(Q —2¢ - 1)(q) > Q(q) + 3¢.

Thus, the expected limit value of Q;(q) is at least @(q) + 3¢, for every tail of
the update sequence. Now, we can use @725 as a bound on the estimation of the
updates in Q-learning as Q; > @Q — 2¢ - 1 holds. At the same time, the variation
of the sum of the updates goes to 0 when > i = 0°°)? is bounded. Therefore, it
cannot be that liminf; . Q; < @ + ¢ - 1 holds; a contradiction.

We note that if, for a Q-values Q > 0, there is a ¢ € P with Q(¢') < ¢*(¢'),
then there is a ¢ € P with Q(q) < T(Q)(q) and Q(q) < ¢*(g). This is because,
for the Q-values Q" with Q'(¢) = min{Q(q),c*(q)} for all ¢ € Q, Q" < ¢*. Thus,
there must be a type g € P such that k = g—((qq)) < 1 is minimal, and Q' > kc*.
As we have shown before, T'(k¢*) = k¢* — (k — 1)¢, such that the following holds:

T(Q)(q) =2 T(Q)(q) = T(ke")(q) = ke"(q) + (1 — k)e(q) > € (q) = Q(q).

Thus, we have that liminf; ..o @Q; > & holds almost surely. With
lim; o E(Q;) = &*, it follows that lim;_,o, Q; = &*. O

5.2 Convergence for BMDPs and Finite ¢*

We start with showing that, for BMDPs, the pointwise limes superior of each
sequence is almost surely less than or equal to ¢*. We then proceed to show that
the limes inferior of a sequence is almost surely ¢*, which together implies almost
sure convergence.

Lemma 14. When each Q-value of BMDP is selected for update with a
minimal probability pmin in each step, > oo X = 00, Yoo A? < oo, then
limsup,_, ., Q; < & holds almost surely for every starting Q-values Qo > 0.

Proof. To show the property for the limes superior, we fix an optimal static
strategy o* that exists due to Corollary 5.

We define an BMC obtained by replacing each type ¢ in the BMDP with
A(q) ={a1,...,ar}, by k types (g,a1),...,(q,ar) with one action, where each
type ¢ is replaced by the type-action pair (¢’,0*(¢")).
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It is easy to see that a type (q,0*(q)) for the resulting BMC has the same
value as the type ¢ and the type-action pair (¢,0*(¢q)) in the BMDP that we
started with.

When identifying these corresponding type-action pairs, we can look at the
same sampling for the BMDP and the BMC, leading to sequences Qp, Q1, @2, - - .
and Qf, @, Qh, .. ., respectively, where Qy = Qf.

It is easy to see by induction that @; < @}. Considering that {Q}};en almost
surely converges to ¢* by Theorem 13, we obtain our result. g

Theorem 15. When each Q-value of an BMDP is selected for update with a
minimal probability pmin, Y oo Ni = 00, Yo A7 < 00, then lim;_ o Q; = ¢*
holds almost surely for every starting Q-values Qg > 0.

Proof. As a first simple corollary from Lemma 14, we get the same result for the
limes inferior (as liminf < lim sup must hold).

We now assume for contradiction that, for some vector @ < ¢*, there is a
non-zero chance of a sequence {Q;}ien such that ||Q — liminf, o Q;llee < &’
for all ¢’ > 0.

As @ is below the fixed point of T', there must be one type-action pair
(¢,0*(q)) such that Q(q,0*(q)) < T(Q)(q,0*(q)) (ct. the proof of Theorem 13).
Moreover, there must be an € > 0 such that

Q(g,0%(q)) + 3¢ < T(Q +2¢ - 1)(q, 0% (q)).

We fix such an € > 0. ~

Now we assume that the probability of ||Q—liminf,, . Q;||cc < € is positive.
Then the chance that, simultaneously, lim inf; . Q;(q,c*(q)) > @(q, a*(q)) —¢
and liminf; . Q;(q,c*(q)) < @(q,a* (q)) + &, is positive.

Thus, there is a positive chance that the following holds: there exists an n.
such that, for all i > n. we have Q; > Q — 2¢ - 1. This entails

T(Qi)(g,07(q)) = T(Q — 2 - 1)(q, 0™ (q)) > Q(g, 0" (q)) + 3¢

Thus, the expected limit value of Q;(q,o*(a)) is at least Q(q,o*(a)) + 3¢, for
every tail of the update sequence. Now, we can use T(@ —2¢-1)(q,0%(a)) as
a bound on the estimation of T(Q)(g,c*(q)) during the update of the Q-value
of the type-action pair (¢,0*(q)). At the same time, the variation of the sum of
the updates goes to 0 when Y ;° A? is bounded. Therefore, it cannot be that

(2

liminf; . Qi(q,0*(a)) < @(q7 c*(a)) + € holds; a contradiction. O

5.3 Divergence

We now show divergence of Q(gq) to co when at least one of the entries of ¢*(q)
is infinite. First due to Theorem 6 and its proof we have that ¢* = >"°° B¢ for
some non-negative B and positive ¢. Therefore ¢* is monotonic in B for BMCs.
Likewise, the value of ¢* for a BMDP depends only on the cost function and the
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expected number of successors of each type spawned: Two BMDPs with same
cost functions and the expected numbers of successors have the same fixed point
c¢*. Thus, if a type g with one action spawns either exactly one g or exactly
one ¢’ with a chance of 50% each, or if it spawns 10 successors of type ¢ and
another 10 or type ¢’ with a chance of 5%, while dying without offspring with
a chance of 95%, both lead to identical matrices B and so the same ¢* (though
this difference may impact the performance of Q-learning).

Naturally, raising the number of expected number of successors of any type
for any type-action pair strictly raises ¢*, while lowering it reduces ¢*, and for
every set of expected numbers, the value of ¢* is either finite or infinite.

Let us consider a set of parameters at the fringe of finite vs. infinite ¢*, and
let us choose them pointwise not larger than the parameters from the BMC or
BMDP under consideration. As the fixed point from Sect.3 is clearly growing
continuously in the parameter values, this set of expected successors leads to a
¢* which is not finite.

We now look at the family of parameter values that lead to a € [0, 1] times the
expected successors from our chosen parameter at the fringe between finite and
infinite values, and refer to it as the a-BMDP. Let also ¢}, denote the fixed point
for the reduced parameters. As the solution to the fixed point grows continuously,
so does ¢,. Moreover, if ¢ = lim,_,1 ¢, was finite, then ¢* would be finite as
well, because then ¢] = ¢*.

Clearly, for all parameters a € [0, 1], the Q-values of an a-BMC or a-BMDP
converge against ¢,. Thus, the Q-values for the BMC or BMDP we have started
with converges against a value, which is at least sup,¢(o 1| C,- As this is not a
finite value, Q-learning diverges to oc.

6 Experimental Results

We implemented the algorithm described in the previous section in the formal
reinforcement learning tool MUNGOJERRIE [21], a C++-based tool which
reads BMDPs described in an extension of the PRISM language [18]. The tool
provides an interface for RL algorithms akin to that of [3] and invokes a linear
programming tool (GLOP) [22] to compute the optimal expected total cost based
on the optimality equations (#).

6.1 Benchmark Suite

The BMDPs on which we tested Q-learning are listed in Table 1. For each model,
the numbers of types in the BMDP, are given. Table 1 also shows the total cost
(as computed by the LP solver), which has full access to the BMDP. This is
followed by the estimate of the total cost computed by Q-learning and the time
taken by learning. The learner has several hyperparameters: € is the exploration
rate, « is the learning rate, and tol is the tolerance for ()-values to be considered
different when selecting an optimal strategy. Finally, ep-1 is the maximum episode
length and ep-n is the number of episodes. The last two columns of Table1
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report the values of ep-1 and ep-n when they deviate from the default values. All
performance data are the averages of three trials with Q-learning. Since costs
are undiscounted, the value of a state-action pair computed by Q-learning is a
direct estimate of the optimal total cost from that state when taking that action.

Table 1. Q-learning results. The default values of the learner hyperparameters are:
e =0.1, « = 0.1, tol= 0.01, ep-1= 30, and ep-n= 20000. Times are in seconds.

Name Types | Optimal cost | Estimated cost | Time (avg.) | ep-1 | ep-n
cloudl 3 5 5.026 0.369

cloud?2 4 5 5.016 0.369

bacterial 3 2.5 2.514 0.374

bacteria2 3 1.34831 1.413 0.387

protein 3 6 5.067 0.372

frozenSmall | 16 1.84615 1.740 2.834 100
rand68 10 150.432 154.400 0.402

rand283 9 4 4 0.075 1000
rand945 19 212 208.177 10.756 200 | 40000
rand3242 43 4 4.372 5.960 100
rand6417 62 10 10 12.498 50

Models cloudl and cloud2 are based on the motivating example given in
the introduction. Examples bacterial and bacteria2 model the population
dynamics of a family of two bacteria [28] subject to two treatments. The objective
is to determine which treatment results in the minimum expected cost to
extinction of the bacteria population. The protein example models a stochastic
Petri net description [19] corresponding to a protein synthesis example with
entities corresponding to active and inactive genes and proteins. The example
frozenSmall [3] is similar to classical frozen lake example, except that one of
the holes result in branching the process in two entities. Entities that fall in
the target cell become extinct. The objective is to determine a strategy that
results in a minimum number of steps before extinction. Finally, the remaining
5 examples are randomly created BMDP instances.

7 Conclusion

We study the total reward optimisation problem for branching decision processes
with unknown probability distributions, and give the first reinforcement learning
algorithm to compute an optimal policy. Extending Q-learning is hard, even
for branching processes, because they lack a central property of the standard
convergence proof: as the value range of the Q-table is not a priori bounded
for a given starting table Qg, the variation of the disturbance is not bounded.
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This looks like a more substantial obstacle than the one Q-learning faces
when maximising undiscounted rewards for finite-state MDPs, and it is well
known that this defeats Q-learning. So it is quite surprising that we could
not only show that Q-learning works for branching processes, but extend these
results to branching decision processes, too. Finally, in the previous section, we
have demonstrated that our Q-learning algorithm works well on examples of
reasonable size even with default hyperparameters, so it is ready to be applied
in practice without the need for excessive hyperparameter tuning.
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Abstract. We present Cameleer, an automated deductive verification
tool for OCaml. We leverage on the recently proposed GOSPEL (Generic
OCaml SPEcification Language) to attach rigorous, yet readable, behav-
ioral specification to OCaml code. The formally-specified program is fed
to our toolchain, which translates it into an equivalent one in WhyML,
the programming and specification language of the Why3 verification
framework. We report on successful case studies conducted in Cameleer.

Keywords: Deductive software verification - OCaml - Why3 -
GOSPEL

1 Introduction

Over the past decades, we have witnessed a tremendous development in the field
of deductive software verification [11], the practice of turning the correctness of
code into a mathematical statement and then prove it. Interactive proof assis-
tants have evolved from obscure and mysterious tools into de facto standards
for proving industrial-size projects. On the other end of the spectrum, the so-
called SMT revolution and the development of reusable intermediate verification
infrastructures contributed decisively to the development of practical automated
deductive verifiers.

Despite all the advances in deductive verification and proof automation, lit-
tle attention has been given to the family of functional languages [27]. Let us
consider, for instance, the OCaml language. It is well suited for verification, given
its well-defined semantics, clear syntax, and state-of-the-art type system. Yet,
the community still lacks an easy to use framework for the specification and
verification of OCaml code. The working programmers must either re-implement
their code in a proof-aware language (and then rely on code extraction), or they
must turn themselves into interactive frameworks. Cameleer fills the gap, being
a tool for the deductive verification of programs written in OCaml, with a clear
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focus on proof automation. Cameleer uses the recently proposed GOSPEL [5], a
specification language for OCaml. We advocate here the vision of the specifying
programmer: the person who writes the code should also be able to naturally pro-
vide suitable specification. GOSPEL terms are written in a subset of the OCaml
language, which makes them more appealing to the regular programmer. More-
over, we believe specification and implementation should co-exist and evolve
together, which is exactly the approach followed in Cameleer.

Cameleer takes as input a GOSPEL-annotated OCaml program and translates
it into an equivalent counterpart in WhyML, the programming and specifica-
tion language of the Why3 framework [16]. Why3 is a toolset for the deductive
verification of software, clearly oriented towards automated proof. A distinctive
feature of Why3 is that it interfaces with several different off-the-shelf theorem
provers, namely SMT solvers.

Contributions. To the best of our knowledge, Cameleer is the first deductive
verification tool for annotated OCaml programs. It handles a realistic subset of
the language, and its interaction with the Why3 verification framework greatly
increases proof automation. Our set of case studies successfully verified with the
Cameleer tool constitutes, by itself, an important contribution towards building
a comprehensive body of verified OCaml codebases. Finally, it is worth noting
that the original presentation of GOSPEL was limited to the specification of
interface files. In the scope of this work, we have extended it to include imple-
mentation primitives, such as loop invariants and ghost code (i.e., code that has
no computational purpose and is used only to ease specification and proof effort)
evolving GOSPEL from an interface specification language into a more mature
proof language.

2 TIllustrative Example — Binary Search

Higher-Order Implementation. Fig. 1 presents an implementation of binary
search, where the comparison function, cmp, is given as an argument to the
main function. For the sake of readability, we give the type of arguments and
return value of function binary_search, but these can be inferred by the OCaml
compiler.

The function contract is given after its definition as a GOSPEL annotation,
written within comments of the form (*@ ... x). The first line names the
returned value. Next, the first precondition establishes that the cmp is a total
pre order following the OCaml convention: if x is smaller than y, then cmp x y
< 0; if x is greater than y, then cmp x y > 0; finally, cmp x y = Oif xand y
are equal values'. It is worth noting that GOSPEL, hence Cameleer, assumes cmp
to be a pure function (i.e., a function without any form of side-effects). The
second precondition requires the array to be sorted according to the cmp rela-
tion. Finally, the last two clauses capture the possible outcomes of execution: the
regular postcondition (ensures clause) states the returned index is within the
bounds of a and its value is equal to v; the exceptional postcondition (raises)

! For the sake of space, we omit the definition of predicate is_total_pre_order.
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let binary_search (cmp: ’a -> ’a -> int) (a: ’a array) (v: ’a) : int =
let 1 = ref 0 in
let u = ref (length a - 1) in
let exception Found of int in
try while !1 <= !u do
(%@ variant tu - 11 %)
(%@ invariant 0 <= !1 && !'u < length a *)
(¥@ invariant forall i. 0 <= i < length a -> cmp a.(i) v =0 ->
11 <= i <= lu *)
let m=1!1+ (tu-11) /2 in
let ¢ = cmp a.(m) v in
if ¢ < 0O then 1l :=m+ 1

else if ¢ > 0 then u :=m - 1
else raise (Found m)
done;

raise Not_found
with Found i -> i
(*@ i = binary_search cmp a v
requires is_total_pre_order cmp
requires forall i j. 0 <= i <= j < length a -> cmp a.(i) a.(j) <= 0
ensures 0 <= i < length a && compare a.(i) v =0
raises  Not_found -> forall i. 0 <= i < length a -> cmp a.(i) v <> 0 *)

Fig. 1. Binary search implemented as a functor.

states that whenever exception Not_found is raised, there is no such index within
bounds whose value is equal to v. As usual in deductive verification, the presence
of the while loop requires one to supply a loop invariant. Here, it boils down to
the two invariant clauses, which state the limits of the search space are always
within the bounds of a and that for every index i for which a. (i) is equal to v,
then i must be within the limits of the current search space. We also provide a
decreasing measure (variant) in order to prove loop termination.

Assuming file binary_search.ml contains the program of Fig. 1, starting a
proof with Cameleer is as easy as typing cameleer binary_search.ml in a ter-
minal. Users are immediately presented with the Why3 IDE, where they can con-
duct the proof. Twelve verification conditions are generated for binary_search:
two for loop invariant initialization, four loop invariant preservation (two for each
branch of if..then. .else), two for safety (check division by zero and index in
array bounds), two for loop termination (one for each branch), and finally one
for each postcondition. All of these are easily discharged by SMT solvers.

Functor-Based Implementation. The implementation in Fig. 2 depicts (the skele-
ton of) an alternative implementation of the binary search routine. Instead of
passing the comparison function as an argument of binary_search, here the
functor Make takes as argument a module of type OrderedType, which provides
a monomorphic comparison function over a type t. This is the same approach
found in the OCaml standard library, namely in the Set and Map modules. The
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@logic attribute instructs Cameleer that cmp is both a programming and logical
function. This is what allows us to provide the axiom about the behavior of cmp.

Other than the call to Ord.cmp, the implementation and specification of
binary_search does not change, hence we omit it here. When fed into Cameleer,
the functorial implementation generates the exzact same twelve verification con-
ditions as the higher-order counterpart, all of them easily discharged as well.
Thus, the use of a functor does not impose any verification burden, showing the
flexibility of Cameleer to handle different idiomatic OCaml programming styles.

module type OrderedType = sig
type t
val[@logic] cmp: t -> t -> int
(*@ axiom total_pre_order: is_total_pre_order cmp *)

end

module Make (Ord: OrderedType) = struct
let binary_search a v =

try while !1 <= !u do
let ¢ = Ord.cmp a.(m) in

(¥@ i = binary_search a v ... %)
end

Fig. 2. Binary search implemented as a functor.
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Fig. 3. Cameleer verification workflow.

3 Implementation

Cameleer Workflow. Figure 3 depicts the verification workflow of the Cameleer
tool. We use the GOSPEL toolchain?, in order to parse and manipulate (via the
ppxlib library) the abstract syntax tree of the GOSPEL-annotated OCaml pro-
gram. A dedicated parser and type-checker (extended to handle implementation
features) treat GOSPEL special comments and attach the generated specifica-
tion to nodes in the OCaml AST. Cameleer translates the decorated AST into an

2 https://github.com/ocaml-gospel /gospel.
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equivalent WhyML representation, which is then fed to Why3. The Why3 type-
and-effect system might reject the input program, in which case the reported
error is propagated back to the level of the original OCaml code. Otherwise, if
the translated program fits Why3 requirements, the underlying VCGen computes
a set of verification conditions that can then be discharged by different solvers.
Throughout all this pipeline, the user only has to write the OCaml code and
GOSPEL specification (represented in Fig. 3 as a full-lined box), while every other
element is automatically generated (dash-lined boxes). The user never needs to
manipulate or even care about the generated WhyML program. In short, the
Cameleer user intervenes in the beginning and in the end of the process, i.e., in
the initial specifying phase and in the last step, helping Why3 to close the proof.
Our development effort currently amounts to 1.8K non-blank lines of OCaml
code.

Translation into WhyML. The core of Cameleer is a translation from GOSPEL-
annotated OCaml code into WhyML. In order to guide our implementation effort,
we have defined such a translation as a set of inductive inference rules between
the source and target languages [26]. Here, rather than focusing on more funda-
mental aspects, we give a brief overview of how the translation works in practice.

OCaml and WhyML are both dialects of the ML-family, sharing many syn-
tactic and semantics traits. Hence, translation of OCaml expressions and decla-
rations into WhyML is rather straightforward: GOSPEL annotations are readily
translated into WhyML specification, while supported OCaml programming con-
structions (including ghost code) are easily mapped into semantically-equivalent
WhyML constructions. Consider, for instance the following piece of OCaml code:

type ’a non_empty_list = { self: ’a list }

(*@ invariant self <> [] %)

let[@ghost] hd (1: ’a non_empty_list) = match 1 with
| [1 -> assert false

| x :: _ > x
(*@ r = hd 1
ensures match 1 with
| [ -> false
| x :: _ > 1 =x %)

For such case, Cameleer generates the following WhyML program:

type non_empty_list ’a = { self: list ’a }
invariant { self <> Nil }

let ghost hd (1: non_empty_list ’a)
returns { r —> match 1 with
| Nil -> false
| Cons x _ => x = r end }
= match 1 with
| Nil -> absurd
| Cons x _ > x end
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Other than the small syntactic differences, the generated WhyML program is
identically to the original OCaml one. In particular, the @ghost annotation gen-
erates a ghost function in WhyML, while the assert false expression (which is
treated in a special way by the OCaml type-checker) is translated into the absurd
construction, with the same semantics. Supplied annotations, in this case post-
condition and type invariant, are readily mapped into equivalent specification.

The translation of the OCaml module language is more interesting and
involved. A WhyML program is a list of modules, a module is a list of top-level
declarations, and declarations can be organized within scopes, the WhyML unit
for namespaces management. However, there is no dedicated syntax for functors
on the Why3 side. These are represented, instead, as modules containing only
abstract symbols [17]. Thus, when translating OCaml functors into WhyML, we
need to be more creative. If we consider, for instance, the Make functor from
Fig. 2, Cameleer will generate the following WhyML program:

scope Make
scope Ord
type t

val function cmp t t : int
axiom total_pre_order: is_total_pre_order cmp
end

let binary_search a v = ...
end

The functor argument Ord is encoded as a nested scope inside Make. This means
the binary_search implementation can access any symbol from the Ord names-
pace, via name qualification (e.g., Ord.t and Ord.cmp).

Interaction with Why3. One distinguishing feature of the Why3 architecture is
that it can be extended to accommodate new front-end languages [32, Chap. 4].
Building on the devised OCaml to WhyML translation scheme, we use the Why3
API to build an in-memory representation of the WhyML program. We also
register OCaml as an admissible input language for Why3, which amounts to
instructing Why3 to recognize .ml files as a valid input format and triggering
our translation in such case. Following this integration, we can use any Why3
tool, out of the box, to process a .ml file. We are currently using the extract
and session tools: the latter to gather statistics about number of generated
verification conditions and proof time; the former to erase ghost code.

Limitations of Using Why3. The WhyML specification sub-language and
GOSPEL are similar. Moreover, they share some fundamental principles, namely
the arguments of functions are not aliased by construction and each data struc-
ture carries an implicit representation predicate. However, one can use GOSPEL
to formally specify OCaml programs which cannot be translated into WhyML.
This is evident when it comes to recursive mutable data structures. Consider,
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for instance, the cell type from the Queue module of the OCaml standard
library3:

type ’a cell = Nil | Cons of { content: ’a; mutable next: ’a cell }

As we attempt to translate such data type, Why3 emits the following error:

This field has non-pure type, it cannot be used in a recursive
type definition

Recursive mutable data types are beyond the scope of Why3’s type-and-effect
discipline [14], since these can introduce arbitrary memory aliasing which breaks
the bounded-mutability principle of Why3 (i.e., all aliases must be statically-
known). The solution would be to resort to an axiomatic memory model of
OCaml in Why3, or to employ a richer program logic, e.g., Separation Logic [28]
or Implicit Dynamic Frames [31]. We describe such an extension as future work
(Sect. 6).

4 Evaluation

In order to assess the usability and performance of Cameleer, we have put
together a test suite of over 1000 lines of OCaml code. The reported case studies
are all automatically verified. To build our gallery of verified programs we used
a combination of Alt-Ergo 2.4.0, CVC4 1.8, and Z3 4.8.6. Figure 4 summarizes
important metrics about our verified case studies: the number of generated ver-
ification conditions for each example; the total lines of OCaml code, GOSPEL
specification, and lines of ghost (these are also included in the number of OCaml
LOC), respectively; the time it takes (in seconds) to replay a proof; and finally,
if the proof is immediately discharged, i.e., no extra user effort is required other
than writing down suitable specification.

Our test bed includes OCaml implementations issued from realistic and mas-
sively used programming libraries: the List.fold _left iterator and Stack mod-
ule from the OCaml standard library; the Leftist Heap implementation from
ocaml-containers?; finally, the applicative Queue module from OCamlgraph®.
We have used Cameleer to verify programs of different nature. These include:
numerical programs (e.g., binary multiplication and fast exponentiation); sorting
and searching (e.g., binary search and insertion sort); logical algorithms (con-
version of a propositional formula into conjunctive normal form); array scanning
(finding duplicate values in an array of integers); small-step iterators; data struc-
tures implemented as functors (e.g., Pairing Heaps and Binary Search Trees);
historical algorithms (checking a large routine by Turing, Boyer-Moore’s major-
ity algorithm, FIND by Hoare, and binary tree same fringe); examples in Rustain
Leino’s forthcoming textbook “Program Proofs”; and higher-order implementa-
tions (height of a binary tree computed in CPS). Both small-step iterators and

3 https://caml.inria.fr/pub/docs/manual-ocaml/libref/Queue.html.
4 https://github.com/c-cube/ocaml-containers/blob/master/src/core/CCHeap.ml
5 https://github.com/backtracking/ocamlgraph/blob/master/src/lib/persistentQueue.ml
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Case study # VCs | LOC / Spec. / Ghost |Proof time|Immediate
Applicative Queue 23 25 /17 /4 1.26 V4
Arithmetic Compiler 258 235 / 44 / 155 16.31 X
Binary Multiplication 12 10/6/0 0.69 V4
Binary Search 37 62 /40 /0 1.23 V4
Binary Search Trees 31 20 /26 /0 1.45 X
Checking a Large Routine 16 25 /15 /0 0.75 V4
CNF Conversion 93 113 /47 / 14 2.92 v
Duplicates in an Array 11 10/9/0 0.63 W4
Ephemeral Queue 44 40 /29 /7 1.34 V4
Even-odd Test 6 6/8/0 0.55 V4
Factorial 8 10/9/0 0.64 V4
Fast Exponentiation 5 4/5/0 0.62 V4
Fibonacci 15 16 /15 /2 0.64 V4
FIND Algorithm 6 13/7/0 0.57 v
Insertion Sort 17 13/34/0 1.28 4
Integer Square Root 11 8/15/0 0.63 V4
Leftist Heap 161 99 /178 / 11 4.33 4
Mijrty 25 33/12/0 2.56 v
OCaml List.fold_left 28 5/21/0 0.79 X
OCaml Stack 22 25 /27 /1 0.89 v
Pairing Heap 70 65 /101 / 29 2.30 X
Program Proofs 63 93 / 54 / 24 1.60 X
Same Fringe 23 22 /16 /0 0.78 v
Small-step Iterators 46 42 /52 / 2 2.01 X
Tree Height CPS 4 8/8/0 0.80 v
Union Find 67 36 /29 /7 6.19 v

Fig. 4. Summary of the case studies verified with the Cameleer tool.

the 1ist_fold function use a modular approach to reason about iteration [18].
Our largest case study to date is a toy compiler from arithmetic expressions
to a stack machine, while Union Find features the most involved, but very ele-
gant, specification. The former is inspired by the presentation in Nielsons’ text-
book [25]; the latter follows recently proposed specification techniques [7,12] to
achieve fully automatic proofs of correctness and termination.

The runtimes shown in Fig. 4 were measured by averaging over ten runs
on a Lenovo Thinkpad X1 Carbon 8th Generation, running Linux Mint 20.1,
OCaml 4.11.1, and Why3 1.3.3 (developer version). They show that Cameleer can
effectively verify realistic OCaml code in a decent amount of time. Following good
practices in deductive verification, Cameleer allows the user to write ghost code in
order to ease proof and specification. The number of lines of ghost code in Fig. 4
stands for ghost fields in record types, ghost functions, and lemma functions.
In particular, the arithmetic compiler example uses lemma functions to prove,
by induction, results about semantics preservation. Finally, case studies marked
with X required some form of manual interaction in the Why3 IDE [9]. These
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are very simple proofs by induction (of auxiliary lemmas) and case analysis, in
order to better guide SMT solvers.

From our experience developing this gallery of verified programs, we believe
the required annotation effort is reasonable, although non-negligible. Some case
studies, namely the Heap implementations, feature a considerable amount of lines
of GOSPEL specification. However, these are classic definitions (e.g., minimum
element) and results (e.g., the root of the Heap is the minimum element), which
are easily adapted to any variant of Heap implementation.

5 Related Work

Automated Deductive Verification. One can cite Why3, F* [1], Dafny [23], and
Viper [24] as successful automated deductive verification tools. Formal proofs are
conducted in the proof-aware language of these frameworks, and then executable
reliable code can be automatically extracted. In the Cameleer project, we chose
to develop a verification tool that accepts as input a program written directly in
OCaml, instead of a dedicated proof language. This obviates the need to re-write
entire OCaml codebases (e.g., libraries), just for the sake of verification.

Regarding tools that tackle the verification of programs written in main-
stream languages, one can cite Frama-C [21] (for the C language), VeriFast [20]
(C and Java), Nagini [10] (Python), Leon [22] (Scala), Spec# [3] (C#), and
Prusti [2] (Rust). Despite the remarkable case studies verified with these tools,
programs written in the these languages can quickly degenerate into a night-
mare of pointer manipulation and tricky semantics issues. We argue the OCaml
language presents a number of features that make it a better target for formal
verification.

Finally, language-based approaches offer an alternative path to the verifica-
tion of software. Liquid Haskell [34] extends standard Haskell types with Liquid
Types [29], a form of refinement types [30], in order to prove properties about
realistic Haskell programs [33]. In this approach, verification conditions are gen-
erated and discharged during type-checking. This is also its major weakness: in
order to remain decidable, the expressiveness of the refinement language is hin-
dered. In Cameleer, the use of GOSPEL allows us to provide rich specification to
relevant case studies, while still achieving good proof automation results.

Deductive Verification of OCaml Programs. Prior to our work, CFML [4] and
cog-of-ocaml [8] were the only available tools for the deductive verification of
OCaml-written code, via translation into the Coq proof language. On one hand,
CFML features an embedding of a higher-order Separation Logic in Coq, together
with a characteristic formulae generator. On the other hand, cogq-of-ocaml
compiles non-mutable OCaml programs to pure Gallina code. These two tools
have been successfully applied to the verification of non-trivial case studies, such
as the correctness and worst-case amortized complexity bound of cycle detection
algorithm [19], as well as part of the Tezos’ blockchain protocol®. However, they

5 https://clarus.github.io/coq-of-ocaml/examples/tezos/.
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still require a tremendous level of expertise and manual effort from users. Also, no
behavioral specification is provided with the OCaml implementation. The user
must write specification at the level of the generated code, which breaks our
vision that implementation and specification must coexist and evolve together.

The VOCal project aims at developing a mechanically verified OCaml
library [6]. One of the main novelties of this project is the combined use of
three different verification tools: Why3, CFML, and Coq. The GOSPEL specifi-
cation language was developed in the scope of this project, as a tool-agnostic
language that could be manipulated by any of the three mentioned frameworks.
Up to this point, the three mentioned tools were only using GOSPEL for inter-
face specification, and not as a proof language. We believe the Cameleer approach
nicely complements the existing toolchains [13] in the VOCaL ecosystem.

6 Conclusions and Future Work

In this paper we presented Cameleer, a tool for automated deductive verification
of OCaml programs, with bounded mutability. We use the recently proposed
GOSPEL language, which we also extended in the scope of this work, in order to
attach formal specification to an OCaml program. Cameleer fulfills a gap in the
OCaml community, by providing programmers with a tool to directly specify and
verify their implementations. By departing from the interactive-based approach,
we believe Cameleer can be an important step towards bringing more OCaml
programmers to include formal methods techniques in their daily routines.

The core of Cameleer is a translation from OCaml annotated code into
WhyML. The two languages share many common traits (both in their syntax and
semantics), so it makes sense to target this intermediate verification language in
the first major iteration of Cameleer. We have successfully applied our tool and
approach to the verification of several case studies. These include implementa-
tions issued from existing libraries, and scale up to data structures implemented
as functors and tricky effectful computations. In the future, we intend to apply
Cameleer to the verification of even larger case studies.

What We Do Not Support. Currently, we target a subset of the OCaml language
which roughly corresponds to caml-light, with basic support for the module
language (including functors). Also, WhyML limits effectful computations to the
cases where alias is information statically known, which limits our support for
higher-order functions and mutable recursive data structures. Adding support for
the objective layer of the OCaml language would require a major extension to the
GOSPEL language and a redesign of our translation into WhyML. Nonetheless,
Why3 has been used in the past to verify Java-written programs [15], so in
principle an encoding of OCaml objects in WhyML is possible.

We do not support some of the more advanced type features in OCaml, namely
Generalized Algebraic Data Types (GADTSs) and polymorphic variants. One
way to support such constructions would to be extend the type system of Why3
itself, which would likely mean a considerable redesign of the WhyML language.
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Another possible route is to extend the core of Cameleer with the ability to
translate OCaml code into other, richer, verification frameworks.

Interface with Viper and CFML. In order to augment the class of OCaml programs
we can treat, we plan on extending Cameleer to target the Viper infrastructure
and the CFML tool. On one hand, Viper is an intermediate verification language
based on Separation Logic but oriented towards SMT-based software verification,
allowing one to automatically verify heap-dependent programs. On the other
hand, the CFML tool allows one to verify effectful higher-order programs. We
plan on extending the CFML translation engine, in order to take source-code
level GOSPEL annotations into account. Since it targets the rich proof language
and type system of Coq, it can in principle be extended to reason about GADT's
and other advanced OCaml features. Even if it relies on an interactive proof
assistant, CFML provides a comprehensive tactics library that eases proof effort.

Our ultimate goal is to grow Cameleer to a verification tool that can simul-
taneously benefit from the best features of different intermediate verification
frameworks. Our motto: we want Cameleer to be able to verify parts of OCaml
code using Why3, others with Viper, and some very specific functions with CFML.
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Abstract. Multi-threaded unit tests for high-performance thread-safe
data structures typically do not test all behaviour, because only a single
scheduling of threads is witnessed per invocation of the unit tests. Model
checking such unit tests allows to verify all interleavings of threads. These
tests could be written in or compiled to LLVM IR. Existing LLVM IR
model checkers like DIVINE and Nidhugg, use an LLVM IR interpreter
to determine the next state. This paper introduces LLMC, a multi-core
explicit-state model checker of multi-threaded LLVM IR that translates
LLVM IR to LLVM IR that is executed instead of interpreted. A test
suite of 24 tests, stressing data structures, shows that on average LLMC
clearly outperforms the state-of-the-art tools DIVINE and Nidhugg.

1 Introduction

High-performance software often uses thread-safe data structures to allow mul-
tiple threads access to the data, without corrupting it. Unit tests for such data
structures typically do not test all behaviour, because the thread scheduler of
the run-time environment non-deterministically chooses only a single interleav-
ing. Thus, only a single trace is witnessed each time the unit test is invoked. If
we would model check [1] these unit tests, we can witness all possible traces by
exploring all thread schedules. Because it does not depend on the run-time envi-
ronment, model checking can become part of a continuous integration pipeline,
enabling push-button verification of multi-threaded software.

These thread-safe data structures can be written in or compiled to LLVM IR,
the intermediate representation of the LLVM Project [2]. The LLVM Project is
a collection of modular and reusable compiler and toolchain technologies. Many
front-ends for LLVM IR exist, for example for C, C+-+, Java, Ruby, and Rust,
potentially allowing an LLVM IR model checker to be usable for many languages.

1.1 Related Work

Model checkers that operate on LLVM IR already exist, for example DIVINE,
Nidhugg, RCMC and LLBMC. DIVINE [3] is a stateful multi-core model checker
of multi-threaded LLVM IR. It has many features such as capturing I/O during
model checking, SC and TSO memory models, library support such as 1ibc and
libpthread. Input programs are linked with DIVINE’s operating system layer,
DiOS, and are interpreted as a whole on the DiVM virtual machine.
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DIVINE detects memory operations to thread-private memory, by traversing
the heap on-the-fly and recognizing if a memory-object is either known only to
one thread or to multiple [4]. In the former case, memory operations to that
memory-object can be collapsed, i.e. joined with the previous instruction.

Nidhugg [5] is a stateless multi-core model checker of multi-threaded LLVM
IR that uses an LLVM IR interpreter. It features a sophisticated partial-order
reduction, rfsc [6], that categorizes traces according to which read reads from
which write and traverses only one trace in each category. In practice this reduc-
tion is quite powerful. However, Nidhugg comes with a caveat: because Nidhugg
is stateless, common prefixes of traces are traversed once per trace instead of
once in total. This down-side of a stateless approach becomes more pronounced
with longer and more often occurring common traces. Moreover, Nidhugg might
not terminate in the presence of infinite loops.

RCMC [7] is also a stateless LLVM IR model checker. During execution within
its LLVM IR interpreter, it keeps track of a happens-before graph of all observed
memory operations. Using this, RCMC can determine the possible values a read
can observe, without simply executing all interleavings of all threads. Unlike
Nidhugg, it does not support heap memory and is only released in binary form.

CBMC [8] is a bounded model checker for C and C++ programs, using SMT
solving to check for memory safety, exceptions, undefined behaviour and asser-
tions. Loops and recursion are a problem for CBMC when their bound cannot
be determined: one needs to set an upper bound on the number of unwindings.

LLBMC [9] is similar to CBMC, using SMT-solving to find bugs, but only
for single-threaded C/C++ programs and it operates on LLVM IR.

Other, less related tools include SMACK [10], SeaHorn [11] and KLEE [12].

1.2 Contribution

This paper introduces LLMC 0.2, a stateful multi-core model checker of multi-
threaded LLVM IR. Instead of using an LLVM IR interpreter like DIVINE,
Nidhugg and LLMmc 0.1 [13], it transforms input LLVM IR to LLVM IR that
implements the DMC API, the next-state interface to the model checker bmc [14].
We call this transformation process LL2DMC and combined with pmc (Fig.
1), it allows for up to three orders of magnitude higher throughput (states/s)
than DIVINE. At present, LLMC lacks sophisticated state space reductions, caus-
ing state space sizes of roughly two orders of magnitude larger than DIVINE. We
compared LLMC to DIVINE and Nidhugg using a test suite covering various data
structures. Overall, despite the lack of sophisticated reductions, LLMC is on aver-
age an order of magnitude faster than DIVINE and ~3.8x faster than Nidhugg.
Additionally, LLMC is able to compute the state spaces of the tests where DIVINE
or Nidhugg fail.

[} b -z ] [0 ], |~ Cma ] ] o ~[DMC

Fig. 1. The flow of how an LLVM IR input program is verified in LLMC.
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2 LLMC: Low-Level Model Checker

This section explains how the transformation process (LL2DMC) transforms the
input LLVM IR of a program to LLVM IR that implements the DMC API. LLMC
supports LLVM IR compiled from C and C++, by handling a number of builtins
(e.g. __atomic_* for atomic memory operations), part of libpthread (for thread
support), libc (e.g. for memory allocation) and global constructors.

2.1 DMC Model Checker

The model created by LL2DMC is given to DMC i
to explore. DMC interacts with the model via the i
DMC API (NEXTSTATE API and DTREE API com- }
bined) as illustrated in Fig. 2: after requesting !
the initial state from the model, DMC continues i |

NS APL

'

Search
Core DTREE API Model

The states are stored in the concurrent com-
pression tree DTREE [14], allowing lossless com-
pression, fast insertion and duplicate detection of  pig. 2. DMC model checker
states. When inserted, states are given a unique
StateID. A StateID can be stored in states as
well, thus allowing the creation of a DAG of states: a root-state and sub-states.
Additionally, DTREE allows incremental updates to a state, without having the
actual contents of the state and it allows partial reconstruction of states. This
delta interface uses the StatelD to identify states and can avoid needless copy-
ing of entire states, increasing performance. DMC exposes these DTREE features
as part of the DMC API [14].

to request successor states, until the state space prRen APT E
has been generated. A state is a vector of 32-bit State :
integers; two states need not be of the same length. Storage| |

2.2 Input Language to LL2DMC: LLVM IR

To understand how LLMC handles input LLVM IR [2], we briefly explain it here.
LLVM IR supports control flow by way of basic blocks. Basic blocks are a list of
instructions that execute sequentially. The last instruction of a basic block is a
terminator instruction, such as a branch (jump) instruction or return statement.

LLVM IR uses single static assignment form for register values. To support
data flow depending on control flow, ¢-nodes exist. These nodes are instructions
at the beginning of a basic block that take a value depending on the basic block
from which was jumped to the basic block containing the ¢-nodes.

2.3 Output of LL2DMC: Model Implementing DMC API

The output of LL2DMC is a model that implements the NEXTSTATE API part
of the DMC API of the model checker DMC [14]. The NEXTSTATE API requires
two interfaces from a model: one to communicate the initial state and one to
generate next states, given a state.
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The initial state of a model generated by LL2DMC is as if one just started
the program: registers are unused, global memory is initialized to 0 and a call to
the global constructor (@11vm.global_ctors) is set up. Global constructors are
functions that are called before main, which are used to initialize memory and
miscellaneous initialization, such that the executable is set up properly before
main is invoked. Having the initial state in this manner, allows the global con-
structor to be part of the state space and thus be checked as well.

Starting with the initial state, DMC will keep asking the model to generate
the next states for a given state, by invoking the next-state interface of the
model, until there are no more new states of which to request next states. Given
a state, the next-state interface determines the states reachable from that state.
In the case of a model generated by LL2DMC, first the global constructors of the
modelled program are explored, thus faults in global constructors are detected.
When the global constructors are completed, a call to main is set up. At this
point, the exploration is performed until no new states are visited.

2.4 State Space Exploration

This section describes the next-state function and how it is generated from LLVM
IR. Figure 3 describes what a state looks like. A state contains information not
unlike what an operating system keeps track of [15]. All instructions are mapped
to a unique index, such that the (program counter) uniquely identifies the
current position in code. The field holds the return values of
finished threads; the field specifies the number of threads in the current
state. The remainder of the state constitutes a list of per-thread data.

Each thread has its own and can independently manipulate it by function
calls or branching. fields are used to indicate whether the thread /program
is running, done or failed. Each thread has its own set of , the current
state of LLVM IR registers. The size of is determined by the function
requiring the largest number of LLVM IR registers. Function calls manipulate
these registers and the list of stack frames described by [Previous framel|.

A is a StateID to a sub-state, as described in Sect. 2.1. The separation
into a root-state and sub-states allows sub-states to grow and the state storage
component of DMC, DTREE, to compress them using tree compression [14]. It also
allows the use of the delta interface: a write to memory can be simply translated

Sub-state
Registers

b

Linked-list
of frames

: + Sub-state

revious : Return
frame |Reg|sters| PC Iregisterl

Sub-state Sub-state

o

| List of thread results | | Memory slab | |

Root-state

|Status #threadsI-Rrggﬁlat‘é Statusl TID | PC |Memory|Mesfngfy PF?;’A?;‘5| Registers ”"-I
[ T - - - = T =

NT T

Fig. 3. A description of the state used by LLMC.
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to a single, efficient call, taking the current index, the offset to write to
and the new data. The resulting index can be written to [Memory].

A single LLVM IR instruction in the program is translated to many LLVM IR
instructions in the model. We will distinguish LLVM IR registers in the model
from registers in the source program by calling the former model-registers. In
general, a single LLVM IR instruction is translated to a single step with three
phases: In the Preamble phase, operands to the source LLVM IR instruction
are remapped to model-registers and loaded from |[Registers| or Memory| In the
Action phase, the source LLVM IR instruction is cloned, with the operands
remapped to the LLVM IR model-registers set up during the Preamble phase.
In the Epilogue phase, if the source LLVM IR instruction assigns a value to a
register, the value returned by the cloned instruction is written to [Registers|.

Listing 1 illustrates how a step is performed as part of the next-state function.
Multiple steps can be performed as part of the same transition (line 8), as long
as the changes are local to the thread (line 4). This is explained in more detail
in Sect. 2.5. The step function is called for every thread in the state vector.

2.4.1 Register Manipulation

Note that the are not separated into a sub-state, like Memory|. We
chose this such that simple register manipulating LLVM IR instructions would
have no need for an indirection and directly translate to an identical instruction,
with its operands mapped such that they are loaded from the and the
return value of the instruction written back to the corresponding register. This
allows us to trivially collapse such instructions, combining the Preamble phases,
requiring dependencies only to be loaded once.

2.4.2 Memory Instructions

Memory instructions such as loads and stores can be directly mapped to the
delta interface, reading or writing only a part of the sub-state. There is
no distinction between memory allocated on the stack (alloca) and on the heap

Listing 1 In the next-state function, the step function is called for each thread.

1 void step(StateVector sv, int threadID)

2 bool onlylLocal = true; # true while handling commutative instructions
3 | bool emit = false; # set to true when new state is to be emitted
4 while(sv.threads[threadID].pc > 0 and onlyLocal)

5 switch(sv.threads[threadID] .pc)

6 case 0: break; # not running, do nothing

7 case SomePC: # PC of first instruction of group

8 # statically collapsed instructions: preamble, action, epilogue
9 # sv.threads[threadID].pc, onlyLocal and emit may change

10 c.

11 if(emit) MC.insert(sv); # emit new state if needed
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(malloc): both allocate memory by growing the sub-state. The returned
pointer describes which thread created the memory and the offset within the
sub-state. Any thread can write to and read from any such memory location.
At present, memory cannot be freed, so free has no effect. Because of the tree
compression, this has no detrimental effect on memory usage, but does mean
LLMC currently does not detect free-related bugs.

2.4.3 Branching, Function Calls and Threading

To support control flow in LLMC, the can be changed to the index assigned to
the first instruction in the target basic block. If the target basic block contains
¢-nodes, those registers are updated to the value corresponding to the basic
block we are branching from.

Function calls set up a new stack frame with the current [Registers|, [PC] and
where to write the return value, then pushes it to the linked list of frames pointed
to by [Previous frame|l. A return from a function pops the top frame from the
list of frames, copies the into the state vector, updates the and
writes the return value into the right register. There is no bound on the number
of frames; the last frame has set to 0, indicating no next frame.

Threads are created (pthread_create) by enlarging the root state with
enough space to fit another thread and incrementing [#threads| When a thread
is done, it is marked as such, but not removed from the state vector. This is to
retain the memory allocated by a thread. Due to the compression of DTREE, it has
little impact on the memory foot print of the state space. The return value from

the thread is added to [Thread results|, where it can be read (pthread_join).

2.5 State Space Reduction

Instructions that only have an effect local to a thread do not change the
behaviour of another thread. Such instructions are commutative; their respective
ordering is not relevant. Thus, such instructions can be collapsed with the pre-
vious or next instruction. For example, instructions that read and write only to
registers of a thread are local instructions and do not influence another thread.
Branching and function calls are other such commutative instructions.

LLMC collapses commutative instructions statically as well as dynamically. The
latter is needed to collapse instructions after conditional control flow, because
statically the condition is unknown. On-the-fly, the condition is evaluated, the
branch taken and it is determined if the next instruction can be collapsed.

2.5.1 Thread-Private Memory LLMC collapses all such commutative
instructions, with the important exception of memory operations on memory
only accessible to the current thread (memory operations to memory accessible
to other threads are never collapsed). This requires knowledge on what memory
each thread can access, which LLMC currently does not track. DIVINE imple-
ments [4] this by traversing the memory graph in every state, using a run-time
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type system to identify pointers and how to follow them (edges); each allocation
yields a node.

Nidhugg uses a partial-order-reduction [6] that takes into account from which
write a value read by a read originates. In this process, memory operations to
thread-private memory are indeed collapsed, because a read can read only a
single value: the last value written by the thread itself. The current version of
LLMC does not feature an on-the-fly state space reduction for memory operations.
Instead, we preprocess the input LLVM IR and statically annotate memory oper-
ations that cannot be proven to be local to a thread. While this does reduce the
state space, because many operations are to stack variables that remain thread-
private, it can only approach the on-the-fly reductions of DIVINE and Nidhugg.

3 Evaluation

Table 1 shows a feature comparison between the tools mentioned in Sect. 1.1.
The table shows that RCMC and CBMC do not support dynamic memory in
the presence of multiple threads. This limits their usability for our use case,
model checking multi-threaded tests of data structures, since numerous thread-
safe data structures use dynamic memory. Furthermore, RCMC, CBMC and
LLBMC do not support infinite loops and only have limited support for spin-
locks. More complex infinite loops like appending a new node in the Michael-
Scott queue [17] using compare-and-swap are not supported. Thus, we focus on
an experimental comparison between LLMC, DIVINE and Nidhugg on execution
time, memory footprint of the state space and scalability across multiple threads,
since all three tools support using multiple threads for model checking.

Table 1. A feature comparison between the tools mentioned in Sect. 1.1.

Supported Features
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pivine (3] 4.4.2 (5494190) LLVM IR | ST* v v v v v v v
Nidhugg [5] 0.2 (45664bc) LLVM IR || STPWA® v v v ~4 I A AR A A
RCMC [7] n/a LLVM IR || (W)RC1L v ~¥ ~¢ ~d a v
CBMC [8]  5.10 (ef00f47) C/Ct+ || STP* v ~b ~¢ ~d v v
LLBMC [9] 2013.1 LLVM IR| n/a /o~ v v
LLMC [13] 01 LLVMIR| STP* v v / / v /v
LLMC 0.2 (a732¢63) LLVM IR||  s° s v v /v v

¢ Models [16]: 8) Sequentially consistent; T) TSO; P) PSO; W) POWER; A) ARM.
Not supported in combination with threads.

€ Only trivial spin-locks are supported.

4 Threads within global constructors not supported.
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We ran our experiments on a Dell R930 with 4 E7-8890-v4 CPUs totaling 96
cores and 2 TiB RAM. All sources were compiled using GCC 9.3.0.

3.1 Test Suite

We tested the tools using four real-world concurrent LLVM IR data structures,
one concurrent algorithm and one protocol. Sources for all tests are available
online'. We instantiate the tests with various combinations of threads and num-
ber of elements inserted, processed or dequeued. All combinations are listed
later, in Table 2. These six tests cover different classes of problem types, differ-
ent shapes of state spaces, and serve to illustrate the strengths and weaknesses
of the tools:

— SortedLinkedList @ illustrates a concurrency problem where a number of
elements are inserted by a number of threads, with a single outcome: all paths
converge to one state. Elements can be inserted throughout the chain.

— LinkedList M, similar to SortedLinkedList @, but with various outcomes,
because the list is not sorted. It has high contention on the head of the chain.

— Prefixsum @ is a concurrent approach to determine all sums up to any index
in an array. It highlights the ability of the model checker to determine thread-
private memory, because the two-pass prefixsum algorithm actually partitions
the problem into separate per-thread problems that require no communication
and one single-threaded part.

— Hashmap ¢ illustrates a concurrency problem where a key is inserted using
compare-and-swap, followed by either atomically storing the value or busy-
waiting on the value, if the key already exists (findOrPut [18]). The latter
involves atomically loading the value until a non-empty value is loaded.

— MSQ A is the well-known Michael-Scott queue [17]. It is similar to LinkedList
M, with the addition of dequeue operations, which may return nothing when
the queue is empty. The dequeuer can be made blocking by calling dequeue
until it successfully dequeues an element; this is done in 2 and 4.

— Philosophers ' is the Dining Philosophers Problem [19], a commonly used
protocol to illustrate issues in concurrent resource management. It involves
P philosophers and P forks; each philosopher grabs their left fork, then the
right, then puts the right fork back, then the left. This is repeated R times.
The crux is that each fork is a shared resource for two philosophers. For our
tests suite, this illustrates contention on multiple elements in a single array.

These tests highlight the strengths and weaknesses of each tool using real-
world data structures and algorithms. The well-known Michael-Scott queue A
for example is used in many software packages. They reflect different kinds of
state spaces: LinkedList B focuses on “wide” state spaces, with many end states;
SortedLinkedList @ examples state spaces that go wide, but converge into a
single end state; Prefixsum @ highlights the model-checker’s ability to detect
thread-local memory: model checkers that can detect this have a narrow state
space, otherwise a model checker will explore all interleavings.

! https://github.com /bergfi/llmc /tree/cav2021 /tests/performance.
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3.2 Observations and Considerations

For each model, we verified that all expected end states were reachable. For
example for B, we manually verified that all 8!/(4!4!) = 70 possible outcomes of
the linked list were generated.

We witnessed DIVINE returning varying state space sizes across different runs
on the same test when using multiple threads, indicating a concurrency problem.
It also occasionally crashed, most often when using 192 threads. Even though this
indicates the answers DIVINE gives might not be correct, we opted to include the
results, assuming they would at least provide an indication of the performance.

Furthermore, we did run RCMC on a number of tests. RCMC often runs out
of memory before crashing; likely the result of an infinite loop. For even some
small tests, it could not finish within 100x the time other tools needed.

3.3 Experimental Results

Figure 4 shows the results of LLMC compared to DIVINE on state space explo-
ration time (4a) and Nidhugg on wall-clock time (4b) when applied to the models
from Table 2. These graphs indicate relative performance: the uppermost (blue)
line for example indicates the line where LLMC is 100x faster. Figure 4c compares
LLMC (lower data points) and DIVINE (upper data points) on the memory com-
pression of the state spaces they generate. Figure 4d compares LLMC (upper data
points) and DIVINE (lower data points) on the throughput of states per second.

3.3.1 LLMC vs DIVINE

Looking at the results in Fig. 4a, we see that LLMC outperforms DIVINE by at
least 5x in all test cases except Prefixsum ® and two SortedLinkedList @ tests.
LLMC suffers in the Prefixsum @ tests because of the lack of dynamic thread-
private memory detection. This results in significantly larger state spaces, up to
three orders of magnitude for @, as seen in Fig. 4c.

Comparing the sorted @ and non-sorted M linked list cases, we notice LLMC
is able to outperform DIVINE in the non-sorted cases by higher factors than the
sorted cases. This difference can be explained by that the two tools generate more
similarly sized state spaces for non-sorted M cases, but not for sorted @ cases.
For example, LLMC generates ~14.4x more states than DIVINE for @, but only
~2.2x more for B. This highlights LLMC is lacking a reduction technique, which
works for DIVINE in the sorted cases, but not as well for the non-sorted cases.

For the two Hashmap © cases that both tools completed, LLMC outperforms
DIVINE by 8.4x and 157x. Since the hash map is a single global memory object all
threads can access, LLMC does not have the disadvantage of lacking a dynamic
thread-private memory reduction. DIVINE crashed for the two other © test cases.

DIVINE is unable to complete two of the four Michael-Scott queue A tests,
crashing out, the others are verified 86x and 272x faster by LLMC than by DIVINE.

As the complexity of the Philosopher * test cases increases, LLMC increasingly
outperforms DIVINE. The two tools generate similarly sized state state spaces,
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Fig. 4. All experimental results, see Table 2 for a legend. Results above the DNF line
mean the tool on the y-axis Did Not Finish, not supporting the test.

because the high contention leaves relatively few memory instructions to be
collapsed by DIVINE’s reduction, thus levelling the playing field.

In summary, LLMC is able to outperform DIVINE in most of the test cases,
mostly between 10x-100x faster, with an outlier as high as 2450x faster (4).
This highlights the performance difference, as on average LLMC visits ~1.4M

Table 2. The six tests with various combinations of number of threads and ele-
ments, totaling 24 input programs. MSQ A configurations describe a combination of
Enqueuers and ([B]locking) Dequeuers in parallel (]|) and sequential (;).

SortedLinkedList

Threads Elements

006

Thrds Elems

2 8 8 2

2
3 6 3 6 4
3 9 3 9 6
4 8 4 8 6

Thrds Elems

80
80
60
90

3

& @ ® @

4
4
6

Thrds KV-pairs

9
12
16
12

Philosophers

Configuration

A E|[E|D|D T4 2
A EE[B;DIDID) B2 4 4
AE|E|E|D|D|D |3 4 8
AE|E|EDID [B] ||* 4 12
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states per second (~8.5M states/s for 4), where DIVINE visits ~4k states per
second (Fig. 4d).

3.3.2 LLMC vs Nidhugg

Moving on to Fig. 4b, we notice Nidhugg is unable to complete any of the
Michael-Scott queue A, Hashmap © or Philosopher * test cases. This is because
Nidhugg supports neither the __atomic_x* instructions needed for the Michael-
Scott queue A nor the spin-lock used in the Hashmap ¢ and Philosopher
tests. We tried Nidhugg’s transformation capabilities to transform the spin-lock
to an assume statement, thus limiting the traces traversed to the ones where
the condition of the spin-lock holds, but the generated LLVM IR was invalid
and could not be used. Additionally, we tried an experimental version (7b8be8a)
with a changelog containing potential fixes to no avail.

We see that Nidhugg outperforms LLMC in the Prefixsum @ test cases con-
sistently by multiple orders of magnitude: Nidhugg traverses only a single trace
for each of these test cases. This highlights the strength of Nidhugg in its ability
to conclude that each read can only read a single value. Without this technique,
LLMC needs to exhaustively go through all interleavings of the threads.

For the linked list, sorted @ and non-sorted M, we see that as the cases get
bigger, LLMC is able to outperform Nidhugg. This highlights the disadvantage
of stateless model checking: bigger state spaces tend to cause more common
prefixes of paths, which causes more work for stateless model checking.

3.3.3 Scalability

Figure 5 shows the results for various num- Py
ber of threads for SortedLinkedList3.9 @, N
chosen for the performance similarity of 300 ‘D\
the three tools. The graph shown is typ-
ical: other test expose similar patterns as
the one we highlight here. DIVINE does
not scale well in the number of threads: y
its peak performance lies typically around 30 ;‘{M

4 or 8 threads, confirmed by the DIVINE N
developers?. Nidhugg expectedly does scale i3 4 8 1624 48 96 1‘9.2
very well, as threads just execute a spe- Threads

cific trace, with hardly and communication.
LLMC shows some scalability, but a ~4x
improvement using 192 threads leaves a lot
of room for improvement?.

100 A \.

Total time (s)

Fig. 5. Scalability comparison of
DIVINE %, LLMC A, Nidhugg @.

2 https://divine.fi.muni.cz/trac/ticket /44.
3 https://github.com/bergfi/dmc /issues/1.
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3.3.4 DMC and DTREE

We highlight one aspect of the performance of LLMC: the underlying model
checker DMC and its storage component DTREE [14]. In Figure 4c, we notice
that although LLMC on average generates state spaces of an order of magnitude
larger compared to DIVINE, it uses two orders of magnitude less memory per
state, due to DTREE. Furthermore, DTREE allows to apply a delta to a state
without reconstructing the entire state. Since states are typically ~2kiB in these
tests, this significantly avoids copying memory and increases performance.

4 Conclusion

We have introduced LLMC 0.2%, the multi-threaded low-level model checker that
model checks software via LLVM IR. It translates the input LLVM IR into a
model LLVM IR that implements the DMC API, the APT of the high-performance
model checker DMC. This allows LLMC to execute the model’s next-state func-
tion, instead of interpreting the input LLVM IR, like DIVINE and Nidhugg. We
compared LLMC to these tools using a test suite of 24 tests, covering various
data structures. LLMC outperforms DIVINE and Nidhugg up to three orders of
magnitude, while other tests have shown areas for improvement. Averaging the
results of all completed tests, LLMC is an order of magnitude faster than DIVINE
and ~3.4x faster than Nidhugg. DIVINE and Nidhugg are unable to complete 4
and 12 tests, respectively, due to crashing or not supporting infinite loops or
__atomic_x library calls.

Future Work. LLMC will benefit most from a state space reduction technique that
collapses memory instructions to thread-private memory. We aim to integrate
this as part of a memory emulation layer that also adds support for relaxed
memory models. Even without the dynamic reduction technique, the results
show that LLMC in its current form is a high performing tool to model check
software.
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Abstract. A program verifier produces reliable results only if both the
logic used to justify the program’s correctness is sound, and the imple-
mentation of the program verifier is itself correct. Whereas it is common
to formally prove soundness of the logic, the implementation of a veri-
fier typically remains unverified. Bugs in verifier implementations may
compromise the trustworthiness of successful verification results. Since
program verifiers used in practice are complex, evolving software systems,
it is generally not feasible to formally verify their implementation.

In this paper, we present an alternative approach: we wvalidate suc-
cessful runs of the widely-used Boogie verifier by producing a certificate
which proves correctness of the obtained verification result. Boogie per-
forms a complex series of program translations before ultimately generat-
ing a verification condition whose validity should imply the correctness
of the input program. We show how to certify three of Boogie’s core
transformation phases: the elimination of cyclic control flow paths, the
(SSA-like) replacement of assignments by assumptions using fresh vari-
ables (passification), and the final generation of verification conditions.
Similar translations are employed by other verifiers. Our implementa-
tion produces certificates in Isabelle, based on a novel formalisation of
the Boogie language.

1 Introduction

Program verifiers are tools which attempt to prove the correctness of an imple-
mentation with respect to its specification. A successful verification attempt is,
however, only meaningful if both the logic used to justify the program’s correct-
ness is sound, and the implementation of the program verifier is itself correct. It
is common to formally prove soundness of the logic, but the implementations of
program verifiers typically remain unverified. As is standard for complex software
systems, bugs in verifier implementations can and do arise, potentially raising
doubts as to the trustworthiness of successful verification results.

© The Author(s) 2021
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One way to close this gap is to prove a verifier’s implementation correct.
However, such a once-and-for-all approach faces serious challenges. Verifying
an existing implementation bottom-up is not practically feasible because such
implementations tend to be large and complex (for instance, the Boogie ver-
ifier [29] consists of over 30K lines of imperative C# code), use a variety of
libraries, and are typically written in efficient mainstream programming lan-
guages which themselves lack a formalisation. Alternatively, one could develop
a verifier that is correct by construction. However, this approach requires the
verifier to be (re-)implemented in an interactive theorem prover (ITP) such as
Coq [14] or Isabelle [24]. This precludes the free choice of implementation lan-
guage and paradigm, exploitation of concurrency, and possibility of tight inte-
gration with standard compilers and IDEs, which is often desirable for program
verifiers [4,5,13,26]. Both verification approaches substantially impede software
maintenance, which is problematic since verifiers are often rapidly-evolving soft-
ware projects (for instance, the Boogie repository [1| contains more than 5000
commits).

To address these challenges, in this work we employ a different approach.
Instead of verifying the implementation once and for all, we wvalidate specific
runs of the verifier by automatically producing a certificate which proves the
correctness of the obtained verification result. Our certificate generation formally
relates the input and output of the verifier, but does so largely independently of
its implementation, which can freely employ complex languages, algorithms, or
optimisations. Our certificates are formal proofs in Isabelle, and so checkable by
an independent trusted tool; their guarantees for a certified run of the verifier
are as strong as those provided by a (hypothetical) verified verifier.

We apply our novel verifier validation approach to the widely-used Boogie
verifier, which verifies programs written in the intermediate verification language
Boogie. The Boogie verifier is a verification condition generator: it verifies pro-
grams by generating a verification condition (VC), whose validity is then dis-
charged by an SMT solver. Certifying a verifier run requires proving that valid-
ity of the VC implies the correctness of the input program. Certification of the
validity-checking of the VC is an orthogonal concern; our results can be combined
with work in that area [11,15,19] to obtain end-to-end guarantees.

Like many automatic verifiers, Boogie is a translational verifier: it performs
a sequence of substantial Boogie-to-Boogie translations (phases), simplifying the
task and output of the final efficient VC computation [6,18]. The key challenges
in certifying runs of the Boogie tool are to certify each of these phases, includ-
ing final VC generation. In particular, we present novel techniques for making
the following three key phases (and many smaller ones) of Boogie’s tool chain
certifying:

1. The elimination of loops (more precisely, cycles in the CFG) by reducing the
correctness of loops to checking loop invariants (CFG-to-DAG phase)

2. The replacement of assignments by (SSA-style) introduction of fresh variables
and suitable assume statements (passification phase)
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3. The final generation of the VC, which includes the erasure and logical encod-
ing of Boogie’s polymorphic type system [33] (VC phase).

The certification of such verifier phases is related to existing work on com-
piler verification [34] and validation [8,41,42]. However, the translations and the
certified property we tackle here are fundamentally different from those in com-
pilers. Compilers typically require that each execution of the target program
corresponds to an execution of the source program. In contrast, the encoding of
a program in a translational verifier typically has intentionally more executions
(for instance, allows more non-determinism). Moreover, translational verifiers
need to handle features not present in standard programming languages such as
assume statements and background theories. Prior work on validating such veri-
fier phases has been limited in the supported language and extent of the formal
guarantee; we discuss comparisons in detail in Sect. 8.

Contributions. Our paper makes the following technical contributions.

1. The first formal semantics for a significant subset of Boogie (including axioms,
polymorphism, type constructors), mechanised in Isabelle.

2. A validation technique for two core program-to-program translations occur-
ring in verifiers (CFG-to-DAG and passification).

3. A validation technique for the VC phase, handling polymorphism erasure and
Boogie’s type system encoding [31], for which no prior formal proof exists.

4. A version of the Boogie implementation that produces certificates for a sig-
nificant subset of Boogie.

Making the Boogie verifier certifying is an important result, reducing the
trusted code base for a wide variety of verification tools implemented via encod-
ings into Boogie, e.g. Dafny [31], VCC [13], Corral 28], and Viper [35]. Moreover,
the technical approach we present here can in future be applied to the certifica-
tion of the translations performed by these tools, and those based on comparable
intermediate verification languages such as Frama-C [26] and Krakatoa [17] based
on Why3 [16] and Prusti [4] and VerCors [10] based on Viper [35].

Outline. Section 2 explains at a high-level, how our validation approach is struc-
tured for the different phases. Section 3 introduces a formal semantics for Boogie.
Sections 4, 5 and 6 present our validation of the CFG-to-DAG, passification, and
VC phases, respectively. Section 7 evaluates our certificate-producing version of
Boogie. Section 8 discusses related work. Section 9 concludes. Further details are
available in our accompanying technical report (hereafter, TR) [37].

2 Approach

A Boogie program consists of a set of procedures, each with a specification and
a procedure body in the form of a (reducible) control-flow-graph (CFG), whose
blocks contain basic commands; we present the formal details in the next section.
Boogie verifies each procedure modularly, desugaring procedure calls according
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@ CFG-to-DAG @ Passification W VC Phase @
| ver(Go) = ver(Gh)  ver(Gs) = ver(Ga)  valid(VC) = ver(Gs) |

valid(VC) = ver(Gh)

Fig. 1. Key phases of verification in Boogie and their certification. The solid edges show
Boogie’s transformations on a procedure body; each node G; represents a control-flow-
graph. Our final certificate (dashed edge) is constructed by formally linking the three
phase certificates represented by the dotted edges. Each of the three phase certificates
also incorporate extra smaller transformations that we do not show here.

to their specifications. Verification is implemented via a series of phases: program-
to-program translations and a final computation of a VC to be checked by an
SMT solver. Our goal is to formally certify (per run of Boogie) that validity of
this VC implies the correctness of the original procedure.

To keep the complexity of certificates manageable, our technical approach is
modular in three dimensions: decomposing our formal goal per procedure in the
Boogie program, per phase of the Boogie verification, and per block in the CFG
of each procedure. This modularity makes the full automation of our certification
proofs in Isabelle practical. In the following, we give a high-level overview of this
modular structure; the details are presented in subsequent sections.

Procedure Decomposition. Boogie has no notion of a main program or an overall
program execution. A Boogie program is correct if each of its procedures is
individually correct (that is, the procedure body has no failing traces, as we
make precise in the next section). Boogie computes a separate VC for each
procedure, and we correspondingly validate the verification of each procedure
separately.

Phase Decomposition. We break our overall validation efforts down into per-
phase sub-problems. In this paper, we focus on the following three most substan-
tial and technically-challenging of these sequential phases, illustrated in Fig. 1.
(1) The CFG-to-DAG phase translates a (possibly-cyclic) CFG to an acyclic CFG
(¢f. Sect. 4). This phase substantially alters the CFG structure, cutting loops
using annotated loop invariants to over-approximate their executions. (2) The
passification phase eliminates imperative updates by transforming the code into
static single assignment (SSA) form and then replacing assignments with con-
straints on variable versions (cf. Sect. 5). Both of these phases introduce extra
non-determinism and assume statements (which, if implemented incorrectly could
make verification unsound by masking errors in the program). (3) The final VC
phase translates the acyclic, passified CFG to a verification condition that, in
addition to capturing the weakest precondition, encodes away Boogie’s polymor-
phic type system [33].

We construct certificates for each of these key phases separately (depicted
by the blue dotted lines in Fig. 1). For each phase, we certify that if the target
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of the translation phase is correct (a correct Boogie program for the first two
phases; a valid VC for the VC phase) then the source (program) of the phase is
correct. This modular approach lets us focus the proof strategy for each phase
on its conceptually-relevant concerns, and provides robustness against changes
to the verifier since at most the certification of the changed phases may need
adjustment. Logically, our per-phase certificates are finally glued together to
guarantee the analogous end-to-end property for the entire pipeline, depicted by
the green dashed edge in Fig. 1. For our certificates, we import the input and
output programs (and VC) of each key phase from Boogie into Isabelle; we do
not reimplement any of Boogie’s phases inside Isabelle.

The certificates of the key phases also incorporate various smaller transfor-
mations between the key phases, such as peephole optimisation. Our work also
validates these smaller transformations, but we focus the presentation on the key
phases in this paper. Boogie also performs several smaller translation steps prior
to the CFG-to-DAG phase. These include transforming ASTs to corresponding
CFGs, optimisations such as dead variable elimination, and desugaring proce-
dure calls using their specifications (via explicit assert, assume, and havoc state-
ments). Our approach applies analogously to these initial smaller phases, but our
current implementation certifies only the pipeline of all phases from the (input
to the) CFG-to-DAG phase onwards. Thus, our certificate relates Boogie’s VC
to the original source AST program so long as these prior translation steps are
correct.

CFG Decomposition. When tackling the certification of each phase, we further
break down validation of a procedure’s CFG in the source program of the phase
into sub-problems for each block in the CFG. We prove two results for each block
in the source CFG:

1. Local block lemmas: We prove an independent lemma for each source CFG
block in isolation, relating the executions through the block with the corre-
sponding block in the target program (or the VC generated for that block, in
the case of the VC phase). In particular, this lemma implies that if the target
block has no failing executions (or the VC generated for that block holds, for
the VC phase), neither does the source block for corresponding input states.

2. Global block theorems: We show analogous per-block results concerning all
executions from this block onwards extending to the end of the procedure in
question; we build these compositionally by reverse-topological traversal of
either the source or target CFGs, as appropriate. The global block theorem
for the entry block establishes correctness of the phase.

This decomposition separates command-level reasoning (local block lemmas)
from CFG-level reasoning (global block theorems). It enables concise lemmas
and proofs in Isabelle and makes each comprehensible to a human.
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3 A Formal Semantics for Boogie

Our certificates prove that the validity of a VC generated by Boogie formally
implies correctness of the Boogie CFG-to-DAG source program. This proof relies
crucially on a formal semantics for Boogie itself. Our first contribution is the first
such formal semantics for a significant subset of Boogie, mechanised in Isabelle.
Our semantics uses the Boogie reference manual [29], the presentation of its type
system [33], and the Boogie implementation for reference; none of those provide
a formal account of the language. For space reasons, we explain only the key
concepts of our detailed formalisation here; more details are provided in App.
A of the TR [37] and the full Isabelle mechanisation is available as part of our
accompanying artifact [36].

3.1 The Boogie Language

Boogie programs consist of a set of top-level declarations of global variables
and constants (the global data), axioms, uninterpreted (polymorphic) functions,
type constructors, and procedures. A procedure declaration includes parameter,
local-variable, and result-variable declarations (the local data), a pre- and post-
condition, and a procedure body given as a CFG.! CFGs are formalised as usual
in terms of basic blocks (containing a possibly-empty list of basic commands),
and edges; semantically, execution after a basic block continues via any of its
successors non-deterministically.

e =z | false | true | i | ey bop ez | uop(e) | f[7](€) | old(e) |
Ve:7.e|Jx:T.e|Vyt.e| Tyt €

7 u=1Int| Bool | C(T) |t c¢::= assumee |asserte|x:=e|havocz

Fig. 2. The syntax of our formalised Boogie subset, where 7, e, and ¢, denote the types,
expressions, and basic commands respectively; control-flow is handled via CFGs over
the basic commands. bop and uwop denote binary and unary operations, respectively.

The types, expressions, and basic commands in our Boogie subset are shown
in Fig. 2. We support the primitive types Int and Bool; types obtained via
declared type constructors are uninterpreted types; the sets of values such types
denote are constrained only via Boogie axioms and assume commands. Moreover,
types can contain type variables (for instance, to specify polymorphic functions).

Boogie expression syntax is largely standard (e.g. including typical arithmetic
and boolean operations). Old-expressions old(e) evaluate the expression e w.r.t.
the current local data and the global data as it was in the pre-state of the

! Source-level procedure specifications also include modifies clauses, declaring a set of
global variables the procedure may modify. As we tackle Boogie programs after pro-
cedure calls have been desugared, there are no modifies clauses in our formalisation.
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procedure execution. Boogie expressions also include universal and existential
value quantification (written Va : 7. e and Jx : 7. e), as well as universal and
existential type quantification (written Vy,t. e and 3y t. e). In the latter, ¢ is
bound in e and quantifies over closed Boogie types (i.e. types that do not contain
any type variables).

Basic commands form the single-steps of traces through a Boogie CFG;
sequential composition is implicit in the list of basic commands in a CFG basic
block and further control flow (including loops) is prescribed by CFG edges.
Boogie’s basic commands are assumes, asserts, assignments, and havocs; havoc x
non-deterministically assigns a value matching the type of variable x to x.

The main Boogie features not supported by our subset are maps and other
primitive types such as bitvectors. Boogie maps are polymorphic and impredica-
tive, i.e. one can define maps that contain themselves in their domain. Giving
a semantic model for such maps in a proof assistant such as Isabelle or Coq is
non-trivial; we aim to tackle this issue in the future. Modelling bitvectors will
be simpler, although maintaining full automation may require some additional
work.

3.2 Operational Semantics

Values and State Model. Our formalisation embeds integer and boolean values
shallowly as their Isabelle counterparts; an Isabelle carrier type for all abstract
values (those of uninterpreted types) is a parameter of our formalisation. Each
uninterpreted type is (indirectly) associated with a non-empty subset of abstract
values via a type interpretation map 7 from abstract values to (single) types;
particular interpretations of uninterpreted types can be obtained via different
choices of type interpretation 7.

One can understand Boogie programs in terms of the sets of possible traces
through each procedure body. Traces are (as usual) composed of sequences of
steps according to the semantics of basic commands and paths through the CFG;
these can be finite or infinite (representing a non-terminating execution). A trace
may halt in three cases: (1) an exit block of the procedure is reached in a state
satisfying the procedure’s postcondition (a complete trace),” (2) an assert A
command is reached in a state not satisfying assertion A (a failing trace), or
(3) an assume A command is reached in a state not satisfying A (a trace which
goes to magic and stops). Our formalisation correspondingly includes three kinds
of Boogie program states: a distinguished failure state F, a distinguished magic
state M, and normal states N((o0s, gs,ls)). A normal state is a triple of partial
mappings from variables to values for the old global state (for the evaluation of
old-expressions), the (current) global state, and the local state, respectively.

Ezxpression Evaluation. An expression e evaluates to value v if the (big-step)
judgement 7, A, I', 2 F {e,N(ns)) | v holds in the context (7, A, I, 2). Here, T

2 The case of the postcondition not holding is subsumed under point (2), since Boogie
checks postconditions by generating extra assert statements.
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assume i != 0 assume i !=0
! - Bo
j =0 j =0
while(i != 0) i
invj>=0A(i=0=3j>0) assertj >> 0A (i=0=>]>0) |B
{ \
if(i < 5){ assume i = 0
joi= g+l assert j Be
i:=1i-1
} By

assertj > 0

Fig. 3. Running example in source code and CFG representation, respectively.

is a type interpretation (as above), A is a variable context: a pair (G, L) of type
declarations for the global (G) and local (L) data. I' is a function interpretation,
which maps each function name to a semantic function mapping a list of types
and a list of values to a return value. The type substitution {2 maps type variables
to types.

The rules defining this judgement can be found in App. A.2 of the TR [37].
For example, the following rule expresses when a universal type quantification
evaluates to true (¢ is bound to the quantified type and may occur in e):

V7. closed(t) = T, A, I, 2(t — 7) I (e, ns) || true
T,AT,0Q2F (Vyt. e, ns) | true

The premise requires one to show that the expression e reduces to true for every
possible type 7 that is closed. In general, expression evaluation is possible only
for well-typed expressions; we also formalise Boogie’s type system and (for the
first time) prove its type safety for expressions in Isabelle.

Command and CFG Reduction. The (big-step) judgement 7, A, I, 2 F (¢, s) —
s’ defines when a command c reduces in state s to state s’; the rules are in
App. A.3 of the TR [37]. This reduction is lifted to lists of commands cs to
model the semantics of a single trace through a CFG block (the judgement
T,A, 1,02+t (cs,s) [—] s'). The operational semantics of CFGs is modelled by
the (small-step) judgement 7, A, I, 2,G 6 —cgg &', expressing that the CFG
configuration § reduces to configuration ¢’ in the CFG G. A CFG configuration
is either active or final. An active configuration is given by a tuple (inl(b,), s),
where b, is the block identifier indicating the current position of the execution
and s is the current state. A final configuration consists of a tuple (inr(()), s) for
state s (and unit value ()) and is reached at the end of a block that has either
no successors, or is in a magic or failure state.
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assume i != 0 B assume i != 0
=0 ’ j=e By
assert A
havoc i, j B
assume i = 0 B assume A | !
; 6
assertj > 0 assume i = 0 B
assumei < 5 assertj > 0| 0

joi=j+l By assume i < 5

j o=+l assume ! (i B}
i:=1-1

assert A Bi
assume false

Fig. 4. The CFG-to-DAG phase applied to the running example (source is left, target
is right). The back-edge (the red edge from Bs to B in the left CFG) is eliminated.
The blue commands are new. A is given by j >= 0 A (i = 0 = j > 0).

3.3 Correctness

A procedure is correct if it has no failing traces. This is a partial correctness
semantics; a procedure body whose traces never leave a loop is trivially cor-
rect provided that no intermediate assert commands fail. Procedure correctness
relies on CFG correctness. A CFG G is correct w.r.t. a postcondition ¢ and a
context (7, A, I', 2) in an initial normal state N(ns) if the following holds for all
configurations (r, s'):

T,A,T,02,Gt (inl(entry(G)),N(ns)) —=&gg (1,8') = [' #F A
(r=inr(()) = (Vns'. s =N(ns') = T, A, T, 2+ (Q,N(ns")) | true))]

where entry(G) is the entry block of G and — ¢ is the reflexive-transitive closure
of the CFG reduction. The postcondition is needed only if a final configuration
is reached in a normal state, while failing states must be unreachable. Whenever
we omit (), we implicitly mean the postcondition to be simply true. In our tool,
we consider only empty initial mappings {2, since we do not support procedure
type parameters (lifting our work to this feature will be straightforward).

For a procedure p to be correct w.r.t. a context, its body CFG must be correct
w.r.t. the same context and p’s postcondition, for all initial normal states N(ns)
that satisfy p’s precondition and which respect the context. For ns to respect a
context, it must be well-typed and must satisfy the axioms when restricted to its
constants. We say that p is correct, if it is correct w.r.t. all well-formed contexts,
which must have a well-typed function interpretation and a type interpretation
that inhabits every uninterpreted closed type (and only those).

Running Example. We will use the simple CFG of Fig. 3 as a running example,
intended as body of a procedure with trivial (true) pre- and post-conditions.
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The code includes a simple loop with a declared loop invariant, which functions
as a classical Floyd/Hoare-style inductive invariant, and for the moment can
be considered as an implicit assert statement at the loop head. The CFG has
infinite traces: those which start from any state in which i is negative. Traces
starting from a state in which i is zero go to magic; they do not reach the loop.
The program is correct (has no failing traces): all other initial states will result
in traces that satisfy the loop invariant and the final assert statement. If we
removed the initial assume statement, however, there would be failing traces: the
loop invariant check would fail if i were initially zero.

4 The CFG-to-DAG Phase

In this section, we present the validation for the CFG-to-DAG phase in the
Boogie verifier. This phase is challenging as it changes the CFG structure, inserts
additional non-deterministic assignments and assume statements, and must do
so correctly for arbitrary (reducible) nested loop structures, which can include
unstructured control flow (e.g. jumps out of loops).

4.1 CFG-to-DAG Phase Overview

The CFG-to-DAG phase applies to every loop head block identified by Boo-
gie’s implementation and any back-edges from a block reachable from the loop
head block back to the loop head (following standard definitions for reducible
CFGs [21]). Figure 4 illustrates the phase’s effect on our running example. Block
By is the (only) loop head here, and the edge from Bs to it the only back-edge
(completing looping paths via By and Bz or By and B4). An assert A state-
ment starting a loop head (like By) is interpreted as declaring A to be the loop
invariant.®> The CFG-to-DAG phase performs the following steps:

1. Accumulate a set Xy of all (local and global) variables assigned-to on any
looping path from the loop head back to itself. In our example, Xy is {i,5}.
2. Move the assert A statement declaring a loop invariant (if any) from the
loop head to the end of each preceding block (in our example: By and Bs).
3. Insert havoc statements at the start of the loop head block per variable in X g,
followed by a single assume A statement (preceding any further statements).
4. For each block with a back-edge to the loop head, delete the back-edge; if this
leaves the block with no successors, append assume false to its commands.*

The havoc-then-assume sequence introduced in step 3 can be understood as
generating traces for arbitrary values of Xy satisfying the loop invariant A,

3 In general, multiple asserts at the beginning of a loop head may form the invariant.
4 Omitting assume false if there are no successors would be incomplete, since otherwise
the postcondition would have to be satisfied.



714 G. Parthasarathy et al.

effectively over-approximating the set of states reachable at the loop head in the
original program. In particular, the remnants of any originally looping path (e.g.

1, BY, B, Bl) enforce that any non-failing trace starting from any such state
must (due to the assert added to block B in step 2) result in a state which
re-establishes the loop invariant. Such paths exist only to enforce this inductive
step (analogously to the premise of a Hoare logic while rule); so long as the
assert succeeds, we can discard these traces via step 4.

While we illustrate this step on a simple CFG, in general a loop head may
have multiple back-edges, looping structures may nest, and edges may exit multi-
ple loops. For the above translation to be correct, the CFG must be reducible and
loop heads and corresponding back-edges identified accurately, which is complex
in general. Importantly (but perhaps surprisingly), our work makes this phase
of Boogie certifying without explicitly verifying (or even defining) these notions.

4.2 CFG-to-DAG Certification: Local Block Lemmas

We define first our local block lemmas for this phase. Recall that these prove
that if executing the statements of a target block yields no failing executions,
the same holds for the corresponding source block; this result is trivial for source
blocks other than loop heads and their immediate predecessors, since these are
unchanged in this phase. To enable eventual composition of our block lemmas,
we need to also reflect the role of the assume and assert statements employed
in this phase. The formal statement of our local block lemmas is as follows®:

Theorem 1 (CFG-to-DAG Local Block Lemma). Let B be a source block
with commands csg, whose corresponding target block has commands cst. If B is
a loop head, let Xg be as defined in CFG-to-DAG step 1 (and empty otherwise)
and let A,re be its loop invariant (or true otherwise). If B is a predecessor of a
loop head, let Apost be the loop invariant of its successor (and true otherwise).
Then, if:

1. T,A, I, 2 F (ess, N(ns1)) [—] s)

2. Vsh. T, A, I, Q2+ {csT, N(ns2)) [—] sh = sh #F

3. Apre is satisfied in ns1, and nsy differs from nsy only on variables in Xy and
variables not defined in A

then: s} # F and if s} is a normal state, then (1) Apost is satisfied in sy, and (2)
if no assume false was added at the end of cst, then there is a target execution
in cst from N(nsz) that reaches a mnormal state that differs from s} only on
variables not defined in A.

The gist of this lemma is to capture locally the ideas behind the four steps of
the phase. For example, consequence (1) reflects that after the transformation,
any blocks that were previously predecessors of a loop head (B, and B in our
running example) will have an assert statement checking for the corresponding
invariant (and so if the target program has no failing traces, in each trace this
invariant will be true at that point).

5 We omit some details regarding well-typedness, handled fully in our formalisation.
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B} B;,
assume i1 < 5

assume I < 35 Bl |assume j3 = j2+1 By |assume !(il < 5) B
4

j o= g+l assume j4 = j3 assume j4 = j2

i:= i-l\ \ /

assume i2 = il-1
assertj >= 0A (i =0=3 > 0)| B
) ( . )| Bs assert j4 >= 0 A (i2 = 0 = j4 > 0)| BY
assume false

assume false

assumei != 0

Fig. 5. The passification phase applied to the branch in the running example with the
result on the right. The final (green) commands in B% and Bj are the synchronisation
commands. At the uppermost blocks shown here, the current versions of i and j are
il and j2, respectively. The full CFGs are shown in App. B of the TR [37].

4.3 CFG-to-DAG Certification: Global Block Theorems

We lift our certification to all traces through the source and target CFGs; the
statement of the corresponding global block theorems is similar to that of local
block theorems lifted to CFG executions, and for space reasons we do not present
it here, but it is included in our Isabelle formalisation. In particular, we prove
for each block (working in reverse topological order through the target CFG
blocks) that if executions starting in the target CFG block never fail, neither do
any executions starting from the corresponding source CFG block, and looping
paths modify at most the variables havoced according to step 3 of the phase.

The major challenge in these proofs is reasoning about looping paths in
the source CFG, since these revisit blocks. To solve this challenge, we perform
inductive arguments per loop head in terms of the number of steps remaining in
the trace in question.® Our global block theorem for a block B then carries as
an assumption an induction hypothesis for each loop that contains B. Proving
a global block theorem for the origin of a back-edge is taken care of by applying
the corresponding induction hypothesis.

This proof strategy works only if we have obtained the induction hypothesis
for the loop head before we use the global block theorem of the origin of a
back-edge (otherwise we cannot discharge the block theorem’s hypothesis). In
other words, our proof implicitly shows the necessary requirement that loop
heads (as identified by Boogie) dominate all back-edges reaching them without us
formalising any notion of domination, CFG reducibility, or any other advanced
graph-theoretic concept. This shows a major benefit of our validation approach
over a once-and-for-all verification of Boogie itself: our proofs indirectly check
that the identification of loop heads and back-edges guarantees the necessary
semantic properties without being concerned with how Boogie’s implementation
computes this information.

5 This may seem insufficient since traces can be infinite, but importantly a failing
trace is always finite, and our theorems need only eliminate the chance of failing
traces.
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Our approach applies equally to nested loops and more-generally to reducible
CFG structures; all corresponding induction hypotheses are carried through
from the visited loop heads. The requirement that no more than the havoced
variables Xy are modified in the source program is easily handled by showing
that variables modified in an inner loop are a subset of those in outer loops.
As for all of our results, our global block lemmas are proven automatically in
Isabelle per Boogie procedure, providing per-run certificates for this phase.

5 The Passification Phase

In this section, we describe the validation of the passification phase in the Boo-
gie verifier. Unlike the previous phase, passification makes no changes to the
CFG structure, but makes substantial changes to the program states (via SSA-
like renamings), substantially increases non-determinism, and employs assume
statements to re-tame the sets of possible traces.

5.1 Passification Phase Overview

The main goal of passification is to eliminate assignments such that a more effi-
cient VC can be ultimately generated [6,18,30]. In the Boogie verifier, this is
implemented as a single transformation phase that can be thought of as two
independent steps. Firstly, the source CFG is transformed into static single
assignment (SSA) form, introducing wversions (fresh variables) for each origi-
nal program variable such that each version is assigned at most once in any
program trace. In a second step, variable assignments are completely eliminated:
each assignment command x := e is replaced by assume z = e. Havoc statements
are simply removed; their effect is implicit in the fact that a new variable version
is used (via the SSA step) after such a statement.

Figure 5 shows the effect of this phase on four blocks of our running example
(the full figure of the target CFG is shown in App. B of the TR [37]). The
commands inserted just before the join block (here, BY) introduce a consistent
variable version (here, j4) for use in the join block. It is convenient to speak of
target variables in terms of their source program counterparts: we say e.g. that
j has version 4 on entry to block Bf.

Compared to traces through the source program, the space of variable values
in a trace through the target program is initially much larger; each version may,
on entry to the CFG, have an arbitrary value. For example, j4 may have any
value on entry to BY; traces in which its value does not correspond to the con-
straint of the assume statements in B or B} will go to magic and not reach BY.
Importantly, however, not all traces go to magic; enough are preserved to simu-
late the executions of the original program: each assume statement constrains the
value of exactly one variable version, and the same version is never constrained
more than once. Capturing this delicate argument formally is the main challenge
in certifying this step.
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As extra parts of the passification phase, the Boogie verifier performs constant
propagation and desugars old-expressions (using variable versions appropriate to
the entry point of the CFG). We omit their descriptions here for brevity, but our
implementation certifies them.

5.2 DPassification Certification: Local Block Lemmas

To validate the passification phase, it is sufficient to show that each source execu-
tion is simulated by a corresponding target execution, made precise by construct-
ing a relation between the states in these executions. Such forward simulation
arguments are standard for proving correctness of compilers for deterministic
languages. However, the situation here is more complex due to the fact that
the target CFG has a much wider space of traces: the values of each versioned
variable in the target program are initially unconstrained, meaning traces exist
for all of their combinations. On the other hand, many of these traces do not
survive the assume statements encountered in the target program. Picking the
correct single trace or state to simulate a particular source execution would
require knowledge of all variable assignments that are going to happen, which
is not possible due to non-determinism and would preclude the block-modular
proof strategies that our validation approach employs.

Instead, we generalise this idea to relating each single source state s with a
set T of corresponding target program states. We define variable relations Vg at
each point in a trace, making explicit the mappings used in the SSA step between
source program variables and their corresponding versions. For example, on entry
to block B} in the source version of our running example (correspondingly BjY
in the target), the Vg relation relates i to i1 and j to j2. All states t € T must
precisely agree with s w.r.t. Vg (e.g., s(i) = ¢(i1), s(j) = t(j2)). On the other
hand, our sets of states T' are defined to be completely unconstrained (besides
typing) for future variable versions. For example, for every ¢ € T at the same
point in our example, there will be states in T assigning each possible value (of
the same type) to 12 (and otherwise agreeing with ¢).

More precisely, for a set of variables X, we say that a set of states T' constrains
at most X w.r.t. variable context Aif, foreveryt € T, z ¢ X, zisin A, and value
v of 2’s type, we have t[z — v] € T. In other words, the set T is closed under
arbitrary changes to values of all variables in A but not in X. We construct our
sets T such that they constrain at most current and past versions of program
variables. It is this fact that enables us to handle subsequent assume statements
in the target program and, in particular, to show that the set of possible traces
in the target program never becomes empty while there are possible traces in
the source program. For example, when relating the source command j := j+1
in Bf with the target command assume j3 = j2 + 1in block BY, we use the fact
that our set of states does not constrain j3 to prove that, although many traces
go to magic at this point, for a non-empty set of states 7" C T (those in which
j3 has the “right” value equal to j2 + 1), execution continues in the target.
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We now make these notions more precise by showing the definition of our
local block lemmas for the passification phase (See footnote 5).

Theorem 2 (Passification Local Block Lemma). Let B be a source block
with commands cs, whose corresponding target block has commands cs'; let Vg
and Vi, be the variable relations at the beginning and end of B, respectively. Let
X be a set of variable versions, and N(ns) be a normal state. Let T be a non-
empty set of normal states such that N(ns) agrees with T according to Vg, and
T constrains at most X w.r.t. As. Furthermore, let Y be the variable versions
corresponding to the targets of assignment and havoc statements in cs. If both

1. A A, T, 02 F {es, N(ns)) [—=] s AN’ #M
2.XNY =0

then there exists a non-empty set of normal states T' C T s.t. T' constrains at
most X WY w.r.t. Ay and for each t' € T', there exists a state t'* s.t.

1. A Ao, I, 2 F (cso, t) [=] " AN (s = F=t"* = F)
2. If s’ is a normal state, then s" and t' are related w.r.t. Vi, (and t"™* =1t').

This lemma captures our generalised notion of forward simulation appropriately.
The first conclusion expresses that the target does not get stuck and that failures
are preserved, while the second shows that if the source execution neither fails nor
stops then the resulting states are related. Note that premise 2 is essential in the
proof to guarantee that the assume statements introduced by passification do not
eliminate the chance to simulate source executions; the condition expresses that
the variable versions newly constrained do not intersect with those previously
constrained. To prove these lemmas over the commands in a single block, we are
forced to check that the same version is not constrained twice.

5.3 Passification Certification: Global Block Theorems

As for all phases, we lift our local block lemmas to theorems certifying all exe-
cutions starting from a particular block, and thus, ultimately, to entire CFGs.
For the passification phase, most of the conceptual challenges are analogous
to those of the local block lemmas; we similarly employ Vg relations between
source variables and their corresponding target versions. To connect with our
local block lemmas (and build up our global block theorems, which we do back-
wards through the CFG structure), we repeatedly require the key property that
the set of variable versions constrained in our executions so far is disjoint from
those which may be constrained by a subsequent assume statement (cf. premise 2
of our local block lemma above). Concretely tracking and checking disjointness
of these concrete sets of variables is simple, but turns out to get expensive in
Isabelle when the sets are large.

We circumvent this issue with our own global versioning scheme (as opposed
to the versions used by Boogie, which are independent for different source vari-
ables): according to the CFG structure, we assign a global version number verg ()
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to each variable x in the target program such that, if = is constrained in a target
block B’ and y is constrained in another target block B” reachable from B’,
then verg(x) < verg(y). Such a consistent global versioning always exists in the
target programs generated by Boogie because the only variables not constrained
exactly once in the program are those used to synchronise executions (i.e. j4
in Fig. 5), which always appear right before branches are merged. We can now
encode our disjointness properties much more cheaply: we simply compare the
mazimal global version of all already-constrained variables with the minimal
global version of those (potentially) to be constrained. Since we represent vari-
ables as integers in the mechanisation, we directly use our global version as the
variable name for the target program; there is no need for an extra lookup table.
Note that (readability aside) it makes no difference which variables names are
used in intermediate CFGs; we ultimately care only about validating the original

CFG.

6 The VC Phase

In this section, we present the validation of the VC phase in the Boogie verifier.
This phase has two main aspects: (1) it encodes and desugars all aspects of the
Boogie type system, employing additional uninterpreted functions and axioms to
express its properties [33]; program expression elements such as Boogie functions
are analogously desugared in terms of these additional uninterpreted functions,
creating a non-trivial logical gap between expressions as represented in the VC
and those from the input program. (2) It performs an efficient (block-by-block)
calculation of a weakest precondition for the (acyclic, passified) CFG, resulting
in a formula characterising its verification requirements, subject to background
axioms and other hypotheses.

6.1 VC Structure

The generated VC has the following overall structure (represented as a shallow
embedding in our certificates)”:

YV VC quantifiers . ( VC assumptions —> CFG WP)
—_———— | ——
type encoding parameters, type encoding,
functions, variable values func./var./prog. axioms

The VC quantifies over parameters required for the type encoding, as well as
VC counterparts representing the variable values and functions in the Boogie
program. The VC body is an implication, whose premise contains: (1) assump-
tions that axiomatise the type encoding parameters, (2) axioms expressing the
typing of Boogie variables and functions, and (3) assumptions directly relating

" Note that top-level quantification over functions is implicit in the (first-order) SMT
problem generated by Boogie; we quantify explicitly in our Isabelle representation.
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to axioms explicitly declared in the Boogie program. The conclusion of the impli-
cation is an optimised version of the weakest (liberal) precondition (WP) of the

CFG.®

6.2 Boogie’s Logical Encoding of the Boogie Type System

We first briefly explain Boogie’s logical encoding of its own type system. Values
and types are represented at the VC level by two uninterpreted carrier sorts
V and T. An uninterpreted function typ from V to T maps each value to the
representation of its type. Boogie type constructors are each modelled with an
(injective) uninterpreted function C' with return sort 7' and taking arguments
(per constructor parameter) of sort T. For example, a type constructor List(t)
is represented by a VC function from T to T. Projection functions are also
generated for each type constructor (CT for each type argument at position i),
e.g. mapping the representation of a type List(t) to the representation of type ¢.

This encoding is then used in the VC to recover Boogie typing constraints for
the untyped VC terms. Recovering the constraints is not always straightforward
due to optimisations performed by Boogie. For example, the VC translation
of the Boogie expression V, ¢. V& : List(t). e no longer quantifies over types;
all original occurrences of ¢ in e having been translated to List] (typ(z)). This
optimisation reflects that this particular type quantification is redundant, since
t can be recovered from the type of 2.

6.3 Working from VC Validity

Our certificates assume that the generated VC is valid (certifying the validity-
checking of the VC by an SMT solver is an orthogonal concern). However, con-
necting VC validity back to block-level properties about the specific program
requires a number of technical steps. We need to construct Isabelle-level seman-
tic values to instantiate the top-level quantifiers in the VC such that the corre-
sponding VC assumptions (left-hand side of the VC) can be proved and, thus,
validity of the corresponding WP can be deduced. Moreover, we must ensure
that our instantiation yields a WP whose validity implies correctness of the Boo-
gie program. For example, a top-level VC quantifier modelling a Boogie function
f must be instantiated with a mathematical function that behaves in the same
way as f for arguments of the correct type.

We instantiate the carrier sort V for values in the VC with the corresponding
type denoting Boogie values in our formalisation; the carrier sort T for types
is instantiated to be all Boogie types that do not contain free variables (i.e.
closed types). Constructing explicit models for the quantified functions used to

8 One difference in our version of the Boogie verifier is that we switched off the gen-
eration of extra variables introduced to report error traces [32]; these are redundant
for programs that do not fail and further complicate the VC structure.

9 Note that in the VC the quantification over x ranges over all values of sort V. An
implication is used to consider only those x for which typ(x) = List(ListT (typ(z))).
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model Boogie’s type system (satisfying, e.g., suitable inverse properties for the
projection functions) is straightforward. For the VC-level variable values, we can
directly instantiate the corresponding values in the initial Boogie program state.

VC-level functions representing those declared in the Boogie program are
instantiated as (total) functions which, for input values of appropriate type (the
arguments and output are untyped values of sort V'), are defined simply to return
the same values as the corresponding function in our model. However, perhaps
surprisingly, Boogie’s VC embedding of functions logically requires functions to
return values of the specified return type even if the input values do not have the
types specified by the function. In such cases, we define the instantiated function
to return some value of the specified type, which is possible since in well-formed
contexts every closed type has at least one value in our model.

After our instantiation, we need to prove the hypotheses of the VC’s impli-
cation; in particular that all axioms (both those generated by the type system
encoding and those coming from the program itself) are satisfied. The former
are standard and simple to prove (given the work above), while the latter largely
follow from the assumption that each declared axiom must be satisfied in the
initial state restricted to the constants. The only remaining challenge is to relate
VC expressions with the evaluation of corresponding Boogie expressions; an issue
which also arises (and is explained) below, where we show how to connect validity
of the instantiated WP to the program.

6.4 Certifying the VC Phase

Boogie’s weakest precondition calculation is made size-efficient by the usage
of explicit named constants for the weakest preconditions wp(B, true) for each
block B, which is defined in terms of the named constants for its successor blocks.
For example, in Fig. 5, wp(BY,true) is given by iY¢ # 0 = wp(BY, true) A
wp(BY, true). Here i}° is the value that we instantiated for the variable il.

We exploit this modular construction of the generated weakest precondition
for the local and global block theorems. We prove for each block B with com-
mands cs the following local block lemma:

Theorem 3 (VC Phase Local Block Lemma).
If A, A, T, 2 F (cs, N(ns)) [—] s’ and wp(B, true) holds, then s’ # F and if s’ is
a normal state, then VBgy. € successors(B). wp(Bsye, true).

Once one has proved this lemma for all blocks in the CFG, combining them
to obtain the corresponding global block theorems (via our usual reverse walk
of the CFG) is straightforward. The main challenge is in decomposing the proof
for the local block lemma itself for a block B, for which we outline our approach
next.

By this phase, the first command in B must be either an assume e or an
assert e command. In the former case, we rewrite wp(B, true) into the form
e’ =— H, where e"¢ is the VC counterpart of e and where H corresponds
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to the weakest precondition of the remaining commands. This rewriting may
involve undoing certain optimisations Boogie’s implementation performed on the
formula structure. Next, we need to prove that e evaluates to e¥¢ (see below).
Hence, if e evaluates to true (the execution does not go to magic) then A must
be true, and we can continue inductively. The argument for assert e is similar
but where we rewrite the VC to €' A H (i.e. €'“ and H must both hold); if e
evaluates to €'¢, we know that the execution does not fail.

Proving that e evaluates to ¢ arises in both cases and also in our previous
discharging of VC hypotheses. Note that, in contrast to e, "¢ is not a Boogie
expression, but a shallowly embedded formula that includes the instantiations of
quantified variables we constructed above. Showing this property works largely
on syntax-driven rules that relate a Boogie expression with its VC counterpart,
except for extra work due to mismatching function signatures and optimisations
that Boogie made either to the formula structure or via the type system encoding
(¢f. Sect. 6.2). We handle some of these cases by showing that we can rewrite
the formula back into the unoptimised standard form we require for our syntax-
driven rules and in other cases we directly work with the optimised form. Both
cases are automated using Isabelle tactics.

This concludes our discussion of the certification of Boogie’s three key phases.
Combining the three certificates yields an end-to-end proof that the validity of
the generated verification conditions implies the correctness of the input program,
that is, that the given verification run is sound.

7 Implementation and Evaluation

In this section, we evaluate our certifying version of the Boogie verifier [36],
which produces Isabelle certificates proving the correctness of Boogie’s pipeline
for programs it verifies.

We have implemented our validation tool as a new C# module compiled with
Boogie. We instrumented Boogie’s codebase to call out to our module, which
allows us to obtain information that we can use to validate the key phases, and
extended parts of the codebase to extract information more easily. Moreover, we
disabled counter-example related VC features and the generation of VC axioms
for any built-in types and operators that we do not support. We added or changed
fewer than 250 non-empty, uncommented lines of code across 11 files in the
existing Boogie implementation.

Given an input file verified by Boogie, our work produces an Isabelle certifi-
cate per procedure p that certifies the correctness of the corresponding CFG-to-
DAG source CFG as represented internally in Boogie. The generation and check-
ing of the certificate is fully automatic, without any user input. We use a combi-
nation of custom and built-in Isabelle tactics. In addition to the three key phases
we describe in detail, our implementation also handles several smaller transforma-
tions made by Boogie, such as constant propagation. Our tool currently supports
the default options of Boogie (only) and does not support advanced source-level
attributes (for instance, to selectively force procedures to be inlined).
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Table 1. Selection of algorithmic examples with the lines of code (LOC), the number
of procedures (#P), the time it takes for Isabelle to check the certficate in seconds (the
average of 5 runs on a Lenovo T480 with 32 GB, i7-8550U 1.8 GhZ, Ubuntu 18.04 on
the Windows Subsystem for Linux), and the certificate size expressed as the number
of non-empty lines of Isabelle.

Name LOC | #P | Time [s] | Size
TuringFactorial 29 1 19.4 | 1986
Find 27 2 27.3 2100
DivMod 69 2 28.4 4753
Summax [27] 23 | 1 19.1 | 1953
MaxOfArray [12] 22 | 1 | 199 | 1944
SumOfArray [12] 22 |1 18.7 1534
Plateau [12] 50 | 1 22.9 2019
WelfareCrook [12] 52 | 1 39.4 2528
ArrayPartitioning [12] | 57 | 2 27.6 |3514
DutchFlag [12] 76 | 2 52.8 3994

We evaluated our work in two ways. Firstly, to evaluate the applicability
of our certificate generation, we automatically collected all input files with at
least one procedure from Boogie’s test suite [1] which verify successfully and
which either use no unsupported features or are easily desugared (by hand) into
versions without them. This includes programs with procedure calls since Boogie
simply desugars these in an early stage. For programs employing attributes, we
checked whether the program still verifies without attributes, and if so we also
kept these. In total, this yields 100 programs from Boogie’s test suite. Secondly,
we collected a corpus of ten Boogie programs which verify interesting algorithms
with non-trivial specifications: three from Boogie’s test suite and seven from the
literature [12,27]. Where needed we manually desugared usages of Boogie maps
(which we do not yet support) using type declarations, functions, and axioms.

Of the 100 programs from Boogie’s test suite, we successfully generate cer-
tificates in 96 cases. The remaining 4 cases involve special cases that we do not
handle yet. For 2 of them, extending our work is straightforward: one special
case includes a naming clash and the other case can be amended by using a more
specific version of a helper lemma. The remaining two fail because of our incom-
plete handling of function calls in the VC phase when combined with coercions
between VC integers or booleans and their Boogie counterparts. Handling this
is more challenging but is not a fundamental issue.

For the corpus of 10 examples, Table 1 shows the generated certificate size
and the time for Isabelle to check their validity.'® The ratio of certificate size to
code size ranges from 41 to 89; this rather large ratio emphasises the substantial
work in formally validating the substantial work which Boogie’s implementation

10 The time to generate the certificate is not included, but is negligible here.
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performs. Optimisations to further reduce the ratio are possible. The validation
of certificates takes usually under one second per line of code. While these times
are not short, they are acceptable since certificate generation needs to run only
for (verified) release versions of the program in question.

8 Related Work

Several works explore the validation of program verifiers. Garchery et al. [20]
validate VC rewritings in the Why3 VC generator [16]. Unlike our work, they do
not connect VCs with programs and do not handle the erasure of polymorphic
types. Strub et al. [39] validate part of a previous version of the F* verifier [40]
by generating a certificate for the F* type checker itself, which type checks
programs by generating VCs. Like us, they assume the validity of the generated
VC itself, but they do not consider program-to-program transformations such
as ours. Another approach is taken by Aguirre [2] who shows how one can map
proofs of the VC back to correctness of an F* program. They prove a once-and-
for-all result, but the approach could be lifted to a validation approach using
the proof-producing capability of SMT solvers [7]. Lifting the approach would
require extending the work to handle classical instead of constructive VC proofs.

There is some work on proving VC generator implementations correct once
and for all, although none of the proven tools are used in practice. Homeier and
Martin [23] prove a VC generator correct in HOL for an executable language
and a simpler VC phase than Boogie’s. Herms et al. [22] prove a VC genera-
tor inspired by Why3 correct in Coq. However, some more-challenging aspects
of Why3’s VC transformation and polymorphic type system are not handled.
Vogels et al. [44] prove a toolchain for a Boogie-like language correct in Coq,
including passification and VC phases. However, the language is quite limited:
without unstructured control flow, loops (i.e. no need for a CFG-to-DAG phase),
functions, or polymorphism (i.e. no type encoding). Verifiers other than VC
generators, include the verified Verasco static analyzer [25], which supports a
realistic subset of C, but whose performance is not yet on par with unverified,
industrial analyzers.

Validation has also been explored in other settings. Alkassar et al. [3] adjust
graph algorithms to produce witnesses that can be then used by verified valida-
tors to check whether the result is correct. In the context of compiler correctness,
many validation techniques express a per-run validator in Coq, prove it correct
once-and-for-all [8,41,43], and then extract executable code (the extraction must
be trusted). In the verified CompCert compiler [34], such validators have been
used in combination with the once-and-for-all approach. Validators are used for
phases that can be more easily validated than proved correct once and for all.
One such example related to our certification of the passification phase is the
validation of the SSA phase [8], dealing also with versioned variables in the tar-
get (but not with assume statements that prune executions). In contrast to our
work, they require an explicit notion of CFG domination and they do not use a
global versioning scheme to efficiently check that two parts of the CFG constrain
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disjoint versions. Our versioning idea is similar to a technique used for the valida-
tion of a dominator relation in a CFG [9], which assigns intervals to basic blocks
(as opposed to assigning versions to variables) to efficiently determine whether a
block dominates another one. The validation of the Cogent compiler [38] follows
a similar approach to ours in that it generates proofs in Isabelle.

9 Conclusion

We have presented a novel verifier validation approach, and applied it successfully
to three key phases of the Boogie verifier, providing formal underpinnings for
both the language and its verifier for the first time. Our work demonstrates that
it is feasible to provide strong formal guarantees regarding the verification results
of practical VC generators written in modern mainstream languages.

In the future, we plan to extend our supported subset of Boogie, e.g.
to include procedure calls and bitvectors. Supporting Boogie’s potentially-
impredicative maps is the main open challenge: maps can take other maps as
input, potentially including themselves. The challenge with this feature is to
still be able to express a type in Isabelle capturing all Boogie values despite the
potentially-cyclic nature of map types. In practice, however, this may not be
required in full generality: we have observed that Boogie front-ends rarely use
maps that contain maps of the same type as input. Therefore, we plan to extend
our technique to support a suitably-expressive restricted form of Boogie maps.
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Abstract. Verification of instruction encoders and decoders is essential
for formalizing manipulation of machine code. The existing approaches
cannot guarantee the critical consistency property, i.e., that an encoder
and its corresponding decoder are mutual inverses of each other. We
observe that consistent encoder-decoder pairs can be automatically
derived from bijections inherently embedded in instruction formats.
Based on this observation, we develop a framework for writing specifica-
tions that capture these bijections, for automatically generating encoders
and decoders from these specifications, and for formally validating the
consistency and soundness of the generated encoders and decoders by
synthesizing proofs in Coq and discharging verification conditions using
SMT solvers. We apply this framework to a subset of X86-32 instructions
to illustrate its effectiveness in these regards. We also demonstrate that
the generated encoders and decoders have reasonable performance.

Keywords: Formalized instruction formats - Verified parsing -
Program synthesis + Proof synthesis - Translation validation

1 Introduction

Software that manipulates machine code such as compilers, OS kernels and
binary analysis tools, relies on instruction encoders and decoders for extract-
ing structural information of instructions from machine code and for translating
such information back into binary forms. Because of the sheer amount of instruc-
tions provided by any instruction set architecture (ISA) and the complexity of
instruction formats, it is extremely tedious and error-prone to implement instruc-
tion encoders and decoders by hand. Therefore, the literature contains abundant
work on automatic generation of instruction encoders and decoders, often from
specifications written in a formal language capable of concisely and accurately
characterizing instruction formats on various ISAs [7,12,15].

Unfortunately, the above approaches generate little formal guarantee, there-
fore not suitable for rigorous analysis or verification of machine code. In those
settings, instruction encoders and decoders are expected to be consistent, i.e.,
any encoder and its corresponding decoder are inverses of each other, and sound,
i.e., they meet formal specifications of instruction formats that human could eas-
ily understand and check.
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Consistency is essential for verification of machine code because it guaran-
tees that manipulation and reasoning over the abstract syntax of instructions
can be mirrored precisely onto their binary forms. For example, verification of
assemblers requires that instruction decoding reverts the assembling (encod-
ing) process [20]. However, the previously proposed approaches to verifying
instruction encoders and decoders all fail to establish consistency: to handle the
complexity of instruction formats (especially that of CISC architectures), they
employ expressive but ambiguous specifications such as context-free grammars
or variants of regular expressions, from which it is impossible to derive consistent
encoders and decoders. A representative example is the bidirectional grammar
proposed by Tan and Morrisett [18]. It is an extension of regular expressions
for writing instruction specifications from which verified encoders and decoders
can be generated. However, because of the ambiguity of such specifications, two
different abstract instructions may be encoded into the same bit string (i.e., a
sequence of bits). When the decoder is deterministic, not all encoded instructions
can be decoded back to the original instructions.

In this paper, we present an approach to automatic construction of instruc-
tion encoders and decoders that are verified to be consistent and sound. It is
based on the observation that an instruction format inherently implies a bijec-
tion between abstract instructions and their binary forms that manifests as the
determinacy of instruction decoding in actual hardware. This is true even for the
most complicated CISC architectures. From a well-designed instruction specifica-
tion that precisely captures this bijection, we are able to extract an appropriate
representation of instructions, a pair of instruction encoder and decoder between
this representation and the binary forms of instructions, and the consistency and
soundness proofs of the encoder and decoder.

Based on the above ideas, we develop a framework for automatically generat-
ing consistent and sound instruction encoders and decoders. It extends the app-
roach to specifying and generating instruction encoders and decoders proposed
by Ramsey and Fernandez [15] with mechanisms for validating their soundness
and consistency by using theorem provers and SMT solvers. The framework con-
sists of the following components (which are also our technical contributions):

— A specification language for describing instruction formats. This language
is deliberately weaker in expressiveness than regular expressions while strong
enough for describing instruction formats on common ISAs. Different from the
existing ISA specification languages, it is rich enough for precisely capturing
the syntactical structures of instructions and their operands, which implicitly
encode a bijection between the abstract and the binary representations of
instructions.

— The algorithms for automatically generating encoders and decoders from
instruction specifications. Given any instruction specification, they generate
an abstract syntax of instructions, a partial function from the abstract syntax
to bit strings (i.e., an encoder) and a partial function from bit strings to the
abstract syntax (i.e., a decoder). The generated definitions are formalized in
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the Coq theorem prover so that the encoder and decoder can be formally
validated later.

— The algorithms for automatically validating the consistency and soundness of
the generated encoders and decoders. Given any instruction specification, they
synthesize the consistency and soundness proofs for the generated encoder
and decoder in Coq. This is possible because the bijection implied by the
original specification guarantees that the encoder and decoder are inverses
of each other, under the requirement that the binary “shapes” of different
instructions or operands do not overlap with each other. This requirement is
inherently satisfied by any instruction format, and can be easily proved with
SMT solvers.

To demonstrate the effectiveness of our framework, we have applied it to a
subset of 32-bit X86 instructions. In the rest of this paper, we first introduce
relevant background information for this work and discuss the inadequacy of the
existing work in Sect. 2. We then give an overview of our framework in Sect. 3
by further elaborating on the points above. After that, we discuss the definition
of our specification language and the ideas supporting its design in Sect. 4. In
the two subsequent sections Sect. 5 and Sect. 6, we discuss the algorithms for
automatically generating and validating encoders and decoders. In Sect. 7, we
present the evaluation of our framework. Finally, we discuss related work and
conclude in Sect. 8.

2 Background

For our approach to work, the specification language we use must support the
instruction formats on contemporary RISC and CISC architectures. In this
section, we first introduce the key characteristics of these formats and then
present a running example. We conclude this section by exposing the inadequacy
of the existing approaches in capturing the bijections between the abstract and
binary forms of instructions.

2.1 The Characteristics of Instruction Formats

Base[2:0]

Fig. 1. The format of 32-bit X86 instructions

Instruction formats on CISC architectures may vary in length and structure
even for the same type of instructions and may contain complex dependencies
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between their operands. In contrast, instructions on RISC architectures usually
have fixed formats which are largely subsumed by CISC formats. Therefore, we
focus on handling CSIC formats in this paper.

We use the format of 32-bit X86 instructions as an example to illustrate the
complex characteristics of CISC instructions. It is depicted in Fig. 1. An instruc-
tion is divided into a sequence of tokens where each token is one or more bytes
playing a particular role. The first token Opcode partially or fully determines
the basic type of the instruction; it may be one to three bytes long. Follow-
ing Opcode is an one-byte token ModRM. ModRM is further divided into
a sequence of fields where a field f[n; : ng] represents a segment of the token
named f that occupies the no-th to ni-th bits in that token. Depending on the
value of Opcode, ModRM may or may not exist. When it exists, the value
of Reg_op[5:3] may contain the encoded representation of a register operand.
Another operand of the instruction may be an addressing mode. It is collectively
determined by the values of Mod[7:6], RM[2:0], the token SIB (scaled index
byte) and the displacement Disp following ModRM. Finally, the instruction
may have an operand of immediate values in the token Imms.

For simplicity of our discussion, we have omitted some details such as the
optional prefixes of instructions in Fig. 1. However, this simplified form is already
enough to expose the key characteristics and complexity of CISC instruction
formats (some of which also manifest in RISC). We summarize them below:

1. Instructions as Composition of Components: At the abstract level, an instruc-
tion consists of a collection of components. Each component serves a specific
purpose and concretely corresponds to certain fields or tokens in the instruc-
tion format. For example, the constituents of 32-bit X86 instructions can be
classified into four different kinds of components (marked with different colors
in Fig.1): the component determining the types of instructions (Opcode),
the component denoting register operands (Reg-op[5:3]), the component
denoting addressing modes (Mod[7:6], RM[2:0], SIB and Disp) and the
component denoting immediate values (Imms).

2. Variance of Components: The concrete forms of components vary in different
ways. A component may correspond to a single token (e.g., Opcode and
Imms), a single field (e.g., Reg_op[5:3]), a mixing of fields and tokens (e.g.,
addressing modes), or other forms not shown here. Moreover, the abstract
and concrete forms of a single type of components can also vary significantly
such as the different addressing modes supported by X86 (as we shall see in
detail in the following section).

3. Interleaving of Components. In most cases, there are clear sequential orders
between the concrete representations of components. For example, the com-
ponent of addressing modes immediately follows that of opcode and precedes
that of immediate values. In the other cases, components may be interleaved
with each other. For example, the component of register operands is inter-
leaved with the component of addressing modes.

4. Dependencies between and in Components: The existence and forms of compo-
nents are affected by the dependencies between each other and between their



732 X. Xu et al.

own fields or tokens. For example, if an instruction does not take any argu-
ment, then the value of its Opcode determines that there is no token follow-
ing Opcode. For another example, when Mod|[7:6] contains the value 0b11,
the addressing mode is simply a register operand. Otherwise, the addressing
mode may further depends on the values in SIB and Disp.

Note that, despite the above complexity, an instruction format is designed to
inherently embed a (partial) bijection between the binary forms of instructions
and their abstract representation as the composition of components. This is to
ensure the determinacy of instruction decoding in hardware. This bijection is
the central property to be investigated in this work.

2.2 A Running Example

Table 1. The different forms of addressing modes

AddrMode | Mod | RM Scale | Index Base Disp
r Obll|r — — — -
(r) 0b00 | T # 0b100 Ar # 0b101 — | — - -
(d) 0b00 | 0b101 - - - d
(s*i+Db) | 0b0OO | 0b100 S i# 0b100 | b # 0b101 | —

We present an example of encoding the add instruction to concretely illustrate
the characteristics of the X86 instruction format. It will be used as a running
example for the rest of the paper. The operands of add may have many forms.
For simplicity, we only consider two cases: 1) the first operand is a register while
the second one is an addressing mode, and 2) the first operand is an addressing
mode while the second one is an immediate value.

In the first case, Opcode is 0x03, indicating that ModRM exists and the
first operand is encoded in its Reg_op field. The addressing mode has over 23
combinations because of the dependencies and constraints over their fields. We
list only some of the combinations in Table 1, where - indicates that this field
or token does not exist. The first row shows the direct addressing mode r where
Mod is Ob11 and RM contains the encoded register operand r. The following
three rows shows different kinds of indirect addressing modes. They are valid
only if Mod is 0b00 and further constraints are satisfied. For example, the
second row shows the indirect addressing mode (r) where r is encoded in RM.
In this case, r must neither be ESP (encoded as 0b100) nor be EBP (encoded
as 0b101). Similarly, the addressing mode (s *i+ b) requires that RM must be
0b100, Index must not be 0b100 and Base must not be 0b101.

In the second case, Opcode is 0x81, indicating that ModRM exists, the
first operand is an addressing mode, and the second operand is an immediate
value following it. Here, Reg_Op must be 0b000.
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Mod: RM: Scale: Index: Base:
0b00 0b100 0b10 0b001 0b100

(a) add (4,%ecx,%esp), %hebx

Mod: RM: Disp:
0b00 0b101 0x88

(b) add 0x88, %ebx

Mod: RM:
0b00 0b011

(c) add $0x66, (%ebx)

Fig. 2. Some concrete examples of instruction encoding

We demonstrate the concrete examples of encoding add (4,%ecx,%esp), %ebx,
add 0x88, %ebx and add $0x66, (%ebx) in Fig.2 where %ebx and %ecx are
encoded into 0b011 and 0b001, respectively (the order of operands is reversed
because we use the AT&T assembly syntax). Note how the forms of operands
change significantly depending on the different values in the related fields. Note
also, despite such complex dependencies, a bit string representing a valid add
instruction corresponds to a unique combination of components.

2.3 Inadequacy of the Existing Approaches

The existing approaches to specifying instructions are either 1) too general and
allow ambiguity or 2) too low-level and break the component-based abstrac-
tion we just described. Either way, they fail to capture the inherent bijection
embedded in an instruction format.

The bidirectional grammars [18] demonstrate the first kind of inadequacy.
They contain the alternation grammar Alt g; go for matching a bit string s
when either the sub-grammar g; or g» matches s. The ambiguity arises when
both g; and go match s: in this case, the same s corresponds to two different
internal representations. Therefore, bidirectional grammars cannot encode bijec-
tions in general. The same can be said for other work on verified parsing based
on ambiguous grammars. We shall discuss them in detail in Sect. 8.

The Specification Language for Encoding and Decoding (or SLED) demon-
strates the second kind of inadequacy [15]. It is a language for describing trans-
lations between symbolic and binary representations of machine instructions.
On the surface, SLED takes the component-based view in specifying instruc-
tions. However, SLED specifications are interpreted through a normalization
process by which every component is flattened into a sequence of tokens. After
that, the structural information of components is completely lost. As a result,
users can only derive encoders from the normalized specifications. They need
to write decoders by using completely different specifications called “matching
statements.” This inability to generate matching encoders and decoders from a
single specification is a common phenomenon in other approaches to ISA speci-
fications.
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In summary, no existing approach can precisely capture the bijections inher-
ently embedded in instruction formats. This is the main intellectual problem we
try to tackle in this paper. We shall elaborate on our solution to this problem
in the remaining sections.

3 An Overview of the Framework

translate

translate

S: instruction specifications (in CSLED)

Gg: algorithms for generating formal definitions and proofs  (in C++)

A abstract syntax of instructions (on paper and in Coq)
S: relational specifications of instructions (on paper and in Coq)
E and D: encoders and decoders (in Coq)

Fig. 3. The framework

We develop a framework for automatic generation of verified encoders and
decoders that are consistent and sound. It is depicted in Fig.3. To generate
formally verified encoders and decoders, users first need to write down a speci-
fication of instructions S in a language called CSLED (or CoreSLED). CSLED
is an enhancement to SLED for characterizing the bijection between the binary
forms and the abstract syntax of instructions. Roughly speaking, S consists of a
collection of class definitions, each of which defines a unique type of components
that form instructions or their operands; the “top-most” class defines the type of
instructions. Each class is associated with a set of patterns to uniquely determine
a bijection between the binary and abstract forms of components in that class.
Note that this bijection exists only when certain well-formedness conditions for
patterns are satisfied. We shall elaborate on these ideas in Sect. 4.
From S, the following definitions are generated and translated into Coq:

— The abstract syntax of instructions A. It is a collection of algebraic data types
corresponding to the classes defined in S.

— A relational specification of S called S. For each class, S contains a binary
predicate that precisely captures the relation between components of that
class and their binary forms. We write R[K] & [ to denote that the component
k of class K has the binary form [.
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Then, S is fed into a collection of algorithms G to generate the following
definitions and proofs in Coq:

— An encoder E and a decoder D. The encoder is a set of partial functions—one
for each class—from the abstract syntax of that class to bit strings. We write
Ex (k) = |I] to denote that [ is the result of encoding a component k of class
K where || denotes the some constructor of the option type. Conversely, the
decoder is a set of partial functions from bit strings to the abstract syntax.
We write D (I++1") = [(k,1")] to denote the decoding of the bit string ! into
a component k of class K where ++ is the append operation of bit strings.
Here, the tailing bit string I’ represents the remaining bits after decoding the
first component.

— The proof of consistency between the encoder and decoder. The consistency
theorems are stated as the mutual inversion between the encoder and decoder:

VK kLT Ex(k) =[] = Dc(l++1) = (k. 1)].
VKLU, Dic(i++1) = |(k, 1) ] = Ex(k) = [1].

Their Coq proofs are automatically generated by inspecting the logical struc-
ture of classes and patterns in §. For this, we need to derive a very important
property: the decoder always decodes a bit string [ back to the same sequence
of components. We achieve this goal by combining proofs in Coq with SMT
solving of verification conditions that are automatically derived from well-
formed specifications.

— The proof of soundness of the encoder and decoder. The soundness theorems
are stated as follows:

VK kI Ex(k) = || = R[K] k1.
VK kLU, Dic(l++1) = [(k,1')| = R[K] k1.

As we shall see later, Ex and R[K] are both defined recursively on the defi-
nition of classes in S. Their main difference is that the former is a function
while the latter is a relation. Therefore, it is easy to prove the first soundness
theorem by induction on k. By using the second consistency theorem and the
first soundness theorem, we can easily prove the second soundness theorem.

As we shall see in the following sections, the actual implementations of encoders
and decoders and their consistency and soundness theorems are more compli-
cated than presented here. Nevertheless, the above discussion covers the high-
level ideas of our framework.

Note that in Fig. 3, S and G are not formalized and hence not in the trusted
base. The consistency and soundness of E and D are independently wvalidated
by using Coq and SMT solvers. If the validation of either property fails, the
framework reports a failed attempt to generate the encoder and decoder. This
often indicates that the instruction specification is not well-formed.
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4 The Specification Language

The key idea underlying the design of CSLED is to record explicitly the struc-
tures of components in instruction specifications, instead of normalizing them
into tokens as did in SLED. In this way, CSLED specifications accurately cap-
ture the key characteristics of instruction formats described in Sect. 2.1, hence
the bijections embedded in instruction formats. In this section, we present the
syntax of CSLED, explain the ideas underlying its design, and use the run-
ning example to illustrate how CSLED specifications are written. We also intro-
duce the syntactical and relational interpretations of CSLED specifications and
present the well-formedness conditions for the bijections to exist.

4.1 The Syntax

S ::= (empty) Pu=J
|SD | P T
J=A
D ::= token tid = T; | J&A
| field fid = F; A:=0
| class kid = K; | c1s %1
O =e:tid
T = (n) | fid=n
F = tid(ny : n2) | fid #n
K:=B | £1d %:
| K| B |O&O
B ::= constr cid [aid] (P) |O; O
(a) Definitions (b) Patterns

Fig. 4. The syntax of CSLED

The syntax of CSLED is shown in Fig.4. A CSLED specification (denoted by
S) consists of a list of definitions (denoted by D). The three kinds of definitions
are for tokens (denoted by 7), fields (denoted by F) and classes (denoted by K).
Every definition is bound to a unique identifier where tid, fid and kid represents
the identifiers of tokens, fields and classes, respectively.

Tokens represent consecutive segments of bytes and are the basic elements for
forming instructions. They are necessary for distinguishing the same sequence of
bytes with different interpretations. Their definitions have the form (n) where n
must be divisible by 8 which denotes a token of n-bits or n/8 bytes. Definitions
of fields have the form tid (n1 : ny) which denotes a field occupying the no-th to
ni-th bits in the token tid.
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Classes represent specific types of components. They play a central role in
the specifications by accurately capturing the component-based abstraction we
discussed in Sect.2.1. A class consists of a collection of branches (denoted by B)
each of which denotes a possible form of components in the class. Definitions of
branches have the form constr cid [aid] (P) where cid is a unique identifier for
the branch (denoting a constructor) and [aid] is a list of fid or kid denoting the
sub-components or fields for constructing a component (i.e., the arguments to
the constructor). These arguments capture the nested structures of components
where a bigger component may be constructed from smaller ones or basic fields.

A branch is associated with a single pattern P. A pattern plays two roles: it
determines the types of a sequence of tokens that concretely forms components
of this branch, and it describes a relation between these tokens (and their fields)
with the abstract arguments of the branch. This relation essentially encodes the
bijection between the abstract and binary forms of components in this branch.

At the top-most level, P is a sequence of judgments (denoted by J) separated
by ;, such that Ji; ... ;J, matches a sequence of tokens concretely represented
by a bit string [ if and only if | = Il ++Il2++ ... ++1, and J; matches [; for 1 <
© < n. This sequential pattern is enough for relating abstract and binary forms
of components when each J; (and l;) corresponds to a single (sub-)component.
However, according to the discussion in Sect. 2.1, components may be interleaved
with each other and J; may correspond to multiple components. Therefore, a
judgment is a conjunction of atomic patterns (denoted by A) each of which
matches an interleaved component. In case there is no interleaving, a judgment
reduces to a single atomic pattern.

An atomic pattern has two forms: cls %i for relating a sequence of tokens
to the i-th argument in [aid] of the corresponding branch which must be a class,
and O for relating tokens to field arguments in [aid] and for further constraining
the fields of these tokens. The O patterns are called basic patterns. Among them
e:tid matches any token of type tid; fid = n (fid # n) matches a token with
the field fid whose value is (is not) the constant n; similar to cls %i, £1d %i
relates the i-th argument in [aid] of the branch which must be a field to the
concrete value of the field in the matching token. The last two cases of basic
patterns indicate that arbitrary sequencing and interleaving of basic patterns
are allowed. Despite such free interleaving, a basic pattern can only match with
sequences of tokens of the same length and of a unique type because we require
that O & O3 be well-formed only if both O; and Oy match sequences of tokens
with the same type. Therefore, basic patterns have the same expressiveness as
SLED specifications in their normalized forms [15].

In contrast to basic patterns, judgments and atomic patterns are much more
expressive as they may match tokens of different lengths and forms. This is
because a class pattern cls %i can match components of a class K with mul-
tiple branches, each of which may have different patterns. By introducing class
patterns into atomic patterns, we are able to represent the complete structures
of components and establish bijections from these structures. This is the key
improvement we made in CSLED compared to SLED.
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4.2 The CSLED Specification of the Running Example

token Opcode = (8); token Disp = (32); token Imms = (32);
token ModRM = (8); token SIB = (8);

field opcode = Opcode(7 : 0); field disp = Disp(31:0);

field imms = Imms(31 : 0); field mod = ModRM (7 : 6);
field reg-op = ModRM (5 :3);  field rm = ModRM (2 :0);
field scale = SIB(7 : 6); field index = SIB(5 : 3);

field base = SIB(2:0);

class Addrmode =

constr addr_r [rm] (mod = 0b11 & £1d %1)

constr addr_ir [rm] (mod = 0b00 & rm # 0b100 & rm #* 0b101 & £1d %1)
constr addr_disp [disp] (mod = 0b00 & rm = 0b101; £1d %1)

constr addr_sib [scale, index, base]

(mod = 0b00 & rm = 0b100;

£1d %1 & £1d %2 & £1d %3 & index # 0b100 & base # 0b101)

class Instruction =
| constr AddGuEv [reg-op, Addrmode] (opcode = 0x03; £1d %1 & cls %2)
| constr AddEvlz [Addrmode, imms]

(opcode = 0x81; reg_op = 0b000 & cls %1; £1d %2)

Fig. 5. The CSLED specification of the running example

The CSLED specification of our running example is depicted in Fig.5. The
Addrmode class specifies the possible addressing modes. Its branches are trans-
lated from the addressing modes described in Table 1 one by one, such that their
patterns exactly match the binary structures of components in the correspond-
ing branches. For instance, the branch addr_sib is translated from the fourth
addressing mode in Table 1. Its pattern is a sequence of two judgment. The first
judgment is a conjunction of two basic patterns that are the required constraints
on the fields mod and rm of ModRM described in Table 1. Therefore, it must
match the single token ModRM . The second judgment is a conjunction of basic
patterns that constrain the fields index and base of SIB and relate arguments
of addr_sib with the concrete values in the fields scale, index and base. Because
these patterns all constrain the fields of SIB, the second judgment must match
the single token SIB.

Similarly, the Instruction class specifies the instructions. Its two branches
characterize the two kinds of add instructions described in Sect.2.2. Note
how conjunctions between the basic patterns for reg_op and class patterns for
Addrmode are used to describe the interleaving of register operands and address-
ing modes. Note also that in every branch of Addrmode the first pattern matches
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the token ModRM , and in any branch of Instruction the token Opcode is always
followed by Addrmode. Therefore, ModRM always follows Opcode as desired.

By this example, we demonstrate the critical feature of CSLED: because the
syntax of CSLED is designed to precisely describe instruction formats in ISA
manuals, it implicitly captures the embedded bijections. Note that, because of
its faithfulness to the ISA manuals, CSLED’s syntax contains full details about
instruction encoding by nature. However, it is not hard to imagine this syntax
being refined to the client’s syntax through another straightforward bijection. In
fact, this is how we anticipate clients will use CSLED in practice, e.g., to build
verified assemblers for X86.

4.3 Interpretation of CSLED Specifications

From a CSLED specification S, we extract 1) a collection of data types for
representing the abstract syntax of components, and 2) a collection of binary
relations between these data types and bit strings for representing the mappings
between the abstract and concrete forms of components.

Data Types of Components. We use the operator T[—] to denote the inter-
pretation of basic fields and classes into data types. The translation for fields are
simple: given a field definition field fid = tid (ny : n2), T[fid] = (n1 —ny + 1)
where (n) represent an unsigned binary integer of n bits. Note that we do not
further translate the values of fields as they have straightforward interpreta-
tions (such as the mapping from bits to registers described in Sect.2.1). The
interpretation of classes is only slightly more involved. Given a class definition
class kid = K, T[kid] is an algebraic data type named kid. For each branch
constr cid [aidy, ..., aid,] P of K, there is a constructor cid for kid that takes
n arguments of types T[aid1],. .., T[aid,].

Relations Derived from CSLED. The translation of CSLED specifications
into relations is defined in Fig.6. Here, BS denotes the type of bit strings.
When aids = [aidy, ..., aid,] we write T[aids] to denote the product type of
T[aid1], ..., T[aid,]. We use = to denote the definitional equality.

The function Raid] translates a type of components associated with aid into
a binary relation between its abstract representation and bit strings, where aid
may denote a field or a class. The definition for field components is straightfor-
ward. R[kid] k [ holds iff there is a branch of kid whose interpretation relates k
and [, which further requires (by the third rule in Fig.6) that k is constructed
by using the constructor of that branch and the pattern of the branch relates
the arguments of the constructor to I. The latter relation is defined by R,[—, —]
such that R, [P, aids] args ! holds iff P matches [ and the arguments args satisty
the constraints enforced by P and aids. More specifically, R,[P; 7, aids] args
holds iff P matches a prefix of [ and J matches the rest of {. The definition of
R,[T&A] is slightly different in that R,[J&A, aids] args | holds iff A matches
the whole [ and J matches a prefix of [. This is necessary for describing the
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R[fid] =:=X(f: T[fid]) (I : BS).
3(tid n1 n2 ng), tid = (ng) A fid = tid(n1 : n2)
Alength(l) =n3 Alny :n2] = f
R[kid] ::=A(k : T[kid]) (I : BS).
B, kid=...|1Bl... \Ry[B, kid] k
Ry [B, kid] ::=X(k : T[kid]) (I : BS).
Jargs, k = cid args ARp[P, aids] args |
(where B = constr cid aids P)
Ry [P; T, aids] :=X(args : Taids]) (I : BS).3l1 l2, 1 =11 ++12
ARL[P, aids] args l1 ARy[T, aids] args l2
Ry [T&A, aids]] :=N(args : T[aids]) (I : BS).3l1 l2, 1 = l1++l2
ARL[T, aids] args I ARy[A, aids] args 1
Rp[e: tid] ::=X(args : T[aids]) (I : BS).3n, tid = (n) Alength(l) =n
Ry[fid = n, aids] :=X(args : T[aids]) (I : BS) .3(tid fid n1 n2 n3), tid = (n3)
A fid = tid (n1 : n2) Alength(l) =nz Allny :n2] =n
Ry[fid # n, aids] :=X(args : T[aids]) (I : BS) .3(tid fid n1 n2 n3), tid = (n3)
A fid = tid(n1 : n2) Alength(l) =n3 Alni :na] #n
R, [£1d %4, aids] ::=X(args : Tlaids]) (I : BS).R[aids[i]] args[i] I
Rp[cls %i, aids] ::=X(args : Tlaids]) (I : BS).R[aids[i]] args[i] I

Fig. 6. Translation of CSLED specifications into relations

interleaving of components. Furthermore, certain constraints need to be satis-
fied for deriving a bijection as shall discuss in Sect.4.4. R,[O1; 02, aids] and
R,[01&03, aids] are not shown in Fig.6 because they are defined the same as
R,[P; T, aids] and R,[T&A, aids], respectively. R, [fid = n, aids] args | holds
iff I is a token containing fid whose value is n; similar for R,[fid # n, aids].
R, [£1d %, aids] holds iff the i-th argument in args matches with the concrete
value found in [; same for R,[cls %i, aids]. Note how the last two definitions
make use of args for getting the values of arguments.

4.4 Well-Formedness of Specifications

The binary relation we define in the last section denotes a bijection only when the
CSLED specification under investigation satisfies certain well-formedness condi-
tions. These conditions guarantee that, given any bit string [, there is at most one
abstract object related to [ via the defined binary relation. Well-formedness is
the composition of three properties which we call disjointness, compatibility, and
uniqueness. We give and explain their definitions below. The logic for checking
these conditions is embedded in the generation algorithms we will discuss in the



Automatic Generation and Validation of Instruction Encoders and Decoders 741

next section and will be exploited for the validation of the generated encoders
and decoders.

Disjointness. Given a pattern P1&Po, it satisfies disjointness if P; and Pa
match disjoint fields.! To understand this, suppose P; and P, relate different
abstract arguments a; and as to overlapping bits in a bit string [. Then, we
cannot determine if the values in the overlapping bits are for a; or as. Hence,
the derived binary relation cannot possibly be a bijection. Disjointness rules out
such possibility.

Compatibility. We call the types of sequences of tokens a pattern P matches
the “shapes” of P. Given a pattern P1&Ps, it satisfies compatibility if every
possible shape of P; is in a prefix of every possible shape of P, when P, is a class
pattern (and vice versa). Enforcing compatibility simplifies the interpretation of
P1& P> when Py or Py is a class pattern with multiple branches that may match
bit strings with different shapes. Compatibility makes sense because for common
instruction formats it is always the case that the components matched by P; are
embedded in the longest common prefizes of all the possible shapes of P, when
P, is a class pattern (and vice versa). For example, in the example depicted
in Fig. 2, Reg_op is always embedded into the common prefix of all the possible
shapes of addressing modes, i.e., the ModRM token.

Uniqueness. Given a class pattern K, it satisfies uniqueness if for any bit string
[, at most one of its branches matches [. Uniqueness is essential for ensuring the
determinacy of decoders in presences of class patterns. Fortunately, it implicitly
holds for common instruction formats as they are designed with determinacy
of decoding in mind. To concretely check the uniqueness implied by instruction
formats, we first define the structural condition for a branch with pattern P as
the conjunction of the statically known constraints in P, denoted by [P]cond-
We then require that no structure conditions for any two branches of a class
can be satisfied simultaneously. This requirement allows us to uniquely deter-
mine the branch used to construct a class component. For example, the struc-
tural conditions of the first three branches of Addrmode are (mod = 0bl1),
(mod = 0b00 & rm # 0b100 & rm #* 0b101) and (mod = 0b00 & rm = 0b101).
Obviously, any pairwise combination of these conditions cannot possibly be sat-
isfied. This is true even if we consider all the branches of Addrmode. Therefore,
there is at most one way to decode any addressing mode.

5 Generation of Encoders and Decoders

We discuss the algorithm for generating encoders and decoders from CSLED
specifications. The structures of these encoders and decoders closely match the
relations derived from specifications. Furthermore, every operation in an encoder
has a counterpart in the corresponding decoder, and vice versa.

! We abuse the notation by using P to denote suitable patterns such as 7, A or O.
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5.1 Generation of Encoders

Grlle: tid, bs, args] ::= | bs]
Ge[fid = n, bs, args] ::
Ge[fid # n, bs, args] ::
Ge[[f1d %i, bs, args] ::
Gr[cls %i, bs, args] ::= Ex(args[i], bs) (where K is the class of args[i])

Ge[O1 ; O2,bs, args] ::=l <+ first-n(bs, [O1]tokens); b2 + skip-n(bs, [O1]tokens)
bs1 < Ge[O1, li, args]; bsa < Ge[Oa2, ko, args]; | bs1 ++bs2 ]
Ge[O1 & O3, bs, args] ::= bs1 + Ge[O1, bs, args]; Ge[O2, bs1, args]
Ge[P; T, bs, args] ::= bs1 < Gg[P, bs, args]); bs’ < skip_n(bs, |bs1]);
bsa < Gu[J, bs', args]; | bs1 ++bsa
Ge[[T&A, bs, args] ::= bs1 < Ge[J, bs, args]; Ge[A, bs1, args]

writefq bs n

assert(readsq bs # n)

writegsq bs argsi] (where fid is the field id of args[i])

Fig. 7. Generation of encoders from patterns

From every class K, we extract an encoder Ex for its components. It is a partial
function that takes two arguments—a component k and a bit string [ representing
the result previously generated by encoders—and outputs an updated bit string
if the encoding succeeds. We shall write Ex(k,1) = [I'] to denote that I’ is the
result of encoding k£ on top of [.

Ex(k,l) is defined by recursion on the structure of k. For every branch B
of IC, we generate a piece of Coq code from the pattern P of B for encoding
k. We then insert it into the definition of Ex(k,1). We write Gg[P, bs, args] to
denote the code snippet so generated, where bs is the name of the generated
bit string at this point and args contains the names of the arguments to the
constructor. Gg[P, bs, args] is defined in Fig.7 where we use the option monad
for sequencing the encoding operations. The first case is obvious. Code generated
by Gg[fid = n, bs, args] writes the constant n into the field associated with fid.
Gr[fid # n, bs, args] checks whether the corresponding field contains the constant
n and returns none if the checking fails. Gg[£1d %, bs, args] writes the value of
the i-th argument into the corresponding field. Gg[cls %, bs, args] calls the
encoder for the class corresponding to cls %i. G[O1 ; Oa, bs, args] encodes its
two parts recursively and concatenates the results together, where first_n(bs, n)
returns the first n bits in bs and skip_n(bs,n) skips the first n bits in bs and
returns the remaining ones. Gg[O1&04, bs, args] first encodes data matching Oy,
and then passes the result to the encoding for Os. The last two cases are similar.
Note that if the generated code occurs at the beginning of a branch, then bs
coincides with the input argument [. Otherwise, bs denotes intermediate results.
As we can see, all these cases follow the logical structure of CLSED specifications
we have described before.
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5.2 Generation of Decoders

From every class IC, we extract a decoder Dx. It is a partial function such that
Di(l) = |(k,l1,12)] holds iff I = I'++I2, I’ is the binary representation of k,
and /1 is the result of inverting the encoding operation, i.e., setting every bit the
decoder touches in I’ to 0. This extra return value is introduced to help with the
verification as we shall see in Sect. 6.

Gole:tid, bs, args] ::= remains < skip_n(bs, tid); | (bs, remains)|

Gplfid = n, bs, args] ::= ori < cleargq bs; remains < skip_n(bs, tid);
|(ori, remains)] (where fid = tid (n1 : n2))
Golfid # n, bs, args] ::= ori < clearsq bs; remains < skip_n(bs, tid);

| (ori, remains)| (where fid = tid (n1 : n2))
Gp[£1d %1, bs, args] ::= argi < readsq bs; ori < cleargq bs;
remains < skip_n(bs, tid); | (ori, remains)]|
(where fid is the field id of args][i])
Gplcls %i, bs, args] ::= argi, origin, remains < Dic(bs); | (origin, remains) |
(where K is the class of args|])
Gp[O1 5 Oa, bs, args] ::= orii, remains1 < Gp[O1, bs, args];
oriz, remainsz < Gp[O2, remainsi, args];
| (oriy ++oria, remainss)]
Gp[O1 & Oa, bs, args] ::= remains <+ skip_n(bs, [Oz2]tokens);
ori, -+ Gp[Oa, bs, args];
orilst, - + Gp[Ohn, ori, args];
| (orilst, remains)|
Gp[P; T, bs, args] ::= ori1, remains1 < Go[P, bs, args];
oriz, remainss < Gp[J, remainsi, args];
| (ori1++oriz, remainss) |
Gp[JT&A, bs, args] ::= ori, remains < Gp|A, bs, args];
orilst, - < Gp[J, ori, args];

| (orilst, remains) |

Fig. 8. Generation of decoders from patterns

The first step of Dx is to decide which branch of X should be chosen for
decoding [. It can be done by checking the structural conditions derived from
the patterns of branches (which we have introduced in Sect. 4.4) against [. Specif-
ically, for the pattern P of each branch of I, we translate its structural condition
[P]cona into a decision procedure in Coq (a function returning boolean values) in
a straightforward manner. We then insert an if-statement to check if [P]cong can
be satisfied. If so, we start the decoding process for this branch. Otherwise, we
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repeatedly check other branches until a matching case is found. Note also that
by uniqueness, there is at most one structural condition that can be satisfied.
Therefore, Dy is deterministic in choosing branches.

Once a matching branch is found, we use the algorithm Gp[P, bs, args] (the
counterpart of Gg[P, bs, args]) to generate a piece of Coq code for decoding
the arguments of this branch. It is defined in Fig.8. Similar to encoding, the
generated code snippet follows the logical structure of CSLED specifications.
The function cleargsq bs set the bits of the field fid in bs to 0. Note that the
decoding operations are exactly the inversion of those in Fig. 7. Note also that
the fourth and fifth cases in Fig. 8 are responsible for decoding the arguments
and storing them in argi. By applying the corresponding constructor to these
arguments, we get the output component k, which together with the two values
returned by Gp form the final output of Dy .

5.3 Generation for the Running Example

We show the representative cases of the generated encoder and decoder for our
running example in Fig.9. They include the encoding and decoding procedures
for the fourth branch of Addrmode (the most complicated one). We can see that
the encoding and decoding operations are exactly the inverses of each other. The
encoder first writes the fields in ModRM and then those in SIB. Conversely,
the decoder first reads the fields in ModRM and then those in SIB. Finally, it
forms the component and returns the reverted and remaining bits. The function
BF_addr_sib is the decision procedure generated from the structural condition
for the fourth branch of Addrmode. We also show the encoding and decoding
procedures for the first add instruction in Fig. 9. Their structures are very similar
to those of Addrmode.

6 Validation of Encoders and Decoders

In this section, we discuss how to exploit the logical structure of and the well-
formedness conditions for CSLED specifications to automatically synthesize the
proofs of consistency and soundness for encoders and decoders.

6.1 Synthesizing the Proof of Consistency

The consistency between encoders and decoders is composed of two properties
and stated as follows:

Theorem 1 (Consistency between Encoders and Decoders). Given any
class IC, its encoder Ex and decoder Dy are consistent with each other if they
invert each other. That is, the following properties hold:

V k17l valid_input,(l) = Ex(k,1) = |r] = Dr(r++1") = | (k,1,1")].
VElrl, De(r++0") = [(k,1,1")] = Ex(k,l) = |r].
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Definition encode_addrmode instance input :=

match instance with

| addr_sib argl arg2 arg3 =
(* Encode ModRM *)
let ModRM := input in
let tmp := write_mod ModRM b["00"] in
let tmp := write_rm tmp b["100"] in
let resultO := tmp in
(* Encode SIB *)

let SIB := zeros 8 in

let write_scale SIB argl in
let write_index tmp arg2 in
let := write_base tmp arg3 in

let index := read_index tmp in

let base := read_base tmp in

do _ « assert(index # b["100"]);

do _ « assert(base # b["101"]);

let resultl := tmp in

(* Concatenate the results of
encoding ModRM and SIB *)

Some (resultO++resultl)

Definition decode_addrmode bs :=

if BF_addr_sib bs then
(* Revert the encoding of ModRM *)

let ori := clear_mod bs in
let ori := clear_rm ori in
let oril := ori in

do remains «— skipn bs 8; (* Skip ModRM *)
(* Decode SIB to get the arguments

and revert the encoding of SIB *)
let bs := remains in

let arg3 := read_base bs in
let ori := clear_base bs in
let := read_index ori in
let ori := clear_index ori in
let argl := read_scale ori in
let ori := clear_scale ori in
let ori2 := ori in

do remains < skipn bs 8; (* Skip SIB *)

(* Return the result *)

Some(addr_sib argl arg2 arg3,
oril++ori2, remains)

else if BF_addr_r bs then ...
end.

Definition encode_instr instance input := Definition BF_addr_sib bs :=
match instance with let ModRM := firstn bs 8 in
| AddGVEv argl arg2 = (* mod = 0b00O A rm = 0b100 *)
let resultO :=
let tmp := write_reg_op ModRM argl in (ModRM & b["11000111"]) = b["00000100"] in
do tmp < encode_addrmode arg2 tmp; let tmp := skipn bs 8 in
let SIB := firstn tmp 8 in
| ... (* index # 0b100 *)
end. let resultl0 :=
(SIB & b["00111000"]) # b["00100000"] in
Definition decode_instr bs := (* base # 0b101 *)
if BF_AddGvEv bs then let resultll :=
(SIB & b["00000111"]) # b["00000101"] in
do arg2, ori, remains «— resultO A resultl0 A resultilil.
decode_addrmode bs;
let argl := read_reg_op ori in Definition BF_AddGvEv bs :=
let ori := clear_reg_op ori in let Opcode := firstn bs 8 in

(Opcode & b["11111111"]) = b["00000011"].

Fig. 9. Encoders and decoders generated from the running example

We first discuss how the proof for the first property in Theorem 1 is generated.
Here, the assumption valid_input (1) asserts that all the bits in [ that may be
modified by Ex must be 0. This is necessary to ensure that the decoder can
revert the resulting bit string back to its initial state by setting them to 0 (i.e.,
the second result of decoding is the same as [).

The proof proceeds by induction on the structure of k. For each branch
B with the pattern P, we generate a lemma and its proof that the decision
procedure generated from [P]eona as described in Sect. 5.2 always returns true
given any bit string generated by the encoder for P. With this lemma, the proof
for the “symmetric” case where the decoder takes the same branch as the encoder
reduces to proving that the encoder and decoder generated from P are inverses
of each other. This proof is straightforward by the definitions of Gg and Gp
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in Sect. 5. An important point to note is that, for any pattern cls %i, we need
to recursively apply the consistency lemma for its corresponding class, which
in turn requires us to establish a wvalid_input assumption. By the disjointness
property in Sect. 4.4, we can easily conclude that the encoding of sub-components
does not interfere with each other, thereby the desired wvalid_input assumption
can be derived.

To finish the proof, we need to show that the “asymmetric” cases are not
possible. For each asymmetric branch B’ with the pattern P’, we have that
[P']cona holds by the decision procedure guarding this branch. Furthermore,
by the above reasoning, [P]eona holds. We hence have that the conjunction
of [Pleona and [P’]eona holds. However, this contradicts with the uniqueness
property given in Sect.4.4. Therefore, the decoder can never go into a branch
different from the encoder. Continue with our running example, suppose we
are proving the consistency of the encoder and decoder for Addrmode. Further
suppose we are working on the branch with the constructor addr_sib. Then, the
verification condition for the asymmetric case with the constructor addr_r is

Vbs, (read,oq bs = 0600 A read,, bs = 0b100...) A (readoq bs = 0b11)

which cannot possibly hold (for simplicity we omit the conditions for index and
base). We note that such condition can be easily checked by any SMT solver
with the theory of bit-vectors, and we use Z3 [5] to validate them. This checking
can also be directly formalized in Coq, which we plan to do in the future.

Finally, the second property in Theorem 1 can be proved by induction on k
in a similar fashion. We elide a discussion of its proof.

6.2 Synthesizing the Proof of Soundness

As we have discussed in Sect. 4.3, the relational specifications extracted from
CSLED specifications are tightly related to the actual instruction formats. Thus,
it is reasonable to check the soundness of the generated encoders and decoders
against these specifications. The relational specifications are easily translated
into Coq definitions and we shall use the same notations. The soundness of
encoders and decoders is then stated as follows:

Theorem 2 (Soundness of Encoders and Decoders). Given any class K,
its encoder Ex is sound if the following property holds:

Vklrl Ex(kl)=|r] = R[K] k.
Similarly, its encoder Di is sound if the following holds:
Viklrl,De(r++l) = [(k1,I')| = R[K] k r.

The soundness of encoder is easily proved by induction on the structure of k. We
need to exploit the well-formedness conditions of CSLED specifications as for
the consistency proofs at relevant points. The soundness of decoder is a corollary
of the soundness of encoder and the second consistency property.
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7 Evaluation

Besides the CSLED language, our framework has two major parts: 1) the algo-
rithms for generating encoders, decoders and their proofs and 2) a Coq library
containing the definitions and properties of basic types (including bits, bytes
and bit strings) and a collection of automation tactics (Ltac definitions) for
proof synthesis. The generation algorithms amount to 5,193 lines of C++ code
(excluding comments and empty lines, and likewise for the following statistics).
The Coq library amounts to 1,036 lines of Coq code (written in Coq 8.11.0 and
counted using coqwc). We also make use of the monad definitions and some basic
data formats in CompCert’s library [13]. The whole framework took six person
months to develop.

Table 2. The lines of generated Coq code

Component Lines of definitions | Lines of proofs
Relational specification 1762 0
AST, encoder and decoder 5677 0
Verification conditions 37011 4402
Consistency proof 295 30841
Soundness proof 60 7193
Total 44805 42436

To evaluate the effectiveness of our framework, we have written a CSLED
specification for a total of 186 representative X86-32 instructions which cover the
operands with the most complicated formats (e.g., addressing modes) and are
sufficient for supporting the assembling process in CompCert’s X86-32 backend.
The specification is very succinct, containing only 260 lines of CSLED code.
From this specification, our framework automatically generates around 87k lines
of Coq code which form the verified encoder and decoder. The lines of Coq
definitions and proofs for individual components are shown in Table 2. Note that
the verification conditions account for a major part of the definitions because
we need to consider all the possible combinations of structural conditions for
the proofs of consistency and soundness. The Coq proofs related to verification
conditions are for identifying the concrete forms of structural conditions. As
expected, the consistency proof is the most complicated one among all the proofs.

To evaluate the performance of the generated encoder and decoder, we ran-
domly generate four sets of instructions, encode them into bit strings, and decode
the bit strings back. The executable encoder and decoder are obtained by extract-
ing Coq definitions into OCaml programs and compiling with OCaml 4.08.0.
We repeat this experiment for 30 times on a machine with Intel(R) i7-4980HQ
CPU@2.8 GHz and 16 GB memory. For comparison, we conduct the same experi-
ments on the hand-written encoder and decoder in the X86-32 back-end of Com-
pCertELF [20]. The results are shown in Table 3. For each test case, it shows the
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Table 3. Performance evaluation

No. of Instr. | CSLED Hand-Written
Enc. Time (s) | Dec. Time (s) | Enc. Time (s) | Dec. Time (s)

Med Var.(%) | Med Var.(%) | Med Var.(%) | Med Var.(%)
6000 0.32 0.00 0.56 0.00 0.01 0.00 0.01 0.00
12000 0.64 0.00 1.12 0.00 0.01 0.00 0.02 0.00
18000 0.98 0.03 1.70 0.15 0.02 0.00 0.03 0.01
60000 3.11 0.16 5.43 0.01 0.08 0.00 0.09 0.01

numbers of randomly generated instructions and the median time (in seconds)
and the variance (in percentage) for encoding and decoding. We observe that
the automatically generated encoder and decoder perform reasonably well, but
significantly slower than the hand-written ones. This is because 1) the hand-
written encoder and decoder in CompCertELF currently supports significantly
less instructions (about 20) than the CLSED ones due to the complexity in man-
ual implementation, and 2) the hand-written ones are manually optimized while
the auto-generated ones are not optimized at all. We plan to solve the above
issues by optimizing our generation algorithms in the future.

8 Related Work and Conclusion

We compare our framework with existing work on specification languages of
instruction sets, verified parsing and pretty printing, and formalized ISAs.

There exists a lot of work on developing languages for specifying ISAs. Their
major deficiency is the lack of formal guarantees. For example, the nML specifi-
cation language employs attribute grammars to describe instruction sets [7]. For
another example, EEL uses machine independent primitives to provide syntac-
tic and semantic information of instructions [12]. The most relevant work in this
category is the SLED language which our CSLED is based upon [15]. The pat-
terns in SLED can only describe constraints on tokens and fields. By contrast,
CSLED contains class patterns for accurately characterizing the structures of
components. This extension enables CSLED to capture the bijection between
the abstract and concrete forms of instructions.

Instruction decoding and encoding are special cases of parsing and pretty
printing, respectively. Although there was early work on verifying that pars-
ing and pretty-printing are inverses of each other by formulating them as bijec-
tions [1,10], this requirement was perceived as too strong [16]. Most of the recent
work on verified parsing and pretty printing are dedicated to verify parser gener-
ators based on context-free grammars, regular expressions, parser combinators,
or general data formats [3,11,17]. Some of them are also specialized work on
verifying the encoder-decoder pairs [6,14,19,21]. They mostly deal with gen-
eral and ambiguous grammars or specifications where bijection is difficult (if not
impossible) to establish. By contrast, we intentionally restrict the expressiveness
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of CSLED specifications to make proving consistency possible. Specifically, the
syntax presented in Fig.4 implies that CSLED specifications can only match
sequences of tokens with finite lengths and shapes, making it strictly weaker
than regular expressions, yet sufficiently strong for precisely capture the com-
mon instruction formats.

There is also abundant work on the development of formal ISA specifications
(e.g., [2,4,8,9]). However, almost all of them focus on the problem of rigorously
defining the semantics of ISAs (such as their sequential behaviors, concurrency
models and interrupt behaviors). Although formalized encoders or decoders (or
both) are sometimes generated (e.g., in Coq or Isabelle/HOL), there is no formal
verification of the soundness or consistency of instruction encoding and decoding
which only concerns the syntaz of instructions.

In this paper, we have presented a framework for specifying instruction for-
mats and for automatically generating and verifying encoders and decoders based
on such specifications. The verified encoders and decoders are consistent with
each other (being inverses of each other) and sound (conforming to high-level
specifications). Consistency is provable in our framework because our specifica-
tions capture the bijections inherently embedded in instruction formats. In the
future, we would like to apply this framework to a major part of X86-32 and X86-
64 instructions and also to other ISAs, thereby to demonstrate the versatility
and scalability of our framework.
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Abstract. Several automatic verification tools have been recently devel-
oped to verify subsets of LLVM’s optimizations. However, none of these
tools has robust support to verify memory optimizations.

In this paper, we present the first SMT encoding of LLVM’s mem-
ory model that 1) is sufficiently precise to validate all of LLVM’s intra-
procedural memory optimizations, and 2) enables bounded translation
validation of programs with up to hundreds of thousands of lines of code.
We implemented our new encoding in Alive2, a bounded translation val-
idation tool, and used it to uncover 21 new bugs in LLVM memory opti-
mizations, 10 of which have been already fixed. We also found several
inconsistencies in LLVM IR’s official specification document (LangRef)
and fixed LLVM’s code and the document so they are in agreement.

1 Introduction

Ensuring that LLVM is correct is crucial for the safety and reliability of the
software ecosystem. There has been significant work towards this goal including,
e.g., formally specifying the semantics of the LLVM IR, (intermediate represen-
tation). This entails describing precisely what each instruction does and how
it handles special cases such as integer overflows, division by zero, or deref-
erencing out-of-bounds pointers [8,24,26,29,47]. There has also been work on
automatic verification of classes of optimizations, such as peephole optimiza-
tions [25,31], semi-automated proofs [48], translation validation [20,35,42,44],
and fuzzing [23,46]. All this work uncovered several hundred bugs in LLVM.

While there has been great success in improving correctness of scalar opti-
mizations, current verification tools only support basic memory optimizations, if
any. Since memory operations can take a significant fraction of a program’s run
time, memory optimizations are very important for performance. The implemen-
tation of these optimizations and related pointer analyses tends to be complex,
which further justifies the investment in verifying them.

Verifying programs with memory operations is very challenging and it is hard
to scale automatic verification tools that handle these. The main issue lies with
pointer aliasing: which objects does a given memory operation access? Without
any prior information, a verifier must consider that each operation may load or
© The Author(s) 2021
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store from any live object (global variables and stack/heap allocations). This
creates a big case split for the underlying constraint solver to (attempt to) solve.

Since automatic verification of the source code of memory optimizations is
out of reach at the moment, we focus on bounded translation validation [30,
40] (BTV) instead. (Bounded) translation validation consists in verifying that
an optimization was correct for a particular input program (up to a bounded
unrolling of loops) rather than verifying its correctness for all input programs.

In this paper, we present the first SMT encoding of LLVM’s memory
model [24] that is precise enough to validate all of LLVM’s intraprocedural mem-
ory optimizations. The design of the encoding was guided by practical insights of
the common aliasing cases in BTV to achieve better performance. For example,
we observed that in most cases we can cheaply infer whether a pointer aliases
with a locally-allocated or a global object (but not both). Therefore, our encod-
ing case-splits itself on this property rather than leaving that to the SMT solver,
as we can cheaply resolve the case split for over 95% of the cases.

The second contribution of this paper is a new semantics for heap allocation
for the verification of optimizations for real-world C/C++ programs. Although
LLVM’s memory model has a reasonable semantics for heap allocations [24], we
realized it was not suitable for verifying optimizations. In some programming
styles, the result of functions such as malloc is not checked against NULL and
the resulting pointer is dereferenced right away. Since malloc can return NULL
in some executions, we could end up proving that some undesirable optimiza-
tions were correct since the program triggers undefined behavior in at least one
execution. We propose a new semantics for heap allocations in this paper that
is better suited for the verification of optimizations.

The third contribution is the identification of approximations to the SMT
encoding such that it is still sufficiently precise to verify (and find bugs) in
LLVM’s memory optimizations. This is possible since for translation validation
we only need to be as precise as LLVM’s static analyses (e.g., in the encoding
of aliasing rules), and therefore we do not need to consider extremely precise
analyses nor arbitrary transformations. Compilers have limited reasoning power
by construction in order to keep compilation time reasonable.

We implemented our new SMT encoding of LLVM’s memory model in
Alive2 [30], a bounded translation validation tool for LLVM. We used Alive2
to find and report 21 previously unknown bugs in LLVM memory optimizations,
10 of which have already been fixed.

To summarize, the contributions of this paper are as follows.

1. The first SMT encoding of LLVM’s memory model that is precise enough to
verify all of LLVM’s intraprocedural memory optimizations.

2. A new semantics for heap allocations for the verification of optimizations of
real-world C/C++ programs (Sect. 5.1).

3. A set of approximations to the SMT encoding to further improve the perfor-
mance of verification without introducing false positives or false negatives in
practice (Sect.9).
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4. Thorough evaluation of LLVM’s memory model against LLVM’s implemen-
tation, which uncovered deviations from the model (Sect. 10.3).

5. Identification of 21 previously unknown bugs in LLVM. We present a few
examples in Sect. 10.1.

2 Overview

Consider the functions below in C:' a source (original) function on the left and
a target (optimized) function on the right. According to the semantics of high-
level languages, and also of LLVM IR, a pointer received as argument or a callee
cannot guess the address of a memory region allocated within a function. That
is, pointer q is not aliased with p, r, nor touched by g(p+1). Although the caller
of £ may guess the address of q in practice, that behavior is excluded by the
language semantics because p’s object (provenance) cannot be a fresh one like q.
If p happens to alias q, accessing such pointer triggers undefined behavior (UB).

1 int f£(int *p) { 1" int f(int *p) {

2 int *q = malloc (4); 2’ // q removed

3 *q = 42; 3’

4 int *r = g(p+1); 4" int xr = g(p+1);
5 *r = 37; 5 *r = 37;

6 return *q; 6 return 42;

7} 7}

The provenance rules allow LLVM to forward the stored value in line 3 to line
6, and therefore line 6’ simply returns 42. As the value stored to *q is not used
anymore and pointer q does not escape, LLVM also removes the heap allocation.
Next we show how to verify this example. Note that we do not require the two
programs to be aligned; the example is aligned to make it easier to understand.

2.1 Verifying the Example Transformation

We start by defining two auxiliary functions that encode the effect of memory
operations on the program state. Let state S = (m,ub) be a pair, where m is a
memory and ub a boolean that tracks whether the program has already executed
UB or not. Let p be the accessed pointer, and v the stored value. The definition
of functions load and store is as follows:

load p S := ( load(p, S.m) , (S.m, S.ubV — deref(p, sizeof(*p), S.m) ))
store p v S == ( store(p,v,S.m) , S.ubV — deref(p, sizeof (xp),S.m) )

load returns a pair with the loaded value and the updated state, where ub
is further constrained to ensure that pointer p is dereferenceable for at least the
size of the loaded type. Similarly, store returns the updated state. The gray
boxes ( --- ) encode SMT expressions; we describe these in the next section.

1 We use the syntax of C for many of the examples in this paper to make them easier
to read, even though we consider the semantics of LLVM IR.
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Table 1. States and axioms after executing each of the lines of f.

# | Inputs: p, mg, ubg # Inputs: p’, m{), ubj
2 | S1 := (mo,ubo) A1 := q is fresh 2/ |-
3 |93 := store q 42 S 3 -
S3 := (mg, S2.ub V ub,
4 (mg s) 47|81 := (my, ubjy V uby)

Agz:= r is not aliased with g A mg agrees with S2.m on ¢

Sy := store r 37 S3 5’| S := store r’ 37 S}
O :=load q S 6’| O := (42, 5%)

1. Encoding the output states. Table1 shows the state after executing each of
the programs’ lines. p, mg, and uby are SMT variables for the input pointer, and
function £ caller’s memory and UB flag, respectively. The target’s corresponding
variables are primed. Meta variables are upper-cased and SMT variables are
lower-cased.

On line 2, g is assigned a pointer to a new object (encoded in axiom A;). On
line 3, ‘*q = 42’ updates the state using store.

On line 4, the return value, output memory, and UB of g(p+1) are repre-
sented with fresh variables 7, mg, and ubg, respectively. Axiom Aj encodes the
provenance rules: the return value cannot alias with locally non-escaped point-
ers (q) and only the remaining objects are modified. Line 4’ does not need these
axioms because there are no locally-allocated objects in the target function.

Finally, the outputs O and O’ are a pair of return value and state.

2. Relating the source and target’s states. To prove correctness of a transforma-
tion, we must first establish refinement between the input states of the source/-
target functions. Refinement (3) is used rather than equality because it is allowed
for the source’s caller to give less defined inputs than the target’s.

A= pdp A moImh A (uby = ubg)

The inputs and outputs of function calls are also related using refinement.
For any pair of calls in the source and target functions, if the target’s inputs
refine those of the source, the target’s output also refines the source’s output.
The example only has one function call pair:

Acau::<52.mgm6 Ap+1Jp +1 = mggm,’g ArJdr /\(ub'g — ubg))

We can now state the correctness theorem for the example transformation.
For any input, if the axioms hold, the output of the target must refine that of
the source for some internal nondeterminism in the source (e.g., the address of
pointer q). Output is refined iff (i) the source triggers UB, or (i¢) the target
triggers no UB, and the target’s return value and memory refine those of the
source.
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Vp, p’, mo, mg, ubo, ubp, mg, myg, ubg, uby . 3q. (A1 A Aa A Ain A Acan) = O 30O’

2.2 Efficiently Encoding LLVM’s Memory Model and Refinement

We now present our key ideas for efficiently encoding LLVM’s memory model
and refinement (the gray boxes) in SMT, which is one of our main contributions.

1. Pointers. We represent a pointer as a pair (bid,o0) of a block id (i.e., its
provenance) and an offset within, so that we can easily detect out-of-bound
accesses: accessing (bid, 0) in memory m triggers UB unless 0 < o < m/[bid].size,

from which deref((bid,0), sz, m) naturally follows.

2. Bounding the number of blocks. Our first observation is that we can safely
bound the number of memory blocks for bounded translation validation since
loops are unrolled for a fixed number of iterations. As a result, we can use a
(fixed-length) bit-vector to encode block ids.

For the example source function, four blocks are sufficient: three for pointers
P, 9, T as they may all point to different blocks, and an extra to represent all the
other blocks that are not syntactically present but are accessible by function g.

For the sake of simplifying the example, we ignore that p, q, r may be null.
Our model does not make such assumption; we explain later how null is handled.

3. Aliasing rules. Several of the aliasing rules are encoded for free as we can
distinguish most blocks by construction. First, we use the most significant bit of
the block ids to distinguish local (1) from non-local (0) blocks. Second, we assign
constant ids whenever possible (e.g., global variables and stack allocations).

For the example source function, (without loss of generality) we set the block
ids of q, p and the extra block to 1002y, 000(2), and 0119 (in binary format),
respectively. However, we cannot fix the block id of r and instead give the con-
straint that it should be either 0002y or 0012y since r may alias with p but not
with q. This establishes the alias constraints in A; and As for free.

4. Memory accesses. In order to leverage the fact that each pointer may range
over a small number of blocks as seen above, we use one SMT array per block
(from an offset to a byte) instead of using a single global array (from a pointer
to a byte). For the latter, it becomes harder to exploit non-aliasing guarantees
since all stores to different blocks are grouped together.

. . 100 000
For the example source function, mg consists of four arrays mé ), m(() ),

m8001)7 méou) for the four blocks. Then since ¢’s block id is 1002y, store ¢ 42 S}

at line 3 only updates the array m8100)7 leaving the others unchanged. Similarly,

store r 2 S3 at line 5 only updates m(()ooo) and méom) using the SMT if-then-else
expression on r’s block id. Finally, load ¢ S, at line 6 reads from the updated
array at 100(z), thereby easily realizing that the read value is 42.
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5. Refinement. The value/memory refinement I is defined based on a mapping
between source and target blocks, which we efficiently encode leveraging the
alignment information between source and target as much as possible (Sect. 7).

3 LLVM’s Memory Model

In this section, we give a brief introduction to LLVM’s memory model [24]. In
this paper we only consider logical pointers (i.e., integer-to-pointer casts are not
supported) and a single address space.

Memory Block. A memory block is the unit of memory allocation: each stack or
global variable has a distinct block, and heap allocation functions like malloc
create a fresh block each time they are called. Each block is uniquely identified
with a non-negative integer (bid), and has associated properties, including size,
alignment, whether it can be written to, whether it is alive, allocation type (heap,
stack, global), physical address, and value.

Pointer. A pointer is defined as a triple (bid, off, attrs), where off is an offset
within the block bid, and attrs is a set of attributes that constrain dereference-
ability and which operations are allowed.

Pointer arithmetic operations (gep) only change the offset, with bid and attrs
being carried over. Unlike C, an offset is allowed to go out-of-bounds (OOB). Such
pointer, however, cannot be dereferenced like in C (triggers undefined behavior—
UB), but can be used for pointer comparisons for example.

LLVM supports several pointer attributes. For example, a readonly pointer
p cannot be used to store data. However, it is possible to use a non-readonly
pointer g to store data to the same location as p (provided the block is writable).
A nocapture pointer cannot escape from a function. For example, when a func-
tion returns, no global variable may have a nocapture pointer stored (otherwise
it is UB).

LLVM has three constant pointers. The null pointer is defined as (0,0, ().
Block 0 is defined as zero sized and not alive. The undef? pointer is defined
as (3,4,0), with 3,6 being fresh variables for each observation of the pointer.
There is also a poison® pointer.

Instructions. We consider the following LLVM memory-related instructions:

— Memory access: load, store
— Memory allocation: malloc, calloc, realloc, alloca (stack allocation)
— Lifetime: start lifetime (for stack blocks), free (stack/heap deallocation)

2 In LLVM, undef values are arbitrary values of a given type with the additional
property that they can yield a different value each time they are observed. undef
values can be replaced with any value of the same type, except poison values.

3 A poison value taints whole expression trees (e.g., poison + 1 = poison), and
branching on it is UB. Similarly, dereferencing a poison pointer is UB.



758 J. Lee et al.

— Pointer-related: gep (pointer arithmetic), icmp (pointer comparison)
— Library functions: memcpy, memset, memcmp, strlen
— Others: ptrtoint (pointer-to-integer cast), call (function call).

Unsupported memory instructions are: integer-to-pointer casts, and atomic
and volatile memory accesses.

4 Encoding Memory Blocks and Pointers in SMT

We describe our new encoding of LLVM’s memory model in SMT over the next
few sections. We use the theories of UFs (uninterpreted functions), BVs (bit-
vectors), and arrays with lambdas [7], with first order quantification. Moreover,
we consider that the scope of verification is a single function without loops (or
where loops have been previously unrolled).

4.1 Memory Blocks

Each memory block is assigned a distinct identifier (a bit-vector number). We
further split memory blocks into local and non-local. Local blocks are all those
that are allocated within the function under consideration, either on the stack
or the heap. Non-local blocks are the remaining ones, including global variables,
heap/stack allocations in callers and heap allocations in callees (stack allocations
in callees are not observable, since they are deallocated when the called function
returns, hence there is no need to consider them).

We use the most significant bit (MSB) to encode whether a block is local (1)
or non-local (0). This representation allows the null block to have bid = 0 and
be non-local. We refer to the short block id, or I;Ei, to refer to bid without the
MSB. This is used in cases where it has already been established whether the
block is local or not. Example with 4-bit block ids:

int g; // bid(g) = 0001

void f(int *p) { // bid(p) = Oxyz (with xyz = arbitrary)
int af2]; // bid(a) = 1000
int *q = malloc(4); // bid(q) = 1001

}

The separation of local and non-local block ids is an efficient way to encode
the constraint that pointers of these groups cannot alias with each other. In the
example above, argument p cannot alias with either a or q.

As we only consider functions without loops, block ids can be statically
assigned for each allocation site.

4.2 Pointers

A pointer ptr = (bid, off, attrs) is encoded as a single bit-vector consisting in
the concatenation of the three elements. The offset is interpreted as a signed
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number (which is why blocks cannot be larger than half of the address space).
Each attribute (such as readonly) is encoded with a bit. Example with 2-bit
block ids and offsets, and a single attribute (we use . to visually separate the
elements):

void f(char readonly *p, char *q) { // p = Ox.ab.1, q = Oy.cd.0

char *r = p + 2; // r = 0x.(ab+2).1
char *s = q + 3; // s = 0y.(cd+3).0
char *t = malloc(4); // t = 10.00.0

}

Let off be a truncated offset where the least significant bits corresponding to
the greatest common divisor of the alignment and sizes of all memory operations
are removed. For example, if all operations are 4-byte aligned and they access
either 4- or 8-byte values, then off has less 2 bits than off (as these are guaranteed
to be always zero when accessing the memory).

4.3 Block Properties

Each block has seven associated properties: size, alignment, read-only, liveness,
allocation type (heap, stack, global), physical address, and value. Block proper-
ties are looked up and updated by memory operations. For example, when doing
a store, we need to check if the access is within the bounds of the block.

Except for liveness and value, properties are fixed at allocation time. Liveness
is encoded with a bit-vector (one bit per block), and value with arrays (indexed
on off). We use a multi-memory encoding, where we have one array per bid.

The encoding of fixed properties differs for local and non-local blocks. For
non-local blocks, we use a UF symbol per property, taking bid as argument.
For local blocks, we cannot use UFs because for the refinement check some of
these would have to be quantified (c.f. Sect.7) and most, if not all, SMT solvers
do not support quantification of UF symbols. Therefore, we encode each of the
remaining properties of local blocks as an if-then-else (ITE) expression, which is
tailored for each use (e.g., each time an operation needs to lookup a local block’s
size, we build an ITE expression for the given BB)

Using ITE expressions to encode properties is less concise than using UFs.
However, it is not a disaster for two reasons. Firstly, we only need to consider
the local blocks that have been allocated beforehand, since the program cannot
access blocks allocated afterward. Secondly, pointers are usually not fully arbi-
trary. Oftentimes we know statically which type of block they refer to, and even
what is the block id, given that pointer arithmetic operations do not change the
block id. Therefore, the ITE expressions are usually small in practice. Example
with 4-bit block ids and offsets of a source program:

int g; // g = 0001.0000, size_src(001) = 4
void £() {

char p[2]; // p = 1000.0000

char q[31; // q = 1001.0000
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char *r = ... porqor g ...

r[2] = 0;

char t[1]; // t = 1010.0000
}

The store in this program is only well defined if the size of block pointed by
r is greater than 2. This is encoded in SMT as follows:

ite(islocal(r), ite(l;ii(r) =0,2, 3),sizesrc(l;§i(r))) > 2
Function islocal(p) is encoded with the SMT extract expression to fetch the
MSB of the pointer. Similarly, bid(p) extracts the relevant bits from a pointer.
The expression for local blocks only needs to consider local blocks 0 and 1, since

block 2 (t) is only allocated afterward. This allows a simple single pass through
the code to generate optimized ITE expressions.

Value. Value is defined as an array from short offset to byte (described later
in Sect.6.1). For non-local blocks, only those that are constant are initialized
with the respective value. The remaining blocks are allowed to take almost any
value. The exception is for pointers: non-local blocks cannot initially have local
pointers stored, since the calling environment cannot fabricate local pointers.

Local blocks are initialized with poison values using a constant array (i.e.,
an array that yields the same value for all indexes).

4.4 Physical Addresses

If a program observes addresses (through, e.g., pointer-to-integer casting), we
need additional constraints to ensure that addresses of blocks that overlap in
time are disjoint. Since we are doing translation validation, we have two programs
with potentially different sets of locally allocated blocks. Therefore, we need to
ensure that non-local blocks’ addresses are disjoint from those of local blocks of
both programs. This makes the disjointness constraints quite complex.

As an optimization, we split the address space in two: local blocks have
MSB = 1 and non-locals have MSB = 0. Since the encoding of address disjointness
is quadratic in the worst case (cross-product of blocks), halving the number of
blocks is significant. This optimization, however, is an under-approximation of
the program’s behavior (Sect.9). After investigating LLVM’s optimizations, we
believe it is highly unlikely this approximation will cause false negatives.

If a program does not observe any pointer’s physical address, neither the
block’s physical address property nor the disjointness axioms are instantiated.
However, when dereferencing a pointer, we need to check if the physical address
is sufficiently aligned. When physical addresses are not created, we resort to
checking alignment of both of the pointer’s block and offset. Since in this case
physical addresses are not observed (and therefore not constrained by the pro-
gram using, e.g., pointer comparisons), a block’s physical address can take any
value, and therefore blocks and offsets must be both sufficiently aligned to ensure
that physical pointers are aligned in all program executions. This argument jus-
tifies why we can soundly discard physical addresses.
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Table 2. Comparison of two semantics for pointer comparison.

Integer comparison | Non-deterministic
Fold p = q to false if p.bid # q.bid No Yes
Fold p+i=q+itop=q Yes No
Fold (int)p = (int)q to p=gq Yes No
Foldp<gAp#qtop<q Yes No
Fold p<gqAq#nulltop<q Yes Potentially
Run-time aliasing checks Yes Correct, but not useful
Analysis of pointers cast from integers | Harder Easy

4.5 Pointer Comparison

Given two pointers p and q, if a program learns that q is placed right after
p in memory, the program can potentially change the contents of q without
the compiler realizing it. Detecting the existence of such code is impossible in
general, hence restricting the ways a program can learn the layout of objects in
memory is important to make pointer analyses fast yet precise.

A way the memory layout can leak is through pointer comparison. For exam-
ple, what should p < g return if these point to different memory blocks? If it is a
well-defined operation (i.e., simply compares their integer values), it leaks mem-
ory layout information. An alternative is to return a non-deterministic value to
prevent layout leaks, the formal semantics of which is defined at [24].

We found that there are pros and cons of both semantics for the comparison of
pointers of different blocks, and that neither of them covers all optimizations that
LLVM performs. Table 2 summarizes the effects on each of the optimizations.

We decided to implement the integer comparison semantics, as LLVM per-
forms all the optimizations above and its alias analyses (AA) mostly give up
when they encounter an integer-to-pointer cast. In summary, we have to remove
the first optimization from LLVM to make it sound. Additionally, we make it
harder to improve LLVM’s AA algorithms w.r.t. to pointers cast from integers.

4.6 Bounding the Maximum Number of Blocks

Since we assume that programs do not have loops, we can statically bound the
maximum number of both local and non-local blocks a program may observe.

The maximum number of local blocks in the source and target programs,
respectively, N;7¢, and N, ltf;al, is computed by counting the number of heap and
stack allocation instructions. Note that this is an upper-bound because not all
allocation sites may be reachable in practice.

For non-local blocks, we cannot see their definitions as with local blocks,
except for global variables. Nevertheless, we can still bound the maximum num-
ber of observed blocks. It is sufficient to count the number of instructions that
may return non-local pointers, such as function calls and pointer loads. In addi-
tion, we consider a null block when needed (if the null pointer may be observed).
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To encode the behavior of source and target programs, we need N7¢, . +

i%illocal non-local blocks in the worst case, as all referenced pointers may be dis-
tinct. However, correct transformations will not have the target program observe
more blocks than the source. If the target observes a pointer to a non-local block
that was not observed in the source, we can set that pointer to poison because
its value is not restricted by the source. Therefore, N'¢ . non-local blocks
are sufficient to allow the target to exhibit an incorrect behavior.

o . i , tgt
The bit-width of bid is: wy; = [logy(max(Nyreoear> max(Nive, Nyt )))]-
When only local or non-local pointers are used, wpia = w7, as we know statically

if the pointer is local or not. Otherwise, wyq = wy;; + 1.

5 Memory Allocation

In LLVM, memory blocks can be allocated on the stack (alloca), in the heap
(e.g., malloc, calloc, etc.), or as global variables. It is surprisingly non-trivial to
find a semantics for memory allocations that allows all of LLVM’s optimizations,
and rejects undesired transformations. For example, we have to support alloca-
tion removal and splitting, introduce new stack allocations and new constant
global variables, etc. We explore multiple semantics and show their merits and
shortcomings in the context of proving correctness of program transformations.

5.1 Heap Allocation

Heap allocation is done through functions such as malloc, calloc, C++’s new
operator, etc. We describe semantics for malloc; remaining functions can be
described in terms of it.

First of all, it is important to note that there are two common idioms used
in practice by C programmers when doing memory allocation:

int *p = malloc(4); int *p = malloc(4);
*p = 0; if (p) { *p = 0; }

In some programs, like the example on the left, malloc is assumed to never
return null, say non-null assumption. This is mainly because the program does
not consume too much memory and it is expected that the computer has enough
memory/swap space. In other programs like the one on the right, malloc is
expected to sometimes return null, say may-null assumption. Therefore, the
program performs null-ness checks.

Since both programming styles are prevalent, we would like optimizations to
be correct for both. This is non-trivial, as the two assumptions are conflicting:
with the non-null assumption, it is sound to eliminate null checks, but not with
the may-null assumption. We now explore several possible semantics to find one
that works for both programming styles.
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A. Malloc always succeeds. Based on the non-null assumption, in this seman-
tics we only consider executions where there is enough space for all allocations
to succeed. Regardless of whether the target uses more or less memory than
the source, all calls to malloc yield non-null pointers. Therefore, for example,
deleting unused malloc calls is allowed.

However, removing null checks of malloc is also allowed in this semantics.
For example, optimizing the right example above into the left one is sound. This
transformation, however, is obviously undesirable.

B. Malloc only succeeds if there is enough free space. To solve the problem just
described, based on the may-null assumption, we can simulate the behavior of
dynamic memory allocation and define malloc to return a pointer to a newly
created block if there is an empty space in memory, and null otherwise. This
semantics prevents the removal of null checks of malloc as it may return null.
However, this semantics does not explain removal of unused allocations. It
aligns both source and target programs’ allocations such that any change in the
allocation sequence disrupts the program alignment and thus makes verification
fail. For example, the following transformation removing unused malloc instruc-
tions and replacing comparisons of their output with null is not supported:

int *x = malloc(4); // remove x (unused)
if (x '= nullptr) { ... } = if (true) { ... }

In case there were 0 bytes left in memory, x would be null, but since LLVM
assumes that the program cannot observe the state of the allocator it folds
the comparison x != nullptr to true after eliminating the allocation. This
optimization would be flagged as incorrect in this semantics.

LLVM assumes very little about the run-time behavior of memory allocators.
This is to support, for instance, garbage collectors, where an allocation may fail
but if repeated it may succeed because memory was reclaimed in between. This
explains why LLVM folds comparisons with null of unused memory blocks, and
also contradicts the linear view of allocations of this semantics.

C. Malloc mnon-deterministically returns null. This semantics abstracts
the behavior of the memory allocator by (1) allowing malloc to non-
deterministically return null even if there is available space, and (2) only consid-
ering executions where there is enough space for all allocations to succeed. This
semantics prevents the removal of null checks of malloc, which fixes the short-
comings of semantics A, and also allows the removal of unused allocations, which
fixes those of semantics B. However, this semantics is too weak and therefore
allows other undesirable transformations, like the following:

p = malloc(4); . )
*p = 0; = exit();

For the sake of proving refinement (Sect. 7), we need just one trace triggering
UB (i.e., one particular realization of the non-deterministic choices) for a given
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MSB LSB
Pointer byte: | 1 | p? | Pointer representation | Byte offset |
Non-pointer byte: | 0 | Poison bits Integral value | Padding |

Fig. 1. Bit-wise representation of a byte. A pointer byte is poison if ‘p?’ is zero. A
non-pointer byte tracks poison bit-wise.

input to be able to transform the source program into anything for that input.
Informally speaking, refinement always picks the worst-case execution for each
input. Since the source program executes UB when p is null, it is correct to
transform the source into any program although that is obviously undesirable.

This semantics is too weak in practice since many programs are written
without null checks, either assuming the program will not run out of memory,
or assuming the program will terminate if it runs out memory. It is not reasonable
in practice to allow compilers to break all such programs.

Our Solution. As we have seen, there is no single semantics that both allows all
desired transformations and rejects undesired ones. While semantics B prevents
desired optimizations like allocation removal, semantics A and C allow undesired
optimizations, but in a complementary way. For example, removing null checks of
malloc is allowed in A but not in C. On the other hand, transforming an access
of a malloc-allocated block without a null check beforehand into arbitrary code
is allowed in C but not in A.

Therefore, we obtain a good semantics by requiring both A and C: an opti-
mization is correct if it passes the refinement criteria with each of the two
semantics. Intuitively, this definition requires the compiler to support the two
considered coding styles: semantics A supports the non-null assumption, while
semantics C the may-null assumption.

5.2 Stack Allocation

The semantics of alloca, the stack-allocation instruction, is slightly different
from that of malloc. LLVM assumes that stack allocations always succeed, since
the program will likely crash if there is a stack overflow. That is, alloca never
returns a null pointer.

LLVM performs more optimizations on stack allocations than on heap ones.
For example, LLVM can split an allocation into multiple smaller ones or increase
the alignment. These transformations can increase memory consumption.

6 Encoding Loads and Stores in SMT

We encode the value of memory blocks with several arrays (one per bid): from
short offset to byte. We next give the definition of byte and the encoding of
memory accessing instructions in SMT.
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6.1 Byte

There are two types of bytes: pointer bytes and non-pointer bytes, cf. Fig. 1.

A pointer byte has the most significant bit (MSB) set to one. The following
bit states whether the byte is poison or not. Next is the pointer representation
as described in Sect. 4.2 (bid, off, attrs).

Pointers are often longer than one byte, so when storing a pointer to memory
we write multiple consecutive bytes. Each of these bytes records the same pointer,
but with a different byte offset (the last bits of the byte) to distinguish between
the partial bytes of the pointer.

For non-pointer bytes, we track whether each of the bits is poison or not.
This is not required for pointers, since LLVM does not allow pointer values to
be manipulated bit-wise. Non-pointer values can be manipulated bit-wise (e.g.,
using vectors with element types smaller than 8 bits). Each bit of the integral
value is only significant if the corresponding poison bit is zero.

6.2 Load and Store Instructions

Load and store instructions are trivially encoded using SMT arrays. These arrays
store bytes as described in the previous section. We next describe how LLVM
values are encoded to and decoded from our byte representation.

We define two functions, ty{(v) and tyf(b), which convert a value v into a
byte array and a byte array b back to value, respectively. We show below tyl}(v)
when v # poison. isz stands for the integer type with bit-width sz. If sz is not
a multiple of 8 bits, v is zero-extended first. When v is poison, all poison bits
are set to one. BitVec(n, b) stands for number n with bit-width b. Pointer’s byte
offset is 3 bits because we assume 64-bit pointers.

isz{(v) or floatll(v) = Ai. 0+ 0% 4+ bitrepr(v)[8xi...8x (i 4+ 1) — 1] + padding
tyxl(v) = Ai. 12 4+ bitrepr(v) +- BitVec(i, 3)

iszft(b) and float{}(b) return poison if any bit is poison, or if any of the
bytes is a pointer. Otherwise, these functions return the concatenation of the
integral values of the bytes.

tyxf(b) returns poison if any of the bytes is poison or not a pointer, there
is more than one distinct pointer value in b, or one of the bytes has an incorrect
byte offset (they have to be consecutive, from zero to byte size minus one).
An exception is reading a non-pointer zero byte, which is interpreted as a null
pointer byte. This allows initialization of, e.g., arrays with null pointers with
memset (which is an idiom commonly used in LLVM IR).

6.3 Multi-array Memory

As already described, we use a multi-array encoding for memory, with one array
per block id, each indexed on off. A simpler encoding would have used a single
array indexed on ptr. The multi-array encoding is beneficial when we can cheaply
compute small aliasing sets for each memory access. In that case, we reduce the
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Num(sz) == {i | 0<i<2} | BlockID = N|Addr := Num(64) |Offset ::= Num(64)
PtrAttr = {nocapture, readonly, readnone} |Pointer = BlockID x Offset x 2 trAttr

Value := Aggregate W Int W Pointer & Float W {poison} |Aggregate == list Value
PtrByte == (Pointerx{i | 0<i<8}) W {poison} |NonPtrByte == Num(8)xNum(8)
Byte = PtrByte w NonPtrByte |Bytes = Offset — Byte |Size = Num(64)
Align == {: | 0<i<64} |Kind == {stack,malloc, new, global} ILive == bool
Writable ::= bool |MemB10ck == AddrxAlign x Kind x Live x Writable x Size x Bytes
Memory == BlockID%MemBlocklUB = bool|FinalState := ValuexMemoryxUB

p € Pointer |ag € Aggregate |v € Value |pb € PtrByte Inb € NonPtrByte
b € Byte |mb € MemBlock |M € Memory Jub € UB I,u € BlockID —+ BlockID

Fig. 2. Type definitions and variable naming conventions.

(VALUE-POISON) (VALUE-NONPTR) (VALUE-PTR) (VALUE-AGGREGATE)

v € Value v € IntwWFloat  p 3, p lag| = |ag’| Vi, agli] 2* ag'[i]
poison 7 v v pJhp ag 3" ag’
(FINAL-STATE-UB) (FINAL-STATE)
ub = ub’ Jp, v IV AM D M’
(v, M, true) g (v, M’ ub") (v, M, ub) Dt (v', M’ ub")

Fig. 3. Refinement of value and final state.

case-splitting work on bid that the SMT solver needs to do, and it enables further
formula simplifications like store forwarding.

The multi-array encoding may, however, end up in a larger encoding overall if
several of the accesses may alias with too many blocks. For load operations that
alias multiple blocks the resulting expression is a linear combination of the loads
of each block, e.g., ite(bid = 0,load(my,off),ite(bid = 1,load(m1,off),...)).
In this case, it would be more compact to use the single-array encoding. Note
that even if we do not know the specific block id, we often know whether a
pointer refers to a local or non-local block (e.g., pointers received as argument
have unknown block id, but are known to be non-local), and hence splitting the
memory in two is usually a good idea (c.f. Sect. 10).

We perform several optimizations that are enabled with this multi-array
encoding. We do partial-order reduction (POR) to shrink the potential alias-
ing of pointers with unknown block id. For example, consider a function with
two pointer arguments (x and y) and one global variable. We assign bid = 1 to
the global variable. Then, we estipulate that x can only alias blocks with bid < 2,
which is sufficient to access the global variable or another unknown block. Argu-
ment y is also constrained to only alias blocks with bid < 3, allowing it to alias
with the global variable, the same block as x, or a different block. The same is
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(POINTER) (MEMORY-MAP)
p.block.live = p’ . block.live Vbid, isNonLocal(bid)
p.offset = p’.offset = M[bid] 2, M'[bid]
isNonLocal({p, p' }) A p.block.id = p’.block.i id, isLocal(bi /\uz efine
isNonLocal ! block.id = p’.block.id Vbid, isLocal(bid bid] defined
V (isLocal({p, p'}) A p.block.id = u[p’.block.id]) = Mulbid]] 2}, M'[bid]
p ggh p/ M glnern MI
(BYTE-PTR) (BYTE-NONPTR) (BYTE-ZERO)  (BYTE-POISON)
pb.byteoff = pb’ byteoff nt'.p | nb.p = nb.p isZeroByte(b)
pb.ptr T4, pb’.ptr nb.v | nb.p =nb v | nb.p isZeroByte(b') isPoisonByte(b)
pb Jf... pb' nb 3 . b’ b bV bV
(BYTES) (BLOCK)
mb.live = mb’ live mb.size = mb'.size
V0 <i<mb. size, mb.kind = mb’ kind mb.writable = mb’.writable
mb.bytes[i] Jp,,, mb bytesli] mb.align < mb'.align mb.live = mb Jpy . mb’
mb Ip e mb’ mb 3L, mb’

Fig. 4. Refinement of memory and pointers.

done for function calls that return pointers. This POR technique greatly reduces
the potential aliasing of unknown pointers without losing precision.

7 Verifying Correctness of Optimizations

To verify correctness of LLVM optimizations, we establish a refinement relation
between source (or original) and target (or optimized) functions. Equivalence is
not used due to undefined behavior and nondeterminism. Compilers are allowed
to reduce the set of possible behaviors from the source.

Given functions fsyc and fig¢, set of input and output variables I5./I;g and
O (which include, e.g., memory and the return value), and set of non-determinism
variables Ng,./Nigt, fsrc is refined by fige iff:

vjsrm Itgt, Otgt . Valid(Isrca Itgt) A Isrc ; Itgt A ElNSTC . presrc(Isrm Nsrc) A
(EItht Presge(legt, Nige) N [ftge] (Tege, Negt) = Otgt)
- (HNS’I’C 'presrc(lsrm src) A [[fsrc]]( srcy Nsrc) ;st Otgt)

Predicate valid(Zsy¢, I14¢) encodes the global precondition of the input mem-
ory and arguments such as disjointness of non-local blocks. Function’s precon-
ditions, preg.. and preg, include the constraint for disjointness of local blocks.
The existential preg,. constrains the input such that the source function has at
least one possible execution. g is the refinement between final states.

Figure 2 shows the definition of final program state which is a tuple of return
value, return memory, and UB. A memory is a function from block id to a mem-
ory block. A memory block has seven attributes that are described in Sect. 4.3.
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Figure 3 shows the definition of refinement of value and final state. For point-
ers, we cannot simply use equality because local pointers in source and target are
internal to each of the functions. Even if they have the same block identifier, they
may refer to different allocation sites in the functions (VALUE-PTR). Similarly,
the refinement of the final state should consider this difference between local
pointers. To address this, we track a mapping p between escaped local blocks of
the two functions (described next).

7.1 Refinement of Memory

Checking refinement of non-local memory blocks is simple as blocks are the same
in the source and target functions (e.g., global variables have the same ids in the
two functions). Therefore, one just needs to compare blocks of source and target
functions with the same id pairwise.

Checking refinement of local blocks is harder but needed when, e.g., the
function returns a locally-allocated heap block. This is legal, but block ids in the
two functions may not be equal as allocations may have happened in a different
order. Therefore, we cannot simply compare local blocks with the same ids.

To check refinement of local blocks, we need to align the two functions’
allocations, i.e., we need to find a correspondence between local blocks of the
two functions. We introduce a mapping p € BlockID -~ BlockID between target
and source local block ids.

Local blocks become related on function calls and return statements, which
is when local pointers may be observed. For example, if a function is called with
a pointer to a local block as the first argument, p should relate that pointer with
the first argument of an equivalent function call in the target function.

Figure4 gives the definition of memory refinement, M J# M’ as well
as other related relations between memory blocks and pointers. The first rule
POINTER describes refinement between source pointer p and target pointer p’
with respect to p. The following four rules define refinement between bytes b and
b'. In rule BYTE-NONPTR, ‘a|b’ is the bitwise OR operation, and it is used to
check the equality of only those bits that are not poison. Predicate isZeroByte(b)
holds if b is a null pointer or if it is a zero-valued non-pointer byte. This is needed
because stores of null pointers can be optimized to memset instructions.

Rules BYTES and BLOCK define refinement between memory blocks’ values
and memory blocks, respectively. Rule MEMORY-MAP describes memory refine-
ment with respect to local block mapping u. M[bid] stands for the memory block
with block id bid.

The well-formedness of p is established in the refinement rules for function
calls and return statements. We show these for function calls in the next section.
We note that there might be multiple well-formed p due to non-determinism.
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(NONPTR  (PTR (PTR-ARG-UNMAPPED)  (PTR-ARG-BYVAL)
-ARG) -ARG sz2>0 o=np.offset o =p offset
v, v ¢ -MAPPED) isLocal({p,p'}) mb= M[p.bid]  mb = M'[p'.bid]
{Pointer} p.offset = p’.offset V0 <1i < sz,
vI*0 pIh, P Mpbid] 3t M'[p'bid] |mb.bytesjo+i] I}, mbbytes[o’+1]
v A" p Ty p g 1 p 3 o

Fig. 5. Refinement between function arguments.

8 Function Calls

A call to an unknown function may change the memory arbitrarily (except for,
e.g., constant variables and non-escaped local blocks). The outputs in the source
and target are, however, related: if the target’s inputs refine those of the source,
refinement holds between their outputs as well. Alive2 already supported func-
tion calls; this section shows how it was extended to support memory.

Let (M, vi) and (Myyt, Voyt) be the input and output of a function call
in the source, and their primed versions, (M, v} ) and (M],,,v),.), those of a
function call in the target. Let p;, be a local block mapping before executing
the calls. To state that the outputs are refined if the inputs are refined, we add
the following formula to the target’s precondition:

—mem —mem

(Mm Jtin M A Vi, vi[i] Dy [z‘}) (Mout Dtst MLy A vous IHout o))

A call to a function with a pointer to a local block as argument escapes this
block, as the callee may, e.g., store that pointer to a global variable. Moreover,
any pointer stored in this block also escapes as the callee may traverse the block
and grab any pointer stored there, and do so transitively. The updated mapping
tout = extend(fin, Min, M, vin, v},) returns p;, updated with the relationship
between the newly escaped blocks in source and target functions.

Figure 5 shows the definition of refinement between function call arguments
in source and target programs. The first rule relates non-pointer arguments.
The second one handles pointers that have escaped before these calls. The third
rule handles local pointers of blocks that did not escape before these calls, and
therefore we need to check if the contents of these block are refined.

The fourth refinement rule handles byval pointer arguments. These argu-
ments get a freshly allocated block and the contents of the pointer are copied

from the pointer’s offset onwards.

9 Approximating Program Behavior

In order to speedup verification, we approximate programs’ behaviors, which can
result in false positives and false negatives. We believe none of these approxima-
tions has a significant impact for two reasons: (1) we only need to be as precise as
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LLVM’s static analyses, i.e., we do not need to support arbitrary optimizations,
and (2) we do not consider the compiler to be malicious (which may not be true
in certain contexts). Moreover, we conducted an extensive evaluation to support
these claims, on which we report in the next section.

Under-Approximations

1. Physical addresses of local memory blocks have the MSB set to 1, and non-
locals set to 0. This is reasonable if we assume the compiler is not malicious
and therefore will not exploit our approximation.

2. We do not consider the case where a (portion of a) global variable is initially
undef, only poison or a regular value.

3. Library functions strlen, memcmp, and bcmp are unrolled for a constant
number of times. A precondition is added to constrain the input to be smaller
than the unroll factor. In the case of strlen, the input pointer is often a
constant array. We compute the result straight away in this case.

Over-Approximations. The set of local blocks that escape (e.g., whose address
is stored into a global variable) is computed per function. This may over-
approximate the set of escaped pointers at times because, e.g., a pointer may
only escape in a particular branch. LLVM also computes the set of escaped
pointers per function.

10 Evaluation

We implemented our new memory model in Alive2 [30]. The implementation of
the memory model consists in about 3.0 KLoC plus an additional 0.4 KLoC for
static analyses for optimization.

We run two set of experiments to both validate our implementation and
the formal semantics, and to identify bugs in LLVM. First, we did translation
validation of LLVM’s unit tests (test/Transforms) to increase confidence that
we match LLVM’s behavior in practice. Second, we run five benchmarks: bzip2,
gzip, oggenc, ph7, and SQLite3.

Benchmarks were compiled with -03. Moreover, we disabled type-based alias-
ing because there is no formal model for this feature yet. During compilation, we
emitted pairs of IR files before and after each intra-procedural optimization. We
discarded syntactically equal pairs as well as pairs without memory operations.

We used a machine with two Intel Xeon E5-2630 v2 CPUs (total of 12 cores).
We set Z3’s timeout to 1min and memory limit to 1 GB. Loops were unrolled
once. We used LLVM from 11/Dec (5e31e22) and Z3 [33] from 16/Dec (11477f).

10.1 LLVM Unit Tests

LLVM’s Transforms unit test suite consists in 6,600 tests totaling 36,600 func-
tions. Alive2 takes about 2.5 h (in parallel) to validate these. By running LLVM’s
unit tests, we found 21 new bugs in memory optimizations.
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Table 3. Statistics and results for the single-file benchmarks.

Program | LoC | Pairs | Time (hours) | Correct | Incorrect TO |OOM | Unsupported
pairs

bzip2 5.1k |2.3k |1.9 316 9 574 | 175 1.2k

gzip 5.3k | 2.6k |2.0 908 4 922 |45 737

oggenc |48k |1.8k (2.0 433 5 617 |49 701

ph7 43k |5.6k 3.4 1.2K 23 1.5K |15 2.8k

sqlite3 | 141k |12k |7.5 2.2k 38 2.2K |48 7.8k

We show below an example of a bug we found. This optimization was shrink-
ing the store from 64 to 32 bits, which is incorrect since the last 32 bits were not
copied. This happened because of the mismatch in the load/store’s sizes.

// i32 *x, *y, *z; // 132 *x, *y, *z;
i32 *p = (xx < %y 7 x : y); A 132 1 = (xx < *xy 7 *xx : *y);
*x(164x)z = *(i64*)p; ¥z = T;

10.2 Benchmarks

Table 3 shows the statistics and results for translation validation. The Pairs
column indicates the number of source/optimized function pairs considered for
validation. We discarded pairs where the two functions were syntactically equal,
as the transformation is then trivially correct. The last column indicates the
number of skipped pairs because they use features Alive2 does not yet support.

All the 79 incorrect pairs are due to mismatches between LLVM and the
formal semantics. Of these, 74 are related with incorrect handling of undef and
poison values, and the remaining 5 are caused by incorrect load type punning
optimizations. This shows that our tool has no false positives.

10.3 Specification Bugs

While testing our tool, we found a mismatch in the semantics of the nonnull
attribute between LLVM’s documentation and LLVM’s code. The documenta-
tion specified that passing a null pointer to a nonnull argument triggered UB.
However, as illustrated below, LLVM adds nonnull to a pointer that may be
poison. This is incorrect because poison can be optimized into any value includ-
ing null.

P = gep inbounds q, 1 P = gep inbounds q, 1
£(p) = f(nonnull p) ; UB if p poison
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We proposed a new semantics to the LLVM developers, where non-
conforming pointers would be considered poison rather than UB. This was
accepted and we have contributed patches to fix the docs and the incorrect
optimizations.

10.4 Alias Sets

To show that splitting the memory into multiple arrays is beneficial, we gathered
statistics of the alias sets in our benchmarks. More than 96% of the dereferenced
pointers turned out to be only local or non-local, but not both. This shows that
splitting the memory into local and non-local simplifies the memory encoding.
We also counted the number of memory blocks pointers may alias with. Half
of the pointers were aliased with just one block. About 80% of the pointers
aliased with at most 3 blocks. This is much less than the median number of
blocks functions have. The median of the number of memory blocks was 7 ~ 13
(varying over programs), and only 10% of the functions had fewer than 3 blocks.

11 Related Work

Semantics of LLVM IR. The official LLVM IR’s specification is written in
prose [1]. Vellvm [47] and K-LLVM [29] formalized large subsets of the IR in
Coq and K, respectively. [26] clarifies the semantics of undef and poison and
proposes a new freeze instruction. [24] formalizes various memory instructions
of LLVM. [32] presents a C memory model that supports compilation to that
LLVM model.

Translation validation. [38] presents a translation validation infrastructure for
GCC’s intermediate language, using a set of arithmetic/aliasing rules for show-
ing equivalence. LLVM-MD [44] and Peggy [42] verify LLVM optimizations by
showing equivalence of source and targets with rewrite rules/equality axioms.
They suffer, however, from incomplete axioms for aliasing.

In order to simplify the work of translation validation tools, it is possible
to extend the compiler to produce hints (witnesses) [18,36,38,41]. One of these
tools, Crellvm [20], is formally verified in Coq.

Verifying programs with memory using SMT solvers. SMT solvers have been
used before to check equivalence of programs with memory [11,14,21,25,31]. [12]
give an encoding of some (but not all) aliasing constraints needed to do transla-
tion validation of assembly generated by C compilers.

Other memory models encoded in SMT include one for Solidity (Etherium
smart contracts) [16], and for separation logic [37,39]. Several verification tools
include SAT /SMT-based (partial) memory models for C [2,9,10] and Java [43].

Several automatic software verification tools, often based on CHCs (con-
strained Horn clauses), support memory programs [6,13]. For example, both Sea-
Horn and Cascade use a field-sensitive alias analysis to split the memory [15,45].
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SLAYER [4] is an automatic tool for analyzing memory safety of a C program
using Z3. Smallfoot [3] verifies assertions written in separation logic.

There have been recent advances in speeding up verification of (SMT) array
programs [17,22], from which we could likely benefit.

CompCert [27] splits the memory into local (private) and non-local (public)
blocks, similarly to what we do, but assumes that allocations never fail [28]. Work
on verifying peephole optimizations for CompCert does not support memory [34].

To support integer-to-pointer casts in CompCert, [5] proposes extending inte-
ger values to carry block ids as well. In this model, arithmetic on pointer values
yields a symbolic expression. [19] makes the pointer-to-integer cast an instruction
that assigns a physical address to the block. Neither of these models supports
several optimizations performed by LLVM.

12 Conclusion

We presented the first SMT encoding of LLVM’s memory model that is suffi-
ciently precise to validate all of LLVM’s intra-procedural memory optimizations.

Using our new encoding, we found and reported 21 previously unknown bugs
in LLVM memory optimizations, 10 of which have already been fixed.

Acknowledgement. This work was supported in part by the Basic Science
Research Program through the National Research Foundation of Korea (NRF-
2020R1A2C2011947).

References

1. LLVM language reference manual. https://llvim.org/docs/LangRef.html

2. Ball, T., Bounimova, E., Levin, V., de Moura, L.: Efficient evaluation of pointer
predicates with Z3 SMT solver in SLAM2. Technical Report MSR-TR-2010-
24, Microsoft Research (2010), https://www.microsoft.com/en-us/research/
publication/efficient-evaluation-of-pointer-predicates- with-z3-smt-solver-in-
slam2/

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic asser-
tion checking with separation logic. In: FMCO (2006). https://doi.org/10.1007/
11804192 6

4. Berdine, J., Cook, B., Ishtiaq, S.: Slayer: memory safety for systems-level code. In:
CAV (2011). https://doi.org/10.1007/978-3-642-22110-1 15

5. Besson, F., Blazy, S., Wilke, P.: A concrete memory model for CompCert. In: ITP
(2015). https://doi.org/10.1007/978-3-319-22102-1 5

6. Bjgrner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn
clauses. In: SAS (2013). https://doi.org/10.1007/978-3-642-38856-9 8

7. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a
logic of counter arithmetic with lambda expressions and uninterpreted functions.
In: CAV (2002). https://doi.org/10.1007/3-540-45657-0 7

8. Chakraborty, S., Vafeiadis, V.: Formalizing the concurrency semantics of an LLVM
fragment. In: CGO (2017). https://doi.org/10.1109/CG0O.2017.7863732


https://llvm.org/docs/LangRef.html
https://www.microsoft.com/en-us/research/publication/efficient-evaluation-of-pointer-predicates-with-z3-smt-solver-in-slam2/
https://www.microsoft.com/en-us/research/publication/efficient-evaluation-of-pointer-predicates-with-z3-smt-solver-in-slam2/
https://www.microsoft.com/en-us/research/publication/efficient-evaluation-of-pointer-predicates-with-z3-smt-solver-in-slam2/
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/978-3-642-22110-1_15
https://doi.org/10.1007/978-3-319-22102-1_5
https://doi.org/10.1007/978-3-642-38856-9_8
https://doi.org/10.1007/3-540-45657-0_7
https://doi.org/10.1109/CGO.2017.7863732

774

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

J. Lee et al.

Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS (2004). https://doi.org/10.1007/978-3-540-24730-2 15

Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ANSI-C software. In: ASE (2009). https://doi.org/10.1109/ASE.
2009.63

Dahiya, M., Bansal, S.: Black-box equivalence checking across compiler optimiza-
tions. In: APLAS (2017). https://doi.org/10.1007/978-3-319-71237-6_7

Dahiya, M., Bansal, S.: Modeling undefined behaviour semantics for checking
equivalence across compiler optimizations. In: HVC (2017). https://doi.org/10.
1007,/978-3-319-70389-3 2

Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI (2012). https://doi.org/10.1145/2254064.
2254112

Gupta, S., Saxena, A., Mahajan, A., Bansal, S.: Effective use of SMT
solvers for program equivalence checking through invariant-sketching and query-
decomposition. In: SAT (2018). https://doi.org/10.1007/978-3-319-94144-8 22
Gurfinkel, A., Navas, J.A.: A context-sensitive memory model for verification of
C/C++ programs. In: SAS (2017). https://doi.org/10.1007/978-3-319-66706-5 8
Hajdu, A., Jovanovi¢, D.: SMT-friendly formalization of the solidity memory
model. In: ESOP (2020)

Ish-Shalom, O., Itzhaky, S., Rinetzky, N., Shoham, S.: Putting the squeeze on
array programs: Loop verification via inductive rank reduction. In: VMCALI (2020).
https://doi.org/10.1007/978-3-030-39322-9 6

Kanade, A., Sanyal, A., Khedker, U.P.: Validation of GCC optimizers through
trace generation. SP&E 39(6), 611-639 (2009). https://doi.org/10.1002/spe.913
Kang, J., Hur, C.K., Mansky, W., Garbuzov, D., Zdancewic, S., Vafeiadis, V.: A
formal C memory model supporting integer-pointer casts. In: PLDI (2015). https://
doi.org/10.1145/2737924.2738005

Kang, J., et al.: Crellvm: Verified credible compilation for LLVM. In: PLDI (2018).
https://doi.org/10.1145/3192366.3192377

Klebanov, V., Riimmer, P., Ulbrich, M.: Automating regression verification of
pointer programs by predicate abstraction. Formal Methods Syst. Des. 52(3), 229—
259 (2018). https://doi.org/10.1007/s10703-017-0293-8

Komuravelli, A., Bjgrner, N., Gurfinkel, A., McMillan, K.L.: Compositional ver-
ification of procedural programs using horn clauses over integers and arrays. In:
FMCAD (2015). https://doi.org/10.1109/FMCAD.2015.7542257

Le, V., Afshari, M., Su, Z.: Compiler validation via equivalence modulo inputs. In:
PLDI (2014). https://doi.org/10.1145/2594291.2594334

Lee, J., Hur, C.K., Jung, R., Liu, Z., Regehr, J., Lopes, N.P.: Reconciling high-
level optimizations and low-level code in LLVM. In: Proceedings of the ACM on
Programming Languages 2(OOPSLA), November 2018. https://doi.org/10.1145/
3276495

Lee, J., Hur, C.K., Lopes, N.P.: AliveInLean: a verified LLVM peephole optimiza-
tion verifier. In: CAV (2019). https://doi.org/10.1007/978-3-030-25543-5 25
Lee, J., et al.: Taming undefined behavior in LLVM. In: PLDI (2017). https://doi.
org/10.1145/3062341.3062343

Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107-
115 (2009). https://doi.org/10.1145,/1538788.1538814

d Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert memory model,
version 2. Technical Report RR-7987, INRIA, June 2012. http://hal.inria.fr /hal-
00703441


https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1109/ASE.2009.63
https://doi.org/10.1109/ASE.2009.63
https://doi.org/10.1007/978-3-319-71237-6_7
https://doi.org/10.1007/978-3-319-70389-3_2
https://doi.org/10.1007/978-3-319-70389-3_2
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1007/978-3-319-94144-8_22
https://doi.org/10.1007/978-3-319-66706-5_8
https://doi.org/10.1007/978-3-030-39322-9_6
https://doi.org/10.1002/spe.913
https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1145/3192366.3192377
https://doi.org/10.1007/s10703-017-0293-8
https://doi.org/10.1109/FMCAD.2015.7542257
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/3276495
https://doi.org/10.1145/3276495
https://doi.org/10.1007/978-3-030-25543-5_25
https://doi.org/10.1145/3062341.3062343
https://doi.org/10.1145/3062341.3062343
https://doi.org/10.1145/1538788.1538814
http://hal.inria.fr/hal-00703441
http://hal.inria.fr/hal-00703441

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.

SMT Encoding of LLVM’s Memory Model for Bounded TV 775

Li, L., Gunter, E.L.: -LLVM: a relatively complete semantics of LLVM IR. ECOOP
(2020). https://doi.org/10.4230/LIPIcs. ECOOP.2020.7

Lopes, N.P., Lee, J., Hur, C.K., Liu, Z., Regehr, J.: Alive2: bounded translation
validation for LLVM. In: PLDI (2021). https://doi.org/10.1145/3453483.3454030
Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Provably correct peep-
hole optimizations with Alive. In: PLDI (2015). https://doi.org/10.1145/2737924.
2737965

Memarian, K., et al.: Exploring C semantics and pointer provenance. Proc. ACM
Program. Lang. 3(POPL) (2019). https://doi.org/10.1145/3290380

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: TACAS (2008). https://
doi.org/10.1007/978-3-540-78800-3 24

Mullen, E., Zuniga, D., Tatlock, Z., Grossman, D.: Verified peephole optimizations
for CompCert. In: PLDI (2016). https://doi.org/10.1145/2908080.2908109
Namjoshi, K.S., Tagliabue, G., Zuck, L.D.: A witnessing compiler: a proof of con-
cept. In: RV (2013). https://doi.org/10.1007/978-3-642-40787-1 22

Namjoshi, K.S., Zuck, L.D.: Witnessing program transformations. In: SAS (2013).
https://doi.org/10.1007/978-3-642-38856-9 17

Navarro Pérez, J.A., Rybalchenko, A.: Separation logic modulo theories. In:
APLAS (2013). https://doi.org/10.1007,/978-3-319-03542-0 7

Necula, G.C.: Translation validation for an optimizing compiler. In: PLDI (2000).
https://doi.org/10.1145/349299.349314

Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
CAV (2013). https://doi.org/10.1007/978-3-642-39799-8 54

Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: TACAS (1998).
https://doi.org/10.1007/BFb0054170

Rinard, M.C., Marinov, D.: Credible compilation with pointers. In: RTRV (1999)
Stepp, M., Tate, R., Lerner, S.: Equality-based translation validator for LLVM. In:
CAV (2011). https://doi.org/10.1007/978-3-642-22110-159

Torlak, E., Vaziri, M., Dolby, J.: MemSAT: checking axiomatic specifications of
memory models. In: PLDI (2010). https://doi.org/10.1145/1806596.1806635
Tristan, J.B., Govereau, P., Morrisett, J.G.: Evaluating value-graph translation
validation for LLVM. In: PLDI (2011). https://doi.org/10.1145/1993316.1993533
Wang, W., Barrett, C., Wies, T.: Partitioned memory models for program analysis.
In: VMCALI (2017). https://doi.org/10.1007/978-3-319-52234-0 29

Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: PLDI (2011). https://doi.org/10.1145/1993498.1993532

Zhao, J., Nagarakatte, S., Martin, M.M., Zdancewic, S.: Formalizing the LLVM
intermediate representation for verified program transformations. In: POPL (2012).
https://doi.org/10.1145/2103656.2103709

Zhao, J., Nagarakatte, S., Martin, M.M., Zdancewic, S.: Formal verification of SSA-
based optimizations for LLVM. In: PLDI (2013). https://doi.org/10.1145/2491956.
2462164


https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/3290380
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2908080.2908109
https://doi.org/10.1007/978-3-642-40787-1_22
https://doi.org/10.1007/978-3-642-38856-9_17
https://doi.org/10.1007/978-3-319-03542-0_7
https://doi.org/10.1145/349299.349314
https://doi.org/10.1007/978-3-642-39799-8_54
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/978-3-642-22110-159
https://doi.org/10.1145/1806596.1806635
https://doi.org/10.1145/1993316.1993533
https://doi.org/10.1007/978-3-319-52234-0_29
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/2103656.2103709
https://doi.org/10.1145/2491956.2462164
https://doi.org/10.1145/2491956.2462164

776 J. Lee et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by,/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Automatically Tailoring Abstract
Interpretation to Custom Usage Scenarios

Muhammad Numair Mansur!(®) Benjamin Mariano?, Maria Christakis’,
Jorge A. Navas®, and Valentin Wiistholz*

L MPI-SWS, Kaiserslautern and Saarbriicken, Germany
{numair,maria}@mpi-sws.org
2 The University of Texas at Austin, Austin, USA
bmariano@cs.utexas.edu
3 SRI International, Menlo Park, USA
jorge.navas@sri.com
4 ConsenSys, Kaiserslautern, Germany
valentin.wustholz@consensys.net

Abstract. In recent years, there has been significant progress in the
development and industrial adoption of static analyzers, specifically of
abstract interpreters. Such analyzers typically provide a large, if not
huge, number of configurable options controlling the analysis precision
and performance. A major hurdle in integrating them in the software-
development life cycle is tuning their options to custom usage scenarios,
such as a particular code base or certain resource constraints.

In this paper, we propose a technique that automatically tailors an
abstract interpreter to the code under analysis and any given resource
constraints. We implement this technique in a framework, TAILOR, which
we use to perform an extensive evaluation on real-world benchmarks.
Our experiments show that the configurations generated by TAILOR are
vastly better than the default analysis options, vary significantly depend-
ing on the code under analysis, and most remain tailored to several sub-
sequent code versions.

1 Introduction

Static analysis inspects code, without running it, in order to prove properties or
detect bugs. Typically, static analysis approximates code behavior, for instance,
because checking the correctness of most properties is undecidable. Performance
is another important reason for this approximation. Typically, the closer the
approximation is to the actual code behavior, the less efficient and the more
precise the analysis is, that is, the fewer false positives it reports. For less tight
approximations, the analysis tends to become more efficient but less precise.
Recent years have seen tremendous progress in the development and indus-
trial adoption of static analyzers. Notable successes include Facebook’s Infer [7, 8]
and AbsInt’s Astrée [5]. Many popular analyzers, such as these, are based on
abstract interpretation [12], a technique that abstracts the concrete program
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semantics and reasons about its abstraction. In particular, program states are
abstracted as elements of abstract domains. Most abstract interpreters offer a
wide range of abstract domains that impact the precision and performance of
the analysis. For instance, the Intervals domain [11] is typically faster but less
precise than Polyhedra [16], which captures linear inequalities among variables.

In addition to the domains, abstract interpreters usually provide a large
number of other options, for instance, whether backward analysis should be
enabled or how quickly a fixpoint should be reached. In fact, the sheer number of
option combinations (over 6M in our experiments) is bound to overwhelm users,
especially non-expert ones. To make matters worse, the best option combinations
may vary significantly depending on the code under analysis and the resources,
such as time or memory, that users are willing to spend.

In light of this, we suspect that most users resort to using the default options
that the analysis designer pre-selected for them. However, these are definitely
not suitable for all code. Moreover, they do not adjust to different stages of
software development, e.g., running the analysis in the editor should be much
faster than running it in a continuous integration (CI) pipeline, which in turn
should be much faster than running it prior to a major release. The alternative of
enabling the (in theory) most precise analysis can be even worse, since in practice
it often runs out of time or memory as we show in our experiments. As a result,
the widespread adoption of abstract interpreters is severely hindered, which is
unfortunate since they constitute an important class of practical analyzers.

Our Approach. To address this issue, we present the first technique that auto-
matically tailors a generic abstract interpreter to a custom usage scenario. With
the term custom usage scenario, we refer to a particular piece of code and specific
resource constraints. The key idea behind our technique is to phrase the prob-
lem of customizing the abstract-interpretation configuration to a given usage
scenario as an optimization problem. Specifically, different configurations are
compared using a cost function that penalizes those that prove fewer properties
or require more resources. The cost function can guide the configuration search of
a wide range of existing optimization algorithms. This problem of tuning abstract
interpreters can be seen as an instance of the more general problem of algorithm
configuration [31]. In the past, algorithm configuration has been used to tune
algorithms for solving various hard problems, such as SAT solving [32,33], and
more recently, training of machine-learning models [3,18,52].

We implement our technique in an open-source framework called TAILOR!,
which configures a given abstract interpreter for a given usage scenario using a
given optimization algorithm. As a result, TAILOR enables the abstract inter-
preter to prove as many properties as possible within the resource limit without
requiring any domain expertise on behalf of the user.

Using TAILOR, we find that tailored configurations vastly outperform the
default options pre-selected by the analysis designers. In fact, we show that
this is possible even with very simple optimization algorithms. Our experiments

! The tool implementation is found at https://github.com/Practical-Formal-
Methods/tailor and an installation at https://doi.org/10.5281/zenodo.4719604.
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also demonstrate that tailored configurations vary significantly depending on
the usage scenario—in other words, there cannot be a single configuration that
fits all scenarios. Finally, most of the generated configurations remain tailored
to several subsequent code versions, suggesting that re-tuning is only necessary
after major code changes.

Contributions. We make the following contributions:

1. We present the first technique for automatically tailoring abstract interpreters
to custom usage scenarios.

2. We implement our technique in an open-source framework called TAILOR.

3. Using a state-of-the-art abstract interpreter, CRAB [25], with millions of con-
figurations, we show the effectiveness of TAILOR on real-world benchmarks.

2 Overview

We now illustrate the workflow and tool architecture of TAILOR and provide
examples of its effectiveness.

Terminology. In the following, we refer to an abstract domain with all its
options (e.g., enabling backward analysis or more precise treatment of arrays
etc.) as an ingredient.

As discussed earlier, abstract interpreters typically provide a large number of
such ingredients. To make matters worse, it is also possible to combine different
ingredients into a sequence (which we call a recipe) such that more properties are
verified than with individual ingredients. For example, a user could configure the
abstract interpreter to first use Intervals to verify as many properties as possible
and then use Polyhedra to attempt verification of any remaining properties. Of
course, the number of possible configurations grows exponentially in the length
of the recipe (over 6M in our experiments for recipes up to length 3).

Workflow. The high-level architecture of TAILOR is shown in Fig. 1. It takes
as input the code to be analyzed (i.e., any program, file, function, or fragment),
a user-provided resource limit, and optionally an optimization algorithm. We
focus on time as the constrained resource in this paper, but our technique could
be easily extended to other resources, such as memory.

The optimization engine relies on a recipe generator to generate a fresh recipe.
To assess its quality in terms of precision and performance, the recipe evaluator
computes a cost for the recipe. The cost is computed by evaluating how precise
and efficient the abstract interpreter is for the given recipe. This cost is used by
the optimization engine to keep track of the best recipe so far, i.e., the one that
proves the most properties in the least amount of time. TAILOR repeats this
process for a given number of iterations to sample multiple recipes and returns
the recipe with the lowest cost.

Zooming in on the evaluator, a recipe is processed by invoking the abstract
interpreter for each ingredient. After each analysis (i.e., one ingredient), the
evaluator collects the new verification results, that is, the verified assertions. All
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code + resources +
optimization algorithm

new ingr. +
cost § current
results
TAIborR __|results__
tailored recipe [ Static |
Analyzer

Fig. 1. Overview of our framework.

verification results that have been achieved so far are subsequently shared with
the analyzer when it is invoked for the next ingredient. Verification results are
shared by converting all verified assertions into assumptions. After processing
the entire recipe, the evaluator computes a cost for the recipe, which depends
on the number of unverified assertions and the total analysis time.

In general, there might be more than one recipe tailored to a particular
usage scenario. Naively, finding one requires searching the space of all recipes.
Section 4.3 discusses several optimization algorithms for performing this search,
which TAILOR already incorporates in its optimization engine.

Examples. As an example, let us consider the usage scenario where a user runs
the CRAB abstract interpreter [25] in their editor for instant feedback during
code development. This means that the allowed time limit for the analysis is very
short, say, 1 s. Now assume that the code under analysis is a program file? of the
multimedia processing tool FFMPEG, which is used to evaluate the effectiveness of
TAILOR in our experiments. In this file, CRAB checks 45 assertions for common
bugs, i.e., division by zero, integer overflow, buffer overflow, and use after free.
Analysis of this file with the default CRAB configuration takes 0.35 s to
complete. In this time, CRAB proves 17 assertions and emits 28 warnings about
the properties that remain unverified. For this usage scenario, TAILOR is able to
tune the abstract-interpreter configuration such that the analysis time is 0.57 s
and the number of verified properties increases by 29% (i.e., 22 assertions are
proved). Note that the tailored configuration uses a completely different abstract
domain than the one in the default configuration. As a result, the verification
results are significantly better, but the analysis takes slightly longer to complete
(although remaining within the specified time limit). In contrast, enabling the
most precise analysis in CRAB verifies 26 assertions but takes over 6 min to
complete, which by far exceeds the time limit imposed by the usage scenario.
While it takes TAILOR 4.5 s to find the above configuration, this is time well
invested; the configuration can be re-used for several subsequent code versions.
In fact, in our experiments, we show that generated configurations can remain

2 https://github.com /FFmpeg/FFmpeg/blob/master /libavformat /idcin.c
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tailored for at least up to 50 subsequent commits to a file under version control.
Given that changes in the editor are typically much more incremental, we expect
that no re-tuning would be necessary at all during an editor session. Re-tuning
may be beneficial after major changes to the code under analysis and can happen
offline, e.g., between editor sessions, or in the worst case overnight.

As another example, consider the usage scenario where CRAB is integrated
in a CI pipeline. In this scenario, users should be able to spare more time for
analysis, say, 5min. Here, let us assume that the analyzed code is a program
file? of the CURL tool for transferring data by URL, which is also used in our
evaluation. The default CRAB configuration takes 0.23 s to run and only verifies
2 out of 33 checked assertions. TAILOR is able to find a configuration that takes
7.6 s and proves 8 assertions. In contrast, the most precise configuration does
not terminate even after 15 min.

Both scenarios demonstrate that, even when users have more time to spare,
the default configuration cannot take advantage of it to improve the verification
results. At the same time, the most precise configuration is completely impracti-
cal since it does not respect the resource constraints imposed by these scenarios.

3 Background: A Generic Abstract Interpreter

Many successful abstract interpreters (e.g., Astrée [5], C Global Surveyor [53],
Clousot [17], CRAB [25], IKOS [6], Sparrow [46], and Infer [8]) follow the generic
architecture in Fig. 2. In this section, we describe its main components to show
that our approach should generalize to such analyzers.

Memory Domain. Analysis of low-level languages such as C and LLVM-bitcode
requires reasoning about pointers. It is, therefore, common to design a memory
domain [42] that can simultaneously reason about pointer aliasing, memory con-
tents, and numerical relations between them.

Pointer domains resolve aliasing between pointers, and array domains reason
about memory contents. More specifically, array domains can reason about indi-
vidual memory locations (cells), infer universal properties over multiple cells, or
both. Typically, reasoning about individual cells trades performance for precision
unless there are very few array elements (e.g., [22,42]). In contrast, reasoning
about multiple memory locations (summarized cells) trades precision for per-
formance. In our evaluation, we use Array smashing domains [5] that abstract
different array elements into a single summarized cell. Logico-numerical domains
infer relationships between program and synthetic variables, introduced by the
pointer and array domains, e.g., summarized cells.

Next, we introduce domains typically used for proving the absence of
runtime errors in low-level languages. Boolean domains (e.g., flat Boolean,
BDDApron [1]) reason about Boolean variables and expressions. Non-relational
domains (e.g., Intervals [11], Congruence [23]) do not track relations among dif-
ferent variables, in contrast to relational domains (e.g., Equality [35], Zones [41],

3 https://github.com/curl/curl /blob/master/lib/cookie.c
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Fig. 2. Generic architecture of an abstract interpreter.

Octagons [43], Polyhedra [16]). Due to their increased precision, relational
domains are typically less efficient than non-relational ones. Symbolic domains
(e.g., Congruence closure [9], Symbolic constant [44], Term [21]) abstract com-
plex expressions (e.g., non-linear) and external library calls by uninterpreted
functions. Non-conver domains express disjunctive invariants. For instance, the
DisInt domain [17] extends Intervals to a finite disjunction; it retains the scala-
bility of the Intervals domain by keeping only non-overlapping intervals. On the
other hand, the Boxes domain [24] captures arbitrary Boolean combinations of
intervals, which can often be expensive.

Fixpoint Computation. To ensure termination of the fixpoint computation,
Cousot and Cousot introduce widening [12,14], which usually incurs a loss of
precision. There are three common strategies to reduce this precision loss, which
however sacrifice efficiency. First, delayed widening [5] performs a number of
initial fixpoint-computation iterations in the hope of reaching a fixpoint before
resorting to widening. Second, widening with thresholds [37,40] limits the number
of program expressions (thresholds) that are used when widening. The third
strategy consists in applying narrowing [12,14] a certain number of times.

Forward and Backward Analysis. Classically, abstract interpreters analyze
code by propagating abstract states in a forward manner. However, abstract
interpreters can also perform backward analysis to compute the execution states
that lead to an assertion violation. Cousot and Cousot [13,15] define a forward-
backward refinement algorithm in which a forward analysis is followed by a back-
ward analysis until no more refinement is possible. The backward analysis uses
invariants computed by the forward analysis, while the forward analysis does not
explore states that cannot reach an assertion violation based on the backward
analysis. This refinement is more precise than forward analysis alone, but it may
also become very expensive.
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Algorithm 1: Optimization engine.

1 Function OPTIMIZE(P, Tmaz, lmazs ldom, iset, T€Cinit, GENERATERECIPE,
ACCEPT) is
// Phase 1 (optimize domains)
T€Cpest ‘= T€Ceourr = T€Cinit
COStpest = COSteurr := EVALUATE(P, Timaz, TCChest)
for | ;=1 to l,uz do
for 7 := 1 to i4om - | do
T€Cnest := GENERATERECIPE(TeCcyrr, 1)
COStpegt := BEVALUATE(P, Tmaz, T€Cnext)
if costpert < costpest then
L T€Cpest, COSLbest = T€Cpest, COStnext

© 0N o A WN

=
o

=
[

if ACCEPT(costcurr, COStnest) then
L T€Ccurry COStcurr *= T€Cpegt, COStnest

[y
[

13 // Phase 2 (optimize settings)

14 for 7 := 1 to s do

15 T€Cmut ‘= MUTATESETTINGS(T€Cpest )
16 coStmut := EVALUATE(P, Tmaz, T€Cmut)
17 if costimur < costpest then

18 | reChest, COStoest 1= TeComut, COStmut
19 return recpes:

Intra- and Inter-procedural Analysis. An intra-procedural analysis analyzes
a function ignoring the information (i.e., call stack) that flows into it, while an
inter-procedural analysis considers all flows among functions. The former is much
more efficient and easy to parallelize, but the latter is usually more precise.

4 Our Technique

This section describes the components of TAILOR in detail; Sects. 4.1, 4.2, 4.3
explain the optimization engine, recipe evaluator, and recipe generator (Fig.1).

4.1 Recipe Optimization

Algorithm 1 implements the optimization engine. In addition to the code P
and the resource limit 7,45, it also takes as input the maximum length of the
generated recipes lyq, (i-e., the maximum number of ingredients), a function to
generate new recipes GENERATERECIPE (i.e., the recipe generator from Fig. 1),
and four other parameters, which we explain later.

A tailored recipe is found in two phases. The first phase aims to find the
best abstract domain for each ingredient, while the second tunes the remaining
analysis settings for each ingredient (e.g., whether backward analysis should
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be enabled). Parameters igon, and ise; control the number of iterations of each
phase. Note that we start with a search for the best domains since they have the
largest impact on the precision and performance of the analysis.

During the first phase, the algorithm initializes the best recipe recyes; with
an initial recipe rec;y;; (line 3). The cost of this recipe is evaluated with function
EVALUATE, which implements the recipe evaluator from Fig. 1. The subsequent
nested loop (line 5) samples a number of recipes, starting with the shortest
recipes (I := 1) and ending with the longest recipes (I := l,;,45). The inner loop
generates i4,,, ingredients for each ingredient in the recipe (i.e., igom - [ total
iterations) by invoking function GENERATERECIPE, and in case a recipe with
lower cost is found, it updates the best recipe (lines 9-10). Several optimization
algorithms, such as hill climbing and simulated annealing, search for an optimal
result by mutating some of the intermediate results. Variable rec ., stores inter-
mediate recipes to be mutated, and function ACCEPT decides when to update it
(lines 11-12).

As explained earlier, the purpose of the first phase is to identify the best
sequence of abstract domains. The second phase (lines 13-18) focuses on tuning
the other settings of the best recipe so far. This is done by randomly mutating
the best recipe via MUTATESETTINGS (line 15), and updating the best recipe if
better settings are found (lines 17-18). After exploring is.; random settings, the
best recipe is returned to the user (line 19).

4.2 Recipe Evaluation

The recipe evaluator from Fig.1 uses a cost function to determine the quality
of a fresh recipe with respect to the precision and performance of the abstract
interpreter. This design is motivated by the fact that analysis imprecision and
inefficiency are among the top pain points for users [10].

Therefore, the cost function depends on the number of generated warnings
w (that is, the number of unverified assertions), the total number of assertions
in the code w41, the resource consumption r of the analyzer, and the resource
limit 7,4, imposed on the analyzer:

r
w +
Tmaz :
COSt(w7 Wtotals Ty rmaz) = Wiotal ) if r < Trmaz
o0, otherwise

Note that w and r are measured by invoking the abstract interpreter with the
recipe under evaluation. The cost function evaluates to a lower cost for recipes
that improve the precision of the abstract interpreter (due to the term w/wgotq;)-
In case of ties, the term 7/ry,., causes the function to evaluate to a lower cost
for recipes that result in a more efficient analysis. In other words, for two recipes
resulting in equal precision, the one with the smaller resource consumption is
assigned a lower cost. When a recipe causes the analyzer to exceed the resource
limit, it is assigned infinite cost.
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4.3 Recipe Generation

In the literature, there is a broad range of optimization algorithms for different
application domains. To demonstrate the generality and effectiveness of TAILOR,
we instantiate it with four adaptations of three well-known optimization algo-
rithms, namely random sampling [38], hill climbing (with regular restarts) [48],
and simulated annealing [36,39]. Here, we describe these algorithms in detail,
and in Sect. 5, we evaluate their effectiveness.

Before diving into the details, let us discuss the suitability of different kinds
of optimization algorithms for our domain. There are algorithms that leverage
mathematical properties of the function to be optimized, e.g., by computing
derivatives as in Newton’s iterative method. Our cost function, however, is eval-
uated by running an abstract interpreter, and thus, it is not differentiable or
continuous. This constraint makes such analytical algorithms unsuitable. More-
over, evaluating our cost function is expensive, especially for precise abstract
domains such as Polyhedra. This makes algorithms that require a large number
of samples, such as genetic algorithms, less practical.

Now recall that Algorithm 1 is parametric in how new recipes are generated
(with GENERATERECIPE) and accepted for further mutations (with ACCEPT).
Instantiations of these functions essentially constitute our search strategy for
a tailored recipe. In the following, we discuss four such instantiations. Note
that, in theory, the order of recipe ingredients matters. This is because any
properties verified by one ingredient are converted into assumptions for the next,
and different assumptions may lead to different verification results. Therefore,
all our instantiations are able to explore different ingredient orderings.

Random Sampling. Random sampling (RS) just generates random recipes of a
certain length. Function ACCEPT always returns false as each recipe is generated
from scratch, and not as a result of any mutations.

Domain-Aware Random Sampling. RS might generate recipes containing
abstract domains of comparable precision. For instance, the Octagons domain is
typically strictly more precise than Intervals. Thus, a recipe consisting of these
domains is essentially equivalent to one containing only Octagons.

Now, assume that we have a partially ordered set (poset) of domains that
defines their ordering in terms of precision. An example of such a poset for a
particular abstract interpreter is shown in Fig. 3. An optimization algorithm can
then leverage this information to reduce the search space of possible recipes.
Given such a poset, we therefore define domain-aware random sampling (DARS),
which randomly samples recipes that do not contain abstract domains of com-
parable precision. Again, ACCEPT always returns false.

Simulated Annealing. Simulated annealing (SA) searches for the best recipe by
mutating the current recipe rec .y in Algorithm 1. The resulting recipe (recpest ),
if accepted on line 12, becomes the new recipe to be mutated. Algoirthm 2
shows an instantiation of GENERATERECIPE, which mutates a given recipe such
that the poset precision constraints are satisfied (i.e., there are no domains of
comparable precision). A recipe is mutated either by adding new ingredients with
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Algorithm 2: A recipe-generator instantiation.

1 Function GENERATERECIPE(rec, lnez) is

2 act :== RANDOMACTION({ADD: 0.2, MOD: 0.8}))

3 if act = ADD A LEN(rec) < lmas then

4 INGT 0y *= RANDOMPOSETLEASTINCOMPARABLE(Tec)

5 r€Cmut = ADDINGREDIENT(rec, ingr,,.,)

6 else

7 ingr := RANDOMINGREDIENT(rec)

8 acty := RANDOMACTION({GT: 0.5, LT: 0.3, INC: 0.2})
9 if act,, = GT then
10 | ingr,., := POSETGREATERTHAN (ingr)

11 else if act,, = LT then

12 | ingr,, := POSETLESSTHAN(ingr)

13 else

14 T€Crem = REMOVEINGREDIENT(rec, ingr)

15 L INGT e = RANDOMPOSETLEASTINCOMPARABLE(T€Cem )
16 reCmut *= REPLACEINGREDIENT(Tec, ingr, ingr ..,

17 if “POSETCOMPATIBLE(7¢Cmy:) then

18 | reCmut := GENERATERECIPE(rec, hnaz)

19 return rec,,,:

20% probability or by modifying existing ones with 80% probability (line 2). The
probability of adding ingredients is lower to keep recipes short.

When adding a new ingredient (lines 4-5), Algorithm 2 calls RANDOM-
POSETLEASTINCOMPARABLE, which considers all domains that are incompara-
ble with the domains in the recipe. Given this set, it randomly selects from the
domains with the least precision to avoid adding overly expensive domains. When
modifying a random ingredient in the recipe (lines 7-16), the algorithm can
replace its domain with one of three possibilities: a domain that is immediately
more precise (i.e., not transitively) in the poset (via POSETGREATERTHAN), a
domain that is immediately less precise (via POSETLESSTHAN), or an incompa-
rable domain with the least precision (via RANDOMPOSETLEASTINCOMPARA-
BLE). If the resulting recipe does not satisfy the poset precision constraints, our
algorithm retries to mutate the original recipe (lines 17-18).

For simulated annealing, ACCEPT returns true if the new cost (for the
mutated recipe) is less than the current cost. It also accepts recipes whose cost
is higher with a certain probability, which is inversely proportional to the cost
increase and the number of explored recipes. That is, recipes with a small cost
increase are likely to be accepted, especially at the beginning of the exploration.

Hill Climbing. Our instantiation of hill climbing (HC) performs regular restarts.
In particular, it starts with a randomly generated recipe that satisfies the poset
precision constraints, generates 10 new valid recipes, and restarts with a random
recipe. ACCEPT returns true only if the new cost is lower than the best cost,
which is equivalent to the current cost.
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5 Experimental Evaluation

To evaluate our technique, we aim to answer the following research questions:

RQ1: Is our technique effective in tailoring recipes to different usage scenarios?
RQ2: Are the tailored recipes optimal?

RQ3: How diverse are the tailored recipes?

RQ4: How resilient are the tailored recipes to code changes?

5.1 Implementation

We implemented TAILOR by extending CRAB [25], a parametric framework for
modular construction of abstract interpreters*. We extended CRAB with the
ability to pass verification results between recipe ingredients as well as with the
four optimization algorithms discussed in Sect. 4.3.

Table 1 shows all settings and values used in our evaluation. The first three
settings refer to the strategies discussed in Sect. 3 for mitigating the precision loss
incurred by widening. For the initial recipe, TAILOR uses Intervals and the CRAB
default values for all other settings (in bold in the table). To make the search more
efficient, we selected a representative subset of all possible setting values.

CRAB uses a DSA-based [26] pointer analysis and can, optionally, reason
about array contents using array smashing. It offers a wide range of logico-
numerical domains, shown in Fig.3. The bool domain is the flat Boolean
domain, ric is a reduced product of Intervals and Congruence, and term(int)
and term(disInt) are instantiations of the Term domain with intervals and
disInt, respectively. Although CRAB provides a bottom-up inter-procedural
analysis, we use the default intra-procedural analysis; in fact, most analyses
deployed in real usage scenarios are intra-procedural due to time constraints [10].

5.2 Benchmark Selection

For our evaluation, we systematically selected popular and (at some point) active
C projects on GitHub. In particular, we chose the six most starred C repositories

Table 1. CRAB settings and their possible values as used in our experiments. Default
settings are shown in bold.

Setting Possible values
NUM_DELAY_WIDEN {1,2,4,8,16}
NUM_NARROW_ITERATIONS {17 2,3, 4}
NUM_WIDEN_THRESHOLDS | {0, 10,20, 30,40}
BACKWARD ANALYsis | {OFF, ON}

ARRAY SMASHING {OFF,ON}
ABSTRACT DOMAINS All domains in Fig. 3

* CRAB is available at https://github.com/seahorn/crab.
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Table 2. Overview of projects.

Project | Description

CURL Tool for transferring data by URL

DARKNET | Convolutional neural-network framework

FFMPEG | Multimedia processing tool

GIT Distributed version-control tool

PHP-SRC | PHP interpreter

REDIS Persistent in-memory database

with over 300 commits that we could successfully build with the Clang-5.0 com-
piler. We give a short description of each project in Table 2.

For analyzing these projects, we needed to introduce properties to be verified.
We, thus, automatically instrumented these projects with four types of assertions
that check for common bugs; namely, division by zero, integer overflow, buffer
overflow, and use after free. Introducing assertions to check for runtime errors
such as these is common practice in program analysis and verification.

As projects consist of different numbers of files, to avoid skewing the results
in favor of a particular project, we randomly and uniformly sampled 20 LLVM-
bitcode files from each project, for a total of 120. To ensure that each file was
neither too trivial nor too difficult for the abstract interpreter, we used the num-
ber of assertions as a complexity indicator and only sampled files with at least 20
assertions and at most 100. Additionally, to guarantee all four assertion types
were included and avoid skewing the results in favor of a particular assertion
type, we required that the sum of assertions for each type was at least 70 across
all files—this exact number was largely determined by the benchmarks.

Overall, our benchmark suite of 120 files totals 1346 functions, 5557 assertions
(on average 4 assertions per function), and 667927 LLVM instructions (Table 3).

5.3 Results

We now present our experimental results for each research question. We performed
all experiments on a 32-core Intel ®) Xeon ®) E5-2667 v2 CPU @ 3.30 GHz machine
with 264 GB of memory, running Ubuntu 16.04.1 LTS.

polyhedra boxes
\
octagons term(disInt)
| —~
zones term(int) ric disInt
intervals bool

Fig. 3. Comparing logico-numerical domains in CRAB. A domain d; is less precise than
dy if there is a path from d; to d2 going upward, otherwise d; and ds are incomparable.
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Table 3. Benchmark characteristics (20 files per project). The last three columns show
the number of functions, assertions, and LLVM instructions in the analyzed files.

Project |Functions| Assertions | LLVM instructions
CURL 306 787 50 541
DARKNET 130 958 55 847
FFMPEG 103 888 27 653
GIT 218 768 102 304
PHP-SRC 268 1031 305 943
REDIS 321 1125 125 639
Total 1346 5557 667 927

RQ1: Is Our Technique Effective in Tailoring Recipes to Different
Usage Scenarios? We instantiated TAILOR with the four optimization algo-
rithms described in Sect. 4.3: RS, DARS, SA, and HC. We constrained the analysis
time to simulate two usage scenarios: 1 s for instant feedback in the editor, and
5 min for feedback in a CI pipeline. We compare TAILOR with the default recipe
(DEF), i.e., the default settings in CRAB as defined by its designer after careful
tuning on a large set of benchmarks over the years. DEF uses a combination
of two domains, namely, the reduced product of Boolean and Zones. The other
default settings are in Table 1.

For this experiment, we ran TAILOR with each optimization algorithm on
the 120 benchmark files, enabling optimization at the granularity of files. Each
algorithm was seeded with the same random seed. In Algorithm 1, we restrict
recipes to contain at most 3 domains (4, = 3) and set the number of iterations
for each phase to be 5 and 10 (igom = 5 and iz = 10).

The results are presented in Fig.4, which shows the number of assertions
that are verified with the best recipe found by each algorithm as well as by
the default recipe. All algorithms outperform the default recipe for both usage
scenarios, verifying almost twice as many assertions on average. The random-
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Fig. 4. Comparison of the number of assertions verified with the best recipe generated
by each optimization algorithm and with the default recipe, for varying timeouts.
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Fig. 5. Comparison of the number of assertions verified by a tailored vs. the default
recipe.
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Fig. 6. Comparison of the total time (in sec) that each algorithm requires for all iter-
ations, for varying timeouts.

sampling algorithms are shown to find better recipes than the others, with DARS
being the most effective. Hill climbing is less effective since it gets stuck in local
cost minima despite restarts. Simulated annealing is the least effective because
it slowly climbs up the poset toward more precise domains (see Algorithm 2).
However, as we explain later, we expect the algorithms to converge on the number
of verified assertions for more iterations.

Figure5 gives a more detailed comparison with the default recipe for the
time limit of 5 min. In particular, each horizontal bar shows the total number of
assertions verified by each algorithm. The orange portion represents the asser-
tions verified by both the default recipe and the optimization algorithm, while
the green and red portions represent the assertions only verified by the algo-
rithm and default recipe, respectively. These results show that, in addition to
verifying hundreds of new assertions, TAILOR is able to verify the vast majority
of assertions proved by the default recipe, regardless of optimization algorithm.

In Fig. 6, we show the total time each algorithm takes for all iterations. DARS
takes the longest. This is due to generating more precise recipes thanks to its
domain knowledge. Such recipes typically take longer to run but verify more
assertions (as in Fig.4). On average, for all algorithms, TAILOR requires only
30 s to complete all iterations for the 1-s timeout and 16 min for the 5-min
timeout. As discussed in Sect. 2, this tuning time can be spent offline.
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Fig. 7. Comparison of the number of assertions verified with the best recipe generated
by the different optimization algorithms, for different numbers of iterations.

Figure 7 compares the total number of assertions verified by each algorithm
when TAILOR runs for 40 (igom = 5 and ise; = 10) and 80 (igom = 10 and iz =
20) iterations. The results show that only a relatively small number of additional
assertions are verified with 80 iterations. In fact, we expect the algorithms to
eventually converge on the number of verified assertions, given the time limit
and precision of the available domains.

As DARS performs best in this comparison, we only evaluate DARS in the
remaining research questions. We use a 5-min timeout.

RQ1 takeaway: TAILOR verifies between 1.6-2.1x the assertions of
the default recipe, regardless of optimization algorithm, timeout, or
number of iterations. In fact, even very simple algorithms (such as RS)
significantly outperform the default recipe.

RQ2: Are the Tailored Recipes Optimal? To check the optimality of the
tailored recipes, we compared them with the most precise (and least efficient)
CRAB configuration. It uses the most precise domains from Fig.3 (i.e., bool,
polyhedra, term(int), ric, boxes, and term(disInt)) in a recipe of 6 ingre-
dients and assigns the most precise values to all other settin