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Preface

These are the proceedings of the twenty-first International Conference on Formal Methods in Computer-Aided
Design (FMCAD), which was held online from October 18 — October 22, 2021 due to the coronavirus. FMCAD
was constituted in 1996 as a conference covering formal aspects of specification, verification, synthesis, testing,
and security, and as a leading forum for researchers and practitioners in academia and industry alike. 2021 marks
the 25th anniversary of that original meeting, and so we wish to celebrate the vision of those original organizers!

The program of FMCAD 2021 is comprised of four tutorials, three invited talks, a student forum, an industry
night, a panel session on “25 years of FMCAD”, and the main program consisting of presentations of 30 accepted
papers. The tutorial day featured four presentations:

o Active Automata Learning: from L* to L* by Frits Vaandrager

e Stainless Verification System Tutorial by Viktor Kuncak

e Reactive Synthesis Beyond Realizability by Rayna Dimitrova

e Formal Methods for the Security Analysis of Smart Contracts by Matteo Maffei

and the main conference featured three invited talks:

e From Viewstamped Replication to Blockchains by Barbara Liskov
o Algorithms for the People by Seny Kamara
o Engineering with Full-scale Formal Architecture: Morello, CHERI, Armv8-A, and RISC-V by Peter Sewell

FMCAD’21 also hosted the ninth edition of the Student Forum, which has been held annually since 2013 and
provides a platform for graduate students at any career stage to introduce their research to the FMCAD community.
The FMCAD Student Forum 2021 was organized by Mark Santolucito and featured short presentations of 11
accepted contributions. A detailed description of the Student Forum, listing all accepted contributions, is provided
in the conference proceedings. FMCAD 2021 received 72 submissions out of which the committee decided to
accept 30 for publication. Each submission received at least three reviews. The topics of the accepted papers
include hardware and software verification, SAT, SMT, learning, synthesis, Neural-Network verification, and more.
Out of the accepted papers, 23 are classified as regular papers (20 long and 3 short) and 7 are classified as tool/case
study papers (5 long and 2 short).

Organizing this event would not have been possible without the support of a large number of people and our
sponsors. The program committee members and additional reviewers, listed on the following pages, did an excellent
job providing detailed and insightful reviews, which helped the authors to improve their submissions and guided the
selection of the papers accepted for publication. We thank each and everyone of them for dedicating their time and
providing their expertise. We thank William Hallahan (Yale University) for being the web master, Daniel Schoepe
for being the Sponsorship Chair, and Mark Santolucito for organizing this year’s FMCAD Student Forum. We thank
Georg Weissenbacher (TU Wien) both for his exceptional assistance in organizing the event, communicating to us
the decisions of the steering committee, as well as being the publication chair. Holding a conference like FMCAD
would not be feasible without the financial support of our sponsors. We would like to express our gratitude to
our sponsors (in alphabetical order): Amazon Web Services, Amazon Prime Video, Cadence, Centaur Technology,
Galois, Intel, Mentor Graphics, Novi, and Synopsys.

The conference proceedings are available as Open Access Proceedings published by TU Wien Academic Press,
and through the IEEE Xplore Digital Library. Last but not least, we thank all authors who submitted their papers
to FMCAD 2021 (accepted or not), and whose contributions and presentations form the core of the conference.
We are grateful to everyone who presented their paper, gave a keynote or gave a tutorial. We thank all attendees
of FMCAD for supporting the conference and making FMCAD a stimulating and enjoyable event.

October, 2021 Ruzica Piskac, Yale University
Michael W. Whalen, Amazon Inc. and the University of Minnesota
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Reactive Synthesis Beyond Realizability

Rayna Dimitrova
CISPA Helmholtz Center for Information Security
Saarbriicken, Germany
dimitrova@cispa.de

Abstract—The automatic synthesis of reactive systems from high-level specifications is a highly attractive and increasingly viable
alternative to manual system design, with applications in a number of domains such as robotic motion planning, control of autonomous
systems, and development of communication protocols. The idea of asking the system designer to describe what the system should do
instead of how exactly it does it, holds a great promise. However, providing the right formal specification of the desired behaviour of a
system is a challenging task in itself. In practice it often happens that the system designer provides a specification that is unrealizable,
that is, there is no implementation that satisfies it. Such situations typically arise because the desired behavior represents a trade-off
between multiple conflicting requirements, or because crucial assumptions about the environment in which the system will execute
are missing. Addressing such scenarios necessitates a shift towards synthesis algorithms that utilize quantitative measures of system
correctness. In this tutorial I will discuss two recent advances in this research direction.

First, I will talk about the maximum realizability problem, where the input to the synthesis algorithm consists of a hard specification
which must be satisfied by the synthesized system, and soft specifications which describe other desired, possibly prioritized properties,
whose violation is acceptable. I will present a synthesis algorithm that maximizes a quantitative value associated with the soft
specifications, while guaranteeing the satisfaction of the hard specification. In the second half of the tutorial I will present algorithms
for synthesis in bounded environments, where a bound is associated with the sequences of input values produced by the environment.
More concretely, these sequences consists of an initial prefix followed by a finite sequence repeated infinitely often, and satisfy the
constraint that the sum of the lengths of the initial prefix and the loop does not exceed a given bound. I will also discuss the
synthesis of approximate implementations from unrealizable specifications, which are guaranteed to satisfy the specification on at
least a specified portion of the bounded-size input sequences. I will conclude by outlining some of the open avenues and challenges
in quantitative synthesis from temporal logic specifications.

This tutorial is based on joint work with Mahsa Ghasemi and Ufuk Topcu published in [1], [2], and with Bernd Finkbeiner and
Hazem Torfah published in [3].

REFERENCES

[1] R. Dimitrova, M. Ghasemi, and U. Topcu, “Reactive synthesis with maximum realizability of linear temporal logic specifications,” Acta Informatica,
vol. 57, no. 1-2, pp. 107-135, 2020.

[2] ——, “Maximum realizability for linear temporal logic specifications,” in Automated Technology for Verification and Analysis - 16th International
Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings, ser. Lecture Notes in Computer Science, S. K. Lahiri and C. Wang,
Eds., vol. 11138. Springer, 2018, pp. 458-475.

[3] R. Dimitrova, B. Finkbeiner, and H. Torfah, “Synthesizing approximate implementations for unrealizable specifications,” in Computer Aided Verification
- 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I, ser. Lecture Notes in Computer Science,
I. Dillig and S. Tasiran, Eds., vol. 11561. Springer, 2019, pp. 241-258.
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Stainless Verification System Tutorial

Viktor Kuncak
LARA Research Group
School of Computer and Communication Sciences
EPFL
Lausanne, Switzerland
viktor.kuncak @epfl.ch

Abstract—Stainless ( https://stainless.epfl.ch ) is an open-source
tool for verifying and finding errors in programs written in
the Scala programming language. This tutorial will not assume
any knowledge of Scala. It aims to get first-time users started
with verification tasks by introducing the language, providing
modelling and verification tips, and giving a glimpse of the tool’s
inner workings (encoding into functional programs, function
unfolding, and using theories of satisfiability modulo theory
solvers Z3 and CVC4).

Stainless (and its predecessor, Leon) has been developed
primarily in the EPFL’s Laboratory for Automated Reasoning
and Analysis in the period from 2011-2021. Its core specification
and implementation language are typed recursive higher-order
functional programs (imperative programs are also supported
by automated translation to their functional semantics). Stainless
can verify that functions are correct for all inputs with respect
to provided preconditions and postconditions, it can prove that
functions terminate (with optionally provided termination mea-
sure functions), and it can provide counter-examples to safety
properties. Stainless enables users to write code that is both
executed and verified using the same source files. Users can
compile programs using the Scala compiler and run them on
the JVM. For programs that adhere to certain discipline, users
can generate source code in a small fragment of C and then use
standard C compilers.

Index Terms—verification, formal methods, proof, counter-
example, model checking, Scala, functional programming, sat-
isfiability modulo theories

I. INTRODUCTION

Stainless [1] is a tool for verifying and finding errors in
programs written in a subset of the Scala [2] programming
language. Stainless is open source (distributed under Apache
license) and hosted on GitHub at:

https://github.com/epfl-lara/stainless/
https://epfl-lara.github.io/stainless/

Stainless (and its predecessor, Leon) have been developed
primarily in the EPFL’s Laboratory for Automated Reasoning
and Analysis in the period from 2011-2021, see, in particular
[1], [3] as well as [4]-[14]. The core specification and im-
plementation language of Stainless are typed recursive higher-
order functional Scala programs. It also supports certain im-
perative programs [4], [6]. Stainless can verify that functions
are correct for all inputs with respect to provided preconditions
and postconditions, it can prove that functions terminate (with

d https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_2

Jad Hamza
LARA Research Group
School of Computer and Communication Sciences
EPFL
Lausanne, Switzerland
jad.hamza@epfl.ch

optionally provided termination measure functions), and it can
also provide counter-examples to safety properties.

Stainless can be used to write programs that are directly
executable and proven correct. In particular, because it uses
Scala’s syntax and type system, users can execute Stainless
programs using the standard Scala compiler (version 2.12.13 at
the time of writing). In addition, there are passes that eliminate
non-executable (ghost) code from source to make sure that
it does not result in run-time overhead after compilation. For
programs that adhere to certain discipline the “genc” option of
Stainless can be used to generate C source code that compiles
with common compilers such as gcc.

A. Outline

In this tutorial, we show examples demonstrating how to
use Stainless to develop verified models and programs. We
will mostly use basic notation for functional programming,
which we will introduce along the way. We will use Stainless
version 0.9 or later.

In addition to basic introduction, we will suggest strategies
for specifying programs and helping Stainless prove them
correct. An example is using lemmas and proving them by
induction expressed through terminating recursion.

To help users be more effective when using Stainless, we
also outline key mechanisms that Stainless uses in proof and
counterexample search: encoding into functional programs,
function unfolding, and using rich theories of satisfiability
modulo theory solvers Z3 and CVC4.

II. GETTING STARTED

Stainless is a command line application that runs on the
Java virtual machine, version 1.8. We mostly test it on Ubuntu
Linux. We provide releases for Linux and Mac. Others use it
on Windows as well, where it may be simplest to use Windows
Subsystem for Linux to get started. Download the release file
from

https://github.com/epfl-lara/stainless/releases/

then unzip the file and put a link to stainless in your path.

The following is a simple program, call it MaxBug.scala,
containing a function max. Max attempts to compute maximum
of the two 32-bit integers by returning one of them, depending
on the sign d of their difference.

This article is licensed under a Creative
BY Commons Attribution 4.0 International License
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object TestMax {

def max(x: Int, y: Int): Int = {
val d = x -y
if (d > 0) x
else y

} ensuring(res =>
X <= res && y <= res &&

}

(res == x || res ==y))
We use object to group functions into modules. We define
functions using def and provide their parameters (here: x and
y) and their types, as well as the return type. We define local
immutable values using val keyword. Scala infers the type of
d as Int.

After the usual body, we introduced an ensuring statement.
The first identifier, res, binds the return value of the function.
After the arrow => we state the property we would like the
result to satisfy. In this case, the result should be greater than
each argument and it should be equal to one of them.

Invoke stainless MaxBug.scala and you may get output
containing some of the following.

MaxBug.scala:7:49: warning: => INVALID

X <= res && y <= res && (res == x || res ==y))

warning: Found counter-example:
warning: y: Int —-> -2147483648
x: Int -> 1
Verified: 0 / 3
stainless summary

max Subtraction overflow invalid
max postcondition invalid
max postcondition invalid

MaxBug.scala:3:13:
MaxBug.scala:7:37:
MaxBug.scala:7:49:

(0 from cache) invalid: 3

Use to set time out to 5 seconds. and
—--no-colors to request clean ASCII output with parsable line
numbers in reports.

Why did Stainless report a counterexample? Indeed, execut-
ing max with the two provided values computes using signed
32-bit arithmetic the value -11 for 4, so the function returns
y as the result res so y <= res is false. We can repair this
example in at least two ways:

—-—timeout=5

e Use if (x <= y) instead of the value 4.
e Use BigInt instead of 1nt, thus adopting unbounded
integers instead signed 32-bit ones.

If you run your program several times, you may notice
that Stainless reports that a valid verification condition was
persistently cached (inside .stainless-cache). You can turn
off caching with --vc-cache=false.

You may find the --watch option useful when modifying
a file several times, which makes Stainless run verification
whenever the source file is changed.

By default, Stainless uses a version of z3 (4.7.1) which is
packaged inside Stainless (--solvers=nativez3). This allows
Stainless to interact with z3 through Java calls. You may also
use an externally built version of z3 (for instance, z3 4.8.12
is shipped with the release) by specifying —-solvers=smt-z3.
In that case, Stainless will communicate with z3 using SMT-
LIB files, which might be slower than Java calls, but has two

benefits. First, you get to use the newest release of z3. Second,
smt-z3 is more likely to respect timeouts than nativez3.

You can also use CVC4 as the solver if you download
and put cvc4 executable on your path. You can use both
with —-solvers=smt-cvc4, smt-z3. Use —-debug=smt to pre-
serve the generated SMT-LIB files and look for them in the
smt-sessions directory.

III. VERIFIED FUNCTIONAL PROGRAMMING

We will now implement a simple function that computes
differences of successive elements of a list. Let us start our
file with import stainless.collection._ SO we can use the
immutable nist library of Stainless. You can find the sources
of this and other library files at following URL:

https://github.com/epfl-lara/stainless/blob/master/frontends/
library/stainless/collection/List.scala

Let’s try to write a function diffs that takes a list of elements,
for example 1, x2, x3, x4 and keeps the first element and then
follows it by the list of their differences. In this case we would
like to obtain x1,x2 — 21,23 — x2,24 — x3. For empty and
one-element list the output equals input. Let us write this as
the default implementation. We can also state the example of
four-element list as a symbolic test case. To state it, we use
another function with a dummy body and a postcondition that
invokes diffs.

import stainless.collection._
object Diffs {

def diffs(l: List[BigInt]): List[BigInt] = {
1 match {
case Nil() => 1
case _ :: Nil() => 1
// missing cases
}
}
def test(xl: BigInt, x2: BiglInt,
x3: BigInt, x4: BigInt): Unit = {
} ensuring(_ =>
diffs(List (x1,x2,x3,x4)) ==
List(x1l, x2 - x1, x3 - x2, x4 - x3))

}

After developing a function that meets this partial specifica-
tion, we can see whether it meets a stronger specification. For
example, we can define the inverse function undiff that takes
Y0, Y1, - - -, Yn and computes Yo, Yo + Y1, .-, o Yi- Being
masters of functional programming, we recognize that this is
just a prefix sum of a list, so we define it by

def undiff(l: List[BigInt]): List[BigInt] =
l.scanLeft (BigInt (0)) (_ + _).tail

where scanLeft is defined in our
can add as the ensuring condition of diffs the condition
ensuring 1)). It so happens that
Stainless proves this condition automatically using its algo-
rithm. As an off-line exercise, try to prove this result with pen
and paper. This might give you a sense on how Stainless is
able to prove this property.

The algorithm of Stainless initially treats called functions
as unknown (uninterpreted) mathematical functions. It then

List library. Now we

(res => (undiff (res)==


https://github.com/epfl-lara/stainless/blob/master/frontends/library/stainless/collection/List.scala
https://github.com/epfl-lara/stainless/blob/master/frontends/library/stainless/collection/List.scala

iteratively expands each call by defining the function to be
equal to one unfolding of its body and also inserts the
ensuring clause as an assumption.

IV. AMORTIZED QUEUE

We have found Stainless to work very well for verification
of purely functional data structures. Let us examine the case of
an amortized queue such as the one from [15, Section 5.2, Page
42]. We will start by writing down an abstract class. In this
class we define methods with dummy bodies denoted by 2272
but with ensuring clauses that specify the desired behavior of
operations. To specify the behavior we use torList function,
which is also left unspecified in the abstract class.
import stainless.collection._
import stainless.lang._
abstract class Queue[A] {

def enqueue(a: A) = (2727

.ensuring(res =>
res.toList == this.tolList ++ List (a))

Queue[A])

def dequeue: Option[ (A, QueuelA])] =
(??2? : Option[ (A, Queuel[A])])
.ensuring (res => res match {

case None () =>
this.tolList == Nil[A] ()
case Some ((a, q)) =>
this.tolist == a :: g.tolist
})
def toList: List[A]

}

When we extend the abstract class, Scala requires us to define
toList, whereas Stainless ensures that our implementation
meets the specifications in the abstract class. We can imple-
ment an inefficient queue using a single list.

case class SimpleQueue[A] (1: List[A])

extends Queue[A] {

def enqueue(a: A) = SimpleQueue (l ++ List (a))
def dequeue = 1 match {
case Nil () => None()

case Cons (x, xs)

}

=> Some ((x, SimpleQueue (xs)))

def tolList =1
}

Stainless successfully verifies that the properties required by
a queue are satisfied by this implementation. Even if correct,
this implementation is inefficient because enqueue takes linear
time in the current number of queue elements. We will thus
try to develop and prove correct the implementation like one
from [15, Section 5.2, Page 42] that uses two lists and that
has constant time amortized complexity.

case class AmortizedQueue[A] (front: List[A],

rear: List[A])
extends Queue[A] {

def tolList = front ++ rear.reverse

The tovrist, which we use only for specification, gives us a
hint on how to implement enqueue efficiently. For dequeue
we will need a reverse operation on lists, which we can
implement in linear time. Despite its complexity, our version

of dequeue will be verified automatically. As for enqueue,
its implementation is simple, yet its proof turns out to require
some well known property of lists that we need to tell Stainless
to invoke explicitly!

Queue[A] = {
= //to fill

def enqueue(a: A):
val res: Queuel[A]

// You can state using assertions things you know are true,
// to see if Stainless is able to prove them:
assert (res.tolList == front ++ (a rear) .reverse)
// Alternatively, you can use an equation style reasoning.
// Here Stainless should timeout from the second to the third
// step, because some steps are missing.
(
res.tolList ==:| trivial |:
front ++ (a :: rear) .reverse ==:|
// Add missing steps here to arrive to the result.
// For complicated steps, you need to invoke lemmas
// instead of writing ‘trivial ‘.
this.tolList ++ List (a)
) .ged

trivial

res

V. PROPERTIES AND PROOFS

How do we state properties in Stainless? We write a property
Vo : T.F(z) as a function lemmar defined by:

def lemmaF (x: T): Unit = {

0

} ensuring (_ => F(x))

When we wish to instantiate the property taking = to be some
specific value v, we insert a function invocation lemmaF (v)
into the part of the code where we need this property. Suppose
that proving property Vz : T.F(z) is not automatic. Then
verification of 1emmar itself will fail, as stated. If F'(x), for
example, follows from G(z,x + 1) that is established in
lemmaG (x,y), then we can state and prove lemmaF as:

def lemmaF (x: T): Unit = {
lemmaG (x, x+1)
} ensuring (_ => F(x))

Thus, we can adopt the following strategies for libraries of
lemmas:

o introduce a function for a lemma

« use a function parameter for each universally quantified
variable

e write lemma statement in the ensuring clause

« use the body of the function to encode a high-level proof,
with function invocations corresponding to applying pre-
viously proven lemmas.

Purely universal statements can return unit type. For existen-
tial statements, we can often state their constructive Skolem-
ized form and return a witness for the existential quantifier
from the lemma.

It can be helpful to examine some proofs of properties in
the 1ist library. Remarkably, we can even make recursive
invocations of functions in their bodies. Which mathematical
reasoning principle do such proofs correspond to?



VI. DIGITS

For built-in types such as 1nt and Long, the SMT solvers
will successfully reason about their bitwidth representation.
What if we wish to reason about the bits of arbitrarily large
numbers? As a simple example, let us define simple addition
as a recursive function on lists of bits.

stainless.annotation._
import stainless.lang._
import stainless.collection._
object AddBitwise {
type Digits = List[Boolean]
val zero = Nil[Boolean] ()

import

def add(x: Digits, y: Digits, carry: Boolean):
Digits = {
require (x.length == y.length)
(x,v) match {
case (Nil(), Nil()) =>
if (carry) true::zero else zero
case (Cons(xl,xs), Cons(yl,ys)) => {
val z = x1 ~ yl "~ carry
val carryl = (x1 && yl) ||
(x1 && carry) ||
(yl && carry)
z :: add(xs, ys, carryl)

}
}
}
}

How can we state that such addition is commutative? How can
we prove it in Stainless? As an off-line exercise, think about
how we can prove that this corresponds to actual addition on
integers (BigInt).

VII. TERMINATION

The following recursive function searches for an element in
a sorted array, but it has a bug. You may run Stainless on this
file to spot it. Fix the issue, and add a decreases clause at the
beginning of the function to ensure that Stainless can prove
the function terminating.

import stainless.lang._

object BinarySearchl ({

def search(arr: Array[Int], x: Int, lo: Int, hi:
Int): Boolean = {

if (lo <= hi) {
val i = (lo + hi) / 2
val y = arr (i)
if (x == y) true
else if (x < y) search(arr, x, lo, i-1)
else search(arr, x, i+1, hi)

} else {
false

In Stainless, all functions are required to have a measure
(either inferred automatically, or written in a decreases clause
by the user). The system in its current design would be
unsound (we would be able to prove false postconditions or
assertions) if we allowed non-terminating functions.

VIII. IMPERATIVE FEATURES

Stainless supports some imperative features, such as lo-
cal mutable variables, while loops, return statements, and
more (see https://epfl-lara.github.io/stainless/imperative.html).
Stainless transforms these constructs into functional programs.

Using a while loop and a return statement, rewrite the
findIndexOpt function:

def findIndexOpt (ar: Int):

Option[Int] = {

Array[Int], wv:

}

that finds an index of element v in a sorted array ar. Prove
that, when your function returns Some (i), then ar (i)== v. To
prove that array indices are within bounds, you will need a
loop invariant, for which the syntax is:

(while(...) {
decreases(...)

}) .invariant (...)

Does Stainless help you if you make an overflow mistake when
computing the middle of an interval using bounded arithmetic?
Note that while loops require decreases clauses as well
(when the measure cannot be inferred automatically), because
they are translated into recursive functions by Stainless. To see
how the while loop and the return statement are transformed,
you may run the command below on your file. Stainless has
a pipeline containing several phases, and ReturnElimination
is the one that removes while loops and return statements.
The --debug-objects option tells Stainless to only display
the findIndexopt function in the debug output.
stainless —--debug=trees

——debug-objects=findIndexOpt
--debug-phases=ReturnElimination FindIndex.scala

As a harder exercise, identify and prove a stronger postcon-
dition of findIndexopt: what can we state in the postcondition
for the case when the function returns None? What assumptions
and loop invariants do we need to be be able to prove this
postcondition?

IX. DESIGN PRINCIPLES

A number of verification systems have been developed in
the past decades. Stainless tries to borrow many of the features
that others and us have found useful in other systems. At the
same time, it is driven by a somewhat unique combination of
principles, whose understanding may help set the expectations
from the tool.

A. Searching for Both Proofs and Counterexamples

From the beginning [13], the system was designed to search
for both counterexamples and proofs in a unified iterative loop.
Thanks to this design, on many programs Stainless behaves
like a combination of a bounded model checker and a k-
inductive prover such as [16]: we can often expect a definite
answer, whether the program verifies or has a counterexample.


https://epfl-lara.github.io/stainless/imperative.html

B. Recursive programs as foundation, not transition systems.

Operational semantics tells us that we can translate func-
tional (and many other) programs into transition systems.
This has even been used in verification tools with success
[]. Nonetheless, we believe that it carries significant overhead,
especially for proofs. Thus, like in ACL2 [17], [18] our inter-
mediate representation is based on recursive functions [13] and
we hope to leverage high-level structure to make verification
more feasible, much like Liquid Haskell [19] which needs
to be complemented with symbolic execution to also generate
counterexamples [20]. Consequently, iterative unfolding of our
recursive functions in Stainless gives a different sequence of
approximations than the one we would obtain by representing
programs using control-flow graphs and explicit stacks [21].

C. Top-down verification for each function.

Stainless verifies each desired function one by one. When
verifying a function f, it does not check which other parts of
code invoke f. In particular, it will, in its current design, not
infer preconditions for a function automatically. Preconditions
need to be explicitly specified using a require clause at
function entry. On the other hand, when Stainless examines
the body of f and finds a function g, then it will examine not
only the specification of g, but also its body. If g is recursive,
this process will continue, with a check for counterexample
and check for unsatisfiability performed at each step. This
process treats functions more transparently than some modular
verifiers. The process is also breadth-first, instead of having
the form of directed rewriting as in some other systems. The
effectiveness of this process is explained in part by the fact
that it results in a decision procedure for certain classes of
functions [14], [22], [23]. Furthermore, we continue to be
surprised by how well this simple strategy works in practice,
even if we have no theoretical reason to know that it will
succeed.

D. Scala subset as the input language.

Stainless uses Scala as a language that has substantial
user base, regularly ranked higher than Haskell and LISP in
Stack Overflow developer surveys [24], which is relevant for
maintaining the correspondence between what executes and
that is verified. As a functional language, Scala contains an
expressive purely functional fragment which can be used for
specification and modelling. The users of Stainless thus largely
avoid the need to learn a separate specification language,
because functional programs are a great specification vehicle.
At the same time, the system supports polymorphism and
subtyping with a type system that eliminates many nonsensical
programs before they waste user’s time inside the program
verifier’s loop. That said, Stainless purposely avoids by design
certain Scala 2 features, such as null references and complex
initalization. Other features, such as machine integers, are
modelled precisely: it is certainly necessary in practice to
have machine integers of various width available (for example,
32-bit Int and 64-bit Long), but it is also helpful to use
unbounded Biglnt data types, especially for specifications, and

these different types should not be confused. Stainless provides
the user a choice and maps these data types and operations on
them to the appropriate types and theories inside SMT solvers
[8]. Subtyping is currently implemented via a translation into
a language with disjoint types [3]; its use requires additional
encoding and may slow down verification. Imperative features
are supported as a choice of either unshared mutable state [6]
or using a model [4] that, at user level, is similar to dynamic
frames [25] of Dafny [26].

E. Embracing SMT solver theories, avoiding quantifiers.

Instead of using axioms to encode program semantics and
data types, Stainless leverages algebraic data types, sets, and
arrays. Stainless thus currently emits quantifier-free queries to
solvers (either Z3 or CVC4). The hope with this choice is
that SMT solvers will remain predictable for both proofs and
counterexamples. In contrast, the use of quantifiers may lead
to more automation and sometimes excellent performance for
proofs, but quickly leads outside of the space where the solvers
can reliable report counterexamples.

FE. Executability of programs and specifications.

In Stainless we aim to write programs that can be compiled
using the standard Scala compiler. Specification constructs
in Stainless are defined in a Scala library and they have
dummy execution semantics. In some cases, even such dummy
semantics may result in overhead, so we have developed passes
that eliminate some of the specification code altogether. In
addition, Stainless has a subset that can be used to generate
C code suitable for embedded systems, an enhanced version
of such functionality developed for Leon [27].
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Abstract—Smart contracts consist of distributed programs built over a blockchain and they are emerging as a disruptive paradigm
to perform distributed computations in a secure and efficient way. Given their nature, however, program flaws may lead to dramatic
financial losses and can be hard to fix. This motivates the need for formal methods that can provide smart contract developers with
correctness and security guarantees, ideally automating the verification task.

This tutorial introduces the semantic foundations of smart contracts and reviews the state-of-the-art in the field, focusing in particular
on the automated, sound, static analysis of Ethereum smart contracts. We will highlight the strengths and drawbacks of different
methods, suggesting open challenges that can stimulate new research strands. Finally, we will overview eThor, an automated static
analysis tool that we recently developed based on rigorous semantic foundations.
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Abstract—In this tutorial on active automata learning algorithms, I will start with the famous L* algorithm proposed by Dana
Angluin in 1987, and explain how this algorithm approximates the Nerode congruence by means of refinement. Next, I will present a
brief overview of the various improvements of the L* algorithm that have been proposed over the years. Finally, I will introduce L#,
a new and simple approach to active automata learning. Instead of focusing on equivalence of observations, like the L* algorithm
and its descendants, ¥ takes a different perspective: it tries to establish apartness, a constructive form of inequality.
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Abstract—This talk will discuss two replication protocols. The first, Viewstamped Replication, was developed in the 1980s when
research on replication protocols was concerned primarily with systems that survived crash failures, e.g., individual replicas could
fail only by crashing. Viewstamped replication is similar to Paxos; it was the earliest practical replication algorithm that provided
the ability to execute general operations (as opposed to just reads and writes).

In the 1990s, researchers became interested in systems that could survive Byzantine failures, in which replicas fail arbitrarily.
Replicated systems that survive Byzantine failures are substantially more complex, requiring both more replicas and more phases
of communication, than those that survive only crash failures. The talk will present PBFT, the first practical replication technique
that handles Byzantine failures. PBFT is now of great interest to researchers working on blockchains.
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Abstract—Algorithms have transformed every aspect of society, including communication, transportation, commerce, finance, and
health. The revolution enabled by computing has been extraordinarily valuable. The largest tech companies generate a trillion
dollars a year and employ 1 million people. But technology does not affect everyone in the same way. In this talk, we will examine

how new technologies affect marginalized communities and think about what technology and academic research would look like if
its goal was to serve the disenfranchised.
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Abstract—Architecture specifications define the fundamental
interface between hardware and software. Historically, main-
stream architecture specifications have been informal prose-and-
pseudocode documents. This talk will describe our work to estab-
lish and use mechanised semantics for full-scale instruction-set
architectures (ISAs): the mainstream Armv8-A architecture, the
emerging RISC-V architecture, the CHERI-MIPS and CHERI-
RISC-V research architectures that use hardware capabilities for
improved security, and Arm’s prototype Morello architecture —
an industrial demonstrator incorporating the CHERI ideas.

We use a variety of tools, especially our Sail ISA definition
language and Isla symbolic evaluation engine, to build semantic
definitions that are readable, executable as test oracles, support
reasoning within the Coq, HOL4, and Isabelle proof assistants,
support SMT-based symbolic evaluation, support model-based
test generation, and can be integrated with operational and
axiomatic concurrency models. These models are all complete
enough to boot operating systems and hypervisors, covering the
full sequential ISA (though not other SoC components, such as
the Arm Generic Interrupt Controller). They range from 5000
to 60000 lines of specification.

For CHERI-MIPS and CHERI-RISC-V, we have used Sail
models (and previously L3 models) as the golden reference during
design, working with our systems and computer architecture col-
leagues in the CHERI team to use lightweight formal specification
routinely in documentation, testing, and test generation. We have
stated and proved (in Isabelle) some of the fundamental intended
security properties of the full CHERI-MIPS ISA.

For Armv8-A, building on Arm’s internal shift to an executable
model in their ASL language, we have the complete sequential
ISA semantics automatically translated from the Arm ASL
to Sail, and for RISC-V, we have hand-written what is now
the offically adopted model. For their concurrent semantics,
the ‘“‘user” semantics, partly as a result of our collaborations
with Arm and within the RISC-V concurrency task group,
have become simplified and well-defined, with multiple models
proved equivalent, and we are currently working on the ‘“‘system”

This work was partially supported by the UK Government Industrial
Strategy Challenge Fund (ISCF) under the Digital Security by Design (DSbD)
Programme, to deliver a DSbDtech enabled digital platform (grant 105694),
ERC AdG 789108 ELVER, EPSRC programme grant EP/K008528/1 REMS,
Arm iCASE awards, EPSRC IAA KTF funding, the Isaac Newton Trust,
the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Mi-
crosoft Research Cambridge, Arm Limited, Google, Google DeepMind, HP
Enterprise, and the Gates Cambridge Trust. Approved for public release;
distribution is unlimited. This work was supported by the Defense Advanced
Research Projects Agency (DARPA) and the Air Force Research Labo-
ratory (AFRL), under contracts FA8750-10-C-0237 (“CTSRD”), FA8750-
11-C-0249 (“MRC2”), HR0011-18-C-0016 (“ECATS”), and FA8650-18-C-
7809 (“CIFV”), as part of the DARPA CRASH, MRC, and SSITH research
programs. The views, opinions, and/or findings contained in this report are
those of the authors and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.
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semantics. Our symbolic execution tool for Sail specifications,
Isla, supports axiomatic concurrency models over the full ISA.

Morello, supported by the UKRI Digital Security by Design
programme, offers a path to hardware enforcement of fine-
grained memory safety and/or secure encapsulation in the
production Armv8-A architecture, potentially excluding or mit-
igating a large fraction of today’s security vulnerabilities for
existing C/C++ code with little modification. During the ISA
design process, we have proved (in Isabelle) fundamental security
properties for the complete Morello ISA definition, and generated
tests from the definition which were used during hardware
development and for QEMU bring-up.

All these tools and models are (or will soon be) available under
open-source licences, providing well-validated models for others
to use and build on.

This is joint work by many people, including especially, for Sail
and Isla: Alasdair Armstrong, Brian Campbell, Kathryn E. Gray,
Mark Wassell, Jon French, Neel Krishnaswami; for Morello ver-
ification and ASL-to-Sail translation: Thomas Bauereiss, Thomas
Sewell, Brian Campbell, Alasdair Armstrong, Alastair Reid;
Jor Morello and CHERI-MIPS test generation: Brian Campbell;
Jor CHERI-MIPS verification: Kyndylan Nienhuis; for RISC-V
and CHERI-RISC-V specifications: Robert M. Norton, Prashanth
Mundkur, Jessica Clark; for MIPS and CHERI-MIPS specifica-
tions: Alexandre Joannou, Anthony Fox, Michael Roe, Matthew
Naylor; and for Concurrency semantics: Christopher Pulte,
Shaked Flur, Will Deacon, Ben Simner, Luc Maranget, Susmit
Sarkar, Jean Pichon-Pharabod, Ohad Kammar, Jeehoon Kang,
Sung-Hwan Lee, Chung-Kil Hur. All this is in collaboration
with the rest of the CHERI team and others in Arm (especially
Richard Grisenthwaite, Graeme Barnes, and the Morello team)
and in the RISC-V community, with the CHERI team jointly led
by Robert N. M. Watson, Simon W. Moore, Peter Sewell, Peter
G. Neumann, and Ian Stark.

@
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Fig. 1. Sail models and infrastructure (grayed-out models are partial ISA
models in an older version of Sail)
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Abstract—The Student Forum at the International Conference
on Formal Methods in Computer-Aided Design (FMCAD) gives
undergraduate and graduate students the opportunity to engage
with to the Formal Methods community by presenting their
working and receiving feedback. The Student Forum was held
in a hybrid format, with some students participating in limited
in-person events in New Haven, Connecticut, USA.

The Graduate Student Forum was first introduced in 2013
to the FMCAD conference series. The goal of the Forum is
to enable graduate students to attend the conference, even if
they do not have a paper accepted at the main conference
track. Students were attracted with an opportunity to present
their on-going work to a broader scientific audience and
receive valuable feedback about the research they are currently
pursuing.

FMCAD 2021 hosted the ninth edition of the Student
Forum. There was an open call for papers from both under-
graduate and graduate students working broadly in the area of
Formal Methods. In the call, students were asked to submit a 2-
page summary of their current research and on-going work. We
received a number of high quality submissions to the Student
Forum and accepted a total of 10 submissions. Reviews were
based on the overall quality and novelty of work, the potential
for impact of the work on the field of Formal Methods, as
well as the potential positive impact on the student to have
the opportunity to participate in the forum.

This year, the Student Forum allowed for the submission of
joint research where two student researchers collaborated and
contributed equally in the eyes of their advisors. The topics
covered by the accepted submissions ranged across the field of
Formal Methods, including foundational advancements as well
as a variety of application domains. The accepted submissions
are listed below with their respective student authors:

e Wonhyuk Choi: Can Reactive Synthesis and Syntax-
Guided Synthesis Be Friends?

e Shmuel Berman:  Programming-By-Example by
Programming-By-Example:  Synthesis  of Looping
Programs

o Ameer Hamza: Automated Alignment for Equivalence
Checking

o Amitash Nanda: NeuCASL: From Logic Design to System
Simulation of Neuromorphic Engines

o Guy Amir: Verifying Deep Reinforcement-Learning Sys-
tems

o Ori Lahav: Neural Network Simplification using Formal
Verification
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e Y. Cyrus Liu: Source-Level Bitwise Branching for Tem-
poral Verification

o Maxwell Levatich: Using Z3 to Validate Executions of a
Program Partitioner

e Priyanka Golia: Boolean Functional Synthesis and its
Applications

o John Hui and Robert Krook: Toward Sparse Synchronous
Computing on Embedded Systems

This edition of the FMCAD Student Forum follows a series
of previous successful iterations of the forum [1]-[8].

We would like to thank the organizers of FMCAD, as well
as the entire program committee of FMCAD, who have made
the FMCAD student forum possible. Additionally, we are
grateful to the student authors and their research mentors who
have contributed their excellent work to the program.
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Abstract—Masking techniques are an effective countermea-
sure against power side-channel attacks. Unfortunately, correctly
masking a hardware circuit is difficult, and mistakes may lead
to functionally correct circuits with insufficient protection. We
present COCOALMA, a tool that formally verifies the side-channel
resistance of stateful hardware circuits. Although COCOALMA
was initially used to verify programs running on CPUs, we
extended it to verify the security of several industrial masked
hardware implementations. We give an overview of the tool’s
structure, implementation details, optimizations that make it
faster and more scalable than its predecessor REBECCA, and
changes that enable verifying the probing security of any stateful
hardware circuit. Finally, we evaluate COCOALMA with masked
implementations of the PRINCE and AES ciphers.

Index Terms—Side-channels, Hardware masking, Formal ver-
ification

I. INTRODUCTION

Integrated circuits that process sensitive data are susceptible
to passive side-channel attacks like differential power analysis.
Naturally, attackers are interested in the secret keys of sym-
metric ciphers because that would break the confidentiality
of the processed data [22], [23], [26], [21]. Classical power
analysis attacks exploit the correlation of the circuit’s power
consumption to bits of the secret key. Ultimately, the key is
reconstructed using statistic analysis techniques in a series of
key guesses [22], [27].

Masking is an algorithmic countermeasure against power
analysis attacks. It relies on splitting all secrets and inter-
mediate computations into multiple signals. The circuit is
rewritten so that attackers can only reconstruct the original
value if they can observe all the shares simultaneously. Mask-
ing techniques achieve this by introducing randomness into
the circuit and destroying the correlation between the power-
trace and the original data. Several masking schemes describe
how to make circuits secure against side-channel attacks.
Among them, domain-oriented masking [15] and threshold
implementations [9] are well studied and widely adopted. The
security of masked hardware circuits is expressed using the
hardware probing model [2], [18], [4], where an attacker can
read the values of d wires. Traditionally, engineers validate
masked hardware implementations empirically by creating
power traces and computing the correlations over many ex-
ecutions. Recently, however, we see several formal masking
verification methods that can substantially reduce the costs
of validating power side-channel resistance of software and
hardware [2], [1], [11].

This work was supported by the Austrian Research Promotion Agency
(FFG) through the FERMION project (grant number 867542).
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Figure 1. The workflow of COCOALMA showing the parsing, tracing, and
verification phases, as well as their artifacts. At the end of the verification
phase, COCOALMA either acknowledges that the analyzed design is secure
or shows that a secret is leaked at a given location in the circuit.

COCOALMA is an open-source masking verifier! that as-
sisted the hardening of a RISC-V processor’ so it could
safely execute masked software [13]. It considers the exact
description of the hardware that runs the software and accounts
for hardware leakage effects such as glitches. Figure 1 shows
the workflow of COCOALMA. Starting with a hardware design
written in Verilog, COCOALMA uses Yosys [31] to synthesize
a flat gate-level Verilog netlist. Additionally, the parsing phase
extracts a circuit graph of the synthesized design and creates
a labeling template where the user can specify the contents
of each register and input port of the circuit after the reset.

Thttps://github.com/IAIK/coco-alma
Zhttps://github.com/IATK/coco-ibex
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COCOALMA uses a testbench provided by the user to simulate
the netlist with Verilator [28], resulting in a value change
dump showing how the internal signals changed throughout
the execution. For the analysis of software running on RISC-
V processors, COCOALMA additionally requires the RISC-V
toolchain to compile programs and add them to the testbench
before starting the simulation. The resulting execution trace is
used to determine the value and glitching properties of each
wire in the design. Afterward, the time-constrained probing
model, initial state, simulation trace, and glitching information
are encoded as a SAT problem and solved with CaDiCaL [3].
If the problem is unsatisfiable, no possible observation would
leak any of the secrets. Otherwise, COCOALMA gives a precise
description of leakage location, the secret bits that are leaked,
and a variety of other debugging information.

Although COCOALMA was first used for analyzing software
running on CPUs [13], its roots in the older verification tool
REBECCA [4] can be leveraged towards stateful hardware
verification of masked cipher implementations. Luckily, all
the principles used in COCOALMA also apply to hardware
masking verification with minor tweaks. In this paper, we
document the inner workings of COCOALMA, its features, and
show the extensions necessary for applying it to cryptographic
accelerator modules. We present the following details about
COCOALMA’s implementation:

o In Section II, we define the supported probing mod-
els, emphasizing the newly supported hardware probing
model, which allows us to prove the security of stateful
hardware circuits. We also discuss the support for random
number generators.

o In Section III-A, we give a breakdown of the corre-
lation set methodology and show its encoding into a
SAT formula in Section III-B. Here we give a precise
description of the encoding, which is missing in the
original publication [13], and more efficient than the
encoding used in REBECCA [4]. Finally, in Section III-C,
we describe details of several optimizations that reduce
the size of the encoding and the number of probing
locations. Here, the hardware probing model requires
special considerations.

o In Section IV, we motivate and describe the execution-
dependent correlation set simplifications. Additionally,
we present the stable signal detection algorithm comput-
ing the stability of each control signal in Section IV-A.
This optimization allows us to simplify the correlation
sets even in the presence of glitches.

o In Section V, we demonstrate COCOALMA’s capabili-
ties by verifying the probing security of state-of-the-art
masked implementations of the PRINCE [6], [12], [20]
and AES [30], [7], [17], [15] ciphers as they are popular
in the semiconductor industry. Additionally, we go over
the debugging tools provided with COCOALMA, which
allow a designer to locate the source of the leakage and
see how leakage propagates through the circuit.

II. SECURITY MODELS

Masked implementations split all intermediate data signals x
into d+1 uniformly random pieces x;, with z = 2o ®...Bz4.
In practice, for ¢ # d, the signal shares z; are sampled
from a random number generator, whereas x4 is chosen as
TP xoP...PH a1 to fit the equality. This countermeasure
tries to prevent an attacker, who can observe intermediate com-
putations through side-channels, from learning anything about
the processed data. When investigating whether a masked
implementation is actually side-channel resistant, several se-
curity models describe the capabilities of an attacker and the
real-world effects they can observe. COCOALMA implements
three different probing models that consider different attacker
capabilities and system behavior. More specifically, this work
extends COCOALMA to support continuous probing as part of
the hardware probing model.

Software probing model. The original probing model
defined by Ishai et al. [18] considers the stable state of
computations, ignoring hardware side-effects such as glitches
and transitions. Their seminal paper says that an attacker in
this probing model can choose d intermediate values that they
can observe. The attacker can then interactively query the
execution of the system several times with different inputs
and starting states. The inputs of the computation are declared
either (a) public, which means that learning them does not
benefit the attacker, (b) fixed uniformly random values called
masks, or (c) parts of a secret called shares. The attacker’s
goal is to learn all the shares of a secret and use them to
reconstruct the secret value they are not supposed to know.
Proving that an implementation is d-probing secure requires
showing that no attacker adhering to this probing model can
learn the secrets, irrespective of their strategy.

Time-constrained probing model.> When COCOALMA
was first presented [13], its primary goal was verifying the
masking of software programs running on an accurate descrip-
tion of the underlying hardware. Naturally, this required an
adequate probing model that translates software probing into
the hardware domain. The time-constrained probing model
uses the gate-level description of the hardware and an ex-
ecution trace generated by simulating the hardware running
the software, instead of a purely algorithmic description. The
goals of the attacker are the same as in the software probing
model. However, this model is more realistic, as the attacker
can probe d observation tuples (g,t), where g is a logic gate
or register and ¢ is a cycle in the execution trace. This gives an
attacker access to all the intermediate values of gate g in cycle
t, including all the values caused by hardware effects such as
glitches and register transition leakage. The two parameters
g and t are not coupled, meaning that the attacker can also
probe the same gate in multiple clock cycles or even probe d
different gates in the same clock cycle. Although this model
limits each probe to observing only one clock cycle, instead of
running throughout the computation, its inclusion of hardware
effects significantly enhances the capabilities of an attacker.

3Barthe et al. [2] and Moos et al. [24] call this the robust probing model.



Due to the different signal timings in hardware, an attacker
observing gate ¢ = a ® b in this model would also observe
the signals a and b in addition to g. Registers are synchronous
elements triggered by a clock, making them the only hardware
elements exempt from this phenomenon. Another effect that
increases the attacker’s capabilities is transition leakage, which
causes the power consumption to correlate with the linear
combination g'~! @ g* of the old signal value in cycle ¢ — 1
and the new signal value in cycle ¢. Transition leakage applies
to all hardware elements equally, including registers.

Hardware probing model. This paper extends the tool
COCOALMA with a model where probes are not bound to
one clock cycle like in the time-constrained probing model.
The attacker’s goals remain the same as before, only that
in this more rigorous model, the probes record continuously
throughout the whole computation. More precisely, instead of
choosing a clock cycle for each observed location, the attacker
observes all values, including those caused by glitches and
transitions, that pass through a wire. In a sense, this is a
more powerful rephrasing of the original probing model of
Ishai et al. [18], as they also did not limit the duration of
the probes for stateful circuits. As this model significantly
increases the capabilities of an attacker, hardware designers
employ random number generators to create fresh uniformly
random masks in each clock cycle, intending to break any
correlations that might otherwise be observed. These mask-
generating circuits are usually not part of the masked hard-
ware designs and are only used as black-boxes that provide
random inputs to the masked circuit. We incorporate this in
COCOALMA, allowing designers to label input ports of a
circuit as random. The values read from these ports behave
similarly to fixed masks, only that they represent a new mask in
each clock cycle, which is then considered during verification.
The semantics of public and share signals remains the same,
and we even allow fixed masks, just like in the other probing
models.

III. VERIFICATION METHOD

COCOALMA tries to verify the side-channel resistance of a
masked implementation in one of the given security models.
A correctly masked implementation computes the values of
arbitrary logic functions without exposing the value of the se-
cret to an attacker through intermediate computations. There-
fore, a masked implementation must ensure that intermediate
signals do not correlate with secrets; that is, the value of an
intermediate signal should be statistically independent of all
secrets. COCOALMA checks whether these properties hold by
tracking the correlations of each logic operation throughout
the computation [4], [13]. For instance, if a circuit were to
compute the expression f = a A b, then f correlates positively
with a, b, and the constant | because they have the same value
in three out of four cases. For the same reason, f correlates
negatively with the linear combination a @b because they only
have the same value in one of four cases, i.e., when both a and
b are L. An exact algorithm that computes these correlations
would solve the #SAT problem [14], meaning that computing

Table 1
PROPAGATION RULES FOR STABLE AND TRANSIENT CORRELATION SETS

Gate type of f Stable set S} Transient set T}
Constant LorT {L} {L}
Input Port pt {r'} {p'}
Negation —a St Tt
Register <pra St= L SL E
Linear a®b St @ St D) ® (T}
Non-linear Z C Z (St @ (SE) (Te) ®(Ty)
Multiplexer | c?a : b [ (S ® (St USH [ (TH ® (T¢) ® {T})

correlations is at least #P-Complete [29], which is harder
than NP by definition. Because of the structure of secrets
and the uniform randomness of secret shares and masks, it
is sufficient to track the correlations to linear combinations
of the inputs [4]. Furthermore, the correlations yield a sound
over-approximation that reduces the complexity of the problem
and is also used in COCOALMA. In the following sections, we
describe this over-approximation and its implementation, but
refer to the soundness proofs in the original publication [4].

A. Correlation Sets

Instead of painstakingly computing the exact correlation
factor for each linear combination of inputs, COCOALMA
over-approximates the correlations. In particular, COCOALMA
only considers whether the correlation factor is non-zero,
and ignores its exact value. All linear combinations a gate
correlates to are grouped together and tracked as so-called
correlation sets. The exact correlations are approximated us-
ing propagation rules that determine the correlation set of
f = a®b by considering the correlation sets of a and b, as well
as the used logic operation ©. Using the previous example
f = a A'b, we have shown that the correlation set contains
all linear combinations of a and b, i.e, {1,a,b,a®b}. In
contrast, f = a & b only correlates with itself, ie., the set
{a ® b}, because the value of a @ b coincides with L, a,
and b in exactly half of the cases, yielding a correlation
factor of zero. Consequently, knowing f would not reveal any
information about a and b. In general, we cannot compute the
correlation set of the output of a logical operation precisely
from the correlation sets of its inputs, so COCOALMA over-
approximates these sets.

Table I presents the propagation rules COCOALMA uses
to compute the correlation sets of a gate using its inputs.
The propagation rules define two kinds of correlation sets
necessary for the verification: (a) stable sets S} that define
the normal behavior of a gate f, and (b) transient sets T]?
that define the behavior of f in the presence of glitches and
transition leakage effects. Both types of correlation sets are
defined for each clock cycle ¢, as gates change their value
over time. Although the hardware probing model only talks
about these transient correlation sets, the stable correlation sets
are necessary for synchronizing elements such as registers.
For simpler exposition and encoding, Table I shows the
computation of correlation sets using the operators ® and



(-). Here, ® is the element-wise exclusive-or between two
correlation sets, i.e., X @Y = {z®y|x € X,y € Y}. The
operator (-) adds a correlation with L to a correlation set, i.e.,
(X)=XU{l}

The presented propagation rules are based on COCOALMA’S
original publication [13], [4] but were adapted for stateful
hardware verification with continuously recording probes.
Naturally, constants only correlate to L, and negations only
change the sign of the correlation but do not impact the
correlations themselves. As discussed previously, linear gates
only correlate to the linear combination of the inputs, so the
correlation set is computed as the element-wise exclusive-
or of the inputs’ correlation sets. For non-linear gates, the
correlation set is computed similarly, only that in this case,
a bias is introduced in each input’s correlation set. Using the
introduced notation, the correlation set of gate f = a A b,
where a and b are inputs, is computed as

({a}) © ({b}) ={L,a} @{L, b} ={L,a,b,a®b} . (1)

For transient correlations, linear gates behave like non-linear
gates. Glitches induced by different signal timings can force a
gate to forward a constant or either of the inputs, in addition to
the correct correlations. A multiplexer correlates to both of its
data inputs a and b, as well as their linear combinations with
the selector ¢, i.e., a® c and b c. For the transient correlation
set, COCOALMA assumes that all three input signals can be
combined non-linearly.

When verifying masked software running on a processor,
the input pins of the hardware design are not relevant, as
they are part of the micro-architecture and not visible to
the programmer. Secret shares, masks, and public values are
all stored in both the RAM and the ROM, and for the
verification process, we label their locations and simulate the
design to execute a program [13]. Verifying masked hardware
is different, as there are no such memory blocks, and the
registers get cleared with a reset signal. Computation-relevant
data, such as plaintexts, keys, and masks, is provided by the
environment through the input ports of the circuit. Therefore
we extend COCOALMA with support for input ports and
introduce an appropriate propagation rule, which states that
an input port only correlates to its value in cycle ¢. In our
implementation, public values, shares, and masks have the
same value throughout the execution of the circuit. However,
input ports labeled as random are provided by an external
random number generator and change their value in each
cycle, and therefore, the correlation set also changes each
cycle. In addition, to the support for input ports, we also
optimized the propagation rules for registers. Since the probes
in the hardware probing model record data continuously, we
do not need to account for transition leakage because all values
passing through a wire are recorded anyway.

Computing correlation sets from other correlation sets can
result in over-approximations that include non-existent corre-
lations. For example, representing the exclusive-or function
f=a®bas f = (aA-b)V (-aAb) would result in the
spurious correlation set {_L, a,b,a®b}, when in reality f only

correlates with {a @ b}. This means that a hardware designer
applying this over-approximative method must be aware of
false leakage reports and debug them properly. Oftentimes, as
illustrated in this toy example, the over-approximative error
can be fixed by either re-writing the circuit or removing the
problematic correlation term from the correlation set.

However, despite being imprecise, this over-approximation
is easy to encode and retains some useful information. For
example, function f = (a ® b) A ¢ is correctly claimed
to correlate with {Ll,c,a®b,a ®b P c}, even though the
correlation set of f was computed using the correlation sets
of g = a ® b and c. This result reflects the intuition that we
cannot “remove” masking from a signal by combining it with
another value, i.e., the correlation set does not contain values
where a appears without b.

B. SAT Encoding

The upper bound for the size of the correlation sets is expo-
nential in the number of inputs, so COCOALMA cannot store
or enumerate them explicitly and instead relies on an implicit
encoding method that utilizes a SAT solver. While the used
encoding is similar to the one presented by Bloem et al. [4],
it was significantly optimized and streamlined in COCOALMA
to simplify the implementation of all the propagation rules in
Table I. As mentioned previously, the user needs to label each
input port p € Z as either a share s € K! of the i-th secret,
a fixed random mask m € M, a random port with a new
value r € R? in each clock cycle ¢, or a public value that is
ignored. For simpler notation, we do not implicitly associate
correlation sets or propositional variables with clock cycles
or gates in the circuit, and instead specify them with C_ and
‘P_, where the subscript is used to differentiate them. In our
SAT encoding, a correlation set C, is represented by a set of
propositional variables P, = {z, | p € I}, such that every
valid assignment to the propositional variables P, corresponds
to an element in the correlation set C,.. Additionally, just like
Z, P, can be further split as P, = [J, KL UM, UJ, RL.
Example 1 gives an intuition of the introduced variable sets
and correlation set encoding.

Example 1: Let T = {sg, s1,m} be the labeled input ports
given by the user, where s = sg @ s1 is a secret with shares
K° = {50, 51}, and fixed uniformly random masks M = {m}.
Let C, = {L,s1,80 D m,so® s, &m} be a correlation set.
Then P, = {x5,, %5, , Tm } are the propositional variables used
for encoding C,, where KO = {z,,, 7, }, and M, = {z,,},
and there are no random ports. The propositional variables
in P, are constrained in such a way that the only satis-
fying assignments for the propositional tuple (zs,,Zs,,ZTm)
are (L, L, 1), (L, T,L1), (T,L,T), and (T, T, T). These
assignments represent the elements of C,, where x,, indicates
whether the port p appears in the current term of C,.

COCOALMA maps the correlation terms in C, to satisfying
assignments to the propositional variables P, by translating
the propagation rules from Table I into satisfiability con-
straints. However, in order to simplify the exposition, we only



demonstrate how we encode the correlation set operations (-),
U, and ®, as well as the creation of a correlation set with
only one element. All of the propagation rules from Table I
can be obtained by applying different combinations of these
individual encodings, e.g., the transient rule for linear gates is
obtained by combining the encodings of (-) and ®.

First off, the correlation set of an input port only contains
the port itself. Therefore, we restrict all of its propositional
variables that correspond to other ports to be L, whereas
the propositional variable representing the port itself must be
set to T. More precisely, for a port p in clock cycle ¢, the
propositional variables P, are constrained with
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T €Py,aF#pt

Tpt A X, 2)
where only random input ports are different in each clock
cycle and p = p’ in all other cases.

Extending a correlation set C, with the | element, written
as (C.), is required for the propagation rules of linear and
non-linear operations. When translating this into constraints
for propositional variables P,, COCOALMA introduces a new
set of variables P/, and a fresh propositional variable ¢. The
SAT solver can pick the value of ¢ freely. Depending on the
choice, all propositional variables P., are forced to equal their
corresponding variables in P, or forced to be L. We write
this constraint as

A

24 €Pa, ), €P,,

xl < (N x,).
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All satisfying assignments of P, correspond to elements of
the correlation set (C,). Each time the propagation rules in
Table I use the (-) operator, we introduce the variables P,
and q and apply the given constraint.

Encoding the propagation rule for multiplexers requires
a similar constraint when representing the union of two
correlation sets. Given the correlation set C, = C, U Cy,
we introduce corresponding propositional variables P, and a
fresh propositional variable g. We subsequently constrain the
introduced propositional variables with

/\ o ¢ ((@NZa) V(2q N Ya)) ,
20 €P=, o €Pa, Ya EPy

4)

where whenever ¢ = T an element of C, is encoded, and
otherwise an element of C,. This encoding ensures that C,
contains all elements of C;, and C,, even if they are duplicates.

Finally, COCOALMA encodes the element-wise exclusive-or
of two correlation sets C, = C; ® C,, using their correspond-
ing propositional variables and a straightforward equivalence

encoding
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Unlike the encoding of unions, no additional fresh proposi-
tional variables are necessary as there is no choice involved.

The constraints (2)-(5) only show how each of the prop-
agation rules shown in Table I can be translated into SAT.

COCOALMA needs an additional encoding for the conditions
under which information leakage occurs. With correlation sets,
we check whether there is an element of the correlation
set where all shares of a secret are present, without being
hidden by uniformly random values, such as fixed masks,
random input ports, or shares of other secrets. Looking back
at Example 1, we see that each time both shares sy and s
appear in a correlation term, they are masked by mask m. This
means that the correlation set does not leak information about
s = sg @ s1. When checking this leakage property using the
SAT encoding, we require two constraints.

First, we enforce that for each secret, either all shares are
active, or all shares are inactive. Furthermore, we say that at
least one secret must be active in order to have a leak. We
encode this property by introducing one fresh propositional
variable k; for each secret and constraining them with

NS oA
The first conjunct guarantees that at least one of the secrets
is present in the correlation term. The rest of the expression
ensures that either all shares of a secret are active in a
correlation term, or none of them are, which is necessary since
shares of incomplete secrets are uniformly random.

Second, we enforce that no masks appear in the correlation
term, so the secrets are not hidden by uniformly random
values, as discussed in Example 1. We represent this in the
SAT encoding as

( A
Ty EMy

which ensures that a satisfying solution must assign all the
variables representing masks and random values with L.

Constraints (6) and (7) go hand in hand, and both are
required when testing whether a given correlation set leaks
information about the secrets. When checking the security of
a circuit in one of the supported security models, COCOALMA
determines the observations an attacker can make, where each
observation is made up of multiple correlation sets. For the
software probing model, COCOALMA takes all the d-tuples O
of probing locations (g, t) and tests the non-linear combination
of their stable correlation sets

& (%)

(g,t)€O
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where g is the chosen gate, and ¢ is the chosen clock cycle. The
same applies to the time-constrained probing model, where
COCOALMA checks the transient correlation sets T; instead.
In contrast, for the full hardware probing model, the probing
locations O are a d-tuple of gates g instead, and concern all
the clock cycles ¢ for the given gates. Therefore, COCOALMA
must check the correlation set

Q&1 -

geO t

€))



which significantly increases the observations an attacker can
make. For example, using a register to store one share of
a secret early in the computation and store the other share
later in the computation would still allow an attacker to
reconstruct the secret. Naturally, longer executions of a circuit
get progressively harder to verify.

C. Encoding Optimizations

Although the shown SAT encoding is sufficient for showing
whether the circuit leaks information about the processed
secrets, the size of the produced constraints and formulas is
unnecessarily large. In this section, we present some of the
optimizations that dramatically reduce the effort of showing
that a masked hardware circuit is secure.

Variable elimination. The sets of propositional variables
‘P, often include variables constrained through unit clauses, so
their assignment is predetermined and equal in all satisfying
solutions. Constraint (2) is an example of such a situation.
Building constraints for such variables is unnecessary, and
they can be removed entirely, substantially reducing the size
of formula given to the SAT solver. In practice, COCOALMA
implements this by storing P, as a dictionary of propositional
variables, as well as a set of variables trivially set to T. All
variables from P, that are not present are known to have the
value L. Consequently, whenever creating any of the shown
constraints (3)—(7), we first check for trivial simplifications
using the properties of logic operators. Although this opti-
mization might seem superficial, it single-handedly reduces the
number of variables and clauses by anywhere between 90%
and 98% for the probing verification problems we have inves-
tigated so far. Notably, this optimization does not reduce the
complexity of the queries given to the SAT solver, as solvers
usually detect unit clauses anyway, but instead significantly
reduces the memory consumption. Without this optimizations,
verifying the probing security of longer executions would not
be possible because the formula would not fit into memory.

Covering sets. Due to the nature of the propagation rules
from Table I, some correlation sets are supersets of others.
Take the propagation rules for non-linear gates as an example.
For gate f = a A b, the stable correlation set is computed as
St=(SEy®(SE) = {LIUSLUSFU(SE @ St), which implies
that S! C S} and S} C S}. Consequently, it is sufficient to
perform the security checks for S%, ignoring both S}, and S}
because their elements are already covered. For element-wise
exclusive-or operations like C, = C, ® C,, the resulting set
C, covers C, whenever L € C,, and C, whenever L € C,.
It turns out that in the software probing model, we only need
to check gates that are inputs to XOR gates, selectors of a
multiplexer, inputs to a register, and circuit outputs. In the
time-constrained probing model, we only check register inputs
and circuit outputs because in that model linear gates behave
non-linearly due to glitches. In the full hardware probing
model, the covering properties are slightly more complex, and
we check all gates that have at least one clock cycle where
another gate does not cover them.

Table 1I
SIMPLIFICATION RULES FOR STABLE CORRELATION SETS
Gate type f Stable set Cr f Stable set Cr
Linear a® L Ca ad®T Ca
Non-linear ahL S aA T Ca
aV L Ca aVvT -
1?%7a:b Cp T?a:b Ca
Multiplexer || ¢?L : b | (Cc) ® (Cp) c?T b | (Ce)®(Cp)
c?a: L | (Co)®@(Ca) || c?a: T | (Cc) ® (Ca)

IV. SIMULATIONS

Although the method presented in Section III is sufficient
to check the security of a masked implementation in the
supported probing models, it does not consider how the control
signals change over time. As mentioned in the introduction,
COCOALMA uses simulations to obtain information about the
exact values of control signals and subsequently uses them to
simplify the correlation sets accordingly.

In the hardware probing model, all values marked as sensi-
tive, i.e., secret shares, mask registers and random input ports,
are assumed to be uniformly random. This is a requirement
for the execution environment, in this case the testbench,
which performs the secret sharing steps and includes a random
number generator that drives the random input ports in each
clock cycle. In any reasonable probing model, the attacker can
only control the values of un-shared plaintext values, and we
assume they can request an unlimited number of encryptions
for the DPA attack. If the attacker were able to mess with
the random number generator of the environment, they would
be able to break any conceivable masking scheme, so this is
out-of-scope in the hardware probing model.

Other input signals, such as control signals, which marked
as public are assumed to be independent of the secrets and
masks processed in the hardware circuit, so their values can
be taken directly from a circuit simulation. Since their values
are known, COCOALMA uses them to perform simplifica-
tions while applying the propagation rules. Consider the gate
f = anb, where a is a public value and b has a correlation
set Cp. Because COCOALMA knows the value of a, f is
simplified accordingly. If @ = 1, then we know that f = |
independently of b, meaning that f is also a public value
and does not need a correlation set. Similarly, if a = T,
we know that f = b, and we can reuse the correlation set
as Cy = Cyp. Table II defines analogous simplifications for
all propagation rules with multiple inputs when the constant
signal is stable. Using the simulated execution of the circuit
and the labeling provided by the user, each gate g at each clock
cycle ¢ is classified as either being a control signal or having
a correlation set, but never both. Empty entries in Table II
indicate that the gate does not have a correlation set and is
instead declared a control signal.

A. Signal Stability

Unlike with stable correlation sets, applying simplifications
based on the simulation trace is not straightforward for tran-
sient correlation sets, where COCOALMA must also consider



Table IIT
SIGNAL STABILITY COMPUTATIONS

Table IV
VERIFICATION RESULTS FOR TWO VERSIONS OF PRINCE-TI

Gate type of f Computation of s7(f) in current clock cycle Algorithm |#Sec. #Rand. |#Rnds. #Cyc. SW TC HW
Constant LorT T PRINCE-TI| 192 48 1 3 [V0.72s X 1.97s X 243s
Input Port P -cr(p) PRINCE-TI| 192 192 1 3 |V¥337s V¥ T7.2ls V11.57s
Negation —-a st(a) PRINCE-TI| 192 192 2 5 |V187.8s v 150.6s v 236.9s
Register <ra ~ o' (a) A (v (a) <> vI'(f)) PRINCE-TI| 192 192 | 3 7 |V0.77h ¥3.80h v 17.92h
Linear a®b st(a) A st(b) AES-DOM|256 46 | 1 21 |V1953s5 vV 1.82h v/2.89h

. aNb | stla) A=vi(a)V st(b) A =vi(b) V st(a) A st(b)
Non-linear |\ | i(a) Avi(a) v st(b) A vi(b) V si(a) A si(b)

. o . st(c) A (vi(e) A st(a) V =vi(c) A st(b))V . . . . L
Multiplexer | c?a : b V st(a) A si(b) A (vi(a) < vi(b) their signals stable and avoid glitches. Since public signals

glitches. Glitches are hardware phenomena that behave like
temporary faults while switching values. A gate f = a® b
will pass on a’s value if its signal arrives at f before the new
signal of b. After both signals arrived, the fault is corrected,
and f becomes the value it is supposed to have. Ultimately,
the signal must be stable at the end of a clock cycle, when the
clock triggers the registers and synchronizes the computation.

However, there are certain conditions when a gate cannot
experience a glitch, e.g., when the values a and b come directly
out of a register and do not change from the previous clock
cycle. In that particular case, even though the signal timings
are different, the value transmitted through the wires did not
change the entire time, and no glitching is possible. As a
result, even the signal produced by f would be stable and
glitch-free. This property recursively propagates throughout
the whole circuit and allows us to determine which values
can be used for the simplifications shown in Table II, even for
transient correlation sets.

COCOALMA uses the concrete values of a simulation trace
to determine the glitching behavior of public values such as
control signals. Assume the same situation as before, with
f = anb, where a is a public value and b might correlate with
masks or shares, and thus, has a correlation set C,. Knowing
whether f can forward b is crucial, as it might lead to an
information leak in a later part of the circuit. If ¢ = L and
its signal is stable, meaning it cannot produce glitches, then
f is a public value with f = L. Therefore, a being a stable
public signal set to L effectively stops the propagation of a
correlation set from b to f. In the rest of this section, we
outline a recursive method for determining whether a signal
is stable in a given clock cycle.

In the following exposition, we introduce three predicates
that help define the algorithm computing the signal stability.
We use the s#(z) predicate to say that the signal x is stable. The
predicate cr(z) is true whenever the signal z is associated with
a transient correlation set. Finally, predicate vi(x) represents
the value of signal x taken from the execution trace. All three
predicates also have a version that applies to the previous
clock cycle: st (z), cr/(z), and vI'(x). The rules computing
the stability of any given signal f are shown in Table III. All
values of the predicates are computed directly, and none of
them are given to the SAT solver.

First, all input ports are held stable by the environment.
That is, another circuit that controls the input ports must keep
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and signals with correlation sets are mutually exclusive in
COCOALMA, an input port is only considered stable when
it does not have a correlation set. Similarly, the output of
a register is stable if the register does not change its value
from the previous cycle and does not have a correlation set
associated with its input. If the value did change, we consider
the signal unstable because it can cause glitches in gates
connected to it during the clock-cycle transition. Linear gates
such as XOR are only stable if both of their inputs are stable.
If one of the inputs produces a glitch, then an XOR would
forward it to all gates it is connected to since the other signal
cannot stop it.

Non-linear gates such as AND (OR) can remain stable even
if one of their inputs produces glitches. If at least one of the
inputs of an AND (OR) gate is stable at L (T), then no change
or glitch in the other input can make it unstable. Otherwise, the
output of an AND (OR) gate is only stable if both of its inputs
are also stable. The conditions under which a multiplexer is
stable are similar. For instance, if selector ¢ is stable with the
value T (L), then the output of the multiplexer is stable if
and only if the selected input a () is stable. In contrast, if
selector c is not stable, the output is only stable if the inputs
a and b are stable and have equivalent values.

V. CASE STUDIES

In this section, we investigate the probing security of the
masked hardware implementations PRINCE-TI [6] and AES-
DOM [16]. In particular, we analyze the complexity of verify-
ing round-reduced versions in all three of the supported prob-
ing models. Additionally, we demonstrate how COCOALMA’S
debugging functionalities allow us to identify potential issues
and fix them accordingly. All experimental results shown in
Table IV were captured on a notebook with the Intel Core
i7-8550U 1.8GHz CPU and 16 GiB of RAM.

A. Verifying PRINCE-TI

PRINCE is a state-of-the-art lightweight block cipher. It
is designed with hardware implementations in mind, so that
ideally, the entire encryption process can be done in one
clock cycle [5] when no masking is applied. PRINCE takes
as input a 64-bit plaintext block and encrypts it with a 128-
bit key. The encryption process consists of two phases with
six rounds each. In the first phase, the first round adds the
round key onto the data block, whereas the other five rounds
apply a 4-bit S-Box, an affine transformation, and then mix
the round key into the data block. After the first phase, the



data block is transformed using the 4-bit S-Box, another affine
transformation, and the inverse 4-bit S-Box, before starting
the second phase. In the second phase, each round applies the
inverse operations performed in the rounds of the first phase,
meaning that the first five rounds add the round key, apply the
inverse affine transformation followed by the inverse 4-bit S-
Box. The last round of the second phase only adds the round
key to the data block.

Unlike the unmasked version of PRINCE, the threshold
implementation PRINCE-TI [6] cannot be completed in one
clock cycle. This restriction is due to the re-sharing phase
present in threshold implementations, which requires addi-
tional synchronization to prevent leakage caused by glitches.
For first-order probing security, the implementation splits all
the plaintext and key bits into two shares and treats them as
secrets. PRINCE-TT uses random inputs to re-share the outputs
of its sixteen 4-Bit S-Boxes, where each S-Box requires twelve
random bits. In the official implementation, this process is
optimized in such a way that four S-Boxes share the same
randomness, so the re-sharing only requires a total of 48
random bits.

The first row of Table IV shows the results produced by
COCOALMA, where 192 (i.e., 128 key bits and 64 plaintext
bits) pairs of ports are labeled as shares of secrets, and 48 ports
are labeled as coming from a random number generator. The
first round of the cipher needs three clock cycles to complete
since we first need to load the inputs into internal registers
and start the encryption. Within one second, COCOALMA has
proven that the implementation is secure in the software prob-
ing model (SW), indicated with (v) in Table IV. However,
COCOALMA claims it found a leak (X) in the time-constrained
probing model (TC) in the third clock cycle and provides us
with debugging information.

B. Debugging Information

After finding a leak in a hardware circuit, COCOALMA
attempts to simplify the leaking correlation. For example,
COCOALMA could report that the output of a gate correlates
with the linear combination of many secrets. This information,
while correct, is often not useful for a designer because
looking through the implementation and tracking the data
dependencies of so many secret bits is extremely cumbersome.
Therefore, COCOALMA attempts to minimize the number of
secrets in the leaking correlation term. In particular, we go
through all secret bits and greedily assume that the leaking
correlation term does not contain them but still leaks infor-
mation. If the SAT solver returns UNSAT, we know that the
investigated secret must appear in the correlation term. At the
end of this procedure, COCOALMA has produced a minimized
example of a leaking correlation term.

Next, COCOALMA provides a leakage graph, which allows
the designer to visualize the structure of the leaking part
of the circuit. In particular, the leakage graph highlights the
leaking gates and only includes gates that influence the leak.
We perform this graph minimization by starting at the leaking
gates and computing their cone of influence.

21

inv_sr_out2[1] N

> 0
muxl_out2[1]
Ny,
>
{i_pt[1]1@i_key[1]1@i_key[65]}
> 1
sell

unstable

{i_r(31@i_r[4)®i_r(5]}

comp_sh2[1]

{ir(3]@i_r(41@i_r(51®
i_pt[11@i_key[1]1@i_key[65]}

Figure 2. The PRINCE-TI leakage found with COCOALMA. Signal names
are shown on top of lines, whereas the problematic correlation term or signal
stability is shown below.

Finally, COCOALMA produces a leakage trace where the
correlation terms of all relevant correlation sets are displayed.
In particular, we take the model produced by the SAT solver
and show the ports p € Z whose corresponding propositional
variables in P, are assigned to T, indicating they are part of
the correlation term. The designer can combine this informa-
tion with the leakage graph to deduce the cause of the leak.

C. Debugging PRINCE-TI

In the particular case of PRINCE-TI, we have identified the
leak at multiplexer mux1_out2[1], as shown in Figure 2.
Here, the control signal sell determines whether the output
is the inverse of the shift rows operation inv_sr_out2[1],
or the compression operation comp_sh2[1]. Here, a glitch
on the control signal sell causes the multiplexer to for-
ward both inputs in the third clock cycle. Unfortunately,
inv_sr_out2[1] correlates to the uniformly random value
r=1i_r[3]®i_r[4]4i_r[5], whereas comp_sh2[1]
correlates with r@i_pt[1]di_key[1l]dhi_key[65].
Observing these two values allows an attacker to compute
i_pt[l14i_key[l]hi_key[65], breaking the security
guarantees promised by masking schemes.

Although the leakage is observable at mux1_out2[1], its
root cause is somewhere else. Under closer inspection of the
leakage trace and leakage graph, we see that the shift rows
operation, in combination with glitches, causes a forwarding
of the random bits used to re-share the thirteenth S-Box,
making them observable at inv_sr_out2[1]. Since the
same random bits are used to re-share the first S-Box, which
eventually leads to comp_sh2[1], the random bits cancel
out at the multiplexer. Ultimately, the reuse of random bits
causes a leak in the presence of glitches. We fix this by
increasing the size of the random input i_r from 48 to 192
bits, and avoiding the reuse of random inputs for the re-sharing
of S-Box outputs. The second and third row of Table IV show
the verification results for the fixed version of PRINCE-TI,
where we were able to verify up to two rounds of the cipher
in under four minutes.

D. Verifying AES-DOM

Rijndael, better known as the Advanced Encryption Stan-
dard (AES), is an extremely popular, secure, and widely
adopted block cipher [8]. The 128-bit version of AES takes
as input a 128-bit plaintext and encrypts it through ten rounds
using a 128-bit key. First, the cipher adds the initial secret key



to the plaintext to create the cipher’s state and then expands
the key into ten individual round keys. The first nine rounds
apply the S-Box to each state byte, re-order the bytes, apply
a linear transformation to 32-bit chunks, and mix the state
with the round key. The last round does not apply the linear
transformation as it does not contribute to security.

AES is not intended for masked implementations because
it has a highly non-linear S-Box that is applied sixteen times
per round. In order to minimize the used design area, masked
AES implementations opt for only one S-Box module that is
sequentially fed new bytes each clock cycle [25], [16].

We have analyzed the probing security of the DOM-
protected [16] implementation of AES by Gross et al. in
all three security models. The open-source implementation of
AES-DOM* is written in VHDL and not in Verilog, so it is not
directly compatible with our verification flow. However, due
to the modularity of COCOALMA, we can produce a netlist
with another synthesis flow, e.g., GHDL”, and extend it with
a compatibility wrapper in Verilog so we can use Verilator for
the tracing step of the original verification flow depicted in
Figure 1. Although this is convenient, it is not strictly required,
and COCOALMA also supports execution traces produced by
other simulators in VCD format.

Executing the first round of the cipher requires one cycle
of setup and twenty computation cycles. Notably, because of
the parallelism in hardware designs, AES-DOM computes the
linear operations of the first round just-in-time for their use as
S-Box inputs in the second round. Therefore, the first 21 cycles
only include the key addition, sixteen S-Box applications,
and the byte re-ordering. The implementation processes 256
secrets, that is, 128 key bits and 128 plaintext bits. In each
clock cycle, the AES-DOM consumes 46 uniformly random
bits, yielding a total of 966 random bits for the first round of
the cipher. The last column of Table IV shows the verification
results for the first round of AES-DOM. The verification was
successful in all three probing models, and since the AES-
DOM implementation is more complex than PRINCE-TI, it
naturally takes longer to verify. COCOALMA only takes about
three hours to verify that the implementation of AES-DOM is
secure in the hardware probing model.

VI. RELATED WORK

The formal verification of power analysis countermeasures
is a well-established research field [1], [2], [4], [13], [10],
[11], [19]. The community has been investigating two fun-
damentally different principles. On the one hand, there are
approximative methods like those used in REBECCA [4],
maskVerif [2], and COCOALMA. In contrast to REBECCA
and COCOALMA, maskVerif opts for a language-based
verification approach, tracks the symbolic representation of
probing locations, and simulates the observations an attacker
can make using uniformly random values. On the other hand,
model counting methods inspect the truth table of a given

“https://github.com/hgrosz/aes-dom
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function and check whether the correlation strength is zero
for all secret values. Tools such as QMvVerif [10] and
OMSInfer [11] apply these methods to overcome the short-
comings of heuristics used in faster approximative methods.
Similarly, probability-distribution tracking approaches such as
SILVER [19] (implicitly) rely on model counting to determine
the distribution type for any possible observation an attacker
can make.

To our knowledge, maskVerif and SILVER were not used
for stateful hardware verification. The authors of OMverif
and QMSInfer claim they support stateful hardware verifi-
cation, but the tools are not open-source, so we could not
replicate their results.

VII. FUTURE WORK

The current version of COCOALMA is a significant improve-
ment over its predecessor REBECCA [4]. However, there are
still open questions that could yield performance improve-
ments or usability improvements.

The model of glitches used in COCOALMA seems too con-
servative, but we have no empirical evidence to the contrary. In
particular, we assume that glitches are unpredictable and can
forward any combination of the new and old signal values,
even constants. This assumption might be too strict, and
some combinations would not be observable in a power trace.
Similarly, we assume the worst-case interaction between tran-
sition and glitch leakage, which might also be unnecessarily
cautious. Eliminating these overly paranoid precautions would
single-handedly reduce the verification complexity. Another
avenue for increasing the scalability would be to consider
implementation modules separately and tie the individual
proofs together using composability notions [2].

VIII. CONCLUSION

Although COCOALMA was originally designed for verifying
software in the time-constrained probing model, it can also
verify stateful hardware circuits in the hardware probing
model. COCOALMA improves upon REBECCA in terms of
scope and verification capabilities. It supports more security
models, includes an elegant correlation-set encoding, supports
circuit simulation, and uses it throughout the verification. The
native support for stateful verification allows a tighter integra-
tion into the design flow, and as demonstrated with PRINCE-TI
and AES-DOM, COCOALMA can be applied to industry-scale
designs. We have successfully identified a leakage location
in PRINCE-TI, which cannot be found by only analyzing the
PRINCE-TI S-Box, as it requires the full context of the cipher’s
implementation. Through the debugging support provided by
CoCOALMA, we found the cause of the information leakage
and fixed it by adding more random inputs. Furthermore, we
have also demonstrated the modularity and adaptability of
COCOALMA by verifying an AES-DOM design that uses an
entirely different synthesis flow in another HDL language.

Overall, we think COCOALMA is an excellent addition to
any synthesis flow and can be used for the early detection of
mistakes.
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End-to-End Formal Verification of a RISC-V
Processor Extended with Capability Pointers
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Abstract—Capability Hardware Enhanced RISC Instructions
(CHERI) extend conventional ISAs with capabilities that can
enable fine-grained memory protection and scalable software
compartmentalisation. CHERI-RISC-V is an extended version
of the RISC-V ISA with support for CHERI, and Flute is
an open-source 64-bit RISC-V processor with a five-stage, in-
order pipeline. This case study presents the formal verification
of CHERI-Flute, a modified version of Flute that implements
CHERI-RISC-V, against the Sail CHERI-RISC-V specification.
To the best of our knowledge, this is the first extensive formal
verification of a CHERI-enabled processor.

We first translated relevant portions of the Sail CHERI-
RISC-V specification to SystemVerilog Assertions. Then we
formulated and proved four classes of end-to-end correctness
properties about CHERI-Flute, covering the CHERI instructions
and certain liveness properties about the entire processor. None of
these results are routine—they all rely on novel proof engineering
methodologies that extract microarchitectural invariants to serve
as lemmas for the end-to-end proofs.

This work exposed several previously-unknown bugs in
CHERI-Flute, most of which occur in the implementation of
sophisticated combinational logic for certain CHERI instructions.

I. INTRODUCTION

Despite decades of hardening and mitigation efforts—such
as stack protection, garbage collection, and virtualisation—
memory safety issues remain a common and dangerous source
of security vulnerabilities. A 2019 report by Microsoft [1]
states that “70% of the vulnerabilities addressed through a se-
curity update each year continue to be memory safety issues’.
The root cause of this phenomenon is the pervasive use of
an unsafe memory model for interpreting the C programming
language [2]. This model can be traced back to the PDP-
11 and presumes that memory is simply a linear array of
individually addressable bytes. This has induced a number of
deeply ingrained assumptions about pointer behaviour that go
beyond what is guaranteed by the C specification and rely only
on ‘implementation-defined behaviour’.

The Capability Hardware Enhanced RISC Instructions
(CHERI) project offers an alternative model that provides bet-
ter memory safety [3]. Its main features include a new machine
representation of C pointers called capabilities, and extensions
to existing instruction set architectures (ISA) that enable the
secure manipulation of capabilities. For intuitive understand-
ing, capabilities can be regarded as traditional pointers with
extra properties that make them more like object references in
a memory-managed language, such as Java. On one hand, this
model continues to support limited arithmetic operations on
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capabilities that, for example, allow a loop to iterate through
an array by repeatedly incrementing a capability. On the other
hand, it makes it impossible to construct arbitrary capabilities
that can be dereferenced—a significant departure from the
usual ‘unsafe’ understanding of the C programming language.

Well-developed ISAs that integrate capabilities include
CHERI-RISC-V and CHERI-MIPS [4], which are extended
from RISC-V and MIPS. Rigorous engineering techniques
have been used extensively in their development [5]. Specif-
ically, Sail [6] specifications of these CHERI ISAs exist that
give a precise and executable definition to each instruction.

This case study explores the formal verification of an open
source implementation of CHERI-RISC-V. Flute is a 64-bit
RISC-V processor with a five-stage, in-order pipeline [7]
released by Bluespec Inc. in late 2018. Researchers at
Cambridge University have extended Flute with support for
CHERI-RISC-V [8], and this extended implementation, named
CHERI-Flute, was our verification target.

A. Contributions

We have verified several classes of properties for CHERI-
Flute using the JasperGold formal verification environment [9].
The scope of our verification comprises the correct execution
of all 80-plus CHERI instructions as well as certain liveness
properties for the processor as a whole. Our proof does not
cover the existing RISC-V instructions, which do not involve
capabilities. Formal verification methodologies for these in-
structions are well-established and so they are not of central
interest in this case study.

To the best of our knowledge, this is the first extensive
formal verification of a CHERI processor implementation. Our
aim in this paper is to make the methodology accessible for
future verification projects on novel architectures, including
ones that target capability hardware. All our verification code
is available open-source [10].

We have deliberately taken an end-to-end approach. That
is, properties are proved for the entire core, as opposed to
individual components such as the individual execution units.
In CHERI-Flute, the hardware that deals with capabilities is
novel, complex, and distributed across the pipeline stages.
Our end-to-end approach avoids the necessity to isolate this
hardware and characterise its environment.

Our verification results all rely on novel proof engineering
methodologies that extract microarchitectural invariants to
serve as lemmas for the end-to-end proofs. Some of these

This article is licensed under a Creative
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Fig. 1. A typical pointer represented by a capability

invariants are of interest in themselves. For example, one
of them shows that the core can never create a malformed
capability—an important consistency invariant.

This case study exposed several previously-unknown bugs
in the implementation of CHERI-Flute, which have all been
reported to and confirmed by the designers [11], [12], [13].
Most of these bugs occur in the implementation of sophis-
ticated bit manipulation logic for CHERI-related instructions,
demonstrating the effectiveness of formal verification in catch-
ing subtle bugs in a novel processor design. In some cases, we
have been able to provide verified bugfixes to the designers.

II. BACKGROUND TO CAPABILITY ARCHITECTURE

CHERI extends ISAs with a new hardware representation
for pointers and new instructions for manipulating them.
See [4] for its full specification and [14] for a high-level
summary of the large research effort surrounding CHERL

Instead of using 32- or 64-bit integers to represent point-
ers, CHERI uses a richer representation called capabilities
that can be stored in capability registers in the core or in
capability-sized and capability-aligned words in the memory.
The program counter, which usually holds integer addresses,
is replaced by the program counter capability (pcc).

A capability, illustrated in Fig. 1, contains additional in-
formation compared to a traditional pointer, most notably
including the following.

Validity Tag. A 1-bit tag that indicates whether the capability
is valid. Such a tag is associated with ‘each location that
can hold a capability—whether a capability register or a
capability-sized, capability-aligned word of memory’ and
it ‘tracks capability validity for the value stored at that
location’ [4]. When a location that can hold a capability
is untagged, its contents are simply data and hence do
not grant any privilege.

Permissions. A bitmask that controls what the capability can
be used for, such as loading or storing from the memory,
or setting pcc to execute code.

Bounds. A capability with a set of permissions is not by
default authorised to exercise them at all addresses.
Instead, the capability also encodes a range of addresses
within which it may exercise its permissions.

CHERI instructions operate on capabilities in accordance to
security principles such as privilege minimisation, monotonic-
ity, and provenance; these are enforced by checking the Valid-
ity Tag, Permissions, Bounds, and other information attached
to capabilities [4]. For example, only a valid capability, with
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permission to load, and whose address is within its bounds,
can be used to load from that memory address. Otherwise, the
processor traps and potentially causes the program to crash.
The checks performed by each CHERI instruction are known
as its guard conditions, and the correctness of their hardware
implementation is crucial to the security protections provided
by CHERI.

ITI. Basics orF CHERI-RISC-V

CHERI-RISC-V extends the RISC-V ISA with support for
CHERI [4]. This case study treats its 64-bit variant.

A. Compression of Capabilities

When stored in memory, capabilities are represented in
a compressed format [4], [15]. A compressed capability in
64-bit CHERI-RISC-V takes 128 bits (plus an out-of-band
validity tag bit)—twice as many bits as a traditional pointer.
In the capability registers of the core, however, they are
represented in a decompressed format that occupies even more
bits. Decompression and compression are done transparently
when they are moved between memory and the core.

Capability compression is lossy. That is, there exist decom-
pressed capabilities that do not correspond to any compressed
capability. These decompressed capabilities are termed unrep-
resentable. Such a capability poses a significant problem if
it appears in the core, since there is no well-defined way to
store it to the memory—as that would require compressing the
capability first. Part of our verification is to show that unrep-
resentable capabilities can never be created by the processor.

B. Sail CHERI-RISC-V Instruction Specification

The definition of each CHERI instruction in the Sail
CHERI-RISC-V specification [16] roughly takes the form of
Algorithm 1. An instruction can retire either unsuccessfully,
due to violations of one of its guard conditions, or successfully,
after modifying the architectural state of the processor. As will
be seen in Section V-A, the distinction between successful
and unsuccessful retirement is central to the way we specify
instruction correctness in this work.

IV. FLUTE AND CHERI-FLUTE

Flute [7] is a 64-bit RISC-V processor with a five-stage, in-
order pipeline designed for low- to medium-end applications.
The processor is designed in Bluespec SystemVerilog (BSV)
and has been synthesised and tested on Xilinx FPGAs.

Flute has the basic pipelined microarchitecture commonly
found in computer architecture textbooks [17], featuring a




Algorithm 1: Typical CHERI instruction specification

if —guard condition 1 then retire FAIL(TagViolation);
else if —guard condition 2 then retire
FAIL(PermitLoadViolation);

else if —guard condition 12 then retire
FAIL(LengthViolation),
else
modify architectural state;
retire SUCCESS;
end

Fetch (F'), a Decode (D), an Execute (£), a Memory (M),
and a Write-back (W) stage. It also comes with forwarding
mechanisms to make the pipeline more efficient. The regis-
ter file (regfile) consists of 32 general-purpose registers
ro,--.,731, Where rg is hardwired to zero.

Fig. 2 illustrates the pipeline of Flute with its stages occu-
pied by instructions Zi, . .., Zs. Outgoing paths from stage M
and W, including forwarding paths, are highlighted in red and
blue respectively. These paths carry information about pending
updates to the register file: the pending update in stage W
writes the value vy into register rdyy, and the pending update
in stage M writes the value v, into register rdy.

To articulate properties, we define two subscripted reg-
ister files: regfilej;, which contains the contents of
regfile after committing the pending update in stage W,
and regfileg, which contains the contents of regfile
after committing the pending updates in both stages W and M,
in that order. The subscripted versions are essentially what the
register file appears to be to stages M and E after forwarded
values are taken into account. Hence their subscripts.

A. CHERI-Flute

CHERI-Flute [18] extends Flute with support for CHERI-
RISC-V. We sketch here the main relevant changes.

First, the registers are widened to become hybrid registers
that can be used as both integer and capability registers.
Second, most of the computation supporting the CHERI
instructions—calculating bounds, incrementing addresses, and
so on—is implemented within the ALU located in stage E.
Finally, circuitry is added to stage M that partially checks
whether any CHERI instruction passing through it violates
the instruction’s guard conditions. The rest of the checks are
performed earlier by the ALU. While these checks could
in principle all be placed in the ALU, this would cause
unacceptably long delays in stage E for certain instructions.
Hence they are spread across stages /' and M instead.

V. FORMULATING CORRECTNESS

Our formal verification flow is driven by JasperGold. The
design is first compiled into SystemVerilog using the open-
source bsc compiler and then imported into JasperGold. This
pre-compilation is necessary because JasperGold cannot read
the Bluespec SystemVerilog source of CHERI-Flute directly.
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The specification for correctness, which in our case is the
Sail CHERI-RISC-V specification, also needs to be mapped
into properties—written as SystemVerilog Assertions (SVA)—
about the compiled SystemVerilog design. Tooling does not
exist to achieve this automatically, so for this case study we
manually translated those portions of the Sail specification
necessary for the verification effort into SVA. This yielded
more than 1000 lines of data structures and functions of
SystemVerilog and almost 100 correctness properties in SVA.
As these properties are about a compiled design, a certain
amount of ‘reverse engineering’ was needed to identify the
relevant signal names.

A. The Instruction Specification Framework

A RISC-V processor is simple enough to formulate correct-
ness of its instructions in the classical, direct way that will be
familiar from many examples in the literature.

Let a be an abstraction function that maps each mi-
croarchitectural state of CHERI-Flute to a CHERI-RISC-V
architectural state. Write s EN s’ to mean that a CHERI-
Flute processor retires instruction Z and thereby transitions
from microarchitectural state s to microarchitectural state s’.
Similarly, write S i) S’ to mean that, according to the
CHERI-RISC-V specification, executing instruction Z alters
the architectural state S to architectural state S’. Note that
both transition relations are deterministic.

Now for the implementation of an instruction Z to conform
to specification, we require that

Vss' s s = a(s) = afs)

(D

where s ranges over the reachable microarchitectural states of
CHERI-Flute. The reachability of s is, of course, crucial; this
is further discussed in Section VI-B.

Now the formulation Prop. (1) faces a significant prac-
tical challenge. A CHERI instruction can be retired either
successfully or unsuccessfully—and, in the latter case, there
are sometimes more than a dozen ways in which it can fail.
So formulating correctness as in Prop. (1) will require a
full specification of what the processor’s behaviour, and the
resulting architectural state, should be for each kind of failure.
This would be ideal, but also greatly increases the effort of
formulating the required properties.

We therefore formulate a weaker notion of correctness that
greatly simplifies the properties, albeit at the cost of a less
comprehensive verification. Define two checkmarked relations
as follows. For any instruction Z and microarchitectural states
s and s', the relation s I ¢ holds iff s % & and
instruction Z is retired successfully. And for any instruction Z
and architectural states S and S/, the relation S L4 6 holds
iff S 5 S’ and all instruction Z°s guard conditions are met.

Now, consider the property expressed by the proposition

2

which says that any successful retirement of instruction Z oc-
curs in compliance with the specification. Proving the stronger

Vss' s 25 8 = a(s) 25 a(s')
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Fig. 3. Microarchitectural state with register-only instruction

condition Prop. (1) shows the processor complies with the full
specification indicated by Algorithm 1, which has numerous
branches leading to different types of failures. Prop. (2) is a
weaker condition but greatly simplifies the properties.

This simplified property cannot detect a faulty processor
with incorrect unsuccessful retirement. That is, a processor that
correctly prevents a certain CHERI instruction that violates its
guard conditions from being retired at the end of the pipeline,
but which nontheless produces an incorrect processor state
according to the CHERI RISC-V specification. The property
will, however, still detect processors with incorrect successful
retirement. That is, processors that produce the wrong archi-
tectural state upon a CHERI instruction being retired the end
of the pipeline, or processors that retire a CHERI instruction at
the end of the pipeline that violates its guard conditions. This
ensures that none of the security guarantees offered by CHERI
is compromised. To see this, suppose for contradiction that
Prop. (2) is true for some faulty processor which incorrectly
retires successfully some instruction Z, i.e., there exist s and
s’ such that the relation s =% s’ holds but some of instruction
I’s guard conditions are not met. Consequently, by Prop. (2),
the relation a(s) EA «(s’) also holds. But this implies that
all of instruction Z’s guard are are met, which contradicts
the assumption. Section IX discusses ways to relatively easily
obtain properties that reflect the stronger specification.

B. Expressing Specifications as Properties

For mechanised formal verification in JasperGold, it is
of course necessary to articulate the intent of the abstract
correctness condition described by Prop. (2) as a group of
SystemVerilog expressions. In practice, this means

(i) characterising the microarchitectural states s and s’ for

which s =% ' holds, and
(ii) defining the mapping « for at least microarchitectural
states s and s’ where s —% s’ does hold.
Note that expressing (i) means characterising when the in-
struction Z has retired successfully. One of the contributions
of our methodology is to observe that this can be tied to the
detection of certain microarchitectural states. Note also that
(ii) is much simpler than having also to define the architectural
states resulting from every kind of unsuccessful retirement.

In practice, we have developed these properties in separate
groups for each of three distinct classes of instructions that
share common structure. The sections that follow explain
these. In the actual proof code, a systematic scheme of
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‘property templates’ is employed to makes it easy to create
and manage almost 100 properties without having to maintain
multiple copies of boilerplate code. It also allowed us to
quickly implement and validate proof engineering ideas for
a large batch of properties, improving research efficiency.

C. Register-Only CHERI Instructions

A register-only CHERI instruction computes a function of
its operands and writes a result into a given register, causing
a trap if any of its guard conditions is not met.

Recall from Section V-B that two expressions are needed
to formulate the required correctness properties. To express
(i), consider Fig. 3, which shows the microarchitectural state
when some register-only instruction Z; is in stage W. Denote
this state by s and the state right after instruction Z; is
retired by s’. Since stage W is at the end of the pipeline,
any instruction reaching stage W is retired at the end of the
current cycle. Moreover, any instruction reaching stage W can
no longer cause traps, so it is bound to be retired successfully.
Conversely, if a register-only instruction is retired successfully,
then it must have been in stage W just before its retirement.
So s 2% s and (i) can be expressed simply by checking
whether the given instruction is in stage W.

To express (ii), consider Fig. 4, which illustrates the mi-
croarchitectural state of CHERI-Flute in some state s that is
about to successfully retire instruction Z; and enter state s,
ie., s =5 . Hence a(s) and a(s’) must give the architectural
states right before and after instruction Z; is retired. Then
observe that

e «f(s) can be obtained directly from the current register
file, pcc, etc., and

e «a(s’) can be obtained by combining the current register
file, pcc, etc. with the pending updates contained in the
output of stage W,

so (ii) can be expressed as a function of state s.

Given formulations of expressions (i) and (ii), the SVA
property for a register-only instruction with register addresses
rd and rs, and immediate data ¢mm will say that if stage W
contains an instruction with opcode OP, then

. rdW = Td,
o v = resultop (regfile|[rs],imm), and
o guardop (regfile|[rs],imm).



Where resultop and guardop are SystemVerilog functions
translated from the Sail specification of the instruction with
opcode OP that compute its write-back result and guard
conditions respectively.

D. Branching CHERI Instructions

A branching CHERI instruction redirects the control flow
and (optionally) saves the return address in a given register. Of
course, it also has guard conditions to ensure that the updated
pcc has the right Bounds and Permissions. This creates
an opportunity to decompose what a branching instruction
does into two operations: checking its guard conditions and
(optionally) saving the return address, and (conditionally or
unconditionally) redirecting the control flow.

The first of these is just what a register-only instruction
does, so we can simply reuse the property template developed
in Section V-C. So the rest of this section is devoted to formu-
lating the correctness properties about the second operation.

First, it is necessary to briefly explain how the control
flow is managed in CHERI-Flute. Initially, stage F' fetches
an instruction from fetch_addr and predicts the address
of the next instruction using the branch predictor. This pre-
dicted address (pred_addr) is by default used as the next
fetch_addr, and it is also passed along the pipeline with
the currently fetched instruction until it reaches stage E,
where the ALU computes the correct address of the next
instruction (next_addr). The processor then compares the
computed next_addr with the pred_addr it received.
If the two addresses do not match, then a branch mispre-
diction has occurred, and stage F' has been fetching the
wrong instructions and passing them along the pipeline. To
rectify this, fetch_addr is set to next_addr, and all
pipeline stages prior to stage E are flushed. Otherwise, if the
branch prediction has been correct, no flushing is needed and
fetch_addr is updated in the default way.

Fig. 5 shows the microarchitectural state when some branch-
ing instruction Z3 is in stage E. To formulate the correctness
properties about control flow redirection, the framework devel-
oped in Section V-A is slightly generalised. Specifically, if a
branching instruction Z is in stage £ and a branch mispredic-
tion has occurred, then instruction Z is now considered ‘about
to be retired successfully’ insofar as control flow redirection
is concerned, and it is now considered to have been ‘retired
successfully’ after fetch_addr is set to next_addr. This
gives the expression (i) discussed in Section V-B. As for
expression (ii), the architectural states of the processor right
before and after some branching instruction is retired success-
fully are taken from the values of fetch_addr before and
after that instruction is retired successfully, respectively.

E. Memory CHERI Instructions

A memory CHERI instruction loads from or stores to the
memory using the capability (directly or indirectly) specified
by its operands, causing a trap if any of its guard conditions is
not met. What a memory instruction does can be decomposed
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into two operations: checking its guard conditions, and loading
from or storing to the memory.

The correctness properties about the first operation can be
formulated simply by reusing the property template developed
in Section V-C. Hence this section focuses on formulating the
correctness properties about the second operation.

CHERI-Flute is connected to the memory hierarchy through
an interface consisting of several input and output ports, which
must be properly used in order for the memory to function
correctly. As with register-only instructions, a memory instruc-
tion Z is about to be retired successfully when it is in stage
W, after having sent and fulfilled its request to the memory
in stage M. Thus, the correctness property should assert that
before Z is retired successfully, when it was in stage M, the
memory interface had been properly used to fulfil what the
specification requires of it. In our proof, SVA sequences are
used to precisely specify the exact sequence of events that
must have taken place when instruction Z was in stage M.

Fig. 6 and Fig. 7 show how a memory /oad instruction 7o
is moved from stage M to stage W and becomes ready to be
retired successfully. The correctness property checks that

e a new memory request was not sent before the previous
request had been fulfilled,

a memory exception did not occur,

the value returned from the memory when Z, was in stage
M was decompressed correctly (if it was a capability) and
used in the pending update to the register file, and

the content of the pending update remains stable as Z, is
moved from stage M to stage W.

The correctness properties about memory store instructions
are highly similar and thus omitted here.

F. Processor Liveness

All correctness properties discussed so far are safety prop-
erties. Our verification also tackled the important issue of
processor liveness—demonstrating that the processor does not
freeze so that the pipeline never progresses.

Of course, there are challenges when dealing with liveness.
First, it is usually very difficult to prove liveness properties in
practice, and there is no such thing as a bounded proof for
liveness that can at least give some confidence. Second, even
if a liveness property is proved, there is still no guarantee
about when the desirable event will occur, which is not ideal
when performance is critical. Third, a necessary condition for
a processor to exhibit liveness is the correct behaviour of
the external components connected to it. For example, if the
memory never fulfils a load request, then the processor might
wait indefinitely for a response, stalling the pipeline. This can
be ruled out by assuming certain fairness constraints about
the external components, but these can of course potentially
be violated unless they are themselves verified.

There is a conventional workaround to the first two prob-
lems. Instead of proving the liveness property that ‘the pipeline
eventually progresses’, we derive a safety property that ‘the
pipeline progresses within n cycles’ parametrised by n and
search for the smallest n (if it exists) for which the safety
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Fig. 7. Microarchitectural state with load instruction in stage W

property can be proved. This not only averts the difficulty of
proving liveness properties but also generates a concrete bound
on when the pipeline progresses.

The derived safety property we proved for CHERI-Flute
says that if an instruction enters stage F, then within nine
cycles, either a new instruction enters stage F, or the processor
enters one of three special states, triggered by particular
instructions, that requires it to wait for certain external signals.

This property shows that as long as the processor does not
enter one of the special states, new instructions will enter
stage F periodically, so the pipeline never freezes. The number
‘nine’ is the smallest number for which this property can be
proved, and the focus on stage E is because certain RISC-V
instructions are retired in stage F—i.e. they are never moved
into stages M or W. Asserting this property on any stage
prior to stage F always attracts a counterexample where an
instruction is repeatedly issued but never reaches beyond stage
E, effectively stalling the subsequent stages.

Of course, the proof of this property relies on several fair-
ness constraints. Most notably, it is assumed that the memory
always fulfils a request within two cycles. The number ‘two’
here is arbitrarily chosen, and it is reasonable to conjecture that
a different number can be used without making any substantial
difference other than perhaps affecting the number ‘nine’ in
the derived safety property.

V1. PROOF ENGINEERING

Not all our correctness properties can be proved in a push-
button manner. Specifically, those properties about register-
only CHERI instructions as well as those about the register-
only components of branching and memory CHERI instruc-
tions cannot be proved straightforwardly. Instead, proof con-
vergence on these properties relies on proof engineering
methodologies that are explained in this section.
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Fig. 8. Microarchitectural state with register-only instruction in stage M

A. Decomposing the Pipeline

This methodology is called ‘decomposing the pipeline’
because it enables one to prove some property about a desired
instruction when it is in a later stage of the pipeline by first
proving some lemmas about the instruction when it was in
earlier stages of the pipeline.

1) The First Lemma: The correctness property shown in
Section V-C for any register-only instruction cannot be proved
directly in JasperGold. Instead, we prove a structurally iden-
tical version of the property that is ‘pushed back’ one stage
in the pipeline, referencing regfile,, instead of regfile,
rdps and Vys instead of rdy and Vi, and using a suitably
adjusted guardgp function, as we sketch below.

If this version of the property can be proved, then it can be
used as a lemma to successfully prove the original correctness
property through k-induction [19]. The lemma is a property
of a register-only instruction in stage M instead of stage
W. Observe that the write-back result of any register-only
instruction is computed by the ALU in stage E. Therefore,
for any register-only instruction Z; in stage M with opcode
OP as illustrated in Fig. 8, its write-back result must already
be available in v ;. This means that we can assert

var = resultop (regfiley, [rs], imm)

in the lemma, where the subscripted regfile,, is used to
take into account any forwarded value vy from stage W.

Now recall from Section IV-A that checks for guard con-
ditions are spread across stages E and M. Thus, when
instruction Z; reaches stage M, only the checks in stage E
have been performed, whereas the checks in stage M are still
underway. Therefore, it is incorrect to assert that

guardop (regfiley, [rs], imm)



in the lemma. Rather, the lemma only asserts that the subset
of instruction Z;’s guard conditions that are checked in stage
E have been met. This subset is given by guardg{:.

Given the lemma, the original correctness property can be
proved by k-induction. But without it, k-induction is unable
to converge because for any value of k, the SAT-solver can
always find a trace that violates the inductive hypothesis. Such
a trace would begin at an unreachable microarchitectural state
where the desired instruction is in stage M. It would then stall
the pipeline during the next (k — 1) steps, only moving the
desired instruction to stage W at the (k+ 1)-th step, where the
inductive hypothesis fails to hold. The pipeline can stall for
arbitrarily many cycles in such traces due to the absence of the
very fairness constraints that enable the proof of the liveness
properties in Section V-F. However, it is unnecessary to add
fairness constraints here. Instead, we use the given lemma to
prevent the SAT-solver from exploring such unreachable states.
And since stage M is immediately prior to stage W, k =1 is
sufficient for the proof to converge.

2) The Second Lemma: To actually prove the lemma just
explained, the same methodology is simply reapplied. That is,
a second lemma is used to narrow the space of states in which
the desired instruction is in stage F so as to exclude traces
that violate the first lemma.

Fortunately, this second lemma is relatively easy to discover,
since the only state information contained in stage E' is the
decoded content of the current instruction in stage F. Thus,
the second lemma simply needs to assert that any instruction
in stage F is properly decoded, which enables the proof of
the first lemma by 1-induction.

Now this second lemma can, in turn, be proved by 1-
induction if a similar third lemma is proved about stage D.
And so on. This chain of lemmas stops, of course, at stage
F where the last lemma can be proved directly. In practice,
however, since CHERI-Flute’s design of stages F' and D is
relatively simple, we took advantage of one of JasperGold’s
black-box proof engines to automatically complete the proof.

B. Developing Microarchitectural Invariants

CHERI instructions compute relatively sophisticated func-
tions of their operands. In the Sail specification, these are given
by total functions on all decompressed capabilities, including
the unrepresentable ones mentioned in Section III-A. But since
unrepresentable capabilities pose a significant problem if they
appear in the processor, CHERI-Flute is designed so they can
never be created by the hardware in the first place. CHERI-
Flute is then excused from conformance with the specification
for unrepresentable capabilities.

This, of course, leads to the generation of unreachable coun-
terexamples in model checking, so our verification includes a
global consistency invariant over the entire processor, showing
that only representable capabilities are present. Formulating
and proving this invariant was challenging because there are
many internal registers in CHERI-Flute’s microarchitecture
that can influence the architecturally visible registers. A weak
invariant that does not cover these internal registers cannot be

proved by k-induction since the SAT-solver can always find
an unreachable state in which one of these registers contains
an unrepresentable capability, which then ‘pollutes’ one of the
architecturally visible registers within the next few cycles.

This challenge was overcome using State-Space Tunnelling,
a JasperGold feature that allows the user to prune unreachable
portions of the state space when performing k-induction
proofs. Essentially, it allows us to specify some k and let
the SAT-solver generate a trace of length k that violates
the invariant. The user then examines this trace to identify
any internal register that causes the violation, and manually
strengthens the invariant to include it.

This process repeats until, for some sufficiently large &, no
violating trace can be found, at which point proof convergence
for the invariant is achieved. In the end, the invariant in our
proof was sufficiently strong to be proved by 1-induction.

VII. RESULTS AND EVALUATION

In this case study, the implementations of all 80-plus CHERI
instructions (except a very few not yet implemented) have
been subject to formal verification in JasperGold against the
correctness properties in Section V through the proof engineer-
ing methodologies in Section VI.! While the implementations
of most instructions were found to satisfy the correctness
properties, several were found to be buggy.

The bugs found roughly fell into two categories. The first
category are simple coding mistakes: the designer failed to
notice details of the specification, or the specification changed
after the design was created. These bugs are usually detectable
with a moderate amount of scrutiny or simulation testing. The
second category are algorithmic errors, typically caused by
subtle mistakes in complex pieces of logic. These are much
more difficult to uncover, even with the most intensive code
review or simulation testing.

e Inthe incOffsetFat function, a bit vector is truncated
but subsequent code still uses the old non-truncated value.
This can potentially lead to the creation of unrepre-
sentable capabilities for certain inputs.

e Several CSR registers are not initialised to the null
capability when the processor is reset.

These two bugs have been confirmed and fixed by the design-
ers [11], [13]. The following have also been confirmed by the
designers and fixes are pending:

e The getTop function incorrectly truncates the returned
value.

e AUIPCC incorrectly clears the validity tag of the returned
capability for certain inputs.

e CUnseal fails to check a permission bit.

e CCSeal incorrectly causes the processor to trap for
certain inputs.

One final bug illustrates an especially productive collabo-
ration between verification and design: in the setAddress

'0n a 24-core AMD EPYC 7F72 processor, with 256 GB of RAM, the
proofs are completed within two hours through parallelisation.



function, the validity tag of the returned capability is cleared
incorrectly in a corner case.

This function was originally developed by trial and error us-
ing the BlueCheck automated test generation framework [20]
and as well as TestRIG, a framework for testing RISC-V pro-
cessors with random instruction generation [21]. But neither
method detected this corner case. The designers’ initial patch
for the function was buggy because it mishandles another cor-
ner case, which was yet again detected by formal verification.
Consequently, we redesigned the function from scratch and
formally verified its correctness against the specification before
it was submitted to and accepted by the designers [12].

A. Bug or Feature?

Two issues belong to an interesting category sometimes
encountered in formal verification: a trace violates the spec-
ification, but it is unclear whether the hardware should be
changed to match the specification or vice versa.

The first was that specification requires the CSetOffset
and CIncOffset instructions perform a standard ‘repre-
sentability check’ to determine if the capabilities they return
are representable. But in CHERI-Flute the CSetOffset
instruction performs a slightly different, non-standard check
optimised for that particular instruction, although the
CIncOffset instruction uses use the standard check.

So the behaviour of the CSetOffset instruction violates
the specification, but in a beneficial way. It is therefore up
to the designers to decide whether the specification should be
changed to incorporate this optimised representability check.

The second was that, when trying to prove the global
consistency invariant, we found counterexample traces where
memory corruption causes injects corrupted capabilities into
the core. Since memory bit-flips do occur in actual hardware,
we suggested that the core should perform sanity checks on
any capability retrieved from the memory, clearing its validity
tag if it is found to be corrupted.

In the end, the designers decided not to add the sanity
checks because it may cause even more unexpected behaviour
when memory corruption occurs, making the situation more
complex to debug. So to make the proof of the global
consistency invariant converge, we added an assumption that
the memory never returns a corrupted capability.

VIII. RELATED WORK

The correctness of processor cores and their implementation
of instructions has been a focus of verification research for
decades, going at least back to the pioneering work of Hunt
on verifying the FM8501 [22] and FM8502 processors [23].
To verify more complicated, pipelined designs, Burch and Dill
devised the flushing abstraction [24], a member an extensive
family of formulations of correctness that has expanded to
cover even out-of-order designs. Aagaard et al. [25] present a
useful framework for classifying these different approaches.

From about the mid 1990s, verification was increasingly
adopted in industry to verify critical components of large-
scale designs. Notable experiments include Kaivola et al.’s
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verification of the Pentium 4 floating-point divider [26], Jacobi
et al’s fully automated verification of fused-multiply-add
floating-point units [27], Kaivola’s methodology for large-
scale formal verification of control-intensive circuits [28],
and Slobodova’s verification of AES hardware support [29].
A landmark achievement in this direction was Kaivola et
al’s work on replacing testing with formal verification for
validating the core execution cluster of the Core i7 design [30].

The starting point of our work was Reid et al.’s end-to-
end verification of Arm processors [31]. But our approach
to verifying properties differs significantly from this work.
While the Arm verification uses bounded model checking,
we obtained much stronger unbounded proofs of all cor-
rectness properties by extracting microarchitectural invariants.
Of course, the relative simplicity of RISC-V helped make
this possible, but it was also enabled by the complexity
management methodologies we explain in this paper.

A landmark in the verification of complex cores is the work
by Goel et al. [32] on verifying x86 instructions. This was done
using the ACL2 theorem prover in concert with a number
of tightly integrated support tools, and achieved an end-to-
end verification that encompasses decoding, translation into
microcode, traps to microcode ROM, and execution.

There has been related work on verifying processors using
Symbolic Quick Error Detection (SQED) and its variants [33],
[34], [35]. These methodologies use bounded model checking
to find sequence-dependent bugs that violate a self-consistency
property, but they are not intended for checking single-
instruction bugs where an instruction always produces the
wrong result for certain inputs [33]. In contrast, our methodol-
ogy checks for both types of bugs. Indeed, most, if not all of
the bugs we found were single-instruction bugs that could not
be uncovered by checking for self-consistency. Instead, a more
traditional approach using a formal specification was required.

IX. CONCLUSIONS AND PROSPECTS

There are several ways in which the present work can be
improved and extended.

For this project, we manually translated the Sail speci-
fication of CHERI-RISC-V into SVA. It would obviously
be preferable to have an automatic translation, and we are
investigating some options for this. Apart from the usual
benefits of automation, automatic translation could eliminate
the pragmatic need to weaken the specification as described
in Section V-A. As Sail has been adoped by the RISC-V
Foundation for its golden formal model, a flow from Sail to
SVA seems highly desirable in any case.

Further work can also be done to address the drawbacks of
the liveness properties described in Section V-F. For example,
it would be ideal to remove the proof’s reliance on fairness
constraints that contain arbitrarily chosen numbers. Also,
the work can be made more complete by proving liveness
properties about pipeline stages subsequent to stage F.

Attempts could be made to verify more complex CHERI-
RISC-V processors, such as Toooba [36], where the main
challenge will be to formulate correctness properties about



an out-of-order microarchitecture. We note, however, that the
SystemVerilog functions translated from the Sail specification
during the present work can be completely reused when
formulating the new correctness properties.

Finally, we mention that in 2019, the UK announced its
Digital Security by Design programme with £190 million of
funding for a set of research projects [37] to ‘radically update
the foundation of our insecure digital computing infrastruc-
ture, by demonstrating that mainstream processor technology

can be updated to include new security technologies
based on the CHERI Architecture’ [38]. A cornerstone of
the programme is Morello [39], a CHERI-enabled prototype
developed by Arm and scheduled for release in late 2021. We
hope that this early RISC-V case study provides at least some
insights that might eventually apply in the formal verification
of Morello.
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Abstract—Aiming to expose security risks in hardware designs,
we describe a novel usage of symbolic simulation that led to
discoveries of previously unknown potential local data leakages
on an Intel Core processor design. Symbolic simulation is an
established formal verification method, the main vehicle for
verification of arithmetic data-paths in Intel Core processor
designs for twenty years. It extends traditional simulation by
allowing symbolic variables in the stimulus, covering the circuit
behavior for all possible values simultaneously. A special trait
of symbolic simulation is that every variable has a name. In
the security context, named values allow us to know the exact
origin of data and identify data leakages by determining whether
values are expected to be read by an operation or present a risk.
Leveraging the existing formal verification infrastructure and
observing an operation’s data dependencies we could identify
local leaks without the need to have a complete functional
specification for the operation.

Index Terms—Security, Data Leakage, Formal Verification,
Symbolic Simulation

I. INTRODUCTION

Comprehensive formal verification of execution engines
has been standard practice in virtually all Intel® Core™
processor development projects in the last two decades, and
extensive infrastructure has been built to support these efforts.
The technical basis of this work is symbolic simulation, a
technology extending usual digital circuit simulation with
symbolic values, representing sets of concrete values in a
single simulation.

In the aftermath of the Spectre and Meltdown vulnerabili-
ties, security has become a greater focus area for validation. In
this paper we discuss a novel approach leveraging the exist-
ing formal infrastructure for Intel Core processor Execution
clusters (EXE) to analyze potential data leakages, security
violations where privileged data could be made visible to non-
privileged parties. The approach is based on the special feature
of symbolic simulation that stimulus values have names that
can be used to uniquely relate a value to a specific signal and
time.

Intel provides these materials as-is, with no express or implied warranties.
Intel processors might contain design defects or errors known as errata, which
might cause the product to deviate from published specifications. No product
or component can be absolutely secure. Intel, Intel Core, Intel Atom, Pentium
and Intel logo are trademarks of Intel Corporation. Other names and brands
might be claimed as the property of others.
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Below we first discuss the concept of symbolic simulation
and its use in EXE formal verification, and the security
challenges in EXE. Then, we will describe the principles of
our solution analyzing potential data leakages using symbolic
simulation, practical considerations in the implementation of
the solution over a live Intel Core processor development
project, and the results of our experiments. With a moderate
engineering effort, we were able to extend the existing formal
environment with extra checkers detecting potential data leak-
ages. On the one hand, this allowed us to verify the absence
of data leaks for large classes of micro-operations, and on the
other to identify several previously undiscovered local data
leakage issues, where micro-operations unintentionally wrote
back data that had been left behind in the internal state of the
cluster by a previous micro-operation.

The closest counterpart to our work in the scientific litera-
ture or commercial tools is taint analysis [1], [2], [3], [4]. Like
our approach, taint analysis tracks the propagation of values
from one signal to another. However, taint analysis works by
attaching extra information, the ’taint’, to simulation values to
track their progress, and requires extra engineering either in
the simulator or in post-simulation analysis. In our approach
values are tracked using the symbolic variable names already
present in the symbolic simulation for the verification, and we
only needed to implement a thin analysis layer on top of the
existing collateral. Second, taint analysis generally assumes
a static classification of signals to ’secret’ and ’non-secret’
and analyzes possible paths leaking secret values to non-secret
signals. This does not adequately reflect the common design
pattern of pipelined designs, like the EXE cluster, where the
same signals are used to carry both secret and non-secret
data at different times, and the notion of a ’secret’ is relative
to a micro-operation. To our knowledge, our work is among
the first published explorations of the application of symbolic
simulation into security verification of hardware designs (cf.

(2], [5D.
II. SYMBOLIC SIMULATION IN EXE VERIFICTION
A. Symbolic Circuit Simulation

Digital circuit simulation is a standard tool in the arsenal of
every working circuit design and validation engineer. Symbolic
simulation extends this technology with the ability to carry out
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Fig. 1. Symbolic expressions in simulation
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a simulation using symbolic representations of sets of values
in a single simulation trace [6], [7].

In a symbolic simulator the input stimulus may contain
symbolic variables in addition to the traditional concrete values
0, 1, X or Z. These symbolic variables are effectively names
of values, denoting sets of possible actual concrete values. In
the simulation, these symbolic values propagate alongside the
constant values, and in each logic gate, they may be combined
with each other or one of the constants to result in either a
logical expression on the symbolic variables, represented by an
expression graph, or a constant. See Figure 1 for an example.

In a bit level symbolic simulator a single symbolic variable a
corresponds to the set of Boolean values containing both 0 and
1. If stimulus to a symbolic simulation refers to the variables
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a, b and c, the internal signals might carry values like a Ab or
aV (bA—c). Usual logic rules apply: if the inputs to an AND-
gate are a and 1, the output will be g, if the input to a NOT-gate
is b, the output will be —b, and if the inputs to an AND-gate are
a and b, the output is the logical expression a A b. In symbolic
simulation, a specific symbolic variable is associated with a
specific signal and time in the stimulus. Associating a variable
with a signal at a time does not fix the value, but instead gives
a name that can be used to refer to the value.

In symbolic simulation, the constant value X is used to
denote a universal undefined or unknown value, which propa-
gates according to rules depicted in Figure 2. The value X
denotes lack of information: we do not know whether the
value is 0 or 1. The propagation rules reflect this intuition.
Symbolic simulation uses X’s as an abstraction mechanism:
unlike symbolic variables, X’s are an over-approximation of
Boolean circuit behavior. Both symbolic variables and X’s
allow us to verify a property over a single symbolic trace, and
conclude that it is valid over every possible trace instantiating
the X’s and the symbolic variables with 0’s or 1’s.

Figure 3 depicts a simplified pipelined ALU circuit with
a 16-bit wide two-cycle data-path from sources to write-
back. Figure 4 depicts a typical symbolic trace that might
be used in the verification of this ALU, focusing on a single
instance of an eight-bit wide bitwise OR micro-operation. The
control signals are driven with concrete values corresponding
to the operation, and the source data is driven with symbolic
variables a[15],...,a[0] and b[15],...,b[0] in the one cycle in
which the operation is issued. In all other cycles these signals
are driven with the undefined value X (gray waveform). In
the simulation, the values of the write-back data and zero flag
two cycles later are then expressions on the symbolic variables
associated with the source data.

A single symbolic simulation trace corresponds to a set of
ordinary simulation traces, covering behaviors of the simulated
circuit for all the possible instantiations of the symbolic vari-
ables with concrete values. The ability to cover all behaviors
forms the basis of using symbolic simulation as a formal
verification method. In this role symbolic simulation excels
in verification of deep targeted properties of fixed length
pipelines, typically of the transactional form stimulus A at
time t is followed by response B at time t+n. It has a
unique ability to carve out the circuit logic relevant to the
progression of a pipeline while ignoring the rest of the circuit
and other transactions in flight. As the approach is conceptu-
ally simple and concrete, it gives the human verifier a fine-
grained visibility into the progress of the computation during
a verification task, enabling precise analysis and mitigation
of computational complexity bottlenecks. Because of these
advantages, symbolic simulation can routinely handle circuits
that are magnitudes above the capacity of more traditional
formal property verification approaches, as well as circuits
where the pipelines are too enmeshed to be amenable to
equivalence-based verification methods.



B. Execution Cluster

Intel Core processor architecture has evolved gradually over
the years. Typically, a new design project maintains functional
backwards compatibility with earlier designs while providing
improvements along different axes: new instructions and capa-
bilities, improved performance or power, or design adjustments
to meet side conditions set by a new manufacturing process.
A design project routinely inherits components from earlier
designs.

At high level, a single core consists of a set of major design
components called clusters. The front-end cluster fetches and
decodes architectural instructions, translates them to micro-
operations and computes branch predictions. The out-of-order
cluster receives streams of micro-operations from the front
end, keeps track of dependencies between them, schedules
ready-to-execute micro-operations for execution, takes care of
branch misprediction and event recovery, retires completed
instructions, and updates architectural state. The execution
cluster carries out data computations for all micro-operations
implemented by the design, performs memory address cal-
culations, and determines and signals branch mispredictions.
The memory cluster handles memory accesses, may contain
first level caches and interfaces with a system-on-chip layer
outside the core, including for example a graphics processing
unit and a memory controller. The SystemVerilog source code
of a cluster usually contains several hundred thousand lines of
code. While not a physical entity like the above, microcode
is also a major design component, the complexity of which is
comparable to that of the clusters.

In this paper we focus on security validation of the exe-
cution cluster (EXE) on an Intel Core processor design. The
EXE cluster consists of six main units: the integer execution
unit (IEU) contains logic for plain integer and miscellaneous
other operations, the single instruction multiple data (SIMD)
integer unit (SIU) contains logic for packed integer operations,
the floating-point unit (FPU) implements plain and packed
floating-point operations such as DIV, MUL, ADD, etc., the
address generation unit (AGU) performs address calculations
and access checks for memory accesses, the jump execution
unit (JEU) implements jump operations and determines and
signals branch mispredictions, and the memory interface unit
(MIU) receives load data from and passes store data to memory
cluster, maintains store forwarding buffers, performs various
datatype conversions, and takes care of data bypassing. In a
typical contemporary Intel Core processor design, the EXE
cluster implements over 5000 distinct micro-operations and
supports multi-threading.

At an abstract level, the EXE cluster is a pipelined machine,
receiving as input streams of micro-operations (micro-ops,
uops) through a set of schedule ports. Each micro-operation
receives its source data either through the cluster interface or
through a bypass from a previous operation, and produces its
result through a write-back port after an operation-dependent
latency. The cluster has state components, which a micro-
operation may read or update synchronously.
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C. EXE Formal Verification

Formal verification of arithmetic data-paths has been a focus
area at Intel ever since the Pentium® FDIV bug in 1994. The
primary vehicle for this work is symbolic simulation, incor-
porated in Intel’s in-house Forte verification toolset under the
name of Symbolic Trajectory Evaluation (STE) [7]. Initially
a research initiative during the Pentium Pro design cycle,
Formal Verification has been carried out as a routine part of
Intel processor development projects since Pentium 4 in 1999.
All Intel Core processor EXE data-paths since 2005, as well
as most Intel Atom® processor and Gen Graphics arithmetic
engines have been formally verified using symbolic simulation
(81, [9].

In concrete terms, EXE formal verification is carried out
through a shared verification system called Cluster Verification
Environment (CVE), a large software artifact that creates a
standard, uniform methodology for writing specifications and
carrying out verification tasks [8]. Underlying CVE is the
Forte/reFLect toolset, consisting of the high performance sim-
ulator STE wrapped in a full-fledged functional programming
language [7]. All verification takes place at the level of the
full cluster, not the underlying individual units.

In verification of the EXE cluster, every micro-operation and
every port on which the micro-operation can execute corre-
spond to a separate symbolic simulation task. This simulation
starts from a totally unconstrained initial state and focuses on
one instance of the micro-operation under verification. The
control signals that are relevant to the micro-operation are
restricted according to the micro-operation, and the source data
signals are driven with symbolic variables, as in the simplified
example in Figure 4. Additionally, some internal and external
control signals of the circuit are driven with symbolic variables
and may be restricted using control invariants that are used to
capture reachable state restrictions. Due to the unconstrained
initial state of the simulation, such reachable state restrictions
are not automatically accounted for in the verification and need
to be manually formulated and separately verified. All other
signals in the simulation are driven with the undefined value
X. Altogether, in this setup the single instance of the micro-
operation under verification in the single symbolic trace covers
all possible invocations of the micro-operation in any legal
trace of the circuit.

Effectively, in the verification setup for a single micro-
operation the control signals are set to fix the data-path
controls to match a single instance of that micro-operation, and
symbolic variables on the data are used to exhaustively simu-
late the data-path instance. The simulation is then connected to
an abstract functional reference model for the micro-operation
through source and write-back mappings, and the output of
the design and the reference model compared. These design-
dependent mappings extract the intended source and result
values for the micro-operation at the relevant times relative
to the instance we are verifying.

For a large majority of micro-operations in the EXE cluster,
the data-path can be exhaustively symbolically simulated in



one pass at the full cluster level. For certain complex opera-
tions like floating-point addition, careful case splits on the data
space are needed to contain symbolic expression growth in
the simulation, and for most complex operations like floating
point divide or fused multiply add, a sequential decomposition
strategy is applied.

III. EXE SECURITY VERIFICATION

A. EXE and Data Security

Traditionally EXE validation has focused on the functional
correctness of the micro-operations, including the validation
of control logic required for non-interference from other
operations simultaneously in flight. Since the Spectre and
Meltdown vulnerabilities, security validation has become a
greater focus area. In both exploits, a rogue process can the-
oretically gain access to privileged data by observing the side
effects of speculative, although ultimately unsuccessful access
to a memory location containing the secret. A key ingredient
of these exploits is that secret data temporarily propagates
and influences execution flows in the micro-architectural level,
although the results of the computations on the secret data
are appropriately squashed before they become architecturally
visible. In the classic functional correctness sense this is not a
problem, as the secret data is never directly exposed. However,
in the exploits a rogue process tracks the ways in which
the secret data has influenced the execution flows, especially
through timing analysis, in an effort to statistically deduce
the secret with a high probability. This means that we need
to secure the propagation of secret data also at the micro-
architectural level. As it is difficult to foresee all the ways in
which the secrets’ influences on execution could be exploited,
the best strategy is to try to limit the propagation of secrets in
the system as best as we can, and try to block any leakages
at a local level as early as possible.

Looking at the EXE cluster from the security and data
leakage perspective, the first thing to note is that in the larger
context some micro-operations may be privileged, and some
may not, some data may be secret, and some may not, but EXE
has no awareness of that. All it sees are micro-operations and
data. Privileged and less privileged operations are interleaved
out-of-order in the same thread and between threads. The
mixture of secret and non-secret makes it harder to formulate a
property Thou shalt not leak secrets, as we don’t have a good
measure of what counts as a secret. However, each micro-
operation has a well-defined notion of the data it is expected
to process: which buses at which times relative to the operation
carry its source and result data. Relative to an operation, we
can then over-approximate all other data as secret. This leads
to the following fundamental security property for EXE:

For every micro-operation executing in EXE, its result data
should be exclusively a function of its source data.

By ’result data’ we mean the main write-back data bus,
flags, faults, and all auxiliary outputs together. This security
property can be formalized more accurately as:

37

For every micro-operation u, there is a function spec(u)
such that for every trace T of the circuit and every point t of
T, if uop u is issued at point t of T and we write src for the
source data of u and wb for the write-back data of u relative
to the point t of T, then wb = spec(u)(src).

For many micro-operations, this security property follows
automatically from functional correctness. If the specification
for the operation is fully defined for all possible source values,
and we have verified that the implementation fully agrees with
the specification, there is simply no logical possibility for the
result data not to be purely a function of the source data.
However, many operations have partially undefined results,
where some result components are unspecified either for all or
some source values. For example, some floating-point micro-
operations do not fully support all possible source values,
reverting to microcode flows for rare or hard-to-implement
cases, leaving the result data undefined. Similarly, certain
helper operations that are used only in specific microcode
flows in contexts where some parts of the result are never
used may leave these result components undefined. Designs
take advantage of the undefined spaces, as they allow an
implementation to be optimized without a need to maintain
identical behavior in the undefined space. These undefined
spaces provide an opportunity for a micro-operation to write
back values that are derived from some other data than its
sources, including possibly secret data that has been or is being
processed by other micro-operations.

The most common scenario of data leakage in undefined
spaces is when secret data processed by an earlier micro-
operation lingers in some internal flops of EXE and is passed
to the write-back bus as a later micro-operation’s undefined
result. In a fully pipelined machine where all clocks toggle
all the time, this scenario cannot happen, as secret data stays
in any pipe-stage for exactly the one cycle when it is being
processed before being overwritten by the next wave of values.
However, such always-toggling designs are a thing of the past.
Qualified clocks are ubiquitous, and their use increases and
becomes more fine-grained by every design generation because
of power considerations. In many data-paths the clocks toggle
at most once for each operation. This means that any secret
data processed by an operation remains in internal flops in
every pipe-stage, until the next operation executing in the same
data-path clears it. In this context the security property above
can be viewed as setting a security perimeter around EXE.
Secret data can linger on inside the cluster but cannot be
exported through the write-back bus by any micro-operation.

The general concept of the analysis of data leakages through
undefined behavior is directly relevant for the prevention of
Meltdown-type vulnerabilities, although the areas primarily
contributing to Meltdown are outside our focus area in EXE.
An essential part of Meltdown is transient execution after a
faulting load micro-operation from an out-of-bounds memory
location containing secret data [10]. While the problematic
load micro-operation produces a fault due to an access check
violation, it may, under certain circumstances, nevertheless



have read the secret value from the memory location and
passed the value on to a subsequent flow that exposes the
secret. The specification for a load micro-operation is likely
to be of the form if the load does not generate a fault, the
writeback data will be the value held by the memory location
pointed to by the sources, otherwise the writeback data is
a don’t-care. Note that the naive specification, without the
faulting condition and the don’t-care space, is very unlikely
to hold for any real implementation, as a load can fault for a
variety of reasons, many of which prevent the routing of the
memory data to the writeback. This undefined space in the
specification allows the secret to be exposed, or conversely,
as pointed out by Canella et al: “...merely replacing the data
of a faulting instruction with a dummy value suffices to block
Meltdown-type leakage in silicon...” [10, p 252].

B. EXE Security Analysis with Symbolic Simulation

Considering the fundamental security property formulated
above, an extremely useful feature of symbolic simulation is
that every symbolic variable can be uniquely related to the
signal and time it was associated with in the stimulus. Each
1 in stimulus looks exactly like any other 1, each O like any
other 0, but every symbolic variable carries immediately in its
name the notion of which signal and time it originated from.
The uniqueness of names and the setup of EXE verification
allows us to re-phrase the security property as:

For every micro-operation executing in EXE, the symbolic
expressions for its result data should only refer to symbolic
variables associated with its source data, and should not allow
the undefined value X.

This property is relative to the symbolic simulation task
for the micro-operation, as outlined in Section II-C. The
symbolic re-formulation of the security property guarantees
the original version since the single symbolic simulation for
the micro-operation is an over-approximation of every possible
invocation of the micro-operation in any trace. This means
that we can simply read the function spec(u) required by the
original definition, mapping source data to the result, from the
symbolic expressions for the result data.

Another way of viewing the matter is that the symbolic
expressions on the write-back signals fully capture all depen-
dencies of the write-back on any signals in their fan-in cone.
The constant values in the simulation do not matter in this
respect. Since the symbolic simulation for the micro-operation
over-approximates every possible invocation of it in any trace,
every constant value in the symbolic simulation is also present
in all these invocations. Consequently, the propagation of such
constants in the simulation to the write-back cannot disclose
anything about the internal state of the circuit that would not
be universally true. As a technical restriction, in our work all
case splits and decompositions used to alleviate verification
complexity are on data and not on control signals and will not
turn any symbolic variables on control signals to constants.

Notice that the symbolic formulation of the security prop-
erty is not a property about the value of the result data itself.
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Instead, it is a property about the symbolic expression used
to represent the value of the result data in the simulation, and
the symbolic names that occur in that expression. Because it
talks about names, not values, it is not something that could
be coded in methods that describe properties of signal values,
such as SystemVerilog Assertions.

When we run a micro-operation that has a fully specified
result data, we naturally verify that it writes exactly the data
we expect it to and nothing else, as otherwise the verification
would fail. However, when there is an undefined space in the
output, the situation is trickier because we don’t know what
value to expect. The use of named variables allows us to verify
that the result data is a function of the source data without the
need to say what that function spec(u) is, i.e. without needing
to specify the expected result value. This is very efficient
when we are looking at the undefined space, where typically
there is no good definition of what the result should be.

C. Implementation

Next, we describe in detail how this idea was implemented.
In high level, named variables allow us to:

A) Sample the output of a DUT to get a list of named
variables that have propagated to it and occur in the
symbolic expression it holds. In the example in Figure
4, bit [0] of the write-back data carries the expression
a[0] + b[0], referring to the variables [a[0],5]0]]. We call
this list the dependency list of the expression.

Identify suspicious names in the dependency list. The
CVE infrastructure has a known naming convention, so
the variable name allows us to distinguish the data that
we would expect to propagate from suspicious data. In
the example in Figure 4, the names «[0] and b[0] are
expected, since they are the named variables driven to
the sources of the operating uop.

B)

The security analysis has two outcomes. First, we can detect
security vulnerabilities where they exist. Second, the absence
of detected vulnerabilities for the vast majority of micro-
operations provides strong evidence that no secrets can be
leaked to the interface of the cluster through those operations.

Data propagation in the circuit is often gated by specific
operations that exclusively enable the data flow. If that en-
abling is too short, and there is no mechanism that clears
the data after the operation, it can hang there. Stale data
becomes a security risk when another operation can read this
data. In early stages of verification environment development
for a new project, the validation focuses on pure data-path
verification in a sterile environment, and as a simplification,
disables power gating and lets clocks toggle freely. At this
stage all data flows uninterrupted, and we cannot guarantee
there are no leakages coming from stale data on a power-
gated bus. Security verification analysis becomes effective and
meaningful only when we enable all power optimizations in
the formal environment. At the time we started this security
initiative, this pre-condition was met in almost all areas of the
design we were working on.



Formal verification of arithmetic data-paths in the EXE
cluster is fully covered in CVE using symbolic simulation. We
have specifications for all existing micro-operations and the
infrastructure to run a full regression to collect any information
needed for the extra layer of security check. This provided a
solid base for our analysis, and an efficient process that led to
interesting results in a short time. The process can be divided
into three stages.

1) Identify operations that have an undefined result.

As an example, in the simplified ALU in Figure 3 the
write-back bus is 16 bits wide, but a shorter opera-
tion like the eight-bit OR only uses bits [7:0] for the
result. The upper bits [15:8] could be left undefined,
which might provide an opportunity for data leakage.
For any micro-operation, CVE provides two different
mechanisms for undefined results:

e Each uop in CVE has a defined data type signa-
ture, which specifies useful static information about
the shape of the sources and result of the uop,
such as data size, data type (integer, floating-point),
signed/unsigned etc. The source or write-back data
can be of NULL type, meaning it is not used by the
uop. For NULL write-back, the checkers will not
sample the write-back bus at all in a simulation.

A uop may have a defined write-back datatype, but
its specification may explicitly encode a don’t-care
space. For example, the data output of a divide
operation could be defined as a don’t-care when the
divisor is zero. In this case the checkers will sample
the output in a simulation but will ignore the value
for the functional correctness check. In the eight-bit
OR example, we could sample the full 16 bit write-
back bus, but not necessarily check the upper eight
bits, leaving them explicitly undefined.

For both methods the existing CVE data structures
allowed us to easily identify the set of uops that produce
undefined results, creating a clear goal for the main
security analysis. The first step in enabling the security
check was to switch from the first method to the second
one for all uops, to make sure we always sample the
write-back bus: identify the uops using the first method,
convert the NULL data signatures to a meaningful type,
and incorporate the explicit don’t-care space into the
functional specification.

2) Sample results and detect unexpected variables.

This stage is the heart of the process, using the existing
symbolic simulation capability in the two steps above:
A) Sample the output and extract the list of variables
in the symbolic expression, and B) Identify suspicious
variable names in the list. The ingredients of this stage

are:
o Every variable in the dependency list has a name.

o Expected variables are the named variables associ-

ated with the source signals in the aligned source

pipe-stage of the current operating uop, as discussed
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above. As sampled by the operating uop, they are
considered safe.

All X values on the outputs are flagged, since the
unnamed undefined value X cannot tell where it
came from and is therefore inherently suspicious.
By convention, a driven variable that is not part of
expected source data for a uop uses a name that is
a combination of the signal and the time at which
it was driven, for example: “SignalName @24”.

Given the values in the write-back bus, we check for X’s
and query the variable dependency list for suspicious
names. In the eight-bit OR example of Figure 4, there
are no X values, and the dependency list includes only
’good’ names such as a[7] or b[0].

This check is fully automated, as the classification of
variable names to good vs suspicious ones can be done
mechanically based on existing information about the
intended uop source interfaces and variable naming
conventions.

3) Trace the suspicious variables.

The presence of the undefined value X or a suspicious
name in the dependency list does not yet automatically
mean that what we see is real data leakage. By methodol-
ogy, symbolic simulation uses a maximally uninitialized
start state for the simulation, with all signals having
the value X, and uses stimulus that drives X’s on most
inputs to the circuit, overapproximating the real legal
behaviors of the circuit. We need to trace the suspicious
variable or X, see how it propagated to the write-back,
and understand whether the path to the write-back is
possible in the real operating environment of the circuit.
This stage is like the debug process of any simulation,
tracing the origin of a value in the circuit. We use a
schematic viewer that shows symbolic values and trace
the ones that we find interesting. In some cases, to better
analyze a behavior, we strengthen the simulation to drive
a variable at an internal signal that used to hold an
unnamed X that may propagate to the write-back.

Consider for example the simplified ALU of Figure 3 and
assume that the circuit is augmented with power gating logic
that turns off clocks for the high eight bits [15:8] of the data-
path for operations that only operate on the low eight bits
[7:0] of data. If we now simulate an eight-bit OR operation
on the circuit as in Figure 5, we might observe X values in
bits [15:8] of the write-back as in Figure 6, instead of the
good’ result of Figure 4. Tracing back the X values on the
write-back, we would find an internal flop with the output X
and a clock that does not toggle, as in Figure 7. In the circuit,
this flop will hold any value the previous operation has left
there, presenting a leakage risk. To check whether this data
really propagates to the output, we want to track a concrete
named variable. To do this, we drive unique named variables
“Srcl[15]@23” ... “Srcl[8§]@23” to the internal flop as in
Figure 8, and observe these variables in the write-back, as in
Figure 9. Once we understand the leakage mechanism, we can



stimulus

internal

results

[“b[15]",

srcl_302H(7:0)
[R¥aN] srcl_303H[15:0)

i
src1_302H[15:8]
7

src1_302H[15:0]

My ek

uopcode_302H(7:0] T
is vali

16-bit
uop

uopvalid_302H

isable_power_gate

Fig. 5. Clock gating for eight-bit operations

a[15]”, ,va[0]”] srcl 302H[15:0]
whzerofl_304H

wh_304H[15:8] = [¥/-/X]

L, b[0]”] src2_302H[15:0]

0x08 uopcode_302H[7:0] @
1 uopvalid_302H wb_304H(7:0] —3 [“a[7]"+""b[7] ,"a[01”+7b[0]"]
Uy ok whvalid_304H
EXE
Fig. 6. Sampled X on the write-back bus
src1_302H[15:8] —] X e [X,..,X]
0 src1_303H[15:8] whb_304H[15:8]
Fig. 7. Trace back the X to a gated clock
internal stimuli
[“Srecl[15]@23",..., “Srcl[8]@23"]
[“Srcl[15]@23",..., “Srcl[8]@23"]

srcl_303H[15:8] wh_304H[15:8]

Fig. 8. Replace the X with a named variable

src2_302H[15:0]

src1_302H[15:0]

stimulus

wh_304H[15:8]

wh_304H(7:0]

response

Fig. 9. Symbolic waveform with data leak

p——" [Ton\ o) [ech
sopede 3024701
src1_302H[15:0] 0x215A 0x7283 0x34D8
src1_303H[15:8] ( 021
src1_303H[7:0] ( OX5A X 0xB3

whb_304H[15:8]

(oa)

whb_304H([7:0]

Fig. 10. Concrete waveform with data leak

40

then manually generate a concrete example exhibiting both an
earlier uop leaving behind stale data, and a later uop that leaks
the stale data to the write-back bus, as in Figure 10. In this
example, the high eight data bits of a 16-bit uop A remain in
the internal state until they are overwritten by the next 16-bit
uop C, and are exposed by the 8-bit uop B in the meanwhile.

IV. RESULTS

The flow of security verification was implemented as an
automated extra check on top of the traditional data-path
symbolic simulation. The process leveraged the existing ca-
pabilities of CVE that already supported all EXE uops. This
gave us the ability to run a full regression and get first results
quickly.

We chose to focus on the write-back data interface buses
and concentrated on the about 2000 uops for which these
buses are relevant, out of about 5000 legal uops for the
cluster in total. Among these uops we first identified the
ones that have fully or partially unspecified write-back data.
Our analysis showed that 89.4% of the uops were completely
specified, and 10.6% had unspecified write-back data. We then
further analyzed the uops with unspecified write-back data by
symbolic dependency analysis and found that 97.8% of uops
were either completely specified or exhibited no unexpected
data at write-back, whereas 2.2% of the uops had an undefined
result space and failed the dependency analysis.

For the 97.8% of the uops that passed our analysis, we
provided strong evidence that there is no risk of data leakage,
as our analysis took place in the formal framework covering
all possible behaviors. Note also that the dependency analysis
allowed us to reduce the ratio of suspicious uops from 10.6%
to 2.2%. As a restriction in scope, we did not look at data
leakages in the bypass network, although the method would
be equally applicable there.

The first real local EXE potential data leakage was dis-
covered in less than a month. In a total effort of about two
months of work, we discovered several different potential
leakage mechanisms, all previously unknown. The failures
were analyzed and grouped to RTL bugs with a common cause.
Examples of potential leakage mechanisms include:

1) Uop A computed information intended to be written
to the write-back data bus. It went through a latch
that was toggling only while uop A was operating,
for one cycle, and shut down right after uop A had
completed. Therefore, the output of that latch was not
cleared, and the data was stuck there on an internal bus.
Analyzing uop B that was not expected to produce data
(undefined write-back), we could see that uop A’s data
was propagating freely all the way to the write-back bus.
The data-path of a certain unit contained a MUX prior
to the write-back bus with separate selects for specific
uops and default logic shared by many uops. A particular
uop C with undefined write-back executing in the unit
read stale data left behind by any previous uop using
the default logic.

2)



3) Most uops that write only part of the write-back bus,
for example 32 bits out of 128, have a clear definition
of the unused bits, and we sample them along with
the computed result of the lower part in regular data-
path verification. In one exception, the upper part for a
specific uop D was left unspecified. Tracing back the
write-back, we reached an internal source bus shared
by several operations, with a clock toggling just once
per uop, causing the data to hang. Usually, the next uop
would clear the bus. Uop D did not, leaking the upper
bits of the source data left behind by the previous uop.

These bugs were all reproduced in normal simulation. They
did not cause a functional failure: the results are never checked
since they fall into the don’t-care space of the specification.
However, it was clear that the value written to the write-back
is exactly the value left behind by a previous uop.

After the detection of these kinds of potential data leaks,
there are several options for actions to fix them. The straight-
forward solution is to modify the currently undefined uop to
have a defined value, e.g. write zeroes to the write-back data.
This will be the easiest to verify because it will become again
a strongly defined data-path verification task. It will also be the
strongest solution, as it truly closes the leak. Another solution
is to clear the stale data left by the earlier uop, for example
by opening the gating clock for an extra cycle. Both options
close the leak at the EXE boundary but require changing the
design and could cost power or area.

If it is not possible to fix the design, another option is in
the microcode level, making sure the undefined operation is
not used in any way it could be exploited. Effectively here
one establishes a security perimeter with a larger scope than
EXE to see that the compromised data is contained before it
becomes visible through a vulnerability at a higher level. This
method is less optimal than the ones above, as the analysis
scope is larger, outside the scope of existing formal tools, and
relies more on finding parallels with known vulnerabilities,
while new ways of exploiting information leaked out of
the cluster may emerge. Also, micro-code implementation is
dynamic, and it is possible that changes to the usage model
that is safe today may make it unsafe tomorrow.

The potential local data leakages discovered by our analysis
were addressed during the design project and as a result do
not lead to a security violation at a user visible level in the
final product.

V. SUMMARY

Symbolic simulation’s special trait — the usage of named
variables — makes it a productive method to analyze data
leakage risks. The scope of this work was huge for any
formal analysis: a whole cluster, thousands of operations, and
hundreds of thousands of flops in the circuit. Out of those,
without having any prior knowledge where to look for the
risks, we hit the relatively few instances that mattered in a
short time. We found real issues, in a live project, issues that
were not detected by any other method.
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In this paper we described how we leveraged the existing
environment of CVE that already supports the thousands of
specifications in EXE cluster, holds information about data
types and has a clear naming convention. This made the
process efficient and demonstrated the importance of the
complete verification environment covering EXE data-path. It
is also important to clarify that the general concept we describe
here is not dependent on it. Security verification by symbolic
simulation can be implemented in various designs, where we
do not have such infrastructure to rely on. Symbolic simulation
is the key in analyzing data leakage risks of this kind, not the
formal environment in itself.

In future design projects, with the increasing demand for
security validation, we hope to explore where we can further
develop this usage of symbolic simulation.
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Abstract—Hardware accelerators (HAs) are essential building
blocks for fast and energy-efficient computing systems. Accelera-
tor Quick Error Detection (A-QED) is a recent formal technique
which uses Bounded Model Checking for pre-silicon verification
of HAs. A-QED checks an HA for self-consistency, i.e., whether
identical inputs within a sequence of operations always produce
the same output. Under modest assumptions, A-QED is both
sound and complete. However, as is well-known, large design
sizes significantly limit the scalability of formal verification,
including A-QED. We overcome this scalability challenge through
a new decomposition technique for A-QED, called A-QED with
Decomposition (A-QED?). A-QED? systematically decomposes an
HA into smaller, functional sub-modules, called sub-accelerators,
which are then verified independently using A-QED. We prove
completeness of A-QED?; in particular, if the full HA under
verification contains a bug, then A-QED? ensures detection of
that bug during A-QED verification of the corresponding sub-
accelerators. Results on over 100 (buggy) versions of a wide
variety of HAs with millions of logic gates demonstrate the
effectiveness and practicality of A-QED?.

I. INTRODUCTION

Hardware accelerators (HAs) are critical building blocks
of energy-efficient System-on-Chip (SoC) platforms [1]-[3].
Unlike general-purpose processors, HAs implement a set of
domain-specific functions (e.g., encryption, 3D Rendering,
deep learning inference), referred to as actions in this paper,
for improved energy and throughput. Today’s SoCs integrate
dozens of diverse HAs (e.g., 40+ HAs in Apple’s A12 mobile
SoC [4]).

Unfortunately, the energy and throughput improvements en-
abled by HAs come at the cost of increased design complexity.
Ensuring that a given SoC will behave correctly and reliably
requires verifying each and every constituent HA. Furthermore,
HAs must achieve short design-to-deployment timelines in
order to meet the needs of a wide variety of evolving appli-
cations [5]. Using conventional formal verification techniques
to verify HAs faces several key challenges. Manually crafting
extensive design-specific formal properties or full abstract
functional specifications can be time-consuming and error-
prone [6], [7]. Moreover, scaling verification to large HAs
(with millions of logic gates) is difficult or even infeasible
using off-the-shelf formal tools.

A recent formal verification technique targeting HAs,
Accelerator-Quick Error Detection (A-QED) [8], overcomes
the first challenge above. A-QED is readily applicable for a

d https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_12

popular class of HAs: loosely-coupled accelerators (LCAs) [9],
[10] (i.e., HAs that are not integrated as part of a central
processing unit (CPU), but via an SoC’s network-on-chip
or a bus) that are also non-interfering. Non-interfering HAs
produce the same result for a given action independent of
their context within a sequence of actions (not to be confused
with combinational circuits). In other words, the state of the
accelerator does not affect future computations, and each
computation is independent from previous computations. In
contrast, computations of interfering HAs depend on state
that is the result of previous computations. A-QED uses
Bounded Model Checking (BMC) [11] to symbolically check
sequences of actions for self-consistency. Specifically, it checks
for functional consistency (FC), the property that identical
inputs within a sequence of operations always produce the same
outputs. It was shown that FC checks, together with response
bound (RB) checks and single-action correctness (SAC) checks,
provide a thorough verification technique for non-interfering
LCAs [8]. However, despite its success in discovering bugs
in moderately-sized HA designs, A-QED suffers from the
scalability challenges of formal tools. For example, A-QED
(backed by off-the-shelf formal verification tools) times out
after 12 hours when run on NVDLA, NVIDIA’s deep-learning
HA [12] with approximately 16 million logic gates.

In this paper, we present a new verification approach called
A-QED with Decomposition (A-QED?) to address the scalability
challenge. First, we introduce a new, more general formal model
of HA execution, which captures both interfering and non-
interfering LCAs. We then show how A-QED? can decompose
a large LCA into smaller sub-accelerators in such a way that
both FC and RB checks can be directly applied to the sub-
accelerators. Unlike conventional verification approaches based
on decomposition, no new properties need to be devised to
apply FC and RB to the decomposed sub-accelerators. Existing
decomposition approaches can be leveraged to additionally
check SAC of the sub-accelerators. A-QED? is complementary
to verification approaches that rely on design abstraction, which
can be used to further improve scalability and to simplify the
effort required for SAC checks on decomposed sub-accelerators.

This paper presents both a formal foundation of A-QED?
and an empirical evaluation that demonstrates its bug-finding
capabilities in practice. We prove that A-QED’s completeness
guarantees [8] continue to hold for A-QED2—if the full HA
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under verification contains a bug, then A-QED? will detect
that bug. Furthermore, we apply A-QED? to a wide variety of
non-interfering LCAs (although our theoretical proofs apply
to interfering LCAs as well): 109 different (buggy) versions
of large open-source HAs of up to 200 million logic gates
(including industrial HAs). Our empirical results focus on
designs which are described in a high-level language (e.g.,
C/C++) and then translated to Register-Transfer-Level (RTL)
designs (e.g., Verilog) using High-Level Synthesis (HLS)
flows, where appropriate optimizations like pipelining and
parallelism are instantiated. Such HLS-based HA design flows
are becoming increasingly common in industry. However, A-
QED? is not restricted to these specific HA design styles. Our
empirical results show:

1) Off-the-shelf formal tools cannot handle large HAs with
millions of logic gates, even when the HAs are expressed
as high-level C/C++ designs. In our experiments, A-QED
verification of many such HAs times out after 12 hours
or runs out of memory.

A-QED? is broadly applicable to a wide variety of HAs
and detects all bugs detected by conventional simulation-
based verification. For very large HAs with several
million (up to over 200 million) logic gates, A-QED?
detects bugs in less than 30 minutes in the worst case
and in a few seconds in most cases.

A-QED? is thorough — it detected all bugs that were
detected by conventional (simulation-based) verification
techniques. At the same time, A-QED? improves verifi-
cation effort significantly compared to simulation-based
verification — ~ 5X improvement on average, with ~ 9.X
improvement (one person month with A-QED? vs. 9
person months with conventional verification flows) for
the large, industrial designs.

2)

3)

The rest of this paper is organized as follows. Sec. II
presents related work. Sec. III presents a formal model of
the accelerators targeted by A-QED? and our decomposition
technique. Sec. IV details the A-QED? algorithms. Results are
presented in Sec. V, and Sec. VI concludes.

II. RELATED WORK

Conventional formal HA verification, e.g., [13]-[16], re-
quires a specification, typically in the form of manually written,
design-specific properties. These are then combined with a
formal model of the design and handed to a formal tool, which
attempts to prove the properties or find counter-examples. For
the verification of latency-insensitive designs, an approach was
developed to automatically derive and check properties from
the RTL synthesized in HLS flows [17]. However, these derived
properties are targeted at specific types of bugs.

Large design sizes have always been a challenge for formal
techniques, and various approaches to this problem have
been proposed. Among techniques to improve scalability are
abstraction [18] and compositional reasoning (cf. [19]). The
former removes details of the design, gaining scalability at
the cost of possible false errors. Finding a scalable abstraction
that does not generate false errors can be difficult and may be
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impossible in some cases. The latter uses assume-guarantee
reasoning (e.g., [20]-[25]) and can be applied to decompose a
large HA into smaller sub-modules. Importantly, the property
p of the HA to be verified must also be decomposed into
properties of the sub-modules. The properties of the sub-
modules are verified individually under certain assumptions
about the behavior of the other sub-modules. If all the properties
of the sub-modules hold under the respective assumptions, then
it can be concluded that p holds. However, finding the right
properties for this decomposition can be very challenging.

Unlike for general compositional reasoning, the two main
components of A-QED? (FC and RB) do not require decom-
posing properties. FC, in particular, leverages a universal self-
consistency property. Self-consistency expresses the property
that a design is expected to produce the same outputs whenever
it is provided with the same inputs [26]. In A-QED?, self-
consistency is checked independently for each sub-module
(sub-accelerator in our case). Importantly, these aspects of A-
QED? do not require complex assumptions about the behavior
of the other sub-modules.

It is challenging to establish general completeness guarantees
for conventional formal verification techniques [27]-[31], since
completeness depends on the set of properties being checked.
Designer-guided approaches [32], [33] require manual effort.
Automatic generation of properties is usually incomplete and
depends on abstract design descriptions [34] or models [35],
or analysis of simulation traces [36], which may be difficult.
In contrast, we have general completeness results for A-QED?.

A-QED? builds on A-QED [8] and leverages BMC [11],
[37]. Similar approaches based on self-consistency have been
successfully applied to other classes of hardware designs, such
as processor verification (as symbolic quick error detection
(SOED) [38]-[43]), as well as to hardware security [44]-[49].

III. FORMAL MODEL AND THEORETICAL RESULTS

In this section, we introduce a formal model for HAs,
define functional consistency (FC), single-action correctness
(SAC), and responsiveness for the model, and show how these
properties provide correctness guarantees. We then define a
notion of functional composition for our model and show how
the above properties can be applied in a compositional way.

Our formal model differs from the one in previous work [8] in
several important ways. It allows multiple inputs to be provided
simultaneously by explicitly modeling the notion of input
batches. The HAs we consider are batch-mode accelerators
as they process input batches and produce output batches.
Modeling batches is useful because it more closely matches
the interfaces of real HAs. Moreover, input batches enable
intra-batch checks for FC checking, as we describe below.
With intra-batch checks, only one input batch is used for FC
checking. Intra-batch checks are more restricted than general
FC checks. However, they are easier to set up and run in
practice, and they are highly effective at finding bugs, as we
demonstrate empirically.

Our model also explicitly separates control states and mem-
ory states. Control states represent control-flow information



such as, e.g., program counters in HLS models of HAs. Memory
states represent all other state-holding elements, e.g., program
variables.

In our model we distinguish starting and ending control
states in which inputs are provided and the computed outputs
are ready, respectively. This makes the formulation simpler
and is also a better match for HLS designs written in a high-
level language, which is our main target in the experimental
evaluation. Further, our model enables us to formulate the
notion of strong FC, which leads to a complete approach to
bug-finding with only two input batches.

In previous work [8], a ready-valid protocol was used to
model input/output transactions in RTL designs. In contrast,
our focus is on HLS designs. Finally, we distinguish so-called
relevant states, which are parts of the state space that can affect
output values. This makes it possible to model interfering as
well as non-interfering HAs. In our experiments we focus on
non-interfering HAs.

Before presenting formal definitions, we illustrate terminol-
ogy informally with an example of a non-interfering batch-
mode HA as shown in Listing 1 (a slightly modified excerpt
of an HA implementing AES encryption [50]).

Function fun of the HA has two sub-accelerators in lines
8-10 and 13-14 which are identified and verified by A-QED?.
Each sub-accelerator applies a certain operation to all inputs
in an input batch of HA. In general, the batch size of an
HA is the number of inputs in each batch, which is 256 for
this HA. The first sub-accelerator ACC; processes an input
batch provided via data and stores its output batch in buf.
The second sub-accelerator ACC takes its input batch from
buf, where it also stores the output batch it produces. The
control state of the HA is only implicitly represented by the
program counter when executing function fun. Variables key
and local_key are global and determine the relevant state of
the HA on which the result of the encryption operation depends.
The HA is non-interfering because key and local_key are
left unchanged by ACC; and ACC,. Constants BS, UF, and
US are used in HLS to configure the generated RTL.

Listing 1: HA Example (AES Encryption)

#define BS ((1) << 12) // BUF_SIZE
#define UF 2 // UNROLL_FACTOR
#define US BS/UF // UNROLL_SIZE

void fun(int data[BS],
int j, k;
// ===ACC START===
for (j=0; j<UF; j++)
9 for(k = 0; k < BS/UF; k ++)

int buf[UF][US], int key[2]){

© N U R W —

10 buf[j][k] = =(data + i*BS + j*US + k) key[O];
1 // ===ACCy END===

12 // ===ACC START===

13 for (j=0; j<UF; j++){

14 aes256_encrypt(local_key[j], buf[j]);}

15 // ===ACC END===

16}

Definition 1. A batch-mode hardware accelerator (HA)
is a finite state transition system [51], [52] Acc :=
(b,A,D,0,8,c1,8¢F,Sm.1,T), where

e b e N with b >1 is the batch size,

o A is a finite set of actions,

o D is a finite set of data values,

e O is a finite set of outputs,

o S=Sc xSy is the set of states consisting of control states

Sc and memory states Sy; = S1, XS out X SrX SN, where

— Sin = (A x D)® are the input states,
— Sout = O are the output states,
— Sk are the relevant states, and

SN are the non-relevant states,

e Sc,1 € Sc is the unique initial control state, which defines
the set St = {sc,1} x Sy of initial states,

o Sc,r € Sc is the unique final control state, which defines
the set Sp = {sc r} x Su of final states,

o Sp.1 is the set of allowable initial memory states, which
defines the set Scr = {sc,1} X Sm,1 of concrete initial
states,

e and T : S — S is the state transition function.

When referring to different HAs, e.g., Accg and Accy, we use
subscript notation to identify their components, e.g., Accg :=
(bo, Ao, Do, Oo, So, 8¢,1,05 5¢,F,05 Sm,1,0, T0)-

We use v = (v1,...,)y) to denote a sequence with
elements denoted v; and length |v|. We concatenate sequences
(and for simplicity of notation, single elements with sequences)
using ’’, e.g., v = vy - v’, where v’ = (va, ..., v}y). We will
sometimes identify a sequence v with the corresponding tuple,
and we write v € v to denote that v appears in v. We denote
the i-th element of a tuple ¢ as ¢(i).

An HA Acc operates on a set I of input batches, where b
is the batch size and I = A x D. An input batch in € I® has
b batch elements, each consisting of a pair (a,d) containing
an action a € A to be executed and data d € D (the data on
which action a operates).

A state s € S of Acc with s = (s, 8,n,) consists of a
control state s, € Sc and a memory state s,, € Sy;. The
control state s, represents control-flow-related state (e.g., the
program counter in an execution of a high-level model of Acc).
In a run of Acc, the control state starts at a distinguished initial
state s.,; and ends at a distinguished final state s. r.

The memory state represents all other state-holding elements
of Acc (including, e.g., global variables, local variables,
function parameters, and memory elements). The memory state
Sm = (Sin, Sout, Sr, Sn) is divided into four parts. The first part,
Sin € S, contains the input to Acc. More precisely, in a run of
Acc, the value of s;, in the initial state is considered the input
for that run. Similarly, at the end of a run of Acc, Spur € Sout
contains the outputs for that run (i.e., the values computed by
Acc based on the inputs present at the start of the run).

The relevant state s, represents those state elements (other
than s;,) that can influence the values of the outputs. Any
part of the state that can affect the output value in at least
one execution should be included in the relevant state. As an
example of when this is needed, consider an encryption HA
with actions for setting the encryption key and for encrypting
data. The internal state that stores the key is part of the relevant
state because it affects the way the output is computed from the
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input. The non-relevant state s,, is everything else. We write
ctrl(s), mem(s), inp(s), out(s), rel(s), and nrel(s) to denote
the components s, Sm, Sin, Sout, Sr,» and s,, respectively. We
overload the latter four operators to apply to memory states as
well, and we lift the notation to sequences of states.

The set S; of initial states contains all states resulting from
combining a memory state in .Sy, with the unique initial control
state s. ;. The concrete initial states, S¢r, are a subset of Sy,
and essentially represent the reset state(s) of the HA. They
play a role in defining the reachable states (see Definition 3,
below). The set S of final states contains all states resulting
from combining a memory state in Sj; with the unique final
control state s . Finally, the transition function 7' defines the
successor state for any given state in S.

Given an input batch in € I°, the HA produces an output
batch o € O° as follows. Let s; € S; be an initial state
with inp(sp) = in, and let s = T'(sg) = (s1, ..., sk) denote
the sequence of |s| = k successor states generated by the
transition function T, where s; = T'(s;—1) for 1 <i <k, such
that s, € Sp is a final state (and no earlier states in s are
final states). We also assume, without loss of generality, that
ctrl(s;) # s¢,r for ¢ > 0. The final state s holds the output
batch out(sy) = o with o € O that is produced for the input
batch inp(sg) = in. Given a sequence s, we write initsym(s)
and final(s) to denote the subsequence of s containing all
initial and final states that occur in s, respectively.

Given a sequence of input batches, an HA generates a
sequence of output batches based on concatenating executions
for each input batch.

Definition 2. Let in be a sequence of inputs with n = |in|,
and let sy € S1. Then, StateSeq(in, sg) denotes the sequence
of successor states of sqg that result from executing in, which
is defined as follows.
o Let s be the result of replacing inp(so) with iny in so.
Let s’ = s, - T(s).
o If |in| =1 then StateSeq(in,sg) = s’
o If lin| > 1, then
— let sy = final(s') (which is unique),
- let s; = (sc,1, mem(sy)),
— let 8" = StateSeq({ina, ..., iny,), s;).
— Then, StateSeq(in,sg) = s’ - s”.

In Definition 2, the state s; from which each subsequent
input batch is executed is obtained from the final state sy
produced from executing the previous input batch. Given an
HA Ace, we write StateSeq(Acc, in, sq) to explicitly refer to
the successor states of sg generated by Acc. If Acc is clear
from the context, we omit it.

Definition 3. A state s € S is reachable if s € S¢y or if there
exists a concrete initial state so € S¢r and sequence in of
input batches such that s € StateSeq(in, so). A relevant state
Sy is reachable if s, = rel(s) for some reachable state s.

Note that the initial states S; are not necessarily all reachable.
Next, we define an abstract specification for an HA function.
Note that we use this to define correctness, but one of the

features of A-QED is that the specification is not needed for
the main verification technique.

Definition 4 (Abstract Specification). For an HA Acc, let
Spec : I x Sp — O be an abstract specification function.

Definition 4 states that the value of an output computed by
an HA is completely determined by the corresponding input
and the relevant part of the memory state when the HA was
started. Note that the inclusion of the relevant memory state
makes the definition general enough to model interfering HAs.
To model non-interfering HAs, we can either make the output
dependent on only the input batch, or require that the relevant
state does not change in state transitions.

Based on the abstract specification, we define the functional
correctness of an HA in terms of the output batches that are
produced for given input batches as follows.

Definition 5 (Functional Correctness). An HA Acc is function-
ally correct with respect to an abstract specification Spec if,
for all concrete initial states so € Scr and all sequences in
of input batches, if

o in = (iny,...,iny,),

o s = StateSeq(in, sp),

o sp=initsym(s) = (S1.1,---,5I.n)

o 0= out(final(s)) = (01,...,0n),
then ¥V j € [1...0]. 0,(j) = Spec(ing,(§), rel(sin)).

A bug is simply a failure of functional correctness.

As mentioned above, even without a formal specification,
we can apply the core technique of A-QED. To do so, we
leverage the concept of functional consistency, the notion that
under modest assumptions, two identical inputs will always
produce the same outputs.

Definition 6 (Functional Consistency (FC)). An HA Acc is
functionally consistent if, for all concrete initial states sy €
Scr and for all sequences in of input batches, if

o in = (iny,...,iny), s = StateSeq(in, sp),

o sy =initsym(s) = (S1.1,.--,5I.n),

o 0= out(final(s)) = (01,...,0n),
then Yi € [1,n], 7,7 € [1,b].

ing(§)=1nn(j" ) Arel(syi)=rel(s1.n) = 0i(§)=o0n(j).

Definition 6 illustrates the need for the relevant designation
for memory states. It essentially says that two inputs, even
if started at different times and in different batch positions,
should produce the same output, as long as the relevant part
of the memory is the same when the two inputs are sent
in. The following lemma is straightforward (see the online
appendix [53] for proofs of this and other results).

Lemma 1 (Soundness of FC). If an HA is functionally correct,
then it is functionally consistent.

Checking FC requires running BMC over multiple iterations
of the HA and may be computationally prohibitive for large
designs or for large values of n. Often, it is possible to verify
a stronger property, which only requires checking consistency
across two runs of the HA.
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Definition 7 (Strong FC). An HA Acc is strongly functionally
consistent if;, for all reachable initial states sg, s{, and input
batches in,in', if

o s = StateSeq({in

o Sp = final(s) =

e 0= out(sp) =
then ¥ j,j' € [1,b].

in(j) = in’ (') A rel(so) = rel(sh) = o(j) = o/ (j").

The main difference between FC and strong FC is that the
initial states sp and s{, can be any reachable states. In contrast
to that, the initial state sy € Sy in the definition of FC is a
concrete one. It is easy to see that strong FC implies FC, but
the reverse is not true in general. This is because it may not be
possible for two reachable initial states so and s chosen in a
strong FC check to both appear in a single sequence of states
resulting from executing a sequence of input batches starting
in a concrete initial state. Similar to previous work on A-QED
for non-batch-mode HAs [8], FC checking relies on sequences
of input batches to reach all reachable states from a concrete
initial state. For strong FC checking, on the other hand, two
individual input batches are sufficient because the two initial
states so and s{, can be arbitrarily chosen from the reachable
states. Like FC, strong FC is a sound approach.

), 80), 8" = StateSeq({in
<8F>, sr' —ﬁnal( ") =
(0), o' = out(sp') = (0'),

'), 50),
(s),

Lemma 2 (Soundness of Strong FC). If an HA is functionally
correct then it is strongly functionally consistent.

A challenge with using strong FC is that it requires starting
with reachable initial states. However, we found that in practice
(cf., Section V), it is seldom necessary to add any constraints
on the initial states. This may seem surprising given the well-
known problem of spurious counterexamples that arises when
using formal to prove functional correctness without properly
constraining initial states. There are at least two reasons for
this. First, many HAs have less dependence on internal state
(none for non-interfering HAs) than other kinds of designs. But
second, and more importantly, FC is a much more forgiving
property than design-specific correctness. Many designs are
functionally consistent, even when run from unreachable states.
In fact, we believe that this is a natural outcome of good
design and that designing for FC is a sweet spot in the trade-
off between design for verification and other design goals. If
designers take care to ensure FC, even from unreachable states,
then strong FC is both sound and easy to formulate.

Even simpler versions of the checks above can be obtained
by making them intra-batch checks. An HA is intra-batch
Sfunctionally consistent if it is functionally consistent when
i = n = 1. That is, intra-batch FC checks are based on
sending a single input batch to the HA. Consequently, it is
not necessary to identify and compare the relevant parts of
the initial states (cf. Definition 6) as there is precisely one
initial state being used. Similarly, an HA is intra-batch strongly
Sfunctionally consistent if it is strongly functionally consistent
when so = s{, and in = in’. Again, only one input batch is
sent to the HA and the relevant parts of the initial states are
thus always equal. As we will show in Section V, intra-batch

checks can be a very effective approach for cheaply finding
bugs. Intra-batch checks are applicable only to batch-mode
HAs; i.e., they are not applicable in the context of A-QED
targeted at HAs processing sequences of single inputs [8] rather
than input batches.

While functional consistency alone can find many bugs,
it becomes a complete technique (i.e., it finds all bugs) by
combining it with single-action checks.

Definition 8 (Single-Action Correctness (SAC)). An HA Acc
is single-action correct (SAC) with respect to an abstract
specification Spec if, for every batch element (a,d) and for
every reachable relevant state s, there exists some reachable
initial state s, such that inp(s)(j) = (a,d) for some j,
rel(s) = s, and out(final(T(s)))(j) = Spec((a,d), s,).

Essentially, SAC requires that for each action a, data d, and
reachable relevant state s,., we have checked that the result is
computed correctly when starting from some reachable initial
state s whose relevant state matches s,.. For every batch element
(a,d) and s,, it is sufficient to run a single check where we
can choose (a,d) to be at any arbitrary position j in the batch
inp(s). Checking SAC does require using the specification
explicitly, but these kinds of checks typically already exist in
unit or regression tests. SAC may even be possible to verify
using simulation. As we show in Section V, many bugs can
be discovered without checking SAC at all.

When formalizing single-action checks, we again advocate
using an over-approximation for reachability and encourage
the design of HAs with simple over-approximations for the set
of reachable relevant states. For the encryption example we
gave above, the set of reachable relevant states is just the set
of valid keys, which should be easy to specify.

In earlier work, using a slightly different HA model, we
showed that SAC and functional consistency ensure correctness
only when the HA is strongly connected (SC), that is, when
there exists a sequence of state transitions from every reachable
state to every other reachable state. The same is true here.

Lemma 3 (Completeness of SAC + FC + SC). If an HA is
strongly connected and single-action correct and has a bug,
then it is not functionally consistent.

However, strong functional consistency leads to an even
stronger result.

Lemma 4 (Completeness of SAC + Strong FC). If an HA is
single-action correct and has a bug, then it is not strongly
functionally consistent.

Finally, to address timeliness of results in addition to
correctness, we define a notion of responsiveness for our model.

Definition 9 (Responsiveness). An HA is responsive with
respect to bound n if;, for all concrete initial states s € Scy,
sequences in of input batches, and input batches in, if

(805 -+, Sm) and

i, $0) = (S0, - - - s Smt1),

o s = StateSeq(in, sy) =
o s’ = StateSeq(in -
then | < n.
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A. Decomposition for FC Checking

We now show how FC of a decomposed design can be
derived from FC of its parts. We first give conditions under
which two HAs can be composed.

Definition 10 (Functionally Composable). Accy and Accy are
functionally composable if: (i) by = be; (ii) O1 = As X Dy;
(iii) Sc N Sc2 = 0; (iv) Sr1 = Sry2; and (v) Sy1 =
Sout,2 X Sy and Sy o = Sp.1 %X Sy for some S

Note in particular that composability requires that the outputs
of Acci match the inputs of Accy. We also require that the
two HAs have isomorphic memory states, which is ensured by
including Soy+,2 in the non-relevant states of Accy and Sy, ; in
the non-relevant states of Accs. In order to map a memory state
of Accy to the corresponding memory state in Acco, we define
a mapping function « : Spr1 — Sar2 as follows: a(sy,)
(out(sm), nrel(sm) (1), rel(sm), (inp(sm), nrel(sm)(2))). We
next define functional composition.

Definition 11 (Functional Composition, Sub-Accelerators).
Given functionally composable HAs Accy and Acco, we define
the functional composition Accog = Accg o Accy (Accy and
Acco are called sub-accelerators of Accg) as follows: by = by,
Ao = A1, Dy = Dy, Og = O, Sco = Sc,1USc2 Svo=
SM1, Se,10 = Se¢,I,1, S¢,F,0 = Sc,F,2 Sm,1,0 = Sm,1,1. The
transition function is defined as follows. Ty(Sc, Sm)
(@) if sc € Sca and sc # e pa1 then T (Sc, Sm);
(i) if sc € Sc2 then To(sc,(sm,)); and

(iil) if sc = sc,p1 then (Se1,2,(sm)).

Definition 11 essentially states that an execution of Acco =
Acco o Accy is obtained by first running Accy to completion,
then passing the outputs of Acc; to the inputs of Acco, and
then running Accs to completion. As a variant of Definition 11,
it is also possible to define functional composition where
the sub-accelerators operate in parallel. This way, the sub-
accelerators process non-overlapping parts of a given input
batch and produce the respective non-overlapping parts of the
output batch.
We now introduce a compositional version of FC.

Definition 12 (Strong FC for Decomposition (FCD)). An
HA Acc is strongly functionally consistent for decomposition
(strongly FCD) if it is strongly functionally consistent and,
in addition to o(j) = 0'(j'), the property rel(sp) = rel(s’y)
holds in the conclusion of the implication in Definition 7.

Note that strong FCD is stronger than strong FC. In order to
stitch together results on sub-accelerators, we need to establish
that not only the output but also the relevant memory state is
the same after processing identical inputs. The following is
clear from the definition.

Corollary 1. If an HA Acc is strongly FCD, then Acc is
strongly FC.

We now show that composition preserves strong FCD and
then state our main result.
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Lemma 5 (Functional Composition and Strong FCD). Let
Accy = Accg o Acey. If both Accy and Accy are strongly FCD
then Accq is strongly FCD.

Theorem 1 (Completeness of A-QED?). Let Accg, Acci, and
Acco be HAs such that Acco = Acco o Accy and Accq is
single-action correct. If Accy and Acco are strongly FCD then
Accy is functionally correct.

Theorem 1 states that A-QED? is complete. That is, by
contraposition, if an HA Acco has a bug, i.e., it is not
functionally correct, then either Accy or Accs is not strongly
FCD, and thus the bug can be detected by A-QED?.

Note that there is no corresponding soundness result. This is
because it is possible to decompose a functionally consistent
HA into functionally inconsistent sub-accelerators. However,
as shown in Section V, this appears to be rare in practice, and
here again we reiterate our position on design for verification
and advocate that also sub-accelerators should be designed
with functional consistency in mind.

Functional composition can easily be generalized to more
than two sub-accelerators. Moreover, it can be applied re-
cursively to further decompose sub-accelerators. If functional
decomposition based on Definition 11 is not applicable to
further decompose a sub-accelerator, then such a sub-accelerator
can be decomposed using existing formal decomposition
approaches, though these require significant manual effort. Our
approach identifies conditions under which simple, automatable
decomposition of FC checking is possible.

IV. A-QED? FUNCTIONAL DECOMPOSITION IN PRACTICE

We now present our implementation of A-QED?, which
builds on the theoretical framework of the previous section.
We combine functional decomposition with checks for FC
(dFC), SAC (dSAC), and responsiveness (dRB).

A. Decomposition for FC: dFC

dFC takes as input a non-interfering LCA design Acc
(satisfying Definitions 1 and 2) together with designer-provided
annotations (explained in this section). dFC decomposes Acc
into sub-accelerators (following Definition 11). FC checks
are run on the sub-accelerators and any counterexamples
are reported. Note that the way in which Acc is actually
decomposed into sub-accelerators has no influence on the
completeness of A-QED? (Theorem 1). That said, FC checks
may scale better for certain decompositions. While failing FC
checks expose consistency issues at the sub-accelerator level,
it is possible that they do not cause incorrect behaviors at the
full Acc level. However, we did not observe any instances of
this in our experiments.

Our dFC implementation relies on identifying batch opera-
tions in a given Acc. A batch operation operates on a vector of
inputs, applying some action to each input in order to produce
a vector of outputs. The input to a batch operation could be
an intermediate output batch of another sub-accelerator or an
input batch to Acc itself. A batch operation produces either an



intermediate output batch which is subsequently processed by
another sub-accelerator or an output batch of Acc itself.

We assume that Acc is expressed in a high-level language,
specifically as a C/C++ program! that implements sequential
computation of Acc outputs from Acc inputs.” Batch operations
in the C/C++ program are identified by finding contiguous
C/C++ statements called functional blocks that implement
those batch operations. Each functional block represents a
sub-accelerator.

We have developed a set of annotations by which the designer
can help identify these functional blocks. Examples of such
annotations are given in Listing 2 (extends Listing 1). It has
two functional blocks corresponding to batch operations: lines
15-17 and 32-33.

Annotations are defined by particular keywords that are
prefixed by “%” (and denoted in blue) in Listing 2. These
annotations describe the compute and memory access patterns
of the functional block as it transforms an input batch into
an output batch. In practice, hardware designers already use
similar annotations frequently, e.g., to express parallelization
opportunities for HLS to generate efficient hardware. As a
result, we expect manageable effort in creating such annotations
to support dFC. The HLS research community is actively
developing new techniques to automatically explore the HA
design space and derive optimal design points together with
appropriate parallelization and pipelining [54]-[56]. With tight
integration of A-QED? with HLS, we expect that it will be
possible to generate dFC annotations with low effort.

Listing 2: C/C++ Annotation Example (AES Encryption)

#define BS ((1) << 12) // BUF_SIZE
#define UF 2 // UNROLL_FACTOR
#define US BS/UF // UNROLL_SIZE

L T Y T

void fun(int data[BS], int buf[UF]J[US], int key[2]){
int j, k;
%IN_SIZE 16 // variables per input batch element

%IN_BATCH_SIZE BS/IN_SIZE // input batch

%BATCH_MEM_IN data // input batch source

%IN_ALLOC_RULE in(x) addr range
[i«BS + x*IN_SIZE :
i#*BS + (x + 1)*IN_SIZE]

// ===ACCy START===

for (j=0; j<UF; j++)
for(k = 0; k < BS/UF; k ++)

size

// BATCH_MEM_IN layout

17 buf[j][k] = =(data + i*BS + j*US + k)" key[O0];
18 // ===ACC END===
19 %OUT_SIZE 16 // variables per output batch element

%OUT_BATCH_SIZE BS/OUT_SIZE // output batch
%BATCH_MEM_OUT buf // output batch source
%IN_ALLOC_RULE out(x) addr range
[x/US][(x%US)«OUT_SIZE :
((x + 1)%US)«OUT_SIZE] // BATCH MEM _OUT layout

size

%IN_SIZE 16

%IN_BATCH_SIZE BS/IN_SIZE

%BATCH_MEM_IN buf

%IN_ALLOC_RULE in(x) addr range
[(x%US)=IN_SIZE : ((x+1)%US)«IN_SIZE ][x/US]

'HAs expressed in Verilog or SystemC can be converted into C/C++, and
then our dFC implementation can be applied. We do this in Sec. V.

2Existing HLS tools (e.g., Xilinx Vivado HLS, Mentor Catapult HLS) can
then optimize Acc, incorporate appropriate pipelining and parallelism, and
produce Verilog for subsequent logic synthesis and physical design steps. Such
HLS-based HA design flows are becoming increasingly common.
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31 // ===ACC START===

32 for (j=0; j<UF; j++){

33 aes256_encrypt(local_key[j], buf[j]);}
34 // ===ACC END===

35 %OUT_SIZE 16

%OUT_BATCH_SIZE BS/OUT_SIZE

%BATCH_MEM_OUT buf

%OUT_ALLOC_RULE out(x) addr range
[(x%US)«OUT_SIZE : ((x+1)%US)+«OUT_SIZE][x/US]

40 )

From the annotations, we create sub-accelerators. For exam-
ple, the annotations in Listing 2 generate two sub-accelerators:
Accy corresponding to the functional block in Lines 15-17 with
annotations in Lines 8-13 and 19-24, and Accy corresponding
to the functional block in Lines 32-33 with annotations in
Lines 26-30 and 35-39. For each sub-accelerator, we create
an A-QED? module for FC checking.® It generates symbolic
inputs for the sub-accelerator and symbolically executes the
corresponding functional block in order to produce symbolic
expressions for the outputs. For strong FC checks (Definitions 6
and 7), the relevant states (Definition 1) must additionally be
identified and explicitly constrained to be consistent across
sub-accelerator calls processing two input batches. Identifying
the relevant states is not necessary for intra-batch FC checks
(discussed in the context of Lemma 2). For example, in sub-
accelerator Accy in Listing 2, key[0] is a relevant state element
(distinct from the batch input data). Between two calls of Accy
during a strong FC check, key/0] must be consistent. In our
implementation, we ignore reachability and allow all checks
to start from fully symbolic initial states. This does not lead
to spurious counterexamples in our experiments.

B. Decomposition for RB: dRB

The sub-accelerators for A-QED?’s RB checks (Definition 9)
can be (and often are) different from those for FC because
RB involves a much simpler check: some output is produced
within the response bound n. We expect n to be provided by
the designer for the top-level accelerator. We then use the same
bound n for each sub-accelerator. The rationale is that if a
sub-accelerator fails an RB check, then the full accelerator
would also fail the same RB check.

For dRB, we generate a static single assignment (SSA)
representation of the design. We then apply a sliding window
algorithm to dynamically generate sub-accelerators. Lines of
code in the SSA that fall within a certain window W form
the sub-accelerator. Due to SSA form, the inputs of this sub-
accelerator are variables that are never updated or assigned in
W while the outputs are the variables which update variables
outside W. The current size of W is given by the number of
LOCs that fit in W, and it changes dynamically during a run
of the algorithm to incorporate the largest sub-accelerator that
will fit the BMC tool. Once the sub-accelerator is verified, W
slides by 6 LOCs (§ is a parameter) and adjusts its boundary
to get the next largest sub-accelerator that can be verified.
We synthesize that sub-accelerator using HLS (since some
responsiveness bugs only manifest after HLS) and then run
RB checks using BMC. The initial states of each generated

3See the online appendix [53] for details.



sub-accelerator are left unconstrained (i.e., fully symbolic) in
order to analyze all possible behaviors. The specific size of
W and its position in the SSA code change dynamically as
dRB proceeds. dRB terminates when W reaches the end of
the SSA code or if at any time an RB check fails.

C. Decomposition for SAC: dSAC

As mentioned above, and as will be shown in the next section,
many bugs can be detected using only dFC and dRB. The
advantage of this is that both of these checks can be run without
any functional specification. dSAC completes the story, but at
the cost of requiring specifications. We use standard functional
decomposition techniques (essentially, writing preconditions,
invariants, and postconditions) to decompose SAC checks. One
feature of dSAC is that only a single input in a batch needs be
checked—all other inputs in the batch can be set to constants
(we use zero in our experiments). This makes both writing the
properties and checking them much simpler. The non-input
part of the initial state for each check is again kept fully
symbolic for simplicity. If a sub-accelerator is too big, we
further decompose it using finer-grained functional blocks.

V. EXPERIMENTAL RESULTS

We demonstrate the practicality and effectiveness of A-QED?
for 109 (buggy) versions of several non-interfering LCAs,*
including open-source industrial designs [12]. We selected these
designs for the following reasons:

o They cover a wide variety of HAs (neural nets, image
processing, natural language processing, security). Most
are too large for existing off-the-shelf formal tools.
They have been thoroughly verified (painstakingly) using
state-of-the-art simulation-based verification techniques.
Thus, we can quantify the thoroughness of A-QED?.
With access to buggy versions, we did not have to artifi-
cially inject bugs. Bugs we encountered include incorrect
initialization, incorrect memory accesses, incorrect array
indexing, and unresponsiveness in HLS-generated designs.

Many of the designs were already available in sequential
C or C++. We converted Verilog and SystemC designs
into sequential C. To facilitate dFC, we manually inserted
annotations (like those in Listing 2). For A-QED FC, we used
CBMC for all designs originally represented in sequential C or
C++. For designs in Verilog and SystemC, we used Cadence
JasperGold (SystemC designs converted to Verilog via HLS).
For A-QED? FC and SAC checks, we used CBMC version
5.10 [66]. For A-QED and A-QED? RB checks, we used
Cadence JasperGold version 2016.09p002 on Verilog designs
generated by the HLS tools used by the designers. Lastly, we
used Frama-C [67] to check for initialization and out-of-bounds
bugs on the entire C/C++ designs. We ran all our experiments
on Intel Xeon E5-2640 v3 with 128GBytes of DRAM.

Tables I, II, and III summarize our results. We present
comparisons between A-QED? (dFC, dRB, dSAC) and A-QED

4See the online appendix [53] for design details and the software artifact [65].
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(FC, RB, SAC). Table I also compares A-QED? intra-batch FC
vs. A-QED? strong FC (cf. details in the online appendix [53]).
Observation 1: HAs from various domains (including
industry) show that non-interfering LCAs are highly common.
Observation 2: The vast majority of the studied HAs are
too big for existing off-the-shelf formal verification tools, for
both A-QED and conventional formal property verification.

Observation 3: Table I shows that A-QED? intra-batch
FC checks detected bugs inside sub-accelerators (with batch
sizes > 1) very quickly—under a minute for almost all of the
designs, and just over a minute for nv_large. For most batch-
mode sub-accelerators—except two for each of the following
four designs (amounting to eight sub-accelerators in total):
grayscale64, grayscale32, mean128, and mean32—intra-batch
dFC checks were easily completed using off-the-shelf formal
tools. Strong FC checks incur more complexity. Hence, the
formal tool timed out after 12 hours for 62 sub-accelerators
when running strong FC checks, distributed across multiple
designs. Empirically, we found that intra-batch FC checks
detected all bugs that were detected by strong FC checks.

Observation 4: A-QED? RB and A-QED? SAC are also
highly effective in detecting bugs inside sub-accelerators. For
the first 11 designs (AES to gsm) in Table II, we do not expect
unresponsiveness bugs (confirmed by simulations). Hence, A-
QED? RB checks ran for 12 hours (for increasingly longer input
sequences) without detecting unresponsiveness. For designs
with RB bugs, A-QED? RB checks on sub-accelerators were
able to detect those in less than 11 minutes on average. For
A-QED? dSAC, we observed that a significant fraction (26
out of 46 bugs (56%)) of these bugs were also detected by
A-QED? FC checks. Thus, FC alone is effective at catching a
wide variety of bugs.

Observation 5: A-QED? detected all bugs that were detected
by conventional (simulation-based) verification techniques.
Further, all counterexamples produced from verifying sub-
accelerators corresponded to real accelerator-level bugs. Com-
pared with traditional simulation-based verification, we report
a ~ 5X improvement in verification effort on the average,
with a ~ 9X improvement for the large, industrial NVDLA
designs. The overhead of inserting our annotations for dFC
can be small compared to what designers already insert to
optimize the design. For ISmartDNN, for example, the total
number of annotations is 304, which is 2.8% of the total
lines of code of the design. In the code of the HLS designs
we considered, pragmas amount to 11% on average. We also
observe a ~ 60X improvement in average verification runtime
compared to conventional simulations.’

VI. CONCLUSION

Our theoretical and experimental results demonstrate that
A-QED? is an effective and practical approach for verification

5The conventional verification effort for NVDLA was based on start and end
commit dates in its nv_small Github repository. The conventional verification
runtime for NVDLA, ISmartDNN, and dnn HAs were obtained by running
the available simulation tests on our platform. The remaining runtime and
effort information were provided by the designers.



Design (#Gates) (#Versions) A-QED FC A-QED? dFC: Intra-batch FC A-QED? dFC: Strong FC

94 versions in table, 15 in (:apti()nJr Avg. RT (min)|Avg. RT (min) [#Bugs[#Sub-Acc.(T/P/C/B)|Avg. Runtime (min)|[#Bugs|#Sub-Acc.(T/P/C/B)
AES [50] (382k) 4) OOM 0.97 4 8/71714 timeout 0 8/7/2/0
ISmartDNN [57] (42M) 3) timeout 0.10 2 38/5/5/2 0.18 2 38/5/2/2
grayscalel128 [33] (351k) @) timeout 0.03 3 3/3/21/72 0.07 3 3/3/21/72
grayscale64 [33] (194k) o) timeout 0.02 3 3/3/21/2 0.02 3 3/3/21/72
grayscale32 [33] (106k) @) 8.20 <0.01 5 3/3/3/3 0.30 5 3/3/31/73
mean128 [33] (202k) @) timeout 0.35 3 3/3/21/72 0.17 3 3/3/21/72
mean64 [33] (104k) @) timeout 0.38 3 3/3/21/72 0.13 3 3/3/21/72
mean32 [33] (54k) @) 5.53 0.17 5 3/3/3/3 0.33 5 3/3/3/73
dnn [58] M) (11) timeout 0.03 5 34/14/14 /5 0.13 5 34/14/8/5
nv_large [12] (16M) (23) timeout 1.17 11 89/46/46/ 11 2.93 9 89/46/21/79
nv_small [12] (1M) (23) timeout 0.07 11 89/46/46/ 11 1.03 11 89/46/26/ 11

TABLE I: Avg. RunTimes of FC checks for A-QED and A-QED?. For A-QED?, sub-accelerator counts are provided, including the Total
count that resulted from dFC decomposition, the count with batch sizes greater than one (i.e., Parallel), the count (with batch sizes greater
than one) for which FC checks were successful on 1 and 2 batches for intra-batch FC and strong FC respectively, and the count for which
Bugs were detected by FC checks. For A-QED FC, experiments could not complete FC check for a single batch in 12 hours (timeout) or
exhibited out-of-memory (OOM) errors before timeout. Average runtimes result from dividing the time to detect all bugs by the number of
bugs. Tkeypair [59], gsm [60], HLSCNN [61], FlexNLP [62], Dataflow [63], and Opticalflow [64] all time out for A-QED FC and do not
contain any sub-accelerators with batch size greater than one. One OOB bug was detected in gsm and one initialization bug in keypair.

TABLE II: RB checks for A-QED and A-QEDZ2. For A-QED?,
sub-accelerator counts produced by dFC are provided, as in Table I.
A-QED? RB checks are performed on all sub-accelerators regardless
of batch size, so P is omitted compared to Table I. For A-QED RB, RB
checks did not complete even for a input sequence length of 1 within
12 hours (timeout). Sub-accelerators for which RB checks for at
least input sequence length of 1 was completed were considered
Complete. For the first 11 designs, from AES to gsm, no bugs
related to unresponsiveness were detected by traditional simulation-
based verification. Results are omitted for nv_large and nv_small;
responsiveness related bugs generally result from parallelism and
pipelining, both of which were lost in our manual translation of
NVDLA from Verilog to sequential C code.

of large non-interfering LCAs. A-QED? exploits A-QED princi-
ples to decompose a given HA design into sub-accelerators such
that A-QED can be naturally applied to the sub-accelerators.
A-QED? is especially attractive for HLS-based HA design
flows. A-QED? creates several promising research directions:

o Extension of our A-QED? experiments to include inter-
fering LCAs (already covered by our theoretical results).

« Automation of dFC annotations via HLS techniques.

o dFC approaches beyond our current implementation.

A-QED RB A-QED? dRB A-QED? dSAC
Design (#Gates) (#Versions) | Avg. RT [Avg. RT #Buss #Sub-Acc. Design (#Gates) (#Versions) [Avg. RT #Bugs Bug overlap| #Sub-Acc.
Total Versions = 109 (min) (min) 8 (T/C/B) Total Versions = 109 (min) &S| with dFC (T/C/B)
AES [50] (382k) (4)| timeout 13/13/0 AES [50] (382k) (4)| 0.12 0 0 8/8/0
ISmartDNN [57] (42M) (3)| timeout No RB 32/32/0 ISmartDNN [57] (42M) (3)| 0.22 3 2 38/38/3
grayscale128 [33] (351k) (5)| timeout bug detected | 5/5/0 grayscalel28 [33] (351k) (5)| 0.04 2 2 3/2/2
grayscale64 [33] (194k) (5)| timeout up toinput | 5/5/70 grayscale64 [33] (194k) (5)| 0.01 2 2 37272
grayscale32 [33] (106k) (5)| sequence 3/3/0 grayscale32 [33] (106k) (5) | <0.01 2 2 3/3/2
mean128 [33] (202k) (5)] timeout length 5/570 mean128 [33] (202k) (5)| 0.21 2 2 37272
mean64 [33] (104k) (5) timeout between 3/3/70 mean64 [33] (104k) (5) | <0.01 2 2 37272
dnn [§8] M) (11 t%meout dependlng on |5/5/0 dnn [53] @M) (1) 001 % 0 3471476
keypair [59] (>200M) (1) t}meout the design (21 /21 /0 Keypair [59] (>200M) (1) | tmeout| 0 0 471470
gsm [60] (8.8k) (1)| timeout 71770 -

i 3 oMY (23 - gsm [60] (8.8k) (1) |timeout| O 0 5/5/70
nv large [12]  (16M) (23)] timeout |\ pp puog expected nv_large (121 (16M) (23)] 084 | 12 6 (89789712
nv_small [12] (M) (@23)] timeout nv_small [12] M (23 011 | 12 6 (89750712
HLSCNN [61] (323k) (2)| timeout 2.33 1 [25/25/1 =

: HLSCNN [61] (323k) (2)| 045 1 0 25/11/1
FlexNLP [62] (567k) (9)| timeout | 10.77 9 [15/15/9 :
FlexNLP [62] (567k) (9) | timeout | 0 0 21/21/0
Dataflow [63] (296k) (1) 0.45 0.25 1 9/9/1 -
Opticalfiow [64] (5555 ()| : 017 i 7371 Dataflow [63] (296k) (1) | timeout | O 0 8/8/0
plicalliow 1meou : Opticalflow [64] (555k) (1) | imeout| 0 0 471470
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TABLE III: SAC checks for A-QED?. Sub-accelerator counts
produced by dSAC are provided, as in Table I. A-QED? SAC checks
were performed on all sub-accelerators regardless of batch size, so P
is omitted compared to Table I.

Further A-QED? scalability using abstraction.

Extension of A-QED? beyond sequential (C/C++) code
to include concurrent programs.

Effectiveness of A-QED? for RTL designs (without
converting them to sequential C/C++).

Applicability of A-QED? beyond functional bugs (e.g., to
detect security vulnerabilities in HAs).

Comparison of A-QED? and conventional decomposition.
Identifying conditions under which A-QED? is sound.
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Abstract—We have developed an algorithm, S-C-Rewriting,
that can automatically and very efficiently verify arithmetic
modules with embedded multipliers. These include ALUs, dot-
product, multiply-accumulate designs that may use Booth en-
coding, Wallace-trees, and various vector adders. Outputs of the
target multiplier designs might be truncated, right-shifted, or
a combination of both. We evaluate the performance of other
state-of-the-art tools on verification problems beyond isolated
multipliers and we show that our method applies to a broader
range of design techniques encountered in real-world modules.
Our verification software is verified using the ACL2 theorem
prover, and we can soundly verify 1024x1024-bit isolated mul-
tipliers and similarly large dot-product designs in minutes. We
can also generate counterexamples in case of a design bug. Our
tool and benchmarks are available online.

Index Terms—Formal Verification, Integer Multipliers, Hard-
ware Verification, Arithmetic Circuits, ACL2, Term-rewriting

I. INTRODUCTION

Integer multipliers are fundamental building blocks for
general-purpose (e.g., CPUs and GPUs), image, communi-
cations, and cryptographic processors. Multipliers are used
to implement dot-product, division, square-root, and floating-
point operations; in turn, these operations find their way
into graphics, cryptography, and signal processing systems.
In some cases, such as cryptographic processors, integer
multipliers might be used to multiply numbers as large as
1024 bits.

Given the ubiquity of multipliers, it is crucial to have a
sound verification method for designs that include multipliers.
However, the formal verification process of multipliers is still a
challenge, especially for the most common design approaches
such as Wallace tree and Booth encoding. Decision-procedure-
based tools such as BDDs, SAT solvers do not scale [1],
[2]. In recent years, multiplier verification efforts have shifted
towards using computer algebra methods [2]-[6] and they
have yielded more promising results. However, these studies
focused heavily on isolated multiplier designs, and they do not
perform well (if at all) for multipliers with truncated output
(e.g., a 32x32-bit multiplier with a 32-bit output). Studies
that explore the verification problem of embedded multipliers
(e.g., multiply-accumulate, dot-product) have been limited,
and they do not support designs with Wallace tree and Booth
encoding [1]. Additionally, only one computer-algebra-based
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tool [3] provides a system to check the correctness of the proof
itself, leaving open the possibility that these tools might claim
a design to be correct when the design is actually flawed.

In our previous work [7], we proposed a method to verify
integer multipliers efficiently and automatically. Using the
ACL2 theorem proving system, we developed a provably
correct verification mechanism based on term-rewriting. This
method has been shown to quickly verify a wide range of
integer multiplier designs (e.g., 1024x1024-bit multipliers with
simple partial products have been verified in less than 10
minutes). However, our focus concerned only untruncated
isolated multiplier designs. Moreover, we did not discuss how
the algorithm performs with buggy designs.

We have expanded our method and we have been able to:

« improve proof-time performance by a factor of 2 or more;

« verify designs beyond untruncated isolated multipliers;

o and quickly generate counterexamples.

Additionally, we retain the same level of proof automation and
keep our tool provably correct.

In this paper, we aim to explore the verification problem
of multipliers on more complex designs than explored in
previous verification studies and deliver our solutions. We
provide examples of complex multiplier architectures with
optimizations that can be encountered in real-world designs.
We discuss how existing state-of-the-art verification tools
perform on such modules. Finally, we present our improved
method and show that we can verify these complex designs
very efficiently. For example, we can verify 64x64-bit isolated
multipliers or similar designs within seconds and 1024x1024-
bit isolated multipliers or similar dot-product designs in 5
minutes, no matter which design algorithm is used.

This paper is structured as follows. Sec. II summarizes the
most common design algorithms for isolated and embedded
multipliers. We show why it is important to develop a ver-
ification method for embedded and truncated multipliers and
why it is not enough to have a verification tool only for isolated
multipliers. In Sec. III, we summarize the related work from
the most recent and/or prominent studies. Sec. IV recapitulates
our term rewriting algorithm from our previous work and
introduces some of its recently discovered limitations. Sec. V
discusses our new improvements so that we can verify more
designs with better efficiency and generate counterexamples

This article is licensed under a Creative
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for buggy modules. Sec. VI describes how our lemmas are
implemented and applied. Finally, we show our experiment
results in Sec. VII and compare our performance with other
state-of-the-art multiplier verification tools.

II. MULTIPLIER ARCHITECTURES

There are various algorithms to design RTL multipliers and
integrate them in other arithmetic modules such as a multiply-
accumulate (MAC). The difficulty of verifying these modules
depends on the design algorithm. Some algorithms bring out
clean and regularly structured modules, and some and most
commonly used algorithms produce complex structures. This
section elaborates on the verification problem by summarizing
common algorithms to design multipliers and how they are
implemented in other arithmetic circuits.

A. Isolated Multipliers

An isolated multiplier is a circuit with two bit-vector inputs
and one bit-vector output. The output vector represents an
integer equivalent to the multiplication of the input vectors,
which can be signed or unsigned integers. Isolated multipliers
are often implemented in two stages: partial product generation
and partial product summation.

Partial products can be generated by multiplying (i.e., logi-
cal AND) each input bit with each other as in primary school
multiplication. For signed numbers, the input numbers need to
be sign-extended, in which case the Baugh-Wooley [8] sign
extension technique can be used to lower the implementation
area. Booth encoding [9] (particularly radix-4) is a more
common and efficient way to generate partial products. Booth
encoding incorporates more than two input bits at a time when
generating partial products. This can provide more parallelism
and fewer partial products. However, Booth encoding makes
a circuit’s structure and logic more complex, making it more
difficult to reason about the circuit.

There are numerous methods to sum partial products in
hardware. Unlike primary school multiplication, hardware
algorithms do not sum partial products one column at a
time, from right to left. Summations are performed more
locally with unit adders such as half and full adders. An
array multiplier is a simple example that is built with such
unit adders following a shift-and-add methodology. Array
multipliers have a regular structure, which makes it straight-
forward to verify them. However, they can have a large gate
delay (i.e., propagation delay). On the other hand, Wallace-
tree-like multipliers [10], such as Dadda tree [11], provide
more parallelism. These summation tree algorithms sum partial
products with less propagation delay and only slight changes
in the implementation area. Designers can also utilize low
gate-delay vector adders, such as Brent-Kung [12], Ladner-
Fischer [13], and conditional sum, as a final stage adder to
get the multiplication result. This can make Wallace-tree-like
algorithms with complex final stage adders more preferable
for hardware applications, but their irregular structures make
the verification problem difficult, especially when paired with
Booth encoding.
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We should also note that an isolated multiplier implemen-
tation may not always return the full multiplication result.
Instead, the result might be truncated, right-shifted, or a
combination of both. For example, when two 32-bit numbers
are multiplied, a lossless multiplier would output a 64-bit
number. On the other hand, if the design only calculates the
lower, say, 32-bits of the result, we say that the result is
truncated. Similarly, when, say, only the upper 32-bits of the
result are returned from the multiplier, we say that the result
is right shifted. If only the middle portion of the result is
returned, which may happen in fixed-point arithmetic, we say
that the result is right shifted and truncated. Some designs
implement rounding or saturation when a certain portion of
the result is discarded when truncating and/or shifting.

B. Simple Arithmetic Modules with Embedded Multipliers

Integer multipliers can be implemented in various arithmetic
modules such as MAC, dot-product, and floating-point arith-
metic units. This section summarizes how a MAC module can
be implemented in hardware.

A simple MAC computes a*b+c, where a, b and c are bit-
vectors. When designing a MAC module, one may implement
an isolated multiplier that computes a * b and a vector adder
that adds c¢ to the multiplier’s output. To verify such a MAC
module, one can decompose the design, use different tools
to verify the isolated multiplier and the final adder separately,
and compose the proofs to show that the overall MAC module
is correct. However, this design methodology uses two vector
adders consecutively (one vector adder as part of the isolated
multiplier and one for adding c). Vector adders can make
up a large portion of the gate delay (and/or area) in such
circuits, and this design technique can increase the gate delay
considerably, making this approach a poor design choice.

az a an |

x bz b b2 b2 by be
Incomplete
: : : : : = Multiplier Qutput
(2 bit-vectors)

e & @
. Ca C4 Ca C: €1 Ca 2

& [ ] : +' :

+ Wallace-tree reduction Wallace-tree reduction

& Final stage adder

S

LA B e

|'..eooo-';
e e e i

" Incomplete muttiplier

MAC output

Fig. 1. An efficient way to compute MAC result

Fig. 1 shows an alternative approach that uses only one vec-
tor adder. This MAC module does not implement a complete
isolated multiplier. Instead, it uses an incomplete multiplier.
We define incomplete multipliers as modules that multiply
two bit-vectors but do not use a final stage adder to return
the complete multiplication result; instead, they return the
two bit-vectors generated after the Wallace-tree reduction
(summing these two vectors would give the multiplication
result). This output form is also referred to as redundant



form. After the incomplete multiplication, the two bit-vector
outputs are summed together with the addend (c) using another
Wallace tree and a vector adder. This can be a preferable
design approach as it provides better gate-delay performance.
However, it removes the boundaries between multiplication
and summation, which complicates the job of a verification
engineer. Further complicating verification, an alternative de-
sign technique may sum c with the initial partial products
with a single Wallace-tree and vector adder, which can remove
the boundaries even further. In such cases, we cannot simply
decompose the design and use a multiplier verification tool
that works only with isolated multipliers.

We can see similar design methodologies in other mod-
ules. For example, a dot product design may use multiple
incomplete multiplier modules and sum all the output vector
pairs together in another summation tree using a Wallace-
tree and a final stage adder. This method would prevent
the increase in area and gate delay by using only one final
stage adder in the overall design. Similarly, a floating-point
module implementing FMA (fused multiply-add) may use an
incomplete integer multiplier.

C. Multi-purpose Multipliers

Some processing units may implement multipliers for vari-
ous arithmetic operations with different operand sizes. For ex-
ample, x86 chips have many integer multiplication instructions
such as PMADDWD (multi-lane multiply and add together,
in other words, dot-product), PMULHW (multi-lane multiply
and store upper half of the result), and PMULLW (multi-
lane multiply and store lower half). Multiplier circuits can
occupy a large implementation area, and it is common for such
instructions to share resources and reuse multiplier modules.

We have created an example arithmetic circuit that shows
how multiplier modules can be reused for different operations.
We call this arithmetic unit infegrated multipliers whose
schematic diagram is shown in Fig. 2. This design multiplexes
various multipliers and adders to perform 4-point 32-bit dot-
product, 1-lane 64-bit multiply-accumulate, or 4-lane 32-bit
multiply-accumulate with options to return lower or upper
significant halves of the result. This module also includes an
accumulator register that can be used, for example, to perform
an 8-point 32-bit dot-product in two clock cycles, or 12-point
32-bit dot-product in three clock cycles, and so on. The mode
of operation is determined by the control signal mode.

This module implements four identical 32x32-bit incom-
plete multipliers whose inputs are two 32-bit numbers with
an additional sign bit and whose outputs are two bit-vectors.
Depending on the mode of operation, the outputs of these
multipliers are summed with another summation tree, and the
final result is calculated with vector adders. The datapaths for
32-bit MAC and dot-product operations are as described in
the previous section (Sec II-B). This module also supports
64-bit operands, in which case the outputs of the 32x32-bit in-
complete multipliers are appropriately shifted, sign-extended,
and summed to calculate the 64x64-bit multiplication result.
We call such operations merged multiplication, where multiple
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Fig. 2. The circuit diagram of integrated multipliers, our example arithmetic

unit.

smaller multipliers are used to implement a larger multiplier.
The module can also add a number to the 64x64-bit multipli-
cation result and make this a 64-bit MAC operation.

We can verify this design for each possible mode of
operation. For example, we can set the mode signal to perform
dot product and check if the result matches the mode’s speci-
fication. Industrial designs are often much more intricate than
this module; however, it is often possible to reason about one
arithmetic operation at a time. Then, the verification problem
becomes as complex as verifying a single arithmetic operation.

III. RELATED WORK

The verification problem of multipliers continues to have
a great deal of research interest, and researchers offer new
techniques every year. This section covers the most recent and
prominent studies that attempt to solve this problem, particu-
larly for RTL designs with Booth encoding and Wallace-tree-
like structures.

A. BDDs, BMDs, SAT and SMT Solvers

Automated and well-studied generic tools and methods such
as BDDs, SAT, and SMT Solvers can theoretically be used to
verify multiplier designs. However, it has been shown that
these methods do not scale for designs larger than 12x12-
bit multipliers [1], [2]. SAT solvers may scale better when
generating counterexamples for buggy designs. Some success
has been achieved with BMDs but only for regularly structured
multipliers [14]. On the other hand, these automated tools may
be used to verify some multiplier design components, such as
the final stage adder [3].

B. Computer Algebra Methods

In computer algebra-based methods, multiplier circuits are
modeled with a set of polynomials. Basic logical gates of
a circuit are represented in terms of algebraic expressions
(e.g., Vo,y € {0,1} xVy = 2 +y —zy ) as well as the
multiplication result (see Example 1 for a 2x2-bit unsigned
multiplier specification). The algebraic representation on its



own does not scale when verifying multipliers. Researchers
implement various heuristics and optimizations that are spe-
cific to multiplier designs to achieve efficient and practical
results. A notable optimization is identifying the logic from
adder modules implemented in target multiplier designs [3],
(4], [15]-{17].

Example 1. 4(11()1 + 20,1[)0 + 2a0b1 + apag

Computer algebra methods have made a lot of progress
towards the multiplier verification problem. However, these
studies have focused mainly on isolated multipliers with
untruncated outputs and the same operand sizes (nxn-bit
multipliers with 2n-bit outputs). This makes it more difficult to
utilize them for real-world designs where truncation, shifting,
and integration with other arithmetic operations are common
(See Sec. II).

Ciesielski et al. [1] showed that their method could be
used for other multiplier-centric arithmetic operations, such as
MAC; however, they showed that they only verified multiplier
modules with regular structures. The benchmarks and their
verification tool are not provided. We do not know of any
publicly available tool that can scale and automatically verify
designs such as MAC and dot-product. The underlying theory
used by the computer-algebra methods may support verifica-
tion of such arithmetic circuits. However, some optimizations
that make these tools efficient may or may not be directly
applicable to modules beyond isolated multipliers.

Verifying multipliers whose output is truncated or shifted is
difficult for the computer algebra approach. Su et al. [18] dis-
cussed why computer algebra techniques are inefficient when
verifying truncated arithmetic circuits. They stated that in-
termediate expressions, which are manageable in untruncated
modules, can grow exponentially in truncated designs. They
suggested a method to reconstruct a truncated multiplier into a
complete multiplier by adding missing elements before verifi-
cation. They did not discuss the soundness of their approach,
their experiments were only on simple multipliers, and the
benchmarks and the tool are not provided. Kaufmann et al. [3]
suggested using modular arithmetic and defined a specification
in the ring Zon [X] where n is the multiplier output size. They
showed that this approach works on a simple multiplier model,
but our experiments with RTL designs resulted in time-out. We
are not aware of any computer algebra studies that can verify
truncated and/or shifted RTL multipliers.

C. Industrial Methods

Verification efforts of commercial multipliers often involve
a great deal of manual work. A common method is to create a
simple reference design that is structurally close (isomorphic)
to the original and then repeatedly equivalence-check a litany
of ever-increasingly complex designs [19]. Some engineers
verify reference designs using mechanized proof systems [20].
Another common analysis method is to decompose a design
into smaller parts, reason about these parts separately, and
then compose these proofs into a top-level theorem [21]-[23].
Finding a workable decomposition and combining individual
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proofs of multiplier fragments can be a cumbersome task.
Such methods help formal verification engineers verify various
multiplication operations such as multiply-accumulate and dot-
product; however, this usually entails extensive manual effort.
Moreover, these proofs are often design-specific, and even
a slight change in the design might cause a previous proof
procedure to fail.

IV. S-C-REWRITING ALGORITHM

In our previous work [7], we introduced a verified term-
rewriting algorithm that can verify a wide range of isolated
multiplier designs more quickly than the other state-of-the-
art tools. In this section, we summarize this term-rewriting
algorithm and discuss its recently discovered limitations.

We use the ACL2 theorem prover to verify and run our
multiplier verification tool. ACL2 is an interactive and auto-
mated theorem proving system, and a programming language
that is used by both industry and academia [24]. For a target
multiplier design, we try to prove conjectures of the form given
in Listing 1. defthm is a commonly used utility by ACL2
users, and it asks the ACL2 system to check conjectures. On
the left hand side, we specify symbolic simulation of a mul-
tiplier design representation. We use the SVL semantics [25]
to simulate designs, which are automatically translated from
Verilog (our verification tool can be used with other simulators
as well). The right hand side has the multiplier specification;
in this example, the target multiplier module returns a 128-bit
number equivalent to the multiplication of two 64-bit signed
numbers.

Listing 1. A correctness conjecture for a signed 64x64-bit isolated multiplier

(defthm multiplier_is_correct

(implies (and (integerp a)
(integerp b))
(equal (simulate :inputs (a b)

:design <signed_64x64_mult>)
(truncate 128

(» (signext 64 a)

(signext 64 b))))))

We prove such conjectures by rewriting both sides of the
equality to fixed final forms. We define two functions s (short
for sum) and c (short for carry) as given in Def. 1. The target
representations for the first few output bits of some modules
(half, full, vector adders, and multipliers) are given in Table I.
Our goal is to rewrite all such modules/operations to this form.
We call this s-c representation or s-c¢ form.

Definition 1. Functions s and c are defined as follows.
Vo € Z s(x) = moda(x)

Ve € Z ¢(x) = LgJ

While verifying multiplier designs, we wish not to work

with the logical definition of adder modules but instead work

with their s-c representations. The SVL semantics allow

hierarchical reasoning such that if we previously prove that

symbolic simulation of an adder module can be replaced with
this s-c¢ form, then the SVL system can use this form (as



TABLE I

TARGETED FINAL FORMS FOR SOME MODULES/FUNCTIONS
Function outa out1 / co + outg / So ¢t
Half-adder c(a+0b) s(a+b)
Full-adder cla+b+cin) s(a+b+cin)
Bit-vector s(az + b2 s(a1 + b1 s(ao + bo)
addition +c(a1 + b1 +c(aop + bo))
a+b +c(ao + bo)))
Bit-vector s(agba + a1b1 s(a1bo + aob1  s(aobo)
multiplication +azbo +c(aobo))
axb +c(a1bo + aob1

+c(aobo)))

opposed to the adder’s logical definition) while expanding
the definition of multiplier designs. Therefore, we first prove
that each distinct adder module can be represented with the
s-c form. We use a term-rewriting algorithm to carry out
the proofs for adder modules [7]. Since verifying adders
is straightforward [3], we omit this rewrite algorithm here
for brevity. After the adder proofs, we start verifying the
target multiplier design. As we expand the definition of the
multiplier, our program replaces each instance of its adder
modules automatically with their s-c representation.

Using the s-c form for adders instead of their logical def-
initions can bring about simpler expressions representing the
output bits of a multiplier. An example of such an expression
is given in Example 2 for a Wallace-tree multiplier with simple
partial products.

Example 2. The 4th LSB of a Wallace-tree multiplier output
when its adders are represented in the s-c form:

S( S( s(a3b0 + a2b1 + albg)
+a0b3
+c(a2b0 +a1by + aobg))
+c(s(agby + a1by + agbe) + c(a1by + agby)))

We rewrite such terms to make them syntactically equivalent
to our target final form. To do that, we define a set of lemmas
of the form [hs = rhs such that terms that match [hs are
replaced with rhs with appropriate term bindings. All lemmas
are proved using ACL2 and we omit the proofs here.

We investigated such terms from multiplier designs and
realized that we could rewrite and simplify nested calls of
s with Lemma 1. Rewriting with this lemma when applicable
can simplify the term from Example 2 to the form given in
Example 3.

Lemma 1. Vz,y € Z s(s(z) + y) = s(z + y)
Example 3. Example 2 simplified with Lemma 1:

S(agb() + (Lgbl + a1b2 + aobg
—|—c(a2b0 +aib; + aobg)
+c(s(azbo + a1by + aobz) + c(aibo + agb1)))
Now, we observe more than one instance of ¢ on the same

summation level. We rewrite and simplify them by a set of
lemmas. Lemmas 2-5 are applied to the term as rewrite rules,

where the function d is defined as Vz € Z d(z) = % Then,
we get the term in Example 4. This is syntactically equivalent
to our target form for the 4th output bit, and we can conclude
that the multiplier is correct for this output bit.

Lemma 2. Vz,y € Z c(z) + c(y) = d(z +y — s(z) — s(y))
Lemma 3. Vz,y € Z c(x) + d(y) = d(z + y — s(x))
Lemma 4. Vz,y € Z d(z) + d(y) = d(z + y)

Lemma 5. Vz € Z d(—s(z) + z) = ¢(z)

Example 4. Example 3 rewritten with Lemma 2-5:

s(a3b0 + asbi 4+ a1bs + agbs
+C(a2b0 + (11b1 + CLQbQ
+c(a1b0 —+ aobl)))

As Booth encoding can incorporate multiple input bits when
generating partial products, we can see operators for logical
gates (e.g., logical OR, XOR) when verifying Booth encoded
multipliers. We use a few more simple lemmas to simplify
terms from Booth encoding and we derive the same final
form. These lemmas, along with examples, are provided in
our previous work [7], and we omit them here for brevity.
These extra lemmas are triggered automatically when Booth
encoding is present, and they do not affect other proofs when
simple partial products are used.

Once we are done rewriting the left-hand side in Listing 1,
we rewrite the right hand side (specification) to the same form
through proved rewrite rules from our library. When we see
that the two sides are syntactically equivalent, we conclude
that the multiplier is correct.

Note that our target representation has a separate term for
each output bit whereas the computer algebra methods specify
all output bits with a single expression (see Example 1). This
makes it easier for our method to verify designs whose output
may be manipulated on bit level such as by truncating, shifting,
and bit-masking.

Example 5. The first instance of asby in Example 2 is replaced
by agb; to simulate a bug. Then, the rewriting algorithm
returned:

S( a3b0 + a2b1 + albg + a0b3
—|—d(—s(a2b1 + a1b1 + aobg)
—S(agbo + a1by + agbs + c(a1b0 + aobl))
+s(azbo + a1br + agbs)
+agby + a1by + apbs
+c(a1b0 + aobl)))

In our previous work, we did not investigate what happens
when the design has a bug and whether or not the algorithm
can work beyond isolated multipliers. If our program cannot
verify a multiplier for some reason, it returns a term rewritten
with our lemmas. For example, when we introduce a simple
bug to the term in Example 2, the described rewriting algo-
rithm will return the term given in Example 5. The resulting
term is larger than the initial term, and the gap can grow even
larger for big designs. When a proof attempt fails, either due



to a bug in the design or some problem with our verification
method, resulting terms are often very large and users do not
receive a useful feedback from the program.

A proof attempt might fail even when the target design is
correct. We have found such an instance and we could not
verify some Booth encoded merged multipliers (See Sec. II)
larger than 16x16-bit multiplication. Since the resulting terms
are so large, we could not understand if there was a missing
lemma that could help finish the proofs. We encountered
similar issues with some dot-product and MAC designs, and
we were likewise unable to verify them.

V. IMPROVEMENTS TO S-C-REWRITING

We have developed and experimented with various alter-
natives to the existing S-C-Rewriting algorithm. Our goal
is to verify designs beyond isolated multipliers and return
small terms if a proof attempt fails due to a design bug or a
problem in the verification system. We have found a rewriting
scheme that meets these goals. Instead of rewriting c terms
with Lemmas 2-5, we use only the new Lemma 6. Similar to
Lemma 1, this lemma extracts the arguments of inner s calls
but it also creates a byproduct —c(z).

Lemma 6. Vz,y € Z c(s(z) + y) = c(z +y) — c(z)

When the given designs are correct, this lemma helps
simplify multiplier designs without needing Lemmas 2-5. We
have also seen that when this lemma is used, proofs are
actually much faster for Booth encoded designs as well as
array multipliers by an order of magnitude (see Sec. VII).

For cases where a proof-attempt fails, we apply another
lemma (Lemma 7) to cancel out common terms shared be-
tween the specification and the design. After all our lemmas
are applied and the design is simplified, the rewriter compares
if the simplified design is syntactically equivalent to the
specification for each output bit. If they are not, then we
rewrite the term that represents the equivalence of these two
sides with Lemma 7.

Lemma 7. Vz,y € {0,1} (z =y) < (s(z+y) =0)

Lemma 6 and Lemma 7 help the program return a much
smaller term if a proof attempt fails. Assume that we are
rewriting a term that checks the equivalence of the term
from Example 2 to its specification (Example 4). When we
introduce the same bug from Example 5 to this term, our new
rewrite method will return the term in Example 6.

Example 6. When the same bug from Example 5 is rewritten
with the improved rewriting algorithm:

s( c(agbe + a1by + a2byp)
+c(a0b2 + a1b1 + CLle))
0

As seen in this example, the returned term is considerably
smaller than what we would get from the older algorithm
(Example 5). We have observed the same behavior with larger
multipliers so much so that the returned term can sometimes
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give a hint as to where the bug exists within the design.
Moreover, since these terms are often small, we use the
FGL [26] or the GL [27], [28] utilities in ACL2 to send
such returned terms to an external SAT Solver. We have seen
through our experiments (Sec. VII) that SAT Solver can return
a counterexample very quickly from simplified terms.

As noted in Sec. IV, proof attempts may fail even when
the design is correct. This was the case with our initial term
rewriting strategy for some Booth encoded merged multipliers
and some MAC and dot-product modules. Since the returned
terms are smaller with the modified term-rewriting, we could
find the source of the problem and determine the missing
lemmas needed to verify these designs. We found out that
we simply need to rewrite some c and s instances in terms of
logical operators (see Lemmas 8-11) when certain syntactic
conditions on their arguments are met. Those conditions are:
the arguments x, y and z (if available) need to be instances
of the logical AND (A) function only, and the operands in y
and z (if available) need to be a subset of the operands of z.
For example, we can apply Lemmas 8-9 if t =a AbAcAd,
y=aAc, and z = b A c but we cannot apply it if z=>bAe.
The resulting terms from these rewrites are simplified the same
way as Booth encoding logic. We have these strict syntactical
conditions so that the rewriting system is more deterministic
and there is minimal effect on the verification procedures
for other designs. We leave these lemmas enabled in our
program, and they help automatically verify the previously
failed designs, such as merged multipliers.

Lemma 8. Va,y,z € {0,1} c(x+y+2) = zAyVaAzVyAz
Lemma 9. Vz,y,z2 € {0,1} s(z+y+2) =Py 2
Lemma 10. Vz,y € {0,1} c(z+y) =z Ay

Lemma 11. Vz,y € {0,1} s(z+y) =z Dy

Additionally, we tested this method with another simulation
tool, SVTV [24], to show that our method does not have to be
used with the SVL system. The SVTV system sources designs
from Verilog and flattens them before (symbolic) simulation.
We found a way to mark the adder modules before flattening
to easily rewrite them in the s-c form. We omit the details here
for brevity, and the readers may refer to our online tutorials
for details (http://mtemel.com/fmcad21).

VI. IMPLEMENTATION

All of our rewriting system consists of lemmas of the
form [hs = rhs. When patterns found in conjectures match
lhs, they should be replaced by rhs. Since conjectures for
multiplier designs may yield very large terms, we implement
a scalable mechanism to find such patterns and apply our
lemmas.

We use a verified rewriter [29] that follows an inside-out
rewriting strategy [30], [31]. Example 7 shows how a rewrite
rule can modify a term from inside out. We can prove the
associativity of summation (see the upper-left corner) using
the existing libraries and the built-in axioms in ACL2. The



defthm event saves the proved lemma as a rewrite rule.
When this rewrite rule is in the system, we can apply it
to terms whenever the left hand side pattern finds a match.
Assume that this is the only enabled rule, and we would like
to prove another conjecture which contains the term shown on
the upper-right corner. Since the rewriter performs inside-out
rewriting, it will start with the innermost term to search for
matching patterns. The first match occurs for the following
bindings: a to x3, b to x4, and c to x5. With these term
bindings, the term is replaced using the right hand side of
the rewrite rule, and we obtain the term in the lower-left
corner. The rule can find another match on this new term.
After similarly rewriting this term, we obtain the term in the
lower-right corner.

Example 7. A target term is rewritten with a rewrite rule.

Rewrite Rule Target Term

(defthm sum-assoc (+ (+ x1 x2)
(equal (+ (+ a b) c) (+ (+ x3 x4) x5))
(+ a (+ b c))))

After the First Rewrite After the Second Rewrite

(+ (+ x1 x2)

(+ x3 (+ x4 x5)))

(+ x1
(+ x2
(+ x3
(+ x4 x5))))

Even though the rewriter dives into every subterm, it keeps
track of already processed terms and it does not attempt to
rewrite them again. For example, assume that x4 in the target
term from Example 7 is not a variable but it is a very large
term that is already rewritten. After the first rewrite, x4 will
have moved within the term. Since the applied rule has a fixed
pattern on the left and right hand sides, the rewriter knows
to not process x4 again. On the other hand, if there was
an applicable rule, the new subterm (+ x4 x5) could be
rewritten.

Our overall rewriting system follows this basic rewriting
strategy with many more lemmas that work together har-
moniously. Fig. 3 shows a flow diagram when the rewriter
processes a conjecture for multiplier designs. Assume that we
are using the SVL system for simulation, and the user has
already created rewrite rules for adder modules to represent
them in the s-c form. When the user states a conjecture for
the target multiplier design (see Listing 1) and submits it to
ACL2, the rewriter dives into the innermost terms to search
for applicable rules. The first subterm that it rewrites is the
symbolic simulation instance for the target multiplier design.

The SVL system simulates designs by executing all the
functional blocks (e.g., Verilog assignments and submodules)
and one by one calculating the values for all internal wires and
registers. As the rewriter is symbolically simulating an SVL
design, derived expressions for internal wires and registers
are tested against rewrite rules. If the rewriter encounters an
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Transition Conditions:

*« C1: Current term is an instance of
swh-run of an adder module

* C2 An Instance of an SVL simulation
function

» C& An instance of the s or o functions

= C& Some other term which may be
ravrittan by other rubes

= G5 Everything s rewritten

User states a conjecture
for a multiplier design

|
| The rewriter rewrites new
_——— [subjterms that appear in

Rewrite the adder -
the cument conjecture

modules tothesand e —
functions

Return the term

c2 /‘ 'L\
c3 :
from e s aafion Apoly athor rdes
Apply our lemmas for
the s and ¢ functions

Fig. 3. Steps taken by the rewriter when rewriting a conjecture for a multiplier
design

instantiation of an adder module, then it is replaced by the
s and c functions using the rules created by the user. If the
rewriter encounters some other module or an assignment, then
regular ACL2 expressions representing their functionality are
created from their logical definitions.

When new instances of the s and c are created after the
adder modules are rewritten, our lemmas for these functions
are triggered and our simplification algorithm is applied. For
example, when the new term is an instance of ¢ and one of its
arguments is an instance of s, then Lemma 6 will be applied.
If the arguments of the new s and c instances contain some
Boolean expressions, then our lemmas for Booth encoding [7]
are applied.

As the symbolic simulation of the circuit finishes, we get
a term that is completely rewritten with our algorithm. After
that, the system rewrites the right hand side (specification) to
the s-c form with other rewrite rules in our library, compares
the two sides syntactically, and exits. If the final term is t,
then we can conclude that the multiplier is correct. Otherwise,
we can investigate this term and/or send it to a SAT solver so
as to generate counterexamples or attempt to finish the proofs.

Note that our lemmas described in Sec. IV, Sec. V, and our
previous work [7] do not trigger an expensive rewriting chain
upon application. They each have an almost constant time
complexity. The slowest component of the rewriting algorithm
is lexicographical sorting of the terms in column summations,
which are expected to be very small sets as compared to the
overall size of the given design. Since our lemmas are applied
as the circuit’s definition is expanded and we never perform
a global search, we observe an almost linear time complexity
with respect to the design size as shown in the next section.

VII. EXPERIMENTS

We verified various multiplier designs using our tool and
applicable tools from related work. We ran our experiments on
an Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz computer
with 32GB system memory. We used three RTL multiplier



TABLE II
PROOF-TIME RESULTS IN SECONDS (ROUNDED) FOR VARIOUS
UNTRUNCATED, SIGNED ISOLATED MULTIPLIER DESIGNS

TABLE III
PROOF-TIME RESULTS IN SECONDS FOR SOME MULTIPLIER DESIGNS IN
VARIOUS CONFIGURATIONS

Size Architecture RS [4] AMu [3]  Prev [7] This work Function & 1/0 Size Architecture  AMu [3]  Prev [7] This work
64x64 sp-cwt-ks 39 42 1 5 16x16 = 16 usp-dt-hc TO .1 .04
sp-ar-rc 3 2 1 5 16x16 = 16 SSp-dt-hC NS .1 .04
sp-dt-bk 5 2 1 5 16x16 = 16 ub4-dt-hc TO 1 .06
b4-wt-hc 154 28 1 1 16x16 = 16 sb4-dt-hc NS .1 .05
b2-wt-he 123 7 4 ! 20x40 = 60 ub2-wt-rp NS 3 1
b4-dt-ks 17 28 1 1
20x40 = 60 sb2-wt-rp NS 3 .1
bd-dt-csel 19 > 4 ! 33x17 = 40 b4-wi-h NS 2 1
bd-0s-bk 15 5 6 1 X g rwie ' '
bd-wi-csu )1 5 5 ) 33x17 = 40 sb4-wt-hc NS 2 1
b4-bdt-hc 131 6 5 2 64x64 = 64 ub4-dt-hc TO 1 5
b4-rbat-ks 19 7 5 2 64x64 = 64 sb4-dt-hc NS 1 4
b4-ar-veska 17 5 12 2 64x64 = 64 (r. shifted)  ub4-dt-hc NS 2 1
b4-4:2-1f 30 5 8 3 64x64 = 64 (r. shifted)  sb4-dt-hc NS 2 1
b4-7:3-bcla 44 TO 12 6
bd-wt-cla 2 14 21 12 64x64 = 128 ub4-mdt-ks 45 F 1
64x64 = 128 sb4-mdt-ks 44 F 1
128x128  sp-cwt-ks 1001 TO 3 2 64x64 = 128 ub2-mdt-If 61 F 1
sp-ar-rc 96 10 20 2 64x64 = 128 sb2-mdt-1f 59 4 1
bd-wi-he 10 803 13 4 2(32x32)+32 = 66 sbd-dt-he NS F 1
bd-diks 73 85 8 4 2(32x32)+32 = 66 sb4-os-bcla NS F 1
256x256  sp-cwt-ks TO TO 16 7 2(32x32)+32 = 66 sb4-bdt-csu NS F 1
sp-ar-rc 2416 176 556 11 2(32x32)+32 = 66 sb4-ar-csel NS F 1
b4-wt-hc TO TO 62 15 2(32x32)+32 = 66 sb4-4:2-rp NS F 2
b4-dt-ks TO TO 47 15 2(32x32)+32 = 66 sb4-7:3-bk NS F 3
512x512  sp-wt-If TO 1577 76 44 64x64+128 = 128 ub4-dt-ks NS 2 1
sp-dt-bk TO 1562 64 40 64x64+128 = 128 sb4-dt-ks NS 2 1
b4-wt-hc TO TO 418 65 64x64+128 = 129 sb4-dt-hc NS F 2
ba-dt-ks TO TO 282 71 TO: Time-out (5400 secs) NS: Configuration is not supported by the tool.
1024x1024 sp-wt-1f TO 14005 345 240 F: Failed proof-attempt. The tool returns a large rewritten term.
sp-dt-bk TO 13247 397 220
bd-wt-he TO TO MO 288
b4-dt-ks TO TO MO 300 not provide competitive results for the designs in question.

MO: Out of memory (32GB) TO: Time-out (5400 secs./90 mins. for 64x64
and 128x128 multipliers, 16200 secs./270 mins. for the rest)

generators [32]-[34] to generate isolated multipliers, MAC,
and dot-product designs. The benchmarks and our tool are
available online (http://mtemel.com/fmcad21).

We verified various architectures with different configura-
tions. For partial product generation algorithms, the designs
use either simple partial products (sp), Booth encoding radix-
4 (b4) or radix-2 (b2). Summation tree reduction algorithms
include counter-based Wallace (cwt), array (ar), Dadda (dr),
traditional Wallace (wf), overturned-stairs (os), balanced delay
(bdt), redundant binary addition (rbat), 4-to-2 compressor
(4:2), 7-to-3 compressor (7:3) trees, and merged multipliers
with Dadda tree (mdt). For final stage addition, these multi-
pliers implement Kogge-Stone (ks), ripple-carry (rc), Brent-
Kung (bk), Han-Carlson (hc), Ladner-Fischer (If), carry-select
(csel), conditional sum (csu), variable-length carry-skip (vc-
ska), block carry-lookahead (bcla) and regular carry-lookahead
(cla) adders.

As far as we are aware, there are only two other publicly
available tools from two different research groups that can ver-
ify these complex architectures for isolated multipliers. These
are computer-algebra-based tools RevSCA2 [4] (shortened as
RS) and AMulet 2.0 [3], [35] (shortened as AMu). The tools
from other studies are not publicly available and/or they do
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RevSCA2 does not produce certificates and it is not verified.
AMulet provides certificates to check the validity proofs by
external tools; we include the certification time in our results
(they can be around 3 times faster without certification). The
verification tools from our previous and current work are
verified using ACL2; thus, no additional check is required.

Table II delivers the proof-time results in seconds for signed
and untruncated isolated multipliers. Our previous work scales
substantially better than (RS [4]) and (AMu [3]) but the
performance is not as strong for Booth encoded designs. Our
improved rewriting algorithm is much faster than our previous
work and others, and it can verify even very large Booth
encoded multipliers in at most 5 minutes.

Table III delivers proof-time results for various architectures
and configurations. This includes truncated or right shifted
outputs, merged multipliers, multipliers with different operand
sizes, two-point dot-product designs with accumulate, and
truncated or untruncated MAC modules. The designs in this
table are produced with two different generators [32], [33].
AMulet has a hard-coded specification and does not support
many of these configurations. Users can determine the design
specifications for our previous work, but our older tool can-
not prove some merged multipliers, dot-product, and MAC
designs. On the other hand, our new method could verify all
of them very quickly.

Table IV shows how the proof-time performance of our tool



TABLE IV
OUR TOOL’S PROOF-TIME RESULTS IN SECONDS FOR SIGNED MAC AND
DOT-PRODUCT DESIGNS

Dot-product length

Size N=I N=2 N=4 N=8 N=16
N(2x32) 02 0.5 10 20 45
N(32x32)+64 0.2 0.5 0.9 1.9 42
N(64x64) 0.9 19 38 82 19
N(64x64)+128 0.9 18 37 77 17
N(128x128) 35 78 18 35 81
N(128x128)4256 3.5 76 15 33 76
N(256x256) 15 kD) 67 151 356
N(256x256)4512 14 30 64 144 340

All designs use Booth radix-4 encoding, Dadda tree and Ladner-Fischer adder.

TABLE V
OUR TOOL’S PROOF-TIME RESULTS IN SECONDS FOR OUR EXAMPLE
MODULE, INTEGRATED MULTIPLIERS, DESCRIBED IN SEC. II-C

Mode ) SVL ) _ SVTV )
Signed  Unsigned Signed  Unsigned
1-lane MAC 1.0 0.9 2.8 2.9
4-lane MAC (lower half) 1.0 0.9 2.8 2.8
4-lane MAC (upper half) 1.0 1.0 3.0 2.9
4-point dot-product 1.8 1.2 44 34
8-point dot-product (seq.) 4.9 29 145 10.1

scales on dot-product designs with different sizes. Even though
it is not shown here, allocated system memory scales similarly.
Finally, Table V shows the proof-time results for our example
module integrated multipliers (see Sec. II-C) for both the SVL
and SVTV simulation systems.

In addition to the designs reported here, we have also
verified some private industrial designs at Centaur Tech-
nology with a similar performance. These designs include
multiply-accumulate, dot-product, multiplication of signed and
unsigned numbers, truncation, right-shifting, rounding, and
saturation. Our program is not designed to handle branches
implemented for saturation. Therefore, after our program sim-
plified the saturated designs, we sent the resulting terms to
a SAT Solver (glucose [36]) with the FGL utility [26], [37],
and we have seen that proofs finished successfully in a few
seconds.

We have also tried our tool on buggy designs and used
a SAT solver (glucose [36]) to create counterexamples from
simplified terms. We randomly inserted (one or more) bugs
into various 64x64-bit, 128x128-bit, and 256x256-bit designs
and experimented with 20 different scenarios. Our tool rewrote
each multiplier design and returned simplified terms within
the same amount of time as given in Table II. It took the SAT
solver between 0.1 to 10 seconds to return a counterexample
from rewritten terms. Our previous tool could not be used in
this workflow because it returns massive terms when proof-
attempts fail (see Sec. IV). Using the SAT solver with the
original conjecture (in other words, without rewriting with
our tool) could give a counterexample in some cases after
a few minutes, but it timed out (60 minutes) in the majority
of cases. Additionally, our tool can tell exactly which output
bits are mismatching the specification. With our new method,
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we see that our term-rewriting strategy can be very practical
and efficient for debugging flawed designs.

VIII. CONCLUSION

We have presented a term-rewriting method that can be used
to verify digital circuit designs with embedded integer multi-
pliers. Our tool is efficient, automated, and provably correct.
We have shown that we can verify isolated multipliers as large
as 1024x1024-bit in less than 5 minutes. Our system allows
the user to modify the specification per the target design.
Therefore, we can verify multipliers with unusual operand
sizes, whose output may be truncated, right-shifted, rounded
or saturated. In addition, we can verify other multiplier-
centric arithmetic operations such as dot-product and multiply-
accumulate. Our library and tutorials are distributed with the
ACL2 system, and this content is available online for public
use (http://mtemel.com/fmcad21).

This work has been a continuation of our earlier study [7].
With the improvements detailed in this paper, we can verify
Booth encoded designs with a much better proof-time effi-
ciency, along with MAC, dot-product, and merged multiplier
designs. In addition, we can now generate counterexamples for
buggy designs. Moreover, we provide a more comprehensive
summary of various multiplier design techniques and discuss
why they might be challenging for verification tools.

We use the ACL2 programming language and interactive
theorem prover to run and verify our multiplier verification
tool, and we use the SVL semantics as our preferred method
to simulate Verilog designs. However, our term rewriting algo-
rithm does not require any specific feature from a particular a
theorem prover or anything unique to the SVL system. Using
a term rewriter and a simulator with hierarchical reasoning can
be enough to implement our algorithm on any platform.

We have exploited design hierarchy when implementing our
algorithm, whereas the other state-of-the-art tools [3], [4] work
on flattened designs. We should note that these tools more or
less depend on the original design having clear boundaries for
adder modules for their good proof-time performance in the
majority of cases. Our choice to use a symbolic simulation
system that allows hierarchical reasoning reduces engineering
costs and simplifies our program. This way, we do not need
to implement any detection algorithm for adder logic. If
necessary, using our term-rewriting algorithm for flattened
designs might be possible by implementing some preprocess-
ing techniques to reconstruct the design hierarchy. On the
other hand, incorporating hierarchical reasoning into computer
algebra methods may help improve their performance.

We continue to exercise and improve our method with ever
more complex designs such as floating-point multiplication.
We have laid a groundwork to permit verification procedures
with improved automation and efficiency. The convenience
that comes with our fast and automatic verification process can
contribute to building reliable hardware systems that include
embedded integer multipliers of varying sizes, including but
not limited to general-purpose processing units, image proces-
sors, digital signal processors, and secure cryptoprocessors.
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Abstract—IC3 is a highly-effective algorithm for formal hard-
ware verification. It cleverly uses a SAT solver to compute an
inductive invariant, an over-approximation of reachable states,
of a hardware design. The invariant is computed in CNF as
a conjunction of lemmas. This CNF representation over state
variables, although efficient, leads to an obvious deficiency: IC3 is
not effective for designs that do not have a concise CNF invariant
over state variables. We show how to remedy this deficiency by
extending traditional IC3 to learn invariants not only in terms of
state variables, but also in terms of internal signals of the design.
Our proposed method can learn significantly more compact
invariants than IC3, while maintaining a highly-efficient CNF
representation. We evaluate our technique on several industrial
sequential equivalence checking (SEC) problems from IBM, SEC
problems derived from designs in the Hardware Model Checking
Competition (HWMCC) and SEC problems from academia. In
addition, we evaluate it on HWMCC benchmarks. IC3 with
internal signals is efficient for SEC and outperforms traditional
IC3 on an important class of benchmarks.

I. INTRODUCTION

IC3 [1], [2] is a powerful algorithm for formal hardware
verification, and is the primary model-checking engine in
various state-of-the-art formal verification tools. IC3, and its
several variants [3], is especially useful for establishing system
safety (i.e., discovering an inductive invariant). Whenever 1C3
succeeds in proving safety, it finds an inductive invariant
justifying the property. Traditionally, such an invariant is a
conjunction of lemmas represented in CNF, each lemma is
a disjunction of literals, and each literal is either a state
variable or its negation. Conversely, IC3 does not succeed in
proving a property when it is unable to find such an inductive
invariant within the specified verification-resource limits. This
can happen for one of two reasons: (i) a small inductive
invariant exists but IC3 is unable to find it, or (ii) a small
inductive invariant does not exist. It is difficult to determine
which of these two cases is responsible for IC3 failing to prove
a property. Most research on improving IC3 (e.g., [4]-[6])
focuses on quickly finding the inductive invariant. However,
finding the inductive invariant quickly can only help if a
(reasonably) small invariant exists in the first place.

A known Achilles heel of IC3 are model-checking problems
for which any inductive invariant (over state variables) is
necessarily exponential in size. For example, let z;,...,z, be
state variables, and suppose that the set of reachable states is
characterized by {z1,...,2, | x1®- - -®x, = 1}, while the set
of bad states is characterized by {z1,...,2, | 21D - Dz, =
0}. In this case the (only) inductive invariant is exponential in
size and contains 2"~ ! clauses that correspond to representing
1 D --- D x, = 1 in CNFE. With n = 3, the inductive
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invariant contains four clauses: (—z1 V —z2 V x3) A (-2 V
o V x3) A (a1 V —xe V —xg) A (21 V 22 V 23). A possible
work-around is to extend the design with additional signals
that are necessary to concisely represent an invariant. In this
example, IC3 extended with a lemma over z =21 G- - - P xp,
can find a tiny inductive invariant consisting of only a single
unit-clause lemma: (z = 1).

This leads to the question of which additional signals to
consider. A possible solution is to consider variables that
represent logic gates in the transition relation of the system
model. We refer to these as internal nets or innards. Prior
work [7] uses innards to extend ternary valued simulation of
counterexamples to induction in IC3, which enables a succinct
description of the set of states that IC3 must eventually block.
In this paper, we propose an approach based on learning
lemmas directly over innards that improves the performance
of IC3 in establishing safety by finding more concise inductive
invariants. Our method of learning lemmas over internal nets
can be viewed as a form of inductive generalization. A lemma
is first generalized as usual, and then literals corresponding
to latches are replaced by internal nets. Specifically, whenever
IC3 learns a lemma C over state variables, it also tries to
learn an additional lemma C5 over state variables and internal
signals. To this end, we first extend C' to a lemma C;
that is logically equivalent to C but contains the literals of
C and (certain) internal nets. We obtain C5 by inductively
generalizing C7, while guiding the inductive generalization to
remove state variables. It is guaranteed that Cs is stronger than
C. Therefore, Cs blocks the same states (and maybe more) as
C'. We then add lemma C5 to IC3’s inductive trace, so that it
can be used for predecessor queries and convergence checks.
A major advantage of our approach is that it can be easily
integrated with any existing mature IC3 implementation.

Our work is motivated by a challenging set of microproces-
sor verification problems that arise from the Aspect-Oriented
Design (AOD) methodology used at IBM. The verification
problem checks sequential equivalence of an original design
against a new version of the design with added aspects (e.g.,
clock-gating, logging, or debug interfaces). The complex veri-
fication challenge is broken into many sub-tasks using a com-
bination of the usual sequential equivalence checking (SEC)
approaches, including k-induction, speculative reduction, and
localization [8]—[11]. Verification sub-tasks that are not solved
by these techniques are then checked using Interpolation-based
Model Checking (IMC) or IC3. Traditional IC3 scales very
poorly for these verification problems. On the other hand, IMC
works rather well but is not stable — small changes in the
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design negatively impact verification times. The proposed IC3
algorithm with internal signals significantly outperforms both
IMC and traditional IC3.

The proprietary nature of IBM AOD verification problems
prohibits detailed public disclosure. Nevertheless, we apply
the IBM AOD sequential equivalence checking flow on two
selected benchmarks from the Hardware Model Checking
Competition (HWMCC) to validate equivalence between the
original design and its retimed [12] versions. Each such
equivalence-check generates hundreds of verification problems
of which some are solved by k-induction, but a significant
number remain unsolved. We note that IC3 with internal
signals is more effective than traditional IC3 in solving the
remaining equivalences for both SEC problems. We also
apply our algorithm on a small set of publicly available SEC
benchmarks [13] from academia, and note that our proposed
algorithm is able to solve a higher number of equivalences
compared to traditional IC3. This suggests that using internal
nets in IC3 is especially effective for difficult sequential
equivalence checking problems.

To further validate the efficacy of IC3 with internal signals,
we apply the proposed algorithm to a variety of single-property
benchmarks from HWMCC. However, the technique does not
show a significant improvement unlike our experience with
IBM AOD and other benchmarks. There are a few HWMCC
benchmarks that are solved significantly faster and some that
are uniquely solved by our algorithm, but overall, traditional
IC3 is superior. Interestingly, the number of designs where
the new technique succeeds increases in the latest competition
editions that are based on word-level designs. This points
to a deficiency of any benchmark set — the distribution of
problems in the set does not necessarily correspond to their
distribution in practice. Techniques that perform well on only
a few benchmarks in the set, might actually be very effective
in some practical application!

The rest of the paper is organized as follows. Section II
provides the necessary background. Section III describes mo-
tivating examples to highlight the core deficiency of IC3
addressed by our approach. Section IV describes the IC3
algorithm with internal signals, while Section V reports on
our experimental evaluation. Section VI discusses related and
future work, and Section VII concludes.

II. BACKGROUND
A. Safety Verification Problem

We represent a finite state transition system S as a tuple
(1,2, Init(z), Tr(i, z,x")), which consists of primary inputs ¢,
state variables z, predicate Init(x) defining the initial states,
and predicate Tr(i, z, ') defining the transition relation. Next-
state variables are denoted as 2’. We assume that Tr is
represented as a netlist, that is, a directed acyclic graph with
nodes corresponding to logic gates. Given the values of x
and 4, the values of ' may thus be uniquely computed by
(constant) propagation — i.e., using Boolean or three-valued
simulation. We say that a net is either an input, a state variable
or a logic gate. We refer to state variables and their negations
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as latches, and to internal logic gates and their negations as
innards. We say that an innard is input-free if it does not have
any inputs in its combinational cone-of-influence.

A clause is a disjunction of literals, where each literal is
either a net or its negation. We say that a clause is over
latches to emphasize all the literals in the clause are latches.
A Boolean formula in Conjunctive Normal Form (CNF) is a
conjunction of clauses. A cube is a conjunction of literals.
A Boolean formula in Disjunctive Normal Form (DNF) is a
disjunction of cubes. It is often convenient to treat a clause
or a cube as a set of literals, a CNF as a set of clauses, and
DNF as a set of cubes. For example, given a CNF formula F,
a clause c¢ and a literal ¢/, we write ¢ € ¢ to mean that £ occurs
in ¢, and ¢ € F' to mean that ¢ occurs in F.

A trace is a sequence of Boolean valuations to the nets,
starting with an initial state satisfying In:t and with successive
time-step valuations consistent with 7Tr. Reachable states,
denoted by Reach, are states that can be reached on a trace.
Let Bad(x) be a predicate defining bad (or unsafe) states.
The safety verification problem consists of checking whether
Reach = —Bad, that is either finding a trace that leads to a
state in Bad or showing that such a trace does not exist.

B. Traditional IC3

We give a very brief and high-level description of IC3,
concentrating on the components that are relevant for this
work. This description includes the classical IC3 algorithm [1],
[2], and some of its variants such as [6]. In what follows, we
refer to all these algorithms simply as IC3.

IC3 proves safety by finding a formula In (x), called a safe
inductive invariant, that satisfies the following conditions:

Init(x) = Inv(x) (1)
(In ()N i Tr(i,x, ")) = In (z) ()
In (z) = —Bad(z) 3)

The computed formula In (z) is in CNF over latches. In-
ternally, IC3 maintains sets of clauses Fp, F1,... called an
inductive trace. Each F}, in a trace is called a frame, each
clause ¢ € F}, is called a lemma, and the index of a frame
is called a level. We assume that Fj is initialized to Init and
that Init = —Bad. IC3 maintains the following invariant:

Fy = Inat Fry1 C Fy, Fk/\TT’éF];_,'_l

Note that the inductive trace maintained by IC3 is syntactically
monotone, and each Fj; is inductive relative to Fj. Let
Reach<j, denote the set of states reachable from Init in k
steps or less. It holds that Reach<j; = Fy, ie., Fj is an
over-approximation of states reachable in k steps or less.
Additionally, IC3 maintains a queue of proof obligations
(or CTTI’s) of the form (m, k) where m is a cube over latches
and £ > 0 is a level. At each point of the execution, it
considers a proof obligation (m, k), and makes an initial query
SAT?(Init A—m) that checks whether a state in m is an initial
state, and a predecessor query SAT?(—m A Fp_1 A Tr Am/)
that checks whether a state in m can be reached from a



state in Fj_q. If both results are unsatisfiable, IC3 can add
the lemma —m to all F}, for j < k, refining the inductive
trace. However, for performance it is crucial to inductively
generalize —m first, finding a lemma ¢ C —m, that also
satisfies Init = ¢ and ¢ A Fy_1 A Tr = ¢’ (some IC3-
variants such as Quip also keep an under-approximation of
Reach and modify Init to include this under-approximation).
The inductive generalization is typically done by removing
literals from —m while the two conditions remain satisfied.
We refer the reader to [3] for more details.

IC3 periodically pushes all lemmas, by checking if a lemma
© € Fy \ Fi4+1 can be added to Fj; as well. If at any point,
Fy, = Fi41 and F), = —Bad, then we can take Inv = Fj, as
the safe inductive invariant.

III. MOTIVATING EXAMPLES

In this section, we motivate our work with several examples.
Each is a series of problems such that inductive invariants in
CNF over latches grow exponentially, while the corresponding
inductive invariants over latches and innards grow linearly. The
examples are sketched briefly here, we provide full details with
AIGER and source files in the companion repository.! Note
that the examples are distilled to their essence. For some, the
property itself is inductive. Thus, traditional IC3 that learns
invariants over latches and the property is able to solve them.
However, the illustrated problems remain when the examples
are parts of a larger design, and the property is more complex
and is no longer inductive on its own.

Example 1 (Parity) Let xq,...,x, be the latches. The set
of reachable states is characterized by {x1,...,2, | 21 ®
-+ @ x, = 1}. The set of bad states is characterized by
{z1,...,2y | 21 ® -+ ® x, = 0}. Note that the only safe
inductive invariant over latches has 2" ! clauses representing
1 P ---Px, = 1 in CNFE Yet, there is a safe inductive
invariant consisting of a single lemma, (z = 1), for the innard

Z:J;l@@l'n O

Example 2 (from [14]) Consider two counters that count
modulo-2", whose state bits are s = (sg,...,S,—1) and
t = (to,...,tn—1), respectively. Let ¢ be an input. When ¢ = 0
both counters keep their values; when ¢ = 1 both counters
increment their values by one modulo 2". Suppose that the
initial state is {s # t}, and the bad state is {s = t¢}. The
work [14] argues that any safe inductive invariant for the usual
IC3 must contain at least 2" lemmas. Furthermore, there is a
much smaller safe inductive invariant for the Reverse IC3 that
consists of 2n lemmas required to represent s = ¢ in CNF.
With innards, there is an inductive invariant consisting of a
single lemma, (z = 1), for the innard z = (s # t).

Example 3 (SEC) This example illustrates a sequential
equivalence checking problem between an original and a
retimed [12] design. Let the ‘“original part” of the design
consist of latches x1,...,x, and inputs 41, ...,i,, such that
init(zy) = 0 and next(xy) =iy for k =1,...,n, and a net

O

Uhttps://github.com/agurfinkel/innard- benchmarks.
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z=121D - -Dx,. Let the “retimed part” of the design consist
of anetu =14 @ - Di, and a latch v with init(v) = 0
and next(v) = u. Let the the bad state be {z # v}. The only
safe inductive invariant is v <> (x1 ® - -+ ® x,,), that consists
of 2™ lemmas in CNF. With innards, an alternative invariant

requires only two lemmas: v — z and z — v. O

Example 4 This example is motivated by the benchmark
rast-pl6 from HWMCC’20. The design contains latches
T1,...,T, and yi1,...,Yy, and innards z; = x1 A Y1, ...,
Zn = Tp A Yn. Assume that the lemma C' = (21 V -+ V z,)
over innards is inductive. Representing C' in CNF over latches
requires 2" lemmas. For example, for n = 3, the lemma
(21 V 23 V z3) is equivalent to 8 lemmas (z1 V z2 V x3),
(:Cl VoV yg), (Il Vya V Ig), (171 Va2 V yg), (y1 VoV Ig),
(Y1 Va2 Vys), (Y1 Vya V), (Y1 Vy2Vys).

a

IV. FINDING LEMMAS OVER INNARDS

In this section, we provide an overview of our approach
(Sec. IV-A), followed by an algorithm for extending IC3
lemmas with innards (Sec. IV-B), and finally an algorithm for
inductive generalization in the presence of innards (Sec. IV-C).

A. The overall approach

Traditional IC3 learns lemmas by inductively generalizing
negations of blocked proof obligations. Both proof obligations
and lemmas are over latches. These lemmas are then added to
IC3’s inductive trace and used in future predecessor and con-
vergence checks. In our approach, proof obligations are also
over latches (exactly the same as in traditional IC3), however,
we extend learning lemmas over both latches and innards.
Our results apply to arbitrary innards, but for simplicity of
presentation in the rest of the paper, we restrict to input-free
innards, calling them simply innards. Note that unlike [7], our
restriction is for presentation only. Throughout the section, we
use the following running example.

Example 5 Let w, x,y, z be latches and ¢ be an input. Let
Init
Tr

éw/\a:/\y/\z
£ (W =-w)A @ =w)A @Y =w)A
(g=aAy)AN(h=gNi)A(z' =h)

This design has two gates: g =z Ay and h = g A i, where g
is input-free and h depends on the input ¢. Hence, the set of

(input-free) innards is {g}. o

We extend IC3 to reason about innards in the initial state
and the next state. To this end, let 17r;,, be th/e\part of the
transition re/lgtion that defines innards, and let Init £ Init A
Trinn and Tr 2 Tr A Tryy,,. In Example S,

(g=xAvy) I/nﬁzlm't/\(g:m/\y)
Tr="TrA(g =2 AYy)

Trinn

where ¢’ is a copy of g in “the next state”. The following
definition extends relative induction [1] to lemmas over latches
and innards.


https://github.com/agurfinkel/innard-benchmarks

Input: Frame k, Lemma C' over latches, s.t. C' is
inductive relative to Fj,
Output: Lemma C5 over latches and innards, s.t. C is
inductive relative to Fj
1 C; « ExtendLemma(C)
2 (3 < InductivelyGeneralize(k,Ch)
3 return Csy

Fig. 1. Procedure LearnAdditionalLemma.

Definition 1 A lemma C over latches and innards is induc-
tive relative to a set of lemmas G iff (i) Init = C, and
) GATrAC = C".

Def. 1 generalizes the original definition: if a lemma C
over latches is relatively inductive in the original sense of [1],
then C' is also relatively inductive by Def. 1. In what follows,
by relatively inductive, we always mean Def. 1. Continuing
our running example, let C' = (w V z) (note that C' is over
latches), and C; = (w V x V g) (note that Cy is over latches
and innards). Then, both C' and C are inductive relative to
G = T. Note that Init = C, TATrANC = C’, Init = Oy,
T A TrACy = Cf hold.

The following lemma shows that using relatively inductive
(in the sense of Def. 1) lemmas in IC3 is sound.

Lemma 1 (Soundness) For any lemma C' over latches and
innards, if Init = C and F; AN Tr AN C = C' hold, then C
includes R<y11 (all the states reachable in up to k+ 1 steps
from Init). In particular, C can be added to IC3’s inductive
trace up to the frame k + 1.

Our approach of learning lemmas over innards is a
form of inductive generalization. Each time that IC3
blocks a proof obligation and learns a (relatively induc-
tive) lemma over latches, we generalize it into an (addi-
tional) lemma over latches and innards. The overall algorithm
LearnAdditionalLemma is shown in Fig. 1. We give
a high-level overview of LearnAdditionalLemma, while
the details of key functions are described in later sections. The
approach consists of two steps:

Step 1: The procedure ExtendLemma extends lemma C' (over
latches) to a lemma C7; = C V Cy (over latches and innards)
such that Tr;,, = (C & (), i.e. C and C; are equivalent
modulo 77r;,,. The details are in section IV-B. For instance,
in our example lemmas C = (w V z) and C; = (wV x V g)
are equivalent, given that ¢ = x A y. Indeed, modulo 77 ;,,:
(wvzVvg) =wVaeV(zAy)) = (wV ). It also follows
(see Lemma 1) that C; remains relatively inductive.

Step 2: The procedure InductivelyGeneralize induc-
tively generalizes C; by removing literals, while prioritizing
removal of latches (the original literals of C'), and more gener-
ally trying to leave only the “intereresting” innards. The details
are in section IV-C. In our example, lemma C; = (wV zV g)
can be generalized to Cy = (w V g).
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By construction, it follows that Cs remains inductive rela-
tive to Fj. Moreover, as Tri,, = (C < (), and Cy = (4,
then Cy is potentially stronger than the original lemma C' (but
the converse might not hold). In our example, Cy = (wV g) is
equivalent to (wV (zAy)) = (wVz)A(wVy), ie. the lemma
Cs over latches and innards represents two different lemmas
over latches only. It is also interesting to note that while the
original lemma C' was over latches {w,z}, the “additional”
lemma (w V y) is over a different set of latches {w, y}.

Whenever ExtendLemma does not add any innards to
C, the procedure LearnAdditionallemma stops imme-
diately, without calling InductivelyGeneralize. How-
ever, note that even when ExtendLemma adds new lit-
erals, it is possible that InductivelyGeneralize re-
moves them, resulting in the original lemma C! When
LearnAdditionalLemma returns a lemma Cy that is dif-
ferent from C, C5 is also added to IC3’s inductive trace (up
to frame Fj,_), and hence is also used in future predecessor
and pushing queries.

B. Extending lemmas with innards

The procedure ExtendLemma receives a lemma C' over
latches as input and returns a lemma C; over latches and
innards as output. It iteratively finds innards z such that
Trinn = (2 = C) and replaces C' with C' V z. It works
as follows: instead of searching for an innard z that implies
C, it searches for all innards —z that are implied by —C'
and take their negations. Specifically, given a lemma C =
(c1V-+-Vep,), we set each ¢; € C to 0 and find which innards
are implied by constant propagation in the 7'r;,, part of the
netlist. The algorithm for constant propagation in a netlist is
standard and is not presented here.

Going back to our running example, given a lemma C =
(w V z), we are looking for innards implied by the partial
assignment (w = 0)A(x = 0). Since g = x Ay, by propagation
we obtain that ¢ = 0. Thus, modulo Tr;,,, g = C, and
hence C' is equivalent to (C'V ¢g) = (w V z V g). Note that
by not considering input-free innards only (recall, we consider
only input-free innards for simplicity of presentation), then, by
propagation, we would also obtain that h = (g A i) = 0. This
would allow us to extend C' to (CVgVh)=(wVzVgVh).
The following lemma follows by construction.

Lemma 2 Given lemma C over latches, the procedure
ExtendLemma returns a lemma C4 over latches and innards
such that Tri,, = (C1 & C).

Corollary 1 Let C' and Cy be lemmas over latches and
innards respectively, such that (i) C is inductive relative to
some G, and (ii) Trip, = (C1 < C). Then, Cy is also
inductive relative to G.

We remark that extending lemmas with literals that imply it
is closely related to asymmetric literal addition [15] in SAT.
We also remark that the condition that the original lemma C' is
over latches is not essential, and ExtendLemma can be used
to extend lemmas that already have innards in them. This may
be potentially useful for additional IC3 extensions.



Input: Frame k, lemma C over latches and innards, s.t.
C' is inductive relative to Fj,
Output: (Inductively generalized) lemma Cs C C over
latches and innards, s.t. Cy is inductive relative
to I},
1 C + SortLemma(C) // C={c1,...,cn}
2fori=1,...,n do
3 if ¢; has already been removed from C then
‘ // do nothing
4 else if Tr;,, = ((C'\ ¢;) & C) then
5 ‘ C+C \ C;
6 | elseif Init = C\ ¢; and
Fy ATrA(C\ )= (C\c;) then
7 C+C \ C;
8 for j=i+1,...,ndo
9 if ¢; not used in the above proofs then
10 | C+C\¢
11 else
12 | break
13 return C'
Fig. 2. Procedure InductivelyGeneralize: inductively generalizes

lemmas over latches and innards.

C. Inductively generalizing lemmas with innards

Inductive generalization in traditional IC3 starts with a
relatively inductive lemma C' over latches (satisfying the
conditions Init = C and F A Tr A C = C’ with respect
to a given frame Fj), and attempts to remove literals from C
as long as C' remains relatively inductive. The same procedure
can be immediately applied to a lemma over latches and
innards, once Init and Tr are used instead of Init and Tr,
respectively. However, we found that a naive application of
inductive generalization gives poor results. In most cases,
it simply removes the innards that were previously added
by ExtendLemma, and therefore, ends up with the original
lemma over latches. Moreover, regular inductive generalization
does not exploit possible dependencies between innards.

Fig. 2 shows a variant of inductive generalization that is
better suited for generalizing lemmas over innards. The first
step (line 1), consists of sorting the nets in the lemma, from
the nets that we want to remove most to the nets that we want
to remove least. In particular, we want to prioritize removal
of latches, so as to obtain a different lemma that we started
with. In our current implementation, we sort the nets by their
logic level, so that latches have the lowest level and deeper
nets in general have higher level. This way deeper nets are
considered “more interesting” and the algorithm attempts to
remove shallower nets first. Other heuristics can be considered
as well, e.g., sorting the nets by the size of the supporting logic,
or even dynamic heuristics that measure the activity of a net
in previously generalized lemmas.

The main loop (lines 3—-12) corresponds to inductive gen-
eralization in regular IC3: essentially, we remove literals of
C one by one, as long as C remains relatively inductive. We
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provide a detailed description of one iteration of the loop.
Suppose that c; is the literal under consideration.

1) Note that multiple literals can be removed from C in a
single iteration of the loop (this optimization is also present
in regular IC3 inductive generalization), so at the start of the
iteration (line 3), we check if ¢; has already been removed. If
so, nothing needs to be done.

2) Lines 4-5 correspond to a special optimization that exploits
dependencies between innards: in some cases, we can detect
that ¢; can be removed without requiring a SAT query. For
instance, ¢; can be removed when one of the following
conditions holds:

(i) ¢; =anb, witha € C,

(i) ¢; =a Vb, with a,b € C, or

(iii) there is an innard d € C' with d = ¢; V b.

For example, suppose that C = (aVe¢Vd) and {d = (bVe)} €
Trinn. Then, modulo Tri,,, C < (C\ ¢), ie. (aVcVd)
can be replaced by (aVd). This closely corresponds to hidden
literal elimination technique in SAT [16], and can be viewed
as the inverse of the argument used in ExtendLemma.

3) Line 6 checks whether ¢; can be remO\E(l using two SAT-
queries. One query checks the validity of Init = (C'\ ¢;), by
checking whether Init A =(C'\ ¢;) is unsatisfiable. The other
query checks the validity of Fi A Tr A (C'\ ¢;) = (C"\ ¢}) by
checking whether Fi, A Tr A(C\ ¢;) A—=(C’\ ) is unsatisfiable.
If both of these queries are unsatisfiable, ¢; can be removed.
4) IC3 has the following standard optimization based on
considering which of the literals of (C'\ ¢;) were potentially
required for unsatisfiability: if ¢; € C was not required
for either checks, then ¢; can be removed. This is typically
implemented by passing the literals of —(C' \ ¢;) via SAT
assumptions and analyzing the set of conflicting assumptions; a
mechanism supported by most modern SAT-solvers, following
MINISAT [17]. However, simply removing all non-required
literals regardless of their order in C' is more likely to remove
the “more interesting” literals that we want to keep. So, our
variant of this optimization (lines 8-12) only removes non-
required literals with respect to the order. As an example,
suppose that C' = (¢1 Ve V ez Veg Ves Ve ) (in this order),
and that only the literals ¢4 and ¢ were potentially required
for unsatisfiability queries involving C' \ ¢;. In addition to
removing c;, we also remove co and c3, but not c5, and at the
end of the iteration of the loop, C' = (c4 V ¢5 Ve ). Intuitively,
this works better because leaving c5 in the lemma increases
the chances to remove c5 and to leave ¢ (and not vice versa)
on the following iterations of the loop. Lastly, in most cases
an assumption-based SAT-solver applies assumptions in the
order as they are given, hence, the assumptions appearing
earlier are more likely to remain (while later assumptions
are more likely to be removed). Therefore, when performing
the SAT queries, we reverse the order of assumption literals,
for instance when checking whether c¢; can be removed from
C=(c1VeaVesVeyVes Ve ), the assumptions are ordered
from ¢ to ¢y (and not from ¢y to ¢ ).

Note that during the regular inductive generalization (i.e.,



when computing the original lemma over latches) it is benefi-
cial to make multiple passes over the main loop (lines 3-12).
However, when generalizing lemmas over innards, performing
multiple passes has not proven to be useful, so we only
perform a single pass.

Lemma 3 Given a lemma C over latches and innards, the
InductivelyGeneralize procedure returns a lemma Co
that is relatively inductive with respect to Fy.

Going back to our running example, suppose that C
(wV z V g) is inductive relative to Fj, = T. The procedure
SortLemma is not likely to change the order of nets, as the
latches already appear first. On the first iteration of the main
loop, we attempt to remove w, but this fails as the SAT query
TATrA(zVg)A—z' A-g is satisfiable. On the second
iteration, we attempt to remove x, and succeed, reducing C
to (wV g). Finally, we attempt to remove g, which again fails.
The final lemma returned by the algorithm is Cy = (w V g).

V. EXPERIMENTS

In this section, we present our experimental results. The
techniques described in this paper are implemented in the IBM
formal verification tool Rulebase: Sixthsense Edition [18]. In
what follows, we denote by IC3 the default variant of IC3
used by the tool (see [6]), and by IC3-INN the variant with the
additional learning of lemmas over innards. For these experi-
ments, we restrict to input-free innards. Table I summarizes the
experiments. The table contains the benchmark set (explained
in detail later), the number of instances in this set, time-limit
per instance, and the data on performance of IC3 and IC3-INN.
All the instances either are or expected to be unsatisfiable.
For both IC3 and IC3-INN, we list the number of solved
instances, and in parentheses — the number of uniquely solved
instances (that is, not solved by the other configuration), and
the cumulative runtime in seconds. Next, we describe each
benchmark set in detail.

A. IBM-AOD-SEC

This set of benchmarks comes from checking sequential
equivalence between two designs in the Aspect Oriented
Design flow at IBM. This SEC problem is very challenging,
and is traditionally solved as described in [8], [9], using spec-
ulative reduction to reduce the problem into multiple simpler
(but still hard) sub-problems. These are then solved using
a dedicated engine configuration consisting of combinational
rewriting, k-induction, localization, and, eventually, a proof-
based technique like IC3. Historically, Interpolation (IMC)
was used for the final step. Generally IMC works well, but
unfortunately, it’s not stable — small changes in the design
or in the solving configuration significantly affect verification
times. While trying to find an alternative configuration, it
was discovered that IC3 performs very poorly, while IC3-INN
significantly outperforms all other approaches.

In total, there are 3605 sub-problems. Each sub-problem
contains 1-45 properties, 11-165 state elements, 126-2 290
inputs, and 754-15924 gates. The (input-free) innards on
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Fig. 3. Performance of IC3 and IC3-INN on AOD SEC benchmarks.
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average constitute 3% of the gates. For this experiment, we
run both IC3 and IC3-INN with a time-limit of 300 seconds
per problem. Referring to Table I, regular IC3 peforms very
poorly: it can solve only 2562 of the sub-problems and times
out in the 1043 remaining cases. On the other hand, IC3-INN
performs extremely well: it can solve all of the problems, with
the maximum run-time being only 36 seconds. Interestingly,
IMC performs much better than IC3 on this set of problems
and is also able to solve all problems (albeit about 13 times
slower than IC3-INN). See the cactus plot in Fig. 3a for the
detailed comparison between IC3, IC3-INN, and IMC.

A further comparison consists of comparing the number of
lemmas in the safe inductive invariants discovered by IC3 and
IC3-INN respectively. The scatter plot Fig. 3b shows this data
for the 2 562 instances solved by both configurations. We can
see that IC3-INN discovers invariants that are significantly
more compact, with the inductive invariants discovered by
IC3-INN being on average 12x smaller than the invariants
discovered by IC3. This partially explains the success of IC3-
INN compared to IC3 on this set of benchmarks.

We also give data on the effectiveness of
LearnAdditionallLemma, averaged across all 3605
test-cases. On average, the original lemma C (over
latches) has 7 latches; ExtendLemma adds 10 innards;
InductivelyGeneralize shrinks the lemma to 2
latches and 1 innards. The average logic level of innards
is 7. Thus, LearnAdditionalLemma is able to produce
significantly shorter lemmas using deep innards in the design.

Unfortunately, this benchmark set is proprietary and cannot
be publicly released at this time.

B. 65119-SEC, 6522-SEC

Inspired by the success of IC3-INN on internal IBM bench-
marks, we tried to manually create similar test-cases starting
from publicly available benchmarks. Specifically, we have
taken several HWMCC designs, and created problems to check
sequential equivalence between the original design and the
retimed design [12]. We have further applied the SEC flow
described above, consisting of breaking the main problem into
multiple sub-problems using speculative reduction. It turns
out that creating interesting benchmark sets in this way is
non-trivial: in many cases the speculatively reduced problems
turn out to be very easy, in many other cases some of these
speculatively reduced problems turn out to be satisfiable (in



TABLE I
SUMMARY OF EXPERIMENTAL RESULTS

benchmarks #instances  time-limit per instance = IC3 solved (unique) IC3 time IC3-INN solved (unique) IC3-INN time
IBM-AOD-SEC 3 605 300 2 562 (0) 424 885 3 605 (1 043) 2 465
6s119-SEC 364 600 364 (0) 2 906 364 (0) 1207
6s22-SEC 310 600 262 (22) 32 701 278 (38) 24 774
AES-SEC 16 3 600 13 (0) 11 186 15 (2) 5 601
HWMCCl11 278 3 600 277 (6) 40 186 272 (1) 55 557
HWMCC17 76 3 600 76 (0) 7 963 76 (0) 11 221
HWMCC20 192 3 600 190 (5) 35 907 187 (2) 41 448
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Fig. 4. Runtime of IC3 and IC3-INN on 6s119-SEC and 6s22-SEC.

the real SEC flow this would trigger refinement and another
speculative reduction). Nevertheless, we have created two
benchmark sets 6s22-SEC and 6s119-SEC, available at https://
github.com/agurfinkel/innard-benchmarks. The set 6s119-SEC
consists of 364 rather easy problems, so that both IC3 and
IC3-INN can solve all of them within 600 seconds, with IC3-
INN being about 2.4x faster. The set 6s22-SEC consists of
310 problems, out of which IC3 can solve 262 problems and
IC3-INN can solve 278 within 600 seconds. Please refer to
Table 1. Again, IC3-INN performs better than IC3, and is on
average 1.3x faster. A more precise comparison is given in
scatter plots in Fig. 4. A detailed comparison against IMC
is not included as on both sets of problems IMC performs
significantly worse than either IC3 or IC3-INN (for instance,
within 600 seconds IMC cannot solve 64 out of 364 problems
even for the easy set 6s119-SEC).

C. Other SEC benchmarks; AES-SEC

As far as we know, there are no publicly available large SEC
benchmark sets. HWMCC competitions do include several
SEC benchmarks. However, in general we do not know which
benchmarks come from SEC or what kind of application they
represent. We believe it would be valuable to have a dedicated
repository for SEC benchmarks.

The AES-SEC benchmark set was used in [13]. We have
obtained this set from the authors of [13] in BTOR format,
and translated it to AIGER. The AIGER benchmarks are
available at https://github.com/agurfinkel/innard-benchmarks.
In total, there are 16 problems, 12 of which turn out to be
very easy for both IC3 and IC3-INN. Out of the 4 remaining

Fig. 5. Runtime of IC3 and IC3-INN on HWMCC benchmarks.

problems, IC3 can solve 1, and IC3-INN can solve 3. Please
see Table I for details.

D. HWMCC benchmarks

We have run extensive experiments on the single-
property benchmarks from HWMCC’11, HWMCC’17 and
HWMCC’20 competitions (for the latter, we used the bench-
marks in the AIGER format). In each case, we run simple
combinational reductions prior to running IC3, and used the
time-limit of 3600 seconds. In Table I, we only report data
for passing benchmarks that were solved either by IC3 or IC3-
INN. In general, IC3-INN performs worse than IC3 both in
terms of the number of properties solved and the total runtime.
Detailed comparisons are presented as scatter plots in Fig. 5.

Table II presents data for 4 selected benchmarks. The
benchmark rast-p16 is very interesting: regular IC3 times out,
yet IC3-INN solves the testcase in just 2 seconds. Futhermore,
this benchmark was solved by relatively few tools in the
HWMCC’20 competition. By closely examining the lemmas
learned by IC3-INN exposed the pattern from Example 4
from Section III. In other words, IC3-INN learns lemmas
over innards, each equivalent to a very large number of
lemmas over latches. This potentially explains the success
of IC3-INN in this case. Another noteworthy benchmark is
zipversa_composecrc_prf-pl10, which IC3-INN solves under
5 minutes, and which was solved only by one tool in the
HWMCC’20 competition. The other two benchmarks ex-
posed a certain inefficiency in our current implementation of
IC3-INN. One can check that there are significantly more
innards in the selected test-cases (and in HWMCC test-
cases in general) as compared to IBM-AOD-SEC designs.
The procedure InductivelyGeneralize starts taking a
significant portion of the overall runtime, which negatively
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TABLE 11
SELECTED DESIGNS FROM HWMCC’20

Benchmark #gates #innards IC3 time IC3-INN time
rast-pl6 3019 332 timed-out 2
zipversa...prf-p10 1688 694  timed-out 282
h_RCU 920 442 3410 timed-out
dspfilters_fastfir..p45 21301 5289 2381 timed-out

affects performance of IC3 when the lemmas over innards do
not seem to help.

VI. RELATED AND FUTURE WORK

The technique presented in this paper can be viewed as
an extension of regular IC3 that simply learns an additional
lemma during inductive generalization. As such, it is reason-
ably easy to integrate it in an existing IC3 implementation.
The main technical point being replacing Init by Init and Tr
by Tr in IC3’s SAT queries. The key difference with other
inductive generalization schemes (see for instance [3]) is that
we are able to learn lemmas over both state variables and
internal nets, which, in some cases, may exponentially reduce
the size of the inductive invariant.

Backes and Riedel [7] also exploit internal nets in the
design. However, the two approaches are very different: [7]
uses input-free innards to generalize proof obligations (POBs),
while we use arbitrary innards to generalize lemmas. Addi-
tionally, [7] uses only input-free innards (and, in fact, only
the nets on the boundary between input-free and non input-
free parts of the netlist), while we use all internal nets.
Even more importantly, in our work the decision of which
innards to include in the lemma was based on the ability to
inductively generalize this lemma and not whether the innards
are “boundary” or not. Above notwithstanding, it is interesting
to combine the two approaches, i.e., to allow both proof-
obligations and lemmas over internal nets. It is also interesting
to more carefully integrate our approach with Quip [6]. Quip
uses negations of lemmas as proof obligations, which would
also introduce innards into POBs.

Another very interesting direction for further research is to
extend the approach to learn lemmas over signals that are not
present in the original netlist. Our framework allows such an
extension: by including additional logic into the netlist (that is,
creating additional innards), we would be able to learn lemmas
over this new logic (even if this new logic is not in the cone-
of-influence of the original problem!). This is closely related
to implicit predicate abstraction of Tonetta et al. [19] that is
used to lift propositional IC3 to SMT-based logics.

Finally, we believe that there is a lot of room
to improve the current implementation. Currently, when
there are many innards in the design, the procedure
InductivelyGeneralize may require a large number of
SAT queries, and, hence, may take a considerable portion of
the overall runtime. Possibly, one can find better heuristics
of which innards to consider (e.g., only to consider innards

with high logic level, or only to consider higher-priority
innards), or find more efficient procedures to perform inductive
generalization (e.g., instead of the top-down approach that
removes literals one can consider a bottom-up approach that
adds literals). In the worst-case, if learning additional lemmas
takes a considerable amount of time, but does not seem useful,
the technique can be simply turned off.

A further extension of our approach is to allow lemmas
to be arbitrary formulas, not restricted to clauses in CNF.
This is commonly done in SMT-based extensions of IC3 algo-
rithms. For example, Sally [20] uses arbitrary SMT-formulas
as lemmas, and Spacer [21] uses clauses over complex First
Order signature. However, these techniques are difficult to
port efficiently in the context of Hardware Model Checker
since they rely on dynamic cnfization that is common in SMT-
solvers but not in SAT-solvers.

VII. CONCLUSION

Currently, IC3 is unquestionably the most effective tech-
nique for formal symbolic model checking. It has received a
lot of research attention, and has been extended in variety of
ways including better inductive generalization, better lemma
management, and search direction. However, one significant
hidden limitation remains — IC3 is limited to learning inductive
invariants in CNF over the latches (i.e., state variables) of
the design. Therefore, IC3 cannot be effective for any design
whose invariant has no concise CNF representation. No im-
provements in core IC3 parts can solve this problem.

In this paper, we propose to address this limitation by
extending IC3 to learn lemmas not only over latches, but
also over internal signals, that we call innards. We show
learning lemmas over innards is a natural generalization of
inductive generalization. Instead of simply dropping literals
to strengthen the lemma, we propose to replace literals by
internal signals that are forced by them. We also propose sev-
eral improvements to a naive strategy that lead to significantly
improved performance.

Our work is motivated by a specialized set of Sequen-
tial Equivalence Checking (SEC) benchmarks at IBM. These
benchmarks have been traditionally difficult for IC3, but not
for Interpolation (IMC). However, the performance of inter-
polation was not stable — being affected by small changes in
the verification flow. Our new implementation excels on these
benchmarks and leads to an order of magnitude improvement
in performance.

Unfortunately, similar performance gains do not manifest
on the publicly available HWMCC benchmarks that are the
de-facto metric for academic model checking research. We
believe this shows deficiency in the currently available bench-
marks. Techniques that might be effective in industry might
be missed by researchers since they do not perform well on
these benchmarks. To remedy this, we identified some publicly
available benchmarks, and created new benchmarks based on
SEC flow, that illustrate the advantage of our technique. We
hope this can stimulate further research and improvements to
IC3.



In the current work, we assume that the design is fixed, and
use internal signals that are already available. We think that
this opens an interesting direction by allowing IC3 to change
the design by synthesizing new innards that are useful for
a current verification run. This brings IC3 and interpolation
much closely together, and also paves way for bringing al-
gorithms from hardware verification to software verification,
and/or to word level.
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Abstract—We extend the well-established assumption-based
interface of incremental SAT solvers to clauses, allowing the
addition of a temporary clause that has the same lifespan as
literal assumptions. Our approach is efficient and easy to im-
plement in modern CDCL-based solvers. Compared to previous
approaches, it does not come with any memory overhead and does
not slow down the solver due to disabled activation literals, thus
eliminating the need for algorithms like IC3 to restart the SAT
solver. All clauses learned under literal and clause assumptions
are safe to keep and not implicitly invalidated for containing an
activation literal. These changes increase the quality of learned
clauses, resulting in better generalization for IC3. We implement
the extension in the SAT solver CaDiCaL and evaluate it with the
IC3 implementation in the model checker ABC. Our experiments
on the benchmarks from a recent hardware model checking
competition show a speedup for the average SAT call and a
reduction in number of calls per verification instance, resulting
in a substantial improvement in model checking time.

INTRODUCTION

Modern SAT solving is based on Conflict-Driven Clause
Learning (CDCL) [1]. Many applications require solving a
sequence of related SAT problems incrementally [2], [3],
making use of inprocessing techniques [4], [5], [6] that make
modern SAT solvers so efficient. Among those applications
is the symbolic model checking algorithm IC3. In contrast
to other incremental SAT-based techniques, such as bounded
model checking (BMC) [7], [8] and k-induction [9], [10],
IC3 does not rely on unrolling the transition function. As a
result the SAT queries that IC3 poses are significantly smaller
and faster to solve. However, the number of queries that IC3
makes over the course of one model checking procedure is
significantly higher. We illustrate the kind of queries that IC3
makes in the following example.

o0

Fig. 1. Transition system

Consider the transition system of a three-bit (bobibg)
counter, encoding integers up to seven, in Fig. 1. Non-
deterministically, the counter is incremented, remains un-
changed or is reset to zero after reaching five. Suppose we
want to ensure that starting at state zero, all states with
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values greater than five are unreachable. A typical query asks
“is state six reachable from any other state?”, expressed as
SAT?T A (=by V =by V bg) A by A by A b, where T
encodes the transition system for one step from bybiby to
bbby It is unsatisfiable, telling us that state six is in fact
unreachable. We can try to generalize this result to a set of
states by considering a cube — an assignment to a subset of
variables. The query SAT?[T A (=by V bg) A by A —by] is
satisfiable because state two can be reached from state one
and SAT?[T A (—bs V bg) A by A —by] is satisfiable due to the
transition from state three to state four. However, the query
SAT?[T A (—by V —by) A b, AbY] is unsatisfiable, allowing us
to conclude that all states in the cube by A by are not reachable
from outside the cube. We can use that insight to strengthen
T by adding -4, vV =] to all future queries. This is in contrast
to the clauses we previously added for only one query.

The popular assumption-based interface pioneered by
MiniSat [2], [8] allows the user to specify a set of literals that
are assumed to be true and picked by the solver as the first
decisions. This allows us to add the assumption that a state
is within a certain cube after the transition (b5 A b)), however
we still need to assume an additional clause encoding that the
state is currently not within said cube (—bs V —b1). The most
common way to implement clause assumption, is to simulate
the desired behavior using activation literals [8], [11]. Let C
be a clause to add temporarily and a, the activation literal, a
free variable, i.e., it does not occur in the formula. By adding
C'Va to the formula and assuming —a, we achieve the same as
adding C to the formula. After a solution is found, the clause
a is added, effectively removing C' from the formula.

The problem with IC3 specifically, is the large number of
queries made over the course of a single verification procedure.
After a few hundred calls the activation literals clutter up the
variable space and slow down the SAT solvers propagation.
The common solution to this problem is to fully restart the
SAT solver by replacing it with a fresh instance periodically,
thus also deleting all learned clauses and heuristic scores. How
to schedule these restarts in IC3 specifically, has been the topic
of a full journal paper [12]. Using the technique presented in
this paper, restarts are not necessary at all. Additionally learned
clauses are safe to keep and will not contain an activation
literal, which would make them useless for future calls.

Other approaches to clause assumption have been explored:
The logic solver Satire [13] supports pseudo-Boolean and
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other constraints. It records the dependencies of learned
constraints explicitly, thus allowing the deletion of arbitrary
clauses. In the SMT community, an interface based on pushing
and popping on the assertion stack is prevalent [14]. Since
constraints are removed in order, it is possible to mark a point
in the data structures that maintain learned knowledge and
remove everything past it, when a pop operation is executed.
The first implementation of IC3 [15] used the SAT solver
Zchaff [16]. It assigns an additional 32-bit integer to each
clause. When learning a clause the bits of all dependencies are
combined. The user can delete a group of clauses with a certain
bit. This approach mostly simulates the use of activation
literals and comes with a significant memory overhead.

This paper presents an extension of the prevalent assumption
mechanism to additionally allow the assumption of a single
clause, called constraint in the following. The extension can
be implemented by a simple modification to the decision
mechanism in a CDCL-based SAT solver. We implemented
it in under 100 lines of code in the state-of-the-art SAT solver
CaDiCaL. To evaluate our implementation we modify the IC3
engine in the model checker ABC to use CaDiCaL and clause
assumption. As a first result, the changes simplify SAT solver
usage and eliminate the need for restarts as well as some book-
keeping for activation literals. An empirical evaluation on the
2019 hardware model checking competition [17] benchmark
set shows that ABC spends less time outside of computing
SAT queries, the number of queries per verification is reduced
and the average SAT call is faster. Overall using clause
assumptions yields a substantial speedup in verification time.

INCREMENTAL SAT AND IC3

An incremental SAT solver solves a series of related formu-
las efficiently. It communicates with an application integrating
it through an inferface such as IPASIR [11]. It is implemented
by all solvers participating in the incremental library track of
the SAT Competition since 2015. The popular solver MiniSat
along with all of its incremental descendants implement some-
thing very similar. We describe the relevant subset:

e add (1lit) Add a literal to the current clause or if it
equals 0, add the clause to the formula.
assume (1it) Assume the literal to be true for the next
solving attempt.
solve () Return SAT if an assignment exists satisfying
the formula and all assumptions, otherwise UNSAT.
val (1it) Valid in SAT-case. Return the truth value of
a literal in the satisfying assignment.
failed(lit) Valid in UNSAT-case. Return true if the
literal was assumed and used to prove unsatisfiability.

A prominent applications of incremental SAT-solving is the
symbolic model checking algorithm IC3 by Bradley [15].
Given a transition system and a property P, IC3 tries to prove
that it is not possible to reach a state that violates the property.
It maintains a sequence of frames Fy, F, ... F}, each frame F;
is a formula encoding an overapproximation of the set of states
reachable in at most ¢ steps. The frames are refined by adding
additional clauses until one of the frames contains all reachable
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states and none violates the property or a counterexample is
found. Each frame has its own SAT solver instance that is
initialized with an encoding of the transition function and
updated with the new frame clauses.

The solvers are used almost exclusively to answer queries
for predecessors of the form SAT?[T A F; A —s A s'], where
T is the transition function and s is a cube. To refine the
frames, a state s in the last frame that violates the property
is identified with the query SAT?[F}, A —P). If no such state
exists, a new frame is appended, otherwise IC3 tries to prove
that the state is not actually reachable. The frames are queried
for predecessors until an initial state is reached, thus producing
a counterexample, or one of the frames returns unsat. In the
latter case failed can be used to generalize the unreachable
state to a cube, the negation of which is added to the frame.
IC3 is guaranteed to eventually terminate with two consecutive
frames containing the same set of states.

ASSUMING CLAUSES

Our main contribution is an extension to incremental SAT
solvers that allows the assumption of an additional clause,
called constraint, which is only valid during the next satisfia-
bility query. Two functions are added to the interface:

e constrain(lit) Adds a literal to constraint. If a
finalized constraint exists, delete it. If the literal equals
zero, finalizes the current constraint.

e constraint_failed() Valid in UNSAT case. Re-
turn whether constraint was used to prove unsatisfiability.

Our approach is similar to the idea of model elimination [18].
We modify the decision heuristic to restrict the search to
assignments that satisfy the constraint. The modified decision
procedure is outlined in Fig. 2. The function decide is called
initially at decision level 0. Decisions assigned to the trail
are propagated outside of the function to assign truth values.
Whenever a conflict arises, the decision level decreases and
the assignments are backtracked [1]. Every assumption has a
fixed decision level. In the case where an assumption is already
satisfied, a pseudo decision level is introduced. Otherwise if an
assumed literal is assigned to false at this point, the assignment
is the result of propagating other assumptions together with
original or learned clauses. Therefore the formula is proven
unsatisfiable under the current assumptions if line 4 is reached.

At the first decision level after all assumptions have been

assigned, three cases need to be considered: if one of the
literals in the constraint is already satisfied, the search is not
restricted. Otherwise one of the literals is picked as a decision
to satisfy the constraint. In line 13 a variable selection heuristic
can be used to pick the most promising literals first, similarly
to [19], [20]. In the case where all literals are assigned to false,
they are implied by the assumptions, thus cannot be assigned
differently. The formula is therefore declared unsatisfiable
under the assumptions and the constraint. This might only
happen after additional clauses have been learned.

This approach to handle assumptions was pioneered by

MiniSat [2]. It has been improved upon by collectively propa-
gating the assumptions, using trail saving between incremental



decide ()

if level < lassumptions|
¢ = assumptions[level]
if val({) = false
analyzeFinal()
else if val({) = true
level++ // pseudo decision level
else trail[level++] = ¢
else if level = lassumptionsl|
unassignedLit = 0
for ¢ in constraint
if val(¥) = true
level++ // pseudo decision level

13 else if val({) = unassigned

14 unassigendLit = ¢

15 if unassigendLit = 0

16 analyzeFinalConstraint() // cannot be satisfied
17 else trail[level++] = unassigendLit

18 else

19 ¢ = literalSelectionHeuristic()

20 trail[level++] = ¢

Fig. 2. Algorithm decide picks the next decision to propagate.

calls [21] or factoring out assumptions [22]. These techniques
can be combined with the presented constraint mechanism.

Modern SAT solvers not only report unsatisfiability as a
result, but also allow the user to query whether a particular
assumption failed, i.e., was used to prove unsatisfiability. This
concept, introduced as analyzeFinal by MiniSat [23], is
essential for the efficiency of many applications. If an original
or learned clause is inconsistent with the assumptions, the
last assumption picked as a decision is already assigned to
false. Using a simple breadth-first search, the reasons for
this assignment can be traced back through the implication
graph [1]. The assumptions at the leaves of the search tree
are marked as failed. In line 16, a similar search is initialized
with the negation of every literal in the constraint. Thus, all as-
sumptions necessary to prove unsatisfiability of the constraint
in conjunction with the formula are marked as failed.

EXPERIMENTS

We implemented the constraint interface in CaDiCal [24]
version 1.3.1. To increase confidence in the correctness of
the SAT solver and its new extension, we used the model-
based tester [25] that is integrated with CaDiCaL. It generates
random sequences of API calls including assumptions and
constraints together with random configurations for the solver.
The returned models and failed assumption sets are checked
for correctness. We ran the tester on 8 cores for multiple days
to validate 1.2 billion test runs.
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To evaluate our approach, we integrated CaDiCaL into the
bit-level model checker ABC! [26], replacing the integrated
version of MiniSat [2]. There are two places where acti-
vation literals are used in ABC. The first is an alternative
implementation of cube generalization, that is not used in the
default configuration. In fact, it seems to not work correctly
in the default version of ABC!. The other usage of activation
literals is in the function that implements the predecessor query
SAT?[T A F; A —s A §']. The transition function 7' and the
frame F; will only be extended with additional clauses, the
cube s however changes at each query. The next-step cube s’
is in conjunction with the rest of the formula and therefore
translates to a set of unit clauses that can be implemented
with assumptions. To combat the slowdown due to unused ac-
tivation literals cluttering up the variable space, ABC replaces
the SAT solver with a new instance after adding 300 activation
literals. Using the extended interface, the negated cube —s can
be added as a constraint, thus eliminating the restarts.

We tested five configurations: the original version of
ABC (Og), disabled SAT solver restarts (Di), a version with
CaDiCaL as backend using activation literals (Ca) and one
also using CaDiCaL but the new constraint interface instead
of activation literals (Co). As an additional result we present a
slight modification to the last configuration that defers model
reconstruction [6] in the SAT-case and failed literal collection
in the UNSAT-case until a model or a failed literal is queried
respectively (De). Using a heuristic to pick the literals from
the constraint has not been successful. ABC uses a priority
metric to order the literals of the cube s by default. Using
this order for the constraint turned out to be superior to the
heuristics available in CaDiCaL.

Our evaluation follows the principles laid out in SAT
manifesto v1.0. [27]. The source code used for the evaluation
and the generated log files are available on our website?. The
experiments are run in parallel on 32 nodes of our cluster.
Each node has access to two 8-core Intel Xeon E5-2620 v4
CPUs running at 2.10 GHz (turbo-mode disabled) and 128 GB
main memory. We allocate 4 instances of ABC to every node.
The time limit is set to 1 hour of wall-clock time, memory
is limited to 30GB per instance. The memory limit is the
only aspect that differs from the setup used in the hardware
model checking competition. However, the maximum memory
consumption was observed to be below 1.5GB.

The evaluation is based on the benchmark set used in
the 2019 model checking competition [17]. It contains 219
instances, 15 of which we removed because they were not
solved by any tested configuration. We use PAR-2 scoring
to compare the configurations. PAR-2 assigns the runtime in
seconds or twice the time limit (7200) if an instance was not
solved. The other columns list additional measurements for
the two configurations using CaDiCaL, one with activation
literals (Ca) and the other using constraints instead (Co).
The number of restarts is zero if constraints are used and
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TABLE I
EXPERIMENTAL RESULTS.

PAR-2 Res. Calls TpC

Di Og Ca Co De Ca Ca Co Ca Co
Mean 80 46 16 893 821 61 19 15 0.61 0.51
beemTele6Int 136 7200 53 181 101 520 157 574 024 0.27
toyLock4 7200 483 1731 357 359 7459 2251 1098 0.42 0.25
visArraysField5 7200 1.6 0.58 51 34 1 1 113 0.53 041
nan 208 421 163 158 140 1381 420 423 029 0.32
beemColl6Int 241 258 322 133 108 398 123 91 231 124
calll0 213 168 130 110 122 191 59 42 1.96 2.39
call09 179 197 102 117 86 110 34 44 2.71 244
cal93 186 136 121 118 140 206 63 58 1.69 1.8
cal94 127 160 115 95 131 171 52 41 194 2.1
call00 112 42 67 67 54 148 45 44 123 1.29
call31 46 44 77 58 60 136 42 35 1.58 141
call46 47 39 71 42 38 131 41 23 1.51  1.55
call36 34 46 59 43 35 100 31 23 1.62 159
call28 52 38 46 37 40 99 31 25 1.29 1.27
beemExit5Int 51 17 26 16 15 357 110 86 0.18 0.15
call34 38 47 50 48 36 79 25 26 1.72 157
call32 39 36 48 42 32 83 26 24 1.57  1.54
call44 30 34 41 33 42 64 20 17 1.7 1.64
beemLampNat5Int 26 23 23 35 31 193 61 102 028 0.3
cal89 16 14 32 33 25 68 22 18 123 1.6
beemRether4Bstep 13 4.29 16 7.16 6.99 91 29 13 042 0.49
beemBrp2Int 16 5.1 36 076 0.74 86 29 7 0.08  0.07
beemFrogs2Bstep 247 253 12 559 474 31 10 4 112 1.27
beemAdding5Int 1.78 39 207 1.12  1.09 53 17 11 0.08 0.07
visArraysTwo 135 289 389 057 0.55 99 30 5 0.09  0.07
Heap 2.02 1.9 338 1.68 1.63 57 22 13 0.11  0.09

Disable restarts, Original version of ABC, CaDiCaL backend, Constraint interface used, Defer model reconstruction

therefore not shown. Besides that, we list the number of SAT
calls (in thousands), along with the average time per call in
milliseconds. Table I presents the measured data for instances,
where at least one configuration took more than two seconds,
along with an average over all 204 instances.

Comparing the first two columns, it is evident that if
activation literals are used, solver restarts are necessary. It has
been suggested [12] that because the queries posed by IC3 are
small but numerous, IC3 implementations should prefer faster
SAT solvers to more powerful ones. Comparing the original
with the CaDiCaL version shows that while using MiniSat is
faster on a number of instances, using CaDiCal. seems to be
an advantage on the harder instances. In fact, using the newer
SAT solver, one additional instance can be verified. Over all
instances a speedup of 2.82 is observed.

With the version using CaDiCaL and activation literals as
a baseline, we observe a speedup of 1.84 when switching to
constraints. The time spend outside the SAT solver is reduced
to below 20%, by eliminating the actual SAT solver restarts
and the repeated loading of the transition relation [28]. Beyond
that, the average SAT call is 16% faster. This can partially be
explained by the solver not being slowed down by activation
literals. We conjecture that, more importantly, the “quality”
of the learned clauses in the solvers database is higher. Since
clauses are not deleted by restarts and none of the learned
clauses are implicitly disabled for containing an activation
literal, the solver can profit from shorter and more useful
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clauses. Measuring this quality however, is outside the scope
of this paper. An additional effect is that these clauses allow
conflicts earlier in the search tree, resulting in fewer failed
literals and thus allows for better generalization in IC3. This
can explain why 21% fewer calls are made.

The last two columns listing PAR-2 scores reflect small
changes in the solver. Deferring the model reconstruction
results in an additional speedup of 9%, increasing the total
speedup compared to the original version to 5.64.

CONCLUSION

We present a simple extension to the commonly used
incremental SAT solver interface IPASIR that simplifies solver
usage and is easy to implement by modern SAT solvers. The
extension gives an alternative to the techniques described in
the journal paper [12] and partially implemented in ABC.
Our experiments using the new technique with ABC show
a substantial improvement in model checking time. Compared
to the original IC3 engine, our final implementation is more
than five times faster.

Handling more than one constraint can be achieved by using
a complete model elimination search over the constraints.
This would however increase the implementation effort. Addi-
tionally, inprocessing techniques cannot be applied, therefore
model elimination might be less effective than using activation
literals, if the number of temporary clauses is high. We leave
this investigation to future work.
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Abstract—An uninterpreted program (UP) is a program whose
semantics is defined over the theory of uninterpreted functions.
This is a common abstraction used in equivalence checking,
compiler optimization, and program verification. While simple,
the model is sufficiently powerful to encode counter automata,
and, hence, undecidable. Recently, a class of UP programs, called
coherent, has been proposed and shown to be decidable. We
provide an alternative, logical characterization, of this result.
Specifically, we show that every coherent program is bisimilar
to a finite state system. Moreover, an inductive invariant of a
coherent program is representable by a formula whose terms
are of depth at most 1. We also show that the original proof, via
automata, only applies to programs over unary uninterpreted
functions. While this work is purely theoretical, it suggests a
novel abstraction that is complete for coherent programs but
can be soundly used on arbitrary uninterpreted (and partially
interpreted) programs.

I. INTRODUCTION

The theory of Equality with Uninterpreted Functions (EUF)
is an important fragment of First Order Logic, defined by a
set of functions, equality axioms, and congruence axioms. Its
satisfiability problem is decidable. It is a core theory of most
SMT solvers, used as a glue (or abstraction) for more complex
theories. A closely related notion is that of Uninterpreted
Programs (UP), where all basic operations are defined by
uninterpreted functions. Feasibility of a UP computation is
characterized by satisfiability of its path condition in EUF.
UPs provide a natural abstraction layer for reasoning about
software. They have been used (sometimes without explicitly
being named), in equivalence checking of pipelined micro-
procesors [1], and equivalence checking of C programs [17].
They also provide the foundations of Global Value Numbering
(GVN) optimization in many modern compilers [6], [8], [12].

Unlike EUF, reachability in UP is undecidable. That is, in
the lingua franca of SMT, the satisfiability of Constrained
Horn Clauses over EUF is undecidable. Recently, Mathur et
al. [9], have proposed a variant of UPs, called coherent unin-
terpreted program (CUPs). The precise definition of coherence
is rather technical (see Def. 3), but intuitively the program is
restricted from depending on arbitrarily deep terms. The key
result of [9] is to show that both reachability of CUPs and
deciding whether an UP is coherent are decidable. This makes
CUP an interesting infinite state abstraction with a decidable
reachability problem.

Unfortunately, as shown by our counterexample in Fig. 4
(and described in Sec. VI), the key construction in [9] is
incorrect. More precisely, the proofs of [9] hold only of

d https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_16

Sharon Shoham
Tel-Aviv University

Arie Gurfinkel
University of Waterloo

CUPs restricted to unary functions. In this paper, we address
this bug. We provide an alternative (in our view simpler)
proof of decidability and extend the results from reachability
to arbitrary model checking. The case of non-unary CUPS
is much more complex than unary. This is not surprising,
since similar complications arise in related results on Uniform
Interpolation [4] and Cover [5] for EUF.

Our key result is a logical characterization of CUP. We show
that the set of reachable states (i.e., the strongest inductive
invariant) of a CUP is definable by an EUF formula, over
program variables, with terms of depth at most 1. That is, the
most complex term that can appear in the invariant is of the
form v & f(w), where v and @ are program variables, and f
a function.

This characterization has several important consequences
since the number of such bounded depth formulas is finite.
Decidability of reachability, for example, follows trivially by
enumerating all possible candidate inductive invariants. More
importantly from a practical perspective, it leads to an efficient
analysis of arbitrary UPs. Take a UP P, and check whether
it has a safe inductive invariant of bounded terms. Since
the number of terms is finite, this can be done by implicit
predicate abstraction [3]. If no invariant is found, and the
counterexample is not feasible, then P is not a CUP. At this
point, the process either terminates, or another verification
round is done with predicates over deeper terms. Crucially,
this does not require knowing whether P is a CUP apriori —
a problem that itself is shown in [9] to be at least PSPACE.

We extend the results further and show that CUPs are
bisimilar to a finite state system, showing, in particular, that
arbitrary model checking for CUP (not just reachability) is
decidable.

Our proofs are structured around a series of abstractions,
illustrated in a commuting diagram in Fig. 1. Our key ab-
straction is the base abstraction «y. It forgets terms deeper
than depth 1, while maintaining all their consequences (by
using additional fresh variables). We show that oy is sound
and complete (i.e., preserves all properties) for CUPs (while,
sound, but not complete for UP). It is combined with a
cover abstraction ag, that we borrow from [5]. The cover
abstraction ensures that reachable states are always expressible
over program variables. It serves the purpose of existential
quantifier elimination, that is not available for EUF. Finally,
a renaming abstraction a,. is a technical tool to bound the
occurrences of constants in abstract reachable states.

This article is licensed under a Creative
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Fig. 1: Sequence of abstractions used in our proofs.

The rest of the paper is structured as follows. We review
the necessary background on EUF in Sec. II. We introduce our
formalization of UPs and CUPs in Sec. III. Sec. IV presents
bisimulation inducing abstractions for UP. Sec. V presents our
base abstraction and shows that it induces a bisimulation for
CUPs. Sec. VI develops logical characterization for CUPs,
presents our decidability results, and shows that a finite state
abstraction of CUPs is computable. We conclude the paper in
Sec. VII with summary of results and a discussion of open
challenges and future work.

II. BACKGROUND

We assume that the reader is familiar with the basics of
First Order Logic (FOL), and the theory of Equality and
Uninterpreted Functions (EUF). We use X = (C, F, {=, %})
to denote a FOL signature with constants C, functions F,
and predicates {~, %}, representing equality and disequality,
respectively. A term is a constant or (well-formed) application
of a function to terms. A literal is either z ~ y or = % vy,
where x and y are terms. A formula is a Boolean combination
of literals. We assume that all formulas are quantifier free
unless stated otherwise. We further assume that all formulas
are in Negation Normal Form (NNF), so negation is defined
as a shorthand: ~(z ~ y) £ x % y, and —~(z £ y) = = ~ .
Throughout the paper, we use > to indicate a predicate in
{=, %}. For example, {z > y} means {z ~ y,z % y}. We
write L for false, and T for true. We do not differentiate
between sets of literals T' and their conjunction (AT). We
write depth(t) for the maximal depth of function applications
in a term ¢. We write 7 (¢), C(), and F(y) for the set of all
terms, constants, and functions, in ¢, respectively, where ¢ is
either a formula or a collection of formulas. Finally, we write
t[z] to mean that the term ¢ contains z as a subterm.

For a formula ¢, we write T' = ¢ if T entails o, that is
every model of I" is also a model of . For any literal ¢, we
write I' F ¢, pronounced ¢ is derived from I, if ¢ is derivable
from I" by the usual EUF proof system P r.! By refutational
completeness of Pryp, I' is unsatisfiable iff T' - L.

Given two EUF formulas ¢; and @9 and a set of constants
V C C, we say that the formulas are V-equivalent, denoted
(p1 =v P9, if, for all quantifier free EUF formulas 1/ such that

C(¥) C V. (g1 Av) = L if and only if (02 A %) = L.

Example 1 Let p; = {z1 =~ f(ao,20),y1 =~ f(bo,y0), To
Yot p2 = {z1 = flao,w),y1 = f(bo,w)}, w3 = {7
f(ao, o), y1 ~ f(bo,yo)}, and V' = {z1,y1,0a0,b0}. Then,
1 =v @2 but o1 Fy 3.

~
~

~

~
~ ~
~

~

]

IPresented in our companion technical report [7].
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(stmt) ::= skip | (var) := (var) | (var) := f((vaﬂ) |
assume ({cond)) | (stmt) ; (stmt) |
if ((cond)) then (stmt) else (stmt) |
while ((cond)) (stmt)

(cond) ::= (var) = (var) | {(var) # (var)

(var) s=x|y|---

Fig. 2: Syntax of the programming language UPL.

While EUF does not admit quantifier elimination, it does
admit elimination of constants while preserving quantifier free
consequences. Formally, a cover [2], [4], [5] of an EUF
formula ¢ w.r.t. a set of constants V' is an EUF formula v
such that C(v)) € C(p) \ V and ¢ =¢(,)\v ¥. By [5], such ¢
exists and is unique up to equivalence; we denote it by CV - .

III. UNINTERPRETED PROGRAMS

An uninterpreted program (UP) is a program in the uninter-
preted programming language (UPL). The syntax of UPL is
shown in Fig. 2. Let V denote a fixed set of program variables.
We use lower case letters in a special font: X, y, etc. to denote
individual variables in V. We write ¥y for a list of program
variables. Function symbols are taken from a fixed set F. As
in [9], w.L.o.g., UPL does not allow for Boolean combination
of conditionals and relational symbols.

The small step symbolic operational semantics of UPL is
defined with respect to a FOL signature ¥ = (C, F, {~, #})
by the rules shown in Fig. 3. A program configuration is a
triple (s, q,pc), where s, called a statement, is a UP being
executed, ¢ : V — C is a state mapping program variables to
constants in C, and pc, called the path condition, is a EUF
formula over ¥. We use C(q) = {c | v q(v) c} to
denote the set of all constants that represent current variable
assignments in ¢. With abuse of notation, we use C(q) and ¢
interchangebly. We write =, to mean =¢,).

For a state g, we write g[x — 2] for a state ¢’ that is
identical to ¢, except that it maps x to x’. We write (e, q) |} v
to denote that v is the value of the expression e in state g, i.e.,
the result of substituting each program variable x in e with
g(x), and replacing functions and predicates with their FOL
counterparts. The value of e is an FOL term or an FOL formula
over X. For example, (x =y, [x = z,y — y]) | z = y.

Given two configurations ¢ and ¢/, we write ¢ — ¢ if ¢
reduces to ¢’ using one of the rules in Fig. 3. Note that there
is no rule for skip — the program terminates once it gets into
a configuration (skip, ¢, pc).

Let Co = {vg | v € V} C C be a set of initial constants. In
the initial state gy of a program, every variable is mapped to
the corresponding initial constant, i.e., go(v) = vg.

The operational semantics induces, for an UP P, a transition
system Sp (C,co,R), where C is the set of config-
urations, cg (P,qo, T) is the initial configuration, and
R 2 {(c,c) | ¢ = c'}. A configuration ¢ of P is reachable

A



(skip ; s,q,pc) — (s,q, pc)

(s1,9,pc) = (51,4, pc)
<51 ;Sg,q,pC> — < ;SQ,q/,pc’>
(c,q) v (pcAv) = L
(assume(c), ¢, pc) — (skip, ¢, pc A v)

{e.q) Yo
(x:=e,q,pc) — (skip, q[x > 2'], pc A2’ = v)

=~ =~

S

z' € C() is fresh in pc

(if (c¢) then s; else s3, ¢, pc) — (assume(c) ; s1, q, pc)
(if (c) then s; else s3,q, pc) — (assume(—c) ; s2, q, pC)

(while (¢) s,q,pc) —
(if (c) then (s; while (c) s) else skip, g, pc)

Fig. 3: Small step symbolic operational semantics of UPL,
where —¢ denotes x # y when c is x =y, and x =y when ¢

is X #£y.

if ¢ is reachable from ¢y in Sp. We denote the set of all
reachable configurations in Sp using Reach(Sp). The set of
all statements in the semantics of P, including the intermediate
statements, are called locations of P, and are denoted by
L(P). We often use P and Sp interchangeably.

Our semantics of UPL differs in some respects from the
one in [9]. First, we follow a more traditional small-step
operational semantics presentation, by providing semantics
rules and the corresponding transition system. However, this
does not change the semantics conceptually. More importantly,
we ensure that the path condition remains satisfiable in all
reachable configurations (by only allowing an assume state-
ment to execute when it results in a satisfiable path condition).
We believe this is a more natural choice that is also consistent
with what is typically used in other symbolic semantics. UP
reachability under our semantics coincides with the definition
of [9].

Definition 1 (UP Reachability) Given an UP P, determine
whether there exists a state ¢ and a path condition pc s.t., the

configuration (skip, ¢, pc) is reachable in P. O

A certificate for unreachability of location s, is an inductive
assertion map 7 (or an inductive invariant) s.t. n(s) = L.

Definition 2 (Inductive Assertion Map) Let Yo
(Co, F,{=,#}), be restriction of ¥ to Cy. An inductive
assertion map of an UP P, is a map n : L(P) — EUF (%)
s.t. (@) n(P) =T, and (b) if (s, qo,n(s)) — {(s',q’,pc’), then
pc’ = ((s")[vo = ¢'(v) [ v € V]).

In [9], a special sub-class of UPs has been introduced with
a decidable reachability problem.

L

]

Definition 3 (Coherent Uninterpreted Program [9]) An
UP P is coherent (CUP) if all of the reachable configurations
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1 X = t; xo =~ tg

2y = t; xo ~ to A yo = to

3 while (c !=d) { To X Yo

4 X = n(x); zo =~ n(yo) Aco # do

5 y = n(y); o R Yo A co # do

6 c := n(c); To R Yo

7%

8 x := f(a, x); xo ~ f(ao,yo) A co ~ do

9 y:=f(b, ¥); (ag = bop = o = yo) A co = do
10  assume(a == b); ap = bg A xo = yo A co = do
11 assume(x !=y); 1

Fig. 4: An example CUP program and its inductive assertions.

of P satisfy the following two properties:

Memoizing for any configuration (x := f(¥), ¢, pc), if there
isaterm t € T(pc) s.t. pc =t = f(q(¥)), then there is
v E Vst pe = q(v) = t.

Early assume for any configuration
(assume(x = y), q, pc), if there is a term ¢t € T (pc) s.t.
pc =t &~ s where s is a superterm of either g(x) or ¢(y),

then, there is v € V s.t. pc |= ¢(v) =~ t. o

Intuitively, memoization ensures that if a term is recomputed,
then it is already stored in a program variable; early assumes
ensures that whenever an equality between variables is as-
sumed, any of their superterms that was ever computed is still
stored in a program variable. Note that unlike the original
definition of CUP in [9], we do not require the notion of an
execution. The path condition accumulates the history of the
execution in a configuration, which is sufficient.

Example 2 An example of a CUP is shown in Fig. 4. Some
reachable states in the first iteration of the loop are shown
below, where line numbers are used as locations, and pc;
stands for the path condition at line %:

(2,qo[x = 21,y = 1], 21 = to Ay1 = to)
(6, qo[x — T2,y > ya2,C — 1], pea A
co % do AN xo = n(r1) ANya = n(yr) Acr = n(c))
(9,qo[x — x5,y — ys3,¢ = c1]), pes A
c1 = do N3 = f(ag, x2) ANys = f(bo,y2))

The program is coherent because (a) no term is recomputed;
(b) for the assume at line 10, the only superterms of ag and
by are f(ag,xzy) and f(bo,yn), and they are stored in x and y,
respectively; and (c) for the assume (¢, = dp) introduced by
the exit condition of the while loop, no superterms of ¢, dy
are ever computed. The program does not reduce to skip (i.e.,
it does not reach a final configuration). Its inductive assertion

map is shown in Fig. 4 (right). O

Note that UP are closely related, but are not equivalent, to
the Herbrand programs of [12]. While Herbrand programs use
the syntax of UPL, they are interpreted over a fixed universe of
Herbrand terms. In particular, in Herbrand programs f(x) ~
g(x) is always false (since f(x) and g(z) have different top-
level functions), while in UP, it is satisfiable.



IV. ABSTRACTION AND BISIMULATION FOR UP

In this section, we review abstractions for transition systems.
We then define two abstraction for UP: cover and renaming,
and show that they induce bisimulation. That is, for UP, these
abstractions preserve all properties. Finally, we show a simple
logical characterization result for UP to set the stage for our
main results in the following sections.

Definition 4 Given a transition system S = (C, ¢, R) and a
(possibly partial) abstraction function f : C' — C, the induced
abstract transition system is 4(S) = (C, cg, R*), where

(co)

RY 2 {(es, ) [ Fe, e = N ey=1(c) N ¢ =18()}

LN
o=

We write ¢ = ¢/ when (c,c’) € RF. Note that § must be

defined for cg. 0

Throughout the paper, we construct several abstract transi-
tion systems. All transition systems considered are attentive.
Intuitively, this means that their transitions do not distinguish
between configurations that have g-equivalent path conditions.
We say that two configurations ¢; = (s,q,pci) and co
(s,q,pca) are equivalent, denoted ¢; = ¢y if pe; =4 pea.

Definition 5 (Attentive TS) A transition system S
(C,co, R) is attentive if for any two configurations ¢q,co € C
8.t. ¢1 = cg, if there exists ¢} € C s.t. (¢1,¢)) € R, then there
exists ¢4 € C, s.t. (c2,¢h) € R and ¢} = ¢ and vice versa. g

Weak, respectively strong, preservation of properties be-
tween the abstract and the concrete transition systems are en-
sured by the notions of simulation, respectively bisimulation.

Definition 6 ( [11]) Let S (C,co,R) and #(S)
(C,¢h, RY) be transition systems. A relation p € C x C is
a simulation from S to §(S), if for every (c,c;) € p:

o if ¢ — ¢ then there exists ¢} such that ¢; —* ¢} and

(¢, c}) € p.

p C C x C is a bisimulation from S to §(S) if p is a
simulation from S to #(S) and p=t £ {(¢4,¢) | (¢,cx) € p}
is a simulation from £(S) to S. We say that #(S) simulates,
respectively is bisimilar to, S if there exists a simulation,
respectively, a bisimulation, p from S to #(S) such that

(co,cg) € p.

We say that a bisimulation p C C x C is finite if its
range, {p(c) | ¢ € C}, is finite. A finite bisimulation relates a
(possibly infinite) transition system with a finite one.

Next, we define two abstractions for UP programs and show
that they result in bisimilar abstract transition systems. The
first abstraction eliminates all constants that are not assigned to
program variables from the path condition, using the cover op-
eration. The second abstraction renames the constants assigned
to program variables back to the initial constants Cy. Both
abstractions together ensure that all reachable configurations
in the abstract transition system are defined over ¥ (i.e., the
only constants that appear in states, as well as in path condi-
tions, are from Cy). There may still be infinitely many such

]
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configurations since the depth of terms may be unbounded. We
show that whenever the obtained abstract transition system has
finitely many reachable configurations, the concrete one has an
inductive assertion map that characterizes the set of reachable
configurations.

Definition 7 (Cover abstraction) The cover abstraction
function a¢ : C' — C' is defined by
ac((s,q,pc)) £ (s,4,C(C\ C(q)) - pe) .

Since pc =, C(C\C(q)) - pc, the cover abstraction also results
in a bisimilar abstract transition system.

Theorem 1 For any attentive transition system S =
(Cyco,R), the relation p = {(c,ac(c)) | ¢ € Reach(S)}

is a bisimulation from S to ac(S). o

To introduce the renaming abstraction, we need some nota-
tion. Given a quantifier free formula ¢, constants a,b € C(y)
such that a # b, let ¢[a — b] denote p[b — z][a — b], where
x is a constant not in C(y). For example, if p = (a = cAb =~
d), pla — bl = (b=cAhzx=d).

Given a path condition pc and a state ¢, let 7o(pc, ¢) denote
the formula obtained by renaming all constants in C(g) using
their initial values. r9(pc, q¢) = pefq(v) — v for all v € V
such that g(v) # vo.

Definition 8 (Renaming abstraction) The renaming abstrac-
tion function a,. : C' — C is defined by

OZT(<S7(],pC>) £ <qu07 7"0(1007 Q)>

Theorem 2 For any attentive transition system S
(C,co,R), the relation p = {(c,a.(c)) | ¢ € Reach(S)}

is a bisimulation from S to «,.(S). o

Finally, we denote by ac , the composition of the renaming
and cover abstractions: ac, = ac o a, (e, ac,(c) =
ar(ac(c))). Since the composition of bisimulation relations
is also a bisimulation, agc ,(S) is bisimilar to S.

Theorem 3 (Logical Characterization of UP) If ac, in-
duces a finite bisimulation on an UP P, then, there exists
an inductive assertion map 7 for P that characterizes the

reachable configurations of P. O

PROOF Define 7(s) = \/{pc | (s,q,pc) € Reach(ac (P))}.
Then, 7(s) is such an inductive assertion map. n

Intuitively, Thm. 3 says that inductive invariant of UP,
whenever it exists, can be described using EUF formulas over
program variables. That is, any extra variables that are added to
the path condition during program execution can be abstracted
away (specifically, using the cover abstraction). There are, of
course, infinitely many such invariants since the depth of terms
is not bounded (only constants occurring in them). In the
sequel, we systematically construct a similar result for CUP.



V. BISMULATION OF CUP

The first step in extending Thm. 3 to CUP is to design
an abstraction function that bounds the depth of terms that
appear in any reachable (abstract) state. It is easy to design
such a function while maintaining soundness — simply forget
literals that have terms that are too deep. However, we want
to maintain precision as well. That is, we want the abstract
transition system to be bisimilar to the concrete one. Just like
cover abstraction, the base abstraction function also eliminates
all constants that are not assigned to program variables. Unlike
cover abstraction, the base abstraction does not maintain C(q)-
equivalence of the path conditions, but, rather, forgets most
literals that cannot be expressed over program variables.

In this section, we focus on the definition of the base
abstraction and prove that it induces bisimulation for CUP.
This result is used in Sec. VI, to logically characterize CUPs.

Intuitively, the base abstraction “truncates” the congruence
graph induced by a path condition in nodes that have no
representative in the set of constants assigned to the program
variables (V' in the following definition), and assigns to the
truncated nodes fresh constants (from W in the following
definition).

Congruence closure procedures for EUF use a congruence
graph to concisely represent the deductive closure of a set of
EUF literals [15], [16]. Here, we use a logical characterization
of a congruence graph, called a V-basis. Let I be a set of EUF
literals. A triple (W, 3,9) is a V-basis of I" relative to a set of
constants V', written (W, 38, 6) € base(T', V), iff (a) W is a set
of fresh constants not in C(T"), and 8 and ¢ are conjunctions
of EUF literals; (b) (GW - BAGS) =T (c) B £ B~ U Bx UBr
and § £ 65 U Sy U §x, where

B~ C{umv|u,veV} B C{uztv|uveV}
Br C{vm f(@) |veV,w CVUW,@aNV # 0}

o C{lumu|lweVUWugVUW}

b C{lugw|lue Wwe WUV}

0r C{or f(@) v, CVUW,veV =wC W}

(d) BAOF v~ wforany v eV, we W;and (e) BAIF
wy &~ wy for any wy, ws € W s.t. wy # wo.

Note that we represent both equalities and disequalities in
the V-basis as common in implementations (but not in the
theoretical presentations) of the congruence closure algorithm.
Intuitively, V" are constants in C(T") that represent equivalence
classes in I', and W are constants added to represent equiva-
lence classes that do not have a representative in V. A V-basis,
of any satisfiable set I', is unique up to renaming of constants
in W and ordering of equalities between constants in V.

Example 3 Let I' = {x = f(a,v1),y = f(b,v2),v1 = va}
and V = {a,b,x,y}. A V-basis of I is (W, 3, 6), where W =
{w}, B =1z =~ fla,w),y = f(byw)}, §d = {w =~ v1,w
v2}. Renaming w to w’ is a different V-basis: (W', 3',¢) €
base(I', V) where W' = {w'}, 8/ = Blw — w'] and ¢’
Sw — w'].

~
~

~
~
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Q

As another example, consider I' = {2z ~ f(a,p),z

fla;n(p)),y f(bp),y fle;n(p))} and V
{z,y,a,b,c}. A V-basis of T is (W,[3,d), where W

{wo,wl}, 52 = {wo ~ p, w1 ~ n(wo)}, and
x = f(a, wo) fla,w)
Yy~ f(ba wO) f(ca wl)
While a basis maintains all consequences of I" (since (IW -

B AJ) =T, the V-base abstraction of T, defined next, is
weaker. It preserves consequences of 5 only:

P2

Tr=
y=

a

Definition 9 (V -base abstraction) The V -base abstraction

ay for a set of constants V', is a function between sets of

literals s.t. for any sets of literals I" and I":

(1) ay(I') £ 3, where (W, 3,6) € base(p, V),

(2) if there exists a 3 s.t. (Wy,5,61) € base(T,V) and
(Wa, B, 02) € base(IV,V), then ay (T') = ay (I7).

a

The second requirement of Def. 9 ensures that two formu-
las that have the same V-consequences, have the same V-
abstraction. For example, for a set of constants V' = {u, v},
the formulas ¢ = {v = f(u,2)} and 2 = {v = f(u,y)},
have the same V-base abstraction: v ~ f(u,w). Note that
at this point, we only require that ay is well defined (for
example, it does not have to be computable.)

We now extend V-base abstraction to program configu-
ration, calling it simply base abstraction, since the set of
preserved constants is determined by the configuration:

~
~

~
~

Definition 10 (Base abstraction) The base abstraction oy, :
C — C' is defined for configurations (s, ¢, pc) € C, where pc
is a conjunction of literals: oy ((s,q, pc)) £ (s, q, ac(q)(pc)).o

Namely, the base abstraction g, applied to the path
condition is determined by the state ¢ in the configuration.
We often write o, () as a shorthand for ac(q)(¢).

We are now in position to state the main result of this
section. Given a CUP P, the abstract transition system
ay(Sp) = (C,¢y®, R*) is bisimilar to the concrete transition
system Sp = (C, ¢, R). Note that at this point, we do not
claim that o, (Sp) is finite, or that it is computable. We focus
only on the fact that the literals that are forgotten by the base
abstraction do not matter for any future transitions. The key
technical step is summarized in the following theorem:

Theorem 4 Let (s,q,pc) be a reachable configuration of a

CUP P. Then,

(1) (s,q,pc) = (s'.q',pc A pc') iff
(s,4,04(pc)) = (s, q', aq(pc) A pc’), and

(2) ag(pec A pc') = ay(aq(pe) Apc).

The proof of Thm. 4 is not complicated, but it is tedious
and technical. It depends on many basic properties of EUF. We
summarize the key results that we require in the following
lemmas. The proofs of the lemmas are provided in our
companion technical report [7].

We begin by defining a purifier — a set of constants sufficient
to represent a set of EUF literals with terms of depth one.

(]



Definition 11 (Purifier) We say that a set of constants V' is a
purifier of a constant a in a set of literals T, if a € V' and for
everytermt € T(I')st. T Ft~ sfa), w e Vst.T o= tg

For example, if I' = {¢ = f(a),d = f(b),d % e}. Then,
V ={a,b,c} is a purifier for a, but not a purifier for b, even
though b € V.

In all the following lemmas, I', 1, @2 are sets of literals;
V a set constants; a,b € C(T'); w,v,z,y € V; V is a purifier
for {z,y} in T, 1, and in ¢9; S = ay(T'); and ay(p1) =
ay(p2).

Lemma 1 says that anything newly derivable from I' and a
new equality a ~ b is derivable using superterms of a and b:
Lemma 1 Let t1 and ty be two terms in T(X) s.t. T 1/ (¢ =
ta). Then, (' Na =~ b) F (t; = ta), for some constants a and b
in C(), iff there are two superterms, s1a] and s2[b], of a and
b, respectively, s.t. (i) T b (t1 = s1[a]), (i) T F (t2 == s3[b]),
and (iii) (T Aa = b) b (s1]a] = sa[b]).

Lemma 2 and Lemma 3 say that all consequences of I' that
are relevant to V' are present in 5 = ay (') as well.
Lemma 2 TAz=ytumv) < (FAz=yFu=v).
Lemma 3 Thzrytu®v) < (BAz=yFuzv).
Lemma 4 says that 5 = ay (') can be described using terms
of depth one using constants in V.

Lemma 4 V is a purifier for x € V in .

Lemma 5 says that oy, is idempotent.

Lemma 5 ay (') = ay (ay (1))

Lemma 6 and Lemma 7 say that oy preserves addition of new
literals and dropping of constants.

Lemma 6 ay (o1 Az =y)=ay(p2 Az =y).

Lemma 7 If U CV, then

(av(p1) = av(p2)) = (aw (1) = av(p2))

Lemma 8 extends the preservation results to disequalities. V' is
a set of constants, x,y € V. V is not required to be a purifier
(as it was in the previous lemmas).

Lemma 8 av (g1 Az #y) =av(pz Az Zy).

Lemma 9 extends the preservation results for equalities in-
volving a fresh constant 2’ s.t. ' & C(p1) UC(p2). § C V,
V' =V U{z'}, and f(%) be a term s.t there does not exists a
term ¢ € T(p1)UT (p2) s.t. o1 Et = f(§) or oo Ft = f(F).
Lemma 9

(D
2

avi(pr A’ my) = avi(p2 N’ ~y)
av/(pr A’ = (7)) = avi(p2 N2’ ~ f(7))
We are now ready to present the proof of Thm. 4:

PROOF (THEOREM 4) In the proof, we use z = ¢(x), and y =
q(y). For part (1), we only show the proof for s = assume(x >
y) since the other cases are trivial.

The only-if direction follows since ay(pc) is weaker than
pc. For the if direction, pc I/ | since it is part of a reachable
configuration. Then, there are two cases:

~
~

e case s = assume(x = y). Assume (pc A x
Then, (pc A x

y) E L.
y) F t1 =~ to and pc - t; % to for

~
~
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some t1,t2 € T (pc). By Lemma 1, in any new equality
(t1 = tq) that is implied by pc A (z = y) (but not by pc),
t1 and 9 are equivalent (in pc) to superterms of z or y. By
the early assume property of CUP, C(q) purifies {z,y} in
pc. Therefore, every superterm of x or y is equivalent (in
pe) to some constant in C(g). Thus, (pcAz ~y)Fu~wv
and (pc ANz = y) F u % v for some u,v € C(q). By
Lemma 2, (aq4(pc) Az = y) F u = v. By Lemma 3,
(ag(pe) Nx = y) F u s v. Thus, (oy(pc) Nz~ y) = L.
case s = assume(x # y). (pc Az # y) = L if and only
if pctx =~ y. Since z,y € C(q), agz(pe) -z~ y. n

~
~

~
~

For part (2), we only show the cases for assume and
assignment statements, the other cases are trivial.

e case s = assume(x y), Since ¢’ = ¢, we need to
show that ay(pc A z = y) = a4(aq(pe) Az =~ y). From
the early assumes property, C(q) purifies {z,y} in pc.
By Lemma 4, C(q) purifies {x,y} in aq(pc) as well. By
Lemma 5, oy(pc) = aq(aq(pc)). By Lemma 6, aq(pe A
z ~y) = ag(ag(pe) A~ y).

case s = assume(x # y), Since ¢’ = ¢, we need to show
that o (pehx % y) = ag(ag(pe) Az % y). By Lemma S,
aq(pe) = ag(aq(pe)). By Lemma 8, ay(pcAx % y) =
ag(ag(pe) Nz 2 y).

case s = x:=y. W.Lo.g., assume ¢’ = ¢[x — 2], for some
constant ' ¢ C(pc). By Lemma 5, aq(pc) = aq(ay(pe)).
By Lemma 9 (case 1), ac(qufi(pc A2’ =~ y) =
ac(quia} (q(pe) Az’ ~ ). By Lemma 7, oy (pc A2’ ~
y) = ag(aq(pc) N’ = y), since C(q') € (C(g) U{z'}).
case s = x := f(§). W.lo.g., ¢ = ¢[x — 2'] for some
constant 2’ & C(pc). There are two cases: (a) there is a
term ¢ € T (pc) s.t. pc -t = f(y), (b) there is no such
term ¢.

(a) By the memoizing property of CUP, there is a program
variable z s.t. ¢(z) = z and pc - z &~ f(¥). Therefore,
by definition of «,, ay(pc) F z ~ f(¥). The rest of
the proof is identical to the case of s = x := z.

~
~

(b) Since there is no term ¢ € T (pc) s.t. pc = ¢
f(7), there is also no such term in T (ay(pc))
well. By Lemma 5, «4(pc) aq (g (pe)).
Lemma 9 (case 2), ac(qufay(Pc A T @)
ac(g)ufay (aq(pe) Az = f(7)). By Lemma 7, oy (pe
2~ (7)) = aglaglpe) Az ~ £(7)) since C(q)
(Clg) U {z}).

T s

N> | <

~

~

~
~

Corollary 1 For a CUP P, the relation p = {(c,ap(c)) | c €

Reach(Sp)} is a bisimulation from Sp to ap(Sp). o

Note that for an arbitrary UP, o, induces a simulation (since
oy, only weakens path conditions).

By construction, for any configuration in an abstract system
constructed using «, the path condition will be at most
depth-1. In Sec. VI, we use this property to build a logical
characterization of CUP and show that reachability of CUP
programs is decidable.



VI. LOGICAL CHARACTERIZATION OF CUP

In this section, we show that for any CUP program P,
all reachable configurations of P can be characterized using
formulas in EUF, whose size is bounded by the number of
program variables in P.

Theorem 5 (Logical Characterization of CUP) For  any
CUP P, there exists an inductive assertion map 1, ranging
over EUF formulas of depth at most 1, that characterizes the

reachable configurations of P. o

The first step in the proof is to compose the renaming
abstraction (Def. 8) with the base abstraction (Def. 10). We
denote the composition with ay, -, i.€., ayp, £ apoa,. Cor 1
and Thm. 2 ensures that o, ,- is sound and complete for CUP.
We split the rest of the proof into two cases: CUPs restricted
to unary functions, called 1-CUP, followed by arbitrary CUPs.

PROOF (THM. 5, 1-CUP) Let ! be a signature containing
function symbols of arity atmost 1, X1 = (C, F', {=~, #}).
Let T be a set of literals in X! and V be a set of constants.
By the definition of V-base abstraction (Def. 9), ay (T)
B ABxABr. B~ and By are over constants in V. 8 contains
two types of literals: 8, and 87, . Br, are 1 depth literals
over constants in V. Bz, are literals of the form v ~ f(®)
where v € V and @ is a list of constants, at least one of
which is in V: @NV # 0 and @ € V. Since I" can only have
unary functions, 8z, = 0. Therefore, all literals in vy (T")
are of depth at most 1 and only contain constants from V.
Hence, there are only finitely many configurations in oy, , (Sp).
Therefore,

n(s) £ \/{pe | (s.q0,p¢) € Reach(on, (Sp))}

is an inductive assertion map, ranging over formulas for depth
at most 1, that characterizes the reachable configurations of
P. Moreover, the size of each disjunct in 7(s) is polynomial
in the number of program variables and functions in P. g

~
~

An interesting consequence of the above proof is that, for 1-
CUPs, «y is efficiently computable (since, 8r, = (). Thus,
the transition system o, -(Sp) is finite, and can be constructed
on-the-fly. Hence, reachability of 1-CUP is in PSPACE.

PROOF (THM. 5, GENERAL CASE) In general, CUP programs
can contain unary and non-unary functions. Therefore, the
V-base abstraction (Def. 9) may introduce fresh constants.
We use the cover abstraction (Def. 7) to eliminate these
fresh constants. By Thm. 1, ac(ap,(Sp)) is bisimilar to
ap,(Sp). Notice that all the fresh constants introduced by
the V'-base abstraction are arguments to function applications.
Therefore, all consequences of eliminating the fresh constants
are Horn clauses of the form A,(z; = y;) = = ~ y, where
i, Yi,x,y € Cp. Since V-basis is of depth at most 1, cover
of the V-basis is also of depth at most 1. Since there are
only finitely many formulas of depth at most 1 over C,
ac(owp,»(Sp)) has only finitely many configurations. Hence,

n(s) £ \/{pe | (s,q0,pc) € Reach(ac(as,(Sp))}
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is an inductive assertion map that characterizes the reachable
configurations of P and ranges over depth-1 formulas. n

Consider the CUP shown in Fig. 4. At line 9, the oy ,- abstrac-
tion produces the following abstract pc: z¢ ~ f(ag, w) Ayo ~
f(bo,w) A ¢ = dy. Using cover to eliminate the constant w
gives us Cw - pc = (ag ~ by = o = yo) A ¢o = dp, which is
exactly the invariant assertion mapping 7(9) at line 9.

We have seen that all CUP programs have an inductive
assertion map that characterizes their reachable configurations
and ranges over a finite set of formulas. Therefore,

Corollary 2 CUP reachability is decidable.
A. Relationship to [9]

In [9], Cor. 2 is proven by constructing a deterministic
finite automaton that accepts all feasible coherent executions.?
However, the construction fails for the executions of the CUP
in Fig. 4: the execution that reaches a terminal configuration
is infeasible, but it is (wrongfully) accepted by the automaton.
Intuitively, the reason is that the automaton is deterministic
and its states are not sufficiently expressive. The states of the
automaton keep track of equalities between program variables
(which correspond to [~ in our abstraction), disequalities
between them (5 in our case), and partial function inter-
pretations (8r). However, the partial function interpretations
are restricted to 8z, , i.e., do not allow auxiliary constants that
are not assigned to program variables. Thus, they are unable to
keep track of zg = f(ag, w) Ayo == f(by,w) Acy = dy in line
9, which is essential for showing infeasibility of the execution.
Eliminating the auxiliary constants, as we do in the cover
abstraction, does not remedy the situation since it introduces
a disjunction (ag % by A co = do) V (zo = yo A co = dp),
which the deterministic automaton does not capture.

~
~

B. Computing a Finite Abstraction

We have shown that CUP programs are bisimilar to finite
state systems. However, all our proofs depend on «, which
was not assumed to be computable. In this section, we show
how to implement «ay, and, thereby, show how to compute a
finite state system that is bisimilar to a CUP program. Note
that our prior results are independent of this section.

The main difficulty is in naming the fresh constants, which
we always refer to as W, that are introduced by the base
abstraction. Since we require that base abstraction is canonical,
the naming has to be unique. Furthermore, we have to show
that the number of such W constants is bounded. We solve
both of these problems by proposing a deterministic naming
scheme. The scheme is determined by a normalization function
ny that replaces all the fresh constants in a V-basis with
canonical constants.

Let 8 be a V-basis. We denote the auxiliary constants in (3
CPB)\V) by W = {wg,ws,...}, and by ‘?" some unused
constant that we call a hole. Recall that constants from W
may only appear in literals of the form v = f(@). We define

2In our setting, feasible coherent executions correspond to paths in the
transition system of any CUP.



the set of W-templates as the set of all terms f(&), where
each element in @ is either a hole or a constant in W. A
term t matches a template f(ad) if ¢ f(b), and @ and
b agree on all constants in W. For example, let £ be the
template f(?,w;,?,ws). The term f(a,ws,b, ws) matches
&, but f(wo,wr,b,we) does not, because one of the holes
is filled with wy € W. We say that a literal v £(b)
matches a template & if f (5) matches £. The W-context of
a W-template £ in a set of literals L, denoted Zr, (&), is the
set Zp (&) & {{[W —?] | £ € L A ¢ matches £}, where
¢[W 7] means that all occurrences of constants in W are
replaced with a hole. For example, let £ = f(7,w,ws,?)
and L = {w fla,wr,wa,b),u =~ f(c, w1, ws,a),w
fzywy,wa,b), 2 =~ gz, wy,ws,b))} then Z1(§) = {v
fla,?,?7,b),u= f(c,?,?,a),w= f(z,?7,7,b)}.

Since V and F are finite, the number of WW-contexts is finite,
independent of W. Let wz be a fresh constant for context Z.

~
~

~
~

~
~
~
~

Definition 12 (Normalization Function) The normalization
function ny (8) is defined as follows:

(1) for each ¢t € T(I') s.t. C(t) N W # (), create a template
& by dropping all constants not in W. Let = denote the
set of templates so obtained.

() Let Ctz = {Zp(¢) | £ € E}.

(3) For each ¢ € T, if {[W 7] € Z for some Z € Ctz,

then replace all occurrences of W in ¢ with wy. o

The normalization preserves V-equivalence of 3 because it
renames local constants, while maintaining all consequences
that are derivable through them. That is, ny(8) =v §.
Furthermore, ny (/) is cannonical.

Therefore, given a set of literals T, we use ny (5) as a com-
putable implementation of the V' -base abstraction, aiyy (Def. 9).
That is, ay (I') £ ny(3) where (W, 3,6) € base(T, V). Even
though ny () may not be a part of a V-basis for I, it satisfies
all the properties used in the proof of Thm. 4.

We define the normalizing abstraction in the usual way:

Definition 13 (Normalizing abstraction) The
abstraction function «,, : C — C' is defined by

normalizing

an((s,q0,pc)) = (s, q0,n(pc))

O

Let ap,r.n £ oy 0 @y o ay, be the composition of normal-
ization abstraction with renaming and base abstraction where
oy 1s implemented using normalization. Notice that, for any
state ¢ = (s, ¢, pc), o rn(c) is computed by first computing
any V-basis of pc, applying n4, renaming all C(g) constants
to go, and applying n,,. The second normalization is required
to ensure that the fresh constants are canonical with respect to
go- By definition «y ., is computable. Hence, it can be used
to compute the finite abstraction of any CUP.

Theorem 6 For a CUP P, the finite abstract transition system

oy 0 (Sp) is bisimilar to P and is computable. o

Thm. 6 implies that any property that is decidable over
a finite transition system is also decidable over CUPs. In
particular, temporal logic model checking is decidable.
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VII. CONCLUSION

In this paper, we study theoretical properties of Coher-
ent Uninterpreted Programs (CUPs) that have been recently
proposed by Mathur et al. [9]. We identify a bug in the
original paper, and provide an alternative proof of decidability
of the reachability problem for CUP. More significantly, we
provide a logical characterization of CUP. First, we show that
inductive invariant of CUP is describable by shallow formulas.
Hence, the set of all candidate invariants can be effectively
enumerated. Second, we show that CUPs are bisimilar to finite
transition systems. Thus, while they are formally infinite state,
they are not any more expressive than a finite state system.
Third, we propose an algorithm to compute a finite transition
system of a CUP. This lifts all existing results on finite state
model checking to CUPs.

In the paper, we have focused on the core result of Mathur
et al, and have left out several interesting extensions. In [9],
the notion of CUP is extended with k-coherence — a UP P
is k-coherent if it is possible to transform P into a CUP
P by adding k£ ghost variables to P. This is an interesting
extension since it makes potentially many more programs
amenable to decidable verification. We observe that addition
of ghost variables is a form of abstraction. Thus, invariants
of P can be translated to invariants of P using techniques
of Namjoshi et al. [13], [14]. This essentially amounts to
existentially eliminating ghost variables from the invariant
of P. Such elimination increases the depth of terms in the
invariant at most by one for each variable eliminated. Thus,
we conjecture that k-coherent programs are characterized by
invariants with terms of depth at most k.

Mathur et al. [9] extend their results to recursive UP
programs (i.e., UP programs with recursive procedures). We
believe our logical characterization results extend to this
setting as well. In this case, both the invariants and proce-
dure summaries (i.e., procedure pre- and post-conditions) are
described using terms of depth at most 1.

Our results also hold when CUPs are extended with simple
axiom schemes, as in [10], while for most non-trivial axiom
schemes CUPs become undecidable.

Perhaps most interestingly, our results suggest efficient
verification algorithms for CUPs and interesting abstraction for
UPs. Since the space of invariant candidates is finite, it can be
enumerated, for example, using implicit predicate abstraction.
For CUPs, this is a complete verification method. For UPs it
is an abstraction. Most importantly, it does not require prior
knowledge to whether an UP is a CUP!
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Abstract—Inductive generalization (IG) is the key to the
efficiency of modern Symbolic Model Checkers (SMCs). In this
paper, we introduce a data-driven method for inductive gener-
alization, whose performance can be automatically improved
through historical runs over similar instances. Our method is
inspired by recent advances for the part-of-speech (PoS) tagging
problem in natural language processing (NLP). Specifically, we
use a hierarchical recurrent neural network augmented with
syntactic and semantic information to predict essential parts of
a proof obligation that could be generalized, instead of checking
each part one by one. We develop a prototype called ROPEY by
incorporating our method into SPACER - a state-of-the-art SMC,
and perform evaluations on the KIND2’s simulation benchmarks.
ROPEY is evaluated in two settings: online learning — for a given
instance, we run SPACER for a number of iterations and collect its
trace on which ROPEY is trained, and then use ROPEY to guide
SPACER to finish the remaining solving process; and fransfer
learning — ROPEY is trained over historical runs of SPACER in
advance, and for future instances, ROPEY is used directly to guide
SPACER from the very beginning. For non-trivial benchmarks,
ROPEY perfectly answers 72% and 77% of the queries in the
online and transfer learning settings, respectively. While the
speed improvement is not the focus of the paper, our preliminary
results are promising: for non-trivial instances, ROPEY’s end-to-
end running time is 25% faster.

I. INTRODUCTION

Model checking has been widely used in various important
areas such as robustness analysis of deep neural networks [27],
verification of hardware designs [16], software verification [3],
analysis [20] and testing [41], parameter synthesis in biol-
ogy [5], and many others. The central challenge of model
checking is to find a concise and sound approximation of
all possible states a given system may reach, which does not
cover any undesired states (i.e. violating given specifications).
Tremendous progress has been made by innovations in ef-
ficient data representations [10], scalable SAT solvers [43],
[35], [18], and effective heuristics [14], [13], [32]. Modern
model checkers share a common basis, namely, IC3 [7], of
which the key insight is inductive generalization (IG). This
idea has been generalized to support rich theories [26] that
are crucial for many verification tasks [30], [22] beyond
hardware verification. The generalized IC3 with rich theories,
also known as satisfiability checking for Constrained Horn

This work was supported, in part, by an Individual Discovery Grant from
the Natural Sciences and Engineering Research Council of Canada, and the
Canada CIFAR AI Chair Program.
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Clauses modulo Theory (CHC) [6], becomes the core part of
a broad range of verification tasks.

Existing IG techniques follow either an enumerative search
process [7], [8] or ad-hoc heuristics [21], [31]. These heuristics
are effective but demand non-trivial domain-specific (or even
problem-specific) expertise. In this work, we aim to learn
such heuristics automatically from the past successful IGs. We
observe that verification problems as well as associated IGs are
not isolated from each other. Taking software verification as
an example, verifying different properties of the same program
involves similar or same IGs; different versions of programs
have a similar code base; and different software may use the
same conventions, idioms, libraries and frameworks, resulting
in similar structures.

Our approach is inspired by recent advances in deep learn-
ing, especially in NLP where non-trivial semantic correlations
between words are learned automatically using Neural Net-
works (NNs) [33]. However, IG raises many new challenges
for deep learning. First, the input and the output of IG are
symbolic expressions, which are highly structured with rich
semantics. Slight syntactic variations can lead to dramatic
changes in semantics. Second, more importantly, given that
neural networks hardly provide any reliable guarantees, how
to design a data-driven system based on deep neural networks,
which exhibits learnability from past experiences but still
preserves soundness? All these challenges have to be properly
addressed in building a data-driven reasoning framework. In
this work, we share our design choices and empirical find-
ings in building a data-driven inductive generalization engine
ROPEY, which introduces a neural component into SMC.
Specifically, we make the following contributions:

« we adapt standard deep learning models to effectively
represent symbolic expressions by incorporating both
syntactic and semantic information;

« we design a simple but effective learning objective so that
training data can be collected with nearly no changes of
existing model checkers;

« our integration algorithm achieves soundness by design,
and in the worst case, the learning component may only
hurt the running time performance;

« we implement ROPEY on top of SPACER, a state-of-the-
art CHC-solver. Our empirical evaluations indicate that
ROPEY can effectively predict perfect answers for IG

This article is licensed under a Creative
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Fig. 1: co-occurrences in solving

queries, and this predictive power directly translates to
an improvement in end-to-end running time.

The utility of our current solution is modest since its applica-
tions are restricted to two use-cases: verification of multiple
properties of a single system (transfer learning), and guiding
verification of a hard property using its partial run (online
learning). This, however, is already useful in the context of
multi-property verification that is common both in hardware
and software verification domain [12]. More importantly, we
demonstrate that NN-based heuristics can be effective in 1C3-
style algorithms. We believe this will lead to many further
improvements, including heuristics that will eventually transfer
between systems.

The rest of the paper is structured as follows. Sec. II
shows a motivating example. Sec. III gives an overview of our
approach. Sec. IV describes two novel embedding methods
for converting symbolic expressions into numerical vectors.
Sec. V formalizes the learning problem and describes our
neural network architecture. Sec. VI presents our empirical
evaluation and ablation study. Finally, Sec. VII discusses
closely related work, and Sec. VIII concludes the paper.

II. A MOTIVATING EXAMPLE

In this section, we motivate our approach by illus-
trating the solving process of a particular CHC prob-
lem - the variant e7_1068_e8_1019 of the prob-
lem PRODUCER_CONSUMMER_1luke_2 from KIND2 [11]
benchmarks. We identify a bottle neck in IG, observe a pattern
in the solving process, and explain how this leads to our
intuition. While we use a specific instance for illustration, the
results generalize to others in our benchmarks. We assume
familiarity with SMC [15] and inductive generalization of
IC3 [7]. These are also summarized in Sec. III.

SPACER cannot solve this variant in less than 930s. SPACER
proves that the instance is safe up to depth 29 in 883s, in which
545s (61%) is spent on IG — so this is the bottleneck.

During inductive generalization process, SPACER takes a
candidate lemma L, and uses an SMT solver to check whether
each literal of L can be dropped. Each call to the SMT solver
is potentially very costly. Thus, it is desirable to drop or skip
multiple literals together.

We conjecture that there is a pattern between literals: some
groups of literals may always be dropped or kept together. If
this correlation is known, it can be used to speed up IG.
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Fig. 2: Overview of Symbolic Model Checking and ROPEY.

To verify our hypothesis, in Fig. 1 we visualize the co-
occurrences of kept literals in the instance. Literals are ordered
by the time they are learned. Each cell X;; in the grid is the
number of times the literals ¢; and £; appear together in some
generalized lemma (normalized by the largest value). In the
figure, brighter cells indicate larger values.

The figure shows a strong geometric pattern, with literals
clustered into unusual groups. However, we are not able to tell
the exact heuristics describing those patterns. In this paper, we
turn this observation into a practical inductive generalization
method with the help of data-driven approach.

III. OVERVIEW

In this section, we give an overview of our technique,
outline the challenges involved, and our key insights to address
them. The context is symbolic SMT-based Model Checking
(SMCQO) [7], [26], [29], also known as satisfiability checking
for Constrained Horn Clauses modulo Theory (CHC) [6]. In
Model Checking, the high-level goal is to show that an infinite
state transition system (7'r) does not have an execution/path
that reaches a set of bad states (Bad) by finding a formula Inv
that is an inductive invariant of 7' and does not intersect with
Bad. The goal of CHC solving is to show that a set of First
Order Logic formulas @ that satisfy the Horn restriction [6] is
satisfiable by exhibiting a symbolic formula Model that defines
an FOL model that satisfies ®. The two problems are closely
related. Model Checking is often reduced to CHC solving.
Both problems are in general undecidable.

Fig. 2a shows the basic structure of an SMC algorithm based
on IC3 architecture. In the paper, we use SMC SPACER [29],
but the architecture is common to many engines. SMC iter-
atively unrolls 7r, uses an SMT solver to find a bounded
counterexample (which is usually decidable), and, if no coun-
terexample is found, attempts to create an inductive invariant.
The invariant is constructed as a set of so called lemmas, where
each lemma blocks a predecessor of Bad (a proof obligation),
and is a disjunction of atomic formulas. An example lemma
is z < 0V y, which often written as a set for convenience,
ie {x < 0,y}. Many of the details of the algorithm are not
important, and we omit them here. The step we focus on in this
paper is inductive generalization (1G) (highlighted in blue in
Fig. 2a), that is responsible for generalizing learned lemmas.
In practice, IG is crucial for the performance of SMC.



Input: the original F-inductive lemma L = {1, (2, ...
Output: a generalized F-inductive lemma K C L

1 K+ 0 // kept literals

2 C+ L // literals to check

3 while C # 0 do

4 L K,C < dropOne (K,C)

5 return K

function dropOne (K, C)

lit + pick(C)

if isInductive(K U C\ {lit}) then
| C <« C\{lit}

else
K + K U{lit}
L C «+ C\ {lit}

return K,C

6
7
8
9
10

11
12

13

Fig. 3: ITERDROP algorithm.

Conceptually, inductive generalization is a simple process,
usually done with an algorithm similar to the one we call
ITERDROP!, shown in Fig. 3. ITERDROP starts with a valid
lemma L = {{,...,¢,}, and proceeds to generalize L by
removing an arbitrary chosen literal from L, and using an
SMT solver to check whether the lemma is still valid (by
calling isInductive). The details of isInductive are
not important — but it can be quite expensive. If the call
succeeds, the literal is removed, otherwise it is kept. The goal
is to generalize to a valid lemma with a minimal number
of literals. From now on, when the context is clear, we use
generalization instead of inductive generalization.

We illustrate ITERDROP with a sample run, shown in
Fig. 4a. Start from the given lemma L = {z3,21,2¢ =
1,29 — 210 > 41,25 = 1}, ITERDROP proceeds as follows:

1) it tries to drop the first literal, x3, by checking whether

" =A{x1,26 = 1,29 — 2190 > 41,25 = 1} is valid;
assume that I} is valid, then L < L), x; is chosen next;
now, assume that L, = {6 = 1,29 — 2109 > 41,25 = 1}
is not valid. L remains as is and xg = 1 is chosen next;
assume that L = {z1,x9 — 219 > 41,25 = 1} is valid,
then L < L%, and 29 — z19 > 41 is chosen next;
assume that L), = {x;,z5 = 1} is not valid, then L is
unchanged, and x5 = 1 is chosen next;
assume that Li = {x1,29 — x19 > 41} is valid, then L}
is the final generalized lemma.

2)
3)

4)
5)
0)

The example highlights the difficulty of inductive gener-
alization. First, each call to isInductive is potentially
very expensive. Thus, reducing the number of the calls is
highly desirable. Second, many of the calls, like steps 3
and 5 are “useless” — no new lemma is learned from them.
Thus, reducing such “useless” calls is also highly desirable.
Finally, a solver makes many (up to thousands) such inductive
generalization calls per run.

Our key insight is that since generalization happens fre-
quently, and, while the lemmas are different, the literals are
similar, it is possible to learn the co-occurrence between

I'While there are more advanced IG techniques, such as [23], we choose
ITERDROP since it is used in SPACER- a state-of-the-art CHC solver.
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literals that do and do not occur in the same lemma together.
This co-occurrence, if learned, could then be used to improve
inductive generalization!

Crucially, SPACER learns new literals all the time, and
literals between different instances of the same problem are
often similar, for instance, x1 — 2x3 > 20 and =1 — 2x3 > 25.
Thus, an ML-based solution is useful to transfer knowledge
between different sets of literals. Our method is inspired by
the PoS-tagging problem in NLP, in which NNs automatically
learn co-occurrence patterns between words and their tags.
We elaborate more on this inspiration in Sec. V. We have
also tried creating our own hand-crafted heuristics for directly
calculating co-occurrence (for example, by using Boolean
abstraction of literals), but none worked well in practice.

Concretely, we propose a novel neural network architecture,
denoted by , that learns from past IG queries, and is then
used to predict answers for new IG queries. As shown in
Fig. 4c, outputs a binary mask (a list of zeros and ones)
corresponding to literals that should be dropped or kept in the
lemma. To evaluate in the context of an SMC, we devise
a new neural-based IG algorithm called XDROP, that has
at its core (Fig. 6). We have developed ROPEY, a prototype
SMC that uses XDROP to guide SPACER. (Fig. 2b).

In Fig. 4b, we illustrate a run of XDROP on our exam-
ple: (1) it runs on the input L; (2) it creates a mask
{0,1,0, 1,0}, corresponding to a candidate L.qnq = {x1, 29—
x10 > 41}; (3) it checks the inductiveness of L.gnq; (4) it
accepts L.qnqg, and runs ITERDROP starting from L4, 4. Note
that XDROP runs only 3 inductiveness checks, compared to 5
used by ITERDROP.

Challenges. To make ROPEY a practical verification engine,
we have to address challenges in both the machine learning
and the logical soundness aspect. For machine learning, the
challenge is in representing symbolic expressions as vectors,
while still maintaining their rich semantic structure. For logical
soundness, the challenge is in setting up the learning objective
and using the neural net in a way that guarantees the soundness
of a verification engine.

Representation learning of symbolic formulas. Literals
are symbolic formulas, which are structured and have mean-
ing sensitive to small changes. Simply viewing a literal as
a sequence of tokens fails to capture the subtle semantic
differences between structurally similar formulas.

We incorporate both syntactic and semantic information of
a literal into its representation. Our approach views a literal
as a directed acyclic graph (DAG), which is post-processed
from its abstract syntax tree (AST), and then adapts TREEL-
STM [44] to embed such a DAG structure. Our approach also
takes semantic information into consideration so that specific
properties of values are respected: embedding of numbers and
variables should preserve their relative order and equality.

Learning for inductive generalization. Directly using
ML to address the generalization problem is a non-trivial
structure prediction problem. It takes in a set of symbolic
formulas and outputs another set of symbolic formulas that
are more general and more concise. Rather than having an
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end-to-end ML solution, we embed a learning component in
a classic symbolic approach of generalization. Specifically,
the learning component captures the co-occurrence between
literals appearing in past runs and predicts the likelihood of
keeping or dropping a literal in the current run. Furthermore,
uncertainties introduced by the learning component have to be
carefully controlled, which otherwise could lead to unsound
conclusion. ROPEY is designed to make sound progress no
matter what predictions the learning component provides. Bad
predictions may be harmful to the performance, but not to
soundness!

IV. REPRESENTATION LEARNING

Machine learning frameworks [36] and algorithms [44], [38]
operate over fixed-length numerical vectors. One challenge
for applying machine learning for IG is converting discrete
structures with rich semantic meanings into such numerical
representations. In this section, we describe how we embed the
basic unit of our inputs — symbolic formulas — into fixed-length
vectors, while still maintaining their syntactic and semantic
meaning to a certain extent.

A. Representing and normalizing symbolic formulas

Abstract Syntax Trees (ASTs) are natural representations of
formulas that are traditionally used in parsing and compilers.
They preserve the key structure of the formula, while hiding
(or abstracting) unnecessary details such as white space,
commas and parentheses. Alternative representations such as
sequences of tokens abstract too much of the structure of the
formula, while highlighting unnecessary differences. Thus, we
represent logical formulas using their ASTs: operators label
nodes of the tree, operands are children, constants (boolean
and numeric) and variables are leaves. An example of an AST
is shown in Fig. 5b.

Ideally, we would like to represent semantically equivalent
formulas with the same AST. However, this is not guaranteed
if one naively parses a formula into an AST. For example,
x40 >y and z > y are semantically equivalent, yet differ in
the concrete syntax, and have different ASTs. To address this,
we rewrite each formula in a “normal” form by simplifying as

well as ordering commutative operators. Specifically, we use a
simplification engine of Z3 [17]. Our normalizer cannot handle
sophisticated semantic equivalences, such as normalizing 2/7 -
x9g —4/7 210 > 6 into 1/7 - x9g — 2/7 - 19 > 3. Improving
the normalization process to handle such cases would be an
interesting future work.

Note that semantically equivalent rewriting and normaliza-
tion make our representations of symbolic formulas essentially
directed acyclic graphs (DAGs) modulo semantic equivalence,
because semantically equivalent subtrees share the exact same
embedding. Indeed, representations of symbolic formulas in
our implementation are DAGs, although they are viewed as
if they were trees by the embedding model. Without further
notice, when we refer to a node in a tree, we actually mean
its corresponding node in the DAG.

We use TREELSTM [44] to embed a symbolic formula,
or more concretely its AST representation, into a fixed-
length vector. TREELSTM is essentially a recursive process,
where the embedding of a (sub-)tree is an aggregation of
the embedding of the root node and embeddings of its sub-
trees. The basic requirement of using TREELSTM is to have
an embedding for each node. In the rest of this section, we
describe the features used to embed each AST node into a
fixed-length vector.

B. Embedding features of an AST node

A common technique to map a node N to a vector is to
first map the infinite (or simply large) set ¥ of all possible
nodes into a finite set T" of tokens (a.k.a. encoding), and then
embed each token into a vector using an embedding matrix of
size |T'| X demb-

a) Encoding: Under the standard encoding scheme,
many nodes have to be mapped into the same token. For
example, in NLP, all out-of-vocabulary words are mapped
into a token <UNK>. Similarly, variable names, and numerical
constants over an expression can be mapped into two tokens:
<VAR> and <NUM>, respectively.

Unfortunately, this encoding scheme is inadequate in our
setting. We believe that both the variable names and the values
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Kind ::= (BOOL_OP) | (BOOL_VAR)
| (REAL_OP) | (REAL_VAR) | (REAL)

Value ::= Var | Op | Constant

Var ::= variable name
Opu=+|—I<| -
Constant ::= real constant

CE"(p) ::=[s,e1 - €ant1]
s €[1,10) C R,e; € {0,1}

g9 — T10 Z 41

[ [Exina((BOOL OP)), Eoy(>)] |

[ [Bxina (REALOP)), Eop(-)] | [ [Bxwa((REAL)),CE'(41)] |

PE*(v) = [f1, f2- - fa]

[Exina((REAL_VAR)),
Evyar(x_9), PE®(9)]

[Exina((REAL_VAR)),
Evy,r(x_10), PE%(10)]

fle(oal)CR

(a)

(b

Fig. 5: (a) The grammar for AST node features, and (b) an example AST and its semantic features.

of the numeric constants are highly relevant for successful
generalizations! For example, consider two pairs of formulas:

x, — 2x3 + Txs > 10
T 721’34‘71’5 > 10

T, —2x3+Txs > 14 (1)
£E1+1’3*1’520 (2)

Pair (1) represents two parallel hyperplanes, with the first
subsuming the second. Pair (2) represents two intersecting hy-
perplanes and cannot be simplified any further. The difference
between the two pairs disappears when all numeric constants
are mapped to a small finite set of tokens. Yet, this difference
is crucial for successful learning in our context!

Instead of abstracting variables (or constants) into a single
token, we propose a finer granularity abstraction as follows.
Each node is abstracted as a pair of (Kind, Value), whose
grammar is shown in Fig. 5a. Kind captures the type (or sort)
of the expression of an AST node. The encoding is one of
the pre-defined symbols, such as (BOOL_OP) for a Boolean
operator, etc. Value captures the content of an AST node.
It could be a Variable Name, an Operator, or a Constant.
Operators are encoded as their string representation. Constants
are encoded as their string representations. Variable Names are
encoded using the form x_1i, where x is some fixed string,
and i a numeric id of the variable.

Next, we describes how we embed the pair (Kind, Value)
into a fixed-length vector.

b) Embedding: Kind is embedded into a fixed-length
vector of length d g, using a standard embedding matrix [34]
Exina of the size |Kind| X d;nq. Value could be embedded
in the same manner. However, given Value is quite diverse,
we propose different embedding methods for different kinds
of values. When Value is an Op, we introduce the second
embedding matrix Eo, of the size |Op| x dop.

When Value is a Variable Name, we combine two embed-
ding methods. The first method, which we call Naive Embed-
ding, is the same as above, in which we use another embedding
matrix Ey,, of the size |Var| X dy,.. The second method,
which we call Positional Embedding, based on the method
introduced in [46]. It embeds the id t of the normalized
variable name x_t as follows: The embedding of the position

t is a vector PE%(t) of length d. The value for the i entry in
the vector PEY(t) is defined as follows:

i if i = 2%
FE (t)’_{ if Q= 2k +1

sin(wy, - t)
cos(wg - t)

where wy, = 10000~2%/¢, This embedding satisfies many nice
properties: each position is mapped to a unique value, all en-
tries in the vector are between 0 and 1 (which makes learning
easier), and, lastly, for every fixed offset k, there exists a
transformation matrix 7' € R4 s.t. T-PE%(t); = PEY(t+k);
holds for any position ¢ and index ¢ [46]. This last property
allows the model to learn relative positions easily. In practice,
we combine the two methods by concatenating their vectors.

When Value is a Constant, we want to embed it in a way that
allows the network to quickly extract magnitudes of constants
along with their values. We propose the following Constant
Embedding method: Given a numerical value p, its embedding
is a vector CE"(p) of length 2(n 4 1). To embed it, we first
write p in its scientific notation: p = s x 10°. The entries in
CE"(p) are then calculated as follows:

CE"(p)1 = s

" 1 ifi=2+n+e
CE (p)”“_{ 0 ifi#2+nte

Simply put, we embed the significant s as the first entry
in the vector, and the rest is the one-hot encoding of e in
the range [—n,n|. For example, with n = 2, p = 42 =
4.2x10%, its embedding is CE?(42) = [4.200010]. Similarly,
CE*(0.42) = [4.20010000].

The final feature vector for a node is then the concatenation
of the embedding of Kind and Value. In our experiments,
we set dging = dop = dyaer = d = 64, and n = 6. We
conclude this section with an example. Fig. 5b shows an AST
for xg — x19 > 41 and its transformation into a tree of feature
vectors, with n = 6 and d = 64.

V. LEARNING TO GENERALIZE

In this section, we elaborate on our insight first mentioned
in Sec. III, then we describe the details of our model.
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Word Tag Literal Tag
Travelers  noun T drop
love verb x1 keep
to preposition e =1 drop
park verb r9 —x10 > 41 keep
here adverb x5 =1 drop

TABLE I: Two examples for PoS-tagging (left) and IG (right).

A. Lemma Labeling Problem

In Natural Language Processing, part-of-speech tagging
(PoS-tagging) is the process of labeling each word in a text
(corpus) a particular part of speech, based on ifs definition
and its context. Table I (left) shows an example of tagging a
sentence. To correctly tag each word, a tagger needs to know
that “park” in this context is a verb, not a noun. State-of-the-art
PoS-tagger tackles this problem purely from the probabilistic
view [45]: in the dataset, how many times “park” is tagged as
a NOUN, how many times “park” is tagged as a VERB given
that the following word is tagged as an ADVERB, etc.

Our insight is that the inductive generalization could be
viewed as a special case of PoS-tagging in which there are
only two tags: drop and keep. Table I (right) shows one such
example. We also view the problem in the same probabilistic
way: in the dataset, how many times x3 is kept, how many
times x3 is dropped given that z; is kept, etc. It is reasonable to
expect there are shared patterns between different properties
of the same system, or between different points in time of
the same solving process. However, it is not expected that the
learned pattern is transferable between different systems (x3 in
one system is completely different from x5 in the others, just
like “park” in English and Korean are completely different).

Formally, we define our problem as an instance of the
sequence labeling problems:

Problem 1 (Lemma labeling problem) L is the set of all

possible literals. Given a list of literals L of length n and

a vector M of zeros and ones, |M| = n, train a tagger
(L= {0,1}" 5. (L) = M.

Note that in the problem definition we keep the lemma as a list
instead of a set of literals. This means that given a different
ordering from the same set of literals, we might end up with a
different result. However, this is also the behavior of SPACER,
because SPACER maintains the lemma as a list of literals, and
pick(C) in Fig. 3 simply returns the first element in C.

~
~

B. Model

To handle inputs of different lengths, we use two variants
of the Long Short-Term Memory (LSTM) [25] network. At
the high level, the informit)ion (hidden state) at each timestep
t in a vanilla LSTM is hy = LST  (iy, hi—1), where i; is
the input at timestep ¢, and a vector of zeros is used for the
initial hg. Intuitively, the formula says that the hidden state at
timestep ¢ captures information from every prior timestep.

The first variant, Bidirectional-LSTM [38], has been shown
to improve the labeling performance in NLP tasks [47]. It ex-
tends LSTM by including information from later timesteps as
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Input: the original F-inductive lemma L = {1, (2, ...
Output: a generalized F-inductive lemma

1 LCund — {El | te L7 (L)[Z] = 1}

2 if isInductive(Lcand) then

3 ‘ return iterDrop(Lcand)

4 else

s | return iterDrop(L)

7£n}

Fig. 6: XDROP algorithm.

well, thus, allowing the network to use better context informa-
tion. Concretely, it adds the backward 717 =LST (¢, hit1).
Then, the hidden state h; is the concatenation [hy, h].

The second variant, TREELSTM [44], has been shown to be
suitable for tree-like inputs, such as ASTs. It extends LSTM
by considering the linear chain of timesteps as a special case
of a tree, in which each node has exactly one child. Given
a node i; in a tree, with H(i;) is the set of hidden states
corresponding to each child node of i;, TREELSTM extends
the equations with h; = TreeLST (i;,H(i;)). Intuitively,
TREELSTM passes information from all children to their
parent, allowing better topology information to be learned. In
this work, we use the information at the root node as the
summary of the whole tree.”

Fig. 4c shows our full model with a Bidirectional LSTM
layer on top of a TREELSTM layer in a hierarchical manner.
From top to bottom in Fig. 4c, at a literal ¢; corresponding to
an AST with root Root,, we calculate the following:

iy = TreeLSTM (Root, H(Root;))
he = LSTM (iy. husr) Ty = LSTM (ig, ey
%
he = [he, b =W hi+b

where W € RI"!%2 and b € R? are the weight matrix and
bias that transforms h; to a vector of size 2. Each equation
above corresponds to a layer in Fig. 4c. Finally, the predicted
label for ¢; is the index of the max value of y;.

Fig. 6 describes how we use the learned model in our neural-
based IG algorithm XDROP. Given that deep learning models
could make arbitrary predictions, special care need to be taken
in order to preserve soundness. In the worst case, XDROP
should be effectively the same as ITERDROP. More formally,
we have the following important yet straightforward theorem.

)

Theorem 1 XDROP is sound and terminating.

XDRror is implemented in Python using PyTorch [36],
while SPACER is implemented in C++. We implement a client-
server architecture in which XDROP is wrapped in a gRPC
server which connects to a gRPC client inside SPACER.

C. Discussion

Using NNs to guide generalization might seem arbitrary at
first. Perhaps a simpler heuristic based on counting frequency
is sufficient. In fact, we have tried many different handcrafted
heuristics first. However, two common problems arose: (a) the

21t is also possible to use the sum of every node in the tree as the summary,
as mentioned in [44].
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heuristics do not work consistently across different bench-
marks; (b) even if a heuristic works, it does not transfer
to different properties since different literals are learned for
different properties and systems.

There are many alternative ways to guide generalization
using a neural component than the one we chose. Perhaps most
desirable is to have an end-to-end solution in which the neural
component takes an original lemma as input and produces a
generalized lemma as output. However, the symbolic reasoning
required for this is so complex that we believe that such
a solution is much harder to train and scale up. Another
alternative is to learn an approximation of the inductive check,
i.e., the function isInductive(Context, L) — {true, false}
that determines whether a candidate lemma L is inductive in
the current context. We have tried such an approach, but could
not make it effective. The difficulty is that the Context that
is used by the inductive checker is a large symbolic formula.
This makes training the network difficult. We suspect it is as
hard as learning a neural SMT-solver [40], [39].

VI. EMPIRICAL EVALUATION
A. Benchmarks and environment setup

We evaluate ROPEY on a set of simulation benchmarks
publicly available * for the KIND2 model checker [11]
(simply called KIND2 from now on). This benchmark suite
corresponds to verification of systems that are known to
be challenging for IG, for which SPACER behaves poorly.
Furthermore, KIND2 benchmarks can be easily grouped into
training set (i.e. a set of original benchmarks) and testing set
(i.e. a set of corresponding variants). In total, KIND2 consists
of 324 benchmarks.

We train ROPEY’s neural network  using Adam optimizer
[28] with dropout rate 0.5. We set the hidden size of TreeL-
STM to be 64, and use embedding dimensions mentioned in
Sec. IV.* We stop training when either the performance has
not been improved over the last 250 epochs or the number
of epochs reaches a predefined threshold (i.e. 1500). Naive
Embedding, Positional Embedding and Constant Embedding
are always used. Ablation study for those embeddings is

3https://github.com/kind2-mc/kind2-benchmarks.
4These dimensions could be further fine-tuned, which we leave as interest-
ing future work.
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discussed in Sec. VI-E. All experiments are performed on a
Linux desktop equipped with an Intel® Xeon E5-2680 v2, an
NVIDIA 1080 Ti GPU, and 64GBs of memory. The artifacts
including code and data are available on the project website
at https://nhamlv-55.github.io/Ropey.

Given that evaluating benchmarks with a short running time
(i.e. less than one second) is susceptible to noise, for all
experiments we report both the numbers for all benchmarks
and the numbers for non-trivial benchmarks. We define a non-
trivial benchmark as the one that takes at least 5 seconds to
solve, or has at least 100 IG queries (depending on whether we
are measuring running time or predictive power, respectively).

B. Predictive power

We evaluate the model in two settings, namely, online
learning and transfer learning. Given a lemma in the form of
a list of literals, predicts a likely inductively generalized
lemma, which is a sub-list of the given lemma. We define a
prediction returned by  as a perfect prediction iff given the
same input, vanilla SPACER produces the same exact answer.
Note that this is a conservative criterion because there might
be multiple valid inductive generalizations.

Online learning In this setting, we collect 144 benchmarks
from KIND2 that have at least 2 IG queries in their solving
trace. For each of them, we use SPACER to solve it until
completion or until a time limit of 930 seconds is reached.
Each solving trace is then split in half, and is trained on
the first half to predict the answers to queries seen in the
second half of the trace (tail queries). We measure how many
percent of the tail queries are perfectly predicted by . The
average length of queries is 9.75 literals.

achieves 60.19% perfect prediction ratio for all bench-
marks and 72.18% for non-trivial benchmarks. The trend of
perfect prediction ratio along with the corresponding number
of queries are plotted in Fig. 7a, where Y-axis is the perfect
prediction ratio and X-axis is benchmarks ordered according
to their total number of IG queries. The plot shows that
generally works better for larger benchmarks. For instance,
returns perfect predictions for more than 90% of the queries
in benchmarks with 1600 or more IG queries.

Transfer learning In this setting, we use 123 bench-
marks (i.e., 30 seed benchmarks and 93 variant bench-
marks) from KIND2 based on their naming convention. For
example, metros_2_el_1116.smt2 is one variant of
metros_2.smt2. Note that we have fewer benchmarks in
this task since some seed benchmarks can be solved without
any IG queries, while its variants cannot. Those seeds and
variants are all excluded from the task. The average length of
the queries for this task is 8.43 literals.

We train  on traces generated by solving the seed bench-
marks to completion or until timeout. The models are then
used to predict queries asked during the solving process of
the corresponding variants.

achieves 68.36% and 76.89% perfect prediction ratio
for all benchmarks and non-trivial benchmarks, respectively.
We also plot the trend of perfect prediction ratio in Fig. 7b.
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Fig. 8: ROPEY’s speedups for benchmarks taking more than s
seconds to solve.

All Non-trivial
solving + inf. time 0.81560 1.25385
solving time 1.14085 1.69792
ind. gen time 1.13570 1.63041
ind. gen + inf. time  0.70519 0.91891

TABLE II: ROPEY’s speedups compared with SPACER.

Similar to the online learning setting, generally works
better for larger benchmarks. It is a little surprising that the
perfect prediction ratio of transfer learning setting is slightly
better than the ratio of online learning. This might indicate
that in our benchmarks, queries in the beginning and at the
end of the same benchmark are more different than queries
between seeds and variants. Quantifying this observation is an
interesting direction for future work.

C. Running time

ROPEY’s running time can be broken down into few com-
ponents: SPACER’s time (in which IG time is a subcompo-
nent), communication time over gRPC, data parsing time, and
model running time. We group the later three components
into inferencing time. On average, inferencing takes 48.1%
and 24% of the total running time for all and non-trivial
benchmarks, respectively. For future work, we state that there
are opportunities for engineering improvement to reduce the
inferencing time.

We measure the speedup in IG time and SPACER’s solving
time with and without the inferencing time. If ROPEY times
out, we measure the running time that ROPEY needs to verify
to the same depth as SPACER. The timeout is set to be 930
seconds, and in cases where ROPEY times out, we rerun it
with the timeout set to 2790 seconds to allow it to verify to
the same depth as SPACER. The results are in Table II. We
also plot in Fig. 8 the speedups achieved at different running
time threshold s, e.g for benchmarks that takes more than 50
seconds to solve, 100 seconds to solve, etc.

For unsolved benchmarks, notice the spikes at the tail of
Fig. 8: ROPEY takes much less time to reach to the same depth
as SPACER, up to 2.8x faster (inferencing time included).

D. Training time

In this paper, we specifically consider realistic applications
where training time is not a bottleneck — train once on one
instance and apply to many similar instances (offline), or train
during a very long run (days or weeks) and apply to the rest of
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Fig. 9: Effects of using different embeddings for benchmarks
with at least k£ IG queries.

the run (online). For that reason, we do not optimize training
code, nor do we run training in an isolated environment
where time measurements are meaningful. Nonetheless, we
share some statistics of the training time — the minimum,
median and maximum training time are 17, 1027 (17 minutes),
and 165811 seconds (46 hours), respectively. More details
are hosted on our project webpage https://nhamlv-55.github.
io/Ropey/training_time. Training any individual model (i.e.,
when GPU is used to train only a single model) is faster, but
training all models sequentially is too slow. Since we do not
consider training time itself to be of significant interest, we
train as many models in parallel as possible.

E. Ablation study

Embedding variables and constants is crucial for our tasks.
In this ablation study, we evaluate three embeddings we
proposed in Sec. IV-B for handling variables and constants.
Fig. 9 shows four plots of ROPEY with four different em-
bedding configurations. ROPEY achieves the best performance
when all embeddings are enabled. ROPEY’s performance drops
dramatically when the positional embedding is disabled, in-
dicating leveraging variable’s position information helps for
capturing co-occurence patterns. Disabling Naive Embedding
or Constant Embedding does not affect the performance much
for benchmarks with relatively small number (i.e. < 1000)
of IG queries, however, the performance drops dramatically
when the number of IG queries becomes large.

VII. RELATED WORK

There has been a number of work studying neural learn-
ing for symbolic reasoning. Some studied the capability of
deep learning models on handling relatively simple symbolic
reasoning tasks, such as symbolic expression equivalence [1]
or logical entailment [19], which can be easily performed by
a symbolic engine like SMT solver. [2] and [37] focus on
learning embeddings of programs using paths over abstract
syntax trees or control flows, and the learned embeddings are
helpful for suggesting function or variable names. Our focus is
on improving state-of-the-art symbolic engines on non-trivial
symbolic reasoning tasks like symbolic model checking. The
most relevant work is [4], which predicts a high-level strategy
(or configuration) of an SMT solver based on static statistics
of a verification instance. In contrast, our approach learns from


https://nhamlv-55.github.io/Ropey/training_time
https://nhamlv-55.github.io/Ropey/training_time

dynamic runs and provides guidance for decisions in a finer
granularity. Two other related work are [24] and [42]. The
former also uses deep learning to guide numerical analysis,
where the soundness is not a concern as imperfect prediction
results in less precise (but still acceptable) numerical approxi-
mations. Like our problem, the latter also faces the soundness
issue and proposes an end-to-end reinforcement learning based
approach, which however suffers from scalability issues.

VIII. CONCLUSION

In this paper, we explore how deep neural networks can
be used in IC3. We chose inductive generalization because
it is (a) a common bottleneck; and (b) seemed suitable to
optimize with NNs. We view this as a first step in using data-
driven NNs to guide IC3. Specifically, we propose a data-
driven approach to improving inductive generalization, which
effectively embeds symbolic formulas in fixed-length vectors
and uses a hierarchical recurrent neural network to guide
inductive generalization (i.e., predict which literals of a lemma
should be kept or dropped). We build a prototype, ROPEY, and
evaluate it on KIND2 benchmark suite. We observe promising
predictive power of neural networks in inductive generalization
and modest improvement in terms of absolute running time
over the state-of-the-art SMC engine, SPACER, which boosts
the solving time for non-trivial instances by 25%.

Our work shows that it is possible for NNs to learn complex
symbolic patterns in IC3, and such learned patterns can be
used to improve IC3. ROPEY’s pure performance does not
show a strong gain yet, but is still encouraging. We envision
the performance gain would be much more significant by
improving ROPEY with better engineering effort or leveraging
advanced hardware acceleration for deep learning models in
the future (like TPUs). Another orthogonal improvement is
to explore more advanced transformer-based language models
like GPT-3 [9] to further improve the prediction accuracy.
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Abstract—Automotive software needs to comply with stringent
functional safety standards to reduce the risk of malfunction.
In particular, the ISO 26262 standard highly recommends the
use of formal verification for highly safety-critical software
components. Automated formal verification techniques (such as
Model Checking) enable the quick detection of intricate software
bugs and can, to a limited extent, even guarantee their absence.

We report our efforts to deploy the openly available verification
tool CBMC to verify AUTOSAR Software Components and
Complex Device Drivers using Bounded Model Checking and
k-induction combined with upfront static analysis.

I. INTRODUCTION

Modern cars now contain as many as 150 Electronic Con-
trol Units (ECUs) running software from different suppliers.
AUTOSAR, an open and standardized software architecture
for automotive applications, guarantees the interoperability
of automotive software components. This platform provides
a common development methodology based on a standard-
ized exchange format for describing software components
(ARXML), standardized communication interfaces and a Run-
Time Environment (RTE), and a basic software (BSW) layer
(see Fig. 1). The BSW comprises hardware-specific software
modules (including Complex Device Drivers (CDDs)) that
provide functions to the upper software layers. The RTE
middleware provides interfaces and functions for inter- and
intra-ECU communication between the application software
components. Software Components (SWCs) in the application
layer access the lower layers via the RTE, and can hence be
readily deployed on different vehicle and platform variants.

The ISO 26262 [1] functional safety standard establishes
safety requirements for automotive components (including
software). The norm defines four Automotive Safety In-
tegrity Levels (ASILs) ranging from A (low risk) to D (life-
threatening hazards). ASIL-D requires the highest degree of
rigor, including (semi-)formal verification in the development
process. Consequently, formal methods are frequently applied
in industrial dependable system design [2]. Moreover, ASIL-
code needs to be reverified whenever the implementation is
changed, re-generated, or re-configured.

In this context, automated static analysis techniques (such
as abstract interpretation or software model checking [3], [4])
are particularly attractive, as they require comparatively little
manual interaction and can detect intricate software bugs and,
to a limited extent, even guarantee their absence.

We investigate the applicability of model checking to AU-
TOSAR code written in ANSI-C. While commercial tools for

d https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_18
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Fig. 1. AUTOSAR Architecture

static analysis of AUTOSAR code exist [5], we focus on the
software model checking tool CBMC [6] because of the tool’s
availability, sustained development, and its permissive open
source license. The latter allowed us to adapt CBMC to our
work-flow and requirements: the specifics of AUTOSAR soft-
ware and the ISO 26262 requirements (such as the ARXML
description, the use of the RTE, and repeated verification runs)
imposes the need for an automated tool chain.

Contributions. Our report (based on the master’s thesis of

the first author [7]) describes the following contributions:

1) To apply CBMC to AUTOSAR code, we generate a test
harness and RTE-stubs from an ARXML description.

2) We deploy Bounded Model Checking (BMC) to detect
bugs, k-Induction to prove their absence, and combine
both techniques with an upfront static analysis to improve
verification performance and results.

3) We present case studies for SWCs and CDDs and discuss
the different challenges regarding their verification.

4) We report our learned lessons and the practicality of the
approach and identify open challenges and future work.

II. METHODOLOGY
To verify our SWCs and CDDs (described in subsect. III-A),

we need to (1) generate the verification environment and (2)
instrument and augment the code with static analysis results.
A. The AUTOSAR Platform

AUTOSAR uses three abstraction levels to describe the
SWCs of a system. The highest level—the Virtual Function
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int main_k_base () { int main_k_step() {

| 1
2 SWC_Init(); SWC_Init (); 2
3 mod_ndet_loop_variables(); 3
4 for(i=0; i < K; i++) { for (1=0; i < K+1; i++) { 4
5 assume (P) ; 3
6 SWC_Step () ; Sie_Sieep () 5 o
7 assert (P) ; !
8 ) b ;
9} assert (P); } 9

Fig. 2. Entry points for k-Induction experiments to prove property P

Bus (VFB)—describes types of SWCs and their connections to
other SWCs (PortInterfaces and PortPrototypes),
as well as the messages they exchange via their ports
(DataTypes). At the middle level—the RTE—the execution
behavior of SWCs, i.e., RunnableEntities and their
trigger events, are defined. Finally, at the implementation
level, these defined RunnableEntities are mapped to
their implementations (given as source or object code).

System constraints and the system configuration are de-
scribed in the ARXML format (see Fig. 3 for an example). In
the given context, the SWC Description and the RTE Extract
of the ECU Configuration are of relevance, since they describe
the messages and data-types that SWCs can exchange.

B. Generating Verification Environment

The RunnableEntities of an SWC (defined in the
corresponding ARXML model [8]) provide initialization and
step functions, which are invoked periodically in an order we
presume to be fixed (see also sect. V).

BMC focuses on checking the correctness of the program
only up to a predetermined number of iterations of each
loop, pruning all executions that require more. The entry
point of our generated test harness for BMC is a function
which, after initialization, calls the step functions of the
RunnableEntities in an (unbounded) loop.

The test harness for k-Induction' has two entry points:
one for the base case and another for the inductive step.
Fig. 2 illustrates the principle of k-Induction: BMC is used
to establish the base case by checking whether the assertion
P holds for the first K loop iterations. Subsequently, we use
BMC to check whether P holds after K + 1 steps under the
assumption that it holds in the first K iterations starting from
an arbitrary program state. If both the base case and induction
step succeed, then P holds after any number of loop iterations.

SWCs exclusively interact with each other and with the
BSW through the RTE (see Fig. 1), and RTE ports are their
only external input [9]. We assume the correctness of the RTE
implementation and replace it with an appropriate abstraction.
This has two consequences: Firstly, it results in a smaller code
base that is more tractable for verification tools. Secondly, as
our RTE abstraction conservatively models the most general
environment of the SWC, it takes arbitrary interactions with
the environment (e.g., any communication via the RTE) into
account. This modular approach guarantees that a change in

ICBMC’s built-in support for k-Induction did not cope with the nested
loops in our SWCs, which is why we require a separate harness.

<IMPLEMENTATION-DATA-TYPE UUID="...">

<SHORT-NAME>Dt_Engine_RPM</SHORT-NAME>

1

2

3 560

4 <COMPU-METHOD-REF DEST="COMPU-METHOD">
5 /DataTypes/CompuMethods/CM_Engine_RPM

6 </COMPU-METHOD-REF>

7 <IMPLEMENTATION-DATA-TYPE-REF DEST="...">

8 /AUTOSAR_Platform/ImplementationDataTypes/uintl6
9 </IMPLEMENTATION-DATA-TYPE-REF>

11 </IMPLEMENTATION-DATA-TYPE>

<COMPU-METHOD UUID="...">
<SHORT-NAME>CM_Engine_RPM</SHORT-NAME>

<COMPU-SCALE>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">255
</UPPER-LIMIT>
<COMPU-RATIONAL-COEFFS>...</COMPU-RATIONAL-COEFFS>
</COMPU-SCALE>

17
18
19
20
21
22 560
23 </COMPU-METHOD>

i void modif_nondet_Dt_Engine_RPM(Dt_Engine_RPM* tmp) ;
ii void modif_nondet_uintl6 (uintl6* tmp) ;

iii Std_RetType get_nondet_Std_ReturnType () ;

iv Std_RetType

\ Rte_Read_Engine_RPM_stub (Dt_Engine_ RPM* tmp) ;

vi
vii void modif_nondet_Dt_Engine_RPM (Dt_Engine_RPM* tmp) {
modif_nondet_uintl6 (tmp) ;
assume (0 <= *tmp && *tmp <= 255);

viii
ix
X}
Xi
Xii Std_RetType

xiii Rte_Read_Engine_RPM_stub (Dt_Engine_RPM* tmp) {

Xiv modif_nondet_Dt_Engine_RPM (tmp) ;

XV return get_nondet_Std_ReturnType();

XVi }

Fig. 3. Parts of ARXML specification of data type Dt _Engine_RPM (above)
and an example of using it in generated RTE function stubs (below)

the environment (e.g., the deployment of other components)
does not invalidate prior verification results.

The ARXML specification [10] and the AUTOSAR meta
model [8] describe the DataTypes of messages, allowing us
to automatically generate an abstraction of the RTE communi-
cation functions. Fig. 3 depicts parts of a specification in the
ARXML format that defines data types on different abstraction
levels. Lines 7-9 state that Dt _Engine_RPM is implemented
as uint16. Lines 4-6 refer to a CompuMethod element that
specifies a range of valid values from 0 to 255 for the data
type. These limits guarantee that the computation will result
in a value representable by uint16. For a thorough definition
of data types and their constraints see [8, Sect. 5].

In our RTE abstraction parameters and return values of
RTE functions are first havoced and then constrained based
on information provided in the ARXML specification. These
constraints are automatically generated. We generate non-
deterministic modifier and generator functions that are in-
voked in the generated RTE API stubs (see, e.g., function
Rte_Read_Engine_RPM_stub in Fig. 3). Fig. 3 also
illustrates how the data constraints defined by the XML in
lines 17-18 translate into a C assumption (line viii) due to the
type Dt_Engine_RPM.
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C. Static Analysis and Instrumentation of Code

As a next step, the verification target SWC source code, its
dependencies and the generated RTE stubs are built and linked
into a single object with CBMC. Though our software project
is complex and uses many architectural parameters, CBMC’s
goto-cc could seamlessly replace the compiler and linker in
our build process. We note that, in accordance with the ISO
26262 standard, our code base is written in a well-specified
and supported sub-set of the ANSI-C language.

Before starting the verification with CBMC, we perform an
upfront static analysis of the code to support and complement
the strengths of CBMC. To this end, we emit the complete
target project into a single source file and run Frama-C [11]
on the resulting code. While Frama-C provides a wide range
of static analysis techniques, we only employed its Evolved
Value Analysis (EVA [12]) plug-in, which is based on abstract
interpretation techniques. We used its default parameters that
do not rely on more advanced abstract domains. This analysis
can infer relatively small value sets for the variables (including
function pointers), which simplifies the task of CBMC, but
also provides indispensable type constraints for constructing
induction proofs in some of our k-Induction experiments. The
results of the static analysis are automatically incorporated as
assumptions constraining the values of global variables (which
represent the entire state of the system) and as replacements
of function pointers with explicit case statements.

Prior to instrumentation of the code with the constraints
provided by Frama-C, we verify (in independent k-Induction
runs) that the value sets provided by Frama-C are actually
inductive invariants. To verify the results of the function
pointer analysis, the bodies of functions that are unreachable
according to Frama-C are replaced with failing assertions
which are then checked using CBMC.

D. Implementation details

To automatically parse the ARXML specifications, RTE
headers and to generate C stubs, we relied on several openly
available Python modules (e.g. PyCParser [13], Ixml [14],
and cogu-autosar [15]). Some missing POSIX stubs were
implemented manually, and we had to patch CBMC to emit
proper C code for the SWCs in our experiments.

III. CASE STUDIES
A. Component Descriptions

We analyse four AUTOSAR SWCs of an automotive soft-
ware platform that comprises of ECUs with multiple hosts. The
platform provides services such as a common time-base for the
hosts, global time-triggered scheduling, and time-triggered or
time-sensitive communication between hosts. A custom RTE
hides the fact that the underlying system is distributed and
hosted on multiple SoCs/CPUs from the Application SWCs.

LifeCycle Service Server (LCS-S) component: This com-
ponent is typically executed on the host with the highest
ASIL and implements a state machine that determines the state
(Init, Standby, Running, etc.) of each host. Running,
for instance, indicates that the platform started up successfully
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and all hosts are operating under supervision. State transitions
are triggered by failing built-in self tests, or depend on the
states of other services. The LCS-S sends requests to its clients
to trigger transitions and ensures that all client hosts transition
correctly and report the expected lifecycle states.

While the LCS-S communicates with other SWCs via the
RTE, it is considered a CDD because it directly interacts with
other health- and safety-related platform services implemented
as CDDs. These interactions via non-standardized interfaces
require a few LCS-specific extensions of the verification envi-
ronment and hence knowledge about implementation details.

LifeCycle Service Client (LCS-C) component: implements
the same state machine as the LCS-S and periodically checks
whether state transitions are required or have been requested
by the LCS-S. An example for a transition requested by the
LCS-S and confirmed by the LCS-C is the power-off sequence,
where clients might store data in non-volatile memory.

Vehicle Communication Service (ApCom) component: This
Application SWC is typically either ASIL-B or D and receives
messages from the CAN bus (via the corresponding service in
the BSW) and transforms them into RTE data types. Thus, the
developers need not be aware of the underlying CAN specifics.

As ApCom utilizes only RTE and BSW COM interfaces,
it can be model checked with a generic abstraction of these
interfaces. Since large parts of the configuration and the
implementation are generated based on a mapping between the
CAN and RTE messages, the repeated (automated) verification
of this generated code is frequently necessary.

Middleware: This component is a CDD that communicates
with other hosts through a Transport Layer (e.g. Ethernet or a
time-sensitive version thereof), often relying on OS system
calls. Since the exchanged messages contain RTE data, it
requires non-standardized interaction with the RTE (such as
access to its buffer management system), which complicates
verification. While the implementation of the buffer manage-
ment is static, generated or configurable parts of the code
introduce the need for repeated analysis. Since it handles ASIL
data, the Middleware may be classified up to ASIL-D.

Table I presents some code metrics for each SWC to illus-
trate their complexity. More details are available in [7, Section
5]. The components of the LifeCycle service are simpler than
the other SWCs, with the LCS-S being the more complex one
of both due to supervision and platform initialization tasks.
The ApCom component relies heavily on calls-by-reference
and function pointers, as evidenced by the amount of pointer
arithmetic and dereference operations. Its buffer and data
frame manipulation operations make the Middleware the most
challenging component of our case study. The high complexity
metrics for ApCom and Middleware also denote the presence
of large chunks of generated code with repetitive structures
within these components.

B. Checked program properties

Our goal is to automatically detect potential errors and
vulnerabilities (expressed as assertions) in our code base. In
addition to assertions added by developers, we check the



TABLE I
CODE METRICS OF TARGET SOFTWARE COMPONENTS

[ [ [ LCS-C [ LCS-S [ ApCom | MW. |
« | Pointer dereference 50 115 2222 2170
% Add. & Subst. 31 129 330 3662
g | Mult. & Div. 36 76 898 471
O | Bitwise operations 10 14 11 304
2 | If statements 119 243 1276 948
= | Loops 4 17 77 76
g Function calls 129 309 1347 1328
S | Function returns 66 136 365 329
2z | Lines of code 1469 4923 15973 | 16536
& | Program locations 529 1182 5935 7061
£ | Global variables 34 94 427 584
S | MacCabe Cycl. Compl. 187 410 1681 1895

TABLE II

RUNNING TIMES FOR STATIC ANALYSIS OF THE TARGET SWCS

SW Comp Frama-C EVA Slicing

’ Mem. (MB) [ Time (s) | LOC (before) | LOC (after)
LCS-C 1281.58 87.96 87340 1469
LCS-S 6564.27 474.04 216349 4923
ApCom 7635.43 596.77 216349 15973
Middleware 1628.26 360.34 106153 16536

properties automatically generated by CBMC (e.g. possible
arithmetic overflows, safety of pointer dereferences; see [6]).
To enable k-Induction, we instrumented our code base with the
necessary assumptions and assertions similarly to Fig. 2. In the
k-Induction experiments, we additionally checked constraints
on permissible values of variables (e.g., to identify invalid
states in the LifeCycle service). Note that defining these latter
properties is a manual step that requires insights into the
implementation details and the in-depth understanding of the
application domain, while the other introduced assertions are
automatically constructed.

C. Experiments and Results

For verification we used CBMC 5.23. All experiments were
conducted on an Intel(R) Xeon(R) CPU E5345@2.33GHz
equipped with 47.2 GB of memory, running Ubuntu 18.04.4.
For each run, we set a memory limit of 40 GB and a CPU time
limit of one hour, measured by the tool BenchExec [16].

1) Static Analysis: We introduced static analysis into our
work-flow to address three challenges. First, to avoid spurious
counter examples that were due to imprecise value analysis
(see for example our k-Induction experiments later in this
section). Second, in some of our benchmarks, due to the
imprecise value analysis of the function pointers, cycles in
the call graph led to non-termination of CBMC. Finally, the
computed call graph allows us to identify and exclude code
that is not part of the targeted code base, but is still included in
the compilation process. The difference in size (lines of codes)
before and after slicing unreachable functions in the input file
is given Table II. Hence, in our experiments static analysis is
an essential preprocessing step that provides valuable benefits.
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To gain these benefits, however, an exhaustive static analysis
of the code base for each SWC is necessary. Table II presents
the running time and memory requirements of this step for
each SWC. Note that this analysis includes a precise value
analysis for every global variable and function pointer of the
code base and removes the unreachable sections of the SWCs.

2) Bounded Model Checking: We considered 5 iterations
of the loop calling the RunnableEntities of our SWCs
(cf. subsect. I1I-B). As most loops in automotive real-time soft-
ware are statically bounded, CBMC was able to automatically
determine bounds for most other loops. In addition, CBMC
can detect whether there exist executions that iterate the loop
more often than pretermined by the given bound, which we
used to identify loops that needed to be bounded manually (of
which there were less than 10 overall).

Table III (left) summarizes our BMC results, providing
for each SWC the number of checked assertions, memory
usage, and run-time. Though no real bugs were found, our
verification attempts revealed a modelling flaw in the ARXML
specification of the ApCom SWC. In our first verification
attempt, CBMC reported an arithmetic overflow in ApCom.
Analyzing the report showed that the ARXML specification
of the data type of one of the involved variables (whose value
was provided by our ARXML-derived RTE abstraction) was
too permissive. As the actual implementation of the RTE is
more restrictive, this overflow cannot occur in practice.

We identified a similar problem with the ARXML-derived
RTE model of the LCS-C component, which yielded a Not
Present state that is unreachable in the actual implementa-
tion. This revealed a limitation of our modular verification
approach, which lacks precise information about the states
reachable in other (abstracted) components. As before, this
bug cannot occur in the implementation.

The Middleware turned out to be too challenging to verify in
our experiments. Attempts to simplify the program (by e.g. ab-
stracting away the initialization of shared memory regions
which introduced large arrays in the resulting formulas) led
to numerous spurious error reports, rendering the approach
impractical. Since CBMC did not support some necessary
operations, our attempts to deploy a Satisfiability-Modulo-
Theory (SMT) solver as back-end also failed.

3) k-Induction: The right part of Table III presents the
results of our k-Induction experiments. The run-times are the
sum and the memory requirements are the maximum of the
two consecutive CBMC runs for the base case and induction
step (see Fig. 2). In our experiments, we observed that a
value of 1 is sufficient in all our (terminating) runs to prove
the properties, which we attribute to the auxiliary constraints
provided by the upfront static analysis. Hence, k-Induction
uses fewer resources than BMC in our setting.

Moreover, the value constraints provided by Frama-C
proved to be crucial. Our verification attempts without static
analysis led to spurious reports of out-of-bound array accesses
in the LCS-S component. This is owed to the fact that the
initial states (of the state machine) in the induction step
(Fig. 2) are arbitrary and hence potentially unreachable in



TABLE III

EXPERIMENTAL RESULTS OF BOUNDED MODEL CHECKING AND k-INDUCTION

SW Comp Bounded Model Checking k-Induction

’ Assertions | Memory (MB) | Time (s) | Outcome Assertions | Memory (MB) | Time (s) [ Outcome
LCS-C 366 1766.5 102.64 | Bounded-Success 370 711.6 44.65 Success
LCS-S 1806 2072.2 135.34 | Bounded-Success 1824 1334.7 91.04 Success
ApCom 15562 3406.4 157.58 | Bounded-Success 15597 3184.0 292.27 Success
Middleware 9680 14635.7 | 3600.00 Time out 9780 10043.1 3600.0 | Time out

the actual implementation. The value set information provided
by Frama-C constrains the initial states to reachable states
and strengthens our induction hypothesis. Other components
(LCS-C and ApCom) could be verified even without the use of
Frama-C. As in our BMC experiments, our attempts to verify
the Middleware timed out.

For a comparison of (an older version of) CBMC to alterna-
tive software model checking tools (such as CPAChecker [17]
and Ultimate Automizer [18]) on the presented SWCs, see [7]
(Section 6, pages 44-45).

IV. RELATED WORK

Ahmed and Safar [19] use the symbolic simulation tool
KLEE [20] to automatically extract test cases from the C
source code of an AUTOSAR BSW module. As testing of
safety-critical applications must be requirements-based [1],
generated test-cases need to be mapped to requirements. In
their CBMC-based automated testing method for the avionic
domain, Sun et al. [21] annotate the source code with low-
level requirements (expressed as pre- and post-conditions) to
establish such a mapping. Mittag [22] applies static analysis
to AUTOSAR components, focusing on comparatively simple
properties. Berger et al. [23] apply the CBMC-based verifier
BTC [24] to check automotive code generated by Simulink,
but do not address AUTOSAR. Fang et al. [25] use the
SPIN model checker to verify a hand-crafted model of an
AUTOSAR-based operating system. Westhofen [26] imple-
ments custom k-Induction on top of CBMC to efficiently
verify automotive C code.

V. DISCUSSION AND CONCLUSION

Automation was a primary goal, as it enables automated
regression verification and limits the effort for the verification
engineer. The CBMC model checker and its mature ANSI-C
support allowed to use our existing build system and largely
unmodified code base. The ARXML component descriptions
and the layered architecture of AUTOSAR made it possible
to delimit the SWCs and automate the generation of a test
harness and stubs that abstract the behaviour of the RTE.

We did, however, face challenges regarding automation,
modeling the environment, and scalability. Unlike SWCs,
CDDs are not standardized by AUTOSAR. They may use
interfaces that are not available to standardized SWCs (e.g., to
directly access peripherals). Consequently, the stubs for non-
standardized interfaces specific to a CDD need to be generated
manually. Moroever, even for SWCs, an overly abstract model
of the RTE may lead to false positives. This can be addressed

by providing a more precise model of the RTE (requiring
substantial insight into the details of the RTE) or by including
actual RTE code. The latter approach, however, amounts to
verifying the SWC in the absence of an environment.

As CBMC provides limited support for static analysis, we
combined it with an upfront run of Frama-C in order to reduce
the computational effort for the model checking — interfacing
the tools required a non-trivial implementation effort.

Preliminary experiments showed that verifying multiple,
interacting components reduces spurious bug reports. This,
however, would require to take into account all execution
schedules of the runnables, which we consider future work.
Another future work is to reuse our verification efforts of the
presented SWCs whenever a repeated analysis is necessary
(i.e. when the implementation is changed or re-configured) by
considering incremental verification techniques.

Overall, our conclusion and outlook is positive: despite
all challenges and the engineering effort required to deploy
CBMC to verify AUTOSAR components, we ultimately suc-
ceeded in checking non-trivial and realistic SWCs.
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Abstract—The increasing complexity of modern configurable
systems makes it critical to improve the level of automation
in the process of system configuration. Such automation can
also improve the agility of the development cycle, allowing
for rapid and automated integration of decoupled workflows.
In this paper, we present a new framework for automated
configuration of systems representable as state machines. The
framework leverages model checking and satisfiability modulo
theories (SMT) and can be applied to any application domain
representable using SMT formulas. Our approach can also be
applied modularly, improving its scalability. Furthermore, we
show how optimization can be used to produce configurations
that are best according to some metric and also more likely to
be understandable to humans. We showcase this framework and
its flexibility by using it to configure a CGRA memory tile for
various image processing applications.

I. INTRODUCTION

In systems engineering, the system configuration problem
arises when systems are parameterized to increase their flexi-
bility or functionality. It refers to the problem of choosing the
appropriate parameter values for the context or application in
which the system will be used. Most hardware and software
systems, including hardware IPs, operating systems, networks,
servers, and data centers, require some degree of configuration.
The need for configuration also often arises when integrating
decoupled parts of a system, including integrating software
and hardware.

The difficulty of the system configuration problem has
been gradually growing as systems increase in scale and
complexity. In particular, in an effort to make designs more
widely applicable and re-usable, there has been an increasing
use of hardware that is configurable, not only at design time
or setup time, but even during normal operation. Manual
configuration of such systems is error-prone and may even
be impossible, depending on how frequently the systems need
to be reconfigured.

Automation of the configuration problem can also be benefi-
cial during the system design process. In particular, it obviates
the need for new hand-coded configuration files every time
some configurable component changes. Increased automation
of such steps supports a move towards more agile design
processes. Agile approaches typically require the ability to
rapidly and (largely) automatically integrate changing parts
of a system while continuously maintaining correct end-
to-end functionality. Having design blocks that are flexibly
configurable aids this effort, as does the ability to automate
the configuration.
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A potential disadvantage of automated configuration is that
it could lead to an increase in the opacity of the overall system.
Hand-written configurations can be documented and explained
to allow for easier understandability and maintainability. Thus,
an additional goal when automating configuration should be
to produce results that are comprehensible to humans and that
can be easily reviewed and maintained.

In this paper, we present a general framework for auto-
mated system configuration. It provides a flexible approach
for solving the configuration problem for systems composed
of software, hardware, or both. The systems are modeled
using transition systems, where transition formulas can use
the full expressive power of SMT-LIB [1], the language
used by satisfiability modulo theories (SMT) [2] solvers. The
framework provides a systematic approach to facilitate fully
automated or automation-guided system configuration. It is
well-suited for both stand-alone designs and for designs with
multiple configurable parts. For the latter, it is especially useful
during system integration and rapid development.

The main contributions of this paper are:

e We introduce a “programming by example” approach for
formalizing common input-output specifications. In an
exact formulation of the configuration problem, the input-
output specification would need to universally quantify
over the input variables. Our approach avoids the need
for quantifiers.

e« We propose a new modular approach for configuration
finding in a general SMT setting that makes use of
abduction.

« We show how to leverage optimization to obtain human-
readable configurations.

« We present a case study—automated configuration of a
memory tile in the context of an agile hardware design
project targeting image processing applications.

The remainder of the paper is organized as follows. Sec-
tion II presents background and notation. Section III formal-
izes the configuration solving problem and introduces our
framework, including some extensions and limitations. In
Section IV, we show how optimization techniques can be
integrated into the approach, both for the purpose of improving
performance as well as for improving human readability, and
we discuss a few additional extensions of the framework.
In Section V we present a case study, giving the details of
a specific system design and show