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Preface

It was our privilege to serve as the program chairs for CAV 2018, the 30th International
Conference on Computer-Aided Verification. CAV is an annual conference dedicated
to the advancement of the theory and practice of computer-aided formal analysis
methods for hardware and software systems. CAV 2018 was held in Oxford, UK, July
14–17, 2018, with the tutorials day on July 13.

This year, CAV was held as part of the Federated Logic Conference (FLoC) event
and was collocated with many other conferences in logic. The primary focus of CAV is
to spur advances in hardware and software verification while expanding to new
domains such as learning, autonomous systems, and computer security. CAV is at the
cutting edge of research in formal methods, as reflected in this year’s program.

CAV 2018 covered a wide spectrum of subjects, from theoretical results to concrete
applications, including papers on application of formal methods in large-scale industrial
settings. It has always been one of the primary interests of CAV to include papers that
describe practical verification tools and solutions and techniques that ensure a high
practical appeal of the results. The proceedings of the conference are published in
Springer’s Lecture Notes in Computer Science series. A selection of papers were
invited to a special issue of Formal Methods in System Design and the Journal of the
ACM.

This is the first year that the CAV proceedings are published under an Open Access
license, thus giving access to CAV proceedings to a broad audience. We hope that this
decision will increase the scope of practical applications of formal methods and will
attract even more interest from industry.

CAV received a very high number of submissions this year—215 overall—resulting
in a highly competitive selection process. We accepted 13 tool papers and 52 regular
papers, which amounts to an acceptance rate of roughly 30% (for both regular papers
and tool papers). The high number of excellent submissions in combination with the
scheduling constraints of FLoC forced us to reduce the length of the talks to 15
minutes, giving equal exposure and weight to regular papers and tool papers.

The accepted papers cover a wide range of topics and techniques, from algorithmic
and logical foundations of verification to practical applications in distributed, net-
worked, cyber-physical, and autonomous systems. Other notable topics are synthesis,
learning, security, and concurrency in the context of formal methods. The proceedings
are organized according to the sessions in the conference.

The program featured two invited talks by Eran Yahav (Technion), on using deep
learning for programming, and by Somesh Jha (University of Wisconsin Madison) on
adversarial deep learning. The invited talks this year reflect the growing interest of the
CAV community in deep learning and its connection to formal methods. The tutorial
day of CAV featured two invited tutorials, by Shaz Qadeer on verification of con-
current programs and by Matteo Maffei on static analysis of smart contracts. The
subjects of the tutorials reflect the increasing volume of research on verification of



concurrent software and, as of recently, the question of correctness of smart contracts.
As every year, one of the winners of the CAV award also contributed a presentation.
The tutorial day featured a workshop in memoriam of Mike Gordon, titled “Three
Research Vignettes in Memory of Mike Gordon,” organized by Tom Melham and
jointly supported by CAV and ITP communities.

Moreover, we continued the tradition of organizing a LogicLounge. Initiated by the
late Helmut Veith at the Vienna Summer of Logic 2014, the LogicLounge is a series of
discussions on computer science topics targeting a general audience and has become a
regular highlight at CAV. This year’s LogicLounge took place at the Oxford Union and
was on the topic of “Ethics and Morality of Robotics,” moderated by Judy Wajcman
and featuring a panel of experts on the topic: Luciano Floridi, Ben Kuipers, Francesca
Rossi, Matthias Scheutz, Sandra Wachter, and Jeannette Wing. We thank May Chan,
Katherine Fletcher, and Marta Kwiatkowska for organizing this event, and the Vienna
Center of Logic and Algorithms for their support.

In addition, CAV attendees enjoyed a number of FLoC plenary talks and events
targeting the broad FLoC community.

In addition to the main conference, CAV hosted the Verification Mentoring
Workshop for junior scientists entering the field and a high number of pre- and
post-conference technical workshops: the Workshop on Formal Reasoning in Dis-
tributed Algorithms (FRIDA), the workshop on Runtime Verification for Rigorous
Systems Engineering (RV4RISE), the 5th Workshop on Horn Clauses for Verification
and Synthesis (HCVS), the 7th Workshop on Synthesis (SYNT), the First International
Workshop on Parallel Logical Reasoning (PLR), the 10th Working Conference on
Verified Software: Theories, Tools and Experiments (VSTTE), the Workshop on
Machine Learning for Programming (MLP), the 11th International Workshop on
Numerical Software Verification (NSV), the Workshop on Verification of Engineered
Molecular Devices and Programs (VEMDP), the Third Workshop on Fun With Formal
Methods (FWFM), the Workshop on Robots, Morality, and Trust through the Verifi-
cation Lens, and the IFAC Conference on Analysis and Design of Hybrid Systems
(ADHS).

The Program Committee (PC) for CAV consisted of 80 members; we kept the
number large to ensure each PC member would have a reasonable number of papers to
review and be able to provide thorough reviews. As the review process for CAV is
double-blind, we kept the number of external reviewers to a minimum, to avoid
accidental disclosures and conflicts of interest. Altogether, the reviewers drafted over
860 reviews and made an enormous effort to ensure a high-quality program. Following
the tradition of CAV in recent years, the artifact evaluation was mandatory for tool
submissions and optional but encouraged for regular submissions. We used an Artifact
Evaluation Committee of 25 members. Our goal for artifact evaluation was to provide
friendly “beta-testing” to tool developers; we recognize that developing a stable tool on
a cutting-edge research topic is certainly not easy and we hope the constructive
comments provided by the Artifact Evaluation Committee (AEC) were of help to the
developers. As a result of the evaluation, the AEC accepted 25 of 31 artifacts
accompanying regular papers; moreover, all 13 accepted tool papers passed the eval-
uation. We are grateful to the reviewers for their outstanding efforts in making sure
each paper was fairly assessed. We would like to thank our artifact evaluation chair,
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Igor Konnov, and the AEC for evaluating all artifacts submitted with tool papers as
well as optional artifacts submitted with regular papers.

Of course, without the tremendous effort put into the review process by our PC
members this conference would not have been possible. We would like to thank the PC
members for their effort and thorough reviews.

We would like to thank the FLoC chairs, Moshe Vardi, Daniel Kroening, and Marta
Kwiatkowska, for the support provided, Thanh Hai Tran for maintaining the CAV
website, and the always helpful Steering Committee members Orna Grumberg, Aarti
Gupta, Daniel Kroening, and Kenneth McMillan. Finally, we would like to thank the
team at the University of Oxford, who took care of the administration and organization
of FLoC, thus making our jobs as CAV chairs much easier.

July 2018 Hana Chockler
Georg Weissenbacher
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Abstract. Fueled by massive amounts of data, models produced by
machine-learning (ML) algorithms, especially deep neural networks, are
being used in diverse domains where trustworthiness is a concern, includ-
ing automotive systems, finance, health care, natural language process-
ing, and malware detection. Of particular concern is the use of ML algo-
rithms in cyber-physical systems (CPS), such as self-driving cars and
aviation, where an adversary can cause serious consequences.

However, existing approaches to generating adversarial examples and
devising robust ML algorithms mostly ignore the semantics and con-
text of the overall system containing the ML component. For example,
in an autonomous vehicle using deep learning for perception, not every
adversarial example for the neural network might lead to a harmful con-
sequence. Moreover, one may want to prioritize the search for adversarial
examples towards those that significantly modify the desired semantics
of the overall system. Along the same lines, existing algorithms for con-
structing robust ML algorithms ignore the specification of the overall
system. In this paper, we argue that the semantics and specification of
the overall system has a crucial role to play in this line of research. We
present preliminary research results that support this claim.

1 Introduction

Machine learning (ML) algorithms, fueled by massive amounts of data, are
increasingly being utilized in several domains, including healthcare, finance, and
transportation. Models produced by ML algorithms, especially deep neural net-
works (DNNs), are being deployed in domains where trustworthiness is a big
concern, such as automotive systems [35], finance [25], health care [2], computer
vision [28], speech recognition [17], natural language processing [38], and cyber-
security [8,42]. Of particular concern is the use of ML (including deep learning) in
cyber-physical systems (CPS) [29], where the presence of an adversary can cause
serious consequences. For example, much of the technology behind autonomous
and driver-less vehicle development is “powered” by machine learning [4,14].
DNNs have also been used in airborne collision avoidance systems for unmanned
aircraft (ACAS Xu) [22]. However, in designing and deploying these algorithms
in critical cyber-physical systems, the presence of an active adversary is often
ignored.
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 3–26, 2018.
https://doi.org/10.1007/978-3-319-96145-3_1
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Adversarial machine learning (AML) is a field concerned with the analysis of
ML algorithms to adversarial attacks, and the use of such analysis in making ML
algorithms robust to attacks. It is part of the broader agenda for safe and verified
ML-based systems [39,41]. In this paper, we first give a brief survey of the field
of AML, with a particular focus on deep learning. We focus mainly on attacks on
outputs or models that are produced by ML algorithms that occur after training
or “external attacks”, which are especially relevant to cyber-physical systems
(e.g., for a driverless car the ML algorithm used for navigation has been already
trained by the manufacturer once the “car is on the road”). These attacks are
more realistic and are distinct from other type of attacks on ML models, such
as attacks that poison the training data (see the paper [18] for a survey of such
attacks). We survey attacks caused by adversarial examples, which are inputs
crafted by adding small, often imperceptible, perturbations to force a trained
ML model to misclassify.

We contend that the work on adversarial ML, while important and useful,
is not enough. In particular, we advocate for the increased use of semantics in
adversarial analysis and design of ML algorithms. Semantic adversarial learn-
ing explores a space of semantic modifications to the data, uses system-level
semantic specifications in the analysis, utilizes semantic adversarial examples in
training, and produces not just output labels but also additional semantic infor-
mation. Focusing on deep learning, we explore these ideas and provide initial
experimental data to support them.

Roadmap. Section 2 provides the relevant background. A brief survey of adver-
sarial analysis is given in Sect. 3. Our proposal for semantic adversarial learning
is given in Sect. 4.

2 Background

Background on Machine Learning. Next we describe some general concepts
in machine learning (ML). We will consider the supervised learning setting.
Consider a sample space Z of the form X × Y , and an ordered training set
S = ((xi, yi))m

i=1 (xi is the data and yi is the corresponding label). Let H be
a hypothesis space (e.g., weights corresponding to a logistic-regression model).
There is a loss function � : H × Z �→ R so that given a hypothesis w ∈ H and a
sample (x, y) ∈ Z, we obtain a loss �(w, (x, y)). We consider the case where we
want to minimize the loss over the training set S,

LS(w) =
1
m

m∑

i=1

�(w, (xi, yi)) + λR(w).

In the equation given above, λ > 0 and the term R(w) is called the regularizer
and enforces “simplicity” in w. Since S is fixed, we sometimes denote �i(w) =
�(w, (xi, yi)) as a function only of w. We wish to find a w that minimizes LS(w)
or we wish to solve the following optimization problem:

min
w∈H

LS(w)
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Example: We will consider the example of logistic regression. In this case X =
R

n, Y = {+1, −1}, H = R
n, and the loss function �(w, (x, y)) is as follows (·

represents the dot product of two vectors):

log
(
1 + e−y(wT ·x)

)

If we use the L2 regularizer (i.e. R(w) = ‖w‖2), then LS(w) becomes:

1
m

m∑

i=1

log
(
1 + e−yi(w

T ·xi)
)

+ λ ‖w‖2

Stochastic Gradient Descent. Stochastic Gradient Descent (SGD) is a pop-
ular method for solving optimization tasks (such as the optimization problem
minw∈H LS(w) we considered before). In a nutshell, SGD performs a series of
updates where each update is a gradient descent update with respect to a small
set of points sampled from the training set. Specifically, suppose that we perform
SGD T times. There are two typical forms of SGD: in the first form, which we
call Sample-SGD, we uniformly and randomly sample it ∼ [m] at time t, and
perform a gradient descent based on the it-th sample (xit

, yit
):

wt+1 = G�t,ηt
(wt) = wt − ηt�

′
it

(wt) (1)

where wt is the hypothesis at time t, ηt is a parameter called the learning rate,
and �′

it
(wt) denotes the derivative of �it

(w) evaluated at wt. We will denote G�t,ηt

as Gt. In the second form, which we call Perm-SGD, we first perform a random
permutation of S, and then apply Eq. 1 T times by cycling through S according
to the order of the permutation. The process of SGD can be summarized as a
diagram:

w0
G1−→ w1

G2−→· · · Gt−→wt
Gt+1−→ · · · GT−→wT

Classifiers. The output of the learning algorithm gives us a classifier, which is
a function from �n to C, where � denotes the set of reals and C is the set of class
labels. To emphasize that a classifier depends on a hypothesis w ∈ H, which is
the output of the learning algorithm described earlier, we will write it as Fw (if
w is clear from the context, we will sometimes simply write F ). For example,
after training in the case of logistic regression we obtain a function from �n

to {−1,+1}. Vectors will be denoted in boldface, and the r-th component of a
vector x is denoted by x[r].

Throughout the paper, we refer to the function s(Fw) as the softmax layer
corresponding to the classifier Fw. In the case of logistic regression, s(Fw)(x) is
the following tuple (the first element is the probability of −1 and the second one
is the probability of +1):

〈 1
1 + ewT ·x ,

1
1 + e−wT ·x 〉
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Formally, let c = |C| and Fw be a classifier, we let s(Fw) be the function that
maps R

n to R
c
+ such that ‖s(Fw)(x)‖1 = 1 for any x (i.e., s(Fw) computes a

probability vector). We denote s(Fw)(x)[l] to be the probability of s(Fw)(x) at
label l. Recall that the softmax function from R

k to a probability distribution
over {1, · · · , k} = [k] such that the probability of j ∈ [k] for a vector x ∈ R

k is

ex[j]

∑k
r=1 ex[r]

Some classifiers Fw(x) are of the form arg maxl s(Fw)(x)[l] (i.e., the classifier
Fw outputs the label with the maximum probability according to the “softmax
layer”). For example, in several deep-neural network (DNN) architectures the
last layer is the softmax layer. We are assuming that the reader is a familiar with
basics of deep-neural networks (DNNs). For readers not familiar with DNNs we
can refer to the excellent book by Goodfellow et al. [15].

Background on Logic. Temporal logics are commonly used for specifying
desired and undesired properties of systems. For cyber-physical systems, it is
common to use temporal logics that can specify properties of real-valued signals
over real time, such as signal temporal logic (STL) [30] or metric temporal logic
(MTL) [27].

A signal is a function s : D → S, with D ⊆ R≥0 an interval and either S ⊆ B

or S ⊆ R, where B = {�,⊥} and R is the set of reals. Signals defined on B are
called booleans, while those on R are said real-valued. A trace w = {s1, . . . , sn}
is a finite set of real-valued signals defined over the same interval D. We use
variables xi to denote the value of a real-valued signal at a particular time
instant.

Let Σ = {σ1, . . . , σk} be a finite set of predicates σi : R
n → B, with σi ≡

pi(x1, . . . , xn) � 0, � ∈ {<,≤}, and pi : R
n → R a function in the variables

x1, . . . , xn. An STL formula is defined by the following grammar:

ϕ := σ | ¬ϕ |ϕ ∧ ϕ |ϕ UI ϕ (2)

where σ ∈ Σ is a predicate and I ⊂ R≥0 is a closed non-singular interval. Other
common temporal operators can be defined as syntactic abbreviations in the
usual way, like for instance ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ϕ2), FI ϕ := � UI ϕ, or GI ϕ :=
¬FI ¬ϕ. Given a t ∈ R≥0, a shifted interval I is defined as t+I = {t+t′ | t′ ∈ I}.
The qualitative (or Boolean) semantics of STL is given in the usual way:

Definition 1 (Qualitative semantics). Let w be a trace, t ∈ R≥0, and ϕ be
an STL formula. The qualitative semantics of ϕ is inductively defined as follows:

w, t |= σ iff σ(w(t)) is true
w, t |= ¬ϕ iff w, t �|= ϕ

w, t |= ϕ1 ∧ ϕ2 iff w, t |= ϕ1 and w, t |= ϕ2

w, t |= ϕ1UIϕ2 iff ∃t′ ∈ t + I s.t. w, t′ |= ϕ2 and ∀t′′ ∈ [t, t′], w, t′′ |= ϕ1

(3)



Semantic Adversarial Deep Learning 7

A trace w satisfies a formula ϕ if and only if w, 0 |= ϕ, in short w |= ϕ.
STL also admits a quantitative or robust semantics, which we omit for brevity.
This provides quantitative information on the formula, telling how strongly the
specification is satisfied or violated for a given trace.

3 Attacks

There are several types of attacks on ML algorithms. For excellent material on
various attacks on ML algorithms we refer the reader to [3,18]. For example, in
training time attacks an adversary wishes to poison a data set so that a “bad”
hypothesis is learned by an ML-algorithm. This attack can be modeled as a game
between the algorithm ML and an adversary A as follows:

– ML picks an ordered training set S = ((xi, yi))m
i=1.

– A picks an ordered training set Ŝ = ((x̂i, ŷi))r
i=1, where r is �εm�.

– ML learns on S ∪ Ŝ by essentially minimizing

min
w∈H

LS∪̂S(w).

The attacker wants to maximize the above quantity and thus chooses Ŝ such
that minw∈H LS∪̂S(w) is maximized. For a recent paper on certified defenses for
such attacks we refer the reader to [44]. In model extraction attacks an adversary
with black-box access to a classifier, but no prior knowledge of the parameters
of a ML algorithm or training data, aims to duplicate the functionality of (i.e.,
steal) the classifier by querying it on well chosen data points. For an example,
model-extraction attacks see [45].

In this paper, we consider test-time attacks. We assume that the classifier
Fw has been trained without any interference from the attacker (i.e. no training
time attacks). Roughly speaking, an attacker has an image x (e.g. an image of
stop sign) and wants to craft a perturbation δ so that the label of x + δ is what
the attacker desires (e.g. yield sign). The next sub-section describes test-time
attacks in detail. We will sometimes refer to Fw as simply F , but the hypothesis
w is lurking in the background (i.e., whenever we refer to w, it corresponds to
the classifier F ).

3.1 Test-Time Attacks

The adversarial goal is to take any input vector x ∈ �n and produce a minimally
altered version of x, adversarial sample denoted by x�, that has the property of
being misclassified by a classifier F : �n → C. Formally speaking, an adversary
wishes to solve the following optimization problem:

minδ∈�n μ(δ)
such that F (x + δ) ∈ T

δ · M = 0
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The various terms in the formulation are μ is a metric on �n, T ⊆ C is a
subset of the labels (the reader should think of T as the target labels for the
attacker), and M (called the mask) is a n-dimensional 0–1 vector of size n.
The objective function minimizes the metric μ on the perturbation δ. Next we
describe various constraints in the formulation.

– F (x + δ) ∈ T
The set T constrains the perturbed vector x+δ1 to have the label (according
to F ) in the set T . For mis-classification problems the label of x and x + δ
are different, so we have T = C − {F (x)}. For targeted mis-classification we
have T = {t} (for t ∈ C), where t is the target that an attacker wants (e.g.,
the attacker wants t to correspond to a yield sign).

– δ · M = 0
The vector M can be considered as a mask (i.e., an attacker can only perturb
a dimension i if M [i] = 0), i.e., if M [i] = 1 then δ[i] is forced to be 0.
Essentially the attacker can only perturb dimension i if the i-th component
of M is 0, which means that δ lies in k-dimensional space where k is the
number of non-zero entries in Δ. This constraint is important if an attacker
wants to target a certain area of the image (e.g., glasses of in a picture of
person) to perturb.

– Convexity
Notice that even if the metric μ is convex (e.g., μ is the L2 norm), because of
the constraint involving F , the optimization problem is not convex (the con-
straint δ ·M = 0 is convex). In general, solving convex optimization problems
is more tractable non-convex optimization [34].

Note that the constraint δ ·M = 0 essentially constrains the vector to be in a
lower-dimensional space and does add additional complexity to the optimization
problem. Therefore, for the rest of the section we will ignore that constraint and
work with the following formulation:

minδ∈�n μ(δ)
such that F (x + δ) ∈ T

FGSM Mis-classification Attack - This algorithm is also known as the fast
gradient sign method (FGSM) [16]. The adversary crafts an adversarial sample
x� = x + δ for a given legitimate sample x by computing the following pertur-
bation:

δ = ε sign(∇xLF (x)) (4)

The function LF (x) is a shorthand for �(w,x, l(x)), where w is the hypothesis
corresponding to the classifier F , x is the data point and l(x) is the label of
x (essentially we evaluate the loss function at the hypothesis corresponding to
the classifier). The gradient of the function LF is computed with respect to

1 The vectors are added component wise.
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x using sample x and label y = l(x) as inputs. Note that ∇xLF (x) is an n-
dimensional vector and sign(∇xLF (x)) is a n-dimensional vector whose i-th
element is the sign of the ∇xLF (x))[i]. The value of the input variation parameter
ε factoring the sign matrix controls the perturbation’s amplitude. Increasing its
value increases the likelihood of x� being misclassified by the classifier F but on
the contrary makes adversarial samples easier to detect by humans. The key idea
is that FGSM takes a step in the direction of the gradient of the loss function
and thus tries to maximize it. Recall that SGD takes a step in the direction that
is opposite to the gradient of the loss function because it is trying to minimize
the loss function.

JSMA Targeted Mis-classification Attack - This algorithm is suitable for
targeted misclassification [37]. We refer to this attack as JSMA throughout the
rest of the paper. To craft the perturbation δ, components are sorted by decreas-
ing adversarial saliency value. The adversarial saliency value S(x, t)[i] of com-
ponent i for an adversarial target class t is defined as:

S(x, t)[i] =

{
0 if ∂s(F )[t](x)

∂x[i] < 0 or
∑

j �=t
∂s(F )[j](x)

∂x[i] > 0
∂s(F )[t](x)

∂x[i]

∣∣∣
∑

j �=t
∂s(F )[j](x)

∂x[i]

∣∣∣ otherwise
(5)

where matrix JF =
[

∂s(F )[j](x)
∂x[i]

]

ij
is the Jacobian matrix for the output of the

softmax layer s(F )(x). Since
∑

k∈C s(F )[k](x) = 1, we have the following equa-
tion:

∂s(F )[t](x)
∂x[i]

= −
∑

j �=t

∂s(F )[j](x)
∂x[i]

The first case corresponds to the scenario if changing the i-th component of x
takes us further away from the target label t. Intuitively, S(x, t)[i] indicates how
likely is changing the i-th component of x going to “move towards” the target
label t. Input components i are added to perturbation δ in order of decreasing
adversarial saliency value S(x, t)[i] until the resulting adversarial sample x� =
x + δ achieves the target label t. The perturbation introduced for each selected
input component can vary. Greater individual variations tend to reduce the
number of components perturbed to achieve misclassification.

CW Targeted Mis-classification Attack. The CW-attack [5] is widely
believed to be one of the most “powerful” attacks. The reason is that CW cast
their problem as an unconstrained optimization problem, and then use state-of-
the art solver (i.e. Adam [24]). In other words, they leverage the advances in
optimization for the purposes of generating adversarial examples.

In their paper Carlini-Wagner consider a wide variety of formulations, but
we present the one that performs best according to their evaluation. The opti-
mization problem corresponding to CW is as follows:

minδ∈�n μ(δ)
such that F (x + δ) = t
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CW use an existing solver (Adam [24]) and thus need to make sure that each
component of x + δ is between 0 and 1 (i.e. valid pixel values). Note that the
other methods did not face this issue because they control the “internals” of the
algorithm (i.e., CW used a solver in a “black box” manner). We introduce a new
vector w whose i-th component is defined according to the following equation:

δ[i] =
1
2
(tanh(w[i]) + 1) − x[i]

Since −1 ≤ tanh(w[i]) ≤ 1, it follows that 0 ≤ x[i] + δ[i] ≤ 1. In terms of this
new variable the optimization problem becomes:

minw∈�n μ( 1
2 (tanh(w) + 1) − x)

such that F ( 1
2 (tanh(w) + 1)) = t

Next they approximate the constraint (F (x) = t) with the following func-
tion:

g(x) = max
(

max
i�=t

Z(F )(x)[i] − Z(F )(x)[t],−κ

)

In the equation given above Z(F ) is the input of the DNN to the softmax layer
(i.e. s(F )(x) = softmax(Z(F )(x))) and κ is a confidence parameter (higher κ
encourages the solver to find adversarial examples with higher confidence). The
new optimization formulation is as follows:

minw∈�n μ( 1
2 (tanh(w) + 1) − x)

such that g( 1
2 (tanh(w) + 1)) ≤ 0

Next we incorporate the constraint into the objective function as follows:

minw∈�n μ( 1
2 (tanh(w) + 1) − x) + c g( 1

2 (tanh(w) + 1))

In the objective given above, the “Lagrangian variable” c > 0 is a suitably chosen
constant (from the optimization literature we know that there exists c > 0 such
that the optimal solutions of the last two formulations are the same).

3.2 Adversarial Training

Once an attacker finds an adversarial example, then the algorithm can be
retrained using this example. Researchers have found that retraining the model
with adversarial examples produces a more robust model. For this section, we
will work with attack algorithms that have a target label t (i.e. we are in the
targeted mis-classification case, such as JSMA or CW). Let A(w,x, t) be the
attack algorithm, where its inputs are as follows: w ∈ H is the current hypothe-
sis, x is the data point, and t ∈ C is the target label. The output of A(w,x, t) is
a perturbation δ such that F (x+ δ) = t. If the attack algorithm is simply a mis-
classification algorithm (e.g. FGSM or Deepfool) we will drop the last parameter
t.



Semantic Adversarial Deep Learning 11

An adversarial training algorithm RA(w,x, t) is parameterized by an attack
algorithm A and outputs a new hypothesis w′ ∈ H. Adversarial training works
by taking a datapoint x and an attack algorithm A(w,x, t) as its input and then
retraining the model using a specially designed loss function (essentially one
performs a single step of the SGD using the new loss function). The question
arises: what loss function to use during the training? Different methods use
different loss functions.

Next, we discuss some adversarial training algorithms proposed in the lit-
erature. At a high level, an important point is that the more sophisticated an
adversarial perturbation algorithm is, harder it is to turn it into adversarial
training. The reason is that it is hard to “encode” the adversarial perturbation
algorithm as an objective function and optimize it. We will see this below, espe-
cially for the virtual adversarial training (VAT) proposed by Miyato et al. [32].

Retraining for FGSM. We discussed the FGSM attack method earlier. In
this case A = FGSM. The loss function used by the retraining algorithm
RFGSM(w,x, t) is as follows:

�FGSM(w,xi, yi) = �(w,xi, yi) + λ� (w,xi + FGSM(w,xi), yi)

Recall that FGSM(w,x) was defined earlier, and λ is a regularization parameter.
The simplicity of FGSM(w,xi) allows taking its gradient, but this objective
function requires label yi because we are reusing the same loss function � used
to train the original model. Further, FGSM(w,xi) may not be very good because
it may not produce good adversarial perturbation direction (i.e. taking a bigger
step in this direction might produce a distorted image). The retraining algorithm
is simply as follows: take one step in the SGD using the loss function �FGSM at
the data point xi.

A caveat is needed for taking gradient during the SGD step. At iteration t
suppose we have model parameters wt, and we need to compute the gradient of
the objective. Note that FGSM(w,x) depends on w so by chain rule we need
to compute ∂FGSM(w,x)/∂w|w=wt

. However, this gradient is volatile2, and so
instead Goodfellow et al. only compute:

∂� (w,xi + FGSM(wt,xi), yi)
∂w

∣∣∣∣
w=wt

Essentially they treat FGSM(wt,xi) as a constant while taking the derivative.

Virtual Adversarial Training (VAT). Miyato et al. [32] observed the draw-
back of requiring label yi for the adversarial example. Their intuition is that one
wants the classifier to behave “similarly” on x and x+δ, where δ is the adversarial
perturbation. Specifically, the distance of the distribution corresponding to the
output of the softmax layer Fw on x and x+δ is small. VAT uses KullbackLeibler

2 In general, second-order derivatives of a classifier corresponding to a DNN vanish at
several points because several layers are piece-wise linear.
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(KL) divergence as the measure of the distance between two distributions. Recall
that KL divergence of two distributions P and Q over the same finite domain D
is given by the following equation:

KL(P,Q) =
∑

i∈D

P (i) log
(

P (i)
Q(i)

)

Therefore, they propose that, instead of reusing �, they propose to use the
following for the regularizer,

Δ(r,x, w) = KL (s(Fw)(x)[y], s(Fw)(x + r)[y])

for some r such that ‖r‖ ≤ δ. As a result, the label yi is no longer required. The
question is: what r to use? Miyato et al. [32] propose that in theory we should
use the “best” one as

max
r:‖r‖≤δ

KL (s(Fw)(x)[y], s(Fw)(x + r)[y])

This thus gives rise to the following loss function to use during retraining:

�VAT(w,xi, yi) = �(w,xi, yi) + λ max
r:‖r‖≤δ

Δ(r,xi, w)

However, one cannot easily compute the gradient for the regularizer. Hence the
authors perform an approximation as follows:

1. Compute the Taylor expansion of Δ(r,xi, w) at r = 0, so Δ(r,xi, w) =
rT H(xi, w) r where H(xi, w) is the Hessian matrix of Δ(r,xi, w) with respect
to r at r = 0.

2. Thus max‖r‖≤δ Δ(r,xi, w) = max‖r‖≤δ

(
rT H(xi, w) r

)
. By variational char-

acterization of the symmetric matrix (H(xi, w) is symmetric), r∗ = δv̄ where
v̄ = v(xi, w) is the unit eigenvector of H(xi, w) corresponding to its largest
eigenvalue. Note that r∗ depends on xi and w. Therefore the loss function
becomes:

�VAT(θ,xi, yi) = �(θ,xi, yi) + λΔ(r∗,xi, w)

3. Now suppose in the process of SGD we are at iteration t with model param-
eters wt, and we need to compute ∂�VAT/∂w|w=wt

. By chain rule we need
to compute ∂r∗/∂w|w=wt

. However the authors find that such gradients are
volatile, so they instead fix r∗ as a constant at the point θt, and compute

∂KL (s(Fw)(x)[y], s(Fw)(x + r)[y])
∂w

∣∣∣∣
w=wt

3.3 Black Box Attacks

Recall that earlier attacks (e.g. FGSM and JSMA) needed white-box access to
the classifier F (essentially because these attacks require first order information
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about the classifier). In this section, we present black-box attacks. In this case, an
attacker can only ask for the labels F (x) for certain data points. Our presentation
is based on [36], but is more general.

Let A(w,x, t) be the attack algorithm, where its inputs are: w ∈ H is the
current hypothesis, x is the data point, and t ∈ C is the target label. The output
of A(w,x, t) is a perturbation δ such that F (x + δ) = t. If the attack algorithm
is simply a mis-classification algorithm (e.g. FGSM or Deepfool) we will drop
the last parameter t (recall that in this case the attack algorithm returns a δ
such that F (x + δ) �= F (x)). An adversarial training algorithm RA(w,x, t) is
parameterized by an attack algorithm A and outputs a new hypothesis w′ ∈ H
(this was discussed in the previous subsection).

Initialization: We pick a substitute classifier G and an initial seed data set S0

and train G. For simplicity, we will assume that the sample space Z = X × Y
and the hypothesis space H for G is same as that of F (the classifier under
attack). However, this is not crucial to the algorithm. We will call G the substitute
classifier and F the target classifier. Let S = S0 be the initial data set, which
will be updated as we iterate.

Iteration: Run the attack algorithm A(w,x, t) on G and obtain a δ. If F (x+δ) =
t, then stop we are done. If F (x + δ) = t′ but not equal to t, we augment the
data set S as follows:

S = S ∪ (x + δ, t′)

We now retrain G on this new data set, which essentially means running the
SGD on the new data point (x + δ, t′). Notice that we can also use adversarial
training RA(w,x, t) to update G (to our knowledge this has been not tried out
in the literature).

3.4 Defenses

Defenses with formal guarantees against test-time attacks have proven elusive.
For example, Carlini and Wagner [6] have a recent paper that breaks ten recent
defense proposals. However, defenses that are based on robust-optimization
objectives have demonstrated promise [26,33,43]. Several techniques for verifying
properties of a DNN (in isolation) have appeared recently (e.g., [12,13,19,23]).
Due to space limitations we will not give a detailed account of all these defenses.

4 Semantic Adversarial Analysis and Training

A central tenet of this paper is that the analysis of deep neural networks (and
machine learning components, in general) must be more semantic. In particular,
we advocate for the increased use of semantics in several aspects of adversarial
analysis and training, including the following:
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• Semantic Modification Space: Recall that the goal of adversarial attacks is to
modify an input vector x with an adversarial modification δ so as to achieve
a target misclassification. Such modifications typically do not incorporate the
application-level semantics or the context within which the neural network is
deployed. We argue that it is essential to incorporate more application-level,
contextual semantics into the modification space. Such semantic modifica-
tions correspond to modifications that may arise more naturally within the
context of the target application. We view this not as ignoring arbitrary mod-
ifications (which are indeed worth considering with a security mind set), but
as prioritizing the design and analysis of DNNs towards semantic adversarial
modifications. Sect. 4.1 discusses this point in more detail.

• System-Level Specifications: The goal of much of the work in adversarial
attacks has been to generate misclassifications. However, not all misclassi-
fications are made equal. We contend that it is important to find misclassifi-
cations that lead to violations of desired properties of the system within which
the DNN is used. Therefore, one must identify such system-level specifications
and devise analysis methods to verify whether an erroneous behavior of the
DNN component can lead to the violation of a system-level specification.
System-level counterexamples can be valuable aids to repair and re-design
machine learning models. See Sect. 4.1 for a more detailed discussion of this
point.

• Semantic (Re-)Training: Most machine learning models are trained with the
main goal of reducing misclassifications as measured by a suitably crafted loss
function. We contend that it is also important to train the model to avoid
undesirable behaviors at the system level. For this, we advocate using methods
for semantic training, where system-level specifications, counterexamples, and
other artifacts are used to improve the semantic quality of the ML model.
Sect. 4.2 explores a few ideas.

• Confidence-Based Analysis and Decision Making: Deep neural networks (and
other ML models) often produce not just an output label, but also an asso-
ciated confidence level. We argue that confidence levels must be used within
the design of ML-based systems. They provide a way of exposing more infor-
mation from the DNN to the surrounding system that uses its decisions. Such
confidence levels can also be useful to prioritize analysis towards cases that
are more egregious failures of the DNN. More generally, any explanations and
auxiliary information generated by the DNN that accompany its main output
decisions can be valuable aids in their design and analysis.

4.1 Compositional Falsification

We discuss the problem of performing system-level analysis of a deep learning
component, using recent work by the authors [9,10] to illustrate the main points.
The material in this section is mainly based on [40].

We begin with some basic notation. Let S denote the model of the full system
S under verification, E denote a model of its environment, and Φ denote the
specification to be verified. C is an ML model (e.g. DNN) that is part of S. As
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in Sect. 3, let x be an input to C. We assume that Φ is a trace property – a
set of behaviors of the closed system obtained by composing S with E, denoted
S‖E. The goal of falsification is to find one or more counterexamples showing
how the composite system S‖E violates Φ. In this context, semantic analysis
of C is about finding a modification δ from a space of semantic modifications Δ
such that C, on x+ δ, produces a misclassification that causes S‖E to violate Φ.

Controller Plant

Environment

Learning-Based Percep�on

Sensor Input

Fig. 1. Automatic Emergency Braking System (AEBS) in closed loop. An image clas-
sifier based on deep neural networks is used to perceive objects in the ego vehicle’s
frame of view.

Example Problem. As an illustrative example, consider a simple model of an
Automatic Emergency Braking System (AEBS), that attempts to detect objects
in front of a vehicle and actuate the brakes when needed to avert a collision.
Figure 1 shows the AEBS as a system composed of a controller (automatic brak-
ing), a plant (vehicle sub-system under control, including transmission), and an
advanced sensor (camera along with an obstacle detector based on deep learn-
ing). The AEBS, when combined with the vehicle’s environment, forms a closed
loop control system. The controller regulates the acceleration and braking of the
plant using the velocity of the subject (ego) vehicle and the distance between it
and an obstacle. The sensor used to detect the obstacle includes a camera along
with an image classifier based on DNNs. In general, this sensor can provide noisy
measurements due to incorrect image classifications which in turn can affect the
correctness of the overall system.

Suppose we want to verify whether the distance between the ego vehicle and
a preceding obstacle is always larger than 2 m. In STL, this requirement Φ can
be written as G0,T (‖xego −xobs‖2 ≥ 2). Such verification requires the exploration
of a very large input space comprising of the control inputs (e.g., acceleration
and braking pedal angles) and the machine learning (ML) component’s feature
space (e.g., all the possible pictures observable by the camera). The latter space
is particularly large—for example, note that the feature space of RGB images of
dimension 1000×600 px (for an image classifier) contains 2561000×600×3 elements.

In the above example, S‖E is the closed loop system in Fig. 1 where S com-
prises the DNN and the controller, and E comprises everything else. C is the
DNN used for object detection and classification.
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This case study has been implemented in Matlab/Simulink3 in two versions
that use two different Convolutional Neural Networks (CNNs): the Caffe [20]
version of AlexNet [28] and the Inception-v3 model created with Tensorflow [31],
both trained on the ImageNet database [1]. Further details about this example
can be obtained from [9].

Approach. A key idea in our approach is to have a system-level verifier that
abstracts away the component C while verifying Φ on the resulting abstraction.
This system-level verifier communicates with a component-level analyzer that
searches for semantic modifications δ to the input x of C that could lead to
violations of the system-level specification Φ. Figure 2 illustrates this approach.

System-Level
Analysis

Component
(ML) Analysis

System S

Env. E
Property

Region of Uncertainty
(projected) UROUC

Component-level errors
(misclassifica�ons)

Correct / Incorrect (+ counterexamples)

Fig. 2. Compositional verification approach. A system-level verifier cooperates with
a component-level analysis procedure (e.g., adversarial analysis of a machine learning
component to find misclassifications).

We formalize this approach while trying to emphasize the intuition. Let T
denote the set of all possible traces of the composition of the system with its
environment, S‖E. Given a specification Φ, let TΦ denote the set of traces in
T satisfying Φ. Let UΦ denote the projection of these traces onto the state and
interface variables of the environment E. UΦ is termed as the validity domain of
Φ, i.e., the set of environment behaviors for which Φ is satisfied. Similarly, the
complement set U¬Φ is the set of environment behaviors for which Φ is violated.

Our approach works as follows:

1. The System-level Verifier initially performs two analyses with two extreme
abstractions of the ML component. First, it performs an optimistic analysis,
wherein the ML component is assumed to be a “perfect classifier”, i.e., all
feature vectors are correctly classified. In situations where ML is used for per-
ception/sensing, this abstraction assumes perfect perception/sensing. Using
this abstraction, we compute the validity domain for this abstract model of
the system, denoted U+

Φ . Next, it performs a pessimistic analysis where the
ML component is abstracted by a “completely-wrong classifier”, i.e., all fea-
ture vectors are misclassified. Denote the resulting validity domain as U−

Φ . It
is expected that U+

Φ ⊇ U−
Φ .

3 https://github.com/dreossi/analyzeNN.

https://github.com/dreossi/analyzeNN
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Abstraction permits the System-level Verifier to operate on a lower-
dimensional search space and identify a region in this space that may be
affected by the malfunctioning of component C—a so-called “region of uncer-
tainty” (ROU). This region, UC

ROU is computed as U+
Φ \ U−

Φ . In other words,
it comprises all environment behaviors that could lead to a system-level fail-
ure when component C malfunctions. This region UC

ROU , projected onto the
inputs of C, is communicated to the ML Analyzer. (Concretely, in the context
of our example of Sect. 4.1, this corresponds to finding a subspace of images
that corresponds to UC

ROU .)
2. The Component-level Analyzer, also termed as a Machine Learning (ML)

Analyzer, performs a detailed analysis of the projected ROU UC
ROU . A key

aspect of the ML analyzer is to explore the semantic modification space effi-
ciently. Several options are available for such an analysis, including the vari-
ous adversarial analysis techniques surveyed earlier (applied to the semantic
space), as well as systematic sampling methods [9]. Even though a component-
level formal specification may not be available, each of these adversarial anal-
yses has an implicit notion of “misclassification.” We will refer to these as
component-level errors. The working of the ML analyzer from [9] is shown in
Fig. 3.

3. When the Component-level (ML) Analyzer finds component-level errors (e.g.,
those that trigger misclassifications of inputs whose labels are easily inferred),
it communicates that information back to the System-level Verifier, which
checks whether the ML misclassification can lead to a violation of the system-
level property Φ. If yes, we have found a system-level counterexample. If
no component-level errors are found, and the system-level verification can
prove the absence of counterexamples, then it can conclude that Φ is satisfied.
Otherwise, if the ML misclassification cannot be extended to a system-level
counterexample, the ROU is updated and the revised ROU passed back to
the Component-level Analyzer.

The communication between the System-level Verifier and the Component-level
(ML) Analyzer continues thus, until we either prove/disprove Φ, or we run out
of resources.

Sample Results. We have applied the above approach to the problem of com-
positional falsification of cyber-physical systems (CPS) with machine learning
components [9]. For this class of CPS, including those with highly non-linear
dynamics and even black-box components, simulation-based falsification of tem-
poral logic properties is an approach that has proven effective in industrial prac-
tice (e.g., [21,46]). We present here a sample of results on the AEBS example
from [9], referring the reader to more detailed descriptions in the other papers
on the topic [9,10].

In Fig. 4 we show one result of our analysis for the Inception-v3 deep neural
network. This figure shows both correctly classified and misclassified images on
a range of synthesized images where (i) the environment vehicle is moved away
from or towards the ego vehicle (along z-axis), (ii) it is moved sideways along
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Seman�c modifica�on space

brightness car z-pos

Abstrac�on map

brightness car z-pos

car x-pos

Abstract space A

x
Abstract space A

Neural network

Systema�c
Sampling (low-discrepancy sampling)

car x-pos

Fig. 3. Machine Learning Analyzer: Searching the Semantic Modification Space. A
concrete semantic modification space (top left) is mapped into a discrete abstract space.
Systematic sampling, using low-discrepancy methods, yields points in the abstract
space. These points are concretized and the NN is evaluated on them to ascertain if they
are correctly or wrongly classified. The misclassifications are fed back for system-level
analysis.

the road (along x-axis), or (iii) the brightness of the image is modified. These
modifications constitute the 3 axes of the figure. Our approach finds misclas-
sifications that do not lead to system-level property violations and also mis-
classifications that do lead to such violations. For example, Fig. 4 shows two
misclassified images, one with an environment vehicle that is too far away to be
a safety hazard, as well as another image showing an environment vehicle driving
slightly on the wrong side of the road, which is close enough to potentially cause
a violation of the system-level safety property (of maintaining a safe distance
from the ego vehicle).

For further details about this and other results with our approach, we refer
the reader to [9,10].

4.2 Semantic Training

In this section we discuss two ideas for semantic training and retraining of deep
neural networks. We first discuss the use of hinge loss as a way of incorporating
confidence levels into the training process. Next, we discuss how system-level
counterexamples and associated misclassifications can be used in the retraining
process to both improve the accuracy of ML models and also to gain more assur-
ance in the overall system containing the ML component. A more detailed study
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Fig. 4. Misclassified images for Inception-v3 neural network (trained on ImageNet
with TensorFlow). Red crosses are misclassified images and green circles are correctly
classified. Our system-level analysis finds a corner-case image that could lead to a
system-level safety violation. (Color figure online)

of using misclassifications (ML component-level counterexamples) to improve
the accuracy of the neural network is presented in [11]; this approach is termed
counterexample-guided data augmentation, inspired by counterexample-guided
abstraction refinement (CEGAR) [7] and similar paradigms.

Experimental Setup. As in the preceding section, we consider an Automatic
Emergency Braking System (AEBS) using a DNN-based object detector. How-
ever, in these experiments we use an AEBS deployed within Udacity’s self-driving
car simulator, as reported in our previous work [10].4 We modified the Udacity
simulator to focus exclusively on braking. In our case studies, the car follows
some predefined way-points, while accelerating and braking are controlled by
the AEBS connected to a convolutional neural network (CNN). In particular,
whenever the CNN detects an obstacle in the images provided by the onboard
camera, the AEBS triggers a braking action that slows the vehicle down and
avoids the collision against the obstacle.

We designed and implemented a CNN to predict the presence of a cow on
the road. Given an image taken by the onboard camera, the CNN classifies the
picture in either “cow” or “not cow” category. The CNN architecture is shown
in Fig. 5. It consists of eight layers: the first six are alternations of convolutions
and max-pools with ReLU activations, the last two are a fully connected layer
and a softmax that outputs the network prediction (confidence level for each
label).

We generated a data set of 1000 road images with and without cows. We
split the data set into 80% training and 20% validation data. Our model was
implemented and trained using the Tensorflow library with cross-entropy cost
function and the Adam algorithm optimizer (learning rate 10−4). The model

4 Udacity’s self-driving car simulator: https://github.com/udacity/self-driving-car-
sim.

https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
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Fig. 5. CNN architecture.

Fig. 6. Udacity simulator with a CNN-based AEBS in action.

reached 95% accuracy on the test set. Finally, the resulting CNN is connected
to the Unity simulator via Socket.IO protocol.5 Figure 6 depicts a screenshot of
the simulator with the AEBS in action in proximity of a cow.

Hinge Loss. In this section, we investigate the relationship between multiclass
hinge loss functions and adversarial examples. Hinge loss is defined as follows:

l(ŷ) = max(0, k + max
i�=l

(ŷi) − ŷl) (6)

where (x, y) is a training sample, ŷ = F (x) is a prediction, and l is the ground
truth label of x. For this section, the output ŷ is a numerical value indicating the
confidence level of the network for each class. For example, ŷ can be the output
of a softmax layer as described in Sect. 2.

5 Socket.IO protocol: https://github.com/socketio.

https://github.com/socketio
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Consider what happens as we vary k. Suppose there is an i �= l s.t. ŷi > ŷl.
Pick the largest such i, call it i∗. For k = 0, we will incur a loss of ŷi∗ − ŷl for the
example (x, y). However, as we make k more negative, we increase the tolerance
for “misclassifications” produced by the DNN F . Specifically, we incur no penalty
for a misclassification as long as the associated confidence level deviates from
that of the ground truth label by no more than |k|. Larger the absolute value of
k, the greater the tolerance. Intuitively, this biases the training process towards
avoiding “high confidence misclassifications”.

In this experiment, we investigate the role of k and explore different param-
eter values. At training time, we want to minimize the mean hinge loss across
all training samples. We trained the CNN described above with different val-
ues of k and evaluated its precision on both the original test set and a set of
counterexamples generated for the original model, i.e., the network trained with
cross-entropy loss.

Table 1 reports accuracy and log loss for different values of k on both original
and counterexamples test sets (Toriginal and Tcountex, respectively).

Table 1. Hinge loss with different k values.

k Toriginal Tcountex

Acc Log-loss Acc Log-loss

0 0.69 0.68 0.11 0.70

−0.01 0.77 0.69 0.00 0.70

−0.05 0.52 0.70 0.67 0.69

−0.1 0.50 0.70 0.89 0.68

−0.25 0.51 0.70 0.77 0.68

Table 1 shows interesting results. We note that a negative k increases the
accuracy of the model on counterexamples. In other words, biasing the training
process by penalizing high-confidence misclassifications improves accuracy on
counterexamples! However, the price to pay is a reduction of accuracy on the
original test set. This is still a very preliminary result and further experimenta-
tion and analysis is necessary.

System-Level Counterexamples. By using the composition falsification
framework presented in Sect. 4.1, we identify orientations, displacements on the
x-axis, and color of an obstacle that leads to a collision of the vehicle with the
obstacle. Figure 7 depicts configurations of the obstacle that lead to specification
violations, and hence, to collisions.

In an experiment, we augment the original training set with the elements of
Tcountex, i.e., images of the original test set Toriginal that are misclassified by
the original model (see Sect. 4.2).

We trained the model with both cross-entropy and hinge loss for 20 epochs.
Both models achieve a high accuracy on the validation set (≈92%). However,
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Fig. 7. Semantic counterexamples: obstacle configurations leading to property viola-
tions (in red). (Color figure online)

when plugged into the AEBS, neither of these models prevents the vehicle from
colliding against the obstacle with an adversarial configuration. This seems to
indicate that simply retraining with some semantic (system-level) counterexam-
ples generated by analyzing the system containing the ML model may not be
sufficient to eliminate all semantic counterexamples.

Interestingly, though, it appears that in both cases the impact of the vehicle
with the obstacle happens at a slower speed than the one with the original
model. In other words, the AEBS system starts detecting the obstacle earlier
than with the original model, and therefore starts braking earlier as well. This
means that despite the specification violations, the counterexample retraining
procedure seems to help with limiting the damage in case of a collision. Coupled
with a run-time assurance framework (see [41]), semantic retraining could help
mitigate the impact of misclassifications on the system-level behavior.

5 Conclusion

In this paper, we surveyed the field of adversarial machine learning with a spe-
cial focus on deep learning and on test-time attacks. We then introduced the
idea of semantic adversarial machine (deep) learning, where adversarial anal-
ysis and training of ML models is performed using the semantics and context
of the overall system within which the ML models are utilized. We identified
several ideas for integrating semantics into adversarial learning, including using
a semantic modification space, system-level formal specifications, training using
semantic counterexamples, and utilizing more detailed information about the
outputs produced by the ML model, including confidence levels, in the mod-
ules that use these outputs to make decisions. Preliminary experiments show
the promise of these ideas, but also indicate that much remains to be done.
We believe the field of semantic adversarial learning will be a rich domain for



Semantic Adversarial Deep Learning 23

research at the intersection of machine learning, formal methods, and related
areas.
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Abstract. We demonstrate how deep learning over programs is used to
provide (preliminary) augmented programmer intelligence. In the first
part, we show how to tackle tasks like code completion, code summariza-
tion, and captioning. We describe a general path-based representation of
source code that can be used across programming languages and learn-
ing tasks, and discuss how this representation enables different learning
algorithms. In the second part, we describe techniques for extracting
interpretable representations from deep models, shedding light on what
has actually been learned in various tasks.

1 Introduction

We describe a journey from programs to interpretable deep models, and back.
First, we show how to apply neural networks to learn interesting facts about pro-
grams, and build (interpretable) models for several programming-related tasks.
Then, we show how to extract finite-state automata from a given recurrent neural
network, providing some insight on what a network has actually learned.

1.1 Motivating Tasks

Semantic Labeling of Code Snippets. Consider the code snippet of Figure 1.
This snippet only contains low-level assignments to arrays, but a human reading
the code may (correctly) label it as performing the reverse operation. Our goal
is to be able to predict such labels automatically. The right hand side of Fig. 1
shows the labels predicted automatically using our approach. The most likely
prediction (77.34%) is reverseArray. Alon et al. [3] provide additional examples.

Intuitively, this problem is hard because it requires learning a correspondence
between the entire content of a code snippet and a semantic label. That is, it
requires aggregating possibly hundreds of expressions and statements from the
snippet into a single, descriptive label.
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Fig. 1. A code snippet and its predicted labels as computed by our model.

Fig. 2. A code snippet and its predicted caption as computed by our model.

Captioning Code Snippets. Consider the short code snippet of Fig. 2. The
goal of code captioning is to assign a natural language caption that captures the
task performed by the snippet. For the example of Fig. 2 our approach auto-
matically predicts the caption “get the text of a pdf file in C#”. Intuitively, this
task is harder than semantic labeling, as it requires the generation of a natural
language sentence in addition to capturing (something about) the meaning of
the code snippet.

Fig. 3. A code snippet and its predicted completion as computed by our model.

Code Completion. Consider the code of Fig. 3. Our code completion auto-
matically predicts the next steps in the code: ok.newCall(request).execute().
This task requires prediction of the missing part of the code based on a given
context. Technically, this can be expressed as predicting a completion of a partial
abstract syntax tree.

In the next section, we show how techniques based on neural networks address
all of these tasks, as well as other programming-related tasks.
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2 From Programs to Deep Models

2.1 Representation

Leveraging machine learning models for predicting program properties such as
variable names, method names, and expression types is a topic of much recent
interest [1,2,6,8,9]. These techniques are based on learning a statistical model
from a large amount of code and using the model to make predictions in new
programs. A major challenge in these techniques is how to represent instances
of the input space to facilitate learning [10]. Designing a program representation
that enables effective learning is a critical task that is often done manually for
each task and programming language.

Our Approach. We present a program representation for learning from pro-
grams. Our approach uses different path-based abstractions of the program’s
abstract syntax tree. This family of path-based representations is natural, gen-
eral, fully automatic, and works well across different tasks and programming
languages.

Fig. 4. A JavaScript program and its AST, along with an example of one of the paths.

AST Paths. We define AST paths as paths between nodes in a program’s
abstract syntax tree (AST). To automatically generate paths, we first parse the
program to produce an AST, and then extract paths between nodes in the tree.
We represent a path in the AST as a sequence of nodes connected by up and
down movements, and represent a program element as the set of paths that
its occurrences participate in. Figure 4a shows an example JavaScript program.
Figure 4b shows its AST, and one of the extracted paths. The path from the first
occurrence of the variable d to its second occurrence can be represented as:

SymbolRef ↑ UnaryPrefix! ↑ While ↓ If ↓ Assign= ↓ SymbolRef

This is an example of a pairwise path between leaves in the AST, but in
general the family of path-based representations contains n-wise paths, which
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do not necessarily span between leaves and do not necessarily contain all the
nodes in between. We consider several choices of subsets of this family in [4].

Using a path-based representation has several major advantages:

1. Paths are generated automatically: there is no need for manual design of fea-
tures aiming to capture potentially interesting relationships between program
elements. This approach extracts unexpectedly useful paths, without the need
for an expert to design features. The user is required only to choose a subset
of our proposed family of path-based representations.

2. This representation is useful for any programming language, without the need
to identify common patterns and nuances in each language.

3. The same representation is useful for a variety of prediction tasks, by using
it with off-the-shelf learning algorithms or by simply replacing the represen-
tation of program elements in existing models (as we show in [4]).

4. AST paths are purely syntactic, and do not require any semantic analysis.

2.2 Code2vec: Learning Code Embeddings

In [3], we present a framework for predicting program properties using neural
networks. The main idea is a neural network that learns code embeddings - con-
tinuous distributed vector representations for code. The code embeddings allow
us to model correspondence between code snippet and labels in a natural and
effective manner. By learning code embeddings, our long term goal is to enable
the application of neural techniques to a wide-range of programming-languages
tasks. A live demo of the framework is available at https://code2vec.org.

Our neural network architecture uses a representation of code snippets that
leverages the structured nature of source code, and learns to aggregate multiple
syntactic paths into a single vector. This ability is fundamental for the applica-
tion of deep learning in programming languages. By analogy, word embeddings
in natural language processing (NLP) started a revolution of application of deep
learning for NLP tasks.

The input to our model is a code snippet and a corresponding tag, label,
caption, or name. This tag expresses the semantic property that we wish the
network to model, for example: a tag, name that should be assigned to the snip-
pet, or the name of the method, class, or project that the snippet was taken
from. Let C be the code snippet and L be the corresponding label or tag. Our
underlying hypothesis is that the distribution of labels can be inferred from syn-
tactic paths in C. Our model therefore attempts to learn the tag distribution,
conditioned on the code: P (L|C).

Model. For the full details of the model, see [3]. At a high-level, the key point
is that a code snippet is composed of a bag of contexts, and each context is
represented by a vector that its values are learned. The values of this vector
capture two distinct goals: (i) the semantic meaning of this context, and (ii) the
amount of attention this context should get.

The problem is as follows: given an arbitrarily large number of context vec-
tors, we need to aggregate them into a single vector. Two trivial approaches

https://code2vec.org
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would be to learn the most important one of them, or to use them all by vector-
averaging them. These alternatives are shown to yield poor results (see [3]).

Our main observation is that all context vectors need to be used, but the
model should learn how much focus to give each vector. This is done by learning
how to average context vectors in a weighted manner. The weighted average is
obtained by weighting each vector by its dot product with another global atten-
tion vector. The vector of each context and the attention vector are trained and
learned simultaneously, using the standard neural approach of backpropagation.

Interpreting Attention. Despite the “black-box” reputation of neural net-
works, our model is partially interpretable thanks to the attention mechanism,
which allows us to visualize the distribution of weights over the bag of path-
contexts. Figures 5 and 6 illustrates a few predictions, along with the path-
contexts that were given the most attention in each method. The width of each
of the visualized paths is proportional to the attention weight that it was allo-
cated. We note that in these figures the path is represented only as a connecting
line between tokens, while in fact it contains rich syntactic information which is
not expressed properly in the figures.

Fig. 5. Predictions and attention paths for the program of Fig. 1. The width of a path
is proportional to its attention.

Fig. 6. Example predictions from our model. The width of a path is proportional to
its attention.
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The examples of Figs. 5 and 6 are interesting since the top names are accurate
and descriptive (reverseArray and reverse; isPrime; sort and bubbleSort) but do
not appear explicitly in the code snippets. The code snippets, and specifically
the most attended path-contexts describe lower-level operations. Suggesting a
descriptive name for each of these methods is difficult and might take time even
for a trained human programmer.

2.3 Code2seq: Generating Sequences from Structured
Representations of Code

In contrast to classical (and widespread) seq2seq models for translation, we intro-
duce a new model that performs encoding over source code, and decoding to
natural language.

Following [3,4], we introduce an approach for encoding source code that
leverages the unique syntactic structure of programming languages. We represent
a given code snippet as a set of paths over its abstract syntax tree (AST), where
each path is compressed to a fixed-length vector. During decoding, code2seq
attends over a different weighted sum of the path-vectors to produce each output
token, much like NMT models attend over contextualized token representations
in the source sentence. A live demo of the framework is available at https://
code2seq.org.

3 From Deep Models to Automata

In this section, we focus on extraction of finite-state automata from recurrent
neural networks (RNNs). In recent years, there has been significant interest in
the use of recurrent neural networks (RNNs), for learning languages. Like other
supervised machine learning techniques, RNNs are trained based on a large set
of examples of the target concept. While neural networks can reasonably approx-
imate a variety of languages, and even precisely represent a regular language [5],
they are in practice unlikely to generalize exactly to the concept being trained,
and what they eventually learn in actuality is unclear [7]. Our goal in this work is
to provide some insight into what a given trained network has actually learned,
without requiring changes to the network architecture, or access to the original
training data.

Recurrent Neural Networks. Recurrent neural networks (RNNs) are a class
of neural networks which are used to process sequences of arbitrary lengths.
When operating over sequences of discrete alphabets, the input sequence is fed
into the RNN on a symbol-by-symbol basis. For each input symbol the RNN
outputs a state vector representing the sequence up to that point. A state vector
and an input symbol are combined for producing the next state vector. The
RNN is essentially a parameterized mathematical function that takes as input
a state vector and an input vector, and produces a new state vector. The state
vectors can be passed to a classification component that is used to produce a
binary or multi-class classification decision. The RNN is trainable, and, when

https://code2seq.org
https://code2seq.org
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trained together with the classification component, the training procedure drives
the state vectors to provide a representation of the prefix which is informative
for the classification task being trained. We call a combination of an RNN and
a classification component an RNN-acceptor.

A trained RNN-acceptor can be seen as a state machine in which the states
are high-dimensional vectors: it has an initial state, a well defined transition
function between internal states, and a well defined classification for each internal
state.

Problem Definition. Given an RNN-acceptor R trained to accept or reject
sequences over an alphabet Σ, our goal is to extract a deterministic finite-state
automaton (DFA) A that mimics the behavior of R. That is, our goal is to
extract a DFA A such that the language L ⊆ Σ∗ of sequences accepted by A
is observably equivalent to that accepted by R. Intuitively, we would like to
obtain a DFA that accepts exactly the same language as the network, but this
is generally practically impossible as we do not know in advance any bound on
the maximum sample length necessary in order to observe all of its behavior.

Extraction Using Queries and Counterexamples. In [11], we present a
framework for extracting a finite state automaton from a given RNN. The main
idea is to use the L∗ learning algorithm to learn an automaton while using the
RNN as the teacher.

Fig. 7. Two DFAs resembling, but not perfectly, the correct DFA for the regular lan-
guage of tokenised JSON lists, (\[\])|(\[[S0NTF](, [S0NTF])∗ \])$. DFA (a) is almost
correct, but accepts also list-like sequences in which the last item is missing, i.e. there
is a comma followed by a closing bracket. DFA (b) is returned by L∗ after the teacher
(network) rejects (a), but is also not a correct representation of the target language—
treating the sequence [, as a legitimate list item equivalent to the characters S, 0, N, T, F.
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3.1 What Has a Network Learned?

Tokenized JSON Lists. We trained a GRU network with 2 layers and hidden
size 100 on the regular language representing a simple tokenized JSON list with
no nesting,

(\[\])|(\[[S0NTF](, [S0NTF]) ∗ \])$

over the 8-letter alphabet {[, ], S, 0, N, T, F, ,}, to accuracy 100% on a training
set of size 20000 and a test set of size 2000, both evenly split between positive
and negative examples. As before, we extracted from this network using our
method.

Within 2 counterexamples (1 provided and 1 generated), our method
extracted the automaton shown in Fig. 7a, which is almost but not quite repre-
sentative of the target language. A few seconds later it returned a counterexam-
ple to this DFA which pushed L∗ to refine further and return the DFA shown
in Fig. 7b, which is also almost but not quite representative of zero-nesting tok-
enized JSON lists.

Ultimately after 400 s, our method extracted (but did not reach equivalence
on) an automaton of size 441, returning the counterexamples listed in Table 1
and achieving 100% accuracy against the network on both its train set and all

Table 1. Counterexamples returned to the equivalence queries made by L∗ during
extraction of a DFA from a network trained to 100% accuracy on both train and
test sets on the regular language (\[\])|(\[[S0NTF](, [S0NTF])∗ \])$ over the 8-letter
alphabet {[, ], S, 0, N, T, F, ,}. Counterexamples highlighting the discrepancies between
the network behaviour and the target behaviour are shown in bold.

Counterexample generation for the non-nested tokenized JSON-lists language

Counterexample Generation time
(seconds)

Network
classification

Target classification

[] provided True True

[SS] 3.49 False False

[[, ] 7.12 True False

[S,, 8.61 True False

[0, F 8.38 True False

[N, 0, 8.07 False False

[S, N, 0, 9.43 True False

[T, S, 9.56 False False

[S, S, T, [] 15.15 False False

[F, T, [ 3.23 False False

[N, F, S, 0 10.04 True False

[S, N, [,,,, 27.79 True False

[T, 0, T, 28.06 True False

[S, T, 0,], 26.63 True False
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sampled sequence lengths. As before, we note that each state split by the method
is justified by concrete inputs to the network, and so the extraction of a large
DFA is a sign of the inherent complexity of the learned network behavior.

3.2 Counterexamples

For many RNN-acceptors that train to 100% accuracy and exhibit perfect test set
behavior on large test sets, our method was able to find many simple examples
which the network misclassifies.

For instance, for a network trained to classify simple email addresses over the
38-letter alphabet {a,b, ...,z,0,1, ...,9,@,.} as defined by the regular expression

[a-z][a-z0-9]*@[a-z0-9]+.(com|net|co.[a-z][a-z])$

with 100% accuracy on a 40,000 sample train set and 100% accuracy on a 2,000
sample test set (i.e., a seemingly perfect network), the refinement-based L∗

extraction quickly returned several counterexamples, showing words that the
network classifies incorrectly (e.g., the network accepted the non-email sequence
25.net). While we could not extract a representative DFA from the network in
the allotted time frame, our method did show that the network learned a far
more elaborate (and incorrect) function than needed.

Beyond demonstrating the counterexample generation capabilities of our
extraction method, these results also highlight the brittleness in generalization of
trained RNN networks, and suggests that evidence based on test-set performance
should be taken with extreme caution.

4 Conclusion

We provide a brief description of a journey from programs to (somewhat) inter-
pretable deep models that work well across different tasks and different program-
ming languages. As we gained experience with these models, the question of what
have they actually learned became more important (and subtle). Attention over
AST paths provides some insight on what drives the predictions performed by
(some of) the models, but a different approach is required for RNN-based models.
This motivated the second part of our journey, trying to extract an interpretable
model from a given RNN acceptor. This also motivated future work on classifying
what can and cannot be learned by different kinds of RNNs [12].
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Abstract. We report on the development and use of formal verifica-
tion tools within Amazon Web Services (AWS) to increase the secu-
rity assurance of its cloud infrastructure and to help customers secure
themselves. We also discuss some remaining challenges that could inspire
future research in the community.

1 Introduction

Amazon Web Services (AWS) is a provider of cloud services, meaning on-demand
access to IT resources via the Internet. AWS adoption is widespread, with over a
million active customers in 190 countries, and $5.1 billion in revenue during the
last quarter of 2017. Adoption is also rapidly growing, with revenue regularly
increasing between 40–45% year-over-year.

The challenge for AWS in the coming years will be to accelerate the devel-
opment of its functionality while simultaneously increasing the level of security
offered to customers. In 2011, AWS released over 80 significant services and fea-
tures. In 2012, the number was nearly 160; in 2013, 280; in 2014, 516; in 2015,
722; in 2016, 1,017. Last year the number was 1,430. At the same time, AWS
is increasingly being used for a broad range of security-critical computational
workloads.

Formal automated reasoning is one of the investments that AWS is making
in order to facilitate continued simultaneous growth in both functionality and
security. The goal of this paper is to convey information to the formal verification
research community about this industrial application of the community’s results.
Toward that goal we describe work within AWS that uses formal verification to
raise the level of security assurance of its products. We also discuss the use of
formal reasoning tools by externally-facing products that help customers secure
themselves. We close with a discussion about areas where we see that future
research could contribute further impact.

Related Work. In this work we discuss efforts to make formal verification appli-
cable to use-cases related to cloud security at AWS. For information on previous
work within AWS to show functional correctness of some key distributed algo-
rithms, see [43]. Other providers of cloud services also use formal verification to
establish security properties, e.g. [23,34].
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Our overall strategy on the application of formal verification has been heav-
ily influenced by the success of previous applied formal verification teams in
industrial settings that worked as closely with domain experts as possible, e.g.
work at Intel [33,50], NASA [31,42], Rockwell Collins [25], the Static Driver
Verifier project [20], Facebook [45], and the success of Prover AB in the domain
of railway switching [11].

External tools that we use include Boogie [1], Coq [4], CBMC [2], CVC4
[5], Dafny [6], HOL-light [8], Infer [9], OpenJML [10], SAW [13], SMACK [14],
Souffle [37], TLA+ [15], VCC [16], and Z3 [17]. We have also collaborated with
many organizations and individuals, e.g. Galois, Trail of Bits, the University of
Sydney, and the University of Waterloo. Finally, many PhD student interns have
applied their prototype tools to our problems during their internships.

2 Security of the Cloud

Amazon and AWS aim to innovate quickly while simultaneously improving on
security. An original tenet from the founding of the AWS security team is to
never be the organization that says “no”, but instead to be the organization
that answers difficult security challenges with “here’s how”. Toward this goal, the
AWS security team works closely with product service teams to quickly identify
and mitigate potential security concerns as early as possible while simultaneously
not slowing the development teams down with bureaucracy. The security team
also works with service teams early to facilitate the certification of compliance
with industry standards.

The AWS security team performs formal security reviews of all fea-
tures/services, e.g. 1,430 services/features in 2017, a 41% year-over-year increase
from 2016. Mitigations to security risks that are developed during these security
reviews are documented as a part of the security review process. Another impor-
tant activity within AWS is ensuring that the cloud infrastructure stays secure
after launch, especially as the system is modified incrementally by developers.

Where Formal Reasoning Fits In. The application security review process
used within AWS increasingly involves the use of deductive theorem proving
and/or symbolic model checking to establish important temporal properties
of the software. For example, in 2017 alone the security team used deductive
theorem provers or model checking tools to reason about cryptographic pro-
tocols/systems (e.g. [24]), hypervisors, boot-loaders/BIOS/firmware (e.g. [27]),
garbage collectors, and network designs. Overall, formal verification engagements
within the AWS security team increased 76% year-over-year in 2017, and found
45% more pre-launch security findings year-over-year in 2017.

To support our needs we have modified a number of open-source projects and
contributed those changes back. For example, changes to CBMC [2] facilitate its
application to C-based systems at the bottom of the compute stack used in
AWS data centers [27]. Changes to SAW [13] add support for the Java program-
ming language. Contributions to SMACK [14] implement automata-theoretic
constructions that facilitate automatic proofs that s2n [12] correctly implements
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the code balancing mitigation for side-channel timing attacks. Source-code con-
tributions to OpenJML [10] add support for Java 8 features needed to prove the
correctness of code implementing a secure streaming protocol used throughout
AWS.

In many cases we use formal verification tools continuously to ensure that
security is implemented as designed, e.g. [24]. In this scenario, whenever changes
and updates to the service/feature are developed, the verification tool is re-
executed automatically prior to the deployment of the new version.

The security operations team also uses automated formal reasoning tools in
its effort to identify security vulnerabilities found in internal systems and deter-
mine their potential impact on demand. For example, an SMT-based semantic-
level policy reasoning tool is used to find misconfigured resource policies.

In general we have found that the internal use of formal reasoning tools
provides good value for the investment made. Formal reasoning provides higher
levels of assurance than testing for the properties established, as it provides
clear information about what has and has not been secured. Furthermore, formal
verification of systems can begin long before code is written, as we can prove the
correctness of the high-level algorithms and protocols, and use under-constrained
symbolic models for unwritten code or hardware that has not been fabricated
yet.

3 Securing Customers in the Cloud

AWS offers a set of cloud-based services designed to help customers be secure in
the cloud. Some examples include AWS Config, which provides customers with
information about the configurations of their AWS resources; Amazon Inspec-
tor, which provides automated security assessments of customer-authored AWS-
based applications; Amazon GuardDuty, which monitors AWS accounts looking
for unusual account usage on behalf of customers; Amazon Macie, which helps
customers discover and classify sensitive data at risk of being leaked; and AWS
Trusted Advisor, which automatically makes optimization and security recom-
mendations to customers.

In addition to automatic cloud-based security services, AWS provides peo-
ple to help customers: Solutions Architects from different disciplines work with
customers to ensure that they are making the best use of available AWS ser-
vices; Technical Account Managers are assigned to customers and work with
them when security or operational events arise; the Professional Services team
can be hired by customers to work on bespoke cloud-based solutions.

Where Formal Reasoning Fits In. Automated formal reasoning tools today
provide functionality to customers through the AWS services Config, Inspector,
GuardDuty, Macie, Trusted Advisor, and the storage service S3. As an exam-
ple, customers using the S3 web-based console receiving alerts—via SMT-based
reasoning—when their S3 bucket policies are possibly misconfigured. AWS Macie
uses the same engine to find possible data exfiltration routes. Another appli-
cation is the use of high-performance datalog constraint solvers (e.g. [37]) to
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reason about questions of reachability in complex virtual networks built using
AWS EC2 networking primitives. The theorem proving service behind this func-
tionality regularly receives 10s of millions of calls daily.

In addition to the automated services that use formal techniques, some mem-
bers of the AWS Solutions Architects, Technical Account Managers and Profes-
sional Services teams are applying and/or deploying formal verification directly
with customers. In particular, in certain security-sensitive sectors (e.g. finan-
cial services), the Professional Services organization are working directly with
customers to deploy formal reasoning into their AWS environments.

The customer reaction to features based on formal reasoning tools has been
overwhelmingly positive, both anecdotally as well as quantitatively. Calls by
AWS services to the automated reasoning tools increased by four orders of mag-
nitude in 2017. With the formal verification tools providing the semantic foun-
dation, customers can make stronger universal statements about their policies
and networks and be confident that their assumptions are not violated.

4 Challenges

At AWS we have successfully applied existing or bespoke formal verification tools
to both raise the level of security assurance of the cloud as well as help customers
protect themselves in the cloud. We now know that formal verification provides
value to applications in cloud security. There are, however, many problems yet
to be solved and many applications of formal verification techniques yet to be
discovered and/or applied. In the future we are hoping to solve the problems
we face in partnership with the formal verification research community. In this
section we outline some of those challenges. Note that in many cases existing
teams in the research community will already be working on topics related to
these problems, too many to cite comprehensively. Our comments are intended
to encourage and inspire more work in this space.

Reasoning About Risk and Feasibility. A security engineer spends the
majority of their time informally reasoning about risk. The same is true for any
corporate Chief Information Security Officer (CISO). We (the formal verifica-
tion community) potentially have a lot to contribute in this space by developing
systems that help reason more formally about the consequences of combinations
of events and their relationships to bugs found in systems. Furthermore, our
community has a lot to offer by bridging between our concept of a counterex-
ample and the security community’s notion of a proof of concept (PoC), which
is a constructive realization of a security finding in order to demonstrate its fea-
sibility. Often security engineers will develop partial PoCs, meaning that they
combine reasoning about risk and the finding of constructive witnesses in order
to increase their confidence in the importance of a finding. There are valuable
results yet to be discovered by our community at the intersection of reasoning
about and synthesis of threat models, environment models, risk/probabilities,
counterexamples, and PoCs. A few examples of current work on this topic include
[18,28,30,44,48].
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Fixes Not Findings. Industrial users of formal verification technology need to
make systems more secure, not merely find security vulnerabilities. This is true
both for securing the cloud, as well as helping customers be secure in the cloud.
If there are security findings, the primary objective is to find them and fix them
quickly. In practice a lot of work is ahead for an organization once a security
finding has been identified. As a community, anything we can do to reduce the
friction for users trying to triage and fix vulnerabilities, the better. Tools that
report false findings are quickly ignored by developers, thus as a community
we should focus on improving the fidelity of our tools. Counterexamples can be
downplayed by optimistic developers: any assistance in helping users understand
the bugs found and/or their consequences is helpful. Security vulnerabilities that
require fixes that are hard to build or hard to deploy are an especially important
challenge: our community has a lot to offer here via the development of more
powerful synthesis/repair methods (e.g. [22,32,39]) that take into account threat
models, environment models, probabilities, counterexamples.

Auditable Proof Artifacts for Compliance. Proof is actually two activi-
ties: searching for a candidate proof, and checking the candidate proof’s validity.
The searching is the art form, often involving a combination of heuristics that
attempt to work around the undecidable. The checking of a proof is (in princi-
ple) the boring yet rigorous part, usually decidable, often linear in the size of
the proof. Proof artifacts that can be re-checked have value, especially in appli-
cations related to compliance certification, e.g. DO-333 [26], CENENLEC EN
50128 SIL 4 [11], EAL7 MILS [51]. Non-trivial parts of the various compliance
and conformance standards can be checked via mechanical proof, e.g. parts of
PCI and FIPS 140. Found proofs of compliance controls that can be shared
and checked/re-checked have the possibility to reduce the cost of compliance
certification, as well as reduce the time-to-market for organizations who require
certification before using systems.

Tracking Casual or Unrealistic Assumptions. Practical formal verifica-
tion efforts often make unrealistic assumptions that are later forgotten. As an
example, most tools assume that the systems we are analyzing are immune to
single-event upsets, e.g. ionizing particles striking the microprocessor or semicon-
ductor memory. We sometimes assume compilers and runtime garbage collectors
are correct. In some cases (e.g. [20]) the environment models used by formal
verification tools do not capture all possible real-world scenarios. As formal ver-
ification tools become more powerful and useful we will increasingly need to
reason about what has been proved and what has not been proved, in order to
avoid misunderstandings that could lead to security vulnerabilities. In applica-
tions of security this reasoning about assumptions made will need to interact
with the treatment of risk and how risk is modified by various mitigations, e.g.
some mitigations for single-event upsets make the events so unlikely they they
are not a viable security risk, but still not impossible. This topic has been the
focus of some attention over the years, e.g. CLINC stack [41], CompCert [3],
and DeepSpec [7]. We believe that this will become an increasingly important
problem in the future.
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Distributed Formal Verification in the Cloud. Formal verification tools do
not take enough advantage of modern data centers via distributing coordinated
processes. Some examples of work in the right direction include [21,35,36,38,40,
47]. Especially in the area of program verification and analysis, our community
still focuses on procedures that work on single computers, or perhaps portfolio
solvers that try different problem encodings or solvers in parallel. Today large
formal verification problems are often decomposed manually, and then solved
in parallel. There has not been much research in methods for automatically
introducing and managing the reasoning about the decompositions automatically
in cloud-based distributed systems. This is in part perhaps due to the rules at
various annual competitions such as SV-COMP, SMT-COMP, and CASC. We
encourage the participants and organizers of competitions to move to cloud-
based competitions where solvers have the freedom to use cloud-scale distributed
computing to solve formal verification problems. Tool developers could build
AMIs or CloudFormation templates that allow cloud distribution. Perhaps future
contestants might even make Internet endpoints available with APIs supporting
SMTLIB or TPTP such that the competition is simply a series of remote API
calls to each competitor’s implementation. In this case competitors that embrace
the full power of the cloud will have an advantage, and we will see dramatic
improvements in the computational power of our formal verification tools.

Continuous Formal Verification. As discussed previously, we have found
that it is important to focus on continuous verification: it is not enough to
simply prove the correctness of a protocol or system once, what we need is to
continuously prove the desired property during the lifetime of the system [24].
This matches reports from elsewhere in industry where formal verification is
being applied, e.g. [45]. An interesting consequence of our focus on continuous
formal verification is that the time and effort spent finding an initial proof before
a system is deployed is not as expensive as the time spent maintaining the
proof later, as the up-front human cost of the pre-launch proof is amortized over
the lifetime of the system. It would be especially interesting to see approaches
developed that synthesize new proofs of modified code based on existing proofs
of unmodified code.

The Known Problems are Still Problems. Many of the problems that we
face in AWS are well known to the formal verification community. For exam-
ple, we need better tools for formal reasoning about languages such as Ruby,
Python, and Javascript, e.g. [29,49]. Proofs about security-oriented properties
of many large open source systems remain an open problem, e.g. Angular, Linux,
OpenJDK, React, NGINX, Xen. Many formal verification tools are hard to use.
Many tools are brittle prototypes only developed for the purposes of publica-
tion. Better understanding of ISAs and memory models (e.g. [19,46]) are also
key to prove the correctness of code operating on low-level devices. Practical and
scalable methods for proving the correctness of distributed and/or concurrent
systems remains an open problem. Improvements to the performance and scal-
ability of formal verification tools are needed to prove the correctness of larger
modules without manual decomposition. Abstraction refinement continues to be
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a problem, as false bugs are expensive to triage in an industrial setting. Buggy
(and thus unsound) proof-based tools lose trust in formal verification with the
users who are trying to deploy them.

5 Conclusion

In this paper we have discussed how formal verification contributes to the ability
of AWS to quickly develop and deploy new features while simultaneously increas-
ing the security of the AWS cloud infrastructure. We also discussed how formal
verification techniques contribute to customer-facing AWS services. In this paper
we have outlined some challenges we face. We actively seek solutions to these
problems and are happy to collaborate with partners in this pursuit. We look
forward to more partnerships, more tools, more collaboration, and more sharing
of information as we try to bring affordable, efficient and secure computation to
all.
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42. Narkawicz, A., Muñoz, C.A.: Formal verification of conflict detection algorithms
for arbitrary trajectories. Reliab. Comput. 17, 209–237 (2012)

43. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon web services uses formal methods. Commun. ACM 58(4), 66–73
(2004)

44. Ochoa, M., Banescu, S., Disenfeld, C., Barthe, G., Ganesh, V.: Reasoning about
probabilistic defense mechanisms against remote attacks. In: IEEE European Sym-
posium on Security and Privacy (2017)

45. O’Hearn, P.: Continuous reasoning: scaling the impact of formal methods. In: LICS
(2018)

46. Reid, A., Chen, R., Deligiannis, A., Gilday, D., Hoyes, D., Keen, W., Pathirane,
A., Shepherd, O., Vrabel, P., Zaidi, A.: End-to-end verification of processors with
ISA-formal. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
42–58. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 3

47. Rozier, K.Y., Vardi, M.Y.: A Multi-encoding approach for LTL symbolic satisfia-
bility checking. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp.
417–431. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-
0 31

48. Rushby, J.: Software verification and system assurance. In: IEEE International
Conference on Software Engineering and Formal Methods, pp. 3–10 (2009)
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Abstract. The recent growth of the blockchain technology market puts
its main cryptocurrencies in the spotlight. Among them, Ethereum
stands out due to its virtual machine (EVM) supporting smart con-
tracts, i.e., distributed programs that control the flow of the digital cur-
rency Ether. Being written in a Turing complete language, Ethereum
smart contracts allow for expressing a broad spectrum of financial appli-
cations. The price for this expressiveness, however, is a significant seman-
tic complexity, which increases the risk of programming errors. Recent
attacks exploiting bugs in smart contract implementations call for the
design of formal verification techniques for smart contracts. This, how-
ever, requires rigorous semantic foundations, a formal characterization of
the expected security properties, and dedicated abstraction techniques
tailored to the specific EVM semantics. This work will overview the
state-of-the-art in smart contract verification, covering formal seman-
tics, security definitions, and verification tools. We will then focus on
EtherTrust [1], a framework for the static analysis of Ethereum smart
contracts which includes the first complete small-step semantics of EVM
bytecode, the first formal characterization of a large class of security
properties for smart contracts, and the first static analysis for EVM
bytecode that comes with a proof of soundness.

1 Introduction

Blockchain technologies promise secure distributed computations even in absence
of trusted third parties. The core of this technology is a distributed ledger that
keeps track of previous transactions and the state of each account, and whose
functionality and security is ensured by a careful combination of incentives and
cryptography. Within this framework, software developers can implement sophis-
ticated distributed, transaction-based computations by leveraging the scripting
language offered by the underlying cryptocurrency. While many of these cryp-
tocurrencies have an intentionally limited scripting language (e.g., Bitcoin [2]),
Ethereum was designed from the ground up with a quasi Turing-complete lan-
guage1. Ethereum programs, called smart contracts, have thus found a variety of
1 While the language itself is Turing complete, computations are associated with a

bounded computational budget (called gas), which gets consumed by each instruction
thereby enforcing termination.
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appealing use cases, such as auctions [3], data management systems [4], financial
contracts [5], elections [6], trading platforms [7,8], permission management [9]
and verifiable cloud computing [10], just to mention a few. Given their finan-
cial nature, bugs and vulnerabilities in smart contracts may lead to catastrophic
consequences. For instance, the infamous DAO vulnerability [11] recently led to
a 60M$ financial loss and similar vulnerabilities occur on a regular basis [12,13].
Furthermore, many smart contracts in the wild are intentionally fraudulent, as
highlighted in a recent survey [14].

A rigorous security analysis of smart contracts is thus crucial for the trust of
the society in blockchain technologies and their widespread deployment. Unfor-
tunately, this task is quite challenging for various reasons. First, Ethereum smart
contracts are developed in an ad-hoc language, called Solidity, which resembles
JavaScript but features specific transaction-oriented mechanisms and a number
of non-standard semantic behaviours, as further described in this paper. Second,
smart contracts are uploaded on the blockchain in the form of Ethereum Vir-
tual Machine (EVM) bytecode, a stack-based low-level code featuring dynamic
code creation and invocation and, in general, very little static information, which
makes it extremely difficult to analyze.

Our Contributions. This work overviews the existing approaches taken
towards formal verification of Ethereum smart contracts and discusses
EtherTrust, the first sound static analysis tool for EVM bytecode. Specifically,
our contributions are

– A survey on recent theories and tools for formal verification of Ethereum
smart contracts including a systematization of existing work with an overview
of the open problems and future challenges in the smart contract realm.

– An illustrative presentation of the small-step semantics presented by [15] with
special focus on the semantics of the bytecode instructions that allow for the
initiation of internal transactions. The subtleties in the semantics of these
transactions have shown to form an integral part of the attack surface in the
context of Ethereum smart contracts.

– A review of an abstraction based on Horn clauses for soundly over-
approximating the small-step executions of Ethereum bytecode [1].

– A demonstration of how relevant security properties can be over-
approximated and automatically verified using the static analyzer
EtherTrust [1] by the example of the single-entrancy property defined in [15].

Outline. The remainder of this paper is organized as follows. Section 2 briefly
overviews the Ethereum architecture, Sect. 3 reviews the state of the art in formal
verification of Ethereum smart contracts, Sect. 4 revisits the Ethereum small-step
semantics introduced by [15], Sect. 5 presents the single-entrancy property for
smart contracts as defined by [15], Sect. 6 discusses the key ideas of the first
sound static analysis for Ethereum bytecode as implemented in EtherTrust [1],
Sect. 7 shows how reachability properties can automatically be checked using
EtherTrust, and Sect. 8 concludes summarizing the key points of the paper.
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2 Background on Ethereum

In the following we will shortly overview the mechanics of the cryptocurrency
Ethereum and its built-in scripting language EVM bytecode.

2.1 Ethereum

Ethereum is a cryptographic currency system built on top of a blockchain. Simi-
lar to Bitcoin, network participants publish transactions to the network that are
then grouped into blocks by distinct nodes (the so called miners) and appended
to the blockchain using a proof of work (PoW) consensus mechanism. The state
of the system – that we will also refer to as global state – consists of the state
of the different accounts populating it. An account can either be an external
account (belonging to a user of the system) that carries information on its cur-
rent balance or it can be a contract account that additionally obtains persistent
storage and the contract’s code. The account’s balances are given in the subunit
wei of the virtual currency Ether.2

Transactions can alter the state of the system by either creating new contract
accounts or by calling an existing account. Calls to external accounts can only
transfer Ether to this account, but calls to contract accounts additionally execute
the code associated to the contract. The contract execution might alter the
storage of the account or might again perform transactions – in this case we talk
about internal transactions.

The execution model underlying the execution of contract code is described
by a virtual state machine, the Ethereum Virtual Machine (EVM). This is quasi
Turing complete as the otherwise Turing complete execution is restricted by the
upfront defined resource gas that effectively limits the number of execution steps.
The originator of the transaction can specify the maximal gas that should be
spent for the contract execution and also determines the gas price (the amount
of wei to pay for a unit of gas). Upfront, the originator pays for the gas limit
according to the gas price and in case of successful contract execution that did
not spend the whole amount of gas dedicated to it, the originator gets reimbursed
with gas that is left. The remaining wei paid for the used gas are given as a fee
to a beneficiary address specified by the miner.

2.2 EVM Bytecode

Contracts are delivered and executed in EVM bytecode format – an Assembler
like bytecode language. As the core of the EVM is a stack-based machine, the
set of instructions in EVM bytecode consists mainly of standard instructions
for stack operations, arithmetics, jumps and local memory access. The classical
set of instructions is enriched with an opcode for the SHA3 hash and several
opcodes for accessing the environment that the contract was called in. In addi-
tion, there are opcodes for accessing and modifying the storage of the account

2 One Ether is equivalent to 1018 wei.
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currently running the code and distinct opcodes for performing internal call and
create transactions. Another instruction particular to the blockchain setting is
the SELFDESTRUCT code that deletes the currently executed contract - but
only after the successful execution of the external transaction.

The execution of each instruction consumes a positive amount of gas. The
sender of the transaction specifies a gas limit and exceeding it results in an
exception that reverts the effects of the current transaction on the global state.
In the case of nested transactions, the occurrence of an exception only reverts
its own effects, but not those of the calling transaction. Instead, the failure of
an internal transaction is only indicated by writing zero to the caller’s stack.

3 Overview on Formal Verification Approaches

In the following we give an overview on the approaches taken so far in the direc-
tion of securing (Ethereum) smart contracts. We distinguish between verification
approaches and design approaches. According to our terminology, the goal of
verification approaches is to check smart contracts written in existing languages
(such as Solidity) for their compliance with a security policy or specification. In
contrast, design approaches aim at facilitating the creation of secure smart con-
tracts by providing frameworks for their development: These approaches encom-
pass new languages which are more amenable to verification, provide a clear and
simple semantics that is understandable by smart contract developers or allow
for a direct encoding of desired security policies. In addition, we count works that
aim at providing design patterns for secure smart contracts to this category.

3.1 Verification

In the field of smart contract verification we categorize the existing approaches
along the following dimensions: target language (bytecode vs high level lan-
guage), point of verification (static vs. dynamic analysis methods), provided
guarantees (bug-finding vs. formal soundness guarantees), checked properties
(generic contract properties vs. contract specific properties), degree of automa-
tion (automated verification vs. assisted analysis vs. manual inspection). From
the current spectrum of analysis tools, we can find solutions in the following
clusters:

Static Analysis Tools for Automated Bug-Finding. Oyente [16] is a state-
of-the-art static analysis tool for EVM bytecode that relies on symbolic execu-
tion. Oyente supports a variety of pre-defined security properties, such as trans-
action order dependency, time-stamp dependency, and reentrancy that can be
checked automatically. However, Oyente is not striving for soundness nor com-
pleteness. This is on the one hand due to the simplified semantics that serves as
foundation of the analysis [15]. On the other hand, the security properties are
rather syntactic or pattern based and are lacking a semantic characterization.
Recently, Zhou et al. proposed the static analysis tool SASC [17] that extends
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Oyente by additional patterns and provides a visualization of detected risks in
the topology diagram of the original Solidity code.

Majan [18] extends the approach taken in Oyente to trace properties that
consider multiple invocations of one smart contract. As Oyente, it relies on sym-
bolic execution that follows a simplified version of the semantics used in Oyente
and uses a pattern-based approach for defining the concrete properties to be
checked. The tool covers safety properties (such as prodigality and suicidality)
and liveness properties (greediness). As for Oyente, the authors do not make any
security claims, but consider their tool a ‘bug catching approach’.

Static Analysis Tools for Automated Verification of Generic Proper-
ties. In contrast to the aforementioned class of tools, this line of research aims
at providing formal guarantees for the analysis results.

A recently published work is the static analysis tool ZEUS [19] that analyzes
smart contracts written in Solidity using symbolic model checking. The analysis
proceeds by translating Solidity code to an abstract intermediate language that
again is translated to LLVM bitcode. Finally, existing symbolic model checking
tools for LLVM bitcode are leveraged for checking generic security properties.
ZEUS consequently only allows for analyzing contracts whose Solidity source
code is made available. In addition, the semantics of the intermediate language
cannot easily be reconciled with the actual Solidity semantics that is determined
by its translation to EVM bytecode. This is as the semantics of the intermediate
language by design does not allow for the revocation of the global system state
in the case of a failed call – which however is fundamental feature of Ethereum
smart contract execution.

Other tools proposed in the realm of automated static analysis for generic
properties are Securify [20], Mythril [21] and Manticore [22] (for analysing byte-
code) and SmartCheck [23] and Solgraph [24] (for analyzing Solidity code). These
tools however are not accompanied by any academic paper so that the concrete
analysis goals stay unspecified.

Frameworks for Semi-automated Proofs for Contract Specific Prop-
erties. Hirai [25] formalizes the EVM semantics in the proof assistant
Isabelle/HOL and uses it for manually proving safety properties for concrete
contracts. This semantics, however, constitutes a sound over-approximation of
the original semantics [26]. Building on top of this work, Amani et al. pro-
pose a sound program logic for EVM bytecode based on separation logics [27].
This logic allows for semi-automatically reasoning about correctness properties
of EVM bytecode using the proof assistant Isabelle/HOL.

Hildebrandt et al. [28] define the EVM semantics in the K framework [29]
– a language independent verification framework based on reachability logics.
The authors leverage the power of the K framework in order to automatically
derive analysis tools for the specified semantics, presenting as an example a gas
analysis tool, a semantic debugger, and a program verifier based on reachability
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logics. The derived program verifier still requires the user to manually specify
loop invariants on the bytecode level.

Bhargavan et al. [30] introduce a framework to analyze Ethereum contracts
by translation into F*, a functional programming language aimed at program
verification and equipped with an interactive proof assistant. The translation
supports only a fragment of the EVM bytecode and does not come with a jus-
tifying semantic argument.

Dynamic Monitoring for Predefined Security Properties. Grossman et
al. [31] propose the notion of effectively callback free executions and identify the
absence of this property in smart contract executions as the source of common
bugs such as reentrancy. They propose an efficient online algorithm for discov-
ering executions violating effectively callback freeness. Implementing a corre-
sponding monitor in the EVM would guarantee the absence of the potentially
dangerous smart contract executions, but is not compatible with the current
Ethereum version and would require a hard fork.

A dynamic monitoring solution compatible with Ethereum is offered by the
tool DappGuard [32]. The tool actively monitors the incoming transactions to a
smart contract and leverages the tool Oyente [16], an own analysis engine and
a simulation of the transaction on the testnet for judging whether the incom-
ing transaction might cause a (generic) security violation (such as transaction
order dependency). If a transaction is considered harmful, a counter transaction
(killing the contract or performing some other fixes) is made. The authors claim
that this transaction will be mined with high probability before the problematic
one. Due to this uncertainty and the bug-finding tools used for evaluation of
incoming transactions, this approach does not provide any guarantees.

3.2 Design

The current research on secure smart contract design focuses on the following
four areas: high-level programming languages, intermediate languages (for veri-
fication), security patterns for existing languages and visual tools for designing
smart contracts.

High-Level Languages. One line of research on high-level smart contract lan-
guages concentrates on the facilitation of secure smart contract design by limiting
the language expressiveness and enforcing strong static typing discipline. Sim-
plicity [33] is a typed functional programming language for smart contracts that
disallows loops and recursion. It is a general purpose language for smart contracts
and not tailored to the Ethereum setting. Simplicity comes with a denotational
semantics specified in Coq that allows for reasoning formally about Simplicity
contracts. As there is no (verified) compiler to EVM bytecode so far, such results
don’t carry over to Ethereum smart contracts. In the same realm, Pettersson and
Edström [34], propose a library for the programming language Idris that allows
for the development of secure smart contracts using dependent and polymorphic
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types. They extend the existing Idris compiler with a generator for Serpent code
(a Python-like high-level language for Ethereum smart contracts). This compiler
is a proof of concept and fails in compiling more advanced contracts (as it can-
not handle recursion). In a preliminary work, Coblenz [35] propose Obsidian, an
object-oriented programming language that pursues the goal of preventing com-
mon bugs in smart contracts such as reentrancy. To this end, Obsidian makes
states explicit and uses a linear type system for quantities of money.

Another line of research focuses on designing languages that allow for encod-
ing security policies that are dynamically enforced at runtime. A first step in
this direction is sketched in the preliminary work on Flint [36], a type-safe,
capabilities-secure, contract-oriented programming language for smart contracts
that gets compiled to EVM bytecode. Flint allows for defining caller capabilities
restricting the access to security sensitive functions. These capabilities shall be
enforced by the EVM bytecode created during compilation. But so far, there is
only an extended abstract available.

In addition to these approaches from academia, the Ethereum foundation
currently develops the high-level languages Viper [37] and Bamboo [38]. Fur-
thermore, the Solidity compiler used to support a limited export functionality
to the intermediate language WhyML [39] allowing for a pre/post condition style
reasoning on Solidity code by leveraging the deductive program verification plat-
form Why3 [40].

Intermediate Languages. The intermediate language Scilla [41] comes with a
semantics formalized in the proof assistant Coq and therefore allows for a mech-
anized verification of Scilla contracts. In addition, Scilla makes some interesting
design choices that might inspire the development of future high level languages
for smart contracts: Scilla provides a strict separation not only between compu-
tation and communication, but also between pure and effectful computations.

Security Patterns. Wöhrer [42] describes programming patterns in Solidity
that should be adapted by smart contract programmers for avoiding common
bugs. These patterns encompass best coding practices such as performing calls
at the end of a function, but also off-the-self solutions for common security
bugs such as locking a contract for avoiding reentrancy or the integration of a
mechanism that allows the contract owner to disable sensitive functionalities in
the case of a bug.

Tools. Mavridou and Laszka [43] introduce a framework for designing smart
contracts in terms of finite state machines. They provide a tool with a graphical
editor for defining contract specifications as automata and give a translation
of the constructed finite state machines to Solidity. In addition, they present
some security extensions and patterns that can be used as off-the-shelf solutions
for preventing reentrancy and implementing common security challenges such
as time constraints and authorization. The approach however is lacking formal
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foundations as neither the correctness of the translation is proven correct, nor
are the security patterns shown to meet the desired security goals.

3.3 Open Challenges

Even though the previous section highlights the wide range of steps taken
towards the analysis of Ethereum smart contracts, there are still a lot of open
challenges left.

Secure Compilation of High-Level Languages. Even though there are
several proposals made for new high-level languages that facilitate the design of
secure smart contracts and that are more amenable to verification, none of them
comes so far with a verified compiler to EVM bytecode. Such a secure compilation
however is the requirement for the results shown on high-level language programs
to carry over to the actual smart contracts published on the blockchain.

Specification Languages for Smart Contracts. So far, all approaches to
verifying contract specific properties focus on either ad-hoc specifications in the
used verification framework [25,27,28,30] or the insertion of assertions into exist-
ing contract code [39]. For leveraging the power of existing model checking tech-
niques for program verification, the design of a general-purpose contract speci-
fication language would be needed.

Study of Security Policies. There has been no fundamental research made so
far on the classes of security policies that might be interesting to enforce in the
setting of smart contracts. In particular, it would be compelling to characterize
the class of security policies that can be enforced by smart contracts within the
existing EVM.

Compositional Reasoning About Smart Contracts. Most research on
smart contract verification focuses on reasoning about individual contracts or at
most a bunch of contracts whose bytecode is fully available. Even though there
has been work observing the similarities between smart contracts and concurrent
programs [44], there has been no rigorous study on compositional reasoning for
smart contracts so far.

4 Semantics

Recently, Grishchenko et al. [15] introduced the first complete small-step seman-
tics for EVM bytecode. As this semantics serves as a basis for the static analyzer
EtherTrust, we will in the following shortly review the general layout and the
most important features of the semantics.
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4.1 Execution Configurations

Before discussing the small-step rules of the semantics, we first introduce the
general shape of execution configurations.

Global State. The global state of the Ethereum blockchain is represented as
a (partial) mapping from account addresses to accounts. In the case that an
account does not exist, we assume it to map to ⊥. Accounts are composed of a
nonce n that is incremented with every other account that the account creates, a
balance b, a persistent unbounded storage stor and the account’s code. External
accounts carry an empty code which makes their storage inaccessible and hence
irrelevant.

Small-Step Relation. The semantics is formalized by a small-step relation
Γ � S → S′ that specifies how a call stack S representing the state of the
execution evolves within one step under the transaction environment Γ . We call
the pair (Γ, S) a configuration.

Transaction Environments. The transaction environment represents the
static information of the block that the transaction is executed in and the
immutable parameters given to the transaction as the gas prize or the gas limit.
These parameters can be accessed by distinct bytecode instructions and conse-
quently influence the transaction execution.

Call Stacks. A call stack S is a stack of execution states which represents the
state of the overall execution of the initial external transaction. The individual
execution states of the stack represent the states of the uncompleted internal
transactions performed during the execution. Formally, a call stack is a stack
of regular execution states of the form (μ, ι, σ) that can optionally be topped
with a halting state HALT(σ, gas, d) or an exception state EXC. Semantically,
halting states indicate regular halting of an internal transaction, exception states
indicate exceptional halting, and regular execution states describe the state of
internal transactions in progress. Halting and exception states can only occur as
top elements of the call stack as they represent terminated internal transactions.
Halting states carry the information affecting the callee state such as the global
state σ that the internal execution halted in, the unspent gas gas from the
internal transaction execution and the return data d.

The state of a non-terminated internal transaction is described by a regular
execution state of the form (μ, ι, σ). The state is determined by the current
global state σ of the system as well as the execution environment ι that specifies
the parameters of the current transaction (including inputs and the code to be
executed) and the local state μ of the stack machine.
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Table 1. Semantic rules for ADD

Execution Environment. The execution environment ι of an internal trans-
action is a tuple of static parameters (actor, input, sender, value, code) to the
transaction that, i.a., determine the code to be executed and the account in
whose context the code will be executed. The execution environment incorpo-
rates the following components: the active account actor that is the account that
is currently executing and whose account will be affected when instructions for
storage modification or money transfer are performed; the input data input given
to the transaction; the address sender of the account that initiated the trans-
action; the amount of wei value transferred with the transaction; the code code
that is executed by the transaction. The execution environment is determined
upon initialization of an internal transaction execution, and it can be accessed,
but not altered during the execution.

Machine State. The local machine state μ represents the state of the under-
lying stack machine used for execution. Formally it is represented by a tuple
(gas, pc,m, aw, s) holding the amount of gas gas available for execution, the pro-
gram counter pc, the local memory m, the number of active words in memory
aw, and the machine stack s.

The execution of each internal transaction starts in a fresh machine state,
with an empty stack, memory initialized to all zeros, and program counter and
active words in memory set to zero. Only the gas is instantiated with the gas
value available for the execution. We call execution states with machine states
of this form initial.

4.2 Small-Step Rules

In the following, we will present a selection of interesting small-step rules in
order to illustrate the most important features of the semantics.

Local Instructions. For demonstrating the overall design of the semantics, we
start with the example of the arithmetic expression ADD performing addition
of two values on the machine stack. The small-step rules for ADD are shown
in Table 1. We use a dot notation, in order to access components of the different
state parameters. We name the components with the variable names introduced
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for these components in the last section written in sans-serif-style. In addition,
we use the usual notation for updating components: t[c → v] denotes that the
component c of tuple t is updated with value v. For expressing incremental
updates in a simpler way, we additionally use the notation t[c += v] to denote
that the (numerical) component of c is incremented by v and similarly t[c −= v]
for decrementing a component c of t.

The execution of the arithmetic instruction ADD only performs local changes
in the machine state affecting the local stack, the program counter, and the
gas budget. For deciding upon the correct instruction to execute, the currently
executed code (that is part of the execution environment) is accessed at the
position of the current program counter. The cost of an ADD instruction consists
always of three units of gas that get subtracted from the gas budget in the
machine state. As every other instruction, ADD can fail due to lacking gas or
due to underflows on the machine stack. In this case, the exception state is
entered and the execution of the current internal transaction is terminated. For
better readability, we use here the slightly sloppy ∨ notation for combining the
two error cases in one inference rule.

Transaction Initiating Instructions. A class of instructions with a more
involved semantics are those instructions initiating internal transactions. This
class incorporates instructions for calling another contract (CALL, CALLCODE
and DELEGATECALL) and for creating a new contract (CREATE). We will
explain the semantics of those instructions in an intuitive way omitting tech-
nical details.

The call instructions initiate a new internal call transaction whose parameters
are specified on the machine stack – including the recipient (callee) and the
amount of money to be transferred (in the case of CALL and CALLCODE). In
addition, the input to the call is specified by providing the corresponding local
memory fragment and analogously a memory fragment for the return value.

When executing a call instruction, the specified amount of wei is transferred
to the callee and the code of the callee is executed. The different call types
diverge in the environment that the callee code is executed in. In the case of
a CALL instruction, while executing the callee code (only) the account of the
callee can be accessed and modified. So intuitively, the control is completely
handed to the callee as its code is executed in its own context. In contrast, in
the case of CALLCODE, the executed callee code can (only) access and modify
the account of the caller. So the callee’s code is executed in the caller’s context
which might be useful for using library functionalities implemented in a separate
library contract that e.g., transfer money on behalf of the caller.

This idea is pushed even further in the DELEGATECALL instruction. This call
type does not allow for transferring money and executes the callee’s code not
only in the caller’s context, but even preserves part of the execution environment
of the previous call (in particular the call value and the sender information).
Intuitively, this instruction resembles adding the callee’s code to the caller as
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Fig. 1. Illustration of the semantics of different call types

an internal function so that calling it does not cause a new internal transaction
(even though it formally does).

Figure 1 summarizes the behavior of the different call instructions in EVM
bytecode. The executed code of the respective account is highlighted in orange
while the accessible account state is depicted in green. The remaining inter-
nal transaction information (as specified in the execution environment) on the
sender of the internal transaction and the transferred value are marked in vio-
let. In addition, the picture relates the corresponding changes to the small-step
semantics: the execution of a call transaction adds a new execution state to
the call stack while preserving the old one. The new global state σ′ records
the changes in the accounts’ balances, while the new execution environment ι′

determines the accessible account (by setting the actor of the internal transaction
correspondingly), the code to be executed (by setting code) and further acces-
sible transaction information as the sender, value and input (by setting sender,
value and input respectively).
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Fig. 2. Illustration of the semantics of the CREATE instruction (Color figure online)

The CREATE instruction initiates an internal transaction that creates a new
account. The semantics of this instruction is similar to the one of CALL, with
the exception that a fresh account is created, which gets the specified value
transferred, and that the input provided to this internal transaction, which is
again specified in the local memory, is interpreted as the initialization code to
be executed in order to produce the newly created account’s code as output.
Figure 2 depicts the semantics of the CREATE instruction in a similar fashion
as it is done for the call instructions before. It is notable that the input to the
CREATE instruction is interpreted as code and executed (therefore highlighted
in orange) in the context of the newly created contract (highlighted in green).
During this execution the newly created contract does not have any contract
code itself (therefore depicted in gray), but only after completing the internal
transaction the return value of the transaction will be set as code for the freshly
created contract.

5 Security Properties

Grishchenko et al. [15] propose generic security definitions for smart contracts
that rule out certain classes of potentially harmful contract behavior. These
properties constitute trace properties (more precisely, safety properties) as well
as hyper properties (in particular, value independence properties). In this work,
we revisit one of these safety properties called single-entrancy and use this prop-
erty as a case study for showing how safety properties of smart contracts (that
can be over-approximated by pure reachability properties) can be automatically
checked by static analysis. For checking value independence properties, in [1] the
reviewed analysis technique is extended with a simple dependency analysis that
we will not discuss further in this work.

5.1 Preliminary Notations

Formally, contracts are represented as tuples of the form (a, code) where a
denotes the address of the contract and code denotes the contract’s code.
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In order to give concise security definitions, we further introduce, and assume
all through the paper, an annotation to the small step semantics in order to
highlight the contract c that is currently executed. In the case of initialization
code being executed, we use ⊥. We write S + +S′ for the concatenation of call
stacks S and S′. Finally, for arguing about EVM bytecode executions, we are only
interested in those initial configurations that might result from a valid external
transaction in a valid block. In the following, we will call these configurations
reachable and refer to [15] for a detailed definition.

5.2 Single-Entrancy

For motivating the definition of single-entrancy, we introduce a class of bugs in
Ethereum smart contracts called reentrancy bugs [14,16].

The most famous representative of this class is the so-called DAO bug that
led to a loss of 60 million dollars in June 2016 [11]. In an attack exploiting this
bug, the affected contract was drained out of money by subsequently reentering
it and performing transactions to the attacker on behalf of the contract.

The cause of such bugs mostly roots in the developer’s misunderstanding
of the semantics of Solidity’s call primitives. In general, calling a contract can
invoke two kinds of actions: Transferring Ether to the contract’s account or
Executing (parts of) a contracts code. In particular, Solidity’s call construct
(being translated to a CALL instruction in EVM bytecode) invokes the execution
of a fraction of the callee’s code – specified in the so called fallback function. A
contract’s fallback function is written as a function without names or argument
as depicted in the Mallory contract in Fig. 3b.

Consequently, when using the call construct the developer may expect an
atomic value transfer where potentially another contract’s code is executed. For
illustrating how to exploit this sort of bug, we consider the contracts in Fig. 3.

Fig. 3. Reentrancy attack

The function ping of contract Bob sends an amount of 2 wei to the address
specified in the argument. However, this should only be possible once, which is
potentially ensured by the sent variable that is set after the successful money
transfer. Instead, it turns out that invoking the call.value function on a contract’s
address invokes the contract’s fallback function as well.

Given a second contract Mallory, it is possible to transfer more money than
the intended 2 wei to the account of Mallory. By invoking Bob’s function ping with
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the address of Mallory’s account, 2 wei are transferred to Mallory’s account and
additionally the fallback function of Mallory is invoked. As the fallback function
again calls the ping function with Mallory’s address another 2 wei are transferred
before the variable sent of contract Bob was set. This looping goes on until all
gas of the initial call is consumed or the callstack limit is reached. In this case,
only the last transfer of wei is reverted and the effects of all former calls stay
in place. Consequently the intended restriction on contract Bob’s ping function
(namely to only transfer 2 wei once) is circumvented.

Motivated by these kinds of attacks, the notion of single-entrancy was intro-
duced. Intuitively, a contract is single-entrant if it cannot perform any more calls
once it has been reentered. Formally this property can be expressed in terms of
the small-steps semantics as follows:

Definition 1 (Single-entrancy [15]). A contract c is single-entrant if for all
reachable configurations (Γ, sc ::S), it holds for all s′, s′′, S′ that

Γ � sc ::S →∗ s′
c ::S′ + +sc ::S

=⇒ ¬∃s′′ ∈ S, c′ ∈ C⊥. Γ � s′
c ::S′ + +sc ::S →∗ s′′

c′ :: s′
c ::S′ + +sc ::S

This property constitutes a safety property. We will show in Sect. 7 how it
can be appropriately abstracted for being expressed in the EtherTrust analysis
framework.

Fig. 4. Simplified soundness statement

6 Verification

Grishchenko et al. [1] developed a static analysis framework for analyzing reach-
ability properties of EVM smart contracts. This framework relies on an abstract
semantics for EVM bytecode soundly over-approximating the semantics pre-
sented in Sect. 4.

In the following we will review the abstractions performed on the small-step
configurations and execution rules using the example of the abstract execution
rule for the ADD instruction. Afterwards, we will discuss shortly how call instruc-
tions are over-approximated.
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6.1 Abstract Semantics

Figure 4 gives an overview on the relation between the small-step and the
abstract semantics. For the analysis, we will consider a particular contract c∗

under analysis whose code is known. An over-approximation of the behavior of
this smart contract will be encoded in Horn clauses(Δ). These describe how an
abstract configuration (represented by a set of abstract state predicates) evolves
within the execution of the contract’s instructions. Abstract configurations are
obtained by translating small-step configurations to a set Π of facts over state
predicates that characterize (an over-approximation of) the original configura-
tion. This transformation is performed with respect to the contract c∗ as only
all local behavior of this particular contract will be over-approximated and con-
sequently only those elements on the callstack representing executions of c∗ are
translated. Finally, we will show that no matter how the contract c∗ is called (so
for every arbitrary reachable configuration Γ, sc∗ ::S), every sequence of execu-
tion steps that is performed while executing it can be mimicked by a derivation
of the abstract configuration Πs (obtained from translating the execution state
s) using the horn clauses Δ (that model the abstract semantics of the contract
c∗). More precisely, this means that from the set of facts Πs ∪ Δ a set Π can
be derived that is a coarser abstraction (<:) than ΠS′ which is the translation
of the execution’s intermediate call stack S′. A corresponding formal soundness
statement is proven in [1].

6.2 Abstract Configurations

Table 2 shows the analysis facts used for describing the abstract semantics. These
consist of (instances of) state predicates that represent partial abstract config-
urations. Accordingly, abstract configurations are sets of facts not containing
any variables as arguments. We will refer to such facts as closed facts. Finally,
abstract contracts are characterized as sets of Horn clauses over the state pred-
icates (facts) that describe the state changes induced by the instructions at the
different program positions. Here only those state predicates are depicted that
are needed for describing the abstract semantics of the ADD instruction.

The state predicates are parametrized by a program point pp that is a tuple of
the form (id∗, pc) with id∗ being a contract identifier for contract c∗ and pc being
the program counter at which the abstract state holds.3 The parametrization by
the contract identifier helps to make the analysis consider a set of contracts
whose code is known (such as e.g., library code that is known to be used by the
contract). In this work however we focus on the case where c∗ represented by
identifier id∗ is the only known contract. In addition, the predicates carry the
relative call depth cd as argument. The relative call depth is the size of the call
stack built up on the execution of c∗ (Cf. call stack S′ in Fig. 4) and serves as
abstraction for the (relative) call stack that contract c∗ is currently executed on.
3 Making the program counter a parameter instead of an argument is a design choice

made in order to minimize the number of recursive horn clauses simplifying auto-
mated verification.
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Table 2. Analysis Facts. All arguments in the analysis facts marked with a hat (̂·)
range over D̂ ∪ Vars where D̂ is the abstract domain and Vars is the set of variables.
All other arguments of analysis facts range over N with exception of sa that ranges over
(N → D̂) ∪ Vars. Closed facts cf are assumed to be facts with arguments not coming
from Vars.

The relative call depth helps to distinguish different recursive executions of c∗

and thereby improves the precision of the analysis.
As the ADD instruction only operates on the local machine state, we focus

on the abstract representation of the machine state μ: The state predicates
representing μ are MStatepp and Mempp. The fact MStatepp ((size, sa), âw, ˆgas, cd)
says that at program point pp and relative call depth cd the machine stack is
of size size and its current configuration is described by the mapping sa which
maps stack positions to abstract values, âw represents the number of active words
in memory, and ˆgas is the remaining gas. Similarly, the fact Mempp ( ˆpos, v̂, cd)
states that at program point pp and relative call depth cd at memory address
ˆpos there is the (abstract) value v̂. The values on the stack and in local memory

range over an abstract domain. Concretely, we define the abstract domain D̂ to
be the set {⊥,	, a∗} ∪ N which constitutes a bounded lattice (D̂,
,�,�,	,⊥)
satisfying ⊥ � a∗ � 	 and ⊥ � n � 	 for all n ∈ N. Intuitively, in our analysis
	 will represent unknown (symbolic) values and a∗ will represent the unknown
(symbolic) address of contract c∗.

Treating the address of the contract under analysis in a symbolic fashion is
crucial for obtaining a meaningful analysis, as the address of this account on the
blockchain can not easily be assumed to be known upfront. Although discussing
this peculiarity is beyond the scope of this paper, a broader presentation of the
symbolic address paradigm can be found in the technical report [1].

For performing operations and comparisons on values from the abstract
domain, we will assume versions of the unary, binary and comparison opera-
tors on the values from D̂. We will mark abstract operators with a hat (̂·) and
e.g., write +̂ for abstract addition or =̂ for abstract equality. The operators will
treat 	 and a∗ as arbitrary values so that e.g., 	 +̂ n evaluates to 	 and 	 =̂ n
evaluates to true and false for all n ∈ N.

Formally, we establish the relation between a concrete machine state μ and
its abstraction by an abstraction function that translates machine states to a set
of closed analysis facts. Figure 3 shows the abstraction function αµ that maps a
local machine state into an abstract state consisting of a set of analysis facts. The
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abstraction is defined with respect to the relative call depth cd of the execution
and a value abstraction function ·̊ that maps concrete values into values from
the abstract domain. The function ·̊ thereby maps all concrete values to the
corresponding (concrete) values in the abstract domain, but those values that
can potentially represent the address of contract c∗, hence, they are translated
to a∗ and therefore over-approximated. This treatment might introduce spurious
counterexamples with respect to the concrete execution of the real contract on
the blockchain (where it is assigned a concrete address). On the one hand, this
is due to the fact that by this abstraction the concrete value of the address
is assumed to be arbitrary. On the other hand, abstract computations with α
always result in 	 and therefore possible constraints on these results are lost.
However, the first source of imprecision should not be considered an imprecision
per se, as the c∗’s address is not assumed to be known statically, thus, the goal of
the abstraction is to over-approximate the executions with all possible addresses.

The translation proceeds by creating a set of instances of the machine state
predicates. For creating instances of the MStatepp predicate, the concrete values
aw and gas are over-approximated by åw and g̊as respectively, and the stack is
translated to an abstract array representation using the function stackToArray.
The instances of the memory predicate are created by translating the memory
mapping m to a relational representation with abstract locations and values.4

Table 3. Abstraction function for the local machine state µ

6.3 Abstract Execution Rules

As all state predicates are parametrized by their program points, the abstract
semantics needs to be formulated with respect to program points as well. More
precisely this means that for each program counter of contract c∗ a set of Horn
clauses is created that describes the semantics of the instruction at this program
counter. Formally, a function �·�{c∗}

pp is defined that creates the required set of
rules given that the instruction inst is at position pc of contract c∗’s code.

4 The reason for using a separate predicate for representing local memory instead of
encoding it as an argument of array type in the main machine state predicate is
purely technical: for modeling memory usage correctly we would need a rich set of
array operations that are however not supported by the fixedpoint engines of modern
SMT solvers.
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Table 4 shows a part of the definition (excerpt of the rules) of �·�{c∗}
pp for the

ADD instruction. The main functionality of the rule is described by the Horn
clause 1 that describes how the machine stack and the gas evolve when execut-
ing ADD. First the precondition is checked whether the sufficient amount of gas
and stack elements are available. Then the two (abstract) top elements x̂ and ŷ
are extracted from the stack and their sum is written to the top of the stack while
reducing the overall stack size by 1. In addition, the local gas value is reduced by
3 in an abstract fashion. In the memory rule (Horn clause 2), again the precon-
ditions are checked and then (as memory is not affected by the ADD instruction)
the memory is propagated. This propagation is needed due to the memory predi-
cate’s parametrization with the program counter: For making the memory accessi-
ble in the next execution step, its values need to be written into the corresponding
predicate for the next program counter. Finally, Horn clauses 3 and 4 characterize
the exception cases: an exception while executing the ADD instruction can occur
either because of a stack underflow or as the execution runs out of gas. In both
cases the exception state is entered which is indicated by recording the relative
call depth of the exception in the predicate Excid∗ (cd).

By allowing gas values to come from the abstract domain, we enable symbolic
treatment of gas. In particular this means that when starting the analysis with
gas value 	, all gas calculations will directly result in 	 again (and could there-
fore be omitted) and in particular all checks on the gas will result in true and
false and consequently always both paths (regular execution via Horn clauses 1
and 2 and exception via Horn clause 4) will be triggered in the analysis.

For over-approximating the semantics of call instructions, more involved
abstractions are needed. We will illustrate these abstractions in the following
in an intuitive way and refer to [1] for the technical details. Note that in the
following we will assume CALL instructions to be the only kind of transaction
initiating instructions that are contained in the contracts that we consider for
analysis. A generalization of the analysis that allows for incorporating also other
call types is presented in [1].

As we are considering c∗ the only contract to be known, whenever a call is
performed that is not a self-call, we need to assume that an arbitrary contract
c? gets executed. The general idea for over-approximating calls to an unknown
contract c? is that only those execution states that represent executions of con-
tract c∗ will be over-approximated. Consequently, when a call is performed, all
possible effects on future executions of c∗ that might be caused by the execution
of c? (including the initiation of further initial transactions that might cause
reentering c∗) need to be captured. For doing this as accurate as possible, we
use the following observations:

1. Given that c∗ only executes plain CALL instructions the persistent storage of
contract c∗ can only be altered during executions of c∗.

2. Contracts have a single entry point: their execution always starts in a fresh
machine state at program counter zero.

In general, we can soundly capture the possibility of contract c∗ being reen-
tered during the execution of c? by assuming to reenter c∗ at every higher call
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Table 4. Excerpt of the abstract rules for ADD

Fig. 5. Illustration of the abstraction of the semantics for the CALL instruction.

level. For keeping the desired precision, we can use the previously made obser-
vations for imposing restrictions on the reenterings of c∗: First, we assume the
persistent storage of c∗ to be the same as at the point of calling (observation 1.).
Second, we know that execution starts at program counter 0 in a fresh machine
state (observation 2.). This allows us to initialize the machine state predicates
presented in Table 2 accordingly at program counter zero. All other parts of the
global state and the execution environment need to be considered unknown at
the point of reentering as they might have potentially been changed during the
execution of c?. This in particular also applies to the balance of contract c∗.

Figure 5 illustrates how the abstract configurations over-approximating the
concrete execution states of c∗ evolve within the execution of the abstract seman-
tics. We write Π � S for denoting that an abstract configuration Π (here graph-
ically depicted in gray frames) is an over-approximation of call stack S. The
depicted execution starts in the initial execution state sc∗ of c∗. This is state is
over-approximated by assuming the storage and balance of c∗ as well as all other
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information on the global state to be unknown and therefore initialized to 	 in
the corresponding state predicates of the abstract configuration (denoted in the
picture by marking the corresponding state components in red). The execution
steps representing the executions of local instructions are mimicked step-wise by
corresponding abstract execution steps. During these steps a more refined knowl-
edge about the state of c∗ and its environment might be gained (e.g., the value
of some storage cells where information is written, or some restrictions on the
account’s balances, marked in green or blue, respectively). When finally a CALL
instruction is executed, every potential reentering of contract c∗ (here exempli-
fied by execution state tc∗) is over-approximated by abstract configurations for
every call depths cd > 0 that consider all global state and environmental infor-
mation to be arbitrary, but the parts modeling the persistent storage of c∗ to be
as at the point of calling. In Sect. 7 we will show how this abstraction will help us
to automatically check smart contracts for single-entrancy in a sound and pre-
cise manner. In addition to these over-approximations that capture the effects on
c∗ during the execution of an unknown contract, for over-approximating CALL
instructions some other abstractions need to be performed that model the seman-
tics of returning:

– For returning it is always assumed that potentially the call failed or returned
with arbitrary return values.

– After returning the global state is assumed to be altered arbitrarily by the
call and therefore its components are set to 	.

For a complete account and formal description of the abstractions, we refer to the
full specification of the abstract semantics spelled out in the technical report [1].

7 Verifying Security Properties

In this section, we will show how the previously presented analysis can be used
for proving reachability properties of Ethereum smart contracts in an automated
fashion.

To this end, we review EtherTrust [1], the first sound static analyzer for
EVM bytecode. EtherTrust proceeds by translating contract code provided in
the bytecode format into an internal Horn clause representation. This Horn
clause representation, together with facts over-approximating all potential initial
configurations are handed to the SMT solver Z3 [45] via an API. For showing
that the analyzed contract satisfies a reachability property, the unsatisfiability
of the corresponding analysis queries needs to be verified using Z3’s fixedpoint
engine SPACER [46]. If all analysis queries are deemed unsatisfiable then the
contract under analysis is guaranteed to satisfy the original reachability query
due to the soundness of the underlying analysis.

In the following we will discuss the analysis queries used for verifying single-
entrancy and illustrate how these queries allow for capturing contracts that are
vulnerable to reentrancy such as the example presented in Sect. 5.
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7.1 Over-Approximating Single-Entrancy

For being able to automatically check for single-entrancy, we need to simplify
the original property in order to obtain a description that is expressible in terms
of the analysis framework described in Sect. 6. To this end, a strictly stronger
property named call unreachability is presented that is proven to imply single-
entrancy:

Definition 2 (Call unreachability [1]). A contract c is call unreachable if for
all initial execution states (μ, ι, σ) such that (μ, ι, σ)c is well formed, it holds that
for all transaction environments Γ and all call stacks S

¬∃s, S′. Γ � (μ, ι, σ)c ::S →∗ sc ::S′ + +S

∧ |S′| > 0 ∧ code (c) [s.μ.pc] ∈ Instcall

With Instcall = {CALL,CALLCODE,DELEGATECALL,CREATE}
Intuitively, this property states that it should not be possible to reach a call
instruction of c∗ after reentering. As we are excluding all transaction initiating
instructions but CALL from the analysis, it is sufficient to query for the reacha-
bility of a CALL instruction of c∗ on a higher call depth. More precisely, we end
up with the following set of queries:

{MState(id, pc) ((size, sa), aw, gas, cd) ∧ cd > 0 | code (c∗) [pc] = CALL} (5)

As the MStatepp predicate tracks the state of the machine state at all program
points, it can be used as indicator for reachability of the program point as such.
Consequently, by querying the MState(id*, pc) for all program counters pc where
c∗ has a CALL instruction and along with that requiring a call depth exceeding
zero, we can check whether a call instruction is reachable in some reentering
execution.

7.2 Examples

We will use examples for showing how the analysis detects, and proves the
absence of reentrancy bugs, respectively. To this end, we revisit the contract
Bob presented in Sect. 5, and introduce a contract Alice that fixes the reentrancy
bug that is present in Bob. The two contracts are shown in Figure 6.

Detecting Reentrancy Bugs. We illustrate how the analysis detects reen-
trancy bugs using the example in Figure 6a. To this end we give a graphical
description of the over-approximations performed when analyzing contract Bob

which is depicted in Figure 7. For the sake of presentation, we give the contract
code in Solidity instead of bytecode and argue about it on this level even though
the analysis is carried out on bytecode level.

As discussed in Sect. 6.3, the analysis considers the execution of contract Bob

to start in an unknown environment, which implies that also the value of the
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Fig. 6. Examples for contracts showing and being robust against the reentrancy bug.

contract’s sent variable is unknown and hence initialized to 	. As a consequence,
the equality check in line 4 is considered to evaluate to both true and false in
the abstract setting (as 	 needs to be considered to potentially equal every
concrete value). Accordingly, the analysis needs to consider the then-branch of
the conditional and consequently the call in line 4. This call is over-approximated
as discussed in Sect. 6.3, and therefore considers reentering contract Bob in an
arbitrary call depth. In this situation, the sent variable is still over-approximated
to have value 	 wherefore the call at line 4 can be reached again which satisfies
the reachability query in Eq. 5.

Proving Single-Entrancy. We consider the contract Alice shown in Figure 6b.
In contrast to contract Bob, this contract does not have the reentrancy vulnera-
bility, as the guard sent that should prevent the call instruction in line 5 from
being executed more than once is set before performing the call. As a conse-
quence, when reentering the contract, the guard is already set and stops any
further calls. We show that the analysis presented in Sect. 6 is precise enough
for proving this contract to be single-entrant. Intuitively, the abstraction is pre-
cise as it considers that the contract’s persistent storage can be assumed to be
unchanged at the point of reentering. Consequently, the then-branch of the
conditional can be excluded from the analysis when reentering and the contract
can be proven to be single-entrant. A graphic description of this argument is
provided in Figure 8. As for contract Bob, the analysis starts in an abstract con-
figuration that assigns the sent variable value 	, which forces the analysis to
consider the then as well as the else-branch of the conditional in line 4. When
taking the else-branch, the contract execution terminates without reaching a
state satisfying the reachability query. Therefore, it is sufficient to only consider
the then-branch for proving the impossibility of re-reaching the call instruc-
tion. When executing the call in the then-branch, according to the abstract
call semantics, the analysis needs to take all abstract configurations represent-
ing executions of Alice at higher call depths into account. However, in each of
these abstract configurations it can be assumed that the state of the persistent
storage (including the sent variable, highlighted in green) is the same as at the
point of calling. As at this point sent was already initialized to the concrete value
true, the then-branch of the conditional can be excluded from the analysis at
any call depth cd > 0 and consequently the unreachability of the query in Eq. 5
is proven.
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Fig. 7. Illustration of the attack detection in contract Bob by the static analysis.

7.3 Discussion

In this section, we illustrated how the static analysis underlying EtherTrust [1]
in principle is capable not only of detecting re-entrancy bugs, but also of prov-
ing smart contracts single-entrant. In practice, EtherTrust manages to analyze
real-world contracts from the blockchain within several seconds, as detailed in
the experimental evaluation presented in [1]. Even though EtherTrust produces
false positives due to the performed over-approximations, it still shows better
precision on a benchmark than the state-of-the art bug-finding tool Oyente [16]
– despite being sound. Similar results are shown when using EtherTrust for
checking a simple value independency property.

In general, EtherTrust could be easily extended to support more properties
on contract execution – given that those properties or over-approximations of
them are expressible as reachability or simple value independency properties. By
contrast, checking more involved hyper properties, or properties that span more
than one execution of the external transaction execution is currently out of the
scope for EtherTrust.
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Fig. 8. Illustration of proving single-entrancy of contract Alice by the static analysis.

8 Conclusion

We presented a systematization of the state-of-the-art in Ethereum smart con-
tract verification and outlined the open challenges in this field. Also we discussed
in detail the foundations of EtherTrust [1], the first sound static analyzer for
EVM bytecode. In particular, we reviewed how the small-step semantics pre-
sented in [15] is abstracted into a set of Horn clauses. Also we presented how
single-entrancy – a relevant smart contract security property – is expressed in
terms of queries, which can be then automatically solved leveraging the power
of an SMT solver.
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Abstract. We present layered concurrent programs, a compact and
expressive notation for specifying refinement proofs of concurrent pro-
grams. A layered concurrent program specifies a sequence of connected
concurrent programs, from most concrete to most abstract, such that
common parts of different programs are written exactly once. These pro-
grams are expressed in the ordinary syntax of imperative concurrent
programs using gated atomic actions, sequencing, choice, and (recursive)
procedure calls. Each concurrent program is automatically extracted
from the layered program. We reduce refinement to the safety of a
sequence of concurrent checker programs, one each to justify the connec-
tion between every two consecutive concurrent programs. These checker
programs are also automatically extracted from the layered program.
Layered concurrent programs have been implemented in the Civl verifier
which has been successfully used for the verification of several complex
concurrent programs.

1 Introduction

Refinement is an approach to program correctness in which a program is
expressed at multiple levels of abstraction. For example, we could have a sequence
of programs P1, . . . ,Ph,Ph+1 where P1 is the most concrete and the Ph+1 is the
most abstract. Program P1 can be compiled and executed efficiently, Ph+1 is
obviously correct, and the correctness of Pi is guaranteed by the correctness of
Pi+1 for all i ∈ [1, h]. These three properties together ensure that P1 is both effi-
cient and correct. To use the refinement approach, the programmer must come
up with each version Pi of the program and a proof that the correctness of Pi+1

implies the correctness of Pi. This proof typically establishes a connection from
every behavior of Pi to some behavior of Pi+1.

Refinement is an attractive approach to the verified construction of complex
programs for a number of reasons. First, instead of constructing a single mono-
lithic proof of P1, the programmer constructs a collection of localized proofs
establishing the connection between Pi and Pi+1 for each i ∈ [1, h]. Each local-
ized proof is considerably simpler than the overall proof because it only needs to
reason about the (relatively small) difference between adjacent programs. Sec-
ond, different localized proofs can be performed using different reasoning meth-
ods, e.g., interactive deduction, automated testing, or even informal reasoning.
c© The Author(s) 2018
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Fig. 1. Concurrent programs Pi and connecting checker programs Ci represented by a
layered concurrent program LP.

Finally, refinement naturally supports a bidirectional approach to correctness—
bottom-up verification of a concrete program via successive abstraction or top-
down derivation from an abstract program via successive concretization.

This paper explores the use of refinement to reason about concurrent pro-
grams. Most refinement-oriented approaches model a concurrent program as a
flat transition system, a representation that is useful for abstract programs but
becomes increasingly cumbersome for a concrete implementation. To realize the
goal of verified construction of efficient and implementable concurrent programs,
we must be able to uniformly and compactly represent both highly-detailed and
highly-abstract concurrent programs. This paper introduces layered concurrent
programs as such a representation.

A layered concurrent program LP represents a sequence P1, . . . ,Ph,Ph+1 of
concurrent programs such that common parts of different programs are written
exactly once. These programs are expressed not as flat transition systems but
in the ordinary syntax of imperative concurrent programs using gated atomic
actions [4], sequencing, choice, and (recursive) procedure calls. Our programming
language is accompanied by a type system that allows each Pi to be automat-
ically extracted from LP. Finally, refinement between Pi and Pi+1 is encoded
as the safety of a checker program Ci which is also automatically extracted from
LP. Thus, the verification of P1 is split into the verification of h concurrent
checker programs C1, . . . , Ch such that Ci connects Pi and Pi+1 (Fig. 1).

We highlight two crucial aspects of our approach. First, while the programs Pi

have an interleaved (i.e., preemptive) semantics, we verify the checker programs
Ci under a cooperative semantics in which preemptions occur only at procedure
calls. Our type system [5] based on the theory of right and left movers [10] ensures
that the cooperative behaviors of Ci cover all preemptive behaviors of Pi. Second,
establishing the safety of checker programs is not tied to any particular verifi-
cation technique. Any applicable technique can be used. In particular, different
layers can be verified using different techniques, allowing for great flexibility in
verification options.

1.1 Related Work

This paper formalizes, clarifies, and extends the most important aspect of
the design of Civl [6], a deductive verifier for layered concurrent programs.
Hawblitzel et al. [7] present a partial explanation of Civl by formalizing the
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connection between two concurrent programs as sound program transformations.
In this paper, we provide the first formal account for layered concurrent pro-
grams to represent all concurrent programs in a multi-layered refinement proof,
thereby establishing a new foundation for the verified construction of concurrent
programs.

Civl is the successor to the Qed [4] verifier which combined a type system for
mover types with logical reasoning based on verification conditions. Qed enabled
the specification of a layered proof but required each layer to be expressed in
a separate file leading to code duplication. Layered programs reduce redundant
work in a layered proof by enabling each piece of code to be written exactly once.
Qed also introduced the idea of abstracting an atomic action to enable attach-
ing a stronger mover type to it. This idea is incorporated naturally in layered
programs by allowing a concrete atomic action to be wrapped in a procedure
whose specification is a more abstract atomic action with a more precise mover
type.

Event-B [1] is a modeling language that supports refinement of systems
expressed as interleaved composition of events, each specified as a top-level
transition relation. Verification of Event-B specifications is supported by the
Rodin [2] toolset which has been used to model and verify several systems of
industrial significance. TLA+ [9] also specifies systems as a flat transition sys-
tem, enables refinement proofs, and is more general because it supports liveness
specifications. Our approach to refinement is different from Event-B and TLA+
for several reasons. First, Event-B and TLA+ model different versions of the
program as separate flat transition systems whereas our work models them as
different layers of a single layered concurrent program, exploiting the standard
structuring mechanisms of imperative programs. Second, Event-B and TLA+
connect the concrete program to the abstract program via an explicitly specified
refinement mapping. Thus, the guarantee provided by the refinement proof is
contingent upon trusting both the abstract program and the refinement map-
ping. In our approach, once the abstract program is proved to be free of failures,
the trusted part of the specification is confined to the gates of atomic actions in
the concrete program. Furthermore, the programmer never explicitly specifies a
refinement mapping and is only engaged in proving the correctness of checker
programs.

The methodology of refinement mappings has been used for compositional
verification of hardware designs [11,12]. The focus in this work is to decompose
a large refinement proof connecting two versions of a hardware design into a
collection of smaller proofs. A variety of techniques including compositional rea-
soning (converting a large problem to several small problems) and customized
abstractions (for converting infinite-state to finite-state problems) are used to
create small and finite-state verification problems for a model checker. This work
is mostly orthogonal to our contribution of layered programs. Rather, it could be
considered an approach to decompose the verification of each (potentially large)
checker program encoded by a layered concurrent program.
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2 Concurrent Programs

In this section we introduce a concurrent programming language. The syntax of
our programming language is summarized in Fig. 2.

Fig. 2. Concurrent programs

Preliminaries. Let Val be a set of values containing the Booleans. The set of
variables Var is partitioned into global variables GVar and local variables LVar .
A store σ is a mapping from variables to values, an expression e is a mapping
from stores to values, and a transition t is a binary relation between stores.

Atomic Actions. A fundamental notion in our approach is that of an atomic
action. An atomic action captures an indivisible operation on the program state
together with its precondition, providing a universal representation for both low-
level machine operations (e.g., reading a variable from memory) and high-level
abstractions (e.g., atomic procedure summaries). Most importantly for reasoning
purposes, our programming language confines all accesses to global variables to
atomic actions. Formally, an atomic action is a tuple (I,O, e, t). The semantics
of an atomic action in an execution is to first evaluate the expression e, called
the gate, in the current state. If the gate evaluates to false the execution fails,
otherwise the program state is updated according to the transition t. Input vari-
ables in I can be read by e and t, and output variables in O can be written
by t.

Remark 1. Atomic actions subsume many standard statements. In particular,
(nondeterministic) assignments, assertions, and assumptions. The following table
shows some examples for programs over variables x and y.

Command e t

x := x + y true x′ = x + y ∧ y′ = y

havoc x true y′ = y

assert x < y x < y x′ = x ∧ y′ = y

assume x < y true x < y ∧ x′ = x ∧ y′ = y
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Procedures. A procedure is a tuple (I,O, L, s) where I,O, L are the input,
output, and local variables of the procedure, and s is a statement composed from
skip, sequencing, if, and parallel call statements. Since only atomic actions can
refer to global variables, the variables accessed in if conditions are restricted to
the inputs, outputs, and locals of the enclosing procedure. The meaning of skip,
sequencing, and if is as expected and we focus on parallel calls.

Pcalls. A parallel call (pcall, for short) pcall (A, ι, o) (P, ι, o) (A, ι, o) consists
of a sequence of invocations of atomic actions and procedures. We refer to the
invocations as the arms of the pcall. In particular (A, ι, o) is an atomic-action
arm and (P, ι, o) is a procedure arm. An atomic-action arm executes the called
atomic action, and a procedure arm creates a child thread that executes the
statement of the called procedure. The parent thread is blocked until all arms
of the pcall finish. In the standard semantics the order of arms does not matter,
but our verification technique will allow us to consider the atomic action arms
before and after the procedure arms to execute in the specified order. Parameter
passing is expressed using partial mappings ι, o between local variables; ι maps
formal inputs of the callee to actual inputs of the caller, and o maps actual
outputs of the caller to formal outputs of the callee. Since we do not want
to introduce races on local variables, the outputs of all arms must be disjoint
and the output of one arm cannot be an input to another arm. Finally, notice
that our general notion of a pcall subsumes sequential statements (single atomic-
action arm), synchronous procedure calls (single procedure arm), and unbounded
thread creation (recursive procedure arm).

Concurrent Programs. A concurrent program P is a tuple (gs, as, ps ,m, I),
where gs is a finite set of global variables used by the program, as is a finite
mapping from action names A to atomic actions, ps is a finite mapping from
procedure names P to procedures, m is either a procedure or action name that
denotes the entry point for program executions, and I is a set of initial stores.
For convenience we will liberally use action and procedure names to refer to the
corresponding atomic actions and procedures.

Semantics. Let P = (gs, as, ps,m, I) be a fixed concurrent program. A state
consists of a global store assigning values to the global variables and a pool
of threads, each consisting of a local store assigning values to local variables
and a statement that remains to be executed. An execution is a sequence of
states, where from each state to the next some thread is selected to execute one
step. Every step that switches the executing thread is called a preemption (also
called a context switch). We distinguish between two semantics that differ in
(1) preemption points, and (2) the order of executing the arms of a pcall.

In preemptive semantics, a preemption is allowed anywhere and the arms
of a pcall are arbitrarily interleaved. In cooperative semantics, a preemption is
allowed only at the call and return of a procedure, and the arms of a pcall are
executed as follows. First, the leading atomic-action arms are executed from left
to right without preemption, then all procedure arms are executed arbitrarily
interleaved, and finally the trailing atomic-action arms are executed, again from



84 B. Kragl and S. Qadeer

left to right without preemption. In other words, a preemption is only allowed
when a procedure arm of a pcall creates a new thread and when a thread termi-
nates.

For P we only consider executions that start with a single thread that execute
m from a store in I. P is called safe if there is no failing execution, i.e., an
execution that executes an atomic action whose gate evaluates to false. We
write Safe(P) if P is safe under preemptive semantics, and CSafe(P) if P is safe
under cooperative semantics.

2.1 Running Example

In this section, we introduce a sequence of three concurrent programs (Fig. 3)
to illustrate features of our concurrent programming language and the layered
approach to program correctness. Consider the program P lock

1 in Fig. 3(a). The
program uses a single global Boolean variable b which is accessed by the two
atomic actions CAS and RESET. The compare-and-swap action CAS atomically
reads the current value of b and either sets b from false to true and returns
true, or leaves b true and returns false. The RESET action sets b to false and
has a gate (represented as an assertion) that states that the action must only
be called when b is true. Using these actions, the procedures Enter and Leave
implement a spinlock as follows. Enter calls the CAS action and retries (through
recursion on itself) until it succeeds to set b from false to true. Leave just
calls the RESET action which sets b back to false and thus allows another thread
executing Enter to stop spinning. Finally, the procedures Main and Worker serve
as a simple client. Main uses a pcall inside a nondeterministic if statement to
create an unbounded number of concurrent worker threads, which just acquire
the lock by calling Enter and then release the lock again by calling Leave. The
call to the empty procedure Alloc is an artifact of our extraction from a layered
concurrent program and can be removed as an optimization.

Proving P lock
1 safe amounts to showing that RESET is never called with b set

to false, which expresses that P lock
1 follows a locking discipline of releasing only

previously acquired locks. Doing this proof directly on P lock
1 has two drawbacks.

First, the proof must relate the possible values of b with the program counters
of all running threads. In general, this approach requires sound introduction of
ghost code and results in complicated case distinctions in program invariants.
Second, the proof is not reusable across different lock implementations. The
correctness of the client does not specifically depend on using a spinlock over
a Boolean variable, and thus the proof should not as well. We show how our
refinement-based approach addresses both problems.

Program P lock
2 in Fig. 3(b) is an abstraction of P lock

1 that introduces an
abstract lock specification. The global variable b is replaced by lock which
ranges over integer thread identifiers (0 is a dedicated value indicating that
the lock is available). The procedures Alloc, Enter and Leave are replaced by
the atomic actions ALLOC, ACQUIRE and RELEASE, respectively. ALLOC allocates
unique and non-zero thread identifiers using a set of integers slot to store the
identifiers not allocated so far. ACQUIRE blocks executions where the lock is not
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Fig. 3. Lock example

available (assume lock == 0) and sets lock to the identifier of the acquiring
thread. RELEASE asserts that the releasing thread holds the lock and sets lock
to 0. Thus, the connection between P lock

1 and P lock
2 is given by the invariant

b <==> lock != 0 which justifies that Enter refines ACQUIRE and Leave refines
RELEASE. The potential safety violation in P lock

1 by the gate of RESET is pre-
served in P lock

2 by the gate of RELEASE. In fact, the safety of P lock
2 expresses the

stronger locking discipline that the lock can only be released by the thread that
acquired it.

Reasoning in terms of ACQUIRE and RELEASE instead of Enter and Leave is
more general, but it is also simpler! Figure 3(b) declares atomic actions with a
mover type [5], right for right mover, and left for left mover. A right mover
executed by a thread commutes to the right of any action executed by a different
thread. Similarly, a left mover executed by thread commutes to the left of any
action executed by a different thread. A sequence of right movers followed by
at most one non-mover followed by a sequence of left movers in a thread can
be considered atomic [10]. The reason is that any interleaved execution can
be rearranged (by commuting atomic actions), such that these actions execute
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consecutively. For P lock
2 this means that Worker is atomic and thus the gate of

RELEASE can be discharged by pure sequential reasoning; ALLOC guarantees tid
!= 0 and after executing ACQUIRE we have lock == tid. As a result, we finally
obtain that the atomic action SKIP in P lock

3 (Fig. 3(c)) is a sound abstraction
of procedure Main in P lock

2 . Hence, we showed that program P lock
1 is safe by

soundly abstracting it to P lock
3 , a program that is trivially safe.

The correctness of right and left annotations on ACQUIRE and RELEASE,
respectively, depends on pair-wise commutativity checks among atomic actions
in P lock

2 . These commutativity checks will fail unless we exploit the fact that
every thread identifier allocated by Worker using the ALLOC action is unique. For
instance, to show that ACQUIRE executed by a thread commutes to the right of
RELEASE executed by a different thread, it must be known that the parameters
tid to these actions are distinct from each other. The linear annotation on
the local variables named tid and the global variable slots (which is a set of
integers) is used to communicate this information.

The overall invariant encoded by the linear annotation is that the set of
values stored in slots and in local linear variables of active stack frames across
all threads are pairwise disjoint. This invariant is guaranteed by a combination of
a linear type system [14] and logical reasoning on the code of all atomic actions.
The linear type system ensures using a flow analysis that a value stored in a linear
variable in an active stack frame is not copied into another linear variable via
an assignment. Each atomic action must ensure that its state update preserves
the disjointness invariant for linear variables. For actions ACQUIRE and RELEASE,
which do not modify any linear variables, this reasoning is trivial. However,
action ALLOC modifies slots and updates the linear output parameter tid. Its
correctness depends on the (semantic) fact that the value put into tid is removed
from slots; this reasoning can be done using automated theorem provers.

3 Layered Concurrent Programs

A layered concurrent program represents a sequence of concurrent programs
that are connected to each other. That is, the programs derived from a layered
concurrent program share syntactic structure, but differ in the granularity of
the atomic actions and the set of variables they are expressed over. In a layered
concurrent program, we associate layer numbers and layer ranges with variables
(both global and local), atomic actions, and procedures. These layer numbers
control the introduction and hiding of program variables and the summarization
of compound operations into atomic actions, and thus provide the scaffolding of a
refinement relation. Concretely, this section shows how the concurrent programs
P lock

1 , P lock
2 , and P lock

3 (Fig. 3) and their connections can all be expressed in a
single layered concurrent program. In Sect. 4, we discuss how to check refinement
between the successive concurrent programs encoded in a layered concurrent
program.

Syntax. The syntax of layered concurrent programs is summarized in Fig. 4. Let
N be the set of non-negative integers and I the set of nonempty intervals [a, b].
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Fig. 4. Layered concurrent programs

We refer to integers as layer numbers and intervals as layer ranges. A layered
concurrent program LP is a tuple (GS ,AS , IS ,PS ,m, I) which, similarly to con-
current programs, consists of global variables, atomic actions, and procedures,
with the following differences.

1. GS maps global variables to layer ranges. For GS (v) = [a, b] we say that v is
introduced at layer a and available up to layer b.

2. AS assigns a layer range r to atomic actions denoting the layers at which an
action exists.

3. IS (with a disjoint domain from AS ) distinguishes a special type of atomic
actions called introduction actions. Introduction actions have a single layer
number n and are responsible for assigning meaning to the variables intro-
duced at layer n. Correspondingly, statements in layered concurrent programs
are extended with an icall statement for calling introduction actions.

4. PS assigns a layer number n, a layer number mapping for local variables ns,
and an atomic action A to procedures. We call n the disappearing layer and A
the refined atomic action. For every local variable v, ns(v) is the introduction
layer of v.
The pcallα statement in a layered concurrent program differs from the pcall
statement in concurrent programs in two ways. First, it can only have proce-
dure arms. Second, it has a parameter α which is either ε (unannotated pcall)
or the index of one of its arms (annotated pcall). We usually omit writing ε
in unannotated pcalls.

5. m is a procedure name.

The top layer h of a layered concurrent program is the disappearing layer of m.

Intuition Behind Layer Numbers. Recall that a layered concurrent program
LP should represent a sequence of h+1 concurrent programs P1, · · · ,Ph+1 that
are connected by a sequence of h checker programs C1, · · · , Ch (cf. Fig. 1). Before
we provide formal definitions, let us get some intuition on two core mechanisms:
global variable introduction and procedure abstraction/refinement.

Let v be a global variable with layer range [a, b]. The meaning of this layer
range is that the “first” program that contains v is Ca, the checker program
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connecting Pa and Pa+1. In particular, v is not yet part of Pa. In Ca the intro-
duction actions at layer a can modify v and thus assign its meaning in terms of
all other available variables. Then v is part of Pa+1 and all programs up to and
including Pb. The “last” program containing v is Cb. In other words, when going
from a program Pi to Pi+1 the variables with upper bound i disappear and the
variables with lower bound i are introduced; the checker program Ci has access
to both and establishes their relationship.

Let P be a procedure with disappearing layer n and refined atomic action
A. The meaning of the disappearing layer is that P exists in all programs from
P1 up to and including Pn. In Pn+1 and above every invocation of P is replaced
by an invocation of A. To ensure that this replacement is sound, the checker
program Cn performs a refinement check that ensures that every execution of P
behaves like A. Observe that the body of procedure P itself changes from P1 to
Pn according to the disappearing layer of the procedures it calls.

With the above intuition in mind it is clear that the layer annotations in a
layered concurrent program cannot be arbitrary. For example, if procedure P
calls a procedure Q, then Q cannot have a higher disappearing layer than P , for
Q could introduce further behaviors into the program after P was replaced by
A, and those behaviors are not captured by A.

3.1 Type Checker

We describe the constraints that need to be satisfied for a layered concurrent
program to be well-formed. A full formalization as a type checker with top-level
judgment � LP is given in Fig. 5. For completeness, the type checker includes
standard constraints (e.g., variable scoping, parameter passing, etc.) that we are
not going to discuss.

(Atomic Action)/(Introduction Action). Global variables can only be
accessed by atomic actions and introduction actions. For a global variable v
with layer range [a, b], introduction actions with layer number a are allowed to
modify v (for sound variable introduction), and atomic actions with a layer range
contained in [a + 1, b] have access to v. Introduction actions must be nonblock-
ing, which means that every state that satisfies the gate must have a possible
transition to take. This ensures that introduction actions only assign meaning
to introduced variables but do not exclude any program behavior.

(If). Procedure bodies change from layer to layer because calls to procedures
become calls to atomic actions. But the control-flow structure within a procedure
is preserved across layers. Therefore (local) variables accessed in an if condition
must be available on all layers to ensure that the if statement is well-defined on
every layer.

(Introduction Call). Let A be an introduction action with layer number n.
Since A modifies global variables introduced at layer n, icalls to A are only
allowed from procedures with disappearing layer n. Similarly, the formal output
parameters of an icall to A must have introduction layer n. The icall is only
preserved in Cn.
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Fig. 5. Type checking rules for layered concurrent programs
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(Parallel Call). All arms in a pcall must be procedure arms invoking a proce-
dure with a disappearing layer less than or equal to the disappearing layer of the
caller. Furthermore, above the disappearing layer of the callee its refined atomic
action must be available up to the disappearing layer of the caller. Parameter
passing can only be well-defined if the actual inputs exist before the formal
inputs, and the formal outputs exist before the actual outputs. The sequence of
disappearing layers of the procedures in a pcall must be monotonically increas-
ing and then decreasing, such that the resulting pcall in the extracted programs
consists of procedure arms surrounded by atomic-action arms on every layer.

Annotated pcalls are only used for invocations to procedures with the same
disappearing layer n as the caller. In particular, during refinement checking in
Cn only the arm with index α is allowed to modify the global state, which must
be according to the refined atomic action of the caller. The remaining arms must
leave the global state unchanged.

3.2 Concurrent Program Extraction

Let LP = (GS ,AS , IS ,PS ,m, I) be a layered concurrent program such that
PS (m) = ( , , , , h, , Am). We show how to extract the programs P1, · · · ,Ph+1

by defining a function Γ�(LP) such that P� = Γ�(LP) for every � ∈ [1, h + 1].
For a local variable layer mapping ns we define the set of local variables with
layer number less then � as ns|� = {v | ns(v) < �}. Now the extraction function
Γ� is defined as

Γ�(LP) = (gs, as, ps,m′, I),

where

gs = {v | GS(v) = [a, b] ∧ � ∈ [a + 1, b]},

as = {A �→ (I, O, e, t) | AS(A) = (I, O, e, t, r) ∧ � ∈ r},

ps = {P �→ (I ∩ ns|�, O ∩ ns|�, L ∩ ns|�, Γ P
� (s)) | PS(P ) = (I, O, L, s, n,ns, ) ∧ � ≤ n},

m′ =

{
m if � ∈ [1, h]

Am if � = h + 1
,

and the extraction of a statement in the body of procedure P is given by

Γ P
� (skip) = skip,

Γ P
� (s1 ; s2) = Γ P

� (s1) ; Γ P
� (s2),

Γ P
� (if e then s1 else s2) = if e then Γ P

� (s1) else Γ P
� (s2),

Γ P
� (icall (A, ι, o)) = skip,

Γ P
� (pcallα (Q, ι, o)) = pcall (X, ι|nsQ|� , o|nsP |� ),

for
PS(P ) = ( , , , , ,nsP , )

PS(Q) = ( , , , , n,nsQ, A)
and X =

{
Q if � ≤ n

A if � > n
.

Thus P� includes the global and local variables that were introduced before � and
the atomic actions with � in their layer range. Furthermore, it does not contain



Layered Concurrent Programs 91

introduction actions and correspondingly all icall statements are removed. Every
arm of a pcall statement, depending on the disappearing layer n of the called
procedure Q, either remains a procedure arm to Q, or is replaced by an atomic-
action arm to A, the atomic action refined by Q. The input and output mappings
are restricted to the local variables at layer �. The set of initial stores of P� is
the same as for LP, since stores range over all program variables.

In our programming language, loops are subsumed by the more general mech-
anism of recursive procedure calls. Observe that P� can indeed have recursive
procedure calls, because our type checking rules (Fig. 5) allow a pcall to invoke
a procedure with the same disappearing layer as the caller.

3.3 Running Example

We return to our lock example from Sect. 2.1. Figure 6 shows its implementa-
tion as the layered concurrent program LP lock . Layer annotations are indicated
using an @ symbol. For example, the global variable b has layer range [0, 1], all
occurrences of local variable tid have introduction layer 1, the atomic action
ACQUIRE has layer range [2, 2], and the introduction action iSetLock has layer
number 1.

First, observe that LP lock is well-formed, i.e., � LP lock . Then it is an easy
exercise to verify that Γ�(LP lock ) = P lock

� for � ∈ [1, 3]. Let us focus on proce-
dure Worker. In P lock

1 (Fig. 3(a)) tid does not exist, and correspondingly Alloc,
Enter, and Leave do not have input respectively output parameters. Further-
more, the icall in the body of Alloc is replaced with skip. In P lock

2 (Fig. 3(b))
we have tid and the calls to Alloc, Enter, and Leave are replaced with their
respective refined atomic actions ALLOC, ACQUIRE, and RELEASE. The only anno-
tated pcall in LP lock is the recursive call to Enter.

In addition to representing the concurrent programs in Fig. 3, the program
LP lock also encodes the connection between them via introduction actions and
calls. The introduction action iSetLock updates lock to maintain the relation-
ship between lock and b, expressed by the predicate InvLock. It is called in
Enter in case the CAS operation successfully set b to true, and in Leave when
b is set to false. The introduction action iIncr implements linear thread identi-
fiers using the integer variables pos which points to the next value that can be
allocated. For every allocation, the current value of pos is returned as the new
thread identifier and pos is incremented.

The variable slots is introduced at layer 1 to represent the set of unallocated
identifiers. It contains all integers no less than pos, an invariant that is expressed
by the predicate InvAlloc and maintained by the code of iIncr. The purpose
of slots is to encode linear allocation of thread identifiers in a way that the
body of iIncr can be locally shown to preserve the disjointness invariant for
linear variables; slots plays a similar role in the specification of the atomic
action ALLOC in P2. The variable pos is both introduced and hidden at layer 1
so that it exists neither in P lock

1 nor P lock
2 . However, pos is present in the checker

program C1 that connects P lock
1 and P lock

2 .
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Fig. 6. Lock example (layered concurrent program)

The bodies of procedures Cas and Reset are not shown in Fig. 6 because
they are not needed. They disappear at layer 0 and are replaced by the atomic
actions CAS and RESET, respectively, in P lock

1 .
The degree of compactness afforded by layered programs (as in Fig. 6) over

separate specification of each concurrent program (as in Fig. 3) increases rapidly
with the size of the program and the maximum depth of procedure calls. In our
experience, for realistic programs such as a concurrent garbage collector [7] or a
data-race detector [15], the saving in code duplication is significant.

4 Refinement Checking

Section 3 described how a layered concurrent program LP encodes a sequence
P1, . . . ,Ph,Ph+1 of concurrent programs. In this section, we show how the safety
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of any concurrent program in the sequence is implied by the safety of its suc-
cessor, ultimately allowing the safety of P1 to be established by the safety of
Ph+1.

There are three ingredients to connecting P� to P�+1 for any � ∈ [1, h]—
reduction, projection, and abstraction. Reduction allows us to conclude the
safety of a concurrent program under preemptive semantics by proving safety
only under cooperative semantics.

Theorem 1 (Reduction). Let P be a concurrent program. If MSafe(P) and
CSafe(P), then Safe(P).

The judgment MSafe(P) uses logical commutativity reasoning and mover types
to ensure that cooperative safety is sufficient for preemptive safety (Sect. 4.1).
We use this theorem to justify reasoning about CSafe(P�) rather than Safe(P�).

The next step in connecting P� to P�+1 is to introduce computation intro-
duced at layer � into the cooperative semantics of P�. This computation com-
prises global and local variables together with introduction actions and calls to
them. We refer to the resulting program at layer � as ˜P�.

Theorem 2 (Projection). Let LP be a layered concurrent program with top
layer h and � ∈ [1, h]. If CSafe( ˜P�), then CSafe(P�).

Since introduction actions are nonblocking and ˜P� is safe under cooperative
semantics, every cooperative execution of P� can be obtained by projecting away
the computation introduced at layer �. This observation allows us to conclude
that every cooperative execution of P� is also safe.

Finally, we check that the safety of the cooperative semantics of ˜P� is ensured
by the safety of the preemptive semantics of the next concurrent program P�+1.
This connection is established by reasoning about the cooperative semantics of
a concurrent checker program C� that is automatically constructed from LP.

Theorem 3 (Abstraction). Let LP be a layered concurrent program with top
layer h and � ∈ [1, h]. If CSafe(C�) and Safe(P�+1), then CSafe( ˜P�).

The checker program C� is obtained by instrumenting the code of ˜P� with extra
variables and procedures that enable checking that procedures disappearing at
layer � refine their atomic action specifications (Sect. 4.2).

Our refinement check between two consecutive layers is summarized by the
following corollary of Theorems 1–3.

Corollary 1. Let LP be a layered concurrent program with top layer h and
� ∈ [1, h]. If MSafe(P�), CSafe(C�) and Safe(P�+1), then Safe(P�).

The soundness of our refinement checking methodology for layered concurrent
programs is obtained by repeated application of Corollary 1.

Corollary 2. Let LP be a layered concurrent program with top layer h. If
MSafe(P�) and CSafe(C�) for all � ∈ [1, h] and Safe(Ph+1), then Safe(P1).
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4.1 From Preemptive to Cooperative Semantics

We present the judgment MSafe(P) that allows us to reason about a concur-
rent program P under cooperative semantics instead of preemptive semantics.
Intuitively, we want to use the commutativity of individual atomic actions to
rearrange the steps of any execution under preemptive semantics in such a way
that it corresponds to an execution under cooperative semantics. We consider
mappings M ∈ Action → {N,R,L,B} that assign mover types to atomic actions;
N for non-mover, R for right mover, L for left mover, and B for both mover. The
judgment MSafe(P) requires a mapping M that satisfies two conditions.

First, the atomic actions in P must satisfy the following logical commutativity
conditions [7], which can be discharged by a theorem prover.

– Commutativity: If A1 is a right mover or A2 is a left mover, then the effect
of A1 followed by A2 can also be achieved by A2 followed by A1.

– Forward preservation: If A1 is a right mover or A2 is a left mover, then the
failure of A2 after A1 implies that A2 must also fail before A1.

– Backward preservation: If A2 is a left mover (and A1 is an arbitrary), then
the failure of A1 before A2 implies that A1 must also fail after A2.

– Nonblocking: If A is a left mover, then A cannot block.

Second, the sequence of atomic actions in preemptive executions of P must
be such that the desired rearrangement into cooperative executions is possible.
Given a preemptive execution, consider, for each
thread individually, a labeling of execution steps
where atomic action steps are labeled with their
mover type and procedure calls and returns are
labeled with Y (for yield). The nondeterministic
atomicity automaton A on the right defines all
allowed sequences. Intuitively, when we map the
execution steps of a thread to a run in the automaton, the state RM denotes
that we are in the right mover phase in which we can stay until the occurrence
of a non-right mover (L or N). Then we can stay in the left mover phase (state
LM) by executing left movers, until a preemption point (Y) takes us back to
RM. Let E be the mapping from edge labels to the set of edges that contain the
label, e.g., E(R) = {RM → RM,RM → LM}. Thus we have a representation of
mover types as sets of edges in A, and we define E(A) = E(M(A)). Notice that
the set representation is closed under relation composition ◦ and intersection,
and behaves as expected, e.g., E(R) ◦ E(L) = E(N).

Now we define an intraprocedural control flow analysis that lifts E to a map-
ping ̂E on statements. Intuitively, x → y ∈ ̂E(s) means that every execution
of the statement s has a run in A from x to y. Our analysis does not have to
be interprocedural, since procedure calls and returns are labeled with Y, allow-
ing every possible state transition in A. MSafe(P) requires ̂E(s) �= ∅ for every
procedure body s in P, where ̂E is defined as follows:
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Ê(skip) = E(B) Ê(s1 ; s2) = Ê(s1) ◦ Ê(s2) Ê(if e then s1 else s2) = Ê(s1) ∩ Ê(s2)

Ê(pcall A1P A2) =

{ E∗(A1A2) if P = ε

E(L) ◦ E∗(A1) ◦ E(Y) ◦ E∗(A2) ◦ E(R) if P 	= ε

Skip is a both mover, sequencing composes edges, and if takes the edges
possible in both branches. In the arms of a pcall we omit writing the input and
output maps because they are irrelevant to the analysis. Let us first focus on
the case P = ε with no procedure arms. In the preemptive semantics all arms
are arbitrarily interleaved and correspondingly we define the function

E∗(A1 · · · An) =
⋂

τ∈Sn

E(Aτ(1)) ◦ · · · ◦ E(Aτ(n))

to consider all possible permutations (τ ranges over the symmetric group Sn)
and take the edges possible in all permutations. Observe that E∗ evaluates to
non-empty in exactly four cases: E(N) for {B}∗N{B}∗, E(B) for {B}∗, E(R) for
{R,B}∗ \{B}∗, and E(L) for {L,B}∗ \{B}∗. These are the mover-type sequences
for which an arbitrary permutation (coming from a preemptive execution) can
be rearranged to the order given by the pcall (corresponding to cooperative
execution).

In the case P �= ε there is a preemption point under cooperative semantics
between A1 and A2, the actions in A1 are executed in order before the preemp-
tion, and the actions in A2 are executed in order after the preemption. To ensure
that the cooperative execution can simulate an arbitrarily interleaved preemp-
tive execution of the pcall, we must be able to move actions in A1 to the left and
actions in A2 to the right of the preemption point. We enforce this condition by
requiring that A1 is all left (or both) movers and A2 all right (or both) movers,
expressed by the leading E(L) and trailing E(R) in the edge composition.

4.2 Refinement Checker Programs

In this section, we describe the construction of checker programs that justify the
formal connection between successive concurrent programs in a layered concur-
rent program. The description is done by example. In particular, we show the
checker program Clock

1 that establishes the connection between P lock
1 and P lock

2

(Fig. 3) of our running example.

Overview. Cooperative semantics splits any execution of P lock
1 into a sequence

of preemption-free execution fragments separated by preemptions. Verification
of Clock

1 must ensure that for all such executions, the set of procedures that
disappear at layer 1 behave like their atomic action specifications. That is, the
procedures Enter and Leave must behave like their specifications ACQUIRE and
RELEASE, respectively. It is important to note that this goal of checking refine-
ment is easier than verifying that P lock

1 is safe. Refinement checking may succeed
even though P lock

1 fails; the guarantee of refinement is that such a failure can be
simulated by a failure in P lock

2 . The construction of Clock
1 can be understood in
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two steps. First, the program ˜P lock
1 shown in Fig. 7 extends P lock

1 (Fig. 3(a)) with
the variables introduced at layer 1 (globals lock, pos, slots and locals tid) and
the corresponding introduction actions (iIncr and iSetLock). Second, Clock

1 is
obtained from ˜P lock

1 by instrumenting the procedures to encode the refinement
check, described in the remainder of this section.

Fig. 7. Lock example (variable introduction at layer 1)

Context for Refinement. There are two kinds of procedures, those that con-
tinue to exist at layer 2 (such as Main and Worker) and those that disappear at
layer 1 (such as Enter and Leave). Clock

1 does not need to verify anything about
the first kind. These procedures only provide the context for refinement checking
and thus all invocation of an atomic action (I,O, e, t) in any atomic-action arm of
a pcall is converted into the invocation of a fresh atomic action (I,O, true, e∧ t).
In other words, the assertions in procedures that continue to exist at layer 2
are converted into assumptions for the refinement checking at layer 1; these
assertions are verified during the refinement checking on a higher layer. In our
example, Main and Worker do not have atomic-action arms, although this is
possible in general.

Refinement Instrumentation. We illustrate the instrumentation of proce-
dures Enter and Leave in Fig. 8. The core idea is to track updates by preemption-
free execution fragments to the shared variables that continue to exist at layer 2.
There are two such variables—lock and slots. We capture snapshots of lock
and slots in the local variables _lock and _slots and use these snapshots
to check that the updates to lock and slots behave according to the refined
atomic action. In general, any path from the start to the end of the body of a
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Fig. 8. Instrumented procedures Enter and Leave (layer 1 checker program)
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procedure may comprise many preemption-free execution fragments. The checker
program must ensure that exactly one of these fragments behaves like the speci-
fied atomic action; all other fragments must leave lock and slot unchanged. To
track whether the atomic action has already happened, we use two local Boolean
variables—pc and done. Both variables are initialized to false, get updated to
true during the execution, and remain at true thereafter. The variable pc is set
to true at the end of the first preemption-free execution fragment that mod-
ifies the tracked state, which is expressed by the macro *CHANGED* on line 1.
The variable done is set to true at the end of the first preemption-free execu-
tion fragment that behaves like the refined atomic action. For that, the macros
*RELEASE* and *ACQUIRE* on lines 2 and 3 express the transition relations of
RELEASE and ACQUIRE, respectively. Observe that we have the invariant pc ==>
done. The reason we need both pc and done is to handle the case where the
refined atomic action may stutter (i.e., leave the state unchanged).

Instrumenting Leave. We first look at the instrumentation of Leave. Line 8
initializes the snapshot variables. Recall that a preemption inside the code of
a procedure is introduced only at a pcall containing a procedure arm. Conse-
quently, the body of Leave is preemption-free and we need to check refinement
across a single execution fragment. This checking is done by lines 14–16. The
assertion on line 14 checks that if any tracked variable has changed since the last
snapshot, (1) such a change happens for the first time (!pc), and (2) the current
value is related to the snapshot value according to the specification of RELEASE.
Line 15 updates pc to track whether any change to the tracked variables has
happened so far. Line 16 updates done to track whether RELEASE has happened
so far. The assertion at line 18 checks that RELEASE has indeed happened before
Leave returns. The assumption at line 9 blocks those executions which can be
simulated by the failure of RELEASE. It achieves this effect by assuming the gate
of RELEASE in states where pc is still false (i.e., RELEASE has not yet happened).
The assumption yields the constraint lock != 0 which together with the invari-
ant InvLock (Fig. 6) proves that the gate of RESET does not fail.

The verification of Leave illustrates an important principle of our approach
to refinement. The gates of atomic actions invoked by a procedure P disap-
pearing at layer � are verified using a combination of invariants established on
C� and pending assertions at layer � + 1 encoded as the gate of the atomic
action refined by P . For Leave specifically, assert b in RESET is propagated to
assert tid != nil && lock == tid in RELEASE. The latter assertion is veri-
fied in the checker program Clock

2 when Worker, the caller of RELEASE, is shown
to refine the action SKIP which is guaranteed not to fail since its gate is true.

Instrumenting Enter. The most sophisticated feature in a concurrent pro-
gram is a pcall. The instrumentation of Leave explains the instrumentation of
the simplest kind of pcall with only atomic-action arms. We now illustrate the
instrumentation of a pcall containing a procedure arm using the procedure Enter
which refines the atomic action ACQUIRE and contains a pcall to Enter itself. The
instrumentation of this pcall is contained in lines 30–43.



Layered Concurrent Programs 99

A pcall with a procedure arm is challenging for two reasons. First, the callee
disappears at the same layer as the caller so the checker program must reason
about refinement for both the caller and the callee. This challenge is addressed
by the code in lines 34–40. At line 34, we introduce a nondeterministic choice
between two code paths—then branch to check refinement of the caller and else
branch to check refinement of the callee. An explanation for this nondeterministic
choice is given in the next two paragraphs. Second, a pcall with a procedure arm
introduces a preemption creating multiple preemption-free execution fragments.
This challenge is addressed by two pieces of code. First, we check that lock
and slots are updated correctly (lines 30–32) by the preemption-free execution
fragment ending before the pcall. Second, we update the snapshot variables
(line 42) to enable the verification of the preemption-free execution fragment
beginning after the pcall.

Lines 35–37 in the then branch check refinement against the atomic action
specification of the caller, exploiting the atomic action specification of the callee.
The actual verification is performed in a fresh procedure Check_Enter_Enter
invoked on line 35. Notice that this procedure depends on both the caller and
the callee (indicated in colors), and that it preserves a necessary preemption
point. The procedure has input parameters tid to receive the input of the caller
(for refinement checking) and x to receive the input of the callee (to generate the
behavior of the callee). Furthermore, pc may be updated in Check_Enter_Enter
and thus passed as both an input and output parameter. In the body of the
procedure, the invocation of action ACQUIRE on line 56 overapproximates the
behavior of the callee. In the layered concurrent program (Fig. 6), the (recur-
sive) pcall to Enter in the body of Enter is annotated with 1. This annotation
indicates that for any execution passing through this pcall, ACQUIRE is deemed
to occur during the execution of its unique arm. This is reflected in the checker
program by updating done to true on line 37; the update is justified because of
the assertion in Check_Enter_Enter at line 58. If the pcall being translated was
instead unannotated, line 37 would be omitted.

Lines 39–40 in the else branch ensure that using the atomic action speci-
fication of the callee on line 56 is justified. Allowing the execution to continue
to the callee ensures that the called procedure is invoked in all states allowed
by P1. However, the execution is blocked once the call returns to ensure that
downstream code sees the side-effect on pc and the snapshot variables.

To summarize, the crux of our instrumentation of procedure arms is to com-
bine refinement checking of caller and callee. We explore the behaviors of the
callee to check its refinement. At the same time, we exploit the atomic action
specification of the callee to check refinement of the caller.

Instrumenting Unannotated Procedure Arms. Procedure Enter illus-
trates the instrumentation of an annotated procedure arm. The instrumentation
of an unannotated procedure arm (both in an annotated or unannotated pcall)
is simpler, because we only need to check that the tracked state is not modified.
For such an arm to a procedure refining atomic action Action, we introduce a
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procedure Check_Action (which is independent of the caller) comprising three
instructions: take snapshots, pcall A, and assert !*CHANGED*.

Pcalls with Multiple Arms. Our examples show the instrumentation of pcalls
with a single arm. Handling multiple arms is straightforward, since each arm is
translated independently. Atomic action arms stay unmodified, annotated pro-
cedure arms are replaced with the corresponding Check_Caller_Callee pro-
cedure, and unannotated procedure arms are replaced with the corresponding
Check_Action procedure.

Output Parameters. Our examples illustrate refinement checking for atomic
actions that have no output parameters. In general, a procedure and its atomic
action specification may return values in output parameters. We handle this
generalization but lack of space does not allow us to present the technical details.

5 Conclusion

In this paper, we presented layered concurrent programs, a programming nota-
tion to succinctly capture a multi-layered refinement proof capable of connect-
ing a deeply-detailed implementation to a highly-abstract specification. We pre-
sented an algorithm to extract from the concurrent layered program the indi-
vidual concurrent programs, from the most concrete to the most abstract. We
also presented an algorithm to extract a collection of refinement checker pro-
grams that establish the connection among the sequence of concurrent pro-
grams encoded by the layered concurrent program. The cooperative safety of
the checker programs and the preemptive safety of the most abstract concurrent
program suffices to prove the preemptive safety of the most concrete concurrent
program.

Layered programs have been implemented in Civl, a deductive verifier for
concurrent programs, implemented as a conservative extension to the Boogie ver-
ifier [3]. Civl has been used to verify a complex concurrent garbage collector [6]
and a state-of-the-art data-race detection algorithm [15]. In addition to these
two large benchmarks, around fifty smaller programs (including a ticket lock
and a lock-free stack) are available at https://github.com/boogie-org/boogie.

There are several directions for future work. We did not discuss how to verify
an individual checker program. Civl uses the Owicki-Gries method [13] and rely-
guarantee reasoning [8] to verify checker programs. But researchers are exploring
many different techniques for verification of concurrent programs. It would be
interesting to investigate whether heterogeneous techniques could be brought to
bear on checker programs at different layers.

In this paper, we focused exclusively on verification and did not discuss code
generation, an essential aspect of any programming system targeting the con-
struction of verified programs. There is a lot of work to be done in connecting
the most concrete program in a concurrent layered program to executable code.
Most likely, different execution platforms will impose different obligations on
the most concrete program and the general idea of layered concurrent programs
would be specialized for different target platforms.

https://github.com/boogie-org/boogie
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Scalable verification is a challenge as the size of programs being verified
increases. Traditionally, scalability has been addressed using modular verifica-
tion techniques but only for single-layer programs. It would be interesting to
explore modularity techniques for concurrent layered programs in the context of
a refinement-oriented proof system.

Layered concurrent programs bring new challenges and opportunities to the
design of programming languages and development environments. Integrating
layers into a programming language requires intuitive syntax to specify layer
information and atomic actions. For example, ordered layer names can be more
readable and easier to refactor than layer numbers. An integrated development
environment could provide different views of the layered concurrent program. For
example, it could show the concurrent program, the checker program, and the
introduced code at a particular layer. Any updates made in these views should
be automatically reflected back into the layered concurrent program.
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Abstract. We present an extension of propositional dynamic logic
called HOT-PDL for specifying temporal properties of higher-order func-
tional programs. The semantics of HOT-PDL is defined over Higher-
Order Traces (HOTs) that model execution traces of higher-order pro-
grams. A HOT is a sequence of events such as function calls and returns,
equipped with two kinds of pointers inspired by the notion of justifica-
tion pointers from game semantics: one for capturing the correspondence
between call and return events, and the other for capturing higher-order
control flow involving a function that is passed to or returned by a higher-
order function. To allow traversal of the new kinds of pointers, HOT-
PDL extends PDL with new path expressions. The extension enables
HOT-PDL to specify interesting properties of higher-order programs,
including stack-based access control properties and those definable using
dependent refinement types. We show that HOT-PDL model checking of
higher-order functional programs over bounded integers is decidable via
a reduction to modal μ-calculus model checking of higher-order recursion
schemes.

1 Introduction

Temporal verification of higher-order programs has been an emerging research
topic [12,14,18,22–24,26,27,31,34]. The specification languages used there are
(ω-)regular word languages (that subsume LTL) [12,18,26] and modal μ-calculus
(that subsumes CTL) [14,24,31], which are interpreted over sequences or trees
consisting of events. (Extended) dependent refinement types are also used to
specify temporal [23,27] and branching properties [34]. These specification lan-
guages, however, cannot sufficiently express specifications of control flow involv-
ing (higher-order) functions. For example, let us consider the following simple
higher-order program Dtw (in OCaml syntax):

let tw f x = f (f x) in let inc x = x + 1 in let r = * in tw inc r

Here, ∗ denotes a non-deterministic integer, and the higher-order function tw :
(int → int) → int → int applies its function argument f : int → int to the
integer argument x twice. For example, for r = 0, the program Dtw exhibits the
following call-by-value reduction sequence (with the redexes underlined).

tw inc 0 −→ (λx.inc (inc x)) 0 −→ inc (inc 0) −→∗ inc 1 −→∗ 2

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 105–123, 2018.
https://doi.org/10.1007/978-3-319-96145-3_6
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Example properties of the program Dtw that cannot be expressed by the previous
specification languages are:

Prop.1. If the function returned by a partial application of tw to some function
(e.g., λx.inc (inc x) in the above sequence) is called with some integer n,
the function argument passed to tw (i.e., inc) is eventually called with n.

Prop.2. If the function returned by a partial application of tw to some function
is never called, then the function argument passed to tw is never called.

To remedy the limitation, we introduce a notion of Higher-Order Trace
(HOT) that captures the control flow of higher-order programs and propose
a dynamic logic over HOTs called Higher-Order Trace Propositional Dynamic
Logic (HOT-PDL) for specifying temporal properties of higher-order programs.

Intuitively, a HOT models a program execution trace which is a possibly
infinite sequence of events such as function calls and returns with information
about actual arguments and return values. Furthermore, HOTs are equipped
with two kinds of pointers to enable precise specification of control flow: one
for capturing the correspondence between call and return events, and the other
for capturing higher-order control flow involving a function that is passed to or
returned by a higher-order function. The two kinds of pointers are inspired by
the notion of justification pointers from the game semantics of PCF [1,2,19,20].

For the higher-order program Dtw, for r = 0, we get the following HOT Gtw:1

Here, • represents some function value, call(f, v) represents a call event of the
function f with the argument v, and ret(f, v) represents a return event of the
function f with the return value v. This trace corresponds to the previous reduc-
tion sequence: the call events call(tw, •), call(•, 0), call(•, 0), and call(•, 1) that
occur in the trace in this order correspond respectively to the redexes tw inc,
(λx.inc (inc x)) 0, inc 0, and inc 1. The three important points here are that
(1) the call events have pointers labeled with CR to the corresponding return
events ret(tw, •), ret(•, 2), ret(•, 1), and ret(•, 2), (2) the call event call(tw, •)
has two pointers labeled with CC, where • represents the function argument f
of tw and the pointed call events call(•, 0) and call(•, 1) represent the two calls
to f in tw, and (3) the return event ret(tw, •) has a pointer labeled with RC,
where • represents the partially-applied function λx.inc (inc x) and the pointed
call event call(•, 0) represents the call to the function.

To allow traversal of the pointers, HOT-PDL extends propositional dynamic
logic with new path expressions (see Sect. 3 for details). The extension enables

1 The symbol · · · indicates the omission of a subsequence. The two omitted subse-

quences are call(inc, 0) ret(inc, 1)

CR

and call(inc, 1) ret(inc, 2)

CR

in this order.
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HOT-PDL to specify interesting properties of higher-order programs, includ-
ing stack-based access control properties and those definable using dependent
refinement types. Here, stack-based access control is a security mechanism imple-
mented in runtimes like JVM for ensuring secure execution of programs that
have components with different levels of trust: the mechanism ensures that a
security-critical function (e.g., file access) is invoked only if all the (immediate
and indirect) callers in the current call stack are trusted, or one of the callers is
a privileged function and its callees are all trusted. We introduce a new variant
of stack-based access control properties for higher-order programs, formalized in
HOT-PDL from the point of view of interactions among callers and callees.

Compared to the previous specification languages with respect to the expres-
siveness, HOT-PDL subsumes (ω-)regular languages because PDL interpreted
over words is already as expressive as them [15]. Temporal logics over nested
words [6] such as CaRet [5] and NWTL [4] can capture the correspondence
between call and return events (i.e., pointers labeled with CR) but cannot
capture higher-order control flow (i.e., pointers labeled with CC and RC).
Branching properties (expressible in, e.g., CTL), however, are out of the scope
of the present paper, and such an extension of HOT-PDL remains an inter-
esting future direction. Dependent refinement types are often used to specify
properties of higher-order programs for partial- and total-correctness verifica-
tion [29,33,39,40]. For example, the following properties of the program Dtw are
expressible:

Prop.3. The function yielded by applying tw to a strictly increasing function is
strictly increasing.

Prop.4. The function yielded by applying tw to a terminating function is termi-
nating.

This paper shows that HOT-PDL can encode such dependent refinement types.
We also study HOT-PDL model checking: given a higher-order program D

over bounded integers and a HOT-PDL formula φ, the problem is to decide
whether φ is satisfied by all the execution traces of D modeled as HOTs. We
show the decidability of HOT-PDL model checking via a reduction to modal
μ-calculus model checking of higher-order recursion schemes [21,28].

The rest of the paper is organized as follows. Section 2 formalizes HOTs
and explains how to use them to model execution traces of higher-order func-
tional programs. Section 3 defines the syntax and the semantics of HOT-PDL and
Sect. 4 shows how to encode stack-based access control properties and dependent
refinement types in HOT-PDL. Section 5 discusses HOT-PDL model checking.
We compare HOT-PDL with related work in Sect. 6 and conclude the paper with
remarks on future work in Sect. 7. Omitted proofs are given in the extended ver-
sion of this paper [30].

2 Higher-Order Traces

This section defines the notion of Higher-Order Trace (HOT), which is used to
model execution traces of higher-order programs. To this end, we first define
(Σ,Γ )-labeled directed graphs and DAGs.
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Definition 1 ((Σ,Γ )-labeled directed graphs). Let Σ be a finite set of node
labels and Γ be a finite set of edge labels. A (Σ,Γ )-labeled directed graph is
defined as a triple (V, λ, ν), where V is a countable set of nodes, λ : V → Σ is a
node labeling function, and ν : V ×V → 2Γ is an edge labeling function. We call
a (Σ,Γ )-labeled directed graph that has no directed cycle (Σ,Γ )-labeled DAG.

Note that an edge may have multiple labels. For nodes u, u′ ∈ V , ν(u, u′) = ∅
means that there is no edge from u to u′. We use σ and γ as meta-variables
ranging respectively over Σ and Γ . We write Vσ for the set {u ∈ V | σ = λ(u)}
of all the nodes labeled with σ. We also write VΣ for the set

⋃
σ∈Σ Vσ. For

u, u′ ∈ V , we write u ≺γ u′ if γ ∈ ν(u, u′). A binary relation ≺+
γ (resp. ≺∗

γ)
denotes the transitive (resp. reflexive and transitive) closure of ≺γ .

Definition 2 (HOTs). A HOT is a (Σ,Γ )-DAG, G = (V, λ, ν) that satisfies:

1. V �= ∅, Γ = {N,CR,CC,RC}, Σ = Σcall � Σret, and Σcall = ΣT
call � ΣA

call
2. ≺CR⊆ (VΣcall

× VΣret), ≺CC⊆ (VΣcall
× VΣA

call
), and ≺RC⊆ (VΣret × VΣA

call
).

3. The elements of V are linearly ordered by ≺N

4. If u ≺CR u′ and u ≺CR u′′, then u′ = u′′.
5. For all u′ ∈ VΣret , there uniquely exists u ∈ VΣcall

such that u ≺CR u′ holds.
6. For all u′ ∈ VΣA

call
, there uniquely exists u ∈ V such that u ≺CC u′ or

u ≺RC u′ holds.

Intuitively, Σcall (resp. Σret) represents a set of call (resp. return) events.
ΣT

call (resp. ΣA
call) represents a set of call events of top-level functions (resp.

functions that are returned by or passed to (higher-order) functions). u ≺N u′

means that u′ is the next event of u in the trace. u ≺CR u′ indicates that u′ is
the return event corresponding to the call event u. u ≺CC u′ represents that u′ is
a call event of the function argument passed at the call event u. u ≺RC u′ means
that u′ is a call event of the partially-applied function returned at the return
event u. We call the minimum node of a HOT G with respect to ≺N the root
node, denoted by 0G. For HOTs G1 and G2, we say G1 is a prefix of G2 and write
G1 
 G2, if G1 is a sub-graph of G2 such that 0G1 = 0G2 . Note that the HOT Gtw

in Sect. 1, where N-labeled edges are omitted, satisfies the above conditions, with
{call(tw, •), call(inc, 0), call(inc, 1)} ⊆ ΣT

call, {call(•, 0), call(•, 1)} ⊆ ΣA
call,

and {ret(tw, •), ret(inc, 1), ret(inc, 2), ret(•, 1), ret(•, 2)} ⊆ Σret.

2.1 Trace Semantics for Higher-Order Functional Programs

We now formalize our target language L, which is an ML-like typed call-by-value
higher-order functional language. The syntax is defined by

(programs) D ::= {f1 �→ λx.e1, . . . , fm �→ λx.em}
(expressions) e ::= x | f | λx.e | e1 e2 | n | op(e1, e2) | ifz e1 e2 e3

(values) v ::= f | λx.e | n
(types) τ ::= int | τ1 → τ2

Here, x and f are meta-variables ranging respectively over term variables and
names of top-level functions. The meta-variable n ranges over the set of bounded
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integers Zb = {nmin, · · · , nmax} ⊂ Z. For simplicity of presentation, L has the
type int of bounded integers as the only base type. op represents binary opera-
tors such as +, −, ×, =, and >. The binary relations = and > return an integer
that encodes a boolean value (e.g., 1 for true and 0 for false). A program D
maps each top-level function name fi to its definition λx.ei. We write dom(D)
for {f1, . . . , fm}. We assume that D has the main function main of the type
int → int. The functions in D can be mutually recursive. Expressions e com-
prise variables x, function names f , lambda abstractions λx.e, function appli-
cations e1 e2, bounded integers n, binary operations op(v1, v2), and conditional
branches ifz e1 e2 e3. We assume that expressions are simply-typed. As usual,
the simple type system guarantees that an evaluation of a typed expression never
causes a runtime type mismatch like 1+λx.x. An expression ifz e1 e2 e3 evalu-
ates to e2 (resp. e3) if e1 evaluates to 0 (resp. a non-zero integer). For example,
the program Dtw in Sect. 1 is defined in L as follows:

Dtw
�
= {tw �→ λf.λx.f (f x), inc �→ λx.x + 1, main �→ λr.tw inc r}

Fig. 1. Labeled transition relations (
�
=⇒) and (

π
=⇒) for L
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Fig. 2. Example trace of Dtw

We now introduce a trace semantics of the language L, which will be used
in Sect. 5 to define our model checking problems of higher-order programs. In
the trace semantics, a program execution trace is represented by a sequence of
function call and return events without an explicit representation of pointers
but with enough information to construct them. We will explain how to model
traces of L as HOTs by presenting a translation.

The trace semantics [[D]] of the language L is defined as [[D]]fin ∪ [[D]]inf
where [[D]]fin =

{
�

∣
∣
∣ (I, main n) �=⇒ C

}
and [[D]]inf =

{
π

∣
∣
∣ (I, main n) π=⇒ ⊥

}

are respectively the sets of finite and infinite execution traces obtained by
evaluating main n for some integer n using trace-labeled multi-step reduction
relations �=⇒ and π=⇒, which are presented in Fig. 1, under the program I ={

f
0�→ v

∣
∣
∣(f �→ v) ∈ D

}
annotated with the number of calls to each function
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occurred so far (i.e., initialized to 0). There, we use � (resp. π) as a meta-variable
ranging over finite sequences α1 · · · αm (resp. infinite sequences α1 · α2 · · · ) of
events αi. We write ε for the empty sequence, �1 · �2 for the concatenation of
the sequences �1 and �2, and |�| for the length of �. An event α is either of
the form call(h1, i, h2) or ret(h1, i, h2), where a handle h represents a top-level
function or a runtime value exchanged among functions. An event call(h1, i, h2)
represents the (i + 1)th call to the function h1 with the argument h2. On the
other hand, an event ret(h1, i, h2) represents the return of the (i + 1)th call to
the function h1 with the return value h2. We thus equip call and return events
of h1 with the information about (1) the number i of the calls to h1 occurred
so far and (2) the runtime value h2 passed to or returned by h1, so that we can
construct pointers (see Definition 3 for details). Note here that handles h are
also equipped with meta-information necessary for constructing pointers. More
specifically, h is any of the following: a bounded integer n, a top-level function
name f ∈ dom(D), the special identifier �h�i for the function argument of the
(i + 1)th call to the higher-order function h, or the special identifier �h�i for the
partially-applied function returned by the (i+1)th call to h. We thus use handles
to track for each function value where it is constructed and how many times it
is called. We shall assume that the syntax of expressions e and values v is also
extended with handles h. As we have seen, the finite traces [[D]]fin of a program
D are collected using the terminating trace-labeled multi-step reduction relation
�=⇒ on configurations. A configuration (I, E[e]) is a pair of an interface I and an
expression E[e] consisting of an evaluation context E and a sub-expression e
under evaluation. A special evaluation context ret(h, i, E) represents the calling
context of the (i + 1)th call to h that waits for the return value computed by E.
An interface I is defined to be

{
h1

i1�→ v1, . . . , hm
im�→ vm

}
that maps each func-

tion handle hj to its definition vj , where ij records the number of calls to the
function hj occurred so far. In the derivation rules for �−→, [[op]] represents the

integer function denoted by op, and I
{

h
i�→ v

}
represents the interface obtained

from I by adding (or replacing existing assignment to h with) the assignment
h

i�→ v. In the rule CInt (resp. RInt) for function calls (resp. returns) with an
integer n, the reduction relation is labeled with call(h, i, n) (resp. ret(h, i, n)).
By contrast, in the rule CFun (resp. RFun) for function calls (resp. returns)
with a function value v, the special identifier �h�i (resp. �h�i) for v is used in
the label call(h, i, �h�i) (resp. ret(h, i, �h�i)) of the reduction relation, and v in
the expression is replaced by the identifier. For example, as shown in Fig. 2, the
following finite trace �tw is generated from the program Dtw:

call(main, 0, 0) · call(tw, 0, �tw�0) · ret(tw, 0, �tw�0) · call(�tw�0 , 0, 0)·
call(�tw�0 , 0, 0) · call(inc, 0, 0) · ret(inc, 0, 1) · ret(�tw�0 , 0, 1) · call(�tw�0 , 1, 1)·
call(inc, 1, 1) · ret(inc, 1, 2) · ret(�tw�0 , 1, 2) · ret(�tw�0 , 0, 2) · ret(main, 0, 2)

Similarly, the infinite traces [[D]]inf of a program D are collected using the non-
terminating trace-labeled reduction relation C

π=⇒ ⊥ on configurations. Intu-
itively, C

π=⇒ ⊥ means that an execution from the configuration C diverges,
producing an infinite event sequence π. In the rule Tranω, the double horizon-
tal line represents that the rule is interpreted co-inductively.
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We now define the translation from traces [[D]]fin to HOTs with ΣT
call =

{call(f, n), call(f, •) | f ∈ dom(D), n ∈ Zb}, ΣA
call = {call(•, n), call(•, •) | n ∈ Zb},

and Σret = {ret(f, n), ret(f, •), ret(•, n), ret(•, •) | f ∈ dom(D), n ∈ Zb}. We
shall write Σ(D) for ΣT

call ∪ ΣA
call ∪ Σret. Note that Σ(D) is finite because

dom(D) and Zb are finite. We write |α| for the element of Σ(D) obtained from
the event α by dropping the second argument and replacing �h�i and �h�i by •.
For example, we get |call(tw, 0, �tw�0)| = call(tw, •).

Definition 3 (Finite Traces to HOTs). Given a finite trace � = α1 · · · αm ∈
[[D]]fin with m > 0, the corresponding HOT G� = (V�, λ�, ν�) is defined by:

– V� = {1, . . . , m},
– λ� = {j �→ |αj | | j ∈ V�}, and
– ν� is the smallest relation that satisfies: for any j1, j2 ∈ V�,

• j1 ≺N j2 if j2 = j1 + 1,
• j1 ≺CR j2 if ∃h, h′, h′′, i. αj1 = call(h, i, h′) ∧ αj2 = ret(h, i, h′′),
• j1 ≺CC j2 if ∃h, h′, h′′, i, i′. αj1 = call(h′, i, h) ∧ αj2 = call(h, i′, h′′),
• j1 ≺RC j2 if ∃h, h′, h′′, i, i′. αj1 = ret(h′, i, h) ∧ αj2 = call(h, i′, h′′).

For example, the HOT Gtw in Sect. 1 is translated from the finite trace �tw

defined above (with the call and return events of main omitted).
For an infinite trace π = α1 · α2 · · · ∈ [[D]]inf, the HOT Gπ = (Vπ, λπ, νπ) is

defined similarly for Vπ = {j ∈ N | j ≥ 1} and λπ = {j �→ |αj | | j ∈ Vπ}.

3 Propositional Dynamic Logic over Higher-Order Traces

This section presents HOT-PDL, a propositional dynamic logic (PDL) defined
over HOTs (see [16] for a general exposition of PDL). HOT-PDL extends path
expressions of PDL with →ret and →call for traversing edges of HOTs labeled
respectively with CR and CC/RC. The syntax is defined by:

(formulas) φ ::= p | φ1 ∧ φ2 | ¬φ | [π]φ
(path expressions) π ::= → | →call | →ret | {φ}? | π1 · π2 | π1 + π2 | π∗

Here, p is a meta-variable ranging over atomic propositions AP. Let � and ⊥
denote tautology and contradiction, respectively. Path expressions π are defined
using a syntax based on regular expressions: we have concatenation π1 · π2,
alternation π1 +π2, and Kleene star π∗. We write π+ for π ·π∗. Path expressions
→, →ret, and →call are for traversing edges labeled with N, CR, and CC or
RC, respectively. A path expression {φ}? is for testing if φ holds at the current
node. A formula [π] φ means that φ always holds if one moves along any path
represented by the path expression π. The dual formula 〈π〉 φ is defined by
¬ [π] ¬φ and means that there is a path represented by π such that φ holds if
one moves along the path. 〈π〉 and [π] have the same priority as ¬.

We now define the semantics of HOT-PDL. For a given HOT G = (V, λ, ν)
with Σ = AP, λ(u) represents the atomic proposition satisfied at the node
u ∈ V . We define the semantics [[φ]]G of a formula φ as the set of all nodes u ∈ V
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Fig. 3. The pairs of nodes in Gtw related by CR or ↗F

where φ is satisfied, and the semantics [[π]]G of a path expression π as the set of
all pairs (u1, u2) ∈ V × V such that one can move along π from u1 to u2.

[[p]]G = {u ∈ V | p = λ(u)} [[φ1 ∧ φ2]]G = [[φ1]]G ∩ [[φ2]]G [[¬φ]]G = V \ [[φ]]G
[[[π] φ]]G = {u ∈ V | ∀u′. ((u, u′) ∈ [[π]]G ⇒ u′ ∈ [[φ]]G)}
[[→]]G = ≺N [[→ret]]G = ≺CR [[→call]]G = ≺CC ∪ ≺RC

[[{φ}?]]G = {(u, u) ∈ V × V | u ∈ [[φ]]G}
[[π1 · π2]]G = {(u1, u3) ∈ V × V | ∃u2 ∈ V. (u1, u2) ∈ [[π1]]G ∧ (u2, u3) ∈ [[π2]]G}

[[π1 + π2]]G = [[π1]]G ∪ [[π2]]G [[π∗]]G =
⋃

m≥0 [[π]]mG

Here, for a binary relation R, Rm denotes the m-th power of R. Note that this
semantics can interpret a given HOT-PDL formula over both finite and infinite
HOTs. [[p]]G consists of all nodes labeled by p. [[[π]φ]]G contains all nodes from
which we always reach to a node in [[φ]]G if we take a path represented by π. [[→]]G,
[[→ret]]G, and [[→call]]G contain the pairs of nodes linked by an edge labeled by N,
CR, and CC or RC, respectively. We write G |= φ if 0G ∈ [[φ]]G. For example, let
us consider the HOT Gtw and AP = Σ(Dtw). Then, [[〈→〉 ret(tw, •)]]Gtw

consists
of the node labeled by call(tw, •). [[〈→ret〉 ret(•, 2)]]Gtw

consists of a node labeled
by call(•, 0) and the node labeled by call(•, 1). [[〈→call〉 call(•, 0)]]Gtw

consists
of the two nodes respectively labeled by call(tw, •) and ret(tw, •). The example
properties of Dtw discussed in Sect. 1 can be expressed as follows:

Prop.1.: [→∗]
∧

x∈Zb
((call(tw, •) ∧ 〈→ret · →call〉 call(•, x)) ⇒ 〈→call〉 call(•, x))

Prop.2.: [→∗] ((call(tw, •) ∧ ¬ 〈→ret · →call〉 �) ⇒ ¬〈→call〉 �)

Here,
∧

x∈Zb
φ abbreviates [nmin/x] φ ∧ · · · ∧ [nmax/x] φ.

In Sect. 4, we show further examples that express interesting properties of
higher-order programs, including stack based access control properties and those
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Fig. 4. The pairs of nodes in Gtw related by CR, CC, RC, or ↗H

definable using dependent refinement types. We here prepare notations used
there. First, we overload the symbols Σcall, Σret, and ΣT

call to denote the path
expressions {∨

Σcall}?, {∨
Σret}?, and

{∨
ΣT

call

}
?, respectively. We write →F

for the path expression →ret· →, which is used to move from a call event to
the next event of the caller (by skipping to the next event of the corresponding
return event). We also write ↗F for the path expression Σcall· → · →∗

F ·Σcall,
which is used to move from a call event to any call event invoked by the callee.
Figure 3 illustrates the pairs of nodes in Gtw related by ↗F . To capture control
flow of higher-order programs, where function callers and callees may exchange
functions as values, we need to use CC- and RC-labeled edges. For example, an
event raised by the function argument farg of a higher-order function f could
be regarded as an event of the caller g of f , because farg is constructed by
g. Similarly, an event raised by the (partially-applied) function fret returned
by a function f could be regarded as an event of f . To formalize the idea, we
introduce variants →H and ↗H of →F and ↗F with higher-order control flow
taken into consideration: →H denotes (→ret· →) + (→call· →) and ↗F denotes
ΣT

call· → · →∗
H ·ΣT

call. Note that the source and the target of ↗H are restricted
to call events of top-level functions. Figure 4 illustrates the pairs of nodes in Gtw

related by ↗H , where nodes labeled with events of the same function (in the
sense discussed above) are arranged in the same horizontal line.

4 Applications of HOT-PDL

We show how to encode dependent refinement types and stack-based access
control properties using HOT-PDL.
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4.1 Dependent Refinement Types

HOT-PDL can specify pre- and post-conditions of higher-order functions, by
encoding dependent refinement types τ for partial [29,33,40] and total [23,27,34,
36,39] correctness verification, defined as: τ ::= {ν | ψ} | (x : τ1) → τQ

2 . Here, Q is
either ∀ or ∃. An integer refinement type {ν | ψ} is the type of bounded integers
ν that satisfy the refinement formula ψ over bounded integers. A dependent
function type (x : τ1) → τ∀

2 is the type of functions that, for any argument x
conforming to the type τ1, if terminating, return a value conforming to the type
τ2. By contrast, (x : τ1) → τ∃

2 is the type of functions that, for any argument
x conforming to τ1, always terminate and return a value conforming to τ2. For
example, Prop.3 and Prop.4 of Dtw are expressed by the following types of tw:

Prop.3.: (f : (x : int) → {ν | ν > x}∀) →
(
(x : int) → {ν | ν > x}∀

)∀

Prop.4.: (f : (x : int) → int∃) → (
(x : int) → int∃)∀

We here write int for {ν | �}. These types can be encoded in HOT-PDL as:

Prop.3.: call(tw, •) ⇒ ([→call] incr(•)) ∧ [→ret]
(
ret(tw, •) ⇒ [→call] incr(•)

)

Prop.4.: call(tw, •) ⇒ ([→call] term(•)) ∧ [→ret]
(
ret(tw, •) ⇒ [→call] term(•)

)

Here, incr(g) =
∧

x∈Zb
call(g, x) ⇒ [→ret]

∧
y∈Zb

(ret(g, y) ⇒ y > x) and
term(g) =

∧
x∈Zb

(call(g, x) ⇒ 〈→ret〉 �) for g ∈ {•} ∪ {f | f ∈ dom(D)}. We
now define a translation F from types to HOT-PDL formulas as follows:

F (g, (x : τ1) → τQ
2 ) =

∧

x∈|τ1|

(
call(g, x) ⇒ Farg(x, τ1) ∧ Fret(g, τQ

2 )
)

|(x : τ1) → τQ
2 | = {•} | {x | ψ} | = Zb

Farg(•, τ) = [→call] F (•, τ) Farg(n, {x | ψ}) =

{
� (if |= [n/x]ψ)
⊥ (if �|= [n/x]ψ)

Fret(g, τ∀) = [→ret]
∧

x∈|τ |
(ret(g, x) ⇒ F (x, τ))

Fret(g, τ∃) = (〈→ret〉 �) ∧ Fret(g, τ∀)

4.2 Stack-Based Access Control Properties

As briefly summarized in Sect. 1, stack-based access control [13] ensures that a
security-critical function (e.g., file access) is invoked only if all the (immediate
and indirect) callers in the current call stack are trusted, or one of the callers
is a privileged function and its callees are all trusted. We here use HOT-PDL
to specify stack-based access control properties for higher-order programs. Let
Critical, Trusted, and Priv be HOT-PDL formulas that tell whether the cur-
rent node is labeled with a call event of security-critical, trusted, and privileged
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functions, respectively. We assume that Critical, Priv, and ¬Trusted do not
overlap each other, and a function in Priv can be directly called only from a
function in Trusted. Then, one may think we can express the specification as:

¬ 〈↗∗
F · {¬Trusted}? · (↗F · {¬Priv}?)+

〉
Critical

Here, the path expression ↗F introduced in Sect. 3 is used to traverse the call
stack bottom-up. The above formula says that an invalid call stack never occurs,
where a call stack is called invalid if it contains a call to an untrusted function
(represented by the part ↗∗

F {¬Trusted}?), followed by a call to a critical func-
tion (represented by Critical), with no intervening call to a privileged function
(represented by (↗F · {¬Priv}?)+).

This definition, however, is not sufficient for our higher-order language. Let
us consider the following program Dpa , which involves a partial application:

let untrusted () = λu.critical u

let main () = untrusted () ()

Here, untrusted �∈ Trusted and critical ∈ Critical. Intuitively, Dpa should
be regarded as unsafe because critical in the body of untrusted is called.
However, Dpa satisfies the specification above (under the assumption that anony-
mous functions are in Trusted), because the partial application untrusted ()
never causes a call to critical but just returns the anonymous (and trusted)
function λu.critical u. The following higher-order program Dho is yet another
unsafe example that satisfies the specification:

let privileged f = f ()
let trusted f = if test () then privileged f else ()

let untrusted () = trusted (λx.crash (); critical ())
let main () = untrusted ()

Here, privileged ∈ Priv, trusted ∈ Trusted, untrusted �∈ Trusted, and
critical ∈ Critical. Note that critical in the body of untrusted is called
as follows: the anonymous function λx.crash (); critical () is first passed to
trusted and then to privileged (if test () returns true), and is finally called
by privileged, causing a call to critical.

To remedy the limitation, we introduce a new refined variant of stack-based
access control properties for higher-order programs, formalized in HOT-PDL
from the point of view of interactions among callers and callees as follows:

¬ 〈↗∗
H · {¬Trusted}? · (↗H · {¬Priv}?)+

〉
Critical

Note that this is obtained from the previous version by just replacing ↗F with
↗H , which takes into account which function constructed each function value
exchanged among functions. The refined version rejects the unsafe Dpa and Dho

as intended: Dpa (resp. Dho) is rejected because the call event of λu.critical u
(resp. λx.crash (); critical ()) is regarded as an event of untrusted.
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Fournet and Gordon [13] have studied variants of stack-based access control
properties for a call-by-value higher-order language. We conclude this section by
comparing ours with one of theirs called “stack inspection with frame capture”.2

The ideas behind the two are similar but what follows illustrates the difference:

let untrusted f = crash (); f ()
let trusted x = untrusted (λx.if test () then critical () else ())

let main () = trusted ()

This program satisfies ours but violates theirs. Note that ours allows a function
originally constructed by a trusted function to invoke a critical function even
if the function is passed around by an untrusted function. By contrast, in their
definition, a trusted function value gets “contaminated” (i.e., disabled to invoke
a critical function) once it is passed to or returned by an untrusted function.
In some cases, their conservative policy is useful, but we believe ours would be
more semantically robust (e.g., even works well with the CPS transformation).

5 HOT-PDL Model Checking

In this section, we define HOT-PDL model checking problems for higher-order
functional programs over bounded integers and sketch a proof of the decidability.

Definition 4 (HOT-PDL model checking). Given a program D and a HOT-
PDL formula φ with AP = Σ(D), HOT-PDL model checking is the problem of
deciding whether G� |= φ and Gπ |= φ for all � ∈ [[D]]fin and π ∈ [[D]]inf.

Theorem 1 (Decidability). HOT-PDL model checking is decidable.

We show this by a reduction to modal μ-calculus (μ-ML) model checking
of higher-order recursion schemes (HORSs), which is known decidable [21,28].
A HORS is a grammar for generating a (possibly infinite) ranked tree, and
HORSs are essentially simply-typed lambda calculus with general recursion, tree
constructors, and finite data domains such as booleans and bounded integers.

In the reduction, we encode the set of HOTs that are generated from the given
program D as a single tree (generated by a HORS). For example, Fig. 5 shows
such a tree that encodes the HOTs of Dtw.3 There, a node labeled with end rep-
resents the termination of the program. Note that the branching at the root node
is due to the input to the function main. The subtree with the root node labeled
with call(main, 0) is obtained from the HOT Gtw by appending a special node
labeled with end, adding, for each edge with the label γ ∈ {N,CR,CC,RC},
a new node labeled with γ, and expanding the resulting DAG into a tree. Thus,
the edge labels of Gtw are turned into node labels of the tree.
2 We do not compare with the other variants in [13] because they are too syntactic to

be preserved by simple program transformations like inlining.
3 There, for simplicity, we illustrate an unranked tree and omit the label of branching

nodes. In the formalization, we express an unranked tree as a binary tree using a
special node label br of the arity 2 representing a binary branching.
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Fig. 5. A tree encoding the HOTs generated from Dtw

It is also worth
mentioning here that
we are allowed to expand
DAGs into trees because
the truth value of a
HOT-PDL formula is
not affected by node-
sharing in the given
HOT. This nice prop-
erty is lost if we extend
the path expressions of
HOT-PDL, for exam-
ple, with intersections.
Thus, the decidabil-
ity of model checking
for extensions of HOT-
PDL is an open prob-
lem.

We next explain our translation from a HOT-PDL formula into a μ-ML
formula interpreted over trees that encode HOTs. Our translation is based on
an existing one for ordinary PDL [11]. The syntax of μ-ML is defined as follows:

ϕ ::= X | p | ¬ϕ | ϕ ∧ ϕ | �ϕ | νX.ϕ | μX.ϕ

Here, X represents a propositional variable and p represents an atomic propo-
sition. A formula �ϕ means that ϕ holds for any child of the current node. A
formula μX.ϕ (resp. νX.ϕ) represents the least (resp. greatest) fixpoint of the
function λX.ϕ. Here, we assume X occurs only positively in ϕ. For example, the
HOT-PDL formulas [→] p, [→ret] p, and [→call] p are respectively translated to
μ-ML formulas: �(νX.(N ⇒ �p) ∧ (br ⇒ �X)), �(νX.(CR ⇒ �p) ∧ (br ⇒
�X)) , and �(νX.((CC ∨ RC) ⇒ �p) ∧ (br ⇒ �X)), where the greatest fix-
points are used to skip the branching nodes labeled with br (that may repeat
infinitely).

Finally, we explain how to obtain a HORS for generating a tree that encodes
the set of HOTs generated from the given program D. We here need to simulate
pointer traversals of HOT-PDL by using purely functional features of HORSs
because μ-ML does not support pointers. Intuitively, we obtain the desired
HORS from D by embedding an event monitor and an event handler. Whenever
the monitor detects a function call or return event during the execution of D,
the handler creates a new node labeled with the event or ignores the event until
a certain event is detected by the monitor, depending on the current mode of
the handler. The handler has the following three modes:

mN: The handler always creates and links two new nodes uN and uα labeled
respectively with N and the event α observed. The handler then continues as
follows, depending on the form of the event α:
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call(g, n): Spawns a new handler with the mode mret. Then, the two handlers
of the modes mN and mret continue to create subtrees of uα.

call(g, •): Spawns two new handlers with the modes mret and mcall. The
three handlers of mN, mret, and mcall continue to create subtrees of uα.

ret(g, n): The handler of the mode mN continues to create a subtree of uα.
ret(g, •): Spawns a new handler with the mode mcall. Then, the two handlers

of the modes mN and mcall continue to create subtrees of uα.
mret: The handler ignores all events but the return event corresponding to the

call event that caused the spawn of the handler. If not ignored, the handler
creates and links new nodes uCR and uα labeled with CR and the event α.
The handler changes its mode to mN and continues creating a subtree of uα.

mcall: The handler ignores all events but the call event of the function passed to
or returned by the call or return event that caused the spawn of the handler.
If not ignored, the handler creates and links new nodes u and uα labeled
respectively with CC or RC and the event α, duplicates itself, and changes
the mode of the original to mN. The handler of the mode mN (resp. mcall)
continues to create a subtree of uα (resp. the parent of u).

For simplicity of the construction, we assume that D is in the Continuation-
Passing Style (CPS). This does not lose generality because we can enforce this
form by the CPS transformation. Because CPS explicates the order of function
call and return events, it simplifies event monitoring, handling, and tracking of
the current mode of the monitors, which often changes as monitoring proceeds.

6 Related Work

HOT-PDL can specify temporal trace properties of higher-order programs. An
extension for specifying branching properties, however, remains a future work.

There have been proposed logics and formal languages on richer structures
than words. Regular languages of nested words, or equivalently, Visibly Push-
down Languages (VPLs) have been introduced by Alur and Madhusudan [7]. An
(ω-)nested word is a (possibly infinite) word with additional well-nested point-
ers from call events to the corresponding return events. Compared to temporal
logics CaRet [5] and NWTL [4] over (ω-)nested words, HOT-PDL is defined
over HOTs that have richer structures. Recall that a HOT is equipped with
two kinds of pointers: one kind with the label CR, which is the same as the
pointers of nested words, and the other kind with the label CC or RC, which
is newly introduced to capture higher-order control flow. Bollig et al. proposed
nested traces as a generalization of nested words for modeling traces of concur-
rent (first-order) recursive programs, and presented temporal logics over nested
traces [8]. Nested traces, however, cannot model traces of higher-order programs.
We expect a combination of our work with theirs enables us to specify temporal
trace properties of concurrent and higher-order recursive programs. Cyriac et
al. have recently introduced an extension of PDL defined over traces of order-
2 collapsible pushdown systems (CPDS) [3]. Interestingly, their traces are also
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equipped with two kinds of pointers: one kind of pointers captures the correspon-
dence between ordinary push and pop stack operations, and the other captures
the correspondence between order-2 push and pop operations for second-order
stacks. Our work deals with higher-order programs that correspond to order-n
CPDS for arbitrary n.

Finally, we compare HOT-PDL with existing logics defined over words. It
is well known that LTL is less expressive than ω-regular languages [38]. To
remedy the limitation of LTL, Wolper introduced ETL [38] that allows users
to define new temporal operators using right-linear grammars. Henriksen and
Thiagarajan proposed DLTL [17] that generalizes the until operator of LTL using
regular expressions. Leucker and Sánchez proposed RLTL [25] that combines LTL
and regular expressions. Vardi and Giacomo have introduced Linear Dynamic
Logic (LDL), a variant of PDL interpreted over infinite words [15,35]. LDLf ,
a variant of PDL interpreted over finite words, has also been studied in [15].
ETL, DLTL, RLTL, and LDL are as expressive as ω-regular languages. Note
that HOT-PDL subsumes (ω-)regular languages because LDL and LDLf can
be naturally embedded in HOT-PDL. (ω-)VPLs strictly subsume (ω-)regular
languages. Though CaRet [5] and NWTL [4] are defined over nested words, they
do not capture the full class of VPLs [10]. To remedy the limitation, VLTL [10]
combines LTL and VRE [9] in the style of RLTL, where VRE is a generalization
of regular expressions for VPLs. VLDL [37] extends LDL by replacing the path
expressions with VPLs over finite words. VLTL and VLDL exactly characterize
ω-VPLs. Because VPLs and HOT-PDL are incomparable, it remains future work
to extend HOT-PDL to subsume (ω-)VPLs.

7 Conclusion and Future Work

We have presented HOT-PDL, an extension of PDL defined over HOTs that
model execution traces of call-by-value and higher-order programs. HOT-PDL
enables a precise specification of temporal trace properties of higher-order pro-
grams and consequently provides a foundation for specification in various appli-
cation domains including stack-based access control and dependent refinement
types. We have also studied HOT-PDL model checking and presented a reduction
method to modal μ-calculus model checking of higher-order recursion schemes.

To further widen the scope of our approach, it is worth investigating how
to adapt HOTs and HOT-PDL to call-by-name and/or effectful languages. To
this end, it is natural to incorporate more ideas from achievements of game
semantics [1,20,32] and extend HOTs with new kinds of events and pointers for
capturing call-by-name and/or effectful computations.
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Abstract. We present new algorithms for proving program termina-
tion and non-termination using syntax-guided synthesis. They exploit
the symbolic encoding of programs and automatically construct a for-
mal grammar for symbolic constraints that are used to synthesize either
a termination argument or a non-terminating program refinement. The
constraints are then added back to the program encoding, and an off-
the-shelf constraint solver decides on their fitness and on the progress
of the algorithms. The evaluation of our implementation, called Freq-
Term, shows that although the formal grammar is limited to the syntax
of the program, in the majority of cases our algorithms are effective
and fast. Importantly, FreqTerm is competitive with state-of-the-art
on a wide range of terminating and non-terminating benchmarks, and
it significantly outperforms state-of-the-art on proving non-termination
of a class of programs arising from large-scale Event-Condition-Action
systems.

1 Introduction

Originated from the field of program synthesis, an approach of syntax-guided
synthesis (SyGuS) [2] has recently been applied [14,16] to verification of pro-
gram safety. In general, a SyGuS-based method walks through a set of candi-
dates, restricted by a formal grammar, and searches for a candidate that meets
the predetermined specification. The distinguishing insight of [14,16], in which
SyGuS discovers inductive invariants, is that a formal grammar need not nec-
essarily be provided by the user (as in applications to program synthesis), but
instead it could be automatically constructed on the fly from the symbolic encod-
ing of the program being analyzed. Despite being incomplete, the approach shows
remarkable practical success due to its ability to discover various facts about pro-
gram behaviors whose syntactic representations are compact and look similar to
the actual program statements.

Problems of proving and disproving program termination have a known con-
nection to safety verification, e.g., [7,19,28,39,40]. In particular, to prove termi-
nation, a program could be augmented by a counter (or a set of counters) that is
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initially assigned a reasonably large value and monotonically decreases at each
iteration [38]. It remains to solve a safety verification task: to prove that the
counter never goes negative. On the other hand, to prove that a program has
only infinite traces, one could prove that the negation of a loop guard is never
reachable, which boils down to another safety verification task. This knowledge
motivates us not only to exploit safety verification as a subroutine in our tech-
niques, but also to adapt successful methods across application domains.

We present a set of SyGuS-based algorithms for proving and disproving ter-
mination. For the former, our algorithm LinRank adds a decrementing counter
to a loop, iteratively guesses lower bounds on its initial value (using the syntactic
patterns obtained from the code), which lead to the safety verification tasks to be
solved by an off-the-shelf Horn solver. Existence of an inductive invariant guar-
antees termination, and the algorithm converges. Otherwise LinRank proceeds
to strengthening the lower bounds by adding another guess. Similarly, our algo-
rithm LexRank deals with a system of extra counters ordered lexicographically
and thus enables termination analysis for a wider class of programs.

For proving non-termination, we present a novel algorithm NontermRef
that iteratively searches for a restriction on the loop guard, that might lead to
infinite traces. Since safety verification cannot in general answer such queries, we
build NontermRef on top of a solver for the validity of ∀∃-formulas. In partic-
ular, we prove that if at the beginning of any iteration the desired restriction is
fulfilled, then there exists a sequence of states from the beginning to the end of
that iteration, and the desired restriction is fulfilled at the end of that iteration
as well. Recent symbolic techniques [15] to handle quantifier alternation enabled
us to prove non-termination of a large class of programs for which a reduction
to safety verification is not effective.

These three algorithms are independent of each other, but they all rely on
a generator of constraints that are further applied in different contexts. This
distinguishes our work from most of the related approaches [7,18,20,23,30,32,
36,39,40]. The key insight, adapted from [14,16], is that the syntactical struc-
tures that appear in the program give rise to a formal grammar, from which
many candidates could be sampled. Because the grammar is composed from a
finite number of numeric constants, operators, and variable combinations, the
number of sampled constraints is always finite. Furthermore, since our samples
are syntactically close to the actual constructs which appear in the code, they
often provide a practical guidance towards the proof of the task. Thus in the
majority of cases, the algorithms converge with the successful result.

We have implemented our algorithms in a tool called FreqTerm, which
utilizes solvers for Satisfiability Modulo Theory (SMT) [11,15] and satisfiability
of constrained Horn clauses [16,24,26]. These automatic provers become more
robust and powerful every day, which affects performance of FreqTerm only
positively. We have evaluated FreqTerm on a range of terminating and non-
terminating programs taken from SVCOMP1 and on large-scale benchmarks

1 Software Verification Competition, http://sv-comp.sosy-lab.org/.

http://sv-comp.sosy-lab.org/
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arising from Event-Condition-Action systems2 (ECA). Compared to state-of-
the-art termination analyzers [18,22,30], FreqTerm exhibits a competitive run-
time, and achieves several orders of magnitude performance improvement while
proving non-termination of ECAs.

In the rest of the paper, we give background on automated verification
(Sect. 2) and on SyGuS (Sect. 3); then we describe the application of SyGuS
for proving termination (Sect. 4) and non-termination (Sect. 5). Finally, after
reporting experimental results (Sect. 6), we overview related work (Sect. 7) and
conclude the paper (Sect. 8).

2 Background and Notation

In this work, we formulate tasks arising in automated program analysis by encod-
ing them to instances of the SMT problem [12]: for a given first-order formula ϕ
and a background theory to decide whether there is an assignment m of values
from the theory to variables in ϕ that makes ϕ true (denoted m |= ϕ). If every
assignment to ϕ is also an assignment to some formula ψ, we write ϕ =⇒ ψ.

Definition 1. A transition system P is a tuple 〈V ∪ V ′, Init ,Tr〉, where V is
a vector of variables; V ′ is its primed copy; formulas Init and Tr encode the
initial states and the transition relation respectively.

We view programs as transition systems and throughout the paper use both
terms interchangeably. An assignment s of values to all variables in V (or any
copy of V such as V ′) is called a state. A trace is a (possibly infinite) sequence
of states s, s′, . . . , such that (1) s |= Init , and (2) for each i, s(i), s(i+1) |= Tr .

We assume, without loss of generality, that the transition-relation formula
Tr(V ,V ′) is in Conjunctive Normal Form, and we split Tr(V ,V ′) to a con-
junction Guard(V ) ∧ Body(V ,V ′), where Guard(V ) is the maximal subset of
conjuncts of Tr expressed over variables just from V , and every conjunct of
Body(V ,V ′) can have appearances of variables from V and V ′.

Intuitively, formula Guard(V ) encodes a loop guard of the program, whose
loop body is encoded in Body(V ,V ′). For example, for a program shown in
Fig. 1a, V = {x, y,K}, the Guard = y < K ∨ y > K, and the entire encoding of
the transition relation is shown in Fig. 1b.

Definition 2. If each program trace contains a state s, such that s |= ¬Guard,
then the program is called terminating (otherwise, it is called non-terminating).

Tasks of proving termination and non-termination are often reduced to tasks
of proving program safety. A safety verification task is a pair 〈P,Err〉, where
P = 〈V ∪ V ′, Init ,Tr〉 is a program, and Err is an encoding of the error states.
It has a solution if there exists a formula, called a safe inductive invariant, that
implies Init , is closed under Tr , and is inconsistent with Err .

2 Provided at http://rers-challenge.org/2012/index.php?page=problems.

http://rers-challenge.org/2012/index.php?page=problems
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Fig. 1. (a): C-code; (b): transition relation Tr (in the framebox – Guard); (c): formulas
S extracted from Tr and normalized; (d): grammar that generalizes S.

Definition 3. Let P = 〈V ∪ V ′, Init ,Tr〉; a formula Inv is a safe inductive
invariant if the following conditions hold: (1) Init(V ) =⇒ Inv(V ), (2) Inv(V )∧
Tr(V ,V ′) =⇒ Inv(V ′), and (3) Inv(V ) ∧ Err(V ) =⇒ ⊥.

If there exists a trace c (called a counterexample) that contains a state s,
such that s |= Err , then the safety verification task does not have a solution.

3 Exploiting Program Syntax

The key driver of our termination and non-termination provers is a generator
of constraints which help to analyze the given program in different ways. The
source code often gives useful information, e.g., of occurrences of variables, con-
stants, arithmetic and comparison operators, that could bootstrap the formula
generator. We rely on the SyGuS-based algorithm [16] introduced for verifying
program safety. It automatically constructs the grammar G based on the fixed
set of formulas S obtained by traversing parse trees of Init , Tr , and Err . In our
case, Err is not given, so G is based only on Init and Tr .

For simplicity, we require formulas in S to have the form of inequalities
composed from a linear combination over either V or V ′ and a constant (e.g.,
x′ < y′ +1 is included, but x′ = x+1 is excluded). Then, if needed, variables are
deprimed (e.g., x′ < y′+1 is replaced by x < y+1), and formulas are normalized,
such that all terms are moved to the left side (e.g., x < y + 1 is replaced by
x− y − 1 < 0), the subtraction is rewritten as addition, < is rewritten as >, and
respectively ≤ as ≥ (e.g., x − y − 1 < 0 is replaced by (−1) · x + y + 1 > 0).

The entire process of creation of G is exemplified in Fig. 1. Production rules of
G are constructed as follows: (1) the production rule for normalized inequalities
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Fig. 2. (a): The worst-case dynamics of program from Fig. 1a; (b): the termination-
argument validity check (in the frameboxes – lower bounds {�j} for i).

(denoted ineq) consists of choices corresponding to distinct types of inequalities
in S, (2) the production rule for linear combinations (denoted sum) consists
of choices corresponding to distinct arities of inequalities in S, (3) production
rules for variables, coefficients, and constants (denoted respectively var, coef,
and const) consist of choices corresponding respectively to distinct variables,
coefficients, and constants that occur in inequalities in S. Note that the method
of creation of G naturally extends to considering disjunctions and nonlinear
arithmetic [16].

Choices in production rules of grammar G can be further assigned proba-
bilities based on frequencies of certain syntactic features (e.g., frequencies of
particular constants or combinations of variables) that belong to the program’s
symbolic encoding. In the interest of saving space, we do not discuss it here and
refer the reader to [16]. The generation of formulas from G is performed recur-
sively by sampling from probability distributions assigned to rules. Note that the
choice of distributions affects only the order in which formulas are sampled and
does not affect which formulas can or cannot be sampled in principle (because
the grammar is fixed). Thus, without loss of generality, it is sound to assume
that all distributions are uniform. In the context of termination analysis, we are
interested in formulas produced by rules ineq and sum.

4 Proving Termination

We start this section with a motivating example and then proceed to presenting
the general-purpose algorithms for proving program termination.

Example 1. The program shown in Fig. 1a terminates. It operates on three inte-
ger variables, x, y, and K: in each iteration y gets closer to x, and x gets closer
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Algorithm 1. LinRank(P ): proving termination with linear termination
argument

Input: P = 〈V ∪ V ′, Init ,Tr〉 where Tr = Guard ∧ Body
Output: res ∈ 〈terminates,unknown〉

1 V ← V ∪ {i}; V ′ ← V ′ ∪ {i′};
2 Tr ← Tr ∧ i′ = i − 1; Err ← Guard ∧ i < 0;
3 G ← getGrammarAndDistributions(Init ,Tr);
4 while canSample(G) do
5 cand ← sample(G, sum);
6 G ← adjust(G, cand);
7 if Init =⇒ i > cand then continue;
8 Init ← Init ∧ i > cand ;
9 if isSafe(Init ,Tr ,Err) then return terminates;

10 return unknown;

to K. Thus, the total number of values taken by y before it equals K is no
bigger than the maximal distance among x, y, and K (in the following, denoted
Max ). The worst-case dynamics happens when initially x < y < K (shown in
Fig. 2a), in other cases the program terminates even faster. To formally prove
this, the program could be augmented by a so-called termination argument. For
this example, it is simply a fresh variable i which is initially assigned Max (or
any other value greater than Max ) and which gets decremented by one in each
iteration. The goal now is to prove that i never gets negative. Fig. 2b shows the
encoding of this safety verification task (recall Definition 3). The existence of a
solution to this task guarantees the safety of the augmented program, and thus,
the termination of the original program. Most state-of-the-art Horn solvers are
able to find a solution immediately. �

The main challenge in preparing the termination-argument validity check is
the generation of lower bounds {�j} for i in Init (e.g., conjunctions of the form
i>�j in ① in Fig. 2b). We build on the insight that each �j could be constructed
independently from the others, and then an inequality i>�j could be conjoined
with Init , thus giving rise to a new safety verification task. For a generation
of candidate inequalities, we utilize the algorithm from Sect. 3: all {�j} can be
sampled from grammar G which is obtained in advance from Init and Tr .

For example, all six formulas in ① in Fig. 2b: x−K,K −x, y −K,K − y, x−
y, and y − x belong to the grammar shown in Fig. 1d. Note that for proving
termination it is not necessary to have the most precise lower bounds. Intuitively,
the larger the initial value of i, the more iterations it will stay positive. Thus, it
is sound to try formulas which are not even related to actual lower bounds at
all and keep them conjoined with Init .
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4.1 Synthesizing Linear Termination Arguments

Algorithm 1 shows an “enumerate-and-try” procedure to search for a linear ter-
mination argument that proves termination of a program P . To initialize this
search, the algorithm introduces an extra counter variable i and adds it to V
(respectively, its primed copy i′ gets added to V ′) (line 1).3 Then the transition-
relation formula Tr gets augmented by i′ = i−1, the decrement of the counter in
the loop body. To specify a set of error states, Algorithm1 introduces a formula
Err (line 2): whenever the loop guard is satisfied and the value of counter i is
negative. Algorithm 1 then starts searching for large enough lower bounds for i
(i.e., a set of constraints over V ∪ {i} to be added to Init), such that no error
state is ever reachable.

Before the main loop of our synthesis procedure starts, various formulas are
extracted from the symbolic encoding of P and generalized to a formal grammar
(line 3). The grammar is used for an iterative probabilistic sampling of candidate
formulas (line 5) that are further added to the validity check of the current
termination argument (line 8). In particular, each new constraint over i has the
form i>cand , where cand is produced by the sum production rule described in
Sect. 3. Once Init is strengthened by this constraint, a new safety verification
condition is compiled and checked (line 9) by an off-the-shelf Horn solver.

As a result of each safety check, either a formula satisfying Definition 3 or a
counterexample cex witnessing reachability of an error state is generated. Exis-
tence of an inductive invariant guarantees that the conjunction of all synthesized
lower bounds for i is large enough to prove termination, and thus Algorithm1
converges. Otherwise, if grammar G still contains a formula that has not been
considered yet, the synthesis loop iterates.

For the progress of the algorithm, it must keep track of the strength of each new
candidate cand . That is, cand should add more restrictions on i in Init . Otherwise,
the outcome of the validity check (line 9) would be the same as in the previous iter-
ation. For this reason, Algorithm1 includes an important routine [16]: after each
sampled candidate cand , it adjusts the probability distributions associated with
the grammar, such that cand could not be sampled again in the future iterations
(line 6). Additionally, it checks (line 7) if a new constraint adds some value over
the already accepted constraints. Consequently, our algorithm does not require
explicit handing of counterexamples: if in each iteration Init gets only stronger
then current cex is invalidated. While in principle the algorithm could explicitly
store cex and check its consistency with each new cand , however in our experi-
ments it did not lead to significant performance gains.

Theorem 1. If Algorithm1 returns terminates for program P , then P termi-
nates.

Indeed, the verification condition, which is proven safe in the last iteration of
Algorithm 1, corresponds to some program P ′ that differs from P by the presence
of variable i. The set of traces of P has a one-to-one correspondence with the

3 Assume that initially set V does not contain i.
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Algorithm 2. LexRank(P ): proving termination with lexicographic ter-
mination argument

Input: P = 〈V ∪ V ′, Init ,Tr〉 where Tr = Guard ∧ Body
Output: res ∈ 〈terminates,unknown〉

1 V ← V ∪ {i, j}; V ′ ← V ′ ∪ {i′, j′};
2 Err ← Guard ∧ i < 0; jBounds ← ∅;

3 G, G′, G′′ ← getGrammarAndDistributions(Init ,Tr);

4 while canSample(G) or canSample(G′) or canSample(G′′) do

5 if nondet() then
6 cand ← sample(G, sum); G ← adjust(G, cand);
7 Init ← Init ∧ i > cand ;

8 if nondet() then
9 cand ← sample(G′, sum); G′ ← adjust(G′, cand);

10 Init ← Init ∧ j > cand ;

11 if nondet() then
12 cand ← sample(G′′, sum); G′′ ← adjust(G′′, cand);
13 jBounds ← jBounds ∪ {j > cand};

14 Tr ′ ← Tr ∧ ite(j > 0, i′ = i ∧ j′ = j − 1, i′ = i − 1 ∧ ∧

b∈jBounds

b);

15 if isSafe(Init ,Tr ′,Err) then return terminates;

16 return unknown;

set of traces of P ′, such that each state reachable in P could be extended by a
valuation of i to become a reachable state in P ′. That is, P terminates iff P ′

terminates, and P ′ terminates by construction: i is initially assigned a reasonably
large value, monotonically decreases at each iteration, and never goes negative.

We note that the loop in Algorithm1 always executes only a finite number of
iterations since G is constructed from the finite number of components, and in
each iteration it gets adjusted to avoid re-sampling of the same candidates. How-
ever, an off-the-shelf Horn solver that checks validity of each candidate might not
converge because the safety verification task is undecidable in general. To mit-
igate this obstacle, our implementation supports several state-of-the-art solvers
and provides a flexibility to specify one to use.

4.2 Synthesizing Lexicographic Termination Arguments

There is a wide class of terminating programs for which no linear termination
argument exists. A commonly used approach to handle them is via a search for
a so-called lexicographic termination argument that requires introducing two or
more extra counters. A SyGuS-based instantiation of such a procedure for two
counters is shown in Algorithm 2 (more counters could be handled similarly).
Algorithm 2 has a similar structure to Algorithm 1: the initial program gets aug-
mented by counters, formula Err is introduced, lower bounds for counters are
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iteratively sampled and added to Init and Tr , and the verification condition is
checked for safety.

The differences in Algorithm 2 are in how it handles two counters i and j,
between which an implicit order is fixed. In particular, Err is still expressed over i
only, but i gets decremented by one only when j equals zero (line 14). At the same
time, j gets updated in each iteration: if it was equal to zero, it gets assigned
a value satisfying the conjunction of constraints in an auxiliary set jBounds;
otherwise it gets decremented by one. Algorithm 2 synthesizes jBounds as well as
lower bounds for initial conditions over i and j. The sampling proceeds separately
from three different grammars (lines 6, 9, and 12), and the samples are used in
three different contexts (lines 7, 10, and 13 respectively). Optionally, Algorithm2
could be parametrized by a synthesis strategy that gives interpretations for each
of the nondet() calls (lines 5, 8, and 11 respectively). In the simplest case, each
nondet() call is replaced by �, which means that in each iteration Algorithm2
needs to sample from all three grammars. Alternatively, nondet() could be
replaced by a method to identify only one grammar per iteration to be sampled
from.

Theorem 2. If Algorithm2 returns terminates for program P , then P termi-
nates.

The proof sketch for Theorem2 is similar to the one for Theorem1: an aug-
mented program P ′ terminates by construction (due to a mapping of values of
〈i, j〉 into ordinals), and its set of traces has a one-to-one correspondence with
the set of traces of P .

5 Proving Non-termination

In this section, we aim at solving the opposite task to the one in Sect. 4, i.e.,
we wish to witness infinite program traces and thus, to prove program non-
termination. However, in contrast to a traditional search for a single infinite
trace, it is often easier to search for groups of infinite traces.

Lemma 1. Program P = 〈V ∪V ′, Init ,Tr〉 where Tr = Guard ∧Body does not
terminate if:

1. there exists a state s, such that s |= Init and s |= Guard,
2. for every state s, such that s |= Guard, there exists a state s′, such that

s, s′ |= Tr and s′ |= Guard.

The lemma distinguishes a class of programs, for which the following holds.
First, the loop guard is reachable from the set of initial states. Second, whenever
the loop guard is satisfied, there exists a transition to a state in which the loop
guard is satisfied again. Therefore, each initial state s, from which the loop guard
is reachable, gives rise to at least one infinite trace that starts with s.

Note that for programs with deterministic transition relations (like, e.g., in
Fig. 1a), the check of the second condition of Lemma 1 reduces to deciding the
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Fig. 3. (a): A variant of program from Fig. 1a; (b): the valid ∀∃-formula for its non-
terminating refinement (in frameboxes – refined Guard-s); (c): an example of a non-
terminating dynamics, when value of x (and eventually, y) never gets changed.

satisfiability of a quantifier-free formula since each state can be transitioned to
exactly one state. But if the transition relation is non-deterministic, the check
reduces to deciding validity of a ∀∃-formula. Although handling quantifiers is in
general hard, some recent approaches [15] are particularly tailored to solve this
type of queries efficiently.

In practice, the conditions of Lemma 1 are too strict to be fulfilled for an arbi-
trary program. However, to prove non-termination, it is sufficient to constrain
the transition relation as long as it preserves at least one original transition and
only then to apply Lemma1.

Definition 4. Given programs P = 〈V ∪ V ′, Init ,Tr〉, and P ′ = 〈V ∪
V ′, Init ,Tr ′〉, we say that P ′ is a refinement of P if Tr ′ =⇒ Tr.

Intuitively, Definition 4 requires P and P ′ to operate over the same sets of
variables and to start from the same initial states. Furthermore, each transition
allowed by Tr ′ is also allowed by Tr . One way to refine P is to restrict Tr =
Guard ∧ Body by conjoining either Guard , or Body , or both with some extra
constraints (called refinement constraints). In this work, we propose to sample
them from our automatically constructed formal grammar (recall Sect. 3).

Example 2. Consider a program shown in Fig. 3a. It differs from the one shown
in Fig. 1a by a non-deterministic choice in the second ite-statement. That is, y
still moves towards x; but x moves towards K only when x > K, and otherwise
x may always keep the initial value. The formal grammar generated for this
program is the same as shown in Fig. 1d, and it contains constraints x < K
and y < K. Lemma 1 does not apply for the program as is, but it does after
refining Guard with those constraints. In particular, the ∀∃-formula in Fig. 3b is
valid, and a witness to its validity is depicted in Fig. 3c: eventually both x and
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Algorithm 3. NontermRef(P ): proving non-termination
Input: P = 〈V ∪ V ′, Init ,Tr〉 where Tr = Guard ∧ Body
Output: res ∈ 〈terminates,does not terminate,unknown〉

1 if Init(V ) ∧ Guard(V ) =⇒ ⊥ then return terminates;

2 Tr ← Tr ∧ getInvs(Init ,Tr);
3 G ← getGrammarAndDistributions(Init ,Tr);
4 Refs ← ∅; Gramms ← ∅; Gramms.push(G);

5 while true do

6 if ∀V . Guard(V ) ∧ ∧

r∈Refs

r(V ) =⇒
∃V ′ . Body(V ,V ′) ∧ Guard(V ′) ∧ ∧

r∈Refs

r(V ′) then

7 return does not terminate;

8 cand ← �;
9 while Guard(V ) ∧ ∧

r∈Refs

r(V ) =⇒ cand(V ) or

Init(V ) ∧ Guard(V ) ∧ cand(V ) ∧ ∧

r∈Refs

r(V ) =⇒ ⊥ do

10 if Refs = ∅ and ¬canSample(G) then return unknown;
11 if Refs = ∅ and ¬canSample(G) then
12 Refs.pop();
13 Gramms.pop();
14 cand ← �; G ← Gramms.top();
15 continue;

16 cand ← sample(G, ineq);
17 G ← adjust(G, cand);

18 Refs.push(cand);
19 Gramms.push(G);

y become equal and always remain smaller than K. Thus, the program does not
terminate. �

5.1 Synthesizing Non-terminating Refinements

The algorithm for proving program’s non-termination is shown in Algorithm3.
It starts with a simple satisfiability check (line 1) which filters out programs that
never reach the loop body (thus they immediately terminate). Then, the tran-
sition relation Tr gets strengthened by auxiliary inductive invariants obtained
with the help of the initial states Init (line 2). The algorithm does not impose any
specific requirements on the invariants (and it is sound even for a trivial invariant
�) and on a method that detects them. In many cases, auxiliary invariants make
the algorithm converge faster. Similar to Algorithms 1–2, Algorithm 3 splits Init
and Tr to a set of formulas and generalizes them to a grammar. The difference
lies in the type of formulas sampled from the grammar (ineq vs sum) and their
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use in the synthesis loop: Algorithm 3 treats sampled candidates as refinement
constraints and attempts to apply Lemma 1 (line 6).

The algorithm maintains a stack of refinement constraints Refs . At the first
iteration, Refs is empty, and thus the algorithm tries to apply Lemma 1 to the
original program. For that application, a ∀∃-formula is constructed and checked
for validity. Intuitively the formula expresses the ability of Body to transition
each state which satisfies Guard to a state which satisfies Guard as well. If the
validity of ∀∃-formula is proven, the algorithm converges (line 7). Otherwise, a
refinement of P needs to be guessed. Thus, the algorithm samples a new formula
(line 16) using the production rule ineq, which is described in Sect. 3, pushes it
to Refs , and iterates. Note that G permits formulas over V only (i.e., to restrict
Guard), however, in principle it can be extended for sampling formulas over
V ∪ V ′ (thus, to restrict Body as well).

For the progress of the algorithm, it must keep track of how each new can-
didate cand corresponds to constraints already belonging to Refs . That is, cand
should not be implied by Guard ∧ ∧

r∈Refs

r since otherwise the ∀∃-formula in the

next iteration would not change. Also, cand should not over-constrain the loop
guard, and thus it is important to check that after adding cand to constraints
from Guard and Refs , the loop guard is still reachable from the initial states.
Both these checks are performed before the sampling (line 9). After the sam-
pling, necessary adjustments on the probability distributions, assigned to the
production rules of the grammar [16], are applied to ensure the same refinement
candidates are not re-sampled again (line 17).

Because by construction G cannot generate conjunctions of constraints, the
algorithm handles conjunctions externally. It is useful in case when a single con-
straint is not enough for application of Lemma1, and it should be strengthened
by another constraint. On the other hand, it also might be needed to withdraw
some sampled candidates before converging. For this reason, Algorithm 3 main-
tains a stack Gramms of grammars and handles it synchronously with stack Refs
(lines 12–14 and 18–19). When all candidates from a grammar were considered
and were unsuccessful, the algorithm pops the latest candidate from Refs and
rolls back to the grammar used in the previous iteration. Additionally, a maxi-
mum size of Refs can be specified to avoid considering too deep refinements.

Theorem 3. If Algorithm3 returns does not terminate for program P , then
P does not terminate.

Indeed, constraints that belong to Refs in the last iteration of the algorithm
give rise to a refinement P ′ of P , such that P ′ = 〈V ∪ V ′, Init ,Tr ∧ ∧

r∈Refs

r〉.
The satisfiability check (line 9) and the validity check (line 6) passed, which
correspond to the conditions of Lemma1. Thus, P ′ does not terminate, and
consequently it has an infinite trace. Finally, since P ′ refines P then all traces
(including infinite ones) of P ′ belong to P , and P does not terminate as well.
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5.2 Integrating Algorithms Together

With a few exceptions [30,39], existing algorithms address either the task of
proving, or the task of disproving termination. The goal of this paper is to show
that both tasks benefit from syntax-guided techniques. While an algorithmic
integration of several orthogonal techniques is itself a challenging problem, it
is not the focus of our paper. Still, we use a straightforward idea here. Since
each presented algorithm has one big loop, an iteration of Algorithm1 could be
followed by an iteration of Algorithm2 and in turn, by an iteration of Algorithm3
(i.e., in a lockstep fashion). A positive result obtained by any algorithm forces
all remaining algorithms to terminate. Based on our experiments, provided in
detail in Sect. 6, the majority of benchmarks were proven either terminating or
non-terminating by one of the algorithms within seconds. This justifies why the
lockstep execution of all algorithms in practice would not bring a significant
overhead.

6 Evaluation

We have implemented algorithms for proving termination and non-termination
in a tool called FreqTerm4. It is developed on top of FreqHorn [16], uses it
for Horn solving, and supports other Horn solvers, Spacer3 [26] and μZ [24],
as well. To solve ∀∃-formulas, FreqTerm uses the AE-VAL tool [15]. All the
symbolic reasoning in the end is performed by the Z3 SMT solver [11].

FreqTerm takes as input a program encoded as a system of linear con-
strained Horn clauses (CHC). It supports any programming language, as long
as a translator from it to CHCs exists. For encoding benchmarks to CHCs, we
used SeaHorn v.0.1.0-rc3. To the best of our knowledge, FreqTerm is the
only (non)-termination prover that supports a selection of Horn solvers in the
backend. This allows the prover to leverage advancements in Horn solving easily.

We have compared FreqTerm against AProVE rev. c181f40 [18], Ulti-
mate Automizer v.0.1.23 [22], and HipTNT+ v.1.0 [30]. The rest of the section
summarizes three sets of experiments. Sections 6.1 and 6.2 discuss the compari-
son on small but tricky programs, respectively terminating and non-terminating,
which shows that our approach is applicable to a wide range of conceptually chal-
lenging problems. In Sect. 6.3, we target several large-scale benchmarks and show
that FreqTerm is capable of significant pushing the boundaries of termination
and non-termination proving. In total, we considered 856 benchmarks of various
size and complexity. All experiments were conducted on a Linux SMP machine,
Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz, 56 CPUs, 377 GB RAM.

6.1 Performance on Terminating Benchmarks

We considered 171 terminating programs5 from the Termination category of
SVCOMP and programs crafted by ourselves. Altogether, four tools in our exper-
iment were able to prove termination of 168 of them within a timeout of 60 s and
4 The source code of the tool is publicly available at https://goo.gl/HecBWc.
5 These benchmarks are available at https://goo.gl/MPimXE.

https://goo.gl/HecBWc
https://goo.gl/MPimXE


Syntax-Guided Termination Analysis 137

100 101

100

101

100 101

100

101

100 101

100

101

(a) terminating examples (171)

100 101

100

101

100 101

100

101

100 101

100

101

(b) non-terminating examples (176)

Fig. 4. FreqTerm vs respectively Ultimate Automizer, AProVE, and HipTNT+.

left only three programs without a verdict. AProVE verified 76 benchmarks,
HipTNT+ 90 (including 3 that no other tool solved), Ultimate Automizer
105 (including 4 that no other tool solved). FreqTerm, implementing Algo-
rithms 1–2 and relying on different solvers verified in total 155 (including 30
that no other tool solved). In particular, Algorithm1 instantiated with Spacer3,
proved termination of 88 programs, with μZ 79, and with FreqHorn 80. Algo-
rithm2 instantiated with Spacer3, proved termination of 92 programs, with μZ
109, and with FreqHorn 74.

A scatterplot with logarithmic scale on the axes in Fig. 4(a) shows compar-
isons of best running times of FreqTerm vs the running times of competing
tools. Each point in a plot represents a pair of the FreqTerm run (x-axis) and
the competing tool run (y-axis). Intuitively, green points represent cases when
FreqTerm outperforms the competitor. On average, for programs solved by
both FreqTerm and Ultimate Automizer, FreqTerm is 29 times faster
(speedup calculated as a ratio of geometric means of the corresponding runs).
In a similar setting, FreqTerm is 32 times faster than AProVE. However,
FreqTerm is 2 times slower than HipTNT+. The evaluation further revealed
(in Sect. 6.3) that the latter tool is efficient only on small programs (around 10
lines of code each), and for large-scale benchmarks it exceeds the timeout.
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6.2 Performance on Non-terminating Benchmarks

We considered 176 terminating programs6 from the Termination category of
SVCOMP and programs crafted by ourselves. Altogether, four tools proved
non-termination of 172 of them: AProVE 35, HipTNT+ 92, Ultimate
Automizer 123, and Algorithm 3 implemented in FreqTerm 152. Addition-
ally, we evaluated the effect of ∀∃-solving in FreqTerm. For that reason, we
implemented a version of Algorithm 3 in which non-termination is reduced to
safety, but the conceptual SyGuS-based refinement generator remained the same.
This implementation used Spacer3 for proving that the candidate refinement
can never exit the loop. Among 176 benchmarks, such routine solved only 105,
which is 30% fewer than Algorithm 3. However, it managed to verify 8 bench-
marks that Algorithm 3 could not verify (we believe, because Spacer3 was able
to add an auxiliary inductive invariant).

Logarithmic scatterplot in Fig. 4(b) shows comparisons of FreqTerm vs the
running times of competing tools. On average, FreqTerm is 41 times faster than
Ultimate Automizer, 73 times faster than AProVE, and exhibits roughly
similar runtimes to HipTNT+ (again, here we considered only programs solved
by both tools). Based on these experiments, we conclude that currently Freq-
Term is more effective and more efficient at synthesizing non-terminating pro-
gram refinements than at synthesizing terminating arguments.

6.3 Large-Scale Benchmarks

We considered some large-scale benchmarks for evaluation arising from Event-
Condition-Action (ECA) systems that describe reactive behavior [1]. We consid-
ered various modifications of five challenging ECAs7. Each ECA consists of one
large loop, where each iteration reads an input and modifies its internal state.
If an unexpected input is read, the ECA terminates.

In our first case study, we aimed to prove non-termination of the given ECAs,
i.e., that for any reachable internal state there exists an input value that would
keep the ECA alive. The main challenge appeared to be in the size of benchmarks
(up to 10000 lines of C code per loop) and reliance on an auxiliary inductive
invariant. With the extra support of Spacer3 to provide the invariant, Fre-
qTerm was able to prove non-termination of a wide range of programs. Among
all the competing tools, only Ultimate Automizer was able to handle these
benchmarks, but it verified only a small fraction of them within a 2 h timeout. In
contrast, FreqTerm solved 301 out of 302 tasks and outperformed Ultimate
Automizer by up to several orders of magnitude (i.e., from seconds to hours).
Table 1 contains a brief summary of our experimental evaluation.8

In our second case study, we instrumented the ECAs by adding extra condi-
tions to the loop guards, thus imposing an implicit upper bound on the number

6 These benchmarks are available at https://goo.gl/bZbuA2.
7 These benchmarks are available at https://goo.gl/7mc2Ww.
8 To calculate average timings, we excluded cases when the tool exceeded timeout.

https://goo.gl/bZbuA2
https://goo.gl/7mc2Ww
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Table 1. FreqTerm vs Ultimate Automizer on non-terminating ECAs (302).

Benchmarks FreqTerm Ultimate Automizer

Class # of tasks Avg # of LoC # solved Avg time # solved Avg time

1 & 2 122 500 122 5 sec 3 27 min

3 60 1600 60 56 sec 0 ∞
4 60 4700 60 9 min 6 82 min

5 60 10000 59 52 min 0 ∞

Table 2. FreqTerm vs Ultimate Automizer on terminating ECAs (207).

Benchmarks FreqTerm Ultimate Automizer

Class # of tasks Avg # of LoC # solved Avg time # solved Avg time

1 & 2 97 500 97 8 sec 96 73 sec

3 40 1600 40 3 min 12 56 min

4 35 4700 35 10 min 27 19 min

5 35 10000 34 65 min 19 99 min

of loop iterations, and applied tools to prove termination9 (shown in Table 2).
Again, only Ultimate Automizer was able to compete with FreqTerm, and
interestingly it was more successful here than in the first case study. Encourag-
ingly, FreqTerm solved all but one instance and was consistently faster.

7 Related Work

Proving Termination. A wide range of state-of-the-art methods are based on iter-
ative reasoning driven by counterexamples [4,5,9,10,19,21,23,27,29,36] whose
goal is to show that transitions cannot be executed forever. These approaches
typically combine termination arguments, proven independently, but none of
them leverages the syntax of programs during the analysis.

A minor range of tools of termination analyzers are based on various types
of learning. In particular, [39] discovers a terminating argument from attempts
to prove that no program state is terminating; [34] exploits information derived
from tests, [37] guesses and checks transition invariants (over-approximations to
the reachable transitive closure of the transition relation) from libraries of tem-
plates. The closest to our approach, [31] guesses and checks transition invariants
using loop guards and branch conditions. In contrast, our algorithms guess lower
bounds for auxiliary program counters and extensively use all available source
code for guessing candidates.

9 The task of adding interesting guards appeared to be non-trivial, so we were able to
instrument only a part of all non-terminating benchmarks.
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Proving Non-termination. Traditional algorithms, e.g. [3,6,8,20,22], are based
on a search for lasso-shaped traces and a discovery of recurrence sets, i.e., states
that are visited infinitely often. For instance, [32] searches for a geometric series
in lasso-shaped traces. Our algorithm discovers existential recurrence sets and
does not deal with traces at all: it handles their abstraction via a ∀∃-formula.

A reduction to safety attracts significant attention here as well. In particu-
lar, [40] relies only on invariant generation to show that the loop guard is also
satisfied, [19] infers weakest preconditions over inputs, under which program is
non-terminating; and [7,28] iteratively eliminate terminating traces through a
loop by adding extra assumptions. In contrast, our approach does not reduce to
safety, and thus does not necessarily require invariants. However, we observed
that if provided, in practice they often accelerate our verification process.

Syntax-Guided Synthesis. SyGuS [2] is applied to various tasks related to pro-
gram synthesis, e.g., [13,17,25,33,35,41]. However, the formal grammar in those
applications is typically given or constructed from user-provided examples. To
the best of our knowledge, the only application of SyGuS to automatic pro-
gram analysis was proposed by [14,16], and it inspired our approach. Originally,
the formal grammar, constructed from the verification condition, was iteratively
used to guess and check only inductive invariants. In this paper, we showed that
a similar reasoning is practical and easily transferable across applications.

8 Conclusion

We have presented new algorithms for synthesis of termination arguments and
non-terminating program refinements. Driven by SyGuS, they iteratively gen-
erate candidate formulas which tend to follow syntactic patterns obtained from
the source code. By construction, the number of possible candidates is always
finite, thus the search space is always relatively small. The algorithms rely on
recent advances in constraint solving, they do not depend on a particular backend
engine, and thus performance of checking validity of a candidate can be improved
by advancements in solvers. Our implementation FreqTerm is evaluated on a
wide range of terminating and non-terminating benchmarks. It is competitive
with state-of-the-art and it significantly outperforms other tools when proving
non-termination of large-scale Event-Condition-Action systems.

In future work, it would be interesting to investigate synergetic ways of inte-
grating the proposed algorithms together, as well as exploiting strengths of dif-
ferent backend Horn solvers for different verification tasks.
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Abstract. Hyperproperties are properties of sets of computation traces.
In this paper, we study quantitative hyperproperties, which we define as
hyperproperties that express a bound on the number of traces that may
appear in a certain relation. For example, quantitative non-interference
limits the amount of information about certain secret inputs that is
leaked through the observable outputs of a system. Quantitative non-
interference thus bounds the number of traces that have the same observ-
able input but different observable output. We study quantitative hyper-
properties in the setting of HyperLTL, a temporal logic for hyperproper-
ties. We show that, while quantitative hyperproperties can be expressed
in HyperLTL, the running time of the HyperLTL model checking algo-
rithm is, depending on the type of property, exponential or even doubly
exponential in the quantitative bound. We improve this complexity with
a new model checking algorithm based on model-counting. The new algo-
rithm needs only logarithmic space in the bound and therefore improves,
depending on the property, exponentially or even doubly exponentially
over the model checking algorithm of HyperLTL. In the worst case, the
new algorithm needs polynomial space in the size of the system. Our
Max#Sat-based prototype implementation demonstrates, however, that
the counting approach is viable on systems with nontrivial quantitative
information flow requirements such as a passcode checker.

1 Introduction

Model checking algorithms [17] are the cornerstone of computer-aided verifica-
tion. As their input consists of both the system under verification and a logical
formula that describes the property to be verified, they uniformly solve a wide
range of verification problems, such as all verification problems expressible in
linear-time temporal logic (LTL), computation-tree logic (CTL), or the modal
μ-calculus. Recently, there has been a lot of interest in extending model checking
from standard trace and tree properties to information flow policies like obser-
vational determinism or quantitative information flow. Such policies are called
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hyperproperties [21] and can be expressed in HyperLTL [18], an extension of LTL
with trace quantifiers and trace variables. For example, observational determin-
ism [47], the requirement that any pair of traces that have the same observable
input also have the same observable output, can be expressed as the following
HyperLTL formula: ∀π.∀π′. ( π =I π′) → ( π =O π′) For many information
flow policies of interest, including observational determinism, there is no longer
a need for property-specific algorithms: it has been shown that the standard
HyperLTL model checking algorithm [26] performs just as well as a specialized
algorithm for the respective property.

The class of hyperproperties studied in this paper is one where, by contrast,
the standard model checking algorithm performes badly. We are interested in
quantitative hyperproperties, i.e., hyperproperties that express a bound on the
number of traces that may appear in a certain relation. A prominent exam-
ple of this class of properties is quantitative non-interference [43,45], where
we allow some flow of information but, at the same time, limit the amount
of information that may be leaked. Such properties are used, for example, to
describe the correct behavior of a password check, where some information
flow is unavoidable (“the password was incorrect”), and perhaps some extra
information flow is acceptable (“the password must contain a special charac-
ter”), but the information should not suffice to guess the actual password. In
HyperLTL, quantitative non-interference can be expressed [18] as the formula
∀π0. ∀π1 . . . ∀π2c . (

∧
i (πi =I π0)) →

(∨
i�=j (πi =O πj)

)
. The formula states

that there do not exist 2c + 1 traces (corresponding to more than c bits of infor-
mation) with the same observable input but different observable output. The
bad performance of the standard model checking algorithm is a consequence of
the fact that the 2c + 1 traces are tracked simultaneously. For this purpose, the
model checking algorithm builds and analyzes a (2c +1)-fold self-composition of
the system.

We present a new model checking algorithm for quantitative hyperproper-
ties that avoids the construction of the huge self-composition. The key idea of
our approach is to use counting rather than checking as the basic operation.
Instead of building the self-composition and then checking the satisfaction of
the formula, we add new atomic propositions and then count the number of
sequences of evaluations of the new atomic propositions that satisfy the specifi-
cation. Quantitative hyperproperties are expressions of the following form:

∀π1. . . . ∀πk. ϕ → (#σ : X.ψ � n),

where � ∈ {≤, <,≥, >,=}. The universal quantifiers introduce a set of reference
traces against which other traces can be compared. The formulas ϕ and ψ are
HyperLTL formulas. The counting quantifier #σ : X.ψ counts the number of
paths σ with different valuations of the atomic propositions X that satisfy ψ. The
requirement that no more than c bits of information are leaked is the following
quantitative hyperproperty:

∀π.#σ : O. (π =I σ) ≤ 2c
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As we show in the paper, such expressions do not change the expressiveness of
the logic; however, they allow us to express quantitative hyperproperties in expo-
nentially more concise form. The counting-based model checking algorithm then
maintains this advantage with a logarithmic counter, resulting in exponentially
better performance in both time and space.

The viability of our counting-based model checking algorithm is demon-
strated on a SAT-based prototype implementation. For quantitative hyperprop-
erties of intrest, such as bounded leakage of a password checker, our algorithm
shows promising results, as it significantly outperforms existing model checking
approaches.

1.1 Related Work

Quantitative information-flow has been studied extensively in the literature. See,
for example, the following selection of contributions on this topic: [1,14,19,32,
34,43]. Multiple verification methods for quantitative information-flow were pro-
posed for sequential systems. For example, with static analysis techniques [15],
approximation methods [35], equivalence relations [3,22], and randomized meth-
ods [35]. Quantitative information-flow for multi-threaded programs was consid-
ered in [11].

The study of quantitative information-flow in a reactive setting gained a
lot of attention recently after the introduction of hyperproperties [21] and the
idea of verifying the self-composition of a reactive system [6] in order to relate
traces to each other. There are several possibilities to measure the amount of
leakage, such as Shannon entropy [15,24,37], guessing entropy [3,34], and min-
entropy [43]. A classification of quantitative information-flow policies as safety
and liveness hyperproperties was given in [46]. While several verification tech-
niques for hyperproperties exists [5,31,38,42], the literature was missing general
approaches to quantitative information-flow control. SecLTL [25] was introduced
as first general approach to model check (quantitative) hyperproperties, before
HyperLTL [18], and its corresponding model checker [26], was introduced as a
temporal logic for hyperproperties, which subsumes the previous approaches.

Using counting to compute the number of solutions of a given formula is stud-
ied in the literature as well and includes many probabilistic inference problems,
such as Bayesian net reasoning [36], and planning problems, such as computing
robustness of plans in incomplete domains [40]. State-of-the-art tools for propo-
sitional model counting are Relsat [33] and c2d [23]. Algorithms for counting
models of temporal logics and automata over infinite words have been intro-
duced in [27,28,44]. The counting of projected models, i.e., when some parts of
the models are irrelevant, was studied in [2], for which tools such as #CLASP [2]
and DSharp P [2,41] exist. Our SAT-based prototype implementation is based on
a reduction to a Max#SAT [29] instance, for which a corresponding tool exists.

Among the already existing tools for computing the amount of information
leakage, for example, QUAIL [8], which analyzes programs written in a specific
while-language and LeakWatch [12], which estimates the amount of leakage in



Model Checking Quantitative Hyperproperties 147

Java programs, Moped-QLeak [9] is closest to our approach. However, their app-
roach of computing a symbolic summary as an Algebraic Decision Diagram is, in
contrast to our approach, solely based on model counting, not maximum model
counting.

2 Preliminaries

2.1 HyperLTL

HyperLTL [18] extends linear-time temporal logic (LTL) with trace variables
and trace quantifiers. Let AP be a set of atomic propositions. A trace t is an
infinite sequence over subsets of the atomic propositions. We define the set of
traces TR := (2AP )ω. A subset T ⊆ TR is called a trace property and a subset
H ⊆ 2TR is called a hyperproperty. We use the following notation to manipulate
traces: let t ∈ TR be a trace and i ∈ N be a natural number. t[i] denotes the
i-th element of t. Therefore, t[0] represents the starting element of the trace. Let
j ∈ N and j ≥ i. t[i, j] denotes the sequence t[i] t[i + 1] . . . t[j − 1] t[j]. t[i,∞]
denotes the infinite suffix of t starting at position i.

HyperLTL Syntax. Let V be an infinite supply of trace variables. The syntax of
HyperLTL is given by the following grammar:

ψ ::= ∃π.ψ | ∀π.ψ | ϕ

ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕ U ϕ

where a ∈ AP is an atomic proposition and π ∈ V is a trace variable. Note
that atomic propositions are indexed by trace variables. The quantification over
traces makes it possible to express properties like “on all traces ψ must hold”,
which is expressed by ∀π. ψ. Dually, one can express that “there exists a trace
such that ψ holds”, which is denoted by ∃π. ψ. The derived operators , ,
and W are defined as for LTL. We abbreviate the formula

∧
x∈X(xπ ↔ xπ′),

expressing that the traces π and π′ are equal with respect to a set X ⊆ AP of
atomic propositions, by π =X π′. Furthermore, we call a trace variable π free in
a HyperLTL formula if there is no quantification over π and we call a HyperLTL
formula ϕ closed if there exists no free trace variable in ϕ.

HyperLTL Semantics. A HyperLTL formula defines a hyperproperty, i.e., a set
of sets of traces. A set T of traces satisfies the hyperproperty if it is an element
of this set of sets. Formally, the semantics of HyperLTL formulas is given with
respect to a trace assignment Π from V to TR, i.e., a partial function mapping
trace variables to actual traces. Π[π �→ t] denotes that π is mapped to t, with
everything else mapped according to Π. Π[i,∞] denotes the trace assignment
that is equal to Π(π)[i,∞] for all π.
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Π |=T ∃π.ψ iff there exists t ∈ T : Π[π �→ t] |=T ψ

Π |=T ∀π.ψ iff for all t ∈ T : Π[π �→ t] |=T ψ

Π |=T aπ iff a ∈ Π(π)[0]
Π |=T ¬ψ iff Π |=T ψ

Π |=T ψ1 ∨ ψ2 iff Π |=T ψ1 or Π |=T ψ2

Π |=T ψ iff Π[1,∞] |=T ψ

Π |=T ψ1 U ψ2 iff there exists i ≥ 0 : Π[i,∞] |=T ψ2

and for all 0 ≤ j < i we have Π[j,∞] |=T ψ1

We say a set of traces T satisfies a HyperLTL formula ϕ if Π |=T ϕ, where Π is
the empty trace assignment.

2.2 System Model

A Kripke structure is a tuple K = (S, s0, δ,AP , L) consisting of a set of states
S, an initial state s0 ∈ S, a transition function δ : S → 2S , a set of atomic
propositions AP , and a labeling function L : S → 2AP , which labels every state
with a set of atomic propositions. We assume that each state has a successor,
i.e., δ(s) = ∅. This ensures that every run on a Kripke structure can always be
extended to an infinite run. We define a path of a Kripke structure as an infinite
sequence of states s0s1 · · · ∈ Sω such that s0 is the initial state of K and si+1 ∈
δ(si) for every i ∈ N. We denote the set of all paths of K that start in a state s
with Paths(K, s). Furthermore, Paths∗(K, s) denotes the set of all path prefixes
and Pathsω(K, s) the set of all path suffixes. A trace of a Kripke structure is an
infinite sequence of sets of atomic propositions L(s0), L(s1), · · · ∈ (2AP )ω, such
that s0 is the initial state of K and si+1 ∈ δ(si) for every i ∈ N. We denote the
set of all traces of K that start in a state s with TR(K, s). We say that a Kripke
structure K satisfies a HyperLTL formula ϕ if its set of traces satisfies ϕ, i.e., if
Π |=TR(K,s0) ϕ, where Π is the empty trace assignment.

2.3 Automata over Infinite Words

In our construction we use automata over infinite words. A Büchi automaton
is a tuple B = (Q,Q0, δ, Σ, F ), where Q is a set of states, Q0 is a set of initial
states, δ : Q × Σ → 2Q is a transition relation, and F ⊂ Q are the accepting
states. A run of B on an infinite word w = α1α2 · · · ∈ Σω is an infinite sequence
r = q0q1 · · · ∈ Qω of states, where q0 ∈ Q0 and for each i ≥ 0, qi+1 = δ(qi, αi+1).
We define Inf(r) = {q ∈ Q | ∀i∃j > i. rj = q}. A run r is called accepting if
Inf(r) ∩ F = ∅. A word w is accepted by B and called a model of B if there is
an accepting run of B on w.

Furthermore, an alternating automaton, whose runs generalize from
sequences to trees, is a tuple A = (Q,Q0, δ, Σ, F ). Q,Q0, Σ, and F are defined
as above and δ : Q × Σ → B

+Q being a transition function, which maps a state
and a symbol into a Boolean combination of states. Thus, a run(-tree) of an
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alternating Büchi automaton A on an infinite word w is a Q-labeled tree. A
word w is accepted by A and called a model if there exists a run-tree T such
that all paths p trough T are accepting, i.e., Inf(p) ∩ F = ∅.

A strongly connected component (SCC) in A is a maximal strongly connected
component of the graph induced by the automaton. An SCC is called accepting
if one of its states is an accepting state in A.

3 Quantitative Hyperproperties

Quantitative Hyperproperties are properties of sets of computation traces that
express a bound on the number of traces that may appear in a certain relation. In
the following, we study quantitative hyperproperties that are specified in terms
of HyperLTL formulas. We consider expressions of the following general form:

∀π1, . . . , πk. ϕ → (#σ : A. ψ � n)

Both the universally quantified variables π1, . . . , πk and the variable σ after the
counting operator # are trace variables; ϕ is a HyperLTL formula over atomic
propositions AP and free trace variables π1 . . . πk; A ⊆ AP is a set of atomic
propositions; ψ is a HyperLTL formula over atomic propositions AP and free
trace variables π1 . . . πk and, additionally σ. The operator � ∈ {<,≤,=, >,≥} is
a comparison operator; and n ∈ N is a natural number.

For a given set of traces T and a valuation of the trace variables π1, . . . , πk,
the term #σ : A.ψ computes the number of traces σ in T that differ in their val-
uation of the atomic propositions in A and satisfy ψ. The expression #σ : A.ψ�n
is true iff the resulting number satisfies the comparison with n. Finally, the com-
plete expression ∀π1, . . . , πk. ϕ → (#σ : A.ψ � n) is true iff for all combinations
π1, . . . , πk of traces in T that satisfy ϕ, the comparison #σ : A.ψ �n is satisfied.

Example 1 (Quantitative non-interference). Quantitative information-flow poli-
cies [13,20,30,34] allow the flow of a bounded amount of information. One way to
measure leakage is with min-entropy [43], which quantifies the amount of infor-
mation an attacker can gain given the answer to a single guess about the secret.
The bounding problem [45] for min-entropy is to determine whether that amount
is bounded from above by a constant 2c, corresponding to c bits. We assume that
the program whose leakage is being quantified is deterministic, and assume that
the secret input to that program is uniformly distributed. The bounding prob-
lem then reduces to determining that there is no tuple of 2c + 1 distinguishable
traces [43,45]. Let O ⊆ AP be the set of observable outputs. A simple quanti-
tative information flow policy is then the following quantitative hyperproperty,
which bounds the number of distinguishable outputs to 2c, corresponding to a
bound of c bits of information:

#σ : O. true ≤ 2c

A slightly more complicated information flow policy is quantitative non-
interference. In quantitative non-interference, the bound must be satisfied for
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every individual input. Let I ⊆ AP be the observable inputs to the system.
Quantitative non-interference is the following quantitative hyperproperty1:

∀π.#σ : O. ( (π =I σ)) ≤ 2c

For each trace π in the system, the property checks whether there are more than
2c traces σ that have the same observable input as π but different observable
output.

Example 2 (Deniability). A program satisfies deniability (see, for example, [7,
10]) when there is no proof that a certain input occurred from simply observing
the output, i.e., given an output of a program one cannot derive the input that
lead to this output. A deterministic program satisfies deniability when each
output can be mapped to at least two inputs. A quantitative variant of deniability
is when we require that the number of corresponding inputs is larger than a given
threshold. Quantitative deniability can be specified as the following quantitative
Hyperproperty:

∀π.#σ : I. ( (π =O σ)) > n

For all traces π of the system we count the number of sequences σ in the system
with different input sequences and the same output sequence of π, i.e., for the
fixed output sequence given by π we count the number of input sequences that
lead to this output.

4 Model Checking Quantitative Hyperproperties

We present a model checking algorithm for quantitative hyperproperties based on
model counting. The advantage of the algorithm is that its runtime complexity is
independent of the bound n and thus avoids the n-fold self-composition necessary
for any encoding of the quantitative hyperproperty in HyperLTL.

Before introducing our novel counting-based algorithm, we start by a trans-
lation of quantitative hyperproperties into formulas in HyperLTL and estab-
lishing an exponential lower bound for its representation.

4.1 Standard Model Checking Algorithm: Encoding Quantitative
Hyperproperties in HyperLTL

The idea of the reduction is to check a lower bound of n traces by existentially
quantifying over n traces, and to check an upper bound of n traces by universally
quantifying over n + 1 traces. The resulting HyperLTL formula can be verified
using the standard model checking algorithm for HyperLTL [18].

1 We write π =A π′ short for πA = π′
A where πA is the A-projection of π.
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Theorem 1. Every quantitative hyperproperty ∀π1, . . . , πk. ψι → (#σ : A. ψ�n)
can be expressed as a HyperLTL formula. For � ∈ {≤}({<}), the HyperLTL
formula has n + k + 1(resp. n + k) universal trace quantifiers in addition to
the quantifiers in ψι and ψ. For � ∈ {≥}({>}), the HyperLTL formula has k
universal trace quantifiers and n (resp. n + 1) existential trace quantifiers in
addition to the quantifiers in ψι and ψ. For � ∈ {=}, the HyperLTL formula
has k + n + 1 universal trace quantifiers and n existential trace quantifiers in
addition to the quantifiers in ψι and ψ.

Proof. For � ∈ {≤}, we encode the quantitative hyperproperty ∀π1, . . . , πk. ψι →
(#σ : A. ψ � n) as the following HyperLTL formula:

∀π1, . . . , πk. ∀π′
1, . . . , π

′
n+1.

⎛

⎝ψι ∧
∧

i�=j

(π′
i =A π′

j)

⎞

⎠ →
(

∨

i

¬ψ[σ �→ π′
i]

)

where ψ[σ �→ π′
i] is the HyperLTL formula ψ with all occurrences of σ replaced

by π′
i. The formula states that there is no tuple of n + 1 traces π′

1, . . . , π
′
n+1

different in the evaluation of A, that satisfy ψ. In other words, for every n + 1
tuple of traces π′

1, . . . , π
′
n+1 that differ in the evaluation of A, one of the paths

must violate ψ. For � ∈ {<}, we use the same formula, with ∀π′
1, . . . , π

′
n instead

of ∀π′
1, . . . , π

′
n+1.

For � ∈ {≥}, we encode the quantitative hyperproperty analogously as the
HyperLTL formula

∀π1, . . . , πk. ∃π′
1, . . . , π

′
n. ψι →

⎛

⎝
∧

i�=j

(π′
i =A π′

j)

⎞

⎠ ∧
(

∧

i

ψ[σ �→ π′
i]

)

The formula states that there exist paths π′
1, . . . , π

′
n that differ in the evalua-

tion of A and that all satisfy ψ. For � ∈ {>}, we use the same formula, with
∃π′

1, . . . , π
′
n+1 instead of ∀π′

1, . . . , π
′
n. Lastly, for � ∈ {=}, we encode the quanti-

tative hyperproperty as a conjunction of the encodings for ≤ and for ≥.

Example 3 (Quantitative non-interference in HyperLTL). As discussed in Exam-
ple 1, quantitative non-interference is the quantitative hyperproperty

∀π.#σ : O. (π =I σ) ≤ 2c,

where we measure the amount of leakage with min-entropy [43]. The bounding
problem for min-entropy asks whether the amount of information leaked by a
system is bounded by a constant 2c where c is the number of bits. This is encoded
in HyperLTL as the requirement that there are no 2c + 1 traces distinguishable
in their output:

∀π0. ∀π1 . . . ∀π2c .

(
∧

i

(πi =I π0)

)

→
⎛

⎝
∨

i�=j

(πi =O πj)

⎞

⎠ .

This formula is equivalent to the formalization of quantitative non-interference
given in [26].
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Model checking quantitative hyperproperties via the reduction to HyperLTL
is very expensive. In the best case, when � ∈ {≤, <}, ψι does not contain exis-
tential quantifiers, and ψ does not contain universal quantifiers, we obtain an
HyperLTL formula without quantifier alternations, where the number of quan-
tifiers grows linearly with the bound n. For m quantifiers, the HyperLTL model
checking algorithm [26] constructs and analyzes the m-fold self-composition of
the Kripke structure. The running time of the model checking algorithm is thus
exponential in the bound. If � ∈ {≥, >,=}, the encoding additionally introduces
a quantifier alternation. The model checking algorithm checks quantifier alterna-
tions via a complementation of Büchi automata, which adds another exponent,
resulting in an overall doubly exponential running time.

The model checking algorithm we introduce in the next section avoids the
n-fold self-composition needed in the model checking algorithm of HyperLTL
and its complexity is independent of the bound n.

4.2 Counting-Based Model Checking Algorithm

A Kripke structure K = (S, s0, τ,AP, L) violates a quantitative hyperproperty

ϕ = ∀π1, . . . , πk. ψι → (#σ : A.ψ � n)

if there is a k-tuple t = (π1, . . . , πk) of traces πi ∈ TR(K) that satisfies the
formula

∃π1, . . . , πk. ψι ∧ (#σ : A. ψ � n)

where � is the negation of the comparison operator �. The tuple t then satisfies
the property ψι and the number of (k + 1)-tuples t′ = (π1, . . . , πk, σ) for σ ∈
TR(K) that satisfy ψ and differ pairwise in the A-projection of σ satisfies the
comparison � n (The A-projection of a sequence σ is defined as the sequence
σA ∈ (2A)ω, such that for every position i and every a ∈ A it holds that a ∈ σA[i]
if and only if a ∈ σ[i]). The tuples t′ can be captured by the automaton composed
of the product of an automaton Aψι∧ψ that accepts all k+1 of traces that satisfy
both ψι and ψ and a k + 1-self composition of K. Each accepting run of the
product automaton presents k + 1 traces of K that satisfy ψι ∧ ψ. On top of the
product automaton, we apply a special counting algorithm which we explain in
detail in Sect. 4.4 and check if the result satisfies the comparison � n.

Algorithm 1 gives a general picture of our model checking algorithm. The
algorithm has two parts. The first part applies if the relation � is one of {≥, >}.
In this case, the algorithm checks whether a sequence over APψ (propositions
in ψ) corresponds to infinitely many sequences over A. This is done by checking
whether the product automaton B has a so-called doubly pumped lasso(DPL), a
subgraph with two connected lassos, with a unique sequence over APψ and dif-
ferent sequences over A. Such a doubly pumped lasso matches the same sequence
over APψ with infinitely many sequences over A (more in Sect. 4.4). If no dou-
bly pumped lasso is found, a projected model counting algorithm is applied in
the second part of the algorithm in order to compute either the maximum or
the minimum value, corresponding to the comparison operator �. In the next
subsections, we explain the individual parts of the algorithm in detail.
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Algorithm 1. Counting-based Model Checking of Quantitative Hyperproperties
Input: Quantitative Hyperproperty ϕ = ∀π1 . . . πk. ψι → (#σ : A.ψ � n), Kripke

Structure K = (S, s0, τ,AP, L)
Output: K |= ϕ
1: B = QHLTL2BA(K, π1, . . . , πk, ψι ∧ ψ)
2: /*Check Infinity*/
3: if � ∈ {≥, >} then
4: ce = DPL(B)
5: if ce �= ⊥ then
6: return ce
7: /*Apply Projected Counting Algorithm*/
8: if � ∈ {≥, >} then
9: ce = MaxCount(B, n, �)

10: else
11: ce = MinCount(B, n, �)
12: return ce

4.3 Büchi Automata for Quantitative Hyperproperties

For a quantitative hyperproperty ϕ = ∀π1 . . . πk. ψι → (#σ : A.ψ � n) and a
Kripke structure K = (S, s0, τ,AP, L), we first construct an alternating automa-
ton Aψι∧ψ for the HyperLTL property ψι ∧ ψ. Let Aψ1 = (Q1, q0,1, Σ2, δ1, F1)
and Aψ2 = (Q2, q0,2, Σ2, δ2, F2) be alternating automata for subformulas ψ1 and
ψ2. Let Σ = 2APϕ where APϕ are all indexed atomic propositions that appear
in ϕ. Aψι∧ψ is constructed using following rules2:

ϕ = aπ Aϕ = ({q0}, q0, Σ, δ, ∅) where δ(q0, α) = (aπ ∈ α)
ϕ = ¬aπ Aϕ = ({q0}, q0, Σ, δ, ∅) where δ(q0, α) = (aπ �∈ α)

ϕ = ψ1 ∧ ψ2 Aϕ = (Q1 ∪· Q2 ∪· {q0}, q0, Σ, δ, F1 ∪· F2)
where δ(q, α) = δ1(q0,1, α) ∧ δ2(q0,2, α)

and δ(q, α) = δi(q, α) when q ∈ Qi for i ∈ {1, 2}
ϕ = ψ1 ∨ ψ2 Aϕ = (Q1 ∪· Q2 ∪· {q0}, q0, Σ, δ, F1 ∪· F2)

where δ(q, α) = δ1(q0,1, α) ∨ δ2(q0,2, α)
and δ(q, α) = δi(q, α) when q ∈ Qi for i ∈ {1, 2}

ϕ = ψ1 Aϕ = (Q1 ∪· {q0}, q0, Σ, δ, F1)
where δ(q, α) = q0,1

and δ(q, α) = δ1(q, α) for q ∈ Q1
ϕ = ψ1 U ψ2 Aϕ = (Q1 ∪· Q2 ∪· {q0}, q0, Σ, δ, F1 ∪· F2)

where δ(q0, α) = δ2(q0,2, α) ∨ (δ1(q0,1, α) ∧ q0)
and δ(q, α) = δi(q, α) when q ∈ Qi for i ∈ {1, 2}

ϕ = ψ1 R ψ2 Aϕ = (Q1 ∪· Q2 ∪· {q0}, q0, Σ, δ, F1 ∪· F2 ∪· {q0})
where δ(q0, α) = δ2(q0,2, α) ∧ (δ1(q0,1, α) ∨ q0)
and δ(q, α) = δi(q, α) when q ∈ Qi for i ∈ {1, 2}

For a quantified formula ϕ = ∃π.ψ1, we construct the product automaton of
the Kripke structure K and the Büchi automaton of ψ1. Here we reduce the
alphabet of the automaton by projecting all atomic proposition in APπ away:

2 The construction follows the one presented in [26] with a slight modification on
the labeling of transitions. Labeling over atomic proposition instead of the states
of the Kripke structure suffices, as any nondeterminism in the Kripke structure is
inherently resolved, because we quantify over trace not paths.
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ϕ = ∃π.ψ1 Aϕ = (Q1 × S ∪· {q0}, Σ \ APπ, δ, F1 × S)
where δ(q0, α) = {(q′, s′) | q′ ∈ δ1(q0,1, α ∪ α′), s′ ∈ τ(s0), (L(s0))π =APπ α′}

and δ((q, s), α) = {(q′, s′) | q′ ∈ δ1(q, α ∪ α′), s′ ∈ τ(s), (L(s))π =APπ α′}

Given the Büchi automaton for the hyperproperty ψι ∧ψ it remains to construct
the product with the k+1-self composition of K. The transitions of the automa-
ton are defined over labels from Σ = 2AP∗

where AP ∗ = APσ ∪ ⋃
i APπi

. Aψι∧ψ.
This is necessary to identify which transition was taken in each copy of K, thus,
mirroring a tuple of traces in K. For each of the variables π1, . . . πk and σ we
use following rule:

ϕ = ∃π.ψ1 Aϕ = (Q1 × S ∪· {q0}, Σ, δ, F1 × S)
where δ(q0, α) = {(q′, s′) | q′ ∈ δ1(q0,1, α), s′ ∈ τ(s0), (L(s0))π =APπ }

and δ((q, s), α) = {(q′, s′) | q′ ∈ δ1(q, α), s′ ∈ τ(s), (L(s))π =APπ }

Finally, we transform the resulting alternating automaton to an equivalent Büchi
automaton following the construction of Miyano and Hayashi [39].

4.4 Counting Models of ω-Automata

Computing the number of words accepted by a Büchi automaton can be done
by examining its accepting lassos. Consider, for example, the Büchi automata
over the alphabet 2{a} in Fig. 1. The automaton on the left has one accepting
lasso (q0)ω and thus has only one model, namely {a}ω. The automaton on the
right has infinitely many accepting lassos (q0{})i{a}(q1({} ∨ {a}))ω that accept
infinitely many different words all of the from {}∗{a}({} ∨ {a})ω. Computing
the models of a Büchi automaton is insufficient for model checking quantitative
hyperproperties as we are not interested in the total number of models. We rather
maximize, respectively minimize, over sequences of subsets of atomic proposi-
tions the number of projected models of the Büchi automaton. For instance,
consider the automaton given in Fig. 2. The automaton has infinitely many mod-
els. However, the maximum number of sequences σb ∈ 2{b} that correspond to
accepting lassos in the automaton with a unique sequence σa ∈ 2{a} is two:
For example, let n be a natural number. For any model of the automaton and
for each sequence σa := {}n{a}({})ω the automaton accepts the following two
sequences: {b}n{}{b}ω and {b}ω. Formally, given a Büchi automaton B over AP
and a set A, such that A ⊆ AP , an A-projected model (or projected model over
A) is defined as a sequence σA ∈ (2A)ω that results in the A-projection of an
accepting sequence σ ∈ (2AP )ω.

Fig. 1. Büchi automata with one model (left) and infinitely many models (right).
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Fig. 2. A two-state Büchi automaton, such that there exist exactly two {b}-projected
models for each {a}-projected sequence.

In the following, we define the maximum model counting problem over
automata and give an algorithm for solving the problem. We show how to use
the algorithm for model checking quantitative hyperproperties.

Definition 1 (Maximum Model Counting over Automata (MMCA)).
Given a Büchi automaton B over an alphabet 2AP for some set of atomic propo-
sitions AP and sets X,Y,Z ⊆ AP the maximum model counting problem is to
compute

max
σY ∈(2Y )ω

|{σX ∈ (2X)ω | ∃σZ ∈ (2Z)ω. σX ∪ σY ∪ σZ ∈ L(B)}|

where σ ∪ σ′ is the point-wise union of σ and σ′.

As a first step in our algorithm, we show how to check whether the maximum
model count is equal to infinity.

Definition 2 (Doubly Pumped Lasso). For a graph G, a doubly pumped
lasso in G is a subgraph that entails a cycles C1 and another different cycle C2

that is reachable from C1.

Fig. 3. Forms of doubly pumped lassos.

In general, we distinguish between two types of doubly pumped lassos as
shown in Fig. 3. We call the lassos with periods C1 and C2 the lassos of the
doubly pumped lasso. A doubly pumped lasso of a Büchi automaton B is one in
the graph structure of B. The doubly pumped lasso is called accepting when C2

has an accepting state. A more generalized formalization of this idea is given in
the following theorem.

Theorem 2. Let B = (Q, q0, δ, 2AP, F ) be a Büchi automaton for some set of
atomic propositions AP = X ∪ Y ∪ Z and let σ′ ∈ (2Y )ω. The automaton B
has infinitely many X ∪ Y -projected models σ with σ =Y σ′ if and only if B
has an accepting doubly pumped lasso with lassos ρ and ρ′ such that: (1) ρ is an
accepting lasso (2) tr(ρ) =Y tr(ρ′) =Y σ′ (3) The period of ρ′ shares at least one
state with ρ and (4) tr(ρ) =X tr(ρ′).
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To check whether there is a sequence σ′ ∈ (2Y )ω such that the number of X ∪Y -
projected models σ of B with σ =Y σ′ is infinite, we search for a doubly pumped
lasso satisfying the constraints given in Theorem 2. This can be done by applying
the following procedure:

Given a Büchi automaton B = (Q, q0, 2AP, δ, F ) and sets X,Y,Z ⊆ AP,
we construct the following product automaton B× = (Q×, q×,0, 2AP ×
2AP, δ×, F×) where: Q× = Q × Q, q×,0 = (q0, q0), δ× = {(s1, s2)

(α,α′)−−−−→
(s′

1, s
′
2) | s1

α−→ s2, s
′
1

α′
−→ s′

2, α =Y α′} and F× = Q × F . The automa-
ton B has infinitely many models σ′ if there is an accepting lasso ρ =
(q0, q0)(α1, α

′
1) . . . ((qj , q

′
j)(αj+1, α

′
j+1) . . . (qk, q′

k)(αk+1, α
′
k+1)) in B× such that:

∃h ≤ j. q′
h = qj , i.e., B has lassos ρ1 and ρ2 that share a state in the period of ρ1

and ∃h > j. αh =X α′
h, i.e., the lassos differ in the evaluation of X in a position

after the shared state and thus allows infinitely many different sequence over X
for the a sequence over Y . The lasso ρ simulates a doubly pumped lasso in B
satisfying the constraints of Theorem 2.

Theorem 3. Given an alternating Büchi automaton A = (Q, q0, δ, 2AP, F ) for
a set of atomic propositions AP = X ∪ Y ∪ Z, the problem of checking whether
there is a sequence σ′ ∈ (2Y )ω such that A has infinitely many X ∪ Y -projected
models σ with σ =Y σ′ is Pspace-complete.

The lower and upper bound for the problem can be given by a reduction from
and to the satisfiability problem of LTL [4]. Due to the finite structure of Büchi
automata, if the number of models of the automaton exceed the exponential
bound 2|Q|, where Q is the set of states, then the automaton has infinitely many
models.

Lemma 1. For any Büchi automaton B, the number of models of B is less or
equal to 2|Q| otherwise it is ∞.

Proof. Assume the number of models is larger than 2|Q| then there are more
than 2|Q| accepting lassos in B. By the pigeonhole principle, two of them share
the same 2|Q|-prefix. Thus, either they are equal or we found doubly pumped
lasso in B.

Corollary 1. Let a Büchi automaton B over a set of atomic propositions AP
and sets X,Y ⊆ AP. For each sequence σY ∈ (2Y )ω the number of X ∪ Y -
projected models σ with σ =Y σY is less or equal than 2|Q| otherwise it is ∞.

From Corollary 1, we know that if no sequence σY ∈ (2Y )ω matches to infinitely
many X ∪ Y -projected models then the number of such models is bound by
2|Q|. Each of these models has a run in B which ends in an accepting strongly
connected component. Also from Corollary 1, we know that every model has a
lasso run of length |Q|. For each finite sequence wY of length |wY | = |Q| that
reaches an accepting strongly connected component, we count the number X∪Y -
projected words w of length |Q| with w =Y wY and that end in an accepting
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Fig. 4. Maximum Model Counting Algorithm (left) and a Sketch of a step in this
algorithm (right): Current elements of our working set are q1, q2 ∈ W and q3 ∈ W ′.
If i = 0, i.e., we are in the first step of the algorithm, then q1 and q2 are states of
accepting SCCs.

strongly connected component. This number is equal to the maximum model
counting number.

Algorithm 2 describes the procedure. An algorithm for the minimum model
counting problem is defined in similar way. The algorithm works in a backwards
fashion starting with states of accepting strongly connected components. In each
iteration i, the algorithm maps each state of the automaton with X∪Y -projected
words of length i that reach an accepting strongly connected component. After
|Q| iterations, the algorithm determines from the mapping of initial state q0 a
Y -projected word of length |Q| with the maximum number of matching X ∪ Y -
projected words (Fig. 4).

Theorem 4. The decisional version of the maximum model counting problem
over automata (MMCA), i.e. the question whether the maximum is greater than
a given natural number n, is in NP#P .

Proof. Let a Büchi automaton over an alphabet 2AP for a set of atomic proposi-
tions AP and sets APX ,APY ,APZ ⊆ AP and a natural number n be given. We
construct a nondeterministic Turing Machine M with access to a #P -oracle as
follows: M guesses a sequence σY ∈ 2APY . It then queries the oracle, to compute
a number c, such that c = |{σX ∈ (2APX )ω | ∃σZ ∈ (2APZ )ω. σX ∪ σY ∪ σZ ∈
L(B)}|, which is a #P problem [27]. It remains to check whether n > c. If so,
M accepts.

The following theorem summarizes the main findings of this section, which estab-
lish, depending on the property, an exponentially or even doubly exponentially
better algorithm (in the quantitative bound) over the existing model checking
algorithm for HyperLTL.
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Theorem 5. Given a Kripke structure K and a quantitative hyperproperty ϕ
with bound n, the problem whether K |= ϕ can be decided in logarithmic space
in the quantitative bound n and in polynomial space in the size of K.

5 A Max#Sat-Based Approach

For existential HyperLTL formulas ψι and ψ, we give a more practical model
checking approach by encoding the automaton-based construction presented in
Sect. 4 into a propositional formula.

Given a Kripke structure K = (S, s0, τ,APK , L) and a quantitative hyper-
property ϕ = ∀π1, . . . , πk. ψι → (#σ : A. ψ)�n over a set of atomic propositions
APϕ ⊆ APK and bound μ, our algorithm constructs a propositional formula φ
such that, every satisfying assignment of φ uniquely encodes a tuple of lassos
(π1, . . . , πk, σ) of length μ in K, where (π1, . . . , πk) satisfies ψι and (π1, . . . , πk, σ)
satisfies ψ. To compute the values max

(π1,...,πk)
|{σA | (π1, . . . , πk, σ) |= ψι ∧ ψ}|

(in case � ∈ {≤, <}) or min
(π1,...,πk)

|{σA | (π1, . . . , πk, σ) |= ψι ∧ ψ}| (in case

� ∈ {≥, >}), we pass φ to a maximum model counter, respectively, to a minimum
model counter with the appropriate sets of counting and maximization, respec-
tively, minimization propositions. From Lemma 1 we know that it is enough
to consider lasso of length exponential in the size of ϕ. The size of φ is thus
exponential in the size of ϕ and polynomial in the size of K.

The construction resembles the encoding of the bounded model checking
approach for LTL [16]. Let ψι = ∃π′

1 . . . π′
k′ . ψ′

ι and ψ = ∃π′′
1 . . . π′′

k′′ . ψ′′ and
let APψι

and APψ be the sets of atomic propositions that appear in ψι and
ψ respectively. The propositional formula φ is given as a conjunction of the
following propositional formulas: φ =

∧
i≤k�K�μ

πi
∧ �K�μ

σ ∧ �ψι�
0
μ ∧ �ψ�0μ where:

– μ is length of considered lassos and is equal to μ = 2|ψ′
ι∧ψ′′| ∗ |S|k+k′+k′′+1 +1

which is one plus the size of the product automaton constructed from the
k+k′ +k′′ +1 self-composition and the automaton for ψι ∧ψ. The “plus one”
is to additionally check whether the number of models is infinite.

– �K�k
π is the encoding of the transition relation of the copy of K where

atomic propositions are indexed with π and up to an unrolling of length
k. Each state of K can be encoded as an evaluation of a vector of log |S|
unique propositional variables. The encoding is given by the propositional
formula I( #”v π

0 ) ∧ ∧k−1
i=0 τ( #”v π

i , #”v π
i+1) which encodes all paths of K of length k.

The formula I( #”v π
0 ) defines the assignment of the initial state. The formulas

τ( #”v π
i , #”v π

i+1) define valid transitions in K from the ith to the (i + 1)st state
of a path.

– �ψι�
0
k and �ψ�0k are constructed using the following rules3:

3 We omitted the rules for boolean operators for the lack of space.



Model Checking Quantitative Hyperproperties 159

i < k i = k

�aπ�i
k ai

π

∨k−1
j=0 (lj ∧ aj

π)
�¬aπ�i

k ¬ai
π

∨k−1
j=0 (lj ∧ ¬aj

π)
� ϕ1�

i
k �ϕ1�

i+1
k

∨k−1
j=0 (lj ∧ �ϕ1�

j
k)

�ϕ1 U ϕ2�
i
k �ϕ2�

i
k ∨ (�ϕ1�

i
k ∧ �ϕ1 U ϕ�i+1

k )
∨k−1

j=0 (lj ∧ 〈ϕ1 U ϕ2〉j
k)

〈ϕ1 U ϕ2〉i
k �ϕ2�

i
k ∨ (�ϕ1�

i
k ∧ 〈ϕ1 U ϕ〉i+1

k ) false
�ϕ1 Rϕ2�

i
k �ϕ2�

i
k ∧ (�ϕ1�

i
k ∨ �ϕ1 Rϕ�i+1

k )
∨k−1

j=0 (lj ∧ 〈ϕ1 Rϕ2〉j
k)

〈ϕ1 Rϕ2〉i
k �ϕ2�

i
k ∧ (�ϕ1�

i
k ∨ 〈ϕ1 Rϕ〉i+1

k ) true

in case of an existential quantifier over a trace variable π, we add a copy of
the encoding of K with new variables distinguished by π:

�∃π.ϕ1�
i
k �K�k

π ∧ �ϕ1�
i
k

We define sets X = {ai
σ | a ∈ A, i ≤ k}, Y = {ai | a ∈ APψ \ A, i ≤ k} and

Z = P \X ∪Y , where P is the set of all propositions in φ. The maximum model
counting problem is then MMC(φ,X, Y, Z).

5.1 Experiments

We have implemented the Max#Sat-based model checking approach from the
last section. We compare the Max#Sat-based approach to the expansion-
based approach using HyperLTL [26]. Our implementation uses the MaxCount
tool [29]. We use the option in MaxCount that enumerates, rather than approx-
imates, the number of assignments for the counting variables. We furthermore
instrumented the tool so that it terminates as soon as a sample is found that
exceeds the given bound. If no sample is found after one hour, we report a
timeout.

Table 1 shows the results on a parameterized benchmark obtained from the
implementation of an 8bit passcode checker. The parameter of the benchmark is

Table 1. Comparison between the expansion-based approach (MCHyper) and the
Max#Sat-based approach (MCQHyper). #max is the number of maximization vari-
ables (set Y ). #count is the number of the counting variables (set X). TO indicates a
time-out after 1 h.

Benchmark Specification MCHyper MCQHyper

#Latches #Gates Time(sec) #var #max #count Time(sec)

Pwd 8bit 1bit leak 9 55 0.3 97 16 2 1

2bit leak 0.4 176 32 4 1

3bit leak 1.3 336 64 8 2

4bit leak 97 656 128 16 4

5bit leak TO 1296 256 32 8

6bit leak TO 2576 512 64 335

8bit leak TO 10256 2048 256 TO
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the bound on the number of bits that is leaked to an adversary, who might, for
example, enter passcodes in a brute-force manner. In all instances, a violation is
found. The results show that the Max#Sat-based approach scales significantly
better than the expansion-based approach.

6 Conclusion

We have studied quantitative hyperproperties of the form ∀π1, . . . , πk. ϕ → (#σ :
A. ψ � n), where ϕ and ψ are HyperLTL formulas, and #σ : A.ϕ � n compares
the number of traces that differ in the atomic propositions A and satisfy ψ to
a threshold n. Many quantitative information flow policies of practical inter-
est, such as quantitative non-interference and deniability, belong to this class of
properties. Our new counting-based model checking algorithm for quantitative
hyperproperties performs at least exponentially better in both time and space
in the bound n than a reduction to standard HyperLTL model checking. The
new counting operator makes the specifications exponentially more concise in
the bound, and our model checking algorithm solves the concise specifications
efficiently.

We also showed that the model checking problem for quantitative hyperprop-
erties can be solved with a practical Max#SAT-based algorithm. The SAT-based
approach outperforms the expansion-based approach significantly for this class
of properties. An additional advantage of the new approach is that it can handle
properties like deniability, which cannot be checked by MCHyper because of the
quantifier alternation.
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Abstract. Relational safety specifications describe multiple runs of the
same program or relate the behaviors of multiple programs. Approaches
to automatic relational verification often compose the programs and ana-
lyze the result for safety, but a naively composed program can lead to
difficult verification problems. We propose to exploit relational speci-
fications for simplifying the generated verification subtasks. First, we
maximize opportunities for synchronizing code fragments. Second, we
compute symmetries in the specifications to reveal and avoid redundant
subtasks. We have implemented these enhancements in a prototype for
verifying k-safety properties on Java programs. Our evaluation confirms
that our approach leads to a consistent performance speedup on a range
of benchmarks.

1 Introduction

The verification of relational program specifications is of wide interest, having
many applications. Relational specifications can describe multiple runs of the
same program or relate the behaviors of multiple programs. An example of the
former is the verification of security properties such as non-interference, where
different executions of the same program are compared to check whether there
is a leak of sensitive information. The latter is useful for checking equivalence or
refinement relationships between programs after applying some transformations
or during iterative development of different software versions.

There is a rich history of work on the relational verification of programs. Rep-
resentative efforts include those that target general analysis using relational pro-
gram logics and frameworks [4,5,8,27,31] or specific applications such as security
verification [1,7,9], compiler validation [16,32], and differential program analy-
sis [17,19,21–23]. These efforts are supported by tools that range from automatic
verifiers to interactive theorem-provers. In particular, many automatic verifiers
are based on constructing a composition over the programs under consideration,
where the relational property over multiple runs (of the same or different pro-
grams) is translated into a functional property over a single run of a composed
program. This has the benefit that standard techniques and tools for program
verification can then be applied.

However, it is also well known that a naively composed program can lead to
difficult verification problems for automatic verifiers. For example, a sequential
c© The Author(s) 2018
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composition of two loops would require effective techniques for generating loop
invariants. In contrast, a parallel composition would provide potential for align-
ing the loop bodies, where relational invariants may be easier to establish than
a functional loop invariant. Examples of techniques that exploit opportunities
for such alignment include use of type-based analysis with self-composition [29],
allowing flexibility in composition to be a mix of sequential and parallel [6],
exploiting structurally equivalent programs for compiler validation [32], lockstep
execution of loops in reasoning using Cartesian Hoare Logic [27], and merging
Horn clause rules for relational verification [13,24].

In this paper, we present a compositional framework that leverages rela-
tional specifications to further simplify the generated verification tasks on the
composed program. Our framework is motivated by two main strategies. The
first strategy, similar to the efforts mentioned above, is to exploit opportunities
for synchrony, i.e., aligning code fragments across which relational invariants
are easy to derive, perhaps due to functional similarity or due to similar code
structure, etc. Specifically, we choose to synchronize the programs at conditional
blocks as well as at loops. Similar to closely related efforts [6,27], we would like
to execute loops in lockstep so that relational invariants can be derived over
corresponding iterations over the loop bodies. Specifically, we propose a novel
technique that analyzes the relational specifications to infer, under reasonable
assumptions, maximal sets of loops that can be executed in lockstep. Synchro-
nizing at conditional blocks in addition to loops enables simplification due to
relational specifications and conditional guards that might result in infeasible
or redundant subtasks. Pruning of such infeasible subtasks has been performed
and noted as important in existing work [27], and synchronizing at conditional
blocks allows us to prune eagerly. More importantly, aligning different programs
at conditional statements sets up our next strategy.

Our second strategy is the exploitation of symmetry in relational specifica-
tions. Due to control flow divergences or non-lockstep executions of loops, even
different copies of the same program may proceed along different code fragments.
However, some of the resulting verification subtasks may be indistinguishable
from each other due to underlying symmetries among related fragments. We
analyze the relational specifications, expressed as formulas in first-order theories
(e.g., linear integer arithmetic) with multi-index variables, to discover symme-
tries and exploit them to prune away redundant subtasks. Prior works on use
of symmetry in model checking [11,14,15,20] are typically based on symmet-
ric states satisfying the same set of indexed atomic propositions, and do not
consider symmetries among different indices in specifications. To the best of
our knowledge, ours is the first work to extract such symmetries in relational
specifications, and to use them for pruning redundant subtasks during rela-
tional verification. For extracting these symmetries, we have lifted core ideas
from symmetry-discovery and symmetry-breaking in SAT formulas [12] to richer
formulas in first-order theories.

The strategies we propose for exploiting synchrony and symmetry via rela-
tional specifications are fairly general in that they can be employed in vari-
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Fig. 1. Example program (left), and eight possible control-flow decisions (right).

ous verification methods. We provide a generic logic-based description of these
strategies at a high level (Sect. 4), and also describe a specific instantiation
in a verification algorithm based on forward analysis that computes strongest-
postconditions (Sect. 5). We have implemented our approach in a prototype tool
called Synonym built on top of the Descartes tool [27]. Our experimental
evaluation (Sect. 6) shows the effectiveness of our approach in improving the per-
formance of verification in many examples (and a marginal overhead in smaller
examples). In particular, exploiting symmetry is crucial in enabling verification
to complete for some properties, without which Descartes exceeds a timeout
on all benchmark examples.

2 Motivating Example

Consider three C-like integer programs {Pj} of the form shown in Fig. 1 (left).
They are identical modulo renaming, and we use indices j ∈ {1, 2, 3} as sub-
scripts to denote variables in the different copies. We assume that each variable
initially takes a nondeterministic value in each program.

A relational verification problem (RVP) is a tuple consisting of programs
{Pj}, a relational precondition pre, and a relational postcondition post . In the
example RVPs below, we consider the three conditionals, which in turn lead to
eight possible control-flow decisions (Fig. 1, right) in a composed program. Each
RVP reduces to subproblems for proving that post can be derived from pre for
each of these control-flow decisions. In the rest of the section, we demonstrate
the underlying ideas behind our approach to solve these subproblems efficiently.

Maximizing Lockstep Execution. Given an RVP (referred to as RVP1) with pre-
condition x1 < x3 ∧ x1 > 0 ∧ i1 > 0 ∧ i2 ≥ i1 ∧ i1 = i3 (pre) and postcondition
(x1 < x3 ∨ y1 �= y3) ∧ i1 > 0 ∧ i2 ≥ i1 ∧ i1 = i3 (post), consider a control-flow
decision y1 > 20 ∧ y2 > 20 ∧ y3 > 20. This leads to another RVP, consisting of
three programs of the following form:

assume(yj > 20); while (ij < 10) {xj *= ij; ij++;}
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where j ∈ {1, 2, 3}, and the aforementioned pre and post . From pre, it follows
that i1 = i3 and i2 ≥ i1. We can thus infer that the first and third loops
are always executed the same number of times, while the second loop may be
executed for fewer iterations. This knowledge lets us infer a single relational
invariant for the first and third loops and handle the second loop separately.
Clearly, the relational invariant x1 < x3 ∧ i1 = i3 ∧ i1 ≤ 10 and the non-
relational invariant i2 ≤ 10 are enough to derive post . If we were to handle the
first and third loop separately, we would need complex nonlinear invariants such
as x1 = x1,init×i1!

i1,init !
and x3 = x3,init×i3!

i3,init !
, which involve auxiliary variables xj,init

and ij,init denoting the initial values of xj and ij respectively.

Symmetry-Breaking. For the same program, and an RVP (referred to as RVP2)
with precondition i1 > 0 ∧ i2 ≥ i1 ∧ i1 = i3 and postcondition i1 > 0 ∧ i2 ≥
i1 ∧ i1 = i3, consider a control-flow decision y1 > 20 ∧ y2 > 20 ∧ y3 ≤ 20. We
generate another RVP involving the following set of programs:

assume(y1 > 20); while (i1 < 10) {x1 *= i1; i1++;}
assume(y2 > 20); while (i2 < 10) {x2 *= i2; i2++;}
assume(y3 ≤ 20); while (i3 < 10) {x3++; i3++;}

Similarly, decision y1 ≤ 20 ∧ y2 > 20 ∧ y3 > 20 generates yet another RVP over
the following:

assume(y1 ≤ 20); while (i1 < 10) {x1++; i1++;}
assume(y2 > 20); while (i2 < 10) {x2 *= i2; i2++;}
assume(y3 > 20); while (i3 < 10) {x3 *= i3; i3++;}

Both RVPs have the same precondition and postcondition as RVP2. We can
see that both RVPs differ only in their subscripts; by taking one and swapping
the subscripts 1 and 3 due to symmetry, we arrive at the other. Thus, knowing
the verification result for either RVP allows us to skip verifying the other one,
by discovering and exploiting such symmetries.

3 Background and Notation

Given a loop-free program over input variables �x and output variables �y (such
that �x and �y are disjoint), let Tr(�x, �y) denote its symbolic encoding.

Proposition 1. Given two loop-free programs, Tr1(�x1, �y1) and Tr2(�x2, �y2), a
precondition pre(�x1, �x2), and a postcondition post(�y1, �y2), the task of relational
verification is reduced to checking validity of the following formula.

pre(�x1, �x2) ∧ Tr1(�x1, �y1) ∧ Tr2(�x2, �y2) =⇒ post(�y1, �y2)

Given a program with one loop (i.e., a transition system) over input variables
�x and output variables �y, let Init(�x, �u) denote a symbolic encoding of the block



168 L. Pick et al.

of code before the loop, Guard(�u) denote the loop guard, and Tr(�u, �y) encode
the loop body. Here, �u is the vector of local variables that are live at the loop
guard. For example, consider the program from our motivating example:

assume(y1 > 20); while (i1 < 10) {x1 *= i1; i1++;}
In its encoding, �x = �u = (i1, x1, y1), �y = (i′1, x

′
1), Init(�x, �u) = y1 > 20,

Guard(�u) = i′1 < 10, and Tr(�u, �y) = x′
1 = x1 × i1 ∧ i′1 = i1 + 1.

Proposition 2 (Naive parallel composition). Given two loopy programs,
〈Init(�x1, �u1),Guard(�u1),Tr(�u1, �y1)〉 and 〈Init(�x2, �u2),Guard(�u2),Tr(�u2, �y2)〉, a
precondition pre(�x1, �x2), and a postcondition post(�y1, �y2), the task of relational
verification is reduced to the task of finding (individual) inductive invariants I1

and I2:

pre(�x1, �x2) ∧ Init(�x1, �u1) =⇒ I1(�u1)
pre(�x1, �x2) ∧ Init(�x2, �u2) =⇒ I2(�u2)

I1(�u1) ∧ Guard1(�u1) ∧ Tr1(�u1, �y1) =⇒ I1(�y1)
I2(�u1) ∧ Guard2(�u2) ∧ Tr2(�u2, �y2) =⇒ I2(�y2)

I1(�y1) ∧ I2(�y2) ∧ ¬Guard1(�y1) ∧ ¬Guard2(�y2) =⇒ post(�y1, �y2)

Note that the method of naive composition requires handling of multiple
invariants, which is known to be difficult. Furthermore, it might lose some impor-
tant relational information specified in pre(�x1, �x2). One way to avoid this is to
exploit the fact that loops could be executed in lockstep.

Proposition 3 (Lockstep composition). Given two loopy programs,
〈Init(�x1, �u1),Guard(�u1),Tr(�u1, �y1)〉 and 〈Init(�x2, �u2),Guard(�u2),Tr(�u2, �y2)〉, a
precondition pre(�x1, �x2), and a postcondition post(�y1, �y2). Let both loops iter-
ate exactly the same number of times, then the task of relational verification
is reduced to the task of finding one (relational) inductive invariant I:

pre(�x1, �x2) ∧ Init(�x1, �u1) ∧ Init(�x2, �u2) =⇒ I(�u1, �u2)
I(�u1, �u2) ∧ Guard1(�u1) ∧ Tr1(�u1, �y1) ∧ Guard2(�u2) ∧ Tr2(�u2, �y2) =⇒ I(�y1, �y2)

I(�y1, �y2) ∧ ¬Guard1(�y1) ∧ ¬Guard2(�y2) =⇒ post(�y1, �y2)

In this paper, we do not focus on a specific method for deriving these invari-
ants – a plethora of suitable methods have been proposed in the literature, and
any of these could be used.

4 Leveraging Relational Specifications

In this section, we describe the main components of our compositional framework
where we leverage relational specifications to simplify the verification subtasks.
We first describe our novel algorithm for inferring maximal sets of loops that
can be executed in lockstep (Sect. 4.1). Next, we describe our technique for han-
dling conditionals (Sect. 4.2). While this is similar to other prior work, the main
purpose here is to set the stage for our novel methods for exploiting symmetry
(Sect. 4.3).
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4.1 Synchronizing Loops

Given a set of loopy programs, we would like to determine which ones can be
executed in lockstep. As mentioned earlier, relational invariants over lockstep
loops are often easier to derive than loop invariants over a single copy.

Our algorithm CheckLockstep takes as input a set of loopy programs
{P1, . . . , Pk} and outputs a set of maximal classes of programs that can be
executed in lockstep. The algorithm partitions its input set of programs and
recursively calls CheckLockstep on the partitions.

First, CheckLockstep infers a relational inductive invariant over the loop
bodies, synthesizing I(�u1, . . . , �uk) in the following:

pre(�x1, . . . , �xk) ∧
k∧

i=1

Init(�xi, �ui) =⇒ I(�u1, . . . , �uk)

I(�u1, . . . , �uk) ∧
k∧

i=1

Guard i(�ui) ∧ Tr i(�ui, �yi) =⇒ I(�y1, . . . , �yk)

CheckLockstep then poses the following query:

¬
((

I(�u1, . . . , �uk) ∧
k∨

i=1

¬Guard(�ui)
)

=⇒
k∧

i=1

¬Guard(�ui)

)
(1)

The left-hand side of the implication holds whenever one of the loops has ter-
minated (the relational invariant holds, and at least one of the loop conditions
must be false), and the right-hand side holds only if all of the loops have termi-
nated. If the formula is unsatisfiable, then the termination of one loop implies
the termination of all loops, and all loops can be executed simultaneously [27].
In this case, the entire set of input programs is one maximal class, and the set
containing the set of all input programs is returned.

Otherwise, CheckLockstep gets a satisfying assignment and partitions the
input programs into a set Terminated and a set Unfinished . The Terminated
set contains all programs Pi whose guards Guard(�ui) are false in the model
for the formula, and the Unfinished set contains the remaining programs. The
CheckLockstep algorithm is then called recursively on both Terminated and
Unfinished , with its final result being the union of the two sets returned by these
recursive calls.

The following theorem assumes that any relational invariant I(�u1, . . . , �uk),
generated externally and used by the algorithm, is stronger than any relational
invariant I(�u1, . . . , �ui−1, �ui+1, . . . , �uk) that could be synthesized over the same
set of k loops with the ith loop removed.

Theorem 1. For any call to CheckLockstep, it always partitions its set of
input programs such that for all Pi ∈ Terminated and Pj ∈ Unfinished, Pi and
Pj cannot be executed in lockstep.
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Proof. Assume that CheckLockstep has partitioned its set of programs into
the Terminated and Unfinished sets. Let Pi ∈ Terminated , Pj ∈ Unfinished be
arbitrary programs. Based on how the partitioning is performed, we know that
there is a model for Eq. 1 such that Guard(�ui) does not hold and Guard(�uj)
does. We can thus conclude that the following formula is satisfiable:

¬
(
I(�u1, . . . , �uk) ∧ ¬Guard(�ui) =⇒ ¬Guard(�uj)

)

From the assumption on our invariant synthesizer, we conclude that the following
is also satisfiable, indicating that Pi and Pj cannot be executed in lockstep:

¬
(
I(�ui, �uj) ∧ ¬Guard(�ui) =⇒ ¬Guard(�uj)

)

where I(�ui, �uj) is the relational invariant for Pi and Pj that our invariant syn-
thesizer infers. ��

4.2 Synchronizing Conditionals

Let two programs have forms if Qi then Ri else Si, where i ∈ {1, 2} and Ri

and Si are arbitrary blocks of code and could possibly have loops. Let them be a
part of some RVP, which reduces to applying Propositions 1, 2, or 3, depending
on the content of each block of code, to four pairs of programs. As we have seen in
previous sections, each of the four verification tasks could be expensive. In order
to reduce the number of verification tasks where possible, we use the relational
preconditions to filter out pairs of programs for which verification conclusions
can be derived trivially.

For k programs of the form if Qi then Ri else Si for i ∈ {1, . . . , k} and
precondition pre(�x1, . . . , �xk), we can simultaneously generate all possible com-
binations of decisions by querying a solver for all truth assignments to the Qis:

pre(�x1, . . . , �xk) ∧
k∧

i=1

Qi (2)

We can then use the result of this All-SAT query to generate sets of programs
in subtasks. For each assignment j, where each Qi is assigned a Boolean value vi,
the following set is generated: {assume (V1); U1, . . . , assume (Vk); Uk} where
for each i ∈ {1, . . . , k}, if vi = true, then Vi = Qi and Ui = Ri, else Vi = ¬Qi
and Ui = Si. We need to apply our verification algorithm on only the resulting
sets of programs. For example, in our above RVP, if Q1 is equivalent to Q2 in all
solutions, then the RVP reduces to verification of just two pairs of programs:

assume (Q1); R1 and assume (Q2); R2

assume (¬Q1); S1 and assume (¬Q2); S2
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Algorithm 1. Algorithm for constructing a graph to find symmetries.
1: procedure MakeGraph(F )
2: (V, E) ← ({vId

1 , . . . , vId
k }, ∅) where each vId

i has color(vId
i ) = Id

3: for d ∈ Clauses(F ) do (V, E) ← MakeColoredAST(d) ∪ (V, E)

4: for v ∈ V with xi ∈ vars(color(v)) do
5: V ← (V \ {v}) ∪ {Recolor(v, v[xi �→ x])}
6: E ← E ∪ {(v, vId

i )}

Fig. 2. Graph with vertex names (outside the vertices) and colors (inside the vertices).

4.3 Discovering and Exploiting Symmetries

Using the All-SAT query from Eq. 2 allows us to prune trivial RVPs. However,
as we have seen in Sect. 2, some of the remaining RVPs could be regarded as
equivalent due to symmetry. First, we discuss how to identify symmetries in
formulas syntactically, and then we show how to use such symmetries.

4.3.1 Identifying Symmetries in Formulas
Formally, symmetries in formulas are defined as permutations. Note that any per-
mutation π of set {1, . . . , k} can be lifted to be a permutation of set {�x1, . . . , �xk}.

Definition 1 (Symmetry). Let �x1, . . . , �xk be vectors of the same size over dis-
joint sets of variables. A symmetry π of a formula F (�x1, . . . , �xk) is a permutation
of set {�xi | 1 ≤ i ≤ k} such that F (�x1, . . . , �xk) ⇐⇒ F (π(�x1), . . . , π(�xk)).

The task of finding symmetries within a set of formulas can be performed
syntactically by first canonicalizing the formulas, converting the formulas into
a graph representation of their syntax, and then using a graph automorphism
algorithm to find the symmetries of the graph. We demonstrate how this can be
done for a formula ϕ over Linear Integer Arithmetic with the following example.

Let ϕ = (x1 ≤ x2 ∧ x3 ≤ x4) ∧ (x1 < z2 ∨ x3 < z4). Note that this formula
is symmetric under a permutation of the subscripts that simultaneously swaps
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1 with 3 and 2 with 4. Let {(x1, z1), (x2, z2), (x3, z3), (x4, z4)} be the vectors of
variables. We identify a vector by its subscript (e.g., we identify (x1, z1) by 1).

Our algorithm starts with canonicalizing the formula: ϕ = (x1 < x2 ∨ x1 =
x2)∧(x3 < x4∨x3 = x4)∧(x1 < z2∨x3 < z4). It then constructs a colored graph
for the canonicalized formula with the procedure in Algorithm1. The algorithm
initializes a graph by the set of k vertices vId

1 , . . . , vId
k with color Id (vertices 21–

24 in Fig. 2), where k is the number of identifiers. It then (Line 3) adds to the
graph the union of the abstract syntax trees (AST) for the formula’s conjuncts,
where each vertex has a color corresponding to the type of its AST node. If a
parent vertex has a color of an ordering-sensitive operation or predicate, then
the children should have colors that include a tag to indicate their ordering (e.g.,
vertices 9 and 10 in Fig. 2 have colors with tags because their parent has color
<, but vertices 11 and 12 do not have tags because their parent has color =).
Next (Line 4), the algorithm performs an appropriate renaming of vertex colors
so that each indexed variable name xi is replaced with a non-indexed version
x, while simultaneously adding edges from each vertex with a renamed color to
vId

i . The resulting graph for ϕ is shown in Fig. 2. Finally, the algorithm applies
a graph automorphism finder to get the following automorphism (in addition to
the identity automorphism), which is shown here in a cyclic notation where (x y)
means that x �→ y and y �→ x (vertices that map to themselves are omitted):

(0 1)(3 5)(4 6)(7 8)(9 13)(10 14)(11 15)(12 16)(17 19)(18 20)(21 23)(22 24)

We are only interested in permutations of the vectors, so we project out the
relevant parts of the permutation (21 23)(22 24) and map them back to our
vector identifiers to get the following permutation on the identifiers:

π = {1 �→ 3, 2 �→ 4, 3 �→ 1, 4 �→ 2}

4.3.2 Exploiting Symmetries
We now define the notion of symmetric RVPs and application of symmetry-
breaking to generate a single representative per equivalence class of RVPs.

Definition 2 (Symmetric RVPs). Two RVPs: 〈Ps, pre(�x1, . . . , �xk),
post(�y1, . . . , �yk)〉 and 〈Ps′, pre(�x1, . . . , �xk), post(�y1, . . . , �yk)〉, where Ps =
{P1, . . . , Pk}, and Ps′ = {P ′

1, . . . , P
′
k}, are called symmetric under a permu-

tation π iff

1. π is a symmetry of formula pre(�x1, . . . , �xk) ∧ post(�y1, . . . , �yk)
2. for every Pi ∈ Ps and Pj ∈ Ps′, if π(i) = j, then Pi and Pj have the same

number of inputs and outputs and have logically equivalent encodings for the
same set of input variables �xi and output variables �yi

As we have seen in Sect. 4.3.1, identification of symmetries could be made
purely on the syntactic level of the relational preconditions and postconditions.
For each detected symmetry, it remains to check equivalence between the corre-
sponding programs’ encodings, which can be formulated as an SMT problem.
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To exploit symmetries, we propose a simple but intuitive approach. First,
we identify the set of symmetries using pre ∧ post . Then, we solve the All-SAT
query from Eq. 2 and get a reduced set R of RVPs (i.e., one without all trivial
problems). For each RVP i ∈ R, we perform the relational verification only if no
symmetric RVP j ∈ R has already been verified. Thus, the most expensive part
of the routine, checking equivalence of RVPs, is performed on demand and only
on a subset of all possible pairs 〈RVP i,RVP j〉.

Alternatively, in some cases (e.g., for parallelizing the algorithm) it might
help to identify all symmetric RVPs prior to solving the All-SAT query from
Eq. 2. From this set, we can generate symmetry-breaking predicates (SBPs) [12]
and conjoin them to Eq. 2. Constrained with SBPs, this query will have fewer
models, and will contain a single representative per equivalence class of RVPs.
We describe how to construct SBPs in more detail in the next section.

4.3.3 Generating Symmetry-Breaking Predicates (SBPs)
SBPs have previously been applied in pruning the search space explored by SAT
solvers. Traditionally, techniques construct SBPs based on symmetries in truth
assignments to the literals in the formula, but SBP-construction can be adapted
to be based on symmetries in truth assignments to conditionals, allowing us to
break symmetries in our setting.

We can construct an SBP by treating each condition the way a literal is
treated in existing SBP constructions. In particular, we can construct the com-
mon Lex-Leader SBP used for predicate logic [12], which in our case will force a
solver to choose the lexicographically least representative per equivalence class
for a particular ordering of the conditions. For the ordering of conditions where
Qi ≤ Qj iff i ≤ j and a set of symmetries S over {1, . . . , k}, we can construct
a Lex-Leader SBP SBP (S) =

∧
π∈S PP (π) with the more efficient predicate

chaining construction [2], where we have that

PP (π) = pmin(I) ∧
∧

i∈I

pi =⇒ gprev(i,I ) =⇒ li ∧ pnext(i,I )

and that I is the support of π with the last condition for each cycle removed,
min(I) is the minimal element of I, prev(i, I) is the maximal element of I still
less than i or 0 if there is none, next(i, I) is the minimal element of I still greater
than i or 0 if there is none, p0 = g0 = true, pi is a fresh predicate for i �= 0,
gi = Qπ(i) =⇒ Qi for i �= 0, and li = Qi =⇒ Qπ(i).

After constructing the SBP, we conjoin it to the All-SAT query in Eq. 2. Our
solver now generates sets of programs that, when combined with the relational
precondition and postcondition, form a set of irredundant RVPs.

Example. Let us consider how SBPs can be applied to RVP2 from Sect. 2 to
avoid generating two of the eight RVPs we would otherwise generate.

First, we see that our three programs are all copies the same program and
are at the same program point, so they will have the same encoding. Next, we
find the set of permutations S over {1, 2, 3} such that for each π ∈ S, we have
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that i1 > 0 ∧ i2 ≥ i1 ∧ i1 = i3 iff iπ(1) > 0 ∧ iπ(2) ≥ iπ(1) ∧ iπ(1) = iπ(3). In this
case, we have that S is the set of permutations {{1 �→ 1, 2 �→ 2, 3 �→ 3}, {1 �→
3, 2 �→ 2, 3 �→ 3}}. Now, we construct a Lex-Leader SBP (using the predicate
chaining construction described above):

p1 ∧ (p1 =⇒ ((y1 > 20) =⇒ (y2 > 20)))

where p1 is a fresh predicate. Conjoining this SBP to Eq. 2, leads to the RVPs
arising from the control-flow decisions y1 > 20 ∧ y2 > 20 ∧ y3 ≤ 20 and y1 >
20 ∧ y2 ≤ 20 ∧ y3 ≤ 20 no longer being generated.

5 Instantiation of Strategies in Forward Analysis

We now describe an instantiation of our proposed strategies in a verification algo-
rithm based on forward analysis using a strongest-postcondition computation.
Other instantiations, e.g., on top of a Horn solver based on Property-Directed
Reachability [24] are possible, but outside the scope of this work.

1: procedure Verify(pre,Current , Ifs,Loops, post)
2: while Current �= ∅ do
3: if ProcessStatement(pre, Pi, Ifs,Loops, post) = safe then return safe

4: if Loops �= ∅ then HandleLoops(pre,Loops, post)
5: else if Ifs �= ∅ then HandleIfs(pre, Ifs,Loops, post)
6: else return unsafe

Given an RVP in the form of a Hoare triple {Pre} P1|| · · · ||Pk {Post}, where ||
denotes parallel composition, the top-level Verify procedure takes as input the
relational specification pre = Pre and post = Post , the set of input programs
Current = {P1, . . . , Pk}, and empty sets Loops and Ifs. It uses a strongest-
postcondition computation to compute the next Hoare triple at each step until
it can conclude the validity of the original Hoare triple.

Synchronization. Throughout verification, the algorithm maintains three dis-
joint sets of programs: one for programs that are currently being processed
(Current), one for programs that have been processed up until a loop (Loops),
and one for programs that have been processed up until a conditional statement
(Ifs). The algorithm processes statements in each program independently, with
ProcessStatement choosing an arbitrary interleaving of statements from the
programs in Current . When the algorithm encounters the end of a program in
its call to ProcessStatement, it removes this program from the Current set.
At this point, the algorithm returns safe if the current Hoare triple is proven
valid. When a program has reached a point of control-flow divergence and is
processed by ProcessStatement, it is removed from Current and added to
the appropriate set (Loops or Ifs).
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Handling Loops. Once all programs are in the Loops or Ifs sets (i.e. Current =
∅), the algorithm handles the programs in the Loops set if it is nonempty.
HandleLoops behaves like CheckLockstep but computes postconditions
where possible; when a set of loops are able to be executed in lockstep,
HandleLoops computes their postconditions before placing the programs into
the Terminated set. After all loops have been placed in the Terminated set and
a new precondition pre ′ has been computed, rather than returning Terminated ,
HandleLoops invokes Verify(pre ′,Terminated , Ifs, ∅, post).

Handling Conditionals. When Current = Loops = ∅, Verify handles condi-
tional statements. HandleIfs exploits symmetries by using the All-SAT query
with Lex-Leader SBPs as described in Sect. 4 and calls Verify on each generated
verification problem.

6 Implementation and Evaluation

To evaluate the effectiveness of increased lockstep execution of loops and
symmetry-breaking, we implemented our algorithm from Sect. 5 on top of the
Descartes tool for verifying k-safety properties, i.e., RVPs over k identical
Java programs. We implemented two variants: Syn uses only synchrony (i.e., no
symmetry is used), while Synonym uses both. All implementations (including
Descartes) use the same guess-and-check invariant generator (the same origi-
nally used by Descartes, but modified to generate more candidate invariants).
In Synonym, we compute symmetries in preconditions and postconditions only
when all program copies are the same. For our examples, it sufficed to compute
symmetries simply by checking if each possible permutation leads to equivalent
formulas1. We compare the performance of our prototype implementations to
Descartes2. We use two metrics for comparison: the time taken and the num-
ber of Hoare triples processed by the verification procedure. All experiments
were conducted on a MacBook Pro, with a 2.7 GHz Intel Core i5 processor and
8 GB RAM.

6.1 Stackoverflow Benchmarks

The first set of benchmarks we consider are the Stackoverflow benchmarks orig-
inally used to evaluate Descartes. These implement (correctly or incorrectly)
the Java Comparator or Comparable interface, and check whether or not their
compare functions satisfy the following properties:

1 Our implementation includes the syntactic symmetry-finding algorithm from
Sect. 4.3.1, though we do not use it for evaluation here due to its high overhead
in using an external tool for finding graph automorphisms.

2 While there are several tools for relational verification (e.g. Rosette/Unbound [25],
VeriMapRel [13], Reve [17], MoCHi [17], SymDiff [22]), most of these do not
handle Java programs, and to the best of our knowledge, none of these tools has
support for k-safety verification for k greater than 2.
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P1: ∀x, y.sgn(compare(x, y)) = −sgn(compare(y, x))
P2: ∀x, y, z.(compare(x, y) > 0 ∧ compare(y, z) > 0) =⇒ compare(x, z) > 0
P3: ∀x, y, z.(compare(x, y) = 0) =⇒ (sgn(compare(x, z)) = sgn(compare(y, z)))

(One of the original 34 Stackoverflow examples is excluded from our evalua-
tion here because of the inability of the invariant generator to produce a suitable
invariant.) We compare the results of running Syn and Synonym vs. Descartes
for each property in Table 1. (Expanded versions and plots of these results are
available in an extended version of the paper [26].)

Because property P1 contains a symmetry, we notice an improvement in
terms of number of Hoare triples with the use of symmetry for this property;
however, the overhead of computing symmetries leads to Synonym performing
more slowly than Syn even for some examples that exhibit reduced Hoare triple
counts. Property P1 is also the easiest to prove (all implementations can verify
each example in under 0.3 s), so the overheads contribute more significantly
to the runtime. For examples on which our implementations do not perform
as well as Descartes, we perform reasonably closely to Descartes. These
examples are typically smaller, and again overheads play a larger role in our
poorer performance.

Table 1. Stackoverflow Benchmarks. Total times (in seconds) and Hoare triple counts
(HTC) for Stackoverflow benchmarks, where for each property, the results for Syn and
Synonym are divided into those for examples where they exhibit a factor of improve-
ment over Descartes that is greater or equal to 1 (top) and those for which they do
not (bottom). Improv reports the factor of improvement over Descartes, where the
number of examples is given in parentheses.

Prop Descartes Syn Synonym

Time HTC Time Improv HTC Improv Time Improv HTC Improv

P1 3.11 4422 1.91 1.39 (27) 2255 1.69 (27) 1.82 1.32 (25) 2401 1.82 (32)

0.57 0.789 (6) 752 0.809 (6) 0.87 0.816 (8) 48 0.979 (1)

P2 24.6 13434 7.83 2.62 (20) 3285 3.081 (16) 7.31 2.80 (19) 3224 3.140 (16)

4.98 0.823 (13) 4638 0.714 (17) 5.1 0.816 (14) 4638 0.714 (17)

P3 18.85 10938 5.22 2.92 (20) 1565 4.36 (16) 5.22 2.91 (19) 1537 4.74 (16)

6.18 0.584 (13) 6600 0.623 (17) 6.16 0.594 (14) 6600 0.623 (17)

6.2 Modified Stackoverflow Benchmarks

The original Stackoverflow examples are fairly small, with all implementations
taking under 6 s to verify any example. To assess how we perform on larger
examples, we modified several of the larger Stackoverflow comparator examples
to be longer, take more arguments, and contain more control-flow decisions.
The resulting functions take three arguments and pick the “largest” object’s id,
where comparison among objects is performed based on the original Stackover-
flow example code. (Ties are broken by choosing the least id.) We check whether
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these pick functions satisfy the following properties that allow reordering input
arguments:

P13: ∀x, y, z.pick(x, y, z) = pick(y, x, z)
P14: ∀x, y, z.pick(x, y, z) = pick(y, x, z) ∧ pick(x, y, z) = pick(z, y, x)

Note that P13 allows swapping the first two input arguments, while P14
allows any permutation of inputs, a useful hyperproperty.

The results from running property P13 are shown in Table 2. We see here
that for these larger examples, Hoare triple counts are more reliably correlated
with the time taken to perform verification. Syn outperforms Descartes on 14
of the 16 examples, and Synonym outperforms both Descartes and Syn on
all 16 examples.

The results from running property P14 are shown in Table 3. For this prop-
erty, note thatDescartes is unable to verify any of the examples within a one-
hour timeout. Meanwhile, Syn is able to verify 10 of the 16 examples without
exceeding the timeout. Exploiting symmetries here exhibits an obvious improve-
ment, with Synonym not only being able to verify the same examples as Syn,
with consistently faster performance on the larger examples, but also being able
to verify an additional example within an hour.

Table 2. Verifying P13 for modified Stackoverflow examples. Times (in seconds) and
Hoare triple counts (HTC).

Example Descartes Syn Synonym

Time HTC Time HTC Time HTC

ArrayInt-pick3-false-simple 1.71 2573 1 1355 0.64 682

ArrayInt-pick3-false 1.55 2591 1.06 1439 0.8 724

ArrayInt-pick3-true-simple 1.71 2573 1.03 1355 0.65 682

ArrayInt-pick3-true 1.55 2591 1.08 1439 0.81 724

Chromosome-pick3-false-simple 0.9 1115 0.9 883 0.53 446

Chromosome-pick3-false 2.51 2891 2.94 3019 1.59 1514

Chromosome-pick3-true-simple 0.9 1115 0.9 883 0.53 446

Chromosome-pick3-true 2.51 2891 2.96 3019 1.59 1514

PokerHand-pick3-false-part1 5.87 5825 0.42 359 0.46 359

PokerHand-pick3-false-part2 9.74 10589 0.85 323 0.86 323

PokerHand-pick3-false 16.91 16475 0.73 159 0.79 159

PokerHand-pick3-true-part1 5.83 5825 3.98 3503 2.4 1756

PokerHand-pick3-true-part2 9.8 10565 7.36 5933 4.53 2971

PokerHand-pick3-true 17.25 16475 12.1 9293 7.34 4651

Solution-pick3-false 76.4 99910 25.05 20645 20.42 10327

Solution-pick3-true 64.5 99910 19.66 20645 15.21 10327

Total 219.64 283914 82.02 74252 59.15 37605

Improvement 1 1 2.68 3.8237 3.713 7.5499
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Table 3. Verifying P14 for modified Stackoverflow examples. Times (in seconds) and
Hoare triple counts (HTC). - indicates that no sufficient invariant could be inferred.

Example Descartes Syn Synonym

Time HTC Time HTC Time HTC

ArrayInt-pick3-false-simple TO TO 4.12 1938 4.66 1734

ArrayInt-pick3-false TO TO 4.92 2017 6.03 1500

ArrayInt-pick3-true-simple TO TO 321.15 140593 170.43 58586

ArrayInt-pick3-true TO TO 366.98 149125 240.25 62141

Chromosome-pick3-false-simple TO TO 47.8 14097 1.67 834

Chromosome-pick3-false TO TO 264.21 93052 4.91 3043

Chromosome-pick3-true-simple TO TO 299.51 79613 135.56 33179

Chromosome-pick3-true TO TO TO TO 848.22 225044

PokerHand-pick3-false-part1 TO TO 0.57 391 0.73 391

PokerHand-pick3-false-part2 TO TO 0.81 228 0.81 228

PokerHand-pick3-false - - - - - -

PokerHand-pick3-true-part1 TO TO 2277.03 819553 1272.58 341486

PokerHand-pick3-true-part2 TO TO - - - -

PokerHand-pick3-true - - - - - -

Solution-pick3-false TO TO TO TO TO TO

Solution-pick3-false TO TO TO TO TO TO

Summary of Experimental Results. Our experiments indicate that our perfor-
mance improvements are consistent: on all Descartes benchmarks (in Table 1,
which are all small) our techniques either have low overhead or show some
improvement despite the overhead; and on modified (bigger) programs they lead
to significant improvements. In particular, we report (Table 2) speedups up to
21.4x (on an example where the property doesn’t hold) and 4.2x (on an example
where it does). More importantly, we report (Table 3) that Descartes times
out on 14 examples, where of these Synonym times out for 2 and cannot infer
an invariant for one example.

7 Related Work

The work most closely related to ours is by Sousa and Dillig [27], which pro-
posed Cartesian Hoare Logic (CHL) for proving k-safety properties and the tool
Descartes for automated reasoning in CHL. In addition to the core program
logic, CHL includes additional proof rules for loops, referred to as Cartesian
Loop Logic (CLL). A generalization of CHL, called Quantitative Cartesian Hoare
Logic was subsequently used by Chen et al. [10] to detect side-channel vulnera-
bilities in cryptographic implementations.

In terms of comparison, neither CHL nor CLL force alignment at conditional
statements or take advantage of symmetries. We believe our algorithm for iden-
tifying a maximal set of lockstep loops is also novel and can be used in other
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methods that do not rely on CHL/CLL. On the other hand, CLL proof rules
allow not only fully lockstep loops, but also partially lockstep loops. Although we
did not consider it here, our maximal lockstep-loop detection algorithm can be
combined with their partial lockstep execution to further improve the efficiency
of verification. For example, applying the Fusion 2 rule from CLL to our exam-
ple while loops generated from RVP1 (Sect. 2) would result in three subproblems
and require reasoning twice about the second copy’s loop finishing later. When
combined with maximal lockstep-loop detection, we could generate just two sub-
problems: one where the first and third loops terminate first, and another where
the second loop terminates first.

Other automatic efforts for relational verification typically use some kind of
product programs [6,13,17,21,22,24,28], with a possible reduction to Horn solv-
ing [13,17,21,24]. Similarly to our strategy for synchrony, most of them attempt
to leverage similarity (structural or functional) in programs to ease verifica-
tion. However, we have seen less focus on leveraging relational specifications
themselves to simplify verification tasks, although this varies according to the
verification method used. Some efforts do not reason over product programs
at all, relying on techniques based on decomposition [3] or customized theories
with theorem proving [4,30] instead. To the best of our knowledge, none of these
efforts exploit symmetry in programs or in relational specifications.

On the other hand, symmetry has been used very successfully in model check-
ing parametric finite state systems [11,15,20] and concurrent programs [14]. Our
work differs from these efforts in two main respects. First, the parametric sys-
tems considered in these efforts have components that interact with each other
or share variables. Second, the correctness specifications are also parametric,
usually single-index or double-index properties in a propositional (temporal)
logic. In contrast, in our RVPs, the individual programs are independent and
do not share any common variables. The only interaction between them is via
relational specifications. Furthermore, we discover symmetries in these relational
specifications over multi-index variables, expressed as formulas in first-order the-
ories (e.g., linear integer arithmetic). We then exploit these symmetries to prune
redundant RVPs during verification.

There are also some similarities between relational verification and verifica-
tion of concurrent/parallel programs. In the latter, a typical verifier [18] would
use visible operations (i.e., synchronization operations or communication on
shared state) as synchronizing points in the composed program. In our work,
this selection is made based on the structure of the component programs and
the ease of utilizing or deriving relational assertions for the code fragments.
Furthermore, one does not need to consider different orderings in interleavings
of programs in the RVPs. Since these fragments are independent, it suffices to
explore any one ordering. Instead, we exploit symmetries in the relational asser-
tions to prune away redundant RVPs.

Finally, specific applications may impose additional synchrony requirements
pertaining to visibility. For example, one may want to check for information
leaks from private inputs to public outputs not only at the end of a program
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but at other specified intermediate points, or information leakage models for
side-channel attacks may check for leaks based on given observer models [1].
Such requirements can be viewed as relational specifications at selected synchro-
nizing points in the composed program. Again, we can leverage these relational
specifications to simplify the resulting verification subproblems.

8 Conclusions and Future Work

We have proposed novel techniques for improving relational verification, which
has several applications including security verification, program equivalence
checking, and regression verification. Our two key ideas are maximizing the
amount of code that can be synchronized and identifying symmetries in rela-
tional specifications to avoid redundant subtasks. Our prototype implementation
on top of the Descartes verification tool leads to consistent improvements on
a range of benchmarks. In the future, we would be interested in implementing
these ideas on top of a Horn-based relational verifier (e.g., [25]) and extending it
to work with recursive data structures. We are also interested in developing an
algorithm for finding symmetries in formulas that does not rely on an external
graph automorphism tool.
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Abstract. We present a bounded model checking tool for verifying Java
bytecode, which is built on top of the CPROVER framework, named
Java Bounded Model Checker (JBMC). JBMC processes Java bytecode
together with a model of the standard Java libraries and checks a set
of desired properties. Experimental results show that JBMC can cor-
rectly verify a set of Java benchmarks from the literature and that it is
competitive with two state-of-the-art Java verifiers.

1 Introduction

The Java Programming Language is a general-purpose, concurrent, strongly
typed, object-oriented language [13]. Applications written in Java are compiled
to the bytecode instruction set and binary format as defined in the Java Vir-
tual Machine (JVM) specification. This compiled Java bytecode can run on all
platforms on top of a JVM without the need for recompilation. However, Java
programs may have bugs, which may result in array bound violations, unintended
arithmetic overflows, and other kinds of functional and runtime errors. In addi-
tion, Java allows multi-threading, and thus, problems such as race conditions
and deadlocks can occur.

To detect such issues, we developed an extension to the C Bounded Model
Checker (CBMC) [6], named JBMC,1 that verifies Java bytecode. JBMC consists
of a frontend for parsing Java bytecode and a Java operational model (JOM),
which is an exact but verification-friendly model of the standard Java libraries.
A distinct feature of JBMC, when compared with other approaches [2,7,9], is
the use of Bounded Model Checking (BMC) [4] in combination with Boolean
Satisfiability and Satisfiability Modulo Theories (SMT) [3] and full symbolic
state-space exploration, which allows us to perform a bit-accurate verification
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of Java programs. Apart from JBMC, there are other Java verifiers, which use
different verification approaches.

Existing Java Verifiers. JayHorn is a verifier for Java bytecode [9] that uses
the Java optimization framework Soot [14] as a front-end and then produces a
set of constrained Horn clauses to encode the verification condition (VC). Java
Path Finder (JPF) is an explicit-state and symbolic software model checker for
Java bytecode [2]. JPF is used to find and explain defects, collect runtime infor-
mation as coverage metrics, deduce test vectors, and create corresponding test
drivers for Java programs. JPF checks for property violations such as deadlocks
or unhandled exceptions along all potential execution paths as well as user-
specified assertions. ESC/Java is a compile-time extended static checker, which
detects common programming errors (e.g., null dereference, array bounds errors,
and type cast errors) [7]. It uses an automatic theorem prover to catch bugs that
go beyond the abilities of the Java type checker, including runtime errors and
synchronization errors in concurrent programs.

2 JBMC: A Bounded Model Checker for Java Bytecode

2.1 Architecture and Implementation

Our front-end integrates a class loader, which accepts Java bytecode class files
and jar archives (Fig. 1). The parse trees for the classes are translated into the
CPROVER CFG representation, which is called a GOTO program [6].

Fig. 1. JBMC verification process

To handle polymorphism, JBMC encodes virtual method dispatch into a
switch over the runtime type information attached to the object in order to select
the correct method to be called. Similarly, the complex control flow arising from
exceptions is encoded into conditional branches. We record the exception thrown
in a global variable, which is then used to propagate the exception up the call
stack until a matching catch statement (if any) to handle the error is reached.
JBMC can detect when the JVM would abort due to an exception that is not
caught within the program.

The resulting GOTO program is then passed to the bounded model check-
ing algorithm for finding bugs. The BMC algorithm symbolically executes the
program, unwinding loops and unfolding recursive function calls up to a given
bound. The resulting bit-vector formula is then passed on to the configured SAT
or SMT solver [6].
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2.2 Java Operational Model

The Java language relies on compiler-generated functions and classes as well
as a large standard library. In order to correctly support Java functionality,
we developed an abstract representation of the standard Java libraries, called
the operational model (OM). The use of OMs is commonplace in analysers for
Java; for instance, a similar approach was previously proposed for the formal
verification of Android applications [12]. Currently, our OM consists of models
of the most common classes from java.lang and a few from java.util. Our Java
OM simplifies the implementation of the standard Java library by removing
verification-irrelevant performance optimizations (e.g., in the implementation
of container classes), exploiting declarative specifications (using assume) and
functions that are built into the CPROVER framework (e.g., for array and string
manipulation). We are continuously extending our OM to speed up verification
by replacing the original standard Java library classes by our models.

Java has an assert(c) statement for specifying safety properties. In addi-
tion, we provide API classes that allow users to define non-deterministic verifi-
cation harnesses and stub functions. The API contains such methods for primi-
tive types (e.g., int nondetInt()) and generic methods (i.e., parametrised by a
type T) as <T> T nondetWithNull() and <T> T nondetWithoutNull() to non-
deterministically initialize object references that may or may not be null. The
API also provides an assume(c) method, which advises JBMC to ignore paths
that do not satisfy a user-specified condition c.

Currently, JBMC handles neither the Java Native Interface, which allows
Java code to interface native libraries, nor reflection, which allows the program
to inspect and manipulate itself at runtime. We are currently extending JBMC to
support generics and lambdas; and to verify multi-threaded Java programs (that
use java.lang.Thread), exploiting the partial order encoding technique of [1].

2.3 String Solver

One of the biggest challenges in verifying Java programs is the widespread
use of character strings, which makes verification problems resulting from
Java programs highly complex. Solving such constraints is an active area of
research [5,8,11]. JBMC implements a solver for strings to determine the sat-
isfiability of a set of constraints involving string operations. Our string solver
supports the most common basic accesses (e.g., obtain the length of a string
and a character at a given position); comparisons (e.g., lexicographic compari-
son and equality); transformations (e.g., insertion, concatenation, replacement,
and removal); and conversions (e.g., conversion of the primitive data types into a
string and parsing them from a string). The axioms for these operations use quan-
tified constraints. For instance, a Java expression s.substring(5) is translated
into a predicate substring(res, s, 5), where res, s are pairs (length, charArray),
representing the resulting and the input string s, respectively; and substring
is axiomatized by the formula ∀i.(0 ≤ i ∧ i < s.length − 5) → (res.length =
s.length − 5)∧ (res .charArray [i] = s.charArray [i + 5]). The universal quantifiers
are handled using quantifier elimination [10].
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2.4 JBMC Usage

Runtime errors in Java (e.g., illegal memory access) are detected by the JVM and
an appropriate exception is thrown (e.g., NullPointerException, ArrayIndex-
OutOfBoundsException). An AssertionError is thrown on violation of a con-
dition specified by the programmer using the assert keyword. JBMC analyzes
the program and verifies whether such error conditions occur.

JBMC can be used to analyze a single class file:2 jbmc C.class --unwind k
or a Java archive (jar) file: jbmc file.jar --main-class class --unwind k. In
both cases the entry point for the analysis of the program is the static void main
method of the specified main class. k is a positive integer limiting the number of
times loops are unwound and recursions are unfolded. If no bug is found, up to a
k-depth unwinding, then JBMC reports VERIFICATION SUCCESSFUL; otherwise,
it reports VERIFICATION FAILED along with a counterexample in the form of an
execution trace (--trace), which contains the full variable assignment in each
program state with file, method, and line information. Note that if the Java byte-
code is compiled with debug information, then JBMC can also provide the original
program variable names in the counterexample, rather than just bytecode variable
slots. Further JBMC options can be retrieved via jbmc --help.

Fig. 2. Verification results for JayHorn, JBMC and JPF

2 If a class C is in a package x.y, then compile it to some-dir/x/y/C.class, and in
some-dir execute jbmc-installation-dir/jbmc x/y/C.class --unwind k.
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Fig. 3. Runtime comparison of JBMC to JayHorn and JPF

3 Experimental Evaluation

There is no standard benchmark suite for Java verification. Therefore, we took
our entire regression test suite consisting of 177 benchmarks (including known
bugs and hard benchmarks that JBMC cannot yet handle); these benchmarks
(denoted as “jbmc”) test common Java features (e.g., polymorphism, excep-
tions, arrays, and strings). We also used 23 recursive benchmarks (denoted as
“recursive”) taken from the JayHorn repository [9], and 64 minepump bench-
marks (denoted as “minepump”) from the SV-COMP repository. Additionally,
we have extracted 104 benchmarks from the JPF regression test suite [2]. The
following table summarizes the characteristics of the benchmark sets:3

Benchmark set Total Safe Unsafe Avg. LOC

jbmc 177 89 88 25

jpf 104 52 52 52

recursive 23 14 9 35

minepump 64 8 56 62

total 368 163 205 40

3.1 Objectives and Setup

Our experiments aim at answering two research questions: [RQ1] (correctness)
How accurate is JBMC when verifying the chosen benchmarks? [RQ2] (per-
formance) How does JBMC performance compare to other existing verifiers?
To answer both questions, we analyze all benchmarks with three Java verifiers

3 Benchmarks and detailed results are available at https://www.cprover.org/jbmc.

https://www.cprover.org/jbmc


188 L. Cordeiro et al.

(JBMC v5.8-cav18, JayHorn v0.5.1, and JPF v32) on an Intel Core i7-6700 CPU
8×3. 40 GHz, with 32 GB of RAM, running Ubuntu 16.04 LTS. We restrict CPU
time and memory to 300 s and 15 GB, respectively. JBMC uses a stepwise app-
roach to unwinding loops (to prove unbounded safety) and runs with MiniSat2
as its SAT backend.

3.2 Results

Figure 2 gives an overview of the experimental results for the four benchmark
suites. Correct safe means that the program was analyzed to be free of errors,
correct unsafe means that the error in the program was found, incorrect safe
means that the program had an error but the verifier did not find it, incorrect
unsafe means that an error is reported for a program that fulfills the specifica-
tion, timeout indicates that the verifier has exceeded the time limit, and error
represents an internal failure in the verifier or exhaustion of available memory.
The following table summarizes the overall results:

Correct Incorrect

Total Safe Unsafe Total Safe Unsafe Timeout Error

JayHorn 189 52 137 97 5 92 67 15

JBMC 327 138 189 14 5 9 21 6

JPF 277 158 119 80 77 3 3 8

The experimental results show that JBMC reached a successful verification
rate of approximately 89% while JayHorn reported 51% and JPF 75%, which
positively answers RQ1. JayHorn and JPF currently produce 6 times more incor-
rect results (i.e., bugs in the tool) than JBMC. To answer RQ2, Fig. 3 compares
the analysis times for the benchmarks where the tools return correct results.
None of the three tools is consistently better than the other two. JBMC is faster
than JPF on 176 benchmarks, JPF is faster than JBMC on 93. JBMC is faster
than JayHorn on 222 benchmarks, whereas JayHorn is faster than JBMC on 25.
In comparison to JayHorn, JBMC deals poorly with recursion, as its analysis led
to timeout for 69% of the recursive benchmarks, whereas JayHorn could only
solve a single benchmark from the minepump benchmark suite. In summary, we
observed that JBMC’s scalability depends mainly on the complexity of string
operations, loops, recursion and (floating-point) arithmetic.

4 Conclusions and Future Work

Despite more than 15 years of research in BMC and Java verification, JBMC
is the first BMC-based Java verifier. To achieve this, we based our implemen-
tation on an industrial-strength verification framework, and developed a Java
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OM, removing verification-irrelevant optimizations and exploiting declarative
specifications and built-in functions. Because of the prevalent use of character
strings in Java programs, we have also developed a string solver using an efficient
quantifier elimination scheme. We compare JBMC to JayHorn and JPF, which
are state-of-the-art verifiers for Java bytecode based on constrained Horn clauses
and path-based symbolic execution, respectively. Experimental results show that
JBMC achieves a successful verification rate of 89% compared to 51% of Jay-
Horn and 75% of JPF. For future work, the Java OM will be extended to support
more Java classes, with the goal of speeding up verification of larger Java appli-
cations. In addition, we are currently extending JBMC to verify multi-threaded
programs.

Acknowledgments. We thank P. Rümmer and W. Visser for helpful discussions
about JayHorn and JPF, respectively.
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Abstract. We introduce a method of abstraction from infinite-state to
finite-state model checking based on eager theory explication and evalu-
ate the method in a collection of case studies.

1 Introduction

In constructing decision procedures for arithmetic formulas and other theories,
a successful approach has been to separate propositional reasoning and theory
reasoning in a modular way. This approach is usually called Satisfiability Mod-
ulo Theories, or SMT [1]. There are two primary approaches to SMT: eager and
lazy theory explication. Both approaches abstract the formula in question by con-
structing its propositional skeleton, that is, converting each atomic predicate to
a corresponding free Boolean variable. Obviously, propositional abstraction loses
a great deal of information. The eager approach compensates for this by con-
joining tautologies of the theory to the formula before propositional abstraction.
In abstract interpretation terms, we can think of this as a semantic reduction:
it makes the formula more explicit without changing its semantics. The lazy
approach, on the other hand, performs the propositional abstraction first, then
retroactively adds tautologies of the theory to rule out infeasible propositional
models.

In this paper, we will consider applying the same concepts to the symbolic
model checking problem (SMC). In this problem, we are given a Kripke model
M that is expressed implicitly using logical formulas, and a temporal formula φ,
and we wish to determine whether M |= φ. The states of the Kripke model are
structures of a logic L over a given vocabulary, while the set of initial states I and
the set of transitions T are expressed, respectively, by one- and two-vocabulary
formulas. The atomic propositions in φ are also presumed to be expressed in L.

In the case where L is propositional logic, the Kripke model is finite-state,
the SMC problem is PSPACE-complete, and many well-developed techniques
are available to solve it in a heuristically efficient way. On the other hand, if
L is a richer logic (say, Presburger arithmetic) SMC is usually undecidable.
Here, we propose to solve instances of this problem by separating propositional
reasoning and theory reasoning in a modular way, as in SMT. Given an SMC
problem (I, T, φ), we will form its propositional abstraction by computing the
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propositional skeletons of I, T and φ. This abstraction is sound, and allows us to
apply well-developed tools for propositional SMC, however it loses a great deal
of information. To compensate for this loss, we will use incomplete eager theory
explication. By controlling theory explication, the user controls the abstraction.
We will call this general approach eager symbolic model checking, or ESMC.

Related Work. Because of the propositional abstraction, ESMC may at first
seem to be a form of predicate abstraction [9]. This is not the case, however.
Predicate abstraction uses a vocabulary of predicates to abstract the state, but
does not abstract the theory itself. As a result, a decision procedure for the
theory is needed to compute the best abstract transformer. This is problematic
if the logic is undecidable, and in any event requires an exponential number of
decision procedure calls in the worst case. In ESMC, the abstraction is performed
in a purely syntactic way. One controls the abstraction by giving a set of axiom
schemata to be instantiated and by introducing prophecy variables, as opposed
to giving abstraction predicates. One effect of this is that the abstraction may
depend on the precise syntactic expression of the transition relation.

The technique of “datatype reductions” [18] is also closely related. This
method has been used to verify various parameterized protocols and microar-
chitectures using finite-state model checking [5,6,12,19,20]. The technique also
abstracts an infinite-state SMC problem to a finite-state one syntactically.
Though it does not do this by explicating the theory, we will see that the abstrac-
tion it produces can be simulated by ESMC. Compared to this method, ESMC
is user-extensible and allows both a simpler theoretical account and a simpler
implementation. Moreover, it uses a smaller trusted computing base, since the
tautologies it introduces can be mechanically checked.

The methods of Invisible Invariants [25] and Indexed Predicate Abstrac-
tion [14] use different methods to compute the least fixed point in a finite abstract
domain of quantified formulas. This requires decidability and incurs a relatively
high cost for computing an extremal fixed point, limiting scalability (though IPA
can approximate the best transformer in the undecidable case). The abstractions
are also difficult to refine in practice.

Road Map. After preliminaries in the next section, we introduce our schema-
based class of abstractions in Sect. 3. The next section gives some useful instanti-
ations of this class. Section 5 describes a methodology for exploiting the abstrac-
tion in proofs of infinite-state systems, as implemented in the IVy tool. In Sect. 5,
we evaluate the approach using case studies.

2 Preliminaries

Let FO=(S, Σ) be standard sorted first-order logic with equality, where S is a
collection of first-order sorts and Σ is a vocabulary of sorted non-logical symbols.
We assume a special sort B ∈ S that is the sort of propositions. Each symbol
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fS ∈ Σ has an associated sort S of the form D1×· · ·×Dn → R, where Di, R ∈ S

and n ≥ 0 is the arity of the symbol. If n = 0, we say fS is a constant, and
if R = B it is a relation. We write vocab(t) for the set of non-logical symbols
occurring in term t.

Given a set of sorts S, a universe U maps each sort in S to a non-empty
set (with U(B) = {�,⊥}). An interpretation of a vocabulary Σ over universe U
maps each symbol fD1×···×Dn→R in Σ to a function in U(D1) × · · · × U(Dn) →
U(R). A Σ-structure is a pair M = (U, I) where U is a universe and I is
an interpretation of Σ over U . The structure is a model of a proposition φ in
FO=(S, Σ) if φ evaluates to � under I according to the standard semantics of
first-order logic. In this case, we write M |= φ. Given an interpretation J with
domain disjoint from I, we write M,J to abbreviate the structure (U, I ∪ J ).

In the sequel, we take the vocabulary Σ to be a disjoint union of four sets:
ΣS , the state symbols, Σ′

S the primed symbols, ΣT the temporary symbols, and
ΣB , the background symbols. We take (·)′ to be a bijection ΣS → Σ′

S and extend
it in the expected way to terms and interpretations. We write unprime(t) for the
term u such that u′ = t, if u exists.

A transition system is a pair (I, T ) where I is a proposition over ΣS ∪ ΣB

and T is a proposition over Σ. Let MB = (U, IB) be a ΣB-structure (that is,
fix the universe and the interpretation of the background symbols). A U -state
of the system is an interpretation of ΣS (the state symbols) over U . A MB-run
of the system is an infinite sequence s0, s1, . . . of U -states such that:

– MB , s0 |= I, and
– for all 0 ≤ i, there exists and interpretation IT of ΣT over U such that

MB , si, IT , s′
i+1 |= T .

That is, under the background interpretation, the initial state must satisfy the
initial condition, and for every successive pair of states, there must be an inter-
pretation of the temporary symbols such that the transition condition is satis-
fied. The temporary symbols are used, for example, to model local variables of
procedures, and may also be Skolem symbols. Because they can have second-
order sort, we cannot existentially quantify them within the logic, so instead we
quantify them implicitly in the transition system semantics. Given a background
theory T over ΣB , a T -run is any MB-run such that MB |= T .

A linear temporal formula over Σ applies the operators of FO=(S, Σ) plus
the standard strict until operator U and strict since operator S. We define ©φ =
⊥Uφ, �φ = φ ∧ ¬(�U ¬φ) and also Hφ = φS⊥, meaning “always φ in the strict
past”. We fix T and say (I, T ) |= φ if every T -run of (I, T ) satisfies φ under
the standard LTL semantics. The symbolic model checking problem SMC is to
determine whether (I, T ) |= φ.

3 A Schema-Based Abstraction Class

An atom is a proposition in which every instance of {∧,∨,¬,U ,S} occurs under a
quantifier. The propositional skeleton of a proposition φ is obtained by replacing
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each atom in φ by a corresponding propositional constant. The propositional
skeleton is an abstraction, in the sense that for every model M of φ we can
construct a model of its propositional skeleton from the truth values of each
atomic proposition in M . We will use propositional skeletons here to convert an
infinite-state model checking problem to a finite-state one.

We assume that each vocabulary ΣB , ΣS and ΣT contains a countably infi-
nite set of propositional constants. This allows us to construct injections AB ,
AS , AT from atomic propositions of the logic to propositional constants in ΣB ,
ΣS and ΣT respectively.

In defining the propositional skeleton of a transition formula we must con-
sider atomic propositions containing symbols from more than one vocabulary. To
which vocabulary should we map such an atom in the propositional skeleton?
Here, we take a simple solution that is sound, though it may lose some state
information. That is, for any atomic proposition φ, we say

– if vocab(φ) ⊆ ΣB , then A(φ) = AB(φ),
– else if vocab(φ) ⊆ ΣB ∪ ΣS then A(φ) = AS(φ)
– else if vocab(φ) ⊆ ΣB ∪ Σ′

S then A(φ) = AS(unprime(φ))′

– else A(φ) = AT (φ)

That is, pure background propositions are abstracted to background symbols,
state propositions are abstracted to state symbols and next-state propositions are
abstracted to the primed version of the corresponding state proposition. Every-
thing else is abstracted to a temporary symbol (which is existentially quantified
in the abstract transition relation).

We then extend A to non-atomic formulas in the obvious way, such that
A(φ ∧ ψ) = A(φ) ∧ A(ψ), A(©φ) = ©A(φ) and so on. The following theorem
shows that we can use propositional skeletons to convert infinite-state to finite-
state model checking problems in a sound (but incomplete) way:

Theorem 1. For any symbolic transition system (I, T ) and linear temporal for-
mula φ, if (A(I),A(T )) |= A(φ) then (I, T ) |= φ.

Intuitively, this holds because we can convert every concrete counterexample to
an abstract one by simply extracting the truth values of the atomic propositions.

Theory Explication. While propositional skeletons are sound, they lose a
great deal of information. For example, suppose our transition relation is y′ =
x. Given a predicate p, we would like to infer that p(x) ⇒ ©p(y). However,
in the propositional skeleton, the transition relation A(T ) is just AT (y′ = x).
In other words, it is just a free propositional symbol with no relation to any
other proposition. Thus, we cannot prove the abstracted property A(p(x)) ⇒
©A(p(y)).

To mitigate this loss of information, we use theory explication. That is, before
abstracting T , we conjoin to it tautologies of the logic or the background theory.
This doesn’t change the semantics of T , and thus the set of runs of the transition
system remains unchanged. It does, however, change the propositional skeleton.
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For example, y′ = x ∧ p(x) ⇒ p(y′) is a tautology of the theory of equality.
If we conjoin this formula to T in the above example, the abstract transition
relation becomes AT (y′ = x) ∧ (AT (y′ = x) ∧ AS(p(x)) ⇒ AS(p(y))′) which is
strong enough to prove the abstracted property.

In general, theory explication adds predicates to the abstraction. This is
the only mechanism we will use to add predicates; we will not supply them
manually, or obtain them automatically from counterexamples. The following
theorem justifies model checking with eager theory explication:

Theorem 2. For any symbolic transition system (I, T ), linear temporal for-
mula φ, ΣB ∪ ΣS formula ψI and Σ formula ψT , if T |= ψI ∧ ψT then
(I ∧ ψI , T ∧ ψT ) |= φ iff (I, T ) |= φ.

The question, of course, is how to choose the tautologies in ψI and ψT . This is
not just a question of capturing the transition relation semantics, since theory
explication also determines the FO predicates representing state of the finite
abstraction. Thus, complete theory explication is at least as hard as predicate
discovery in predicate abstraction. Our goal is not to solve this problem, but to
find an effective incomplete strategy that is useful in practice. It is important
that the resulting finite-state model checking problems be easily resolved by a
modern model checker, and that in case the strategy fails, a human can use the
resulting counterexample and effectively refine the abstraction.

Schema-Based Theory Explication. The basic approach we will use to con-
trolling theory explication is a restricted case of the pattern-based quantifier
instantiation method introduced in the Simplify prover [8]. That is, we are given
a set of axioms, and for each axiom a set of triggers. A trigger is a term (or
terms) containing all of the free variables in the axiom. The trigger is matched
against all ground subterms in the formula being explicated. Each match induces
an instance of the axiom.

In our example above, suppose we have the axiom Y = X ∧ p(X) ⇒ p(Y )
with a trigger Y = X (here and in the sequel, capital letters will stand for free
variables). The trigger Y = X matches the ground term y′ = x in T which
generates the ground instance y′ = x ∧ p(x) ⇒ p(y′). Since we match modulo
the symmetry of equality, we also get x = y′ ∧ p(y′) ⇒ p(x).

A risk of trigger-based instantiation is the matching loop. For example, if
we have the axiom f(X) > X + 1 with a trigger f(X), then we can generate
an infinite sequence of instantiations: f(y) > y + 1, f(f(y)) > f(y) + 1 and so
on. A simple approach to prevent this is to bound the number of generations
of matching. In practice, we will use just one generation and expand the set
axioms in cases where more than one generation is needed. This has the benefit
of keeping the number of generated terms small, which limits the size of the
SMC problem and also makes it easier for users to understand counterexamples.

To avoid having to write a large number of axioms, we specify the axioms
using general schemata. A schema is a parameterized axiom. It takes a list of
sorts and symbols as parameters and yields an axiom. In the sequel we will use s
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and t to stand for sort parameters. As an example, here is a general congruence
schema that can be used in place of our axiom above:

f : s → t
X = Y ⇒ f(X) = f(Y ) {X = Y }

The trigger is in curly braces. We first instantiate the axiom schemata for all
possible parameter valuations using the sorts and symbols of the concrete system.
Then we ground the resulting axioms using pattern-based instantiation.

One further technique is needed, however, to ground the quantifiers occur-
ring in the formula being explicated. Quantifiers usually occur in the transition
relations of parameterized systems either in the guards of guarded commands
or in state updates. As an example, suppose a given command sets the state of
process p to ‘ready’. This would appear in the transition formula as a constraint
such as the following:

∀x. state′(x) = ready if x = p else state(x)

If this quantifier is not instantiated, then all information about process state will
be lost. To avoid this, we would like to apply the following schema:

y : s, p : s → B

(∀X. p(X)) ⇒ p(y) {∀X. p(X)}

Here we intend that p should match any predicate with one free variable and not
just a predicate symbol (including non-temporal sub-formulas of the property
to be proved). However, rather than implement a general second-order matching
scheme, it is simpler to build this particular schema into the theory explication
process. There is some question as to which ground terms to supply for the
parameter y. As with other schemata, only constants are used in the current
implementation. This appears to be adequate, but it might also be useful to
allow the user to supply explicit triggers for quantifiers in the transition system
or property.

The theory explication process thus has three steps:

1. Instantiate quantifiers in the formulas using the quantifier schema above.
2. Generate axioms from the user axiom schemata, supplying symbols from the

formulas as parameters.
3. Instantiate the axioms using triggers for one generation.

Notice this is a slight departure from the policy of one generation of matching,
since terms generated in step 1 can be used to match axioms in step 3. This is
important in practice since without grounding the quantifiers there may be no
ground terms to match in step 3.

4 Example Abstractions in the Class

A typical approach to verifying parameterized protocols with finite-state model
checking is to track the state of a representative fixed collection of processes
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and abstract away the state of the remaining processes. In this approach, intro-
duced in [17], a small collection background constants (typically two or three)
is used to identify the tracked processes. For each process identifier in the sys-
tem, the abstraction records whether it is equal to each of the tracked ids, but
carries no further information. For each function f over process ids, the abstrac-
tion maintains the value of f(x) only if x is equal to one of the background
constants. This approach has been used, for example, to verify processor micro-
architectures [12,16,17] and cache coherence protocols [5,6,19].

This abstraction can be implemented using schema-based instantiation. The
high-level idea is to create a set of schemata that make it possible to abstractly
evaluate terms in a bottom-up manner.

For example, consider an occurrence t = u of the equality operator where t
and u are terms of sort s. The abstract value of this term is � if t and u are
both equal to some background constant c, ⊥ if t = c and u �= c, and otherwise
is unknown. To implement this abstraction, we use the following schemata:

c : s
X = c ∧ Y = c ⇒ X = Y {X = Y }

c : s
X = c ∧ Y �= c ⇒ X �= Y {X = Y }

The triggers of these two schemata cause them to be applied to every occurrence
of an equality operator in the formula being abstracted.

For an application f(t) of a function symbol, the abstract value is the abstrac-
tion of f(c) if t is equal to background constant c, and is otherwise unknown.
This fact could be captured by chaining the congruence schema above with
the above two equality schemata. That is, matching the congruence schema, we
obtain t = c ⇒ f(t) = f(c). Then matching the equality operator schemata with
this result, we obtain (in the contrapositive) f(t) = f(c) ∧ f(c) = d ⇒ f(t) = d
and f(t) = f(c) ∧ f(c) �= d ⇒ f(t) �= d (for any background constants c, d).
Recall, however, that we allow only one generation of matching, so this second
matching step will not occur. Instead, we write the above two facts explicitly as
a schema:

c : s, d : t, f : s → t
X = c ⇒ (f(X) = d ⇔ f(c) = d) {f(X)}

This schema is matched for every application of a symbol of arity one in the
formula. We also specify similar schemata for arities greater than one. Notice that
this schema also applies to relation symbols if we treat � and ⊥ as background
constants of sort B. However, for relations and functions to finitely enumerated
sorts, it is more efficient to use the congruence schema, since it produces fewer
instances.

Finally, we need one additional schema to guarantee that the abstract values
are consistent with the equality relation on the background constants:

c : s, d : s
X = c ⇒ (X = d ⇔ c = d) {X}

Notice that this axiom is instantiated for every term in the formula (though
in practice not for propositions). Though it doesn’t affect satisfiability of for-
mulas, it is also helpful to add reflexivity, symmetry and transitivity over the



198 K. L. McMillan

background constants as it makes the resulting counterexamples easier to under-
stand.

These schemata produce an abstraction of the formula that is at least as
strong as the datatype reduction for scalarset types described in [18]. In fact, this
is true if we restrict the application of the schemata to constants c and d in the
set of background constants, which we do in practice. The cost of the abstraction
is moderate, since the number of axiom instances is directly proportional to the
size of the formula and to the number of background constants.

An advantage of the schema-based explication approach is that we can use
it to construct abstractions for various datatypes and even use different abstrac-
tions of the same datatype for different applications. As an example, consider
an abstraction for totally ordered datatypes such as the integers. We want the
abstraction to track, for any term t of this sort, whether it is equal to, less
than or greater than each background constant. The abstract value of a term
t is captured by the values of the predicates t < c and t = c for background
constants c. We begin with the abstract semantics of equality given above. The
abstract semantics of the < relation can be given by the following schemata
(where t ≤ c is an abbreviation for t < c ∨ t = c):

c : s
X ≤ c ∧ c < Y ⇒ X < Y {X < Y }

c : s
X < c ∧ c ≤ Y ⇒ X < Y {X < Y }

c : s
Y ≤ c ∧ ¬(X < c) ⇒ ¬(X < Y ) {X < Y }

By chaining the congruence schema with these, we can obtain the abstract
semantics of function application, but again we wish to limit the number of
matching generations to one. Thus, as with equality, we write an explicit schema
combining the two steps:

c : s, d : t, f : s → t
X = c ⇒ (f(X) < d ⇔ f(c) < d) {f(X)}

We also require that the abstract value of every term be consistent with the
interpretation of = and < over the background constants. This gives us:

c : s
¬(X = c ∧ X < c) {X}

c : s, d : t
X ≤ d ∧ ¬(X < c) ⇒ c ≤ d {X}

With the equality schemata, these imply that the background constants are
totally ordered. As an extension, if the totally ordered sort has a least element 0,
we can add it as a background constant along with the axiom ¬(X < 0).

This abstraction is a bit weaker than the “ordset” abstraction used, for exam-
ple, in [20]. We can simulate that abstraction by adding schemata that interpret
the + operator, and facts about numeric constants such as 0 < 1. In general, for
a given datatype, we can tailor an abstraction that captures just the properties
of that type needed to prove a given system property. This extensibility makes
the schema-based approach more flexible and possibly more efficient than the
built-in abstractions of [18]. The above schemata have been verified by Z3.
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5 Proof Methodology

In the previous sections, we developed an approach to produce a sound finite-
state abstraction of an infinite-state system using eager theory explication and
propositional skeletons. Now we consider how to construct proofs of systems
using this approach. This section is essentially a summary of some results in [18].

The first question that arises is how to obtain the set of background constants
that determine the abstraction. Generally speaking these arise as prophecy vari-
ables. For example, suppose we wish to prove a mutual exclusion property of the
form �∀x, y. p(x) ∧ p(y) ⇒ x = y. To do this, we replace the bound variables
x and y with fresh background constants a and b, to obtain the quantifier-free
property �p(a) ∧ p(b) ⇒ a = b. In effect a and b are immutable prophecy vari-
ables that predict the values of x and y for which the property will fail. By
introducing prophecy variables, we refine the abstraction so that it tracks the
state of the pair of processes that ostensibly cause the mutual exclusion property
to fail. We hope, of course, to prove that there are no such processes. We apply
the following theorem to introduce prophecy variables soundly:

Theorem 3. Let (I, T ) be a symbolic transition system, x:s a variable, φ(x) a
temporal formula and v:s a background symbol not occurring in I, T, φ. Then
(I, T ) |= �∀x. φ(x) iff (I, T ) |= �φ(v).

This theorem can be applied as many times as needed to eliminate universal
quantifiers from an invariance property. Further refinement can be obtained if
needed by manually adding prophesy variables. For example, suppose that each
process x has a ticket number t(x), and we wish to track the ticket number held
by process a at the time of the failure. To do this, we replace our property with
the property � c = t(a) ⇒ (p(a) ∧ p(b) ⇒ a = b) where c is a fresh background
constant. In general, we can introduce additional prophecy variables using this
theorem:

Theorem 4. Let (I, T ) be a transition system, φ a temporal formula and t a
term. Then (I, T ) |= �φ iff (I, T ) |= �∀x. x = t ⇒ φ, where x is not free in φ.

The theorem can be applied repeatedly to introduce as many prophecy variables
as needed to refine the abstraction. The introduced quantifiers can be converted
to background symbols by the preceding theorem.

Since our abstraction tracks the state of only processes a and b, a protocol
step in which an untracked process sends a message to a or b is likely to produce
an incorrect result in the abstraction. To mitigate this problem, we assume by
induction over time that our universally quantified invariant property φ has
always held in the strict past. This makes use of the following theorem:

Theorem 5. Let (I, T ) be a symbolic transition system, and φ a temporal for-
mula. Then (I, T ) |= �φ iff (I, T ) |= � (Hφ) ⇒ φ.

The quantifiers in φ will be instantiated with ground terms in T . Thus, in our
mutual exclusion example, we can rely on the fact that the sender of a past
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message (identified by some temporary symbol) is not in its critical section if
either a or b are. Using induction in this way can mitigate the loss of information
in the finite abstraction. Note we can pull quantifiers out of the above implica-
tion in order to apply Theorem3. That is, (H∀x. φ) ⇒ ∀x.φ is equivalent to
∀x. (H∀x. φ) ⇒ φ.

If the above tactics fail to prove an invariant property because the abstraction
loses too much information, we can strengthen the invariant by adding conjuncts
to it. These conjuncts have been called “non-interference lemmas”, since they
serve to reduce the interference with the tracked processes that is caused by loss
of information about the untracked processes. We use the following theorem:

Theorem 6. Let (I, T ) be a symbolic transition system, and φ, ψ temporal for-
mulas. Then if (I, T ) |= �φ ∧ ψ then (I, T ) |= �φ.

The general proof approach has the following steps:

1. Strengthen the invariant property (manually) with Theorem6.
2. Apply temporal induction with Theorem5.
3. Add quantifiers to the invariant with Theorem4.
4. Convert the invariant quantifiers to background symbols with Theorem3.
5. Add tautologies to the system using Theorem2 and specified schemata.
6. Abstract to a finite-state SMC problem using Theorem1.
7. Apply a finite-state symbolic model checker to check the property.

Implementation in IVy. This approach has been implemented in the IVy
tool [15]. In IVy, the state of the model is expressed in terms of mutable functions
and relations over primitive sorts. The language is procedural, and allows the
expression of protocol models as interleavings of atomic guarded commands, the
semantics of which is expressible in first-order logic.

To implement the approach, IVy’s language was augmented with a syntax for
expressing schemata. The schemata of Sect. 4 were added to the tool’s standard
library. Syntax is also provided to decorate invariant assertions with terms to be
used as prophecy variables. IVy extends the above theory slightly by allowing
invariant properties to be asserted not only between commands, but also in the
middle of sequential commands. This can be convenient, since it allows invariants
to reference local variables inside the commands.

With this input, the tool applies the six transformation steps detailed above
to produce a purely propositional SMC problem. This problem is then converted
to the AIGER format [2], a standard for hardware model checking. At present,
the system only handles safety properties of the form �(Hφ) ⇒ φ, where φ is
non-temporal. The AIGER format does support liveness, however, and this is
planned as a future extension.

The resulting AIGER file is passed to the tool ABC [4] which uses its imple-
mentation of property driven reachability [10] to check the property. The coun-
terexample, if any, is converted back to a run of the abstract transition system.
The propositional symbols in this run are converted back to the corresponding
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atoms by inverting the abstraction mapping A. This yields an abstract coun-
terexample: a sequence of predicate valuations that correspond to both the state
and temporary symbols in the abstraction.

The abstract counterexample may be spurious in the sense that it corresponds
to no run of the concrete transition system. In this case, the user must analyze
the trace to determine where necessary information was lost and either modify
the invariant or refine the abstraction by adding a prophecy variable.

6 Case Studies

In this section, we consider the proof of safety properties of four parameterized
algorithms and protocols. We wish to address three main questions. First, is
the abstraction approach efficient? That is, if we construct an abstract model
using schema-based theory explication, can the resulting finite-state problem
be solved using a modern symbolic model checker? Second, is the methodology
usable? That is, can a human user construct a proof using the methodology
by analyzing the abstract counterexamples? Third, when is it more effective
than the current best alternative, which is to write an inductive invariant man-
ually and check it using an SMT solver, as in [11]? We will call this approach
“invariant checking”. We note that predicate abstraction is not suitable to these
examples because the invariants require complex quantified formulas while cur-
rent methods that synthesize quantified invariants for parameterized systems are
unreliable in practice and do not scale well.

The last question in particular has not been well addressed in prior work on
model checking approaches to parameterized verification. In most cases, either no
comparison was made, or comparison was made to proofs using general-purpose
proof assistants, which tend to be extremely laborious and do not make use
of current state-of-the art proof automation techniques. To make a reasonably
direct comparison, we construct proofs of each model using both methodologies,
using the same language and tool, using the state-of-the art tools ABC [4] for
model checking and Z3 [7] for invariant checking.

To apply the invariant checking method, some of the protocol models have
been slightly re-encoded. In particular, it is helpful in some cases to use relations
rather than functions in modeling the protocol state, as this can prevent the
prover from diverging in a “matching loop” [8]. This re-encoding adds negligibly
to the proof effort and is arguably harmless, since it does not appear in practice
to affect the difficulty of refining the model to a concrete implementation.

Our four example models are:

1. Tomasulo: a parameterized model of Tomasulo’s algorithm for out-or-order
instruction execution, taken from [17].

2. German: a model of a simple directory-based cache coherence protocol
from [6].

3. FLASH: a model of a more complex and realistic cache coherence protocol
from [19,23], based on the Stanford FLASH multiprocessor [13].

4. VS-Paxos: a model of Virtually Synchronous Paxos [3], a distributed con-
sensus algorithm, from [21].
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Table 1. Comparison of proofs using two methodologies.

Model Size Model checking Invariant checking

|Inv| HVars PVars |Pf| Time |Inv| HVars |Pf| Time

Tomasulo 1245 100 6 11 248 0.39 318 5 398 2.4

German 754 23 1 0 29 0.60 234 1 240 1.8

FLASH 2427 81 3 2 122 69 1235 1 1255 9.1

VS-Paxos 1442 224 8 34 512 23 1022 2 1101 59

A comparison of the proofs obtained using the two methodologies is shown in
Table 1. The column “size” shows the textual size of the model plus property in
lexical tokens. The columns labeled |Inv| give the size of the auxiliary invariants
used in the proofs, expressed in the number of lexical tokens not including the
property to be proved. Since both methods require the user to supply auxiliary
invariants and discovering this invariant is the largest part of the effort in both
cases, this number provides a fairly direct comparison of the complexity of the
proofs. In both methodologies, the user also defines history or “ghost” variables
that help in expressing the invariant. The number of these variables is shown
in the columns labeled HVars. In the model checking approach, the user also
refines the abstraction by defining prophecy variables. These were not used in
the invariant checking proofs. The closest analogy in invariant checking proofs to
this type of information would be quantifier instantiations or triggers provided
by the user. This was not needed, however, since the methodology of [22] was
applied to ensure that all verification conditions reside in a decidable fragment
of the logic. For the model checking methodology, the number of distinct terms
supplied by the user as prophecy variables is shown in the column labeled PVars.
The time columns show the total time in seconds for model checking or invariant
checking for the completed proofs on a 2.6 GHz Intel Xeon CPU using one core.
Times to produce counterexamples were generally faster.

When measuring the overall complexity of the proofs, it is unclear how to
weight the three kinds of information supplied by the user. In a sense, prophecy
variables are the easiest to handle, since their behavior is monotone. That is,
adding a prophecy variable only increases precision so it cannot cause passing
invariants to fail. Ghost variables are more conceptually difficult to introduce,
since the invariants depend on them. If a ghost variable definition is changed to
repair a failing invariant, this may cause a different invariant to fail. Similarly if
we strengthen a passing invariant, it may fail to be proved and if we weaken a
failing one it may cause other formerly passing invariants to fail. This instability
can cause the manual proof search to fail to converge and is the chief cause of
conceptual difficulty in constructing proofs in both methodologies. Having said
this, for lack of a principled way to weight the different aspects of the proof effort,
we will measure the proof size as simply the sum of the number of lexical tokens
in the auxiliary invariant, the history variable definitions, and all terms used as
prophecy variables. The total proof size is shown in the columns labeled |Pf|.
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These numbers should be taken as unreliable for several reasons that are
common to any attempt to measure the effectiveness of a proof methodology.
First, the size of the proof (or any other measure of the proof difficulty, such
as expended time) can depend on the proficiency of the user in the particular
methodology. Even if the same user produces both proofs, the user’s proficiency
in the two methodologies may differ, and knowledge gained in the first proof
will effect the second one. Since resources were not available to train and test a
statistically significant population users in both methodologies (assuming such
could be found) the numbers presented here should not be considered a direct
comparison of the methods. Rather, they are presented to support some obser-
vations made below about the specific case studies and proofs.

Case Study: Tomasulo’s Algorithm. This is a simple abstract model of a
processor microarchitecture that executes instructions concurrently out of order.
The model state consists of a register file, a set of reservation stations (RS) and
a set of execution units (EU) and is parameterized on the size of each of these,
as well as the data word size. The machine’s instructions are register-to-register
and are modeled abstractly by an uninterpreted function. Each register has a
flag that records whether it is the destination of a pending instruction. If so, its
tag indicates which RS is holding that instruction. Each RS stores the tags of
its instruction arguments, and waits for these to be computed before issuing the
instruction to an EU.

Both proofs are based on history variables that record the correct values of
arguments and result for each RS. The principal invariant of both states that
the arguments obtained by all RS’s are correct. In the model checking case, the
abstraction is refined by making the tags of these arguments and chosen EU into
prophecy variables. This allows the model checker to track enough state infor-
mation to prove the main invariant, though one additional “non-interference”
lemma is needed to guarantee that other EU’s do not interfere by producing an
incorrect tag. An interesting aspect of the invariant is that it does not refer to
the states of the register file or EU’s. The necessary invariants of these structures
can be inferred by the model checker. On the other hand, this information must
be supplied explicitly in the manual invariant. As the table shows, the resulting
invariant is more complex.

Case Study: German’s Cache Protocol. This simple distributed directory-
based cache coherence protocol allows the caches to communicate directly only
with the directory. The property proved is coherence, in effect that exclusive
copies are exclusive. In the model checking proof, there is one non-interference
lemma, stating that no cache produces a spurious invalidation acknowledgment
message. No extra prophecy variables are need, as tracking the state of just the
two caches that produce the coherence failure suffices. The manual invariant on
the other hand is much more detailed, in fact about an order of magnitude larger.
This is because it must relate the state of all the various types of messages in
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the network to the cache and directory states. These relationships were inferred
automatically by the model checker, resulting in a much simpler proof.

Case Study: FLASH Cache Coherence Protocol. This is a much
more complex (and realistic) distributed cache coherence protocol model. The
increased protocol complexity derives from the fact that information can be
transferred directly from one cache to another. In a typical transaction, a cache
sends a request to the directory for (say) an exclusive copy of a cache line. The
directory forwards the request to the current owner of the line, which then sends
a copy to the original requester, as well as a response to the directory confirming
the ownership transfer. Handling various race conditions in this scheme makes
both the protocol and its proof complex. Again the property proved is coherence.
The model checking proof is similar to [19], though there data correctness and
liveness were proved.

In this case, three non-interference lemmas are used in the model checking
proof, ruling out three types of spurious messages. Also two additional prophecy
variables are needed. For example, one of these identifies the cache that sent
an exclusive copy. This allows the abstraction to track the state of the third
participant in the triangular transaction described above. Generally, protocols
with more complex communication patterns require more prophecy variables to
refine the abstraction.

As with German’s protocol, and for the same reason, the manual invariant
is an order of magnitude larger. In this case, the additional protocol complexity
makes it quite challenging to converge to an invariant and a large number of
strengthenings and weakenings were needed.

Case Study: Virtually Synchronous Paxos. This is a high-level model of
a distributed consensus protocol, designed to allow a collection of processes to
agree on a sequence of decisions, despite process and network failures. This model
was previous proved by a manual invariant to be consistent, meaning that two
decisions for a given index never disagree [21].

The protocol operates in a sequence of epochs, each of which has a leader
process. The leader proposes decision values and any proposal that receives votes
of a majority of processes becomes a decision. When the leader fails the protocol
must move on to a new epoch. For consistency, any decisions that are possibly
made in the old epoch must be preserved in the new. This is accomplished by
choosing a majority of processes to start the new epoch and preserving all of
their votes. Any decision having a majority of votes in the old epoch must have
one voter in the new epoch’s starting majority and thus must be preserved. The
choice of an epoch’s starting majority is itself a single-decree consensus problem.
This is solved in a sequence of rounds called “stakes”. A stake can be created by
a majority of processes and proposes the votes of some majority to be carried to
the next epoch. Each process in the stake promises not accept any lesser stake
with differing votes. If a majority accepts the stake, then the votes of that stake
can be passed to the next epoch.
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The important auxiliary invariants of the model checking proof are these:

– At each epoch, the votes of the majority that ends the epoch are known to
the leaders of all future epochs, and

– When a stake is created, every lesser stake with different votes is “dead” in
the sense that a majority of nodes has promised not to accept it, and

– In any epoch, any two accepted stakes agree on their votes.

Perhaps not surprisingly, the manual invariant is much larger. The model check-
ing proof, however, requires many extra prophecy variables. This is mainly
accounted for by the fact that the model has seven unbounded sorts: process
id’s, decision indices, decision values, epochs, stakes, vote sets and process sets.
Typically each invariant (including the one to be proved) requires one or two
prophecy variables of each sort to refine the abstraction (though some of these
may not be unique).

An additional complication is dealing with sets and majorities. Sets of pro-
cesses are represented by an abstract data type. This type provides a predicate
called ‘majority’ that indicates that a set contains more than half of the pro-
cess id’s. A function ‘common’ returns a common element between two sets if
both are majorities (and is otherwise undefined). For example, to prove that
we cannot have two conflicting decisions, we use the majorities that voted for
each decision and declare the common process between these majorities as a
prophecy variable. It then suffices to show that this particular process cannot
have voted for both decisions (which requires the auxiliary invariants above).
Since majorities are used in several places in the protocol, this tactic is applied
several times.

Because of the larger number of prophecy variables, our (admittedly arbi-
trary) measure of overall proof complexity does not show as much advantage
for model checking in this protocol as it does for the cache protocols. In fact,
getting the details right in this proof was much more difficult subjectively than
for FLASH.

This difficulty may be related to the two sorts in the model that are totally
ordered: epochs and stakes. For these sorts we use the schemata for totally
ordered sets detailed in Sect. 4. The ordering of these sorts introduces some dif-
ficulty in the proof, requiring more detailed invariants. For example, suppose we
want to show that the first invariant above holds at the moment when a given
process leaves one epoch and enters the next. The votes received at the epoch
depend on all the previous epochs. We cannot however, make all of the unbound-
edly many lesser epochs concrete by adding a finite number of prophecy variables.
This means our property must be inductive over epochs, that is, it holds now if
it held in the past at the start of some particular epoch we can identify (perhaps
the previous one). The need to write invariants that are inductive over ordered
datatypes may account for the fact that the VS-Paxos invariant is more complex
than that of the more complex FLASH protocol.
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Discussion. We can make several general observations about these case studies.
First, the performance of the finite-state model checker was never problematic.
It always produced results in a reasonable amount of time and was not the bot-
tleneck in constructing any of the proofs. Rather the most time-consuming task
was usually analyzing the abstract counterexamples. This task proved tractable
in practice, allowing the proof search process to converge.

Second, the invariants used in the model checking approach are generally
much smaller than the manual ones because of the model checker’s ability to
infer state invariants.

This advantage may be somewhat offset by the need to provide prophecy
variables to refine the abstraction, especially in the case where there are many
unbounded sorts. Moreover, the need to write properties that are inductive over
ordered sorts may lessen the advantage of model checking in invariant complexity.
This was evident in the case of VS-Paxos and to some extent in Tomasulo as
well, because of the implicit induction over the instruction stream. These criteria
may be helpful in deciding which approach to take to a given proof problem.

Finally, it is interesting to note that the schemata presented in Sect. 4 proved
adequate in all cases. That is, in no case was it necessary to add a schema to
refine the abstraction of the transition relation. This indicates there is no need
in practice to restrict to decidable logics or pay the cost of computing best
transformers.

7 Conclusion

We have presented a method of abstracting parameterized or infinite-state SMC
problems to finite-state problems based on propositional skeletons and eager
theory explication. The method is extensible in the sense that users can add
abstractions (or refine existing abstractions) by providing axiom schemata. It
generalizes the ‘datatype reduction’ approach of [18] while giving both a sim-
pler theoretical account and allowing a simpler implementation. Compared to
predicate abstraction, it has the advantage that it can be applied to undecidable
logics and does not require a costly decision procedure in the loop. The app-
roach has been implemented in the IVy tool. Based on some case studies, we
found that the approach is practical and requires substantially less complex aux-
iliary invariants than inductive invariant checking. We identified some conditions
under which the approach is likely to be most effective.

Conceivably some of the tasks performed here by a human could be auto-
mated. However, the resulting system would be liable to fail unpredictably
and opaquely. The present approach is an attempt to create a usable trade-off
between human input and reliability.

The next step is to implement liveness. Recent work has constructed liveness
proofs in IVy by an infinite-state liveness-to-safety reduction, but the proofs are
complex [21]. It would interesting to compare this to an approach that leverages
a finite-state model checker’s ability to prove liveness.
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Abstract. We show how to leverage reinforcement learning (RL) in
order to speed up static program analysis. The key insight is to estab-
lish a correspondence between concepts in RL and those in analysis: a
state in RL maps to an abstract program state in analysis, an action
maps to an abstract transformer, and at every state, we have a set of
sound transformers (actions) that represent different trade-offs between
precision and performance. At each iteration, the agent (analysis) uses a
policy learned offline by RL to decide on the transformer which minimizes
loss of precision at fixpoint while improving analysis performance. Our
approach leverages the idea of online decomposition (applicable to pop-
ular numerical abstract domains) to define a space of new approximate
transformers with varying degrees of precision and performance. Using a
suitably designed set of features that capture key properties of abstract
program states and available actions, we then apply Q-learning with lin-
ear function approximation to compute an optimized context-sensitive
policy that chooses transformers during analysis. We implemented our
approach for the notoriously expensive Polyhedra domain and evaluated
it on a set of Linux device drivers that are expensive to analyze. The
results show that our approach can yield massive speedups of up to two
orders of magnitude while maintaining precision at fixpoint.

1 Introduction

Static analyzers that scale to real-world programs yet maintain high precision are
difficult to design. Recent approaches to attacking this problem have focused on
two complementary methods. On one hand is work that designs clever algorithms
that exploits the special structure of particular abstract domains to speed up
analysis [5,10,15,16,20,21]. These works tackle specific types of analyses but the
gains in performance can be substantial. On the other hand are approaches that
introduce creative mechanisms to trade off precision loss for gains in speed [9,12,
18,19]. While promising, these methods typically do not take into account the
particular abstract states arising during analysis which determine the precision
of abstract transformers (e.g., join), resulting in suboptimal analysis precision
or performance. A key challenge then is coming up with effective and general
c© The Author(s) 2018
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approaches that can decide where and how to lose precision during analysis for
best tradeoff between performance and precision.

Our Work. We address the above challenge by offering a new approach for
dynamically losing precision based on reinforcement learning (RL) [24]. The key
idea is to learn a policy that determines when and how the analyzer should
lose the least precision at an abstract state to achieve best performance gains.
Towards that, we establish a correspondence between concepts in static analysis
and RL, which demonstrates that RL is a viable approach for handling choices
in the inner workings of a static analyzer.

To illustrate the basic idea, imagine that a static analyzer has at each pro-
gram state two available abstract transformers: the precise but slow Tp and the
fast but less precise Tf . Ideally, the analyzer would decide adaptively at each
step on the best choice that maximizes speed while producing a final result of
sufficient precision. Such a policy is difficult to craft by hand and hence we
propose to leverage RL to discover the policy automatically.

To explain the connection with RL intuitively, we think of abstract states
and transformers as analogous to states of a Go board and moves made by
the Go player, respectively. In Go, the goal is to learn a policy that at each
state decides on the next player action (transformer to use) which maximizes
the chances of eventually winning the game (obtaining a precise fixpoint while
improving performance in our case). Note that the reward to be maximized
in Go is long-term and not an immediate gain in position, which is similar to
iterative static analysis. To learn the policy with RL, one typically extracts a
set of features φ from a given state and action, and uses those features to define
a so-called Q-function, which is then learned, determining the desired policy.

In the example above, a learned policy would determine at each step whether
to choose action Tp or Tf . To do that, for a given state and action, the analyzer
computes the value of the Q-function using the features φ. Querying the Q-
function returns the suggested action from that state. Eventually, such a policy
would ideally lead to a fixpoint of sufficient precision but be computed quicker.

While the overall connection between static analysis and reinforcement learn-
ing is conceptually clean, the details of making it work in practice pose significant
challenges. The first is the design of suitable approximations to actually be able
to gain performance when precision is lost. The second is the design of features
φ that are cheap to compute yet expressive enough to capture key properties
of abstract states. Finally, a suitable reward function combining both precision
and performance is needed. We show how to solve these challenges for Polyhedra
analysis.

Main Contributions. Our main contributions are:

– A space of sound, approximate Polyhedra transformers spanning different pre-
cision/performance trade-offs. The new transformers combine online decom-
position with different constraint removal and merge strategies for approxi-
mations (Sect. 3).
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– A set of feature functions which capture key properties of abstract states and
transformers, yet are efficient to extract (Sect. 4).

– A complete instantiation of RL for Polyhedra analysis based on Q-learning
with linear function approximation (i.e., actions, reward function, Q-
function).

– An end-to-end implementation and evaluation of our approach. Given a train-
ing dataset of programs, we first learn a policy (based on the Q-function)
over analysis runs of these programs. We then use the resulting policy during
analysis of new, unseen programs. The experimental results on a set of realis-
tic programs (e.g., Linux device drivers) show that our RL-based Polyhedra
analysis achieves substantial speed-ups (up to 515x) over a heavily optimized
state-of-the-art Polyhedra library.

We believe the reinforcement learning based approach outlined in this work
can be applied to speed up other program analyzers (beyond Polyhedra).

2 Reinforcement Learning for Static Analysis

In this section we first introduce the general framework of reinforcement learning
and then discuss its instantiation for static analysis.

2.1 Reinforcement Learning

Reinforcement learning (RL) [24] involves an agent learning to achieve a goal by
interacting with its environment. The agent starts from an initial representation
of its environment in the form of an initial state s0 ∈ S where S is the set of
possible states. Then, at each time step t = 0, 1, 2, . . . , the agent performs an
action at ∈ A in state st (A is the set of possible actions) and moves to the next
state st+1. The agent receives a numerical reward r(st, at, st+1) ∈ R for moving
from the state st to st+1 through action at. The agent repeats this process until
it reaches a final state. Each sequence of states and actions from an initial state
to the final state is called an episode.

In RL, state transitions typically satisfy the Markov property: the next state
st+1 depends only on the current state st and the action at taken from st. A policy
p : S → A is a mapping from states to actions: it specifies the action at = p(st)
that the agent will take when in state st. The agent’s goal is to learn a policy that
maximizes not an immediate but a cumulative reward for its actions in the long
term. The agent does this by selecting the action with the highest expected long-
term reward in a given state. The quality function (Q-function) Q : S × A → R

specifies the long term cumulative reward associated with choosing an action at

in state st. Learning this function, which is not available a priori, is essential for
determining the best policy and is explained next.
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Algorithm 1. Q-learning algorithm
1: function Q-learn(S, A, r, γ, α, φ)
2: Input:
3: S ← set of states, A ← set of actions, r ← reward function
4: γ ← discount factor, α ← learning rate
5: φ ← set of feature functions over S and A
6: Output: parameters θ
7: θ = Initialize arbitrarily (which also initializes Q)
8: for each episode do
9: Start with an initial state s0 ∈ S

10: for t = 0, 1, 2, . . . , length(episode) do
11: Take action at, observe next state st+1 and r(st, at, st+1)
12: θ := θ+α · (r(st, at, st+1)+γ ·maxat+1Q(st+1, at+1)−Q(st, at)) ·φ(st, at)

13: return θ

Q-learning and Approximating the Q-function. Q-learning [25] can be
used to learn the Q-function over state-action pairs. Typically the size of the
state space is so large that it is not feasible to explicitly compute the Q-function
for each state-action pair and thus the function is approximated. In this paper, we
consider a linear function approximation of the Q-function for three reasons: (i)
effectiveness: the approach is efficient, can handle large state spaces, and works
well in practice [6]; (ii) it leverages our application domain: in our setting, it is
possible to choose meaningful features (e.g., approximation of volume and cost
of transformer) that relate to precision and performance of the static analysis
and thus it is not necessary to uncover them automatically (as done, e.g., by
training a neural net); and (iii) interpretability of policy : once the Q-function
and associated policy are learned they can be inspected and interpreted.

The Q-function is described as a linear combination of � basis functions
φi : S × A → R, i = 1, . . . , �. Each φi is a feature that assigns a value to a
(state, action) pair and � is the total number of chosen features. The choice of
features is important and depends on the application domain. We collect the
feature functions into a vector φ(s, a) = (φ1(s, a), φ2(s, a), . . . , φ�(s, a)); doing
so, the Q-function has the form:

Q(s, a) =
�∑

j=1

θj · φj(s, a) = φ(s, a) · θT , (1)

where θ = (θ1, θ2, . . . , θ�) is the parameter vector. The goal of Q-learning with
linear function approximation is thus to estimate (learn) θ.

Algorithm 1 shows the Q-learning procedure. In the algorithm, 0 ≤ γ < 1
is the discount factor which represents the difference in importance between
immediate and future rewards. γ = 0 makes the agent only consider immediate
rewards while γ ≈ 1 gives more importance to future rewards. The parameter
0 < α ≤ 1 is the learning rate that determines the extent to which the newly
acquired information overrides the old information. The algorithm first initializes
θ randomly. Then, for each step t in an episode, the agent takes an action at,
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Table 1. Mapping of RL concepts to Static analysis concepts.

RL concept Static analysis concept

Agent Static analyzer

State s ∈ S Features of abstract state

Action a ∈ A Abstract transformer

Reward function r Transformer precision and runtime

Feature Value associated with abstract state features and transformer

moves to the next state st+1 and receives a reward r(st, at, st+1). Line 12 in
the algorithm shows the equation for updating the parameters θ. Notice that Q-
learning is an off-policy learning algorithm as the update in the equation assumes
that the agent follows a greedy policy (from state st+1) while the action (at)
taken by the agent (in st) need not be greedy.

Once the Q-function is learned, a policy p∗ for maximizing the agent’s cumu-
lative reward is obtained as:

p∗(s) = argmaxa∈AQ(s, a). (2)

In the application, p∗ is computed on the fly at each stage s by computing Q for
each action a and choosing the one with maximal Q(s, a). Since the number of
actions is typically small, this incurs little overhead.

2.2 Instantiation of RL to Static Analysis

We now discuss a general recipe for instantiating the RL framework described
above to the domain of static analysis. The precise formal instantiation to the
specific numerical (Polyhedra) analysis is provided later.

In Table 1, we show a mapping between RL and program analysis concepts.
Here, the analyzer is the agent that observes its environment, which is the
abstract program state (e.g., polyhedron) arising at every iteration of the anal-
ysis. In general, the number of possible abstract states can be very large (or
infinite) and thus, to enable RL in this setting, we abstract the state through
a set of features (Table 2). An example of a feature could be the number of
bounded program variables or the volume of a polyhedron. The challenge is
to define the features to be fast to evaluate, yet sufficiently representative so
the policy derived through learning generalizes well to unseen abstract program
states.

Further, at every abstract state, the analyzer should have the choice between
different actions corresponding to different abstract transformers. The trans-
formers should range from expensive and precise to cheap and approximate.
The reward function r is thus composed of a measure of precision and speed and
should encourage approximations that are both precise and fast.

The goal of our agent is to then learn an approximation policy that at each
step selects an action that tries to minimize the loss of analysis precision at fix-
point, while gaining overall performance. Learning such a policy is typically done
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offline using a given dataset D of programs (discussed in evaluation). However,
this is computationally challenging because the dataset D can contain many
programs and each program will need to be analyzed many times over during
training: even a single run of the analysis can contain many (e.g., thousands) calls
to abstract transformers. Thus, a good heuristic may be a complicated function
of the chosen features. Hence, to improve the efficiency of learning in practice,
one would typically exercise the choice for multiple transformers/actions only
at certain program points. A good choice, and one we employ, are join points,
where the most expensive transformer in numerical domains usually occurs.

Another key challenge lies in defining a suitable space of transformers. As we
will see later, we accomplish this by leveraging recent advances in online decom-
position for numerical domains [20–22]. We show how to do that for the notori-
ously expensive Polyhedra analysis; however, the approach is easily extendable
to other popular numerical domains, which all benefit from decomposition.

3 Polyhedra Analysis and Approximate Transformers

In this section we first provide brief background on polyhedra analysis and online
decomposition, a recent technique to speed up analysis without losing precision
and applicable to all popular numerical domains [22]. Then we leverage online
decomposition to define a flexible approximation framework that loses precision
in a way that directly translates into performance gains. This framework forms
the basis for our RL approach discussed in Sect. 4.

3.1 Polyhedra Analysis

Let X = {x1, x2, . . . , xn} be the set of n (numerical) program variables where
each variable xi ∈ Q takes a rational value. An abstract element P ⊆ Q

n in the
Polyhedra domain is a conjunction of linear constraints

∑n
i=1 aixi ≤ c between

the program variables where ai ∈ Z, c ∈ Q. This is called the constraint repre-
sentation of the polyhedron.

Fig. 1. Two representations of
polyhedron P : As conjunction of 4
constraints CP , and as convex hull
of 3 vertices and 2 rays GP .

Constraints and Generator Represen-
tation. For efficiency, it is common to
maintain besides the constraint represen-
tations also the generator representation,
which encodes a polyhedron as the convex
hull of a finite set of vertices, rays, and lines.
Rays and lines are represented by their direc-
tion. Thus, by abuse of prior notation we
write P = (CP ,GP ) where CP is the con-
straints representation (before just called P )
and GP is the generator representation.
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Example 1. Figure 1 shows an example of the two representations of an abstract
element P in the Polyhedra domain. CP is the intersection of 4 linear constraints:

CP = {−x1 ≤ −2,−x2 ≤ −2, x2 ≤ 10, 3x2 − 5x1 ≤ 5}.

GP is the convex hull of 3 vertices and 2 rays:

GP = {vertices, rays, lines} = {{(2, 2), (2, 5), (5, 10)}, {(1, 0), (1, 0)}, ∅}.
Notice that GP contains two rays in the same direction (1, 0); thus one of them
could be removed without changing the set of points in P .

During analysis, the abstract elements are manipulated with abstract trans-
formers that model the effect of statements and control flow in the program such
as assignment, conditional, join, and others. Upon termination of the analysis,
each program statement has an associated subsequent P containing all possible
variable values after this statement. The main bottleneck for the Polyhedra anal-
ysis is the join transformer (�), and thus it is the focus for our approximations.

Recently, Polyhedra domain analysis was sped up by orders of magnitude,
without approximation, using the idea of online decomposition [21]. The basic
idea is to dynamically decompose the occurring abstract elements into indepen-
dent components (in essence abstract elements on smaller variable sets) based on
the connectivity between variables in the constraints, and to maintain this (per-
manently changing) decomposition during analysis. The finer the decomposition,
the faster the analysis.

Our approximation framework builds on online decomposition. The basic idea
is simple: we approximate by dropping constraints to reduce connectivity among
constraints and thus to yield finer decompositions of abstract elements. These
directly translate into speedup. We consider various options of such approxima-
tion; reinforcement learning (in Sect. 4) will then learn a proper, context-sensitive
strategy that stipulates when and which approximation option to apply.

Next, we provide brief background on the ingredients of online decomposition
and explain our mechanisms for soundly approximating the join transformer.

3.2 Online Decomposition

Online decomposition is based on the observation that during analysis, the set
of variables X in a given polyhedron P can be partitioned as πP = {X1, . . . ,Xr}
into blocks Xt, such that constraints exist only between variables in the same
block. Each unconstrained variable xi ∈ X yields a singleton block {xi}. Using
this partition, P can be decomposed into a set of smaller Polyhedra P (Xt) called
factors. As a consequence, the abstract transformer can now be applied only on
the small subset of factors relevant to the program statement, which translates
into better performance.

Example 2. Consider the set X = {x1, x2, x3, x4, x5, x6} and the polyhedron:

P = {2x1 − 3x2 + x3 + x4 ≤ 0, x5 = 0}.
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Here, πP = {{x1, x2, x3, x4}, {x5}, {x6}} is a possible partition of X with factors

P (X1) = {2x1 − 3x2 + x3 + x4 ≤ 0}, P (X2) = {x5 = 0}, P (X3) = ∅.

The set of partitions of X forms a lattice with the ordering π 	 π′ iff every block
of π is a subset of a block of π′. Upper and lower bound of two partitions π1, π2,
i.e., π1 � π2 and π1 
 π2 are defined accordingly.

The optimal (finest) partition for an element P is denoted with πP . Ideally,
one would always determine and maintain this finest partition for each output Z
of a transformer but it may be too expensive to compute. Thus, the online
decomposition in [20,21] often computes a (cheaply computable) permissible
partition πZ � πZ . Note that making the output partition coarser (while keeping
the same constraints) does not change the precision of the abstract transformer.

3.3 Approximating the Polyhedra Join

Let πcom = πP1 � πP2 be a common permissible partition for the inputs P1, P2

of the join transformer. Then, from [21], a permissible partition for the (not
approximated) output is obtained by keeping all blocks Xt ∈ πcom for which
P1(Xt) = P2(Xt) in the output partition πZ , and fusing all remaining blocks
into one. Formally, πZ = {N} ∪ U , where

N =
⋃

{Xk ∈ πcom : P1(Xk) = P2(Xk)}, U = {Xk ∈ πcom : P1(Xk) = P2(Xk)}.

The join transformer computes the generators GZ for the output Z as GZ =
GP1(X\N ) × (GP1(N ) ∪ GP2(N )) where × is the Cartesian product. The constraint
representation CZ is computed as CZ = CP1(X\N )∪conversion(GP1(N )∪GP2(N )).
The conversion algorithm has worst-case exponential complexity and is the most
expensive step of the join. Note that the decomposed join applies it only on the
generators GP1(N ) ∪ GP2(N ) corresponding to the block N .

The cost of the decomposed join transformer depends on the size of the block
N . Thus, it is desirable to bound this size by a threshold ∈ N. Let B = {Xk ∈
πcom : Xk ∩N = ∅} be the set of blocks that merge into N in the output πZ and
Bt = {Xk ∈ B : |Xk| > threshold} be the set of blocks in B with size > threshold .

Splitting of Large Blocks. For each block Xt ∈ Bt, we apply the join on
the associated factors: Z(Xt) = P1(Xt) � P2(Xt). We then remove constraints
from Z(Xt) until it decomposes into blocks of sizes ≤ threshold . Since we only
remove constraints from Z(Xt), the resulting transformer remains sound. There
are many choices for removing constraints as shown in the next example.

Example 3. Consider the following polyhedron and threshold = 4

Xt = {x1, x2, x3, x4, x5, x6},

Z(Xt) = {x1 − x2 + x3 ≤ 0, x2 + x3 + x4 ≤ 0, x2 + x3 ≤ 0,

x3 + x4 ≤ 0, x4 − x5 ≤ 0, x4 − x6 ≤ 0}.



Fast Numerical Program Analysis with Reinforcement Learning 219

We can remove M = {x4 − x5 ≤ 0, x4 − x6 ≤ 0} from Z(Xt) to obtain the
constraint set {x1 −x2 +x3 ≤ 0, x2 +x3 +x4 ≤ 0, x2 +x3 ≤ 0, x3 +x4 ≤ 0} with
partition {{x1, x2, x3, x4}, {x5}, {x6}}, which obeys the threshold.

We could also remove M′ = {x2 + x3 + x4 ≤ 0, x3 + x4 ≤ 0} from Z(Xt) to
get the constraint set {x1 − x2 + x3 ≤ 0, x2 + x3 ≤ 0, x4 − x5 ≤ 0, x4 − x6 ≤ 0}
with partition {{x1, x2, x3}, {x4, x5, x6}}, which also obeys the threshold.

We next discuss our choices for the constraint removal algorithm.

Stoer-Wagner min-cut. The first basic idea is to remove a minimal number
of constraints in Z(Xt) that decomposes the block Xt into two blocks. To do
so, we associate with Z(Xt) a weighted undirected graph G = (V, E), where
V = Xt. Further, there is an edge between xi and xj , if there is a constraint
containing both; its weight mij is the number of such constraints. We then
apply the standard Stoer-Wagner min-cut algorithm [23] to obtain a partition
of Xt into X ′

t and X ′′
t . M collects all constraints that need to be removed, i.e.,

those that contain at least one variable from both X ′
t and X ′′

t .

Example 4. Figure 2 shows the graph G for Z(Xt) in Example 3. Applying the
Stoer-Wagner min-cut on G once will cut off x5 or x6 by removing the constraint
x4−x5 or x4−x6, respectively. In either case a block of size 5 remains, exceeding
the threshold of 4. After two applications, both constraints have been removed
and the resulting block structure is given by {{x1, x2, x3, x4}, {x5}, {x6}}. The
associated factors are {x1−x2+x3 ≤ 0, x2+x3+x4 ≤ 0, x2+x3 ≤ 0, x3+x4 ≤ 0}
and x5, x6 become unconstrained.

Fig. 2. Graph G for Z(Xt) in Example 3

Weighted Constraint Removal.
Our second approach for constraints
removal does not associate weights
with edges but with constraints. It
then removes greedily edges with high
weights. Specifically, we consider the
following two choices of constraint
weights, yielding two different con-
straint removal policies:

– For each variable xi ∈ Xt, we first compute the number ni of constraints
containing xi. The weight of a constraint is then the sum of the ni over all
variables occurring in the constraint.

– For each pair of variables xi, xj ∈ Xt, we first compute the number nij of
constraints containing both xi and xj . The weight of a constraint is then the
sum of the nij over all pairs xi, xj occurring in the constraint.

Once the weights are computed, we remove the constraint with maximum weight.
The intuition is that variables in this constraint most likely occur in other
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constraints in Z(Xt) and thus they do not become unconstrained upon con-
straint removal. This reduces the loss of information.

Example 5. Applying the first definition of weights in Example 3, we get n1 =
1, n2 = 3, n3 = 4, n4 = 4, n5 = 1, n6 = 1. The constraint x2 +x3 +x4 ≤ 0 has the
maximum weight of n2 +n3 +n4 = 11 and thus is chosen for removal. Removing
this constraint from Z(Xt) does not yet yield a decomposition; thus we have to
repeat. Doing so {x3 + x4 ≤ 0} is chosen. Now, Z(Xt) \ M = {x1 − x2 + x3 ≤
0, x2+x3 ≤ 0, x4−x5 ≤ 0, x4−x6 ≤ 0} which can be decomposed into two factors
{x1 − x2 + x3 ≤ 0, x2 + x3 ≤ 0} and {x4 − x5 ≤ 0, x4 − x6 ≤ 0} corresponding
to blocks {x1, x2, x3} and {x4, x5, x6}, respectively, each of size ≤ threshold.

Merging Blocks. The sizes of all blocks in B \ Bt are ≤ threshold and we can
apply merging to obtain larger blocks Xm ≤ threshold to increase the precision
of the subsequent join. The join is then applied on the factors P1(Xm), P2(Xm)
and the result is added to the output Z. We consider the following three merging
strategies. To simplify the explanation, we assume that the blocks in B \ Bt are
ordered by ascending size:

1. No merge: None of the blocks are merged.
2. Merge smallest first: We start merging the smallest blocks as long as the size

stays below the threshold. These blocks are then removed and the procedure
is repeated on the remaining set.

3. Merge large with small: We start to merge the largest block with the smallest
blocks as long as the size stays below the threshold. These blocks are then
removed and the procedure is repeated on the remaining set.

Example 6. Consider threshold = 5 and B \ Bt with block sizes
{1, 1, 2, 2, 2, 2, 3, 5, 7, 10}. Merging smallest first yields blocks 1 + 1 + 2, 2 + 2,
2 + 3 leaving the rest unchanged. The resulting sizes are {4, 4, 5, 5, 7, 10}. Merg-
ing large with small leaves 10, 7, 5 unchanged and merges 3 + 1 + 1, 2 + 2, and
2 + 2. The resulting sizes are also {4, 4, 5, 5, 7, 10} but the associated factors are
different (since different blocks are merged), which will yield different results in
following transformations.

Need for RL. Algorithm 2 shows how to approximate the join transformer.
Different choices of threshold, splitting, and merge strategies yield a range of
transformers with different performance and precision depending on the inputs.
All of the transformers are non-monotonic, however the analysis always converges
to a fixpoint when combined with widening [2]. Determining the suitability of a
given choice on an input is highly non-trivial and thus we use RL to learn it.
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Algorithm 2. Approximation algorithm for Polyhedra join
1: function approximate join((πP1 , P1), (πP2 , P2), threshold)
2: Input:
3: (πP1 , P1), (πP2 , P2) ← decomposed inputs to the join
4: threshold ← Upper bound on size of N
5: Output: decomposed output (πZ , Z) of the join

6: Z :=
⋃

{P1(Xk) : P1(Xk) = P2(Xk)}, πZ := U � initialize output

7: B := {Xk ∈ πP1 � πP2 : Xk ∩ N �= ∅}, Bt := {Xt ∈ B : |Xt| > threshold}
� join factors for blocks in Bt and split the outputs via a split algorithm

8: for Xt ∈ Bt do
9: P ′ := P1(Xt) � P2(Xt)

10: s algo := split alg(Xt, CP ′), (C, π) := split(Xt, CP ′ , threshold, s algo)
11: for Xt′ ∈ π do
12: G(Xt′) := conversion(C(Xt′)), Z := Z ∪ (C(Xt′), G(Xt′))

13: πZ := πZ ∪ π
� merge blocks ∈ B \ Bt via a merge algorithm and apply join

14: m algo := merge alg(B \ Bt), Bm := merge(B \ Bt, threshold, m algo)
15: for Xm ∈ Bm do
16: Z := Z ∪ (P1(Xm) � P2(Xm)), πZ := πZ ∪ {Xm}

return (πZ , Z)

Table 2. Features for describing RL state s (m ∈ {1, 2}, 0 ≤ j ≤ 8, 0 ≤ h ≤ 3).

Feature ψi Extraction

complexity

Typical

range

ni Buckets for feature ψi

|B| O(1) 1–10 10 {[j + 1, j + 1]} ∪ {[10, ∞)}
min(|Xk| : Xk ∈ B) O(|B|) 1–100 10 {[10 · j + 1, 10 · (j + 1)]} ∪ {[91, ∞)}
max(|Xk| : Xk ∈ B) O(|B|) 1–100 10 {[10 · j + 1, 10 · (j + 1)]} ∪ {[91, ∞)}
avg(|Xk| : Xk ∈ B) O(|B|) 1–100 10 {[10 · j + 1, 10 · (j + 1)]} ∪ {[91, ∞)}
min(|

⋃
GPm(Xk)| : Xk ∈ B) O(|B|) 1–1000 10 {[100 · j + 1, 100 · (j + 1)]} ∪ {[901, ∞)}

max(|
⋃

GPm(Xk)| : Xk ∈ B) O(|B|) 1–1000 10 {[100 · j + 1, 100 · (j + 1)]} ∪ {[901, ∞)}
avg(|

⋃
GPm(Xk)| : Xk ∈ B) O(|B|) 1–1000 10 {[100 · j + 1, 100 · (j + 1)]} ∪ {[901, ∞)}

|{xi ∈ X : xi ∈ [lm, um] in Pm}| O(ng) 1–25 5 {[5 · h + 1, 5 · (h + 1)]} ∪ {[21, ∞)}
|{xi ∈ X : xi ∈ [lm, ∞) in Pm}| +

|{xi ∈ X : xi ∈ (−∞, um] in Pm}|
O(ng) 1–25 5 {[5 · h + 1, 5 · (h + 1)]} ∪ {[21, ∞)}

4 Reinforcement Learning for Polyhedra Analysis

We now describe how to instantiate reinforcement learning for approximating
Polyhedra domain analysis. The instantiation consists of the following steps:

– Extracting the RL state s from the abstract program state numerically using
a set of features.

– Defining actions a as the choices among the threshold, merge and split meth-
ods defined in the previous section.

– Defining a reward function r favoring both high precision and fast execution.
– Defining the feature functions φ(s, a) to enable Q-learning.
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States. We consider nine features for defining a state s for RL. The features
ψi, their extraction complexity and their typical range on our benchmarks are
shown in Table 2. The first seven features capture the asymptotic complexity of
the join [21] on the input polyhedra P1 and P2. These are the number of blocks,
the distribution (using maximum, minimum and average) of their sizes, and the
number of generators. The precision of the inputs is captured by considering the
number of variables xi ∈ X with finite upper and lower bound, and the number
of those with only a finite upper or lower bound in both P1 and P2.

As shown in Table 2, each state feature ψi returns a natural number, how-
ever, its range can be rather large, resulting in a massive state space. To ensure
scalability and generalization of learning, we use bucketing to reduce the state
space size by clustering states with similar precision and expected join cost. The
number ni of buckets for each ψi and their definition are shown in the last two
columns of Table 2. Using bucketing, the RL state s is then a 9-tuple consisting
of the indices of buckets where each index indicates the bucket that ψi’s return
value falls into.

Actions. An action a is a 3-tuple (th, r algo, m algo) consisting of:

– th ∈ {1, 2, 3, 4} depending on threshold ∈ [5, 9], [10, 14], [15, 19], or [20,∞).
– r algo ∈ {1, 2, 3}: the choice of a constraint removal, i.e., splitting method.
– m algo ∈ {1, 2, 3}: the choice of merge algorithm.

All three of these have been discussed in detail in Sect. 3. The threshold values
were chosen based on performance characterization on our benchmarks. With
the above, we have 36 possible actions per state.

Reward. After applying the (approximated join transformer) according to
action at in state st, we compute the precision of the output polyhedron P1 �P2

by first computing the smallest (often unbounded) box1 covering P1 � P2 which
has complexity O(ng). We then compute the following quantities from this box:

– ns: number of variables xi with singleton interval, i.e., xi ∈ [l, u], l = u.
– nb: number of variables xi with finite upper and lower bounds, i.e., xi ∈

[l, u], l = u.
– nhb: number of variables xi with either finite upper or finite lower bounds,

i.e., xi ∈ (−∞, u] or xi ∈ [l,∞).

Further, we measure the runtime in CPU cycles cyc for the approximate join
transformer. The reward is then defined by

r(st, at, st+1) = 3 · ns + 2nb + nhb − log10(cyc). (3)

As the order of precision for different types of intervals is: singleton >
bounded > half bounded interval, the reward function in (3) weighs their num-
bers by 3, 2, 1. The reward function in (3) favors both high performance and
1 A natural measure of precision is the volume of P1 � P2. However, calculating it is

very expensive and P1 � P2 is often unbounded.
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Table 3. Instantiation of Q-learning to Polyhedra static analysis.

RL concept Polyhedra analysis instantiation

Agent Polyhedra analysis

State s ∈ S As described in Table 2

Action a ∈ A Tuple (th, r algo, m algo)

Reward function r Shown in (3)

Feature φ Defined in (4)

Q-function Q-function from (5)

precision. It also ensures that the precision part (3 ·ns +2nb +nhb) has a similar
magnitude range as the performance part (log10(cyc))2.

Q-function. As mentioned before, we approximate the Q-function by a linear
function (1). We define binary feature functions φijk for each (state, action) pair.
φijk(s, a) = 1 if the tuple s(i) lies in j-th bucket and action a = ak

φijk(s, a) = 1 ⇐⇒ s(i) = j and a = ak (4)

The Q-function is a linear combination of state action features φijk

Q(s, a) =
9∑

i=1

ni∑

j=1

36∑

k=1

θijk · φijk(s, a). (5)

Q-learning. During the training phase, we are given a dataset of programs
D and we use Q-LEARN from Algorithm 1 on each program in D to perform
Q-learning. Q-learning is performed with input parameters instantiated as
explained above and summarized in Table 3. Each episode consists of a run of
Polyhedra analysis on a benchmark in D. We run the analysis multiple times on
each program in D and update the Q-function after each join by calling Q-LEARN.

A Q-function is typically learned using an ε-greedy policy [24] where the
agent takes greedy actions by exploiting the current Q-estimates while also
exploring randomly. The policy requires initial random exploration to learn good
Q-estimates that can be later exploited. This is infeasible for the Polyhedra anal-
ysis as a typical episode contains thousands of join calls. Therefore, we gener-
ate actions for Q-learning by exploiting the optimal policy for precision (which
always selects the precise join) and explore performance by choosing a random
approximate join: both with a probability of 0.53.

2 The log is used since the join has exponential complexity.
3 We also tried exploitation probabilities of 0.7 and 0.9, however the resulting policies

had suboptimal performance during testing due to limited exploration.
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Formally, the action at := p(st) selected in state st during learning is given
by at = (th, r algo, m algo) where

th =

{
rand() % 4+1 with probability 0.5
min(4, (

∑|B|
i=1 |Xk|)/5) with probability 0.5

,

r algo = rand() % 3 + 1,m algo = rand() % 3 + 1.

(6)

Obtaining the Learned Policy. After learning over the dataset D, the learned
approximating join transformer in state st chooses an action according to (2)
by selecting the maximal value over all actions. The value of th = 1, 2, 3, 4 is
decoded as threshold = 5, 10, 15, 20 respectively.

5 Experimental Evaluation

We implemented our approach in the form of a C-library for Polyhedra analysis,
called Poly-RL. We compare the performance and precision of Poly-RL against
the state-of-the-art ELINA [1], which uses online decomposition for Polyhedra
analysis without losing precision. In addition, we implemented two Polyhedra
analysis approximations (baselines) based on the following heuristics:

– Poly-Fixed: uses a fixed strategy based on the results of Q-learning. Namely,
we selected the threshold, split and merge algorithm most frequently chosen
by our (adaptive) learned policy during testing.

– Poly-Init: uses an approximate join with probability 0.5 based on (6).

All Polyhedra implementations use 64-bit integers to encode rational num-
bers. In the case of overflow, the corresponding polyhedron is set to top.

Experimental Setup. All our experiments including learning the parameters θ
for the Q-function and the evaluation of the learned policy on unseen benchmarks
were carried out on a 2.13 GHz Intel Xeon E7- 4830 Haswell CPU with 24 MB
L3 cache and 256 GB memory. All Polyhedra implementations were compiled
with gcc 5.4.0 using the flags -O3 -m64 -march=native.

Analyzer. For both learning and evaluation, we used the crab-llvm analyzer
for C-programs, part of the larger SeaHorn [7] verification framework. The ana-
lyzer performs intra-procedural analysis of llvm-bitcode to generate Polyhedra
invariants which can be used for verifying assertions using an SMT solver [11].

Benchmarks. SVCOMP [3] contains thousands of challenging benchmarks in
different categories suited for different kinds of analysis. We chose the Linux
Device Drivers (LD) category, known to be challenging for Polyhedra analysis
[21] as to prove properties in these programs one requires Polyhedra invariants
(and not say Octagon invariants which are weaker).
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Training Dataset. We chose 70 large benchmarks for Q-learning. We ran each
benchmark a thousand times over a period of three days to generate sample
traces of Polyhedra analysis containing thousands of calls to the join transformer.
We set a timeout of 5 minutes per run and discarded incomplete traces in case
of a timeout. In total, we performed Q-learning over 110811 traces.

Evaluation Method. For evaluating the effectiveness of our learned policy, we
then chose benchmarks based on the following criteria:

– No overfitting: the benchmark was not used for learning the policy.
– Challenging: ELINA takes ≥ 5 s on the benchmark.
– Fair: there is no integer overflow in the expensive functions in the benchmark.

Because in the case of an overflow, the polyhedron is set to top resulting in
a trivial fixpoint at no cost and thus in a speedup that is due to overflow.

Based on these criteria, we found 11 benchmarks on which we present our results.
We used a timeout of 1 h and memory limit of 100 GB for our experiments.

Inspecting the Learned Policy. Our learned policy chooses in the major-
ity of cases threshold=20, the binary weighted constraint removal algorithm for
splitting, and the merge smallest first algorithm for merging. Poly-Fixed always
uses these values for defining an approximate transformer, i.e., it follows a fixed
strategy. Our experimental results show that following this fixed strategy results
in suboptimal performance compared to our learned policy that makes adaptive,
context-sensitive decisions to improve performance.

Results. We measure the precision as a fraction of program points at which
the Polyhedra invariants generated by approximate analysis are semantically the
same or stronger than the ones generated by ELINA. This is a less biased and
more challenging measure than the number of discharged assertions [4,18,19]
where one can write weak assertions that even a weaker domain can prove.

Table 4 shows the number of program points4, timings (in seconds), and the
precision (in %) of Poly-RL, Poly-Fixed, and Poly-Init w.r.t. ELINA on all 11
benchmarks. In the table, the entry TO (MO) means that the analysis did not
finish within 1 h (exceeded the memory limit). For an incomplete analysis, we
compute the precision by comparing program points for which the incomplete
analysis can produce invariants.

Poly-RL vs ELINA. In Table 4, Poly-RL obtains > 7x speed-up over ELINA
on 6 of the 11 benchmarks with a maximum of 515x speedup for the mfd sm501
benchmark. It also obtains the same or stronger invariants on ≥ 87% of program

4 The benchmarks contain up to 50K LOC but SeaHorn encodes each basic block as
one program point, thus the number of points in Table 4 is significantly reduced.
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Table 4. Timings (seconds) and precision of approximations (%) w.r.t. ELINA.

Benchmark #Program ELINA Poly-RL Poly-Fixed Poly-Init

Points Time Time Precision Time Precision Time Precision

wireless airo 2372 877 6.6 100 6.7 100 5.2 74

net ppp 680 2220 9.1 87 TO 34 7.7 55

mfd sm501 369 1596 3.1 97 1421 97 2 64

ideapad laptop 461 172 2.9 100 157 100 MO 41

pata legacy 262 41 2.8 41 2.5 41 MO 27

usb ohci 1520 22 2.9 100 34 100 MO 50

usb gadget 1843 66 37 60 35 60 TO 40

wireless b43 3226 19 13 66 TO 28 83 34

lustre llite 211 5.7 4.9 98 5.4 98 6.1 54

usb cx231xx 4752 7.3 3.9 ≈100 3.7 ≈100 3.9 94

netfilter ipvs 5238 20 17 ≈100 9.8 ≈100 11 94

points on 8 benchmarks. Note that Poly-RL obtains both large speedups and
the same invariants at all program points on 3 benchmarks.

The widening transformer removes many constraints produced by the precise
join transformer from ELINA which allows Poly-RL to obtain the same invari-
ants as ELINA despite the loss of precision during join in most cases. Poly-RL
produces large number of non-comparable fixpoints on 3 benchmarks in Table 4
due to non-monotonic join transformers.

We also tested Poly-RL on 17 benchmarks from the product lines category.
ELINA did not finish within an hour on any of these benchmarks whereas Poly-
RL finished within 1 s. Poly-RL had 100% precision on the subset of program
points at which ELINA produces invariants. With Poly-RL, SeaHorn successfully
discharged the assertions. We did not include these results in Table 4 as the
precision w.r.t. ELINA cannot be completely compared.

Poly-RL vs Poly-Fixed. Poly-Fixed is never significantly more precise than
Poly-RL in Table 4. Poly-Fixed is faster than Poly-RL on 4 benchmarks, however
the speedups are small. Poly-Fixed is slower than ELINA on 3 benchmarks
and times out on 2 of these. This is due to the overhead of the binary weight
constraints removal algorithm and the exponential number of generators in the
output.

Poly-RL vs Poly-Init. From (6), Poly-Init takes random actions and thus the
quality of its result varies depending on the run. Table 4 shows the results on a
sample run. Poly-RL is more precise than Poly-Init on all benchmarks in Table 4.
Poly-Init also does not finish on 4 benchmarks.
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6 Related Work

Our work can be seen as part of the general research direction on parametric
program analysis [4,9,14,18,19], where one tunes the precision and cost of the
analysis by adapting it to the analyzed program. The main difference is that prior
approaches fix the learning parameters for a given program while our method
is adaptive and can select parameters dynamically based on the abstract states
encountered during analysis, yielding better cost/precision tradeoffs. Further,
prior work measures precision by the number of assertions proved whereas we
target the stronger notion of fixpoint equivalence.

The work of [20,21] improve the performance of Octagon and Polyhedra
domain analysis respectively based on online decomposition without losing pre-
cision. We compared against [21] in this paper. As our results suggest, the perfor-
mance of Polyhedra analysis can be significantly improved with RL. We believe
that our approach can be easily extended to the Octagon domain for achieving
speedups over the work of [20] as the idea of online decomposition applies to all
sub-polyhedra domains [22].

Reinforcement learning based on linear function approximation of the Q-
function has been applied to learn branching rules for SAT solvers in [13].
The learned policies achieve performance similar to those of the best branching
rules. We believe that more powerful techniques for RL such as deep Q-networks
(DQN) [17] or double Q-learning [8] can be investigated to potentially improve
the quality of results produced by our approach.

7 Conclusion

Polyhedra analysis is notoriously expensive and has worst-case exponential com-
plexity. We showed how to gain significant speedups by adaptively trading preci-
sion for performance during analysis, using an automatically learned policy. Two
key insights underlie our approach. First, we identify reinforcement learning as a
conceptual match to the learning problem at hand: deciding which transformers
to select at each analysis step so to achieve the eventual goal of high preci-
sion and fast convergence to fixpoint. Second, we build on the concept of online
decomposition, and offer an effective method to directly translate precision loss
into significant speed-ups. Our work focused on polyhedra analysis for which we
provide a complete implementation and evaluation. We believe the approach can
be instantiated to other forms of static analysis in future work.
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Abstract. We present an alternative Double Description representa-
tion for the domain of NNC (not necessarily closed) polyhedra, together
with the corresponding Chernikova-like conversion procedure. The rep-
resentation uses no slack variable at all and provides a solution to a
few technical issues caused by the encoding of an NNC polyhedron as
a closed polyhedron in a higher dimension space. A preliminary exper-
imental evaluation shows that the new conversion algorithm is able to
achieve significant efficiency improvements.

1 Introduction

The Double Description (DD) method [28] allows for the representation and
manipulation of convex polyhedra by using two different geometric representa-
tions: one based on a finite collection of constraints, the other based on a finite
collection of generators. Starting from any one of these representations, the other
can be derived by application of a conversion procedure [10–12], thereby obtain-
ing a DD pair. The procedure is incremental, capitalizing on the work already
done when new constraints and/or generators need to be added to an input DD
pair.

The DD method lies at the foundation of many software libraries and tools1

which are used, either directly or indirectly, in research fields as diverse as
bioinformatics [31,32], computational geometry [1,2], analysis of analog and
hybrid systems [8,18,22,23], automatic parallelization [6,29], scheduling [16],
static analysis of software [4,13,15,17,21,24].

In the classical setting, the DD method is meant to compute geometric rep-
resentations for topologically closed polyhedra in an n-dimensional vector space.
However, there are applications requiring the ability to also deal with linear strict
inequality constraints, leading to the definition of not necessarily closed (NNC)
polyhedra. For example, this is the case for some of the analysis tools developed
for the verification of hybrid systems [8,18,22,23], static analysis tools such as
Pagai [24], and tools for the automatic discovery of ranking functions [13].

The few DD method implementations providing support for NNC polyhedra
(Apron and PPL) are all based on an indirect representation. The approach, pro-
posed in [22,23] and studied in more detail in [3,5], encodes the strict inequality
1 An incomplete list of available implementations includes cdd [19], PolyLib [27],

Apron [25], PPL [4], 4ti2 [1], Skeleton [33], Addibit [20], ELINA [30].

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 230–248, 2018.
https://doi.org/10.1007/978-3-319-96145-3_13
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constraints by means of an additional space dimension, playing the role of a
slack variable; the new space dimension, usually denoted as ε, needs to be non-
negative and bounded from above, i.e., the constraints 0 ≤ ε ≤ 1 are added to
the topologically closed representation R (called ε-representation) of the NNC
polyhedron P. The main advantage of this approach is the possibility of reusing,
almost unchanged, all of the well-studied algorithms and optimizations that have
been developed for the classical case of closed polyhedra. However, the addition
of a slack variable carries with itself a few technical issues.

– At the implementation level, more work is needed to make the ε dimension
transparent to the end user.

– The ε-representation causes an intrinsic overhead : in any generator system
for an ε-polyhedron, most of the “proper” points (those having a positive ε
coordinate) need to be paired with the corresponding “closure” point (having
a zero ε coordinate), almost doubling the number of generators.

– The DD pair in minimal form computed for an ε-representation R, when
reinterpreted as encoding the NNC polyhedron P, typically includes many
redundant constraints and/or generators, leading to inefficiencies. To avoid
this problem, strong minimization procedures were defined in [3,5] that are
able to detect and remove those redundancies. Even though effective, these
procedures are not fully integrated into the DD conversion: they can only be
applied after the conversion, since they interfere with incrementality. Hence,
during the iterations of the conversion the ε-redundancies are not removed,
causing the computation of bigger intermediate results.

In this paper, we pursue a different approach for the handling of NNC poly-
hedra in the DD method. Namely, we specify a direct representation, dispensing
with the need of the slack variable. The main insight of this new approach is the
separation of the (constraints or generators) geometric representation into two
components, the skeleton and the non-skeleton of the representation, playing
quite different roles: while keeping a geometric encoding for the skeleton compo-
nent, we will adopt a combinatorial encoding for the non-skeleton one. For this
new representation, we propose the corresponding variant of the Chernikova’s
conversion procedure, where both components are handled by respective pro-
cessing phases, so as to take advantage of their peculiarities. In particular, we
develop ad hoc functions and procedures for the combinatorial non-skeleton part.

The new representation and conversion procedure, in principle, can be inte-
grated into any of the available implementations of the DD method. Our exper-
imental evaluation is conducted in the context of the PPL and shows that the
new algorithm, while computing the correct results for all of the considered tests,
achieves impressive efficiency improvements with respect to the implementation
based on the slack variable.

The paper is structured as follows. Section 2 briefly introduces the required
notation, terminology and background concepts. Section 3 proposes the new rep-
resentation for NNC polyhedra; the proofs of the stated results are in [7]. The
extension of the Chernikova’s conversion algorithm to this new representation is
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presented in Sect. 4. Section 5 reports the results obtained by the experimental
evaluation. We conclude in Sect. 6.

2 Preliminaries

We assume some familiarity with the basic notions of lattice theory [9]. For a
lattice 〈L,�,⊥,�,�,�〉, an element a ∈ L is an atom if ⊥ � a and there exists
no element b ∈ L such that ⊥ � b � a. For S ⊆ L, the upward closure of S is
defined as ↑ S

def= {x ∈ L | ∃s ∈ S . s � x }. The set S ⊆ L is upward closed if
S = ↑ S; we denote by ℘↑(L) the set of all the upward closed subsets of L. For
x ∈ L, ↑ x is a shorthand for ↑{x}. The notation for downward closure is similar.
Given two posets 〈L,�〉 and 〈L�,��〉 and two monotonic functions α : L → L�

and γ : L� → L, the pair (α, γ) is a Galois connection [14] between L and L� if
∀x ∈ L, x� ∈ L� : α(x) �� x� ⇔ x � γ(x�).

We write R
n to denote the Euclidean topological space of dimension n > 0

and R+ for the set of non-negative reals; for S ⊆ R
n, cl(S) and relint(S) denote

the topological closure and the relative interior of S, respectively. A topologically
closed convex polyhedron (for short, closed polyhedron) is defined as the set of
solutions of a finite system C of linear non-strict inequality and linear equality
constraints; namely, P = con(C) where

con(C) def=
{

p ∈ R
n

∣∣ ∀β = (aTx �� b) ∈ C, �� ∈ {≥,=} . aTp �� b
}
.

A vector r ∈ R
n such that r �= 0 is a ray of a non-empty polyhedron P ⊆ R

n

if, ∀p ∈ P and ∀ρ ∈ R+, it holds p + ρr ∈ P. The empty polyhedron has no
rays. If both r and −r are rays of P, then r is a line of P. The set P ⊆ R

n is a
closed polyhedron if there exist finite sets L,R, P ⊆ R

n such that 0 /∈ (L ∪ R)
and P = gen

(〈L,R, P 〉), where

gen
(〈L,R, P 〉) def=

{
Lλ + Rρ + Pπ ∈ R

n
∣∣ λ ∈ R

�,ρ ∈ R
r
+,π ∈ R

p
+,

∑p
i=1 πi = 1

}
.

When P �= ∅, we say that P is described by the generator system G = 〈L,R, P 〉.
In the following, we will abuse notation by adopting the usual set operator
and relation symbols to denote the corresponding component-wise extensions
on systems. For instance, for G = 〈L,R, P 〉 and G′ = 〈L′, R′, P ′〉, we will write
G ⊆ G′ to mean L ⊆ L′, R ⊆ R′ and P ⊆ P ′.

The DD method due to Motzkin et al. [28] allows combining the constraints
and the generators of a polyhedron P into a DD pair (C,G): a conversion proce-
dure [10–12] is used to obtain each description starting from the other one, also
removing the redundant elements. For presentation purposes, we focus on the
conversion from constraints to generators; the opposite conversion works in the
same way, using duality to switch the roles of constraints and generators. We
do not describe lower level details such as the homogenization process, mapping
the polyhedron into a polyhedral cone, or the simplification step, needed for
computing DD pairs in minimal form.
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The conversion procedure starts from a DD pair (C0,G0) representing the
whole vector space and adds, one at a time, the elements of the input constraint
system C = {β0, . . . , βm}, producing a sequence of DD pairs

{
(Ck,Gk)

}
0≤k≤m+1

representing the polyhedra

R
n = P0

β0−→ . . .
βk−1−−−→ Pk

βk−→ Pk+1
βk+1−−−→ . . .

βm−−→ Pm+1 = P.

At each iteration, when adding the constraint βk to polyhedron Pk = gen(Gk),
the generator system Gk is partitioned into the three components G+

k , G0
k , G−

k ,
according to the sign of the scalar products of the generators with βk (those in
G0

k are the saturators of βk); the new generator system for polyhedron Pk+1 is

computed as Gk+1
def= G+

k ∪ G0
k ∪ G�

k , where G�
k = comb adjβk

(G+
k ,G−

k ) and

comb adjβk
(G+

k ,G−
k ) def=

{
combβk

(g+, g−)
∣∣ g+ ∈ G+

k , g− ∈ G−
k , adjPk

(g+, g−)
}
.

Function ‘combβk
’ computes a linear combination of its arguments, yielding a

generator that saturates the constraint βk; predicate ‘adjPk
’ is used to select

only those pairs of generators that are adjacent in Pk.
The set CPn of all closed polyhedra on the vector space R

n, partially ordered
by set inclusion, is a lattice 〈 CPn,⊆, ∅, Rn,∩,� 〉, where the empty set and R

n

are the bottom and top elements, the binary meet operator is set intersection
and the binary join operator ‘�’ is the convex polyhedral hull. A constraint
β = (aTx �� b) is said to be valid for P ∈ CPn if all the points in P satisfy β; for
each such β, the subset F = {p ∈ P | aTp = b } is a face of P. We write cFacesP
(possibly omitting the subscript) to denote the finite set of faces of P ∈ CPn.
This is a meet sublattice of CPn and P =

⋃{
relint(F )

∣∣ F ∈ cFacesP
}
.

When C is extended to allow for strict inequalities, P = con(C) is an NNC
(not necessarily closed) polyhedron. The set Pn of all NNC polyhedra on R

n

is a lattice 〈 Pn,⊆, ∅, Rn,∩,� 〉 and CPn is a sublattice of Pn. As shown in [3,
Theorem 4.4], a description of an NNC polyhedron P ∈ Pn can be obtained by
extending the generator system with a finite set C of closure points. Namely, for
G = 〈L,R,C, P 〉, we define P = gen(G), where

gen
(〈L,R,C, P 〉) def=

⎧
⎪⎨

⎪⎩
Lλ + Rρ + Cγ + Pπ ∈ R

n

∣∣∣∣∣∣∣

λ ∈ R
�,ρ ∈ R

r
+,

γ ∈ R
c
+,π ∈ R

p
+,π �= 0,∑c

i=1 γi +
∑p

i=1 πi = 1

⎫
⎪⎬

⎪⎭
.

For an NNC polyhedron P ∈ Pn, the finite set nncFacesP of its faces is a meet
sublattice of Pn and P =

⋃{
relint(F )

∣∣ F ∈ nncFacesP
}
. Letting Q = cl(P),

the closure operator cl : nncFacesP → cFacesQ maps each NNC face of P into
a face of Q. The image cl(nncFacesP) is a join sublattice of cFacesQ and its
nonempty elements form an upward closed subset, which can be described by
recording the minimal elements only (i.e., the atoms of the nncFacesP lattice).
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3 Direct Representations for NNC Polyhedra

An NNC polyhedron can be described by using an extended constraint system
C = 〈C=, C≥, C>〉 and/or an extended generator system G = 〈L,R,C, P 〉. These
representations are said to be geometric, meaning that they provide a precise
description of the position of their elements. For a closed polyhedron P ∈ CPn,
the use of completely geometric representations is an adequate choice. In the
case of an NNC polyhedron P ∈ Pn such a choice is questionable, since the
precise geometric position of some of the elements is not really needed.

Example 1. Consider the NNC polyhedron P ∈ P2 in the next figure, where the
(strict) inequality constraints are denoted by (dashed) lines and the (closure)
points are denoted by (unfilled) circles.

P is described by G = 〈L,R,C, P 〉, where L = R = ∅, C = {c0, c1, c2} and
P = {p0, p1}. However, there is no need to know the position of point p1, since
it can be replaced by any other point on the open segment (c0, c1). Similarly,
when considering the constraint representation, there is no need to know the
exact slope of the strict inequality constraint β.

We now show that P ∈ Pn can be more appropriately represented by integrat-
ing a geometric description of Q = cl(P) ∈ CPn (the skeleton) with a combinato-
rial description of nncFacesP (the non-skeleton). We consider here the generator
system representation; the extension to constraints will be briefly outlined in a
later section.

Definition 1 (Skeleton of a generator system). Let G = 〈L,R,C, P 〉 be a
generator system in minimal form, P = gen(G) and Q = cl(P). The skeleton of
G is SKQ = skel(G) def= 〈L,R,C ∪ SP , ∅〉, where SP ⊆ P holds the points that
can not be obtained by combining the other generators in G.

Note that the skeleton has no points at all, so that gen(SKQ) = ∅. However,
we can define a variant function gen

(〈L,R,C, P 〉) def= gen
(〈L,R, ∅, C ∪ P 〉),

showing that the skeleton of an NNC polyhedron provides a non-redundant
representation of its topological closure.

Proposition 1. If P = gen(G) and Q = cl(P), then gen(G) = gen(SKQ) = Q.
Also, there does not exist G′ ⊂ SKQ such that gen(G′) = Q.

The elements of SP ⊆ P are called skeleton points; the non-skeleton points
in P \ SP are redundant when representing the topological closure; these non-
skeleton points are the elements in G that need not be represented geometrically.
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Consider a point p ∈ Q = cl(P) (not necessarily in P ). There exists a single
face F ∈ cFacesQ such that p ∈ relint(F ). By definition of function ‘gen’, point p
behaves as a filler for relint(F ) meaning that, when combined with the skeleton,
it generates relint(F ). Note that p also behaves as a filler for the relative interiors
of all the faces in the set ↑ F . The choice of p ∈ relint(F ) is actually arbitrary:
any other point of relint(F ) would be equivalent as a filler. A less arbitrary
representation for relint(F ) is thus provided by its own skeleton SKF ⊆ SKQ;
we say that SKF is the support for the points in relint(F ) and that any point
p′ ∈ relint

(
gen(SKF )

)
= relint(F ) is a materialization of SKF .

In the following we will sometimes omit subscripts when clear from context.

Definition 2 (Support sets for a skeleton). Let SK be the skeleton of an
NNC polyhedron and let Q = gen(SK) ∈ CPn. The set of all supports for SK is
defined as NSSK

def= {SKF ⊆ SK | F ∈ cFacesQ }.
We now define functions mapping a subset of the (geometric) points of an

NNC polyhedron into the set of supports filled by these points, and vice versa.

Definition 3 (Filled supports). Let SK be the skeleton of the polyhedron
P ∈ Pn, Q = cl(P) and NS be the corresponding set of supports. The abstraction
function αSK : ℘(Q) → ℘↑(NS) is defined, for each S ⊆ Q, as

αSK(S) def=
⋃{ ↑ SKF

∣∣ ∃p ∈ S, F ∈ cFaces . p ∈ relint(F )
}
.

The concretization function γSK : ℘↑(NS) → ℘(Q), for each NS ∈ ℘↑(NS), is
defined as

γSK(NS ) def=
⋃{

relint
(
gen(ns)

) ∣∣∣ ns ∈ NS
}

.

Proposition 2. The pair of functions (αSK, γSK) is a Galois connection. If
P = gen

(〈L,R,C, P 〉) ∈ Pn and SK is its skeleton, then P = (γSK ◦ αSK)(P ).

The non-skeleton component of a geometric generator system can be
abstracted by ‘αSK’ and described as a combination of skeleton generators.

Definition 4 (Non-skeleton of a generator system). Let P ∈ Pn be defined
by generator system G = 〈L,R,C, P 〉 and let SK be the corresponding skeleton
component. The non-skeleton component of G is defined as NSG

def= αSK(P ).

Example 2. Consider the generator system G of polyhedron P from Example 1.
Its skeleton is SK =

〈∅, ∅, {c0, c1, c2, p0}, ∅〉
, so that p1 is not a skeleton point. By

Definition 3, NSG = αSK
({p0, p1}

)
= ↑{p0} ∪ ↑{c0, c1}2 The minimal elements

in NSG can be seen to describe the atoms of nncFacesP , i.e., the 0-dimension
face {p0} and the 1-dimension open segment (c0, c1).

The new representation is semantically equivalent to the fully geometric one.
2 Since there are no rays and no lines, we adopt a simplified notation, identifying each

support with the set of its closure points. Also note that relint({p0}) = {p0}.
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Corollary 1. For a polyhedron P = gen(G) ∈ Pn, let 〈SK,NS 〉 be the skeleton
and non-skeleton components for G. Then P = γSK(NS ).

4 The New Conversion Algorithm

The conversion function in Pseudocode 1 incrementally processes each of the
input constraints β ∈ Cin keeping the generator system 〈SK,NS 〉 up-to-date.
The distinction between the skeleton and non-skeleton allows for a corresponding
separation in the conversion procedure. Moreover, a few minor adaptations to
their representation, discussed below, allow for efficiency improvements.

First, observe that every support ns ∈ NS always includes all of the lines in
the L skeleton component; hence, these lines can be left implicit in the repre-
sentation of the supports in NS . Note that, even after removing the lines, each
ns ∈ NS is still a non-empty set, since it includes at least one closure point.

When lines are implicit, those supports ns ∈ NS that happen to be single-
tons3 can be seen to play a special role: they correspond to the combinatorial
encoding of the skeleton points in SP (see Definition 1). These points are not
going to benefit from the combinatorial representation, hence we move them from
the non-skeleton to the skeleton component; namely, SK = 〈L,R,C ∪ SP , ∅〉 is
represented as SK = 〈L,R,C,SP〉. The formalization presented in Sect. 3 is still
valid, replacing ‘γSK’ with γ′

SK(NS ) def= gen(SK) ∪ γSK(NS ).
At the implementation level, each support ns ∈ NS can be encoded by using

a set of indices on the data structure representing the skeleton component SK.
Since NS is a finite upward closed set, the representation only needs to record its
minimal elements. A support ns ∈ NS is redundant in 〈SK,NS 〉 if there exists
ns ′ ∈ NS such that ns ′ ⊂ ns or if ns ∩ SP �= ∅, where SK = 〈L,R,C,SP〉. We
write NS 1 ⊕ NS 2 to denote the non-redundant union of NS 1,NS 2 ⊆ NSSK.

4.1 Processing the Skeleton

Line 3 of conversion partitions the skeleton SK into SK+, SK0 and SK−,
according to the signs of the scalar products with constraint β. Note that the
partition information is logically computed (no copies are performed) and it is
stored in the SK component itself; therefore, any update to SK+, SK0 and
SK− directly propagates to SK. In line 7 the generators in SK+ and SK− are
combined to produce SK�, which is merged into SK0. These steps are similar to
the ones for closed polyhedra, except that we now have to consider more kinds of
combinations: the systematic case analysis is presented in Table 1. For instance,
when processing a non-strict inequality β≥, if we combine a closure point in SK+

with a ray in SK− we obtain a closure point in SK� (row 3, column 6). Since
it is restricted to work on the skeleton component, this combination phase can
safely apply the adjacency tests to quickly get rid of redundant elements.

3 By ‘singleton’ here we mean a system ns =
〈∅, ∅, {p}, ∅〉

.
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Pseudocode 1. Incremental conversion from constraints to generators.
function conversion(Cin , 〈SK,NS〉)

2: for all β ∈ Cin do
skel partition(β, SK);

4: nonskel partition(〈SK,NS〉);
if line l ∈ SK+ ∪ SK− then violating-line(β, l, 〈SK,NS〉);

6: else
SK� ← comb adjβ(SK+, SK−); SK0 ← SK0 ∪ SK�;

8: NS� ← move-ns(β, 〈SK,NS〉);
NS� ← NS� ∪ create-ns(β, 〈SK,NS〉);

10: if is equality(β) then 〈SK,NS〉 ← 〈SK0,NS0 ⊕ NS�〉;
else if is strict ineq(β) then

12: SK0 ← points become closure points(SK0);
〈SK,NS〉 ← 〈SK+ ∪ SK0,NS+ ⊕ NS�〉;

14: else 〈SK,NS〉 ← 〈SK+ ∪ SK0, (NS+ ∪ NS0) ⊕ NS�〉;
promote-singletons(〈SK,NS〉);

16: return 〈SK,NS〉;

Table 1. Case analysis for function ‘combβ ’ when adding an equality (β=), a non-strict
(β≥) or a strict (β>) inequality constraint to a pair of generators from SK+ and SK−

(R = ray, C = closure point, SP = skeleton point).

SK+ R R R C C C SP SP SP

SK− R C SP R C SP R C SP

β= or β≥ SK� R C SP C C SP SP SP SP

β> SK� R C C C C C C C C

4.2 Processing the Non-skeleton

Line 4 partitions the supports in NS by exploiting the partition information for
the skeleton SK, so that no additional scalar product is computed. Namely, each
support ns ∈ NS is classified as follows:

ns ∈ NS+ ⇐⇒ ns ⊆ (SK+ ∪ SK0) ∧ ns ∩ SK+ �= ∅;

ns ∈ NS 0 ⇐⇒ ns ⊆ SK0;

ns ∈ NS− ⇐⇒ ns ⊆ (SK− ∪ SK0) ∧ ns ∩ SK− �= ∅;

ns ∈ NS± ⇐⇒ ns ∩ SK+ �= ∅ ∧ ns ∩ SK− �= ∅.

This partitioning is consistent with the previous one. For instance, if ns ∈ NS+,
then for every possible materialization p ∈ relint(gen(ns)) the scalar product of p
and β is strictly positive. The supports in NS± are those whose materializations
can satisfy, saturate and violate the constraint β (i.e., the corresponding face
crosses the constraint hyperplane).
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In lines 8 and 9, we find the calls to the two main functions processing the
non-skeleton component. A set NS� of new supports is built as the union of the
contributes provided by functions move-ns and create-ns.

Moving Supports. The move-ns function, shown in Pseudocode 2, processes
the supports in NS±: this function “moves” the fillers of the faces that are
crossed by the new constraint, making sure they lie on the correct side.

Let ns ∈ NS± and F = relint(gen(ns)). Note that ns = SKF before the addi-
tion of the new constraint β; at this point, the elements in SK� have been added
to SK0, but this change still has to be propagated to the non-skeleton compo-
nent NS . Therefore, we compute the support closure ‘supp.clSK(ns)’ according
to the updated skeleton SK. Intuitively, supp.clSK(ns) ⊆ SK is the subset of all
the skeleton elements that are included in face F .

At the implementation level, support closures can be efficiently computed by
exploiting the same saturation information used for the adjacency tests. Namely,
for constraints C and generators G, we can define

sat.interC(G) def= {β′ ∈ C | ∀g ∈ G : g saturates β′ },

sat.interG(C) def= { g ∈ G | ∀β′ ∈ C : g saturates β′ }.

Then, if C and SK = 〈L,R,C,SP〉 are the constraint system and the skeleton
generator system for the polyhedron, for each ns ∈ NS we can compute [26]:

supp.clSK(ns) def= sat.interSK
(
sat.interC(ns)

) \ L.

Face F is split by constraint β into F+, F 0 and F−. When β is a strict
inequality, only F+ shall be kept in the polyhedron; when the new constraint is
a non-strict inequality, both F+ and F 0 shall be kept. A minimal non-skeleton
representation for these subsets can be obtained by projecting the support:

projβSK(ns) def=

{
ns \ SK−, if β is a strict inequality;
ns ∩ SK0, otherwise.

To summarize, by composing support closure and projection in line 3 of
move-ns, each support in NS± is moved to the correct side of β.

Example 3. Consider P ∈ P2 in the left hand side of the next figure.

The skeleton SK = 〈∅, ∅, C, ∅〉 contains the closure points in C = {c0, c1, c2, c3};
the non-skeleton NS = {ns} contains a single support ns = {c0, c3}, which
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makes sure that the open segment (c0, c3) is included in P; the figure shows a
single materialization for ns.

When processing β = (y < 1), we obtain the polyhedron in the right hand
side of the figure. In the skeleton phase of the conversion function the adjacent
skeleton generators are combined: c4 (from c0 ∈ SK+ and c3 ∈ SK−) and c5

(from c1 ∈ SK+ and c2 ∈ SK−) are added to SK0. Since the non-skeleton
support ns belongs to NS±, it is processed in the move-ns function:

ns∗ = projβSK
(
supp.clSK(ns)

)
= projβSK

({c0, c3, c4}
)

= {c0, c4}.

In contrast, if we were processing the non-strict inequality β′ = (y ≤ 1), we would
have obtained ns ′ = projβ

′
SK

(
supp.clSK(ns)

)
= {c4}. Since ns ′ is a singleton, it

is upgraded to become a skeleton point by procedure promote-singletons.
Hence, in this case the new skeleton is SK = 〈∅, ∅, C,SP〉, where C = {c0, c1, c5}
and SP = {c4}, while the non-skeleton component is empty.

Creating New Supports. Consider the case of a support ns ∈ NS− violating
a non-strict inequality constraint β: this support has to be removed from NS .
However, the upward closed set NS is represented by its minimal elements only
so that, by removing ns, we are also implicitly removing other supports from
the set ↑ns, including some that do not belong to NS− and hence should be
kept. Therefore, we have to explore the set of faces and detect those that are
going to lose their filler: their minimal supports will be added to NS�. Similarly,
when processing a non-strict inequality constraint, we need to consider the new
faces introduced by the constraint: the corresponding supports can be found by
projecting on the constraint hyperplane those faces that are possibly filled by
an element in SP+ or NS+.

This is the task of the create-ns function, shown in Pseudocode 2. It uses
enumerate-faces as a helper:4 the latter provides an enumeration of all the
(higher dimensional) faces that contain the initial support ns. The new faces are
obtained by adding to ns a new generator g and then composing the support
closure and projection functions, as done in move-ns. For efficiency purposes,
a case analysis is performed so as to restrict the search area of the enumeration
phase, by considering only the faces crossing the constraint.

Example 4. Consider P ∈ P2 in the left hand side of the next figure, described
by skeleton SK = 〈∅, ∅, {c0, c1, c2}, {p}〉 and non-skeleton NS = ∅.

4 This enumeration phase is inspired by the algorithm in [26].
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Pseudocode 2. Helper functions for moving and creating supports.
function move-ns(β, 〈SK,NS〉)

2: NS� ← ∅;
for all ns ∈ NS± do NS� ← NS� ∪ {projβSK(supp.clSK(ns))};

4: return NS�;

function create-ns(β, 〈SK,NS〉)
6: NS� ← ∅;

let SK = 〈L, R, C,SP〉;
8: for all ns ∈ NS− ∪ {{p} | p ∈ SP−} do

NS� ← NS� ∪ enumerate-faces(β, ns, SK+, SK);

10: if is strict ineq(β) then
for all ns ∈ NS0 ∪ {{p} | p ∈ SP0} do

12: NS� ← NS� ∪ enumerate-faces(β, ns, SK+, SK);

else
14: for all ns ∈ NS+ ∪ {{p} | p ∈ SP+} do

NS� ← NS� ∪ enumerate-faces(β, ns, SK−, SK);

16: return NS�;

function enumerate-faces(β, ns, SK′, SK)
18: NS� ← ∅; let SK′ = 〈L′, R′, C′,SP ′〉;

for all g ∈ (R′ ∪ C′) do NS� ← NS� ∪ {projβSK(supp.clSK(ns ∪ {g}))};

20: return NS�;

procedure promote-singletons(〈SK,NS〉)
22: let SK = 〈L, R, C,SP〉;

for all ns ∈ NS such that ns = 〈∅, ∅, {c}, ∅〉 do
24: NS ← NS \ {ns}; C ← C \ {c}; SP ← SP ∪ {c};

Pseudocode 3. Processing a line violating constraint β.
procedure violating-line(β, l, 〈SK,NS〉)

2: split l into rays r+ satisfying β and r− violating β;
l ← r+;

4: for all g ∈ SK do g ← combβ(g, l);

if is equality(β) then SK ← SK0;

6: if is strict ineq(β) then strict-on-eq-points(β, 〈SK,NS〉);
procedure strict-on-eq-points(β, 〈SK,NS〉)

8: NS� ← ∅; let SK0 = 〈L0, R0, C0,SP0〉;
for all ns ∈ NS0 ∪ {{p} | p ∈ SP0} do

10: NS� ← NS� ∪ enumerate-faces(β, ns, SK+, SK);

SK0 ← points-become-closure-points(SK0);
12: 〈SK,NS〉 ← 〈SK+ ∪ SK0,NS+ ⊕ NS�〉;
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The partition for SK induced by the non-strict inequality is as follows:

SK+ = 〈∅, ∅, ∅, {p}〉, SK0 = 〈∅, ∅, {c0, c2}, ∅〉, SK− = 〈∅, ∅, {c1}, ∅〉.
There are no adjacent generators in SK+ and SK−, so that SK� is empty.
When processing the non-skeleton component, the skeleton point in SK+ will be
considered in line 15 of function create-ns. The corresponding call to function
enumerate-faces computes

ns� = projβSK
(
supp.clSK({p} ∪ {c1})

)
= projβSK

({c0, c1, c2, p})
= {c0, c2},

thereby producing the filler for the open segment (c0, c2). The resulting polyhe-
dron, shown in the right hand side of the figure, is thus described by the skeleton
SK = 〈∅, ∅, {c0, c2}, {p}〉 and the non-skeleton NS = {ns�}.

It is worth noting that, when handling Example 4 adopting an entirely geo-
metric representation, closure point c1 needs to be combined with point p even if
the two generators are not adjacent: this leads to a significant efficiency penalty.
Similarly, an implementation based on the ε-representation will have to com-
bine closure point c1 with point p (and/or with some other ε-redundant points),
because the addition of the slack variable makes them adjacent. Therefore, an
implementation based on the new approach obtains a twofold benefit: first, the
distinction between skeleton and non-skeleton allows for restricting the handling
of non-adjacent combinations to the non-skeleton phase; second, thanks to the
combinatorial representation, the non-skeleton component can be processed by
using set index operations only, i.e., computing no linear combination at all.

Preparing for Next Iteration. In lines 10 to 15 of conversion the generator
system is updated for the next iteration. The new supports in NS� are merged
(using ‘⊕’ to remove redundancies) into the appropriate portions of the non-
skeleton component. In particular, when processing a strict inequality, in line 12
the helper function

points become closure points
(〈L,R,C,SP〉) def= 〈L,R,C ∪ SP , ∅〉

is applied to SK0, making sure that all of the skeleton points saturating β are
transformed into closure points having the same position. The final processing
step (line 15) calls helper procedure promote-singletons (see Pseudocode 2),
making sure that all singleton supports get promoted to skeleton points.

Note that line 5 of conversion, by calling procedure violating-line (see
Pseudocode 3) handles the special case of a line violating β. This is just an opti-
mization: the helper procedure strict-on-eq-points can be seen as a tailored
version of create-ns, also including the final updating of SK and NS .
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4.3 Duality

The definitions given in Sect. 3 for a geometric generator system have their dual
versions working on a geometric constraint system. We provide a brief overview
of these correspondences, which are summarized in Table 2.

Table 2. Correspondences between generator and constraint concepts.

Generators Constraints

Geometric skeleton

singular line equality

non-singular ray or closure point non-strict inequality

semantics gen(SK) = ∅ con(SK) = cl(P)

Combinatorial non-skeleton

abstracts point strict inequality

element role face filler face cutter

represents upward closed set downward closed set

encoding minimal support minimal support

singleton skeleton point skeleton strict inequality

For a non-empty P = con(C) ∈ Pn, the skeleton of C = 〈C=, C≥, C>〉 includes
the non-redundant constraints defining Q = cl(P). Denoting by SC> the skeleton
strict inequalities (i.e., those whose corresponding non-strict inequality is not
redundant for Q), we have SKQ

def= 〈C=, C≥ ∪ SC>, ∅〉, so that Q = con(SKQ).
The ghost faces of P are the faces of the closure Q that do not intersect P:
gFacesP

def= {F ∈ cFacesQ | F ∩ P = ∅ }; thus, P = con(SKQ) \ ⋃
gFacesP .

The set gFaces ′ def= gFaces ∪ {Q} is a meet sublattice of cFaces; also, gFaces is
downward closed and can be represented by its maximal elements.

The skeleton support SKF of a face F ∈ cFacesQ is defined as the set of
all the skeleton constraints that are saturated by all the points in F . Each face
F ∈ gFaces saturates a strict inequality β> ∈ C>: we can represent such a
face using its skeleton support SKF of which β> is a possible materialization.
A constraint system non-skeleton component NS ⊆ NS is thus a combinatorial
representation of the strict inequalities of the polyhedron.

Hence, the non-skeleton components for generators and constraints have a
complementary role: in the case of generators they are face fillers, marking the
minimal faces that are included in nncFaces ; in the case of constraints they are
face cutters, marking the maximal faces that are excluded from nncFaces . Note
that the non-redundant cutters in gFaces are those having a minimal skeleton
support, as is the case for the fillers.

As it happens with lines, all the equalities in C= are included in all the
supports ns ∈ NS so that, for efficiency, they are not represented explicitly.
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After removing the equalities, a singleton ns ∈ NS stands for a skeleton strict
inequality constraint, which is better represented in the skeleton component,
thereby obtaining SK = 〈C=, C≥,SC>〉. Hence, a support ns ∈ NS is redundant
if there exists ns ′ ∈ NS such that ns ′ ⊂ ns or if ns ∩ SC> �= ∅.

When the concepts underlying the skeleton and non-skeleton representation
are reinterpreted as discussed above, it is possible to define a conversion proce-
dure mapping a generator representation into a constraint representation which
is very similar to the one from constraints to generators.

5 Experimental Evaluation

The new representation and conversion algorithms for NNC polyhedra have been
implemented and tested in the context of the PPL (Parma Polyhedra Library).
A full integration in the PPL domain of NNC polyhedra is not possible, since the
latter assumes the presence of the slack variable ε. The approach, summarized by
the diagram in Fig. 1, is to intercept each call to the PPL’s conversion (working
on ε-representations in CPn+1) and pair it with a corresponding call to the new
algorithm (working on the new representations in Pn).

Fig. 1. High level diagram for the experimental evaluation (non-incremental case).

On the left hand side of the diagram we see the application of the standard
PPL conversion procedure: the input ε-representation is processed by ‘old conver-
sion’ so as to produce the output ε-representation DD pair. The ‘ε-less encoding’
phase produces a copy of the input without the slack variable; this is processed by
‘new conversion’ to produce the output DD pair, based on the new skeleton/non-
skeleton representation. After the two conversions are completed, the outputs are
checked for both semantic equivalence and non-redundancy. This final checking
phase was successful on all the experiments performed, which include all of the
tests in the PPL. In order to assess efficiency, additional code was added to mea-
sure the time spent inside the old and new conversion procedures, disregarding
the input encoding and output checking phases. It is worth stressing that sev-
eral experimental evaluations, including recent ones [2], confirm that the PPL
is a state-of-the-art implementation of the DD method for a wide spectrum of
application contexts.
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The first experiment5 on efficiency is meant to evaluate the overhead incurred
by the new representation and algorithm for NNC polyhedra when processing
topologically closed polyhedra, so as to compare it with the corresponding over-
head incurred by the ε-representation. To this end, we considered the ppl lcdd
demo application of the PPL, which solves the vertex/facet enumeration problem.
In Table 3 we report the results obtained on a selection of the test benchmarks6

when using: the conversion algorithm for closed polyhedra (columns 2–3); the
conversion algorithm for the ε-representation of NNC polyhedra (columns 4–5);
and the new conversion algorithm for the new representation of NNC polyhedra
(columns 6–7). Columns ‘time’ report the number of milliseconds spent; columns
‘sat’ report the number of saturation (i.e., bit vector) operations, in millions.

The results in Table 3 show that the use of the ε-representation for closed
polyhedra incurs a significant overhead. In contrast, the new representation and
algorithm go beyond all expectations: in almost all of the tests there is no over-
head at all (that is, any overhead incurred is so small to be masked by the
improvements obtained in other parts of the algorithm).

Table 3. Overhead of conversion for C polyhedra. Units: time (ms), sat (M).

test closed poly ε-repr 〈SK,NS〉
time sat time sat time sat

cp6.ext 21 1.1 47 5.3 13 1.1

cross12.ine 157 17.1 215 18.1 180 17.2

in7.ine 47 1.7 149 6.1 27 0.9

kkd38 6.ine 498 28.3 1870 113.2 218 14.2

kq20 11 m.ine 42 1.7 153 6.1 27 0.9

metric80 16.ine 39 2.3 76 5.4 25 2.0

mit31-20.ine 1109 88.7 35629 702.2 816 60.1

mp6.ine 86 6.4 215 17.9 72 8.0

reg600-5 m.ext 906 24.7 3062 119.1 723 14.0

sampleh8.ine 5916 307.4 42339 1420.7 3309 154.1

trunc10.ine 1274 91.7 5212 396.6 803 89.9

The second experiment is meant to evaluate the efficiency gains obtained
in a more appropriate context, i.e., when processing polyhedra that are not
topologically closed. To this end, we consider the same benchmark discussed
in [3, Table 2],7 which highlights the efficiency improvement resulting from the
adoption of an enhanced evaluation strategy (where a knowledgeable user of the
5 All experiments have been performed on a laptop with an Intel Core i7-3632QM

CPU, 16 GB of RAM and running GNU/Linux 4.13.0-25.
6 We only show the tests where PPL time on closed polyhedra is above 20 ms.
7 The test dualhypercubes.cc is distributed with the source code of the PPL.
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library explicitly invokes, when appropriate, the strong minimization procedures
for ε-representations) with respect to the standard evaluation strategy (where
the user simply performs the required computation, leaving the burden of opti-
mization to the library developers). In Table 4 we report the results obtained
for the most expensive test among those described in [3, Table 2], comparing
the standard and enhanced evaluation strategies for the ε-representation (rows
1 and 2) with the new algorithm (row 3). For each algorithm we show in column
2 the total number of iterations of the conversion procedures and, in the next
two columns, the median and maximum sizes of the representations computed
at each iteration (i.e., the size of the intermediate results); in columns from 5 to
8 we show the numbers of incremental and non-incremental calls to the conver-
sion procedures, together with the corresponding time spent (in milliseconds);
in column 9 we show the time spent in strong minimization of ε-representations;
in the final column, we show the overall time ratio, computed with respect to
the time spent by the new algorithm.

Table 4. Comparing ε-representation based (standard and enhanced) computations
for NNC polyhedra with the new conversion procedures.

algorithm # iter iter sizes full conv incr conv ε-min time

median max num time num time time ratio

ε-repr standard 1142 3706 7259 4 11 3 30336 27 1460.9

ε-repr enhanced 525 109 1661 7 204 0 — 29 11.2

〈SK,NS〉 standard 314 62 180 4 6 3 15 — 1.0

Even though adopting the standard computation strategy (requiring no clever
guess by the end user), the new algorithm obtains impressive time improvements,
outperforming not only the standard, but also the enhanced computation strat-
egy for the ε-representation. The reason for the latter efficiency improvement is
that the enhanced computation strategy, when invoking the strong minimization
procedures, interferes with incrementality: the figures in Table 4 confirm that the
new algorithm performs three of the seven required conversions in an incremental
way, while in the enhanced case they are all non-incremental. Moreover, a com-
parison of the iteration counts and the sizes of the intermediate results provides
further evidence that the new algorithm is able to maintain a non-redundant
description even during the iterations of a conversion.

6 Conclusion

We have presented a new approach for the representation of NNC polyhedra in
the Double Description framework, avoiding the use of slack variables and distin-
guishing between the skeleton component, encoded geometrically, and the non-
skeleton component, provided with a combinatorial encoding. We have proposed
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and implemented a variant of the Chernikova conversion procedure achieving
significant efficiency improvements with respect to a state-of-the-art implemen-
tation of the domain of NNC polyhedra, thereby providing a solution to all
the issues affecting the ε-representation approach. As future work, we plan to
develop a full implementation of the domain of NNC polyhedra based on this new
representation. To this end, we will have to reconsider each semantic operator
already implemented by the existing libraries (which are based on the addition
of a slack variable), so as to propose, implement and experimentally evaluate a
corresponding correct specification based on the new approach.
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Abstract. Given a relational specification between Boolean inputs and
outputs, the goal of Boolean functional synthesis is to synthesize each
output as a function of the inputs such that the specification is met. In
this paper, we first show that unless some hard conjectures in complex-
ity theory are falsified, Boolean functional synthesis must generate large
Skolem functions in the worst-case. Given this inherent hardness, what
does one do to solve the problem? We present a two-phase algorithm,
where the first phase is efficient both in terms of time and size of synthe-
sized functions, and solves a large fraction of benchmarks. To explain this
surprisingly good performance, we provide a sufficient condition under
which the first phase must produce correct answers. When this condition
fails, the second phase builds upon the result of the first phase, possibly
requiring exponential time and generating exponential-sized functions in
the worst-case. Detailed experimental evaluation shows our algorithm to
perform better than other techniques for a large number of benchmarks.

Keywords: Skolem functions · Synthesis · SAT solvers
CEGAR based approach

1 Introduction

The algorithmic synthesis of Boolean functions satisfying relational specifica-
tions has long been of interest to logicians and computer scientists. Informally,
given a Boolean relation between input and outupt variables denoting the spec-
ification, our goal is to synthesize each output as a function of the inputs such
that the relational specification is satisfied. Such functions have also been called
Skolem functions in the literature [23,29]. Boole [8] and Lowenheim [27] studied
variants of this problem in the context of finding most general unifiers. While
these studies are theoretically elegant, implementations of the underlying tech-
niques have been found to scale poorly beyond small problem instances [28].
More recently, synthesis of Boolean functions has found important applications
in a wide range of contexts including reactive strategy synthesis [4,19,40], certi-
fied QBF-SAT solving [7,21,31,34], automated program synthesis [35,37], circuit
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 251–269, 2018.
https://doi.org/10.1007/978-3-319-96145-3_14
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repair and debugging [22], disjunctive decomposition of symbolic transition rela-
tions [39] and the like. This has spurred recent interest in developing practically
efficient Boolean function synthesis algorithms. The resulting new generation
of tools [3,17,23,29,33,34,38] have enabled synthesis of Boolean functions from
much larger and more complex relational specifications than those that could be
handled by earlier techniques, viz. [20,21,28].

In this paper, we re-examine the Boolean functional synthesis problem from
both theoretical and practical perspectives. Our investigation shows that unless
some hard conjectures in complexity theory are falsified, Boolean functional
synthesis must necessarily generate super-polynomial sized Skolem functions,
thereby requiring super-polynomial time, in the worst-case. Therefore, it is
unlikely that an efficient algorithm exists for solving all instances of Boolean
functional synthesis. There are two ways to address this hardness in practice: (i)
design algorithms that are provably efficient but may give “approximate” Skolem
functions that are correct on only a fraction of all possible input assignments,
or (ii) design a phased algorithm, wherein the initial phase(s) is/are provably
efficient and solve a subset of problem instances, and subsequent phase(s) have
worst-case exponential behaviour and solve all remaining problem instances. In
this paper, we combine the two approaches while giving heavy emphasis on effi-
cient instances. We also provide a sufficient condition for our algorithm to be
efficient, which indeed is borne out by our experiments.

The primary contributions of this paper can be summarized as follows.

1. We start by showing that unless P = NP, there exist problem instances where
Boolean functional synthesis must take super-polynomial time. Moreover, if
the non-uniform exponential time hypothesis [14] holds, there exist problem
instances where Boolean functional synthesis must generate exponential sized
Skolem functions, thereby also requiring at least exponential time.

2. We present a new two-phase algorithm for Boolean functional synthesis.
(a) Phase 1 of our algorithm generates candidate Skolem functions of size

polynomial in the input specification. This phase makes polynomially
many calls to an NP oracle (SAT solver in practice). Hence it directly
benefits from the progess made by the SAT solving community, and is
efficient in practice. Our experiments indicate that Phase 1 suffices to
solve a large majority of publicly available benchmarks.

(b) However, there are indeed cases where the first phase is not enough (our
theoretical results imply that such cases likely exist). In such cases, the
first phase provides good candidate Skolem functions as starting points
for the second phase. Phase 2 of our algorithm starts from these candi-
date Skolem functions, and uses a CEGAR-based approach to produce
correct Skolem functions whose size may indeed be exponential in the
input specification.

3. We analyze the surprisingly good performance of the first phase (especially
in light of the theoretical hardness results) and show a sufficient condition
on the structure of the input representation that guarantees correctness of
the first phase. Interestingly, popular representations like ROBDDs [11] give
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rise to input structures that satisfy this condition. The goodness of Skolem
functions generated in this phase of the algorithm can also be quantified
with high confidence by invoking an approximate model counter [13], whose
complexity lies in BPPNP.

4. We conduct an extensive set of experiments over a variety of benchmarks,
and show that our algorithm performs favourably vis-a-vis state-of-the-art
algorithms for Boolean functional synthesis.

Related Work. The literature contains several early theoretical studies on vari-
ants of Boolean functional synthesis [6,8,9,16,27,30]. More recently, researchers
have tried to build practically efficient synthesis tools that scale to medium
or large problem instances. In [29], Skolem functions for X are extracted from
a proof of validity of ∀Y∃XF (X,Y). Unfortunately, this doesn’t work when
∀Y∃XF (X,Y) is not valid, despite this class of problems being important, as
discussed in [3,17]. Inspired by the spectacular effectiveness of CDCL-based SAT
solvers, an incremental determinization technique for Skolem function synthesis
was proposed in [33]. In [20,39], a synthesis approach based on iterated compo-
sitions was proposed. Unfortunately, as has been noted in [17,23], this does not
scale to large benchmarks. A recent work [17] adapts the composition-based app-
roach to work with ROBDDs. For factored specifications, ideas from symbolic
model checking using implicitly conjoined ROBDDs have been used to enhance
the scalability of the technique further in [38]. In the genre of CEGAR-based
techniques, [23] showed how CEGAR can be used to synthesize Skolem func-
tions from factored specifications. Subsequently, a compositional and parallel
technique for Skolem function synthesis from arbitrary specifications represented
using AIGs was presented in [3]. The second phase of our algorithm builds on
some of this work. In addition to the above techniques, template-based [37] or
sketch-based [36] approaches have been found to be effective for synthesis when
we have information about the set of candidate solutions. A framework for func-
tional synthesis that reasons about some unbounded domains such as integer
arithmetic, was proposed in [25].

2 Notations and Problem Statement

A Boolean formula F (z1, . . . zp) on p variables is a mapping F : {0, 1}p → {0, 1}.
The set of variables {z1, . . . zp} is called the support of the formula, and denoted
sup(F ). A literal is either a variable or its complement. We use F |zi=0 (resp.
F |zi=1) to denote the positive (resp. negative) cofactor of F with respect to zi.
A satisfying assignment or model of F is a mapping of variables in sup(F ) to
{0, 1} such that F evaluates to 1 under this assignment. If π is a model of F ,
we write π |= F and use π(zi) to denote the value assigned to zi ∈ sup(F ) by
π. Let Z = (zi1 , zi2 , . . . zij

) be a sequence of variables in sup(F ). We use π↓Z to
denote the projection of π on Z, i.e. the sequence (π(zi1), π(zi2), . . . π(zij

)).
A Boolean formula is in negation normal form (NNF) if (i) the only operators

used in the formula are conjunction (∧), disjunction (∨) and negation (¬), and
(ii) negation is applied only to variables. Every Boolean formula can be converted
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to a semantically equivalent formula in NNF. We assume an NNF formula is
represented by a rooted directed acyclic graph (DAG), where internal nodes are
labeled by ∧ and ∨, and leaves are labeled by literals. In this paper, we use
AIGs [24] as the initial representation of specifications. Given an AIG with t
nodes, an equivalent NNF formula of size O(t) can be constructed in O(t) time.
We use |F | to denote the number of nodes in a DAG representation of F .

Let α be the subformula represented by an internal node N (labeled by ∧ or
∨) in a DAG representation of an NNF formula. We use lits(α) to denote the
set of literals labeling leaves that have a path to the node N representing α in
the DAG. A formula is said to be in weak decomposable NNF, or wDNNF, if it
is in NNF and if for every ∧-labeled node in the DAG, the following holds: let
α = α1 ∧ . . . ∧ αk be the subformula represented by the internal node. Then,
there is no literal l and distinct indices i, j ∈ {1, . . . k} such that l ∈ lits(αi) and
¬l ∈ lits(αj). Note that wDNNF is a weaker structural requirement on the NNF
representation vis-a-vis the well-studied DNNF representation, which has elegant
properties [15]. Specifically, every DNNF formula is also a wDNNF formula.

We say a literal l is pure in F iff the NNF representation of F has a leaf
labeled l, but no leaf labeled ¬l. F is said to be positive unate in zi ∈ sup(F )
iff F |zi=0 ⇒ F |zi=1. Similarly, F is said to be negative unate in zi iff F |zi=1 ⇒
F |zi=0. Finally, F is unate in zi if F is either positive unate or negative unate
in zi. A function that is not unate in zi ∈ sup(F ) is said to be binate in zi.

We also use X = (x1, . . . xn) to denote a sequence of Boolean outputs, and
Y = (y1, . . . ym) to denote a sequence of Boolean inputs. The Boolean func-
tional synthesis problem, henceforth denoted BFnS, asks: given a Boolean for-
mula F (X,Y) specifying a relation between inputs Y = (y1, . . . ym) and out-
puts X = (x1, . . . xn), determine functions Ψ = (ψ1(Y), . . . ψn(Y)) such that
F (Ψ,Y) holds whenever ∃XF (X,Y) holds. Thus, ∀Y(∃XF (X,Y)) ⇔ F (ψ,Y)
must be rendered valid. The function ψi is called a Skolem function for xi in F ,
and Ψ = (ψ1, . . . ψn) is called a Skolem function vector for X in F .

For 1 ≤ i ≤ j ≤ n, let Xj
i denote the subsequence (xi, xi+1, . . . xj) and let

F (i−1)(Xn
i ,Y) denote ∃Xi−1

1 F (Xi−1
1 ,Xn

i ,Y). It has been argued in [3,17,20,23]
that given a relational specification F (X,Y), the BFnS problem can be solved
by first ordering the outputs, say as x1 ≺ x2 · · · ≺ xn, and then synthe-
sizing a function ψi(Xn

i+1,Y) for each xi such that F (i−1)(ψi,Xn
i+1,Y) ⇔

∃xiF
(i−1)(xi,Xn

i+1,Y). Once all such ψi are obtained, one can substitute ψi+1

through ψn for xi+1 through xn respectively, in ψi to obtain a Skolem function
for xi as a function of only Y. We adopt this approach, and therefore focus on
obtaining ψi in terms of Xn

i+1 and Y. Furthermore, we know from [20,23] that a
function ψi is a Skolem function for xi iff it satisfies Δi

F ⇒ ψi ⇒ ¬Γi
F , where

Δi
F ≡ ¬∃Xi−1

1 F (Xi−1
1 , 0,Xn

i+1,Y), and Γi
F ≡ ¬∃Xi−1

1 F (Xi−1
1 , 1,Xn

i+1,Y).
When F is clear from the context, we often omit it and write Δi and Γi. It is
easy to see that both Δi and ¬Γi serve as Skolem functions for xi in F .
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3 Complexity-Theoretical Limits

In this section, we investigate the computational complexity of BFnS. It is easy
to see that BFnS can be solved in EXPTIME. Indeed a naive solution would be
to enumerate all possible values of inputs Y and invoke a SAT solver to find
values of X corresponding to each valuation of Y that makes F (X,Y) true.
This requires worst-case time exponential in the number of inputs and outputs,
and may produce an exponential-sized circuit. Given this, one can ask if we can
develop a better algorithm that works faster and synthesizes “small” Skolem
functions in all cases? Our first result shows that existence of such small Skolem
functions would violate hard complexity-theoretic conjectures.

Theorem 1. 1. Unless P = NP, there exist problem instances where any algo-
rithm for BFnS must take super-polynomial time1.

2. Unless the non-uniform exponential-time hypothesis (or ETHnu) fails, there
exist problem instances where any algorithm for BFnS must generate Skolem
functions of size exponential in the input size.

A consequence of the second statement is that, under the same hypothesis, there
must exist an instance of BFnS for which any algorithm must take EXPTIME
time. The exponential-time hypothesis ETH and its strengthened version, the
non-uniform exponential-time hypothesis ETHnu, are unproven computational
hardness assumptions (see [14,18]), which have been used to show that several
classical decision, functional and parametrized NP-complete problems (such as
p-Clique) are unlikely to have sub-exponential algorithms. ETHnu states that
there is no family of algorithms (one for each family of inputs of size n) that can
solve 3-SAT in subexponential time. In [14] it is shown that if ETHnu holds, then
p-Clique, the parametrized clique problem, cannot be solved in sub-exponential
time, i.e., for all d ∈ N, and sufficiently large fixed k, determining whether a
graph G has a clique of size k is not in DTIME(nd).

Proof. We describe a reduction from p-Clique to BFnS. Given an undirected
graph G = (V,E) on n-vertices and a number k (encoded in binary), we want
to check if G has a clique of size k. We encode the graph as follows: each vertex
v ∈ V is identified by a unique number in {1, . . . n}, and for every (i, j) ∈ V ×V ,
we introduce an input variable yi,j that is set to 1 iff (i, j) ∈ E. We call the
resulting vector of input variables y. We also have additional input variables
z = z1, . . . zm, which represent the binary encoding of k (m = �log2 k�). Finally,
we introduce output variables xv for each v ∈ V , whose values determine which
vertices are present in the clique. Let x denote the vector of xv variables.

Given inputs Y = {y,z}, and outputs X = {x}, our specification is repre-
sented by a circuit F over X,Y that verifies whether the vertices encoded by X
indeed form a k-clique of the graph G. The circuit F is constructed as follows:

1 Since the submission of this paper, we have obtained a sharper complexity result.
Details of this can be found in [2].
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1. For every i, j such that 1 ≤ i < j ≤ n, we construct a sub-circuit implement-
ing xi ∧xj ⇒ yi,j . The outputs of all such subcircuits are conjoined to give an
intermediate output, say EdgesOK. Clearly, all the subcircuits taken together
have size O(n2).

2. We have a tree of binary adders implementing x1 + x2 + . . . xn. Let the
�log2 n�-bit output of the adder be denoted CliqueSz. The size of this adder
is clearly O(n).

3. We have an equality checker that checks if CliqueSz = k. Clearly, this sub-
circuit has size �log2 n�. Let the output of this equality checker be called
SizeOK.

4. The output of the specification circuit F is EdgesOK ∧ SizeOK.

Given an instance Y = {y,z} of p-Clique, we now consider the specification
F (X,Y) as constructed above and feed it as input to any algorithm A for solving
BFnS. Let Ψ be the Skolem function vector output by A. For each i ∈ {1, . . . n},
we now feed ψi to the input yi of the circuit F . This effectively constructs a
circuit for F (Ψ,Y). It is easy to see from the definition of Skolem functions
that for every valuation of Y, the function F (Ψ,Y) evaluates to 1 iff the graph
encoded by Y contains a clique of size k.

Using this reduction, we can complete the proofs of both our statements:

1. If the circuits for the Skolem functions Ψ are super-polynomial sized, then
of course any algorithm generating Ψ must take super-polynomial time. On
the other hand, if the circuits for the Skolem functions Ψ are always poly-
sized, then F (Ψ,Y) is polynomial-sized, and evaluating it takes time that is
polynomial in the input size. Thus, if A is a polynomial-time algorithm, we
also get an algorithm for solving p-Clique in polynomial time, which implies
that P = NP.

2. If the circuits for the Skolem functions Ψ are sub-exponential sized in the
input n, then F (Ψ,Y) is also sub-exponential sized and can be evaluated
in sub-exponential time. It then follows that we can solve any instance p-
Clique of input length n in sub-exponential time – a violation of ETHnu. Note
that since our circuits can be different for different input lengths, we may
have different algorithms for different n. Hence we have to appeal to the
non-uniform variant of ETH. ��
Theorem 1 implies that efficient algorithms for BFnS are unlikely. We there-

fore propose a two-phase algorithm to solve BFnS in practice. The first phase
runs in polynomial time relative to an NP-oracle and generates polynomial-
sized “approximate” Skolem functions. We show that under certain structural
restrictions on the NNF representation of F , the first phase always returns exact
Skolem functions. However, these structural restrictions may not always be met.
An NP-oracle can be used to check if the functions computed by the first phase
are indeed exact Skolem functions. In case they aren’t, we proceed to the second
phase of our algorithm that runs in worst-case exponential time. Below, we dis-
cuss the first phase in detail. The second phase is an adaptation of an existing
CEGAR-based technique and is described briefly later.
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4 Phase 1: Efficient Polynomial-Sized Synthesis

An easy consequence of the definition of unateness is the following.

Proposition 1. If F (X,Y) is positive (resp. negative) unate in xi, then ψi = 1
(resp. ψi = 0) is a correct Skolem function for xi.

All omitted proofs, including that of the above, may be found in [2]. The above
result gives us a way to identify outputs xi for which a Skolem function can
be easily computed. Note that if xi (resp. ¬xi) is a pure literal in F , then F
is positive (resp. negative) unate in xi. However, the converse is not necessarily
true. In general, a semantic check is necessary for unateness. In fact, it follows
from the definition of unateness that F is positive (resp. negative) unate in xi,
iff the formula η+

i (resp. η−
i ) defined below is unsatisfiable.

η+
i = F (Xi−1

1 , 0,Xn
i+1,Y) ∧ ¬F (Xi−1

1 , 1,Xn
i+1,Y). (1)

η−
i = F (Xi−1

1 , 1,Xn
i+1,Y) ∧ ¬F (Xi−1

1 , 0,Xn
i+1,Y). (2)

Note that each such check involves a single invocation of an NP-oracle, and a
variant of this method is described in [5].

If F is binate in an output xi, Proposition 1 doesn’t help in synthesizing ψi.
Towards synthesizing Skolem functions for such outputs, recall the definitions
of Δi and Γi from Sect. 2. Clearly, if we can compute these functions, we can
solve BFnS. While computing Δi and Γi exactly for all xi is unlikely to be effi-
cient in general (in light of Theorem1), we show that polynomial-sized “good”
approximations of Δi and Γi can be computed efficiently. As our experiments
show, these approximations are good enough to solve BFnS for several bench-
marks. Furthermore, with access to an NP-oracle, we can also check when these
approximations are indeed good enough.

Given a relational specification F (X,Y), we use ̂F (X,X,Y) to denote the
formula obtained by first converting F to NNF, and then replacing every occur-
rence of ¬xi (xi ∈ X) in the NNF formula with a fresh variable xi. As an
example, suppose F (X,Y) = (x1 ∨ ¬(x2 ∨ y1)) ∨ ¬(x2 ∨ ¬(y2 ∧ ¬y1)). Then
̂F (X,X,Y) = (x1 ∨ (x2 ∧ ¬y1)) ∨ (x2 ∧ y2 ∧ ¬y1). The following are easy to see.

Proposition 2. (a) ̂F (X,X,Y) is positive unate in both X and X.
(b) Let ¬X denote (¬x1, . . . ¬xn). Then F (X,Y) ⇔ ̂F (X,¬X,Y).

For every i ∈ {1, . . . n}, we can split X = (x1, . . . xn) into two parts, Xi
1 and

Xn
i+1, and represent ̂F (X,X,Y) as ̂F (Xi

1,X
n
i+1,X

i

1,X
n

i+1,Y). We use these rep-
resentations of ̂F interchangeably, depending on the context. For b, c ∈ {0, 1},
let bi (resp. ci) denote a vector of i b’s (resp. c’s). For notational convenience, we
use ̂F (bi,Xn

i+1, c
i,X

n

i+1,Y) to denote ̂F (Xi
1,X

n
i+1,X

i

1,X
n

i+1,Y)|
Xi

1=bi,X
i
1=ci in

the subsequent discussion. The following is an easy consequence of Proposition 2.

Proposition 3. For every i ∈ {1, . . . n}, the following holds:
̂F (0i,Xn

i+1,0
i,¬Xn

i+1,Y) ⇒ ∃Xi
1F (X,Y) ⇒ ̂F (1i,Xn

i+1,1
i,¬Xn

i+1,Y)
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Proposition 3 allows us to bound Δi and Γi as follows.

Lemma 1. For every xi ∈ X, we have:

(a) ¬ ̂F (1i−10,Xn
i+1,1

i,¬Xn
i+1,Y) ⇒ Δi ⇒ ¬ ̂F (0i,Xn

i+1,0
i−11,¬Xn

i+1,Y)
(b) ¬ ̂F (1i,Xn

i+1,1
i−10,¬Xn

i+1,Y) ⇒ Γi ⇒ ¬ ̂F (0i−11,Xn
i+1,0

i,¬Xn
i+1,Y)

In the remainder of the paper, we only use under-approximations of Δi and Γi,
and use δi and γi respectively, to denote them. Recall from Sect. 2 that both Δi

and ¬Γi suffice as Skolem functions for xi. Therefore, we propose to use either
δi or ¬γi (depending on which has a smaller AIG) obtained from Lemma1 as
our approximation of ψi. Specifically,

δi = ¬ ̂F (1i−10,Xn
i+1,1

i,¬Xn
i+1,Y), γi = ¬ ̂F (1i,Xn

i+1,1
i−10,¬Xn

i+1,Y)
ψi = δi or ¬γi, depending on which has a smaller AIG (3)

Example 1. Consider the specification X = Y, expressed in NNF as F (X,Y) ≡
∧n

i=1 ((xi ∧ yi) ∨ (¬xi ∧ ¬yi)). As noted in [33], this is a difficult example for
CEGAR-based QBF solvers, when n is large.

From Eq. 3, δi = ¬(¬yi ∧ ∧n
j=i+1(xj ⇔ yj)) = yi ∨ ∨n

j=i+1(xj ⇔ ¬yj),
and γi = ¬(yi ∧ ∧n

j=i+1(xj ⇔ yj)) = ¬yi ∨ ∨n
j=i+1(xj ⇔ ¬yj). With δi as

the choice of ψi, we obtain ψi = yi ∨ ∨n
j=i+1(xj ⇔ ¬yj). Clearly, ψn = yn. On

reverse-substituting, we get ψn−1 = yn−1 ∨ (ψn ⇔ ¬yn) = yn−1 ∨ 0 = yn−1.
Continuing in this way, we get ψi = yi for all i ∈ {1, . . . n}. The same result
is obtained regardless of whether we choose δi or ¬γi for each ψi. Thus, our
approximation is good enough to solve this problem. In fact, it can be shown
that δi = Δi and γi = Γi for all i ∈ {1, . . . n} in this example. ��

Note that the approximations of Skolem functions, as given in Eq. (3), are
efficiently computable for all i ∈ {1, . . . n}, as they involve evaluating ̂F with
a subset of inputs set to constants. This takes no more than O(|F |) time and
space. As illustrated by Example 1, these approximations also often suffice to
solve BFnS. The following lemma partially explains this.

Theorem 2. (a) For i ∈ {1, . . . n}, suppose the following holds:

∀j ∈ {1, . . . i} ̂F (1j ,Xn
j+1,1

j ,X
n

j+1,Y) ⇒ ̂F (1j−10,Xn
j+1,1

j−11,X
n

j+1,Y)

∨ ̂F (1j−11,Xn
j+1,1

j−10,X
n

j+1,Y)

Then ∃Xi
1F (X,Y) ⇔ ̂F (1i,Xn

i+1,1
i,¬Xn

i+1,Y).
(b) If ̂F (X,¬X,Y) is in wDNNF, then δi = Δi and γi = Γi for every i ∈

{1, . . . n}.
Proof. To prove part (a), we use induction on i. The base case corresponds to i =
1. Recall that ∃X1

1F (X,Y) ⇔ ̂F (1,Xn
2 , 0,¬Xn

2 ,Y)∨F (0,Xn
2 , 1,¬Xn

2 ,Y) by def-
inition. Proposition 3 already asserts that ∃X1

1F (X,Y) ⇒ ̂F (1,Xn
2 , 1,¬Xn

2 ,Y).
Therefore, if the condition in Theorem 2(a) holds for i = 1, we then have
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̂F (1,Xn
2 , 1,¬Xn

2 ,Y) ⇔ ̂F (1,Xn
2 , 0,¬Xn

2 ,Y)∨F (0,Xn
2 , 1,¬Xn

2 ,Y), which in turn
is equivalent to ∃X1

1F (X,Y). This proves the base case.
Let us now assume (inductive hypothesis) that the statement of Theorem2(a)

holds for 1 ≤ i < n. We prove below that the same statement holds for i +
1 as well. Clearly, ∃Xi+1

1 F (X,Y) ⇔ ∃xi+1

(∃Xi
1F (X,Y)

)

. By the inductive
hypothesis, this is equivalent to ∃xi+1

̂F (1i,Xn
i+1,1

i,¬Xn
i+1,Y). By definition

of existential quantification, this is equivalent to ̂F (1i+1,Xn
i+2,1

i0,¬Xn
i+2,Y)∨

̂F (1i0,Xn
i+2,1

i+1,¬Xn
i+2,Y). From the condition in Theorem 2(a), we also have

̂F (1i+1,Xn
i+2,1

i+1,X
n

i+2,Y) ⇒ ̂F (1i0,Xn
i+2,1

i+1,X
n

i+2,Y)

∨ ̂F (1i+1,Xn
i+2,1

i0,X
n

i+2,Y)

The implication in the reverse direction follows from Proposition 2(a). Thus
we have a bi-implication above, which we have already seen is equivalent to
∃Xi+1

1 F (X,Y). This proves the inductive case.
To prove part (b), we first show that if ̂F (X,¬X,Y) is in wDNNF, then the

condition in Theorem 2(a) must hold for all j ∈ {1, . . . n}. Theorem 2(b) then
follows from the definitions of Δi and Γi (see Sect. 2), from the statement of
Theorem 2(a) and from the definitions of δi and γi (see Eq. 3).

For j ∈ {1, . . . n}, let ζ(Xn
j+1,X

n

j+1,Y) denote the formula ̂F (1j ,Xn
j+1,

1j ,X
n

j+1,Y) ∧ ¬
(

̂F (1j−10,Xn
j+1,1

j−11,X
n

j+1,Y) ∨ ̂F (1j−11,Xn
j+1,1

j−10,

X
n

j+1,Y)
)

. Suppose, if possible, ̂F (X,¬X,Y) is in wDNNF but there exists

j (1 ≤ j ≤ n) such that ζ(Xn
j+1,X

n

j+1,Y) is satisfiable. Let Xn
j+1 = σ, X

n

j+1 = κ
and Y = θ be a satisfying assignment of ζ. We now consider the simplified circuit
obtained by substituting 1j−1 for Xj−1

1 as well as for X
j−1

1 , σ for Xn
j+1, κ for

X
n

j+1 and θ for Y in the AIG for ̂F . This simplification replaces the output of
every internal node with a constant (0 or 1), if the node evaluates to a constant
under the above assignment. Note that the resulting circuit can have only xj

and xj as its inputs. Furthermore, since the assignment satisfies ζ, it follows
that the simplified circuit evaluates to 1 if both xj and xj are set to 1, and it
evaluates to 0 if any one of xj or xj is set to 0. This can only happen if there
is a node labeled ∧ in the AIG representing ̂F (X,¬X,Y) with a path leading
from the leaf labeled xj , and another path leading from the leaf labeled ¬xj .
This is a contradiction, since ̂F (X,¬X,Y) is in wDNNF. Therefore, there is no
j ∈ {1, . . . n} such that the condition of Theorem2(a) is violated. ��

In general, the candidate Skolem functions generated from the approxima-
tions discussed above may not always be correct. Indeed, the conditions discussed
above are only sufficient, but not necessary, for the approximations to be exact.
Hence, we need a separate check to see if our candidate Skolem functions are cor-
rect. To do this, we use an error formula εΨ(X′,X,Y) ≡ F (X′,Y)∧∧n

i=1(xi ↔
ψi)∧¬F (X,Y), as described in [23], and check its satisfiability. The correctness
of this check depends on the following result from [23].
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Theorem 3 ([23]). εΨ is unsatisfiable iff Ψ is a correct Skolem function vector.

Algorithm 1. bfss

Input: ̂F (X,Y) in NNF (or wDNNF) with inputs |Y| = m, outputs |X| = n,
Output: Candidate Skolem Functions Ψ = (ψ1, . . . , ψn)

1 Initialize: Fix sets U0 = U1 = ∅;
2 repeat
3 // Repeatedly checks for Unate variables

4 for each xi ∈ X \ (U0 ∪ U1) do

5 if ̂F is positive unate in xi // check xi pure or η+
i (Eq 1) SAT ;

6 then

7 ̂F := ̂F [xi = 1], U1 = U1 ∪ {xi}
8 else if ̂F is negative unate in xi // ¬xi pure or η− (Eq 2)SAT ;
9 then

10 ̂F := ̂F [xi = 0], U0 = U0 ∪ {xi}

11 until F is unchanged // No Unate variables remaining;
12 Choose an ordering � of X // Section 6 discusses ordering used;
13 for each xi ∈ X in � order do
14 if xi ∈ Uj for j ∈ {0, 1} // Assume x1 � x2 � . . . xn;
15 then
16 ψi = j

17 else
18 ψi is as defined in (Eq 3)

19 if error formula εΨ is UNSAT then
20 terminate and output Ψ

21 else
22 call Phase 2

We now combine all the above ingredients to come up with algorithm bfss
(for Blazingly Fast Skolem Synthesis), as shown in Algorithm 1. The algorithm
can be divided into three parts. In the first part (lines 2-11), unateness is checked.
This is done in two ways: (i) we identify pure literals in F by simply examining
the labels of leaves in the DAG representation of F in NNF, and (ii) we check
the satisfiability of the formulas η+

i and η−
i , as defined in Eqs. 1 and 2. This

requires invoking a SAT solver in the worst-case, and is repeated at most O(n2)
times until there are no more unate variables. Hence this requires O(n2) calls to
a SAT solver. Once we have done this, by Proposition 1, the constants 1 or 0 (for
positive or negative unate variables respectively) are correct Skolem functions
for these variables.

In the second part, we fix an ordering of the remaining output variables
according to an experimentally sound heuristic, as described in Sect. 6, and com-
pute candidate Skolem functions for these variables according to Eq. 3. We then
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check the satisfiability of the error formula εΨ to determine if the candidate
Skolem functions are indeed correct. If the error formula is found to be unsat-
isfiable, we know from Theorem 3 that we have the correct Skolem functions,
which can therefore be output. This concludes phase 1 of algorithm bfss. If
the error formula is found to be satisfiable, we move to phase 2 of algorithm
bfss – an adaptation of the CEGAR-based technique described in [23], and dis-
cussed briefly in Sect. 5. It is not difficult to see that the running time of phase
1 �is polynomial in the size of the input, relative to an NP-oracle (SAT solver
in practice). This also implies that the Skolem functions generated can be of at
most polynomial size. Finally, from Theorem2 we also obtain that if F satisfies
Theorem 2(a), Skolem functions generated in phase 1 are correct. From the above
reasoning, we obtain the following properties of phase 1 of bfss:

Theorem 4. 1. For all unate variables, phase 1 of bfss computes correct
Skolem functions.

2. If F̂ is in wDNNF, phase 1 of bfss computes all Skolem functions correctly.
3. The running time of phase 1 of bfss is polynomial in input size, relative to

an NP-oracle. Specifically, the algorithm makes O(n2) calls to an NP-oracle.
4. The candidate Skolem functions output by phase 1 of bfss have size at most

polynomial in the size of the input.

Discussion: We make two crucial and related observations. First, by our hard-
ness results in Sect. 3, we know that the above algorithm cannot solve BFnS
for all inputs, unless some well-regarded complexity-theoretic conjectures fail.
As a result, we must go to phase 2 on at least some inputs. Surprisingly, our
experiments show that this is not necessary in the majority of benchmarks.

The second observation tries to understand why phase 1 works in most cases
in practice. While a conclusive explanation isn’t easy, we believe Theorem 2
explains the success of phase 1 in several cases. By [15], we know that all Boolean
functions have a DNNF (and hence wDNNF) representation, although it may take
exponential time to compute this representation. This allows us to define two
preprocessing procedures. In the first, we identify cases where we can directly
convert to wDNNF and use the Phase 1 algorithm above. And in the second, we
use several optimization scripts available in the ABC [26] library to optimize the
AIG representation of ̂F . For a majority of benchmarks, this appears to yield
a representation of ̂F that allows the proof of Theorem2(a) to go through. For
the rest, we apply the Phase 2 algorithm as described below.

Quantitative guarantees of “goodness”. Given our theoretical and practical
insights of the applicability of phase 1 of bfss, it would be interesting to measure
how much progress we have made in phase 1, even if it does not give the correct
Skolem functions. One way to measure this “goodness” is to estimate the number
of counterexamples as a fraction of the size of the input space. Specifically, given
the error formula, we get an approximate count of the number of models for this
formula projected on the inputs Y. This can be obtained efficiently in practice
with high confidence using state-of-the-art approximate model counters, viz. [13],
with complexity in BPPNP. The approximate count thus obtained, when divided
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by 2|Y| gives the fraction of input combinations for which the candidate Skolem
functions output by phase 1 do not work correctly. We call this the goodness
ratio of our approximation.

5 Phase 2: Counterexample-Guided Refinement

For phase 2, we can use any off-the-shelf worst-case exponential-time Skolem
function generator. However, given that we already have candidate Skolem func-
tions with guarantees on their “goodness”, it is natural to use them as starting
points for phase 2. Hence, we start off with candidate Skolem functions for all xi

as computed in phase 1, and then update (or refine) them in a counterexample-
driven manner. Intuitively, a counterexample is a value of the inputs Y for which
there exists a value of X that renders F (X,Y) true, but for which F (Ψ,Y) eval-
uates to false. As shown in [23], given a candidate Skolem function vector, every
satisfying assignment of the error formula εΨ gives a counterexample. The refine-
ment step uses this satisfying assignment to update an appropriate subset of the
approximate δi and γi functions computed in phase 1. The entire process is then
repeated until no counterexamples can be found. The final updated vector of
Skolem functions then gives a solution of the BFnS problem. Note that this idea
is not new [3,23]. The only significant enhancement we do over the algorithm
in [23] is to use an almost-uniform sampler [12] to efficiently sample the space
of counterexamples almost uniformly. This allows us to do refinement with a
diverse set of counterexamples, instead of using counterexamples in a corner of
the solution space of εΨ that the SAT solver heuristics zoom down on.

6 Experimental Results

Experimental methodology. Our implementation consists of two parallel
pipelines that accept the same input specification but represent them in two
different ways. The first pipeline takes the input formula as an AIG and builds
an NNF (not necessarily wDNNF) DAG, while the second pipeline builds an
ROBDD from the input AIG using dynamic variable reordering (no restrictions
on variable order), and then obtains a wDNNF representation from it using the
linear-time algorithm described in [15]. Once the NNF/wDNNF representation is
built, we use Algorithm 1 in Phase 1 and CEGAR-based synthesis using UniGen
[12] to sample counterexamples in Phase 2. We call this ensemble of two pipelines
as bfss. We compare bfss with the following algorithms/tools: (i) parSyn [3],
(ii) Cadet [33], (iii) RSynth [38], and (iv) AbsSynthe-Skolem (based on
the BFnS step of AbsSynthe [10]).

Our implementation of bfss uses the ABC [26] library to represent and
manipulate Boolean functions. Two different SAT solvers can be used with bfss:
ABC’s default SAT solver, or UniGen [12] (to give almost-uniformly distributed
counterexamples). All our experiments use UniGen.

We consider a total of 504 benchmarks, taken from four different domains:
(a) forty-eight Arithmetic benchmarks from [17], with varying bit-widths (viz.
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32, 64, 128, 256, 512 and 1024) of arithmetic operators, (b) sixty-eight Disjunc-
tive Decomposition benchmarks from [3], generated by considering some of the
larger sequential circuits in the HWMCC10 benchmark suite, (c) five Factoriza-
tion benchmarks, also from [3], representing factorization of numbers of different
bit-widths (8, 10, 12, 14, 16), and (d) three hundred and eighty three QBFEval
benchmarks, taken from the Prenex 2QBF track of QBFEval 2017 [32]2. Since
different tools accept benchmarks in different formats, each benchmark was con-
verted to both qdimacs and verilog/aiger formats. All benchmarks and the
procedure by which we generated (and converted) them are detailed in [1]. Recall
that we use two pipelines for bfss. We use “balance; rewrite -l; refactor -l; bal-
ance; rewrite -l; rewrite -lz; balance; refactor -lz; rewrite -lz; balance” as the
ABC script for optimizing the AIG representation of the input specification. We
observed that while this results in only 4 benchmarks being in wDNNF in the
first pipeline, 219 benchmarks were solved in Phase 1 using this pipeline. This
is attributable to specifications being unate in several output variables, and also
satisfying the condition of Theorem2(a) (while not being in wDNNF). In the
second pipeline, however, we could represent 230 benchmarks in wDNNF, and
all of these were solved in Phase 1.

For each benchmark, the order � (ref. step 12 of Algorithm 1) in which Skolem
functions are generated is such that the variable which occurs in the transitive
fan-in of the least number of nodes in the AIG representation of the specifica-
tion is ordered before other variables. This order (�) is used for both bfss and
parSyn. Note that the order � is completely independent of the dynamic vari-
able order used to construct an ROBDD of the input specification in the second
pipeline, prior to getting the wDNNF representation.

All experiments were performed on a message-passing cluster, with 20 cores
and 64 GB memory per node, each core being a 2.2 GHz Intel Xeon processor.
The operating system was Cent OS 6.5. Twenty cores were assigned to each
run of parSyn. For RSynth and Cadet a single core on the cluster was used,
since these tools don’t exploit parallel processing. Each pipeline of bfss was
executed on a single node; the computation of candidate functions, building of
error formula and refinement of the counterexamples was performed sequentially
on 1 thread, and UniGen had 19 threads at its disposal (idle during Phase 1).

The maximum time given for execution of any run was 3600 s. The total
amount of main memory for any run was restricted to 16GB. The metric used
to compare the algorithms was time taken to synthesize Boolean functions. The
time reported for bfss is the better of the two times obtained from the alterna-
tive pipelines described above. Detailed results from the individual pipelines are
available in [2].
Results. Of the 504 benchmarks, 177 benchmarks were not solved by any tool
– 6 of these being from arithmetic benchmarks and 171 from QBFEval.

Table 1 gives a summary of the performance of bfss (considering the com-
bined pipelines) over different benchmarks suites. Of the 504 benchmarks, bfss

2 The track contains 384 benchmarks, but we were unsuccessful in converting 1 bench-
mark to some of the formats required by the various tools.
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Table 1. bfss: Performance summary of combined pipelines

Benchmark domain Total

benchmarks

# Benchmarks

solved

Phase 1

solved

Phase 2

started

Solved By

phase 2

QBFEval 383 170 159 73 11

Arithmetic 48 35 35 8 0

Disjunctive decomposition 68 68 66 2 2

Factorization 5 5 5 0 0

was successful on 278 benchmarks; of these, 170 are from QBFEval, 68 from
Disjunctive Decomposition, 35 from Arithmetic and 5 from Factorization.

Of the 383 benchmarks in the QBFEval suite, we ran bfss only on 254 since
we could not build succinct AIGs for the remaining benchmarks. Of these, 159
benchmarks were solved by Phase 1 (i.e., 62% of built QBFEval benchmarks)
and 73 proceeded to Phase 2, of which 11 reached completion. On another 11
QBFEval benchmarks Phase 1 timed out. Of the 48 Arithmetic benchmarks,
Phase 1 successfully solved 35 (i.e., ∼ 72%) and Phase 2 was started for 8
benchmarks; Phase 1 timed out on 5 benchmarks. Of the 68 Disjunctive Decom-
position benchmarks, Phase 1 successfully solved 66 benchmarks (i.e., 97%),
and Phase 2 was started and reached completion for 2 benchmarks. For the 5
Factorization benchmarks, Phase 1 was successful on all 5 benchmarks.

Recall that the goodness ratio is the ratio of the number of counterexamples
remaining to the total size of the input space after Phase 1. For all benchmarks
solved by Phase 1, the goodness ratio is 0. We analyzed the goodness ratio at
the beginning of Phase 2 for 83 benchmarks for which Phase 2 started. For 13
benchmarks this ratio was small (< 0.002), and Phase 2 reached completion for
these. Of the remaining benchmarks, 34 also had a small goodness ratio (< 0.1),
indicating that we were close to the solution at the time of timeout. However,
27 benchmarks in QBFEval had goodness ratio close to > 0.9, indicating that
most of the counter-examples were not eliminated by timeout.

We next compare the performance of bfss with other state-of-art tools. For
clarity, since the number of benchmarks in the QBFEval suite is considerably
greater, we plot the QBFEval benchmarks separately.

bfss vs Cadet: Of the 504 benchmarks, Cadet was successful on 231 bench-
marks, of which 24 belonged to Disjunctive Decomposition, 22 to Arithmetic, 1
to Factorization and 184 to QBFEval. Figure 1(a) gives the performance of the
two algorithms with respect to time on the QBFEval suite. Here, Cadet solved
35 benchmarks that bfss could not solve, whereas bfss solved 21 benchmarks
that could not be solved by Cadet. Figure 1(b) gives the performance of the
two algorithms with respect to time on the Arithmetic, Factorization and Dis-
junctive Decomposition benchmarks. In these categories, there were a total of
62 benchmarks that bfss solved that Cadet could not solve, and there was 1
benchmark that Cadet solved but bfss did not solve. While Cadet takes less
time on Arithmetic benchmarks and many QBFEval benchmarks, on Disjunctive
Decomposition and Factorization, bfss takes less time.
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Fig. 1. bfss vs Cadet: Legend: Q: QBFEval, A: Arithmetic, F: Factorization, D: Dis-
junctive Decomposition. TO: benchmarks for which the corresponding algorithm was
unsuccessful.
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Fig. 2. bfss vs parSyn (for legend see Fig. 1)

bfss vs parSyn: Fig. 2 shows the comparison of time taken by bfss and parSyn.
parSyn was successful on a total of 185 benchmarks, and could solve 1 bench-
mark which bfss could not solve. On the other hand, bfss solved 94 benchmarks
that parSyn could not solve. From Fig. 2, we can see that on most of the Arith-
metic, Disjunctive Decomposition and Factorization benchmarks, bfss takes less
time than parSyn.
bfss vs RSynth: We next compare the performance of bfss with RSynth. As
shown in Fig. 3, RSynth was successful on 51 benchmarks, with 4 benchmarks
that could be solved by RSynth but not by bfss. In contrast, bfss could solve
231 benchmarks that RSynth could not solve! Of the benchmarks that were
solved by both solvers, we can see that bfss took less time on most of them.
bfss vs AbsSynthe-Skolem: AbsSynthe-Skolem was successful on 217
benchmarks, and could solve 31 benchmarks that bfss could not solve. In con-
trast, bfss solved a total of 92 benchmarks that AbsSynthe-Skolem could not.
Figure 4 shows a comparison of running times of bfss and AbsSynthe-Skolem.
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Fig. 3. bfss vs RSynth (for legend see Fig. 1)
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Fig. 4. bfss vs AbsSynthe-Skolem (for legend see Fig. 1)

7 Conclusion

In this paper, we showed some complexity-theoretic hardness results for the
Boolean functional synthesis problem. We then developed a two-phase approach
to solve this problem, where the first phase, which is an efficient algorithm gen-
erating poly-sized functions surprisingly succeeds in solving a large number of
benchmarks. To explain this, we identified sufficient conditions when phase 1
gives the correct answer. For the remaining benchmarks, we employed the second
phase of the algorithm that uses a CEGAR-based approach and builds Skolem
functions by exploiting recent advances in SAT solvers/approximate counters.
As future work, we wish to explore further improvements in Phase 2, and other
structural restrictions on the input that ensure completeness of Phase 1.
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Abstract. Program synthesis is the mechanised construction of soft-
ware. One of the main difficulties is the efficient exploration of the very
large solution space, and tools often require a user-provided syntactic
restriction of the search space. We propose a new approach to program
synthesis that combines the strengths of a counterexample-guided induc-
tive synthesizer with those of a theory solver, exploring the solution space
more efficiently without relying on user guidance. We call this approach
CEGIS(T ), where T is a first-order theory. In this paper, we focus on one
particular challenge for program synthesizers, namely the generation of
programs that require non-trivial constants. This is a fundamentally diffi-
cult task for state-of-the-art synthesizers. We present two exemplars, one
based on Fourier-Motzkin (FM) variable elimination and one based on
first-order satisfiability. We demonstrate the practical value of CEGIS(T )
by automatically synthesizing programs for a set of intricate benchmarks.

1 Introduction

Program synthesis is the problem of finding a program that meets a correctness
specification given as a logical formula. This is an active area of research in which
substantial progress has been made in recent years.

In full generality, program synthesis is an exceptionally difficult problem, and
thus, the research community has explored pragmatic restrictions. One particu-
larly successful direction is Syntax-Guided Program Synthesis (SyGuS) [2]. The
key idea of SyGuS is that the user supplements the logical specification with
a syntactic template for the solution. Leveraging the user’s intuition, SyGuS
reduces the solution space size substantially, resulting in significant speed-ups.

Unfortunately, it is difficult to provide the syntactic template in many prac-
tical applications. A very obvious exemplar of the limits of the syntax-guided
approach are programs that require non-trivial constants. In such a scenario, the
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syntax-guided approach requires that the user provides the exact value of the
constants in the solution.

For illustration, let’s consider a user who wants to synthesize a program that
rounds up a given 32-bit unsigned number x to the next highest power of two. If
we denote the function computed by the program by f(x), then the specification
can be written as x < 231⇒f(x)&(−f(x)) = f(x) ∧ f(x) ≥ x ∧ 2x ≥ f(x). The
first conjunct forces f(x) to be a power of two, the other requires it to be the
next highest. A possible solution for this is given by the following C program:

1 x=x−1;
2 x |= x >> 1 ;
3 x |= x >> 2 ;
4 x |= x >> 4 ;
5 x |= x >> 8 ;
6 x |= x >> 16 ;
7 x=x+1;

It is improbable that the user knows that the constants in the solution are
exactly 1, 2, 4, 8, 16, and thus, she will be unable to explicitly restrict the
solution space. As a result, synthesizers are very likely to enumerate possible
combinations of constants, which is highly inefficient.

In this paper we propose a new approach to program synthesis that combines
the strengths of a counterexample-guided inductive synthesizer with those of a
solver for a first-order theory in order to perform a more efficient exploration
of the solution space, without relying on user guidance. Our inspiration for this
proposal is DPLL(T ), which has boosted the performance of solvers for many
fragments of quantifier-free first-order logic [16,23]. DPLL(T ) combines reason-
ing about the Boolean structure of a formula with reasoning about theory facts
to decide satisfiability of a given formula.

In an attempt to generate similar technological advancements in program syn-
thesis, we propose a new algorithm for program synthesis called CounterExample-
Guided Inductive Synthesis(T ), where T is a given first-order theory for which
we have a specialised solver. Similar to its counterpart DPLL(T ), the CEGIS(T )
architecture features communication between a synthesizer and a theory solver,
which results in a much more efficient exploration of the search space.

While standard CEGIS architectures [19,30] already make use of SMT solvers,
the typical role of such a solver is restricted to validating candidate solutions and
providing concrete counterexamples that direct subsequent search. By contrast,
CEGIS(T ) allows the theory solver to communicate generalised constraints back
to the synthesizer, thus enabling more significant pruning of the search space.

There are instances of more sophisticated collaboration between a program
synthesizer and theory solvers. The most obvious such instance is the program
synthesizer inside the CVC4 SMT solver [27]. This approach features a very
tight coupling between the two components (i.e., the synthesizer and the theory
solvers) that takes advantage of the particular strengths of the SMT solver by



272 A. Abate et al.

reformulating the synthesis problem as the problem of refuting a universally
quantified formula (SMT solvers are better at refuting universally quantified
formulae than at proving them). Conversely, in our approach we maintain a
clear separation between the synthesizer and the theory solver while performing
comprehensive and well-defined communication between the two components.
This enables the flexible combination of CEGIS with a variety of theory solvers,
which excel at exploring different solution spaces.

Contributions

– We propose CEGIS(T ), a program synthesis architecture that facilitates the
communication between an inductive synthesizer and a solver for a first-order
theory, resulting in an efficient exploration of the search space.

– We present two exemplars of this architecture, one based on Fourier-Motzkin
(FM) variable elimination [7] and one using an off-the-shelf SMT solver.

– We have implemented CEGIS(T ) and compared it against state-of-the-art
program synthesizers on benchmarks that require intricate constants in the
solution.

2 Preliminaries

2.1 The Program Synthesis Problem

Program synthesis is the task of automatically generating programs that satisfy
a given logical specification. A program synthesizer can be viewed as a solver for
existential second-order logic. An existential second-order logic formula allows
quantification over functions as well as ground terms [28].

The input specification provided to a program synthesizer is of the form
∃P.∀x . σ(P,x ), where P ranges over functions (where a function is represented
by the program computing it), x ranges over ground terms, and σ is a quantifier-
free formula.

2.2 CounterExample Guided Inductive Synthesis

CounterExample-Guided Inductive Synthesis (CEGIS) is a popular approach to
program synthesis, and is an iterative process. Each iteration performs inductive
generalisation based on counterexamples provided by a verification oracle. Essen-
tially, the inductive generalisation uses information about a limited number of
inputs to make claims about all the possible inputs in the form of candidate
solutions.

The CEGIS framework is illustrated in Fig. 1 and consists of two phases:
the synthesis phase and the verification phase. Given the specification of the
desired program, σ, the inductive synthesis procedure generates a candidate
program P ∗ that satisfies σ(P ∗,x ) for a subset x inputs of all possible inputs. The
candidate program P ∗ is passed to the verification phase, which checks whether
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it satisfies the specification σ(P ∗,x ) for all possible inputs. This is done by
checking whether ¬σ(P ∗,x ) is unsatisfiable. If so, ∀x.¬σ(P ∗,x ) is valid, and we
have successfully synthesized a solution and the algorithm terminates. Otherwise,
the verifier produces a counterexample c from the satisfying assignment, which
is then added to the set of inputs passed to the synthesizer, and the loop repeats.

The method used in the synthesis and verification blocks varies in differ-
ent CEGIS implementations; our CEGIS implementation uses Bounded Model
Checking [8].

2.3 DPLL(T )

DPLL(T ) is an extension of the DPLL algorithm, used by most propositional
SAT solvers, by a theory T . We give a brief overview of DPLL(T ) and compare
DPLL(T ) with CEGIS(T ).

Given a formula F from a theory T , a propositional formula Fp is created
from F in which the theory atoms are replaced by Boolean variables (the “propo-
sitional skeleton”). The standard DPLL algorithm, comprising Decide, Boolean
Constraint Propagation (BCP), Analyze-Conflict and BackTrack, gener-
ates an assignment to the Boolean variables in Fp, as illustrated in Fig. 2. The
theory solver then checks whether this assignment is still consistent when the
Boolean variables are replaced by their original atoms. If so, a satisfying assign-
ment for F has been found. Otherwise, a constraint over the Boolean variables
in Fp is passed back to Decide, and the process repeats.

In the very first SMT solvers, a full assignment to the Boolean variables
was obtained, and then the theory solver returned only a single counterexample,
similar to the implementations of CEGIS that are standard now. Such SMT
solvers are prone to enumerating all possible counterexamples, and so the key
improvement in DPLL(T ) was the ability to pass back a more general constraint
over the variables in the formula as a counterexample [16]. Furthermore, modern
variants of DPLL(T ) call the theory solver on partial assignments to the variables
in Fp. Our proposed, new synthesis algorithm offers equivalents of both of these
ideas that have improved DPLL(T ).
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3 Motivating Example

In each iteration of a standard CEGIS loop, the communication from the verifica-
tion phase back to the synthesis phase is restricted to concrete counterexamples.
This is particularly detrimental when synthesizing programs that require non-
trivial constants. In such a setting, it is typical that a counterexample provided
by the verification phase only eliminates a single candidate solution and, conse-
quently, the synthesizer ends up enumerating possible constants.

For illustration, let’s consider the trivial problem of synthesizing a function
f(x) where f(x) < 0 if x < 334455 and f(x) = 0, otherwise. One possible
solution is f(x) = ite (x < 334455)−10, where ite stands for if then else.

In order to make the synthesis task even simpler, we are going to assume that
we know a part of this solution, namely we know that it must be of the form
f(x) = ite (x < ?) −1 0, where “?” is a placeholder for the missing constant that
we must synthesize. A plausible scenario for a run of CEGIS is presented next:
the synthesis phase guesses f(x) = ite (x < 0) −1 0, for which the verification
phase returns x = 0 as a counterexample. In the next iteration of the CEGIS
loop, the synthesis phase guesses f(x) = ite(x < 1)−1 0 (which works for x = 0)
and the verifier produces x = 1 as a counterexample. Following the same pattern,
the synthesis phase will enumerate all the candidates

f(x) = ite (x < 2) −1 0
. . .

f(x) = ite (x < 334454) −1 0

before finding the solution. This is caused by the fact that each of the concrete
counterexamples 0, . . . , 334454 eliminate one candidate only from the solution
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space. Consequently, we need to propagate more information from the verifier
to the synthesis phase in each iteration of the CEGIS loop.

Proving Properties of Programs. Synthesis engines can be used as reasoning
engines in program analysers, and constants are important for this application.
For illustration, let’s consider the very simple program below, which increments
a variable x from 0 to 100000 and asserts that its value is less than 100005 on
exit from the loop.

1 i n t x=0;
2 whi le ( x<=100000) x++;
3 a s s e r t ( x <100005);

Proving the safety of such a program, i.e., that the assertion at line 3 is not
violated in any execution of the program, is a task well-suited for synthesis (the
Syntax Guided Synthesis Competition [5] has a track dedicated to synthesizing
safety invariants). For this example, a safety invariant is x < 100002, which holds
on entrance to the loop, is inductive with respect to the loop’s body, and implies
the assertion on exit from the loop.

While it is very easy for a human to deduce this invariant, the need for a non-
trivial constant makes it surprisingly difficult for state-of-the-art synthesizers:
both CVC4 (version 1.5) [27] and EUSolver (version 2017-06-15) [3] fail to find
a solution in an hour.

4 CEGIS(T )

4.1 Overview

In this section, we describe the architecture of CEGIS(T ), which is obtained by
augmenting the standard CEGIS loop with a theory solver. As we are particularly
interested in the synthesis of programs with constants, we present CEGIS(T )
from this particular perspective. In such a setting, CEGIS is responsible for
synthesizing program skeletons, whereas the theory solver generates constraints
over the literals that denote constants. These constraints are then propagated
back to the synthesizer.

In order to explain the main ideas behind CEGIS(T ) in more detail, we
first differentiate between a candidate solution, a candidate solution skeleton,
a generalised candidate solution and a final solution.

Definition 1 (Candidate solution). Using the notation in Sect. 2.2, a pro-
gram P is a candidate solution if ∀xinputs .σ(P,xinputs) is true for some subset
xinputs of all possible x.

Definition 2 (Candidate solution skeleton). Given a candidate solution
P , the skeleton of P , denoted by P [?], is obtained by replacing each constant in
P with a hole.
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Definition 3 (Generalised candidate solution). Given a candidate solu-
tion skeleton P [?], we obtain a generalised candidate P [v] by filling each hole in
P [?] with a distinct symbolic variable, i.e., variable vi will correspond to the i-th
hole. Then v = [v1, . . . , vn], where n denotes the number of holes in P [?].

Definition 4 (Final solution). A candidate solution P is a final solution if
the formula ∀x.σ(P,x) is valid.

Example 1 (Candidate solution, candidate solution skeleton, generalised candi-
date solution, final solution). Given the example in Sect. 3, if x inputs = {0},
then f(x) = −2 is a candidate solution. The corresponding candidate skeleton
is f [?](x) = ? and the generalised candidate is f [v1](x) = v1. A final solution for
this example is f(x) = ite (x < 334455) −1 0.

The communication between the synthesizer and the theory solver in
CEGIS(T ) is illustrated in Fig. 3 and can be described as follows:

– The CEGIS architecture (enclosed in a red rectangle) deduces the candidate
solution P ∗, which is provided to the theory solver.

– The theory solver (enclosed in a blue rectangle) obtains the skeleton P ∗[?]
of P ∗ and generalises it to P ∗[v ] in the box marked constant removal.
Subsequently, Deduction attempts to find a constraint over v describing
those values for which P ∗[v ] is a final solution. This constraint is propagated
back to CEGIS. Whenever there is no valuation of v for which P ∗[v ] becomes
a final solution, the constraint needs to block the current skeleton P ∗[?].
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The CEGIS(T ) algorithm is given as Algorithm 1 and proceeds as follows:

– CEGIS synthesis phase: checks the satisfiability of ∀x inputs . σ(P,x inputs)
where x inputs is a subset of all possible x and obtains a candidate solution P ∗.
If this formula is unsatisfiable, then the synthesis problem has no solution.

– CEGIS verification phase: checks whether there exists a concrete coun-
terexample for the current candidate solution by checking the satisfiability of
the formula ¬σ(P ∗,x ). If the result is UNSAT, then P ∗ is a final solution to
the synthesis problem. If the result is SAT, a concrete counterexample cex
can be extracted from the satisfying assignment.

– Theory solver: if P ∗ contains constants, then they are eliminated, resulting
in the P ∗[?] skeleton, which is afterwards generalised to P ∗[v ]. The goal of
the theory solver is to find T -implied literals and communicate them back to
the CEGIS part in the form of a constraint, C(P, P ∗, v). In Algorithm 1, this
is done by Deduction(σ, P ∗[v ]). The result of Deduction(σ, P ∗[v ]) is of the
following form: whenever there exists a valuation of v for which the current
skeleton P ∗[?] is a final solution, res = true and C(P, P ∗, v) =

∧
i=1·n vi = ci,

where ci are constants; otherwise, res = false and C(P, P ∗, v) needs to block
the current skeleton P ∗[?], i.e., C(P, P ∗, v) = P [?] �= P ∗[?].

– CEGIS learning phase: adds new information to the problem specification.
If we did not use the theory solver (i.e., the candidate P ∗ found by the
synthesizer did not contain constants or the problem specification was out of
the theory solver’s scope), then the learning would be limited to adding the
concrete counterexample cex obtained from the verification phase to the set
x inputs . However, if the theory solver is used and returns res = true, then
the second element in the tuple contains valuations for v such that P ∗[v ] is
a final solution. If res = false, then the second element blocks the current
skeleton and needs to be added to σ.

4.2 CEGIS(T ) with a Theory Solver Based on FM Elimination

In this section we describe a theory solver based on FM variable elimination.
Other techniques for eliminating existentially quantified variables can be used.
For instance, one might use cylindrical algebraic decomposition [9] for specifica-
tions with non-linear arithmetic. In our case, whenever the specification σ does
not belong to linear arithmetic, the FM theory solver is not called.

As mentioned above, we need to produce a constraint over variables v describ-
ing the situation when P ∗[v ] is a final solution. For this purpose, we consider
the formula ∃x .¬σ(P ∗[v ],x ), where v is a satisfiability witness if the specifica-
tion σ admits a counterexample x for P ∗. Let E(v) be the formula obtained
by eliminating x from ∃x .¬σ(P ∗[v ],x ). If ¬E(v) is satisfiable, any satisfiability
witness gives us the necessary valuation for v :

C(P, P ∗, v) =
∧

i=1·n
vi = ci.
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Algorithm 1. CEGIS(T )
1: function CEGIS(T )(specification σ)
2: while true do
3: /* CEGIS synthesis phase */
4: if ∀x inputs .σ(P, x inputs) is UNSAT then return Failure;
5: else
6: P ∗ = satisfiability witness for ∀x inputs .σ(P, x inputs);
7: /* CEGIS verification phase */
8: if ¬(σ(P ∗, x )) is UNSAT then return Final solution P ∗;
9: else

10: cex = satisfiability witness for ¬(σ(P ∗, x ));
11: /* Theory solver */
12: if P ∗ contains constants then
13: Obtain P ∗[?] from P ∗;
14: Generalise P ∗[?] to P ∗[v ];
15: (res, C(P, P ∗, v)) = Deduction(σ, P ∗[v ]);
16: end if
17: end if
18: end if
19: /* CEGIS learning phase */
20: if res then
21: C(P, P ∗, v) is of the form

∧
i=1·n vi = ci.

22: return Final solution P ∗[c];
23: else
24: σ(P, x ) = σ(P, x ) ∧ C(P, P ∗, v);
25: x inputs = x inputs ∪ {cex};
26: end if
27: end while
28: end function

If ¬E(v) is UNSAT, then the current skeleton P ∗[?] needs to be blocked. This
reasoning is supported by Lemma 1 and Corollary 1.

Lemma 1. Let E(v) be the formula that is obtained by eliminating x from
∃x.¬σ(P ∗[v],x). Then, any witness v# to the satisfiability of ¬E(v) gives us
a final solution P ∗[v#] to the synthesis problem.

Proof. From the fact that E(v) is obtained by eliminating x from
∃x .¬σ(P ∗[v ],x ), we get that E(v) is equivalent with ∃x .¬σ(P ∗[v ],x ) (we use
≡ to denote equivalence):

E(v) ≡ ∃x .¬σ(P ∗[v ],x ).

Then:
¬E(v) ≡ ∀x . σ(P ∗[v ],x ).

Consequently, any v# satisfying ¬E(v) also satisfies ∀x . σ(P ∗[v ],x ). From
∀x . σ(P ∗[v#],x ) and Definition 4 we get that P ∗[v#] is a final solution.
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Corollary 1. Let E(v) be the formula that is obtained by eliminating x from
∃x.¬σ(P ∗[v],x). If ¬E(v) is unsatisfiable, then the corresponding synthesis prob-
lem does not admit a solution for the skeleton P ∗[?].

Proof. Given that ¬E(v) ≡ ∀x . σ(P ∗[v ],x ), if ¬E(v) is unsatisfiable, so is
∀x . σ(P ∗[v ],x ), meaning that there is no valuation for v such that the speci-
fication σ is obeyed for all inputs x .

For the current skeleton P ∗[?], the constraint E(v) generalises the con-
crete counterexample cex (found during the CEGIS verification phase) in
the sense that the instantiation v# of v for which cex failed the specifica-
tion, i.e., ¬σ(P ∗[v#], cex ), is a satisfiability witness for E(v). This is true as
E(v) ≡ ∃x .¬σ(P ∗[v ],x ), which means that the satisfiability witness (v#, cex )
for ¬σ(P ∗[v ],x ) projected on v is a satisfiability witness for E(v).

Disjunction. The specification σ and the candidate solution may contain dis-
junctions. However, most theory solvers (and in particular the FM variable
elimination [7]) work on conjunctive fragments only. A näıve approach could
use case-splitting, i.e., transforming the formula into Disjunctive Normal Form
(DNF) and then solving each clause separately. This can result in a number of
clauses exponential in the size of the original formula. Instead, we handle dis-
junction using the Boolean Fourier Motzkin procedure [20,32]. As a result, the
constraints we generate may be non-clausal.

Applying CEGIS(T ) with FM to the Motivational Example. We recall
the example in Sect. 3 and apply CEGIS(T ). The problem is

∃f.∀x. x < 334455 → f(x) < 0 ∧ x ≥ 334455 → f(x) = 0

which gives us the following specification:

σ(f, x) = (x ≥ 334455 ∨ f(x) < 0) ∧ (x < 334455 ∨ f(x) = 0).

The first synthesis phase generates the candidate f∗(x) = 0 for which the ver-
ification phase returns the concrete counterexample x = 0. As this candidate
contains the constant 0, we generalise it to f∗[v1](x) = v1, for which we get

σ(f∗[v1], x) = (x ≥ 334455 ∨ v1 < 0) ∧ (x < 334455 ∨ v1 = 0).

Next, we use FM to eliminate x from

∃x.¬(σ(f∗[v1], x)) = ∃x.(x < 334455 ∧ v1 ≥ 0) ∨ (x ≥ 334455 ∧ v1 �= 0).

Note that, given that formula ¬σ(f∗[v1], x) is in DNF, for convenience we directly
apply FM to each disjunct and obtain E(v1) = v1 ≥ 0 ∨ v1 �= 0, which charac-
terises all the values of v1 for which there exists a counterexample. When negat-
ing E(v1) we get v1 < 0 ∧ v1 = 0, which is UNSAT. As there is no valuation of
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v1 for which the current f∗ is a final solution, the result returned by the theory
solver is (false, f [?] �= f∗[?]), which is used to augment the specification. Subse-
quently, a new CEGIS(T ) iteration starts. The learning phase has changed the
specification σ to

σ(f, x) = (x ≥ 334455 ∨ f(x) < 0) ∧ (x < 334455 ∨ f(x) = 0) ∧ f [?] �= ?.

This forces the synthesis phase to pick a new candidate solution with a different
skeleton. The new candidate solution we get is f∗(x) = ite (x < 100) −3 1, which
works for the previous counterexample x = 0. However, the verification phase
returns the counterexample x = 100. Again, this candidate contains constants
which we replace by symbolic variables, obtaining

f∗[v1, v2, v3](x) = ite (x < v1) v2 v3.

Next, we use FM to eliminate x from

∃x.¬(σ(f∗[v1, v2, v3], x)) =
∃x.¬(x ≥ 334455 ∨ (x < v1 → v2 < 0 ∧ x ≥ v1 → v3 < 0)∧

x < 334455 ∨ (x < v1 → v2 = 0 ∧ x ≥ v1 → v3 = 0)) =
∃x.¬((x ≥ 334455 ∨ x ≥ v1 ∨ v2 < 0) ∧ (x ≥ 334455 ∨ x < v1 ∨ v3 < 0)∧

(x < 334455 ∨ x ≥ v1 ∨ v2 = 0) ∧ (x < 334455 ∨ x < v1 ∨ v3 = 0)) =
∃x.(x < 334455 ∧ x < v1 ∧ v2 ≥ 0) ∨ (x < 334455 ∧ x ≥ v1 ∧ v3 ≥ 0)∨

(x ≥ 334455 ∧ x < v1 ∧ v2 �= 0) ∨ (x ≥ 334455 ∧ x ≥ v1 ∧ v3 �= 0).

As we work with integers, we can rewrite x < 334455 to x ≤ 334454 and x <
v1 to x ≤ v1 − 1. Then, we obtain the following constraint E(v1, v2, v3) (as
aforementioned, we applied FM to each disjunct in ¬σ(f∗[v1, v2, v3], x))

E(v1, v2, v3) = v2≥0 ∨ (v1 ≤ 334454 ∧ v3 ≥ 0) ∨ (v1 ≥ 334456 ∧ v2 �= 0) ∨ v3 �= 0

whose negation is

¬E(v1, v2, v3) = v2 < 0 ∧ (v1 > 334454 ∨ v3 < 0) ∧ (v1 < 334456 ∨ v2 = 0) ∧ v3 = 0

A satisfiability witness is v1 = 334455, v2 = −1 and v3 = 0. Thus, the result
returned by the theory solver is (true, v1 = 334455 ∧ v2 = −1 ∧ v3 = 0), which is
used by CEGIS to obtain the final solution

f∗(x) = ite (x < 334455) −1 0 .

4.3 CEGIS(T ) with an SMT-based Theory Solver

For our second variant of a theory solver, we make use of an off-the-shelf
SMT solver that supports quantified first-order formulae. This approach is more
generic than the one described in Sect. 4.2, as there are solvers for a broad range
of theories.
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Recall that our goal is to obtain a constraint C(P, P ∗, v) that either char-
acterises the valuations of v for which P ∗[v ] is a final solution or blocks P ∗[?]
whenever no such valuation exists. Consequently, we use the SMT solver to check
the satisfiability of the formula

Φ = ∀x . σ(P ∗[v ],x ).

If Φ is satisfiable, then any satisfiability witness c gives us a valuation for v
such that P ∗ is a final solution: C(P, P ∗, v) =

∧
i=1·n vi = ci. Conversely,

if Φ is unsatisfiable then C(P, P ∗, v) must block the current skeleton P ∗[?]:
C(P, P ∗, v) = P [?] �= P ∗[?].

Applying SMT-based CEGIS(T ) to the Motivational Example. Again,
we recall the example in Sect. 3. We will solve it by using SMT-based CEGIS(T )
for the theory of linear arithmetic. For this purpose, we assume that the synthesis
phase finds the same sequence of candidate solutions as in Sect. 3. Namely, the
first candidate is f∗(x) = 0, which gets generalised to f∗[v1](x) = v1. Then, the
first SMT call is for ∀x. σ(v1, x), where

σ(v1, x) = (x≥334455 ∨ v1 < 0) ∧ (x < 334455 ∨ v1 = 0).

The SMT solver returns UNSAT, which means that C(f, f∗, v1) = f [?] �= ?.
The second candidate is f∗(x) = ite (x < 100) − 3 1, which generalises to
f∗[v1, v2, v3](x) = ite (x < v1) v2 v3. The corresponding call to the SMT solver
is for ∀x. σ((ite (x < v1) v2 v3), x), for which we obtain the satisfiability witness
v1 = 334455, v2 = −1 and v3 = 0. Then C(f, f∗, v1, v2, v3) = v1 = 334455∧v2 =
−1 ∧ v3 = 0, which gives us the same final solution we obtained when using FM
in Sect. 3.

5 Experimental Evaluation

5.1 Implementation

Incremental Satisfiability Solving. Our implementation of CEGIS may some-
times perform hundreds of loop iterations before finding the correct solution.
Recall that the synthesis block of CEGIS is based on Bounded Model Checking
(BMC). Ultimately, this BMC module performs calls to a SAT solver. Conse-
quently, we may have hundreds of calls to this SAT solver, which are all very
similar (the same base specification with some extra constraints added in each
iteration). This makes CEGIS a prime candidate for incremental SAT solving.
We implemented incremental solving in the synthesis block of CEGIS.

5.2 Benchmarks

We have selected a set of bitvector benchmarks from the Syntax-Guided Synthe-
sis (SyGuS) competition [4] and a set of benchmarks synthesizing safety invari-
ants and danger invariants for C programs [10]. All benchmarks are written in
SyGuS-IF [26], a variant of SMT-LIB2.
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Given that the syntactic restrictions (called the grammar or the template)
provided in the SyGuS benchmarks contain all the necessary non-trivial con-
stants, we removed them completely from these benchmarks. Removing just the
non-trivial constants and keeping the rest of the grammar (with the only con-
stants being 0 and 1) would have made the problem much more difficult, as
the constants would have had to be incrementally constructed by applying the
operators available to 0 and 1.

We group the benchmarks into three categories: invariant generation, which
covers danger invariants, safety invariants and the class of invariant generation
benchmarks from the SyGuS competition; hackers/crypto, which includes bench-
marks from hackers-delight and cryptographic circuits; and comparisons, com-
posed of benchmarks that require synthesizing longer programs with compar-
isons, e.g., finding the maximum value of 10 variables.

5.3 Experimental Setup

We conduct the experimental evaluation on a 12-core 2.40 GHz Intel Xeon E5-
2440 with 96 GB of RAM and Linux OS. We use the Linux times command to
measure CPU time used for each benchmark. The runtime is limited to 600 s per
benchmark. We use MiniSat [12] as the SAT solver, and Z3 v4.5.1 [22] as the
SMT-solver in CEGIS(T ) with SMT-based theory solver. The SAT solver could,
in principle, be replaced with Z3 to solve benchmarks over a broader range of
theories.

We present results for four different configurations of CEGIS:

– CEGIS(T )-FM: CEGIS(T ) with Fourier Motzkin as the theory solver;
– CEGIS(T )-SMT: CEGIS(T ) with Z3 as the theory solver;
– CEGIS: basic CEGIS as described in Sect. 2.2;
– CEGIS-Inc: basic CEGIS with incremental SAT solving.

We compare our results against the latest release of CVC4, version 1.5. As
we are interested in running our benchmarks without any syntactic template,
the first reason for choosing CVC4 [6] as our comparison point is the fact that
it performs well when no such templates are provided. This is illustrated by the
fact that it won the Conditional Linear Integer Arithmetic track of the SyGuS
competition 2017 [4], one of two tracks where a syntactic template was not used.
The other track without syntactic templates is the invariant generation track, in
which CVC4 was close second to LoopInvGen [24]. A second reason for picking
CVC4 is its overall good performance on all benchmarks, whereas LoopInvGen
is a solver specialised to invariant generation.

We also give a row of results for a hypothetical 4-core implementation, as
would be allowed in the SyGuS Competition, running 4 configurations in paral-
lel: CEGIS(T )-FM, CEGIS(T )-SMT, CEGIS, and CEGIS-Inc. A link to the full
experimental environment, including scripts to reproduce the results, all bench-
marks and the tool, is provided in the footnote as an Open Virtual Appliance
(OVA)1.
1 www.cprover.org/synthesis.

www.cprover.org/synthesis
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Table 1. Experimental results – for every set of benchmarks, we give the number
of benchmarks solved by each configuration within the timeout and the average time
taken per solved benchmark

Configuration inv hackers comparisons other total

# s # s # s # s # s

CEGIS(T )-SMT 33 33.1 4 2.5 3 195.5 16 14.0 56 34.1

CEGIS(T )-FM 16 93.1 4 52.8 1 0.06 12 0.7 33 51.8

CEGIS 16 31.3 4 52.0 1 0.03 14 5.3 35 22.4

CEGIS-Inc 16 39.4 5 167.4 1 0.03 14 4.2 36 42.4

Multi-core 33 32.5 5 92.2 3 194.7 16 3.8 57 38.3

CVC4 6 6.5 6 0.002 7 0.006 11 0.003 30 1.3

# benchmarks 48 6 7 19 80

CVC4 with grammar 4 45.8 0 0 6 2.4 10 19.8

# benchmarks with grammar 8 3 7 16 34

5.4 Results

The results are given in Table 1. In combination, our CEGIS combination (i.e.,
CEGIS multi-core) solves 27 more benchmarks than CVC4, but the average time
per benchmark is significantly higher.

As expected, both CEGIS(T )-SMT and CEGIS(T )-FM solve more of the
invariant generation benchmarks which require synthesizing arbitrary constants
than CVC4. Conversely, CVC4 performs better on benchmarks that require syn-
thesizing long programs with many comparison operations, e.g., finding the max-
imum value in a series of numbers. CVC4 solves more of the hackers-delight and
cryptographic circuit benchmarks, none of which require constants.

Our implementation of basic CEGIS (and consequently of all configurations
built on top of this) only increases the length of the synthesized program when
no program of a shorter length exists. Thus, it is expensive to synthesize longer
programs. However, a benefit of this architecture is that the programs we syn-
thesize are the minimum possible length. Many of the expressions synthesized by
CVC4 are very large. This has been noted previously in the Syntax-Guided Syn-
thesis Competition [5], and synthesizing without the syntactic template causes
the expressions synthesized to be even longer.

Although CEGIS-Inc is quicker per iteration of the CEGIS loop than basic
CEGIS, the average time per benchmark is not significantly better because of the
variation in times produced by CEGIS. We hypothesise that the use of incremen-
tal solving makes CEGIS-Inc more prone to getting stuck exploring “bad” areas
of the solution space than basic CEGIS, and so it requires more iterations than
basic CEGIS for some benchmarks. The incremental solving preserves clauses
learnt from any conflicts in previous iterations, which means that each SAT solv-
ing iteration will begin from exactly the same state as the previous one. The basic
implementation doesn’t preserve these clauses and so is free to start exploring a
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new part of the search space each iteration. These effects could be mitigated by
running multiple incremental solving instances in parallel.

In order to validate the assumption that CVC4 works better without a tem-
plate than with one where the non-trivial constants were removed (see Sect. 5.2),
we also ran CVC4 on a subset of the benchmarks with a syntactic template
comprising the full instruction set we give to CEGIS, plus the constants 0 and 1.
Note for some benchmarks it is not possible to add a grammar because the
SYGUS-IF language does not allow syntactic templates for benchmarks that
use the loop invariant syntax. With a grammar, CVC4 solves fewer of the bench-
marks, and takes longer per benchmark. The syntactic template is helpful only
in cases where non-trivial constants are needed and the non-trivial constants are
contained within the template.

We ran EUSolver on the benchmarks with the syntactic templates, but the
bitvector support is incomplete and missing some key operations. As a result
EUSolver was unable to solve any benchmarks in the set, and so we have not
included the results in the table.

Benefit of Literal Constants. We have investigated how useful the constants
in the problem specification are, and have tried a configuration that seeds all
constants in the problem specification as hints into the synthesis engine. This
proved helpful for basic CEGIS only but not for the CEGIS(T ) configurations.
Our hypothesis is that the latter do not benefit from this because they already
have good support for computing constants. We dropped this option in the
results presented in this section.

5.5 Threats to Validity

Benchmark Selection: We report an assessment of our approach on a diverse
selection of benchmarks. Nevertheless, the set of benchmarks is limited within
the scope of this paper, and the performance may not generalise to other bench-
marks.

Comparison with State of the Art: CVC4 has not, as far as we are aware, been
used for synthesis of bitvector functions without syntactic templates, and so this
unanticipated use case may not have been fully tested. We are unable to compare
all results to other solvers from the SyGuS Competition because EUSolver and
EUPhony do not support synthesizing bitvector programs without a syntactic
template, EUSolver’s support for bitvectors is incomplete even when used with a
template, LoopInvGen and DryadSynth do not support bitvectors, and E3Solver
tackles only Programming By Example benchmarks [5].

Choice of Theories: We evaluated the benefits of CEGIS(T ) in the context of
two specific theory instances. While the improvements in our experiments are
significant, it is uncertain whether this will generalise to other theories.
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6 Related Work

The traditional view of program synthesis is that of synthesis from complete
specifications [21]. Such specifications are often unavailable, difficult to write, or
expensive to check against using automated verification techniques. This has led
to the proposal of inductive synthesis and, more recently, of oracle-based induc-
tive synthesis, in which the complete specification is not available and oracles
are queried to choose programs [19].

A well-known application of CEGIS is program sketching [29,31], where the
programmer uses a partial program, called a sketch, to describe the desired imple-
mentation strategy, and leaves the low-level details of the implementation to an
automated synthesis procedure. Inspired by sketching, Syntax-Guided Program
Synthesis (SyGuS) [2] requires the user to supplement the logical specification
provided to the program synthesizer with a syntactic template that constrains
the space of solutions. In contrast to SyGuS, our aim is to improve the efficiency
of the exploration to the point that user guidance is no longer required.

Another very active area of program synthesis is denoted by component-based
approaches [1,13–15,17,18,25]. Such approaches are concerned with assembling
programs from a database of existing components and make use of various tech-
niques, from counterexample-guided synthesis [17] to type-directed search with
lightweight SMT-based deduction and partial evaluation [14] and Petri-nets [15].
The techniques developed in the current paper are applicable to any component-
based synthesis approach that relies on counterexample-guided inductive synthe-
sis.

Heuristics for constant synthesis are presented in [11], where the solution
language is parameterised, inducing a lattice of progressively more expressive
languages. One of the parameters is word width, which allows synthesizing pro-
grams with constants that satisfy the specification for smaller word widths.
Subsequently, heuristics extend the program (including the constants) to the
required word width. As opposed to this work, CEGIS(T ) denotes a systematic
approach that does not rely on ad-hoc heuristics.

Regarding the use of SMT solvers in program synthesis, they are frequently
employed as oracles. By contrast, Reynolds et al. [27] present an efficient encod-
ing able to solve program synthesis constraints directly within an SMT solver.
Their approach relies on rephrasing the synthesis constraint as the problem of
refuting a universally quantified formula, which can be solved using first-order
quantifier instantiation. Conversely, in our approach we maintain a clear sepa-
ration between the synthesizer and the theory solver, which communicate in a
well-defined manner. In Sect. 5, we provide a comprehensive experimental com-
parison with the synthesizer described in [27].

7 Conclusion

We proposed CEGIS(T ), a new approach to program synthesis that combines
the strengths of a counterexample-guided inductive synthesizer with those of a
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theory solver to provide a more efficient exploration of the solution space. We
discussed two options for the theory solver, one based on FM variable elimination
and one relying on an off-the-shelf SMT solver. Our experiments results showed
that, although slower than CVC4, CEGIS(T ) can solve more benchmarks within
a reasonable time that require synthesizing arbitrary constants, where CVC4
fails.
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Abstract. We study the reactive synthesis problem for hyperproperties
given as formulas of the temporal logic HyperLTL. Hyperproperties gen-
eralize trace properties, i.e., sets of traces, to sets of sets of traces. Typical
examples are information-flow policies like noninterference, which stipu-
late that no sensitive data must leak into the public domain. Such prop-
erties cannot be expressed in standard linear or branching-time temporal
logics like LTL, CTL, or CTL∗. We show that, while the synthesis prob-
lem is undecidable for full HyperLTL, it remains decidable for the ∃∗,
∃∗∀1, and the linear ∀∗ fragments. Beyond these fragments, the synthesis
problem immediately becomes undecidable. For universal HyperLTL, we
present a semi-decision procedure that constructs implementations and
counterexamples up to a given bound. We report encouraging experimen-
tal results obtained with a prototype implementation on example spec-
ifications with hyperproperties like symmetric responses, secrecy, and
information-flow.

1 Introduction

Hyperproperties [5] generalize trace properties in that they not only check
the correctness of individual computation traces in isolation, but relate mul-
tiple computation traces to each other. HyperLTL [4] is a logic for expressing
temporal hyperproperties, by extending linear-time temporal logic (LTL) with
explicit quantification over traces. HyperLTL has been used to specify a variety
of information-flow and security properties. Examples include classical proper-
ties like non-interference and observational determinism, as well as quantitative
information-flow properties, symmetries in hardware designs, and formally veri-
fied error correcting codes [12]. For example, observational determinism can be
expressed as the HyperLTL formula ∀π∀π′. (Iπ = Iπ′) → (Oπ = Oπ′), stat-
ing that, for every pair of traces, if the observable inputs are the same, then
the observable outputs must be same as well. While the satisfiability [9], model
checking [4,12], and runtime verification [1,10] problem for HyperLTL has been
studied, the reactive synthesis problem of HyperLTL is, so far, still open.

Supported by the European Research Council (ERC) Grant OSARES (No. 683300).

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 289–306, 2018.
https://doi.org/10.1007/978-3-319-96145-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_16&domain=pdf
http://orcid.org/0000-0002-1003-3573
http://orcid.org/0000-0002-6150-2982


290 B. Finkbeiner et al.

In reactive synthesis, we automatically construct an implementation that is
guaranteed to satisfy a given specification. A fundamental difference to verifi-
cation is that there is no human programmer involved: in verification, the pro-
grammer would first produce an implementation, which is then verified against
the specification. In synthesis, the implementation is directly constructed from
the specification. Because there is no programmer, it is crucial that the speci-
fication contains all desired properties of the implementation: the synthesized
implementation is guaranteed to satisfy the given specification, but nothing is
guaranteed beyond that. The added expressive power of HyperLTL over LTL is
very attractive for synthesis: with synthesis from hyperproperties, we can guaran-
tee that the implementation does not only accomplish the desired functionality,
but is also free of information leaks, is symmetric, is fault-tolerant with respect
to transmission errors, etc.

More formally, the reactive synthesis problem asks for a strategy, that is a
tree branching on environment inputs whose nodes are labeled by the system
output. Collecting the inputs and outputs along a branch of the tree, we obtain
a trace. If the set of traces collected from the branches of the strategy tree
satisfies the specification, we say that the strategy realizes the specification.
The specification is realizable iff there exists a strategy tree that realizes the
specification. With LTL specifications, we get trees where the trace on each
individual branch satisfies the LTL formula. With HyperLTL, we additionally get
trees where the traces between different branches are in a specified relationship.
This is dramatically more powerful.

Consider, for example, the well-studied distributed version of the reactive
synthesis problem, where the system is split into a set of processes, that each
only see a subset of the inputs. The distributed synthesis problem for LTL can
be expressed as the standard (non-distributed) synthesis problem for HyperLTL,
by adding for each process the requirement that the process output is observa-
tionally deterministic in the process input. HyperLTL synthesis thus subsumes
distributed synthesis. The information-flow requirements realized by HyperLTL
synthesis can, however, be much more sophisticated than the observational deter-
minism needed for distributed synthesis. Consider, for example, the dining cryp-
tographers problem [3]: three cryptographers Ca, Cb, and Cc sit at a table in a
restaurant having dinner and either one of cryptographers or, alternatively, the
NSA must pay for their meal. Is there a protocol where each cryptographer can
find out whether it was a cryptographer who paid or the NSA, but cannot find
out which cryptographer paid the bill?

Synthesis from LTL formulas is known to be decidable in doubly exponential
time. The fact that the distributed synthesis problem is undecidable [21] imme-
diately eliminates the hope for a similar general result for HyperLTL. However,
since LTL is obviously a fragment of HyperLTL, this immediately leads to the
question whether the synthesis problem is still decidable for fragments of Hyper-
LTL that are close to LTL but go beyond LTL: when exactly does the synthesis
problem become undecidable? From a more practical point of view, the interest-
ing question is whether semi-algorithms for distributed synthesis [7,14], which
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have been successful in constructing distributed systems from LTL specifications
despite the undecidability of the general problem, can be extended to HyperLTL?

In this paper, we answer the first question by studying the ∃∗, ∃∗∀1, and the
linear ∀∗ fragment. We show that the synthesis problem for all three fragments
is decidable, and the problem becomes undecidable as soon as we go beyond
these fragments. In particular, the synthesis problem for the full ∀∗ fragment,
which includes observational determinism, is undecidable.

We answer the second question by studying the bounded version of the synthe-
sis problem for the ∀∗ fragment. In order to detect realizability, we ask whether,
for a universal HyperLTL formula ϕ and a given bound n on the number of
states, there exists a representation of the strategy tree as a finite-state machine
with no more than n states that satisfies ϕ. To detect unrealizability, we check
whether there exists a counterexample to realizability of bounded size. We show
that both checks can be effectively reduced to SMT solving.

Related Work. HyperLTL [4] is a successor of the temporal logic SecLTL [6]
used to characterize temporal information-flow. The model-checking [4,12], sat-
isfiability [9], monitoring problem [1,10], and the first-order extension [17] of
HyperLTL has been studied before. To the best of the authors knowledge, this
is the first work that considers the synthesis problem for temporal hyperproper-
ties. We base our algorithms on well-known synthesis algorithms such as bounded
synthesis [14] that itself is an instance of Safraless synthesis [18] for ω-regular
languages. Further techniques that we adapt for hyperproperties are lazy syn-
thesis [11] and the bounded unrealizability method [15,16].

Hyperproperties [5] can be seen as a unifying framework for many differ-
ent properties of interest in multiple distinct areas of research. Information-flow
properties in security and privacy research are hyperproperties [4]. HyperLTL
subsumes logics that reason over knowledge [4]. Information-flow in distributed
systems is another example of hyperproperties, and the HyperLTL realizabil-
ity problem subsumes both the distributed synthesis problem [13,21] as well as
synthesis of fault-tolerant systems [16]. In circuit verification, the semantic inde-
pendence of circuit output signals on a certain set of inputs, enabling a range of
potential optimizations, is a hyperproperty.

2 Preliminaries

HyperLTL. HyperLTL [4] is a temporal logic for specifying hyperproperties.
It extends LTL by quantification over trace variables π and a method to link
atomic propositions to specific traces. The set of trace variables is V. Formulas
in HyperLTL are given by the grammar

ϕ ::= ∀π. ϕ | ∃π. ϕ | ψ , and
ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ | ψ U ψ ,

where a ∈ AP and π ∈ V. The alphabet of a HyperLTL formula is 2AP . We allow
the standard boolean connectives ∧, →, ↔ as well as the derived LTL operators
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release ϕ R ψ ≡ ¬(¬ϕ U ¬ψ), eventually ϕ ≡ true U ϕ, globally ϕ ≡ ¬ ¬ϕ,
and weak until ϕ W ψ ≡ ϕ ∨ (ϕ U ψ).

The semantics is given by the satisfaction relation �T over a set of traces
T ⊆ (2AP)ω. We define an assignment Π : V → (2AP)ω that maps trace variables
to traces. Π[i,∞] is the trace assignment that is equal to Π(π)[i,∞] for all π
and denotes the assignment where the first i items are removed from each trace.

Π �T aπ if a ∈ Π(π)[0]
Π �T ¬ϕ if Π �T ϕ
Π �T ϕ ∨ ψ if Π �T ϕ or Π �T ψ
Π �T ϕ if Π[1,∞] �T ϕ
Π �T ϕ U ψ if ∃i ≥ 0.Π[i,∞] �T ψ ∧ ∀0 ≤ j < i.Π[j,∞] �T ϕ
Π �T ∃π. ϕ if there is some t ∈ T such that Π[π �→ t] �T ϕ
Π �T ∀π. ϕ if for all t ∈ T holds that Π[π �→ t] �T ϕ

We write T � ϕ for {} �T ϕ where {} denotes the empty assignment. Two
HyperLTL formulas ϕ and ψ are equivalent, written ϕ ≡ ψ if they have the same
models.

(In)dependence is a common hyperproperty for which we define the following
syntactic sugar. Given two disjoint subsets of atomic propositions C ⊆ AP and
A ⊆ AP, we define independence as the following HyperLTL formula

DA �→C := ∀π∀π′.

( ∨
a∈A

(aπ � aπ′)

)
R

( ∧
c∈C

(cπ ↔ cπ′)

)
. (1)

This guarantees that every proposition c ∈ C solely depends on propositions A.

Strategies. A strategy f : (2I)∗ → 2O maps sequences of input valuations 2I

to an output valuation 2O. The behavior of a strategy f : (2I)∗ → 2O is char-
acterized by an infinite tree that branches by the valuations of I and whose
nodes w ∈ (2I)∗ are labeled with the strategic choice f(w). For an infinite
word w = w0w1w2 · · · ∈ (2I)ω, the corresponding labeled path is defined as
(f(ε)∪w0)(f(w0)∪w1)(f(w0w1)∪w2) · · · ∈ (2I∪O)ω. We lift the set containment
operator ∈ to the containment of a labeled path w = w0w1w2 · · · ∈ (2I∪O)ω in a
strategy tree induced by f : (2I)∗ → 2O, i.e., w ∈ f if, and only if, f(ε) = w0 ∩O
and f((w0 ∩ I) · · · (wi ∩ I)) = wi+1 ∩O for all i ≥ 0. We define the satisfaction of
a HyperLTL formula ϕ (over propositions I ∪ O) on strategy f , written f � ϕ,
as {w | w ∈ f} � ϕ. Thus, a strategy f is a model of ϕ if the set of labeled paths
of f is a model of ϕ.

3 HyperLTL Synthesis

In this section, we identify fragments of HyperLTL for which the realizability
problem is decidable. Our findings are summarized in Table 1.

Definition 1 (HyperLTL Realizability). A HyperLTL formula ϕ over
atomic propositions AP = I ∪̇O is realizable if there is a strategy f : (2I)∗ → 2O

that satisfies ϕ.
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Table 1. Summary of decidability results.

∃∗ ∃∗∀1 ∃∗∀>1 ∀∗ ∀∗∃∗ linear ∀∗

PSpace-complete 3ExpTime undecidable decidable

We base our investigation on the structure of the quantifier prefix of the Hyper-
LTL formulas. We call a HyperLTL formula ϕ (quantifier) alternation-free if the
quantifier prefix consists solely of either universal or existential quantifiers. We
denote the corresponding fragments as the (universal) ∀∗ and the (existential)
∃∗ fragment, respectively. A HyperLTL formula is in the ∃∗∀∗ fragment, if it
starts with arbitrarily many existential quantifiers, followed by arbitrarily many
universal quantifiers. Respectively for the ∀∗∃∗ fragment. For a given natural
number n, we refer to a bounded number of quantifiers with ∀n, respectively ∃n.
The ∀1 realizability problem is equivalent to the LTL realizability problem.

∃∗ Fragment. We show that the realizability problem for existential HyperLTL
is PSpace-complete. We reduce the realizability problem to the satisfiability
problem for bounded one-alternating ∃∗∀2HyperLTL [9], i.e., finding a trace set
T such that T � ϕ.

Lemma 1. An existential HyperLTL formula ϕ is realizable if, and only if, ψ :=
ϕ ∧ DI �→O is satisfiable.

Proof. Assume f : (2I)∗ → 2O realizes ϕ, that is f � ϕ. Let T = {w | w ∈ f} be
the set of traces generated by f . It holds that T � ϕ and T � DI �→O. Therefore,
ψ is satisfiable. Assume ψ is satisfiable. Let S be a set of traces that satisfies ψ.
We construct a strategy f : (2I)∗ → 2O as

f(σ) =

{
w|σ| ∩ O if σ is a prefix of some w|I with w ∈ S , and
∅ otherwise .

where w|I denotes the trace restricted to I, formally wi ∩ I for all i ≥ 0. Note
that if there are multiple candidates w ∈ S, then w|σ| ∩ O is the same for all
of them because of the required non-determinism DI �→O. By construction, all
traces in S are contained in f and with S � ϕ it holds that f � ϕ as ϕ is an
existential formula.

Theorem 1. Realizability of existential HyperLTL specifications is decidable.

Proof. The formula ψ from Lemma 1 is in the ∃∗∀2 fragment, for which satisfi-
ability is decidable [9].

Corollary 1. Realizability of ∃∗HyperLTL specifications is PSpace-complete.

Proof. Given an existential HyperLTL formula, we gave a linear reduction to
the satisfiability of the ∃∗∀2 fragment in Lemma 1. The satisfiability problem for
a bounded number of universal quantifiers is in PSpace [9]. Hardness follows
from LTL satisfiability, which is equivalent to the ∃1 fragment.
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p1 p2

a b

c d

(a) An architecture of two processes that
specify process p1 to produce c from a and
p2 to produce d from b.

env

p1 p2

a a, b

c d

(b) The same architecture as on the left,
where only the inputs of process p2 are
changed to a and b.

Fig. 1. Distributed architectures

∀∗ Fragment. In the following, we will use the distributed synthesis problem,
i.e., the problem whether there is an implementation of processes in a distributed
architecture that satisfies an LTL formula. Formally, a distributed architecture
A is a tuple 〈P, penv, I,O〉 where P is a finite set of processes with distinguished
environment process penv ∈ P . The functions I : P → 2AP and O : P → 2AP

define the inputs and outputs of processes. While processes may share the same
inputs (in case of broadcasting), the outputs of processes must be pairwise dis-
joint, i.e., for all p �= p′ ∈ P it holds that O(p) ∩ O(p′) = ∅. W.l.o.g. we assume
that I(penv) = ∅. The distributed synthesis problem for architectures without
information forks [13] is decidable. Example architectures are depicted in Fig. 1.
The architecture in Fig. 1a contains an information fork while the architecture
in Fig. 1b does not. Furthermore, the processes in Fig. 1b can be ordered linearly
according to the subset relation on the inputs.

Theorem 2. The synthesis problem for universal HyperLTL is undecidable.

Proof. In the ∀∗ fragment (and thus in the ∃∗∀∗ fragment), we can encode a
distributed architecture [13], for which LTL synthesis is undecidable. In particu-
lar, we can encode the architecture shown in Fig. 1a. This architecture basically
specifies c to depend only on a and analogously d on b. That can be encoded
by D{a}�→{c} and D{b}�→{d}. The LTL synthesis problem for this architecture is
already shown to be undecidable [13], i.e., given an LTL formula over I = {a, b}
and O = {c, d}, we cannot automatically construct processes p1 and p2 that
realize the formula.

Linear ∀∗ Fragment. For characterizing the linear fragment of HyperLTL, we
will present a transformation from a formula with arbitrarily many universal
quantifiers to a formula with only one quantifier. This transformation collapses
the universal quantifier into a single one and renames the path variables accord-
ingly. For example, ∀π1∀π2. aπ1 ∨ aπ2 is transformed into an equivalent ∀1

formula ∀π. aπ ∨ aπ. However, this transformation does not always produce
equivalent formulas as ∀π1∀π2. (aπ1 ↔ aπ2) is not equivalent to its collapsed
form ∀π. (aπ ↔ aπ). Let ϕ be ∀π1 · · · ∀πn. ψ. We define the collapsed formula
of ϕ as collapse(ϕ) := ∀π. ψ[π1 �→ π][π2 �→ π] . . . [πn �→ π] where ψ[πi �→ π]
replaces all occurrences of πi in ψ with π. Although the collapsed term is not
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always equivalent to the original formula, we can use it as an indicator whether
it is possible at all to express a universal formula with only one quantifier as
stated in the following lemma.

Lemma 2. Either ϕ ≡ collapse(ϕ) or ϕ has no equivalent ∀1 formula.

Proof. Suppose there is some ψ ∈ ∀1 with ψ ≡ ϕ. We show that ψ ≡ collapse(ϕ).
Let T be an arbitrary set of traces. Let T = {{w} | w ∈ T}. Because ψ ∈ ∀1,
T � ψ is equivalent to ∀T ′ ∈ T . T ′ � ψ, which is by assumption equivalent to
∀T ′ ∈ T . T ′ � ϕ. Now, ϕ operates on singleton trace sets only. This means that
all quantified paths have to be the same, which yields that we can use the same
path variable for all of them. So ∀T ′ ∈ T . T ′ � ϕ ↔ T ′ � collapse(ϕ) that is
again equivalent to T � collapse(ϕ). Because ψ ≡ collapse(ϕ) and ψ ≡ ϕ it holds
that ϕ ≡ collapse(ϕ).

The LTL realizability problem for distributed architectures without information
forks [13] are decidable. These architectures are in some way linear, i.e., the
processes can be ordered such that lower processes always have a subset of
the information of upper processes. The linear fragment of universal HyperLTL
addresses exactly these architectures.

In the following, we sketch the characterization of the linear fragment of
HyperLTL. Given a formula ϕ, we seek for variable dependencies of the form
DJ �→{o} with J ⊆ I and o ∈ O in the formula. If the part of the formula ϕ
that relates multiple paths consists only of such constraints DJ �→{o} with the
rest being an LTL property, we can interpret ϕ as a description of a distributed
architecture. If furthermore, the DJi �→{oi} constraints can be ordered such that
Ji ⊆ Ji+1 for all i, the architecture is linear. There are three steps to check
whether ϕ is in the linear fragment:

1. First, we have to add input-determinism to the formula ϕdet := ϕ ∧ DI �→O.
This preserves realizability as strategies are input-deterministic.

2. Find for each output variable oi ∈ O possible sets of variables Ji, oi depends
on, such that Ji ⊆ Ji+1. To check whether the choice of J ’s is correct, we test
if collapse(ϕ) ∧ ∧

oi∈O DJi �→{oi} is equivalent to ϕdet . This equivalence check
is decidable as both formulas are in the universal fragment [9].

3. Finally, we construct the corresponding distributed realizability problem
with linear architecture. Formally, we define the distributed architecture
A = 〈P, penv, I,O〉 with P = {pi | oi ∈ O}∪{penv}, I(pi) = Ji, O(pi) = {oi},
and O(penv) = I. The LTL specification for the distributed synthesis problem
is collapse(ϕ).

Definition 2 (linear fragment of ∀∗). A formula ϕ is in the linear fragment
of ∀∗ iff for all oi ∈ O there is a Ji ⊆ I such that ϕ ∧ DI �→O ≡ collapse(ϕ) ∧∧

oi∈O DJi �→{oi} and Ji ⊆ Ji+1 for all i.

Note, that each ∀1 formula ϕ (or ϕ is collapsible to a ∀1 formula) is in the linear
fragment because we can set all Ji = I and additionally collapse(ϕ) = ϕ holds.
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As an example of a formula in the linear fragment of ∀∗, consider ϕ =
∀π, π′.D{a}�→{c} ∧ (cπ ↔ dπ)∧ (bπ ↔ eπ) with I = {a, b} and O = {c, d, e}.
The corresponding formula asserting input-deterministism is ϕdet = ϕ ∧ DI �→O.
One possible choice of J ’s is {a, b} for c, {a} for d and {a, b} for e. Note, that
one can use either {a, b} or {a} for c as D{a}�→{d} ∧ (cπ ↔ dπ) implies D{a}�→{c}.
However, the apparent alternative {b} for e would yield an undecidable archi-
tecture. It holds that ϕdet and collapse(ϕ)∧D{a,b}�→{c} ∧D{a}�→{d} ∧D{a,b}�→{e}
are equivalent and, thus, that ϕ is in the linear fragment.

Theorem 3. The linear fragment of universal HyperLTL is decidable.

Proof. It holds that ϕ ≡ collapse(ϕ) ∧ ∧
oi∈O DJi �→{oi} for some Ji’s. The LTL

distributed realizability problem for collapse(ϕ) in the constructed architecture
A is equivalent to the HyperLTL realizability of ϕ as the architecture A rep-
resents exactly the input-determinism represented by formula

∧
oi∈O DJi �→{oi}.

The architecture is linear and, thus, the realizability problem is decidable.

∃∗∀1 Fragment. In this fragment, we consider arbitrary many existential path
quantifier followed by a single universal path quantifier. This fragment turns
out to be still decidable. We solve the realizability problem for this fragment by
reducing it to a decidable fragment of the distributed realizability problem.

Theorem 4. Realizability of ∃∗∀1HyperLTL specifications is decidable.

Proof. Let ϕ be ∃π1 . . . ∃πn∀π′. ψ. We reduce the realizability problem of ϕ to the
distributed realizability problem for LTL. For every existential path quantifier
πi, we introduce a copy of the atomic propositions, written aπi

for a ∈ AP.
Intuitively, those select the paths in the strategy tree where the existential path
quantifiers are evaluated. Thus, those propositions (1) have to encode an actual
path in the strategy tree and (2) may not depend on the branching of the strategy
tree. To ensure (1), we add the LTL constraint (Iπi

= Iπ′) → (Oπi
= Oπ′)

that asserts that if the inputs correspond to some path in the strategy tree,
the outputs on those paths have to be the same. Property (2) is guaranteed
by the distributed architecture, the processes generating the propositions aπi

do not depend on the environment output. The resulting architecture Aϕ is
〈{penv, p, p′}, penv, {p �→ ∅, p′ �→ Iπ′}, {penv �→ Iπ′ , p �→ ⋃

1≤i≤n Oπi
∪ Iπi

, p′ �→
Oπ′}〉. It is easy to verify that Aϕ does not contain an information fork, thus the
realizability problem is decidable. The LTL specification θ is ψ∧∧

1≤i≤n (Iπi
=

Iπ′) → (Oπi
= Oπ′). The implementation of process p′ (if it exists) is a model

for the HyperLTL formula (process p producing witness for the ∃ quantifier).
Conversely, a model for ϕ can be used as an implementation of p′. Thus, the
distributed synthesis problem 〈Aϕ, θ〉 has a solution if, and only if, ϕ is realizable.

∀∗∃∗ Fragment. The last fragment to consider are formulas in the ∀∗∃∗ frag-
ment. Whereas the ∃∗∀1 fragment remains decidable, the realizability problem
of ∀∗∃∗ turns out to be undecidable even when restricted to only one quantifier
of both sorts (∀1∃1).
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Theorem 5. Realizability of ∀∗∃∗HyperLTL is undecidable.

Proof. The proof is done via reduction from Post’s Correspondence Problem
(PCP) [22]. The basic idea follows the proof in [9].

4 Bounded Realizability

We propose an algorithm to synthesize strategies from specifications given in
universal HyperLTL by searching for finite generators of realizing strategies. We
encode this search as a satisfiability problem for a decidable constraint system.

Transition Systems. A transition system S is a tuple 〈S, s0, τ, l〉 where S is a
finite set of states, s0 ∈ S is the designated initial state, τ : S × 2I → S is the
transition function, and l : S → 2O is the state-labeling or output function. We
generalize the transition function to sequences over 2I by defining τ∗ : (2I)∗ →
S recursively as τ∗(ε) = s0 and τ∗(w0 · · · wn−1wn) = τ(τ∗(w0 · · · wn−1), wn)
for w0 · · · wn−1wn ∈ (2I)+. A transition system S generates the strategy f if
f(w) = l(τ∗(w)) for every w ∈ (2I)∗. A strategy f is called finite-state if there
exists a transition system that generates f .

Overview. We first sketch the synthesis procedure and then proceed with a
description of the intermediate steps. Let ϕ be a universal HyperLTL formula
∀π1 · · · ∀πn. ψ. We build the automaton Aψ whose language is the set of tuples
of traces that satisfy ψ. We then define the acceptance of a transition system S
on Aψ by means of the self-composition of S. Lastly, we encode the existence of
a transition system accepted by Aψ as an SMT constraint system.

Example 1. Throughout this section, we will use the following (simplified) run-
ning example. Assume we want to synthesize a system that keeps decisions secret
until it is allowed to publish. Thus, our system has three input signals decision,
indicating whether a decision was made, the secret value, and a signal to publish
results. Furthermore, our system has two outputs, a high output internal that
stores the value of the last decision, and a low output result that indicates the
result. No information about decisions should be inferred until publication. To
specify the functionality, we propose the LTL specification

(decision → (value ↔ internal))
∧ (¬decision → (internal ↔ internal))
∧ (publish → (internal ↔ result)) . (2)

The solution produced by the LTL synthesis tool BoSy [8], shown in Fig. 2, clearly
violates our intention that results should be secret until publish: Whenever a
decision is made, the output result changes as well.

We formalize the property that no information about the decision can be
inferred from result until publication as the HyperLTL formula

∀π∀π′. (publishπ ∨ publishπ′) R (resultπ ↔ resultπ′) . (3)
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Fig. 2. Synthesized solutions for Example 1.

It asserts that for every pair of traces, the result signals have to be the same until
(if ever) there is a publish signal on either trace. A solution satisfying both, the
functional specification and the hyperproperty, is shown in Fig. 2. The system
switches states whenever there is a decision with a different value than before
and only exposes the decision in case there is a prior publish command.

We proceed with introducing the necessary preliminaries for our algorithm.

Automata. A universal co-Büchi automaton A over a finite alphabet Σ is a tuple
〈Q, q0, δ, F 〉, where Q is a finite set of states, q0 ∈ Q is the designated initial state,
δ : Q×2Σ ×Q is the transition relation, and F ⊆ Q is the set of rejecting states.
Given an infinite word σ = σ0σ1σ2 · · · ∈ (2Σ)ω, a run of σ on A is an infinite
path q0q1q2 · · · ∈ Qω where for all i ≥ 0 it holds that (qi, σi, qi+1) ∈ δ. A run
is accepting, if it contains only finitely many rejecting states. A accepts a word
σ, if all runs of σ on A are accepting. The language of A, written L(A), is
the set {σ ∈ (2Σ)ω | A accepts σ}. We represent automata as directed graphs
with vertex set Q and a symbolic representation of the transition relation δ
as propositional boolean formulas B(Σ). The rejecting states in F are marked
by double lines. The automata for the LTL and HyperLTL specifications from
Example 1 are depicted in Fig. 3.

Run Graph. The run graph of a transition system S = 〈S, s0, τ, l〉 on a universal
co-Büchi automaton A = 〈Q, q0, δ, F 〉 is a directed graph 〈V,E〉 where V = S×Q
is the set of vertices and E ⊆ V × V is the edge relation with

((s, q), (s′, q′)) ∈ E iff

∃i ∈ 2I .∃o ∈ 2O. (τ(s, i) = s′) ∧ (l(s) = o) ∧ (q, i ∪ o, q′) ∈ δ .

A run graph is accepting if every path (starting at the initial vertex (s0, q0)) has
only finitely many visits of rejecting states. To show acceptance, we annotate
every reachable node in the run graph with a natural number m, such that any
path, starting in the initial state, contains less than m visits of rejecting states.
Such an annotation exists if, and only if, the run graph is accepting [14].
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Fig. 3. Universal co-Büchi automata recognizing the languages from Example 1.

Self-composition. The model checking of universal HyperLTL formulas [12] is
based on self-composition. Let prj i be the projection to the i-th element of a
tuple. Let zip denote the usual function that maps a n-tuple of sequences to a sin-
gle sequence of n-tuples, for example, zip([1, 2, 3], [4, 5, 6]) = [(1, 4), (2, 5), (3, 6)],
and let unzip denote its inverse. The transition system Sn is the n-fold self-
composition of S = 〈S, s0, τ, l〉, if Sn = 〈Sn, sn

0 , τ ′, ln〉 and for all s, s′ ∈ Sn,
α ∈ (2I)n, and β ∈ (2O)n we have that τ ′(s, α) = s′ and ln(s) = β iff for all
1 ≤ i ≤ n, it hold that τ(prj i(s), prj i(α)) = prj i(s′) and l(prj i(s)) = prj i(β).
If T is the set of traces generated by S, then {zip(t1, . . . , tn) | t1, . . . , tn ∈ T} is
the set of traces generated by Sn.

We construct the universal co-Büchi automaton Aψ such that the language
of Aψ is the set of words w such that unzip(w) = Π and Π �∅ ψ, i.e., the tuple of
traces that satisfy ψ. We get this automaton by dualizing the non-deterministic
Büchi automaton for ¬ψ [4], i.e., changing the branching from non-deterministic
to universal and the acceptance condition from Büchi to co-Büchi. Hence, S
satisfies a universal HyperLTL formula ϕ = ∀π1 . . . ∀πk. ψ if the traces generated
by self-composition Sn are a subset of L(Aψ).

Lemma 3. A transition system S satisfies the universal HyperLTL formula ϕ =
∀π1 · · · ∀πn. ψ, if the run graph of Sn and Aψ is accepting.

Synthesis. Let S = 〈S, s0, τ, l〉 and Aψ = 〈Q, q0, δ, F 〉. We encode the synthesis
problem as an SMT constraint system. Therefore, we use uninterpreted function
symbols to encode the transition system and the annotation. For the transition
system, those functions are the transition function τ : S × 2I → S and the
labeling function l : S → 2O. The annotation is split into two parts, a reachability
constraint λB : Sn × Q → B indicating whether a state in the run graph is
reachable and a counter λ# : Sn × Q → N that maps every reachable vertex
to the maximal number of rejecting states visited by any path starting in the
initial vertex. The resulting constraint asserts that there is a transition system
with accepting run graph.
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∀s, s′ ∈ Sn. ∀q, q′ ∈ Q. ∀i ∈ (2I)n.(
λB(s, q) ∧ τ ′(s, i) = s′ ∧ (q, i ∪ l(s), q′) ∈ δ

)
→ λB(s′, q′) ∧ λ#(s′, q′) � λ#(s, q)

where � is > if q′ ∈ F and ≥ otherwise.

Theorem 6. The constraint system is satisfiable with bound b if, and only if,
there is a transition system S of size b that realizes the HyperLTL formula.

We extract a realizing implementation by asking the satisfiability solver to gen-
erate a model for the uninterpreted functions that encode the transition system.

5 Bounded Unrealizability

So far, we focused on the positive case, providing an algorithm for finding small
solutions, if they exist. In this section, we shift to the case of detecting if a
universal HyperLTL formula is unrealizable. We adapt the definition of coun-
terexamples to realizability for LTL [15] to HyperLTL in the following. Let ϕ
be a universal HyperLTL formula ∀π1 · · · ∀πn. ψ over inputs I and outputs O,
a counterexample to realizability is a set of input traces P ⊆ (2I)ω such that
for every strategy f : (2I)∗ → 2O the labeled traces Pf ⊆ (2I∪O)ω satisfy
¬ϕ = ∃π1 · · · ∃πn.¬ψ.

Proposition 1. A universal HyperLTL formula ϕ = ∀π1 · · · ∀πn. ψ is unrealiz-
able if there is a counterexample P to realizability.

Proof. For contradiction, we assume ϕ is realizable by a strategy f . As P is
a counterexample to realizability, we know Pf � ∃π1 · · · ∃πn.¬ψ. This means
that there exists an assignment ΠP ∈ V → Pf with ΠP �Pf ¬ψ. Equivalently
ΠP �Pf ψ. Therefore, not all assignments Π ∈ V → Pf satisfy Π �Pf ψ. Which
implies Pf

� ∀π1 · · · ∀πn. ψ = ϕ. Since ϕ is universal, we can defer f � ϕ, which
concludes the contradiction. Thus, ϕ is unrealizable.

Despite being independent of strategy trees, there are in many cases finite
representations of P. Consider, for example, the unrealizable specification ϕ1 =
∀π∀π′. (iπ ↔ iπ′), where the set P1 = {∅ω, {i}ω} is a counterexample to realiz-
ability. As a second example, consider ϕ2 = ∀π∀π′. (oπ ↔ oπ′) ∧ (iπ ↔ oπ)
with conflicting requirements on o. P1 is a counterexample to realizability for
ϕ2 as well: By choosing a different valuation of i in the first step, the system is
forced to either react with different valuations of o (violating first conjunct), or
not correctly repeating the initial value of i (violating second conjunct).

There are, however, already linear specifications where the set of counterex-
ample paths is not finite and depends on the strategy tree [16]. For example, the
specification ∀π. (iπ ↔ oπ) is unrealizable as the system cannot predict future
values of the environment. There is no finite set of traces witnessing this: For
every finite set of traces, there is a strategy tree such that (iπ ↔ oπ) holds on
every such trace. On the other hand, there is a simple counterexample strategy,
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that is a strategy that observes output sequences and produces inputs. In this
example, the counterexample strategy inverts the outputs given by the system,
thus it is guaranteed that (i � o) for any system strategy.

We combine those two approaches, selecting counterexample paths and using
strategic behavior. A k-counterexample strategy for HyperLTL observes k output
sequences and produces k inputs, where k is a new parameter (k ≥ n). The
counterexample strategy is winning if (1) either the traces given by the system
player do not correspond to a strategy, or (2) the body of the HyperLTL is
violated for any n subset of the k traces. Regarding property (1), consider the
two traces where the system player produces different outputs initially. Clearly,
those two traces cannot be generated by any system strategy since the initial
state (root labeling) is fixed.

The search for a k-counterexample strategy can be reduced to LTL synthesis
using k-tuple input propositions Ok, k-tuple output propositions Ik, and the
specification

¬DIk �→Ok ∨
∨

P⊆{1,...,k} with |P |=n

¬ψ[P ] ,

where ψ[P ] denotes the replacement of aπi
by the Pith position of the combined

input/output k-tuple.

Theorem 7. A universal HyperLTL formula ϕ = ∀π1 · · · ∀πn. ψ is unrealizable
if there is a k-counterexample strategy for some k ≥ n.

6 Evaluation

We implemented a prototype synthesis tool, called BoSyHyper1, for universal
HyperLTL based on the bounded synthesis algorithm described in Sect. 4. Fur-
thermore, we implemented the search for counterexamples proposed in Sect. 5.
Thus, BoSyHyper is able to characterize realizability and unrealizability of uni-
versal HyperLTL formulas.

We base our implementation on the LTL synthesis tool BoSy [8]. For effi-
ciency, we split the specifications into two parts, a part containing the linear
(LTL) specification, and a part containing the hyperproperty given as HyperLTL
formula. Consequently, we build two constraint systems, one using the standard
bounded synthesis approach [14] and one using the approach described in Sect. 4.
Before solving, those constraints are combined into a single SMT query. This
results in a much more concise constraint system compared to the one where
the complete specification is interpreted as a HyperLTL formula. For solving the
SMT queries, we use the Z3 solver [20]. We continue by describing the bench-
marks used in our experiments.

1 BoSyHyper is available at https://www.react.uni-saarland.de/tools/bosy/.

https://www.react.uni-saarland.de/tools/bosy/
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Fig. 4. Synthesized solution of the mutual exclusion protocols.

Symmetric Mutual Exclusion. Our first example demonstrates the ability to
specify symmetry in HyperLTL for a simple mutual exclusion protocol. Let
r1 and r2 be input signals representing mutual exclusive requests to a criti-
cal section and g1/g2 the respective grant to enter the section. Every request
should be answered eventually (ri → gi) for i ∈ {1, 2}, but not at the
same time ¬(g1 ∧ g2). The minimal LTL solution is depicted in Fig. 4a.
It is well known that no mutex protocol can ensure perfect symmetry [19],
thus when adding the symmetry constraint specified by the HyperLTL formula
∀π∀π′. (r1π � r2π′) R (g1π ↔ g2π′) the formula becomes unrealizable. Our tool
produces the counterexample shown in Fig. 4b. By adding another input signal
tie that breaks the symmetry in case of simultaneous requests and modifying
the symmetry constraint ∀π∀π′. ((r1π � r2π′) ∨ (tieπ � ¬tieπ′))R (g1π ↔ g2π′)
we obtain the solution depicted in Fig. 4c. We further evaluated the same prop-
erties on a version that forbids spurious grants, which are reported in Table 2
with prefix full.

Distributed and Fault-Tolerant Systems. In Sect. 3 we presented a reduction of
arbitrary distributed architectures to HyperLTL. As an example for our evalu-
ation, consider a setting with two processes, one for encoding input signals and
one for decoding. Both processes can be synthesized simultaneously using a sin-
gle HyperLTL specification. The (linear) correctness condition states that the
decoded signal is always equal to the inputs given to the encoder. Furthermore,
the encoder and decoder should solely depend on the inputs and the encoded
signal, respectively. Additionally, we can specify desired properties about the
encoding like fault-tolerance [16] or Hamming distance of code words [12]. The
results are reported in Table 2 where i-j-x means i input bits, j encoded bits,
and x represents the property. The property is either tolerance against a single
Byzantine signal failure or a guaranteed Hamming distance of code words.

CAP Theorem. The CAP Theorem due to Brewer [2] states that it is impossi-
ble to design a distributed system that provides Consistency, Availability, and
Partition tolerance (CAP) simultaneously. This example has been considered
before [16] to evaluate a technique that could automatically detect unrealizabil-
ity. However, when we drop either Consistency, Availability, or Partition toler-
ance, the corresponding instances (AP, CP, and CA) become realizable, which
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the previous work was not able to prove. We show that our implementation
can show both, unrealizability of CAP and realizability of AP, CP, and CA. In
contrast to the previous encoding [16] we are not limited to acyclic architectures.

Long-term Information-flow. Previous work on model-checking hyperproper-
ties [12] found that an implementation for the commonly used I2C bus protocol
could remember input values ad infinitum. For example, it could not be veri-
fied that information given to the implementation eventually leaves it, i.e., is
forgotten. This is especially unfortunate in high security contexts. We consider
a simple bus protocol which is inspired by the widely used I2C protocol. Our
example protocol has the inputs send for initiating a transmission, in for the
value that should be transferred, and an acknowledgment bit indicating success-
ful transmission. The bus master waits in an idle state until a send is received.
Afterwards, it transmits a header sequence, followed by the value of in, waits for
an acknowledgement and then indicates success or failure to the sender before
returning to the idle state. We specify the property that the input has no influ-
ence on the data that is send, which is obviously violated (instance NI1). As a
second property, we check that this information leak cannot happen arbitrary
long (NI2) for which there is a realizing implementation.

Dining Cryptographers. Recap the dining cryptographers problem introduced
earlier. This benchmark is interesting as it contains two types of hyperproper-
ties. First, there is information-flow between the three cryptographers, where
some secrets (sab, sac, sbc) are shared between pairs of cryptographers. In the
formalization, we have 4 entities: three processes describing the 3 cryptogra-
phers (outi) and one process computing the result (pg), i.e., whether the group
has paid or not, from outi. Second, the final result should only disclose whether
one of the cryptographers has paid or the NSA. This can be formalized as a
indistinguishability property between different executions. For example, when
we compare the two traces π and π′ where Ca has paid on π and Cb has paid
on π′. Then the outputs of both have to be the same, if their common secret
sab is different on those two traces (while all other secrets sac and sbc are the
same). This ensures that from an outside observer, a flipped output can be either
result of a different shared secret or due to the announcement. Lastly, the linear
specification asserts that pg ↔ ¬pNSA.

Results. Table 2 reports on the results of the benchmarks. We distinguish
between state-labeled (Moore) and transition-labeled (Mealy) transition sys-
tems. Note that the counterexample strategies use the opposite transition sys-
tem, i.e., a Mealy system strategy corresponds to a state-labeled (Moore)
environment strategy. Typically, Mealy strategies are more compact, i.e., need
smaller transition systems and this is confirmed by our experiments. BoSyHyper
is able to solve most of the examples, providing realizing implementations or
counterexamples. Regrading the unrealizable benchmarks we observe that usu-
ally two simultaneously generated paths (k = 2) are enough with the exception
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Table 2. Results of BoSyHyper on the benchmarks sets described in Sect. 6. They ran
on a machine with a dual-core Core i7, 3.3 GHz, and 16 GB memory.

Benchmark Instance Result States Time[sec.]

Moore Mealy Moore Mealy

Symmetric Mutex non-sym realizable 2 2 1.4 1.3

sym unrealizable (k = 2) 1 1 1.9 2.0

tie realizable 3 3 1.7 1.6

full-non-sym realizable 4 4 1.4 1.4

full-sym unrealizable (k = 2) 1 1 4.3 6.2

full-tie realizable 9 5 1 802.7 5.2

Encoder/Decoder 1-2-hamming-2 realizable 4 1 1.6 1.3

1-2-fault-tolerant unrealizable (k = 2) 1 - 54.9 -

1-3-fault-tolerant realizable 4 1 151.7 1.7

2-2-hamming-2 unrealizable (k = 3) - 1 - 10.6

2-3-hamming-2 realizable 16 1 >1 h 1.5

2-3-hamming-3 unrealizable (k = 3) - 1 - 126.7

CAP Theorem cap-2-linear realizable 8 1 7.0 1.3

cap-2 unrealizable (k = 2) 1 - 1 823.9 -

ca-2 realizable - 1 - 4.4

ca-3 realizable - 1 - 15.0

cp-2 realizable 1 1 1.8 1.6

cp-3 realizable 1 1 3.2 10.6

ap-2 realizable - 1 - 2.0

ap-3 realizable - 1 - 43.4

Bus Protocol NI1 unrealizable (k = 2) 1 1 75.2 69.6

NI2 realizable 8 8 24.1 33.9

Dining Cryptographers secrecy realizable - 1 - 82.4

of the encoder example. Overall the results are encouraging showing that we can
solve a variety of instances with non-trivial information-flow.

7 Conclusion

In this paper, we have considered the reactive realizability problem for specifica-
tions given in the temporal logic HyperLTL. We gave a complete characterization
of the decidable fragments based on the quantifier prefix and, additionally, iden-
tified a decidable fragment in the, in general undecidable, universal fragment of
HyperLTL. Furthermore, we presented two algorithms to detect realizable and
unrealizable HyperLTL specifications, one based on bounding the system imple-
mentation and one based on bounding the number of counterexample paths. Our
prototype implementation shows that our approach is able to synthesize systems
with complex information-flow properties.
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vol. 10427, pp. 325–332. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 17

9. Finkbeiner, B., Hahn, C.: Deciding hyperproperties. In: Proceedings of CONCUR.
LIPIcs, vol. 59, pp. 13:1–13:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2016)

10. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 190–207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 12

11. Finkbeiner, B., Jacobs, S.: Lazy synthesis. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 219–234. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-27940-9 15

12. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
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Abstract. Reactive synthesis is a paradigm for automatically build-
ing correct-by-construction systems that interact with an unknown or
adversarial environment. We study how to do reactive synthesis when
part of the specification of the system is that its behavior should be
random. Randomness can be useful, for example, in a network protocol
fuzz tester whose output should be varied, or a planner for a surveillance
robot whose route should be unpredictable. However, existing reactive
synthesis techniques do not provide a way to ensure random behavior
while maintaining functional correctness. Towards this end, we general-
ize the recently-proposed framework of control improvisation (CI) to add
reactivity. The resulting framework of reactive control improvisation pro-
vides a natural way to integrate a randomness requirement with the usual
functional specifications of reactive synthesis over a finite window. We
theoretically characterize when such problems are realizable, and give a
general method for solving them. For specifications given by reachability
or safety games or by deterministic finite automata, our method yields a
polynomial-time synthesis algorithm. For various other types of specifi-
cations including temporal logic formulas, we obtain a polynomial-space
algorithm and prove matching PSPACE-hardness results. We show that
all of these randomized variants of reactive synthesis are no harder in a
complexity-theoretic sense than their non-randomized counterparts.

1 Introduction

Many interesting programs, including protocol handlers, task planners, and con-
current software generally, are open systems that interact over time with an
external environment. Synthesis of such reactive systems requires finding an
implementation that satisfies the desired specification no matter what the envi-
ronment does. This problem, reactive synthesis, has a long history (see [7] for
a survey). Reactive synthesis from temporal logic specifications [19] has been
particularly well-studied and is being increasingly used in applications such as
hardware synthesis [3] and robotic task planning [15].

In this paper, we investigate how to synthesize reactive systems with random
behavior : in fact, systems where being random in a prescribed way is part of
their specification. This is in contrast to prior work on stochastic games where
randomness is used to model uncertain environments or randomized strategies
are merely allowed, not required. Solvers for stochastic games may incidentally
produce randomized strategies to satisfy a functional specification (and some
c© The Author(s) 2018
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types of specification, e.g. multi-objective queries [4], may only be realizable by
randomized strategies), but do not provide a general way to enforce randomness.
Unlike most specifications used in reactive synthesis, our randomness require-
ment is a property of a system’s distribution of behaviors, not of an individual
behavior. While probabilistic specification languages like PCTL [12] can cap-
ture some such properties, the simple and natural randomness requirement we
study here cannot be concisely expressed by existing languages (even those as
powerful as SGL [2]). Thus, randomized reactive synthesis in our sense requires
significantly different methods than those previously studied.

However, we argue that this type of synthesis is quite useful, because intro-
ducing randomness into the behavior of a system can often be beneficial, enhanc-
ing variety, robustness, and unpredictability. Example applications include:

– Synthesizing a black-box fuzz tester for a network service, we want a program
that not only conforms to the protocol (perhaps only most of the time) but
can generate many different sequences of packets: randomness ensures this.

– Synthesizing a controller for a robot exploring an unknown environment, ran-
domness provides a low-memory way to increase coverage of the space. It can
also help to reduce systematic bias in the exploration procedure.

– Synthesizing a controller for a patrolling surveillance robot, introducing ran-
domness in planning makes the robot’s future location harder to predict.

Adding randomness to a system in an ad hoc way could easily compromise its
correctness. This paper shows how a randomness requirement can be integrated
into the synthesis process, ensuring correctness as well as allowing trade-offs to
be explored: how much randomness can be added while staying correct, or how
strong can a specification be while admitting a desired amount of randomness?

To formalize randomized reactive synthesis we build on the idea of control
improvisation, introduced in [6], formalized in [9], and further generalized in [8].
Control improvisation (CI) is the problem of constructing an improviser, a prob-
abilistic algorithm which generates finite words subject to three constraints: a
hard constraint that must always be satisfied, a soft constraint that need only
be satisfied with some probability, and a randomness constraint that no word be
generated with probability higher than a given bound. We define reactive control
improvisation (RCI), where the improviser generates a word incrementally, alter-
nating adding symbols with an adversarial environment. To perform synthesis in
a finite window, we encode functional specifications and environment assump-
tions into the hard constraint, while the soft and randomness constraints allow
us to tune how randomness is added to the system. The improviser obtained by
solving the RCI problem is then a solution to the original synthesis problem.

The difficulty of solving reactive CI problems depends on the type of speci-
fication. We study several types commonly used in reactive synthesis, including
reachability games (and variants, e.g. safety games) and formulas in the tem-
poral logics LTL and LDL [5,18]. We also investigate the specification types
studied in [8], showing how the complexity of the CI problem changes when
adding reactivity. For every type of specification we obtain a randomized syn-
thesis algorithm whose complexity matches that of ordinary reactive synthesis
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(in a finite window). This suggests that reactive control improvisation should be
feasible in applications like robotic task planning where reactive synthesis tools
have proved effective.

In summary, the main contributions of this paper are:

– The reactive control improvisation (RCI) problem definition (Sect. 3);
– The notion of width, a quantitative generalization of “winning” game positions

that measures how many ways a player can win from that position (Sect. 4);
– A characterization of when RCI problems are realizable in terms of width,

and an explicit construction of an improviser (Sect. 4);
– A general method for constructing efficient improvisation schemes (Sect. 5);
– A polynomial-time improvisation scheme for reachability/safety games and

deterministic finite automaton specifications (Sect. 6);
– PSPACE-hardness results for many other specification types including tem-

poral logics, and matching polynomial-space improvisation schemes (Sect. 7).

Finally, Sect. 8 summarizes our results and gives directions for future work.

2 Background

2.1 Notation

Given an alphabet Σ, we write |w| for the length of a finite word w ∈ Σ∗, λ for the
empty word, Σn for the words of length n, and Σ≤n for ∪0≤i≤nΣi, the set of all
words of length at most n. We abbreviate deterministic/nondeterministic finite
automaton by DFA/NFA, and context-free grammar by CFG. For an instance
X of any such formalism, which we call a specification, we write L(X ) for the
language (subset of Σ∗) it defines (note the distinction between a language and
a representation thereof). We view formulas of Linear Temporal Logic (LTL)
[18] and Linear Dynamic Logic (LDL) [5] as specifications using their natural
semantics on finite words (see [5]).

We use the standard complexity classes #P and PSPACE, and the PSPACE-
complete problem QBF of determining the truth of a quantified Boolean for-
mula. For background on these classes and problems see for example [1].

Some specifications we use as examples are reachability games [16], where
players’ actions cause transitions in a state space and the goal is to reach a
target state. We group these games, safety games where the goal is to avoid
a set of states, and reach-avoid games combining reachability and safety goals
[20], together as reachability/safety games (RSGs). We draw reachability games
as graphs in the usual way: squares are adversary-controlled states, and states
with a double border are target states.
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2.2 Synthesis Games

Reactive control improvisation will be formalized in terms of a 2-player game
which is essentially the standard synthesis game used in reactive synthesis [7].
However, our formulation is slightly different for compatibility with the definition
of control improvisation, so we give a self-contained presentation here.

Fix a finite alphabet Σ. The players of the game will alternate picking symbols
from Σ, building up a word. We can then specify the set of winning plays with
a language over Σ. To simplify our presentation we assume that players strictly
alternate turns and that any symbol from Σ is a legal move. These assumptions
can be relaxed in the usual way by modifying the winning set appropriately.

Finite Words: While reactive synthesis is usually considered over infinite
words, in this paper we focus on synthesis in a finite window, as it is unclear
how best to generalize our randomness requirement to the infinite case. This
assumption is not too restrictive, as solutions of bounded length are adequate
for many applications. In fuzz testing, for example, we do not want to gener-
ate arbitrarily long files or sequences of packets. In robotic planning, we often
want a plan that accomplishes a task within a certain amount of time. Fur-
thermore, planning problems with liveness specifications can often be segmented
into finite pieces: we do not need an infinite route for a patrolling robot, but
can plan within a finite horizon and replan periodically. Replanning may even
be necessary when environment assumptions become invalid. At any rate, we
will see that the bounded case of reactive control improvisation is already highly
nontrivial.

As a final simplification, we require that all plays have length exactly n ∈ N.
To allow a range [m,n] we can simply add a new padding symbol to Σ and
extend all shorter words to length n, modifying the winning set appropriately.

Definition 2.1. A history h is an element of Σ≤n, representing the moves of
the game played so far. We say the game has ended after h if |h| = n; otherwise
it is our turn after h if |h| is even, and the adversary’s turn if |h| is odd.

Definition 2.2. A strategy is a function σ : Σ≤n ×Σ → [0, 1] such that for any
history h ∈ Σ≤n with |h| < n, σ(h, ·) is a probability distribution over Σ. We
write x ← σ(h) to indicate that x is a symbol randomly drawn from σ(h, ·).

Since strategies are randomized, fixing strategies for both players does not
uniquely determine a play of the game, but defines a distribution over plays:

Definition 2.3. Given a pair of strategies (σ, τ), we can generate a random
play π ∈ Σn as follows. Pick π0 ← σ(λ), then for i from 1 to n − 1 pick
πi ← τ(π0 . . . πi−1) if i is odd and πi ← σ(π0 . . . πi−1) otherwise. Finally, put
π = π0 . . . πn−1. We write Pσ,τ (π) for the probability of obtaining the play π. This
extends to a set of plays X ⊆ Σn in the natural way: Pσ,τ (X) =

∑
π∈X Pσ,τ (π).

Finally, the set of possible plays is Πσ,τ = {π ∈ Σn | Pσ,τ (π) > 0}.
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The next definition is just the conditional probability of a play given a history,
but works for histories with probability zero, simplifying our presentation.

Definition 2.4. For any history h = h0 . . . hk−1 ∈ Σ≤n and word ρ ∈ Σn−k, we
write Pσ,τ (ρ|h) for the probability that if we assign πi = hi for i < k and sample
πk, . . . , πn−1 by the process above, then πk . . . πn−1 = ρ.

3 Problem Definition

3.1 Motivating Example

Consider synthesizing a planner for a surveillance drone operating near another,
potentially adversarial drone. Discretizing the map into the 7 × 7 grid in Fig. 1
(ignoring the depicted trajectories for the moment), a route is a word over the
four movement directions. Our specification is to visit the 4 circled locations in
30 moves without colliding with the adversary, assuming it cannot move into the
5 highlighted central locations.

Fig. 1. Improvised trajectories for a patrolling drone (solid) avoiding an adversary
(dashed). The adversary may not move into the circles or the square.

Existing reactive synthesis tools can produce a strategy for the patroller
ensuring that the specification is always satisfied. However, the strategy may be
deterministic, so that in response to a fixed adversary the patroller will always
follow the same route. Then it is easy for a third party to predict the route,
which could be undesirable, and is in fact unnecessary if there are many other
ways the drone can satisfy its specification.

Reactive control improvisation addresses this problem by adding a new type
of specification to the hard constraint above: a randomness requirement stating
that no behavior should be generated with probability greater than a threshold
ρ. If we set (say) ρ = 1/5, then any controller solving the synthesis problem must
be able to satisfy the hard constraint in at least 5 different ways, never producing
any given behavior more than 20% of the time. Our synthesis algorithm can in



312 D. J. Fremont and S. A. Seshia

fact compute the smallest ρ for which synthesis is possible, yielding a controller
that is maximally-randomized in that the system’s behavior is as close to a
uniform distribution as possible.

To allow finer tuning of how randomness is introduced into the controller,
our definition also includes a soft constraint which need only be satisfied with
some probability 1−ε. This allows us to prefer certain safe behaviors over others.
In our drone example, we require that with probability at least 3/4, we do not
visit a circled location twice.

These hard, soft, and randomness constraints form an instance of our reactive
control improvisation problem. Encoding the hard and soft constraints as DFAs,
our algorithm (Sect. 6) produced a controller achieving the smallest realizable
ρ = 2.2 × 10−12. We tested the controller using the PX4 autopilot [17] to refine
the generated routes into control actions for a drone simulated in Gazebo [14]
(videos and code are available online [11]). A selection of resulting trajectories
are shown in Fig. 1 (the remainder in Appendix A of the full paper [10] ): starting
from the triangles, the patroller’s path is solid, the adversary’s dashed. The left
run uses an adversary that moves towards the patroller when possible. The right
runs, with a simple adversary moving in a fixed loop, illustrate the randomness
of the synthesized controller.

3.2 Reactive Control Improvisation

Our formal notion of randomized reactive synthesis in a finite window is a reac-
tive extension of control improvisation [8,9], which captures the three types of
constraint (hard, soft, randomness) seen above. We use the notation of [8] for
the specifications and languages defining the hard and soft constraints:

Definition 3.1 ([8]). Given hard and soft specifications H and S of languages
over Σ, an improvisation is a word w ∈ L(H)∩Σn. It is admissible if w ∈ L(S).
The set of all improvisations is denoted I, and admissible improvisations A.

Running Example. We will use the following simple example throughout the
paper: each player may increment (+), decrement (−), or leave unchanged (=)
a counter which is initially zero. The alphabet is Σ = {+,−,=}, and we set
n = 4. The hard specification H is the DFA in Fig. 2 requiring that the counter
stay within [−2, 2]. The soft specification S is a similar DFA requiring that the
counter end at a nonnegative value.

Then for example the word ++== is an admissible improvisation, satisfying
both hard and soft constraints, and so is in A. The word +−=− on the other
hand satisfies H but not S, so it is in I but not A. Finally, +++− does not
satisfy H, so it is not an improvisation at all and is not in I.

A reactive control improvisation problem is defined by H, S, and parameters
ε and ρ. A solution is then a strategy which ensures that the hard, soft, and
randomness constraints hold against every adversary. Formally, following [8,9]:
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+0 +1 +2 +3−1−2−3
+ + + + +

−−−−−
Σ

= = = = =

Σ

Fig. 2. The hard specification DFA H in our running example. The soft specification
S is the same but with only the shaded states accepting.

Definition 3.2. Given an RCI instance C = (H,S, n, ε, ρ) with H, S, and n as
above and ε, ρ ∈ [0, 1] ∩ Q, a strategy σ is an improvising strategy if it satisfies
the following requirements for every adversary τ :

Hard constraint: Pσ,τ (I) = 1
Soft constraint: Pσ,τ (A) ≥ 1 − ε

Randomness: ∀π ∈ I, Pσ,τ (π) ≤ ρ.

If there is an improvising strategy σ, we say that C is realizable. An improviser
for C is then an expected-finite time probabilistic algorithm implementing such a
strategy σ, i.e. whose output distribution on input h ∈ Σ≤n is σ(h, ·).
Definition 3.3. Given an RCI instance C = (H,S, n, ε, ρ), the reactive control
improvisation (RCI) problem is to decide whether C is realizable, and if so to
generate an improviser for C.

Running Example. Suppose we set ε = 1/2 and ρ = 1/2. Let σ be the strategy
which picks + or − with equal probability in the first move, and thenceforth picks
the action which moves the counter closest to ±1 respectively. This satisfies
the hard constraint, since if the adversary ever moves the counter to ±2 we
immediately move it back. The strategy also satisfies the soft constraint, since
with probability 1/2 we set the counter to +1 on the first move, and if the
adversary moves to 0 we move back to +1 and remain nonnegative. Finally, σ
also satisfies the randomness constraint, since each choice of first move happens
with probability 1/2 and so no play can be generated with higher probability.
So σ is an improvising strategy and this RCI instance is realizable.

We will study classes of RCI problems with different types of specifications:

Definition 3.4. If HSpec and SSpec are classes of specifications, then the
class of RCI instances C = (H,S, n, ε, ρ) where H ∈ HSpec and S ∈ SSpec
is denoted RCI (HSpec,SSpec). We use the same notation for the decision
problem associated with the class, i.e., given C ∈ RCI (HSpec,SSpec), decide
whether C is realizable. The size |C| of an RCI instance is the total size of the bit
representations of its parameters, with n represented in unary and ε, ρ in binary.

Finally, a synthesis algorithm in our context takes a specification in the form
of an RCI instance and produces an implementation in the form of an improviser.
This corresponds exactly to the notion of an improvisation scheme from [8]:
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Definition 3.5 ([8]). A polynomial-time improvisation scheme for a class P
of RCI instances is an algorithm S with the following properties:

Correctness: For any C ∈ P, if C is realizable then S(C) is an improviser for
C, and otherwise S(C) = ⊥.

Scheme efficiency: There is a polynomial p : R → R such that the runtime of
S on any C ∈ P is at most p(|C|).

Improviser efficiency: There is a polynomial q : R → R such that for every
C ∈ P, if G = S(C) �= ⊥ then G has expected runtime at most q(|C|).

The first two requirements simply say that the scheme produces valid impro-
visers in polynomial time. The third is necessary to ensure that the improvisers
themselves are efficient: otherwise, the scheme might for example produce impro-
visers running in time exponential in the size of the specification.

A main goal of our paper is to determine for which types of specifications
there exist polynomial-time improvisation schemes. While we do find such algo-
rithms for important classes of specifications, we will also see that determining
the realizability of an RCI instance is often PSPACE-hard. Therefore we also
consider polynomial-space improvisation schemes, defined as above but replac-
ing time with space.

4 Existence of Improvisers

4.1 Width and Realizability

The most basic question in reactive synthesis is whether a specification is real-
izable. In randomized reactive synthesis, the question is more delicate because
the randomness requirement means that it is no longer enough to ensure some
property regardless of what the adversary does: there must be many ways to do
so. Specifically, there must be at least 1/ρ improvisations if we are to generate
each of them with probability at most ρ. Furthermore, at least this many impro-
visations must be possible given an unknown adversary: even if many exist, the
adversary may be able to force us to use only a single one. We introduce a new
notion of the size of a set of plays that takes this into account.

Definition 4.1. The width of X ⊆ Σn is W (X) = maxσ minτ |X ∩ Πσ,τ |.
The width counts how many distinct plays can be generated regardless of

what the adversary does. Intuitively, a “narrow” game—one whose set of winning
plays has small width—is one in which the adversary can force us to choose
among only a few winning plays, while in a “wide” one we always have many
safe choices available. Note that which particular plays can be generated depends
on the adversary: the width only measures how many can be generated. For
example, W (X) = 1 means that a play in X can always be generated, but
possibly a different element of X for different adversaries.
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Fig. 3. Synthesis game for our running example. States are labeled with the widths of
I (left) and A (right) given a history ending at that state.

Running Example. Figure 3 shows the synthesis game for our running example:
paths ending in circled or shaded states are plays in I or A respectively (ignore
the state labels for now). At left, the bold arrows show the 4 plays in I possible
against the adversary that moves away from 0, and down at 0. This shows
W (I) ≤ 4, and in fact 4 plays are possible against any adversary, so W (I) = 4.
Similarly, at right we see that W (A) = 1.

It will be useful later to have a relative version of width that counts how
many plays are possible from a given position:

Definition 4.2. Given a set of plays X ⊆ Σn and a history h ∈ Σ≤n, the width
of X given h is W (X|h) = maxσ minτ |{π | hπ ∈ X ∧ Pσ,τ (π|h) > 0}|.
This is a direct generalization of “winning” positions: if X is the set of winning
plays, then W (X|h) counts the number of ways to win from h.

We will often use the following basic properties of W (X|h) without comment
(for lack of space this proof and the details of later proof sketches are deferred
to Appendix B of the full paper [10]). Note that (3)–(5) provide a recursive way
to compute widths that we will use later, and which is illustrated by the state
labels in Fig. 3.

Lemma 4.1. For any set of plays X ⊆ Σn and history h ∈ Σ≤n:

1. 0 ≤ W (X|h) ≤ |Σ|n−|h|;
2. W (X|λ) = W (X);
3. if |h| = n, then W (X|h) = 1h∈X ;
4. if it is our turn after h, then W (X|h) =

∑
u∈Σ W (X|hu);

5. if it is the adversary’s turn after h, then W (X|h) = minu∈Σ W (X|hu).

Now we can state the realizability conditions, which are simply that I and A
have sufficiently large width. In fact, the conditions turn out to be exactly the
same as those for non-reactive CI except that width takes the place of size [9].
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Theorem 4.1. The following are equivalent:

(1) C is realizable.
(2) W (I) ≥ 1/ρ and W (A) ≥ (1 − ε)/ρ.
(3) There is an improviser for C.

Running Example. We saw above that our example was realizable with ε = ρ =
1/2, and indeed 4 = W (I) ≥ 1/ρ = 2 and 1 = W (A) ≥ (1−ε)/ρ = 1. However, if
we put ρ = 1/3 we violate the second inequality and the instance is not realizable:
essentially, we need to distribute probability 1 − ε = 1/2 among plays in A (to
satisfy the soft constraint), but since W (A) = 1, against some adversaries we can
only generate one play in A and would have to give it the whole 1/2 (violating
the randomness requirement).

The difficult part of the Theorem is constructing an improviser when the
inequalities (2) hold. Despite the similarity in these conditions to the non-
reactive case, the construction is much more involved. We begin with a general
overview.

4.2 Improviser Construction: Discussion

Our improviser can be viewed as an extension of the classical random-walk reduc-
tion of uniform sampling to counting [21]. In that algorithm (which was used
in a similar way for DFA specifications in [8,9]), a uniform distribution over
paths in a DAG is obtained by moving to the next vertex with probability pro-
portional to the number of paths originating at it. In our case, which plays are
possible depends on the adversary, but the width still tells us how many plays
are possible. So we could try a random walk using widths as weights: e.g. on
the first turn in Fig. 3, picking +, −, and = with probabilities 1/4, 2/4, and 1/4
respectively. Against the adversary shown in Fig. 3, this would indeed yield a
uniform distribution over the four possible plays in I.

However, the soft constraint may require a non-uniform distribution. In the
running example with ε = ρ = 1/2, we need to generate the single possible
play in A with probability 1/2, not just the uniform probability 1/4 . This is
easily fixed by doing the random walk with a weighted average of the widths
of I and A: specifically, move to position h with probability proportional to
αW (A|h) + β(W (I|h) − W (A|h)). In the example, this would result in plays
in A getting probability α and those in I \ A getting probability β. Taking α
sufficiently large, we can ensure the soft constraint is satisfied.

Unfortunately, this strategy can fail if the adversary makes more plays avail-
able than the width guarantees. Consider the game on the left of Fig. 4, where
W (I) = 3 and W (A) = 2. This is realizable with ε = ρ = 1/3, but no values of α
and β yield improvising strategies, essentially because an adversary moving from
X to Z breaks the worst-case assumption that the adversary will minimize the
number of possible plays by moving to Y . In fact, this instance is realizable but
not by any memoryless strategy. To see this, note that all such strategies can be
parametrized by the probabilities p and q in Fig. 4. To satisfy the randomness
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Fig. 4. Reachability games where a näıve random walk, and all memoryless strategies,
fail (left) and where no strategy can optimize either ε or ρ against every adversary
simultaneously (right).

constraint against the adversary that moves from X to Y , both p and (1 − p)q
must be at most 1/3. To satisfy the soft constraint against the adversary that
moves from X to Z we must have pq + (1 − p)q ≥ 2/3, so q ≥ 2/3. But then
(1 − p)q ≥ (1 − 1/3)(2/3) = 4/9 > 1/3, a contradiction.

To fix this problem, our improvising strategy σ̂ (which we will fully specify
in Algorithm 1 below) takes a simplistic approach: it tracks how many plays
in A and I are expected to be possible based on their widths, and if more are
available it ignores them. For example, entering state Z from X there are 2 ways
to produce a play in I, but since W (I|X) = 1 we ignore the play in I \ A. Extra
plays in A are similarly ignored by being treated as members of I \ A. Ignoring
unneeded plays may seem wasteful, but the proof of Theorem 4.1 will show that
σ̂ nevertheless achieves the best possible ε:

Corollary 4.1. C is realizable iff W (I) ≥ 1/ρ and ε ≥ εopt ≡ max(1 −
ρW (A), 0). Against any adversary, the error probability of Algorithm 1 is at
most εopt.

Thus, if any improviser can achieve an error probability ε, ours does. We could
ask for a stronger property, namely that against each adversary the improviser
achieves the smallest possible error probability for that adversary. Unfortunately,
this is impossible in general. Consider the game on the right in Fig. 4, with ρ = 1.
Against the adversary which always moves up, we can achieve ε = 0 with the
strategy that at P moves to Q. We can also achieve ε = 0 against the adversary
that always moves down, but only with a different strategy, namely the one
that at P moves to R. So there is no single strategy that achieves the optimal
ε for every adversary. A similar argument shows that there is also no strategy
achieving the smallest possible ρ for every adversary. In essence, optimizing ε or
ρ in every case would require the strategy to depend on the adversary.

4.3 Improviser Construction: Details

Our improvising strategy, as outlined in the previous section, is shown in Algo-
rithm1. We first compute α and β, the (maximum) probabilities for generating
elements of A and I \ A respectively. As in [8], we take α as large as possible
given α ≤ ρ, and determine β from the probability left over (modulo a couple
corner cases).
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Algorithm 1. the strategy σ̂

1: α ← min(ρ, 1/W (A)) (or 0 instead if W (A) = 0)
2: β ← (1 − αW (A))/(W (I) − W (A)) (or 0 instead if W (I) − W (A) = 0)
3: mA ← W (A), mI ← W (I)
4: h ← λ
5: while the game is not over after h do
6: if it is our turn after h then
7: mA

u , mI
u ← Partition(mA, mI , h) � returns values for each u ∈ Σ

8: for each u ∈ Σ, put tu ← αmA
u + β(mI

u − mA
u )

9: pick u ∈ Σ with probability proportional to tu and append it to h
10: mA ← mA

u , mI ← mI
u

11: else
12: the adversary picks u ∈ Σ given the history h; append it to h

return h
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Fig. 5. A run of Algorithm 1, labeling states with corresponding widths of I (left) and
A (right).

Next we initialize mA and mI , our expectations for how many plays in A and
I respectively are still possible to generate. Initially these are given by W (A)
and W (I), but as we saw above it is possible for more plays to become available.
The function Partition handles this, deciding which mA (resp., mI) out of
the available W (A|h) (W (I|h)) plays we will use. The behavior of Partition is
defined by the following lemma; its proof (in Appendix B [10]) greedily takes the
first mA possible plays in A under some canonical order and the first mI − mA

of the remaining plays in I.

Lemma 4.2. If it is our turn after h ∈ Σ≤n, and mA,mI ∈ Z satisfy 0 ≤
mA ≤ mI ≤ W (I|h) and mA ≤ W (A|h), there are integer partitions

∑
u∈Σ mA

u

and
∑

u∈Σ mI
u of mA and mI respectively such that 0 ≤ mA

u ≤ mI
u ≤ W (I|hu)

and mA
u ≤ W (A|hu) for all u ∈ Σ. These are computable in poly-time given

oracles for W (I|·) and W (A|·).
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Finally, we perform the random walk, moving from position h to hu with
(unnormalized) probability tu, the weighted average described above.

Running Example. With ε = ρ = 1/2, as before W (A) = 1 and W (I) = 4
so α = 1/2 and β = 1/6. On the first move, mA and mI match W (A|h) and
W (I|h), so all plays are used and Partition returns (W (A|hu),W (I|hu)) for
each u ∈ Σ. Looking up these values in Fig. 5, we see (mA

=,mI
=) = (0, 2) and

so t(=) = 2β = 1/3. Similarly t(+) = α = 1/2 and t(−) = β = 1/6. We
choose an action according to these weights; suppose =, so that we update
mA ← 0 and mI ← 2, and suppose the adversary responds with =. From Fig. 5,
W (A| ==) = 1 and W (I| ==) = 3, whereas mA = 0 and mI = 2. So Partition
discards a play, say returning (mA

u ,mI
u) = (0, 1) for u ∈ {+,=} and (0, 0) for

u ∈ {−}. Then t(+) = t(=) = β = 1/6 and t(−) = 0. So we pick + or =
with equal probability, say +. If the adversary responds with +, we get the play
==++, shown in bold on Fig. 5. As desired, it satisfies the hard constraint.

The next few lemmas establish that σ̂ is well-defined and in fact an impro-
vising strategy, allowing us to prove Theorem 4.1. Throughout, we write mA(h)
(resp., mI(h)) for the value of mA (mI) at the start of the iteration for history
h. We also write t(h) = αmA(h) + β(mI(h) − mA(h)) (so t(hu) = tu when we
pick u).

Lemma 4.3. If W (I) ≥ 1/ρ, then σ̂ is a well-defined strategy and Pσ̂,τ (I) = 1
for every adversary τ .

Proof (sketch). An easy induction on h shows the conditions of Lemma 4.2 are
always satisfied, and that t(h) is always positive since we never pick a u with
tu = 0. So

∑
u tu = t(h) > 0 and σ̂ is well-defined. Furthermore, t(h) > 0 implies

mI(h) > 0, so for any h ∈ Πσ̂,τ we have 1h∈I = W (I|h) ≥ mI(h) > 0 and thus
h ∈ I. ��
Lemma 4.4. If W (I) ≥ 1/ρ, then Pσ̂,τ (A) ≥ min(ρW (A), 1) for every τ .

Proof (sketch). Because of the αmA(h) term in the weights t(h), the probability
of obtaining a play in A starting from h is at least αmA(h)/t(h) (as can be seen
by induction on h in order of decreasing length). Then since mA(λ) = W (A)
and t(λ) = 1 we have Pσ̂,τ (A) ≥ αW (A) = min(ρW (A), 1). ��
Lemma 4.5. If W (I) ≥ 1/ρ, then Pσ̂,τ (π) ≤ ρ for every π ∈ Σn and τ .

Proof (sketch). If the adversary is deterministic, the weights we use for our
random walk yield a distribution where each play π has probability either α or
β (depending on whether mA(π) = 1 or 0). If the adversary assigns nonzero
probability to multiple choices this only decreases the probability of individual
plays. Finally, since W (I) ≥ 1/ρ we have α, β ≤ ρ. ��
Proof (of Theorem 4.1). We use a similar argument to that of [8].
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(1)⇒(2) Suppose σ is an improvising strategy, and fix any adversary τ . Then
ρ|Πσ,τ ∩ I| =

∑
π∈Πσ,τ ∩I ρ ≥ ∑

π∈I Pσ,τ (π) = Pσ,τ (I) = 1, so |Πσ,τ ∩ I| ≥
1/ρ. Since τ is arbitrary, this implies W (I) ≥ 1/ρ. Since A ⊆ I, we also
have ρ|Πσ,τ ∩ A| =

∑
π∈Πσ,τ ∩A ρ ≥ ∑

π∈A Pσ,τ (π) = Pσ,τ (A) ≥ 1 − ε, so
|Πσ,τ ∩ A| ≥ (1 − ε)/ρ and thus W (A) ≥ (1 − ε)/ρ.

(2)⇒(3) By Lemmas 4.3 and 4.5, σ̂ is well-defined and satisfies the hard and
randomness constraints. By Lemma 4.4, Pσ̂,τ (A) ≥ min(ρW (A), 1) ≥ 1 − ε,
so σ̂ also satisfies the soft constraint and thus is an improvising strategy. Its
transition probabilities are rational, so it can be implemented by an expected
finite-time probabilistic algorithm, which is then an improviser for C.

(3)⇒(1) Immediate. ��
Proof (of Corollary 4.1). The inequalities in the statement are equivalent to
those of Theorem 4.1 (2). By Lemma 4.4, we have Pσ̂,τ (A) ≥ min(ρW (A), 1). So
the error probability is at most 1 − min(ρW (A), 1) = εopt. ��

5 A Generic Improviser

We now use the construction of Sect. 4 to develop a generic improvisation scheme
usable with any class of specifications Spec supporting the following operations:

Intersection: Given specs X and Y, find Z such that L(Z) = L(X ) ∩ L(Y).
Width Measurement: Given a specification X , a length n ∈ N in unary, and

a history h ∈ Σ≤n, compute W (X|h) where X = L(X ) ∩ Σn.

Efficient algorithms for these operations lead to efficient improvisation
schemes:

Theorem 5.1. If the operations on Spec above take polynomial time (resp.
space), then RCI (Spec,Spec) has a polynomial-time (space) improvisation
scheme.

Proof. Given an instance C = (H,S, n, ε, ρ) in RCI (Spec,Spec), we first apply
intersection to H and S to obtain A ∈ Spec such that L(A) ∩ Σn = A.
Since intersection takes polynomial time (space), A has size polynomial in |C|.
Next we use width measurement to compute W (I) = W (L(H) ∩ Σn|λ) and
W (A) = W (L(A) ∩ Σn|λ). If these violate the inequalities in Theorem4.1, then
C is not realizable and we return ⊥. Otherwise C is realizable, and σ̂ above is
an improvising strategy. Furthermore, we can construct an expected finite-time
probabilistic algorithm implementing σ̂, using width measurement to instanti-
ate the oracles needed by Lemma 4.2. Determining mA(h) and mI(h) takes O(n)
invocations of Partition, each of which is poly-time relative to the width mea-
surements. These take time (space) polynomial in |C|, since H and A have size
polynomial in |C|. As mA,mI ≤ |Σ|n, they have polynomial bitwidth and so
the arithmetic required to compute tu for each u ∈ Σ takes polynomial time.
Therefore the total expected runtime (space) of the improviser is polynomial. ��
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Note that as a byproduct of testing the inequalities in Theorem4.1, our
algorithm can compute the best possible error probability εopt given H, S, and
ρ (see Corollary 4.1). Alternatively, given ε, we can compute the best possible ρ.

We will see below how to efficiently compute widths for DFAs, so Theo-
rem 5.1 yields a polynomial-time improvisation scheme. If we allow polynomial-
space schemes, we can use a general technique for width measurement that only
requires a very weak assumption on the specifications, namely testability in
polynomial space:

Theorem 5.2. RCI (PSA,PSA) has a polynomial-space improvisation scheme,
where PSA is the class of polynomial-space decision algorithms.

Proof (sketch). We apply Theorem 5.1, computing widths recursively using Lem-
mas 4.1, (3)–(5). As in the PSPACE QBF algorithm, the current path in the
recursive tree and required auxiliary storage need only polynomial space. ��

6 Reachability Games and DFAs

Now we develop a polynomial-time improvisation scheme for RCI instances with
DFA specifications. This also provides a scheme for reachability/safety games,
whose winning conditions can be straightforwardly encoded as DFAs.

Suppose D is a DFA with states V , accepting states T , and transition function
δ : V × Σ → V . Our scheme is based on the fact that W (L(D)|h) depends only
on the state of D reached on input h, allowing these widths to be computed by
dynamic programming. Specifically, for all v ∈ V and i ∈ {0, . . . , n} we define:

C(v, i) =

⎧
⎪⎨

⎪⎩

1v∈T i = n

minu∈Σ C(δ(v, u), i + 1) i < n ∧ i odd∑
u∈Σ C(δ(v, u), i + 1) otherwise.

Running Example. Figure 6 shows the values C(v, i) in rows from i = n down-
ward. For example, i = 2 is our turn, so C(1, 2) = C(0, 3) + C(1, 3) + C(2, 3) =
1+1+0 = 2, while i = 3 is the adversary’s turn, so C(−3, 3) = min{C(−3, 4)} =
min{0} = 0. Note that the values in Fig. 6 agree with the widths W (I|h) shown
in Fig. 5.

Lemma 6.1. For any history h ∈ Σ≤n, writing X = L(D) ∩ Σn we have
W (X|h) = C(D(h), |h|), where D(h) is the state reached by running D on h.

Proof. We prove this by induction on i = |h| in decreasing order. In the base case
i = n, we have W (X|h) = 1h∈X = 1D(h)∈T = C(D(h), n). Now take any history
h ∈ Σ≤n with |h| = i < n. By hypothesis, for any u ∈ Σ we have W (X|hu) =
C(D(hu), i + 1). If it is our turn after h, then W (X|h) =

∑
u∈Σ W (X|hu) =∑

u∈Σ C(D(hu), i + 1) = C(D(h), i) as desired. If instead it is the adversary’s
turn after h, then W (X|h) = minu∈Σ W (X|hu) = minu∈Σ C(D(hu), i + 1) =
C(D(h), i) again as desired. So by induction the hypothesis holds for any i. ��
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Fig. 6. The hard specification DFA H in our running example, showing how W (I|h)
is computed.

Theorem 6.1. RCI (DFA, DFA) has a polynomial-time improvisation scheme.

Proof. We implement Theorem 5.1. Intersection can be done with the standard
product construction. For width measurement we compute the quantities C(v, i)
by dynamic programming (from i = n down to i = 0) and apply Lemma6.1. ��

7 Temporal Logics and Other Specifications

In this section we analyze the complexity of reactive control improvisation for
specifications in the popular temporal logics LTL and LDL. We also look at NFA
and CFG specifications, previously studied for non-reactive CI [8], to see how
their complexities change in the reactive case.

For LTL specifications, reactive control improvisation is PSPACE-hard
because this is already true of ordinary reactive synthesis in a finite window
(we suspect this has been observed but could not find a proof in the literature).

Theorem 7.1. Finite-window reactive synthesis for LTL is PSPACE-hard.

Proof (sketch). Given a QBF φ = ∃x∀y . . . χ, we can view assignments to its
variables as traces over a single proposition. In polynomial time we can construct
an LTL formula ψ whose models are the satisfying assignments of χ. Then there
is a winning strategy to generate a play satisfying ψ iff φ is true. ��
Corollary 7.1. RCI (LTL, Σ∗) and RCI (Σ∗, LTL) are PSPACE-hard.

This is perhaps disappointing, but is an inevitable consequence of LTL subsum-
ing Boolean formulas. On the other hand, our general polynomial-space scheme
applies to LTL and its much more expressive generalization LDL:

Theorem 7.2. RCI (LDL, LDL) has a polynomial-space improvisation scheme.

Proof. This follows from Theorem 5.2, since satisfaction of an LDL formula by
a finite word can be checked in polynomial time (e.g. by combining dynamic
programming on subformulas with a regular expression parser). ��
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Thus for temporal logics polynomial-time algorithms are unlikely, but adding
randomization to reactive synthesis does not increase its complexity.

The same is true for NFA and CFG specifications, where it is again PSPACE-
hard to find even a single winning strategy:

Theorem 7.3. Finite-window reactive synthesis for NFAs is PSPACE-hard.

Proof (sketch). Reduce from QBF as in Theorem 7.1, constructing an NFA
accepting the satisfying assignments of χ (as done in [13]). ��
Corollary 7.2. RCI (NFA, Σ∗) and RCI (Σ∗, NFA) are PSPACE-hard.

Theorem 7.4. RCI (CFG, CFG) has a polynomial-space improvisation scheme.

Proof. By Theorem 5.2, since CFG parsing can be done in polynomial time. ��
Since NFAs can be converted to CFGs in polynomial time, this completes

the picture for the kinds of CI specifications previously studied. In non-reactive
CI, DFA specifications admit a polynomial-time improvisation scheme while for
NFAs/CFGs the CI problem is #P-equivalent [8]. Adding reactivity, DFA spec-
ifications remain polynomial-time while NFAs and CFGs move up to PSPACE.

Table 1. Complexity of the reactive control improvisation problem for various types
of hard and soft specifications H, S. Here PSPACE indicates that checking realizability
is PSPACE-hard, and that there is a polynomial-space improvisation scheme.

H\S RSG DFA NFA CFG LTL LDL

RSG
poly-time

DFA
NFA
CFG

PSPACE
LTL
LDL

8 Conclusion

In this paper we introduced reactive control improvisation as a framework for
modeling reactive synthesis problems where random but controlled behavior is
desired. RCI provides a natural way to tune the amount of randomness while
ensuring that safety or other constraints remain satisfied. We showed that RCI
problems can be efficiently solved in many cases occurring in practice, giving a
polynomial-time improvisation scheme for reachability/safety or DFA specifica-
tions. We also showed that RCI problems with specifications in LTL or LDL, pop-
ularly used in planning, have the PSPACE-hardness typical of bounded games,
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and gave a matching polynomial-space improvisation scheme. This scheme gener-
alizes to any specification checkable in polynomial space, including NFAs, CFGs,
and many more expressive formalisms. Table 1 summarizes these results.

These results show that, at a high level, finding a maximally-randomized
strategy using RCI is no harder than finding any winning strategy at all: for
specifications yielding games solvable in polynomial time (respectively, space),
we gave polynomial-time (space) improvisation schemes. We therefore hope that
in applications where ordinary reactive synthesis has proved tractable, our notion
of randomized reactive synthesis will also. In particular, we expect our DFA
scheme to be quite practical, and are experimenting with applications in robotic
planning. On the other hand, our scheme for temporal logic specifications seems
unlikely to be useful in practice without further refinement. An interesting direc-
tion for future work would be to see if modern solvers for quantified Boolean
formulas (QBF) could be leveraged or extended to solve these RCI problems.
This could be useful even for DFA specifications, as conjoining many simple
properties can lead to exponentially-large automata. Symbolic methods based
on constraint solvers would avoid such blow-up.

We are also interested in extending the RCI problem definition to unbounded
or infinite words, as typically used in reactive synthesis. These extensions, as
well as that to continuous signals, would be useful in robotic planning, cyber-
physical system testing, and other applications. However, it is unclear how best
to adapt our randomness constraint to settings where the improviser can gen-
erate infinitely many words. In such settings the improviser could assign arbi-
trarily small or even zero probability to every word, rendering the randomness
constraint trivial. Even in the bounded case, RCI extensions with more complex
randomness constraints than a simple upper bound on individual word probabil-
ities would be worthy of study. One possibility would be to more directly control
diversity and/or unpredictability by requiring the distribution of the improviser’s
output to be close to uniform after transformation by a given function.
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8. Fremont, D.J., Donzé, A., Seshia, S.A.: Control improvisation. arXiv preprint
(2017)
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Abstract. Proof by coupling is a classical technique for proving prop-
erties about pairs of randomized algorithms by carefully relating (or
coupling) two probabilistic executions. In this paper, we show how to
automatically construct such proofs for probabilistic programs. First, we
present f -coupled postconditions, an abstraction describing two corre-
lated program executions. Second, we show how properties of f -coupled
postconditions can imply various probabilistic properties of the original
programs. Third, we demonstrate how to reduce the proof-search prob-
lem to a purely logical synthesis problem of the form ∃f. ∀X. ϕ, making
probabilistic reasoning unnecessary. We develop a prototype implemen-
tation to automatically build coupling proofs for probabilistic properties,
including uniformity and independence of program expressions.

1 Introduction

In this paper, we aim to automatically synthesize coupling proofs for probabilis-
tic programs and properties. Originally designed for proving properties compar-
ing two probabilistic programs—so-called relational properties—a coupling proof
describes how to correlate two executions of the given programs, simulating both
programs with a single probabilistic program. By reasoning about this combined,
coupled process, we can often give simpler proofs of probabilistic properties for
the original pair of programs.

A number of recent works have leveraged this idea to verify relational prop-
erties of randomized algorithms, including differential privacy [8,10,12], security
of cryptographic protocols [9], convergence of Markov chains [11], robustness of
machine learning algorithms [7], and more. Recently, Barthe et al. [6] showed
how to reduce certain non-relational properties—which describe a single prob-
abilistic program—to relational properties of two programs, by duplicating the
original program or by sequentially composing it with itself.

While coupling proofs can simplify reasoning about probabilistic properties,
they are not so easy to use; most existing proofs are carried out manually in
relational program logics using interactive theorem provers. In a nutshell, the
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main challenge in a coupling proof is to select a correlation for each pair of cor-
responding sampling instructions, aiming to induce a particular relation between
the outputs of the coupled process; this relation then implies the desired rela-
tional property. Just like finding inductive invariants in proofs for deterministic
programs, picking suitable couplings in proofs can require substantial ingenuity.

To ease this task, we recently showed how to cast the search for coupling
proofs as a program synthesis problem [1], giving a way to automatically find
sophisticated proofs of differential privacy previously beyond the reach of auto-
mated verification. In the present paper, we build on this idea and present a
general technique for constructing coupling proofs, targeting uniformity and
probabilistic independence properties. Both are fundamental properties in the
analysis of randomized algorithms, either in their own right or as prerequisites
to proving more sophisticated guarantees; uniformity states that a randomized
expression takes on all values in a finite range with equal probability, while
probabilistic independence states that two probabilistic expressions are some-
how uncorrelated—learning the value of one reveals no additional information
about the value of the other.

Our techniques are inspired by the automated proofs of differential privacy we
considered previously [1], but the present setting raises new technical challenges.

Non-lockstep execution. To prove differential privacy, the behavior of a
single program is compared on two related inputs. To take advantage of the
identical program structure, previous work restricted attention to synchroniz-
ing proofs, where the two executions can be analyzed assuming they follow
the same control flow path. In contrast, coupling proofs for uniformity and
independence often require relating two programs with different shapes, pos-
sibly following completely different control flows [6].
To overcome this challenge, we take a different approach. Instead of incre-
mentally finding couplings for corresponding pairs of sampling instructions—
requiring the executions to be tightly synchronized—we first lift all sampling
instructions to the front of the program and pick a coupling once and for all.
The remaining execution of both programs can then be encoded separately,
with no need for lockstep synchronization (at least for loop-free programs—
looping programs require a more careful treatment).
Richer space of couplings. The heart of a coupling proof is selecting—
among multiple possible options—a particular correlation for each pair of
random sampling instructions. Random sampling in differentially private pro-
grams typically use highly domain-specific distributions, like the Laplace dis-
tribution, which support a small number of useful couplings. Our prior work
leveraged this feature to encode a collection of primitive couplings into the
synthesis system. However, this is no longer possible when programs sample
from distributions supporting richer couplings, like the uniform distribution.
Since our approach coalesces all sampling instructions at the beginning of
the program (more generally, at the head of the loop), we also need to find
couplings for products of distributions.



Constraint-Based Synthesis of Coupling Proofs 329

We address this problem in two ways. First, we allow couplings of two
sampling instructions to be specified by an injective function f from one
range to another. Then, we impose requirements—encoded as standard logi-
cal constraints—to ensure that f indeed represents a coupling; we call such
couplings f -couplings.
More general class of properties. Finally, we consider a broad class of
properties rather than just differential privacy. While we focus on uniformity
and independence for concreteness, our approach can establish general equal-
ities between products of probabilities, i.e., probabilistic properties of the
form

m∏

i=1

Pr[ei ∈ Ei] =
n∏

j=1

Pr[e′
j ∈ E′

j ],

where ei and e′
j are program expressions in the first and second programs

respectively, and Ei and E′
j are predicates. As an example, we automatically

establish a key step in the proof of Bertrand’s Ballot theorem [20].

Paper Outline. After overviewing our technique on a motivating example
(Sect. 2), we detail our main contributions.

– Proof technique: We introduce f -coupled postconditions, a form of postcon-
dition for two probabilistic programs where random sampling instructions in
the two programs are correlated by a function f . Using f -coupled postcon-
ditions, we present proof rules for establishing uniformity and independence
of program variables, fundamental properties in the analysis of randomized
algorithms (Sect. 3).

– Reduction to constraint-based synthesis: We demonstrate how to auto-
matically find coupling proofs by transforming our proof rules into logical
constraints of the form ∃f.∀X.ϕ—a synthesis problem. A satisfiable con-
straint shows the existence of a function f—essentially, a compact encoding
of a coupling proof—implying the target property (Sect. 4).

– Extension to looping programs: We extend our technique to reason about
loops, by requiring synchronization at the loop head and finding a coupled
invariant (Sect. 5).

– Implementation and evaluation: We implement our technique and evalu-
ate it on several case studies, automatically constructing coupling proofs for
interesting properties of a variety of algorithms (Sect. 6).

We conclude by comparing our technique with related approaches (Sect. 7).

2 Overview and Illustration

2.1 Introducing f-Couplings

A Simple Example. We begin by illustrating f -couplings over two identi-
cal Bernoulli distributions, denoted by the following probability mass functions:
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μ1(x) = μ2(x) = 0.5 for all x ∈ B (where B = {true, false}). In other words, the
distribution μi returns true with probability 0.5, and false with probability 0.5.

An f -coupling for μ1, μ2 is a function f : B → B from the domain of the
first distribution (B) to the domain of the second (also B); f should be injective
and satisfy the monotonicity property : μ1(x) ≤ μ2(f(x)) for all x ∈ B. In other
words, f relates each element x ∈ B with an element f(x) that has an equal or
larger probability in μ2. For example, consider the function f¬ defined as

f¬(x) = ¬x.

This function relates true in μ1 with false in μ2, and vice versa. Observe that
μ1(x) � μ2(f¬(x)) for all x ∈ B, satisfying the definition of an f¬-coupling. We
write μ1 �f¬ μ2 when there is an f¬-coupling for μ1 and μ2.

Using f-Couplings. An f -coupling can imply useful properties about the dis-
tributions μ1 and μ2. For example, suppose we want to prove that μ1(true) =
μ2(false). The fact that there is an f¬-coupling of μ1 and μ2 immediately implies
the equality: by the monotonicity property,

μ1(true) � μ2(f¬(true)) = μ2(false)
μ1(false) � μ2(f¬(false)) = μ2(true)

and therefore μ1(true) = μ2(false). More generally, it suffices to find an f -
coupling of μ1 and μ2 such that

{(x, f(x)) | x ∈ B}︸ ︷︷ ︸
Ψf

⊆ {(z1, z2) | z1 = true ⇐⇒ z2 = false},

where Ψf is induced by f ; in particular, the f¬-coupling satisfies this property.

2.2 Simulating a Fair Coin

fun fairCoin(p ∈ (0, 1))
x false
y false
while x = y do

x ∼ bern(p)
y ∼ bern(p)

return x

Fig. 1. Simulating a fair
coin using an unfair one

Now, let’s use f -couplings to prove more interesting
properties. Consider the program fairCoin in Fig. 1;
the program simulates a fair coin by flipping a pos-
sibly biased coin that returns true with probability
p ∈ (0, 1), where p is a program parameter. Our goal
is to prove that for any p, the output of the program
is a uniform distribution—it simulates a fair coin.
We consider two separate copies of fairCoin generat-
ing distributions μ1 and μ2 over the returned value
x for the same bias p, and we construct a coupling
showing μ1(true) = μ2(false), that is, heads and tails have equal probability.

Constructing f-Couplings. At first glance, it is unclear how to construct an
f -coupling; unlike the distributions in our simple example, we do not have a
concrete description of μ1 and μ2 as uniform distributions (indeed, this is what
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we are trying to establish). The key insight is that we do not need to construct
our coupling in one shot. Instead, we can specify a coupling for the concrete,
primitive sampling instructions in the body of the loop—which we know sample
from bern(p)—and then extend to a f -coupling for the whole loop and μ1, μ2.

For each copy of fairCoin, we coalesce the two sampling statements inside the
loop into a single sampling statement from the product distribution:

x, y ∼ bern(p) × bern(p)

We have two such joint distributions bern(p) × bern(p) to couple, one from each
copy of fairCoin. We use the following function fswap : B2 → B2:

fswap(x, y) = (y, x)

which exchanges the values of x and y. Since this is an injective function satis-
fying the monotonicity property

(bern(p) × bern(p))(x, y) � (bern(p) × bern(p))(fswap(x, y))

for all (x, y) ∈ B×B and p ∈ (0, 1), we have an fswap-coupling for the two copies
of bern(p) × bern(p).

Analyzing the Loop. To extend a fbody-coupling on loop bodies to the entire
loop, it suffices to check a synchronization condition: the coupling from fbody

must ensure that the loop guards are equal so the two executions synchronize at
the loop head. This holds in our case: every time the first program executes the
statement x, y ∼ bern(p) × bern(p), we can think of x, y as non-deterministically
set to some values (a, b), and the corresponding variables in the second program
as set to fswap(a, b) = (b, a). The loop guards in the two programs are equivalent
under this choice, since a = b is equivalent to b = a, hence we can analyze the
loops in lockstep. In general, couplings enable us to relate samples from a pair
of probabilistic assignments as if they were selected non-deterministically, often
avoiding quantitative reasoning about probabilities.

Our constructed coupling for the loop guarantees that (i) both programs exit
the loop at the same time, and (ii) when the two programs exit the loop, x takes
opposite values in the two programs. In other words, there is an floop-coupling
of μ1 and μ2 for some function floop such that

Ψfloop
⊆ {(z1, z2) | z1 = true ⇐⇒ z2 = false}, (1)

implying μ1(true) = μ2(false). Since both distributions are output distributions
of fairCoin—hence μ1 = μ2—we conclude that fairCoin simulates a fair coin.

Note that our approach does not need to construct floop concretely—this
function may be highly complex. Instead, we only need to show that Ψfloop

(or
some over-approximation) lies inside the target relation in Formula 1.

Achieving Automation. Observe that once we have fixed an fbody -coupling for
the sampling instructions inside the loop body, checking that the floop-coupling
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satisfies the conditions for uniformity (Formula 1) is essentially a program veri-
fication problem. Therefore, we can cast the problem of constructing a coupling
proof as a logical problem of the form ∃f.∀X.ϕ, where f is the f -coupling we
need to discover and ∀X.ϕ is a constraint ensuring that (i) f indeed repre-
sents an f -coupling, and (ii) the f -coupling implies uniformity. Thus, we can
use established synthesis-verification techniques to solve the resulting constraints
(see, e.g., [2,13,27]).

3 A Proof Rule for Coupling Proofs

In this section, we develop a technique for constructing couplings and formalize
proof rules for establishing uniformity and independence properties over program
variables. We begin with background on probability distributions and couplings.

3.1 Distributions and Couplings

Distributions. A function μ : B → [0, 1] defines a distribution over a countable
set B if

∑
b∈B μ(b) = 1. We will often write μ(A) for a subset A ⊆ B to mean∑

x∈A μ(x). We write dist(B) for the set of all distributions over B.
We will need a few standard constructions on distributions. First, the support

of a distribution μ is defined as supp(μ) = {b ∈ B | μ(b) > 0}. Second, for a
distribution on pairs μ ∈ dist(B1 × B2), the first and second marginals of μ,
denoted π1(μ) and π2(μ) respectively, are distributions over B1 and B2:

π1(μ)(b1) �
∑

b2∈B2

μ(b1, b2) π2(μ)(b2) �
∑

b1∈B1

μ(b1, b2).

Couplings. Let Ψ ⊆ B1×B2 be a binary relation. A Ψ -coupling for distributions
μ1 and μ2 over B1 and B2 is a distribution μ ∈ dist(B1×B2) with (i) π1(μ) = μ1

and π2(μ) = μ2; and (ii) supp(μ) ⊆ Ψ . We write μ1 �Ψ μ2 when there exists a
Ψ -coupling between μ1 and μ2.

An important fact is that an injective function f : B1 → B2 where μ1(b) �
μ2(f(b)) for all b ∈ B1 induces a coupling between μ1 and μ2; this follows
from a general theorem by Strassen [28], see also [23]. We write μ1 �f μ2 for
μ1 �Ψf μ2, where Ψf = {(b1, f(b1)) | b1 ∈ B1}. The existence of a coupling
can imply various useful properties about the two distributions. The following
general fact will be the most important for our purposes—couplings can prove
equalities between probabilities.

Proposition 1. Let E1 ⊆ B1 and E2 ⊆ B2 be two events, and let Ψ= �
{(b1, b2) | b1 ∈ E1 ⇐⇒ b2 ∈ E2}. If μ1 �Ψ= μ2, then μ1(E1) = μ2(E2).
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3.2 Program Model

Our program model uses an imperative language with probabilistic assignments,
where we can draw a random value from primitive distributions. We consider the
easier case of loop-free programs first; we consider looping programs in Sect. 5.

Syntax. A (loop-free) program P is defined using the following grammar:

P := V ← exp (assignment)
| V ∼ dexp (probabilistic assignment)
| if bexp then P else P (conditional)
| P ;P (sequential composition)

where V is the set of variables that can appear in P , exp is an expression over
V , and bexp is a Boolean expression over V . A probabilistic assignment samples
from a probability distribution defined by expression dexp; for instance, dexp
might be bern(p), the Bernoulli distribution with probability p of returning true.
We use V I ⊆ V to denote the set of input program variables, which are never
assigned to. All other variables are assumed to be defined before use.

We make a few simplifying assumptions. First, distribution expressions only
mention input variables V I , e.g., in the example above, bern(p), we have p ∈ V I .
Also, all programs are in static single assignment (ssa) form, where each variable
is assigned to only once and are well-typed. These assumptions are relatively
minor; they can can be verified using existing tools, or lifted entirely at the cost
of slightly more complexity in our encoding.

Semantics. A state s of a program P is a valuation of all of its variables,
represented as a map from variables to values, e.g., s(x) is the value of x ∈ V
in s. We extend this mapping to expressions: s(exp) is the valuation of exp in s,
and s(dexp) is the probability distribution defined by dexp in s.

We use S to denote the set of all possible program states. As is standard
[24], we can give a semantics of P as a function �P � : S → dist(S) from states to
distributions over states. For an output distribution μ = �P �(s), we will abuse
notation and write, e.g., μ(x = y) to denote the probability of the event that
the program returns a state s where s(x = y) = true.

Self-Composition. We will sometimes need to simulate two separate executions
of a program with a single probabilistic program. Given a program P , we use
Pi to denote a program identical to P but with all variables tagged with the
subscript i. We can then define the self-composition: given a program P , the
program P1;P2 first executes P1, and then executes the (separate) copy P2.

3.3 Coupled Postconditions

We are now ready to present the f -coupled postcondition, an operator for approx-
imating the outputs of two coupled programs.
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Strongest Postcondition. We begin by defining a standard strongest post-
condition operator over single programs, treating probabilistic assignments as
no-ops. Given a set of states Q ⊆ S, we define post as follows:

post(v ← exp, Q) = {s[v �→ s(exp)] | s ∈ Q}
post(v ∼ dexp, Q) = Q

post(if bexp then P else P ′, Q) = {s′ | s ∈ Q, s′ ∈ post(P, s), s(bexp) = true}
∪ {s′ | s ∈ Q, s′ ∈ post(P ′, s), s(bexp) = false}

post(P ; P ′, Q) = post(P ′, post(P, Q))

where s[v �→ c] is state s with variable v mapped to the value c.

f-Coupled Postcondition. We rewrite programs so that all probabilistic
assignments are combined into a single probabilistic assignment to a vector of
variables appearing at the beginning of the program, i.e., an assignment of the
form v ∼ dexp in P and v′ ∼ dexp′ in P ′, where v,v′ are vectors of variables. For
instance, we can combine x ∼ bern(0.5); y ∼ bern(0.5) into the single statement
x, y ∼ bern(0.5) × bern(0.5).

Let B,B′ be the domains of v and v′, f : B → B′ be a function, and
Q ⊆ S × S′ be a set of pairs of input states, where S and S′ are the states of P
and P ′, respectively. We define the f -coupled postcondition operator cpost as

cpost(P, P ′, Q, f) = {(post(P, s), post(P ′, s′)) | (s, s′) ∈ Q′}
where Q′ = {(s[v �→ b], s′[v′ �→ f(b)]) | (s, s′) ∈ Q, b ∈ B},

assuming that ∀(s, s′) ∈ Q. s(dexp) �f s′(dexp′). (2)

The intuition is that the values drawn from sampling assignments in both
programs are coupled using the function f . Note that this operation non-
deterministically assigns v from P with some values b, and v′ with f(b). Then,
the operation simulates the executions of the two programs. Formula 2 states
that there is an f -coupling for every instantiation of the two distributions used
in probabilistic assignments in both programs.

Example 1. Consider the simple program P defined as x ∼ bern(0.5);x = ¬x
and let f¬(x) = ¬x. Then, cpost(P, P,Q, f¬) is {(s, s′) | s(x) = ¬s′(x)}.

The main soundness theorem shows there is a probabilistic coupling of the
output distributions with support contained in the coupled postcondition (we
defer all proofs to the full version of this paper).

Theorem 1. Let programs P and P ′ be of the form v ∼ dexp;PD and v′ ∼
dexp′;P ′

D, for deterministic programs PD, P ′
D. Given a function f : B → B′

satisfying Formula 2, for every (s, s′) ∈ S × S′ we have �P �(s) �Ψ �P ′�(s′),
where Ψ = cpost(P, P ′, (s, s′), f).

3.4 Proof Rules for Uniformity and Independence

We are now ready to demonstrate how to establish uniformity and independence
of program variables using f -coupled postconditions. We will continue to assume
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that random sampling commands have been lifted to the front of each program,
and that f satisfies Formula 2.

Uniformity. Consider a program P and a variable v∗ ∈ V of finite, non-empty
domain B. Let μ = �P �(s) for some state s ∈ S. We say that variable v∗ is
uniformly distributed in μ if μ(v∗ = b) = 1

|B| for every b ∈ B.
The following theorem connects uniformity with f -coupled postconditions.

Theorem 2 (Uniformity). Consider a program P with v ∼ dexp as its first
statement and a designated return variable v∗ ∈ V with domain B. Let Q =
{(s, s) | s ∈ S} be the input relation. If we have

∃f. cpost(P, P,Q, f) ⊆ {(s, s′) ∈ S × S | s(v∗) = b ⇐⇒ s′(v∗) = b′}
for all b, b′ ∈ B, then for any input s ∈ S the final value of v∗ is uniformly
distributed over B in �P �(s).

The intuition is that in the two f -coupled copies of P , the first v∗ is equal to
b exactly when the second v∗ is equal to b′. Hence, the probability of returning
b in the first copy and b′ in the second copy are the same. Repeating for every
pair of values b, b′, we conclude that v∗ is uniformly distributed.

Example 2. Recall Example 1 and let b = true and b′ = false. We have

cpost(P, P,Q, f¬) ⊆ {(s, s′) ∈ S × S | s(x) = b ⇐⇒ s′(x) = b′}.

This is sufficient to prove uniformity (the case with b = b′ is trivial).

Independence. We now present a proof rule for independence. Consider a pro-
gram P and two variables v∗, w∗ ∈ V with domains B and B′, respectively. Let
μ = �P �(s) for some state s ∈ S. We say that v∗, w∗ are probabilistically inde-
pendent in μ if μ(v∗ = b ∧ w∗ = b′) = μ(v∗ = b) · μ(w∗ = b′) for every b ∈ B and
b′ ∈ B′.

The following theorem connects independence with f -coupled postconditions.
We will self-compose two tagged copies of P , called P1 and P2.

Theorem 3 (Independence). Assume a program P and define the relation

Q = {(s, s1 ⊕ s2) | s ∈ S, si ∈ Si, s(v) = si(vi), for all v ∈ V I},

where ⊕ takes the union of two maps with disjoint domains. Fix some w∗, v∗ ∈ V
with domains B,B′, and assume that for all b ∈ B, b′ ∈ B′, there exists a
function f such that cpost(P, (P1;P2), Q, f) is contained in

{(s′, s′
1 ⊕ s′

2) | s′(v∗) = b ∧ s′(w∗) = b′ ⇐⇒ s′
1(v

∗
1) = b ∧ s′

2(w
∗
2) = b′}.

Then, w∗, v∗ are independently distributed in �P �(s) for all inputs s ∈ S.

The idea is that under the coupling, the probability of P returning v∗ =
b∧w∗ = b′ is the same as the probability of P1 returning v∗ = b and P2 returning
w∗ = b′, for all values b, b′. Since P1 and P2 are two independent executions of
P by construction, this establishes independence of v∗ and w∗.
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4 Constraint-Based Formulation of Proof Rules

In Sect. 3, we formalized the problem of constructing a coupling proof using f -
coupled postconditions. We now automatically find such proofs by posing the
problem as a constraint, where a solution gives a function f establishing our
desired property.

4.1 Generating Logical and Probabilistic Constraints

Logical Encoding. We first encode program executions as formulas in first-
order logic, using the following encoding function:

enc(v ← exp) � v = exp

enc(v ∼ dexp) � true

enc(if bexp then P else P ′) � (bexp ⇒ enc(P )) ∧ (¬bexp ⇒ enc(P ′))

enc(P ;P ′) � enc(P ) ∧ enc(P ′)

We assume a direct correspondence between expressions in our language and
the first-order theory used for our encoding, e.g., linear arithmetic. Note that
the encoding disregards probabilistic assignments, encoding them as true; this
mimics the semantics of our strongest postcondition operator post. Probabilistic
assignments will be handled via a separate encoding of f -couplings.

As expected, enc reflects the strongest postcondition post.

Lemma 1. Let P be a program and let ρ be any assignment of the variables. An
assignment ρ′ agreeing with ρ on all input variables V I satisfies the constraint
enc(P )[ρ′/V ] precisely when post(P, {ρ}) = {ρ′}, treating ρ, ρ′ as program states.

Uniformity Constraints. We can encode the conditions in Theorem2 for show-
ing uniformity as a logical constraint. For a program P and a copy P1, with first
statements v ∼ dexp and v1 ∼ dexp1, we define the constraints:

∀a, a′.∃f.∀V, V1.

(V I = V I
1 ∧ v1 = f(v) ∧ enc(P ) ∧ enc(P1))
=⇒ (v∗ = a ⇐⇒ v∗

1 = a′)

V I = V I
1 =⇒ dexp �f dexp1

(3)

(4)

Note that this is a second-order formula, as it quantifies over the uninterpreted
function f . The left side of the implication in Formula 3 encodes an f -coupled
execution of P and P1, starting from equal initial states. The right side of this
implication encodes the conditions for uniformity, as in Theorem2.

Formula 4 ensures that there is an f -coupling between dexp and dexp1 for any
initial state; recall that dexp may mention input variables V I . The constraint
dexp �f dexp1 is not a standard logical constraint—intuitively, it is satisfied if
dexp �f dexp1 holds for some interpretation of f , dexp, and dexp1.
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Example 3. The constraint

∃f.∀p, p′. p = p′ ⇒ bern(p) �f bern(p′)

holds by setting f to the identity function id, since for any p = p′ we have an
f -coupling bern(p) �id bern(p′).

Example 4. Consider the program x ∼ bern(0.5); y = ¬x. The constraints for
uniformity of y are

∀a, a′.∃f.∀V, V1.(x1 = f(x) ∧ y = ¬x ∧ y1 = ¬x1) =⇒ (y = a ⇐⇒ y1 = a′)

bern(0.5) �f bern(0.5).

Since there are no input variables, V I = V I
1 is equivalent to true.

Theorem 4 (Uniformity constraints). Fix a program P and variable v∗ ∈
V . Let ϕ be the uniformity constraints in Formulas 3 and 4. If ϕ is valid, then
v∗ is uniformly distributed in �P �(s) for all s ∈ S.

Independence Constraints. Similarly, we can characterize independence con-
straints using the conditions in Theorem3. After transforming the program
P1;P2 to start with the single probabilistic assignment statement v1,2 ∼ dexp1,2,
combining probabilistic assignments in P1 and P2, we define the constraints:

∀a, a′.∃f.∀V, V1, V2.

(V I = V I
1 = V I

2 ∧ v1,2 = f(v) ∧ enc(P ) ∧ enc(P1;P2))
=⇒ (v∗ = a ∧ w∗ = a′ ⇐⇒ v∗

1 = a ∧ w∗
2 = a′)

V I = V I
1 = V I

2 =⇒ dexp �f dexp1,2

(5)

(6)

Theorem 5 (Independence constraints). Fix a program P and two vari-
ables v∗, w∗ ∈ V . Let ϕ be the independence constraints from Formulas 5 and 6.
If ϕ is valid, then v∗, w∗ are independent in �P �(s) for all s ∈ S.

4.2 Constraint Transformation

To solve our constraints, we transform our constraints into the form ∃f.∀X.ϕ,
where ϕ is a first-order formula. Such formulas can be viewed as synthesis prob-
lems, and are often solvable automatically using standard techniques.

We perform our transformation in two steps. First, we transform our con-
straint into the form ∃f.∀X.ϕp, where ϕp still contains the coupling constraint.
Then, we replace the coupling constraint with a first-order formula by logically
encoding primitive distributions as uninterpreted functions.
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Quantifier Reordering. Our constraints are of the form ∀a, a′.∃f.∀X.ϕ. Intu-
itively, this means that for every possible value of a, a′, we want one function f
satisfying ∀X.ϕ. We can pull the existential quantifier ∃f to the outermost level
by extending the function with additional parameters for a, a′, thus defining a
different function for every interpretation of a, a′. For the uniformity constraints
this transformation yields the following formulas:

∃g.∀a, a′.∀V, V1.

(V I = V I
1 ∧ v1 = g(a, a′,v) ∧ enc(P ) ∧ enc(P1))
=⇒ (v∗ = a ⇐⇒ v∗

1 = a′)

V I = V I
1 =⇒ dexp �g(a,a′,−) dexp1

(7)

(8)

where g(a, a′,−) is the function after partially applying g.

Transforming Coupling Constraints. Our next step is to eliminate coupling
constraints. To do so, we use the definition of f -coupling, which states that
μ1 �f μ2 if (i) f is injective and (ii) ∀x. μ1(x) � μ2(f(x)). The first constraint
(injectivity) is straightforward. For the second point (monotonicity), we can
encode distribution expressions—which represent functions to reals—as uninter-
preted functions, which we then further constrain. For instance, the coupling
constraint bern(p) �f bern(p′) can be encoded as

∀x, y. x �= y ⇒ f(x) �= f(y) (injectivity)
∀x. h(x) � h′(f(x)) (monotonicity)
∀x. ite(x = true, h(x) = p, h(x) = 1 − p) (bern(p) encoding)
∀x. ite(x = true, h′(x) = p′, h′(x) = 1 − p′) (bern(p′) encoding)

where h, h′ : B → R≥0 are uninterpreted functions representing the probability
mass functions of bern(p) and bern(p′); note that the third constraint encodes
the distribution bern(p), which returns true with probability p and false with
probability 1 − p, and the fourth constraint encodes bern(p′).

Note that if we cannot encode the definition of the distribution in our first-
order theory (e.g., if it requires non-linear constraints), or if we do not have a
concrete description of the distribution, we can simply elide the last two con-
straints and under-constrain h and h′. In Sect. 6 we use this feature to prove
properties of a program encoding a Bayesian network, where the primitive dis-
tributions are unknown program parameters.

Theorem 6 (Transformation soundness). Let ϕ be the constraints generated
for some program P . Let ϕ′ be the result of applying the above transformations
to ϕ. If ϕ′ is valid, then ϕ is valid.

Constraint Solving. After performing these transformations, we finally arrive
at constraints of the form ∃g.∀a, a′.∀V. ϕ, where ϕ is a first-order formula. These
exactly match constraint-based program synthesis problems. In Sect. 6, we use
smt solvers and enumerative synthesis to handle these constraints.
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5 Dealing with Loops

So far, we have only considered loop-free programs. In this section, we our app-
roach to programs with loops.

f-Coupled Postconditions and Loops. We consider programs of the form

while bexp P b

where P b is a loop-free program that begins with the statement v ∼ dexp; our
technique can also be extended to handle nested loops. We assume all programs
terminate with probability 1 for any initial state; there are numerous systems for
verifying this basic property automatically (see, e.g., [15–17]). To extend our f -
coupled postconditions, we let cpost(P, P ′, Q, f) be the smallest set I satisfying:

Q ⊆ I (initiation)

cpost(P b, P b′
, Ien, f) ⊆ I (consecution)

I ⊆ {s(bexp) = s′(bexp′) | s ∈ S, s′ ∈ S′} (synchronization)

where Ien � {(s, s′) ∈ I | s(bexp) = true}.
Intuitively, the set I is the least inductive invariant for the two coupled

programs running with synchronized loops. Theorem1, which establishes that
f -coupled postconditions result in couplings over output distributions, naturally
extends to a setting with loops.

Constraint Generation. To prove uniformity, we generate constraints much
like the loop-free case except that we capture the invariant I, modeled as a
relation over the variables of both programs, using a Constrained Horn-Clause
(chc) encoding. As is standard, we use V ′, V ′

1 to denote primed copies of program
variables denoting their value after executing the body, and we assume that
enc(P b) encodes a loop-free program as a transition relation from states over V
to states over V ′.

∀a, a
′
.∃f, I. ∀V, V1, V

′
, V

′
1 .

V
I

= V
I
1 =⇒ I(V, V1) (initiation)

I(V, V1) ∧ bexp ∧ v
′
1 = f(v

′
) ∧ enc(P b

) ∧ enc(P b
1) =⇒ I(V

′
, V

′
1 ) (consecution)

I(V, V1) =⇒ bexp = bexp1 (synchronization)

I(V, V1) =⇒ dexp �f
dexp1 (coupling)

I(V, V1) ∧ ¬bexp =⇒ (v
∗

= a ⇐⇒ v
∗
1 = a

′
) (uniformity)

The first three constraints encode the definition of cpost; the last two ensure
that f constructs a coupling and that the invariant implies the uniformity con-
dition when the loop terminates. Using the technique presented in Sect. 4.2, we
can transform these constraints into the form ∃f, I.∀X.ϕ. That is, in addition
to discovering the function f , we need to discover the invariant I.

Proving independence in looping programs poses additional challenges, as
directly applying the self-composition construction from Sect. 3 requires relating
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a single loop with two loops. When the number of loop iterations is deterministic,
however, we may simulate two sequentially composed loops with a single loop
that interleaves the iterations (known as synchronized or cross product [4,29])
so that we reduce the synthesis problem to finding a coupling for two loops.

6 Implementation and Evaluation

We now discuss our implementation and five case studies used for evaluation.

Fig. 2. Case study programs

Implementation. To solve formulas of the form ∃f.∀X.ϕ, we implemented a
simple solver using a guess-and-check loop: We iterate through various interpre-
tations of f , insert them into the formula, and check whether the resulting for-
mula is valid. In the simplest case, we are searching for a function f from n-tuples
to n-tuples. For instance, in Sect. 2.2, we discovered the function f(x, y) = (y, x).
Our implementation is parameterized by a grammar defining an infinite set of
interpretations of f , which involves permuting the arguments (as above), con-
ditionals, and other basic operations (e.g., negation for Boolean variables). For
checking validity of ∀X.ϕ given f , we use the Z3 smt solver [19] for loop-free
programs. For loops, we use an existing constrained-Horn-clause solver based on
the MathSAT smt solver [18].

Benchmarks and Results. As a set of case studies for our approach, we use
5 different programs collected from the literature and presented in Fig. 2. For
these programs, we prove uniformity, (conditional) independence properties, and
other probabilistic equalities. For instance, we use our implementation to prove
a main lemma for the Ballot theorem [20], encoded as the program ballot.

Figure 3 shows the time and number of loop iterations required by our imple-
mentation to discover a coupling proof. The small number of iterations and time
needed demonstrates the simplicity of the discovered proofs. For instance, the
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ballot theorem was proved in 3 s and only 4 iterations, while the fairCoin example
(illustrated in Sect. 2.2) required only two iterations and 1.4 s. In all cases, the
size of the synthesize function f in terms of depth of its ast is no more than 4.
We describe these programs and properties in a bit more detail.

Case Studies: Uniformity (fairCoin, fairDie). The first two programs pro-
duce uniformly random values. Our approach synthesizes a coupling proof cer-
tifying uniformity for both of these programs. The first program fairCoin, which
we saw in Sect. 2.2, produces a fair coin flip given access to biased coin flips by
repeatedly flipping two coins while they are equal, and returning the result of
the first coin as soon as the flips differ. Note that the bias of the coin flip is a
program parameter, and not fixed statically. The synthesized coupling swaps the
result of the two samples, mapping the values of (x, y) to (y, x).

Program Iters. Time(s)

fairCoin
fairDie
noisySum
bayes
ballot

2 1.4
9 6.1
4 0.2
5 0.4
4 3.0

Fig. 3. Statistics

The second program fairDie gives a different con-
struction for simulating a roll of a fair die given fair
coin flips. Three fair coins are repeatedly flipped as
long as they are all equal; the returned triple is the
binary representation of a number in {1, . . . , 6}, the
result of the simulated roll. The synthesized cou-
pling is a bijection on triples of booleans B×B×B;
fixing any two possible output triples (b1, b2, b3) and
(b′

1, b
′
2, b

′
3) of distinct booleans, the coupling maps

(b1, b2, b3) �→ (b′
1, b

′
2, b

′
3) and vice versa, leaving all

other triples unchanged.

Case Studies: Independence (noisySum,bayes). In the next two programs,
our approach synthesizes coupling proofs of independence and conditional inde-
pendence of program variables in the output distribution. The first program,
noisySum, is a stylized program inspired from privacy-preserving algorithms that
sum a series of noisy samples; for giving accuracy guarantees, it is often impor-
tant to show that the noisy draws are probabilistically independent. We show
that any pair of samples are independent.

The second program, bayes, models a simple Bayesian network with three
independent variables x, y, z and two dependent variables w and w′, computed
from (x, y) and (y, z) respectively. We want to show that w and w′ are indepen-
dent conditioned on any value of y; intuitively, w and w′ only depend on each
other through the value of y, and are independent otherwise. We use a constraint
encoding similar to the encoding for showing independence to find a coupling
proof of this fact. Note that the distributions μ, μ′, μ′′ of x, y, z are unknown
parameters, and the functions f and g are also uninterpreted. This illustrates
the advantage of using a constraint-based technique—we can encode unknown
distributions and operations as uninterpreted functions.

Case Studies: Probabilistic Equalities (ballot). As we mentioned in Sect. 1,
our approach extends naturally to proving general probabilistic equalities beyond
uniformity and independence. To illustrate, we consider a lemma used to prove
Bertrand’s Ballot theorem [20]. Roughly speaking, this theorem considers count-
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ing ballots one-by-one in an election where there are nA votes cast for candidate
A and nB votes cast for candidate B, where nA, nB are parameters. If nA > nB

(so A is the winner) and votes are counted in a uniformly random order, the
Ballot theorem states that the probability that A leads throughout the whole
counting process—without any ties—is precisely (nA − nB)/(nA + nB).

One way of proving this theorem, sometimes called André’s reflection princi-
ple, is to show that the probability of counting the first vote for A and reaching
a tie is equal to the probability of counting the first vote for B and reaching
a tie. We simulate the counting process slightly differently—instead of drawing
a uniform order to count the votes, our program draws uniform samples for
votes—but the original target property is equivalent to the equality

Pr[first1 = 0 ∧ tie1 ∧ ψ(xA1, xB1)] = Pr[first2 = 1 ∧ tie2 ∧ ψ(xA2, xB2)] (9)

with ψ(xAi, xBi) is xAi = nA ∧ xBi = nB . Our approach synthesizes a coupling
and loop invariant showing that the coupled post-condition is contained in

{(s1, s2) | s1(first = 0 ∧ tie ∧ ψ(xA, xB)) ⇐⇒ s2(first = 0 ∧ tie ∧ ψ(xA, xB))},

giving Formula (9) by Proposition 1 (see Barthe et al. [6] for more details).

7 Related Work

Probabilistic programs have been a long-standing target of formal verification.
We compare with two of the most well-developed lines of research: probabilistic
model checking and deductive verification via program logics or expectations.

Probabilistic Model Checking. Model checking has proven to be a powerful
tool for verifying probabilistic programs, capable of automated proofs for various
probabilistic properties (typically encoded in probabilistic temporal logics); there
are now numerous mature implementations (see, e.g., [21] or [3, Chap. 10] for
more details). In comparison, our approach has the advantage of being fully
constraint-based. This gives it a number of unique features: (i) it applies to
programs with unknown inputs and variables over infinite domains; (ii) it applies
to programs sampling from distributions with parameters, or even ones sampling
from unknown distributions modeled as uninterpreted functions in first-order
logic; (iii) it applies to distributions over infinite domains; and (iv) the generated
coupling proofs are compact. At the same time, our approach is specialized to
the coupling proof technique and is likely to be more incomplete.

Deductive Verification. Compared to general deductive verification systems
for probabilistic programs, like program logics [5,14,22,26] or techniques reason-
ing by pre-expectations [25], the main benefit of our technique is automation—
deductive verification typically requires an interactive theorem prover to manip-
ulate complex probabilistic invariants. In general, the coupling proof method lim-
its reasoning about probabilities and distributions to just the random sampling
commands; in the rest of the program, the proof can avoid quantitative reasoning



Constraint-Based Synthesis of Coupling Proofs 343

entirely. As a result, our system can work with non-probabilistic invariants and
achieve full automation. Our approach also smoothly handles properties involv-
ing the probabilities of multiple events, like probabilistic independence, unlike
techniques that analyze probabilistic events one-by-one.
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Abstract. We address the problem of synthesizing provably correct
controllers for linear systems with reach-avoid specifications. Our solu-
tion uses a combination of an open-loop controller and a tracking con-
troller, thereby reducing the problem to smaller tractable problems.
We show that, once a tracking controller is fixed, the reachable states
from an initial neighborhood, subject to any disturbance, can be over-
approximated by a sequence of ellipsoids, with sizes that are indepen-
dent of the open-loop controller. Hence, the open-loop controller can
be synthesized independently to meet the reach-avoid specification for
an initial neighborhood. Exploiting several techniques for tightening the
over-approximations, we reduce the open-loop controller synthesis prob-
lem to satisfiability over quantifier-free linear real arithmetic. The overall
synthesis algorithm, computes a tracking controller, and then iteratively
covers the entire initial set to find open-loop controllers for initial neigh-
borhoods. The algorithm is sound and, for a class of robust systems, is
also complete. We present RealSyn, a tool implementing this synthesis
algorithm, and we show that it scales to several high-dimensional systems
with complex reach-avoid specifications.

1 Introduction

The controller synthesis question asks whether an input can be generated for a
given system (or a plant) so that it achieves a given specification. Algorithms
for answering this question hold the promise of automating controller design.
They have the potential to yield high-assurance systems that are correct-by-
construction, and even negative answers to the question can convey insights
about unrealizability of specifications. This is not a new or a solved problem,
but there has been resurgence of interest with the rise of powerful tools and
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compelling applications such as vehicle path planning [11], motion control [10,
23], circuits design [30] and various other engineering areas.

In this paper, we study synthesis for linear, discrete-time, plant models with
bounded disturbance—a standard view of control systems [3,17]. We will con-
sider reach-avoid specifications which require that starting from any initial state
Θ, the controller has to drive the system to a target set G, while avoiding cer-
tain unsafe states or obstacles O. Reach-avoid specifications arise naturally in
many domains such as autonomous and assisted driving, multi-robot coordina-
tion, and spacecraft autonomy, and have been studied for linear, nonlinear, as
well as stochastic models [7,9,14,18].

Textbook control design methods address specifications like stability, distur-
bance rejection, asymptotic convergence, but they do not provide formal guar-
antees about reach-avoid specifications. Another approach is based on discrete
abstraction, where a discrete, finite-state, symbolic abstraction of the original
control system is computed, and a discrete controller is synthesized by solving
a two-player game on the abstracted game graph. Theoretically, these methods
can be applied to systems with nonlinear dynamics and they can synthesize
controllers for a general class of LTL specifications. However, in practice, the
discretization step leads to a severe state space explosion for higher dimensional
models. Indeed, we did not find any reported evaluation of these tools (see related
work) on benchmarks that go beyond 5-dimensional plant models.

In this paper, the controller we synthesize, follows a natural paradigm for
designing controllers. The approach is to first design an open-loop controller for
a single initial state x0 ∈ Θ to meet the reach-avoid specification. This is called
the reference trajectory. For the remaining states in the initial set, a tracking
controller is combined, that drives these other trajectories towards the trajectory
starting from x0.

However, designing such a combined controller can be computationally
expensive [32] because of the interdependency between the open-loop controller
and the tracking controller. Our secret sauce in making this approach feasible, is
to demonstrate that the two controllers can be synthesized in a decoupled way.
Our strategy is as follows. We first design a tracking controller using a standard
control-theoretical method called LQR (linear quadratic regulator) [5]. The cru-
cial observation that helps decouple the synthesis of the tracking and open-loop
controller, is that for such a combined controller, once the tracking controller is
fixed, the set of states reached from the initial set is contained within a sequence
of ellipsoidal sets [24] centered around the reference trajectory. The size of these
ellipsoidal sets is solely dependent on the tracking controller, and is independent
of the reference trajectory or the open-loop controller. On the flip side, the open-
loop controller and the resulting reference trajectory can be chosen independent
of the fixed tracking controller. Based on this, the problem of synthesizing the
open-loop controller can be completely decoupled from synthesizing the track-
ing controller. Our open-loop controller is synthesized by encoding the problem
in logic. The straightforward encoding of the synthesis problem results in a ∃∀
formula in the theory of linear arithmetic. Unfortunately, solving large instances
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of such formulas using current SMT solvers is challenging. To overcome this, we
exploit special properties of polytopes and hyper-rectangles, and reduce the orig-
inal ∃∀-formula into the quantifier-free fragment of linear arithmetic (QF-LRA).

Our overall algorithm (Algorithm1), after computing an initial tracking con-
troller, iteratively synthesizes open-loop controllers by solving QF-LRA formulas
for smaller subsets that cover the initial set. The algorithm will automatically
identify the set of initial states for which the combined tracking+open-loop con-
troller is guaranteed to work. Our algorithm is sound (Theorem1), and for a
class of robust linear systems, it is also complete (Theorem 2).

We have implemented the synthesis algorithm in a tool called RealSyn. Any
SMT solver can be plugged-in for solving the open-loop problem; we present
experimental results with Z3, CVC4 and Yices. We report the performance on 24
benchmark problems (using all three solvers). Results show that our approach
scales well for complex models—including a system with 84-dimensional dynam-
ics, another system with 3 vehicles (12-dimensional) trying to reach a common
goal while avoiding collision with the obstacles and each other, and yet another
system with 10 vehicles (20 dimensional) trying to maintain a platoon. Real-
Syn usually finds a controller within 10 min with the fastest SMT solver. The
closest competing tool, Tulip [13,39], does not return any result even for some
of the simpler instances.

Related Work. We briefly review related work on formal controller synthesis
according to the plant model type, specifications, and approaches.

Plants and Specifications. In increasing order of generality, the types of
plant models that have been considered for controller synthesis are double-
integrator models [10], linear dynamical models [20,28,34,38], piecewise affine
models [18,40], and nonlinear (possibly switched) models [7,25,31,33]. There is
also a line of work on synthesis approaches for stochastic plants (see [1], and
the references therein). With the exceptions noted below, most of these papers
consider continuous time plant models, unlike our work.

There are three classes of specifications typically used for synthesis. In the
order of generality, they are: (1) pure safety or invariance specifications [2,15,33],
(2) reach-avoid [7,14,15,18,33], and (3) more general LTL and GR(1) [20,26,39]
[16,38,40]. For each of these classes both bounded and unbounded-time variants
have been considered.

Synthesis Tools. There is a growing set of controller synthesis algorithms
that are available as implemented tools and libraries. This includes tools like
CoSyMa [27], Pessoa [30], LTLMop [22,37], Tulip [13,39], SCOTS [31], that rely
on the computation of some sort of a discrete (or symbolic) abstraction. Our
trial with a 4-dimensional example on Tulip [13,39] did not finish the discretiza-
tion step in one hour. LTLMop [22,37] handles GR(1) LTL specifications, which
are more general than reach-avoid specifications considered in this paper, but it
is designed for 2-dimensional robot models working in the Euclidean plane. An
alternative synthesis approach generates mode switching sequences for switched
system models [19,21,29,35,41] to meet the specifications. This line of work
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focuses on a finite input space, instead of the infinite input space we are consid-
ering in this paper. Abate et al. [2] use a controller template similar to the one
considered in this paper for invariant specifications. A counter-example guided
inductive synthesis (CEGIS) approach is used to first find a feedback controller
for stabilizing the system. Since this feedback controller may not be safe for all
initial states of the system, a separate verification step is employed to verify
safety, or alternatively find a counter-example. In the latter case, the process is
repeated until a valid controller is found. This is different from our approach,
where any controller found needs no further verification. Several of the bench-
marks are adopted from [2].

2 Preliminaries and Problem Statement

Notation. For a set A and a finite sequence σ in A∗, we denote the tth element
of σ by σ[t]. R

n is the n-dimensional Euclidean space. Given a vector x ∈ R
n,

x(i) is the ith component of x. We will use boldfaced letters (for example, x,d,u,
etc.,) to denote a sequence of vectors.

For a vector x, xᵀ is its transpose. Given an invertible matrix M ∈ R
n×n,

‖x‖M
Δ=

√
xᵀMᵀMx is called the M -norm of x. For M = I, ‖x‖M is the familiar

2-norm. Alternatively, ‖x‖M = ‖Mx‖2. For a matrix A, A � 0 means A is
positive definite. Given two symmetric matrices A and B, A � B means A−B is
negative semi-definite. Given a matrix A and an invertible matrix M of the same
dimension, there exists an α ≥ 0 such that AᵀMᵀMA � αMᵀM . Intuitively, α
is the largest scaling factor that can be achieved by the linear transformation
from x to Ax when using M for computing the norm, and can be found as the
largest eigenvalue of the symmetric matrix (MAM−1)ᵀ(MAM−1).

Given a vector c ∈ R
n, an invertible matrix M , and a scalar value r ≥ 0,

we define Er(c,M) Δ= {x | ‖x − c‖M ≤ r} to be the ellipsoid centered at c with
radius r and shape M . Br(c)

Δ= Er(c, I) is the ball of radius r centered at c.
Given two vectors c, v ∈ R

n, Rv(c) Δ= {x | ∧n
i=1 c(i) − v(i) ≤ x(i) ≤ c(i) + v(i)}

is the rectangle centered at c with the length vector v. For a set S ⊆ R
n, a

vector v ∈ R
n, and a matrix M ∈ R

n×n we define v ⊕ S
Δ= {x + v | x ∈ S} and

M ⊗ S
Δ= {Mx | x ∈ S}. We say a set S ⊆ R

n is a polytope if there is a matrix
Am×n and a vector b ∈ R

m such that S = {x | Ax ≤ b}, and denote by vert(S)
the set of vertices of S.

2.1 Discrete Time Linear Control Systems

An (n,m)-dimensional discrete-time linear system A is a 5-tuple 〈A,B,Θ,U,D〉,
where (i) A ∈ R

n×n is called the dynamic matrix, (ii) B ∈ R
n×m is called the

input matrix, (iii) Θ ⊆ R
n is a set of initial states (iv) U ⊆ R

m is the space of
inputs, (v) D ⊆ R

n is the space of disturbances.
A control sequence for an (n,m)-dimensional system A is a (possibly infi-

nite) sequence u = u[0],u[1], . . ., where each u[t] ∈ U . Similarly, a disturbance
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sequence for A is a (possibly infinite) sequence d = d[0],d[1], . . ., where each
d[t] ∈ D. Given control u and disturbance d, and an initial state x[0] ∈ Θ, the
execution of A is uniquely defined as the (possibly infinite) sequence of states
x = x[0],x[1], . . . , where for each t > 0,

x[t + 1] = Ax[t] + Bu[t] + d[t]. (1)

A (state feedback) controller for A is a function g : Θ × R
n → R

m, that maps
an initial state and a (current) state to an input. That is, given an initial state
x0 ∈ Θ and state x ∈ R

n at time t, the control input to the plant at time t is:

u[t] = g(x0, x). (2)

This controller is allowed to use the memory of some initial state x0 (not necessar-
ily the current execution’s initial state) for deciding the current state-dependent
feedback. Thus, given an initial state x[0], a disturbance d, and a state feedback
controller g, Eqs. (1) and (2) define a unique execution x of A. A state x is
reachable in t-steps if there exists an execution x of A such that x[t] = x. The
set of all reachable states from S ⊆ Θ in exactly T steps using the controller g is
denoted by ReachA,g(S, T ). When A and g are clear from the context, we write
Reach(S, T ).

2.2 Bounded Controller Synthesis Problem

Given a (n,m)-dimensional discrete-time linear system A, a sequence O of obsta-
cles or unsafe sets (with O[t] ⊆ R

n, for each t), a goal G ⊆ R
n, and a time bound

T , the bounded time controller synthesis problem is to find, a state feedback con-
troller g such that for every initial state θ ∈ Θ and disturbance d ∈ DT , the
unique execution x of A with g, starting from x[0] = θ satisfies (i) for all t ≤ T ,
u[t] ∈ U , (ii) for all t ≤ T , x[t] �∈ O[t], and (iii) x[T ] ∈ G.

For the rest of the paper, we will assume that each of the sets in {O[t]}t∈N,
G and U are closed polytopes. Moreover, we assume that the pair (A,B) is
controllable [3].

Fig. 1. The settings for controller
synthesis of a mobile robot with
reach-avoid specification.

Example. Consider a mobile robot that
needs to reach the green area of an apart-
ment starting from the entrance area, while
avoiding the gray areas (Fig. 1). The robot’s
dynamics is described by a linear model (for
example the navigation model from [12]). The
obstacle sequence O here is static, that is,
O[t] = O[0] for all t ≥ 0. Both Θ and G are
rectangles. Although these sets are depicted in
2D, the dynamics of the robot may involve a
higher dimensional state space.

In this example, there is no disturbance,
but a similar problem can be formulated for an drone flying outdoors, in which
case, the disturbance input would model the effect of wind. Time-varying obstacle
sets are useful for modeling safety requirements of multi-robot systems.
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3 Synthesis Algorithm

3.1 Overview

The controller synthesis problem requires one to find a state feedback controller
that ensures that the trajectory starting from any initial state in Θ will meet
the reach-avoid specification. Since the set of initial states Θ will typically be an
infinite set, this requires the synthesized feedback controller g to have an effective
representation. Thus, an “enumerative” representation, where a (separate) open-
loop controller is constructed for each initial state, is not feasible — by an open-
loop controller for initial state x0 ∈ Θ, we mean a control sequence u such that
the corresponding execution x with x[0] = x0 and 0 disturbance satisfies the
reach-avoid constraints. We, therefore, need a useful template that will serve as
the representation for the feedback controller.

In control theory, one natural controller design paradigm is to first find a
reference execution xref which uses an open-loop controller, then add a tracking
controller which tries to force other executions x starting from different initial
states x[0] to get close to xref by minimizing the distance between xref and x.
This form of controller combining open-loop control with tracking control is also
proposed in [32] for reach-avoid specifications. The resulting trajectory under a
combination of tracking controller plus reference trajectory can be described by
the following system of equations.

u[t] = uref[t] + K(x[t] − xref[t]),with
xref[t + 1] = Axref[t] + Buref[t]

(3)

The tracking controller is given by the matrix K that determines the additive
component of the input based on the difference between the current state and
the reference trajectory. Once xref[0] and the open-loop control sequence uref is
fixed, the value of xref[t] is determined at each time step t ∈ N. Therefore, the
controller g is uniquely defined by the tuple 〈K,xref[0],uref〉. We could rewrite
the linear system in (3) as an augmented system

[
x

xref

]
[t + 1] =

[
A + BK −BK

0 A

] [
x

xref

]
[t] +

[
B 0
0 B

] [
uref

uref

]
[t],+

[
d
0

]
[t].

This can be rewritten as x̂[t + 1] = Âx̂[t] + B̂û[t] + d̂[t]. The closed-form
solution is x̂[t] = Âtx̂[0] +

∑t−1
i=0 Ât−1−i(B̂û[i] + d̂[i]). To synthesize a controller

g of this form, therefore, requires finding K,xref[0],uref such that the closed-form
solution meets the reach-avoid specification. This is indeed the approach followed
in [32], albeit in the continuous time setting. Observe that in the closed-form
solution, Â, û, and x̂[0] all depend on parameters that we need to synthesize.
Therefore, solving such constraints involves polynomials whose degrees grow with
the time bound. This is very expensive, and unlikely to scale to large dimensions
and time bounds.

In this paper, to achieve scalability, we take a slightly different approach
than the one where K,xref[0], and uref are simultaneously synthesized. We first



Controller Synthesis Made Real 353

synthesize a tracking controller K, independent of xref[0] and uref, using the stan-
dard LQR method. Once K is synthesized, we show that, no matter what xref[0],
and uref are, the state of the system at time t starting from x0 is guaranteed to
be contained within an ellipsoid centered at xref[t] and of radius that depends
only on K, the initial distance between x0 and xref[0], time t, and disturbance.
Moreover, this radius is only a linear function of the initial distance (Lemma1).
Thus, if we can synthesize an open-loop controller uref starting from some state
xref[0], such that ellipsoids centered around xref satisfy the reach-avoid specifi-
cation, we can conclude that the combined controller will work correctly for all
initial states in some ball around the initial state xref[0]. The radius of the ball
around xref[0] for which the controller is guaranteed to work, will depend on the
radii of the ellipsoids around xref that satisfy the reach-avoid specification. This
decoupled approach to synthesis is the first key idea in our algorithm.

Following the above discussion, crucial to the success of the decoupled app-
roach is to obtain a tight characterization of the radius of the ellipsoid around
xref[t] that contains the reach set, as a function of the initial distance — too
conservative a bound will imply that the combined controller only works for a
tiny set of initial states. The ellipsoid’s shape and direction, which is charac-
terized by a coordinate transformation matrix M , also affect the tightness of
the over-approximations. We determine the shape and direction of the ellipsoids
that give us the tightest over-approximation using an SDP solver (Sect. 3.4).

Synthesizing the tracking controller K, still leaves open the problem of syn-
thesizing an open-loop controller for an initial state xref[0]. A straightforward
encoding of the problem of synthesizing a open-loop controller, that works for
all initial states in some ball around xref[0], results in a ∃∀-formula in the the-
ory of real arithmetic. Unfortunately solving such formulas does not scale to
large dimensional systems using current SMT solvers. The next key idea in
our algorithm is to simplify these constraints. By exploiting special properties
of polytopes and hyper-rectangles, we reduce the original ∃∀-formula into the
quantifier-free fragment of linear real arithmetic (QF-LRA) (Sect. 3.5).

Putting it all together, the overall algorithm (Algorithm1) works as follows.
After computing an initial tracking controller K, coordinate transformation M
for optimal ellipsoidal approximation of reach-sets, it synthesizes open-loop con-
trollers for different initial states by solving QF-LRA formulas. After each open-
loop controller is synthesized, the algorithm identifies the set of initial states
for which the combined tracking+open-loop controller is guaranteed to work,
and removes this set from Θ. In each new iteration, it picks a new initial state
not covered by previous combined controllers, and the process terminates when
all of Θ is covered. Our algorithm is sound (Theorem1)—whenever a controller
is synthesized, it meets the specifications. Further, for robust systems (defined
later in the paper), our algorithm is guaranteed to terminate when the system
has a combined controller for all initial states (Theorem2).
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3.2 Synthesizing the Tracking Controller K

Given any open-loop controller uref and the corresponding reference execution
xref, by replacing in Eq. (1) the controller of Eq. (3) we get:

x[t + 1] = (A + BK)x[t] − BKxref[t] + Buref[t] + d[t]. (4)

Subtracting xref[t+1] from both sides, we have that for any execution x starting
from the initial states x[0] and with disturbance d, the distance between x and
xref changes with time as:

x[t + 1] − xref[t + 1] = (A + BK)(x[t] − xref[t]) + d[t]. (5)

With Ac
Δ= A + BK, y[t] Δ= x[t + 1] − xref[t + 1], Eq. (5) becomes y[t + 1] =

Acy[t] + d[t]. We want x[t] to be as close to xref[t] as possible, which means
K should be designed to make |y[t]| converge to 0. Equivalently, K should be
designed as a linear feedback controller such that Ac is stable1. Such a matrix
K can be computed using classical control theoretic methods. In this work, we
compute K as a linear (stable) feedback controller using LQR as stated in the
following proposition.

Proposition 1 (LQR). For linear system A with (A,B) to be controllable and
0 disturbance, fix any Q,R � 0 and let J

Δ= xᵀ[T ]Qx[T ] +
∑T−1

i=0 (xᵀ[i]Qx[i] +
uᵀ[i]Ru[i]) be the corresponding quadratic cost. Let X be the unique positive
definite solution to the discrete-time Algebraic Riccati Equation (ARE): AᵀXA−
X − AᵀXB(BᵀXB + R)−1BᵀXA + Q = 0, and K

Δ= −(BᵀXB + R)−1BᵀXA.
Then A + BK is stable, and the corresponding feedback input minimizes J .

Methods for choosing Q and R are outside the scope of this paper. We fix Q
and R to be identity matrices for most examples. Roughly, for a given R, scaling
up Q results in a K that makes an execution x converge faster to the reference
execution xref.

3.3 Reachset Over-Approximation with Tracking Controller

We present a method for over-approximating the reachable states of the system
for a given tracking controller K (computed as in Proposition 1) and an open-
loop controller uref (to be computed in Sect. 3.5).

Lemma 1. Consider any K ∈ R
m×n, any initial set S ⊆ Er0(xref[0],M) and

disturbance D ⊆ Eδ(0,M), where r0, δ ≥ 0 and M ∈ R
n×n is invertible.

For any open-loop controller uref and the corresponding reference execution
xref,

Reach(S, t) ⊆ Ert
(xref[t],M),∀ t ≤ T, (6)

where rt = α
t
2 r0+

∑t−1
i=0 α

i
2 δ, and α ≥ 0 is such that (A+BK)ᵀMᵀM(A+BK) �

αMᵀM .
1 A + BK has spectral radius ρ(A + BK) < 1.
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Lemma 1 can be proved using the triangular inequality for the norm of
Eq. (5). From Lemma 1, it follows that given a open-loop controller uref and
the corresponding reference trajectory xref, the reachable states from S ⊆
Er0(xref[0],M) at time t can be over-approximated by an ellipsoid centered at
xref[t] with size rt

Δ= α
t
2 r0 +

∑t−1
i=0 α

i
2 δ. Here M is any invertible matrix that

defines the shape of the ellipsoid and it influences the value of α. As the over-
approximation (rt) grows exponentially with t, it makes sense to choose M in a
way that makes α small. In next section, we discuss how M and α are chosen to
achieve this.

3.4 Shaping Ellipsoids for Tight Over-Approximating
Hyper-rectangles

The choice of M and the resulting α may seem like a minor detail, but a bad
choice here can doom the rest of the algorithm to be impractical. For exam-
ple, if we fix M to be the identity matrix I, the resulting value of α may give
over-approximations that are too conservative. Even if the actual executions are
convergent to xref the resulting over-approximation can exponentially blow up.

We find the smallest exponential convergence/divergence rate (α) by solving
for P in the following semi-definite program (SDP):

min
P�0,α∈R

α

s.t (A + BK)ᵀP (A + BK) � αP.
(7)

This gives M as the unique matrix such that P = MT M .
In the rest of the paper, the reachset over-approximations will be represented

by hyper-rectangles to allow us to efficiently use the existing SMT solvers. That
is, the ellipsoids given by Lemma 1 have to be bounded by hyper-rectangles. For
any coordinate transformation matrix M , the ellipsoid with unit size E1(0,M) ⊆
Rv(0), with v(i) = min

x∈E1(0,M)
x(i). This v(i) is also computed by solving an

SDP. Similarly, Er(0,M) ⊆ Rrv(0). Therefore, from Lemma 1, it follows that
Reach(S, t) ⊆ Rrtv(xref[t]) with rt = α

t
2 r0 +

∑t−1
i=0 α

i
2 δ and v is the size vector

of the rectangle bounding E1(0,M). These optimization problems for computing
M,α, and v have to be solved once per synthesis problem.

Fig. 2. Robot’s position with the
synthesized controllers using Algo-
rithm 1.

Example. Continuing the previous example.
Suppose robot is asked to reach the target
set in 20 steps. Figure 2 shows the projec-
tion of the reachset on the robot’s position
with synthesized controller. The curves are
the references executions xref from 2 initials
cover and the rectangles are reachset over-
approximations such that every execution of
the system starting from each initial cover is
guaranteed to be inside the rectangles at each
time step.
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3.5 Synthesis of Open-Loop Controller

In this section, we will discuss the synthesis of the open-loop controller uref in
〈K,xref[0],uref〉. From the previous section, we know that given an initial set S, a
tracking controller K, and an open-loop controller uref, the reachable set (under
any disturbance) at time t is over-approximated by Rrtv(xref[t]). Thus, once we
fix K and xref[0], the problem of synthesizing a controller reduces to the problem
of synthesizing an appropriate uref such that the reachset over-approximations
meet the reach-avoid specification. Indeed, for the rest of the presentation, we
will assume a fixed K.

For synthesizing uref, we would like to formalize the problem in terms of con-
straints that will allow us to use SMT solvers. In the following, we describe the
details of how this problem can be formalized as a quantifier-free first order for-
mula over the theory of reals. We will then lay out specific assumptions and/or
simplifications required to reduce the problem to QF-LRA theory, which is imple-
mented efficiently in existing state-of-the-art SMT solvers. Most SMT solvers
also provide the functionality of explicit model generation, and the concrete con-
troller values can be read-off from the models generated when the constraints
are satisfiable.

Constraints for Synthesizing uref. Let us fix an initial state x0 and a radius
r, defining a set of initial states S = Br(x0). The uref synthesis problem can be
stated as finding satisfying solutions for the formula φsynth(x0, r).

φsynth(x0, r)
Δ
= ∃uref[0],uref[1], . . .uref[T−1],

∃xref[0],xref[1], . . .xref[T ],
φcontrol(uref) ∧ φexecution(uref,xref, x0)
∧φavoid(x0, r,uref,xref) ∧ φreach(x0, r,uref,xref)

(8)

where φcontrol constrains the space of inputs, φexecution states that the sequence xref

is a reference execution following Eq. (3), φavoid specifies the safety constraint,
φreach specifies that the system reaches G:

φcontrol(uref)
Δ
=

T−1∧

t=0

uref[t] ⊕ (
K ⊗ Rrtv(0)

) ⊆ U

φexecution(uref,xref, x0)
Δ
= (xref[0] = x0) ∧

T−1∧

t=0

(xref[t + 1] = Axref[t] + Buref[t])

φavoid(x0, r,uref,xref)
Δ
=

T∧

t=0

Rrtv(xref[t]) ∩ O[t] = ∅

φreach(x0, r,uref,xref)
Δ
= RrT v(xref[T ]) ⊆ G.

(9)

As discussed in Sect. 3.2, the vector v and the constants r0, . . . , rT are pre-
computed using the radius r of the initial ball.

We make a few remarks about this formulation. First, each of the formulas
φcontrol, φavoid and φreach represent sufficient conditions to check for the existence
of uref. Second, the constraints stated above belong to the (decidable) theory
of reals. However, φcontrol, φavoid and φreach, and thus φsynth, are not quantifier
free as they use subset and disjointness checks. This is because for sets S, T
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expressed as predicates ϕS(·) and ϕT (·), S ∩ T = ∅ corresponds to the formula
∀x · ¬(ϕS(x) ∧ ϕT (x)) and S ⊆ T (or equivalently S ∩ T c = ∅) corresponds to
the formula ∀x · ϕS(x) =⇒ ϕT (x).

Reduction to QF-LRA. Since the sets G and U are bounded polytopes, Gc and
U c can be expressed as finite unions of (possibly unbounded) polytopes. Thus,
the subset predicates uref[t]⊕

(
K ⊗Rrtv(0)

) ⊆ U in φcontrol and Rrtv(xref[t]) ⊆ G
in φreach can be expressed as a disjunction over finitely many predicates, each
expressing the disjointness of two polytopes.

The central idea behind eliminating the universal quantification in the dis-
jointness predicates in φavoid or in the inferred disjointness predicates in φreach

and φcontrol, is to find a separating hyperplane that witnesses the disjointness
of two polytopes. Let P1 = {x | A1x ≤ b1} and P2 = {x | A2x ≤ b2} be two
polytopes such that P1 is closed and bounded. Then, if there is an i for which
each vertex v of P1 satisfies A

(i)
2 v > b2(i), we must have that P1 ∩P2 = ∅, where

A
(i)
2 is the ith row vector of the matrix A2. That is, such a check is sufficient to

ensure disjointness. Thus, in the formula φavoid, in order to check if Rrtv(xref[t])
does not intersect with O[t], we check if there is a face of the polytope O[t]
such that all the vertices of Rrtv(xref[t]) lie on the other side of the face. The
same holds for each of the inferred predicates in φreach and φcontrol. Eliminating
quantifiers is essential to scale our analysis to large high dimensional systems.

Further, when the set G has a hyper-rectangle representation, the contain-
ment check Rrtv(xref[T ]) ⊆ G can directly be encoded as the conjunction of
O(n) linear inequalities, stating that for each dimension i, the lower and the
upper bounds of Rrtv(xref[t]) in the ith dimension, satisfy l′i ≤ li ≤ ui ≤ u′

i,
where l′i and r′

i represent the bounds for G in the ith dimension. Similarly, when
O[t] has a rectangle representation, we can formulate the emptiness constraint

Rrtv(xref[t])∩O[t] = ∅ as
n∨

i=1

(ui < l′i ∨ li > u′
i), where li and ui (resp. l′i and u′

i)

are the lower and upper bounds of Rrtv(xref[t]) (resp. O[t]) in the ith dimension.
Since such simplifications can exponentially reduce the number of constraints
generated, they play a crucial for the scalability.

The constraints for checking emptiness and disjointness, as discussed above,
only give rise to linear constraints, do not have the ∀ quantification over states,
and is a sound transformation of φsynth into QF-LRA. In Sect. 3.6 we will see
that the reach set over-approximation can be made arbitrarily small when the
disturbance is 0 by arbitrarily shrinking the size of the initial cover. Thus, these
checks will also turn out to be sufficient to ensure that if there exists a controller,
φsynth is satisfiable.

Lemma 2. Let v ∈ R
n and r0, . . . , rT ∈ R be such that for any execution xref

starting at x0, we have ∀t ≤ T · Reach(Br(x0), t) ⊆ Rrtv(xref[t]). If the formula
φsynth(x0, r) is satisfiable, then there is a control sequence uref such that for every
x ∈ Br(x0) and for every d ∈ DT , the unique execution x defined by the controller
〈K,x0,uref〉 and d, starting at x satisfies x[T ] ∈ G ∧ ∀t ≤ T · x[t] �∈ O[t].
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We remark that a possible alternative for eliminating the ∀ quantifier is the
use of Farkas’ Lemma, but this gives rise to nonlinear constraints2. Indeed, in
our experimental evaluation, we observed the downside of resorting to Farkas’
Lemma in this problem.

3.6 Synthesis Algorithm Putting It All Together

The presentation in Sect. 3.5 describes how to formalize constraints to generate a
control sequence that works for a subset of the initial set Θ. The overall synthesis
procedure (Algorithm 1), first computes a tracking controller K, then generates
open-loop control sequences and reference executions in order to cover the entire
set Θ.

Algorithm 1. Algorithm for Synthesizing Combined Controller
1: Input: A, T,O[0], . . . ,O[T ], G, Q, R
2: r∗ ← diameter(Θ)/2
3: K, v, c1, c2 ← bloatParams(A, T, Q, R)
4: cover ← ∅

5: controllers ← ∅

6: while Θ 	⊆ cover do
7: ψsynth ← getConstraints(A, T,O[0], . . . ,O[T ], G, v, c1, c2, r

∗, cover)
8: if checkSat(ψsynth) = SAT then
9: r,uref,xref ← model(ψsynth)

10: cover ← cover ∪ Br(xref[0])
11: controllers ← controllers ∪ { ( 〈K,xref[0],uref〉 , Br(xref[0]) ) }
12: else
13: r∗ ← r∗/2

14: return controllers;

The procedure bloatParams, computes a tracking controller K, a vector
v and real valued parameters {c1[t]}t≤T , {c2[t]}t≤T , for the system A and time
bound T with Q,R for the LQR method. Given any reference execution xref and
an initial set Br(xref[0]), the parameters computed by bloatParams can be used
to over-approximate Reach(Br(xref[0]), t) with the rectangle Rv′(xref[t]), where
v′ = (c1[t]r + c2[t])v. The computation of these parameters proceeds as follows.
Matrix K is determined using LQR (Proposition 1). Now we use Equation (7)
to compute the matrix M and the rate of convergence α. Vector v is then com-
puted such that E1(0,M) is bounded by Rv(0). Let runit = maxx∈B1(0) ‖x‖M

and δ = maxd∈D ‖d‖M . Then we have, Br(x0) ⊆ Er·runit(x0,M) for any x0.
The constants c1[0], . . . c1[T ], c2[0], . . . c2[T ] are computed as c1[t] = α

t
2 runit and

c2[t] =
∑t−1

i=0 α
i
2 δ; Sects. 3.2–3.4 establish the correctness guarantees of these

2 Farkas’ Lemma introduces auxiliary variables that get multiplied with existing vari-
ables xref[0], . . . ,xref[T ], leading to nonlinear constraints.
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parameters. Clearly, these computations are independent of any reference exe-
cutions xref and control sequences uref.

The procedure getConstraints constructs the logical formula ψsynth below
such that whenever ψsynth holds, we can find an initial radius r, and center x0 in
the set Θ \ cover and a control sequence uref such that any controlled execution
starting from Br(x0) satisfies the reach-avoid requirements.

ψsynth
Δ= ∃x0 ∃r ·

(
x0 ∈ Θ ∧ x0 �∈ cover ∧ r > r∗ ∧ φsynth(x0, r)

)
(10)

Recall that the constants r0, . . . , rT used in φsynth are affine functions of r and
thus ψsynth falls in the QF-LRA fragment.

Line 8 checks for the satisfiability of ψsynth. If satisfiable, we extract the model
generated to get the radius of the initial ball, the control sequence uref and
the reference execution xref in Line 9. The generated controller 〈K,xref[0],uref〉
is guaranteed to work for the ball Br(xref[0]), which can be marked covered
by adding it to the set cover. In order to keep all the constraints linear, one
can further underapproximate Br(xref[0]) with the rectangle Rw(xref[0]), where
w(i) = r/

√
n for each dimension i ≤ n. If ψsynth is unsatisfiable, then we reduce

the minimum radius r∗ (Line 13) and continue to look for controllers, until we
find that Θ ⊆ cover.

The set controllers is the set of pairs (〈K,x0,uref〉, S), such that the con-
troller 〈K,x0,uref〉 drives the set S to meet the desired specification. Each time
a new controller is found, it is added to the set controllers together with
the initial set for which it works (Line 11). The following theorem asserts the
soundness of Algorithm 1, and it follows from Lemmas 1 and 2.

Theorem 1. If Algorithm1 terminates, then the synthesized controller is cor-
rect. That is, (a) for each x ∈ Θ, there is a (〈K,x0,uref〉, S) ∈ controllers,
such that x ∈ S, and (b) for each (〈K,x0,uref〉, S) ∈ controllers, the unique
controller 〈K,x0,uref〉 is such that for every x ∈ S and for every d ∈ DT ,
the unique execution defined by 〈K,x0,uref〉 and d, starting at x, satisfies the
reach-avoid specification.

Algorithm 1 ensures that, upon termination, every x ∈ Θ is covered, i.e.,
one can construct a combined controller that drives x to G while avoiding O.
However it may find multiple controllers for a point x ∈ Θ. This non-determinism
can be easily resolved by picking any controller assigned for x.

Below, we show that, under certain robustness assumptions on the system
A, G and the sets O, and in the absence of disturbance Algorithm1 terminates.

Robustly Controllable Systems. A system A = 〈A,B,Θ,U,D〉 is said to
be ε-robustly controllable (ε > 0) with respect to the reach-avoid specifica-
tion (O, G) and matrix K, if (a) D = {0}, and (b) for every initial state
θ ∈ Θ and for every open loop-controller uref ∈ UT such that the unique execu-
tion starting from θ using the open-loop controller uref satisfies the reach-avoid
specification, then with the controller 〈K, θ,uref〉 defined as in Equation (3),
∀t ≤ T,Reach(Bε(θ), t) ∩ O[t] = ∅ and Reach(Bε(θ), T ) ⊆ G, i.e., ∀x ∈ Bε(θ),
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the unique trajectory x defined by the controller 〈K, θ,uref〉 starting from x also
satisfies the reach avoid specification.

Theorem 2. Let A be ε-robust with respect to the reach-avoid specification
(O, G) and K, for some ε > 0. If there is a controller for A that satisfies the
reach-avoid specification, then Algorithm1 terminates.

When the system is robust, then (in the absence of any disturbance i.e., D =
{0}), the sizes r0, r1, . . . , rT of the hyper-rectangles that overapproximate reach-
sets go arbitrarily close to 0 as the initial cover converges to a single point (as seen
in Lemma 1). Therefore, the over-approximations can be made arbitrarily precise
as r∗ decreases. Moreover, as r∗ approaches 0, Eq. (9) (with simplifications for
QF-LRA), also becomes satisfiable whenever there is a controller. The correctness
of Theorem 2 follows from both these observations.

4 RealSyn Implementation and Evaluation

4.1 Implementation

We have implemented our synthesis algorithm in a tool called RealSyn. Real-
Syn is written in Python. For solving Eq. (10) it can interface with any SMT
solver through Python APIs. We present experimental results with Z3 (version
4.5.1) [6], Yices (version 2.5.4) [8], and CVC4 (version 1.5) [4]. RealSyn leverages
the incremental solving capabilities of these solvers as follows: The constraints
ψsynth generated (line 8 in Algorithm1) can be expressed as ∃x0,∃r · ψ1 ∧ ψ2,
where ψ1

Δ= φsynth(x0, r) and ψ2
Δ= x0 ∈ Θ∧x0 �∈ cover∧r > r∗. Since the bulk of

the formula φsynth(x0, r) is in ψ1 and it does not change across iterations, we can
generate this formula only once, and push it on the context stack of the solvers.
The formula ψ2 is different across iterations, and can be pushed and popped
out of the stack as required. This minimizes the time taken for generation of
constraints.

4.2 Evaluation

We use 24 benchmark examples3 to evaluate the performance of RealSyn with
three different solvers on a standard laptop with Intel R© CoreTM i7 processor,
16 GB RAM, running Ubuntu 16.04. The results are reported in Table 1. The
results are encouraging and demonstrate the effectiveness of using our approach
and the feasibility of scalable controller synthesis for high dimensional systems
and complex reach-avoid specifications.

Comparison With Other Tools. We considered other controller synthe-
sis tools for possible comparison with RealSyn. In summary, CoSyMa [27],
Pessoa [30], and SCOTS [31] do not explicitly support discrete-time sytems.
LTLMop [22,37] is designed to analyze robotic systems in the (2-dimensional)
3 The examples are available at https://github.com/umangm/realsyn.

https://github.com/umangm/realsyn
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Table 1. Controller synthesis using RealSyn and different SMT solvers. An expla-
nation for the ∗ marked entries can be found in Sect. 4.

Model n m Z3 CVC4 Yices

#iter time(s) #iter time(s) #iter time(s)

1 1-robot 2 1 9 0.21 1 0.06 7 0.06

2 2-robot 4 2 164 12.62 11 0.31 183 2.26

3 running-example 4 2 N/A T/O N/A T/O 1 319.97

4 1-car dynamic avoid 4 2 9 53.17 1 96.43 12 8.49

5 1-car navigation 4 2 18 7.49 1 3.05 17 6.73

6 2-car navigation 8 4 1 60.14 1 2668.2 1 4.07

7 3-car navigation 12 6 1 733.42 1 481.88 1 741.73

8 4-car platoon 8 4 1 0.37 1 0.21 1 0.15

9 8-car platoon 16 8 1 23.02 1 1.44 1 0.62

10 10-car platoon 20 10 1 459.36 1 20.93 1 7.74

11 Example 3 1 82 2.32 18 0.10 67 0.43

12 Cruise 1 1 1 0.06 1 0.03 1 0.02

13 Motor 2 1 1 0.10 1 0.06 1 0.03

14 Helicopter 3 1 81 2.31 13 0.08 70 0.38

15 Magnetic suspension 2 1 39 0.47 2 0.05 39 0.08

16 Pendulum 2 1 30 0.32 8 0.05 42 0.07

17 Satellite 2 1 40 0.46 5 0.05 32 0.06

18 Suspension 4 1 1 0.17 1 0.11 1 0.09

19 Tape 3 1 1 0.12 1 0.07 1 0.07

20 Inverted pendulum 2 1 39 0.49 2 0.05 39 0.09

21 Magnetic pointer 3 1 44 1.12 12 0.08 134 0.83

22 Helicopter 28 6 N/A (1∗) T/O (650∗) 1 651.21 N/A T/O

23 Building 48 1 1 (1∗) 1936.03 (240∗) N/A T/O 1 552.48

24 Pde 84 1 N/A (1∗) T/O (1800∗) 1 8.48 1 8.87

Euclidean plane and thus not suitable for most of our examples. TuLiP [13,39]
comes closest to addressing the same class of problems. TuLip relies on dis-
cretization of the state space and a receding horizon approach for synthesizing
controllers for more general GR(1) specifications. However, we found TuLip suc-
cumbs to the state space explosion problem when discretizing the state space,
and it did not work on most of our examples. For instance, TuLiP was unable
to synthesize a controller for the 2-dimensional system ‘1-robot’ (Table 1), and
returned unrealizable. On the benchmark ‘2-robot’ (n = 4), TuLip did not
return any answer within 1 h. We checked these findings with the developers and
they concurred that it is typical for TuLip to take hours even for 4-dimensional
systems.
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Benchmarks. Our benchmarks and their SMT encodings, could be of inde-
pendent interest to the verification and SMT-community. Examples 1–10 are
vehicle motion planning examples we have designed with reach-avoid specifi-
cations. Benchmarks 1–2 model robots moving on the Euclidean plane, where
each robot is a 2-dimensional system and admits a 1-dimensional input. Start-
ing from some initial region on the plane, the robots are required to reach the
common goal area within the given time steps, while avoiding certain obstacles.
For ‘2-robot’, the robots are also required to maintain a minimum separation.
Benchmarks 3–7 are discrete vehicular models adopted from [12]. Each vehicle is
a 4-dimensional system with 2-dimensional input. Benchmark 3 is the system as
our running example. Benchmark 4 describes one ego vehicle running on a two-
lane road, trying to overtake a vehicle in front of it. The second vehicle serves as
the obstacle. Benchmarks 5–7 are similar to Benchmark 2 where the vehicles are
required to reach a common goal area while avoiding collision with the obstacles
and with each other (inspired by a merge). The velocities and accelerations of
the vehicles are also constrained in each of these benchmarks.

Benchmarks 8–10 model multiple vehicles trying to form a platoon by main-
taining the safe relative distance between consecutive vehicles. The models are
adopted (and discretized) from [32]. Each vehicle is a 2-dimensional system with
1-dimensional input. For the 4-car platoon model, the running times reported in
Table 1 are much smaller than the time (5 min) reported in [32]. This observation
aligns with our analysis in Sect. 3.1.

Benchmarks 11–21 are from [2]. The specification here is that the reach set
has to be within a safe rectangle (that is, G = true). In [2] each model is
discretized using 8 different time steps and here we randomly pick one for each
model. In general, the running time of RealSyn is less than those reported
in [2] (their reported machine had better configuration). On the other hand, the
synthesized controller from [2] considers quantization errors, while our approach
does not provide any guarantee for that.

Benchmarks 22–24 are a set of high dimensional examples adopted and dis-
cretized from [36]. Similar to previous ones, the only specification is that the
reach sets starting from an initial state with the controller should be contained
within a safe rectangle.

Synthesis Performance. In Table 1, columns ‘n’ and ‘m’ stand for the dimen-
sions of the state space and input space. For each background solver, ‘#iter’ is the
number of iterations Algorithm1 required to synthesize a controller, and ‘time’
is the respective running times. We specify a time limit of 1 h and report T/O
(timeout) for benchmarks that do not finish within this limit. All benchmarks
are synthesized for a specification with 10–20 steps.

In general, for low-dimensional systems (for example, in Benchmarks 11–
21), each of the solvers finish quickly (in less than 1 s), with CVC4 and Yices
outperforming Z3 on most benchmarks. The Yices solver is faster than the other
two on most examples. Z3 was the slowest on most, except a few (e.g., Benchmark
3, 6) where CVC4 was much slower. The running time, in general, increases with
the increase of the dimensionality but this relationship is far from simple. For



Controller Synthesis Made Real 363

example, the 84-dimensional Benchmark 24 was synthesized in less than 9 s by
both CVC4 and Yices, possibly because the safety specification is rather simple
for this problem.

The three solvers use different techniques for solving QF-LRA formulae with
support for incremental solving. The default tactic in Z3 is such that it spends
a large chunk of time when a constraint is pushed to the solver stack. In fact,
for Benchmark 24, while the other two solvers finish within 9 s, Z3 did not
finish pushing the constraints in the solver stack. When we disable incremental
solving in Z3, the Benchmarks 22, 23 and 24 finish in about 650, 240 and 1800 s
respectively (marked with ∗). The number of iterations widely vary across solvers,
with CVC4 usually finishing in the fewest number of iterations. Despite the larger
number of satisfiability queries, Yices manages to finish close to CVC4 on most
examples.

5 Conclusion

We proposed a novel technique for synthesizing controllers for systems with dis-
crete time linear dynamics, operating under bounded disturbances,and for reach-
avoid specifications. Our approach relies on generating controllers that combine
an open loop-controller with a tracking controller, thereby allowing a decoupled
approach for synthesizing each component independently. Experimental evalu-
ation using our tool RealSyn demonstrates the value of the approach when
analyzing systems with complex dynamics and specifications.

There are several avenues for future work. This includes synthesis of com-
bined controllers for nonlinear dynamical and hybrid systems, and for more
general temporal logic specifications. Generating witnesses to show the absence
of controllers is also an interesting direction.
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Abstract. Asynchronous interactions are ubiquitous in computing sys-
tems and complicate design and programming. Automatic construc-
tion of asynchronous programs from specifications (“synthesis”) could
ease the difficulty, but known methods are complex, and intractable
in practice. This work develops substantially simpler synthesis meth-
ods. A direct, exponentially more compact automaton construction
is formulated for the reduction of asynchronous to synchronous syn-
thesis. Experiments with a prototype implementation of the new
method demonstrate feasibility. Furthermore, it is shown that for sev-
eral useful classes of temporal properties, automaton-based methods
can be avoided altogether and replaced with simpler Boolean constraint
solving.

1 Introduction

Modern software and hardware systems harness asynchronous interactions to
improve speed, responsiveness, and power consumption: delay-insensitive cir-
cuits, networks of sensors, multi-threaded programs and interacting web services
are all asynchronous in nature. Various factors contribute to asynchrony, such
as unpredictable transmission delays, concurrency, distributed execution, and
parallelism. The common result is that each component of a system operates
with partial, out-of-date knowledge of the state of the others, which consid-
erably complicates system design and programming. Yet, it is often easier to
state the desired behavior of an asynchronous program. We therefore consider
the question of automatically constructing (i.e., synthesizing) a correct reactive
asynchronous program directly from its temporal specification.

The asynchronous synthesis problem was originally formulated by Pnueli and
Rosner in 1989 on the heels of their work on synchronous synthesis [31,32].
The task is that of constructing a (finite-state) program which interacts asyn-
chronously with its environment while meeting a temporal specification on the
actions at the interface between program and environment. Given a linear tem-
poral specification ϕ, Pnueli-Rosner show that asynchronous synthesis can be
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 367–385, 2018.
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reduced to checking whether a derived specification ϕ′, specifying the required
behavior of the scheduler, is synchronously synthesizable. That is, an asyn-
chronous program can implement ϕ iff a synchronous program can implement ϕ′.

It may then appear straightforward to construct asynchronous programs
using one of the many tools that exist for synchronous synthesis. However, the
derived formula ϕ′ embeds a nontrivial stutter quantification, which requires a
complex intermediate automaton construction; it has not, to the authors’ knowl-
edge, ever been implemented. This situation is in stark contrast to that of syn-
chronous synthesis, for which multiple tools and algorithms have been created.

Alternative methods have been proposed for asynchronous synthesis:
Finkbeiner and Schewe reduce a bounded form of the problem to a SAT/SMT
query [35], and Klein, Piterman and Pnueli show that some GR(1) specifica-
tions1 can be transformed as above to an approximate synchronous GR(1) prop-
erty [21,22]. These alternatives, however, have drawbacks of their own. The
SAT/SMT reduction is exponential in the number of interface (input and out-
put) bits, an important parameter; the GR(1) specifications amenable to trans-
formation are limited and are characterized by semantic conditions that are not
easily checked.

This work presents two key simplifications. First, we define a new property,
PR(ϕ) (named in honor of Pnueli-Rosner’s pioneering work) which, like ϕ′, is
synchronously realizable if, and only if, ϕ is asynchronously realizable. We then
present an automaton construction for PR(ϕ) that is direct and simpler, and
results in an exponentially smaller automaton than the one for ϕ′. In particular,
the automaton for PR(ϕ) has only at most twice the states of the automaton
for ϕ, as opposed to the exponential blowup of the state space (in the number of
interface bits) incurred in the construction of the automaton for ϕ′. As almost
all synchronous automaton-based synthesis tools use an explicit encoding for
automaton states, this reduction is vital in practice.

We show how to implement the transformation PR symbolically (with BDDs),
so that interface bits are always represented in symbolic form. One can then
apply the modular strategy of Pnueli-Rosner: a symbolic automaton for ϕ is
transformed to a symbolic automaton for PR(ϕ) (instead of ϕ′), which is ana-
lyzed with a synchronous synthesis tool. We establish that PR is conjunctive
and preserves safety2. These are important properties, used by tools such as
Acacia+ [8] and Unbeast [11] to optimize the synchronous synthesis task. The
new construction has been implemented in a prototype tool, BAS, and experi-
ments demonstrate feasibility in practice.

In addition, we establish that for several classes of temporal properties, which
are easily characterized by syntax, the automaton-based method can be avoided
entirely and replaced with Boolean constraint solving. The constraints are quan-
tified Boolean formulae, with prefix ∃∀ and a kernel that is derived from the
original specification. This surprising reduction, which resolves a temporal prob-

1 The GR(1) (“General Reactivity (1)”) subclass has an efficient symbolic procedure
for synchronous synthesis, formulated in [28] and implemented in several tools.

2 I.e., PR(
∧

i fi) =
∧

i PR(fi), and PR(f) is a safety property if f is a safety property.
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lem with Boolean reasoning, is a consequence of the highly adversarial role of
the environment in the asynchronous setting.

These contributions turn a seemingly intractable synthesis task into one that
is feasible in practice.

2 Preliminaries

Temporal Specifications. Linear Temporal Logic (LTL) [29] extends propo-
sitional logic with temporal operators. LTL formulae are defined as ϕ:: =
True | False | p | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2| ♦ϕ | �ϕ | � ϕ. Here p is a
proposition, and X(Next), U (Until), ♦ (Eventually), � (Always), and �(Always
in the past) are temporal operators. The LTL semantics is standard, and is in
the full version of the paper. For an LTL formula ϕ, let L(ϕ) denote the set of
words (over subsets of propositions) that satisfy ϕ.

GR(1) is a useful fragment of LTL, where formulae are of the form (�Se ∧∧m
i=0 �♦Pi) ⇒ (�Ss ∧ ∧n

i=0 �♦Qi), for propositional formulae Se, Ss, Pi, Qi.
Typically, the left-hand side of the implication is used to restrict the environ-
ment, by requiring safety and liveness assumptions to hold, while the right-hand
side is used to define the safety and liveness guarantees required of the system.

LTL specifications can be turned into equivalent Büchi automata, using
standard constructions. A Büchi automaton, A, is specified by the tuple
(Q,Q0, Σ, δ,G), where Q is a set of states, Q0 ⊆ Q defines the initial states,
Σ is the alphabet, δ ⊆ Q × Σ × Q is the transition relation, and G ⊆ Q
defines the “green” (also known as “accepting” or “final”) states. A run r of
the automaton on an infinite word σ = a0, a1, . . . over Σ is an infinite sequence
r = q0, a0, q1, a1, . . . such that q0 is an initial state, and for each k, (qk, ak, qk+1)
is in the transition relation. Run r is accepting if a green state appears on it
infinitely often; the language of A, denoted L(A), is the set of words that have
an accepting run.

The Asynchronous Synthesis Model. The goal of synthesis is to construct
an “open” program M meeting a specification at its interface. In the asyn-
chronous setting, the program M interacts in a fair interleaved manner with its
environment E. The fairness restriction requires that E and M are each sched-
uled infinitely often in all infinite executions. Let E//M denote this composition.
The interface between E and M is formed by the variables x and y. Variable x
is written by E and is read-only for M , while y is written by M and is read-
only for E. One can consider x (resp., y) to represent a vector of variables, i.e.,
x = (x1, . . . , xn) (resp., y = (y1, . . . , ym)) which is read (resp., written) atomi-
cally. Many of our results also extend to non-atomic reads and writes, and are
discussed in the full version of the paper.

The synthesis task is to construct a program M which satisfies a temporal
property ϕ(x, y) over the interface variables in the composition E//M , for any
environment E. The most adversarial environment is the one which sets x to an
arbitrary value at each scheduled step, we denote it by CHAOS(x). The behaviors
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of the composition CHAOS(x)//M simulate those of E//M for all E. Hence, it
suffices to produce M which satisfies ϕ in the composition CHAOS(x)//M . One
can limit the set of environments through an assumption in the specification.

This leads to the formal definition of an asynchronous schedule, given by a
pair of functions, r, w : N → N, which represent read and write points, respec-
tively. The initial write point, w(0) = 0, and represents the choice of initial value
for the variable y. Without loss of generality, the read-write points alternate, i.e.,
for all i ≥ 0, w(i) ≤ r(i) < w(i+1) and r(i) < w(i+1) ≤ r(i+1). A strict asyn-
chronous schedule does not allow read and write points to overlap, i.e., the con-
straints are strengthened to w(i) < r(i) < w(i+1) and r(i) < w(i+1) < r(i+1).
A tight asynchronous schedule is the strict schedule without any non-read-write
gaps, i.e., r(k) = 2k + 1 and w(k) = 2k, for all k. A synchronous schedule is the
special non-strict schedule where r(i) = i and w(i) = i, for all i.

Let Dv denote the binary domain {True,False} for a variable v. A program
M can be represented semantically as a function f : (Dx)∗ → Dy. For an
asynchronous schedule (r, w), a sequence σ = (Dx × Dy)ω is said to be an
asynchronous execution of f over (r, w) if the value of y is changed only at
writing points, in a manner that depends only on the values of x at prior reading
points. Formally, for all i ≥ 0, yw(i+1) = f(xr(0) . . . xr(i)), and for all j such that
w(i) ≤j<w(i + 1), yj=yw(i). The initial value of y is the value it has at point
w(0) = 0. The set of such sequences is denoted as asynch(f). Over synchronous
schedules, the set of such sequences is denoted by synch(f). Function f is an
asynchronous implementation of ϕ if all asynchronous executions of f over all
possible schedules satisfy ϕ, i.e., if asynch(f) ⊆ L(ϕ).

This formulation agrees with that given by Pnueli and Rosner for strict sched-
ules. For synchronous schedules (and other non-strict schedules), our formulation
has a Moore-style semantics – the output depends on strictly earlier inputs –
while Pnueli and Rosner formulate a Mealy semantics. A Moore semantics is
more appropriate for modeling software programs, where the output variable is
part of the state, and fits well with the theoretical constructions that follow.

Definition 1 (Asynchronous LTL Realizability). Given an LTL property
ϕ(x, y) over the input variable x and output variable y, the asynchronous LTL
realizability problem is to determine whether there is an asynchronous imple-
mentation for ϕ.

Definition 2 (Asynchronous LTL Synthesis). Given a realizable LTL-
formula ϕ, the asynchronous LTL synthesis problem is to construct an asyn-
chronous implementation of ϕ.

Examples. Pnueli and Rosner give a number of interesting specifications. The
specification � (y ≡Xx) (“the current output equals the next input”) is satisfi-
able but not realizable, as any implementation would have to be clairvoyant. On
the other hand, the flipped specification � (x≡Xy) (“the next output equals the
current input”) is synchronously realizable by a Moore machine which replays
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the current input as the next output. The specification ♦�x≡♦� y is syn-
chronously realizable by the same machine, but is asynchronously unrealizable,
as shown next. Consider two input (x) sequences, under a schedule where reads
happen only at odd positions. In both, let x=true at all reading points. Then any
program must respond to both inputs with the same output sequence for y. Now
suppose that in the first sequence x is false at all non-read positions, while in
the second, x is true at all non-read positions. In the first case, the specification
forces the output y-sequence to be false infinitely often; in the second, y is forced
to be true from some point on, a contradiction.

The negated specification ♦�x�≡♦� y is also asynchronously unrealizable,
for the same reason. This “gap” illustrates an intriguing difference from the
synchronous case, where either a specification is realizable for the system, or its
negation is realizable for the environment. The two halves of the equivalence,
i.e., ♦�x⇒ ♦� y and ♦� y ⇒ ♦�x are individually asynchronously realizable,
by strategies that fix the output to y=true and to y=false, respectively.

From Asynchronous to Synchronous Synthesis. Pnueli and Rosner
reduced asynchronous LTL synthesis to synchronous synthesis of Büchi objec-
tives. Their reduction applied to LTL formulas with a single input and out-
put variable [32]; it was later extended to the non-atomic case [30]. The orig-
inal Rosner-Pnueli reduction deals exclusively with strict schedules, since they
showed that it is sufficient to consider only strict schedules.

Two infinite sequences are said to be stuttering equivalent if one sequence
can be obtained from the other by a finite duplication (“stretching”) of a
given state or by deletion (“compressing”) of finitely many contiguous identi-
cal states retaining at least one of them. The stuttering quantification ∃≈ is
defined as follows: ∃≈x.ϕ holds for sequence π if ∃x.ϕ holds for a sequence π′

that is stuttering equivalent to π. Pnueli-Rosner showed that an LTL-formula
ϕ(x, y) over input x and output y is asynchronously realizable iff a “kernel”
formula (this is the precise formula referred to as ϕ′ in the Introduction)
K(r, w, x, y) = α(r, w) → β(r, w, x, y) over read sequence r, write sequence w,
input sequence x and output sequence y is synchronously realizable:

α(r, w) = (¬r ∧ ¬w U r) ∧ �¬(r ∧ w) ∧ � (r ⇒ (r U (¬r)U w))
∧� (w ⇒ (w U (¬w)U r))

β(r, w, x, y) = ϕ(x, y) ∧ ∀a.� ((y = a) ⇒ ((y = a)U (¬w ∧ (y = a)U w)))
∧∀≈x′.(� (¬r ⇒ ¬r U (x = x′)) ⇒ ϕ(x′, y))

Here, α encodes the strict scheduling constraints on read and write points, while
β encodes conditions which assure a correct asynchronous execution over (r, w).
The ∀≈ quantification, intuitively, quantifies over all adversarial schedules similar
to the current (r, w): it requires ϕ to hold over all sequences obtained from the
current sequence σ by stretching or compressing the segments between read and
write points, and choosing different values for x on those segments.
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3 Symbolic Asynchronous Synthesis

Pnueli and Rosner’s procedure for asynchronous synthesis [32] is as follows: first,
a Büchi automaton is built for the kernel formula ¬K. This automaton is then
determinized and complemented to form a deterministic word automaton for K,
which is then re-interpreted as a tree automaton and tested for non-emptiness.
The transformations use standard constructions, except for the interpretation
of the ∃≈ operator in the formation of the Büchi automaton for ¬K. For a
Büchi automaton A, an automaton for ∃≈L(A) is constructed in two steps:
first applying a “stretching” transformation on A, followed by a “compressing”
transformation. Stretching introduces new automaton states of the form (q, a),
for each state q of A and each letter a.

When this general construction is applied to the formula ¬K, the alphabet
of the automaton A is formed of all possible valuations of the pair of variables
(x, y), which has size exponential in the number of interface bits. The stretching
step introduces a copy of an automaton state for each letter, which results in an
exponential blow-up of the state space of the constructed automaton. As all cur-
rent tools for synchronous synthesis represent automaton states explicitly3, the
exponential blowup introduced by the stuttering quantification is a significant
obstacle to implementation.

In Pnueli-Rosner’s construction, the determinization and complementation
steps are also complex, utilizing Safra’s construction. These steps are simplified
by the “Safraless” procedure adopted in current tools for synchronous synthesis.

The other major issue with the Pnueli-Rosner construction is that the kernel
formula K introduces the scheduling variables r, w as input variables. However,
the actions of a synthesized program should not rely on the values of these
variables. Pnueli-Rosner ensure this by checking satisfiability over “canonical”
tree models; it is unclear, however, how to realize this effect using a synchronous
synthesis tool as a black box.

We define a new property, PR(ϕ), that differs from K but, similarly, is syn-
chronously realizable if, and only if, ϕ is asynchronously realizable. We then
present an automaton construction for PR(ϕ) that bypasses the general con-
struction for ∃≈, avoiding the exponential blowup and resulting in an automa-
ton with at most twice the states of the original. Moreover, this construction
refers only to x and y, avoiding the second issue as well. We then show that this
construction can be implemented fully symbolically.

3.1 Basic Formulations and Properties

As formulated in Sect. 2, an asynchronous execution of f is determined by the
schedule (r, w). For a strict schedule, any infinite sequence representing an asyn-
chronous behavior of f over (r, w) may be partitioned into a sequence of blocks,
as follows. The start of the i’th block is at the i’th writing point, w(i), and it

3 With one exception. BoSy’s DQBF procedure is fully symbolic but does not work
as well as the default QBF procedure [12].
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r0 r1 r2

w1 w20=w0

b0 b1=f(a0) b2=f(a0,a1)

input x

output y

a0 a1 a2

Fig. 1. A strict asynchronous computation for f . Values of x at non-reading points are
shown as dotted. The y-value is constant between writing points, illustrated by a solid
rectangle. Blocks are shown as dashed rectangles.

ends just before the i + 1’st writing point, w(i+1). The schedule ensures the i’th
block includes the i’th reading point, r(i), associated with the input-output value
(xi, yi). As the value of y changes only at writing points, yi is constant in the i’th
block. Thus, the i’th block follows the pattern (⊥, yi)∗(xi, yi)(⊥, yi)∗, where ⊥
denotes an arbitrary choice of x-value. Figure 1 illustrates a strict asynchronous
computation and its decomposition into blocks.

Expansions. The set of expansions of sequence δ = (x0, y0)(x1, y1) . . . consists
of all sequences obtained by simultaneously replacing each (xi, yi) in δ by a
block with the pattern (⊥, yi)∗(xi, yi)(⊥, yi)∗. Formally, given sequences δ =
(x0, y0)(x1, y1) . . . and σ = (x̄0, ȳ0)(x̄1, ȳ1) . . ., δ expands to σ, denoted as δ exp σ,
if there exists an asynchronous schedule (r̂, ŵ) for which σ is an execution that
is a block pattern of δ, i.e., for all i, xi = x̄r̂(i) and yi = ȳŵ(i) and for all j,
ŵ(i) ≤ j < ŵ(i + 1) it is the case that ȳj = ȳŵ(i). The inverse relation (read as
contracts to) is denoted by exp −1. Figure 2 shows the synchronous computation
that contracts the computation shown in Fig. 1.

Relational Operators. For a relation R, the modal operators 〈R〉 and [R] are
defined as follows. For any set S,

u ∈ 〈R〉S = (∃v : uRv ∧ v ∈ S) u ∈ [R]S = (∀v : uRv ⇒ v ∈ S)

By definition, the operators are negation duals, i.e., ¬〈R〉(¬S) = [R](S) for any
R and any S. For an LTL formula ϕ and a relation R over infinite sequences, we
let 〈R〉ϕ abbreviate 〈R〉(L(ϕ)), and similarly, let [R]ϕ abbreviate [R](L(ϕ)).

Galois Connections. Given partial orders (A,�A) and (B,�B), a pair of func-
tions g : A → B and h : B → A form a Galois connection if, for all a ∈ A, b ∈ B:
g(a) �B b is equivalent to a �A h(b). From the definitions, it is clear that the
operators (〈R−1〉, [R]) form a Galois connection over the partial orders defined
by the subset relation. I.e., for any sets S and T : 〈R−1〉S ⊆ T iff, S ⊆ [R]T .

We first establish that the asynchronous executions of f are precisely the
synchronous executions of f under an inverse expansion.

Theorem 1. For an implementation f , asynch(f) = 〈 exp−1 〉synch(f).
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1=r1

1=w1 2=w20=w0

b0

a0 a1 a2

2=r2

b1=f(a0) b2=f(a0,a1)

0=r0

input x

output y

Fig. 2. The contracted synchronous (Moore) computation

Proof. (ping) Let σ be an execution in asynch(f), generated for some schedule
(r, w). For any k, consider the k’th block of σ. This is the set of positions from
w(k) to w(k + 1) − 1, which includes the k’th reading point r(k), say with the
value (xk, yk). Then the block follows the pattern (⊥, yk)∗(xk, yk)(⊥, yk)∗. So σ
is an expansion of the sequence δ = (x0, y0)(x1, y1) . . .. By the definition of an
asynchronous execution, the value yk+1 = f(x0, . . . , xk). This is precisely the
requirement for δ to be a synchronous execution of f . Hence, we have that there
is a δ such that δ exp σ and δ ∈ synch(f). Therefore, σ ∈ 〈 exp−1 〉synch(f).

(pong) Let σ be in 〈 exp−1 〉synch(f). By definition, there is a synch(f) exe-
cution δ = (x0, y0)(x1, y1) . . . such that δ exp σ. As δ is a synchronous execution
of f , the value yk+1 = f(x0, x1, . . . , xk), for all k. Then σ is an asynchronous
execution of f under the schedule where the k-th reading point is the point that
the k’th entry, (xk, yk), from δ is mapped to in σ, and the (k + 1)-th writing
point is the first point of the (k + 1)’st block in the expansion. ��

We now use the Galois connection to show how asynchronous synthesis can
be reduced to an equivalent synchronous synthesis task. Consider a property ϕ
that must hold asynchronously for an implementation f .

Theorem 2. Let f be an implementation function, and ϕ a property. Then
asynch(f) ⊆ L(ϕ) if, and only if, synch(f) ⊆ [ exp ]ϕ.

Proof. From Theorem 1, asynch(f) ⊆ L(ϕ) holds iff 〈 exp−1 〉synch(f) ⊆ L(ϕ)
does. By the Galois connection, this is equivalent to synch(f) ⊆ [ exp ]ϕ. ��

3.2 The Pnueli-Rosner Closure

We refer to the property [ exp ]ϕ as the Pnueli-Rosner closure of ϕ, in honor
of their pioneering work on this problem, and denote it by PR(ϕ). This has
interesting mathematical properties, which are useful in practice.

Theorem 3. PR(ϕ) = [ exp ]ϕ has the following properties.

1. (Closure) PR is monotonic and a downward closure, i.e., PR(ϕ) ⊆ L(ϕ)
2. (Conjunctivity) PR is conjunctive, i.e., PR(

∧
i ϕi) =

⋂
i PR(ϕi)

3. (Safety Preservation) If ϕ is a safety property, so is PR(ϕ)
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The closure property relies on the reflexivity and transitivity of exp , and that
[R] is monotonic for every R. Conjunctivity follows from the conjunctivity of [R]
for any R. Safety preservation is based on the Alpern-Schneider [4] formulation
of safety over infinite words. Proofs are in the full version of the paper.

Conjunctivity is exploited by the tools Acacia+ [8] and Unbeast [11] to opti-
mize the synchronous synthesis procedure. The Unbeast tool also separates out
safety from non-safety sub-properties to optimize the synthesis procedure. Thus,
if a specification ϕ has the form ϕ1 ∧ ϕ2, where ϕ1 is a safety property, then
PR(ϕ) = PR(ϕ1) ∩ PR(ϕ2) also denotes the intersection of the safety property
PR(ϕ1) with another property.

3.3 The Closure Automaton Construction

By negation duality, PR(ϕ) equals ¬〈 exp 〉(¬ϕ). We use this property to reduce
asynchronous to synchronous synthesis, as follows.

1. Construct a non-deterministic Büchi automaton A for ¬ϕ,
2. Transform A to a non-deterministic Büchi automaton B for the negated

Pnueli-Rosner closure of ϕ, i.e., the language of B is 〈 exp 〉L(A) = 〈 exp 〉(¬ϕ),
3. Consider the structure of B as that of a universal co-Büchi automaton, which

has language ¬L(B),
4. Synthesize an implementation f in the synchronous model which satisfies

¬L(B) = ¬〈 exp 〉L(A) = ¬〈 exp 〉(¬ϕ) = [ exp ]ϕ = PR(ϕ).

The new step is the second one, which constructs B from A; the others use
standard constructions and tools. This construction is as follows.

– The states and alphabet of B are the states and alphabet of A.
– The transitions of B are determined by a saturation procedure. For every

pair of states q, q′, and letter (x, y), let Π(q, (x, y), q′) be the set of paths in A
from q to q′ where the sequence of letters on the path matches the expansion
pattern (⊥, y)∗(x, y)(⊥, y)∗. The transition (q, (x, y), q′) is in B if, and only
if, this set is non-empty,

– If some path in Π(q, (x, y), q′) passes through a green (accepting) state of A,
the transition (q, (x, y), q′) in B is colored “green” and that path is assigned
as the witness to the transition in B. On the other hand, if none of the paths
in Π(q, (x, y), q′) pass through a green state, this transition is not colored in
B, and one of the paths in the set is chosen as the witness for this transition,

– The automaton B inherits the accepting (“green”) states of A and it may
have, in addition, green transitions introduced as defined above,

– A sequence is accepted by B if there is a run of B on the sequence such
that either there are infinitely many green states, or infinitely many green
transitions on that run.

We establish that L(B) = 〈 exp 〉L(A) through the following two lemmas.

Lemma 1. 〈 exp 〉L(A) ⊆ L(B).
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Proof. Let δ = (x0, y0)(x1, y1) . . . be a sequence in 〈 exp 〉L(A). By definition,
there exists a sequence σ in L(A) such that δ exp σ. The expansion σ follows
the pattern [(⊥, y0)∗(x0, y0)(⊥, y0)∗][(⊥, y1)∗(x1, y1)(⊥, y1)∗] . . ., where [. . .] are
used merely to indicate the boundaries of a block. An accepting run of A on σ
has the form q0[(⊥, y0)∗(x0, y0)(⊥, y0)∗]q1[(⊥, y1)∗(x1, y1)(⊥, y1)∗]q2 . . ., where
the states on the run inside a block have been elided. By the definition of B,
the segment q0(⊥, y0)∗(x0, y0)(⊥, y0)∗q1 induces a transition from q0 to q1 in B
on the letter (x0, y0). Similarly, the following segment induces a transition from
q1 to q2 on letter (x1, y1), and so forth. These transitions together form a run
q0(x0, y0)q1(x1, y1)q2 . . . of B on δ.

If one of the {qi} is green and appears infinitely often on the run on σ, the
induced run on δ is accepting. Otherwise, as the run on σ is accepting, some green
state of A occurs in the interior of infinitely many segments of that run. The
transitions of B induced by those segments must be green, so the corresponding
run on δ has infinitely many green edges, and is accepting for B. ��
Lemma 2. L(B) ⊆ 〈 exp 〉L(A).

Proof. Let δ be accepted by B. We show that there is σ such that δ exp σ and σ
is accepted by A. Let δ have the form (x0, y0)(x1, y1) . . . ,. Denote the accepting
run of B on δ by r = q0(x0, y0)q1(x1, y1) . . .. From the construction of B, the
transition from q0 to q1 on (x0, y0) has an associated witness path through A
from q0 to q1, which follows the expansion pattern (⊥, y0)∗(x0, y0)(⊥, y0)∗ on
its edge labels. Stitching together the witness paths for each transition of r, we
obtain both a sequence σ that is an expansion of δ and a run r′ of A on σ.

As r is accepting for B, it must enter infinitely often either a green state or a
green edge. If it enters a green state infinitely often, that state appears infinitely
often on r′. If r enters a green edge infinitely often, the witness path for that
edge contains a green state of A, say q; as this path is repeated infinitely often
on σ, q appears infinitely often on r′. In either case, a green state of A appears
infinitely often on r′, which is therefore, an accepting run of A on σ. ��

Automaton B can be placed in standard form by converting its green edges
to green states as follows, forming a new automaton, B̂. Form a green copy of
the state space, i.e., for each state q, form a green variant, G(q), which is marked
as an accepting state. Set up transitions as follows. If (q, a, q′) is an original non-
green transition, then (q, a, q′) and (G(q), a, q′) are new transitions. If (q, a, q′)
is an original green transition, then (q, a,G(q′)) and (G(q), a,G(q′)) are new
transitions. This at most doubles the size of the automaton. It is straightforward
to establish that L(B) = L(B̂).

3.4 Symbolic Construction

The symbolic construction of B̂ closely follows the definitions above. It is easily
implemented with BDDs representing predicates on the input and output vari-
ables x and y. The crucial step is to use fixpoints to formulate the existence of
paths in the set Π used in the definition of B. These definitions are similar to
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the fixpoint definition of the CTL modality EF. We use A(q, (x, y), q′) to denote
the predicate on (x, y) describing the transition from q to q′ in automaton A.

Fixed Don’t-Care Path. Let EfixedY(q, y, q′) hold if there is a path of length 0
or more from q to q′ in A where the value of y is fixed. This is the least fixpoint
(in Z) of the following implications:

– (q′ = q) ⇒ Z(q, y, q′), and
– (∃x, r : A(q, (x, y), r) ∧ Z(r, y, q′)) ⇒ Z(q, y, q′)

The predicate A⊥(q, y, r) = (∃x : A(q, (x, y), r)) is pre-computed. Then, the least
fixpoint is computed iteratively as follows.

EfixedY0(q, y, q′) = (q = q′)

EfixedYi+1(q, y, q′) = EfixedYi(q, y, q′) ∨ (∃r : A⊥(q, y, r) ∧ EfixedYi(r, y, q′))

Let predicate greenA(r) be true for an accepting state r of A. The predicate
Efixedgreen(q, y, q′) holds if there is a fixed y-path from q to q′ where one of the
states on it is green:

Efixedgreen(q, y, q′) = (∃r : EfixedY(q, y, r) ∧ greenA(r) ∧ EfixedY(r, y, q′))

Paths and Green Paths. Let Epath(q, (x, y), q′) hold if there is a path following
the block pattern (⊥, y)∗(x, y)(⊥, y)∗ from q to q′ in A. Then,

Epath(q, (x, y), q′) = (∃r, r′ : EfixedY(q, y, r) ∧ A(r, (x, y), r′) ∧ EfixedY(r′, y, q′))

Similarly, let Egreenpath(q, (x, y), q′) hold if there is a path following the block
pattern (⊥, y)∗(x, y)(⊥, y)∗ from q to q′ in A, with an intermediate green state.

Egreenpath(q, (x, y), q′) =
(∃r, r′ : Efixedgreen(q, y, r) ∧ A(r, (x, y), r′) ∧ EfixedY(r′, y, q′))∨
(∃r, r′ : EfixedY(q, y, r) ∧ A(r, (x, y), r′) ∧ Efixedgreen(r′, y, q′))

State Space of B̂. The state space of B̂ is formed by pairs (q, g), where q is a
state of A and g is a Boolean indicating whether it is a new green state. The
accepting condition greenB̂(q, g) of B̂ is given by greenA(q) ∨ g.

Initial States. The initial predicate IB̂(q, g) is IA(q) ∧ ¬g, where IA(q) is true
for initial states of the input automata A.

Transition Relation of B̂. The transition relation B̂((q, g), (x, y), (q′, g′)) is

B̂((q, g), (x, y), (q′, g′)) = Epath(q, (x, y), q′) ∧ (g′ ≡ Egreenpath(q, (x, y), q′))
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4 Implementation and Experiments

The PR algorithm has been implemented in a framework called BAS (Bounded
Asynchronous Synthesis). It uses the LTL-to-automaton converter LTL3BA [3,
6], and follows the modular method, connecting to either of two solvers, BoSy [2,
12] and Acacia+ [1,8] to solve the synchronous realizability of PR(ϕ). The PR
construction is implemented in about 1200 lines of OCaml, using an external
BDD library. (The core construction requires only about 400 lines of code.)
For an LTL specification ϕ, the BAS workflow for asynchronous synthesis is as
follows:

1. Check whether ϕ is synchronously realizable; if not, return UNREALIZABLE,
2. Construct Büchi automata A for ¬ϕ, and Â for ϕ,
3. Concurrently

(a) Construct PR(ϕ) from A and check whether it is synchronously realizable;
if so, return REALIZABLE and synthesize the implementation.

(b) Construct PR(¬ϕ) from Â and check whether it is synchronously realiz-
able for the environment; if so, return UNREALIZABLE.

Upon termination of any, terminate the other execution as well.

The synchronous synthesis tools successively increase a bound until a limit (com-
puted based on automaton structure) is reached. Thus, in theory, only the check
in step 3(a) is needed. However, the checks in steps 1 and 3(b) may allow the
tool to terminate early (before reaching the limit bound), if a winning strategy
for the environment can be discovered.

To evaluate BAS we consider the list of examples presented in Table 1. The
reported experiments were performed on a VM configured to have 8 CPU cores
at 2.4 GHz, 8 GB RAM, running 64-bit Linux. The running times are reported in
milliseconds. For each specification (presented in the second column) we report
whether it is asynchronously realizable (third column), the time for the PR con-
struction (our contribution), and the time for checking whether the specification
is realizable using BoSy and Acacia+ solvers (resp., fifth and sixth columns).

The first set of examples (Specifications 1–11) list specifications discussed in
this paper and in related works. As parameterized example we consider 2 vari-
ants of arbiter specifications. The arbiter has n inputs in which clients request
permissions, and n outputs in which the clients are granted permissions. In both
variants of the arbiter example, no two grants are allowed to be set simulta-
neously. The first arbiter example (Specification 12) requires that whenever an
input request ri is set, the corresponding output grant gi must eventually be set.
The second variant (Specification 13) also requires that a grant gi is set only if
request ri is set as well. That is, in order for a client to be granted a permission,
its corresponding request must be constantly set. Since the asynchronous case
cannot observe the request in between read events, this variant of the arbiter is
not realizable. The results are shown for n = 2, 4, 6. Note that the only compara-
ble experimental evaluation is given in [18], where they report that asynchronous
synthesis of the first arbiter example (Specification 12) takes over 8 h.
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Table 1. BAS asynchronous synthesis runtime evaluation (times in milliseconds). We
let BoSy run upto 2 h, and Acacia+ upto 1000 iterations. “Na” denotes cases where
the executions did not find a winning strategy within these boundaries.

Specification Asyn. PR Asyn. synthesis

Realizable? constr. BoSy Acacia+

1 � (x ≡ y) False 8 972 30

2 ♦ � x ≡ ♦ � y False 9 Na Na

3 ♦ � x ⇒ ♦ � y True 8 899 Na

4 ♦ � y ⇒ ♦ � x True 7 994 Na

5 (♦ � x ∨ ♦ � ¬x) ⇒ ♦ � x ≡ ♦ � y True 13 1004 Na

6 � (¬x ⇒ (¬x) U (¬y)) ⇒ ♦ � x ≡ ♦ � y True 10 Na Na

7 � ♦ (x ∧ y) ⇒ (�♦ y ∧ � ♦ ¬y) True 9 1053 30

8 � ♦ (x ∨ y) ⇒ (�♦ y ∧ � ♦ ¬y) True 9 995 40

9 � ♦ (x) ⇒ (�♦ y ∧ � ♦ ¬y) True 8 934 30

10 � (x ⇒ ♦ y) True 8 960 30

11 � (x ⇒ ♦ y) ∧ � (¬y U x) False 10 1058 Na

Variants of parameterized arbiter (results shown are for n = 2; 4; 6)

12
∧

i�=j � (¬gi ∨ ¬gj) ∧∧n
i=1 � (ri ⇒ ♦ gi)

True 11; 854; Na;

13; 1146; Na;

75 4965 Na

13
∧

i�=j � (¬gi ∨ ¬gj) ∧
∧n

i=1 � (ri ⇒ ♦ gi) ∧ ∧n
i=1 � (gi ⇒ ri)

False 17; 1129; Na;

3124; 362K; Na;

2024K Na Na

The second specification ϕ is the one discussed in Sect. 2. It is surprisingly
difficult to solve. Both ϕ and its negation are asynchronously unrealizable. More-
over, ϕ is synchronously realizable. Thus, the early detection tests (steps 1 and
3(b)) failed to discover a winning strategy for the environment; the bounded
synthesis tools increase the considered bound monotonically without converging
to an answer in a reasonable amount of time. This example highlights the need
for better tests for unrealizability. The results in the following section provide
simple QBF tests of unrealizability for subclasses of LTL.

5 Efficiently Solvable Subclasses of LTL

The high complexity of direct LTL (synchronous) synthesis has encouraged the
search for general procedures that work well in practice, such as Safraless and
bounded synthesis [24,35]. Another useful direction has been to identify frag-
ments of LTL with efficient synthesis algorithms [5]. Among the most notewor-
thy is the GR(1) subclass, for which there is an efficient, symbolic synthesis
procedure ([28]). We explore this direction for asynchronous synthesis. Surpris-
ingly, we show that synthesis for certain fragments of LTL can be reduced to
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Boolean reasoning over properties in QBF. The results cover several types of
GR(1) formulae, although the question of a reduction for all of GR(1) is open.

The QBF formulae that arise have the form ∃y∀x.p(x, y), where x and y
are disjoint sets of variables, and p is a propositional formula over x, y. An
assignment y = b for which ∀x.p(x, b) holds is called a witness to the formula.
The first such reduction is for the property �♦P .

Theorem 4. ϕ = �♦P is asynchronously realizable iff ∃y∀xP is True.

Proof. (ping) Let b be a witness to ∃y∀x.P . The function that constantly outputs
y = b satisfies ϕ for any asynchronous schedule.

(pong) Let f be a candidate implementation function and suppose that
∀y∃x(¬P ) holds. Fix any schedule. For every value y = b that function f outputs
at a writing point, there exists an input value x = a such that ¬P (a, b) holds.
Thus, the environment, by issuing x = a in the interval from the current writing
point (with y = b) up to the next one, can ensure that ¬P holds throughout the
execution. Thus the specification ϕ = �♦P does not hold on this execution. ��

The result in Theorem 4 applies to asynchronous synthesis, but does not
apply to synchronous synthesis. For example, the property �♦ (x ≡ y) is asyn-
chronously unrealizable, as ∃y∀x(x ≡ y) is False. On the other hand, it is syn-
chronously realizable with a Mealy machine that sets y to x at each point.

Theorem 4 extends easily to conjunction and disjunction of �♦ properties.

Theorem 5. Specification ϕ =
∨m

i=0 �♦Pi is asynchronously realizable iff
∃y∀x.(

∨m
i=0 Pi) holds. Additionally, specification ϕ =

∧m
i=0 �♦Pi is asyn-

chronously realizable iff for all i ∈ {0, 1 . . . m}, ∃y∀x.Pi holds.

Proof. The first claim follows directly from the identity
∨m

i=0 �♦Pi ≡
�♦ (

∨m
i=0 Pi) and Theorem 4.

For the second, for each i, let y = bi be an assignment such that ∀x.Pi(x, bi)
holds. The function that generates sequence b0, b1, . . . bm, ad infinitum, is an
asynchronous implementation of

∧m
i=0 �♦Pi. On the other hand, suppose that

for some i, ∀y∃x¬Pi holds, then following the construction from Theorem4, one
can define an execution where Pi is always False. ��
Theorem 6. ϕ = ♦�P is asynchronously realizable iff ∃y∀x.P is True.

The proof is similar to that for Theorem4. Theorem 6 also extends to conjunc-
tions and disjunctions of ♦� properties, by arguments similar to those for The-
orem 5. Namely,

∧m
i=0 ♦�Pi is asynchronously realizable iff ∃y∀x(

∧m
i=0 Pi) is

True, and,
∨m

i=0 ♦�Pi is asynchronously realizable iff for some i ∈ {0, 1, . . . m},
∃y∀x.Pi is True. Theorems 4–6 apply to non-atomic reads and writes of multiple
input and output variables. Proofs are in the full version of the paper.

We now consider a more general type of GR(1) formula. The strict semantic
of GR(1) formula �Se ∧ �♦P ⇒ �Ss ∧ �♦Q is defined to be �(�Se ⇒
Ss) ∧ (�Se ∧ �♦P ⇒ �♦Q) – i.e., Ss is required to hold so long as Se has
always held in the past; and if Se holds always and P holds infinitely often,
then Q holds infinitely often. This is the interpretation supported by GR(1)
synchronous synthesis tools.
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Theorem 7. The strict semantics of GR(1) specification �Se∧�♦P ⇒ �Ss∧
�♦Q is asynchronously realizable iff ∃y∀x.(Se ⇒ (Ss ∧ (P ⇒ Q))) is True.

Proof. (ping) If y = b is a witness to ∃y∀x.(Se ⇒ (Ss ∧ (P ⇒ Q))), let f be a
function that always generates b. Suppose Se holds up to point i, then as y = b,
regardless of the x-value, Ss holds at point i. This shows that the first part of
the specification holds. For the second, suppose that Se holds always and P is
true infinitely often. Then, by choice of y = b, (P ⇒ Q) holds always, thus Q
holds infinitely often as well.

(pong) To prove the other side of the implication, we proceed as in Theo-
rem 4. Let f be a candidate implementation. Fix a schedule, and suppose that
∀y∃x.(Se ∧ (¬Ss ∨ ¬(P ⇒ Q))) holds. Then for every step of the execution
and for every value y = b that function f outputs at a writing point, there exists
a value x = a which the environment can choose from that writing point to the
next such that Se(a, b) is true, and one of Ss(a, b) or (P ⇒ Q)(a, b) is false at
every point in that interval.

On this execution, Se holds throughout. If Ss is false at some point, this
violates the first part of the specification. If not, then (P ⇒ Q) must be false
everywhere; i.e., at every point P is true but Q is false. Thus, Se holds everywhere
and P holds infinitely often but Q does not hold infinitely often, violating the
second part of the specification. ��

Theorem 7 applies to atomic reads and writes, showing that asynchronous
synthesis of GR(1) specification can be reduced to Boolean reasoning over prop-
erties in QBF. For non-atomic reads and writes, safety in asynchronous systems
is more nuanced, since there is a delay between the write points of the first and
last outputs in each round. This is discussed in the full version of the paper.
This proof strategy does not generalize easily to the full GR(1) format, where
more than one �♦ property can appear on either side of the implication.

These results establish that the asynchronous synthesis problem for such
specifications is easily solvable–more easily than in the synchronous setting, sur-
prisingly avoiding entirely the need for automaton constructions and bounded
synthesis. From another, equally valuable, point of view, the results show that
such types of specifications may be of limited interest for automated synthesis,
as solvable cases have very simple solutions.

6 Conclusions and Related Work

This work tackles the task of asynchronous synthesis from temporal specifica-
tions. The main results are a new symbolic automaton construction for gen-
eral temporal properties, and the reduction of the synthesis question for several
classes of specifications to QBF. These are mathematically interesting, being
substantial simplifications of prior methods. Moreover, they make it feasible to
implement an asynchronous synthesis tool following the modular process sug-
gested by Pnueli and Rosner in 1989, by reducing asynchronous synthesis to a
synchronous synthesis question. To the best of our knowledge, this is the first
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such tool. The prototype, which builds on tools for synchronous synthesis, is able
to quickly synthesize asynchronous programs for several interesting properties.
There are, undoubtedly, several challenges, one of which is the quick detection
of unrealizable specifications.

Our work builds upon several earlier results, which we discuss here. The
synthesis question for temporal properties originates from a question posed by
Church in the 1950s (see [37]). The problem of synthesizing a synchronous reac-
tive system from a linear temporal specification was formulated and studied by
Pnueli and Rosner [31], who gave a solution based on non-emptiness of tree
automata. There has been much progress on the synchronous synthesis question
since. Key developments include the discovery of efficient symbolic (BDD-based)
solutions for the GR(1) class [7,28], the invention of “Safraless” procedures [24],
the application of these ideas for bounded synthesis [15,35], and their implemen-
tation in a number of tools, e.g. [8,10,11,13,20,34]. These have been applied in
many settings (cf. [9,23,25–27]).

The problem of synthesizing asynchronous programs was also formulated and
studied by Pnueli and Rosner [32] but has proved to be much more challenging,
with only limited progress. The original Pnueli-Rosner constructions are complex
and were not implemented. Work by Klein, Piterman and Pnueli, nearly 20 years
later [22], shows tractability for some GR(1) specifications. However, the class
of specifications that can be so handled is characterized by semantic constraints
such as stuttering-closure and memoryless-ness, which are difficult to recognize.

Finkbeiner and Schewe [18,35] present an alternative method, based on
bounded synthesis, that applies to all LTL properties: it encodes the existence
of a deductive proof for a bounded program into SAT/SMT constraints. How-
ever, the encoding represents inputs and outputs explicitly and is, therefore,
exponential in the number of input and output bits. The exponential blowup
has practical consequences: an asynchronous arbiter specification requires over
8 h to synthesize [18]; the same specification can be synthesized by our method
in seconds. (Note, however, that the method in [18] is not specialized to asyn-
chronous synthesis, and this difference may not be solely due to the explicit
state representation, as the specification has only 4 bits.) Recent work gives an
alternative encoding of synchronous bounded synthesis into QBF constraints,
retaining input and output bits in symbolic form [12]. We believe that a similar
encoding applies to asynchronous bounded synthesis as well, this is a topic for
future work.

Pnueli and Rosner’s model of interface communication is not the only choice.
Other models for asynchrony could, for instance, be based on CCS/CSP-style
rendezvous communication at the interface, or permit shared read-write variables
with atomic lock/unlock actions. Petri net game models have also been suggested
for distributed synthesis [16]. An orthogonal direction is to weaken the adversar-
ial power of the environment through a probabilistic model which can be used to
constrain unlikely, highly adversarial input patterns to have probability 0, thus
turning the synthesis problem into one where programs satisfy their specifica-
tions with high probability. (The synthesis of multiple processes is known to be
undecidable in most cases [17,33].)
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In the broader context of fully automatic program synthesis, there are various
approaches to the synthesis of single-threaded, terminating programs from for-
mal pre- and post-condition specifications and from examples, using type infor-
mation and other techniques to prune the search space. (We will not attempt to
survey this large field, some examples are [14,19,36].) An intriguing question is
to investigate how the techniques developed in these distinct lines of work can be
fruitfully combined to aid the development of asynchronous, reactive software.
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1563393 from the National Science Foundation. We would like to thank Michael Emmi
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vol. 10427, pp. 325–332. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 17

http://lit2.ulb.ac.be/acaciaplus//
https://www.react.uni-saarland.de/tools/bosy/
https://sourceforge.net/projects/ltl3ba/
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-642-14295-6_33
https://doi.org/10.1007/978-3-642-14295-6_33
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17


384 S. Bansal et al.

14. Feng, Y., Martins, R., Wang, Y., Dillig, I., Reps, T.W.: Component-based syn-
thesis for complex APIs. In: Castagna, G., Gordon, A.D. (eds.) Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, 18–20 January 2017, pp. 599–612. ACM (2017)

15. Filiot, E., Jin, N., Raskin, J.-F.: Compositional algorithms for LTL synthesis. In:
Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 112–127.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15643-4 10

16. Finkbeiner, B., Olderog, E.-R.: Petri games: synthesis of distributed systems with
causal memory. Inf. Comput. 253, 181–203 (2017)

17. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: 20th IEEE Sympo-
sium on Logic in Computer Science (LICS 2005), 26–29 June 2005, Chicago, IL,
USA, Proceedings, pp. 321–330. IEEE Computer Society (2005)

18. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013)
19. Frankle, J., Osera, P.M., Walker, D., Zdancewic, S.: Example-directed synthesis:

a type-theoretic interpretation. In: Bod́ık, R., Majumdar, R. (eds.) Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2016, St. Petersburg, FL, USA, 20–22 January 2016, pp.
802–815. ACM (2016)

20. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: 6th International
Conference on Formal Methods in Computer-Aided Design, FMCAD 2006, San
Jose, California, USA, 12–16 November 2006, Proceedings, pp. 117–124. IEEE
Computer Society (2006)

21. Klein, U.: Topics in Formal Synthesis and Modeling. Ph.D. thesis, New York Uni-
versity (2011)

22. Klein, U., Piterman, N., Pnueli, A.: Effective synthesis of asynchronous systems
from GR(1) specifications. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012.
LNCS, vol. 7148, pp. 283–298. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27940-9 19

23. Kress-Gazit, H., Pappas, G.J.: Automatic synthesis of robot controllers for tasks
with locative prepositions. In: International Conference on Robotics and Automa-
tion (ICRA), pp. 3215–3220 (2010)

24. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proceedings of
FOCS, pp. 531–540. IEEE (2005)

25. Liu, J., Ozay, N., Topcu, U., Murray, R.M.: Synthesis of reactive switching proto-
cols from temporal logic specifications. IEEE Trans. Autom. Control 58(7), 1771–
1785 (2013)

26. Maoz, S., Sa’ar, Y.: AspectLTL: an aspect language for LTL specifications. In:
Borba, P., Chiba, S. (eds.) Proceedings of the 10th International Conference on
Aspect-Oriented Software Development, AOSD 2011, Porto de Galinhas, Brazil,
21–25 March 2011, pp. 19–30. ACM (2011)

27. Maoz, S., Sa’ar, Y.: Assume-guarantee scenarios: semantics and synthesis. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 335–351. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33666-9 22

28. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2005). https://doi.org/10.1007/11609773 24

29. Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS, pp. 46–57.
IEEE (1977)

https://doi.org/10.1007/978-3-642-15643-4_10
https://doi.org/10.1007/978-3-642-27940-9_19
https://doi.org/10.1007/978-3-642-27940-9_19
https://doi.org/10.1007/978-3-642-33666-9_22
https://doi.org/10.1007/978-3-642-33666-9_22
https://doi.org/10.1007/11609773_24


Synthesis of Asynchronous Reactive Programs from Temporal Specifications 385

30. Pnueli, A., Klein, U.: Synthesis of programs from temporal property specifications.
In: 2009 7th IEEE/ACM International Conference on Formal Methods and Models
for Co-Design, MEMOCODE 2009, pp. 1–7. IEEE (2009)

31. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190 (1989)

32. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module.
In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989). https://doi.org/10.1007/
BFb0035790

33. Pneuli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri,
USA, 22–24 October 1990, vol. II, pp. 746–757. IEEE Computer Society (1990)

34. Pnueli, A., Sa’ar, Y., Zuck, L.D.: Jtlv: a framework for developing verification
algorithms. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol.
6174, pp. 171–174. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14295-6 18

35. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75596-8 33

36. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program
synthesis. In: Hermenegildo, M.V., Palsberg, J. (eds.) Proceedings of the 37th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2010, Madrid, Spain, 17–23 January 2010, pp. 313–326. ACM (2010)

37. Thomas, W.: Facets of synthesis: revisiting Church’s problem. In: de Alfaro, L. (ed.)
FoSSaCS 2009. LNCS, vol. 5504, pp. 1–14. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00596-1 1

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/978-3-642-14295-6_18
https://doi.org/10.1007/978-3-642-14295-6_18
https://doi.org/10.1007/978-3-540-75596-8_33
https://doi.org/10.1007/978-3-642-00596-1_1
https://doi.org/10.1007/978-3-642-00596-1_1
http://creativecommons.org/licenses/by/4.0/


Syntax-Guided Synthesis
with Quantitative Syntactic Objectives

Qinheping Hu(B) and Loris D’Antoni

University of Wisconsin-Madison, Madison, USA
{qhu28,loris}@cs.wisc.edu

Abstract. Automatic program synthesis promises to increase the pro-
ductivity of programmers and end-users of computing devices by
automating tedious and error-prone tasks. Despite the practical suc-
cesses of program synthesis, we still do not have systematic frameworks
to synthesize programs that are “good” according to certain metrics—
e.g., produce programs of reasonable sizes or with good runtime—and
to understand when synthesis can result in such good programs. In this
paper, we propose QSyGuS, a unifying framework for describing syntax-
guided synthesis problems with quantitative objectives over the syntax of
the synthesized programs. QSyGuS builds on weighted (tree) grammars,
a clean and foundational formalism that provides flexible support for
different quantitative objectives, useful closure properties, and practical
decision procedures. We then present an algorithm for solving QSyGuS.
Our algorithm leverages closure properties of weighted grammars to gen-
erate intermediate problems that can be solved using non-quantitative
SyGuS solvers. Finally, we implement our algorithm in a tool, QuaSi,
and evaluate it on 26 quantitative extensions of existing SyGuS bench-
marks. QuaSi can synthesize optimal solutions in 15/26 benchmarks
with times comparable to those needed to find an arbitrary solution.

1 Introduction

The goal of program synthesis is to find a program in some search space that
meets a specification—e.g., a set of examples or a logical formula. Recently,
a large family of synthesis problems has been unified into a framework called
syntax-guided synthesis (SyGuS). A SyGuS problem is specified by a context-
free grammar describing the search space of programs, and a logical formula
describing the specification. Many synthesizers now support this format [2] and
annually compete in synthesis competitions [4]. Thanks to these competitions,
these solvers are now quite mature and are finding wide application [14].

While the logical specification mechanism provided by SyGuS is powerful,
it can only capture the functional requirements of the synthesis problem—e.g.,
the program should perform correctly on a given set of input/output examples.
When multiple possible programs can satisfy the specification, SyGuS does not
provide a way to prefer one to the other—e.g., one cannot ask a solver to return
the program with the fewest if-statements. As a consequence, existing synthesis
c© The Author(s) 2018
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tools do not provide guarantees about what solution is returned if multiple ones
exist. While a few synthesizers have attempted to include some form of specifi-
cation to express this kind of quantitative intents [7,15,16,19], these approaches
are domain-specific, do not apply to SyGuS problems, and do not provide a
simple and flexible specification mechanism. The lack of a formal treatment
of quantitative requirements stands in the way of designing synthesizers that
can take advantage of quantitative objectives to perform more efficient forms of
synthesis.

In this paper, we propose QSyGuS, a unifying framework for describing
syntax-guided synthesis problems with quantitative objectives over the syntax
of the synthesized programs—e.g., find the most likely program with respect to
a given probability distribution—and present an algorithm for solving synthesis
problems expressed in this framework. We focus on syntactic objectives because
they are the most common ones in practical applications of program synthesis.
For example, in programming by examples it is desirable to produce small pro-
grams with fewer constants because these programs are more likely to generalize
to examples outside of the specification [13]. QSyGuS extends SyGuS in two
ways. First, in QSyGuS the search space is represented using weighted gram-
mars, which augment context-free grammars with the ability to assign weights
to programs. Second, QSyGuS allows the user to specify constraints over the
weight of the program, including optimization objectives—e.g., find the program
with the fewest if-statements and with the lowest depth.

QSyGuS is a natural, general, and flexible formalism and is grounded in the
well-studied theory of weighted grammars. We leverage this theory and design
an algorithm for solving QSyGuS problems using closure properties of weighted
grammars. Given a QSyGuS problem, our algorithm generates a SyGuS prob-
lem that can be delegated to existing SyGuS solvers. The algorithm then iter-
atively refines the solution returned by the SyGuS solver to find an optimal
one by further generating new SyGuS instances using weighted grammar oper-
ations. We implement our algorithm in a tool, QuaSi, and evaluate it on 26
quantitative extensions of existing SyGuS benchmarks. QuaSi can synthesize
optimal solutions in 15/26 benchmarks with times comparable to those needed
to find a solution that does not need to satisfy any quantitative objective.

Contributions. In summary, our contributions are:

– QSyGuS, a formal framework grounded in the theory of weighted grammars
that can describe syntax-guided synthesis problems with quantitative objec-
tives over the syntax of the synthesized programs (Sect. 3).

– An algorithm for solving QSyGuS problems that leverages closure properties
of weighted grammars and existing SyGuS solvers (Sect. 4).

– QuaSi, a tool for specifying and solving QSyGuS problems that interfaces
with existing SyGuS solvers and a comprehensive evaluation of QuaSi, which
shows that QuaSi can efficiently solve QSyGuS problems over different types
of weights, including additive weights, probabilities, and combinations of mul-
tiple weights (Sect. 5).
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Fig. 1. Weighted grammar that assigns weight (w1, w2) ∈ Nat × Nat to a program
where w1 is the number of if-statements and w2 is the number of plus-statements.

2 Illustrative Example

In this section, we illustrate the main components of our framework using an
example. We start with a Syntax-Guided Synthesis (SyGuS) problem in which
no quantitative objective is provided. We recall that the goal of a SyGuS prob-
lem is to synthesize a function f of a given type that is accepted by a context-free
grammar G, and such that ∀x.φ(f, x) holds (for a given Boolean constraint φ).

The following SyGuS problem asks to synthesize a function that is accepted
by the following grammar and that computes the max of two numbers.

Start ::=Start + Start | if(BExpr) then Start else Start | x | y | 0 | 1
BExpr ::=Start > Start | ¬BExpr | BExpr ∧ BExpr

The semantic constraint is given by the following formula.

ψ(f) def= ∀x, y.f(x, y) ≥ x ∧ f(x, y) ≥ y ∧ (f(x, y) = x ∨ f(x, y) = y)

The following three programs are semantically equivalent, but syntactically
different solutions.

max1(x, y) = if(x > y) then x else y
max2(x, y) = if(x > y) then (x + 0) else (y + 0)
max3(x, y) = if(x > y) then x else (if(y > x) then y else x)

All solutions are correct, but the user might, for example, prefer the smallest
one. However, SyGuS does not provide ways to specify this quantitative intent.
Adding Weights. In our formalism, QSyGuS, we augment context-free gram-
mars to assign weights to programs in the search space. Concretely, we adopt
weighted grammars [10], a well-studied formalism with many desirable proper-
ties. In a weighted grammar, each production is assigned a weight. For example,
the weighted grammar shown in Fig. 1 extends the one from the previous SyGuS
example to assign to each program p a pair of weights (w1, w2) where w1 is the
number of if-statements and w2 is the number of plus operators in p. In this case,
the weights are pairs of integers and the weight of a grammar derivation is the
pairwise sum of all the weights of the productions involved in the derivation—
e.g., the sum of (w1, w2) and (w′

1, w
′
2) is (w1 + w′

1, w2 + w′
2). In the figure, we

write /(w1, w2) to assign weight (w′
1, w

′
2) to a production. We omit the weight for

productions with cost (0, 0). The functions max1, max2 and max3 have weights
(1, 0), (1, 2), and (2, 0) respectively.
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Adding and Solving Quantitative Objectives. Once we have a way to assign
weights to programs, QSyGuS allows the user to specify quantitative objec-
tives over the weights of the productions—e.g., only allow solutions with fewer
than 4 if-statements. In our example, we could require the solution to be minimal
with respect to the number of if-statements, i.e., minimize the first component
of the paired weight. With these constraints both max1 and max2 would be con-
sidered optimal solutions because there exists no solution with 0 if-statements. If
we require the solution to also be minimal with respect to the second component
of the paired weight, max1 will be a possible optimal solution.

Our tool QuaSi can automatically discover solutions in both these cases.
Let’s consider the last minimization objective. In this case, QuaSi first uses
existing SyGuS solvers to synthesize an initial solution using the non-weighted
version of the grammar. Let’s say that the returned solution is, for example,
max3 of weight (2, 0). QuaSi uses this solution to build a new SyGuS instance
that only accepts programs with at most one if-statement. Solving this SyGuS
problem can, for example, result in the program max2 of weight (1, 2), which
will require our solver to build yet another SyGuS instance. This approach is
repeated and if it terminates, an optimal program is found.

3 SyGuS with Quantitative Objectives

In this section, we introduce our framework for defining syntax-guided synthesis
problems with quantitative objectives over the syntax of the synthesized pro-
grams. We first provide preliminary definitions for notions such as semirings
(Sect. 3.1) and weighted tree grammars (Sect. 3.2), and then use these notions
to augment SyGuS problems with quantitative objectives (Sect. 3.3).

3.1 Weights over Semirings

We now define the universe of weights we will assign to programs. In gen-
eral, weights are defined using monoids—i.e., sets equipped with an addition
operator—but when a grammar is nondeterministic—i.e., it can produce the
same term using multiple derivations—the same term might be assigned multi-
ple weights. Hence, we choose to use semirings. Since we also care about opti-
mization objectives, we assume all our semirings are equipped with a partial
order.

Definition 1 (Semiring). A (ordered) semiring is a pair (S,�) where ( i) S =
(S,⊕,⊗, 0, 1) is an algebra consisting of a commutative monoid (S,⊕, 0) and a
monoid (S,⊗, 1) such that ⊗ distributes over ⊕, 0 	= 1, and, for every x ∈ S,
x ⊗ 0 = 0, ( ii) �⊂ S × S is a partial order over S.

We often use the word semiring to refer to just the algebra S.

Example 1. In this paper, we focus on semirings with the following algebras.
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Boolean Bool = (B,∨,∧, 0, 1). This semiring only contains the values true and
false and is used to represent non-quantitative problems.

Tropical Trop = (Z ∪ {∞},min,+,∞, 0). This semiring is the most common
one and is used to assign additive weights—e.g., term sizes and term depth.
In this case, we typically consider the order � def= ≤.

Probabilistic Prob = ([0, 1],+, ·, 0, 1). This semiring is used to assign probabil-
ities to terms in a grammar. ��
In our framework, we allow synthesis problems to have multiple objectives.

Hence, we define a product operation to compose semirings. Intuitively, the fol-
lowing operation composes algebras of semirings to create a pair and applies the
operation of each algebra to the corresponding projections of the pair. Similarly,
two orders can be composed to create an order over pairs of elements. We pro-
pose two such compositions, one which assigns equal weights to the two orders
and one which prefers one order over the other (Sorted).

Definition 2 (Products). Given two algebras S1 = (S1,⊕1,⊗1, 01, 11) and
S2 = (S2,⊕2,⊗2, 02, 12), the product algebra is the tuple S1 ×S S2 = (S1 ×
S2,⊕,⊗, (01, 02), (11, 12)) such that for every x1, x2 ∈ S1 and y1, y2 ∈ S2, we
have (x1, y1) ⊕ (x2, y2)

def= (x1 ⊕1 x2, y1 ⊕2 y2) and (x1, y1) ⊗ (x2, y2)
def= (x1 ⊗1

x2, y1 ⊗2 y2).
Given two partial orders �1⊂ S1×S1 and �2⊂ S2×S2, the Pareto product of

the two orders is defined as the partial order �p= par(�1,�2) ⊆ (S1×S2)×(S1×
S2) such that, for every x1, x2 ∈ S1 and y1, y2 ∈ S2, we have (x1, y1) �p (x2, y2)
iff x1 �1 x2 and y1 �2 y2.

Given two partial orders �1⊂ S1 × S1 and �2⊂ S2 × S2, the Sorted product
of the two orders is defined as the partial order �s= sort(�1,�2) ⊆ (S1 ×
S2) × (S1 × S2) such that, for every x1, x2 ∈ S1 and y1, y2 ∈ S2, we have
(x1, y1) �s (x2, y2) iff x1 �1 x2 or (x1 = x2 and y1 �2 y2).

Example 2. The weights in the grammar in Fig. 1 are from the product semiring
Trop×STrop. When using the Pareto partial orders, we have, for example, (1, 0) �
(2, 0) and (1, 0) � (1, 2), but (1, 2) is incomparable to (2, 0). When using the
Sorted product, we have, for example, (1, 0) � (1, 2) � (2, 0). ��

3.2 Weighted Tree Grammars

Since SyGuS defines search spaces using context-free grammars, we propose to
extend this formalism with weights to assign costs to terms in the grammar. We
focus our attention on a restricted class of context-free grammars called regular
tree grammars—i.e., grammars generating regular tree languages—because, to
our knowledge, the benchmarks appearing in the SyGuS competition [3] and
in practical applications of SyGuS operate over tree grammars. Moreover, it
was recently shown that SyGuS problems that are undecidable for context-free
grammars become decidable with weighted tree grammars [8].
Trees A ranked alphabet is a tuple (Σ, rkΣ) where Σ is a finite set of symbol
and rkΣ : Σ → N associates a rank to each symbol. For every m ≥ 0, the set
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of all symbols in Σ with rank m is denoted by Σ(m). In our examples, a ranked
alphabet is specified by showing the set Σ and attaching the respective rank to
every symbol as superscript—e.g., Σ = {+(2), c(0)}. We use TΣ to denote the set
of all (ranked) trees over Σ—i.e., TΣ is the smallest set such that (i) Σ(0) ⊆ TΣ ,
(ii) if σ ∈ Σ(k) and t1, . . . , tk ∈ TΣ , then σ(t1, · · · , tk) ∈ TΣ . In the following we
assume a fixed ranked alphabet (Σ, rkΣ).

Weighted Tree Grammars. Tree grammars are similar to word grammars but
they generate ranked trees instead of words. Weighted tree grammars augment
tree grammars by assigning weights from a semiring to trees. They do so by
associating weights to productions in the grammar. Weighted grammars can, for
example, compute the height of a tree, the number of occurrences of some node
in the tree, or the probability of a tree with respect to some distribution In the
following, we assume a fixed semiring (S,�) where S = (S,⊕,⊗, 0, 1).

Definition 3 (Weighted Tree Grammar). A weighted tree grammar
(WTG) is a tuple G = (N,Z, P, μ), where N is a set of non-terminal sym-
bols with arity 0, Z is an axiom with Z ∈ N , P is a set of production rules of
the form A → β where A ∈ N is a non-terminal and β is a tree of T (Σ ∪ N),
and μ : P → S is a function assigning to each production a weight from the
semiring.

We can now define the semantics of a WTG as a function wG : TΣ �→ S,
which assigns weights to trees. Intuitively, the weight of a tree is ⊕-sum of the
weight of every possible derivation of that tree in a grammar and the weight of
a derivation is the ⊗-product of the weights of the productions appearing in the
derivation. We use MS(β) = 〈X1, . . . , Xk〉 to denote the multi-set of all nonter-
minals appearing in β and β[t1/X1, . . . , tk/Xk] to denote the result of simultane-
ously substituting each Xi with ti in β. Given a derivation p = A → β such that
MS(β) = 〈X1, . . . , Xk〉, we assume that p is a symbol of arity k. A derivation d
starting at non-terminal X is a tree of productions d ∈ T (P ) representing one
possible way to derive a tree starting from X. The derivation has to be such that:
(i) the root of d is a production of the form X → β, (ii) for every node p = A → β
in d, if MS(β) = 〈X1, . . . , Xk〉, then, for every 1 ≤ i ≤ k, the i-th child of p is
a production Xi → βi. Given a derivation d with root p = X → β, such that
MS(β) = 〈X1, . . . , Xk〉 and p has children subtrees d1, . . . , dk, the tree gener-
ated by d is recursively defined as tree(d) = β[tree(d1)/X1, . . . , tree(dk)/Xk].
We use der(X, t) to denote the set of all derivations d starting at X, such that
tree(d) = t. The weight dw(d) of a derivation d is the ⊗-product of the weights
of the productions appearing in the derivation. Finally, the weight of a tree t is
the ⊕-sum of the weights of all the derivations of t from the initial nonterminal
wG(t) =

⊕
d∈der(Z,t) dw(d). A weighted tree grammar is unambiguous iff, for

every t ∈ TΣ , there exists at most one derivation—i.e., |der(Z, t)| ≤ 1.
Weighted tree grammars generalize weighted tree automata. In particular, a

weighted tree automaton (WTA) is a WTG in which every production is of the
form A → σ(T1, . . . , Tn), where A ∈ N , each Ti ∈ N , and σ ∈ Σ(n). Finally, a
tree automaton (TA) is a WTA over the Boolean semiring—i.e., the TA accepts
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all trees with some derivations yielding true. Similarly, a tree grammar (TG) is
a WTG over the Boolean semiring. Given a TA (resp. TG) G, we use L(G) to
denote the set of trees accepted by G—i.e., L(G) = {t | wG(t) = true}.

Example 3. The weighted grammar in Fig. 1 operates over the semiring Trop ×
Trop, N = {Start, BExpr}, Z = Start, P contains 9 productions, and μ assigns
non-zero weights to two of them. ��

Aside from being a natural formalism for assigning weights to trees, TGs
and WTGs enjoy properties that make them a good choice for our model. First,
WTGs (resp. TGs) are equi-expressive to WTAs (resp. TAs) and have logic
characterizations [9–11]. Due to this reason, tree grammars are closed under
Boolean operations and enjoy decidable equivalence [9]. Second, WTGs enjoy
many closure and decidability properties—e.g., given two WTGs G1 and G2,
we can compute the grammars G1 ⊕ G2 and G1 ⊗ G2 such that, for every f ,
wG1⊕G2(f) = wG1(f) ⊕ wG2(f) and wG1⊗G2(f) = wG1(f) ⊗ wG2(f). This
operation is convenient for building grammars over product semirings.

3.3 QSyGuS

In this section, we formally define QSyGuS, which extends SyGuS with quanti-
tative objectives. In SyGuS a problem is specified with respect to a background
theory T—e.g., linear arithmetic—and the goal is to synthesize a function f that
satisfies two constraints provided by the user. The first constraint describes a
functional semantic property that f should satisfy and is given as a predicate
ψ(f) def= ∀x.φ(f, x). The second constraint limits the search space S of f and is
given as a set of expressions specified by a context-free grammar G defining a
subset of all the terms in T . A solution to the SyGuS problem is an expression
e in S such that the formula ψ(e) is valid.

We augment such a framework in two ways. First, we replace context free
grammars with WTGs, which we use to assign weights (from a given semiring)
to terms. Second, we augment the problem formulation with constraints over
the weight of the synthesized program—i.e., only consider programs of weight
greater than 2—and optimization objectives over the same weight—i.e., find the
solution of minimal weight. Weight constraints range over the grammar

WC := WC ∧ WC | WC ∨ WC | ¬WC | w � s | s � w | w ≺ s | s ≺ w,

where w is a special variable and s is an element of the semiring under consid-
eration. Given a constraint ω ∈ WC, we write ω(t) to denote the term obtained
by replacing w with t in ω.

Definition 4 (QSyGuS). A QSyGuS problem is a tuple (T, (S,�), ψ(f), G,
ω,opt) where:

– T is a background theory.
– (S,�) is an ordered semiring defining the set of weights and their operations.
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Algorithm 1.QSyGuS synthesis algorithm
1: procedure QSyGuS-solve(T,S, ψ, G, ω,opt)
2: G′ ← ReduceGrammar(G, ω) � extract grammar satisfying ω
3: f∗ ← SyGuS(T, ψ, G′) � solve corresponding SyGuS problem
4: if opt = false then return f∗

5: while true do
6: G′ ← ReduceGrammar(G′, w ≺ wG(f∗))
7: f ← SyGuS(T, ψ, G′) � Try to find better solution
8: if f = ⊥ then return f∗ � Return the optimal solution

9: f∗ ← f

– G is a weighted tree grammar with weights over the semiring S and that only
contains terms in T—i.e., L(G) ⊆ T .

– ψ(f) def= ∀x.φ(f, x) is a Boolean formula constraining the semantic behavior
of the synthesized program f .

– ω ∈ WC is a set of constraints over the weight w of the synthesized program.
– opt is a Boolean denoting whether the solution has to have minimal weight

with respect to �.

A solution to the QSyGuS problem is a term e such that e ∈ L(G), ψ(e) is
true, and ω(wG(e)) is true. If opt is true, we also require that there is no g that
satisfies the previous conditions and such that ω(wG(g)) ≺ ω(wG(e)).

A SyGuS problem is a QSyGuS problem without weight constraints—i.e., ω ≡
true and opt = false. We denote such problems just as triples (T, ψ(f), G).

Example 4. Consider the QSyGuS problem described in Sect. 2. We already
described all the components but ω and opt in the rest of this section. In this
example, ω = true and opt = true because we want to synthesize the solution
with minimal weight.

4 Solving QSyGuS Problems via Grammar Reduction

In this section, we present an algorithm for solving QSyGuS problems (Algo-
rithm 1), which works as follows. First, given a QSyGuS problem, we construct
(under certain assumptions) a SyGuS problem for which the solution is guaran-
teed to satisfy the weight constraints ω (line 2) and use existing SyGuS solvers
to find a solution to such a problem (line 3). If the QSyGuS problem requires
minimization, our algorithm produces a new SyGuS instance to search for a
solution that is better than the previously found one and tries to solve it (lines
6-7). This procedure is repeated until an optimal solution is found (line 8).

4.1 From QSyGuS to SyGuS

The first step of our algorithm is to construct a SyGuS problem character-
izing exactly all the solutions of the QSyGuS problem that satisfy the weight
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constraints. Given a QSyGuS problem P = (T, (S,�), ψ(f), G, ω,opt), we con-
struct a SyGuS problem P ′ = (T, ψ(f), G′) such that a function g is a solution
to the SyGuS problem P ′ iff g is a solution of P = (T, (S,�), ψ(f), G, ω, false),
where the optimization constraint has been dropped. We denote the grammar
reduction operation as G′ ← ReduceGrammar(G,ω).

Base case. First we show how to solve the problem when ω is an atomic formula—
i.e. of the form w � s, s � w, w ≺ s, or s ≺ w. We start by showing how to solve
the problem for w � s as the construction is identical for the other constraints.

Concretely, we are given a WTG G = (N,Z, P, μ) and we want to construct
a TG G�s = (N ′, Z ′, P ′) such that t ∈ L(G�s) iff wG(t) � s. In general, it is not
possible to perform this construction for arbitrary semirings and grammars. We
first present our algorithm and then describe sufficient conditions under which
we can ensure termination and correctness.

The idea behind our construction is to introduce new nonterminals in the
grammar G�s to keep track of the weight of the trees that can be produced
from those nonterminals. For example, a nonterminal pair (X, s′) will derive all
trees derivable from X using a single derivation of weight s′. Therefore, the set
of nonterminals N ′ is a subset of N × S (plus an initial nonterminal Z ′), where
S is the universe of the WTG’s semiring. We construct our set of nonterminals
N ′ starting from the leaf productions of G and then recursively explore other
productions. At the same time we generate the set of productions P ′. Formally,
N ′ and P ′ are the smallest sets such that the following conditions hold.

1. Z ′ ∈ N ′ (the initial nonterminal).
2. For every production p ∈ P such that p = (A → β) and β ∈ TΣ—i.e., p is a

leaf—and μ(p) � s, then (A,μ(p)) ∈ N ′ and ((A,μ(p)) → β) ∈ P ′. If A = Z,
then Z ′ → (A,μ(p)) ∈ P ′.

3. For every production p ∈ P such that p = (A → β), MS(β) =
〈X1, . . . , Xk〉, (X1, s1), . . . , (Xk, sk) ∈ N ′ (for some values si ∈ S), and
μ(p) ⊗ s1 ⊗ . . . ⊗ sk = s′, s′ � s, then (A, s′) ∈ N ′, and ((A, s′) →
β[(X1, s1)/X1, . . . , (Xk, sk)/Xk]) ∈ P ′. If A = Z, then Z ′ → (A, s′) ∈ P ′.

Example 5. We illustrate our construction using the grammar in Fig. 1 . Assume
the weight constraint is w � (1, 0) and the partial order is built using a
Pareto product—i.e., we accept terms with 1 or less if-statements and no plus-
statements. Our construction yields the following grammar.

Z’ ::=(Start,1,0) | (Start,0,0)
(Start,1,0) ::=if((BExpr,0,0)) then (Start,0,0) else (Start,0,0) | x | y | 0 | 1
(Start,0,0) ::=x | y | 0 | 1

(BExpr,0,0) ::=(Start,0,0) > (Start,0,0) | ¬(BExpr,0,0) | (BExpr,0,0) ∧ (BExpr,0,0)

��
The construction of G�s only terminates for certain semirings and grammars,

and only guarantees that individual derivations yield the correct weight—i.e., it
does not account for the ⊕-sum of multiple derivations.
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Example 6. The following WTG over Prob is ambiguous and, if we apply the
grammar reduction algorithm for ω := w � 0.6, the resulting grammar will be
empty. However, the tree 1 + 1 has weight 0.9 � 0.6 (0.9 ≥ 0.6).

Start ::=Start + Start/0.5
|x | 0 | 1 | Expr

Expr ::=Expr + Expr/0.4
|x | 0 | 1 ��

We now identify sufficient conditions under which the construction of G�s

terminates and is sound. In particular, we start by restricting our attention
to unambiguous WTGs, which are the common ones in practice. We use
weights(G) = {s | p ∈ P ∧μ(p) = s} to denote the set of weights used by G and
MS,G = (S′,⊗, 1) to denote the submonoid of S generated by weights(G)—i.e.,
the set of all weights we can generate using ⊗ and weights(G).

Theorem 1. Given an unambiguous WTG G over a semiring S such that
MS,G = (S′,⊗, 1), and a weight s ∈ S, the construction of G�s terminates
if the set {s′ | s′ � s ∧ w ∈ S′} is finite. Moreover, if the set of weights
weights(G) is monotonically increasing with respect to �—i.e. for every s ∈ S
and s′ ∈ weights(G), s � s ⊗ s′—then L(G�s) contains exactly every tree t
such that wG(t) � s.

The theorem above also holds for other atomic constraints w ≺ s, s � w,
or s ≺ w (for these last two, the direction of the monotonicity is reversed).
Moreover, in certain cases, even if the construction may not terminate for, let’s
say s � w, it might terminate for the negated constraint w ≺ s. In such a case, we
can use the closure properties of regular tree grammars/automata to construct
the reduced grammar for s � w as G�w = intersect(G,complement(G�w)).
The same idea can be applied to all atomic constraints.

In practice, the restriction of Theorem 1 holds for grammars that operate
over the Boolean and probabilistic semirings, and the tropical semiring only
with positive weights. Theorem 1 never holds when S is the tropical semiring
and the grammar contains negative weights. In general, one cannot construct
the constrained grammar in this case. However, it is easy to modify our algo-
rithm to work with grammars that do not contain loops—i.e., derivations from a
nonterminal to a tree containing the same nonterminal—with negative weights.

Intuitively, when the grammar contains no negative loops, we can find a con-
stant SH such that any intermediate derivation with weight greater than s+SH
will never result in tree with weight smaller than s. We use this idea to modify
the construction of GTrop

≤s —i.e., G≤s for Trop—as follows. First, this constant is
bounded by ckn+1 where c is the absolute value of the smallest negative weight
in the grammar, k is the largest number of nonterminals appearing in one gram-
mar production, and n = |N | is the number of nonterminals. Second, in steps 2
and 3 of the construction, a new nonterminal and the corresponding productions
are produced if μ(p) ≤ s + |SH| (previously μ(p) ≤ s). However, if A = Z in
steps 2 and 3, we add a new production Z ′ → (A, s′) only if s′ � s.

We now show when this construction terminates and return correct values.
Since the tropical semiring combines multiple runs using the min operator, we
can drop the requirement that the grammar has to be unambiguous.
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Theorem 2. Given a WTG G over Trop and a weight s ∈ Z, the construc-
tion of GTrop

≤s terminates if G contains no loop with cumulative negative weight.
Moreover, GTrop

≤s contains exactly every tree t such that wG(t) ≤ s.

Composing semirings. We next discuss how Theorem 1 relates to product semir-
ings. Given a grammar G = (N,Z, P, μ) over a semiring S1 ×S S2, we use GSi

to denote the grammar (N,Z, P, μi) in which the weight function outputs the
corresponding projected weight—i.e., if μ(p) = (s1, s2), then μi(p) = si.

Let’s first consider the case where the product semiring uses a Pareto partial
order. In this case, if Theorem 1 holds for each grammar GSi and wi �i si, then
it holds for G and (w1, w2) �p (s1, s2). However, the other direction is not true.
Theorem 3 proves this intuition and states that, in some sense, solving Pareto
partial orders is easier than solving the individual partial orders.

Theorem 3. Given an unambiguous WTG G over the semiring S = S1 ×S S2

with Pareto partial order �p= par(�1,�2) and a weight s = (s1, s2) ∈ S,
if the constructions GS1

�1s1
and GS2

�2s2
terminate, then the construction of G�s

terminates.

When we move to Sorted partial order we cannot get an analogous theorem: if
Theorem 1 holds for each grammar GSi and wi �i si, then it does not necessary
hold for G and (w1, w2) �s (s1, s2). In particular, if the semiring S2 is infinite and
there exists an s′

1 ≺ s1, there will be infinitely many elements (s′
1, ) ≺ (s1, s2).

Using this observation, we devise a modified algorithm for reducing grammars
with sorted objectives. First, we compute the grammars GS1≺1s1

, GS1
=s1

, and GS2≺2s2
.

Second, we use WTG closure properties to compute G�s
(s1, s2) as the union of

GS1≺1s1
and intersect(GS1

=s1
, GS2≺2s2

).

General formulas. We can now inductively construct the grammar accepting only
terms satisfying all constraints in ω. We again use the fact that tree grammars
are closed under Boolean operations to compute intersections and unions and
correctly characterize all conjunctions and unions appearing in the formulas.

4.2 Finding an Optimal Solution

If our QSyGuS problem does not require minimization—i.e., opt = false—the
technique presented in Sect. 4.1 can be used to generate an equivalent SyGuS
problem P ′ = (T, ψ(f), G′), which can be solved using off-the-shelf SyGuS
solvers. In this section, we show how to extend this technique to handle min-
imization objectives. Our idea is to use SyGuS solvers to find a non-optimal
solution for P ′ and then iteratively refine our grammar G′ to search for a better
solution. This loop is illustrated in Algorithm 1 (lines 5-9). Given the initial solu-
tion f∗ to P ′ such that wG(f∗) = s, we can construct a new grammar G≺s and
look for a solution with lower weight. If the SyGuS solver we use is sound—it
can find a solution if it exists—and complete—it can detect if a solution does
not exist—Algorithm 1 terminates with an optimal solution.

In general, the above conditions are too strict and in practice this implies
that the algorithm will often not terminate. However, if the SyGuS solver is
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sound, the Algorithm 1 will eventually find the optimal solution, but it will not
be able to prove that no smaller one exists. In our experiments, we will show
that this approach can yield better solutions than those given by vanilla SyGuS
solvers even when Algorithm 1 does not terminate.

5 Implementation and Evaluation

First, We extended the SyGuS format with new syntax for expressing QSyGuS
problems. Our format supports all semirings presented in Sect. 3.1 as well as
additional ones. The format also allows creating tuples of semirings using the
product operation described in Sect. 3.1. We augment the original SyGuS syntax
to support weights on grammar productions. Weight constraints are added using
an SMT-like syntax.

Second, we implemented Algorithm 1 in a tool called QuaSi. QuaSi already
interfaces with three SyGuS solvers: CVC4 [6], ESolver [4], and EUSolver [5].
QuaSi supports all the semirings allowed in our format and implements a library
for tree automata/grammars and weighted tree automata/grammars operations,
as well as several optimizations we did not discuss in the paper. In particular,
QuaSi often uses simple grammar reduction techniques to simplify the generated
grammars, remove unnecessary productions, and consolidate equivalent ones.

We evaluate QuaSi through the following questions (experiments performed
on an Intel Core i7 4.00 GHz CPU with 32 GB/RAM).

Q1 Can QuaSi solve quantitative variants of real SyGuS benchmarks?
(Sect. 5.1)

Q2 What is the overhead of synthesizing optimal solutions? (Sect. 5.2)
Q3 How do multiple iterations of Algorithm 1 affect the solution’s weight?

(Sect. 5.3)
Q4 Can QuaSi solve QSyGuS problems with multiple objectives? (Sect. 5.4)

Benchmarks. We perform our evaluation on 26 quantitative extensions of exist-
ing SyGuS competition benchmarks taken from 4 SyGuS benchmark tracks
[4]: Hackers Delight, Integers, ICFP and Bitvector. 18 of our benchmarks only
use a minimization objective over a single semiring (Table 1), while 8 use a min-
imization objective (Pareto or Sorted) over a product semiring (Table 2). We
select SyGuS benchmarks using the following criteria: (i) the benchmark can
be solved by either CVC4 [6] or ESolver [4], and (ii) the solution is not optimal
according to some reasonable metric—e.g., size or number of if statements.

5.1 Effectiveness of QSyGuS Solver

We evaluate the effectiveness of QuaSi on the 18 single-minimization-objective
benchmarks. For each benchmark, we run QuaSi using either CVC4 or ESolver
as the backend SyGuS solver (we also evaluated QuaSi using EUSolver [5], but,
due to its poor performance, we do not report the results). The results are shown
in Table 1. The timeout for each iteration of Algorithm 1 is 10 min.
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With CVC4, QuaSi terminates with an optimal solution in 9/18 benchmarks,
taking less than 5 s (avg: 0.7 s) to solve each sub-problem. In 3 of these cases,
the initial solution is already optimal and the second iteration is used to prove
optimality. With ESolver, QuaSi terminates with an optimal solution in 8/18
benchmarks, taking less than 7 s (avg: 0.9 s) to solve each sub-problem. In 1
cases, it can find a better solution than the original one, but it cannot prove
that the solution is optimal. Overall, by combining solvers, QuaSi can find a
better solution than the original SyGuS solution given by one of the two solvers
in 9/18 benchmarks. QuaSi cannot improve the initial solution of the linear
integer arithmetic benchmarks (array search and LinExpr eq1ex).

Both solvers timeout on large grammars. The grammars in Table 1 are 1 to 2
order of magnitude larger than those in existing SyGuS benchmarks (avg: 224 vs
13 rules) and existing solvers have not yet been optimized for this parameter. In
some cases, the solver times out for intermediate grammars that do not contain
a solution, but that generate infinitely many terms. In general, existing SyGuS
solvers cannot prove unsatisfiability for these types of problems. To answer Q1,
QuaSi can solve quantitative variants of 10/18 real SyGuS benchmarks.

Table 1. Performance of QuaSi. Time shows the sequence of times taken to solve
individual iterations of Algorithm 1. Largest is the size of the largest SyGuS sub-
problem. Grammar Size is the number of rules in the original grammar.

Problem CVC4 ESolver Grammar

Time [sec] Largest Time [sec] Largest Size

Trop max ite(2,3) 0.1+0.1 42 0.1 42 13

max ite(2,15) 0.1+0.1 239 0.3 239 13

max ite(3,15) 0.1+0.1+0.1 238 OOM 238 13

max ite(10,15) 0.5+0.5+0.9 226 OOM 226 13

parity not 0.1+TO 301 26.9+TO 43 6

max3 ite 0.1+TO 31 OOM − 14

array search 3 0.1+TO 135 TO − 15

array search 5 0.1+TO 108 TO − 16

hackers 5 0.1+0.1 27 0.1+0.1+0.1 35 13

hackers 7 0.1+0.3 35 0.1+0.1+0.2 41 13

hackers 17 0.1+0.7 41 2.8+3.0+1.0 62 13

hackers 19 0.2+TO 174 TO − 13

icfp 7 0.2+TO 146 TO − 11

LinExpr eq1ex 0.7+TO 1717 TO − 14

Prob hackers 2 prob 0.6+4.1+0.1 95 0.8+0.1+0.2 154 13

hackers 5 prob 0.1+0.9+0.1 96 0.1+0.2+0.1 154 13

hackers 7 prob 0.1+TO 162 0.1+0.1+0.2 212 13

hackers 17 prob 0.1+TO 187 3.4+6.5+OOM 291 13
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5.2 Solving Time for Different Iterations

In this section, we evaluate the time required by each iteration of Algorithm
1. Figure 2 shows the ratio of time taken by each iteration with respect to the
initial non-quantitative SyGuS solving time. Some of the iterations shown in
Fig. 1 do not appear in Fig. 2 since they resulted in no solution—i.e., the initial
solution was minimal. CVC4 is typically slower in subsequent iterations and can
take up to 10 times the original solving time, while ESolver has comparable
runtime to the initial run and is often faster. These numbers are largely due
to how the two solvers work: CVC4 is optimized to solve problems where the
grammar imposes no restrictions on the structure of the solution, while ESolver
performs enumerative search and takes advantage of more restrictive grammars.

Fig. 2. Solving time across iterations

One interesting point is the parity not
benchmark. ESolver takes 26.9 s to
find an initial solution. But, with a
weight constraint w < 11, an solution
can be found in 2.2 s. CVC4 can find
the initial solution with weight 11 in
0.1 s but cannot solve the next itera-
tion. We tried using different solvers
in different iterations of our algorithm
and, in fact, found that, if we use
CVC4 to find an initial solution and
then ESolver in subsequent iterations
with restricted grammars we can fully solve this benchmark in a total of 2.3 s
which is much better than the time taken by a single solver. To answer Q2,
with appropriate choices of solvers the overhead of synthesizing optimal
solutions is minimal.

5.3 Solution Weight Across Iterations

Fig. 3. Solution weight across iterations.

In this section, we present how the
weight of the synthesized solutions
change across each iteration of Algo-
rithm 1. Figure 3 shows the percent-
age of weight of solutions synthesized
at each iteration with respect to the
weight of the initial SyGuS solu-
tion. The result shows that we can
improve the solutions of CVC4 by 15–
25% in one iteration, and the solu-
tions of ESolver by 20–50% when tak-
ing one iteration and 50–60% when
taking two. The Prob benchmarks, which require two iterations, can be improved
more when using ESolver because ESolver tends to synthesize small terms whose
probability may also be small. To answer Q3, QuaSi can improve the weights
of SyGuS solutions by 20–60%.
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5.4 Multi-objective Optimization

In this section, we evaluate the effectiveness of QuaSi on the 8 benchmarks
involving two minimization objectives. The benchmarks consists of two families,
4 for sorted optimization and 4 for Pareto optimization. The sorted optimization
benchmarks ask to minimize first the number of occurrences of specified operator
(bvand in hacks and ite in array search) and then the size of the solution. The
Pareto optimization benchmarks have the same objectives as sorted optimization
but here we are synthesizing a Pareto optimal solution instead of sorted optimal
one. The results are shown in Table 2. We do not present the results using CVC4
because it cannot solve any of the benchmarks.

The array search times out since it is already hard on a single objective.
For the hackers 5 benchmarks, the initial solution is already optimized for the
first objective, so the problem degenerates to the single-objective optimization
problem. For the hackers 7 and hackers 17, we present the weights of the
intermediate solutions we can see that Pareto and Sorted optimizations yield
different solutions. To answer Q4, QuaSi can solve problems with multiple
objectives when the same problems are feasible with a single objective.

Table 2. Performance of QuaSi on multi-objective benchmarks. Weight denotes the
sequence of weights explored during minimization.

Problem Time [sec] Weight Largest Size

Trop × Trop array search sorted TO - - 15

hackers 5 sorted 0.1+0.1+01 (0, 3) → (0, 2) 31 13

hackers 7 sorted 0.1+0.3+0.1 (1, 4) → (0, 5) → (0, 3) 72 13

hackers 17 sorted 0.1+156.1+TO (2, 5) → (1, 4) → (0, 6) 97 13

array search pareto TO - - 15

hackers 5 pareto 0.1+0.1+01 (0, 3) → (0, 2) 31 13

hackers 7 pareto 0.1+0.3+0.1 (1, 4) → (1, 3) → (0, 3) 74 13

hackers 17 pareto 0.1+9.1+0.1 (2, 5) → (2, 4) → (1, 4) 54 13

6 Related Work

Qualitative Synthesis. Existing program synthesizers fall in three categories: (i)
enumeration solvers, which typically output the smallest program [1], (ii) sym-
bolic solvers, which reduce the synthesis problem to a constraint solving problem
and output whatever program is produced by the constraint solver [21], (iii)
probabilistic synthesizers, which randomly search the space for a solution and
are typically unpredictable [18]. Since the introduction of the SyGuS format [2],
these techniques have been used to build several SyGuS solvers that have com-
peted in SyGuS competitions [4]. The most effective ones, which are used in this
paper are ESolver a2nd EUSolver [1] (enumeration), and CVC4 [6] (symbolic).
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Quantitative synthesis. Domain-specific synthesizers typically employ hard-
coded ranking functions that guide the search towards a “preferable” program
[17], but these functions are typically hard to write and are decoupled from
the functional specification. Unlike QSyGuS, these synthesizers allow arbitrary
ranking functions to be expressed in general purpose languages, but typically
only support limited grammars for synthesis. Moreover, in many practical appli-
cations the ranking functions are very simple. For example, the popular spread-
sheet formula synthesizer FlashFill [12] uses a ranking function to prefer small
programs with few constants. This type of objective is expressible in our frame-
work.

The Sketch synthesizer supports optimization objectives over variables in
sketched programs [20]. This work differs from ours in that sketches are a differ-
ent specification mechanism from SyGuS. In Sketch the search space is encoded
as a program with holes to facilitate synthesis by constraint solving. Translating
SyGuS problems into sketches is non-trivial and results in poor performance.

The work closest to ours is Synapse [7], which combines sketching with an
approach similar to ours. For the same reasons as for Sketch, Synapse differs
from our work because it proposes a different search space mechanisms. How-
ever, there are a few analogies between our work and Synapse that are worth
explaining in detail. Synapse supports syntactic cost functions that are defined
using a decidable theory, and separately from the sketch search space. Synthesis
is done using an iterative search where sketches—i.e., set of partial programs
with holes—of increasing sizes are given to the synthesizer. At the high level,
the intermediate sketches are related to our notion of reduced grammars—i.e.,
they accept solution of weight less than a given constant. However, while our
algorithm generates reduced grammars automatically for a well-defined family
of semirings, Synapse requires the user to provide a function for generating the
intermediate sketches. Moreover, since Synapse requires cost functions that are
defined using a decidable theory, it would not support certain families of costs
QSyGuS supports—e.g., the probabilistic semiring.

Koukoutos et al. [15] have proposed the use of probabilistic tree grammars to
guide the search of enumerative synthesizers on applications outside of SyGuS.
Their algorithm enumerates all terms accepted by the grammar in decreasing
probability using a variant of the search algorithm A∗ and requires the grammar
to not contain transitions of weight 1 to avoid getting stuck. Probabilistic tree
grammars are a special case of QSyGuS and our algorithm does not impose
limitations of what weights can appear in the grammar. Moreover, our algorithm
does not require implementing a new solver when changing the cost semiring.

7 Conclusion

We presented QSyGuS, a general framework for defining and solving SyGuS
problems in the presence of quantitative objectives over the syntax of the pro-
grams. QSyGuS is (i) natural : requires minimal modification to the SyGuS
format, (ii) general : it supports complex but practical types of weights, (iii)
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formal : it is grounded in the theory of weighted tree grammars, (iv) effective:
our tool QuaSi can solve quantitative variations of existing SyGuS benchmarks
with little overhead. In the future, we plan to extend our framework to handle
probabilistic objectives and quantitative objectives over the semantics of the
program—e.g., synthesize programs that satisfy most of the specification.
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Abstract. Many example-guided program synthesis techniques use
abstractions to prune the search space. While abstraction-based syn-
thesis has proven to be very powerful, a domain expert needs to provide
a suitable abstract domain, together with the abstract transformers of
each DSL construct. However, coming up with useful abstractions can
be non-trivial, as it requires both domain expertise and knowledge about
the synthesizer. In this paper, we propose a new technique for learning
abstractions that are useful for instantiating a general synthesis frame-
work in a new domain. Given a DSL and a small set of training problems,
our method uses tree interpolation to infer reusable predicate templates
that speed up synthesis in a given domain. Our method also learns suit-
able abstract transformers by solving a certain kind of second-order con-
straint solving problem in a data-driven way. We have implemented the
proposed method in a tool called Atlas and evaluate it in the context of
the Blaze meta-synthesizer. Our evaluation shows that (a) Atlas can
learn useful abstract domains and transformers from few training prob-
lems, and (b) the abstractions learned by Atlas allow Blaze to achieve
significantly better results compared to manually-crafted abstractions.

1 Introduction

Program synthesis is a powerful technique for automatically generating pro-
grams from high-level specifications, such as input-output examples. Due to its
myriad use cases across a wide range of application domains (e.g., spreadsheet
automation [1–3], data science [4–6], cryptography [7,8], improving program-
ming productivity [9–11]), program synthesis has received widespread attention
from the research community in recent years.

Because program synthesis is, in essence, a very difficult search problem,
many recent solutions prune the search space by utilizing program abstrac-
tions [4,12–16]. For example, state-of-the-art synthesis tools, such as Blaze [14],
Morpheus [4] and Scythe [16], symbolically execute (partial) programs over
some abstract domain and reject those programs whose abstract behavior is
inconsistent with the given specification. Because many programs share the same
behavior in terms of their abstract semantics, the use of abstractions allows these
synthesis tools to significantly reduce the search space.
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 407–426, 2018.
https://doi.org/10.1007/978-3-319-96145-3_22
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Fig. 1. Schematic overview of our approach.

While the abstraction-guided synthesis paradigm has proven to be quite pow-
erful, a down-side of such techniques is that they require a domain expert to
manually come up with a suitable abstract domain and write abstract transform-
ers for each DSL construct. For instance, the Blaze synthesis framework [14]
expects a domain expert to manually specify a universe of predicate templates,
together with sound abstract transformers for every DSL construct. Unfortu-
nately, this process is not only time-consuming but also requires significant
insight about the application domain as well as the internal workings of the
synthesizer.

In this paper, we propose a novel technique for automatically learning
domain-specific abstractions that are useful for instantiating an example-guided
synthesis framework in a new domain. Given a DSL and a training set of synthe-
sis problems (i.e., input-output examples), our method learns a useful abstract
domain in the form of predicate templates and infers sound abstract transform-
ers for each DSL construct. In addition to eliminating the significant manual
effort required from a domain expert, the abstractions learned by our method
often outperform manually-crafted ones in terms of their benefit to synthesizer
performance.

The workflow of our approach, henceforth called Atlas1, is shown schemat-
ically in Fig. 1. Since Atlas is meant to be used as an off-line training step
for a general-purpose programming-by-example (PBE) system, it takes as input
a DSL as well as a set of synthesis problems E that can be used for train-
ing purposes. Given these inputs, our method enters a refinement loop where
an Abstraction Learner component discovers a sequence of increasingly pre-
cise abstract domains A1, ··,An, and their corresponding abstract transformers
T1, ··, Tn, in order to help the Abstraction-Guided Synthesizer (AGS) solve all
training problems. While the AGS can reject many incorrect solutions using an
abstract domain Ai, it might still return some incorrect solutions due to the
insufficiency of Ai. Thus, whenever the AGS returns an incorrect solution to
any training problem, the Abstraction Learner discovers a more precise abstract
domain and automatically synthesizes the corresponding abstract transformers.
Upon termination of the algorithm, the final abstract domain An and trans-
formers Tn are sufficient for the AGS to correctly solve all training problems.
Furthermore, because our method learns general abstractions in the form of

1 Atlas stands for AuTomated Learning of AbStractions.
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predicate templates, the learned abstractions are expected to be useful for solv-
ing many other synthesis problems beyond those in the training set.

From a technical perspective, the Abstraction Learner uses two key ideas,
namely tree interpolation and data-driven constraint solving, for learning useful
abstract domains and transformers respectively. Specifically, given an incorrect
program P that cannot be refuted by the AGS using the current abstract domain
Ai, the Abstraction Learner generates a tree interpolant Ii that serves as a proof
of P’s incorrectness and constructs a new abstract domain Ai+1 by extracting
templates from the predicates used in Ii. The Abstraction Learner also synthe-
sizes the corresponding abstract transformers for Ai+1 by setting up a second-
order constraint solving problem where the goal is to find the unknown relation-
ship between symbolic constants used in the predicate templates. Our method
solves this problem in a data-driven way by sampling input-output examples
for DSL operators and ultimately reduces the transformer learning problem to
solving a system of linear equations.

We have implemented these ideas in a tool called Atlas and evaluate it in the
context of the Blaze program synthesis framework [14]. Our evaluation shows
that the proposed technique eliminates the manual effort involved in design-
ing useful abstractions. More surprisingly, our evaluation also shows that the
abstractions generated by Atlas outperform manually-crafted ones in terms of
the performance of the Blaze synthesizer in two different application domains.

To summarize, this paper makes the following key contributions:

– We describe a method for learning abstractions (domains/transformers) that
are useful for instantiating program synthesis frameworks in new domains.

– We show how tree interpolation can be used for learning abstract domains
(i.e., predicate templates) from a few training problems.

– We describe a method for automatically synthesizing transformers for a given
abstract domain under certain assumptions. Our method is guaranteed to find
the unique best transformer if one exists.

– We implement our method in a tool called Atlas and experimentally evaluate
it in the context of the Blaze synthesis framework. Our results demonstrate
that the abstractions discovered by Atlas outperform manually-written ones
used for evaluating Blaze in two application domains.

2 Illustrative Example

Suppose that we wish to use the Blaze meta-synthesizer to automate the class
of string transformations considered by FlashFill [1] and BlinkFill [17]. In the
original version of the Blaze framework [14], a domain expert needs to come
up with a universe of suitable predicate templates as well as abstract transform-
ers for each DSL construct. We will now illustrate how Atlas automates this
process, given a suitable DSL and its semantics (e.g., the one used in [17]).

In order to use Atlas, one needs to provide a set of synthesis problems E (i.e.,
input-output examples) that will be used in the training process. Specifically, let
us consider the three synthesis problems given below:
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E =

⎧
⎪⎪⎨

⎪⎪⎩

E1 :
{

“CAV” �→ “CAV2018”, “SAS” �→ “SAS2018”, “FSE” �→ “FSE2018”
}
,

E2 :
{

“510.220.5586” �→ “510-220-5586”
}
,

E3 :

{
“\Company\Code\index.html” �→ “\Company\Code\”,
“\Company\Docs\Spec\specs.html” �→ “\Company\Docs\Spec\”

}

⎫
⎪⎪⎬

⎪⎪⎭

.

In order to construct the abstract domain A and transformers T , Atlas
starts with the trivial abstract domain A0 = {�} and transformers T0, defined
as [[F (�, ··,�)]]� = � for each DSL construct F . Using this abstraction, Atlas
invokes Blaze to find a program P0 that satisfies specification E1 under the
current abstraction (A0, T0). However, since the program P0 returned by Blaze
is incorrect with respect to the concrete semantics, Atlas tries to find a more
precise abstraction that allows Blaze to succeed.

Towards this goal, Atlas enters a refinement loop that culminates in the
discovery of the abstract domain A1 = {�, len( α ) = c, len( α ) �= c}, where α
denotes a variable and c is an integer constant. In other words, A1 tracks equality
and inequality constraints on the length of strings. After learning these predicate
templates, Atlas also synthesizes the corresponding abstract transformers T1.
In particular, for each DSL construct, Atlas learns one abstract transformer
for each combination of predicate templates used in A1. For instance, for the
Concat operator which returns the concatenation y of two strings x1, x2, Atlas
synthesizes the following abstract transformers, where � denotes any predicate:

T1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[[Concat(�, �)]]� = �
[[Concat(�, �)]]� = �

[[Concat
(
len(x1) �= c1, len(x2) �= c2

)
]]� = �

[[Concat
(
len(x1) = c1, len(x2) = c2

)
]]� =

(
len(y) = c1 + c2

)

[[Concat
(
len(x1) = c1, len(x2) �= c2

)
]]� =

(
len(y) �= c1 + c2

)

[[Concat
(
len(x1) �= c1, len(x2) = c2

)
]]� =

(
len(y) �= c1 + c2

)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

Since the AGS can successfully solve E1 using (A1, T1), Atlas now moves on to
the next training problem.

For synthesis problem E2, the current abstraction (A1, T1) is not sufficient
for Blaze to discover the correct program. After processing E2, Atlas refines
the abstract domain to the following set of predicate templates:

A2 =
{ �, len( α ) = c, len( α ) �= c, charAt( α , i) = c, charAt( α , i) �= c

}
.

Observe that Atlas has discovered two additional predicate templates that
track positions of characters in the string. Atlas also learns the correspond-
ing abstract transformers T2 for A2.

Moving on to the final training problem E3, Blaze can already successfully
solve it using (A2, T2); thus, Atlas terminates with this abstraction.

3 Overall Abstraction Learning Algorithm

Our top-level algorithm for learning abstractions, called LearnAbstractions,
is shown in Fig. 2. The algorithm takes two inputs, namely a domain-specific
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Fig. 2. Overall learning algorithm. Constructs gives the DSL constructs in L.

language L (both syntax and semantics) as well as a set of training problems E,
where each problem is specified as a set of input-output examples Ei. The output
of our algorithm is a pair (A, T ), where A is an abstract domain represented by
a set of predicate templates and T is the corresponding abstract transformers.

At a high-level, the LearnAbstractions procedure starts with the most
imprecise abstraction (just consisting of �) and incrementally improves the pre-
cision of the abstract domain A whenever the AGS fails to synthesize the correct
program using A. Specifically, the outer loop (lines 4–10) considers each training
instance Ei and performs a fixed-point computation (lines 5–10) that terminates
when the current abstract domain A is good enough to solve problem Ei. Thus,
upon termination, the learned abstract domain A is sufficiently precise for the
AGS to solve all training problems E.

Specifically, in order to find an abstraction that is sufficient for solving Ei, our
algorithm invokes the AGS with the current abstract domain A and correspond-
ing transformers T (line 6). We assume that Synthesize returns a program P that
is consistent with Ei under abstraction (A, T ). That is, symbolically executing
P (according to T ) on inputs E in

i yields abstract values ϕ that are consistent
with the outputs Eout

i (i.e., ∀j. Eout
ij ∈ γ(ϕj)). However, while P is guaranteed to

be consistent with Ei under the abstract semantics, it may not satisfy Ei under
the concrete semantics. We refer to such a program P as spurious.

Thus, whenever the call to IsCorrect fails at line 8, we invoke the LearnAb-
stractDomain procedure (line 9) to learn additional predicate templates that
are later added to A. Since the refinement of A necessitates the synthesis of new
transformers, we then call LearnTransformers (line 10) to learn a new T .
The new abstraction is guaranteed to rule out the spurious program P as long
as there is a unique best transformer of each DSL construct for domain A.
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4 Learning Abstract Domain Using Tree Interpolation

In this section, we present the LearnAbstractDomain procedure: Given a
spurious program P and a synthesis problem E that P does not solve, our goal
is to find new predicate templates A′ to add to the abstract domain A such that
the Abstraction-Guided Synthesizer no longer returns P as a valid solution to the
synthesis problem E . Our key insight is that we can mine for such useful predicate
templates by constructing a tree interpolation problem. In what follows, we first
review tree interpolants (based on [18]) and then explain how we use this concept
to find useful predicate templates.

Definition 1 (Tree interpolation problem). A tree interpolation problem
T = (V, r, P, L) is a directed labeled tree, where V is a finite set of nodes, r ∈ V
is the root, P : (V \{r}) �→ V is a function that maps children nodes to their
parents, and L : V �→ F is a labeling function that maps nodes to formulas from
a set F of first-order formulas such that

∧
v∈V L(v) is unsatisfiable.

In other words, a tree interpolation problem is defined by a tree T where each
node is labeled with a formula and the conjunction of these formulas is unsat-
isfiable. In what follows, we write Desc(v) to denote the set of all descendants
of node v, including v itself, and we write NonDesc(v) to denote all nodes other
than those in Desc(v) (i.e., V \Desc(v)). Also, given a set of nodes V ′, we write
L(V ′) to denote the set of all formulas labeling nodes in V ′.

Given a tree interpolation problem T , a tree interpolant I is an annotation
from every node in V to a formula such that the label of the root node is false
and the label of an internal node v is entailed by the conjunction of annotations
of its children nodes. More formally, a tree interpolant is defined as follows:

Definition 2 (Tree interpolant). Given a tree interpolation problem T =
(V, r, P, L), a tree interpolant for T is a function I : V �→ F that satisfies the
following conditions:

1. I(r) = false;
2. For each v ∈ V :

(( ∧
P (ci)=v I(ci)

) ∧ L(v)
)

⇒ I(v);

3. For each v ∈ V : Vars
(I(v)

) ⊆ Vars
(
L(Desc(v))

) ⋂
Vars

(
L(NonDesc(v))

)
.

len(v1) = len(v2) + len(v3)
∧ ∀ 0 ≤ i < len(v2) : v1[i] = v2[i]
∧ ∀ len(v2) ≤ j < len(v2) + len(v3) :

v1[j] = v3[j − len(v2)]
v1

v2 v3

r

len(v2) = 3 len(v3) = 2

len(v1) �= 7

false

v2 = “CAV” v3 = “18”

v1 = “CAV2018”

Fig. 3. A tree interpolation problem and a
tree interpolant (underlined).

Intuitively, the first condition ensures
that I establishes the unsatisfiability
of formulas in T , and the second con-
dition states that I is a valid annota-
tion. As standard in Craig interpola-
tion [19,20], the third condition stip-
ulates a “shared vocabulary” condi-
tion by ensuring that the annotation
at each node v refers to the common
variables between the descendants and
non-descendants of v.
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Fig. 4. Algorithm for learning abstract domain using tree interpolation.

Example 1. Consider the tree interpolation problem T = (V, r, P, L) in Fig. 3,
where L(v) is shown to the right of each node v. A tree interpolant I for this
problem maps each node to the corresponding underlined formula. For instance,
we have I(v1) = (len(v1) �= 7). It is easy to confirm that I is a valid interpolant
according to Definition 2.

To see how tree interpolation is useful for learning predicates, suppose that
the spurious program P is represented as an abstract syntax tree (AST), where
each non-leaf node is labeled with the axiomatic semantics of the corresponding
DSL construct. Now, since P does not satisfy the given input-output example
(ein, eout), we are able to use this information to construct a labeled tree where
the conjunction of labels is unsatisfiable. Our key idea is to mine useful predicate
templates from the formulas used in the resulting tree interpolant.

With this intuition in mind, let us consider the LearnAbstractDomain
procedure shown in Fig. 4: The algorithm uses a procedure called Construct-
Tree to generate a tree interpolation problem T for each input-output example
(ein, eout)2 that program P does not satisfy (line 5). Specifically, letting Π denote
the AST representation of P, we construct T = (V, r, P, L) as follows:

– V consists of all AST nodes in Π as well as a “dummy” node d.
– The root r of T is the dummy node d.
– P is a function that maps children AST nodes to their parents and maps the

root AST node to the dummy node d.
– L maps each node v ∈ V to a formula as follows:

L(v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v′ = eout v is the dummy root node with child v′.

v = ein v is a leaf representing program input ein.

v = c v is a leaf representing constant c.

φF [v ′/x , v/y] v represents DSL operator F with axiomatic semantics
φF (x , y) and v ′ represents children of v.

2 Without loss of generality, we assume that programs take a single input x, as we can
always represent multiple inputs as a list.
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Essentially, the ConstructTree procedure labels any leaf node represent-
ing the program input with the input example ein and the root node with the
output example eout. All other internal nodes are labeled with the axiomatic
semantics of the corresponding DSL operator (modulo renaming).3 Observe that
the formula

∧
v∈V L(v) is guaranteed to be unsatisfiable since P does not satisfy

the I/O example (ein, eout); thus, we can obtain a tree interpolant for T .

Example 2. Consider program P : Concat(x, “18”) which concatenates constant
string “18” to input x. Figure 3 shows the result of invoking ConstructTree
for P and input-output example (“CAV”, “CAV2018”). As mentioned in Exam-
ple 1, the tree interpolant I for this problem is indicated with the underlined
formulas.

Since the tree interpolant I effectively establishes the incorrectness of pro-
gram P, the predicates used in I serve as useful abstract values that the syn-
thesizer (AGS) should consider during the synthesis task. Towards this goal,
the LearnAbstractDomain algorithm iterates over each predicate used in I
(lines 7–8 in Fig. 4) and converts it to a suitable template by replacing the con-
stants and variables used in I(v) with symbolic names (or “holes”). Because the
original predicates used in I may be too specific for the current input-output
example, extracting templates from the interpolant allows our method to learn
reusable abstract domains.

Example 3. Given the tree interpolant I from Example 1, LearnAbstractDo-
main extracts two predicate templates, namely, len( α ) = c and len( α ) �= c.

5 Synthesis of Abstract Transformers

In this section, we turn our attention to the LearnTransformers procedure
for synthesizing abstract transformers T for a given abstract domain A. Follow-
ing presentation in prior work [14], we consider abstract transformers that are
described using equations of the following form:

[[F
(
χ1(x1, c1), ··, χn(xn, cn)

)
]]� =

∧
1≤j≤m

χ′
j

(
y, f j(c)

)
(1)

Here, F is a DSL construct, χi, χ
′
j are predicate templates4, xi is the i’th input of

F , y is F ’s output, c1, ··, cn are vectors of symbolic constants, and f j denotes a
vector of affine functions over c = c1, ··, cn . Intuitively, given concrete predicates
describing the inputs to F , the transformer returns concrete predicates describing
the output. Given such a transformer τ , let Outputs(τ) be the set of pairs (χ′

j , f j)
in Eq. 1.
3 Here, we assume access to the DSL’s axiomatic semantics. If this is not the case (i.e.,

we are only given the DSL’s operational semantics), we can still annotate each node
as v = c where c denotes the output of the partial program rooted at node v when
executed on ein. However, this may affect the quality of the resulting interpolant.

4 We assume that χ′
1, ··, χ′

m are distinct.
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Fig. 5. Algorithm for synthesizing abstract transformers. φF at line 6 denotes the
axiomatic semantics of DSL construct F . Formula Λ at line 8 refers to Eq. 5.

We define the soundness of a transformer τ for DSL operator F with respect
to F ’s axiomatic semantics φF . In particular, we say that the abstract trans-
former from Eq. 1 is sound if the following implication is valid:(

φF (x , y) ∧
∧

1≤i≤n

χi(xi, ci)
)

⇒
∧

1≤j≤m

χ′
j

(
y, f j(c)

)
(2)

That is, the transformer for F is sound if the (symbolic) output predicate is
indeed implied by the (symbolic) input predicates according to F ’s semantics.

Our key observation is that the problem of learning sound transformers can
be reduced to solving the following second-order constraint solving problem:

∃f . ∀V .
((

φF (x , y) ∧
∧

1≤i≤n

χi(xi, ci)
) ⇒

∧
1≤j≤m

χ′
j

(
y, f j(c)

))
(3)

where f = f 1, ··, f m and V includes all variables and functions from Eq. 2
other than f . In other words, the goal of this constraint solving problem is to
find interpretations of the unknown functions f that make Eq. 2 valid. Our key
insight is to solve this problem in a data-driven way by exploiting the fact that
each unknown function fj,k is affine.

Towards this goal, we first express each affine function fj,k(c) as follows:

fj,k(c) = pj,k,1 · c1 + · · +pj,k,|c| · c|c| + pj,k,|c|+1

where each pj,k,l corresponds to an unknown integer constant that we would like
to learn. Now, arranging the coefficients of functions fj,1, ··, fj,|f j | in f j into a
|f j | × (|c| + 1) matrix Pj , we can represent f j(c) in the following way:
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f j(c)ᵀ =

⎡

⎣
fj,1(c)

··
fj,|f j |(c)

⎤

⎦

︸ ︷︷ ︸
c′

j
ᵀ

=

⎡

⎣
pj,1,1 ·· pj,1,|c|+1

·· ··
pj,|f j |,1 ·· pj,|f j |,|c|+1

⎤

⎦

︸ ︷︷ ︸
Pj

⎡

⎢
⎢
⎣

c1

··
c|c|
1

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
c†

(4)

where c† is cᵀ appended with the constant 1.
Given this representation, it is easy to see that the problem of synthesizing

the unknown functions f 1, ··, f m from Eq. 2 boils down to finding the unknown
matrices P1, ··, Pm such that each Pj makes the following implication valid:

Λ ≡
((

(c′
j
ᵀ = Pjc

†) ∧ φF (x , y) ∧
∧

1≤i≤n

χi(xi, ci)
)

⇒ χ′
j(y, c′

j)
)

(5)

Our key idea is to infer these unknown matrices P1, ··, Pm in a data-driven
way by generating input-output examples of the form [i1, ··, i|c|] �→ [o1, ··, o|f j |]
for each f j . In other words, i and o correspond to instantiations of c and f j(c)
respectively. Given sufficiently many such examples for every f j , we can then
reduce the problem of learning each unknown matrix Pj to the problem of solving
a system of linear equations.

Based on this intuition, the LearnTransformers procedure from Fig. 5
describes our algorithm for learning abstract transformers T for a given abstract
domain A. At a high-level, our algorithm synthesizes one abstract transformer
for each DSL construct F and n argument predicate templates χ1, ··, χn. In
particular, given F and χ1, ··, χn, the algorithm constructs the “return value” of
the transformer as:

ϕ =
∧

1≤j≤m

χ′
j(y, f j(c))

where f j is the inferred affine function for each predicate template χ′
j .

The key part of our LearnTransformers procedure is the inner loop (lines
5–8) for inferring each of these f j ’s. Specifically, given an output predicate tem-
plate χ′

j , our algorithm first generates a set of input-output examples E of the
form [p1, ··, pn] �→ p0 such that [[F (p1, ··, pn)]]� = p0 is a sound (albeit overly spe-
cific) transformer. Essentially, each pi is a concrete instantiation of a predicate
template, so the examples E generated at line 6 of the algorithm can be viewed
as sound input-output examples for the general symbolic transformer given in
Eq. 1. (We will describe the GenerateExamples procedure in Sect. 5.1).

Once we generate these examples E, the next step of the algorithm is to
learn the unknown coefficients of matrix Pj from Eq. 5 by solving a system of
linear equations (line 7). Specifically, observe that we can use each input-output
example [p1, ··, pn] �→ p0 in E to construct one row of Eq. 4. In particular, we
can directly extract c = c1, ··, cn from p1, ··, pn and the corresponding value of
f j(c) from p0. Since we have one instantiation of Eq. 4 for each of the input-
output examples in E, the problem of inferring matrix Pj now reduces to solving
a system of linear equations of the form APT

j = B where A is a |E| × (|c| + 1)
(input) matrix and B is a |E| × |f j | (output) matrix. Thus, a solution to the
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Fig. 6. Example generation for learning abstract transformers.

equation APT
j = B generated from E corresponds to a candidate solution for

matrix Pj , which in turn uniquely defines f j .
Observe that the call to Solve at line 7 may return null if no affine function

exists. Furthermore, any non-null f j returned by Solve is just a candidate solu-
tion and may not satisfy Eq. 5. For example, this situation can arise if we do not
have sufficiently many examples in E and end up discovering an affine function
that is “over-fitted” to the examples. Thus, the validity check at line 8 of the
algorithm ensures that the learned transformers are actually sound.

5.1 Example Generation

In our discussion so far, we assumed an oracle that is capable of generating valid
input-output examples for a given transformer. We now explain our Genera-
teExamples procedure from Fig. 6 that essentially implements this oracle. In a
nutshell, the goal of GenerateExamples is to synthesize input-output exam-
ples of the form [p1, ··, pn] �→ p0 such that [[F (p1, ··, pn)]]� = p0 is sound where
each pi is a concrete predicate (rather than symbolic).

Going into more detail, GenerateExamples takes as input the semantics
φF of DSL construct F for which we want to learn a transformer for as well as
the input predicate templates χ1, ··, χn and output predicate template χ0 that
are supposed to be used in the transformer. For any example [p1, ··, pn] �→ p0

synthesized by GenerateExamples, each concrete predicate pi is an instanti-
ation of the predicate template χi where the symbolic constants used in χi are
substituted with concrete values.

Conceptually, the GenerateExamples algorithm proceeds as follows: First,
it generates concrete input-output examples [s1, ··, sn] �→ s0 by evaluating F
on randomly-generated inputs s1, ··, sn (lines 4–5). Now, for each concrete I/O
example [s1, ··, sn] �→ s0, we generate a set of abstract I/O examples of the form
[p1, ··, pn] �→ p0 (line 6). Specifically, we assume that the return value (A0, ··, An)
of Abstract at line 6 satisfies the following properties for every pi ∈ Ai:
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– pi is an instantiation of template χi.
– pi is a sound over-approximation of si (i.e., si ∈ γ(pi)).
– For any other p′

i satisfying the above two conditions, p′
i is not logically

stronger than pi.

In other words, we assume that Abstract returns a set of “best” sound abstrac-
tions of (s0, ··, sn) under predicate templates (χ0, ··, χn).

Next, given abstractions (A0, ··, An) for (s0, ··, sn), we consider each candidate
abstract example of the form [p1, ··, pn] �→ p0 where pi ∈ Ai. Even though each
pi is a sound abstraction of si, the example [p1, ··, pn] �→ p0 may not be valid
according to the semantics of operator F . Thus, the validity check at line 8
ensures that each example added to E is in fact valid.

Example 4. Given abstract domain A = {len( α ) = c}, suppose we want to
learn an abstract transformer τ for the Concat operator of the following form:

[[Concat
(
len(x1) = c1, len(x2) = c2

)
]]� =

(
len(y) = f([c1, c2])

)
We learn the affine function f used in the transformer by first generating

a set E of I/O examples for f (line 6 in LearnTransformers). In particu-
lar, GenerateExamples generates concrete input values for Concat at random
and obtains the corresponding output values by executing Concat on the input
values. For instance, it may generate s1 = “abc” and s2 = “de” as inputs, and
obtain s0 = “abcde” as output. Then, it abstracts these values under the given
templates. In this case, we have an abstract example with p1 =

(
len(x1) = 3

)
,

p2 =
(
len(x2) = 2

)
and p0 =

(
len(y) = 5

)
. Since [p1, p2] �→ p0 is a valid

example, it is added in E (line 8 in GenerateExamples). At this point, E is
not yet full rank, so the algorithm keeps generating more examples. Suppose it
generates two more valid examples

(
len(x1) = 1, len(x2) = 4

) �→ (
len(y) = 5

)
and

(
len(x1) = 6, len(x2) = 4

) �→ (
len(y) = 10

)
. Now E is full rank, so Learn-

Transformers computes f by solving the following system of linear equations:[
3 2 1
1 4 1
6 4 1

]
PT =

[
5
5
10

]
Solve

====⇒ P = [ 1 1 0 ]

Here, P corresponds to the function f([c1, c2]) = c1 + c2, and this func-
tion defines the sound transformer: [[Concat

(
len(x1) = c1, len(x2) = c2

)
]]� =(

len(y) = c1 + c2

)
which is added to T at line 9 in LearnTransformers.

6 Soundness and Completeness

In this section we present theorems stating some of the soundness, completeness,
and termination guarantees of our approach. All proofs can be found in the
extended version of this paper [21].

Theorem 1 (Soundness of LearnTransformers). Let T be the set of
transformers returned by LearnTransformers. Then, every τ ∈ T is sound
according to Eq. 2.



Learning Abstractions for Program Synthesis 419

The remaining theorems are predicated on the assumptions that for each DSL
construct F and input predicate templates χ1, ··, χn (i) there exists a unique best
abstract transformer and (ii) the strongest transformer expressible in Eq. 2 is
logically equivalent to the unique best transformer. Thus, before stating these
theorems, we first state what we mean by a unique best abstract transformer.

Definition 3 (Unique best function). Consider a family of transformers of
the shape [[F

(
χ1(x1, c1), ··, χn(xn, cn)

)
]]� = χ′(y, �). We say that f is the unique

best function for (F, χ1, ··, χn, χ′) if (a) replacing � with f yields a sound trans-
former, and (b) replacing � with any other f’ yields a transformer that is either
unsound or strictly worse (i.e., χ′(y, f) ⇒ χ′(y, f′) and χ′(y, f′) �⇒ χ′(y, f)).

We now define unique best transformer in terms of unique best function:

Definition 4 (Unique best transformer). Let F be a DSL construct and
let (χ1, ··, χn) ∈ An be the input templates for F . We say that the abstract
transformer τ is a unique best transformer for F, χ1, ··, χn if (a) τ is sound, and
(b) for any predicate template χ ∈ A, we have (χ, f) ∈ Outputs(τ) if and only if
f is a unique best function for (F, χ1, ··, χn, χ) for some affine f.

Definition 5 (Complete sampling oracle). Let F be a construct, A an
abstract domain, and RF a probability distribution over Domain(F ) with finite
support S. Futher, for any input predicate templates χ1, ··, χn and output predi-
cate template χ0 in A admitting a unique best function f, let C(χ0, ··, χn) be the
set of tuples (c0, ··, cn) such that (χ0(y, c0), χ1(x1, c1), ··, χn(xn, cn)) ∈ A0×··×An

and c0 = f(c1, ··, cn), where A0 × · · ×An = Abstract(s0, χ0, ··, sn, χn) and
(s1, ··, sn) ∈ S and s0 = [[F (s1, ··, sn)]]. The distribution RF is a complete sam-
pling oracle if C(χ0, ··, χn) has full rank for all χ0, ··, χn.

The following theorem states that LearnTransformers is guaranteed to
synthesize the best transformer if a unique one exists:

Theorem 2 (Completeness of LearnTransformers). Given an abstract
domain A and a complete sampling oracle RF for A, LearnTransformers
terminates. Further, let T be the set of transformers returned and let τ be
the unique best transformer for DSL construct F and input predicate templates
χ1, ··, χn ∈ An. Then we have τ ∈ T .

Using this completeness (modulo unique best transformer) result, we can now
state the termination guarantees of our LearnAbstractions algorithm:

Theorem 3 (Termination of LearnAbstractions). Given a complete
sampling oracle RF for every abstract domain and the unique best transformer
assumption, if there exists a solution for every problem Ei ∈ E, then LearnAb-
stractions terminates.
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7 Implementation and Evaluation

We have implemented the proposed method as a new tool called Atlas, which is
written in Java. Atlas takes as input a set of training problems, an Abstraction-
Guided Synthesizer (AGS), and a DSL and returns an abstract domain (in the
form of predicate templates) and the corresponding transformers. Internally,
Atlas uses the Z3 theorem prover [22] to compute tree interpolants and the
JLinAlg linear algebra library [23] to solve linear equations.

To assess the usefulness of Atlas, we conduct an experimental evaluation in
which our goal is to answer the following two questions:

1. How does Atlas perform during training? That is, how many training prob-
lems does it require and how long does training take?

2. How useful are the abstractions learned by Atlas in the context of synthesis?

7.1 Abstraction Learning

To answer our first question, we use Atlas to automatically learn abstractions
for two application domains: (i) string manipulations and (ii) matrix transforma-
tions. We provide Atlas with the DSLs used in [14] and employ Blaze as the
underlying Abstraction-Guided Synthesizer. Axiomatic semantics for each DSL
construct were given in the theory of equality with uninterpreted functions.

Training Set Information. For the string domain, our training set consists of
exactly the four problems used as motivating examples in the BlinkFill paper [17].
Specifically, each training problem consists of 4–6 examples that demonstrate the
desired string transformation. For the matrix domain, our training set consists
of four (randomly selected) synthesis problems taken from online forums. Since
almost all online posts contain a single input-output example, each training prob-
lem includes one example illustrating the desired matrix transformation.

Main Results. Our main results are summarized in Fig. 7. The main take-
away message is that Atlas can learn abstractions quite efficiently and does not
require a large training set. For example, Atlas learns 5 predicate templates and
30 abstract transformers for the string domain in a total of 10.2 s. Interestingly,
Atlas does not need all the training problems to infer these four predicates and
converges to the final abstraction after just processing the first training instance.
Furthermore, for the first training instance, it takes Atlas 4 iterations in the
learning loop (lines 5–10 from Fig. 2) before it converges to the final abstraction.
Since this abstraction is sufficient, it takes just one iteration for each following
training problem to synthesize a correct program.

Looking at the right side of Fig. 7, we also observe similar results for the
matrix domain. In particular, Atlas learns 10 predicate templates and 59
abstract transformers in a total of 22.5 s. Furthermore, Atlas converges to the
final abstract domain after processing the first three problems5 and the number
of iterations for each training instance is also quite small (ranging from 1 to 3).
5 The learned abstractions can be found in the extended version of this paper [21].
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|A| |T | Iters.
Running time (sec)

TAGS TA TT Ttotal

E1 5 30 4 0.6 0.2 0.2 1.0
E2 5 30 1 4.9 0 0 4.9
E3 5 30 1 0.2 0 0 0.2
E4 5 30 1 4.1 0 0 4.1

Total 5 30 7 9.8 0.2 0.2 10.2

String domain

|A| |T | Iters.
Running time (sec)

TAGS TA TT Ttotal

E1 8 45 3 2.9 0.7 0.5 4.1
E2 8 45 1 2.8 0 0 2.8
E3 10 59 2 0.5 0.3 0.2 1.0
E4 10 59 1 14.6 0 0 14.6

Total 10 59 7 20.8 1.0 0.7 22.5

Matrix domain

Fig. 7. Training results. |A|, |T |, Iters denote the number of predicate templates,
abstract transformers, and iterations taken per training instance (lines 5–10 from
Fig. 2), respectively. TAGS, TA, TT denote the times for invoking the synthesizer (AGS),
learning the abstract domain, and learning the abstract transformers, respectively. Ttotal

shows the total training time in seconds.

Original Blaze† benchmarks Additional benchmarks All benchmarks

#Solved Running time
improvement

#Solved Running time
improvement

Time
(sec)

Running time
improvement

Blaze� Blaze† max. avg. Blaze� Blaze† max. avg. avg. max. avg.

String 93 91 15.7× 2.1× 40 40 56× 22.3× 2.8 56× 8.3×
Matrix 39 39 6.1× 3.1× 20 19 83× 21.5× 5.0 83× 9.2×

Fig. 8. Improvement of Blaze� over Blaze† on string and matrix benchmarks.

7.2 Evaluating the Usefulness of Learned Abstractions

To answer our second question, we integrated the abstractions synthesized by
Atlas into the Blaze meta-synthesizer. In the remainder of this section, we
refer to all instantiations of Blaze using the Atlas-generated abstractions
as Blaze�. To assess how useful the automatically generated abstractions are,
we compare Blaze� against Blaze†, which refers to the manually-constructed
instantiations of Blaze described in [14].

Benchmark Information. For the string domain, our benchmark suite con-
sists of (1) all 108 string transformation benchmarks that were used to evaluate
Blaze† and (2) 40 additional challenging problems that are collected from online
forums which involve manipulating file paths, URLs, etc. The number of exam-
ples for each benchmark ranges from 1 to 400, with a median of 7 examples. For
the matrix domain, our benchmark set includes (1) all 39 matrix transformation
benchmarks in the Blaze† benchmark suite and (2) 20 additional challenging
problems collected from online forums. We emphasize that the set of benchmarks
used for evaluating Blaze� are completely disjoint from the set of synthesis prob-
lems used for training Atlas.
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Experimental Setup. We evaluate Blaze� and Blaze† using the same DSLs
from the Blaze paper [14]. For each benchmark, we provide the same set of
input-output examples to Blaze� and Blaze†, and use a time limit of 20 min
per synthesis task.

Main Results. Our main evaluation results are summarized in Fig. 8. The
key observation is that Blaze� consistently improves upon Blaze† for both
string and matrix transformations. In particular, Blaze� not only solves more
benchmarks than Blaze† for both domains, but also achieves about an order
of magnitude speed-up on average for the common benchmarks that both tools
can solve. Specifically, for the string domain, Blaze� solves 133 (out of 148)
benchmarks within an average of 2.8 s and achieves an average 8.3× speed-up
over Blaze†. For the matrix domain, we also observe a very similar result where
Blaze� leads to an overall speed-up of 9.2× on average.

In summary, this experiment confirms that the abstractions discovered by
Atlas are indeed useful and that they outperform manually-crafted abstractions
despite eliminating human effort.

8 Related Work

To our knowledge, this paper is the first one to automatically learn abstract
domains and transformers that are useful for program synthesis. We also believe
it is the first to apply interpolation to program synthesis, although interpolation
has been used to synthesize other artifacts such as circuits [24] and strategies
for infinite games [25]. In what follows, we briefly survey existing work related
to program synthesis, abstraction learning, and abstract transformer computa-
tions.

Program Synthesis. Our work is intended to complement example-guided pro-
gram synthesis techniques that utilize program abstractions to prune the search
space [4,14–16]. For example, Simpl [15] uses abstract interpretation to speed up
search-based synthesis and applies this technique to the generation of imperative
programs for introductory programming assignments. Similarly, Scythe [16] and
Morpheus [4] perform enumeration over program sketches and use abstractions
to reject sketches that do not have any valid completion. Somewhat different
from these techniques, Blaze constructs a finite tree automaton that accepts
all programs whose behavior is consistent with the specification according to the
DSL’s abstract semantics. We believe that the method described in this paper
can be useful to all such abstraction-guided synthesizers.

Abstraction Refinement. In verification, as opposed to synthesis, there have
been many works that use Craig interpolants to refine abstractions [20,26,27].
Typically, these techniques generalize the interpolants to abstract domains by
extracting a vocabulary of predicates, but they do not generalize by adding
parameters to form templates. In our case, this is essential because interpolants
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derived from fixed input values are too specific to be directly useful. Moreover,
we reuse the resulting abstractions for subsequent synthesis problems. In verifi-
cation, this would be analogous to re-using an abstraction from one property or
program to the next. It is conceivable that template-based generalization could
be applied in verification to facilitate such reuse.

Abstract Transformers. Many verification techniques use logical abstract
domains [28–32]. Some of these, following Yorsh, et al. [33] use sampling with a
decision procedure to evaluate the abstract transformer [34]. Interpolation has
also been used to compile efficient symbolic abstract transformers [35]. However,
these techniques are restricted to finite domains or domains of finite height to
allow convergence. Here, we use infinite parameterized domains to obtain better
generalization; hence, the abstract transformer computation is more challenging.
Nonetheless, the approach might also be applicable in verification.

9 Limitations

While this paper takes a first step towards automatically inferring useful abstrac-
tions for synthesis, our proposed method has the following limitations:

Shapes of Transformers. Following prior work [14], our algorithm assumes that
abstract transformers have the shape given in Eq. 1. We additionally assume
that constants c used in predicate templates are numeric values and that func-
tions in Eq. 1 are affine. This assumption holds in several domains considered
in prior work [4,14] and allows us to develop an efficient learning algorithm that
reduces the problem to solving a system of linear equations.

DSL Semantics. Our method requires the DSL designer to provide the DSL’s log-
ical semantics. We believe that giving logical semantics is much easier than com-
ing up with useful abstractions, as it does not require insights about the internal
workings of the synthesizer. Furthermore, our technique could, in principle, also
work without logical specifications although the learned abstract domain may
not be as effective (see Footnote 3 in Sect. 4) and the synthesized transformers
would not be provably sound.

UBT Assumption. Our completeness and termination theorems are predicated
on the unique best transformer (UBT) assumption. While this assumption holds
in our evaluation, it may not hold in general. However, as mentioned in Sect. 6,
we can always guarantee termination by including the concrete predicates used
in the interpolant I in addition to the symbolic templates extracted from I.

10 Conclusion

We proposed a new technique for automatically instantiating abstraction-guided
synthesis frameworks in new domains. Given a DSL and a few training prob-
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lems, our method automatically discovers a useful abstract domain and the cor-
responding transformers for each DSL construct. From a technical perspective,
our method uses tree interpolation to extract reusable templates from failed
synthesis attempts and automatically synthesizes unique best transformers if
they exist. We have incorporated the proposed approach into the Blaze meta-
synthesizer and show that the abstractions discovered by Atlas are very useful.

While we have applied the proposed technique to program synthesis, we
believe that some of the ideas introduced here are more broadly applicable. For
instance, the idea of extracting reusable predicate templates from interpolants
and synthesizing transformers in a data-driven way could also be useful in the
context of program verification.
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Abstract. Symbolic automata (s-FAs) allow transitions to carry predi-
cates over rich alphabet theories, such as linear arithmetic, and therefore
extend classic automata to operate over infinite alphabets, such as the
set of rational numbers. In this paper, we study the problem of the learn-
ability of symbolic automata. First, we present MAT ∗, a novel L∗-style
algorithm for learning symbolic automata using membership and equiv-
alence queries, which treats the predicates appearing on transitions as
their own learnable entities. The main novelty of MAT ∗ is that it can
take as input an algorithm Λ for learning predicates in the underlying
alphabet theory and it uses Λ to infer the predicates appearing on the
transitions in the target automaton. Using this idea, MAT ∗ is able to
learn automata operating over alphabets theories in which predicates are
efficiently learnable using membership and equivalence queries. Further-
more, we prove that a necessary condition for efficient learnability of an
s-FA is that predicates in the underlying algebra are also efficiently learn-
able using queries and thus settling the learnability of a large class of
s-FA instances. We implement MAT ∗ in an open-source library and show
that it can efficiently learn automata that cannot be learned using exist-
ing algorithms and significantly outperforms existing automata learning
algorithms over large alphabets.

1 Introduction

In 1987, Dana Angluin showed that finite automata can be learned in polynomial
time using membership and equivalence queries [3]. In this learning model, often
referred to as a minimally adequate teacher (MAT), the teacher can answer
(i) whether a given string belongs to the target language being learned and
(ii) whether a certain automaton is correct and accepts the target language, and
provide a counterexample if the automaton is incorrect. Following this result,
her L∗ algorithm has been studied extensively [16,17], it has been extended to
several variants of finite automata [4,12,20] and has found many applications in
program analysis [2,6,7] and program synthesis [25].

Recent work [6,11] developed algorithms which can efficiently learn s-FAs
over certain alphabet theories. These algorithms operate using an underlying
predicate learning algorithm which can learn partitions of the domain using

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 427–445, 2018.
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predicates from counterexamples. While such results give sufficient conditions
under which s-FAs can be efficiently learned, they do not provide any necessary
conditions. More precisely, the following question remains open:

For what alphabet theories can s-FAs be efficiently learned?

In this paper, we make significant progress towards answering this ques-
tion by providing new sufficient and necessary conditions for efficiently learning
symbolic automata. More specifically, we present MAT ∗, a new algorithm for
learning s-FAs using membership and equivalence queries. The main novelty of
MAT ∗ is that it can accept as input a MAT learning algorithm Λ for predicates
in the underlying alphabet theory. Afterwards, MAT ∗ spawns instances of Λ to
infer each transition in the target s-FA and efficiently answers membership and
equivalence queries performed by Λ using the s-FA membership and equivalence
oracles. The predicate learning algorithms do not need to learn entire partitions
but individual predicates and therefore, MAT ∗ greatly simplifies the design of
learning algorithms for s-FAs by allowing one to reuse existing learning algo-
rithms for the underlying alphabet theory. Moreover, MAT ∗ allows the under-
lying predicate learning algorithms to perform both membership and equivalence
queries, thus extending the class of efficiently learnable s-FAs to MAT-learnable
alphabet theories—e.g., bit-vector predicates expressed as BDDs.

Furthermore, we show that a necessary condition for efficiently learning a
symbolic automaton over a Boolean algebra is that the individual predicates in
the algebra also have to be efficiently learnable. Moreover, we provide a charac-
terization of the instances which are not efficiently learnable by our algorithm
and conjecture that such instances are not learnable by any efficient algorithm.

We implement MAT ∗ in the open-source symbolicautomata library [1] and
evaluate it on 15 regular-expression benchmarks, 1,500 s-FA benchmarks over
bit-vector alphabets, and 18 synthetic benchmarks over infinite alphabets. Our
results show that MAT ∗ can efficiently learn automata over different alphabet
theories, some of which cannot be learned using existing algorithms. Moreover,
for large finite alphabets, MAT ∗ significantly outperforms existing automata
learning algorithms.

Contributions. In summary, our contributions are:

– MAT ∗, the first algorithm for learning symbolic automata that operate over
MAT-learnable alphabet theories—i.e., in which predicates can be learned
using only membership and equivalence queries (Sect. 3).

– A soundness result for MAT ∗ and new necessary and sufficient conditions
for the learnability of symbolic automata. Moreover, a characterization of the
remaining class for which the learnability is not settled (Sect. 4).

– A modular implementation of MAT ∗ in an existing open-source library
together with a comprehensive evaluation on existing and new automata-
learning benchmarks (Sect. 6).
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2 Background

2.1 Boolean Algebras and Symbolic Automata

In symbolic automata, transitions carry predicates over a decidable Boolean
algebra. An effective Boolean algebra A is a tuple (D, Ψ,[[ ]],⊥,�,∨,∧,¬) where
D is a set of domain elements; Ψ is a set of predicates closed under the Boolean
connectives, with ⊥,� ∈ Ψ ; [[ ]] : Ψ → 2D is a denotation function such that
(i) [[⊥]] = ∅, (ii) [[�]] = D, and (iii) for all ϕ,ψ ∈ Ψ , [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]],
[[ϕ ∧ ψ]] =[[ϕ]] ∩[[ψ]], and [[¬ϕ]] = D \[[ϕ]].

Example 1 (Equality Algebra). The equality algebra for an arbitrary set D has
predicates formed from Boolean combinations of formulas of the form λc. c = a
where a ∈ D. Formally, Ψ is generated from the Boolean closure of Ψ0 = {ϕa |
a ∈ D} ∪ {⊥,�} where for all a ∈ D, [[ϕa]] = {a}. Examples of predicates in this
algebra include λc. c = 5 ∨ c = 10 and λc.¬(c = 0).

Definition 1 (Symbolic Finite Automata). A symbolic finite automaton
(s-FA) M is a tuple (A, Q, qinit, F,Δ) where A is an effective Boolean algebra,
called the alphabet; Q is a finite set of states; qinit ∈ Q is the initial state;
F ⊆ Q is the set of final states; and Δ ⊆ Q × ΨA × Q is the transition relation
consisting of a finite set of moves or transitions.

Characters are elements of DA, and words or strings are finite sequences of
characters, or elements of D∗

A. The empty word of length 0 is denoted by ε. A
move ρ = (q1, ϕ, q2) ∈ Δ, also denoted by q1

ϕ−→ q2, is a transition from the
source state q1 to the target state q2, where ϕ is the guard or predicate of the
move. For a state q ∈ Q, we denote by guard(q) the set of guards for all moves
from q. For a character a ∈ DA, an a-move of M , denoted q1

a−→ q2 is a move
q1

ϕ−→ q2 such that a ∈ [[ϕ]].
An s-FA M is deterministic if, for all transitions (q, ϕ1, q1), (q, ϕ2, q2) ∈ Δ,

q1 �= q2 → [[ϕ1 ∧ ϕ2]] = ∅—i.e., for each state q and character a there is
at most one a-move out of q. An s-FA M is complete if, for all q ∈ Q,
[[
∨

(q,ϕi,qi)∈Δ ϕi]] = D—i.e., for each state q and character a there exists an a-
move out of q. Throughout the paper we assume all s-FAs are deterministic and
complete, since determinization and completion are always possible [10]. Given
an s-FA M = (A, Q, qinit, F,Δ) and a state q ∈ Q, we say a word w = a1a2 · · · ak

is accepted at state q if, for 1 ≤ i ≤ k, there exist moves qi−1
ai−→ qi such that

qinit = q and qk ∈ F .
For a deterministic s-FA M and a word w, we denote by Mq[w] the state

reached in M by w when starting at state q. When q is omitted we assume
that execution starts at qinit. For a word w = a1 · · · ak, we use w[i..] =
ai · · · ak, w[..i] = a1 · · · ai, w[i] = ai to denote the suffix starting from the i-th
position, the prefix up to the i-th position and the character at the i-th position
respectively. We use B = {T,F} to denote the Boolean domain. A word w is
called an access string for state q ∈ Q if M [w] = q. For two states q, p ∈ Q, a
word w is called a distinguishing string, if exactly one of Mq[w] and Mp[w] is
final.
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2.2 Learning Model

In this paper, we follow the notation from [17]. A concept is a Boolean function
c : D → B. A concept class C is a set of concepts which is represented using
representation class R. By representation class we denote a fixed function from
strings to concepts in C. For example, regular expressions, DFAs and NFAs are
different representation classes for the concept class of regular languages.

The learning model under which all learning algorithms in this paper operate
is called exact learning from membership and equivalence queries or learning
using a Minimal Adequate Teacher (MAT), and was originally introduced by
Angluin [3]. In this model, to learn an unknown concept c ∈ C, a learning
algorithm has access to two types of queries:

Membership Query: In a membership query O(x), the input is x ∈ D and
the query returns the value c(x) of the concept on given input x—i.e., T if x
belongs to the concept and F otherwise.

Equivalence Query: In an equivalence query E(H), the input given is a
hypothesis (or model) H. The query returns T if for every x ∈ D, H(x) =
c(x). Otherwise, an input w ∈ D is returned such that H(w) �= c(w).

An algorithm is a learning algorithm for a concept class C if, for any c ∈ C, the
algorithm terminates with a correct model for c after making a finite number of
membership and equivalence queries. In this paper, we will say that a learning
algorithm is efficient for a concept class C if it learns any concept c ∈ C using
a polynomial number of queries on the size of the representation of the target
concept in R and the length of the longest counterexample provided to the
algorithm.

An effective Boolean algebra A = (D, Ψ,[[ ]],⊥,�,∨,∧,¬) naturally defines
the concept class 2D with representations in Ψ of predicates over the domain D.
We will say that an algorithm is a learning algorithm for the algebra A to denote
a learning algorithm that can efficiently learn predicates from the representation
class Ψ .

3 The MAT ∗ Algorithm

Our learning algorithm, MAT ∗, can be viewed as a symbolic version of the
TTT algorithm for learning DFAs [16], but without discriminator finalization.
The learning algorithm accepts as input a membership oracle O, an equivalence
oracle E as well as a learning algorithm Λ for the underlying Boolean algebra
used in the target s-FA M. The algorithm uses a classification tree [17] to gen-
erate a partition of D∗ into equivalence classes which represent the states in the
target s-FA. Once a tree is obtained, we can use it to determine, for any word
w ∈ D∗, the state accessed by w in M—i.e., what state the automaton reaches
when reading the word w. Then, we build an s-FA model H, using the algebra
learning algorithm Λ to create models for each transition guard and utilizing
the classification tree in order to implement a membership oracle for Λ. Once a
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Algorithm 1. s-FA-Learn(O, E , Λ) // s-FA Learning algorithm
Require: O: membership oracle, E : equivalence oracle, Λ: algebra learning algorithm.

T ← InitializeClassificationTree(O)
SΛ ← InitializeGuardLearners(T, Λ)
H ← GetSFAModel(T, SΛ, O)
while E(H) �= T do

w ← GetCounterexample(H)
T, SΛ ← ProcessCounterexample(T, SΛ, w, O)
H ← GetSFAModel(T, SΛ, O)

return H

model is generated, we check for equivalence and, given a counterexample, we
either update the classification tree with a new state and a corresponding distin-
guishing string, or propagate the counterexample into one of the instances of the
algebra learning algorithm Λ. The structure of MAT ∗ is shown in Algorithm 1.
In the rest of the section, we use the s-FA in Fig. 1 as a running example for our
algorithm.

3.1 The Classification Tree

Fig. 1. An s-FA over equality
algebra.

The main data structure used by our learning
algorithm is the classification tree (CT) [17]. The
classification tree is a tree data structure used to
store the access and distinguishing strings for the
target s-FA so that all internal nodes of the tree
are labelled using a distinguishing string while
all leafs are labeled using access strings.

Definition 2. A classification tree T = (V,L,E) is a binary tree such that:

– V ⊂ Σ∗ is the set of nodes.
– L ⊂ V is the set of leafs.
– E ⊂ V × V × B is the transition relation. For (v, u, b) ∈ E, we say that v is

the parent of u and furthermore, if b = T (resp. b = F) we say that u is the
T-child (resp. F-child).

Intuitively, given any internal node v ∈ V , any leaf lT reached by following the
T-child of v can be distinguished from any leaf lF reached by the F-child using
v. In other words, the membership queries for lT v and lF v produce different
results—i.e., O(lT v) �= O(lF v).

Tree Initialization. To initialize the CT data structure, we use a membership
query on the empty word ε. Then, we create a CT with two nodes, a root node
labeled with ε and one child also labeled with ε. The child of the root is either
a T-child or F-child, according to the result of the O(ε) query.

The sift Operation. The main operation performed using the classification tree
is an operation called sift which allows one to determine, for any input word s,
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Fig. 2. (left) Classification tree and corresponding learned states for our running exam-
ple. (right) Two different instances of failed partition verification checks that occured
during learning and their respective updates on the given counterexamples (CE).

the state reached by s in the target s-FA. The sift(s) operation performs the
following steps:

1. Set the current node to be the root node of the tree and let w be the label at
the root. Perform a membership query on the word sw.

2. Let b = O(sw). Select the b-child of the current node and repeat step 2 until
a leaf is reached.

3. Once a leaf is reached, return the access string with which the leaf is labelled.

Note that, until both children of the root node are added, we will have inputs
that may not end up in any leaf node. In these cases our sift operation will
return ⊥ and MAT ∗ will add the queried input as a new leaf in the tree.

Once a classification tree is obtained, we use it to simulate a membership
oracle for the underlying algebra learning algorithm Λ. This oracle is then used
to infer models for the transitions and eventually construct an s-FA model. In
Fig. 2 we show the classification tree and the corresponding states learned by
the MAT ∗ algorithm during the execution on our running example from Fig. 1.

3.2 Building an s-FA Model

Assume we are given a classification tree T = (V,L,E). Our next task is to
use the tree along with the underlying algebra learning algorithm Λ to pro-
duce an s-FA model. The main idea is to spawn an instance of the Λ algo-
rithm for each potential transition and then use the classification tree to answer
membership queries posed by each Λ instance. Initially, we define an s-FA
H = (A, QH, qε, FH,ΔH), where QH = {qs | s ∈ L}—i.e. we create one state
for each leaf of the classification tree T . Finally, for any q ∈ QH, we have that
q ∈ FH if and only if O(q) = T. Next, we will show how to build the transition
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relation for H. As mentioned above, our construction is based on the idea of
spawning instances of Λ for each potential transition of the s-FA and then using
the classification tree to decide, for each character, if the character satisfies the
guard of the potential transition thus answering membership queries performed
by the underlying algebra learner.

Guard Inference. To infer the set of guards in the transition relation ΔH, we
spawn, for each pair of states (qu, qv) ∈ QH × QH, an instance Λ(qu,qv) of the
algebra learning algorithm. We answer membership queries to Λ(qu,qv) as follows.
Let α ∈ D be a symbol queried by Λ(qu,qv). Then, we return T as the answer
to O(α) if sift(uα) = v and F otherwise. Once Λ(qu,qv) submits an equivalence
query E(φ) using a model φ, we suspend the execution of the algorithm and add
the transition (qu, φ, qv) in ΔH.

Partition Verification. Once all algebra learners have submitted a model through
an equivalence query, we have a complete transition relation ΔH. However, at
this point there is no guarantee that for each state q the outgoing transitions
from q form a partition of the domain D. Therefore, it may be the case that our
s-FA model H is in fact non-deterministic and, moreover, that certain symbols do
not satisfy any guard. Using such a model in an equivalence query would result
in an improper learning algorithm and potential problems in the counterexample
processing algorithm in Sect. 3.3. To mitigate this issue we perform the following
checks:

Determinism check: For each state qs ∈ QH and each pair of moves
(qs, φ1, qu), (qs, φ2, qv) ∈ ΔH, we verify that [[φ1 ∧ φ2]] = ∅. Assume that a
character α is found such that α ∈ [[φ1 ∧ φ2]] and let m = sift(sα). Then, it
must be the case that the guard of the transition qs → qm must satisfy α.
Therefore, we check if m = u and m = v and provide α as a counterexample
to Λ(qs,qu) and Λ(qs,qv) respectively if the corresponding check fails.

Completeness check: For each state qu ∈ QH let S = {φ | (q, φ, p) ∈ ΔH}.
We check that [[

∨
φ∈S φ]] = D. If a symbol h �∈ [[

∨
φ∈S φ]] is found then, let

v = sift(uh). Following the same reasoning as above, we provide h as a
counterexample to Λ(qu,qv).

These checks are iterated for each state until no more counterexamples are found.
In Fig. 2 we demonstrate instances of failed determinism and completeness checks
while learning our running example from Fig. 1 along with the corresponding
updates on the predicates. For details regarding the equality algebra learner, see
Sect. 5.

Optimizing the Number of Algebra Learning Instances. Note that in the descrip-
tion above, MAT ∗ spawns one instance of Λ for each possible transition between
states in H. To reduce the number of spawned algebra learning instances, we
perform the following optimization: For each state qs we initially spawn a single
algebra learning instance Λ(qs,?). Let α be the first symbol queried by Λ(qs,?) and
let u = sift(sα). We return � as a query answer for α to Λ(qs,?) and set the
target state for the instance to qu, i.e. we convert the algebra learning instance
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to Λ(qs,qu). Afterwards, we keep a set R = {qv | v = sift(sβ)} for all β ∈ D
queried by the different algebra learning instances and generate new instances
only for states qv ∈ R for which the guards are not yet inferred. Using this opti-
mization, the total number of generated algebra learning instances never exceeds
the number of transitions in the target s-FA.

3.3 Processing Counterexamples

For counterexample processing, we adapt the algorithm used in [6] in the setting
of MAT ∗ . In a nutshell, our algorithm works similarly to the classic Rivest-
Schapire algorithm [23] and the TTT algorithm [16] for learning DFAs, where
a binary search is performed to locate the index in the counterexample where
the executions of the model automaton and the target one diverge. However,
once this breakpoint index is found, our algorithm performs further analysis to
determine if the divergence is caused by an undiscovered state in our model
automaton or because the guard predicate that consumes the breakpoint index
character is incorrect.

Error Localization. Let w be a counterexample for a model H generated as
described above. For each index i ∈ [0..|w|], let qu = H[w[..i]] be the state
accessed by w[..i] in H and let γi = uw[i + 1..]. In other words, γi is obtained
by first running w in H for i steps and then, concatenating the access string
for the state reached in H with the word w[i + 1..]. Note that, because initially
the model H and the target s-FA start at the same state accessed by ε, the two
machines are synchronized and therefore, O(γ0) = O(w). Moreover, since w is a
counterexample, we have that O(γ|w|) �= O(w). It follows that, there exists an
index j, which we will refer to as breakpoint, for which O(γj) �= O(γj+1). The
counterexample processing algorithm uses a binary search on the index j to find
such a breakpoint. For more information on the correctness of this method we
refer the reader to [6,23].

Breakpoint Analysis. Once we find an index j such that O(γj) �= O(γj+1) we can
conclude that the transition taken in H from H[w[..j]] with the symbol w[j+1] is
incorrect. In traditional algorithms for learning DFAs, the sole reason for having
an incorrect transition would be that the transition is actually directed to a yet
undiscovered state in the target automaton. However, in the symbolic setting
we have to explore two different possibilities. Let qu = H[w[..j]] be the state
accessed in H by w[..j], qv = sift(uw[j +1]) be the result of sifting uw[j +1] in
the classification tree and consider the transition (qu, φ, qv) ∈ ΔH. We use the
guard φ to determine if the counterexample was caused by an invalid predicate
guard or an undiscovered state in the target s-FA.

Case 1. Incorrect guard. Assume that w[j +1] �∈ [[φ]]. Note that, φ was generated
as a model by Λ(qu,qv) and therefore, a membership query from Λ(qu,qv) for a
character α returns T if sift(uα) = v. Moreover, we have that sift(uw[j +
1]) = v. Therefore, if w[j + 1] �∈ [[φ]], then w[j + 1] is a counterexample for the
learning instance Λ(qu,qv) which produced φ. We proceed to supply Λ(qu,qv) with
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Fig. 3. (left) A minimal s-FA. (right) The s-FA corresponding to the classification tree
of MAT ∗ with access strings for qinit and q2 and a single distinguishing string ε.

the counterexample w[j + 1], update the corresponding guard and continue to
generate a new s-FA model.

Case 2. Undiscovered state. Assume w[j + 1] ∈ [[φ]]. It follows that φ is behaving
as expected on the symbol w[j + 1] based on the current classification tree. We
conclude that the state accessed by w[..j + 1] is in fact an undiscovered state
in the target s-FA which we have to distinguish from the previously discovered
states. Therefore, we proceed to add a new leaf in the tree to access this state.
More specifically, we replace the leaf labelled with v with a sub-tree consisting
of three nodes: the root is the word w[j + 1..], which is the distinguishing string
for the states accessed by v and uw[j + 1]. The T-child and F-child of this
node are labelled with the words v and uw[j] based on the results of O(v) and
O(uw[j + 1]).

Finally, we have to take care of one last point: Once we add another state in
the classification tree, certain queries that were previously directed to v may be
directed to uw[j] once we sift them down in the tree. This change implies that
certain previous queries performed by algebra learning instances Λ(qs,qv) may be
given invalid results and therefore, we can no longer guarantee correctness of the
generated predicates. To solve this problem, we terminate all instances Λ(qs,qv)

for all qs ∈ QH and replace them with fresh instances of the algebra learning
algorithm.

4 Correctness and Completeness of MAT ∗

Given a learning algorithm Λ, we use CΛ
m(n) to denote the number of membership

queries and CΛ
e (n) to denote the number of equivalence queries performed by Λ

for a target concept with representation size n. In our analysis we will also use
the following definitions:

Definition 3. Let M = (A, Q, q0, F,Δ) over a Boolean algebra A and let S ⊆
ΨA. Then, we define:

– The maximum size of the union of predicates in S as U(S) def=
maxΦ⊆S |∨φ∈Φ φ|.
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– The maximum guard union size for M as B(M) def= maxq∈Q U(guard(q)).

The value B(M) denotes the maximum size that a predicate guard may
take in any intermediate hypothesis produced by MAT ∗ during the learning
process. Contrary to traditional L∗-style algorithms, the size of the intermediate
hypothesis produced by MAT ∗ may fluctuate as we demonstrate in the following
example.

Example 2. Consider the s-FA in the left side of Fig. 3. When we execute the
MAT ∗ algorithm in this s-FA, and after an access string for q2 is added to the
classification tree, the tree will correspond to the s-FA shown on the right, in
which the transition from qinit is taken over the union of the individual transitions
in the target. Certain sequences of answers to equivalence queries can force
MAT ∗ to first learn a correct model of φ1 ∨φ2 ∨φ3 before revealing a new state
in the target s-FA.

We now state the correctness and query complexity of our algorithm.

Theorem 1. Let M = (A, Q, q0, F,Δ) be an s-FA, Λ be a learning algorithm A
and let k = B(M). Then, MAT ∗ will learn M using Λ with O(|Q|2|Δ|CΛ

m(k) +
|Q|2|Δ|CΛ

e (k) log m) membership and O(|Q||Δ|CΛ
e (k)) equivalence queries, where

m is the length of the longest counterexample given to MAT ∗.

Proof. First, we note that our counterexample processing algorithm only splits
a leaf if there exists a valid distinguishing condition separating the two newly
generated leafs. Therefore, the number of leafs in the discrimination tree is always
at most |Q|. Next, note that each counterexample is processed using a binary
search with complexity O(log m) to detect the breakpoint and, afterwards, either
a new state is added or a counterexample is dispatched to the corresponding
algebra learner.

Each classification tree T = (V,L,E) defines a partition over D∗ and, there-
fore, an s-FA HT . In the worst case, MAT ∗ will learn HT exactly before a new
state in the target s-FA is revealed through an equivalence query. Since HT is
the result of merging states in the target s-FA, we conclude that the size of each
predicate in HT is at most k. It follows that, for each classification tree T , we can
get at most |ΔHT

|CΛ
e (k) counterexamples until a new state is uncovered on the

target s-FA. Note here, that our counterexample processing algorithm ensures
that each counterexample will be either a valid counterexample for a predicate
guard in HT or it will uncover a new state. For each membership query performed
by an underlying algebra learner, we have to sift a string in the classification
tree which requires at most |Q| membership queries. Therefore, the total num-
ber of membership queries performed for each candidate model H is bounded by
O(|Δ|(|Q|CΛ

m(k)+CΛ
e (k) log m) where m is the size of the longest counterexample

so far. The number of equivalence queries is bounded by O(|Δ|CΛ
e (k)). When a

new state is uncovered, we assume that, in the worst case, all the algebra learners
will be restarted (this is an overestimation) and therefore, the same process will
be repeated at most |Q| times giving us the stated bounds.
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Note that the bounds on the number of queries stated in Theorem 1 are based
on the worst-case assumption that we may have to restart all guard learning
instances each time we discover a new state. In practice, we expect these bounds
to be closer O(|Δ|CΛ

m(k)+(|Δ|CΛ
e (k)+|Q|) log m) membership and O(|Δ|CΛ

e (k)+
|Q|) equivalence queries.

Minimality of Learned s-FA. Since the MAT ∗ will only add a new state in
the s-FA if a distinguishing sequence is found it follows that the total number
of states in the s-FA is minimal. Moreover, MAT ∗ will not modify in any way
the predicates returned by the underlying algebra learning instances. Therefore,
if the size of the predicates returned by the Λ instances is minimal, MAT ∗ will
maintain their minimality.

The following theorem shows that it is indeed not possible to learn s-FAs
over a Boolean algebra that is not itself learnable.

Theorem 2. Let Λs-FA be an efficient learning algorithm for the algebra of s-
FAs over a Boolean algebra A. Then, the Boolean algebra A is efficiently learn-
able.

Which s-FAs Are Efficiently Learnable? Theorem 2 shows that efficient
learnability of an s-FA requires efficient learnability of the underlying algebra.
Moreover, from Theorem 1 it follows that efficiently learnability using MAT ∗

depends on the following property of the underlying algebra:

Corollary 1. Let A be an efficiently learnable Boolean algebra and consider the
class Rs-FA

A of s-FAs over A. Then, Rs-FA
A is efficiently learnable using MAT ∗

if and only if, for any set S ⊆ ΨA such that for any distinct φ, ψ ∈ S =⇒
[[φ ∧ ψ]] = ∅, we have that U(S) = poly(|S|,maxφ∈S |φ|).
At this point we would like to point out that the above condition arises due to the
fact that MAT ∗ is a congruence-based algorithm which successively computes
hypothesis automata based on refining a set of access and distinguishing strings
which is a common characteristic among all L∗-based algorithms. Therefore,
this limitation of MAT ∗ is expected to be shared by any other algorithm in
the same family. Given the fact that after three decades of research, L∗-based
algorithms are the only known, provably efficient algorithms for learning DFAs
(and subsequently s-FAs), we expect that expanding the class of learnable s-FAs
is a very challenging task.

5 Learnable Boolean Algebras

We will now describe a number of interesting effective Boolean algebras which
are efficiently learnable using membership and equivalence queries.

Boolean Algebras Over Finite Domains. Let A be any Boolean Algebra over a
finite domain D. Then, any predicate φ ∈ Ψ can be learned using |D| member-
ship queries. More specifically, the learning algorithm constructs a predicate φ



438 G. Argyros and L. D’Antoni

accepting all elements in D for which the membership queries return true as
φ = {c | c ∈ D ∧ O(c) = T}. Plugging this algebra learning algorithm into our
algorithm, we get the TTT learning algorithm for DFAs without discriminator
finalization [16]. This simple example demonstrates that algorithms for DFAs
can be viewed as special cases of our s-FA learning algorithm for finite domains.

Equality Algebra. Consider the equality algebra defined in Example 1. Predicates
in this algebra of size |φ| = k can be learned using 2k equivalence queries and
no membership queries. Initially, the algorithm outputs the empty set ⊥ as a
hypothesis. In any subsequent step, the algorithm keeps a list of the counterex-
amples obtained so far in two sets P,N ⊆ D such that P holds all the positive
examples received so far and N holds all the negative examples. Afterwards,
the algorithm finds the smallest hypothesis consistent with the counterexamples
given. This hypothesis can be found efficiently as follows:

1. If |P | > |N | then, φ = λc.¬(
∨

d∈N c = d).
2. If |P | ≤ |N | then, φ = λc. (

∨
d∈P c = d).

It can be easily shown that the algorithm will find a correct hypothesis after at
most 2k equivalence queries.

Other Algebras. The following Boolean algebras can be efficiently learned using
membership and equivalence queries. All these algebras also have approximate
fingerprints [3], which means that they are not learnable by equivalence queries
alone. Thus, s-FAs over these algebras are not efficiently learnable by previous
s-FA learning algorithms [6,11].

BDD algebra. The algebra of ordered binary decision diagrams (OBDDs) is
efficiently learnable using a variant of the L∗ algorithm [22].

Tree automata algebra. Deterministic finite tree automata form an algebra
which is also learnable using membership and equivalence queries [13].

s-FA algebra. s-FAs themselves form an effective Boolean algebra and there-
fore, s-FAs over s-FAs over learnable algebras are also learnable.

6 Evaluation

We have implemented MAT ∗ in the open-source symbolicautomata library [1],
as well as the learning algorithms for boolean algebras over finite domains, equal-
ity algebras and BDD algebras as discussed in Sect. 5. Our implementation is
fully modular: Once an algebra learning algorithm is defined in our library, it can
be seamlessly plugged in as a guard learning algorithm for s-FAs. Since MAT ∗

is also an algebra learning algorithm, this allows us to easily learn automata
over automata. All experiments were ran in a Macbook air with an 1.8 GHz
Intel Core i5 and 8 GiB of memory. The goal of our evaluation is to answer the
following research questions:

Q1: How does MAT ∗ perform on automata over large finite alphabets? (Sub-
sect. 6.1)
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Table 1. Evaluation of MAT ∗ on regular expressions.

ID |Q| |Δ| Memb Equiv R-CE GU D-CE C-CE

RE.1 11 35 653 17 19 25 106 78

RE.2 24 113 7203 66 45 87 565 479

RE.3 11 15 483 11 16 16 59 45

RE.4 18 40 1745 17 33 32 188 164

RE.5 25 55 3180 22 48 45 244 211

RE.6 52 155 43737 588 104 640 3102 2953

RE.7 179 658 66477 1486 91 1398 7748 6540

RE.8 115 175 929261 299 206 390 28606 28354

RE.9 144 369 844213 699 261 817 30485 30135

RE.10 175 551 3228102 5346 286 5457 172180 170483

RE.11 6 9 3409 281 14 289 723 710

RE.12 10 14 1367 88 8 86 314 291

RE.13 29 46 20903 743 49 764 2637 2550

RE.14 8 13 5949 365 24 381 854 836

RE.15 8 15 661 82 2 76 228 198

Q2: How does MAT ∗ perform on automata over algebras that require both
membership and equivalence queries? (Subsect. 6.2)

Q3: How does the size of predicates affect the performance of MAT ∗? (Sub-
sect. 6.3)

6.1 Equality Algebra Learning

In this experiment, we use MAT ∗ to learn s-FAs obtained from 15 regular expres-
sions drawn from 3 domains: (1) Regular expressions used in web application san-
itization frameworks such as in the CodeIgniter framework, (2) Regular expres-
sions drawn from popular web application firewall ModSecurity and finally (3)
Regular expressions from [18]. For this set of experiments we utilize as alphabet
the entire UTF-16 (216 characters) and used the equality algebra to represent
predicates. Since the alphabet is finite, we also tried learning the same automata
using TTT [16], the most efficient algorithm for learning finite automata over
finite alphabets.

Results. Table 1 presents the results of MAT ∗. The Memb and Equiv columns
present the number of distinct membership and equivalence queries respectively.
The R-CE column shows how many times a counterexample was reused, while
the GU column shows the number of counterexamples that were used to update
an underlying predicate (as opposed to adding a new state in the s-FA). Finally,
D-CE shows the number of counterexamples provided to an underlying alge-
bra learner due to failed determinism checks, while C-CE shows the number of


