
440 G. Argyros and L. D’Antoni

counterexamples due to failed completeness checks. Note that these counterex-
amples did not require invoking the equivalence oracle.

Given the large alphabet sizes, TTT runs out of memory on all our bench-
marks. This is not surprising since the number of queries required by TTT
just to construct the correct model for a DFA with 128 = 27 states is at least
|Σ||Q| log |Q| = 216 ∗ 27 ∗ 7 ≈ 226. We point out that a corresponding lower
bound of Ω(|Q| log |Q||Σ|) exists for the number of queries any DFA algorithm
may perform and therefore, the size of the alphabet provides a fundamental
limitation for any such algorithm.

Analysis. First, we observe that the performance of the algorithm is not always
monotone in the number of states or transitions of the s-FA. For example, RE.10
requires more than 10x more membership and equivalence queries than RE.7
despite the fact that both the number of states and transitions of RE.10 are
smaller. In this case, RE.10 has fewer transitions, but they contain predicates
that are harder to learn—e.g., large character classes. Second, the completeness
check and the corresponding counterexamples are not only useful to ensure that
the generated guards form a partition but also to restore predicates after new
states are discovered. Recall that, once we discover (split) a new state, a number
of learning instances is discarded. Usually, the newly created learning instances
will simply output ⊥ as the initial hypothesis. At this point, completeness coun-
terexamples are used to update the newly created hypothesis accordingly and
thus save the MAT ∗ from having to rerun a large number of equivalence queries.
Finally, we point out that the equality algebra learner made no special assump-
tions on the structure of the predicates such as recognizing character classes
which are used in regular expressions and others. We expect that providing such
heuristics can greatly improve the performance MAT ∗ in these benchmarks.

6.2 BDD Algebra Learning

In this experiment, we use MAT ∗ to learn s-FAs over a BDD algebra. We run
MAT ∗ on 1,500 automata obtained by transforming Linear Temporal Logic
over finite traces into s-FAs [9]. The formulas have 4 atomic propositions and
the height in each BDD used by the s-FAs is four. To learn the underlying BDDs
we use MAT ∗ with the learning algorithm for algebras over finite domains (see
Sect. 5) since ordered BDDs can be seen as s-FAs over D = {0, 1}.

Figure 4 shows the number of membership (top left) and equivalence (top
right) queries performed by MAT ∗ for s-FAs with different number of states.
For this s-FAs, MAT ∗ is highly efficient with respect to both the number of
membership and equivalence queries, scaling linearly with the number of states.
Moreover, we note that the size of the set of transitions |Δ| does not drastically
affect the overall performance of the algorithm. This is in agreement with the
results presented in the previous section, where we argued that the difficulty of
the underlying predicates and not their number is the primary factor affecting
performance.

The Learnability of Symbolic Automata 441

Fig. 4. (Top) Evaluation of MAT ∗ on s-FAs over a BDD algebra. (Bottom) Evaluation
of MAT ∗ on s-FAs over an s-FA algebra. For an s-FA Mm,n, the x-axis denotes the
values of n. Different lines correspond to different values of m.

6.3 s-FA Algebra Learning

In this experiment, we use MAT ∗ to learn 18 s-FAs over s-FAs, which accept
strings of strings. We evaluate the scalability of our algorithms when the diffi-
culty of learning the underlying predicates increases. The possible internal s-FAs,
which we will use as predicates, operate over the equality algebra and are denoted
as Ik (where 2 ≤ k ≤ 17). Each s-FA Ik accepts exactly one word a · · · a of length
k and has k + 1 states and 2k + 1 transitions. The external s-FAs are denoted
as Mm,n (where m ∈ {5, 10, 15} and 2 ≤ n ≤ 17). Each s-FA Mm,n accepts
exactly one word s · · · s of length m where each s is accepted by In.

Analysis. For simplicity, let’s assume that we have the s-FA Mn,n. Consider a
membership query performed by one of the underlying algebra learning instances.
Answering the membership query requires sifting a sequence in the classification
tree of height at most n which requires O(n) membership queries. Therefore,
the number of membership queries required to learn each individual predicate is
increased by a factor of O(n). Moreover, for each equivalence query performed
by an algebra learning instance, the s-FA learning algorithm has to pinpoint
the counterexample to the specific algebra learning instance, a process which
requires log m membership queries, where m is the length of the counterexample.

442 G. Argyros and L. D’Antoni

Therefore, we conclude that each underlying guard with n states will require a
number of membership queries which is of the order of O(n3) at the worst and
O(n2 log n) queries at the best (since the CT has height Ω(log n)), ignoring the
queries required for counterexample processing.

Figure 4 shows the number of membership (bottom left) and equivalence
(bottom right) queries, which verify the theoretical analysis presented in the
previous paragraph. Indeed, we see that in terms of membership queries, we
have a very sharp increase in the number of membership queries which is in
fact about quadratic in the number of states in the underlying guards. On the
other hand, equivalence queries are not affected so drastically, and only increase
linearly.

7 Related Work

Learning Finite Automata. The L∗ algorithm proposed by Dana Angluin [3] was
the first to introduce the notion of minimally adequate teacher—i.e., learning
using membership and equivalence queries—and was also the first for learning
finite automata in polynomial time. Following Angluin’s result, L∗ has been
studied extensively [16,17], it has been extended to many other models—e.g., to
nondeterministic automata [12] alternating automata [4]—and has found many
applications in program analysis [2,5–7,24] and program synthesis [25]. Since
finite automata only operate over finite alphabets, all the automata that can be
learned using variants of L∗, can also be learned using MAT ∗.

Learning Symbolic Automata. The problem of scaling L∗ to large alphabets was
initially studied outside the setting of s-FAs using alphabet abstractions [14,15].
The first algorithm for symbolic automata over ordered alphabets was proposed
in [20] but the algorithm assumes that the counterexamples provided to the
learning algorithm are of minimal length. Argyros et al. [6] proposed the first
algorithm for learning symbolic automata in the standard MAT model and also
described the algorithm to distinguish counterexamples leading to new states
from counterexamples due to invalid predicates which we adapt in MAT ∗ .
Drews and D’Antoni [11] proposed a symbolic extension to the L∗algorithm,
gave a general definition of learnability and demonstrated more learnable alge-
bras such as union and product algebras. The algorithms in [6,11,19] are all
extensions of L∗ and assume the existence of an underlying learning algorithm
capable of learning partitions of the domain from counterexamples. MAT ∗ does
not require that the predicate learning algorithms are able to learn partitions,
thus allowing to easily plug existing learning algorithms for Boolean algebras.
Moreover, MAT ∗ allows the underlying algebra learning algorithms to perform
both equivalence and membership queries, a capability not present in any pre-
vious work, thus expanding the class of s-FAs which can be efficiently learned.

Learning Other Models. Argyros et al. [6] and Botincan et al. [7] presented algo-
rithms for learning restricted families of symbolic transducers—i.e., symbolic
automata with outputs. Other algorithms can learn nominal [21] and register

The Learnability of Symbolic Automata 443

automata [8]. In these models, the alphabet is infinite but not structured (i.e.,
it does not form a Boolean algebra) and characters at different positions can be
compared using binary relations.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their valuable comments. Loris D’Antoni was supported by National Science Founda-
tion Grants CCF-1637516, CCF-1704117 and a Google Research Award. George Argy-
ros was supported by the Office of Naval Research (ONR) through contract N00014-
12-1-0166.

References

1. lorisdanto/symbolicautomata: Library for symbolic automata and symbolic
visibly pushdown automata. https://github.com/lorisdanto/symbolicautomata/.
Accessed 29 Jan 2018

2. Alur, R., Černý, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications
for java classes. SIGPLAN Not. 40(1), 98–109 (2005)

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

4. Angluin, D., Eisenstat, S., Fisman, D.: Learning regular languages via alternat-
ing automata. In: Proceedings of the 24th International Conference on Artificial
Intelligence, IJCAI 2015, pp. 3308–3314. AAAI Press (2015)

5. Argyros, G., Stais, I., Jana, S., Keromytis, A.D., Kiayias, A.: SFADiff: automated
evasion attacks and fingerprinting using black-box differential automata learning.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 1690–1701. ACM (2016)

6. Argyros, G., Stais, I., Kiayias, A., Keromytis, A.D.: Back in black: towards formal,
black box analysis of sanitizers and filters. In: IEEE Symposium on Security and
Privacy, SP 2016, 22–26 May 2016, San Jose, CA, USA, pp. 91–109 (2016)

7. Botincan, M., Babic, D.: Sigma*: symbolic learning of input-output specifications.
In: The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2013, 23–25 January 2013, Rome, Italy, pp. 443–456
(2013)

8. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite
state machines. Formal Aspects Comput. 28(2), 233–263 (2016)

9. D’Antoni, L., Kincaid, Z., Wang, F.: A symbolic decision procedure for symbolic
alternating finite automata. arXiv preprint arXiv:1610.01722 (2016)

10. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 47–67.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 3

11. Drews, S., D’Antoni, L.: Learning symbolic automata. In: Legay, A., Margaria, T.
(eds.) TACAS 2017. LNCS, vol. 10205, pp. 173–189. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54577-5 10

12. Garćıa, P., de Parga, M.V., Álvarez, G.I., Ruiz, J.: Learning regular languages
using nondeterministic finite automata. In: Ibarra, O.H., Ravikumar, B. (eds.)
CIAA 2008. LNCS, vol. 5148, pp. 92–101. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-70844-5 10

https://github.com/lorisdanto/symbolicautomata/
http://arxiv.org/abs/1610.01722
https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.1007/978-3-540-70844-5_10
https://doi.org/10.1007/978-3-540-70844-5_10

444 G. Argyros and L. D’Antoni

13. Habrard, A., Oncina, J.: Learning multiplicity tree automata. In: Sakakibara,
Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS
(LNAI), vol. 4201, pp. 268–280. Springer, Heidelberg (2006). https://doi.org/10.
1007/11872436 22

14. Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet
abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-18275-4 19

15. Isberner, M., Howar, F., Steffen, B.: Inferring automata with state-local alphabet
abstractions. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol.
7871, pp. 124–138. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38088-4 9

16. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

17. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

18. Li, N., Xie, T., Tillmann, N., de Halleux, J., Schulte, W.: Reggae: automated
test generation for programs using complex regular expressions. In: 2009 24th
IEEE/ACM International Conference on Automated Software Engineering. ASE
2009, pp. 515–519. IEEE (2009)

19. Maler, O., Mens, I.-E.: A generic algorithm for learning symbolic automata from
membership queries. In: Aceto, L., et al. (eds.) Models, Algorithms, Logics and
Tools. LNCS, vol. 10460, pp. 146–169. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63121-9 8

20. Mens, I., Maler, O.: Learning regular languages over large ordered alphabets. Log.
Methods Comput. Sci. 11(3) (2015)

21. Moerman, J., Sammartino, M., Silva, A., Klin, B., Szynwelski, M.: Learning nom-
inal automata. In: Proceedings of the 44th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL) (2017)

22. Nakamura, A.: An efficient query learning algorithm for ordered binary decision
diagrams. Inf. Comput. 201(2), 178–198 (2005)

23. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993)

24. Sivakorn, S., Argyros, G., Pei, K., Keromytis, A.D., Jana, S.: HVLearn: automated
black-box analysis of hostname verification in SSL/TLS implementations. In: 2017
IEEE Symposium on Security and Privacy (SP), pp. 521–538. IEEE (2017)

25. Yuan, Y., Alur, R., Loo, B.T.: NetEgg: programming network policies by examples.
In: Proceedings of the 13th ACM Workshop on Hot Topics in Networks, HotNets-
XIII, pp. 20:1–20:7. ACM, New York (2014)

https://doi.org/10.1007/11872436_22
https://doi.org/10.1007/11872436_22
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1007/978-3-642-38088-4_9
https://doi.org/10.1007/978-3-642-38088-4_9
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-63121-9_8
https://doi.org/10.1007/978-3-319-63121-9_8

The Learnability of Symbolic Automata 445

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Runtime Verification, Hybrid and Timed
Systems

Reachable Set Over-Approximation
for Nonlinear Systems Using Piecewise

Barrier Tubes

Hui Kong1(B), Ezio Bartocci2, and Thomas A. Henzinger1

1 IST Austria, Klosterneuburg, Austria
hui.kong@ist.ac.at

2 TU Wien, Vienna, Austria

Abstract. We address the problem of analyzing the reachable set of a
polynomial nonlinear continuous system by over-approximating the flow-
pipe of its dynamics. The common approach to tackle this problem is to
perform a numerical integration over a given time horizon based on Tay-
lor expansion and interval arithmetic. However, this method results to be
very conservative when there is a large difference in speed between trajec-
tories as time progresses. In this paper, we propose to use combinations
of barrier functions, which we call piecewise barrier tube (PBT), to over-
approximate flowpipe. The basic idea of PBT is that for each segment of
a flowpipe, a coarse box which is big enough to contain the segment is
constructed using sampled simulation and then in the box we compute
by linear programming a set of barrier functions (called barrier tube or
BT for short) which work together to form a tube surrounding the flow-
pipe. The benefit of using PBT is that (1) BT is independent of time and
hence can avoid being stretched and deformed by time; and (2) a small
number of BTs can form a tight over-approximation for the flowpipe,
which means that the computation required to decide whether the BTs
intersect the unsafe set can be reduced significantly. We implemented a
prototype called PBTS in C++. Experiments on some benchmark sys-
tems show that our approach is effective.

1 Introduction

Hybrid systems [17] are widely used to model dynamical systems which exhibit
both discrete and continuous behaviors. The reachability analysis of hybrid sys-
tems has been a challenging problem over the last few decades. The hard core
of this problem lies in dealing with the continuous behavior of systems that are
described by ordinary differential equations (ODEs). Although there are cur-
rently several quite efficient and scalable approaches for reachability analysis
of linear systems [8–10,14,16,19,20,26,34], nonlinear ODEs are much harder

This research was supported by the Austrian Science Fund (FWF) under grants
S11402-N23, S11405-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award).

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 449–467, 2018.
https://doi.org/10.1007/978-3-319-96145-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_24&domain=pdf

450 H. Kong et al.

to handle and the current approaches can be characterized into the following
groups.

Invariant Generation [18,21,22,27,28,36,37,39]. An invariant I for a system S
is a set such that any trajectory of S originating from I never escapes from I.
Therefore, finding an invariant I such that the initial set I0 ⊆ I and the unsafe
set U ∩ I = ∅ indicates the safety of the system. In this way, there is no need to
compute the flowpipe. The main problem with invariant generation is that it is
hard to define a set of high quality constraints which can be solved efficiently.

Abstraction and Hybridization [2,11,24,31,35]. The basic idea of the abstraction-
based approach is first constructing a linear model which over-approximates the
original nonlinear dynamics and then applying techniques for linear systems to
the abstraction model. However, how to construct an abstraction with the fewest
discrete states and sufficiently high accuracy is still a challenging issue.

Satisfiability Modulo Theory (SMT) Over Reals [6,7,23]. This approach encodes
the reachability problem for nonlinear systems as first-order logic formulas over
the real numbers. These formulas can be solved using for example δ−complete
decision procedures that overcome the theoretical limits in nonlinear theories
over the reals, by choosing a desired precision δ. An SMT implementing such
procedures can return either unsat if the reachability problem is unsatisfiable or
δ-sat if the problem is satisfiable given the chosen precision. The δ-sat verdict
does not guarantee that the dynamics of the system will reach a particular region.
It may happens that by increasing the precision the problem would result unsat.
In general the limit of this approach is that it does not provide as a result a
complete and comprehensive description of the reachability set.

Bounded Time Flowpipe Computation [1,3–5,25,32]. The common technique
to compute a bounded flowpipe is based on interval method or Taylor model.
Interval-based approach is quite efficient even for high dimensional systems [29],
but it suffers the wrapping effect of intervals and can quickly accumulate over-
approximation errors. In contrast, the Taylor-model-based approach is more pre-
cise in that it uses a vector of polynomials plus a vector of small intervals to sym-
bolically represent the flowpipe. However, for the purpose of safety verification
or reachability analysis, the Taylor model has to be further over-approximated
by intervals, which may bring back the wrapping effect. In particular, the wrap-
ping effect can explode easily when the flowpipe segment over a time interval
is stretched drastically due to a large difference in speed between individual
trajectories. This case is demonstrated by the following example.

Example 1 (Running example). Consider the 2D system [30] described by ẋ = y
and ẏ = x2. Let the initial set X0 be a line segment x ∈ [1.0, 1.0] and y ∈
[−1.05,−0.95], Fig. 1a shows the simulation result on three points in X0 over
time interval [0, 6.6]. The reachable set at t = 6.6 s is a smooth curve connecting
the end points of the three trajectories. As can be seen, the trajectory originating
from the top is left far behind the one originating from the bottom, which means
that the tiny initial line segment is being stretched into a huge curve very quickly,

Reachable Set Over-Approximation for Nonlinear Systems 451

Fig. 1. (a) Simulation for Example 1 showing flowpipe segment being extremely
stretched and deformed, (b) Interval over-approximation of the Taylor model com-
puted by Flow* [3].

while the width of the flowpipe is actually converging to 0. As a result, the
interval over-approximation of this huge curve can be extremely conservative
even if its Taylor model representation is precise, and reducing the time step
size is not helpful. To prove this point, we computed with Flow* [3] a Taylor
model series for the time horizon of 6.6 s which consists of 13200 Taylor models.
Figure 1b shows the interval approximation of the Taylor model series, which
apparently starts exploding.

In this paper, we propose to use piecewise barrier tubes (PBTs) to over-
approximate flowpipes of polynomial nonlinear systems, which can avoid the
issue caused by the excessive stretching of a flowpipe segment. The idea of PBT
is inspired from barrier certificate [22,33]. A barrier certificate B(x) is a real-
valued function such that (1) B(x) ≥ 0 for all x in the initial set X0 ; (2)
B(x) < 0 for all x in the unsafe set XU ; (3) no trajectory can escape from
{x ∈ R

n | B(x) ≥ 0} through the boundary {x ∈ R
n | B(x) = 0}. A sufficient

condition for this constraint is that the Lie derivative of B(x) w.r.t the dynamics
ẋ = f is positive all over the invariant region, i.e., Lf B(x) > 0, which means
that all the trajectories must move in the increasing direction of the level sets
of B(x).

Barrier certificates can be used to verify safety properties without computing
the flowpipe explicitly. The essential idea is to use the zero level set of B(x) as
a barrier to separate the flowpipe from the unsafe set. Moreover, if the unsafe
set is very close to the boundary of the flowpipe, the barrier has to fit the shape
of the flowpipe to make sure that all components of the constraint are satisfied.
However, the zero level set of a polynomial of fixed degree may not have the
power to mimic the shape of the flowpipe, which means that there may exist no
solution for the above constraints even if the system is safe. This problem might
be addressed using piecewise barrier certificate, i.e., cutting the flowpipe into
small pieces so that every piece is straight enough to have a barrier certificate
of simple form. Unfortunately, this is infeasible because we know nothing about
the flowpipe locally. Therefore, we have to find another way to proceed.

Instead of computing a single barrier certificate, we propose to compute bar-
rier tubes to piecewise over-approximate the flowpipe. Concretely, in the begin-

452 H. Kong et al.

ning, we first construct a containing box, called enclosure, for the initial set
using interval approach [29] and simulation, then, using linear programming, we
compute a group of barrier functions which work together to form a tight tube
(called barrier tube) around the flowpipe. Similarly, taking the intersection of
the barrier tube and the boundary of the box as the new initial set, we repeat
the previous operations to obtain successive barrier tubes step by step. The key
point here is how to compute a group of tightly enclosing barriers around the
flowpipe without a constraint on the unsafe set inside the box. Our basic idea
is to construct a group of auxiliary state sets U around the flowpipe and then,
for each Ui ∈ U , we compute a barrier certificate between Ui and the flowpipe.
If a barrier certificate is found, we expand Ui towards the flowpipe iteratively
until no more barrier certificate can be found; otherwise, we shrink Ui away
from the flowpipe until a barrier certificate is found. Since the auxiliary sets
are distributed around the flowpipe, so is the barrier tube. The benefit of such
piecewise barrier tubes is that they are time independent, and hence can avoid
the issue of stretched flowpipe segments caused by speed differences between
trajectories. Moreover, usually a small number of BTs can form a tight over-
approximation of the flowpipe, which means that less computation is needed to
decide the intersection of PBT and the unsafe set.
The main contributions of this paper are as follows:

1. We transform the constraint-solving problem for barrier certificates into a
linear programming problem using Handelman representation [15];

2. We introduce PBT to over-approximate the flowpipe of nonlinear systems,
thus dealing with flowpipes independent of time and hence avoiding the error
explosion caused by stretched flowpipe segments;

3. We implement a prototype in C++ to compute PTB automatically and we
show the effectiveness of our approach by providing a comparison with the
state-of-the-art tools for reachability analysis of polynomial nonlinear systems
such as CORA [1] and Flow* [3].

The paper is organized as follows. Section 2 is devoted to the preliminaries.
Section 3 shows how to compute barrier certificates using Handelman represen-
tation, while in Sect. 4 we present a method to compute Piecewise Barrier Tubes.
Section 5 provides our experimental results and we conclude in Sect. 6.

2 Preliminaries

In this section, we recall some concepts used throughout the paper. We first
clarify some notation conventions. If not specified otherwise, we use boldface
lower case letters to denote vectors, we use R for the real number field and
N for the set of natural numbers, and we consider multivariate polynomials in
R[x], where the components of x act as indeterminates. In addition, for all the
polynomials B(u,x), we denote by u the vector composed of all the ui and
denote by x the vector composed of all the remaining variables xi that occur in

Reachable Set Over-Approximation for Nonlinear Systems 453

the polynomial. We use R≥0 and R>0 to denote the domain of nonnegative real
number and positive real number respectively.

Let P ⊆ R
n be a convex and compact polyhedron with non-empty interior,

bounded by linear polynomials p1, · · · , pm ∈ R[x]. Without lose of generality,
we may assume P = {x ∈ R

n | pi(x) ≥ 0, i = 1, · · · ,m}.
Next, we present the notation of the Lie derivative, which is widely used in

the discipline of differential geometry. Let f : R
n → R

n be a continuous vector
field such that ẋi = fi(x) where ẋi is the time derivative of xi(t).

Definition 1 (Lie derivative). For a given polynomial p ∈ R[x] over x =
(x1, . . . , xn) and a continuous system ẋ = f , where f = (f1, . . . , fn), the Lie
derivative of p ∈ R[x] along f of order k is defined as follows.

Lk
f p

def
=

{
p, k = 0
∑n

i=1

∂Lk−1
f p

∂xi
· fi, k ≥ 1

Essentially, the k-th order Lie derivative of p is the k-th derivative of p w.r.t.
time, i.e., reflects the change of p over time. We write Lf p for L1

f p.
In this paper, we focus on semialgebraic nonlinear systems, which are defined

as follows.

Definition 2 (Semialgebraic system). A semialgebraic system is a triple

M
def
= 〈X,f ,X0 , I〉, where

1. X ⊆ R
n is the state space of the system M ,

2. f ∈ R[x]n is locally Lipschitz continuous vector function,
3. X0 ⊆ X is the initial set, which is semialgebraic [40],
4. I is the invariant of the system.

The local Lipschitz continuity guarantees the existence and uniqueness of
the differential equation ẋ = f locally. A trajectory of a semialgebraic system is
defined as follows.

Definition 3 (Trajectory). Given a semialgebraic system M , a trajectory
originating from a point x0 ∈ X0 to time T > 0 is a continuous and differentiable
function ζ(x0, t) : [0, T) → R

n such that (1) ζ(x0, 0) = x0 , and (2) ∀τ ∈ [0, T):
dζ
dt

∣
∣
t=τ

= f(ζ(x0, τ)). T is assumed to be within the maximal interval of existence
of the solution from x0.

For ease of readability, we also use ζ(t) for ζ(x0, t). In addition, we use
Flowf (X0) to denote the flowpipe of initial set X0 , i.e.,

Flowf (X0) def= {ζ(x0, t) | x0 ∈ X0 , t ∈ R≥, ζ̇ = f(ζ)} (1)

Definition 4 (Safety). Given an unsafe set XU ⊆ X, a semialgebraic system
M = 〈X,f ,X0 , I〉 is said to be safe if no trajectory ζ(x0, t) of M satisfies that
∃τ ∈ R≥0 : x(τ) ∈ XU , where x0 ∈ X0 .

454 H. Kong et al.

3 Computing Barrier Certificates

Given a semialgebraic system M , a barrier certificate is a real-valued function
B(x) such that (1) B(x) ≥ 0 for all x in the initial set; (2) B(x) < 0 for all x in
the unsafe set; (3) no trajectory can escape from the region of B(x) ≥ 0. Then,
the hyper-surface {x ∈ R

n | B(x) = 0} forms a barrier separating the flowpipe
from the unsafe set. To compute such a barrier certificate, the most common
approach is template based constraint solving, i.e., firstly figure out a sufficient
condition for the above condition and then, set up a template polynomial B(u,x)
of fixed degree, and finally solve the constraint on u derived from the sufficient
condition on B(u,x). There are a couple of sufficient conditions available for
this purpose [13,22,27]. In order to have an efficient constraint solving method,
we adopt the following condition [33].

Theorem 1. Given a semialgebraic system M , let X0 and U be the initial set
and the unsafe set respectively, the system is guaranteed to be safe if there exists
a real-valued function B(x) such that

∀x ∈ X0 : B(x) > 0 (2)
∀x ∈ I : LfB > 0 (3)
∀x ∈ XU : B(x) < 0 (4)

In Theorem 1, the condition (3) means that all the trajectories of the system
always point in the increasing direction of the level sets of B(x) in the region I.
Therefore, no trajectory starting from the initial set would cross the zero level
set. The benefit of this condition is that it can be solved more efficiently than
other existing conditions [13,22] although it is relatively conservative. The most
widely used approach is to transform the constraint-solving problem into a sum-
of-squares (SOS) programming problem [33], which can be solved in polynomial
time. However, a serious problem with SOS programming based approach is
that automatic generation of polynomial templates is very hard to perform. We
now show an example to demonstrate the reason. For simplicity, we assume that
the initial set, the unsafe set and the invariant are defined by the polynomial
inequalities X0 (x) ≥ 0, XU (x) ≥ 0 and I(x) ≥ 0 respectively, then the SOS
relaxation of Theorem 1 is that the following polynomials are all SOS

B(x) − μ1(x)X0 (x) + ε1 (5)
LfB − μ2(x)I(x) + ε2 (6)
− B(x) − μ3(x)XU (x) + ε3 (7)

where μi(x), i = 1, · · · , 3 are SOS polynomials as well and εi > 0, i = 1, · · · , 3.
Suppose the degrees of X0 (x), I(x) and XU (x) are all odd numbers. Then, the
degree of the template for B(x) must be an odd number too. The reason is that,
if deg(B) is an even number, in order for the first and third polynomials to be
SOS polynomials, deg(B) must be greater than both deg(μ3XU) and deg(μ1X0),
which are odd numbers. However, since the first and third condition contain B(x)

Reachable Set Over-Approximation for Nonlinear Systems 455

and −B(x) respectively, their leading monomials must have the opposite sign,
which means that they cannot be SOS polynomial simultaneously. Moreover, the
degrees of the templates for the auxiliary polynomials μ1(x), μ3(x) must also be
chosen properly so that deg(μ1X0) = deg(μ3XU) = deg(B), because only in this
way the leading monomials (which has an odd degree) of (5) and (7) have the
chance to be resolved so that the resultant polynomial can be a SOS . Similarly,
in order to make the second polynomial a SOS as well, one has to choose an
appropriate degree for μ2(x) according to the degree of LfB and I(x). As a
result, the tangled constraints on the relevant template polynomials reduce the
power of SOS programming significantly.

Due to the above reason, inspired by the work [38], we use Handelman repre-
sentation to relax Theorem 1. We assume that the initial set X0 , the unsafe set
XU and the invariant I are all convex and compact polyhedra, i.e., X0 = {x ∈
R

n | p1(x) ≥ 0, · · · , pm1(x) ≥ 0}, I = {x ∈ R
n | q1(x) ≥ 0, · · · , qm2(x) ≥ 0}

and XU = {x ∈ R
n | r1(x) ≥ 0, · · · , rm3(x) ≥ 0}, where pi(x), qj(x), rk(x) are

linear polynomials. Then, we have the following theorem.

Theorem 2. Given a semialgebraic system M , let X0 , XU and I be defined as
above, the system is guaranteed to be safe if there exists a real-valued polynomial
function B(x) such that

B(x) ≡
∑

|α |≤M1

λαpα1
1 · · · pαm1

m1 + ε1 (8)

LfB ≡
∑

|β |≤M2

λβqβ1
1 · · · qβm2

m2 + ε2 (9)

−B(x) ≡
∑

|γ |≤M3

λγ rγ1
1 · · · rγm3

m3 + ε3 (10)

where λα , λβ , λγ ∈ R≥0, εi ∈ R>0 and Mi ∈ N, i = 1, · · · , 3.

Theorem 2 provides us with an alternative to SOS programming to find
barrier certificate B(x) by transforming it into a linear programming problem.
The basic idea is that we first set up a template B(u,x) of fixed degree as well as
the appropriate Mi, i = 1, · · · , 3 that make the both sides of the three identities
(8)–(10) have the same degree. Since (8)–(10) are identities, the coefficients of
the corresponding monomials on both sides must be identical as well. Thus,
we derive a system S of linear equations and inequalities over u, λα , λβ , λγ .
Now, finding a barrier certificate is just to find a feasible solution for S, which
can be solved by linear programming. Compared to SOS programming based
approach, this approach is more flexible in choosing the polynomial template as
well as other parameters. We consider now a linear system to show how it works.

Example 2. Given a 2D system defined by ẋ = 2x + 3y, ẏ = −4x + 2y, let
X0 = {(x, y) ∈ R

2 | p1 = x + 100 ≥ 0, p2 = −90 − x ≥ 0, p3 = y + 45 ≥ 0, p4 =
−40 − y ≥ 0}, I = {(x, y) ∈ R

2 | q1 = x + 110 ≥ 0, q2 = −80 − x ≥ 0, q3 =
y + 45 ≥ 0, q4 = −20 − y ≥ 0} and XU = {(x, y) ∈ R

2 | r1 = x + 98 ≥ 0, r2 =

456 H. Kong et al.

Fig. 2. (a) Linear barrier certificate (straight red line) for Example 2. Rectangle in
green: initial set, rectangle in red: unsafe set. (b) PBT for the running Example 5,
consisting of 45 BTs. (c) Enclosure (before bloating) for flowpipe of Example 3 (green
shadow region). (d) Enclosure (after bloating) for flowpipe of Example 3. (Color figure
online)

−90−x ≥ 0, r3 = y+24 ≥ 0, r4 = −20−y ≥ 0}. Assume B(u,x) = u1+u2x+u3y,
Mi = εi = 1 for i = 1, · · · , 3, then we obtain the following polynomial identities
according to Theorem 2

u1 + u2x + u3y −
4∑

i=1

λ1ipi − ε1 ≡ 0

u2(2x + 3y) + u3(−4x + 2y) −
4∑

j=1

λ2jqj − ε2 ≡ 0

− (u1 + u2x + u3y) −
4∑

k=1

λ3krk − ε3 ≡ 0

where λij ≥ 0 for i = 1, · · · , 3, j = 1, · · · , 4. By collecting the coefficients of x, y
in the above polynomials, we obtain a system S of linear polynomial equations
and inequalities over ui, λjk. By solving S using linear programming, we obtain
a feasible solution and Fig. 2a shows the computed linear barrier certificate.
Note that, for the aforementioned reason, it is impossible to find a linear barrier
certificate using SOS programming for this example.

4 Piecewise Barrier Tubes

In this section, we introduce how to construct PBTs for nonlinear polynomial
systems. The basic idea of constructing PBT is that, for each segment of the
flowpipe, an enclosure box is first constructed and then, a BT is constructed to
form a tighter over-approximation for the flowpipe segment inside the box.

4.1 Constructing an Enclosure Box

Given an initial set, the first task is to construct an enclosure box for the initial
set and the following segment of the flowpipe. As pointed out in Sect. 1, one

Reachable Set Over-Approximation for Nonlinear Systems 457

principle to construct an enclosure box is to simplify the shape of the flowpipe
segment, or in other words, to approximately bound the twisting of trajectories
by some θ in the box, where the twisting of a trajectory is defined as follows.

Definition 5 (Twisting of a trajectory). Let M be a continuous system and
ζ(t) be a trajectory of M . Then, ζ(t) is said to have a twisting of θ on the
time interval I = [T1, T2], written as ξI(ζ), if it satisfies that ξI(ζ) = θ, where

ξI(ζ)
def
= supt1,t2∈I arccos

(
〈ζ̇(t1), ζ̇(t2)〉

‖ζ(t1)‖‖ζ(t2)‖

)

.

The basic idea to construct an enclosure box is depicted in Algorithm 1.

Algorithm 1. Algorithm to construct an enclosure box
input : M : dynamics of the system; n: dimension of system; X0 : initial set

θ1: twisting of simulation; d: maximum distance of simulation;
output: E: an enclosure box containing X0 ; P: plane where flowpipe exits ;
G: range of intersection of Flowf (X0) with plane P by simulation

1 sample a set S0 of points from X0 ;
2 select a point x0 ∈ S0;
3 find a time step size ΔT0 by (θ, d)-bounded simulation for x0;
4 ΔT ←− ΔT0;
5 while ΔT > ε do
6 [found, E] ←− find an enclosure box by interval arithmetic using ΔT ;
7 if found then
8 do a simulation for all xi ∈ S0, select the plane P which intersects with

the most of simulations; generate G;
9 bloat E s.t Flowf (X0) gets out of E only through the facet in P;

10 break;

11 else
12 ΔT ←− 1/2 ∗ ΔT ;

Remark 1. In Algorithm 1, we use interval arithmetic [29] and simulation to
construct an enclosure box E for a given initial set and its following flowpipe
segment. Meanwhile, we obtain a coarse range of the intersection of the flowpipe
and the boundary of the enclosure, which helps to accelerate the construction of
barrier tube. To be simple, the enclosure is constructed in a way such that the
flowpipe gets out of the box through a single facet. Given an initial set X0 , we
first sample a set S0 of points from X0 for simulation. Then, we select a point
x0 from S0 and do (θ, d)-simulation on x0 to obtain a time step ΔT . A (θ, d)-
simulation is a simulation that stops either when the twisting of the simulation
reaches θ or when the distance between x0 and the end point reaches d. On the
one hand, by using a small θ, we aim to achieve a straight flowpipe segment.
On the other hand, by specifying a maximal distance d, we make sure that the

458 H. Kong et al.

simulation can stop for a long and straight flowpipe. At each iteration of the while
loop in line 5, we first try to construct an enclosure box by interval arithmetic
over ΔT . If such an enclosure box is created, we then perform a simulation (see
line 8) for all the points in S0 to find out the plane P of facet which intersects
with the most of the simulations. The idea behind line 9 is that in order to better
over-approximate the intersection of the flowpipe with the boundary of the box
using intervals, we push the other planes outwards to make P the only plane
where the flowpipe get out of the box. Certainly, simply by simulation we cannot
guarantee that the flowpipe does not intersect the other facets. Therefore, we
have the following theorem for the decision.

Theorem 3. Given a semialgebraic system M and an initial set X0 , a box E
is an enclosure of X0 and Fi is a facet of E. Then, (Flowf (X0) ∩ E) ∩ Fi = ∅
if there exists a barrier certificate Bi(x) for X0 and Fi inside E.

Remark 2. According to the definition of barrier certificate, the proof of The-
orem 3 is straightforward, which is ignored here. Therefore, to make sure that
the flowpipe does not intersect the facet Fi, we only need to find a barrier cer-
tificate, which can be done using the approach presented in Sect. 3. Moreover, if
no barrier certificate can be found, we further bloat the facet. Next, we still use
the running Example 1 to demonstrate the process of constructing an enclosure.

Example 3 (running example). Consider the system in Example 1 and the initial
set x = 1.0,−1.05 ≤ y ≤ −0.95, let the bounding twisting of simulation be θ =
π/18, then the time step size we computed for interval evaluation is ΔT = 0.2947.
The corresponding enclosure computed by interval arithmetic is shown in Fig. 2c.
Furthermore, by simulation, we know that the flowpipe can reach both left facet
and top facet. Therefore, we have two options to bloat the facet: bloat the left
facet to make the flowpipe intersects the top facet only or bloat the top facet
to make the flowpipe intersects left facet only. In this example, we choose the
latter option and the bloated enclosure is shown in Fig. 2d. In this way, we can
over-approximate the intersection of the flowpipe and the facet by intervals if we
can obtain its boundary on every side. This can be achieved by finding barrier
tube.

4.2 Compute a Barrier Tube Inside a Box

An important fact about the flowpipe of continuous system is that it tends to
be straight if it is short enough, given that the initial set is straight as well
(otherwise, we can split it). Suppose there is a small box E around a straight
flowpipe, it will be easy to compute a barrier certificate for a given initial set
and unsafe set inside E. A barrier tube for the flowpipe in E is a group of barrier
certificates which form a tube around a flowpipe inside E. Formally,

Definition 6 (Barrier Tube). Given a semialgebraic system M , a box E and
an initial set X0 ⊆ E, a barrier tube is a set of real-valued functions BT =
{Bi(x), i = 1, · · · ,m} such that for all Bi(x) ∈ BT : (1) ∀x ∈ X0 : Bi(x) > 0
and, (2) ∀x ∈ E : LfBi > 0.

Reachable Set Over-Approximation for Nonlinear Systems 459

According to Definition 6, a barrier tube BT is defined by a set of real-valued
functions and every function inequality Bi(x) > 0 is an invariant of M in E and
so do their conjunction. The property of a barrier tube BT is formally described
in the following theorem.

Theorem 4. Given a semialgebraic system M , a box E and an initial set X0 ⊆
E, let BT = {Bi(x) : i = 1, · · · ,m} be a barrier tube of M and Ω = {x ∈ R

n |∧
Bi(x) > 0, Bi ∈ BT}, then Flowf (X0) ∩ E ⊆ Ω ∩ E.

Remark 3. Theorem 4 states that an arbitrary barrier tube is able to form an
over-approximation for the reach pipe in the box E. Compared to a single barrier
certificate, multiple barrier certificates could over-approximate the flowpipe more
precisely. However, since there is no constraint on unsafe sets in Definition 6,
a barrier tube satisfying the definition could be very conservative. In order to
obtain an accurate approximation for the flowpipe, we choose to create additional
auxiliary constraints.

Auxiliary Unsafe Set (AUS). To obtain an accurate barrier tube, there are
two main questions to be answered: (1) How many barrier certificates are needed?
and (2) How do we control their positions to make the tube well-shaped to better
over-approximate the flowpipe? The answer for the first question is quite simple:
the more, the better. This will be explained later on. For the second question,
the answer is to construct a group of properly distributed auxiliary state sets
(AUSs). Each set of the AUSs is used as an unsafe set Ui for the system and
then we compute a barrier certificate Bi for Ui according to Theorem 2. Since
the zero level set of Bi serves as a barrier between the flowpipe and Ui, the
space where a barrier could appear is fully determined by the position of Ui.
Roughly speaking, when Ui is far away from the flowpipe, the space for a barrier
to exist is wide as well. Correspondingly, the barrier certificate found would
usually locate far away from the flowpipe as well. Certainly, as Ui gets closer to
the flowpipe, the space for barrier certificates also contracts towards the flowpipe
accordingly. Therefore, by expanding Ui towards the flowpipe, we can get more
precise over-approximations for the flowpipe.

Why Multiple AUS? Although the accuracy of the barrier certificate over-
approximation can be improved by expanding the AUS towards the flowpipe,
the capability of a single barrier certificate is very limited because it can erect a
barrier which only matches a single profile of the flow pipe. However, if we have
a set U of AUSs which are distributed evenly around the flowpipe and there is a
barrier certificate Bi for each Ui ∈ U , these barrier certificates would be able to
over-approximate the flowpipe from a number of profiles. Therefore, increasing
the number of AUSs can increase the quality of the over-approximation as well.
Furthermore, if all these auxiliary sets are connected, all the barriers would form
a tube surrounding the flowpipe. Therefore, if we can create a series of boxes
piecewise covering the flowpipe and then construct a barrier tube for every piece
of the flowpipe, we obtain an over-approximation for the flowpipe by PBT.

Based on the above idea, we provide Algorithm 2 to compute barrier tube.

460 H. Kong et al.

Algorithm 2. Algorithm to compute barrier tube
input : M : dynamics of the system; X0 : Initial set;

E: interval enclosure of initial set;
G: interval approx. of (∂E ∩ Flowf (X0)) by simulation;
P: plane where flowpipe exits from box;
D: candidate degree list for template polynomial;
ε: difference in size between AUS (auxiliary unsafe set)

output: BT: barrier tube; X ′
0: interval over-approximation of (BT ∩ E)

1 foreach Gij: an facet of G do
2 found ←− false ;
3 foreach d ∈ D do
4 AUS ←− CreateAUS(G, P, Gij);
5 while true do
6 [found, Bij] ←− ComputeBarrierCert(X0 , E, AUS, d) ;
7 if found then AUS′ ←− Expand (AUS);
8 else AUS′ ←− Contract (AUS) ;
9 if Diff(AUS′, AUS) ≤ ε then break;

10 else AUS’ ←− AUS;

11 if found then BT ←− Push(BT, Bij); break;
12 else return FAIL;

13 return SUCCEED;

Remark 4. In Algorithm 2, for an n-dimensional flowpipe segment, we aim to
build a barrier tube composed of 2(n − 1) barrier certificates, which means we
need to construct 2(n − 1) AUSs. According to Algorithm 1, we know that the
plane P is the only exit of the flowpipe from the enclosure E and G is roughly
the region where they intersect. Let FG be the facet of E that contains G, then
for every facet FG

ij of FG, we can take an (n− 1)-dimensional rectangle between
FG

ij and Gij as an AUS, where Gij is the facet of G adjacent to F ij
G . Therefore,

enumerating all the facets of G in line 1 would produce 2(n − 1) positions for
AUS. The loop in line 3 is attempting to find a polynomial barrier certificate
of different degrees in D. In the while loop 5, we iteratively compute the best
barrier certificate by adjusting the width of AUS through binary search until
the difference in width between two successive AUSs is less than the specified
threshold ε.

Example 4 (Running example). Consider the initial set and the enclosure com-
puted in Example 3, we use Algorithm 2 to compute a barrier tube. The ini-
tial set is X0 = [1.0, 1.0] × [−1.05,−0.95] and the enclosure of X0 is E =
[0.84, 1.01] × [−1.1,−0.75], G = [0.84, 0.84] × [−0.91,−0.80], the plane P is
x = 0.84, D = {2} and ε = 0.001. The barrier tube consists of two barrier
certificates. As shown in Fig. 3, each of the barrier certificates is derived from
an AUS (red line segment) which is located respectively on the bottom-left and
top-left boundary of E.

Reachable Set Over-Approximation for Nonlinear Systems 461

Fig. 3. Computing process of BT for Example 4. Blue line segment: initial set, red line
segment: AUS. Figure a–l show how intermediate barrier certificates changed with the
width of the AUSs and Fig. l shows the final BT (shadow region in green). (Color figure
online)

4.3 Compute Piecewise Barrier Tube

During the computation of a barrier tube by Algorithm 2, we create a series
of AUSs around the flowpipe, which build up a rectangular enclosure for the
intersection of the flowpipe and the facet of the enclosure box. As a result, such
a rectangular enclosure can be taken as an initial set for the following flowpipe
segment and then Algorithm 2 can be applied repeatedly to compute a PBT.
The basic procedure to compute PBT is presented in Algorithm 3.

Remark 5. In Algorithm 3, initially a box that contains the initial set X0 is
constructed using Algorithm 1. The loop in line 2 consists of 3 major parts: (1)
In lines 3–6, a barrier tube BT is firstly computed using Algorithm 2. The while
loop keeps shrinking the box until a barrier tube is found; (2) In line 8, the initial
set X0 is updated for the next box; (3) In line 9, a new box is constructed to
contain X0 and the process is repeated.

Example 5 (Running example). Let us consider again the running example. We
set the length of PBT to 45 and the PBT we obtained is shown in Fig. 2b.
Compared to the interval over-approximation of the Taylor model obtained using
Flow*, the computed PBT consists of a significantly reduced number of segments
and is more precise for the absence of stretching.

Safety Verification Based on PBT. The idea of safety verification based on
PBT is straightforward. Given an unsafe set XU , for each intermediate initial set
X0 and the corresponding enclosure box E, we first check whether XU ∩ E = ∅.
If not empty, we would further find a barrier certificate between XU and the
flowpipe of X0 inside E. If empty or barrier found, we continue to compute

462 H. Kong et al.

Algorithm 3. Algorithm to compute PBT
input : M : dynamics of the system; X0 : Initial set;

N : length of piecewise barrier tube
output: PBT: piecewise barrier tube

1 E ← construct an initial box containing X0 ;
2 for i ← 1 to N do
3 [Found, BT] ← findBarrierTube (E,X0) ;
4 while not Found do
5 E ← Shrink (E) ;
6 [Found, BT] ← findBarrierTube (E,X0) ;

7 if Found then
8 X0 ← OverApprox(BT ∩ Facet(E)) ;
9 E ← construct the next box containing X0 ;

Table 1. Model definitions

Model Dynamics Initial set X0 Time horizon (TH)

Controller 2D ẋ = xy + y3 + 2 x ∈ [29.9, 30.1] 0.0125

ẏ = x2 + 2x − 3y y ∈ [−38, −36]

Van der Pol ẋ = y x ∈ [1, 1.5] 6.74

Oscillator ẏ = y − x − x2y y ∈ [2.0, 2.45]

Lotka-Volterra ẋ = x(1.5 − y) x ∈ [4.5, 5.2] 3.2

ẏ = −y(3 − x) y ∈ [1.8, 2.2]

ẋ = 10(y − x) x ∈ [1.79, 1.81] 0.51

Controller 3D ẏ = x3 y ∈ [1.0, 1.1]

ż = xy − 2.667z y ∈ [0.5, 0.6]

longer PBT. The refinement of PBT computation can be achieved by using
smaller E and higher d for template polynomial.

5 Implementation and Experiments

We have implemented the proposed approach as a C++ prototype called Piece-
wise Barrier Tube Solver (PBTS), choosing Gurobi [12] as our internal linear
programming solver. We have also performed some experiments on a benchmark
of four nonlinear polynomial dynamical systems (described in Table 1) to com-
pare the efficiency and the effectiveness of our approach w.r.t. other tools. Our
experiments were performed on a desktop computer with a 3.6 GHz Intel Core
i7-7700 8 Core CPU and 32 GB memory. The results are presented in Table 2.

Remark 6. There are a number of outstanding tools for flowpipe computation
[1,3–5]. Since our approach is to perform flowpipe computation for polynomial

Reachable Set Over-Approximation for Nonlinear Systems 463

Table 2. Tool Comparison on Nonlinear Systems. #var: number of variables; T: com-
puting time; NFS: number of flowpipe segments; DEG: candidate degrees for tem-
plate polynomial (only for PBTS); TH: time horizon for flowpipe (only for Flow* and
CORA). FAIL: failed to terminate under 30min.

PBTS Flow* CORA

Model #var T NFS DEG TH T NFS T NFS

Controller 2D 2 5.62 46 2 0.0125 22.17 6250 FAIL -

Van der Pol 2 13.38 110 2,3 6.74 15.28 337 212.51 12523

Lotka-Volterra 2 6.65 30 3,4 3.2 10.59 3200 35.84 2903

Controller 3D 3 83.65 15 4 0.51 11.61 5100 65.18 6767

nonlinear systems, we pick two of the most relevant state-of-the-art tools for
comparison: CORA [1] and Flow* [3]. Note that a big difference between our
approach and the other two approaches is that PBTS is time-independent, which
means that we cannot compare PBTS with CORA or Flow* over the exactly
same time horizon. To be fair enough, for Flow* and CORA, we have used
the same time horizon for the flowpipe computation, while we have computed
a slightly longer flowpipe using PBTS. To guide the reader, we have also used
different plotting colors to visualize the difference between the flowpipes obtained
from the three different tools.

Evaluation. As pointed out in Sect. 1, a common problem with the bounded-
time integration based approaches is that the flowpipe segment of a dynamics sys-
tem can be extremely stretched with time so that the interval over-approximation
of the flowpipe segment is very conservative and usually the solver has to stop
prematurely due to the error explosion. This fact can be found easily from the
figures Fig. 4, 5, 6 and 7. In particular, for Controller 2D, Flow* can give quite
nice result in the beginning but started producing an exploding flowpipe very
quickly (Note that Flow* offers options to produce better plotting which how-
ever is expensive and was not used for safety verification. CORA even failed to
give a result after over 30 min of running). This phenomenon reappeared with
both Flow* and CORA for Controller 3D. Notice that most of the time horizons
used in the experiment are basically the time limits that Flow* and CORA can
reach, i.e., a slightly larger value for the time horizon would cause the solvers to
fail. In comparison, our tool has no such problem and can survive a much longer
flowpipe before exploding or even without exploding as shown in Fig. 4a.

Another important factor of the approaches is the efficiency. As is shown in
Table 2, our approach is more efficient on the first three examples but slower on
the last example than the other two tools. The reason for this phenomenon is
that the degree d of the template polynomial used in the last example is higher
than the others and increasing d led to an increase in the number of decision
variables in the linear constraint. This suggests that using smaller d on shorter
flowpipe segment would be better. In addition, we can also see in Table 2 that
the number of the flowpipe segments produced by PBTS is much fewer than that

464 H. Kong et al.

Fig. 4. Flowpipe for Controller 2D.

Fig. 5. Flowpipe for Van der Pol Oscillator.

Fig. 6. Flowpipe for Lotka-Volterra.

Fig. 7. Flowpipe (projection) for Controller 3D.

produced by Flow* and CORA. In this respect, PBTS would be more efficient
on safety verification.

6 Conclusion

We have presented PBTS, a novel approach to over-approximate flowpipes of
nonlinear systems with polynomial dynamics. The benefit of using BTs is that
they are time-independent and hence cannot be stretched or deformed by time.

Reachable Set Over-Approximation for Nonlinear Systems 465

Moreover, this approach only results in a small number of BTs which are suf-
ficient to form a tight over-approximation for the flowpipe, hence the safety
verification with PBT can be very efficient.

References

1. Althoff, M., Grebenyuk, D.: Implementation of interval arithmetic in CORA 2016.
In: Proceedings of ARCH@CPSWeek 2016: The 3rd International Workshop on
Applied Verification for Continuous and Hybrid Systems, EPiC Series in Comput-
ing, vol. 43, pp. 91–105. EasyChair (2017)

2. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of non-
linear systems. Acta Inform. 43(7), 451–476 (2007)

3. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

4. Dang, T., Le Guernic, C., Maler, O.: Computing reachable states for nonlinear bio-
logical models. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp.
126–141. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03845-
7 9

5. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool
for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 68–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 5

6. Fränzle, M., Herde, C.: HySAT: an efficient proof engine for bounded model check-
ing of hybrid systems. Form. Methods Syst. Des. 30(3), 179–198 (2007)

7. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure.
JSAT 1(3–4), 209–236 (2007)

8. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

9. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005). https://doi.org/10.1007/978-3-540-31954-2 19

10. Girard, A., Le Guernic, C.: Efficient reachability analysis for linear systems using
support functions. In: Proceedings of IFAC World Congress, vol. 41, no. 2, pp.
8966–8971 (2008)

11. Grosu, R., et al.: From cardiac cells to genetic regulatory networks. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 31

12. Gu, Z., Rothberg, E., Bixby, R.: Gurobi optimizer reference manual (2017). http://
www.gurobi.com/documentation/7.5/refman/refman.html

13. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190–203. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1 18

14. Gurung, A., Ray, R., Bartocci, E., Bogomolov, S., Grosu, R.: Parallel reachability
analysis of hybrid systems in xspeed. Int. J. Softw. Tools Technol. Transf. (2018)

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-03845-7_9
https://doi.org/10.1007/978-3-642-03845-7_9
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1007/978-3-642-22110-1_31
http://www.gurobi.com/documentation/7.5/refman/refman.html
http://www.gurobi.com/documentation/7.5/refman/refman.html
https://doi.org/10.1007/978-3-540-70545-1_18

466 H. Kong et al.

15. Handelman, D.: Representing polynomials by positive linear functions on compact
convex polyhedra. Pac. J. Math. 132(1), 35–62 (1988)

16. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

17. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of IEEE Sym-
posium on Logic in Computer Science, pp. 278–292 (1996)

18. Huang, Z., Fan, C., Mereacre, A., Mitra, S., Kwiatkowska, M.: Invariant verification
of nonlinear hybrid automata networks of cardiac cells. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 373–390. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 25

19. Jiang, Y., Yang, Y., Liu, H., Kong, H., Gu, M., Sun, J., Sha, L.: From state-
flow simulation to verified implementation: a verification approach and a real-time
train controller design. In: 2016 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pp. 1–11. IEEE (2016)

20. Jiang, Y., Zhang, H., Li, Z., Deng, Y., Song, X., Ming, G., Sun, J.: Design and
optimization of multiclocked embedded systems using formal techniques. IEEE
Trans. Ind. Electron. 62(2), 1270–1278 (2015)

21. Kong, H., Bogomolov, S., Schilling, C., Jiang, Y., Henzinger, T.A.: Safety verifi-
cation of nonlinear hybrid systems based on invariant clusters. In: Proceedings of
HSCC 2017: The 20th International Conference on Hybrid Systems: Computation
and Control, pp. 163–172. ACM (2017)

22. Kong, H., He, F., Song, X., Hung, W.N.N., Gu, M.: Exponential-condition-based
barrier certificate generation for safety verification of hybrid systems. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 242–257. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 17

23. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 15

24. Krilavicius, T.: Hybrid techniques for hybrid systems. Ph.D. thesis, University of
Twente, Enschede, Netherlands (2006)

25. Lal, R., Prabhakar, P.: Bounded error flowpipe computation of parameterized lin-
ear systems. In: Proceedings of EMSOFT 2015: The International Conference on
Embedded Software, pp. 237–246. IEEE (2015)

26. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support
functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
540–554. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-
4 40

27. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. In: Proceedings of EMSOFT 2011: The 11th International
Conference on Embedded Software, pp. 97–106. ACM (2011)

28. Matringe, N., Moura, A.V., Rebiha, R.: Generating invariants for non-linear hybrid
systems by linear algebraic methods. In: Cousot, R., Martel, M. (eds.) SAS 2010.
LNCS, vol. 6337, pp. 373–389. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15769-1 23

29. Nedialkov, N.S.: Interval tools for ODEs and DAEs. In: Proceedings of SCAN 2006:
The 12th GAMM - IMACS International Symposium on Scientific Computing,
Computer Arithmetic and Validated Numerics, p. 4. IEEE (2006)

30. Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration of
ODEs. SIAM J. Numer. Anal. 45(1), 236–262 (2007)

https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-319-08867-9_25
https://doi.org/10.1007/978-3-319-08867-9_25
https://doi.org/10.1007/978-3-642-39799-8_17
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/978-3-642-15769-1_23
https://doi.org/10.1007/978-3-642-15769-1_23

Reachable Set Over-Approximation for Nonlinear Systems 467

31. Prabhakar, P., Soto, M.G.: Hybridization for stability analysis of switched linear
systems. In: Proceedings of HSCC 2016: The 19th International Conference on
Hybrid Systems: Computation and Control, pp. 71–80. ACM (2016)

32. Prabhakar, P., Viswanathan, M.: A dynamic algorithm for approximate flow com-
putations. In: Proceedings of HSSC 2011: The 14th International Conference on
Hybrid Systems: Computation and Control, pp. 133–142. ACM (2011)

33. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 32

34. Ray, R., et al.: XSpeed: accelerating reachability analysis on multi-core processors.
In: Piterman, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 3–18. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-26287-1 1

35. Roohi, N., Prabhakar, P., Viswanathan, M.: Hybridization based CEGAR for
hybrid automata with affine dynamics. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 752–769. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 48

36. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using
ideal fixed points. In: Proceedings of HSCC 2010: The 13th ACM International
Conference on Hybrid Systems: Computation and Control, pp. 221–230. ACM
(2010)

37. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid
systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–
554. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 36

38. Sankaranarayanan, S., Chen, X., et al.: Lyapunov function synthesis using handel-
man representations. In: IFAC Proceedings Volumes, vol. 46, no. 23, pp. 576–581
(2013)

39. Sogokon, A., Ghorbal, K., Jackson, P.B., Platzer, A.: A method for invariant gener-
ation for polynomial continuous systems. In: Jobstmann, B., Leino, K.R.M. (eds.)
VMCAI 2016. LNCS, vol. 9583, pp. 268–288. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49122-5 13

40. Stengle, G.: A nullstellensatz and a positivstellensatz in semialgebraic geometry.
Math. Ann. 207(2), 87–97 (1974)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-24743-2_32
https://doi.org/10.1007/978-3-319-26287-1_1
https://doi.org/10.1007/978-3-662-49674-9_48
https://doi.org/10.1007/978-3-662-49674-9_48
https://doi.org/10.1007/978-3-540-24743-2_36
https://doi.org/10.1007/978-3-662-49122-5_13
https://doi.org/10.1007/978-3-662-49122-5_13
http://creativecommons.org/licenses/by/4.0/

Space-Time Interpolants

Goran Frehse1, Mirco Giacobbe2(B), and Thomas A. Henzinger2

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, Grenoble, France
2 IST Austria, Klosterneuburg, Austria

mgiacobbe@ist.ac.at

Abstract. Reachability analysis is difficult for hybrid automata with
affine differential equations, because the reach set needs to be approxi-
mated. Promising abstraction techniques usually employ interval meth-
ods or template polyhedra. Interval methods account for dense time and
guarantee soundness, and there are interval-based tools that overapprox-
imate affine flowpipes. But interval methods impose bounded and rigid
shapes, which make refinement expensive and fixpoint detection difficult.
Template polyhedra, on the other hand, can be adapted flexibly and can
be unbounded, but sound template refinement for unbounded reacha-
bility analysis has been implemented only for systems with piecewise
constant dynamics. We capitalize on the advantages of both techniques,
combining interval arithmetic and template polyhedra, using the former
to abstract time and the latter to abstract space. During a CEGAR
loop, whenever a spurious error trajectory is found, we compute addi-
tional space constraints and split time intervals, and use these space-time
interpolants to eliminate the counterexample. Space-time interpolation
offers a lazy, flexible framework for increasing precision while guarantee-
ing soundness, both for error avoidance and fixpoint detection. To the
best of out knowledge, this is the first abstraction refinement scheme for
the reachability analysis over unbounded and dense time of affine hybrid
systems, which is both sound and automatic. We demonstrate the effec-
tiveness of our algorithm with several benchmark examples, which cannot
be handled by other tools.

1 Introduction

Formal verification techniques can be used to either provide rigorous guarantees
about the behaviors of a critical system, or detect instances of violating behavior
if such behaviors are possible. Formal verification has become widely used in the
design of software and digital hardware, but has yet to show a similar success for
physical and cyber-physical systems. One of the reasons for this is a scarcity of
suitable algorithmic verification tools, such as model checkers, which are formally
sound, precise, and scale reasonably well. In this paper, we propose a novel
verification algorithm that meets these criteria for systems with piecewise affine
dynamics. The performance of the approach is illustrated experimentally on a
number of benchmarks. Since systems with affine dynamics have been studied
before, we first describe why the available methods and tools do not handle this
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 468–486, 2018.
https://doi.org/10.1007/978-3-319-96145-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_25&domain=pdf

Space-Time Interpolants 469

class of systems sufficiently well, and then describe our approach and its core
contributions.

Previous Approaches. The algorithmic verification of systems with continuous
or discrete-continuous (hybrid) dynamics is a hard problem both in theory
and practice. For piecewise constant dynamics (PCD), the continuous succes-
sor states (a.k.a. flow pipe) can be computed exactly, and the complexity is
exponential in the number of variables [17,19]. While in principle, any dynam-
ics can be approximated arbitrarily well by PCD systems using an approach
called hybridization [20], this requires partitioning of the state space, which
often leads to prohibitive computational costs. For piecewise affine dynamics
(PWA), one-step successors can be computed approximately using complex set
representations. However, all published approaches suffer either from a possi-
bly exponential increase in the complexity of the set representation, or from a
possibly exponential increase in the approximation error as the considered time
interval increases; this will be argued in detail in Sect. 4.

In addition to these theoretical obstacles, we note the following practical
obstacles for the available tools and their performance in experiments. The only
available model checkers that are (i) sound (i.e., they compute provable dense-
time overapproximations), (ii) unbounded (i.e., they overapproximate the flow-
pipe for an infinite time horizon), and (iii) arbitrarily precise (i.e., they support
precision refinement) are, with one exception, limited to PCD systems, namely,
HyTech [18], PHAVer [13], and Lyse [7]. The tool Ariadne [6] can deal with affine
dynamics and is sound, unbounded, and precise. However, Ariadne discretizes
the reachable state space with a rectangular grid. This invariably leads to an
exponential complexity in terms of the number of variables. Other tools that are
applicable to PWA systems do not meet our criteria in that they are either not
formally sound (e.g., CORA [2], SpaceEx [15]), not arbitrarily precise because
of templates or particular data structures (e.g., SpaceEx, Flow∗ [8], CORA),
or limited to bounded model checking (e.g., dReach [24], Flow∗). All the above
tools exhibit fatal limitations in scalability or precision on standard PWA bench-
marks; they typically work only on well-chosen examples. Note that while these
tools do not meet the criteria we advance in this paper, they of course have
strengths in other areas handling nonlinear and nondeterministic dynamics.

Our Approach. We view iterative abstraction refinement as critical for sound-
ness and precision management, and fixpoint detection as critical for eval-
uating unbounded properties. We implement, for the first time, a CEGAR
(counterexample-guided abstraction refinement) scheme in combination with a
fixpoint detection criterion for PWA systems. Our abstraction refinement scheme
manages complexity and precision trade-offs in a flexible way by decoupling time
from space: the dense timeline is partitioned into a sequence of intervals that
are refined individually and lazily, by splitting intervals, to achieve the necessary
precision and detect fixpoints; state sets are overapproximated using template
polyhedra that are also refined individually and lazily, by adding normal direc-
tions to templates; and both refinement processes are interleaved for optimal
results, while maintaining soundness with each step. A similar approach was

470 G. Frehse et al.

recently proposed for the limited class of PCA systems [7]; this paper can be
seen as an extension of the approach to the class of piecewise affine dynamics.

With each iteration of the CEGAR loop, a spurious counterexample is
removed by computing a proof of infeasibility in terms of a sequence of linear
constraints in space and interval constraints in time, which we call a sequence
of space-time interpolants. We use linear programming to construct a suitable
sequence of space-time intervals and check for fixpoints. If a fixpoint check fails,
we increase the time horizon by adding new intervals. The separation of time
from space gives us the flexibility to explore different refinement strategies. Fine-
tuning the iteration of space refinement (adding template directions), time refine-
ment (splitting intervals), and fixpoint checking (adding intervals), we find that
it is generally best to prefer fewer time intervals over fewer space constraints.
Based on performance evaluation, we even expand individual intervals time when
this is possible without sacrificing the necessary precision for removing a coun-
terexample.

2 Motivating Example

The ordinary differential equation over the variables x and y

ẋ = 0.1x − y + 1.8
ẏ = x + 0.1y − 2.2 (1)

moves counterclockwise around the point (2, 2) in an outward spiral. We center
a box B (of side 0.92) on the same point and place a diagonal segment S close to
the bottom right corner of B, without touching it (between (2, 1) and (3.5, 2); see
Fig. 1). Then, we consider the problem of proving that every trajectory starting
from any point in S never hits B. This is a time-unbounded reachability problem
for a hybrid automaton with piecewise affine dynamics and two control modes.
The first mode has the dynamics above (Eq. 1) and S as initial region. It has a
transition to a second mode, which in its turn has B as invariant. The second
mode is a bad mode, which all trajectories indeed avoid.

We tackle the reachability problem by abstraction refinement. In particular,
we aim at automatically constructing an enclosure for the flowpipe—i.e., for the
set of trajectories from S—which (i) avoids the bad state B and (ii) covers the
continuous timeline up to infinity. Figure 1 shows three abstractions that result
from different strategies for refining an initial space partition (i.e., template) and
time partition (i.e., sequence of time intervals). All three refinement schemes
start by enclosing S with an initial template polyhedron P , and then transform-
ing P into a sequence of abstract flowpipe sections intflow[t,t](P), one for each
interval [t, t] of an initial partitioning of the unbounded timeline. The computa-
tion of new flowpipe sections stops when a fixpoint is reached,—i.e., we reach a
time threshold t∗ whose flowpipe section closes a cycle with intflowt∗

(P) ⊆ P ,
sufficient condition for any further flowpipe section to be contained within the
union of previously computed sections.

Space-Time Interpolants 471

Fig. 1. Comparison of abstraction refinement methods for the ODE in Eq. 1, the seg-
ment S as initial region, and the box B as bad region. The polyhedron P is the template
polyhedron of S, and the gray polyhedra are the flowpipe sections intflow[t,t](P).

Refinement scheme (a) sticks to a fixed octagonal template P—i.e., to the
normals of a regular octagon—and iteratively halves all time intervals until every
flowpipe section avoids the bad set B. This is achieved at interval width 1/64, but
the computation does not terminate because no fixpoint is reached. Refinement
scheme (b) splits time similarly but also computes a different, more accurate
template for every iteration: first, an interval [t, t] is halved until it admits a
halfspace interpolant —i.e., a halfspace H that S ⊆ H and intflow[t,t](H) ∩ B =
∅; then, a maximal set of linearly independent directions is chosen as template
from the normals of the obtained halfspaces. Refinement scheme (b) succeeds
at interval width 1/16 to avoid B and reach a fixpoint; the latter at time 6.25,
with intflow6.25(P) ⊆ P . Refinement scheme (c) modifies (b) by optimizing the
refinement of the time partition: instead of halving time intervals, the maximal
intervals which admit halfspace interpolants are chosen. This scheme produces
a nonuniform time partitioning with an average interval width of about 1/8,
discovers five template directions, and finds a fixpoint in fewer steps.

Each iteration of the abstraction refinement loop consists of first abstracting
the initial region into a template polyhedron, second solving the differential equa-
tion into a sequence of interval matrices, and finally transforming the template
polyhedron using each of the interval matrices. We represent each transformation
symbolically, by means of its support function. Then, we verify (i) the separation
between every support function and the bad region, and (ii) the containment of
any support function in the initial template polyhedron. The separation prob-
lem amounts to solving one LP, and the inclusion problem amounts to solving
an LP in each template direction. If the separation fails, then we independently
bisect each time that does not admit halfspace interpolants and expand each
that does, until all are proven separated. Together, these halfspace interpolants
form an infeasibility proof for the counterexample: a space-time interpolant.
We forward the resulting new time intervals and halfspaces to the abstraction

472 G. Frehse et al.

generator, and repeat, using the refined partitioning and the augmented tem-
plate. If the inclusion fails, then we increase the time horizon by some amount
Δ, and repeat. Once we succeed with both separation and inclusion, the system
is proved safe.

This example shows the advantage of lazily refining both the space parti-
tioning (i.e., the template) by adding directions, and the time partitioning, by
splitting intervals.

3 Hybrid Automata with Piecewise Affine Dynamics

A hybrid automaton with piecewise affine dynamics consists of an n-dimensional
vector x of real-valued variables and a finite directed multigraph (V,E), the
control graph. We call it the control graph, the vertices v ∈ V the control
modes, and the edges e ∈ E the control switches. We decorate each mode v ∈ V
with an initial condition Zv ⊆ IRn, a nonnegative invariant condition Iv ⊆ IRn

≥0,
and a flow condition given by the system of ordinary differential equations

ẋ = Avx + bv. (2)

We decorate each switch e ∈ E with a guard condition Ge ⊆ IRn and an update
condition given the difference equations x := Rex+se . All constraints I, G, and
Z are conjuctions of rational linear inequalities, A and R are constant matrices,
and b and s constant vectors of rational coefficients. In this paper, whenever an
indexing of modes and switches is clear from the context, we index the respective
constraints and transformations similarly, e.g., we abbreviate Avi

with Ai.
A trajectory is a possibly infinite sequence of states (v, x) ∈ V × IRn repeat-

edly interleaved first by a switching time t ∈ IR≥0 and then by a switch e ∈ E

(v0, x0)t0(v0, y0)e0(v1, x1)t1(v1, y1)e1 . . . (3)

for which there exists a sequence of solutions ψ0, ψ1, . . . : IR → IRn such that
ψi(0) = xi, ψi(ti) = yi and they satisfy (i) the invariant conditions ψi(t) ∈ Ii

and (ii) the flow conditions ψ̇i(t) = Aiψi(t) + bi, for all t ∈ [0, ti]. Moreover,
x0 ∈ Z0, every switch ei has source vi, destination vi+1, and the respective states
satisfy (i) the guard condition yi ∈ Gi and (ii) the update xi+1 = Riyi + si. The
maximal set of its trajectories is the semantics of the hybrid automaton, which
is safe if none of them contains a special bad mode.

Every hybrid automaton with affine dynamics can be transformed into an
equivalent hybrid automaton with linear dynamics, i.e., the special case where
b = 0 on every mode. We obtain such transformation by adding one extra variable
y, rewriting the flow of every mode into ẋ = Ax+ by, and forcing y to be always
equal to 1, i.e., invariant y = 1 and flow ẏ = 0 on every mode and update y′ = y
on every switch. For this reason, in the following sections we discuss w.l.o.g. the
reachability analysis of hybrid automata with linear dynamics.

Space-Time Interpolants 473

4 Time Abstraction Using Interval Arithmetic

We abstract the reach set of the hybrid automaton with a union of convex
polyhedra. In particular, we abstract the states that are reachable in a mode
using a finite sequence of images of the initial region over a time partitioning,
until a completeness threshold is reached. Thereafter, we compute the template
polyhedron of each of the images that can take a switch. Then, we repeat in the
destination mode and we continue until a fixpoint is found.

Precisely, a time partitioning T is a (possibly infinite) set of disjoint closed
time intervals whose union is a single (possibly open) interval. For a finite set of
directions D ⊆ IRn, the D-polyhedron of a closed convex set X is the tightest
polyhedral enclosure whose facets normals are in D. In the following, we associate
every mode v to a template Dv and a time partitioning Tv of the time axis IR≥0,
we employ interval arithmetic for abstracting the continuous dynamics (Sect.
4.1), and on top of it we develop a procedure for hybrid dynamics (Sect. 4.2).

4.1 Continuous Dynamics

We consider w.l.o.g. a mode with ODE reduced to the linear form ẋ = Avx,
invariant Iv, and a given time interval [t, t]. Every linear ODE ẋ = Ax has the
unique solution

ψ(t) = exp(At)ψ(0). (4)

It follows (see also [16]) that the set of states reachable in v after exactly t time
units from an initial region X is

flowt
v(X) def= exp(Avt)X ∩

⋂

0≤τ≤t

exp(Av(t − τ))Iv, (5)

Then, the flowpipe section over the time interval [t, t] is

flow[t,t]
v (X) def= ∪{flowt

v(X) | t ∈ [t, t]}. (6)

We note three straightforward but consequential properties of the reach set:
(i) The accuracy of any convex abstraction depends on the size of the time
interval: While flowt

v(X) is convex for convex X, this is generally not the case
for flow[t,t]

v (X). (ii) We can prune the time interval whenever we detect that the
reach set no longer overlaps with the invariant: If for any t∗ ≥ 0, flowt∗

v (X) = ∅,
then for all t ≥ t∗, flowt

v(X) = ∅ and flow[t,t]
v (X) = flow[t,t∗]

v (X). (iii) We can
prune the time interval whenever we detect containment in the initial states: If
flowt∗

v (X) ⊆ X, then flow[t,∞]
v (X) = flow[t,t∗]

v (X).
For given A and t, the matrix exp(At) can be computed with arbitrary, but

only finite, accuracy. We resolve this problem by computing a rational interval
matrix [M,M], which we denote intexp(A, t, t), such that for all t ∈ [t, t] we have
element-wise that

exp(At) ∈ intexp(A, t, t). (7)

474 G. Frehse et al.

This interval matrix can be derived efficiently with a variety of methods [25],
e.g., using a guaranteed ODE solver or using interval arithmetic. The width
of the interval matrix can be made arbitrarily small at the price of increasing
the number of computations and the size of the representation of the rational
numbers. In our approach, we do not rely in a fixed accuracy of the interval
matrix. Instead, we require that the accuracy increases as the width of the time
interval goes to zero. That way, we don’t need to introduce an extra parameter.
To ensure progress in our refinement loop, we require that the interval matrix
decreases monotonically when we split the time interval. Formally, if [t, t] ⊆ [u, u]
we require the element-wise inclusion intexp(A, t, t) ⊆ intexp(A, u, u). This can
be ensured by intersecting the interval matrices with the original interval matrix
after time splitting.

While the mapping with interval matrices is in general not convex [29], we can
simplify the problem by assuming that all points of X are in the positive orthant.
As long as X is bounded from below, this condition can be satisfied by inducing
an appropriate coordinate change. Under the assumption that X ⊆ IRn

≥0,

[M,M](X) =
{

y ∈ IRn
∣

∣ Mx ≤ y ≤ Mx and x ∈ X
}

. (8)

Combining the above results, we obtain a convex abstraction of the flowpipe
over a time interval as

intflow[t,t]
v (X) def= intexp(A, t, t)X ∩ Iv. (9)

The abstraction is conservative in the sense that flow[t,t]
v (X) ⊆ intflow[t,t]

v (X).
On the other hand, the longer is the time interval, the coarser is the abstraction.
For this reason, we construct an abstraction of the flowpipe in terms of a union
of convex approximations over a time partitioning. The abstract flowpipe over
the time partitioning T is

intflowT
v (X) def= ∪{intflow[t,t]

v (X) | [t, t] ∈ T}. (10)

Again, this is conservative w.r.t. the concrete flowpipe, i.e., for all time parti-
tionings T it holds that flow∪T

v (X) ⊆ intflowT
v (X). Moreover, it is conservative

w.r.t. any refinement of T , i.e., the time partitioning U refines T if ∪U = ∪T
and ∀[u, u] ∈ U : ∃[t, t] ∈ T : [u, u] ⊆ [t, t], then intflowU

v (X) ⊆ intflowT
v (X).

4.2 Hybrid Dynamics

We embed the flowpipe abstraction routine into a reachability algorithm that
accounts for the switching induced by the hybrid automaton. The discrete post
operator is the image of a set Y ⊆ IRn through a switch e ∈ E

jumpe(Y) def= Re(Y ∩ Ge) ⊕ {se}. (11)

We explore the hybrid automaton constructing a set of abstract trajectories,
namely sequences abstract states interleaved by time intervals and switches

(v0,X0)[t0, t0](v0, Y0)e0(v1,X1)[t1, t1](v1, Y1)e1 . . . (12)

Space-Time Interpolants 475

input : Template {Dv} and partitioning {Tv} indexed by V
output: Optionally an abstract trajectory (counterexample)

1 foreach v ∈ V with nonempty Zv do
2 push (v, Zv)[0, Δ] into the stack W ;
3 add the Dv-polyhedron of Zv to Pv ;

4 while W is not empty do
5 pop . . . (v, X)[t, t] from W ;
6 P ← Dv-polyhedron of X;
7 if v is bad and P ∩ Iv is nonempty then // check counterexample
8 return . . . (v, X);

9 foreach t∗ ∈ {t + δ, t + 2δ, . . . , t} do // find completeness threshold

10 if intflowt∗
v (P) ⊆ Pv then break;

11 if t∗ = t and intflowt
v(P) ⊆ Pv then // otherwise extend time horizon

12 push . . . (v, X)[t, t + Δ] into W ;

13 foreach [u, u] ∈ Tv and [u, u] ∩ [t, t∗] = ∅ do // construct flowpipe

14 Y ← intflow[u,u]
v (P);

15 foreach e ∈ E with source v and destination v′ do
16 X′ ← jumpe(Y);

17 if X′ ⊆ Pv′ then continue;

18 push . . . (v, X)[u, u](v, Y)e(v′, X′)[0, Δ] into W ;

19 add the Dv′ -polyhedron of X′ to Pv′ ;

Algorithm 1. Reachability procedure.

where X0, Y0, · · · ⊆ IRn are nonempty sets of states that comply with tem-
plate {Dv} and partitioning {Tv} in the following sense. First, X0 = Z0 and
Xi+1 = jumpi(Yi) for all i ≥ 0. Second, Yi = intflow[ti,ti]

i (Pi) for all i ≥ 0, where
Pi is the Di-polyhedron of Xi and [ti, ti] ∈ Ti. The maximal set of abstract tra-
jectories, the abstract semantics induced by {Dv} and {Tv}, overapproximates
the concrete semantics in the sense that every concrete trajectory (see Eq. 3)
has an abstract trajectory that subsumes it, i.e., modes and switches match,
xi ∈ Xi, ti ∈ [ti, ti], and yi ∈ Yi, for all i ≥ 0.

Computing the abstraction involves several difficulties. First, the trajectories
might be not finitary. Indeed, this is unsolvable in theory, because the reachabil-
ity problem is undecidable [21]. Second, the post operators are hard to compute.
In particular, obtaining the sets X and Y in terms of conjunctions of linear
inequalities in IRn requires eliminating quantifiers. In Algorithm 1, we present a
procedure (which does not necessarily terminate) for tackling the first problem.
In the next section, we show how to tackle the second using support functions.

We employ Algorithm 1 to explore the tree of abstract trajectories. We store
in the stack W the leaves to process . . . (v,X), followed by a candidate interval
[t, t]. For each leaf, we retrieve P , the template polyhedron of X. If it leads
to a bad mode, we return, otherwise we search for a completeness threshold t∗

between t excluded and t, checking for inclusion in the union of visited polyhe-
dra Pv. In case of failure, we extend the time horizon of Δ and push the next
candidate to the stack. Then, we partition the time between t and t∗, construct
the flowpipe, and process switching. Upon each successful switch, we augment
Pv′ with the Dv′-polyhedron of the switching region X ′, avoiding to store redun-
dant polyhedra. Notably, the latter operation is efficient because all polyhedra

476 G. Frehse et al.

comply with the same template. For the same reason, we obtain efficient inclu-
sion checks, which we implement by first computing the template polyhedron
of the left hand side, and then comparing the constant terms of the respective
linear inequalities.

In conclusion, this reachability procedure that takes a template {Dv} and a
partitioning {Tv} and constructs a tree of reachable sets of states X and Y . It
manipulates them through the post operators and overapproximate them into
template polyhedra. In the next section, we discuss how to efficiently represent
X and Y , so to efficiently compute their template polyhedra. In Sect. 6 we
discuss how to discover appropriate {Dv} and {Tv}, so to eliminate spurious
counterexamples.

5 Space Abstraction Using Support Functions

Abstracting away time left us with the task of representing the state space of the
hybrid automaton, namely the space of its variable valuations. Such sets consists
of polyhedra emerging from operations such as intersections, Minkowski sums,
and linear maps with simple or interval matrices. In this section, we discuss
how to represent precisely all sets emerging from any of these operations by
means of their support functions (Sect. 5.1) and then how to abstract them into
template polyhedra (Sect. 5.2). In the next section, we discuss how to refine the
abstraction.

5.1 Support Functions

The support function of a closed convex set X ⊆ IRn in direction d ∈ IRn consists
of the maximizer scalar product of d over X

ρX(d) = sup{dTx | x ∈ X}, (13)

and, indeed, uniquely represents any closed convex set [28]. Classic work on the
verification of hybrid automata with affine dynamic have posed a framework for
the construction of support functions from basic set operations, but under the
assumption of unboundedness and nonemptiness of the represented set, and with
approximated intersection [16]. Indeed, if the set is empty then its support func-
tion is −∞, while if it is unbounded an d points toward a direction of recession is
+∞, making the framework end up into undefined values. Such conditions turn
out to be limiting in our context, first because we find desirable to represent
unbounded sets so to accelerate the convergence to a fixpoint of the abstraction
procedure, but most importantly because when encoding support functions for
long abstract trajectories we might be not aware whether its concretization is
infeasible. Checking this is a crucial element of a counterexample-guided abstrac-
tion refinement routine.

Recent work on the verification of hybrid automata with constant dynamics,
i.e., with flows defined by constraints on the derivative only, provides us with

Space-Time Interpolants 477

a generalization of the classic support function framework which relaxes away
the assumptions of boundedness and nonemptiness and yields precise intersec-
tion [7]. The framework encodes combinations of convex sets of states into LP
(linear programs) which enjoy strong duality with their support function. Simi-
larly, we encode the support function in direction d of any set X into the LP

minimize cTλ
subject to Aλ = Bd,

(14)

over the nonnegative vector of variables λ. The LP is dual to ρX(d), which is
to say that if the LP is infeasible then X is unbounded in direction d, and if
the LP is unbounded then X is the empty set. Moreover, if the LP has bounded
solution so does ρX(d) and the solutions coincide.

The construction is inductive on operations between sets. For the base case,
we recall that from duality of linear programming the support function of a
polyhedron given by a system of inequalities Px ≤ q is dual to the LP over
λ ≥ 0

minimize qTλ
subject to PTλ = d. (15)

Then, inductively, we assume that for the set X ⊆ IRn we are given an LP
with the coefficients AX , BX , and cX , and similarly for the set Y ⊆ IRn. For
the support functions of X ⊕ Y , MX, and X ∩ Y we respectively construct the
following LP over the nonnegative vectors of variables λ, μ, α, and β:

minimize cT
Xλ + cT

Y μ
subject to AXλ = BXd and AY μ = BY d,

(16)

minimize cT
Xλ

subject to AXλ = BXMT d, and (17)

minimize cT
Xλ + cT

Y μ
subject to AXλ − BX(α − β) = 0 and

AY μ + BY (α − β) = BY d.
(18)

Such construction follows as a special case of [7], which we extend with the
support function of a map through an interval matrix.

The time abstraction of Sect. 4 additionally requires us to represent the map
of sets of states through interval matrices. Precisely, we are given convex set of
nonnegative values X ⊆ IRn

≥0, the coefficients for the respective LP, an interval
matrix [M,M] ⊆ IRn×n, and we aim at computing the support function of all
values in X mapped by all matrices in [M,M]. To this end, we define the LP

minimize cT
Xλ

subject to AXλ + BX(MTμ − M
T
ν) = 0 and

−μ + ν = d,
(19)

over the vectors λ, μ, and ν of nonnegative variables. This linear program cor-
responds to the the dual of the interval matrix map in Eq. 8.

478 G. Frehse et al.

5.2 Computing Template Polyhedra

We represent all space abstractions X and Y in our procedure by their support
functions. In particular, whenever set operations are applied, instead of solving
the operation by removing quantifiers, we construct an LP. We delay solving it
until we need to compute a template polyhedron. In that case, we compute the
D-polyhedron of the set X by computing its support function in each of the
directions in D, and constructing the intersection of halfspaces ∩{dTx ≤ ρX(d) |
d ∈ D}.

6 Abstraction Refinement Using Space-Time Interpolants

The reachability analysis of hybrid automata by means of the combination of
interval arithmetic and support functions presented in Sects. 4 and 5 builds an
overapproximation of the system dynamics. It is always sound for safety, but it
may produce spurious counterexamples, due to an inherent lack of precision of
the time abstraction and the polyhedral approximation. The level of precision
is given by two factors, namely the choice of time partitioning and the choice
of template directions, excluding the parameters for approximation of the expo-
nential function, which we assume constant (see Sect. 4.1). In the following, we
present a procedure to extract infeasibility proofs from spurious counterexam-
ples. We produce them in the form of time partitions and bounding polyhedra,
which we call space-time interpolants. Space-time interpolants can then be used
to properly refine time partitioning and template directions.

Consider the bounded path v0, e0, v1, e1, . . . , vk, ek, vk+1 over the control
graph and a sequence of dwell time intervals [t0, t0], [t1, t1], . . . , [tk, tk] emerging
from an abstract trajectory. We aim at extracting a sequence X0,X1, . . . , Xk+1

of (possibly nonconvex) polyhedra and a sequence T0, T1, . . . , Tk of refinements
of the respective dwell times such that Z0 ⊆ X0, jump0 ◦ intflowT0

0 (X0) ⊆ X1,
. . . , jumpk ◦ intflowTk

k (Xk) ⊆ Xk+1, and Xk+1 ∩ Ik+1 is empty. In other words,
we want every Xi+1 to contain all states that can enter mode vi+1 after dwelling
on vi between ti and ti time, and the last to be separated from the invariant
of mode vk+1. Containment is to hold inductively, namely Xi+1 has to contain
what is reachable from Xi, and the time refinements T are to be chosen in such
a way that containment holds in the abstraction. Then, we call the sequence
X0, T0,X1, T1, . . . , Xk, Tk,Xk+1 a sequence of space-time interpolants for the
path and the dwell times above.

We compute a sequence of space-time interpolants by alternating multiple
strategies. First, for the given sequence of dwell times, we attempt to extract a
sequence of halfspace interpolants using linear programming (Sect. 6.1). In case
of failure, we iteratively partition the dwell times in sets of smaller intervals,
separating nonswitching from switching times and until every combination of
intervals along the path admits halfspace interpolants (Sect. 6.2). We accumulate
all halfspaces to form a sequence of unions of convex polyhedra that, together
with the obtained time partitionings, will form a valid sequence of space-time
interpolants. Finally, we refine the abstraction using the time partitionings and

Space-Time Interpolants 479

the outwards pointing directions of all computed halfspaces, in order to eliminate
the spurious counterexample (Sect. 6.3).

6.1 Halfspace Interpolation

Halfspace interpolants are the special case of space-time interpolants where every
polyhedron in the sequence is defined by a single linear inequality [1]. Indeed,
they are the simplest kind of space-time interpolants, and, for the same reason,
the ones that best generalize the reachable states along the path. Unfortunately,
not all paths admit halfspace interpolants, but, if one such sequence exists, then
it can be extrapolated from the solution of a linear program.

Consider a path v0, e0, . . . , vk+1 with the respective dwell times [t0, t0], . . . ,
[tk, tk]. A sequence of halfspace interpolants consists of a sequence of sets
H0, . . . ,Hk+1 among either any halfspace, or the empty set, or the universe, such
that Z0 ⊆ H0, jump0 ◦ intflow[t0,t0]

0 (H0) ⊆ H1, . . . , jumpk ◦ intflow[tk,tk]
k (Hk) ⊆

Hk+1, and Hk+1∩Ik+1 is empty. In contrast with general space-time interpolants,
every time partition consists of a single time interval and therefore the support
function of every post operator jump ◦ intflow[t,t] can be encoded into a single
LP (see Sect. 5). We exploit the encoding for extracting halfspace interpolants,
similarly to a recent interpolation technique for PCD systems [7].

We encode the support function in direction d of the closure of the image of
the post operators along the path, i.e., the set jumpk ◦ intflow[tk,tk]

k ◦ · · · ◦ jump0 ◦
intflow[t0,t0]

0 (Z0), intersected with the invariant Ik+1. We obtain the following
LP over the free vectors α0, . . . , αk+1 and the nonnegative vectors β, δ0, . . . , δk,
γ0, . . . , γk+1, μ0, . . . , μk, and ν0, . . . , νk:

minimize qT
Z0

β +
∑k

i=0(q
T
Ii

γi + qT
Gi

δi + sT
i αi+1) + qT

Ik+1
γk+1

subject to PT
Z0

β = α0,
MT

i μi − M
T
i νi = −αi for each i ∈ [0..k],

−μi + νi + PT
Ii

γi + PT
Gi

δi = RT
i αi+1 for each i ∈ [0..k],

PT
Ik+1

γk+1 = −αk+1 + d,

(20)

where every system of inequalities Px ≤ q corresponds to the constraints of
the respective init, guard, or invariant, every Rix + si is an update equation,
and every interval matrix [M i,M i] = intexp(Ai, ti, ti). In general, one can check
whether the closure is contained in a halfspace aTx ≤ b by setting the direction
to its linear term d = a and checking whether the objective function can equal its
constant term b. In particular, we check for emptiness, which we pose as checking
inclusion in 0x ≤ −1. Therefore, we set d = 0 and the objective function to equal
−1. Upon affirmative answer, from the solution α�

0, α
�
1, . . . , ν

�
k we obtain a valid

sequence of halfspace interpolants whose i-th linear term is given by α�
i and i-th

constant term is given by qT
Z0

β� +
∑i−1

j=0(q
T
Ij

γ�
j + qT

Gj
δ�
j + sT

j α�
j+1).

480 G. Frehse et al.

input : sequence of intervals [u0, u0], . . . , [uj , uj]

output: set of intervals

1 b ← uj ;

2 while b < uj do
3 a ← b;
4 b ← b + ε;
5 c ← uj ;
6 if [u0, u0], . . . , [uj−1, uj−1], [a, b] does not admit halfspace interpolants then

7 continue;

8 if [u0, u0], . . . , [uj−1, uj−1], [a, c] admits halfspace interpolants then

9 push [a, c] to the output;
10 return;

11 while c − b > ε do

12 if [u0, u0], . . . , [uj−1, uj−1], [a, ε� b+c
2ε �] admits halfspace interpolants then

13 b ← ε� b+c
2ε �;

14 else

15 c ← ε� b+c
2ε �;

16 push [a, b] to the output;

Algorithm 2. Nonswitching time partitioning.

6.2 Time Partitioning

Halfspace interpolation attempts to compute a sequence of enclosures that are
convex for a sequence of sets that are not necessarily convex. Specifically, it
requires each halfspace to enclose the set of solutions of a linear differential
equation, which is nonconvex, by enclosing its convex overapproximation along
a whole time interval. As a result, large time intervals produce large overap-
proximations, on which halfspace interpolation might be impossible. Likewise,
shorter intervals produce tighter overapproximations, which are more likely to
admit halfspace interpolants. In this section, we exploit such observation to
enable interpolation over large time intervals. In particular, we properly parti-
tion the time into smaller subintervals and we treat each of them as a halfspace
interpolation problem. Later, we combine the results to refine the abstraction.

Time partitioning is a delicate task in the whole abstraction refinement loop.
In fact, while template refinement affects linearly the performance of the abstrac-
tor, partitioning time intervals that can switch induces branching in the search,
possibly leading to an exponential blowup. For this reason, we partition time by
narrowing down the switching time, for incremental precision, until no more is
left. In particular, we use Algorithm 2 to compute a set N of maximal intervals
that admit halfspace interpolants, by enlarging or narrowing them of ε amounts.
We embed this procedure in Algorithm 3 which, along the sequence, excludes
the time in N , constructing a set of intervals S that overapproximate the switch-
ing time. In particular, we construct the set with the widest possible intervals
that are disjoint from N . Algorithm 3 succeeds when no more intervals are left,
otherwise we half ε and reapply it to the sequences that are left to process.

Space-Time Interpolants 481

input : sequence of intervals [t0, t0], . . . , [tk, tk]
output: set of sequences of intervals

1 push [t0, t0] to the queue Q;
2 while Q is not empty do
3 pop [u0, u0], . . . , [uj , uj] from Q;

4 N ← nonswitching time partitioning of [u0, u0], . . . , [uj , uj];

5 foreach [a, a] ∈ N do
6 push [u0, u0], . . . , [uj−1, uj−1], [a, a] to the output;

7 if j = k then
8 assert [uj , uj]\ ∪ N = ∅;

9 continue;

10 S ← choose set of intervals that cover [uj , uj]\ ∪ N ;

11 foreach [b, b] ∈ S do

12 push [u0, u0], . . . , [uj−1, uj−1], [b, b], [tj+1, tj+1] to Q;

Algorithm 3. Dwell time partitioning.

6.3 Abstraction Refinement

The procedures above construct sequences of time intervals [u0, u0], . . . , [uj , uj]
that are included in [t0, t0], . . . , [tk, tk] and that, with the respective halfspace
interpolants, this constitutes a proof of infeasibility for the counterexample. Yet,
it does not form a sequence of space-time interpolants X0, T0, . . . , Xk+1. We form
each partitioning Ti by splitting [ti, ti] in such a way each element of Ti is either
contained in [ui, ui] or disjoint from it, for all intervals [ui, ui]. Then, we refine
the partitioning of mode vi similarly. Each polyhedron Xi is a union of convex
polyhedra, each of which is the intersection of all halfspaces Hi corresponding
to some sequence [u0, u0], . . . , [ui, ui]. Nevertheless, to refine the abstraction we
do not need to construct Xi, but just to take the outward point directions of all
Hi and add them to the template of vi.

7 Experimental Evaluation

We implemented our method in C++ using GMP and Eigen for multiple pre-
cision linear algebra, Arb for interval arithmetic, and PPL for linear program-
ming [5,23]. In particular, all libraries we are using are meant to provide guaran-
teed solutions, as well as our implementation. We evaluate it on several instances
of a filtered oscillator and a rod reactor, which are both parametric in the number
of variables, and the latter in the number of modes too [15,35]. We record sev-
eral statistics from every execution of our tool: the number #cex of counterex-
amples found during the CEGAR loop, the number #dir of linearly indepen-
dent directions and the average width of the time partitionings extracted from
all space-time interpolants. Moreover, we independently measure three times.
First, the time spent in finding counterexamples, namely the total time taken
by inconclusive abstractions which returned a spurious counterexample. Second,
the refinement time, that is the total time consumed by computing space-time
interpolants. Finally, the verification time, that is the time spend in the last

482 G. Frehse et al.

abstraction of the CEGAR loop, which terminates with a fixpoint proving the
system safe. We compare the outcome and the performance of our tool against
Ariadne which, to the best of our knowledge, is the only verification tool available
that is numerically sound and time-unbounded [11].

Table 1. Statistics for the benchmark examples (oot when > 1000 s).

The filtered oscillator is hybrid automaton with four modes that smoothens
a signal x into a signal z. It has k + 2 variables and a system of k + 2 affine
ODE, where k is the order of the filter. Table 1 shows the results, for a scal-
ing of k up to the 11-th order. The first observation is that the CEGAR loop
behaves quite similarly on all scalings: number of counterexamples, number of
directions, and time partitionings are almost identical. On the other hand, the
computation times show a growth, particularly in the refinement phase which
dominates over abstraction and verification. This suggests us that our procedure
exploits efficiently the symmetries of the benchmark. In particular, time parti-
tioning seems unaffected. What affects the performance is linear programming,
whose size depends on the number of variables of the system.

The rod reactor consists of a heating reactor tank and k rods each of which
cools the tank for some amount of time, excluding each other. The hybrid
automaton has one variable x for the temperature, k clock variables, one heat-
ing mode, one error mode, and k cooling modes. If the temperature reaches
a critical threshold and no rod can intervene, it goes into an error. For this
benchmark, we start with a simple template, the interval around x, and we dis-
cover further directions. Table 1 highlights two fundamental differences with the
previous benchmark. First, the average width grows with the model size. This
is because the heating mode requires finer time partitioning than the cooling
modes. The cooling modes increase with the number of rods, and so does the
average width over all time partitions. Second, while with the filtered oscillator
the difficulty laid at interpolation, for the rod reactor interpolation is rather easy
as well as finding counterexamples. Most of the time is spent in the verification

Space-Time Interpolants 483

phase, where all fixpoint checks must be concluded, without being interrupted
by a counterexample. This shows the advantage of our lazy approach, which first
processes the counterexamples and finally proves the fixpoint.

Our method outperforms Ariadne on all benchmarks. On the other hand,
tools like Flow* and SpaceEx can be dramatically faster [9]. For instance, they
analyze filtosc 8th ord in resp. 9.1 s and 0.36 s (time horizon of 4 and jump
depth of 10). This is hardly surprising, as our method has primarily been
designed to comply with soundness and time-unboundedness, and pays the price
for that.

8 Related Work

There is a rich literature on CEGAR approaches for hybrid automata, either
abstracting to a purely discrete system [3,10,27,33,34] or to a hybrid automa-
ton with simpler dynamics [22,30]. Both categories exploit the principle that the
verification step is easier to carry out in the abstract domain. The abstraction
entails a considerable loss of precision that can only be counteracted by increas-
ing the number of abstract states. This leads to a state explosion that severely
limits the applicability of such approaches. In contrast, our approach allows us
to increase the precision by adding template directions, which does not increase
the number of abstract states. The only case where we incur additional abstract
states is when partitioning the time domain. This is a direct consequence of the
nonconvexity of flowpipes of affine systems, and therefore seems to be unavoid-
able when using convex sets in abstractions. In [26], the abstraction consists
of removing selected ODE entirely. This reduces the complexity, but does not
achieve any fine-tuning between accuracy and complexity. Template reachability
has been shown to be very effective in both scaling up reachability tasks to more
efficient successor computations [15,31,32] and achieving termination even over
unbounded time horizons [12]. The drawback of templates is the lack of accuracy,
which may lead to an approximation error that accumulates excessively. Efforts
to dynamically refine templates have so far not scaled well for affine dynamics
[14]. A single-step refinement was proposed in [4], but as was illustrated in [7],
the refinement needs to be inductive in order to exclude counterexamples in a
CEGAR scheme.

9 Conclusion

We have developed an abstraction refinement scheme that combines the effi-
ciency and scalability of template reachability with just enough precision to
exclude all detected paths to the bad states. At each iteration of the refine-
ment loop, only one template direction is added per mode and time-step. This
does not increase the number of abstract states. Additional abstract states are
only introduced when required by the nonconvexity of flowpipes of affine sys-
tems, a problem that we consider unavoidable. In contrast, existing CEGAR
approaches for hybrid automata tend to suffer from state explosion, since refining

484 G. Frehse et al.

the abstraction immediately requires additional abstract states. As our experi-
ments confirm, our approach results in templates over very low complexity and
terminates with an unbounded proof of safety after a relatively small number of
iterations. Further research is required to extend this work to nondeterministic
and nonlinear dynamics.

Acknowledgments. We thank Luca Geretti for helping us setting up Ariadne. This
research was supported in part by the Austrian Science Fund (FWF) under grants
S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award), by the European
Commission under grant 643921 (UnCoVerCPS).

References

1. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Sharygina, N., Veith,
H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 313–329. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39799-8 22

2. Althoff, M.: An introduction to CORA 2015. In: Frehse, G., Althoff, M. (eds.)
ARCH14-15. 1st and 2nd International Workshop on Applied veRification for Con-
tinuous and Hybrid Systems. EPiC Series in Computer Science, vol. 34, pp. 120–
151. EasyChair (2015)

3. Alur, R., Dang, T., Ivančić, F.: Counterexample-guided predicate abstraction of
hybrid systems. Theor. Comput. Sci. 354(2), 250–271 (2006)

4. Asarin, E., Dang, T., Maler, O., Testylier, R.: Using redundant constraints for
refinement. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252,
pp. 37–51. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15643-
4 5

5. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

6. Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A., Geretti, L., Villa, T.: Assume-
guarantee verification of nonlinear hybrid systems with Ariadne. Int. J. Robust
Nonlinear Control 24(4), 699–724 (2014)

7. Bogomolov, S., Frehse, G., Giacobbe, M., Henzinger, T.A.: Counterexample-guided
refinement of template polyhedra. In: Legay, A., Margaria, T. (eds.) TACAS 2017.
LNCS, vol. 10205, pp. 589–606. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54577-5 34

8. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: RTSS 2012, pp. 183–192 (2012)

9. Chen, X., Schupp, S., Makhlouf, I.B., Ábrahám, E., Frehse, G., Kowalewski, S.:
A benchmark suite for hybrid systems reachability analysis. In: Havelund, K.,
Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 408–414. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-17524-9 29

10. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald,
M.: Abstraction and counterexample-guided refinement in model checking of hybrid
systems. Int. J. Found. Comput. Sci. 14(04), 583–604 (2003)

11. Collins, P., Bresolin, D., Geretti, L., Villa, T.: Computing the evolution of hybrid
systems using rigorous function calculus. In: Proceedings of the 4th IFAC Con-
ference on Analysis and Design of Hybrid Systems (ADHS12), Eindhoven, The
Netherlands, pp. 284–290, June 2012

https://doi.org/10.1007/978-3-642-39799-8_22
https://doi.org/10.1007/978-3-642-15643-4_5
https://doi.org/10.1007/978-3-642-15643-4_5
https://doi.org/10.1007/978-3-662-54577-5_34
https://doi.org/10.1007/978-3-662-54577-5_34
https://doi.org/10.1007/978-3-319-17524-9_29

Space-Time Interpolants 485

12. Dang, T., Gawlitza, T.M.: Template-based unbounded time verification of affine
hybrid automata. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 34–49.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25318-8 6

13. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. STTT
10(3), 263–279 (2008)

14. Frehse, G., Bogomolov, S., Greitschus, M., Strump, T., Podelski, A.: Eliminating
spurious transitions in reachability with support functions. In: Proceedings of the
18th International Conference on Hybrid Systems: Computation and Control, pp.
149–158. ACM (2015)

15. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

16. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support
functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
540–554. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-
4 40

17. Halbwachs, N., Proy, Y.-E., Raymond, P.: Verification of linear hybrid systems
by means of convex approximations. In: Le Charlier, B. (ed.) SAS 1994. LNCS,
vol. 864, pp. 223–237. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58485-4 43

18. Henzinger, T., Ho, P.H., Wong-Toi, H.: HyTech: a model checker for hybrid sys-
tems. Softw. Tools Technol. Transf. 1, 110–122 (1997)

19. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems, vol. 170, pp. 265–292. Springer,
Heidelberg (2000). https://doi.org/10.1007/978-3-642-59615-5 13

20. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid
systems. IEEE Trans. Autom. Control 43, 540–554 (1998)

21. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? In: Proceedings of the Twenty-Seventh Annual ACM Sympo-
sium on Theory of Computing, 29 May–1 June 1995, Las Vegas, Nevada, USA, pp.
373–382 (1995)

22. Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear hybrid
automata using iterative relaxation abstraction. In: Bemporad, A., Bicchi, A., But-
tazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71493-4 24

23. Johansson, F.: Arb: efficient arbitrary-precision midpoint-radius interval arith-
metic. IEEE Trans. Comput. 66, 1281–1292 (2017)

24. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 15

25. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)

26. Nellen, J., Ábrahám, E., Wolters, B.: A CEGAR tool for the reachability analysis of
PLC-controlled plants using hybrid automata. In: Bouabana-Tebibel, T., Rubin,
S.H. (eds.) Formalisms for Reuse and Systems Integration. AISC, vol. 346, pp.
55–78. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16577-6 3

27. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint
propagation-based abstraction refinement. ACM Trans. Embed. Comput. Syst.
(TECS) 6(1), 8 (2007)

https://doi.org/10.1007/978-3-642-25318-8_6
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/3-540-58485-4_43
https://doi.org/10.1007/3-540-58485-4_43
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/978-3-540-71493-4_24
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-319-16577-6_3

486 G. Frehse et al.

28. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
29. Rohn, J.: Systems of linear interval equations. Linear Algebra Appl. 126, 39–78

(1989)
30. Roohi, N., Prabhakar, P., Viswanathan, M.: Hybridization based CEGAR for

hybrid automata with affine dynamics. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 752–769. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 48

31. Sankaranarayanan, S., Dang, T., Ivančić, F.: Symbolic model checking of hybrid
systems using template polyhedra. In: Ramakrishnan, C.R., Rehof, J. (eds.)
TACAS 2008. LNCS, vol. 4963, pp. 188–202. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3 14

32. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems
using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol.
3385, pp. 25–41. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30579-8 2

33. Segelken, M.: Abstraction and counterexample-guided construction of ω-automata
for model checking of step-discrete linear hybrid models. In: Damm, W., Hermanns,
H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 433–448. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73368-3 46

34. Sorea, M.: Lazy approximation for dense real-time systems. In: Lakhnech, Y.,
Yovine, S. (eds.) FORMATS/FTRTFT-2004. LNCS, vol. 3253, pp. 363–378.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3 25

35. Vaandrager, F.: Hybrid systems. Images of SMC Research, pp. 305–316 (1996)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-49674-9_48
https://doi.org/10.1007/978-3-662-49674-9_48
https://doi.org/10.1007/978-3-540-78800-3_14
https://doi.org/10.1007/978-3-540-78800-3_14
https://doi.org/10.1007/978-3-540-30579-8_2
https://doi.org/10.1007/978-3-540-30579-8_2
https://doi.org/10.1007/978-3-540-73368-3_46
https://doi.org/10.1007/978-3-540-30206-3_25
http://creativecommons.org/licenses/by/4.0/

Monitoring Weak Consistency

Michael Emmi1(B) and Constantin Enea2

1 SRI International, New York, NY, USA
michael.emmi@sri.com

2 IRIF, Univ. Paris Diderot and CRNS, Paris, France
cenea@irif.fr

Abstract. High-performance implementations of distributed and mul-
ticore shared objects often guarantee only the weak consistency of their
concurrent operations, foregoing the de-facto yet performance-restrictive
consistency criterion of linearizability. While such weak consistency is
often vital for achieving performance requirements, practical automa-
tion for checking weak-consistency is lacking. In principle, algorithmi-
cally checking the consistency of executions according to various weak-
consistency criteria is hard: in addition to the enumeration of lineariza-
tions of an execution’s operations, such criteria generally demand the
enumeration of possible visibility relations among the linearized opera-
tions; a priori, both enumerations are exponential.

In this work we identify an optimization to weak-consistency checking:
rather than enumerating every possible visibility relation, it suffices to
consider only the minimal visibility relations which adhere to the various
constraints of the given criterion, for a significant class of consistency cri-
teria. We demonstrate the soundness of this optimization, and describe
an associated minimal-visibility consistency checking algorithm. Empir-
ically, we show that our algorithm significantly outperforms the baseline
weak-consistency checking algorithm, which näıvely enumerates all vis-
ibilities, and adds only modest overhead to the baseline linearizability
checking algorithm, which does not enumerate visibilities.

Keywords: Linearizability · Consistency · Runtime verification

1 Introduction

Programming software applications that can deal with multiple clients at the
same time, and possibly, with clients that connect at different sites in a network,
relies on optimized concurrent or distributed objects which encapsulate lock-
free shared memory access or message passing protocols into high-level abstract
data types. Given the potentially-enormous amount of software that relies on

This work is supported in part by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agree-
ment No 678177).

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 487–506, 2018.
https://doi.org/10.1007/978-3-319-96145-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_26&domain=pdf

488 M. Emmi and C. Enea

these objects, it is important to maintain precise specifications and ensure that
implementations adhere to their specifications.

One of the standard correctness criteria used in this context is linearizabil-
ity (or strong consistency) [22], which ensures that the results of concurrently-
executed invocations match the results of some serial execution of those same
invocations. Ensuring such a criterion in a distributed context (when data is
replicated at different sites in a network) is practically infeasible or even impos-
sible [17,19]. Therefore, various weak consistency criteria have been proposed
like eventual consistency [23,36], “session guarantees” like read-my-writes or
monotonic-reads [35], causal consistency [25,28], etc.

An axiomatic framework for formalizing such criteria has been proposed by
Burckhardt et al. [9,11]. Essentially, this extends the linearizability-based spec-
ification methodology with a dynamic visibility relation among operations, in
addition to the standard dynamic happens-before and linearization relations.
Permitting weaker visibility relations models outcomes in which an operation
may not observe the effects of concurrent operations that are linearized before
it.

In this work, we propose an online monitoring algorithm that checks whether
an execution of a concurrent (or distributed) object satisfies a consistency model
defined in this axiomatic framework. This algorithm constructs a linearization
and visibility relation satisfying the axioms of the consistency model gradually
as the execution extends with more operations. It is possible that the lineariza-
tion and visibility constructed until some point in time are invalidated as more
operations get executed, which requires the algorithm to backtrack and search
for different candidates. This exponential blow-up is unavoidable since even the
problem of checking linearizability is NP-hard in general [18].

The main difficulty in devising such an algorithm is coming up with effi-
cient strategies for enumerating linearizations and visibility relations which min-
imize the number of candidates needed to be explored and the number of times
the algorithm has to backtrack. We build on previous works that propose such
strategies for enumerating linearizations [29,38] in the context of linearizabil-
ity checking. Roughly, the linearizations are extended iteratively by appending
operations which are minimal in the happens-before order (among non-linearized
operations). The choice of the minimal operations to append varies from one
approach to the other. Our work focuses on combining such strategies with an
efficient enumeration of visibility relations which are compatible with a given
linearization.

Rather than specializing our results to one single consistency model, we con-
sider a general class of consistency models from Burckhardt et al.’s axiomatic
framework [9,11] in which the visibility relation among operations is constrained
to be contained in the linearization relation. That class includes, for instance,
time-stamp based models employed in distributed object implementations, in
which time stamps serve to resolve conflicts by effectively linearizing concurrent
operations. We show that within this class of consistency models, it is not nec-
essary to enumerate the set of all possible visibility relations (included in the

Monitoring Weak Consistency 489

linearization) in order to check consistency of an execution. More precisely, we
develop an algorithm for enumerating visibility relations that traverses oper-
ations in linearization order and chooses for each operation o, a minimal set
of operations visible to o that conforms to the consistency axioms (up to the
linearization prefix that includes o). In general there may exist multiple such
minimal sets of operations, and each of them must be explored. When the visi-
bility relation cannot be extended, the algorithm needs to backtrack and choose
different minimal visibility sets for previous operations. However, when all the
minimal candidates have been explored, the algorithm can soundly report that
the execution is not consistent, without resorting to the exploration of non-
minimal visibility relations.

Besides demonstrating the soundness of minimal-visibility consistency check-
ing, we also demonstrate its empirical impact by applying our algorithm to con-
current traces of Java concurrent data structures. We find that our algorithm
consistently outperforms the baseline näıve approach to enumerating visibilities,
which considers also non-minimal visibility relations. Furthermore, we demon-
strate that minimal-visibility checking adds only modest overhead (roughly 2×)
to the baseline linearizability checking algorithm, which does not enumerate vis-
ibilities. This suggests that small sets of minimal visibilities typically suffice in
practice, and that the additional exponential enumeration of visibilities, atop
the exponential enumeration of linearizations, may be avoidable in practice.
Our implementation and experiments are open source, and publicly available
on GitHub.1

In summary, this work makes the following contributions:

– we develop a new minimal-visibility consistency-checking algorithm for Bur-
ckhardt et al.’s axiomatic consistency framework [9,11];

– we demonstrate the soundness of minimal-visibility consistency checking; and
– we demonstrate an empirical evaluation comparing minimal-visibility consis-

tency checking with the state-of-the-art consistency-checking algorithms.

To the best of our knowledge, our algorithm is the first completely automatic
algorithm for checking weak-consistency of arbitrary abstract data type imple-
mentations which avoids the näıve enumeration of all possible visibility relations.

The rest of this paper is organized as follows. Section 2 elaborates a formal-
ization of Burckhardt et al.’s axiomatic consistency framework [9,11], and Sect. 3
develops a formal argument to the soundness of considering only minimal visi-
bility relations. Section 4 describes our overall consistency checking algorithms,
and Sect. 5 describes our implementation and empirical evaluation. Section 6
describes related work, and finally Sect. 7 concludes.

2 Weak Consistency

We describe a formal model for concurrent (distributed) object implementations.
Clients interact with an object by making invocations from a set I and receiving
1 https://github.com/michael-emmi/violat/releases/tag/cav-2018-submission.

https://github.com/michael-emmi/violat/releases/tag/cav-2018-submission

490 M. Emmi and C. Enea

Fig. 1. A history h and an abstract execution containing h.

returns from a set R (parameters of invocations, if any, are part of the invocation
name). An operation is an invocation i ∈ I paired with a return r ∈ R; we
denote such an operation by i ⇒ r. We denote individual operations by o. The
invocation, resp., the return, in an operation o is denoted by inv(o), resp., ret(o).

The interaction between a client and an object is represented by a history
〈po, hb〉 over a set of operations O which consists of

– a program (order) po which is a partial order on O, and
– a happens-before (order) hb which is a partial order on O.

The program order is enforced by the client, e.g., by invoking a set of oper-
ations within the same thread or process, while the happens-before order repre-
sents the order in which the operations finished, i.e., (o1, o2) ∈ hb iff operation
o1 finished before o2 started. We assume that the program order is included in
the happens-before order.

Example 1. Let us consider a key-value map ADT containing operations of the
form put(key, value) ⇒ old, which insert key-value pairs and return previously-
mapped values for the given keys, remove(key) ⇒ value, which remove key map-
pings and return previously-mapped values, contains(value) ⇒ true/false,
which test whether values are currently mapped, and get(key) ⇒ value, which
return currently-mapped values for the given keys. Figure 1(a) pictures a history
h where edges denote the program order po and happens-before hb. Such a his-
tory can be obtained by a client with three threads each making two invocations
(the invocations within the same thread are aligned vertically).

The axiomatic specifications of concurrent objects we consider are based on
the following abstract representation of executions: an abstract execution over
operations O is a tuple 〈po, hb, lin, vis〉 that consists of a history 〈po, hb〉 over O,

– a linearization (order) lin2 which is a total order on O, and
– a visibility (relation) vis which is an acyclic relation on O.

2 The linearization is also called arbitration in previous works, e.g., [9].

Monitoring Weak Consistency 491

Intuitively, the visibility relation represents the inter-thread communication, how
effects of operations are visible to other threads, while the linearization order
models the “conflict resolution policy”, how the effects of concurrent operations
are ordered when they become visible to other threads.

We say that an operation o1 such that 〈o1, o2〉 ∈ vis is visible to o2, and that
o2 sees o1. Also, the set of operations visible to o2 is called the visibility set of o2.
The extensions of inv and ret to partial orders on O are defined component-wise
as usual.

Example 2. Figure 1(b) pictures an abstract execution containing the history in
Fig. 1(a). The visibility relation is defined by the edges labeled vis together with
their transitive closure. The linearization order is defined by the order in which
operations are written (from top to bottom).

A consistency criterion for concurrent objects is defined by a set of axioms
over the relations in an abstract execution. These axioms relate abstract execu-
tions to a sequential semantics of the operations, which is defined by a function
Spec : I

∗ × I → R that determines the return value of an invocation given the
sequence of invocations previously executed on the object3.

Example 3. The sequential semantics of the key-value map ADT considered
in Example 1 is defined as expected. For instance, the return value of
put(key, value) after a sequence of invocations σ is the value null if σ con-
tains no invocation put(key, . . .), or old if put(key, old) is the last invocation
of the form put(key, . . .) in σ.

The domain dom(R) of a relation R is the set of elements x such that 〈x, y〉 ∈
R for some y; the codomain codom(R) is the set of elements y such that 〈x, y〉 ∈ R
for some x. By an abuse of notation, if x is an individual element, x ∈ R denotes
the fact that x ∈ dom(R) ∪ codom(R). The (left) composition R1 ◦ R2 of two
binary relations R1 and R2 is the set of pairs 〈x, z〉 such that 〈x, y〉 ∈ R1 and
〈y, z〉 ∈ R2 for some y. We denote the identity binary relation {〈x, x〉 : x ∈ X}
on a set X by [X], and we write [x] to denote [{x}].

Return-value consistency [9], a variant of eventual consistency without live-
ness guarantees, states that the return r of every operation i ⇒ r can be obtained
from a sequential execution of i that follows the invocations visible to o (in the
linearization order). This constraint will be formalized as an axiom called Ret.
The visibility relation can be chosen arbitrarily. Standard “session guarantees”
can be described in the same framework by adding constraints on the visibility
relation: for instance, read my writes, i.e., operations previously executed in the
same thread remain visible, can be stated as vis ⊇ po and monotonic reads, i.e.,
the set of visible operations to some thread grows monotonically over time, can

3 Previous works have considered more general, concurrent semantics for operations.
We restrict ourselves to sequential semantics in order to simplify the exposition. Our
results extend easily to the general case.

492 M. Emmi and C. Enea

Fig. 2. The grammar of con-
sistency axioms.

Fig. 3. Consistency axiom satisfaction
for abstract executions. The satisfac-
tion relation |= is implicitly parame-
terized by a sequential semantics Spec
which we consider fixed.

be stated as vis ⊇ vis ◦ po. Then, a version of causal consistency [7,9], called
causal convergence, is defined by the following set of axioms:

vis ⊇ vis ◦ vis vis ⊇ po lin ⊇ vis Ret

which state that the visibility relation is transitive, it includes program order,
and it is included in the linearization order. Finally, linearizability is defined by
the set of axioms lin ⊇ hb, vis = lin, and Ret.

To state our results in a general context that concerns multiple consistency
criteria defined in the literature (including the ones mentioned above) and vari-
ations there of, we consider a language of consistency axioms φ defined by the
grammar in Fig. 2. A consistency model Φ is a set {φ1, φ2, . . .} of consistency
axioms.

In the following, we assume that every consistency model is stronger than
return-value consistency, and also, that the linearization order is consistent with
the visibility and happens-before relations. The assumptions concerning the lin-
earization order correspond to the fact that for instance, concurrent operations
are ordered using timestamps that correspond to real-time. Formally, we assume
that every consistency model contains the axioms

Φ0 = {Ret, lin ⊇ vis, lin ⊇ hb}.

Figure 3 defines the precise semantics of consistency axioms on abstract exe-
cutions: the context of an operation o according to a linearization lin and vis-
ibility vis, denoted ctxt(lin, vis, o) is the restriction ([Oo] ◦ lin ◦ [Oo]) of lin to
the operations Oo = dom(vis ◦ [o]) visible to o. For instance, for the abstract
execution in Fig. 1(b), ctxt(lin, vis, contains(0) ⇒ false) is the sequence of
operations put(1, 0) ⇒ null; get(1) ⇒ 0; put(1, 1) ⇒ 0.

We extend this semantics to consistency models as e |= Φ iff e |= φ for all
φ ∈ Φ and to histories as:

〈po, hb〉 |= Φ iff ∃lin, vis. 〈po, hb, lin, vis〉 |= Φ

Example 4. The abstract execution in Fig. 1(b) satisfies causal convergence:
the visibility relation is transitive, it includes program order, and it is con-
sistent with the linearization order. Moreover, the axiom Ret is also satisfied.

Monitoring Weak Consistency 493

For instance, the invocation contains(0) returns exactly false when executed
after put(1, 0); get(1); put(1, 1). Similarly, it returns true when executed after
put(1, 0); get(1); put(0, 0).

3 Minimal Visibility Extensions

Checking whether a given history satisfies a consistency model is intractable
in general. This essentially follows from the fact that checking linearizability
is NP-hard in general [18]. While the main issue in checking linearizability is
enumerating the exponentially many linearizations, checking weaker criteria like
causal convergence requires also an enumeration of the exponentially many visi-
bility relations (included in a given linearization). We prove in this section that
it is enough to enumerate only minimal visibility relations (w.r.t. set inclusion),
included in a given linearization, in order to conclude whether a given history
and linearization satisfy a consistency model.

A linearized history σ = 〈po, hb, lin〉 consists of a history and a linearization
lin such that lin ⊇ hb. The extension of |= to linearized histories is defined as:

〈po, hb, lin〉 |= Φ iff ∃vis. 〈po, hb, lin, vis〉 |= Φ

The i-th element of a sequence s is denoted by s[i] and the prefix of s of
length i is denoted by si. The projection of a linearized history σ = 〈po, hb, lin〉
to a prefix lini of lin is denoted by σi. Formally, Oi = dom(lini) ∪ codom(lini)
and σi = 〈po ∩ (Oi × Oi), hb ∩ (Oi × Oi), lini〉.

For a linearized history 〈po, hb, lin〉 and a consistency model Φ, a visibility
relation visi on operations from a prefix lini of lin is called Φ-extensible when
there exists a visibility relation vis ⊇ visi such that 〈po, hb, lin, vis〉 |= Φ. The
relation vis is called a Φ-extension of visi up to lin. By extrapolation, a Φ-
extension of visi up to linj is a visibility relation visj such that 〈σj , visj〉 |= Φ,
for any i < j. Such an extension is called minimal when for every other Φ-
extension vis ′

j of visi up to linj , we have that vis ′
j �⊆ visj .

Example 5. Consider again the abstract execution in Fig. 1(b). Ignoring the
edges labeled by vis, it becomes a linearized history σ. The prefix σ2 contains just
the two operations put(1, 0) ⇒ null and get(1) ⇒ 0. For causal convergence,
the visibility relation vis2 = {〈put(1, 0) ⇒ null, get(1) ⇒ 0〉} on operations of
σ2 is extensible, as witnessed by the visibility relation defined for the rest of the
operations in this execution. The visibility relation

vis3 ={〈put(1, 0) ⇒ null, get(1) ⇒ 0〉, 〈put(1, 0) ⇒ null, put(0, 0) ⇒ null〉,
〈get(1) ⇒ 0, put(0, 0) ⇒ null〉}

is an extension of vis2 up to lin3, and contains the operations in σ2 together with
put(0, 0) ⇒ null. Note that this extension is not minimal. A minimal extension
would be exactly equal to vis2 since, intuitively, put(0, 0) ⇒ null is not required
to observe operations on keys other than 0.

494 M. Emmi and C. Enea

The next lemma shows that minimizing the visibility sets of operations in
a linearization prefix, while preserving the truth of the axioms on that prefix,
doesn’t exclude visibility choices for future operations (occurring beyond that
prefix). In more precise terms, the Φ-extensibility status is not affected by choos-
ing smaller visibility sets for operations in a linearization prefix. For instance,
since the visibility vis3 in Example 5 is extensible (for causal convergence), the
smaller visibility relation in which put(0, 0) ⇒ null doesn’t see any operation,
is also extensible. This result relies on the specific form of the axioms, which
ensure that smaller visibility sets impose fewer constraints on the visibility sets
of future operations. For instance, the axiom vis ⊇ vis ◦ vis enforces that vis
contains {〈o, o2〉 : 〈o, o1〉 ∈ vis} whenever a pair 〈o1, o2〉 is added to vis. Mini-
mizing the visibility set of o1 will minimize the set of operations that must be
seen by o2, thus making the choice of the operations visible to o2 more liberal.

Lemma 1. For every linearized history σ and consistency model Φ, if

〈σi, visi〉 |= Φ, visi is Φ-extensible, 〈σi, vis ′
i〉 |= Φ, and vis ′

i ⊆ visi,

then vis ′
i is Φ-extensible.

Proof (Sketch). We show that the Φ-extension vis of visi up to lin can be trans-
formed to a Φ-extension of vis ′

i up to lin by simply removing the pairs of opera-
tions in visi \ vis ′

i. Let vis ′ be this visibility relation and Φ a consistency model.
We prove that 〈po, hb, lin, vis ′〉 |= Φ by considering the different types of axioms
defined in Fig. 2.

Suppose that Φ contains an axiom of the form vis ⊇ rel (according to the
notations in Fig. 2). We have that vis ′

i ⊇ (rel [po/po][hb/hb][lin/lin][vis ′/vis])◦[Oi]
by the hypothesis (from (σi, vis ′

i) |= Φ). Then, vis ′
i ⊆ visi implies that

(rel [po/po][hb/hb][lin/lin][vis/vis]) ◦ [O \ Oi]
⊇ (rel [po/po][hb/hb][lin/lin][vis ′/vis]) ◦ [O \ Oi]

which together with vis ′ ◦ [O \ Oi] = vis ◦ [O \ Oi] (the visibility relations vis
and vis ′ are the same for operations which are not included in the prefix lini)
implies that

vis ′ ◦ [O \ Oi] ⊇ (rel [po/po][hb/hb][lin/lin][vis ′/vis]) ◦ [O \ Oi].

Therefore, 〈po, hb, lin, vis ′〉 |= vis ⊇ rel .
The axiom Ret relates the return value of each operation o in σ to the set of

operations visible to o. This relation is insensitive to the set of operations seen
by an operation before o in the linearization order. Therefore, 〈po, hb, lin, vis ′〉 |=
Ret is an immediate consequence of (σi, vis ′

i) |= Ret and the fact that vis and
vis ′ are the same for operations which are not included in the prefix lini.

The axioms of the form lin ⊇ rel (according to the notations in Fig. 2) are
straightforward implications of lin ⊇ hb and lin ⊇ vis, which are assumed to be
included in any consistency model. They hold for any linearized history. ��

Monitoring Weak Consistency 495

The main result of this section shows that a visibility enumeration strategy
that considers operations in the linearization order and computes minimal exten-
sions iteratively, possibly backtracking to another choice of minimal extension
if necessary, is complete in general (it finds a visibility relation satisfying the
consistency axioms Φ iff the input linearized history satisfies Φ). Backtracking
is necessary since in general, there may exist multiple minimal extensions and
all of them should be explored. For a given linearized history σ and visibility
relation vis on operations of σ, visi = vis ◦ [Oi] denotes the restriction of vis to
operations from the prefix lini.

Theorem 1. For every linearized history σ and consistency model Φ, σ |= Φ iff
there exists a visibility relation vis such that

for every i, visi+1 is a minimal Φ-extension of visi up to lini+1.

Proof. (Sketch) Let σ be a linearized history such that σ |= Φ. Therefore, there
exists a visibility relation vis such that 〈σ, vis〉 |= Φ. We prove by induction
that there exists a visibility relation vis ′ satisfying the claim of the theorem.
Assume that there exists a Φ-extensible visibility relation visj on operations in
linj which satisfies the claim of the theorem for every i < j (we take vis0 = vis).
Let visj+1 be a minimal visibility relation on operations in linj+1 such that
visj+1 ◦ [Oj] = visj ◦ [Oj] and (σj+1, visj+1) |= Φ (such a set exists because visj

is Φ-extensible). By Lemma 1, visj+1 is Φ-extensible. Also, visj+1 satisfies the
claim of the theorem for every i < j + 1. The reverse direction is trivial. �

Example 6. In the context of the abstract execution in Fig. 1(b), the visibility
relation defined by removing the vis edge ending in put(0, 0) ⇒ null, and adding
the transitive closure, satisfies the requirements in Theorem 1.

4 Efficient Monitoring of Consistency Models

We describe an algorithm for checking whether a given history satisfies a con-
sistency model, which combines linearization enumeration strategies proposed
in [29,38] with the visibility enumeration strategy proposed in Sect. 3.

The algorithm is defined by the procedure checkConsistency listed in Fig. 4.
This recursive procedure searches for extensions of the input linearization and
visibility (initially, checkConsistency will be called with lin = vis = ∅) which
witness that the input history h satisfies Φ. It assumes that the inputs lin and vis
satisfy the axioms of the consistency model Φ when the input history is projected
on the linearized operations (the operations in lin). This projection is denoted
by hlin . Formally, the precondition of this procedure is that 〈hlin , lin, vis〉 |= Φ.

The extensions of lin and vis are built in successive steps. At each step, the
linearization is extended according to the procedure linExtensions and the
visibility according to the procedure visExtensions.

The abstract implementation of linExtensions, presented in Fig. 4, chooses
a set of non-linearized operations O which are minimal among non-linearized

496 M. Emmi and C. Enea

Fig. 4. Checking consistency of a history. The procedures linExtensions, resp.,
visExtensions return the set of linearizations, resp., visibilities, produced by the
instruction yield.

operations w.r.t. happens-before, i.e., returned by minimals(h, lin), and appends
any linearization of the operations in O to the input linearization lin. Formally,
O ⊆ {o : o �∈ lin and ∀o′. o′ �∈ lin ⇒ ¬o′ ≺ o}, where ≺ denotes the happens-
before relation. The fact that the operations in O are minimal among non-
linearized operations ensures that the returned linearizations are consistent with
the happens-before order.

Two linearization enumeration strategies proposed in the literature can be
seen as instances of linExtensions. The strategy in [38] corresponds to the case
where O contains exactly one minimal operation. For instance, for the history in
Fig. 1(a), this strategy will start by picking a minimal element in the happens-
before relation, say put(1, 0) ⇒ null, then, a minimal operation among the rest,
say get(1) ⇒ 0, and so on.

The strategy proposed in [29] is slightly more involved (and according to
experimental results, more efficient), but it relies on a presentation of histories h
as sequences of call and return actions (an operation spanning the time interval
between its call and return action). The happens-before order is extracted as
usual: an operation o1 happens before an operation o2 if its return occurs before
the call of o2. This strategy defines O as the first non-linearized operation o
that returned in h together with a set of non-linearized operations O′ that are
concurrent with o (i.e., are not ordered after o in the happens-before order). The
operation o is linearized last in the returned extensions. For instance, consider the
history h in Fig. 5 represented as a sequence of call/return actions (small boxes
at the begin, resp., end, of an interval denote call actions, resp., return actions).
The first linearization extension (when lin = ∅) includes put(1, 0) ⇒ null (the
first operation to return) after some sequence of operations concurrent with it, for

Monitoring Weak Consistency 497

Fig. 5. The history h in Fig. 1 presented as a sequence of call/return actions.

instance the empty sequence. Next, the current linearization put(1, 0) ⇒ null
can be extended by adding put(0, 0) ⇒ null (the first operation to return,
if we exclude put(1, 0) ⇒ null which is already linearized) and possibly
get(1) ⇒ 0 before it. Suppose that we choose put(1, 0) ⇒ null; get(1) ⇒
0; put(0, 0) ⇒ null. Then, the extension will include put(1, 1) ⇒ 0 and possibly
contains(0) ⇒ true or contains(0) ⇒ false, and so on. Compared to the
previous strategy, an extension step can add multiple operations.

The extensions of the visibility relation (returned by visExtensions) are
minimal Φ-extensions of vis up to the input linearization. They can be con-
structed iteratively by considering the newly linearized operations one by one
and each time compute a minimal extension of the visibility. For instance, the
linearization construction explained in the previous paragraph can be expanded
with a visibility enumeration as follows:

– lin = put(1, 0) ⇒ null: the minimal visibility is vis1 = ∅,
– lin = put(1, 0) ⇒ null; get(1) ⇒ 0; put(0, 0) ⇒ null: the minimal visibility

is vis2 = {〈put(1, 0) ⇒ null, get(1) ⇒ 0〉}, and so on.

The procedure checkConsistency backtracks to a different extension when
the current one cannot be completed to include all the operations in the input
history (checked by the recursive call). The correctness of the algorithm is stated
in the following theorem.

Theorem 2. checkConsistency(h, Φ, ∅, ∅) returns true iff h |= Φ.

5 Empirical Results

While our minimal-visibility consistency checking algorithm is applicable to
a wide class of distributed and multicore shared object implementations,
here we demonstrate its efficacy on histories recorded from executions of
Java Development Kit (JDK) Standard Edition concurrent data structures.
Recent work demonstrates that JDK concurrent data structures regularly admit

498 M. Emmi and C. Enea

non-atomic behaviors, often by design [14]; these weakly-consistent behav-
iors span many methods of the java.util.concurrent package, including the
ConcurrentHashMap, ConcurrentSkipListMap, ConcurrentSkipListSet, Concur-
rentLinkedQueue, and the ConcurrentLinkedDeque, for instance, including the
contains method described in Example 3.

We extracted 4,000 randomly-sampled histories from approximately 8,000
observed over approximately 1,000,000 executions in stress testing 20 randomly-
generated client programs of the ConcurrentSkipListMap with up to 15 invo-
cations across up to 3 threads. In each program, the given number of threads
invokes its share of randomly-generated methods with randomly-generated val-
ues. We consider random generation superior to collecting programs in the wild,
since found client programs can mask inconsistencies by restricting method argu-
ment values, or by being agnostic to inconsistent return values. Furthermore,
automated generation gives us the ability to evaluate our algorithm on unbiased
sample sets, and avoid any technical problems in the collection of programs; it
also allows us to test method combinations which might not appear in publicly-
available examples.

We subject each client program to 1 s of stress testing4 to record histories.
The return value of each invocation is stored in a different thread-local vari-
able which is read at the end of the execution. Recording the happens-before
order between invocations without affecting implementation behavior signifi-
cantly (e.g., without influencing the memory orderings between shared-memory
accesses) is challenging. For instance, we found the use of high-precision timers to
be unsuitable, since the response-time of System.nanoTime calls is much higher
than calls to the implementations under test; invoking such timers between each
invocation of implementation methods would prevent implementation methods
from overlapping in time, and thus hide any possible inconsistent behaviors. Sim-
ilarly, the use of atomic operations and volatile variables would impose additional
synchronization constraints and prevent many weak-memory reorderings.

Essentially, our solution is to introduce a shared variable per thread storing
its program counter – in our context, the program counter stores the number
of call and return events thus far executed. A thread’s program counter is read
by every other thread before and after each invocation. Figure 6 demonstrates a
simplified version5 of our encoding for a program with two threads each invok-
ing two methods. The program counter variables pc0 and pc1 are not declared
volatile, which, in principle, provides stronger guarantees concerning the derived
happens-before relation; such declarations would interfere with implementation
weak-memory effects. The program counter values read by each thread allows
4 For stress testing we leverage OpenJDK’s JCStress tool: http://openjdk.java.net/

projects/code-tools/jcstress/.
5 In our actual implementation, each program-counter access is encapsulated within a

method call in order to avoid compiler reordering between the reads of other threads’
counters and the increment of one’s own. While the Java memory model does not
guarantee that such encapsulation will prevent reordering, we found this solution to
be adequate on Oracle’s Java SE runtime version 9. Our actual implementation also
wraps invocations in try-catch blocks to deal with exceptions.

http://openjdk.java.net/projects/code-tools/jcstress/
http://openjdk.java.net/projects/code-tools/jcstress/

Monitoring Weak Consistency 499

Fig. 6. Our encoding for recording ConcurrentHashMap histories. Each thread’s pro-
gram counter is read before and after other threads’ invocations, and incremented sub-
sequent to each such read. The two-dimensional pcs[n][m] array stores n program
counter values for m neighboring threads.

us to extract a happens-before order between invocations which is sound in the
sense that the actual happens-before may order more operations, but not fewer
– assuming that shared-memory accesses satisfy at least the total-store order
(TSO) semantics in which writes are guaranteed to be performed according to
program order. For instance, when pcs[0][0] > 2 in the second thread (thread1),
the first invocation in the other thread (thread0) happens-before the first invo-
cation in this thread. Otherwise, if pcs[0][0] < 2, then the two invocations are
overlapping in time. The latter may not be true in the real happens-before due to
the delay in incrementing and reading the program counter variables. Although
some loss of precision is possible, we are unaware of other methods for track-
ing happens-before which avoid significant interference with the implementation
under test.

Based on the encoding described above, we generate histories as sequences
of call and return actions which serve as input to our consistency checking algo-
rithms. For simplicity, we have considered just two consistency models, lineariz-
ability and a weak consistency model defined by {Ret, lin ⊇ vis, lin ⊇ hb, vis ⊇ hb}
– see Sect. 2. We consider linearizability in order to measure the overhead of
checking weak consistency due to visibility enumeration; the second model is
simply the easiest weak-consistency model to support with our implementation;
the choice among possible weak-consistency models appears fairly arbitrary, since
the enumeration of visibility relations is common to all.

We consider several measurements, the results of which are listed in Figs. 7
and 8; all times are measured in milliseconds on logarithmic scale on a 2.7 GHz
Intel Core i5 MacBook Pro with Oracle–s Java SE runtime version 9; and

500 M. Emmi and C. Enea

Fig. 7. Empirical comparison of (left) standard linearizability checking versus just-in-
time linearizability checking on concurrent traces of Java data structures; and (right)
weak-consistency checking versus standard linearizability checking. Each point reflects
the time in milliseconds for checking a given trace.

timeouts are set to 1000 ms. We note that while accurate and recording of oper-
ation timings within an execution without interference is challenging, timing the
validation of each recorded history, which we report here, is accomplished accu-
rately, without interference, by computing the clock difference just before and
after validation.

Our first measurements establish the baseline linearizability and weak-
consistency checking algorithms. On the left side of Fig. 7 we consider the time
required to check linearizability for each history by our own implementations
of Wing and Gong’s standard enumerative approach [38], along with Lowe’s
“just-in-time linearizability” algorithm [29] – see Sect. 4. We resolve the non-
determinism in these algorithms (e.g., in choosing which pending operation to
attempt linearizing first) arbitrarily (e.g., first called), finding no clear winner:
each algorithm performs better on some histories. Since these subtleties are out-
side the scope of our work, we avoid further investigation and choose Wing and
Gong’s algorithm as our baseline linearizability-checking algorithm.

Our second measurement exposes the overhead of enumerating visibility
relations for checking weak consistency. On the right side of Fig. 7 we con-
sider the time required to check weak consistency of a given history versus the
time required to check its linearizability.6 We observe an overhead of approxi-
mately 10× due to visibility enumeration and validation. Our näıve implemen-
tation enumerates candidate visibilities in size-decreasing order since we expect
visibility-loss to be the exception rather than the rule; for instance, atomic opera-
tions observe all linearized-before operations. We omit the analogous comparison
between weak-consistency checking and just-in-time linearizability checking to
avoid redundancy, since the just-in-time optimization is a seemingly-insignificant
factor in our experiments: the results are nearly identical.

6 Due to a benign error in the decoding of results of stress testing, we observe one
single point on which the two algorithms conflict – labeled by “Unknown.”.

Monitoring Weak Consistency 501

Fig. 8. Empirical comparison of (left) standard weak-consistency checking versus
minimal-visibility weak-consistency checking on concurrent traces of Java data struc-
tures; and (right) the latter versus standard linearizability checking. Each point reflects
the time in milliseconds for checking a given trace.

Our third measurement demonstrates the impact of our minimal-visibility
consistency checking optimization. On the left side of Fig. 8 we consider the
time required to check weak consistency without and with our optimization. The
difference is dramatic, with our optimized algorithm consistently outperforming,
sometimes up to multiple orders of magnitude: the leftmost 1000 ms timeout
of the näıve algorithm is matched by a roughly 18 ms positive identification.
Finally, our fourth measurement, on the right side of Fig. 8, demonstrates that
the overhead of our minimal-visibility checking algorithm over linearizability
checking is quite modest: we observe roughly a 2× overhead, compared with the
observed 10× overhead without optimization.

While our experiments clearly demonstrate the efficacy of our minimal-
visibility consistency checking algorithm, we will continue to evaluate this opti-
mization across a wide range of concurrent objects, consistency models, and
client programs, e.g., including many more concurrent threads. While we do
expect the performance of linearizability- and weak-consistency checking to vary
with thread count, we expect the performance gains of minimal-visibility consis-
tency checking to continue to hold.

6 Related Work

Herlihy and Wing [22] described linearizability, which is the standard consistency
criterion for shared-memory concurrent objects. Motivated by replication-based
distributed systems, Burckhardt et al. [9,11] describe a more general axiomatic
framework for specifying weaker consistencies like eventual consistency [36] and
causal consistency [2]. Our weak consistency checking algorithm applies to con-
sistency models described in this framework.

While several static techniques have been developed to prove linearizabil-
ity [1,4,6,12,13,21,22,24,26,27,30–34,37,39], few have addressed dynamic tech-
niques such as testing and runtime verification. The works in [29,38] describe

502 M. Emmi and C. Enea

monitors for checking linearizability that construct linearizations of a given his-
tory incrementally, in an online fashion. Line-Up [10] performs systematic con-
currency testing via schedule enumeration, and offline linearizability checking
via linearization enumeration. Our weak consistency checking algorithm com-
bines these approaches with an efficient enumeration of visibility relations. The
works in [15,16] propose a symbolic enumeration of linearizations based on a
SAT solver. Although more efficient in practice, this approach applies only to
certain ADTs. In this work, we propose a generic approach that assumes no
constraints on the sequential semantics of the concurrent objects.

Bouajjani et al. [7] consider the problem of verifying causal consistency. They
propose an algorithm for checking whether a given execution satisfies causal
consistency, but only for the key-value map ADT with simple put and get
operations. Our work proposes a generic algorithm that can deal with various
weak consistency criteria and ADTs.

From the complexity standpoint, Gibbons and Korach [18] showed that mon-
itoring even the single-value register type for linearizability is np-hard. Alur
et al. [3] showed that checking linearizability of all executions of a given imple-
mentation is in expspace when the number of concurrent operations is bounded,
and then Hamza [20] established expspace-completeness. Bouajjani et al. [5]
showed that the problem becomes undecidable once the number of concurrent
operations is unbounded. Also, Bouajjani et al. [7,8] investigate various ADTs
for which the problems of checking eventual and causal consistency are decidable.

7 Conclusion

We have developed the first completely-automatic algorithm for checking weak
consistency of arbitrary concurrent object implementations which avoids the
näıve enumeration of all possible visibility relations. While methodologies for
constructing reliable yet weakly-consistent implementations are relatively imma-
ture, we believe that such implementations will continue to be important for the
development of distributed and multicore software systems. Likewise, automa-
tion for testing and verifying such implementations is, and will increasingly be,
important. Besides improving state-of-the-art verification algorithms, our results
represent an important step for future research which may find other ways to
exploit the soundness of considering only minimal visibilities, on which our opti-
mized algorithm relies.

References

1. Abdulla, P.A., Haziza, F., Hoĺık, L., Jonsson, B., Rezine, A.: An integrated speci-
fication and verification technique for highly concurrent data structures. In: Piter-
man, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 324–338. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 23

2. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory: def-
initions, implementation, and programming. Distrib. Comput. 9(1), 37–49 (1995).
https://doi.org/10.1007/BF01784241

https://doi.org/10.1007/978-3-642-36742-7_23
https://doi.org/10.1007/BF01784241

Monitoring Weak Consistency 503

3. Alur, R., McMillan, K.L., Peled, D.A.: Model-checking of correctness conditions
for concurrent objects. Inf. Comput. 160(1–2), 167–188 (2000). https://doi.org/
10.1006/inco.1999.2847

4. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison under abstrac-
tion for verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 477–490. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73368-3 49

5. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs
against sequential specifications. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 290–309. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37036-6 17

6. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Tractable refinement checking
for concurrent objects. In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, 15–17 January 2015, Mumbai, India, pp. 651–662. ACM
(2015). https://doi.org/10.1145/2676726.2677002

7. Bouajjani, A., Enea, C., Guerraoui, R., Hamza, J.: On verifying causal consistency.
In: Castagna, G., Gordon, A.D. (eds.) Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, 18–20 January
2017, Paris, France, pp. 626–638. ACM (2017). http://dl.acm.org/citation.cfm?
id=3009888

8. Bouajjani, A., Enea, C., Hamza, J.: Verifying eventual consistency of optimistic
replication systems. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2014, 20–21 January 2014, San Diego, CA, USA, pp. 285–296. ACM (2014).
https://doi.org/10.1145/2535838.2535877

9. Burckhardt, S.: Principles of eventual consistency. Found. Trends Program. Lang.
1(1–2), 1–150 (2014). https://doi.org/10.1561/2500000011

10. Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-up: a complete and auto-
matic linearizability checker. In: Zorn, B.G., Aiken, A. (eds.) Proceedings of the
2010 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2010, 5–10 June 2010, Toronto, Ontario, Canada, pp. 330–340.
ACM (2010). https://doi.org/10.1145/1806596.1806634

11. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-
ification, verification, optimality. In: Jagannathan, S., Sewell, P. (eds.) The 41st
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2014, 20–21 January 2014, San Diego, CA, USA, pp. 271–284. ACM
(2014). https://doi.org/10.1145/2535838.2535848

12. Dodds, M., Haas, A., Kirsch, C.M.: A scalable, correct time-stamped stack.
In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2015, 15–17 January 2015, Mumbai, India, pp. 233–246. ACM (2015). https://doi.
org/10.1145/2676726.2676963

13. Drăgoi, C., Gupta, A., Henzinger, T.A.: Automatic linearizability proofs of con-
current objects with cooperating updates. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 174–190. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 11

14. Emmi, M., Enea, C.: Exposing non-atomic methods of concurrent objects. CoRR
abs/1706.09305 (2017). http://arxiv.org/abs/1706.09305

https://doi.org/10.1006/inco.1999.2847
https://doi.org/10.1006/inco.1999.2847
https://doi.org/10.1007/978-3-540-73368-3_49
https://doi.org/10.1007/978-3-540-73368-3_49
https://doi.org/10.1007/978-3-642-37036-6_17
https://doi.org/10.1007/978-3-642-37036-6_17
https://doi.org/10.1145/2676726.2677002
http://dl.acm.org/citation.cfm?id=3009888
http://dl.acm.org/citation.cfm?id=3009888
https://doi.org/10.1145/2535838.2535877
https://doi.org/10.1561/2500000011
https://doi.org/10.1145/1806596.1806634
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/2676726.2676963
https://doi.org/10.1145/2676726.2676963
https://doi.org/10.1007/978-3-642-39799-8_11
https://doi.org/10.1007/978-3-642-39799-8_11
http://arxiv.org/abs/1706.09305

504 M. Emmi and C. Enea

15. Emmi, M., Enea, C.: Sound, complete, and tractable linearizability monitoring for
concurrent collections. PACMPL 2(POPL), 25:1–25:27 (2018). https://doi.org/10.
1145/3158113

16. Emmi, M., Enea, C., Hamza, J.: Monitoring refinement via symbolic reasoning.
In: Grove, D., Blackburn, S. (eds.) Proceedings of the 36th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, 15–17 June 2015,
Portland, OR, USA, pp. 260–269. ACM (2015). https://doi.org/10.1145/2737924.
2737983

17. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985). https://doi.org/10.1145/
3149.214121

18. Gibbons, P.B., Korach, E.: Testing shared memories. SIAM J. Comput. 26(4),
1208–1244 (1997). https://doi.org/10.1137/S0097539794279614

19. Gilbert, S., Lynch, N.A.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002). https://
doi.org/10.1145/564585.564601

20. Hamza, J.: On the complexity of linearizability. In: Bouajjani, A., Fauconnier,
H. (eds.) NETYS 2015. LNCS, vol. 9466, pp. 308–321. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26850-7 21

21. Henzinger, T.A., Sezgin, A., Vafeiadis, V.: Aspect-oriented linearizability proofs.
In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp.
242–256. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40184-
8 18

22. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990). https://doi.
org/10.1145/78969.78972

23. Kawell Jr., L., Beckhardt, S., Halvorsen, T., Ozzie, R., Greif, I.: Replicated docu-
ment management in a group communication system. In: Proceedings of the 1988
ACM Conference on Computer-Supported Cooperative Work, p. 395. CSCW 1988.
ACM, New York (1988). https://doi.org/10.1145/62266.1024798

24. Khyzha, A., Gotsman, A., Parkinson, M.: A generic logic for proving linearizability.
In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS,
vol. 9995, pp. 426–443. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48989-6 26

25. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978). https://doi.org/10.1145/359545.359563

26. Liang, H., Feng, X.: Modular verification of linearizability with non-fixed lineariza-
tion points. In: Boehm, H., Flanagan, C. (eds.) ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2013, 16–19 June 2013,
Seattle, WA, USA, pp. 459–470. ACM (2013). https://doi.org/10.1145/2462156.
2462189

27. Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model checking linearizability via refinement.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 321–337.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3 21

28. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for even-
tual: scalable causal consistency for wide-area storage with COPS. In: Wobber,
T., Druschel, P. (eds.) Proceedings of the 23rd ACM Symposium on Operating
Systems Principles 2011, SOSP 2011, 23–26 October 2011, Cascais, Portugal, pp.
401–416. ACM (2011). https://doi.org/10.1145/2043556.2043593

29. Lowe, G.: Testing for linearizability. Concurr. Comput.: Pract. Exp. 29(4) (2017).
https://doi.org/10.1002/cpe.3928

https://doi.org/10.1145/3158113
https://doi.org/10.1145/3158113
https://doi.org/10.1145/2737924.2737983
https://doi.org/10.1145/2737924.2737983
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1137/S0097539794279614
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1007/978-3-319-26850-7_21
https://doi.org/10.1007/978-3-642-40184-8_18
https://doi.org/10.1007/978-3-642-40184-8_18
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/62266.1024798
https://doi.org/10.1007/978-3-319-48989-6_26
https://doi.org/10.1007/978-3-319-48989-6_26
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/2462156.2462189
https://doi.org/10.1145/2462156.2462189
https://doi.org/10.1007/978-3-642-05089-3_21
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1002/cpe.3928

Monitoring Weak Consistency 505

30. O’Hearn, P.W., Rinetzky, N., Vechev, M.T., Yahav, E., Yorsh, G.: Verifying lin-
earizability with hindsight. In: Richa, A.W., Guerraoui, R. (eds.) Proceedings of
the 29th Annual ACM Symposium on Principles of Distributed Computing, PODC
2010, 25–28 July 2010, Zurich, Switzerland, pp. 85–94. ACM (2010). https://doi.
org/10.1145/1835698.1835722

31. Schellhorn, G., Wehrheim, H., Derrick, J.: How to prove algorithms linearisable.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 243–259.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 21

32. Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained con-
current programs. In: Grove, D., Blackburn, S. (eds.) Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, 15–17 June 2015, Portland, OR, USA, pp. 77–87. ACM (2015). https://doi.
org/10.1145/2737924.2737964

33. Sergey, I., Nanevski, A., Banerjee, A.: Specifying and verifying concurrent algo-
rithms with histories and subjectivity. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol.
9032, pp. 333–358. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46669-8 14

34. Shacham, O., Bronson, N.G., Aiken, A., Sagiv, M., Vechev, M.T., Yahav, E.:
Testing atomicity of composed concurrent operations. In: Lopes, C.V., Fisher, K.
(eds.) Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2011,
part of SPLASH 2011, 22–27 October 2011, Portland, OR, USA, pp. 51–64. ACM
(2011). https://doi.org/10.1145/2048066.2048073

35. Terry, D.B., Demers, A.J., Petersen, K., Spreitzer, M.J., Theimer, M.M., Welch,
B.B.: Session guarantees for weakly consistent replicated data. In: Proceedings of
the Third International Conference on on Parallel and Distributed Information
Systems, PDIS 1994, pp. 140–150. IEEE Computer Society Press, Los Alamitos
(1994). http://dl.acm.org/citation.cfm?id=381992.383631

36. Terry, D.B., Theimer, M., Petersen, K., Demers, A.J., Spreitzer, M., Hauser, C.:
Managing update conflicts in bayou, a weakly connected replicated storage system.
In: Jones, M.B. (ed.) Proceedings of the Fifteenth ACM Symposium on Operating
System Principles, SOSP 1995, 3–6 December 1995, Copper Mountain Resort,
Colorado, USA, pp. 172–183. ACM (1995). https://doi.org/10.1145/224056.224070

37. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14295-6 40

38. Wing, J.M., Gong, C.: Testing and verifying concurrent objects. J. Parallel Distrib.
Comput. 17(1–2), 164–182 (1993). https://doi.org/10.1006/jpdc.1993.1015

39. Zhang, S.J.: Scalable automatic linearizability checking. In: Taylor, R.N., Gall,
H.C., Medvidovic, N. (eds.) Proceedings of the 33rd International Conference on
Software Engineering, ICSE 2011, 21–28 May 2011, Waikiki, Honolulu, HI, USA,
pp. 1185–1187. ACM (2011). https://doi.org/10.1145/1985793.1986037

https://doi.org/10.1145/1835698.1835722
https://doi.org/10.1145/1835698.1835722
https://doi.org/10.1007/978-3-642-31424-7_21
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1145/2048066.2048073
http://dl.acm.org/citation.cfm?id=381992.383631
https://doi.org/10.1145/224056.224070
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1006/jpdc.1993.1015
https://doi.org/10.1145/1985793.1986037

506 M. Emmi and C. Enea

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Monitoring CTMCs by Multi-clock
Timed Automata

Yijun Feng1, Joost-Pieter Katoen2(B) , Haokun Li1(B), Bican Xia1(B),
and Naijun Zhan3,4(B)

1 LMAM and School of Mathematical Sciences, Peking University, Beijing, China
ker@protonmail.ch, xbc@math.pku.edu.cn

2 RWTH Aachen University, Aachen, Germany
katoen@cs.rwth-aachen.de

3 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

znj@ios.ac.cn
4 University of Chinese Academy of Sciences, Beijing, China

Abstract. This paper presents a numerical algorithm to verify
continuous-time Markov chains (CTMCs) against multi-clock determin-
istic timed automata (DTA). These DTA allow for specifying properties
that cannot be expressed in CSL, the logic for CTMCs used by state-
of-the-art probabilistic model checkers. The core problem is to compute
the probability of timed runs by the CTMC C that are accepted by the
DTA A. These likelihoods equal reachability probabilities in an embed-
ded piecewise deterministic Markov process (EPDP) obtained as product
of C and A’s region automaton. This paper provides a numerical algo-
rithm to efficiently solve the PDEs describing these reachability probabil-
ities. The key insight is to solve an ordinary differential equation (ODE)
that exploits the specific characteristics of the product EPDP. We pro-
vide the numerical precision of our algorithm and present experimental
results with a prototypical implementation.

1 Introduction

Continuous-time Markov chains (CTMCs) [17] are ubiquitous. They are used to
model safety-critical systems like communicating networks and power manage-
ment systems, are key to performance and dependability analysis, and naturally
describe chemical reaction networks. The algorithmic verification of CTMCs
has received quite some attention. Aziz et al. [3] proved that verifying CTMCs
against CSL (Continuous Stochastic Logic) is decidable. CSL is a probabilistic
and timed branching-time logic that allows for expressing properties like “is the
probability of a given chemical reaction within 50 time units at least 10−3?”.
Baier et al. [5] gave efficient numerical algorithms for CSL model checking that
nowadays provide the basis of CTMC model checking in PRISM [23], MRMC [22]
and Storm [15], as well as GreatSPN [2]. Extensions of CSL to cascaded timed-
until operators [27], conditional probabilities [19], and (simple) timed regular
expressions [4] have been considered.
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 507–526, 2018.
https://doi.org/10.1007/978-3-319-96145-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_27&domain=pdf
http://orcid.org/0000-0002-6143-1926
http://orcid.org/0000-0003-3298-3817

508 Y. Feng et al.

This paper considers the verification of CTMCs against linear-time real-time
properties. These include relevant properties in the design of a gas burner [28],
like “the probability that the duration of leaking is more than one twentieth
over an interval with a length more than 20 s is less than 10−6”. Such real-
time properties can be conveniently expressed by deterministic timed automata
(DTA) [1]. The core problem in the verification of CTMC C against DTA A
is to compute the probability of C’s timed runs that are accepted by A, i.e.
Pr (C |= A). Chen et al. [10,11] showed that this quantity equals the reachability
probability in a piecewise deterministic Markov process (PDP) [14]. This PDP
is obtained by taking the product of CTMC C and the region automaton of A.
Computing reachability probabilities in PDPs is a challenge.

Practical implementations of verifying CTMCs against DTA specifications
are rare. Barbot et al. [7] showed that for single-clock DTA, the PDP is in
fact a Markov regenerative process. (This observation is also at the heart of
model-checking CSLTA [16].) This implies that for single-clock DTA, off-the-
shelf CSL model-checking algorithms can be employed resulting in an efficient
procedure [7]. Mikeev et al. [24] generalised these ideas to infinite-state CTMCs
obtained from stoichiometric equations, whereas Chen et al. [12] showed the the-
ory to generalize verifying single-clock DTA to continuous-time Markov decision
processes.

Multi-clock DTA are however much harder to handle. The characterisation
of PDP reachability probabilities as the unique solution of a set of partial dif-
ferential equations (PDEs) [10,11] does not give insight into an efficient compu-
tational procedure. With the notable exception of [25], verifying PDPs has not
been considered. Fu [18] provided an algorithm to approximate the probabilities
using finite difference methods and gave an error bound. This method hampers
scalability and therefore was never implemented. The same holds for model-
checking using other linear-time real-time formalisms such as MTL and timed
automata [9], linear duration invariants [8], and probabilistic duration calculus
[13]. All these multi-clock approaches suffer from scalability issues due to the
low efficiency of solving PDEs and/or integral equations on which they heavily
depend.

This paper presents a numerical technique to approximate the reachability
probability in the product PDP. The DTA A is approximated by DTA A[tf]
which extends A with an additional clock that is never reset and that needs
to be at most tf when accepting. By increasing the time-bound tf , DTA A[tf]
approximates A arbitrarily closely. We show that the set of PDPs characterizing
the reachability probability in the embedded PDP of C and A[tf] can be reduced
to solving an ordinary differential equation (ODE). The specific characteristics
of the product EPDP, in particular the fact that all clocks run at the same pace,
are key to obtain these ODEs. Our numerical algorithm to solve the ODEs is
based on computing the approximations in a backward manner using tf and
the sum of all clocks. The complexity of the resulting procedure is linear in the
EPDP size, and exponential in � tf

δ � where δ is the discretization step size. We
show the approximations converges to the real solution of the ODEs at a linear

Monitoring CTMCs by Multi-clock Timed Automata 509

speed of δ. Using a prototypical tool implementation we present some results
on a number of case studies such as robot navigation with varying number of
clocks in their specification. The experimental results show promising results for
checking CTMCs against multi-clock DTA.

Organization of the Paper. Section 2 introduces basic notions including
CTMCs, DTA, and PDPs. Section 3 presents the product of a CTMC and the
region graph of a DTA and shows this is an embedded PDP. Section 4 derives the
PDE (fixing some flaw in [10]), the reduction to the set of ODEs and presents the
numerical algorithm to solve these ODEs. Section 5 presents the experimental
results and Sect. 6 concludes.

2 Preliminaries

In this section, we introduce some basic notions which will be used later.
A probability space is denoted by a triple (Ω,F ,Pr), where Ω is a set of

samples, F is a σ-algebra over Ω, and Pr : F → [0, 1] is a probability measure
on F with Pr(Ω) = 1. Let Pr(Ω) denote the set of all probability measures over
Ω. For a random variable X on the probability space, its expectation is denoted
by E(X).

2.1 Continuous-Time Markov Chain (CTMC)

Definition 1 (CTMC). A CTMC is a tuple C = (S,P, α,AP, L,E), where

– S is a finite set of states;
– P: S × S → [0, 1] is the transition probability function, which is identified

with the matrix P ∈ [0, 1]|S|×|S| such that
∑

t∈S P(s, t) = 1, for all s ∈ S;
– α ∈ Pr(S) is the initial distribution;
– AP is a finite set of atomic propositions;
– L : S → 2AP is a labeling function; and
– E : S → R>0 is the exit rate function.

We denote by s
t−→ s′ a transition from state s to state s′ after residing in state

s for t time units. The probability of the occurrence of this transition within t
time units is P(s, s′)

∫ t

0
E(s) exp−E(s)x dx, where

∫ t

0
E(s) exp−E(s)x dx stands for

the probability to leave state s in t time units, and P(s, s′) for the probability
to select the transition to s′ from all transitions outgoing from s. A state s is
called absorbing if P(s, s) = 1. Given a CTMC C, removing the exit rate function
E results in a discrete-time Markov chain (DMTC), which is called embedded
DTMC of C. A CTMC C is called irreducible if there exists a unique stationary
distribution α, such that α(s) > 0 for all s ∈ S, and weakly irreducible if α(s)
may be zero for some s ∈ S.

Definition 2 (CTMC Path). Let C be a CTMC, a path ρ of C starting form s0

with length n is a sequence ρ = s0
t0−→ s1

t1−→ . . .
tn−1−−−→ sn ∈ S × (R>0 × S)n. The

510 Y. Feng et al.

set of paths in C with length n is denoted by PathC
n; the set of all finite paths of C

is PathC
fin = ∪nPathC

n and the set of infinite paths of C is PathC
inf = (S × R>0)ω.

We use PathC = PathC
fin ∪ PathC

inf to denote all paths in C. As a convention, ε
stands for the empty path.

Note that we assume the time to exit a state is strictly greater than 0. For
an infinite path ρ, we use Pref(ρ) to denote the set of its finite prefixes. For a
(finite or infinite) path ρ with prefix s0

t0−→ s1
t1−→ . . ., the trace of the path is

the sequence of states trace(ρ) = s0s1 Let ρ(n) = sn be the n-th state in
the path and ρ[n] = tn be the corresponding exit time for sn. For a finite path

ρ = s0
t0−→ s1

t1−→ . . .
tn−1−−−→ sn, we use T (ρ) =

∑n−1
i=0 ti to denote the total time

spent on this path if n ≥ 1, otherwise T (ρ) = 0. For a time t ≤ T (ρ), ρ(0 . . . t)

denotes the prefix of ρ within t time units, i.e., s0
t0−→ s1

t1−→ . . .
tm−1−−−→ sm if there

exists some m ≤ n with
∑m−1

i=0 ρ[m] ≤ t ∧ ∑m
i=0 ρ[m] > t, otherwise ε.

A basic cylinder set C(s0, I0, · · · , In−1, sn) consists of all paths ρ ∈ PathC

such that ρ(i) = si for 0 ≤ i ≤ n, and ρ[i] ∈ Ii for 0 ≤ i < n. Then the
σ−algebra Fs0(C) associated with CTMC C and initial state s0 is the smallest
σ−algebra that contains all cylinder sets C(s0, I0, · · · , In−1, sn) with α(s0) > 0,
and P(si, si+1) > 0, for 1 ≤ i ≤ n, and I0, . . . , In−1 are non-empty intervals in
R≥0. There is a unique probability measure PrC on the σ−algebra Fs0(C), by
which the probability for a cylinder set is given by

PrC(C(s0, I0, · · · , In, sn)) = α(s0) ·
n∏

i=1

∫

Ii

E(si−1) exp−E(si−1)x dx · P(si−1, si)

Example 1. An example of CTMC is shown in Fig. 1, with AP = {a, b, c} and
initial state s0. The exit rate ri, i = 0, 1, 2, 3 and transition probability are
shown in the figure.

Fig. 1. An example of CTMC

2.2 Deterministic Timed Automaton (DTA)

A timed automaton is a finite state graph equipped with a finite set of non-
negative real-valued clock variables, or clocks for short. Clocks can only be

Monitoring CTMCs by Multi-clock Timed Automata 511

reset to zero, or proceed with rate 1 as time progresses independently. Let
X = {x1, . . . , xn} be a set of clocks. η(x) : X → R≥0 is a X -valuation which
records the amount of time since its last reset. Let Val(A) be the set of all clock
valuations of A. For a subset X ⊆ X , the reset of X, denoted as η[X := 0], is
the valuation η′ such that η′(x) = 0,∀x ∈ X, and η′(x) = η(x), otherwise. For
d ∈ R>0, (η + d)(x) = η(x) + d for any clock x ∈ X .

A clock constraint over X is a formula with the following form

g := x < c | x ≤ c | x > c | x ≥ c | x − y ≥ c | g ∧ g,

where x, y are clocks, c ∈ N. Let Con(X) denote the set of clock constraints over
X . A valuation η satisfies a guard g, denoted as η |= g, iff η(x) 	
 c when g is
x 	
 c, where 	
∈ {<,≤, >,≥}; and η |= g1 and η |= g2 iff g = g1 ∧ g2.

Definition 3 (DTA). A DTA is a tuple A = (Σ,X , Q, q0, QF , ↪→), where

– Σ is a finite set of actions;
– X is a finite set of clocks;
– Q is a finite set of locations;
– q0 ∈ Q is the initial location;
– QF ⊆ Q is the set of accepting locations;
– ↪→∈ (Q\QF) × Σ × Con(X) × 2X × Q is the transition relation, satisfying if

q
a,g,X

↪−−−→ q′ and q
a,g′,X′

↪−−−−→ q′′ with q′ �= q′′ then g ∩ g′ = ∅.
Each transition relation, or edge, q ↪→ q′ in A is endowed with (a, g,X),

where a ∈ Σ is an action, g ∈ Con(X) is the guard of the transition, and X ⊆ X
is a set of clocks, which should be reset to 0 after the transition. An intuitive
interpretation of the transition is that A can move from q to q′ by taking action
a and resetting all clocks in X to be 0 only if g is satisfied. There are no outgoing
transitions from any accepting location in QF .

A finite timed path of A is of the form θ = q0
a0,t0

↪−−−→ q1
a1,t1

↪−−−→ . . .
an−1,tn−1

↪−−−−−−→ qn,
where ti ≥ 0, for i = 0, . . . , n−1. Moreover, there exists a sequence of transitions

qj

aj ,gj ,Xj

↪−−−−−→ qj+1, for 0 ≤ j ≤ n − 1, such that η0 = 0, ηj + tj |= gj and
ηj+1 = ηj [Xj := 0], where ηk denotes the clock valuation when entering qk. θ is
said to be accepted by A if there exists a state qi ∈ QF for some 0 ≤ i ≤ n. As
normal, it is assumed all DTA are non-Zeno [6], that is any circular transition
sequence takes nonzero dwelling time.

A region is a set of valuations, usually represented by a set of clock con-
straints. Let Reg(X) be the set of regions over X . Given Θ,Θ′ ∈ Reg(X), Θ′ is
called a successor of Θ if for all η |= Θ, there exists t > 0 such that η + t |= Θ′

and ∀t′ < t, η + t′ |= Θ ∨ Θ′. A region Θ satisfies a guard g, denoted as Θ |= g,
iff ∀η |= Θ implies η |= g. The reset operation on a region Θ is defined as
Θ[X := 0] = {η[X := 0] | η |= Θ}. Then the region graph, viewed as a quotient
transition system related to clock equivalence [6] can be defined as follows:

Definition 4 (Region Graph). The region graph for DTA A = (Σ,X , Q,
q0, QF , ↪→) is a tuple G(A) = (Σ,X , Q, q0, QF , �→), where

512 Y. Feng et al.

– Q = Q × Reg(X) is the set of states;
– q0 = (q0,0) ∈ Q is the initial state;
– QF ⊆ QF × Reg(X) is the set of final states;
– �→⊆ Q × ((Σ × 2X) ∪ {λ}) × Q is the transition relation satisfying

• (q,Θ) λ�−→ (q,Θ′) if Θ′ is a successor of Θ;

• (q,Θ)
a,X�−−→ (q′, Θ′′) if there exists g ∈ Con(X) and transition q

a,g,X
↪−−−→ q′

such that Θ |= g and Θ′′ = Θ[X := 0].

Example 2 (Adapted from [10]). Figure 2 presents an example of DTA and Fig. 3
gives its region graph, in which double circle and double rectangle stand for final
states, respectively.

Fig. 2. A DTA A Fig. 3. The region graph of A

2.3 Piecewise-Deterministic Markov Process (PDP)

Piecewise-deterministic Markov Processes (PDPs for short) [14] cover a wide
range of stochastic models in which the randomness appears as discrete events
at fixed or random times, whose evolution is deterministically governed by an
ODE system between these times. A PDP consists of a mixture of deterministic
motion and random jumps between a finite set of locations. During staying in
a location, a PDP evolves deterministically following a flow function, which is a
solution to an ODE system. A PDP can jump between locations either randomly,
in which case the residence time of a location is governed by an exponential
distribution, or when the location invariant is violated. The successor state of
the jump follows a probability measure depending on the current state. A PDP
is right-continuous and has the strong Markov property [14].

Definition 5 (PDP [14]). A PDP is a tuple Q = (Z,X , Inv, φ, Λ, μ) with

– Z is a finite set of locations;
– X is a finite set of variables;
– Inv : Z → 2R

|X|
is an invariant function;

Monitoring CTMCs by Multi-clock Timed Automata 513

– φ : Z ×R
|X | ×R≥0 → R

|X |, is a flow function, which is a solution of a system
of ODEs with Lipschitz continuous vector fields;

– Λ : S → R>0 is an exit rate function;
– S → Pr(S), is the transition probability function, where S = {ξ := (z, η) |

z ∈ Z, η |= Inv(z)} is the state space for Q, S is the closure of S, S
o =

{(z, η) | z ∈ Z, η |= Inv(z)o} is the interior of S, in which Inv(z)o stands for
the interior of Inv(z), and ∂S = ∪z∈Z{z} × ∂Inv(z) is the boundary of S, in
which ∂Inv(z) = Inv(z)\Invo and Inv(z) is the closure of Inv(z).

For any ξ = (z, η) ∈ S, there is an δ(ξ) > 0 such that Λ(z, φ(z, η, t)) is integrable
on [0, δ(ξ)). μ(ξ)(A) is measurable for any A ∈ F(S), where F(S) is the smallest
σ−algebra generated by {⋃z∈Z z × Az|Az ∈ F(Inv(z))} and μ(ξ)({ξ}) = 0.

There are two ways to take transitions between locations in PDP Q. A PDP
Q is allowed to stay in a current location z only if Inv(z) is satisfied. During
its residence, the valuation η evolves time-dependently according to the flow
function. Let ξ ⊕ t = (z, φ(z, η, t)) be the successor state of ξ = (z, η) after
residing t time units in z. Thus, Q is piecewise-deterministic since its behavior
is determined by the flow function φ in each location. In a state ξ = (z, η) with
η |= Inv(z)o, the PDP Q can either evolve to a state ξ′ = ξ⊕t by delaying t time
units, or take a Markovian jump to ξ′′ = (z′′, η′′) ∈ S with probability μ(ξ)({ξ′′}).
When η |= ∂Inv(z), Q is forced to take a boundary jump to ξ′′ = (z′′, η′′) ∈ S

with probability μ(ξ)({ξ′′}).

3 Reduction to the Reachability Probability of EPDP

As proved in [10], model-checking of a given CTMC C against a linear real-time
property expressed by a DTA A, i.e., determining Pr(C |= A), can be reduced
to computing the reachability probability of the product of C and G(A). This can
be further reduced to computing the reachability probability of the embedded
PDP (EPDP) of the product. But how to efficiently compute the reachability
probability of the EPDP still remains challenging, as existing approaches [7,10,
16] can only handle DTA with one clock. We will attack this challenge in this
paper. For self-containedness, we reformulate the reduction reported in [10] in
this section.

A path ρ = s0
t0−→ s1

t1−→ . . . of CTMC C is accepted by DTA A if ρ̂ =

q0

L(s0),t0
↪−−−−−→ q1

L(s1),t1
↪−−−−−→ . . .

L(sn−1),tn−1
↪−−−−−−−−→ qn induced by some ρ’s prefix is an

accepting path of A. Then Pr(C |= A) = Pr{ρ ∈ PathC | ρ is accepted by A}.

Definition 6 (Product Region Graph [7]). The product of CTMC C =
(S,P, α,AP, L,E) and the region graph of DTA G(A) = (Σ,X , Q, q0, QF , �→),
denoted by C ⊗ G(A), is a tuple (X , V, α′, VF ,⇀,Λ), where

– V = S × Q is the state space;
– α′(s, q0) = α(s) is the initial distribution;
– VF = S × QF is the set of accepting states;
– ⇀⊆ V × (([0, 1] × 2X) ∪ {λ}) × V is the smallest relation satisfying

514 Y. Feng et al.

• (s, q) λ−⇀ (s, q′) (called delay transition), if q
λ�−→ q′;

• (s, q)
p,X�−−→ (s′′, q′′) (called Markovian transition), if P(s, s′′) = p, p > 0

and q
L(s),X�−−−−→ q′′;

– Λ : V → R>0 is the exit rate function, where

Λ(s, q) =
{

E(s) if there exists a Markovian transition from (s, q)
0 otherwise

Remark 1. Note that the definition of region graph here is slightly different from
the usual one in the sense that Markovian transitions starting from a boundary
do not contribute to the reachability probability. Therefore we can merge the
boundary into its unique delay successor.

Example 3 (Adapted from [10]). Figure 4 shows the product region graph of
CTMC C in Example 1 and DTA A in Example 2. The graph can be split into
three subgraphs in a column-wise manner, where all transitions within a sub-
graph are probabilistic, all transitions evolve to the next subgraph are delay
transitions, and transitions with reset lead to a state in the first subgraph. For
conciseness, the location v9 stands for all nodes that may be reached by a Marko-
vian transition yet cannot reach an accepting node.

Proposition 1 ([10]). For CTMC C and DTA A, Pr(C |= A) is measurable
and

Pr(C |= A) = PrC⊗G(A){PathC⊗G(A)(♦QF)}.

Fig. 4. Product region graph C ⊗ G(A) of CTMC C in Example 1 and DTA A in
Example 2

When treated as a stochastic process, C ⊗G(A) can be interpreted as a PDP.
In this way, computing the reachability probability of QF in C ⊗ G(A) can be
reduced to computing the time-unbounded reachability probability in the EPDP
of C ⊗ G(A).

Monitoring CTMCs by Multi-clock Timed Automata 515

Definition 7 (EPDP, [7]). Given C ⊗ G(A) = (X , V, α′, VF ,⇀,Λ), the EPDP
QC⊗A is a tuple (X , V, Inv, φ, Λ, μ) where for any v = (s, (q,Θ)) ∈ V

– Inv(v) = Θ, S = {(v,η) | v ∈ V,η |= Inv(v)} is the state space;
– φ(v,η, t) = η + t for η |= Inv(v);
– Λ(v, η) = Λ(v) is the exit rate of (v, η);
– Boundary jump: for each delay transition v

λ−⇀ v′ in C ⊗ G(A), μ(ξ, {ξ′}) = 1
whenever ξ = (v,η), ξ′ = (v′,η) and η |= ∂Inv(v);

– Markovian transition jump: for each Markovian transition v
p,X−−⇀ v′′ in C ⊗

G(A), μ(ξ, {ξ′′}) = p whenever ξ = (v,η), η |= Inv(v) and ξ′′ = (v′′,η[X :=
0]).

The flow function here describes that all clocks increase with a uniform rate
(i.e., ẋ1 = 1, . . . , ẋn = 1, or simply Ẋ = 1) at all locations. The original
reachability problem is then reduced to the reachability probability of the set
{(v,η) | v ∈ VF ,η |= Inv(v)}, given the initial state (v0,0) and the EPDP
QC⊗A. Let PrQC⊗A

v (η) stand for the probability to reach the final states (VF ×∗)
from (v,η) in QC⊗A. Thus, PrQC⊗A

v (η) can be computed recursively by

PrQC⊗A
v (η) =

⎧
⎪⎨

⎪⎩

PrQC⊗A
v,λ (η) +

∑

v
p,X−−⇀v′

PrQC⊗A
v,v′ (η) if v /∈ VF

1, v ∈ VF ∧ η |= Inv(v)
0, otherwise.

(1)

Let t∗z(v,η) denote the minimal time for QC⊗A to reach ∂Inv(v) from (v,η).
More precisely,

t∗z(v,η) = inf{t | φ(v,η, t) |= Inv(v)}.

PrQC⊗A
v,λ (η) is the probability from (v, η) with a delay and then a forced jump to

(v′, η+ t∗z(v,η)), onwards evolves to an accepting state, which can be recursively
computed by

PrQC⊗A
v,λ (η) = exp(−Λ(v)t∗z(v,η)) · PrQC⊗A

v′ (η + t∗z(v,η)).

PrQC⊗A
v,v′ (η) is the probability that a Markovian transition v

p,X−−⇀ v′ happens
within t∗z(v,η) time units, onwards involves to an accepted state, which can be
recursively computed by

PrQC⊗A
v,v′ (η) =

∫ t∗
z(v,η)

0

p · Λ(v) exp(−Λ(v)s) · PrQC⊗A
v′ (η + s[X := 0]) ds.

Pr(C |= A) is reduced to compute PrQC⊗A
v0

(0), equivalent to computing the least
fixed point of the Eq. (1). That is,

Theorem 1. [10] For CTMC C and DTA A, Pr(C |= A) = PrC⊗A

{PathC⊗A(♦QF)} is the least fixed point of (1).

516 Y. Feng et al.

Remark 2. Generally, it is difficult to solve a recursive equation like (1). As
an alternative, we discuss the augmented EPDP of QC⊗A by replacing A with a
bounded DTA resulting from A. As a consequence, using the extended generator
of the augmented EPDP, we can induce a partial differential equation (PDE)
whose solution is the reachability probability. We will elaborate the idea in the
subsequent section.

4 Approximating the Reachability Probability of EPDP

In this section, we present a numerical method to approximate PrQC⊗A
v0

(0), as we
discussed previously that exactly computing is impossible, at least too expensive,
in general. We will first introduce the basic idea of our approach in detail, then
discuss its time complexity and convergence property. A key point is that our
approach exploits the observation that the flow function of QC⊗A is linear, only
related to time t, and remains the same at all locations. This enables to reduce
computing PrQC⊗A

v0
(0) to solving an ODE system.

4.1 Reduction to a PDE System

In this subsection, we first show that PrQC⊗A
v0

(0) can be approximated by that
of the EPDP of C and a bounded DTA derived from A, i.e., the length of all its
paths is bounded. Then show that the latter can be reduced to solving a PDE
system.

Given a DTA A, we construct a bounded DTA A[tf] by introducing a new
clock y, adding a timing constraint y < tf to the guard of each transition of A
ingoing to an accepting state in QF , and never resetting y, where tf ∈ N is a
parameter. So, the length of all accepting paths of A[tf] is time-bounded by tf .
Obviously, PathC(A[tf]) is a subset of PathC(A). As Pr(C |= A) is measurable
and QC⊗A is Borel right continuous, we have the following proposition.

Proposition 2. Given a CTMC C, a DTA A, and tf ∈ N,

lim
tf →∞ Pr(C |= A[tf]) = Pr(C |= A). (2)

Moreover, if C is weakly irreducible or satisfies some conditions (please refer to
Chap. 4 of [26] for details), then there exist positive constants K,K0 ∈ R≥0 such
that

Pr(C |= A) − Pr(C |= A[tf]) ≤ K exp{−K0tf}. (3)

Remark 3. (2) was first observed in [7], thereof the authors pointed out the
feasibility of using a bounded system to approximate the original unbounded
system in order to simplify a verification obligation. (3) further indicates that
such approximation is exponentially convergent w.r.t. −tf if the CTMC is weakly
irreducible.

Monitoring CTMCs by Multi-clock Timed Automata 517

For a path starting in a state (v,η) at time y, we use Pathy
(v,η)[t] to denote

the set of its locations at time t, and �v(y,η) = Pr(Pathy
(v,η)[tf] ∈ VF) =

E(1Pathy
(v,η)[tf]∈VF

) as the probability of a path reaching VF within tf time units,
where 1Pathy

(v,η)[tf]∈VF
is the indicator function of Pathy

(v,η)[tf] ∈ VF . Then,
�v0(0,0) = Pr(C |= A[tf]) is the probability to reach the set of accepting states
from the initial state (0,0), which satisfies the following system of PDEs.

Theorem 2. Given a CTMC C, a bounded DTA A[tf], and the EPDP
QC⊗G(A[tf]) = (X , V, Inv, φ, Λ, μ), �v0(0,0) is the unique solution of the following
system of PDEs:

∂�v(y,η)
∂y

+
|X |∑

i=1

∂�v(y,η)
∂η(i)

+Λ(v)·
∑

v
p,X−−⇀v′

p·(�v′(y,η[X := 0])−�v(y,η)) = 0, (4)

where v ∈ V \VF ,η |= Inv(v),η(i) is the i-th clock variable and y ∈ [0, tf). The
boundary conditions are:

(i) �v(y,η) = �v′(y,η), for every η |= ∂Inv(v) and transition v
λ−→ v′;

(ii) �v(y,η) = 1, for every vertex v ∈ VF , η |= Inv(v), and y ∈ [0, tf);
(iii) �v(tf ,η) = 0, for every vertex v ∈ V \VF and η |= Inv(v) ∪ ∂Inv(v).

Remark 4. Note that the PDE system (4) in Theorem 2 is different from the one
presented in [10] for reducing PrQC⊗A

v0
(0). In particular, the boundary condition

in [10] has been corrected here.

4.2 Reduction to an ODE System

There are several classical methods to solve PDEs. Finite element method, which
is a numerical technique for solving PDEs as well as integral equations, is a
prominent one, of which different versions have been established to solve different
PDEs with specific properties. Other numerical methods include finite difference
method and finite volume method and so on, the reader is referred to [20,21]
for details. Thanks to the special form of the Eq. (4), we are able to obtain a
numerical solution in a more efficient way.

The fact that the flow function (which is the solution to the ODE
system

∧
x∈X ẋ = 1 ∧ ẏ = 1) is the same at all locations of the EPDP QC⊗A[tf]

suggests that the partial derivatives of η and y in the left side of (4) evolve with
the same pace. Thus, we can view all clocks as an array, and reformulate (4) as

[
∂�v(y,η)

∂y
,
∂�v(y,η)

∂η(1)
, . . . ,

∂�v(y,η)
∂η(|X |)

]

• 1

+ Λ(v) ·
∑

v
p,X−−⇀v′

p · (�v′(y,η[X := 0]) − �v(y,η)) = 0, (5)

518 Y. Feng et al.

where • stands for the inner product of two vectors of the same dimension, e.g.,

(a1, . . . , an) • (b1, . . . , bn) =
∑n

i=1 aibi, and 1 for the vector (
n times

︷ ︸︸ ︷
1, . . . , 1).

By Theorem 2, there exist v0, y0 and η0 such that v0 ∈ VF , y0 = tf , and
η0 |= Inv(v) ∨ ∂Inv(v). Besides, by the definition of QC⊗A[tf], it follows ∂z

∂t = 1,
which implies dz = dt, for any z ∈ {y} ∪ X . Hence, we can simplify (5) as the
following ODE system:

d�v((y0,η0) + t)
dt

+ Λ(v)·
∑

v
p,X−−⇀v′

p · (�v′((y0,η0) + t)[X := 0]) − �v(y0,η0)) = 0, (6)

with the initial condition v0 ∈ VF , y0 = tf , and η0 |= Inv(v) ∨ ∂Inv(v), where
v ∈ V \VF . Note that we compute the reachability probability by (6) backwards.

4.3 Numerical Solution

Since �v((y0,η0) + t) satisfies an ODE equation, we can apply a discretization
method to (6) and obtain an approximation efficiently. To this end, the remaining
obstacle is how to deal with the reset part �v′(y0 + t, (η0 + t)[X := 0]). Notice
that X �= ∅ ⇒ sum((η0 + t)[X := 0])+(tf −y0 − t)) < sum(η0 + t)+(tf − t0 − t),
where sum(η) =

∑
x∈X η(x). So we just need to solve the ODE system starting

from (tf ,η0) using the descending order over sum(η) in a backward manner.
In this way, all of the reset values needed for the current iteration have been
computed in the previous iterations. Therefore for each iteration, the derivation
is fixed and easy to calculate.

We denote by δ the length of discretization step, the number of total dis-
cretization steps is � tf

δ � ∈ N. An approximate solution to (4) can be computed
efficiently by the following algorithm.

Line 4 in Algorithm 1 computes a numerical solution to (6) on [tf − t, tf]
by discretizing d�v((y0,η0)+t)

dt with 1
δ (�v((y0,η0) + (t + δ)) − �v((y0,η0) + t)).

A pictorial illustration to Algorithm 1 for the two-dimensional setting is shown
in Fig. 5. The blue polyhedron covers all the points we need to calculate. The
algorithm starts from (0, 0, tf), where sum(η) = x1 + x2 = 0. Then sum(η) is
incremented until 2tf in a stepwise manner. For each fixed sum(η), for exam-
ple sum(η) = tf , the algorithm calculates all discrete points in the gray plane
following the direction (−1,−1,−1), and finally reaches the two reset lines. The
red line reaching the origin provides the final result.

Monitoring CTMCs by Multi-clock Timed Automata 519

Algorithm 1. Finding numerical solution to (4)
Input: C ⊗ G(A), the region graph of the product of CTMC C and DTA A; tf , the
time bound
Output: A numerical solution for �v0(0,0), an approximation of Pr(C |= A[tf])

1: for n ← 0 to |X | · tf by δ do
2: for each η in {η′ | sum(η′) = n ∧ ∀i ∈ {1, . . . , |X |} 0 ≤ η(i) ≤ tf} do
3: for t from 0 down to − min(tf , η) do
4: Compute numerical solution to (6) with (y0, η0) = (tf , η) on [tf − t, tf]
5: end for
6: end for
7: end for
8: return numerical solution for �v0(0,0)

Fig. 5. Illustrating Algorithm 1 (left) and Algorithm 2 (right) for the 2-dimensional
setting (Color figure online)

Example 4. Consider the product C ⊗G(A) shown in Example 3 (in page 8). For
state v3 in which clock x is 1 and y is arbitrary, the corresponding PDE is

∂�v3(y, 1)

∂y
+

∂�v3(y, 1)

∂x
+ r0[0.5·�v0(y, 0) + 0.2·�v4(y, 0) + 0.4·�v9(y, 0) − �v3(y, 0)] = 0.

Since sum(y, 0) = y < y + 1 = sum(y, 1), the value for �v0(y, 0), �v4(y, 0)
and �v3(y, 0) have been calculated in the previous iterations, thus the value for
�v3(y, 1) can be computed.

To optimize Algorithm 1 for multi-clock objects, we exploit the idea of
“lazy computation”. In Algorithm1, in order to determine the reset part for
(6), we calculate all discretized points generated by all ODEs. The efficiency
is influenced since the amount of ODEs is quite large (the same as the num-
ber of states in product automaton). However in Algorithm2, we only compute

520 Y. Feng et al.

the reset part that we need for computing �v0(0,0). If we meet a reset part
�v(y,η[X := 0]) which has not been decided yet, we suspend the equation we
are computing now and switch to compute the equation leading to the unde-
cided point following the direction of (−1, . . . ,−1). The algorithm terminates
since the number of points it computes is no more than that of Algorithm1. A
pseudo-code is described in Algorithm 2.

Algorithm 2. The lazy computation to find numerical solution to (4)
Input: C ⊗G(A), the region graph of the product of CTMC C and DTA A; tf , the time bound

Output: A numerical solution for �v0 (0,0), an approximation of Pr(C |= A[tf])

Procedure dhv(y, η) //Computing numerical solution for (y, η)

1: for t from 0 down to − min(tf , η) by δ do

2: for v ∈ V do

3: Check if η satisfies initial and boundary condition from Theorem 2

4: for each Markovian transition v
p,X−−−⇀ v′ do

5: up = (−t − δ) · 1 + ((t + δ) · 1)[X := 0]

6: if reset exists and η[X := 0] + up is undecided then

7: call dhv(tf , η[X := 0] + up)

8: end if

9: comput hv

10: end for

11: end for

12: execute λ−transition according to Theorem 2

13: compute �v((y0, η0) + t) by equation (6)

14: end for

15: mark η decided

End Procedure

1: Call dhv(v0, tf , (tf))

2: return numerical solution for �v0 (0,0)

4.4 Complexity Analysis

Let |S| be the number of the states of the CTMC, and n the number of the
clocks of the DTA. The worst-case time complexity of Algorithms 1 and 2 lies
in O(|V | · � tf

δ �(n+1)), where |V | is the number of the equations in (4), i.e., the
number of the locations in the product region graph, that are not accepting.
The number of states in the region graph of the DTA is bounded by n! · 2n−1 ·∏

x∈X (cx + 1), denoted by Cb, where cx is the maximum constant occurring in
the guards that constrain x. Note that Cb differs from the bound given in [1],
since the boundaries of a region do not matter in our setting and hence can be
merged into the region. Thus, the number of states in the product region graph,
as well as the number of PDE equations in Theorem 2, is at most Cb · |S|. So the
total complexity is O(Cb · |S| · � tf

δ �(n+1)).
Let �v,n(y0,η0) denote the numerical solution to ODE (6) with t = −nδ,

and Λmax = max{Λ(vi) | 0 ≤ i ≤ |S|}. Let N = � tf

δ �. By Proposition 2,
lim

tf →+∞ �v(0,0) = Pr(C |= A) and �v(0,0) is monotonically increasing for tf . In

Monitoring CTMCs by Multi-clock Timed Automata 521

the following proposition, for simplicity of discussion, we assume tf equal to Nδ.
Then, the error caused by discretization can be estimated as follows:

Proposition 3. For N ∈ N
+ and δ = tf

N ,

|�v0,N (tf , tf · 1) − �v0(0,0)| = O(δ)

For function f(δ), f is of the magnitude O(δ) if lim
δ→0

∣
∣
∣
f(δ)

δ

∣
∣
∣ = C, where C

is a constant. From Proposition 3, if we view Λmax and tf as constants, then
the error is O(δ) to the step length δ. By Proposition 2, the numerical solution
generated by Algorithm 1 converges to the reachability probability of C ⊗A, and
the error can be as small as we expect if we decrease the size of discretization δ,
and increase the time bound tf .

5 Experimental Results

We implemented a prototype including Algorithms 1 and 2 in C and a tool
taking a CTMC C and a DTA A as input and generating a .c file to store their
product in Python, which is used as an input to Algorithms 1 and 2. The first
two examples (Examples 5 and 6) come from [10] to show the feasibility of our
tool. The last case study is an example of robot navigation from [7]. In order to
demonstrate the scalability of our approach, we revise the example with different
real-time requirements, which require DTA with different number of clocks. The
examples are executed in Linux 16.04 LTS with Intel(R) Core(TM) i7-4710HQ
2.50 GHz CPU and 16 G RAM. The column “time” reports the running time
for Algorithm 1, and “time (lazy)” reports the running time for Algorithm2. All
time is counted in seconds.

Example 5. Consider Example 3 with ri = 1, i = 0, . . . 3 and δ = 0.01, experi-
mental result is shown in Table 1. The relevant error when tf = 30 and tf = 40
is 5 × 10−7.

Table 1. The experimental results for Examples 5 and 6

tf Example 5 Example 6

�v0(0,0) time time (lazy) �v0(0,0) time time (lazy)

20 0.110791 0.8070 0.7232 0.999999 0.1685 0.0002

30 0.110792 1.7246 1.6260 0.999999 0.3453 0.0003

40 0.110792 3.0344 2.8760 0.999999 0.6265 0.0003

Example 6. Consider the reachability probability for the product of a CTMC
and a DTA as shown in Fig. 6. A part of its region graph is shown in Fig. 7. Set
r0 = r1 = 1, δ = 0.1, the experimental result is given in Table 1. The relevant
error when tf = 30 and tf = 40 is 1 × 10−7. Note that even for this simple
example, none of existing tools can handle it.

522 Y. Feng et al.

Fig. 6. The product automaton of
Example 6

Fig. 7. The reachable product region graph of
Fig. 6.

Example 7. Consider a robot moves on a N ×N grid as shown in Fig. 8 (adapted
from [7]). It can move up, down, left and right. For each possible direction, the
robot moves with the same probability. The cells are grouped with A, B, C and
D. We consider the following real-time constraints:

P1: The robot is allowed to stay in adjacent C-cells for at most T1 time units,
and D-cells for at most T2 time units;

P2: The total time of the robot continuously resides in adjacent C-cell and D-cell
is no more than T3 time units, with T1 ≤ T3 and T2 ≤ T3;

P3: The total time of the robot continuously resides in adjacent A-cell and C-cell
is no more than T4 time units, with T1 ≤ T4.

In this example, we are verifying whether the CTMC satisfies (i) P1; (ii) P1 ∧P2;
(iii) P1 ∧ P2 ∧ P3. Obviously, P1 can be expressed by a DTA with one clock, see
Fig. 9; to express P1 ∧ P2, a DTA with two clocks is necessary, see Fig. 10; to
express P1 ∧ P2 ∧ P3, A DTA with three clocks is necessary, see Fig. 11.

Fig. 8. An example grid Fig. 9. A DTA with one clock for P1

The experimental results are summarized in Table 2. The relevant error of
tf = 20 and tf = 21 is smaller than 10−2. As can be seen, the running time
of our approach heavily depends on the number of clocks. Compared with the

Monitoring CTMCs by Multi-clock Timed Automata 523

Fig. 10. A DTA with two clocks for
P1 ∧ P2

Fig. 11. A DTA with three clocks for
P1 ∧ P2 ∧ P3

Table 2. Experimental results for the robot example with δ = 0.1, running time longer
than 2700 s is denoted by ‘TO’ (timeout), the column “#(P)” counts the number of
states in the product automaton C ⊗G(A), “time([7])” is the running time of prototype
in [7] when precision = 0.01, T1 = T2 = 3, T3 = 5, T4 = 7

One clock Two clocks Three clocks

N tf #(P) time time (lazy) time([7]) #(P) time time (lazy) #(P) time time (lazy)

4 10 39 0.027 0.027 0.011 139 2.583 1.746 733 525.7 141.4

15 0.049 0.043 7.117 3.445 TO 257.35

20 0.070 0.071 12.88 5.49 TO 583.76

10 10 232 0.167 0.164 0.087 968 39.41 25.92 5134 TO 1039.7

15 0.278 0.278 108.48 53.28 TO TO

20 0.417 0.421 226.56 89.50 TO TO

20 10 940 1.142 0.909 1.23 4000 250.1 180.7 TO TO

15 1.65 1.54 672.8 375.6 TO TO

20 2.54 2.41 1326.8 616.1 TO TO

30 10 2125 2.38 2.45 6.84 9120 812.9 380.5 TO TO

15 4.45 5.42 2058.1 770.8 TO TO

20 7.45 7.28 TO 1283.4 TO TO

40 10 3820 5.62 6.52 20.31 16395 1484.3 759.8 TO TO

15 11.97 11.02 TO 1619.9 TO TO

20 15.26 16.17 TO 2661.3 TO TO

results reported in [7] for the case of one clock in this case study (when the
precision is set to be 10−2), our result is as fast as theirs, but their tool cannot
handle the cases of multiple clocks. In contrast, our approach can handle DTA
with multiple clocks as indicated in the verification of P2 and P3. Algorithm 2
is much more faster than Algorithm 1 when the number of clocks grows up. To

524 Y. Feng et al.

the best of our knowledge, this is the first prototypical tool verifying CTMCs
against multi-clock DTA.

6 Concluding Remarks

In this paper, we present a practical approach to verify CTMCs against DTA
objectives. First, the desired probability can be reduced to the reachability prob-
ability of the product region graph in the form of PDPs. Then we use the aug-
mented PDP to approximate the reachability probability, in which the reachabil-
ity probability coincides with the solution to a PDE system at the starting point.
We further propose a numerical solution to the PDE system by reduction it to
a ODE system. The experimental results indicate the efficiency and scalability
compared with existing work, as it can handle DTA with multiple clocks.

As a future work, it deserves to investigate whether our approach also works
in the verification of CTMCs against more complicated real-time properties,
either expressed by timed automata and MTL as considered in [9], or by linear
duration invariants as considered in [8].

Acknowledgements. This research is partly funded by the Sino-German Center for
Research Promotion as part of the project CAP (GZ 1023), from Yijun Feng, Haokun
Li and Bican Xia is partly funded by NSFC under grant No. 61732001 and 61532019,
from Joost-Pieter Katoen is partly funded by the DFG Research Training Group 2236
UnRAVeL, from Naijun Zhan is funded partly by NSFC under grant No. 61625206 and
61732001, by “973 Program” under grant No. 2014CB340701 and by the CAS/SAFEA
International Partnership Program for Creative Research Teams.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

2. Amparore, E.G., Beccuti, M., Donatelli, S.: (Stochastic) model checking in Great-
SPN. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp.
354–363. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07734-5 19

3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continous-time
Markov chains. ACM Trans. Comput. Log. 1(1), 162–170 (2000)

4. Baier, C., Cloth, L., Haverkort, B.R., Kuntz, M., Siegle, M.: Model checking
Markov chains with actions and state labels. IEEE Trans. Softw. Eng. 33(4), 209–
224 (2007)

5. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

6. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

7. Barbot, B., Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Efficient CTMC model
checking of linear real-time objectives. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 128–142. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19835-9 12

https://doi.org/10.1007/978-3-319-07734-5_19
https://doi.org/10.1007/978-3-642-19835-9_12
https://doi.org/10.1007/978-3-642-19835-9_12

Monitoring CTMCs by Multi-clock Timed Automata 525

8. Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Verification of linear dura-
tion properties over continuous-time Markov chains. ACM Trans. Comput. Log.
14(4), 33 (2013)

9. Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Time-bounded verification
of CTMCs against real-time specifications. In: Fahrenberg, U., Tripakis, S. (eds.)
FORMATS 2011. LNCS, vol. 6919, pp. 26–42. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-24310-3 4

10. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Quantitative model checking of
continuous-time Markov chains against timed automata specifications. In: LICS,
pp. 309–318 (2009)

11. Chen, T., Han, T., Katoen, J., Mereacre, A.: Model checking of continuous-time
Markov chains against timed automata specifications. Log. Methods Comput. Sci.
7(1) (2011)

12. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Observing continuous-time MDPs
by 1-clock timed automata. In: Delzanno, G., Potapov, I. (eds.) RP 2011. LNCS,
vol. 6945, pp. 2–25. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24288-5 2

13. Dang, V.H., Zhou, C.: Probabilistic duration calculus for continuous time. Formal
Aspects Comput. 11(1), 21–44 (1999)

14. Davis, M.H.: Markov Models and Optimization, vol. 49. CRC Press, Boca Raton
(1993)

15. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

16. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic prop-
erties with CSLTA. IEEE Trans. Softw. Eng. 35(2), 224–240 (2009)

17. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 3.
Wiley, New York (1968)

18. Fu, H.: Approximating acceptance probabilities of CTMC-paths on multi-clock
deterministic timed automata. In: HSCC, pp. 323–332. ACM (2013)

19. Gao, Y., Xu, M., Zhan, N., Zhang, L.: Model checking conditional CSL for
continuous-time Markov chains. Inf. Process. Lett. 113(1–2), 44–50 (2013)

20. Grossmann, C., Roos, H.-G., Stynes, M.: Numerical Treatment of Partial Differ-
ential Equations, vol. 154. Springer, Heidelberg (2007)

21. Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite
Element Method. Courier Corporation, Chelmsford (2012)

22. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

23. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

24. Mikeev, L., Neuhäußer, M.R., Spieler, D., Wolf, V.: On-the-fly verification and
optimization of DTA-properties for large Markov chains. Formal Methods Syst.
Des. 43(2), 313–337 (2013)

25. Wisniewski, R., Sloth, C., Bujorianu, M.L., Piterman, N.: Safety verification of
piecewise-deterministic Markov processes. In: HSCC, pp. 257–266. ACM (2016)

https://doi.org/10.1007/978-3-642-24310-3_4
https://doi.org/10.1007/978-3-642-24310-3_4
https://doi.org/10.1007/978-3-642-24288-5_2
https://doi.org/10.1007/978-3-642-24288-5_2
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

526 Y. Feng et al.

26. Yin, G.G., Zhang, Q.: Continuous-Time Markov Chains and Applications: A Two-
Time-Scale Approach, vol. 37. Springer, New York (2012). https://doi.org/10.
1007/978-1-4614-4346-9

27. Zhang, L., Jansen, D.N., Nielson, F., Hermanns, H.: Efficient CSL model checking
using stratification. Log. Methods Comput. Sci. 8(2:17), 1–18 (2012)

28. Zhou, C., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process. Lett.
40(5), 269–276 (1991)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-1-4614-4346-9
https://doi.org/10.1007/978-1-4614-4346-9
http://creativecommons.org/licenses/by/4.0/

Start Pruning When Time Gets Urgent:
Partial Order Reduction for Timed

Systems

Frederik M. Bønneland, Peter Gjøl Jensen,
Kim Guldstrand Larsen, Marco Muñiz,

and Jǐŕı Srba(B)

Department of Computer Science,
Aalborg University, Aalborg, Denmark

{frederikb,pgj,kgl,muniz,srba}@cs.aau.dk

Abstract. Partial order reduction for timed systems is a challenging
topic due to the dependencies among events induced by time acting
as a global synchronization mechanism. So far, there has only been
a limited success in finding practically applicable solutions yielding
significant state space reductions. We suggest a working and efficient
method to facilitate stubborn set reduction for timed systems with urgent
behaviour. We first describe the framework in the general setting of timed
labelled transition systems and then instantiate it to the case of timed-arc
Petri nets. The basic idea is that we can employ classical untimed partial
order reduction techniques as long as urgent behaviour is enforced. Our
solution is implemented in the model checker TAPAAL and the feature
is now broadly available to the users of the tool. By a series of larger case
studies, we document the benefits of our method and its applicability to
real-world scenarios.

1 Introduction

Partial order reduction techniques for untimed systems, introduced by Gode-
froid, Peled, and Valmari in the nineties (see e.g. [6]), have since long proved
successful in combating the notorious state space explosion problem. For timed
systems, the success of partial order reduction has been significantly challenged
by the strong dependencies between events caused by time as a global synchro-
nizer. Only recently—and moreover in combination with approximate abstrac-
tion techniques—stubborn set techniques have demonstrated a true reduction
potential for systems modelled by timed automata [23].

We pursue an orthogonal solution to the current partial order approaches
for timed systems and, based on a stubborn set reduction [28,39], we target a
general class of timed systems with urgent behaviour. In a modular modelling
approach for timed systems, urgency is needed to realistically model behaviour in
a component that should be unobservable to other components [36]. Examples
of such instantaneously evolving behaviours include, among others, cases like
behaviour detection in a part of a sensor (whose duration is assumed to be
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 527–546, 2018.
https://doi.org/10.1007/978-3-319-96145-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_28&domain=pdf

528 F. M. Bønneland et al.

negligible) or handling of release and completion of periodic tasks in a real-time
operating system. We observe that focusing on the urgent part of the behaviour
of a timed system allows us to exploit the full range of partial order reduction
techniques already validated for untimed systems. This leads to an exact and
broadly applicable reduction technique, which we shall demonstrate on a series of
industrial case studies showing significant space and time reduction. In order to
highlight the generality of the approach, we first describe our reduction technique
in the setting of timed labelled transition systems. We shall then instantiate it to
timed-arc Petri nets and implement and experimentally validate it in the model
checker TAPAAL [19].

Let us now briefly introduce the model of timed-arc Peri nets and explain
our reduction ideas. In timed-arc Petri nets, each token is associated with a
nonnegative integer representing its age and input arcs to transitions contain
intervals, restricting the ages of tokens available for transition firing (if an interval
is missing, we assume the default interval [0,∞] that accepts all token ages). In
Fig. 1a we present a simple monitoring system modelled as a timed-arc Petri
net. The system consists of two identical sensors where sensor i, i ∈ {1, 2}, is
represented by the places bi and mi, and the transitions si and ri. Once a token
of age 0 is placed into the place bi, the sensor gets started by executing the
transition si and moving the token from place bi to mi where the monitoring
process starts. As the place bi has an associated age invariant ≤ 0, meaning that
all tokens in bi must be of age at most 0, no time delay is allowed and the firing
of si becomes urgent. In the monitoring place mi we have to delay one time unit
before the transition ri reporting the reading of the sensor becomes enabled.
Due to the age invariant ≤ 1 in the place mi, we cannot wait longer than one
time unit, after which ri becomes also urgent.

The places c1, c2 and c3 together with the transitions i1, i2 and t are used to
control the initialization of the sensors. At the execution start, only the transition
i1 is enabled and because it is an urgent transition (denoted by the white circle),
no delay is initially possible and i1 must be fired immediately while removing
the token of age 0 from c1 and placing a new token of age 0 into c2. At the
same time, the first sensor gets started as i1 also places a fresh token of age 0
into b1. Now the control part of the net can decide to fire without any delay the
transition i2 and start the second sensor, or it can delay one unit of time after
which i2 becomes urgent due to the age invariant ≤ 1 as the token in c2 is now
of age 1. If i2 is fired now, it will place a fresh token of age 0 into b2. However,
the token that is moved from c2 to c3 by the pair of transport arcs with the
diamond-shaped arrow tips preserves its age 1, so now we have to wait precisely
one more time unit before t becomes enabled. Moreover, before t can be fired,
the places m1 and m2 must be empty as otherwise the firing of t is disabled due
to inhibitor arcs with circle-shaped arrow tips.

In Fig. 1b we represent the reachable state space of the simple monitoring
system where markings are represented using the notation like c3 : 1+b2 : 2 that
stands for one token of age 1 in place c3 and one token of age 2 in place b2. The
dashed boxes represent the markings that can be avoided during the state space
exploration when we apply our partial order reduction method for checking if

Start Pruning When Time Gets Urgent 529

0

c1 i1

inv:≤1

c2 i2

inv:≤2

c3
t

inv:≤0

b1
s1

inv:≤1m1

r1

inv:≤0

b2
s2

inv:≤1m2

r2

[0, 1] [2, 2]

[1, 1] [1, 1]

(a) TAPN model of a simple monitoring system

c1:0 c2:0+b1:0
i1

c2:0+m1:0

s1

c2:1+m1:1

1

c2:1

r1

c3:1+m1:1+b2:0

i2

c3:1+m1:1+m2:0

s2

c3:1+b2:0

i2

c3:1+m2:0

s2

r1

r1

c3:2+m2:1

1

c3:2

r2

c3:0+b1:0+b2:0

i2

c3:0+b1:0+m2:0

s2

c3:0+m1:0+b2:0

i2

s1

c3:0+m1:0+m2:0

s1

s2

c3:1+m1:1+m2:1

1

c3:1+m1:1

r2

c3:1+m2:1

r1

c3:1

r1

r2

1

t

(b) Reachable state space generated by the net in Figure 1a

Fig. 1. Simple monitoring system

the termination transition t can become enabled from the initial marking. We
can see that the partial order reduction is applied such that it preserves at least
one path to all configurations where our goal is reached (transition t is enabled)
and where time is not urgent anymore (i.e. to the configurations that allow the
delay of 1 time unit). The basic idea of our approach is to apply the stubborn
set reduction on the commutative diamonds where time is not allowed to elapse.

Related Work. Our stubborn set reduction is based on the work of Valmari et
al. [28,39]. We formulate their stubborn set method in the abstract framework of
labelled transition systems with time and add further axioms for time elapsing
in order to guarantee preservation of the reachability properties.

530 F. M. Bønneland et al.

For Petri nets, Yoneda and Schlingloff [41] apply a partial order reduction
to one-safe time Petri nets, however, as claimed in [38], the method is mainly
suitable for small to medium models due to a computational overhead, confirmed
also in [29]. The experimental evaluation in [41] shows only one selected exam-
ple. Sloan and Buy [38] try to improve on the efficiency of the method, at the
expense of considering only a rather limited model of simple time Petri nets
where each transition has a statically assigned duration. Lilius [29] suggests to
instead use alternative semantics of timed Petri nets to remove the issues related
to the global nature of time, allowing him to apply directly the untimed partial
order approaches. However, the semantics is nonstandard and no experiments
are reported. Another approach is by Virbitskaite and Pokozy [40], who apply
a partial order method on the region graph of bounded time Petri nets. Region
graphs are in general not an efficient method for state space representation and
the method is demonstrated only on a small buffer example with no further
experimental validation. Recently, partial order techniques were suggested by
André et al. for parametric time Petri nets [5], however, the approach is working
only for safe and acyclic nets. Boucheneb and Barkaoui [12–14] discuss a partial
order reduction technique for timed Petri nets based on contracted state class
graphs and present a few examples on a prototype implementation (the authors
do not refer to any publicly available tool). Their method is different from ours as
it aims at adding timing constrains to the independence relation, but it does not
exploit urgent behaviour. Moreover, the models of time Petri nets and timed-arc
Petri nets are, even on the simplest nets, incomparable due to the different way
to modelling time.

The fact that we are still lacking a practically applicable method for the time
Petri net model is documented by a missing implementation of the technique in
leading tools for time Petri net model checking like TINA [9] and Romeo [22].
We are not aware of any work on partial order reduction technique for the class
of timed-arc Petri nets that we consider in this paper. This is likely because
this class of nets provides even more complex timing behaviour, as we consider
unbounded nets where each token carries its timing information (and needs a
separate clock to remember the timing), while in time Petri nets timing is asso-
ciated only to a priory fixed number of transitions in the net.

In the setting of timed automata [3], early work on partial order reduction
includes Bengtsson et al. [8] and Minea [32] where they introduce the notion
of local as well as global clocks but provide no experimental evaluation. Dams
et al. [18] introduce the notion of covering in order to generalize dependencies
but also here no empirical evaluation is provided. Lugiez, Niebert et al. [30,34]
study the notion of event zones (capturing time-durations between events) and
use it to implement Mazurkiewicz-trace reductions. Salah et al. [37] introduce
and implement an exact method based on merging zones resulting from different
interleavings. The method achieves performance comparable with the approx-
imate convex-hull abstraction which is by now superseded by the exact LU-
abstraction [7]. Most recently, Hansen et al. [23] introduce a variant of stubborn
sets for reducing an abstracted zone graph, thus in general offering overapprox-
imate analysis. Our technique is orthogonal to the other approaches mentioned

Start Pruning When Time Gets Urgent 531

above; not only is the model different but also the application of our reduc-
tion gives exact results and is based on new reduction ideas. Finally, the idea of
applying partial order reduction for independent events that happen at the same
time appeared also in [15] where the authors, however, use a static method that
declares actions as independent only if they do not communicate, do not emit
signals and do not access any shared variables. Our realization of the method to
the case of timed-arc Petri nets applies a dynamic (on-the-fly) reduction, while
executing a detailed timing analysis that allows us to declare more transitions
as independent—sometimes even in the case when they share resources.

2 Partial Order Reduction for Timed Systems

We shall now describe the general idea of our partial order reduction technique
(based on stubborn sets [28,39]) in terms of timed transition systems. We con-
sider real-time delays in the rest of this section, as these results are not spe-
cific only to discrete time semantics. Let A be a given set of actions such that
A ∩ R≥0 = ∅ where R≥0 stands for the set of nonnegative real numbers.

Definition 1 (Timed Transition System). A timed transition system is a
tuple (S, s0,−→) where S is a set of states, s0 ∈ S is the initial state, and −→⊆
S × (A ∪ R≥0) × S is the transition relation.

If (s, α, s′) ∈−→ we write s
α−→ s′. We implicitly assume that if s

0−→ s′ then
s = s′, i.e. zero time delays do not change the current state. The set of enabled
actions at a state s ∈ S is defined as En(s) def= {a ∈ A | ∃s′ ∈ S. s

a−→ s′}.
Given a sequence of actions w = α1α2α3 . . . αn ∈ (A ∪ R≥0)∗ we write s

w−→ s′

iff s
α1−→ . . .

αn−−→ s′. If there is a sequence w of length n such that s
w−→ s′, we

also write s −→n s′. Finally, let −→∗ be the reflexive and transitive closure of the
relation −→ such that s −→ s′ iff there is α ∈ R≥0 ∪ A and s

α−→ s′.
For the rest of this section, we assume a fixed transition system (S, s0,−→)

and a set of goal states G ⊆ S. The reachability problem, given a timed transition
system (S, s0,−→) and a set of goal states G, is to decide whether there is s′ ∈ G
such that s0 −→∗ s′.

We now develop the theoretical foundations of stubborn sets for timed tran-
sition systems. A state s ∈ S is zero time if time can not elapse at s. We denote
the zero time property of a state s by the predicate zt(s) and define it as zt(s)
iff for all s′ ∈ S and all d ∈ R≥0 if s

d−→ s′ then d = 0. A reduction of a timed
transition system is a function St : S → 2A. A reduction defines a reduced tran-
sition relation −→

St
⊆−→ such that s

α−→
St

s′ iff s
α−→ s′ and α ∈ St(s) ∪ R≥0. For a

given state s ∈ S we define St(s) def= A \ St(s) as the set of all actions that are
not in St(s).

Definition 2 (Reachability Conditions). A reduction St on a timed transi-
tion system (S, s0,−→) is reachability preserving if it satisfies the following four
conditions.

532 F. M. Bønneland et al.

(Z) ∀s ∈ S. ¬zt(s) =⇒ En(s) ⊆ St(s)
(D) ∀s, s′ ∈ S. ∀w ∈ St(s)

∗
. zt(s) ∧ s

w−→ s′ =⇒ zt(s′)
(R) ∀s, s′ ∈ S. ∀w ∈ St(s)

∗
. zt(s) ∧ s

w−→ s′ ∧ s �∈ G =⇒ s′ �∈ G

(W) ∀s, s′ ∈ S. ∀w ∈ St(s)
∗
. ∀a ∈ St(s). zt(s) ∧ s

wa−−→ s′ =⇒ s
aw−−→ s′

Condition Z declares that in a state where a delay is possible, all enabled
actions become stubborn actions. Condition D guarantees that in order to enable
a time delay from a state where delaying is not allowed, a stubborn action
must be executed. Similarly, Condition R requires that a stubborn action must
be executed before a goal state can be reached from a non-goal state. Finally,
Condition W allows us to commute stubborn actions with non-stubborn actions.
The following theorem shows that reachability preserving reductions generate
pruned transition systems where the reachability of goal states is preserved.

Theorem 1 (Shortest-Distance Reachability Preservation). Let St be
a reachability preserving reduction satisfying Z, D, R and W. Let s ∈ S. If
s −→n s′ for some s′ ∈ G then also s −→

St

m s′′ for some s′′ ∈ G where m ≤ n.

Proof. We proceed by induction on n. Base step. If n = 0, then s = s′ and
m = n = 0. Inductive step. Let s0

α0−→ s1
α1−→ . . .

αn−−→ sn+1 where s0 �∈ G
and sn+1 ∈ G. Without loss of generality we assume that for all i, 0 ≤ i ≤ n,
we have αi �= 0 (otherwise we can simply skip these 0-delay actions and get a
shorter sequence). We have two cases. Case ¬zt(s0): by condition Z we have
En(s0) ⊆ St(s0) and by the definition of −→

St
we have s0

α0−→
St

s1 since α0 ∈
En(s0) ∪ R≥0. By the induction hypothesis we have s1 −→

St

m s′′ with s′′ ∈ G

and m ≤ n and m + 1 ≤ n + 1. Case zt(s0): let w = α0α1 . . . αn and αi be
such that αi ∈ St(s0) and for all k < i holds that αk �∈ St(s0), i.e. αi is the
first stubborn action in w. Such an αi has to exist otherwise sn+1 �∈ G due to
condition R. Because of condition D we get zt(sk) for all k, 0 ≤ k < i, otherwise
αi cannot be the first stubborn action in w. We can split w as w = uαiv with
u ∈ St(s0)

∗
. Since all states in the path to si are zero time, by W we can swap

αi as s0
αi−→ s′

1
u−→ si

v−→ s′ with |uv| = n. Since αi ∈ St(s0) we get s0
αi−→
St

s′
1

and by the induction hypothesis we have s′
1 −→

St

m s′′ where s′′ ∈ G, m ≤ n, and
m + 1 ≤ n + 1. ��

3 Timed-Arc Petri Nets

We shall now define the model of timed-arc Petri nets (as informally described in
the introduction) together with a reachability logic and a few technical lemmas
needed later on. Let N0 = N ∪ {0} and N

∞
0 = N0 ∪ {∞}. We define the set of

well-formed closed time intervals as I def= {[a, b] | a ∈ N0, b ∈ N
∞
0 , a ≤ b} and its

subset I inv def= {[0, b] | b ∈ N
∞
0 } used in age invariants.

Definition 3 (Timed-Arc Petri Net). A timed-arc Petri net (TAPN) is a
9-tuple N = (P, T, Turg , IA,OA, g ,w ,Type, I) where

Start Pruning When Time Gets Urgent 533

– P is a finite set of places,
– T is a finite set of transitions such that P ∩ T = ∅,
– Turg ⊆ T is the set of urgent transitions,
– IA ⊆ P × T is a finite set of input arcs,
– OA ⊆ T × P is a finite set of output arcs,
– g : IA → I is a time constraint function assigning guards (time intervals) to

input arcs s.t.
• if (p, t) ∈ IA and t ∈ Turg then g((p, t)) = [0,∞],

– w : IA ∪ OA → N is a function assigning weights to input and output arcs,
– Type : IA∪OA → Types is a type function assigning a type to all arcs where

Types = {Normal , Inhib} ∪ {Transportj | j ∈ N} such that
• if Type(z) = Inhib then z ∈ IA and g(z) = [0,∞],
• if Type((p, t)) = Transportj for some (p, t) ∈ IA then there is exactly one

(t, p′) ∈ OA such that Type((t, p′)) = Transportj,
• if Type((t, p′)) = Transportj for some (t, p′) ∈ OA then there is exactly

one (p, t) ∈ IA such that Type((p, t)) = Transportj,
• if Type((p, t)) = Transportj = Type((t, p′)) then w((p, t)) = w((t, p′)),

– I : P → Iinv is a function assigning age invariants to places.

Note that for transport arcs we assume that they come in pairs (for each
type Transportj) and that their weights match. Also for inhibitor arcs and for
input arcs to urgent transitions, we require that the guards are [0,∞].

Before we give the formal semantics of the model, let us fix some notation.
Let N = (P, T, Turg , IA,OA, g ,w ,Type, I) be a TAPN. We denote by •x def= {y ∈
P ∪ T | (y, x) ∈ IA ∪ OA, Type((y, x)) �= Inhib} the preset of a transition or a
place x. Similarly, the postset is defined as x• def= {y ∈ P ∪T | (x, y) ∈ (IA∪OA)}.
We denote by ◦t def= {p ∈ P | (p, t) ∈ IA ∧ Type((p, t)) = Inhib} the inhibitor
preset of a transition t. The inhibitor postset of a place p is defined as p◦ def=
{t ∈ T | (p, t) ∈ IA ∧ Type((p, t)) = Inhib}. Let B(R≥0) be the set of all finite
multisets over R

≥0. A marking M on N is a function M : P −→ B(R≥0) where
for every place p ∈ P and every token x ∈ M(p) we have x ∈ I (p), in other
words all tokens have to satisfy the age invariants. The set of all markings in a
net N is denoted by M(N).

We write (p, x) to denote a token at a place p with the age x ∈ R
≥0. Then

M = {(p1, x1), (p2, x2), . . . , (pn, xn)} is a multiset representing a marking M
with n tokens of ages xi in places pi. We define the size of a marking as |M | =
∑

p∈P |M(p)| where |M(p)| is the number of tokens located in the place p. A
marked TAPN (N,M0) is a TAPN N together with an initial marking M0 with
all tokens of age 0.

Definition 4 (Enabledness). Let N = (P, T, Turg , IA,OA, g ,w ,Type, I) be
a TAPN. We say that a transition t ∈ T is enabled in a marking M by the
multisets of tokens In = {(p, x1

p), (p, x2
p), . . . , (p, x

w((p,t))
p) | p ∈ •t} ⊆ M and

Out = {(p′, x1
p′), (p′, x2

p′), . . . , (p′, xw((t,p′))
p′) | p′ ∈ t•} if

534 F. M. Bønneland et al.

– for all input arcs except the inhibitor arcs, the tokens from In satisfy the age
guards of the arcs, i.e.

∀p ∈ •t. xi
p ∈ g((p, t)) for 1 ≤ i ≤ w((p, t))

– for any inhibitor arc pointing from a place p to the transition t, the number
of tokens in p is smaller than the weight of the arc, i.e.

∀(p, t) ∈ IA.Type((p, t)) = Inhib ⇒ |M(p)| < w((p, t))

– for all input arcs and output arcs which constitute a transport arc, the age of
the input token must be equal to the age of the output token and satisfy the
invariant of the output place, i.e.

∀(p, t) ∈ IA.∀(t, p′) ∈ OA.Type((p, t)) = Type((t, p′)) = Transportj

⇒ (

xi
p = xi

p′ ∧ xi
p′ ∈ I (p′)

)

for 1 ≤ i ≤ w((p, t))

– for all normal output arcs, the age of the output token is 0, i.e.

∀(t, p′) ∈ OA.Type((t, p′)) = Normal ⇒ xi
p′ = 0 for 1 ≤ i ≤ w((t, p′)).

A given marked TAPN (N,M0) defines a timed transition system T (N) def=
(M(N),M0,−→) where the states are markings and the transitions are as follows.

– If t ∈ T is enabled in a marking M by the multisets of tokens In and Out
then t can fire and produce the marking M ′ = (M � In) � Out where � is
the multiset sum operator and � is the multiset difference operator; we write
M

t−→ M ′ for this action transition.
– A time delay d ∈ N0 is allowed in M if

• (x + d) ∈ I(p) for all p ∈ P and all x ∈ M(p), i.e. by delaying d time
units no token violates any of the age invariants, and

• if M
t→ M ′ for some t ∈ Turg then d = 0, i.e. enabled urgent transitions

disallow time passing.
By delaying d time units in M we reach the marking M ′ defined as M ′(p) =
{x + d | x ∈ M(p)} for all p ∈ P ; we write M

d−→ M ′ for this delay transition.

Note that the semantics above defines the discrete-time semantics as the
delays are restricted to nonnegative integers. It is well known that for timed-arc
Petri nets with nonstrict intervals, the marking reachability problem on discrete
and continuous time nets coincide [31]. This is, however, not the case for more
complex properties like liveness that can be expressed in the CTL logic (for
counter examples that can be expressed in CTL see e.g. [25]).

3.1 Reachability Logic and Interesting Sets of Transitions

We now describe a logic for expressing the properties of markings based on the
number of tokens in places and transition enabledness, inspired by the logic

Start Pruning When Time Gets Urgent 535

Table 1. Interesting transitions of ϕ (assuming M �|= ϕ, otherwise AM (ϕ) = ∅)

Formula ϕ AM (ϕ) AM (¬ϕ)

deadlock (•t)• ∪ •(◦t) for some t ∈ En(M) ∅
t •p for some p ∈ •t where M(p) < w((p, t)) or

p• for some p ∈ ◦t where M(p) ≥ w((p, t))
(•t)• ∪ •(◦t)

e1 < e2 decrM (e1) ∪ incrM (e2) AM (e1 ≥ e2)

e1 ≤ e2 decrM (e1) ∪ incrM (e2) AM (e1 > e2)

e1 > e2 incrM (e1) ∪ decrM (e2) AM (e1 ≤ e2)

e1 ≥ e2 incrM (e1) ∪ decrM (e2) AM (e1 < e2)

e1 = e2 decrM (e1) ∪ incrM (e2) if evalM (e1) > evalM (e2)
incrM (e1) ∪ decrM (e2) if evalM (e1) < evalM (e2)

AM (e1 �= e2)

e1 �= e2 incrM (e1) ∪ decrM (e1) ∪ incrM (e2) ∪ decrM (e2) AM (e1 = e2)

ϕ1 ∧ ϕ2 AM (ϕi) for some i ∈ {1, 2} where M �|= ϕi AM (¬ϕ1 ∨ ¬ϕ2)

ϕ1 ∨ ϕ2 AM (ϕ1) ∪ AM (ϕ2) AM (¬ϕ1 ∧ ¬ϕ2)

Table 2. Increasing and decreasing transitions of expression e

Expression e incrM (e) decrM (e)

c ∅ ∅
p •p p•

e1 + e2 incrM (e1) ∪ incrM (e2) decrM (e1) ∪ decrM (e2)

e1 − e2 incrM (e1) ∪ decrM (e2) decrM (e1) ∪ incrM (e2)

e1 ∗ e2 incrM (e1)∪decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

incrM (e1)∪decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

used in the Model Checking Contest (MCC) Property Language [27]. Let N =
(P, T, Turg , IA,OA, g ,w ,Type, I) be a TAPN. The formulae of the logic are given
by the abstract syntax:
ϕ :: = deadlock | t | e1 �� e2|ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 | ¬ϕ
e :: = c| p | e1 ⊕ e2

where t ∈ T , �� ∈ {<,≤,=, �=, >,≥}, c ∈ Z, p ∈ P , and ⊕ ∈ {+,−, ∗}. Let Φ be
the set of all such formulae and let EN be the set of arithmetic expressions over
the net N . The semantics of ϕ in a marking M ∈ M(N) is given by

M |= deadlock if En(M) = ∅
M |= t if t ∈ En(M)
M |= e1 �� e2 if evalM (e1) �� evalM (e2)

assuming a standard semantics for Boolean operators and where the semantics
of arithmetic expressions in a marking M is as follows: evalM (c) = c, evalM (p) =
|M(p)|, and evalM (e1 ⊕ e2) = evalM (e1) ⊕ evalM (e2).

536 F. M. Bønneland et al.

Let ϕ be a formula. We are interested in the question, whether we can reach
from the initial marking some of the goal markings from Gϕ = {M ∈ M(N) |
M |= ϕ}. In order to guide the reduction such that transitions that lead to the
goal markings are included in the generated stubborn set, we define the notion
of interesting transitions for a marking M relative to ϕ, and we let AM (ϕ) ⊆ T
denote the set of interesting transitions. Formally, we shall require that whenever
M

w−→ M ′ via a sequence of transitions w = t1t2 . . . tn ∈ T ∗ where M �∈ Gϕ and
M ′ ∈ Gϕ, then there must exist i, 1 ≤ i ≤ n, such that ti ∈ AM (ϕ).

Table 1 gives a possible definition of AM (ϕ). Let us remark that the definition
is at several places nondeterministic, allowing for a variety of sets of interesting
transitions. Table 1 uses the functions incrM : EN → 2T and decrM : EN → 2T

defined in Table 2. These functions take as input an expression e, and return all
transitions that can possibly, when fired, increase resp. decrease the evaluation
of e. The following lemma formally states the required property of the functions
incrM and decrM .

Lemma 1. Let N = (P, T, Turg , IA,OA, g ,w ,Type, I) be a TAPN and M ∈
M(N) a marking. Let e ∈ EN and let M

w−→ M ′ where w = t1t2 . . . tn ∈ T ∗.

– If evalM (e) < evalM ′(e) then there is i, 1 ≤ i ≤ n, such that ti ∈ incrM (e).
– If evalM (e) > evalM ′(e) then there is i, 1 ≤ i ≤ n, such that ti ∈ decrM (e).

We finish this section with the main technical lemma, showing that at least
one interesting transition must be fired before we can reach a marking satisfying
a given reachability formula.

Lemma 2. Let N = (P, T, Turg , IA,OA, g ,w ,Type, I) be a TAPN, let M ∈
M(N) be its marking and let ϕ ∈ Φ be a given formula. If M �|= ϕ and M

w−→ M ′

where w ∈ AM (ϕ)
∗

then M ′ �|= ϕ.

4 Partial Order Reductions for TAPN

We are now ready to state the main theorem that provides sufficient syntax-
driven conditions for a reduction in order to guarantee preservation of reacha-
bility. Let N = (P, T, Turg , IA,OA, g ,w ,Type, I) be a TAPN, let M ∈ M(N) be
a marking of N , and let ϕ ∈ Φ be a formula. We recall that AM (ϕ) is the set of
interesting transitions as defined earlier.

Theorem 2 (Reachability Preserving Closure). Let St be a reduction such
that for all M ∈ M(N) it satisfies the following conditions.

1 If ¬zt(M) then En(M) ⊆ St(M).
2 If zt(M) then AM (ϕ) ⊆ St(M).
3 If zt(M) then either

(a) there is t ∈ Turg ∩ En(M) ∩ St(M) where •(◦t) ⊆ St(M), or
(b) there is p ∈ P where I (p) = [a, b] and b ∈ M(p) such that t ∈ St(M) for

every t ∈ p• where b ∈ g((p, t)).

Start Pruning When Time Gets Urgent 537

t

t1

3p1

p2 t2
[3, 7]

(a) Transitions t1 and t2 can disable
resp. inhibit the urgent transition t

2 5

p

inv:≤ 5

t1 t2
[2, 4] [5, 5]

(b) Transition t2 can remove the token
of age 5 from p

Fig. 2. Cases for Condition 3

4 For all t ∈ St(M) \ En(M) either
(a) there is p ∈ •t such that |{x ∈ M(p) | x ∈ g((p, t))}| < w((p, t)) and

– t′ ∈ St(M) for all t′ ∈ •p where there is p′ ∈ •t′ with Type((t′, p)) =
Type((p′, t′)) = Transportj and where g((p′, t′)) ∩ g((p, t)) �= ∅, and

– if 0 ∈ g((p, t)) then also •p ⊆ St(M), or
(b) there is p ∈ ◦t where |M(p)| ≥ w((p, t)) such that

– t′ ∈ St(M) for all t′ ∈ p• where M(p) ∩ g((p, t′)) �= ∅.
5 For all t ∈ St(M) ∩ En(M) we have

(a) t′ ∈ St(M) for every t′ ∈ p• where p ∈ •t and g((p, t)) ∩ g((p, t′)) �= ∅,
and

(b) (t•)◦ ⊆ St(M).

Then St satisfies Z, D, R, and W.

Let us now briefly discuss the conditions of Theorem 2. Clearly, Condition 1
ensures that if time can elapse, we include all enabled transitions into the stub-
born set and Condition 2 guarantees that all interesting transitions (those that
can potentially make the reachability proposition true) are included as well.

Condition 3 makes sure that if time elapsing is disabled then any transition
that can possibly enable time elapsing will be added to the stubborn set. There
are two situations how time progress can be disabled. Either, there is an urgent
enabled transition, like the transition t in Fig. 2a. Since t2 can add a token to p2

and by that inhibit t, Condition 3a makes sure that t2 is added into the stubborn
set in order to satisfy D. As t1 can remove the token of age 3 from p1 and hence
disable t, we must add t1 to the stubborn set too (guaranteed by Condition 5a).
The other situation when time gets stopped is when a place with an age invariant
contains a token that disallows time passing, like in Fig. 2b where time is disabled
because the place p has a token of age 5, which is the maximum possible age of
tokens in p due to the age invariant. Since t2 can remove the token of age 5 from
p, we include it to the stubborn set due to Condition 3b. On the other hand t1
does not have to be included in the stubborn set as its firing cannot remove the
token of age 5 from p.

Condition 4 makes sure that an disabled stubborn transition can never be
enabled by a non-stubborn transition. There are two reasons why a transition is
disabled. Either, as in Fig. 3a where t is disabled, there is an insufficient number
of tokens of appropriate age to fire the transition. In this case, Condition 4a

538 F. M. Bønneland et al.

t

2 3

p

t1

t2

t3

1 5p1

8p2

2 9p3

[4, 6]

[2, 5]:1

[7, 9]:1

:1

:1

(a) Transition t1 can transport well-
aged tokens into p and enable t

t

6 7

p

t1

t2

p1

p2

[6, 8]

[0, 4]

(b) Transition t1 can enable t by re-
moving tokens from p

Fig. 3. Cases for Condition 4

t

4 7

p p′
t3

t1

t2

[2, 5]
[6, 8]

[0, 4]

(a) Stubborn transition t can disable both t2 and t3

Fig. 4. Cases for Condition 5

makes sure that transitions that can add tokens of a suitable age via transport
arcs are included in the stubborn set. This is the case for the transition t1 in our
example, as [2, 5] has a nonempty intersection with [4, 6]. On the other hand, t3
does not have to be added. As the transition t2 only adds fresh tokens of age 0
to p via normal arcs, there is no need to add t2 into the stubborn set either. The
other reason for a transition to be disabled is due to inhibitor arcs, as shown
on the transition t in Fig. 3b. Condition 4b makes sure that t1 is added to the
stubborn set, as it can enable t (the interval [6, 8] has a nonempty intersection
with the tokens of age 6 and 7 in the place p). As this is not the case for t2, this
transition can be left out from the stubborn set.

Finally, Condition 5 guarantees that enabled stubborn transitions can never
disable any non-stubborn transitions. For an illustration, take a look at Fig. 4a
and assume that t is an enabled stubborn transition. Firing of t can remove
the token of age 4 from p and disable t2, hence t2 must become stubborn by
Condition 5a in order to satisfy W. On the other hand, the intervals [6, 8] and
[2, 5] have empty intersection, so there is no need to declare t1 as a stubborn
transition. Moreover, firing of t can also disable the transition t3 due to the
inhibitor arc, so we must add t3 to the stubborn set by Condition 5b.

The conditions of Theorem 2 can be turned into an iterative saturation algo-
rithm for the construction of stubborn sets as shown in Algorithm 1. When
running this algorithm for the net in our running example, we can reduce the
state space exploration for fireability of the transition t as depicted in Fig. 1b.
Our last theorem states that the algorithm returns stubborn subsets of enabled

Start Pruning When Time Gets Urgent 539

Algorithm 1. Construction of a reachability preserving stubborn set
input : N = (P, T, Turg , IA,OA, g ,w ,Type, I), M ∈ M(N), ϕ ∈ Φ
output : St(M) ∩ En(M)

1 if ¬zt(M) then
2 return En(M);

3 X := ∅; Y := AM (ϕ);
4 if Turg ∩ En(M) �= ∅ then
5 pick any t ∈ Turg ∩ En(M);
6 if t /∈ Y then
7 Y := Y ∪ {t};

8 Y := Y ∪ •(◦t);

9 else
10 pick any p ∈ P where I (p) = [a, b] and b ∈ M(p)
11 forall t ∈ p• do
12 if b ∈ g((p, t)) then
13 Y := Y ∪ {t};

14 while Y �= ∅ do
15 pick any t ∈ Y ;
16 if t /∈ En(M) then
17 if ∃p ∈ •t. |{x ∈ M(p) | x ∈ g((p, t))}| < w((p, t)) then
18 pick any such p;
19 forall t′ ∈ •p \ X do
20 forall p′ ∈ •t′ do
21 if Type((t′, p)) = Type((p′, t′)) =

Transportj ∧ g((p′, t′)) ∩ g((p, t)) �= ∅ then
22 Y := Y ∪ {t′};

23 if 0 ∈ g((p, t)) then
24 Y := Y ∪ (•p \ X);

25 else
26 pick any p ∈ ◦t s.t. |M(p)| ≥ w((p, t));
27 forall t′ ∈ p• \ X do
28 if M(p) ∩ g((p, t′)) �= ∅ then
29 Y := Y ∪ {t′};

30 else
31 forall p ∈ •t do
32 Y := Y ∪ ({t′ ∈ p•|g((p, t)) ∩ g((p, t′)) �= ∅} \ X);

33 Y := Y ∪ ((t•)◦ \ X);

34 Y := Y \ {t};
35 X := X ∪ {t};

36 return X ∩ En(M);

540 F. M. Bønneland et al.

transitions that satisfy the four conditions of Theorem 1 and hence we preserve
the reachability property as well as the minimum path to some reachable goal.

Theorem 3. Algorithm 1 terminates and returns St(M) ∩ En(M) for some
reduction St that satisfies Z, D, R, and W.

5 Implementation and Experiments

We implemented our partial order method in C++ and integrated it within the
model checker TAPAAL [19] and its discrete time engine verifydtapn [4,11].
We evaluate our partial order reduction on a wide range of case studies.

PatientMonitoring. The patient monitoring system [17] models a medical
system that through sensors periodically scans patient’s vital functions, making
sure that abnormal situations are detected and reported within given deadlines.
The timed-arc Petri net model was described in [17] for two sensors monitoring
patient’s pulse rate and oxygen saturation level. We scale the case study by
adding additional sensors. BloodTransfusion. This case study models a larger
blood transfusion workflow [16], the benchmarking case study of the little-JIL
language. The timed-arc Petri net model was described in [10] and we verify that
the workflow is free of deadlocks (unless all sub-workflows correctly terminate).
The problem is scaled by the number of patients receiving a blood transfusion.
FireAlarm. This case study uses a modified (due to trade secrets) fire alarm
system owned by a German company [20,21]. It models a four-channel round-
robin frequency-hopping transmission scheduling in order to ensure a reliable
communication between a number of wireless sensors (by which the case study
is scaled) and a central control unit. The protocol is based on time-division
multiple access (TDMA) channel access and we verify that for a given frequency-
jammer, it takes never more than three cycles before a fire alarm is communicated
to the central unit. BAwPC. Business Activity with Participant Completion
(BAwPC) is a web-service coordination protocol from WS-BA specification [33]
that ensures a consistent agreement on the outcome of long-running distributed
applications. In [26] it was shown that the protocol is flawed and a correct,
enhanced variant was suggested. We model check this enhanced protocol and
scale it by the capacity of the communication buffer. Fischer. Here we consider
a classical Fischer’s protocol for ensuring mutual exclusion for a number of timed
processes. The timed-arc Petri net model is taken from [2] and it is scaled by the
number of processes. LynchShavit. This is another timed-based mutual exclusion
algorithm by Lynch and Shavit, with the timed-arc Petri net model taken from [1]
and scaled by the number of processes. MPEG2. This case study describes the
workflow of the MPEG-2 video encoding algorithm run on a multicore processor
(the timed-arc Petri net model was published in [35]) and we verify the maximum
duration of the workflow. The model is scaled by the number of B frames in the
IBnP frame sequence. AlternatingBit. This is a classical case study of alternating
bit protocol, based on the timed-arc Petri net model given in [24]. The purpose
of the protocol is to ensure a safe communication between a sender and a receiver
over an unreliable medium. Messages are time-stamped in order to compensate

Start Pruning When Time Gets Urgent 541

Table 3. Experiments with and without partial order reduction (POR)

Time (seconds) Markings ×1000 Reduction

Model NORMAL POR NORMAL POR %Time %Markings

PatientMonitoring 3 5.88 0.35 333 28 94 92

PatientMonitoring 4 22.06 0.48 1001 36 98 96

PatientMonitoring 5 80.76 0.65 3031 44 99 99

PatientMonitoring 6 305.72 0.85 9248 54 100 99

PatientMonitoring 7 5516.93 5.75 130172 318 100 100

BloodTransfusion 2 0.32 0.41 48 43 −28 11

BloodTransfusion 3 7.88 6.45 792 546 18 31

BloodTransfusion 4 225.18 109.30 14904 7564 51 49

BloodTransfusion 5 5256.01 1611.14 248312 94395 69 62

FireAlarm 10 28.95 14.17 796 498 51 37

FireAlarm 12 116.97 17.51 1726 526 85 70

FireAlarm 14 598.89 21.65 5367 554 96 90

FireAlarm 16 5029.25 29.48 19845 582 99 97

FireAlarm 18 27981.90 34.55 77675 610 100 99

FireAlarm 20 154495.29 41.47 308914 638 100 100

FireAlarm 80 >2 days 602.71 − 1522 − −
FireAlarm 125 >2 days 1957.00 − 2260 − −
BAwPC 2 0.21 0.41 19 16 −95 15

BAwPC 4 3.45 4.04 193 125 −17 35

BAwPC 6 23.01 17.08 900 452 26 50

BAwPC 8 73.73 39.29 2294 952 47 58

BAwPC 10 135.62 60.66 3819 1412 55 63

BAwPC 12 173.09 73.53 4736 1665 58 65

Fischer-9 3.24 2.37 281 233 27 17

Fischer-11 12.68 8.73 923 738 31 20

Fischer-13 42.52 28.53 2628 2041 33 22

Fischer-15 121.31 77.50 6700 5066 36 24

Fischer-17 313.69 198.36 15622 11536 37 26

Fischer-19 748.52 456.30 33843 24469 39 28

Fischer-21 1622.69 985.07 68934 48904 39 29

LynchShavit 9 3.98 3.31 282 234 17 17

LynchShavit 11 15.73 12.19 925 740 23 20

LynchShavit 13 51.08 37.97 2631 2043 26 22

LynchShavit 15 146.63 103.63 6703 5069 29 24

LynchShavit 17 384.52 258.09 15626 11540 33 26

LynchShavit 19 907.60 597.68 33848 24474 34 28

LynchShavit 21 2011.58 1307.72 68940 48910 35 29

MPEG2 3 13.17 15.43 2188 2187 −17 0

MPEG2 4 109.62 125.45 15190 15180 −14 0

MPEG2 5 755.54 840.84 87568 87478 −11 0

MPEG2 6 4463.19 5092.58 435023 434354 −14 0

AlternatingBit 20 9.17 9.51 617 617 −4 0

AlternatingBit 30 48.20 49.13 2804 2804 −2 0

AlternatingBit 40 161.18 162.94 8382 8382 −1 0

AlternatingBit 50 408.34 408.86 19781 19781 0 0

542 F. M. Bønneland et al.

(via retransmission) for the possibility of losing messages. The case study is
scaled by the maximum number of messages in transfer.

All experiments were run on AMD Opteron 6376 Processors with 500 GB
memory. In Table 3 we compare the time to verify a model without (NORMAL)
and with (POR) partial order reduction, the number of explored markings (in
thousands) and the percentage of time and memory reduction. We can observe
clear benefits of our technique on PatientMonitoring, BloodTransfusion and Fire-
Alarm where we are both exponentially faster and explore only a fraction of all
reachable markings. For example in FireAlarm, we are able to verify its cor-
rectness for all 125 sensors, as it is required by the German company [21]. This
would be clearly unfeasible without the use of partial order reduction.

In BAwPC, we can notice that for the smallest instances, there is some
computation overhead from computing the stubborn sets, however, it clearly
pays off for the larger instances where the percentages of reduced state space are
closely followed by the percentages of the verification times and in fact improve
with the larger instances. Fischer and LynchShavit case studies demonstrate that
even moderate reductions of the state space imply considerable reduction in the
running time and computing the stubborn sets is well worth the extra effort.

MPEG2 is an example of a model that allows only negligible reduction of
the state space size, and where we observe an actual slowdown in the running
time due to the computation of the stubborn sets. Nevertheless, the overhead
stays constant in the range of about 15%, even for increasing instance sizes.
Finally, AlternatingBit protocol does not allow for any reduction of the state
space (even though it contains age invariants) but the overhead in the running
time is negligible.

We observed similar performance of our technique also for the cases where
the reachability property does not hold and a counter example can be generated.

6 Conclusion

We suggested a simple, yet powerful and application-ready partial order reduc-
tion for timed systems. The reduction comes into effect as soon as the timed sys-
tem enters an urgent configuration where time cannot elapse until a nonempty
sequence of transitions gets executed. The method is implemented and fully inte-
grated, including GUI support, into the open-source tool TAPAAL. We demon-
strated its practical applicability on several case studies and conclude that com-
puting the stubborn sets causes only a minimal overhead while providing large
benefits for reducing the state space in numerous models. The method is not
specific to stubborn reduction technique only and it preserves the shortest exe-
cution sequences. Moreover, once the time gets urgent, other classical (untimed)
partial order approaches should be applicable too. Our method was instantiated
to (unbounded) timed-arc Petri nets with discrete time semantics, however, we
claim that the technique allows for general application to other modelling for-
malisms like timed automata and timed Petri nets, as well as an extension to
continuous time. We are currently working on adapting the theory and providing

Start Pruning When Time Gets Urgent 543

an efficient implementation for UPPAAL-style timed automata with continuous
time semantics.

Acknowledgements. We thank Mads Johannsen for his help with the GUI support
for partial order reduction. The work was funded by the center IDEA4CPS, Innovation
Fund Denmark center DiCyPS and ERC Advanced Grant LASSO. The last author is
partially affiliated with FI MU in Brno.

References

1. Abdulla, P., Deneux, J., Mahata, P., Nylén, A.: Using forward reachability analysis
for verification of timed Petri nets. Nord. J. Comput. 14, 1–42 (2007)

2. Abdulla, P.A., Nylén, A.: Timed Petri nets and BQOs. In: Colom, J.-M., Koutny,
M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45740-2 5

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

4. Andersen, M., Gatten Larsen, H., Srba, J., Grund Sørensen, M., Haahr Taankvist,
J.: Verification of liveness properties on closed timed-arc Petri nets. In: Kučera, A.,
Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds.) MEMICS 2012. LNCS,
vol. 7721, pp. 69–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36046-6 8

5. André, E., Chatain, T., Rodŕıguez, C.: Preserving partial-order runs in parametric
time Petri nets. ACM Trans. Embed. Comput. Syst. 16(2), 43:1–43:26 (2017)

6. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

7. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in
zone-based abstractions of timed automata. STTT 8(3), 204–215 (2006)

8. Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed
systems. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 485–500. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055643

9. Berthomieu, B., Vernadat, F.: Time Petri nets analysis with TINA. In: Third Inter-
national Conference on Quantitative Evaluation of Systems, pp. 123–124. IEEE
Computer Society (2006)

10. Bertolini, C., Liu, Z., Srba, J.: Verification of timed healthcare workflows using
component timed-arc Petri nets. In: Weber, J., Perseil, I. (eds.) FHIES 2012. LNCS,
vol. 7789, pp. 19–36. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39088-3 2

11. Viesmose Birch, S., Stig Jacobsen, T., Jon Jensen, J., Moesgaard, C., Nørgaard
Samuelsen, N., Srba, J.: Interval abstraction refinement for model checking of
timed-arc Petri nets. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS,
vol. 8711, pp. 237–251. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10512-3 17

12. Boucheneb, H., Barkaoui, K.: Reducing interleaving semantics redundancy in
reachability analysis of time Petri nets. ACM Trans. Embed. Comput. Syst. 12(1),
7:1–7:24 (2013)

13. Boucheneb, H., Barkaoui, K.: Stubborn sets for time Petri nets. ACM Trans.
Embed. Comput. Syst. 14(1), 11:1–11:25 (2015)

https://doi.org/10.1007/3-540-45740-2_5
https://doi.org/10.1007/978-3-642-36046-6_8
https://doi.org/10.1007/978-3-642-36046-6_8
https://doi.org/10.1007/BFb0055643
https://doi.org/10.1007/978-3-642-39088-3_2
https://doi.org/10.1007/978-3-642-39088-3_2
https://doi.org/10.1007/978-3-319-10512-3_17
https://doi.org/10.1007/978-3-319-10512-3_17

544 F. M. Bønneland et al.

14. Boucheneb, H., Barkaoui, K.: Delay-dependent partial order reduction technique
for real time systems. Real-Time Syst. 54, 278–306 (2017)

15. Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF toolset. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 237–267. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 8

16. Christov, S., Avrunin, G., Clarke, A., Osterweil, L., Henneman, E.: A benchmark
for evaluating software engineering techniques for improving medical processes. In:
SEHC 2010, pp. 50–56. ACM (2010)

17. Cicirelli, F., Furfaro, A., Nigro, L.: Model checking time-dependent system specifi-
cations using time stream Petri nets and UPPAAL. Appl. Math. Comput. 218(16),
8160–8186 (2012)

18. Dams, D., Gerth, R., Knaack, B., Kuiper, R.: Partial-order reduction techniques
for real-time model checking. Form. Asp. Comput. 10(5–6), 469–482 (1998)

19. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: integrated development environment for timed-arc Petri nets. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5 36

20. Feo-Arenis, S., Westphal, B., Dietsch, D., Muñiz, M., Andisha, A.S.: The wire-
less fire alarm system: ensuring conformance to industrial standards through for-
mal verification. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS,
vol. 8442, pp. 658–672. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06410-9 44

21. Feo-Arenis, S., Westphal, B., Dietsch, D., Muñiz, M., Andisha, S., Podelski, A.:
Ready for testing: ensuring conformance to industrial standards through formal
verification. Form. Asp. Comput. 28(3), 499–527 (2016)

22. Gardey, G., Lime, D., Magnin, M., Roux, O.H.: Romeo: a tool for analyzing time
Petri nets. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 418–423. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988 41

23. Hansen, H., Lin, S.-W., Liu, Y., Nguyen, T.K., Sun, J.: Diamonds are a girl’s best
friend: partial order reduction for timed automata with abstractions. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 391–406. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08867-9 26

24. Jacobsen, L., Jacobsen, M., Møller, M.H., Srba, J.: Verification of timed-arc Petri
Nets. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić,
M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 46–72. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-18381-2 4

25. Jensen, P., Larsen, K., Srba, J.: Discrete and continuous strategies for timed-arc
Petri net games. Int. J. Softw. Tools Technol. Transf. (STTT), 1–18 (2017, to
appear). Online since September 2017

26. Marques Jr., A., Ravn, A., Srba, J., Vighio, S.: Model-checking web services busi-
ness activity protocols. Int. J. Softw. Tools Technol. Transf. (STTT) 15(2), 125–147
(2012)

27. Kordon, F., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Chiardo, G., Hamez, A.,
Jezequel, L., Miner, A., Meijer, J., Paviot-Adet, E., Racordon, D., Rodriguez, C.,
Rohr, C., Srba, J., Thierry-Mieg, Y., Tri.nh, G., Wolf, K.: Complete Results for the
2016 Edition of the Model Checking Contest, June 2016. http://mcc.lip6.fr/2016/
results.php

28. Kristensen, L.M., Schmidt, K., Valmari, A.: Question-guided stubborn set methods
for state properties. Form. Methods Syst. Des. 29(3), 215–251 (2006)

29. Lilius, J.: Efficient state space search for time Petri nets. Electron. Notes Theo.
Comput. Sci. 18, 113–133 (1998). MFCS 1998 Workshop on Concurrency

https://doi.org/10.1007/978-3-540-30080-9_8
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-319-06410-9_44
https://doi.org/10.1007/978-3-319-06410-9_44
https://doi.org/10.1007/11513988_41
https://doi.org/10.1007/978-3-319-08867-9_26
https://doi.org/10.1007/978-3-642-18381-2_4
http://mcc.lip6.fr/2016/results.php
http://mcc.lip6.fr/2016/results.php

Start Pruning When Time Gets Urgent 545

30. Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock
explosion problem of timed automata. Theor. Comput. Sci. 345(1), 27–59 (2005)

31. Mateo, J., Srba, J., Sørensen, M.: Soundness of timed-arc workflow nets in discrete
and continuous-time semantics. Fundam. Inform. 140(1), 89–121 (2015)

32. Minea, M.: Partial order reduction for model checking of timed automata. In:
Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 431–446.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48320-9 30

33. Newcomer, E., Robinson, I.: Web services business activity (WS-businessactivity)
version 1.2 (2009). http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-os/
wstx-wsba-1.2-spec-os.html

34. Niebert, P., Qu, H.: Adding invariants to event zone automata. In: Asarin, E.,
Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 290–305. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11867340 21

35. Pelayo, F., Cuartero, F., Valero, V., Macia, H., Pelayo, M.: Applying timed-arc
Petri nets to improve the performance of the MPEG-2 encoding algorithm. In:
10th International Multimedia Modelling Conference, pp. 49–56. IEEE Computer
Society (2004)

36. Perin, M., Faure, J.: Coupling timed plant and controller models with urgent tran-
sitions without introducing deadlocks. In: 17th International Conference on Emerg-
ing Technologies and Factory Automation (ETFA 2012), pp. 1–9. IEEE (2012)

37. Salah, R.B., Bozga, M., Maler, O.: On interleaving in timed automata. In: Baier,
C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 465–476. Springer,
Heidelberg (2006). https://doi.org/10.1007/11817949 31

38. Sloan, R.H., Buy, U.: Stubborn sets for real-time Petri nets. Form. Methods Syst.
Des. 11(1), 23–40 (1997)

39. Valmari, A., Hansen, H.: Stubborn set intuition explained. In: Koutny, M., Kleijn,
J., Penczek, W. (eds.) Transactions on Petri Nets and Other Models of Concurrency
XII. LNCS, vol. 10470, pp. 140–165. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-55862-1 7

40. Virbitskaite, I., Pokozy, E.: A partial order method for the verification of time Petri
nets. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 547–558.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48321-7 46

41. Yoneda, T., Schlingloff, B.-H.: Efficient verification of parallel real-time systems.
Form. Methods Syst. Des. 11(2), 187–215 (1997)

https://doi.org/10.1007/3-540-48320-9_30
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-os/wstx-wsba-1.2-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-os/wstx-wsba-1.2-spec-os.html
https://doi.org/10.1007/11867340_21
https://doi.org/10.1007/11817949_31
https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1007/3-540-48321-7_46

546 F. M. Bønneland et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Counting Semantics for Monitoring
LTL Specifications over Finite Traces

Ezio Bartocci1(B), Roderick Bloem2, Dejan Nickovic3, and Franz Roeck2

1 TU Wien, Vienna, Austria
ezio.bartocci@tuwien.ac.at

2 Graz University of Technology, Graz, Austria
3 Austrian Institute of Technology GmbH, Vienna, Austria

Abstract. We consider the problem of monitoring a Linear Time Logic
(LTL) specification that is defined on infinite paths, over finite traces.
For example, we may need to draw a verdict on whether the system
satisfies or violates the property “p holds infinitely often.” The problem
is that there is always a continuation of a finite trace that satisfies the
property and a different continuation that violates it.

We propose a two-step approach to address this problem. First, we
introduce a counting semantics that computes the number of steps to
witness the satisfaction or violation of a formula for each position in the
trace. Second, we use this information to make a prediction on incon-
clusive suffixes. In particular, we consider a good suffix to be one that
is shorter than the longest witness for a satisfaction, and a bad suffix to
be shorter than or equal to the longest witness for a violation. Based on
this assumption, we provide a verdict assessing whether a continuation
of the execution on the same system will presumably satisfy or violate
the property.

1 Introduction

Alice is a verification engineer and she is presented with a new exciting and com-
plex design. The requirements document coming with the design already incor-
porates functional requirements formalized in Linear Temporal Logic (LTL) [13].
The design contains features that are very challenging for exhaustive verification
and her favorite model checking tool does not terminate in reasonable time.

This work was partially supported by the European Union (IMMORTAL project,
grant no. 644905), the Austrian FWF (National Research Network RiSE/SHiNE
S11405-N23 and S11406-N23), the SeCludE project (funded by UnivPM) and the
ENABLE-S3 project that has received funding from the ECSEL Joint Undertaking
under Grant Agreement no. 692455. This Joint Undertaking receives support from
the European Unions HORIZON 2020 research and innovation programme and Aus-
tria, Denmark, Germany, Finland, Czech Republic, Italy, Spain, Portugal, Poland,
Ireland, Belgium, France, Netherlands, United Kingdom, Slovakia, Norway.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 547–564, 2018.
https://doi.org/10.1007/978-3-319-96145-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_29&domain=pdf

548 E. Bartocci et al.

Runtime Verification. Alice decides to tackle this problem using runtime verifica-
tion (RV) [3], a light, yet rigorous verification method. RV drops the exhaustive-
ness of model checking and analyzes individual traces generated by the system.
Thus, it scales much better to the industrial-size designs. RV enables automatic
generation of monitors from formalized requirements and thus provides a sys-
tematic way to check if the system traces satisfy (violate) the specification.

Motivating Example. In particular, Alice considers the following specification:

ψ ≡ G(request → F grant)

This LTL formula specifies that every request coming from the environment must
be granted by the design in some finite (but unbounded) future. Alice realizes
that she is trying to check a liveness property over a set of finite traces. She
looks closer at the executions and identifies the two interesting examples trace
τ1 and trace τ2, depicted in Table 1.

Table 1. Unbounded response prop-
erty example.

trace time 1 2 3 4 5 6 7

τ1 request � − − � − − −
grant − − � − − − −

τ2 request � − − � − − �
grant − − � − − � −

We use “−” instead of “⊥” to improve
the trace readability.

The monitoring tool reports that both τ1

and τ2 presumably violate the unbounded
response property. This verdict is against
Alice’s intuition. The evaluation of trace τ1

seems right to her – the request at Cycle 1 is
followed by a grant at Cycle 3, however the
request at Cycle 4 is never granted during
that execution. There are good reasons to
suspect a bug in the design. Then she looks
at τ2 and observes that after every request the grant is given exactly after 2
cycles. It is true that the last request at Cycle 7 is not followed by a grant, but
this seems to happen because the execution ends at that cycle – the past trace
observations give reason to think that this request would be followed by a grant
in cycle 9 if the execution was continued. Thus, Alice is not satisfied by the
second verdict.

Alice looks closer at the way that the LTL property is evaluated over finite
traces. She finds out that temporal operators are given strength – eventually and
until are declared as strong operators, while always and weak until are defined to
be weak [9]. A strong temporal operator requires all outstanding obligations to be
met before the end of the trace. In contrast, a weak temporal operator must not
witness any outstanding obligation violation before the end of the trace. Under
this interpretation, both τ1 and τ2 violate the unbounded response property.

Alice explores another popular approach to evaluate future temporal prop-
erties over finite traces – the 3-valued semantics for LTL [4]. In this setting, the
Boolean set of verdicts is extended with a third unknown (or maybe) value. A
finite trace satisfies (violates) the 3-valued LTL formula if and only if all the
infinite extensions of the trace satisfy (violate) the same LTL formula under its
classical interpretation. In all other cases, we say that the satisfaction of the
formula by the trace is unknown. Alice applies the 3-valued interpretation of
LTL on the traces τ1 and τ2 to evaluate the unbounded response property. In

A Counting Semantics for Monitoring LTL Specifications over Finite Traces 549

both situations, she ends up with the unknown verdict. Once again, this is not
what she expects and it does not meet her intuition about the satisfaction of the
formula by the observed traces.

Alice desires a semantics that evaluates LTL properties on finite traces by
taking previous observations into account.

Contributions. In this paper, we study the problem of LTL evaluation over finite
traces encountered by Alice and propose a solution. We introduce a new count-
ing semantics for LTL that takes into account the intuition illustrated by the
example from Table 1. This semantics computes for every position of a trace two
values – the distances to the nearest satisfaction and violation of the co-safety,
respectively safety, part of the specification. We use this quantitative information
to make predictions about the (infinite) suffixes of the finite observations. We
infer from these values the maximum time that we expect for a future obligation
to be fulfilled. We compare it to the value that we have for an open obligation
at the end of the trace. If the latter is greater (smaller) than the expected max-
imum value, we have a good indication of a presumed violation (satisfaction)
that we report to the user. In particular, our approach will indicate that τ1 is
likely to violate the specification and should be further inspected. In contrast, it
will evaluate that τ2 most likely satisfies the unbounded response property.

Organization of the Paper. The rest of the paper is organized as follows. We
discuss the related work in Sect. 2 and we provide the preliminaries in Sect. 3.
In Sect. 4 we present our new counting semantics for LTL and we show how
to make predictions about (infinite) suffixes of the finite observations. Section 5
shows the application of our approach to some examples. Finally in Sect. 6 we
draw our conclusions.

2 Related Work

The finitary interpretation of LTL was first considered in [11], where the authors
propose to enrich the logic with the weak next operator that is dual to the
(strong) next operator defined on infinite traces. While the strong next requires
the existence of a next state, the weak next trivially evaluates to true at the end
of the trace. In [9], the authors propose a more semantic approach with weak and
strong views for evaluating future obligations at the end of the trace. In essence
the empty word satisfies (violates) every formula according to the weak (strong)
view. These two approaches result in the violation of the specification ψ by both
traces τ1 and τ2.

The authors in [4] propose a 3-valued finitary LTL interpretation of LTL, in
which the set {true, false} of verdicts is extended with a third inconclusive verdict.
According to the 3-valued LTL, a finite trace satisfies (violates) a specification iff
all its infinite extensions satisfy (violate) the same property under the classical
LTL interpretation. Otherwise, it evaluates to inconclusive. The main disadvan-
tage of the 3-valued semantics is the dominance of the inconclusive verdict in

550 E. Bartocci et al.

the evaluation of many interesting LTL formulas. In fact, both τ1 and τ2 from
Table 1 evaluate to inconclusive against the unbounded response specification ψ.

In [5], the authors combine the weak and strong operators with the 3-valued
semantics to refine the inconclusive with {presumably true, presumably false}. The
strength of the remaining future obligation dictates the presumable verdict. The
authors in [12] propose a finitary semantics for each of the LTL (safety, liveness,
persistence and recurrence) hierarchy classes that asymptotically converges to
the infinite traces semantics of the logic. In these two works, the specification ψ
also evaluates to the same verdict for both the traces τ1 and τ2.

To summarize, none of the related work handles the unbounded response
example from Table 1 in a satisfactory manner. This is due to the fact that these
approaches decide about the verdict based on the specification and its remaining
future obligations at the end of the trace. In contrast, we propose an approach in
which the past observations within the trace are used to predict the future and
derive the appropriate verdict. In particular, the application of our semantics
for the evaluation of ψ over τ1 and τ2 results in presumably true and presumably
false verdicts.

In [17], the authors propose another predictive semantics for LTL. In essence,
this work assumes that at every point in time the monitor is able to precisely
predict a segment of the trace that it has not observed yet and produce its
outcome accordingly. In order to ensure such predictive power, this approach
requires a white-box setting in which instrumentation and some form of static
analysis of the systems are needed in order to foresee in advance the upcoming
observations. This is in contrast to our work, in which the monitor remains a
passive participant and predicts its verdict only based on the past observations.

In a different research thread [15], the authors introduce the notion of moni-
torable specifications that can be positively or negatively determined by a finite
trace. The monitorability of LTL is further studied in [6,14]. This classifica-
tion of specifications is orthogonal to our work. We focus on providing a sensible
evaluation to all LTL properties, including the non-monitorable ones (e.g., GF p).

We also mention the recent work on statistical model checking for LTL [8]. In
this work, the authors assume a gray-box setting, where the system-under-test
(SUT) is a Markov chain with the known minimum transition probability. This
is in contrast to our work, in which we passively observe existing finite traces
generated by the SUT, i.e., we have a blackbox setting.

In [1], the authors propose extending LTL with a discounting operator and
study the properties of the augmented logic. The LTL specification formalism
is extended with path-accumulation assertions in [7]. These LTL extensions are
motivated by the need for a more quantitative and refined analysis of the systems.
In our work, the motivation for the counting semantics is quite different. We use
the quantitative information that we collect during the execution of the trace to
predict the future behavior of the system and thus improve the quality of the
monitoring verdict.

A Counting Semantics for Monitoring LTL Specifications over Finite Traces 551

3 Preliminaries

We first introduce traces and Linear Temporal Logic (LTL) that we interpret
over 3-valued semantics.

Definition 1 (Trace). Let P a finite set of propositions and let Π = 2P . A
(finite or infinite) trace π is a sequence π1, π2, . . . ∈ Π∗ ∪ Πω . We denote by
|π| ∈ N ∪ {∞} the length of π. We denote by π · π′ the concatenation of π ∈ Π∗

and π′ ∈ Π∗ ∪ Πω.

Definition 2 (Linear Temporal Logic). In this paper, we consider linear
temporal logic (LTL) and we define its syntax by the grammar:

φ := p | ¬φ | φ1 ∨ φ2 | Xφ | φ1 U φ2,

where p ∈ P . We denote by Φ the set of all LTL formulas.

From the basic definition we can derive other standard Boolean and temporal
operators as follows:

� = p ∨ ¬p, ⊥ = ¬�, φ ∧ ψ = ¬(¬φ ∨ ¬ψ), F φ = � U φ, G φ = ¬F ¬φ

Let π ∈ Πω be an infinite trace and φ an LTL formula. The satisfaction
relation (π, i) |= φ is defined inductively as follows

(π, i) |= p iff p ∈ πi,
(π, i) |= ¬φ iff (π, i) �|= φ,
(π, i) |= φ1 ∨ φ2 iff (π, i) |= φ1 or (π, i) |= φ2,
(π, i) |= X φ iff (π, i + 1) |= φ,
(π, i) |= φ1 U φ2 iff ∃j ≥ i s.t. (π, j) |= φ2 and ∀i ≤ k < j, (π, k) |= φ1.

We now recall the 3-valued semantics from [4]. We denote by [π |=3 φ] the
evaluation of φ with respect to the trace π ∈ Π∗ that yields a value in {�,⊥, ?}.

[π |=3 φ] =

⎧
⎪⎨

⎪⎩

� ∀π′ ∈ Πω, π · π′ |= φ,
⊥ ∀π′ ∈ Πω, π · π′ �|= φ,
? otherwise.

We now restrict LTL to a fragment without explicit � and ⊥ symbols and
with the explicit F operator that we add to the syntax. We provide an alternative
3-valued semantics for this fragment, denoted by μπ(φ, i) where i ∈ N>0 indicates
a position in or outside the trace. We assume the order ⊥ <? < �, and extend the
Boolean operations to the 3-valued domain with the rules ¬3� = ⊥, ¬3⊥ = �
and ¬3? =? and φ1 ∨3 φ2 = max(φ1, φ2). We define the semantics inductively as
follows:

552 E. Bartocci et al.

μπ(p, i) =

⎧
⎪⎨

⎪⎩

� if i ≤ |π| and p ∈ πi,
⊥ else if i ≤ |π| and p �∈ πi,
? otherwise,

μπ(¬φ, i) = ¬3μπ(φ, i),
μπ(φ1 ∨ φ2, i) = μπ(φ1, i) ∨3 μπ(φ2, i),
μπ(X φ, i) = μπ(φ, i + 1),

μπ(F φ, i) =

{
μπ(φ, i) ∨3 μπ(XF φ, i) if i ≤ |π|,
μπ(φ, i) if i > |π|,

μπ(φ1 U φ2, i) =

{
μπ(φ2, i) ∨3 (μπ(φ1, i) ∧3 μπ(X(φ1 U φ2), i)) if i ≤ |π|,
μπ(φ2, i) if i > |π|.

We note that the adapted semantics allows evaluating a finite trace in polynomial
time, in contrast to [π |=3 φ], which requires a PSPACE-complete algorithm.
This improvement in complexity comes at a price – the adapted semantics cannot
semantically characterize tautologies and contradiction. We have for example
that μπ(p∨¬p, 1) for the empty word evaluates to ?, despite the fact that p∨¬p
is semantically equivalent to �. The novel semantics that we introduce in the
following sections make the same tradeoff.

In the following lemma, we relate the two three-valued semantics.

Lemma 3. Given an LTL formula and a trace π ∈ Π∗, |π| �= 0, we have that

μπ(φ, 1) = � ⇒ [π |=3 φ] = �,
μπ(φ, 1) = ⊥ ⇒ [π |=3 φ] = ⊥.

Proof. These two statements can be proven by induction on the structure of the
LTL formula (see Appendix A.1 in [2]). [π |=3 φ] = ? ⇒ μπ(φ, 1) = ? is the
consequence of the first two.

4 Counting Finitary Semantics for LTL

In this section, we introduce the counting semantics for LTL. We first provide
necessary definitions in Sect. 4.1, we present the new semantics in Sect. 4.2 and
finally propose a predictive mapping that transforms the counting semantics into
a qualitative 5-valued verdict in Sect. 4.3.

4.1 Definitions

Let N+ = N0 ∪{∞,−} be the set of natural numbers (incl. 0) extended with the
two special symbols ∞ (infinite) and − (impossible) such that ∀n ∈ N0, we define
n < ∞ < −. We define the addition ⊕ of two elements a, b ∈ N+ as follows.

A Counting Semantics for Monitoring LTL Specifications over Finite Traces 553

Definition 4 (Operator ⊕). We define the binary operator ⊕ : N+×N+ → N+

s. t. for a ⊕ b with a, b ∈ N+ we have a + b if a, b ∈ N0 and max{a, b} otherwise.

We denote by (s, f) a pair of two extended numbers s, f ∈ N+. In Definition 5,
we introduce several operations on pairs: (1) the swap between the two values
(∼), (2) the increment by 1 of both values (⊕1), (3) the minmax binary operation
(�) that gives the pair consisting of the minimum first value and the maximum
second value, and (4) the maxmin binary operation (�) that is symmetric to (�).

Definition 7 introduces the counting semantics for LTL that for a finite trace
π and LTL formula φ gives a pair (s, f) ∈ N+ ×N+. We call s and f satisfaction
and violation witness counts, respectively. Intuitively, the s (f) value denotes the
minimal number of additional steps that is needed to witness the satisfaction
(violation) of the formula. The value ∞ is used to denote that the property can
be satisfied (violated) only in an infinite number of steps, while − means the
property cannot be satisfied (violated) by any continuation of the trace.

Definition 5 (Operations ∼, ⊕1, �, �). Given two pairs (s, f) ∈ N+ × N+

and (s′, f ′) ∈ N+ × N+, we have:

∼ (s, f) = (f, s),
(s, f) ⊕ 1 = (s ⊕ 1, f ⊕ 1),

(s, f) � (s′, f ′) = (min(s, s′),max(f, f ′)),
(s, f) � (s′, f ′) = (max(s, s′),min(f, f ′)).

Example 6. Given the pairs (0, 0), (∞, 1) and (7,−) we have the following:

∼ (0, 0) = (0, 0), ∼ (∞, 1) = (1,∞),
(0, 0) ⊕ 1 = (1, 1), (∞, 1) ⊕ 1 = (∞, 2),

(0, 0) � (∞, 1) = (0, 1), (∞, 1) � (7,−) = (7,−),
(0, 0) � (∞, 1) = (∞, 0), (∞, 1) � (7,−) = (∞, 1).

Remark. Note that N+ × N+ forms a lattice where (s, f) � (s′, f ′) when s ≥ s′

and f ≤ f ′ with join � and meet �. Intuitively, larger values are closer to true.

4.2 Semantics

We now present our finitary semantics.

Definition 7 (Counting finitary semantics). Let π ∈ Π∗ be a finite trace,
i ∈ N>0 be a position in or outside the trace and φ ∈ Φ be an LTL formula. We
define the counting finitary semantics of LTL as the function
dπ : Φ × Π∗ × N>0 → N+ × N+ such that:

554 E. Bartocci et al.

dπ(p, i) =

⎧
⎪⎨

⎪⎩

(0,−) if i ≤ |π| ∧ p ∈ πi,
(−, 0) if i ≤ |π| ∧ p �∈ πi,
(0, 0) if i > |π|,

dπ(¬φ, i) = ∼ dπ(φ, i),
dπ(φ1 ∨ φ2, i) = dπ(φ1, i) � dπ(φ2, i),
dπ(X φ, i) = dπ(φ, i + 1) ⊕ 1,

dπ(φ U ψ, i) =

⎧
⎨

⎩
dπ(ψ, i) �

(
dπ(φ, i) � dπ(X(φ U ψ), i)

)
if i ≤ |π|,

dπ(ψ, i) �
(
dπ(φ, i) � (−,∞)

)
if i > |π|,

dπ(F φ, i) =

{
dπ(φ, i) � dπ(XFφ, i) if i ≤ |π|,
dπ(φ, i) � (−,∞) if i > |π|.

We now provide some motivations behind the above definitions.

Proposition. A proposition is either evaluated before or after the end of the
trace. If it is evaluated before the end of the trace and the proposition holds,
the satisfaction and violations witness counts are trivially 0 and −, respec-
tively. In the case that the proposition does not hold, we have the symmetric
witness counts. Finally, we take an optimistic view in case of evaluating a
proposition after the end of the trace: The trace can be extended to a trace
with i steps s.t. either p holds or p does not hold.

Negation. Negating a formula simply swaps the witness counts. If we witness
the satisfaction of φ in n steps, we witness the violation of ¬φ in n steps, and
vice versa.

Disjunction. We take the shorter satisfaction witness count, because the satis-
faction of one subformula is enough to satisfy the property. And we take the
longer violation witness count, because both subformulas need to be violated
to violate the property.

Next. The next operator naturally increases the witness counts by one step.
Eventually. We use the rewriting rule F φ ≡ φ ∨ XF φ to define the semantics

of the eventually operator. When evaluating the formula after the end of
the trace, we replace the remaining obligation (XFφ) by (−,∞). Thus, F φ
evaluated on the empty word is satisfied by a suffix that satisfies φ, and it is
violated only by infinite suffixes.

Until. We use the same principle for defining the until semantics that we used for
the eventually operator. We use the rewriting rule φUψ ≡ ψ ∨ (φ∧X(φUψ)).
On the empty word, φ U ψ is satisfied (in the shortest way) by a suffix that
satisfies ψ, and it is violated by a suffix that violates both φ and ψ.

Example 8. We refer to our motivating example from Table 1 and evaluate the
trace τ2 with respect to the specification ψ. We present the outcome in Table 2.
We see that every proposition evaluates to (0,−) when true. The satisfaction
of a proposition that holds at time i is immediately witnessed and it cannot be
violated by any suffix. Similarly, a proposition evaluates to (−, 0) when false.
The valuations of F g count the number of steps to positions in which g holds.
For instance, the first time at which g holds is i = 3, hence F g evaluates to

A Counting Semantics for Monitoring LTL Specifications over Finite Traces 555

(2,−) at time 1, (1,−) at time 2 and (0,−) at time 3. We also note that F g
evaluates to (0,∞) at the end of the trace – it could be immediately satisfied
with the continuation of the trace with g that holds, but could be violated only
by an infinite suffix in which g never holds. We finally observe that G(r → F g)
evaluates to (∞,∞) at all positions – the property can be both satisfied and
violated only with infinite suffixes.

Table 2. Unbounded response property example: dπ(φ, i) with the trace π = τ2.

1 2 3 4 5 6 7 EOT

r � − − � − − �
g − − � − − � −

dπ(r, i) (0, −) (−, 0) (−, 0) (0, −) (−, 0) (−, 0) (0, −) (0,0)

dπ(g, i) (−, 0) (−, 0) (0, −) (−, 0) (−, 0) (0, −) (−, 0) (0,0)

dπ(¬r, i) (−, 0) (0, −) (0, −) (−, 0) (0, −) (0, −) (−, 0) (0,0)

dπ(F g, i) (2, −) (1, −) (0, −) (2, −) (1, −) (0, −) (1, ∞) (0, ∞)

dπ(r → F g, i) (2, −) (0, −) (0, −) (2, −) (0, −) (0, −) (1, ∞) (0, ∞)

dπ(G(r → F g), i) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

We use “−” instead of “⊥” in the traces r and g to improve the readability.

Not all pairs (s, f) ∈ N+ ×N+ are possible according to the counting seman-
tics. We present the possible pairs in Lemma 9.

Lemma 9. Let π ∈ Π∗ be a finite trace, φ an LTL formula and i ∈ N0 an index.
We have that dπ(φ, i) is of the form (a,−), (−, a), (b1, b2), (b1,∞), (∞, b2) or
(∞,∞), where a ≤ |π| − i and bj > |π| − i for j ∈ {1, 2}.
Proof. The proof can be obtained using structural induction on the LTL formula
(see Appendix A.2 in [2]).

Finally, we relate our counting semantics to the three valued semantics in
Lemma 10.

Lemma 10. Given an LTL formula and a trace π ∈ Π∗ where i ∈ N>0 is an
index and φ is an LTL formula, we have that

dπ(φ, i) = (a,−) ↔ μπ(φ, i) = �,
and � ∃x < a . π′ = πi · πi+1 · . . . πi+x, μπ′(φ, 1) = �

dπ(φ, i) = (−, a) ↔ μπ(φ, i) = ⊥,
and � ∃x < a . π′ = πi · πi+1 · . . . πi+x, μπ′(φ, 1) = ⊥

dπ(φ, i) = (b1, b2) ↔ μπ(φ, i) = ?,

where a ≤ |π| − i and bj is either ∞ or bj > |π| − i for j ∈ {1, 2}.
Intuitively, Lemma 10 holds because we only introduce the symbol “−” within

the trace when a satisfaction (violation) is observed. And the values of a pair
only propagate into the past (and never into the future).

556 E. Bartocci et al.

4.3 Evaluation

We now propose a mapping that predicts a qualitative verdict from our counting
semantics. We adopt a 5-valued set consisting of true (�), presumably true (�P),
inconclusive (?), presumably false (⊥P) and false (⊥) verdicts. We define the
following order over these five values: ⊥ < ⊥P < ? < �P < �. We equip this
5-valued domain with the negation (¬) and disjunction (∨) operations, letting
¬� = ⊥, ¬�P = ⊥P , ¬? = ?, ¬⊥P = �P , ¬⊥ = � and φ1 ∨ φ2 = max{φ1, φ2}.
We define other Boolean operators such as conjunction by the usual logical
equivalences (φ1 ∧ φ2 = ¬(¬φ1 ∨ ¬φ2), etc.).

We evaluate a property on a trace to � (⊥) when the satisfaction (violation)
can be fully determined from the trace, following the definition of the three-
valued semantics μ. Intuitively, this takes care of the case in which the safety
(co-safety) part of a formula has been violated (satisfied), at least for properties
that are intentionally safe (intentionally co-safe, resp.) [10].

Whenever the truth value is not determined, we distinguish whether dπ(φ, i)
indicates the possibility for a satisfaction, respective violation, in finite time or
not. For possible satisfactions, respective violations, in finite time we make a
prediction on whether past observations support the believe that the trace is
going to satisfy or violate the property. If the predictions are not inconclusive
and not contradicting, then we evaluate the trace to the (presumable) truth
value �P or⊥P . If we cannot make a prediction to a truth value, we compute
the truth value recursively based on the operator in the formula and the truth
values of the subformulas (with temporal operators unrolled).

We use the predicate predπ to give the prediction based on the observed
witnesses for satisfaction. The predicate predπ(φ, i) becomes ? when no witness
for satisfaction exists in the past. When there exists a witness that requires at
least the same amount of additional steps as the trace under evaluation then the
predicate evaluates to �. If all the existing witnesses (and at least one exists)
are shorter than the current trace, then the predicate evaluates to ⊥. For a
prediction on the violation we make a prediction on the satisfaction of dπ(¬φ, i),
i.e., we compute predπ(¬φ, i).

Definition 11 (Prediction predicate). Let s, f denote natural numbers and
let sπ(φ, i), fπ(φ, i) ∈ N+ such that dπ(φ, i) =

(
sπ(φ, i), fπ(φ, i)

)
. We define the

3-valued predicate predπ as

predπ(φ, i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

� if ∃j < i . dπ(φ, j) = (s′,−) and sπ(φ, i) ≤ s′,
? if � ∃j < i . dπ(φ, j) = (s′,−),
⊥ if ∃j < i . dπ(φ, j) = (s′,−) and ,

sπ(φ, i) > max0≤j<i{s′ | dπ(φ, j) = (s′,−)},

For the evaluation we consider a case split among the possible combinations
of values in the pairs.

A Counting Semantics for Monitoring LTL Specifications over Finite Traces 557

Definition 12 (Predictive evaluation). We define the predictive evaluation
function eπ(φ, i), with a ≤ |π| − i and bj > |π| − i for j ∈ {1, 2} and a, bj ∈ N0,
for the different cases of dπ(φ, i):

dπ(φ, i) eπ(φ, i)

(a,−) �
if predπ(φ, i) > predπ(¬φ, i) �P

(b1, b2) if predπ(φ, i) = predπ(¬φ, i) rπ(φ, i)
if predπ(φ, i) < predπ(¬φ, i) ⊥P

if predπ(φ, i) = � �P

(b1,∞) if predπ(φ, i) = ? rπ(φ, i)
if predπ(φ, i) = ⊥ ⊥P

(∞, b1) eπ(¬φ, i)

(∞,∞) rπ(φ, i)

(−, a) ⊥
where rπ(φ, i) is an auxiliary function defined inductively as follows:

rπ(p, i) = ?
rπ(¬φ, i) = ¬eπ(φ, i)

rπ(φ1 ∨ φ2, i) = eπ(φ1, i) ∨ eπ(φ2, i)
rπ(Xn φ, i) = eπ(φ, i + n)

rπ(F φ, i) =

{
eπ(φ, i) ∨ rπ(X F φ, i) if i ≤ |π|
eπ(φ, i) if i > |π|

rπ(φ1 U φ2, i) =

{
eπ(φ2, i) ∨ (eπ(φ2, i) ∧ eπ(X(φ1 U φ2), i) if i ≤ |π|
eπ(φ2, i) if i > |π|

The predictive evaluation function is symmetric. Hence, eπ(φ, i) = ¬eπ(¬φ, i)
holds.

Example 13. The outcome of evaluating τ2 from Table 1 is shown in Table 3.
Subformula r → F g is predicted to be �P at i = 7 because there exists a longer
witness for satisfaction in the past (e.g., at i = 1). Thus, the trace evaluates to
�P , as expected.

In Fig. 1 we visualize the evaluation of a pair dπ(φ, i) = (s, f) for a fixed φ
and a fixed position i. On the x-axis is the witness count s for a satisfaction and
on the y-axis is the witness count f for a violation. For a value s, respectively
f , that is smaller than the length of the suffix starting at position i (with the
other value of the pair always being −), the evaluation is either � or ⊥. Oth-
erwise the evaluation depends on the values smax and fmax. These two values

558 E. Bartocci et al.

Table 3. Unbounded response property example with π = τ2.

1 2 3 4 5 6 7 EOT

r � − − � − − �
g − − � − − � −

dπ(r, i) (0, −) (−, 0) (−, 0) (0, −) (−, 0) (−, 0) (0, −) (0,0)

eπ(r, i) � ⊥ ⊥ � ⊥ ⊥ � ?

dπ(g, i) (−, 0) (−, 0) (0, −) (−, 0) (−, 0) (0, −) (−, 0) (0,0)

eπ(g, i) ⊥ ⊥ � ⊥ ⊥ � ⊥ ?

dπ(F g, i) (2, −) (1, −) (0, −) (2, −) (1, −) (0, −) (1, ∞) (0, ∞)

eπ(F g, i) � � � � � � �P �P

dπ(r → F g, i) (2, −) (0, −) (0, −) (2, −) (0, −) (0, −) (1, ∞) (0, ∞)

eπ(r → F g, i) � � � � � � �P �P

dπ(G(r → F g), i) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

eπ(G(r → F g), i) �P �P �P �P �P �P �P �P

We use “−” instead of “⊥” in the traces r and g to improve the readability.

represent the largest witness counts for a satisfaction and a violation in the past,
i.e., for positions smaller than i in the trace. Based on the prediction function
predπ(φ, i) the evaluation becomes �P , ? or ⊥P , where ? indicates that the aux-
iliary function rπ(φ, i) has to be applied. Starting at an arbitrary point in the
diagram and moving to the right increases the witness count for a satisfaction
while the witness count for a violation remains constant. Thus, moving to the
right makes the pair “more false”. The same holds when keeping the witness
count for a satisfaction constant and moving up in the diagram as this decrease
the witness count for a violation. Analogously, moving down and/or left makes
the pair “more true” as the witness count for a violation gets larger and/or the
witness count for a satisfaction gets smaller.

Our 5-valued predictive evaluation refines the 3-valued LTL semantics.

Theorem 14. Let φ be an LTL formula, π ∈ Π∗ and i ∈ N>0. We have

μπ(φ, i) = � ↔ eπ(φ, i) = �,
μπ(φ, i) = ⊥ ↔ eπ(φ, i) = ⊥,
μπ(φ, i) = ? ↔ eπ(φ, i) ∈ {�P ,⊥P , ?}.

Theorem 14 holds, because the evaluation to � and ⊥ is simply the mapping
of a pair that contains the symbol “−”, which we have shown in Lemma 10.

Remember that N+×N+ is partially ordered by �. We now show that having
a trace that is “more true” than another is correctly reflected in our finitary
semantics. To define “more true”, we first need the polarity of a proposition in
an LTL formula.

Example 15. Note that g has positive polarity in φ = G(r → F g). If we define
τ ′
2 to be as τ2, except that g ∈ τ ′

2(i) for i ∈ {1, . . . , 6}, we have eτ ′
2
(φ, i) = ⊥P ,

whereas eτ2(φ, i) = �P .

A Counting Semantics for Monitoring LTL Specifications over Finite Traces 559

f

−
∞
n

|π| − i

s−∞n|π| − i(0,0) smax

fmax

?

?

⊥P

�P

�
�P ⊥P

⊥

⊥P

�P

?

good

bad

Fig. 1. Lattice for (s, f) with φ and i < |π| fixed.

Definition 16 (Polarity). Let #¬ be the number of negation operators on a
specific path in the parse tree of φ starting at the root. We define the polarity as
the function pol(p) with proposition p in an LTL formula φ as follows:

pol(p) =

⎧
⎪⎨

⎪⎩

pos, if #¬ on all paths to a leaf with proposition p is even,
neg, if #¬ on all paths to a leaf with proposition p is odd,
mixed, otherwise.

With the polarity defined, we now define the constraints for a trace to be
“more true” with respect to an LTL formula φ.

Definition 17 (π �φ π′). Given two traces π and π′ of equal length and an
LTL formula φ over proposition p, we define that π �φ π′ iff

∀i∀p . pol(p) = mixed ⇒ p ∈ πi ↔ p ∈ π′
i and

pol(p) = pos ⇒ p ∈ πi → p ∈ π′
i and

pol(p) = neg ⇒ p ∈ πi ← p ∈ π′
i.

Whenever one trace is “more true” than another, this is correctly reflected
in our finitary semantics.

Theorem 18. For two traces π and π′ of equal length and an LTL formula φ
over proposition p, we have that

π �φ π′ ⇒ dπ′(φ, 1) � dπ(φ, 1).

Therefore, we have for π �φ π′ that

eπ(φ, 1) = � ⇒ eπ′(φ, 1) = �, and
eπ(φ, 1) = ⊥ ⇐ eπ′(φ, 1) = ⊥.

560 E. Bartocci et al.

Theorem 18 holds, because we have that replacing an arbitrary observed value
in π by one with positive polarity in π′ always results with dπ(φ, 1) = (s, f) and
dπ′(φ, 1) = (s′, f ′) in s′ ≤ s and f ′ ≥ f , as with π �φ π′ we have that π′

witnesses a satisfaction of φ not later than π and π′ also witness a violation of
φ not earlier than π.

Table 4. Making a system “more true”.

φ π dπ(φ, 1) eπ(φ, 1)

p
− (−, 0) ⊥
� (0, −) �

p ∧ X F p
− − − (−, 0) ⊥
� − − (3, ∞) ⊥P

G p
−�� (−, 0) ⊥
��� (∞, 3) �P

F p
− − − (3, ∞) ⊥P

� − − (0, −) �

φ π dπ(φ, 1) eπ(φ, 1)

F G p
� − � − � (∞, ∞) ⊥P

� − ��� (∞, ∞) �P

G F p
− − � − − (∞, ∞) �P

� − � − − (∞, ∞) ⊥P

p ∨ X G p
−�� (∞, 3) �P

��� (0, −) �

In Table 4 we give examples to illustrate the transition of one evaluation
to another one. Note that it is possible to change from �P to ⊥P . However,
this is only the predicated truth value that becomes “worse”, because we have
strengthened the prefix on which the prediction is based on, the values of dπ(φ, i)
do not change and remain the same is such a case.

5 Examples

We demonstrate the strengths and weaknesses of our approach on the exam-
ples of LTL specifications and traces shown in Table 5. We fully develop these
examples in Appendix B in [2].

Table 5. Examples of LTL specifications and traces

Specifications Traces

ψ1 ≡ F X g π1 : g : ⊥⊥⊥⊥ π5 : r : ⊥����⊥��
ψ2 ≡ G X g π2 : g : ���� g : ⊥�⊥⊥⊥⊥�⊥
ψ3 ≡ G(r → F g) π3 : r : ⊥�⊥⊥�⊥ π6 : g : ��⊥⊥��⊥⊥��⊥⊥�
ψ4 ≡ ∧

i∈{1,2} G(ri → F gi) g : ⊥⊥�⊥⊥⊥ π7 : g : ��⊥⊥��⊥⊥�����
ψ5 ≡ G((X r) U (X X g)) π4 : r1 : �⊥�⊥�⊥� π8 : r : ����⊥⊥
ψ6 ≡ F G g ∨ F G ¬g g1 : ⊥�⊥�⊥�⊥ g : �⊥�⊥�⊥
ψ7 ≡ G(F r ∨ F g) r2 : ⊥�⊥�⊥�⊥
ψ8 ≡ G F(r ∨ g) g2 : �⊥�⊥�⊥�
ψ9 ≡ G F r ∨ G F g

A Counting Semantics for Monitoring LTL Specifications over Finite Traces 561

Table 6 summarizes the evaluation of our examples. The first and the second
column denote the evaluated specification and trace. We use these examples to
compare LTL with counting semantics (c-LTL) presented in this paper, to the
other two popular finitary LTL interpretations, the 3-valued LTL semantics [4]
(3-LTL) and LTL on trucated paths [9] (t-LTL). We recall that in t-LTL there
is a distinction between a weak and a strong next operator. We denote by t-
LTL-s (t-LTL-w) the specifications from our examples in which X is interpreted
as the strong (weak) next operator and assume that we always give a strong
interpretation to U and F and a weak interpretation to G.

Table 6. Comparison of different verdicts with different semantics

Spec. Trace c-LTL 3-LTL t-LTL-s t-LTL-w

ψ1 π1 ⊥P ? ⊥ �
ψ2 π2 �P ? ⊥ �
ψ3 π3 ⊥P ? ⊥ ⊥
ψ4 π4 �P ? ⊥ ⊥
ψ5 π5 �P ? ⊥ �

Spec. Trace c-LTL 3-LTL t-LTL-s t-LTL-w

ψ6 π6 ⊥P ? � �
ψ6 π7 �P ? � �
ψ7 π8 ⊥P ? ⊥ ⊥
ψ8 π8 ⊥P ? ⊥ ⊥
ψ9 π8 �P ? ⊥ ⊥

There are two immediate observations that we can make regarding the results
presented in Table 6. First, the 3-valued LTL gives for all the examples an incon-
clusive verdict, a feedback that after all has little value to a verification engineer.
The second observation is that the verdicts from c-LTL and t-LTL can differ quite
a lot, which is not very surprising given the different strategies to interpret the
unseen future. We now further comment on these examples, explaining in more
details the results and highlighting the intuitive outcomes of c-LTL for a large
class of interesting LTL specifications.

Effect of Nested Next. We evaluate with ψ1 and ψ2 the effect of nesting X in
an F and an G formula, respectively. We make a prediction on X g at the end
of the trace before evaluating F and G. As a consequence, we find that (ψ1, π1)
evaluates to presumably false, while (ψ2, π2) evaluates to presumably true. In t-
LTL, this class of specification is very sensitive to the weak/strong interpretation
of next, as we can see from the verdicts.

Request/Grants. We evaluate the request/grant property ψ3 from the motivating
example on the trace π3. We observe that r at cycle 2 is followed by g at cycle
3, while r at cycle 5 is not followed by g at cycle 6. Hence, (ψ3, π3) evaluates to
presumably false.

Concurrent Request/Grants. We evaluate the specification ψ4 against the trace
π4. In this example r1 is triggered at even time stamps and r2 is triggered at odd
time stamps. Every request is granted in one cycle. It follows that regardless of

562 E. Bartocci et al.

the time when the trace ends, there is one request that is not granted yet. We
note that ψ4 is a conjunction of two basic request/grant properties and we make
independent predictions for each conjunct. Every basic request/grant property
is evaluated to presumably true, hence (ψ4, π4) evaluates to presumably true. At
this point, we note that in t-LTL, every request that is not granted by the end of
the trace results in the property violation, regardless of the past observations.

Until. We use the specification ψ5 and the trace π5 to evaluate the effect of U on
the predictions. The specification requires that X r continuously holds until X X g
becomes true. We can see that in π5 X r is witnessed at cycles 1 − 4, while X X g
is witnessed at cycle 5. We can also see that X r is again witnessed from cycle 6
until the end of the trace at cycle 8. As a consequence, (ψ5, π5) is evaluated to
presumably true.

Stabilization. The specification ψ6 says that the value of g has to eventually
stabilize to either true or false. We evaluate the formula on two traces π6 and
π7. In the trace π6, g alternates between true and false every two cycles and
becomes true in the last cycle. Hence, there is no sufficiently long witness of
trace stabilization (ψ6, π6) evaluates to presumably false. In the trace π7, g also
alternates between true and false every two cycles, but in the last four cycles g
remains continuously true. As a consequence, (ψ6, π7) evaluates to presumably
true. This example also illustrates the importance of when the trace truncation
occurs. If both π6 and π7 were truncated at cycle 5, both (ψ6, π6) and (ψ6, π7)
would evaluate to presumably false. We note that ψ6 is satisfied by all traces in
t-LTL.

Sub-formula Domination. The specification ψ7 exposes a weakness of our app-
roach. It requires that in every cycle, either r or g is witnessed in some unbounded
future. With our approach, (ψ7, π8) evaluates to presumably false. This is against
our intuition because we have observed that g becomes regularly true very sec-
ond time step. However, in this example our prediction for F r dominates over
the prediction for F g, leading to the unexpected presumably false verdict. On the
other hand, t-LTL interpretation of the same specification is dependent only on
the last value of r and g.

Semantically Equivalent Formulas. We now demonstrate that our approach may
give different answers for semantically equivalent formulas. For instance, both
ψ8 and ψ9 are semantically equivalent to ψ7. We have that (ψ8, π8) evaluates to
presumably false, while (ψ9, π8) evaluates to presumably true. We note that t-LTL
verdicts are stable for semantically different formulas.

6 Conclusion

We have presented a novel finitary semantics for LTL that uses the history
of satisfaction and violation in a finite trace to predict whether the co-safety

A Counting Semantics for Monitoring LTL Specifications over Finite Traces 563

and safety aspects of a formula will be satisfied in the extension of the trace
to an infinite one. We claim that the semantics closely follow human intuition
when predicting the truth value of a trace. The presented examples (incl. non-
monitorable LTL properties) illustrate our approach and support this claim.

Our definition of the semantics is trace-based, but it is easily extended to take
an entire database of traces into account, which may make the approach more
precise. Our approach currently uses a very simple form of learning to predict
the future. We would like to consider more sophisticated statistical methods to
make better predictions. In particular, we plan to apply nonparametric statisti-
cal methods (i.e., the Wilcoxon signed-rank test [16]), in combination with our
counting semantics, to identify and quantify the traces that are outliers.

References

1. Almagor, S., Boker, U., Kupferman, O.: Discounting in LTL. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 424–439. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8 37

2. Bartocci, E., Bloem, R., Nickovic, D., Roeck, F.: A counting semantics for moni-
toring LTL specifications over finite traces. CoRR, abs/1804.03237 (2018)

3. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification. LNCS, vol.
10457. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5

4. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272.
Springer, Heidelberg (2006). https://doi.org/10.1007/11944836 25

5. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how
ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
126–138. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77395-
5 11

6. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)

7. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifica-
tions with accumulative values. ACM Trans. Comput. Logic 15(4), 27:1–27:25
(2014)

8. Daca, P., Henzinger, T.A., Křet́ınský, J., Petrov, T.: Faster statistical model
checking for unbounded temporal properties. In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 112–129. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49674-9 7

9. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.:
Reasoning with temporal logic on truncated paths. In: Hunt, W.A., Somenzi, F.
(eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45069-6 3

10. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Form. Methods
Syst. Des. 19(3), 291–314 (2001)

11. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems
- Specification. Springer, Heidelberg (1992). https://doi.org/10.1007/978-1-4612-
0931-7

12. Morgenstern, A., Gesell, M., Schneider, K.: An asymptotically correct finite path
semantics for LTL. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol.

https://doi.org/10.1007/978-3-642-54862-8_37
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-662-49674-9_7
https://doi.org/10.1007/978-3-662-49674-9_7
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7

564 E. Bartocci et al.

7180, pp. 304–319. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28717-6 24

13. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–1
November 1977, pp. 46–57 (1977)

14. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006). https://doi.org/10.1007/11813040 38

15. Viswanathan, M., Kim, M.: Foundations for the run-time monitoring of reactive
systems – fundamentals of the MaC language. In: Liu, Z., Araki, K. (eds.) ICTAC
2004. LNCS, vol. 3407, pp. 543–556. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-31862-0 38

16. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83
(1945)

17. Zhang, X., Leucker, M., Dong, W.: Runtime verification with predictive semantics.
In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 418–432.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-3 37

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-28717-6_24
https://doi.org/10.1007/978-3-642-28717-6_24
https://doi.org/10.1007/11813040_38
https://doi.org/10.1007/978-3-540-31862-0_38
https://doi.org/10.1007/978-3-540-31862-0_38
https://doi.org/10.1007/978-3-642-28891-3_37
http://creativecommons.org/licenses/by/4.0/

Tools

Rabinizer 4: From LTL to Your Favourite
Deterministic Automaton

Jan Křet́ınský(B), Tobias Meggendorfer ,
Salomon Sickert , and Christopher Ziegler

Technical University of Munich, Munich, Germany
jan.kretinsky@gmail.com, {meggendo,sickert}@in.tum.de

Abstract. We present Rabinizer 4, a tool set for translating formulae of
linear temporal logic to different types of deterministic ω-automata. The
tool set implements and optimizes several recent constructions, includ-
ing the first implementation translating the frequency extension of LTL.
Further, we provide a distribution of PRISM that links Rabinizer and
offers model checking procedures for probabilistic systems that are not
in the official PRISM distribution. Finally, we evaluate the performance
and in cases with any previous implementations we show enhancements
both in terms of the size of the automata and the computational time,
due to algorithmic as well as implementation improvements.

1 Introduction

Automata-theoretic approach [VW86] is a key technique for verification and
synthesis of systems with linear-time specifications, such as formulae of linear
temporal logic (LTL) [Pnu77]. It proceeds in two steps: first, the formula is
translated into a corresponding automaton; second, the product of the system
and the automaton is further analyzed. The size of the automaton is important
as it directly affects the size of the product and thus largely also the analysis
time, particularly for deterministic automata and probabilistic model checking
in a very direct proportion. For verification of non-deterministic systems, mostly
non-deterministic Büchi automata (NBA) are used [EH00,SB00,GO01,GL02,
BKŘS12,DLLF+16] since they are typically very small and easy to produce.

Probabilistic LTL model checking cannot profit directly from NBA. Even
the qualitative question, whether a formula holds with probability 0 or 1, requires
automata with at least a restricted form of determinism. The prime example are
the limit-deterministic (also called semi-deterministic) Büchi automata (LDBA)
[CY88] and the generalized LDBA (LDGBA). However, for the general quanti-
tative questions, where the probability of satisfaction is computed, general limit-
determinism is not sufficient. Instead, deterministic Rabin automata (DRA) have

This work has been partially supported by the Czech Science Foundation grant No.
P202/12/G061 and the German Research Foundation (DFG) project KR 4890/1-1
“Verified Model Checkers” (317422601). A part of the frequency extension has been
implemented within Google Summer of Code 2016.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 567–577, 2018.
https://doi.org/10.1007/978-3-319-96145-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_30&domain=pdf
http://orcid.org/0000-0002-1712-2165
http://orcid.org/0000-0002-0280-8981

568 J. Křet́ınský et al.

Fig. 1. LTL translations to different types of automata. Translations implemented in
Rabinizer 4 are indicated with a solid line. The traditional approaches are depicted as
dotted arrows. The determinization of NBA to DRA is implemented in ltl2dstar [Kle],
to LDBA in Seminator [BDK+17] and to (mostly) DPA in spot [DLLF+16].

been mostly used [KNP11] and recently also deterministic generalized Rabin
automata (DGRA) [CGK13]. In principle, all standard types of deterministic
automata are applicable here except for deterministic Büchi automata (DBA),
which are not as expressive as LTL. However, other types of automata, such
as deterministic Muller and deterministic parity automata (DPA) are typically
larger than DGRA in terms of acceptance condition or the state space, respec-
tively.1 Recently, several approaches with specific LDBA were proved applica-
ble to the quantitative setting [HLS+15,SEJK16] and competitive with DGRA.
Besides, model checking MDP against LTL properties involving frequency oper-
ators [BDL12] also allows for an automata-theoretic approach, via deterministic
generalized Rabin mean-payoff automata (DGRMA) [FKK15].

LTL synthesis can also be solved using the automata-theoretic approach.
Although DRA and DGRA transformed into games can be used here, the
algorithms for the resulting Rabin games [PP06] are not very efficient in
practice. In contrast, DPA may be larger, but in this setting they are the
automata of choice due to the good practical performance of parity-game solvers
[FL09,ML16,JBB+17].

Types of Translations. The translations of LTL to NBA, e.g., [VW86], are
typically “semantic” in the sense that each state is given by a set of logical formu-
lae and the language of the state can be captured in terms of semantics of these
formulae. In contrast, the determinization of Safra [Saf88] or its improvements
[Pit06,Sch09,TD14,FL15] are not “semantic” in the sense that they ignore the
structure and produce trees as the new states that, however, lack the logical inter-
pretation. As a result, if we apply Safra’s determinization on semantically created
NBA, we obtain DRA that lack the structure and, moreover, are unnecessarily
large since the construction cannot utilize the original structure. In contrast, the

1 Note that every DGRA can be written as a Muller automaton on the same state
space with an exponentially-sized acceptance condition, and DPA are a special case
of DRA and thus DGRA.

Rabinizer 4: From LTL to Your Favourite Deterministic Automaton 569

recent works [KE12,KLG13,EK14,KV15,SEJK16,EKRS17,MS17,KV17] pro-
vide “semantic” constructions, often producing smaller automata. Further-
more, various transformations such as degeneralization [KE12], index appearance
record [KMWW17] or determinization of limit-deterministic automata [EKRS17]
preserve the semantic description, allowing for further optimizations of the
resulting automata.

Our Contribution. While all previous versions of Rabinizer [GKE12,KLG13,
KK14] featured only the translation LTL→DGRA→DRA, Rabinizer 4 now
implements all the translations depicted by the solid arrows in Fig. 1. It improves
all these translations, both algorithmically and implementation-wise, and more-
over, features the first implementation of the translation of a frequency extension
of LTL [FKK15].

Further, in order to utilize the resulting automata for verification, we provide
our own distribution2 of the PRISM model checker [KNP11], which allows for
model checking MDP against LTL using not only DRA and DGRA, but also
using LDBA and against frequency LTL using DGRMA. Finally, the tool can
turn the produced DPA into parity games between the players with input and
output variables. Therefore, when linked to parity-game solvers, Rabinizer 4 can
be also used for LTL synthesis.

Rabinizer 4 is freely available at http://rabinizer.model.in.tum.de together
with an on-line demo, visualization, usage instructions and examples.

2 Functionality

We recall that the previous version Rabinizer 3 has the following functionality:

– It translates LTL formulae into equivalent DGRA or DRA.
– It is linked to PRISM, allowing for probabilistic verification using DGRA

(previously PRISM could only use DRA).

2.1 Translations

Rabinizer 4 inputs formulae of LTL and outputs automata in the standard HOA
format [BBD+15], which is used, e.g., as the input format in PRISM. Automata
in the HOA format can be directly visualized, displaying the “semantic” descrip-
tion of the states. Rabinizer 4 features the following command-line tools for the
respective translations depicted as the solid arrows in Fig. 1:

ltl2dgra and ltl2dra correspond to the original functionality of Rabinizer 3,
i.e., they translate LTL (now with the extended syntax, including all common
temporal operators) to DGRA and DRA [EK14], respectively.

2 Merging these features into the public release of PRISM as well as linking the new
version of Rabinizer is subject to current collaboration with the authors of PRISM.

http://rabinizer.model.in.tum.de

570 J. Křet́ınský et al.

ltl2ldgba and ltl2ldba translate LTL to LDGBA using the construction of
[SEJK16] and to LDBA, respectively. The latter is our modification of the
former, which produces smaller automata than chaining the former with the
standard degeneralization.

ltl2dpa translates LTL to DPA using two modes:
– The default mode uses the translation to LDBA, followed by a LDBA-

to-DPA determinization [EKRS17] specially tailored to LDBA with the
“semantic” labelling of states, avoiding additional exponential blow-up of
the resulting automaton.

– The alternative mode uses the translation to DRA, followed by our
improvement of the index appearance record of [KMWW17].

fltl2dgrma translates the frequency extension of LTL\GU, i.e. LTL\GU [KLG13]
with G∼ρ operator3, to DGRMA using the construction of [FKK15].

2.2 Verification and Synthesis

The resulting automata can be used for model checking probabilistic systems
and for LTL synthesis. To this end, we provide our own distribution of the prob-
abilistic model checker PRISM as well as a procedure transforming automata
into games to be solved.

Model checking: PRISM distribution. For model checking Markov chains
and Markov decision processes, PRISM [KNP11] uses DRA and recently
also more efficient DGRA [CGK13,KK14]. Our distribution, which links
Rabinizer, additionally features model checking using the LDBA [SEJK16,
SK16] that are created by our ltl2ldba.
Further, the distribution provides an implementation of frequency LTL\GU

model checking, using DGRMA. To the best of our knowledge, there are no
other implemented procedures for logics with frequency. Here, techniques of
linear programming for multi-dimensional mean-payoff satisfaction [CKK15]
and the model-checking procedure of [FKK15] are implemented and applied.

Synthesis: Games. The automata-theoretic approach to LTL synthesis requires
to transform the LTL formula into a game of the input and output players.
We provide this transformer and thus an end-to-end LTL synthesis solution,
provided a respective game solver is linked. Since current solutions to Rabin
games are not very efficient we implemented a transformation of DPA into
parity games and a serialization to the format of PG Solver [FL09]. Due to
the explicit serialization, we foresee the main use in quick prototyping.

3 The frequential globally construct [BDL12,BMM14] G∼ρϕ with ∼ ∈
{≥, >, ≤, <}, ρ ∈ [0, 1] intuitively means that the fraction of positions satisfy-
ing ϕ satisfies ∼ρ. Formally, the fraction on an infinite run is defined using the
long-run average [BMM14].

Rabinizer 4: From LTL to Your Favourite Deterministic Automaton 571

3 Optimizations, Implementation, and Evaluation

Compared to the theoretical constructions and previous implementations, there
are numerous improvements, heuristics, and engineering enhancements. We eval-
uate the improvements both in terms of the size of the resulting automaton as
well as the running time. When comparing with respect to the original Rabinizer
functionality, we compare our implementation ltl2dgra to the previous version
Rabinizer 3.1, which is already a significantly faster [EKS16] re-implementation
of the official release Rabinizer 3 [KK14]. All of the benchmarks have been exe-
cuted on a host with i7-4700MQ CPU (4x2.4 GHz), running Linux 4.9.0-5-amd64
and the Oracle JRE 9.0.4+11 JVM. Due to the start-up time of JVM, all times
below 2 s are denoted by <2 and not specified more precisely. All experiments
were given a time-out of 900 s and mem-out of 4GB, denoted by −.

Algorithmic improvements and heuristics for each of the translations:

ltl2dgra and ltl2dra. These translations create a master automaton monitoring
the satisfaction of the given formula and a dedicated slave automaton for
each subformula of the form Gψ [EK14]. We (i) simplify several classes of
slaves and (ii) “suspend” (in the spirit of [BBDL+13]) some so that they
appear in the final product only in some states. The effect on the size of
the state space is illustrated in Table 1 on a nested formula. Further, (iii)
the acceptance condition is considered separately for each strongly connected
component (SCC) and then combined. On a concrete example of Table 2,
the automaton for i = 8 has 31 atomic propositions, whereas the number of
atomic propositions relevant in each component of the master automaton is
constant, which we utilize and thus improve performance on this family both
in terms of size and time.

ltl2ldba. This translation is based on breakpoints for subformulae of the form
Gψ. We provide a heuristic that avoids breakpoints when ψ is a safety or
co-safety subformula, see Table 3.
Besides, we add an option to generate a non-deterministic initial component
for the LDBA instead of a deterministic one. Although the LDBA is then
no more suitable for quantitative probabilistic model checking, it still is for
qualitative model checking. At the same time, it can be much smaller, see
Table 4 which shows a significant improvement on the particular formula.

ltl2dpa. Both modes inherit the improvements of the respective ltl2ldba and
ltl2dgra translations. Further, since complementing DPA is trivial, we can
run in parallel both the translation of the input formula and of its negation,
returning the smaller of the two results. Finally, we introduce several heuris-
tics to optimize the treatment of safety subformulae of the input formula.

dra2dpa. The index appearance record of [KMWW17] keeps track of a permu-
tation (ordering) of Rabin pairs. To do so, all ties between pairs have to be
resolved. In our implementation, we keep a pre-order instead, where irrelevant

572 J. Křet́ınský et al.

ties are not resolved. Consequently, it cannot happen that an irrelevant tie
is resolved in two different ways like in [KMWW17], thus effectively merging
such states.

Table 1. Effect of simplifications and suspension for ltl2dgra on the formulae ψi =
Gφi where φ1 = a1, φ(i) = (aiU(Xφi−1)), and ψ′

i = Gφ′
i where φ′

1 = a1, φ′
1 =

(φ′
i−1U(Xiai), displaying execution time in seconds/#states.

ψ2 ψ3 ψ4 ψ5 ψ6

Rabinizer 3.1 [EKS16] <2/4 <2/16 <2/73 3/332 60/1463

ltl2dgra <2/3 <2/7 <2/35 3/199 13/1155

ψ′
2 ψ′

3 ψ′
4 ψ′

5 ψ′
6

Rabinizer 3.1 [EKS16] <2/4 <2/16 2/104 128/670 −
ltl2dgra <2/3 <2/10 <2/38 7/175 239/1330

Table 2. Effect of computing acceptance sets per SCC on formulae ψ1 = x1 ∧ φ1,
ψ2 = (x1 ∧φ1)∨ (¬x1 ∧φ2), ψ3 = (x1 ∧x2 ∧φ1)∨ (¬x1 ∧x2 ∧φ2)∨ (x1 ∧¬x2 ∧φ3), . . . ,
where φi = XG((aiUbi)∨ (ciUdi)), displaying execution time in seconds/#acceptance
sets.

ψ1 ψ2 ψ3 ψ4 ψ5 . . . ψ8

Rabinizer 3.1 [EKS16] <2/2 <2/7 <2/19 − − −
ltl2dgra <2/1 <2/1 <2/1 <2/1 <2/1 <2/1

Table 3. Effect of break-point elimination for ltl2ldba on safety formulae s(n, m) =∧n
i=1 G(ai ∨ Xmbi) and for ltl2ldgba on liveness formulae l(n, m) =

∧n
i=1 GF(ai ∧

Xmbi), displaying #states (#Büchi conditions)

s(1, 3) s(2, 3) s(3, 3) s(4, 3) s(1, 4) s(2, 4) s(3, 4) s(4, 4)

[SEJK16] 20 (1) 400 (2) 8 · 103(3) 16 · 104(4) 48 (1) 2304 (2) 110592 (3) −
ltl2ldba 8 (1) 64 (1) 512 (1) 4096 (1) 16 (1) 256 (1) 4096 (1) 65536 (1)

l(1, 1) l(2, 1) l(3, 1) l(4, 1) l(1, 4) l(2, 4) l(3, 4) l(4, 4)

[SEJK16] 3 (1) 9 (2) 27 (3) 81 (4) 10 (1) 100 (2) 103 (3) 104 (4)

ltl2ldgba 3 (1) 5 (2) 9 (3) 17 (4) 3 (1) 5 (2) 9 (3) 17 (4)

Table 4. Effect of non-determinism of the initial component for ltl2ldba on formulae
f(i) = F(a ∧ XiGb), displaying #states (#Büchi conditions)

f(1) f(2) f(3) f(4) f(5) f(6)

[SEJK16] 4 (1) 6 (1) 10 (1) 18 (1) 34 (1) 66 (1)

ltl2ldba 2 (1) 3 (1) 4 (1) 5 (1) 6 (1) 7 (1)

Rabinizer 4: From LTL to Your Favourite Deterministic Automaton 573

Table 5. Comparison of the average performance with the previous version of
Rabinizer. The statistics are taken over a set of 200 standard formulae [KMS18] used,
e.g., in [BKS13,EKS16], run in a batch mode for both tools to eliminate the effect of
the JVM start-up overhead.

Tool Avg # states Avg # acc. sets Avg runtime

Rabinizer 3.1 [EKS16] 6.3 6.7 0.23

ltl2dgra 6.2 4.4 0.12

Implementation. The main performance bottleneck of the older implementa-
tions is that explicit data structures for the transition system are not efficient
for larger alphabets. To this end, Rabinizer 3.1 provided symbolic (BDD) rep-
resentation of states and edge labels. On the top, Rabinizer 4 represents the
transition function symbolically, too.

Besides, there are further engineering improvements on issues such as storing
the acceptance condition only as a local edge labelling, caching, data-structure
overheads, SCC-based divide-and-conquer constructions, or the introduction of
parallelization for batch inputs.

Average Performance Evaluation. We have already illustrated the improve-
ments on several hand-crafted families of formulae. In Tables 1 and 2 we have
even seen the respective running-time speed-ups. As the basis for the overall eval-
uation of the improvements, we use some established datasets from literature, see
[KMS18], altogether two hundred formulae. The results in Table 5 indicate that
the performance improved also on average among the more realistic formulae.

4 Conclusion

We have presented Rabinizer 4, a tool set to translate LTL to various determin-
istic automata and to use them in probabilistic model checking and in synthesis.
The tool set extends the previous functionality of Rabinizer, improves on previ-
ous translations, and also gives the very first implementations of frequency LTL
translation as well as model checking. Finally, the tool set is also more user-
friendly due to richer input syntax, its connection to PRISM and PG Solver,
and the on-line version with direct visualization, which can be found at http://
rabinizer.model.in.tum.de.

References

[BBD+15] Babiak, T., et al.: The hanoi omega-automata format. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 31

http://rabinizer.model.in.tum.de
http://rabinizer.model.in.tum.de
https://doi.org/10.1007/978-3-319-21690-4_31

574 J. Křet́ınský et al.

[BBDL+13] Babiak, T., Badie, T., Duret-Lutz, A., Křet́ınský, M., Strejček, J.: Com-
positional approach to suspension and other improvements to LTL trans-
lation. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol.
7976, pp. 81–98. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39176-7 6

[BDK+17] Blahoudek, F., Duret-Lutz, A., Klokočka, M., Křet́ınský, M., Strejček, J.:
Seminator: a tool for semi-determinization of omega-automata. In: LPAR,
pp. 356–367 (2017)

[BDL12] Bollig, B., Decker, N., Leucker, M.: Frequency linear-time temporal logic.
In: TASE, pp. 85–92 (2012)

[BKŘS12] Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi
automata translation: fast and more deterministic. In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5 8

[BKS13] Blahoudek, F., Křet́ınský, M., Strejček, J.: Comparison of LTL to deter-
ministic rabin automata translators. In: McMillan, K., Middeldorp, A.,
Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 164–172. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5 12

[BMM14] Bouyer, P., Markey, N., Matteplackel, R.M.: Averaging in LTL. In: Bal-
dan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 266–280.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-
6 19

[CGK13] Chatterjee, K., Gaiser, A., Křet́ınský, J.: Automata with generalized
rabin pairs for probabilistic model checking and LTL synthesis. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 559–575.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 37

[CKK15] Chatterjee, K., Komárková, Z., Křet́ınský, J.: Unifying two views on mul-
tiple mean-payoff objectives in Markov decision processes. In: LICS, pp.
244–256 (2015)

[CY88] Courcoubetis, C., Yannakakis, M.: Verifying temporal properties of finite-
state probabilistic programs. In: FOCS, pp. 338–345 (1988)

[DLLF+16] Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É.,
Xu, L.: Spot 2.0 — a framework for LTL and ω-automata manipulation.
In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938,
pp. 122–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46520-3 8

[EH00] Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In:
Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–168.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4 13

[EK14] Esparza, J., Křet́ınský, J.: From LTL to deterministic automata: a safra-
less compositional approach. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 192–208. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9 13

[EKRS17] Esparza, J., Křet́ınský, J., Raskin, J.-F., Sickert, S.: From LTL and
limit-deterministic Büchi automata to deterministic parity automata.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205,
pp. 426–442. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54577-5 25

https://doi.org/10.1007/978-3-642-39176-7_6
https://doi.org/10.1007/978-3-642-39176-7_6
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-642-45221-5_12
https://doi.org/10.1007/978-3-662-44584-6_19
https://doi.org/10.1007/978-3-662-44584-6_19
https://doi.org/10.1007/978-3-642-39799-8_37
https://doi.org/10.1007/978-3-642-39799-8_37
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/3-540-44618-4_13
https://doi.org/10.1007/978-3-319-08867-9_13
https://doi.org/10.1007/978-3-319-08867-9_13
https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1007/978-3-662-54577-5_25

Rabinizer 4: From LTL to Your Favourite Deterministic Automaton 575

[EKS16] Esparza, J., Kret́ınský, J., Sickert, S.: From LTL to deterministic
automata - a safraless compositional approach. Formal Methods Syst.
Des. 49(3), 219–271 (2016)

[FKK15] Forejt, V., Krčál, J., Křet́ınský, J.: Controller synthesis for MDPs and
frequency LTL\GU. In: LPAR, pp. 162–177 (2015)

[FL09] Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z.,
Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04761-9 15

[FL15] Fisman, D., Lustig, Y.: A modular approach for büchi determinization.
In: CONCUR, pp. 368–382 (2015)

[GKE12] Gaiser, A., Křet́ınský, J., Esparza, J.: Rabinizer: small deterministic
automata for LTL(F,G). In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, pp. 72–76. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33386-6 7

[GL02] Giannakopoulou, D., Lerda, F.: From states to transitions: improving
translation of LTL formulae to Büchi automata. In: Peled, D.A., Vardi,
M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 308–326. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-36135-9 20

[GO01] Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102,
pp. 53–65. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44585-4 6. http://www.lsv.ens-cachan.fr/ gastin/ltl2ba/

[HLS+15] Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazy probabilistic
model checking without determinisation. In: CONCUR. LIPIcs, vol. 42,
pp. 354–367 (2015)

[JBB+17] Jacobs, S., Basset, N., Bloem, R., Brenguier, R., Colange, M., Fay-
monville, P., Finkbeiner, B., Khalimov, A., Klein, F., Michaud, T., Pérez,
G.A., Raskin, J.-F., Sankur, O., Tentrup, L.: The 4th reactive synthesis
competition (SYNTCOMP 2017): benchmarks, participants & results.
CoRR, abs/1711.11439 (2017)

[KE12] Křet́ınský, J., Esparza, J.: Deterministic automata for the (F,G)-fragment
of LTL. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 7–22. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31424-7 7

[KK14] Komárková, Z., Křet́ınský, J.: Rabinizer 3: safraless translation of LTL to
small deterministic automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA
2014. LNCS, vol. 8837, pp. 235–241. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11936-6 17

[Kle] Klein, J.: ltl2dstar - LTL to deterministic Streett and Rabin automata.
http://www.ltl2dstar.de/

[KLG13] Křet́ınský, J., Garza, R.L.: Rabinizer 2: Small Deterministic Automata
for LTL\GU. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS,
vol. 8172, pp. 446–450. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-02444-8 32

[KMS18] Křet́ınský, J., Meggendorfer, T., Sickert, S.: LTL store: repository of LTL
formulae from literature and case studies. CoRR, abs/1807.03296 (2018)

[KMWW17] Křet́ınský, J., Meggendorfer, T., Waldmann, C., Weininger, M.: Index
appearance record for transforming rabin automata into parity automata.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205,
pp. 443–460. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54577-5 26

https://doi.org/10.1007/978-3-642-04761-9_15
https://doi.org/10.1007/978-3-642-33386-6_7
https://doi.org/10.1007/978-3-642-33386-6_7
https://doi.org/10.1007/3-540-36135-9_20
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/3-540-44585-4_6
http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/
https://doi.org/10.1007/978-3-642-31424-7_7
https://doi.org/10.1007/978-3-642-31424-7_7
https://doi.org/10.1007/978-3-319-11936-6_17
https://doi.org/10.1007/978-3-319-11936-6_17
http://www.ltl2dstar.de/
https://doi.org/10.1007/978-3-319-02444-8_32
https://doi.org/10.1007/978-3-319-02444-8_32
https://doi.org/10.1007/978-3-662-54577-5_26
https://doi.org/10.1007/978-3-662-54577-5_26

576 J. Křet́ınský et al.

[KNP11] Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of
probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22110-1 47

[KV15] Kini, D., Viswanathan, M.: Limit deterministic and probabilistic
automata for LTL\GU. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 628–642. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46681-0 57

[KV17] Kini, D., Viswanathan, M.: Optimal translation of LTL to limit determin-
istic automata. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS,
vol. 10206, pp. 113–129. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54580-5 7

[ML16] Meyer, P.J., Luttenberger, M.: Solving mean-payoff games on the GPU.
In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938,
pp. 262–267. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46520-3 17

[MS17] Müller, D., Sickert, S.: LTL to deterministic Emerson-Lei automata. In:
GandALF, pp. 180–194 (2017)

[Pit06] Piterman, N.: From nondeterministic Büchi and Streett automata to
deterministic parity automata. In: LICS, pp. 255–264 (2006)

[Pnu77] Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
[PP06] Piterman, N., Pnueli, A.: Faster solutions of Rabin and Streett games.

In: LICS, pp. 275–284 (2006)
[Saf88] Safra, S.: On the complexity of omega-automata. In: FOCS, pp. 319–327

(1988)
[SB00] Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In:

Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–
263. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 21

[Sch09] Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In:
de Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 167–181. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00596-1 13

[SEJK16] Sickert, S., Esparza, J., Jaax, S., Křet́ınský, J.: Limit-deterministic
Büchi automata for linear temporal logic. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 312–332. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6 17

[SK16] Sickert, S., Křet́ınský, J.: MoChiBA: probabilistic LTL model checking
using limit-deterministic Büchi automata. In: Artho, C., Legay, A., Peled,
D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 130–137. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46520-3 9

[TD14] Tian, C., Duan, Z.: Buchi determinization made tighter. Technical report
abs/1404.1436, arXiv.org (2014)

[VW86] Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic
program verification (preliminary report). In: LICS, pp. 332–344 (1986)

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-662-46681-0_57
https://doi.org/10.1007/978-3-662-46681-0_57
https://doi.org/10.1007/978-3-662-54580-5_7
https://doi.org/10.1007/978-3-662-54580-5_7
https://doi.org/10.1007/978-3-319-46520-3_17
https://doi.org/10.1007/978-3-319-46520-3_17
https://doi.org/10.1007/10722167_21
https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.1007/978-3-319-41540-6_17
https://doi.org/10.1007/978-3-319-46520-3_9
http://arxiv.org/abs/org

Rabinizer 4: From LTL to Your Favourite Deterministic Automaton 577

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Strix:
Explicit Reactive Synthesis Strikes Back!

Philipp J. Meyer , Salomon Sickert(B) ,
and Michael Luttenberger

Technical University of Munich, Munich, Germany
{meyerphi,sickert,luttenbe}@in.tum.de

Abstract. Strix is a new tool for reactive LTL synthesis combining
a direct translation of LTL formulas into deterministic parity automata
(DPA) and an efficient, multi-threaded explicit state solver for parity
games. In brief, Strix (1) decomposes the given formula into simpler
formulas, (2) translates these on-the-fly into DPAs based on the queries
of the parity game solver, (3) composes the DPAs into a parity game, and
at the same time already solves the intermediate games using strategy
iteration, and (4) finally translates the winning strategy, if it exists, into
a Mealy machine or an AIGER circuit with optional minimization using
external tools. We experimentally demonstrate the applicability of our
approach by a comparison with Party, BoSy, and ltlsynt using the
syntcomp2017 benchmarks. In these experiments, our prototype can
compete with BoSy and ltlsynt with only Party performing slightly
better. In particular, our prototype successfully synthesizes the full and
unmodified LTL specification of the AMBA protocol for n = 2 masters.

1 Introduction

Reactive synthesis refers to the problem of finding for a formal specification of
an input-output relation, in our case a linear temporal logic (LTL), a match-
ing implementation [22], e.g. a Mealy machine or an and-inverter-graph (AIG).
Since the automata-theoretic approach to synthesis involves the construction of
a potentially double exponentially sized automaton (in the length of the spec-
ification) [13], most existing tools focus on symbolic and bounded methods in
order to combat the state-space explosion [5,9,11,18]. A beneficial side effect of
these approaches is that they tend to yield succinct implementations.

In contrast to these approaches, we present a prototype implementation of
an LTL synthesis tool which follows the automata theoretic approach using par-
ity games as an intermediate step. Strix1 uses the LTL-to-DPA translation

This work was partially funded and supported by the German Research Foundation
(DFG) projects “Game-based Synthesis for Industrial Automation” (253384115) and
“Verified Model Checkers” (317422601).

1 https://strix.model.in.tum.de/

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 578–586, 2018.
https://doi.org/10.1007/978-3-319-96145-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_31&domain=pdf
http://orcid.org/0000-0003-1334-9079
http://orcid.org/0000-0002-0280-8981
https://strix.model.in.tum.de/

Strix: Explicit Reactive Synthesis Strikes Back! 579

presented in [10,23] and the multi-threaded explicit-state parity game solver
presented in [14,20]: First, the given formula is decomposed into much simpler
requirements, often resulting in a large number of safety and co-safety condi-
tions and only a few requiring Büchi or parity acceptance conditions, which is
comparable to the approach of [5,21]. These requirements are then translated
on-the-fly into automata, keeping the invariant that the parity game solver can
easily compose the actual parity game. Further, by querying only for states that
are actually required for deciding the winner, the implementation avoids unnec-
essary work.

The parity game solver is based on the strategy iteration of [19] which itera-
tively improves non-deterministic strategies, i.e. strategies that can allow several
actions for a given state as long as they all are guaranteed to lead to the specified
system behaviour. When translating the winning strategy into a Mealy automa-
ton or an AIG this non-determinism can be used similarly to “don’t cares” when
minimizing boolean circuits. Strategy iteration offers us two additional advan-
tages, first, we can directly take advantage of multi-core systems; second, we
can reuse the winning strategies which have been computed for the intermediate
arenas.

Related Work and Experimental Evaluation. From the tools submitted to synt-
comp2017, ltlsynt [15] is closest to our approach: it also combines an LTL-
to-DPA-translation with an explicit-state parity game solver, but it does not
intertwine the two steps, instead it uses a different approach for the translation
leading to one monolithic DPA which is then turned in a parity game. In con-
trast, the two best performing tools from syntcomp2017, BoSy and Party,
use bounded synthesis, by reduction either to SAT, SMT, or safety games.

In order to give a realistic estimation of how our tool would have faired at
syntcomp2017 (TLSF/LTL track), we tried to re-create the benchmark envi-
ronment of syntcomp2017 as close as possible on our hardware: in its current
state, our tool would have been ranked below Party, but before ltlsynt and
BoSy. Due to time and resource constraints, we could only do an in-depth com-
parison with the current version of ltlsynt; in particular we used the TLSF
specification of the complete2 AMBA protocol for n = 2 as a benchmark. We
refer to Sect. 3 for details on the benchmarking procedure.

2 Design and Implementation

Strix is implemented in Java and C++. It supports LTL and TLSF [16] (only
the reduced basic variant) as input languages, while the latter one is preferred,
since it contains more information about the specification. We describe the main
steps of the tool in the following paragraphs with examples given in Fig. 1.

2 i.e. no decomposition in masters and clients or structural properties were used.

580 P. J. Meyer et al.

Splitting and Translation. As a preprocessing step the specification is split into
syntactic (co)safety and (co)Büchi formulas, and one remaining general LTL for-
mula. These are then translated into the simplest deterministic automaton class
using the constructions of [10,23]. To speed up the process these automata are
constructed on-the-fly, i.e., states are created only if requested by later stages.
Furthermore, since DPAs can be easily complemented, the implementation trans-
lates the formula and its negation and chooses the faster obtained one.

Fig. 1. Synthesis of a simple arbiter with two clients. Here, a winning strategy is already
obtained on the partial arena: always take any of the non-dashed edges.

Arena Construction. Here we construct one product automaton and combine
the various acceptance conditions into a single parity acceptance condition: for
this, we use the idea underlying the last-appearance-record construction, known
from the translation of Muller to parity games, to directly obtain a parity game
again.

Parity Game Solving. The parity game solver runs in parallel to the arena
construction on the partially constructed game in order to guide the translation
process, with the possibility for early termination when a winning strategy for the
system player is found. It uses strategy iteration that supports non-deterministic
strategies [19] from which we can benefit in several ways: First, in the translation
process, the current strategy stays valid when adding nodes to the arena and
thus can be used as initial strategy when solving the extended arena. Second, the
non-deterministic strategies allow us to later heuristically select actions of the
strategy that minimize the generated controller and to identify irrelevant output
signals (similar to “don’t care”-cells in Karnaugh maps). Finally, the strategy
iteration can easily take advantage of multi-core architectures [14,20].

Controller Generation and Minimization. From the non-deterministic strategy
we obtain an incompletely specified Mealy machine and optionally pass it to

Strix: Explicit Reactive Synthesis Strikes Back! 581

the external SAT-based minimizer MeMin [1] for Mealy machines and extract
a more compact description.

AIGER Circuit Generation and Minimization. We translate the minimized
Mealy machine with the tool Speculoos3 into an AIGER circuit. In parallel,
we also construct an AIGER circuit out of the non-minimized Mealy machine,
since this can sometimes result in smaller circuits. The two AIGER circuits are
then further compressed using ABC [6], and the smaller one is returned.

3 Experimental Evaluation

We evaluate Strix on the TLFS/LTL-track benchmark of the syntcomp2017
competition, which consists of 177 realizable and 67 unrealizable temporal logic
synthesis specifications [15]. The experiment was run on a server with an Intel
E5-2630 v4 clocked at 2.2 GHz (boost disabled). To mimic syntcomp2017 we
imposed a limit of 8 threads for parallelization, a memory limit of 32 GB and
a timeout of one hour for each specification. Every specification for that a tool
correctly decides realizability within these limits is counted as solved for the
category Realizability, and every specification for that it can additionally pro-
duce an AIGER circuit that is successfully verified is counted as solved for the
category Synthesis. For this we verified the circuits with an additional time
limit of one hour using the nuXmv model checker [7] with the check ltlspec
and check ltlspec klive routines in parallel.

We compared Strix with ltlsynt in the latest available release (version 2.5)
at time of writing. This version differs from the one used during syntcomp2017
as it contains several improvements, but also performs worse in a few cases and
exhibits erroneous behaviour: for Realizability, it produced one wrong answer,
and for Synthesis, it failed in 72 cases to produce AIGER circuits due to a
program error.

Additionally, we compare our results with the best configuration of the top
tools competing in syntcomp2017: Party (portfolio), ltlsynt and BoSy
(spot). Due to the difficulty of recreating the syntcomp2017 hardware setup4,
we compiled the results for these tools in Table 1 from the syntcomp2017 web-
page5 combining them with our results.
3 https://github.com/romainbrenguier/Speculoos
4 syntcomp2017 was run on an Intel E3-1271 v3 (4 cores/8 threads) at 3.6 GHz

with 32GB of RAM available for the tools. As stated above, we imposed the same
constraints regarding timeout, maximal number of threads, and memory limit; but
the Intel E3-1271 v3 runs at 3.6 GHz (with boost 4.0 GHz), while the Intel E5-2630
v4 used by us runs at only 2.2 GHz (boost disabled) resulting in a lower per-thread-
performance (potentially 30% slower); on the other hand our system has a larger
cache and a theoretically much higher memory bandwidth from up to 68.3 GB/s
compared to 25.6 GB/s (for random reads, as in the case of dynamically generated
parity games, these numbers are much closer). It seems therefore likely that for some
benchmark-tool combinations our system is faster while for others it is slower.

5 http://syntcomp.cs.uni-saarland.de/syntcomp2017/experiments/

https://github.com/romainbrenguier/Speculoos
http://syntcomp.cs.uni-saarland.de/syntcomp2017/experiments/

582 P. J. Meyer et al.

The Quality rating compares the size of the solutions according to the synt-
comp2017 formula, where a tool gets 2 − log10

n+1
r+1 quality points for each ver-

ified solution of size n for a specification with reference size r. We now move on
to a detailed discussion of the results and their interpretation.

Table 1. Results for Strix compared with ltlsynt and selected results from synt-
comp2017 on the TLSF/LTL-track benchmark and on noteable instances. We mark
timeouts by time, memouts by mem, and errors by err.

Realizability. We were able to correctly decide realizability for 163 and unre-
alizability for 51 specifications, resulting in 214 solved instances. We solve five
instances that were previously unsolved in syntcomp2017.

Synthesis. We produced AIGER circuits for 148 of the realizable specifications.
In 15 cases, we only constructed a Mealy machine, but the subsequent steps
(MeMin for minimization or Speculoos for circuit generation) reached the
time or memory limit. We were able to verify correctness for 146 of the cir-
cuits, reaching the model checking time limit in two case. Together with the 51
specifications for which we determined unrealizability, this results in 197 solved
instances.

Quality. We produced 36 solutions that are smaller than any solution during
syntcomp2017. The most significant reductions are for the AMBA encoder
and the full arbiter, with reductions of over 75%, and for ltl2dba E 4 and
ltl2dba E 6, where we produce indeed the smallest implementation there is.

Strix: Explicit Reactive Synthesis Strikes Back! 583

3.1 Effects of Minimization

We could reduce the size of the Mealy machine in 80 cases, and on average
by 45%. However the data showed that this did not always reduce the size
of the generated AIGER circuit: in 13 cases (most notably for several arbiter
specifications) the size of the circuit generated from the Mealy machine actually
increased when applying minimization (on average by 190%), while it decreased
in 62 cases (on average by 55%).

We conjecture that the structure of the product-arena is sometimes amenable
to compact representation in an AIGER circuit, while after the (SAT-based)
minimization this is lost. In these cases the SAT/SMT-based bounded synthesis
tools such as BoSy and Party also have difficulties producing a small solution,
if any at all.

3.2 Synthesis of Complete AMBA AHB Arbiter

To test maturity and scalability of our tool, we synthesized the AMBA AHB
arbiter [2], a common case study for reactive synthesis. We used the parameter-
ized specification from [17] for n = 2 masters, which was also part of SYNT-
COMP2016, but was left unsolved by any tool. With a memory limit of 128 GB,
we could decide realizability within 26 min and produce a Mealy machine with
83 states after minimization. While specialised GR(1) solvers [2,4,12] or decom-
positional approaches [3] are able to synthesize the specification in a matter of
minutes, to the best of our knowledge we are the first full LTL synthesis tool that
can handle the complete non-decomposed specification in a reasonable amount
of time. For comparison, ltlsynt (2.5) needs more than 2.5 days on our system
and produces a Mealy machine with 340 states.

3.3 Discussion

The ltlsynt tool is part of Spot [8], which uses a Safra-style determinization
procedure for NBAs. Conceptually, it also uses DPAs and a parity game solver as
a decision procedure. However, as shown in [10] the produced automata tend to
be larger compared to our translation, which probably results in the lower quality
score. Our approach has similar performance and scales better on certain cases.
The instances where ltlsynt performs better than Strix are specifications that
we cannot split efficiently and the DPA construction becomes the bottleneck.

Bounded synthesis approaches (BoSy,Party) tend to produce smaller
Mealy machines and to be able to handle larger alphabets. However, they fail
when the minimal machine implementing the desired property is large, even if
there is a compact implementation as a circuit. In our approach, we can often
solve these cases and still regain compactness of the implementation through
minimization afterwards. The strength of the Party portfolio is the combina-
tion of traditional bounded synthesis and a novel approach by reduction to safety
games, which results in a large number of solved instances, but reduces the avg.
quality score.

584 P. J. Meyer et al.

Future Work. Strix combines Java (LTL simplification and automata trans-
lations) and C++ (parity game construction and solving). We believe that a
pure C++ implementation will further improve the overall runtime and reduce
the memory footprint. Next, there are several algorithmic questions we want
to investigate going forward, especially expanding parallelization of the tool.
Furthermore, we want to reduce the dependency on external tools for circuit
generation in order to be able to fine-tune this step better. Especially replac-
ing Speculoos is important, since it turned out that it was unable to handle
complex transition systems.

References

1. Abel, A., Reineke, J.: MeMin: SAT-based exact minimization of incompletely spec-
ified mealy machines. In: Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design, ICCAD 2015, Austin, TX, USA, 2–6 November 2015,
pp. 94–101 (2015). https://doi.org/10.1109/ICCAD.2015.7372555

2. Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: hardware from PSL. Electr. Notes Theor. Comput. Sci.
190(4), 3–16 (2007). https://doi.org/10.1016/j.entcs.2007.09.004

3. Bloem, R., Jacobs, S., Khalimov, A.: Parameterized synthesis case study: AMBA
AHB. In: Proceedings of the 3rd Workshop on Synthesis, SYNT 2014, Vienna,
Austria, 23–24 July 2014, pp. 68–83 (2014). https://doi.org/10.4204/EPTCS.157.
9

4. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012). https://doi.org/10.
1016/j.jcss.2011.08.007

5. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL
synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
652–657. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-
7 45

6. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

7. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

8. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0 — a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

9. Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 25

10. Esparza, J., Křet́ınský, J., Raskin, J.-F., Sickert, S.: From LTL and limit-
deterministic Büchi automata to deterministic parity automata. In: Legay, A.,
Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 426–442. Springer, Hei-
delberg (2017). https://doi.org/10.1007/978-3-662-54577-5 25

https://doi.org/10.1109/ICCAD.2015.7372555
https://doi.org/10.1016/j.entcs.2007.09.004
https://doi.org/10.4204/EPTCS.157.9
https://doi.org/10.4204/EPTCS.157.9
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1007/978-3-662-54577-5_25

Strix: Explicit Reactive Synthesis Strikes Back! 585

11. Faymonville, P., Finkbeiner, B., Tentrup, L.: BoSy: an experimentation framework
for bounded synthesis. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 325–332. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 17

12. Godhal, Y., Chatterjee, K., Henzinger, T.A.: Synthesis of AMBA AHB from formal
specification: a case study. STTT 15(5–6), 585–601 (2013). https://doi.org/10.
1007/s10009-011-0207-9

13. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A
Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36387-4

14. Hoffmann, P., Luttenberger, M.: Solving parity games on the GPU. In: Van Hung,
D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 455–459. Springer, Cham
(2013). https://doi.org/10.1007/978-3-319-02444-8 34

15. Jacobs, S., Basset, N., Bloem, R., Brenguier, R., Colange, M., Faymonville, P.,
Finkbeiner, B., Khalimov, A., Klein, F., Michaud, T., Pérez, G.A., Raskin, J.,
Sankur, O., Tentrup, L.: The 4th reactive synthesis competition (SYNTCOMP
2017): benchmarks, participants and results. arXiv:1711.11439 [cs.LO] (2017)

16. Jacobs, S., Klein, F., Schirmer, S.: A high-level LTL synthesis format: TLSF v1.1.
In: Proceedings of the Fifth Workshop on Synthesis, SYNT@CAV 2016, Toronto,
Canada, 17–18 July 2016, pp. 112–132 (2016). https://doi.org/10.4204/EPTCS.
229.10

17. Jobstmann, B.: Applications and optimizations for LTL synthesis. Ph.D. thesis,
Graz University of Technology (2007)

18. Khalimov, A., Jacobs, S., Bloem, R.: PARTY parameterized synthesis of token
rings. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 928–933.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 66

19. Luttenberger, M.: Strategy iteration using non-deterministic strategies for solving
parity games. arXiv:0806.2923 [cs.GT] (2008)

20. Meyer, P.J., Luttenberger, M.: Solving mean-payoff games on the GPU. In: Artho,
C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 262–267. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 17

21. Morgenstern, A., Schneider, K.: Exploiting the temporal logic hierarchy and the
non-confluence property for efficient LTL synthesis. In: Proceedings of the First
Symposium on Games, Automata, Logic, and Formal Verification, GANDALF
2010, Minori (Amalfi Coast), Italy, 17–18 June 2010, pp. 89–102 (2010). https://
doi.org/10.4204/EPTCS.25.11

22. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 1989, pp. 179–190. ACM, New York (1989). https://doi.org/10.
1145/75277.75293

23. Sickert, S., Esparza, J., Jaax, S., Křet́ınský, J.: Limit-deterministic Büchi automata
for linear temporal logic. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9780, pp. 312–332. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41540-6 17

https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/s10009-011-0207-9
https://doi.org/10.1007/s10009-011-0207-9
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-319-02444-8_34
http://arxiv.org/abs/1711.11439
https://doi.org/10.4204/EPTCS.229.10
https://doi.org/10.4204/EPTCS.229.10
https://doi.org/10.1007/978-3-642-39799-8_66
http://arxiv.org/abs/0806.2923
https://doi.org/10.1007/978-3-319-46520-3_17
https://doi.org/10.4204/EPTCS.25.11
https://doi.org/10.4204/EPTCS.25.11
https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/978-3-319-41540-6_17
https://doi.org/10.1007/978-3-319-41540-6_17

586 P. J. Meyer et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

BTOR2 , BtorMC and Boolector 3.0

Aina Niemetz1,2(B) , Mathias Preiner1,2 ,
Clifford Wolf3, and Armin Biere1

1 Johannes Kepler University Linz, Linz, Austria
2 Stanford University, Stanford, USA

niemetz@cs.stanford.edu
3 Symbiotic EDA, Vienna, Austria

Abstract. We describe Btor2, a word-level model checking format for
capturing models of hardware and potentially software in a bit-precise
manner. This simple, line-based and easy to parse format can be seen as
a sorted extension of the word-level format Btor. It uses design princi-
ples from the bit-level format Aiger and follows semantics of the Smt-
Lib logics of bit-vectors with arrays. This intermediate format can be
used in various verification flows and is perfectly suited to establish a
word-level model checking competition. It is supported by our new open
source model checker BtorMC, which is built on top of version 3.0 of our
SMT solver Boolector. We further provide new word-level benchmarks
on which these open source tools are evaluated.

Our format Btor2 generalizes and extends the Btor [5] format, which can be
seen as a word-level generalization of the initial version of the bit-level format
Aiger [2]. Btor is a format for quantifier-free formulas over bit-vectors and
arrays with Smt-Lib [1] semantics but also provides sequential extensions for
specifying word-level model checking problems with registers and memories. In
contrast to Btor, which is tailored towards bit-vectors and one-dimensional bit-
vector arrays, Btor2 has explicit sort declarations. It further allows to explicitly
initialize registers and memories (instead of implicit initialization in Btor) and
extends the set of sequential features with witnesses, invariant and fairness con-
straints, and liveness properties. All of these are word-level variants lifted from
corresponding features in the latest Aiger format [4], the input format of the
hardware model checking competition (HWMCC) [3,6] since 2011. We provide
an open source Btor2 tool suite, which includes a generic parser, random sim-
ulator and witness checker. We further implemented a reference bounded model
checker BtorMC on top of our SMT solver Boolector. We consider Btor2 as an
ideal candidate to establish a word-level hardware model checking competition.

1 Format Description

The syntax of Btor2 is shown in Fig. 1. The sort keyword is used to define arbi-
trary bit-vector and array sorts. This not only allows to specify multi-dimensional

Supported by Austrian Science Fund (FWF) under NFN Grant S11408-N23 (RiSE).

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 587–595, 2018.
https://doi.org/10.1007/978-3-319-96145-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_32&domain=pdf
http://orcid.org/0000-0003-2600-5283
http://orcid.org/0000-0002-7142-6258
http://orcid.org/0000-0001-7170-9242

588 A. Niemetz et al.

Fig. 1. Syntax of Btor2. Non-terminals 〈opidx〉 and 〈op〉 are indexed and non-indexed
operators as defined in Table 1 (sequential part in red). (Color figure online)

arrays but can be extended to support (uninterpreted) functions, floating points
and other sorts. As a consequence, Btor2 is not backwards compatible with
Btor. For clarity, in Fig. 1 we distinguish between node (line) identifiers 〈nid〉
and sort identifiers 〈sid〉, and do not allow an identifier to occur in both sets.
Introducing sorts renders type specific keywords such as var, array and acond from
Btor obsolete. Instead, Btor2 uses the keyword input to declare bit-vector and
array variables of a given sort. Bit-vector constants are created as in Btor with
the keywords const[dh], one, ones and zero.

Bit-vector and array operators as supported by Btor2 and their respective
sorts are shown in Table 1. We use Bn for a bit-vector sort of width n, and I
and E for the index and element sorts of an array sort AI→E. Note that some
bit-vector operators can be interpreted as signed or unsigned. In signed context,
as in Smt-Lib, bit-vectors are represented in two’s complement.

2 Sequential Extension

As shown in Fig. 1, the sequential extension of Btor2 introduces a state key-
word, which allows to specify registers and memories. In contrast to Btor, where
registers are implicitly zero-initialized and memories are uninitialized, Btor2
provides a keyword init to explicitly define initialization functions for states. This
enables us to also model partial initialization. For example, initializing a mem-
ory with a bit-vector constant zero, zero-initializes the whole memory, whereas

Btor2, BtorMC and Boolector 3.0 589

Table 1. Operators supported by Btor2, where Bn represents a bit-vector sort of size
n and AI→E represents an array sort with index sort I and element sort E .

indexed

[su]ext w (un)signed extension Bn → Bn+w

slice u l extraction, n > u ≥ l Bn → Bu−l+1

unary

not bit-wise Bn → Bn

inc, dec, neg arithmetic Bn → Bn

redand, redor, redxor reduction Bn → B1

binary

iff, implies Boolean B1 × B1 → B1

eq, neq (dis)equality S × S → B1

[su]gt, [su]gte, [su]lt, [su]lte (un)signed inequality Bn × Bn → B1

and, nand, nor, or, xnor, xor bit-wise Bn × Bn → Bn

rol, ror, sll, sra, srl rotate, shift Bn × Bn → Bn

add, mul, [su]div, smod, [su]rem, sub arithmetic Bn × Bn → Bn

[su]addo, [su]divo, [su]mulo, [su]subo overflow Bn × Bn → B1

concat concatenation Bn × Bm → Bn+m

read array read AI→E × I → E
ternary

ite conditional B1 × Bn × Bn → Bn

write array write AI→E × I × E → AI→E

partially initializing a register can be achieved by applying a bit-mask to an
uninitialized register.

Transition functions for both registers and memories are defined with the
next keyword. It takes the current and next states as arguments. A state variable
without associated next function is treated as a primary input, i.e., it has the
same behaviour as inputs defined via keyword input. Note that Btor provides
a next keyword for registers and an anext keyword for memories. Using sorts in
Btor2 avoids such sort specific keyword variants.

As in the latest version of Aiger [4], Btor2 supports bad state properties,
which are essentially negations of safety properties. Multiple properties can be
specified by simply adding multiple bad state properties. Invariant constraints
can be introduced via the constraint keyword and are assumed to hold globally.
A witness for a bad state property is an initialized finite path, which reaches
(actually, contains) a bad state and satisfies all invariant constraints.

Again as in Aiger [4], keywords fair and justice allow to specify (global)
fairness constraints and (negations of) liveness properties. Each justice property
consists of a set of Büchi conditions. A witness for a justice property is an infinite
initialized path on which all Büchi conditions and all global fairness constraints

590 A. Niemetz et al.

are satisfied infinitely often. In addition, all global invariant constraints have to
hold. The justice keyword takes a number (the number of Büchi conditions) and
an arbitrary number of nodes (the Büchi conditions) as arguments.

3 Witness Format

The syntax of the Btor2 witness format is shown in Fig. 2. A Btor2 witness
consists of a sequence of valid input assignments grouped by (time) frames. It
starts with ‘sat’ followed by a list of properties that are satisfied by the witness.
A property is identified by a prefix ‘b’ (for bad) and ‘j’ (for justice) followed by
a number i, which ranges over the number of defined bad and justice properties
starting from 0. For example, ‘b0 j0’ refers to the first bad and first justice
property in the order as they occur in the Btor2 input. The list of properties is
followed by a sequence of k +1 frames at time t ∈ {0, . . . , k}. A frame is divided
into a state and input part. The state part starts with ‘#t’ and is mandatory
for the first frame (t = 0) and optional for later frames (t > 0). It contains
state assignments at time t. The input part starts with ‘@t’ and consists of input
assignments of the transition from time t to t + 1. If states are uninitialized
(no init), their initial assignment is required to be specified in frame ‘#0’. The
state part is usually omitted for t > 0 since state assignments can be computed
from states and inputs at time t − 1. While don’t care inputs can be omitted,
our witness checker assumes that they are zero. Input and state assignments use
the same numbering scheme as properties, i.e., states and inputs are numbered
separately in the order they are defined, starting from 0. For example, 0 in
frame ‘#t’ (or ‘@t’) refers to the first state (or input) as defined in the Btor2
input. For justice properties we assume the witness to be lasso shaped, i.e., the
next state, which can be computed from the last state and inputs at time k, is
identical to one of the previous states at time t = 0 . . . k. As in Aiger, a Btor2
witness is terminated with ‘.’ on a separate line.

Fig. 2. Btor2 model and witness format syntax (sequential part in red). (Color figure
online)

Figure 3 illustrates a simple C program (left), the corresponding Btor2
model with the negation of the assertion as a bad property (center), and a

Btor2, BtorMC and Boolector 3.0 591

Fig. 3. Example C program with corresponding Btor2 model and witness.

Btor2 witness for the violated property (right). The Btor2 model defines
one bad property (a == 3 && b == 3), which is satisfied in frame 6. The corre-
sponding witness identifies this property as bad property ‘b0’ (first bad property
defined in the model). All states are initialized, hence ‘#0’ is empty, and ‘@0’
to ‘@6’ indicate the assignments of input 0 (turn, the first input defined in the
model) in frames 0 to 6, e.g., turn = 1 at t = 0, turn = 0 at t = 1 and so
on. In frame 6, both states a and b reach value 3, and therefore property ‘b0’ is
satisfied.

4 Tools

We provide a generic stand-alone parser for Btor2, which features basic type
checking and consists of approx. 1,500 lines of C code. We implemented a refer-
ence bounded model checker BtorMC, which currently supports checking safety
(aka. bad state) properties for models with registers and memories and produces
witnesses for satisfiable properties. Unrolling the model is performed by sym-
bolic simulation, i.e., symbolic substitution of current state expressions into next
state functions, and incremental SMT solving. We also implemented a simulator
for randomly simulating Btor2 models. It further supports checking Btor2
witnesses. The model checker is tightly integrated into our SMT solver Boolec-
tor [18], an award-winning SMT solver for the theory of fixed-size bit-vectors
with arrays and uninterpreted functions. Since the last major version [18], we
extended Boolector with several new features. Most notably, Boolector 3.0 now
comes with support for quantified bit-vectors [24] and two different local search
strategies for quantifier-free bit-vector formulas that don’t rely on but can be
combined with bit-blasting [19,21,22]. It further provides support for Btor2.
In contrast to previous versions of Boolector, Boolector 3.0 and all Btor2 tools

592 A. Niemetz et al.

are released under the MIT open source license and the source code is hosted on
GitHub1.

5 Experiments

We collected ten real-world (System)Verilog designs with safety properties from
various open source projects [11,26–28]. The majority of these designs include
memories. We used the open synthesis suite Yosys [29] to synthesize these designs
into Btor2 and Smt-Lib. For Btor2, Yosys directly generates the models
from a circuit description. For Smt-Lib, since the language does not support
describing model checking problems, we used Yosys in combination with Yosys-
SMTBMC to produce unrolled (incremental) problems.

We compared BtorMC against the most recent versions of Boolector (3.0)
and Yices [10] (2.5.4), the two best solvers of the QF ABV division of the SMT
competition 2017. The Btor2 models serve as input for BtorMC, and the incre-
mental Smt-Lib benchmarks serve as input for Boolector and Yices. All bench-
marks, synthesis scripts, generated files, log files and the source code of our tools
for this evaluation are available at http://fmv.jku.at/cav18-btor2.

The results in Table 2 show that our flow using Btor2 as intermediate for-
mat is competetive with simple unrolling. Note that our model checker BtorMC
issues incremental calls to Boolector. However, in Boolector, sophisticated word-
level rewriting is currently disabled in incremental mode. We expect a major
performance boost by fully supporting incremental word-level preprocessing.

Table 2. BtorMC/Btor2 vs. unrolled Smt-Lib with a time limit of 3600 s, where k
is the bound and #bad is the number of bad properties.

Benchmark k #bad BtorMC
time[s]

Boolector
time[s]

Yices time[s]

picorv32-check 30 23 4.8 18.9 10.8

picorv32-pcregs 20 3 63.0 293.0 TO

ponylink-slaveTXlen-sat 230 1 305.5 406.8 145.6

ponylink-slaveTXlen-unsat 231 1 183.8 131.4 71.4

VexRiscv-regch0-15 17 2 9.6 48.3 12.2

VexRiscv-regch0-20 22 2 528.8 520.7 2232.2

VexRiscv-regch0-30 32 2 TO TO TO

zipcpu-busdelay 100 50 157.0 287.0 181.2

zipcpu-pfcache 100 39 17.4 19.9 32.5

zipcpu-zipmmu 30 57 86.0 412.9 46.5

1 https://github.com/boolector.

http://fmv.jku.at/cav18-btor2
https://github.com/boolector

Btor2, BtorMC and Boolector 3.0 593

6 Conclusion

We propose Btor2, a new word-level model-checking and witness format. For
this format we provide a generic parser implementation, a simulator that also
checks witnesses, and a reference bounded model checker BtorMC, which is
tightly integrated with our SMT solver Boolector. These open source tools are
evaluated on new real-world benchmarks, which we synthesized from open source
hardware (System) Verilog models into Btor2 and Smt-Lib with Yosys. The
tool Verilog2SMV [14] translates Verilog into model-checking problems in several
formats, including nuXmv [7] and Btor. However, its translation to Btor is
incomplete and development discontinued.

We plan to provide a translator from Btor2 into SALLY [25], and VMT [8],
which are both extensions of Smt-Lib to model symbolic transition systems.
It might also be interesting to translate incremental Smt-Lib benchmarks and
horn clause models (as handled by, e.g., µZ [13]) into Btor2 and vice versa.
We hope other compilers and model checkers such as SAL [9], EBMC [15] and
ABC [12,16] will provide support to produce and read Btor2 models. We want
to extend the format to other logics, in particular to support lambdas as in [23].
There is also a need for fuzzing [20] and delta-debugging tools [17].

Last but not least, we want to use this format to bootstrap a word-level
model checking competition, which of course needs more benchmarks.

References

1. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Techni-
cal report, Department of Computer Science, The University of Iowa (2017). www.
SMT-LIB.org

2. Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012. Tech-
nical report, FMV Reports Series, Institute for Formal Models and Verification,
Johannes Kepler University, Altenbergerstr 69, 4040 Linz, Austria (2007)

3. Biere, A., van Dijk, T., Heljanko, K.: Hardware model checking competition 2017.
In: Stewart, D., Weissenbacher, G. (eds.) 2017 Formal Methods in Computer Aided
Design, FMCAD 2017, Vienna, Austria, 2–6 October 2017, p. 9. IEEE (2017).
https://doi.org/10.23919/FMCAD.2017.8102233

4. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Technical report,
FMV Reports Series, Institute for Formal Models and Verification, Johannes
Kepler University, Altenbergerstr 69, 4040 Linz, Austria (2011)

5. Brummayer, R., Biere, A., Lonsing, F.: BTOR: bit-precise modelling of word-level
problems for model checking. In: Proceedings of the Joint Workshops of the 6th
International Workshop on Satisfiability Modulo Theories and 1st International
Workshop on Bit-Precise Reasoning, SMT 2008/BPR 2008, pp. 33–38. ACM, New
York, USA (2008). http://doi.acm.org/10.1145/1512464.1512472

6. Cabodi, G., Loiacono, C., Palena, M., Pasini, P., Patti, D., Quer, S., Ven-
draminetto, D., Biere, A., Heljanko, K.: Hardware model checking competition
2014: an analysis and comparison of solvers and benchmarks. J. Satisf. Boolean
Model. Comput. 9, 135–172 (2014). Published 2016

www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.23919/FMCAD.2017.8102233
http://doi.acm.org/10.1145/1512464.1512472

594 A. Niemetz et al.

7. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

8. Cimatti, A., Roveri, M., Griggio, A., Irfan, A.: Verification modulo theories. http://
es.fbk.eu/projects/vmt-lib/

9. De Moura, L., Owre, S., Shankar, N.: The SAL language manual. Technical report
CSL-01-01, Computer Science Laboratory, SRI International, Menlo Park (2003)

10. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

11. Gisselquist, D.: ZipCPU. https://github.com/ZipCPU/zipcpu
12. Ho, Y., Mishchenko, A., Brayton, R.K.: Property directed reachability with word-

level abstraction. In: FMCAD, pp. 132–139. IEEE (2017)
13. Hoder, K., Bjørner, N., de Moura, L.: µZ - an efficient engine for fixed points

with constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 457–462. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22110-1 36

14. Irfan, A., Cimatti, A., Griggio, A., Roveri, M., Sebastiani, R.: Verilog2SMV: a tool
for word-level verification. In: DATE, pp. 1156–1159. IEEE (2016)

15. Kroening, D.: Computing over-approximations with bounded model checking.
Electr. Notes Theor. Comput. Sci. 144(1), 79–92 (2006)

16. Long, J., Ray, S., Sterin, B., Mishchenko, A., Brayton, R.K.: Enhancing ABC for
stabilization verification of systemverilog/VHDL models. In: Proceedings of the
CEUR Workshop DIFTS@FMCAD, vol. 832. CEUR-WS.org (2011)

17. Niemetz, A., Biere, A.: ddSMT: a delta debugger for the SMT-LIB v2 format. In:
Bruttomesso, R., Griggio, A. (eds.) Proceedings of the 11th International Work-
shop on Satisfiability Modulo Theories, SMT 2013, Affiliated with the 16th Interna-
tional Conference on Theory and Applications of Satisfiability Testing, SAT 2013,
Helsinki, Finland, 8–9 July 2013, pp. 36–45 (2013)

18. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. JSAT 9, 53–58 (2015)
19. Niemetz, A., Preiner, M., Biere, A.: Precise and complete propagation based local

search for satisfiability modulo theories. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 199–217. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41528-4 11

20. Niemetz, A., Preiner, M., Biere, A.: Model-based API testing for SMT solvers. In:
Brain, M., Hadarean, L. (eds.) Proceedings of the 15th International Workshop on
Satisfiability Modulo Theories, SMT 2017, Affiliated with the 29th International
Conference on Computer Aided Verification, CAV 2017, Heidelberg, Germany, 24–
28 July 2017, p. 10 (2017)

21. Niemetz, A., Preiner, M., Biere, A.: Propagation based local search for bit-precise
reasoning. Formal Methods Syst. Des. 51(3), 608–636 (2017). https://doi.org/10.
1007/s10703-017-0295-6

22. Niemetz, A., Preiner, M., Biere, A., Fröhlich, A.: Improving local search for bit-
vector logics in SMT with path propagation. In: Proceedings of the Fourth Inter-
national Workshop on Design and Implementation of Formal Tools and Systems,
Austin, USA, 26–27 September 2015, pp. 1–10 (2015)

23. Preiner, M., Niemetz, A., Biere, A.: Lemmas on demand for lambdas. In: Proceed-
ings of the CEUR Workshop DIFTS@FMCAD, vol. 1130. CEUR-WS.org (2013)

24. Preiner, M., Niemetz, A., Biere, A.: Counterexample-guided model synthesis. In:
Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 264–280.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 15

https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
http://es.fbk.eu/projects/vmt-lib/
http://es.fbk.eu/projects/vmt-lib/
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://github.com/ZipCPU/zipcpu
https://doi.org/10.1007/978-3-642-22110-1_36
https://doi.org/10.1007/978-3-642-22110-1_36
http://ceur-ws.org/
https://doi.org/10.1007/978-3-319-41528-4_11
https://doi.org/10.1007/978-3-319-41528-4_11
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1007/s10703-017-0295-6
http://ceur-ws.org/
https://doi.org/10.1007/978-3-662-54577-5_15

Btor2, BtorMC and Boolector 3.0 595

25. SRI International’s Computer Science Laboratory: Sally - a model checker for
infinite-state systems. https://github.com/SRI-CSL/sally

26. Wolf, C.: PicoRV32. https://github.com/cliffordwolf/picorv32
27. Wolf, C.: PonyLink. https://github.com/cliffordwolf/PonyLink
28. Wolf, C.: riscv-formal. https://github.com/cliffordwolf/riscv-formal
29. Wolf, C.: Yosys. https://github.com/YosysHQ/yosys

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://github.com/SRI-CSL/sally
https://github.com/cliffordwolf/picorv32
https://github.com/cliffordwolf/PonyLink
https://github.com/cliffordwolf/riscv-formal
https://github.com/YosysHQ/yosys
http://creativecommons.org/licenses/by/4.0/

Nagini: A Static Verifier for Python

Marco Eilers(B) and Peter Müller

Department of Computer Science, ETH Zurich,
Zurich, Switzerland

{marco.eilers,peter.mueller}@inf.ethz.ch

Abstract. We present Nagini, an automated, modular verifier for
statically-typed, concurrent Python 3 programs, built on the Viper ver-
ification infrastructure. Combining established concepts with new ideas,
Nagini can verify memory safety, functional properties, termination,
deadlock freedom, and input/output behavior. Our experiments show
that Nagini is able to verify non-trivial properties of real-world Python
code.

1 Introduction

Dynamic languages have become widely used because of their expressiveness
and ease of use. The Python language in particular is popular in domains like
teaching, prototyping, and more recently data science. Python’s lack of safety
guarantees can be problematic when, as is increasingly the case, it is used for
critical applications with high correctness demands. The Python community has
reacted to this trend by integrating type annotations and optional static type
checking into the language [20]. However, there is currently virtually no tool
support for reasoning about Python programs beyond type safety.

We present Nagini, a sound verifier for statically-typed, concurrent Python
programs. Nagini can prove memory safety, data race freedom, and user-supplied
assertions. Nagini performs modular verification, which is important for verifi-
cation to scale and to be able to verify libraries, and automates the verification
process for programs annotated with specifications.

Nagini builds on many techniques established in existing tools: (1) Like Veri-
Fast [10] and other tools [4,19,22], it uses separation logic style permissions [16]
in order to locally reason about concurrent programs. (2) Like .NET Code Con-
tracts [7], it uses a contract library to enable users to write code-level spec-
ifications. (3) Like many verification tools [2,6,11,13], it verifies programs by
encoding the program and its specification into an intermediate verification lan-
guage [1,8], namely Viper [14], for which automatic verifiers already exist.

Nagini combines these techniques with new ideas in order to verify advanced
properties and handle the dynamic aspects of Python. In particular, Nagini
implements a comprehensive system for verifying finite blocking [5] and
input/output behavior [18], and builds on Mypy [12] to verify safety while also
supporting important dynamic language features. Nagini is intended for veri-
fying substantial, real-world code, and is currently used to verify the Python
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 596–603, 2018.
https://doi.org/10.1007/978-3-319-96145-3_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_33&domain=pdf
http://orcid.org/0000-0003-4891-6950
http://orcid.org/0000-0001-7001-2566

Nagini: A Static Verifier for Python 597

implementation of the SCION internet architecture [3]. To our knowledge, it
is the first tool to enable automatic verification of Python code. Existing tools
for JavaScript [21,24] also target a dynamic language, but focus on faithfully
modeling JavaScript’s complex semantics rather than practical verification of
high-level properties.

Due to its wide range of verifiable properties, Nagini has applications in
many domains: In addition to memory safety, programmers can choose to prove
that a server implementation will stay responsive, that data science code has
desired functional properties, or that algorithms terminate and preserve certain
invariants, for example in a teaching context. Nagini is open-source and available
online1, and can be used from the popular PyCharm IDE via a prototype plugin.

In this paper, we describe Nagini’s supported Python subset and specification
language, give an overview of its implementation and the encoding from Python
to Viper, and provide an experimental evaluation of Nagini on real-world code.

2 Language and Specifications

Python Subset: Nagini requires input programs to comply to the static, nom-
inal type system defined in PEP 484 [20] as implemented in the Mypy type
checker [12], which requires type annotations for function parameters and return
types, but can normally infer types of local variables. Nagini fully supports the
non-gradual part of Mypy’s type system, including generics and union types.

The Python subset accepted by Mypy and Nagini can accommodate most
real Python programs, potentially via some workarounds like using union types
instead of structural typing. While our subset is statically typed, it includes many
features and potential pitfalls not found in static languages, such as dynamic
addition and removal fields from objects. Some other features like reflection and
dynamic code generation are not supported.

Where compromises are necessary, Nagini aims for modularity, performance,
and completeness for features typically found in user code over general sup-
port for all language features. As an example, Nagini works with a simplified
model of Python’s object attribute lookup behavior: A simple attribute access
in Python leads to the invocation of several “magic” methods, which, if mod-
elled correctly, would result in an overhead that would likely make automatic
verification intractable. Nagini exploits the fact that these methods are mostly
used to implement decorators, metaclasses, and system libraries, but rarely in
user code. It assumes the default behavior of those methods, and implements
direct support for frequently-used decorators and metaclasses that change their
behavior. Importantly, Nagini flags an error if verified programs override these
methods or are otherwise outside the supported subset, and is therefore sound.

Specification Language: Nagini includes a library of specification functions sim-
ilar to .NET Code Contracts [7] to express pre- and postconditions, loop invari-
ants, and other assertions. Calls to these functions are interpreted as specifica-
tions by Nagini, but can be automatically removed before execution. Users can
1 https://github.com/marcoeilers/nagini.

https://github.com/marcoeilers/nagini

598 M. Eilers and P. Müller

Fig. 1. Example program demonstrating Nagini’s specification language. Contract
functions are highlighted in italics. Note that functional specifications and postcon-
ditions are largely omitted to highlight the different specification constructs.

annotate Mypy-style type stub files for external libraries with specifications; the
program will then be verified assuming they are correct. A detailed explanation
of the specification language can be found in Nagini’s Wiki2.

An example of an annotated program is shown in Fig. 1. The first two lines
import the contract library and Python’s library for type annotations. Pre-
and postconditions are declared via calls to the contract functions Requires and
Ensures in lines 17 and 10, respectively. The arguments of these functions are
interpreted as assertions, which can be side-effect free boolean Python expres-
sions or calls to other contract functions. Similarly, loops must be annotated
with invariants (line 22), and special exceptional postconditions specify which
exceptions a method may raise, and what postconditions must hold in this case.
The Exsures annotation in line 18 states that a SoldoutException may be raised
and makes no guarantees in this case. The invariant MustTerminate in line 25
specifies that the loop terminates; the argument represents a ranking function [5].

Like the underlying Viper language, Nagini uses Implicit Dynamic Frames
(IDF) [23], a variation of separation logic [16], to achieve framing and allow local
reasoning in the presence of concurrency. IDF establishes a system of permis-
sions for heap locations that roughly corresponds to separation logic’s points-to
predicates. Methods may only read or write heap locations they currently hold
a permission for, and can specify which permissions they require from and give

2 https://github.com/marcoeilers/nagini/wiki.

https://github.com/marcoeilers/nagini/wiki

Nagini: A Static Verifier for Python 599

back to their caller in their pre- and postconditions. Since there is only ever a
single permission per heap location, holding a permission guarantees that neither
other threads nor called methods can modify the respective location.

In Nagini, a permission is created when a field is assigned to for the first
time; e.g., when executing line 9, the init method will have permission to
three fields. Permission assertions are expressed using the Acc function (line 14).
Assertions can be abstracted over using predicates [17], declared in Nagini by
using annotated functions (line 12). In the example, the constructor of Ticket
bundles all available permissions in the predicate state using the ghost state-
ment Fold in line 9 and subsequently returns this predicate to its caller via its
postcondition.

In addition, Nagini offers a second kind of permission that allows creating a
field that does not currently exist, but cannot be used for reading (since that
would cause a runtime error). Constructors implicitly get this kind of permis-
sion for every field mentioned in a class; in the example, such a permissions is
returned to the caller (line 10) and used in line 28. The loop invariant contains
the permission to modify the res list using one of several built-in predicates for
Python’s standard data types (line 22) as well as permissions to the fields of all
objects in the list (line 23). This kind of quantified permission [15], correspond-
ing to separation logic’s iterated separating conjunction, is one of two supported
ways to express permissions over unbounded numbers of heap locations.

Other contract functions allow specifying, e.g., I/O behavior, and some have
variations for advanced users, e.g., the Forall function can take trigger expressions
to specify when the underlying SMT solver should instantiate the quantifier.

Verified properties: Nagini verifies some safety properties by default: Verified
programs will not raise runtime errors or undeclared exceptions. The permission
system guarantees that verified code is memory safe and free of data races.
Nagini also verifies some properties that Mypy only checks optimistically, e.g.,
that referenced names are defined before they are used. As an example, if the
Ticket class were defined after the order tickets function, Nagini would not allow
calls to the function before the class definition, because of the call in line 26.

Beyond this, Nagini can verify (1) functional properties, (2) input/output
properties, i.e., which I/O operations may or must occur, using a generalization
of the method by Penninckx et al. [18], and (3) finite blocking [5], i.e., that no
thread blocks indefinitely when trying to acquire a lock or join another thread,
which includes deadlock freedom and termination. Verification is modular in the
sense that adding code to a program only requires verifying the added parts; any
code that verified before is guaranteed to still verify. Top level statements are
an exception and have to be reverified when any part of the program changes,
since Python’s import mechanism is inherently non-modular.

3 Implementation

Nagini’s verification workflow is depicted in Fig. 2. After parsing, Nagini invokes
the Mypy type checker on the input and rejects the program if errors are found.

600 M. Eilers and P. Müller

Fig. 2. Nagini verification workflow.

It then analyzes the input program and extracts structural information into an
internal model, which is then encoded into a Viper program. The program is
verified using one of the two Viper backends, based on either symbolic execu-
tion (SE) or verification condition generation (VCG), respectively. Any resulting
Viper-level error messages are mapped back to a Python-level error.

Encoding: Nagini encodes Python programs into Viper programs that verify only
if the original program was correct. At the top level, Viper programs consist
of methods, whose bodies contain imperative code, side-effect free functions,
and the aforementioned predicates, as well as domains, which can be used to
declare and axiomatize custom data types. The structure of a created Viper
program roughly follows the structure of the Python program: Each function in
the Python program corresponds to either a method, a function, or a predicate
in the Viper program, depending on its annotation. Additional Viper methods
are generated to check proof obligations like behavioral subtyping and to model
the execution of all top level statements.

Nagini maintains various kinds of ghost state, e.g., for verifying finite blocking
and to represent which names are currently defined. It models Python’s type sys-
tem using a Viper domain axiomatized to reflect subtype relations. Nagini desug-
ars complex Python language constructs into simple ones that exist in Viper, but
subtle language differences often require additional effort in the encoding. As an
example, Viper distinguishes references from primitive values whereas Python
does not, requiring boxing and unboxing operations in the encoding.

Tool interaction: Nagini is invoked on an annotated Python file, and verifies
this file and all (transitive) imports without user interaction. It then outputs
either a success message or Python-level error messages that indicate type or
verification errors, use of unsupported features, or invalid specifications, along
with the source location. As an example, removing the Fold statement in line 9 of
Fig. 1 yields the error message “Postcondition of init might not hold. There
might be insufficient permission to access self.state(). (example.py@10.16)”.

4 Evaluation

In addition to having a comprehensive test suite of over 12,500 lines of code,
we have evaluated Nagini on a set of examples containing (parts of) implemen-

Nagini: A Static Verifier for Python 601

Fig. 3. Experiments. For each example, we list the lines of code (excluding whitespace
and comments), the number of those lines that are used for specifications, the length
of the resulting Viper program, properties (SF = safety, FC = functional correctness,
FB = finite blocking, IO= input/output behavior) that could be verified (✓), could not
be verified (✗) or were not attempted (-), and the verification times with Viper’s SE
backend, sequential and parallelized, in seconds.

tations of standard algorithms from the internet3, the example from Fig. 1, a
class from the SCION implementation, as well as examples from other verifiers
translated to Python. Figure 3 shows the examples and which properties were
verified; the functional property we proved for the binary search tree implemen-
tation is that it maintains a sorted tree. The examples cover language features
like inheritance (example 10), comprehensions (3), dynamic field addition (6),
operator overloading (3), union types (4), threads and locks (9), as well as spec-
ification constructs like quantified permissions (6) and predicate families (10).
Nagini correctly finds an error in the SCION example and successfully verifies
all other examples.

The runtimes shown in Fig. 3 were measured by averaging over ten runs on
a Lenovo Thinkpad T450s running Ubuntu 16.04, Python 3.5 and OpenJDK 8
on a warmed-up JVM. They show that Nagini can effectively verify non-trivial
properties of real-life Python programs in reasonable time. Due to modular veri-
fication, parts of a program can be verified independently and in parallel (which
Nagini does by default), so that larger programs will not inherently lead to
performance problems. This is demonstrated by the speedup achieved via par-
allelization on the two larger examples; for the smaller ones, verification time is
dominated by a single complex method. Additionally, the annotation overhead
is well within the range of other verification tools [9].

Acknowledgements. Thanks to Vytautas Astrauskas, Samuel Hitz, and Fábio Pakk
Selmi-Dei for their contributions to Nagini. We gratefully acknowledge support from
the Zurich Information Security and Privacy Center (ZISC).

3 We chose examples that do not make use of dynamic features or external libraries
from rosettacode.org, interactivepython.org and github.com/keon/algorithms.

http://rosettacode.org
http://interactivepython.org
https://github.com/keon/algorithms

602 M. Eilers and P. Müller

References

1. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

2. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the Spec# experience. Commun. ACM 54(6), 81–91
(2011)

3. Barrera, D., Chuat, L., Perrig, A., Reischuk, R.M., Szalachowski, P.: The scion
internet architecture. Commun. ACM 60(6), 56–65 (2017)

4. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006). https://doi.org/10.1007/11804192 6

5. Boström, P., Müller, P.: Modular verification of finite blocking in non-terminating
programs. In: Boyland, J.T. (ed.) European Conference on Object-Oriented Pro-
gramming (ECOOP). LIPIcs, vol. 37, pp. 639–663. Schloss Dagstuhl (2015)

6. Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: VCC: contract-
based modular verification of concurrent C. In: 2009 31st International Conference
on Software Engineering - Companion Volume, pp. 429–430, May 2009

7. Fähndrich, M., Barnett, M., Logozzo, F.: Code contracts (2008). http://research.
microsoft.com/contracts

8. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

9. Hawblitzel, C., Howell, J., Lorch, J.R., Narayan, A., Parno, B., Zhang, D., Zill, B.:
Ironclad apps: end-to-end security via automated full-system verification. In: 11th
USENIX Symposium on Operating Systems Design and Implementation, OSDI
2014, Broomfield, CO, USA, 6–8 October 2014, pp. 165–181 (2014)

10. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 4

11. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015)

12. Lehtosalo, J., et al.: Mypy - optional static typing for python (2017). http://mypy-
lang.org

13. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

14. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5 2

15. Müller, P., Schwerhoff, M., Summers, A.J.: Automatic verification of iterated sepa-
rating conjunctions using symbolic execution. In: Chaudhuri, S., Farzan, A. (eds.)
CAV 2016. LNCS, vol. 9779, pp. 405–425. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-41528-4 22

https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/11804192_6
http://research.microsoft.com/contracts
http://research.microsoft.com/contracts
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
http://mypy-lang.org
http://mypy-lang.org
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-319-41528-4_22
https://doi.org/10.1007/978-3-319-41528-4_22

Nagini: A Static Verifier for Python 603

16. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

17. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, pp. 247–258. ACM, New York (2005)

18. Penninckx, W., Jacobs, B., Piessens, F.: Sound, modular and compositional veri-
fication of the input/output behavior of programs. In: Vitek, J. (ed.) ESOP 2015.
LNCS, vol. 9032, pp. 158–182. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46669-8 7

19. Piskac, R., Wies, T., Zufferey, D.: GRASShopper: complete heap verification with
mixed specifications. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 124–139. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54862-8 9

20. van Rossum, G., Lehtosalo, J., Langa, �L.: Type Hints (2014). https://www.python.
org/dev/peps/pep-0484/

21. Santos, J.F., Maksimovic, P., Naudziuniene, D., Wood, T., Gardner, P.: JaVert:
JavaScript verification toolchain. PACMPL 2(POPL), 50:1–50:33 (2018)

22. Smans, J., Jacobs, B., Piessens, F.: VeriCool: an automatic verifier for a concurrent
object-oriented language. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 220–239. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-68863-1 14

23. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames. ACM Trans. Program.
Lang. Syst. 34(1), 2:1–2:58 (May 2012)

24. Stefanescu, A., Park, D., Yuwen, S., Li, Y., Rosu, G.: Semantics-based program ver-
ifiers for all languages. In: Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2016, Part of SPLASH 2016, Amsterdam, The Netherlands, 30
October–4 November 2016, pp. 74–91 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-662-46669-8_7
https://doi.org/10.1007/978-3-662-46669-8_7
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/978-3-642-54862-8_9
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://doi.org/10.1007/978-3-540-68863-1_14
https://doi.org/10.1007/978-3-540-68863-1_14
http://creativecommons.org/licenses/by/4.0/

Peregrine: A Tool for the Analysis
of Population Protocols

Michael Blondin , Javier Esparza ,
and Stefan Jaax(B)

Technische Universität München, Munich, Germany
{blondimi,esparza,jaax}@in.tum.de

Abstract. We introduce Peregrine, the first tool for the analysis and
parameterized verification of population protocols. Population protocols
are a model of computation very much studied by the distributed com-
puting community, in which mobile anonymous agents interact stochas-
tically to achieve a common task. Peregrine allows users to design
protocols, to simulate them both manually and automatically, to gather
statistics of properties such as convergence speed, and to verify correct-
ness automatically. This paper describes the features of Peregrine and
their implementation.

Keywords: Population protocols · Distributed computing
Parameterized verification · Simulation

1 Introduction

Population protocols [1,3,4] are a model of distributed computing in which repli-
cated, mobile agents with limited computational power interact stochastically to
achieve a common task. They provide a simple and elegant formalism to model,
e.g., networks of passively mobile sensors [1,5], trust propagation [13], evolu-
tionary dynamics [14], and chemical systems, under the name chemical reaction
networks [12,16,19].

Population protocols are parameterized: the number of agents does not
change during the execution of the protocol, but is a priori unbounded. A
protocol is correct if it behaves correctly for all of its infinitely many initial
configurations. For this reason, it is challenging to design correct and efficient
protocols.

In this paper we introduce Peregrine1, the first tool for the parameterized
analysis of population protocols. Peregrine is intended for use by researchers
in distributed computing and systems biology. It allows the user to specify pro-
tocols either through an editor or as simple scripts, and to analyze them via a

M. Blondin was supported by the Fonds de recherche du Québec – Nature et tech-
nologies (FRQNT).

1 Peregrine can be found at https://peregrine.model.in.tum.de.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 604–611, 2018.
https://doi.org/10.1007/978-3-319-96145-3_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_34&domain=pdf
http://orcid.org/0000-0003-2914-2734
http://orcid.org/0000-0001-9862-4919
http://orcid.org/0000-0001-5789-8091
https://peregrine.model.in.tum.de

Peregrine: A Tool for the Analysis of Population Protocols 605

graphical interface. The analysis features of Peregrine include manual step-
by-step simulation; automatic sampling; statistics generation of average conver-
gence speed; detection of incorrect executions through simulation; and formal
verification of correctness. The first four features are supported for all protocols,
while verification is supported for silent protocols, a large subclass of proto-
cols [6]. Verification is performed automatically over all of the infinitely many
initial configurations using the recent approach of [6] for solving the so-called
well-specification problem.

Related Work. The problem of automatically verifying that a population proto-
col conforms to its specification for one fixed initial configuration has been con-
sidered in [10,11,17,20]. In [10], ad hoc search algorithms are used. In [11,17],
the authors show how to model the problem in the probabilistic model checker
Prism, and under certain conditions in Spin. In [20], the problem is modeled
with the Pat toolkit for model checking under fairness assumptions. All these
tools increase our confidence in the correctness of a protocol. However, compared
to Peregrine, they are not visual tools, they do not offer simulation capabili-
ties, and they can only verify the correctness of a protocol for a finite number
of initial configurations, with typically a small number of agents. Peregrine
proves correctness for all of the infinitely many initial configurations, with an
arbitrarily large number of agents.

As mentioned in the introduction, population protocols are isomorphic to
chemical reaction networks (CRNs), a popular model in natural computing.
Cardelli et al. have recently developed model checking techniques and analysis
algorithms for stochastic CRNs [7–9]. The problems studied therein are incom-
parable to the parameterized questions addressed by Peregrine.

The verification algorithm of Peregrine is based on [6], where a novel app-
roach for the parameterized verification of silent population protocols has been
presented. The command-line tool of [6] only offers support for proving correct-
ness, with no functionality for visualization or simulation. Further, contrary to
Peregrine, the tool cannot produce counterexamples when correctness fails.

2 Population Protocols

We introduce population protocols through a simple example and then briefly
formalize the model. We refer the reader to [4] for a more thorough but still
intuitive presentation. Suppose anonymous and mobile agents wish to take a
majority vote. Intuitively, anonymous means that agents have no identity, and
mobile that agents are “wandering around”, and can only interact whenever they
bump into each other. In order to vote, all agents conduct the following protocol.
Each agent is in one out of four states {Y,N, y, n}. Initially all agents are in the
states Y or N , corresponding to how they want to vote (states y, n are auxiliary
states). Agents repeatedly interact pairwise according to the following rules:

a : Y N �→ yn b : Y n �→ Y y c : Ny �→ Nn d : yn �→ yy

606 M. Blondin et al.

For example, if the population initially has two agents of opinion “yes” and one
agent of opinion “no”, then a possible execution is:

�Y , Y,N�
a−→ �y, Y , n�

b−→ �y, Y, y�, (1)

where e.g. �Y, Y,N� denotes the multiset with two agents in state Y and one
agent in state N .

The goal of every population protocol is to ensure that the agents eventually
reach a lasting consensus, i.e., a multiset in which (1) either all agents are in
“yes”-states, or all agents are in “no”-states, and (2) further interactions do
not destroy the consensus. On top of this universal specification, each protocol
has an individual goal, determining which initial configurations should reach the
“yes” and the “no” lasting consensus. In the majority protocol above, the agents
should reach a “yes”-consensus iff 50% or more agents vote “yes”.

Execution (1) above leads to a lasting “yes”-consensus; further, the consensus
is the right one, since 2 out of 3 agents voted “yes”. In fact, assuming agents
interact uniformly and independently at random, the above protocol is correct:
executions almost surely reach a correct lasting consensus.

More formally, a population protocol is a tuple (Q,T, I,O) where Q is a
finite set of states, T ⊆ Q2 × Q2 is a set of transitions, I ⊆ Q are the initial
states and O : Q → {0, 1} is the output mapping. A configuration is a non-empty
multiset over Q, an initial configuration is a non-empty multiset over I, and a
configuration is terminal if it cannot be altered by any transition. A configuration
is in a consensus if all of its states map to the same output under O.

An execution is a finite or infinite sequence C0
t1−→ C1

t2−→ · · · such that Ci is
obtained from applying transition ti to Ci−1. A fair execution is either a finite
execution that reaches a terminal configuration, or an infinite execution such
that if {i ∈ N : Ci

∗−→ D} is infinite, then {i ∈ N : Ci = D} is infinite for any
configuration D. In other words, fairness ensures that a configuration cannot be
avoided forever if it is reachable infinitely often. Fairness is an abstraction of
the random interactions occurring within a population. A configuration C is in
a lasting consensus if every execution from C only leads to configurations of the
same consensus.

If for every initial configuration C, all fair executions from C lead to a last-
ing consensus ϕ(C) ∈ {0, 1}, then we say that the protocol computes the pred-
icate ϕ. For example, the above majority protocol with O(Y) = O(y) = 1 and
O(N) = O(n) = 0 computes the predicate C[Y] ≥ C[N], where C[x] denotes the
number of occurrences of state x in C. A protocol does not necessarily compute a
predicate. For example, if we alter the majority protocol by removing transition
d, then �Y,N�

a−→ �y, n� is a fair execution, but �y, n� is not in a consensus. In
other words, transition d acts as a tie-breaker which allows to reach the con-
sensus configuration �y, y�. A protocol that computes a predicate is said to be
well-specified. It is well-known that well-specified population protocols compute
precisely the predicates definable in Presburger arithmetic [3]. On top of differ-
ent majority protocols for the predicate C[x] ≥ C[y], the literature contains, e.g.,
different families of so-called flock-of-birds protocols for the predicates C[x] ≥ c,

Peregrine: A Tool for the Analysis of Population Protocols 607

where c is an integer constant, and families of threshold protocols for the pred-
icates a1 · C[x1] + · · · + an · C[xn] ≥ c, where a1, . . . , an, c are integer constants
and x1, . . . , xn are initial states.

3 Analyzing Population Protocols

Peregrine is a web tool with a JavaScript frontend and a Haskell backend.
The backend makes use of the SMT solver Z3 [15] to test satisfiability of Pres-
burger arithmetic formulas. The user has access to four main features through
the graphical frontend. We present these features in the remainder of the section.

Protocol Description. Peregrine offers a description language for both sin-
gle protocols and families of protocols depending on some parameters. Single
protocols are described either through a graphical editor or as simple Python
scripts. Families of protocols (called parametric protocols) can only be specified
as scripts, but Peregrine assists the user by generating a code skeleton.

Simulation. Population protocols can be simulated through a graphical player
depicted in Fig. 1. The user can pick an initial configuration and simulate the
protocol by either manual selection of interactions, or by letting a scheduler
pick interactions uniformly at random. The simulator keeps a history of the
execution which can be rewound at any time, making it easy to experiment with
the different behaviours of a protocol. Configurations can be displayed in two
ways: either as explicit populations, as illustrated in Fig. 1, or as bar charts of
the states count, more convenient for large populations.

Fig. 1. Simulation of the majority protocol from the initial configuration �5 ·Y, 10 ·N�.

Statistics. Peregrine can generate statistics from batch simulations. The user
provides four parameters: smin, smax,m and n. Peregrine generates n random
executions as follows. For each execution, a number s is picked uniformly at
random from [smin, smax], and an initial configuration of size s is then picked
uniformly at random. Each step of an execution is picked uniformly at random

608 M. Blondin et al.

among enabled interactions. If no terminal configuration is reached within m
steps, then the simulation halts. In the end, n executions of length at most m
are gathered. Peregrine classifies the generated executions according to their
consensus, and computes statistics on the convergence speed (see the next two
paragraphs). The results can be visualized in different ways, and the raw data
can be exported as a JSON file.

Consensus. For each random execution, Peregrine checks whether the last
configuration of an execution is in a consensus and, if so, whether the consensus
corresponds to the expected output of the protocol. Peregrine reports which
percentage of the executions reach a consensus, and whether the consensus is cor-
rect and/or lasting. In normal mode, Peregrine only classifies an execution as
lasting consensus if it ends in a terminal configuration. In the increased accuracy
mode, if the execution ends in a configuration C of consensus b ∈ {0, 1}, then
the model checker LoLA [18] is used to determine whether there exists a config-
uration C ′ such that C

∗−→ C ′ and C ′ is not of consensus b. If it is not the case,
then Peregrine concludes that C is in a lasting consensus. Peregrine plots
the percentage of executions in each category as a function of the population
size, as illustrated on the left of Fig. 2.

Average Convergence Speed. Peregrine also provides statistics on the conver-
gence speed of a protocol. Let C0

t1−→ C1
t2−→ · · · t�−→ C� be an execution such

that C� is in a consensus b ∈ {0, 1}. The number of steps to convergence of the
execution is defined as 0 if all configurations are of consensus b, and otherwise as
i+1, where i is the largest index such that Ci is not in consensus b. For each pop-
ulation size, Peregrine computes the average number of steps to convergence
of all consensus executions of that population size, and plots the information as
illustrated on the right of Fig. 2.

Fig. 2. Statistics for 5000 random executions of the approximate majority protocol
of [2], of length at most 40, from initial configurations of size at most 25. The left plot
shows the percentage of executions reaching a consensus (dark green: lasting correct,
light green: correct, light red: incorrect, dark red: lasting incorrect) and no consensus
(orange). In this example the occurrences of light red are negligible. The right plot
shows the average number of steps to convergence. (Color figure online)

Peregrine: A Tool for the Analysis of Population Protocols 609

Fig. 3. Verification of the majority protocol of Sect. 2 without transition d : yn �→ yy.

Verification. Peregrine can automatically verify that a population proto-
col computes a given predicate. Predicates can be specified by the user in
quantifier-free Presburger arithmetic extended with the family of predicates
{x ≡ y (mod c)}c≥2, which is equivalent to Presburger arithmetic. For example,
for the majority protocol of Sect. 2, the user simply specifies C[Y] >= C[N].

Peregrine implements the approach of [6] to verify correctness of protocols
which are silent. A protocol is said to be silent if from every initial configuration,
every fair execution leads to a terminal configuration. The majority protocol of
Sect. 2 and most existing protocols from the literature are silent [6]. We briefly
describe the approach of [6] and how it is integrated into Peregrine.

Suppose we are given a population protocol P and we wish to determine
whether it computes a predicate ϕ. The procedure first tries to prove that P
is silent. This is done by verifying a more restricted condition called layered
termination. Verifying the latter property reduces to testing satisfiability of a
Presburger arithmetic formula. If this formula holds, then the protocol is silent,
otherwise no conclusion is derived. However, essentially all existing silent proto-
cols satisfy layered termination [6].

Once P is proven to be silent, the procedure attempts to prove that no “bad
execution” exists. More precisely, it checks whether there exist configurations C0

and C1 such that C0
∗−→ C1, C0 is initial, C1 is terminal, and C1 is not in consensus

ϕ(C0) ∈ {0, 1}. Since reachability is not definable in Presburger arithmetic, a
Presburger-definable over-approximation ∗−⇁ of reachability, borrowed from Petri
net theory, is used instead. We obtain the following formula Φbad-exec:

∃C0, C1 : C0
∗−⇁ C1 ∧

∧

q �∈I

C0[q] = 0 ∧
∧

t∈T

succ(C1, t) ⊆ {C1} ∧
∨

q∈C1

(O(q) = ¬ϕ(C0)).

If Φbad-exec is unsatisfiable, then P is correct. Otherwise, no conclusion is reached,
and Φbad-exec is iteratively strengthened by enriching the over-approximation ∗−⇁.
Whenever Φbad-exec is satisfied by (C0, C1), Peregrine calls the model-checker
LoLA to test whether C1 is indeed reachable from C0. If so, then Peregrine
reports P to be incorrect, and generates a counter-example execution, which can
be replayed or exported as a JSON file (see Fig. 3).

610 M. Blondin et al.

Currently Peregrine can verify protocols with up to a hundred states and
a few thousands transitions. The bottleneck is the size of the constraint system.
Due to lack of space, we refer the reader to [6] for detailed experimental results.

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: Proceedings of the 23rd Annual
ACM Symposium on Principles of Distributed Computing (PODC), pp. 290–299
(2004). https://doi.org/10.1145/1011767.1011810

2. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust
approximate majority. Distrib. Comput. 21(2), 87–102 (2008). https://doi.org/10.
1007/s00446-008-0059-z

3. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distrib. Comput. 20(4), 279–304 (2007). https://doi.org/10.
1007/s00446-007-0040-2

4. Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Garbinato,
B., Miranda, H., Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile
Applications, pp. 97–120. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-540-89707-1 5

5. Beauquier, J., Blanchard, P., Burman, J., Delaët, S.: Tight complexity analysis of
population protocols with cover times - the ZebraNet example. Theor. Comput.
Sci. 512, 15–27 (2013). https://doi.org/10.1016/j.tcs.2012.10.032

6. Blondin, M., Esparza, J., Jaax, S., Meyer, P.J.: Towards efficient verification of
population protocols. In: Proceedings of the 36th ACM Symposium on Principles
of Distributed Computing (PODC), pp. 423–430 (2017). https://doi.org/10.1145/
3087801.3087816

7. Cardelli, L., Češka, M., Fränzle, M., Kwiatkowska, M., Laurenti, L., Paoletti, N.,
Whitby, M.: Syntax-guided optimal synthesis for chemical reaction networks. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 375–395.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 20

8. Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reac-
tion networks using linear noise approximation. Biosystems 149, 26–33 (2016).
https://doi.org/10.1016/j.biosystems.2016.09.004

9. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Syntactic Markovian
bisimulation for chemical reaction networks. In: Aceto, L., et al. (eds.) Models,
Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 466–483. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63121-9 23

10. Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Algorithmic verification of popu-
lation protocols. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010.
LNCS, vol. 6366, pp. 221–235. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16023-3 19

11. Clément, J., Delporte-Gallet, C., Fauconnier, H., Sighireanu, M.: Guidelines for
the verification of population protocols. In: ICDCS, pp. 215–224. IEEE Computer
Society (2011). https://doi.org/10.1109/ICDCS.2011.36

12. Cummings, R., Doty, D., Soloveichik, D.: Probability 1 computation with chemical
reaction networks. Nat. Comput. 15(2), 245–261 (2016). https://doi.org/10.1007/
s11047-015-9501-x

https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1007/s00446-008-0059-z
https://doi.org/10.1007/s00446-008-0059-z
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/978-3-540-89707-1_5
https://doi.org/10.1007/978-3-540-89707-1_5
https://doi.org/10.1016/j.tcs.2012.10.032
https://doi.org/10.1145/3087801.3087816
https://doi.org/10.1145/3087801.3087816
https://doi.org/10.1007/978-3-319-63390-9_20
https://doi.org/10.1016/j.biosystems.2016.09.004
https://doi.org/10.1007/978-3-319-63121-9_23
https://doi.org/10.1007/978-3-642-16023-3_19
https://doi.org/10.1007/978-3-642-16023-3_19
https://doi.org/10.1109/ICDCS.2011.36
https://doi.org/10.1007/s11047-015-9501-x
https://doi.org/10.1007/s11047-015-9501-x

Peregrine: A Tool for the Analysis of Population Protocols 611

13. Diamadi, Z., Fischer, M.J.: A simple game for the study of trust in distributed
systems. Wuhan Univ. J. Nat. Sci. 6(1), 72–82 (2001). https://doi.org/10.1007/
BF03160228

14. Moran, P.A.P.: Random processes in genetics. Math. Proc. Cambridge Philos. Soc.
54(1), 60–71 (1958). https://doi.org/10.1017/S0305004100033193

15. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78800-3 24. z3 is available at
https://github.com/Z3Prover/z3

16. Navlakha, S., Bar-Joseph, Z.: Distributed information processing in biological and
computational systems. Commun. ACM 58(1), 94–102 (2014). https://doi.org/10.
1145/2678280

17. Pang, J., Luo, Z., Deng, Y.: On automatic verification of self-stabilizing population
protocols. In: Proceedings of the 2nd IEEE/IFIP International Symposium on
Theoretical Aspects of Software Engineering (TASE), pp. 185–192 (2008). https://
doi.org/10.1109/TASE.2008.8

18. Schmidt, K.: LoLA a low level analyser. In: Nielsen, M., Simpson, D.
(eds.) ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidel-
berg (2000). https://doi.org/10.1007/3-540-44988-4 27. LoLA is available at
http://service-technology.org/lola/

19. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008). https://doi.
org/10.1007/s11047-008-9067-y

20. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 59

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/BF03160228
https://doi.org/10.1007/BF03160228
https://doi.org/10.1017/S0305004100033193
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/Z3Prover/z3
https://doi.org/10.1145/2678280
https://doi.org/10.1145/2678280
https://doi.org/10.1109/TASE.2008.8
https://doi.org/10.1109/TASE.2008.8
https://doi.org/10.1007/3-540-44988-4_27
http://service-technology.org/lola/
https://doi.org/10.1007/s11047-008-9067-y
https://doi.org/10.1007/s11047-008-9067-y
https://doi.org/10.1007/978-3-642-02658-4_59
http://creativecommons.org/licenses/by/4.0/

ADAC: Automated Design
of Approximate Circuits

Milan Češka(B), Jǐŕı Matyáš, Vojtech Mrazek,
Lukas Sekanina, Zdenek Vasicek,

and Tomáš Vojnar

Faculty of Information Technology,
IT4Innovations Centre of Excellence,

Brno University of Technology,
Brno, Czech Republic
ceskam@fit.vutbr.cz

Abstract. Approximate circuits with relaxed requirements on func-
tional correctness play an important role in the development of resource-
efficient computer systems. Designing approximate circuits is a very
complex and time-demanding process trying to find optimal trade-offs
between the approximation error and resource savings. In this paper, we
present ADAC—a novel framework for automated design of approximate
arithmetic circuits. ADAC integrates in a unique way efficient simula-
tion and formal methods for approximate equivalence checking into a
search-based circuit optimisation. To make ADAC easily accessible, it is
implemented as a module of the ABC tool: a state-of-the-art system for
circuit synthesis and verification. Within several hours, ADAC is able
to construct high-quality Pareto sets of complex circuits (including even
32-bit multipliers), providing useful trade-offs between the resource con-
sumption and the error that is formally guaranteed. This demonstrates
outstanding performance and scalability compared with other existing
approaches.

1 Introduction

In the recent years, reduction of power consumption of computer systems and
mobile devices has become one of the biggest challenges in the computer indus-
try. Approximate computing has been established as a new research field aim-
ing at reducing system resource demands (and, in particular, power demands)
by relaxing the requirement that all computations are always performed cor-
rectly. Approximate computing exploits the fact that many applications, includ-
ing image and multimedia processing, signal processing, data mining, machine
learning, neural networks, and scientific computations, are error resilient, i.e.

This work was supported by the IT4Innovations excellence in science project No.
LQ1602.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 612–620, 2018.
https://doi.org/10.1007/978-3-319-96145-3_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_35&domain=pdf

ADAC: Automated Design of Approximate Circuits 613

produce acceptable results even though the underlying computations are per-
formed with a certain error. Therefore, the error can be used as a design metric
and traded for chip area, power consumption, or runtime. Chippa et al. [7] claims
that almost 80% of runtime is spent in procedures that could be approximated.

Approximate computing can be conducted at different system levels with
arithmetic circuit approximation being one of the most popular as such circuits
are frequently used in the core computations. In our work, we focus on functional
approximation where the original circuit is replaced by a less complex one which
exhibits some errors but improves non-functional circuit parameters such as
power consumption or chip area. Circuit approximation can be formulated as an
optimisation problem where the error and non-functional circuit parameters are
conflicting design objectives. Designing complex approximate circuits is a time-
demanding and error-prone process. Moreover, its automation is challenging too
since the design space including candidate solutions is huge and checking that a
candidate solution has the required error is itself a computationally demanding
task, especially if formal guarantees on the error have to be ensured.

In this tool paper, we present ADAC 1—a novel framework for automated
design of approximate circuits. The framework implements a design loop includ-
ing (i) a generator of candidate solutions employing genetic search algorithms,
(ii) an evaluator estimating non-functional parameters of a candidate solution,
and (iii) a verifier checking that the candidate solution does not exceed the per-
missible error. ADAC is integrated as a new module into the ABC tool—a state-
of-the-art and widely used system for circuit synthesis and verification [1]. The
framework takes as the inputs:

– a golden combinational circuit in Verilog implementing the correct function-
ality,

– an error metric (such as the worst-case error, mean error, Hamming distance,
etc.),

– a threshold on the error metric representing the maximal permissible error,
– a time limit on the overall design process, and
– a file specifying sizes of gates available to the design process.

With these inputs, ADAC searches for an approximate circuit satisfying the error
threshold and having the minimal estimated chip area. Previous works [3,14,20,
22] confirmed that the chip area is a good optimization objective as it highly
correlates with power consumption, which is a crucial target in approximate
computing.

The results of [21] clearly demonstrate that search algorithms based on
Cartesian Genetic Programming (CGP) [12] are well capable of generating
high-quality approximate circuits. For complex circuits, however, a high num-
ber of candidate solutions has to be generated and evaluated, which signifi-
cantly limits the scalability of the design process. Our framework implements
several approaches for error evaluation suitable for different error metrics and
application domains. They include both SAT and BDD-based techniques for
1 https://github.com/imatyas/ADAC.

https://github.com/imatyas/ADAC

614 M. Češka et al.

approximate equivalence checking providing formal error guarantees as well
as a bit-parallel circuit simulation utilising the computing power of modern
processors. We also implement a novel search strategy that drives the search
towards promptly verifiable approximate circuits, which significantly accelerates
the design process in many cases [3]. As such, the framework offers a unique inte-
gration of techniques based on simulation, formal reasoning, and evolutionary
circuit optimisation. Our extensive experimental evaluation demonstrates that
ADAC offers outstanding performance and scalability compared with existing
methods and tools and paves a way towards an automated design process of
complex provably-correct circuit approximations.

2 Architecture and Implementation

The ADAC framework has a modular architecture illustrated in Fig. 1.
The setup phase is responsible mainly for preparing a chromosome represen-

tation of the golden circuit. The circuit is given in a high-level Verilog format,
which is first translated to a gate-level representation using the tool Yosys [25],
and then the chromosome representation is obtained using our V2CH script. The
setup phase is also responsible for generating a configuration file controlling the
main design loop. It is generated from the user inputs and optional parameters
for CGP and search strategies.

Fig. 1. A scheme of the ADAC architecture.

The design loop consists of three components: (i) a generator of candidate
designs, (ii) an evaluator of non-functional parameters of the candidate circuit
(currently estimating the chip area), and (iii) a verifier evaluating the candidate
error. The chip area and the error form a basis of the fitness function, whose
value is minimised via our search strategy. In particular, the fitness is infinity
if the circuit error exceeds the given threshold, and the chip area otherwise. In
the future, we plan to support a more general specification of the fitness. As an
additional feature, ADAC can also quantify the difference (in the given metric)
between two given circuits.

ADAC: Automated Design of Approximate Circuits 615

The real values of non-functional parameters, such as the chip area or the
power-delay product (PDP), depend on the target technology, and the synthesis
of an optimal implementation of the given circuit using the target technology is
highly time-consuming. Therefore, our design loop currently uses the chip area
as the sole non-functional parameter. The chip area is estimated as the sum
of the sizes of the gates of the circuit, which are given as one of the inputs of
ADAC. The chip area is typically a good estimate of the power consumption [3,
14,20,22]. The output of ADAC (in the gate-level Verilog format) can be passed
to industrial circuit design tools to obtain accurate circuit parameters for the
target technology. In our experiments, we report PDP for the 45 nm technology
synthesised by the Synopsys Design Compiler [19].

We now briefly describe the candidate circuit generator and three methods
for error evaluation that are currently supported in ADAC.

The candidate circuit generator is based on CGP where a candidate solution
is encoded as a chromosome describing an oriented acyclic graph, given as a 2-
dimensional array of 2-input nodes. Every node is numbered and is encoded by
3 integers where the first two numbers denote the inputs and the third represents
the function of the node. New candidate circuits are obtained using a mutation
operator that performs random changes in the chromosome. The mutations can
either modify the node interconnection or functionality. The area of candidate
circuits is reduced by making some nodes unreachable (such nodes, however, are
removed only at the very end, and so they can still be mutated and even become
reachable again). The candidates are evaluated, and the one with the best one
is used in the next iteration of the design loop. The whole loop starts with
the golden circuit and iteratively generates approximate solutions with better
fitness values until a termination criterion (typically a given time limit) is met.
Optionally, user can provide approximate circuit satisfying the threshold on the
error as a seed to start with.

The bit-parallel circuit simulation supports all common error metrics, includ-
ing the worst-case error (WCE), the mean error, the error rate representing the
number of inputs leading to an incorrect output, and the Hamming distance.
It utilises the power of modern processors by simulating the circuit on multiple
inputs vectors (e.g. 64 inputs for 64-bit processors) in a single pass through the
circuit [24]. However, despite the parallel processing that significantly accelerates
the simulation, for circuits with arguments of larger bit-widths (beyond 12 bits),
it is not feasible to simulate the circuits on all possible inputs, and so statistical
guarantees on the approximation error are provided only.

The BDD-based evaluation also supports all common error metrics, and,
unlike simulation, it is able to provide formal error guarantees for circuits with
larger input bit-widths. For the purpose of the evaluation, the original correct
circuit and its approximation are interconnected into an auxiliary circuit called
a miter such that the error can be deduced from its output (e.g. to compute the
error rate, the outputs of the golden and candidate circuits are subtracted, and
the result is compared with 0). The miter is encoded as a BDD on which the
circuit error is evaluated using BDD operations [22,23]. However, this technique

616 M. Češka et al.

does not scale well with the complexity of the circuits in terms of the number
of their gates as the resulting BDD representation becomes prohibitively huge.
Hence, this approach works well for large adders and similar circuits, but, it fails,
e.g., for multipliers beyond 12-bits.

The SAT-based evaluation currently supports WCE only, but it provides for-
mal guarantees and a superior performance to the BDD-based technique. ADAC
implements a novel miter construction based on subtracting the output of the
golden and approximate circuit, followed by a comparison with the error thresh-
old [3]. The construction is optimised for SAT-based evaluation by avoiding long
XOR chains known to cause poor performance of state-of-the-art SAT solvers [5,
9]. This allows us to exploit the ABC engine iprove, designed originally for miter-
based exact circuit equivalence checking, to quickly evaluate WCE.

The final ingredient of the design process is the search strategy. Apart from
the standard evolutionary strategies based solely on the fitness function, ADAC
also implements a novel verifiability-driven approach [3] combined with the SAT-
based evaluation.

The verifiability-driven search strategy uses a limit L on the resources avail-
able to the underlying SAT decision procedure. The limit effectively controls the
time the SAT solver can use. We require that every improving candidate has to
be verifiable using the resource limit L. Therefore the strategy drives the search
towards candidates that improve the fitness and can be promptly evaluated. As
the result, we can evaluate in the given time a much larger set of candidate cir-
cuits. Our experiments indicate that this strategy often leads to a higher number
of improving solutions and thus finds circuits having a smaller chip area meeting
the permissible error. On the other hand, it can happen that, for a limit L, no
improving sequence exists, while it exists for a slightly greater resource limit. We
are currently implementing auto-adaptive techniques that should automatically
select the adequate resource limit for the given circuit.

Integration to the ABC Tool. To make ADAC easily accessible, it is imple-
mented as a new module for the ABC tool. ABC allows us to support an impor-
tant subset of the Verilog specification and implementation language. We also
utilize ABC to translate the circuits among different intermediate representa-
tions used for constructing miters. As mentioned before, we employ the iprove
engine in our SAT-based method for evaluating the WCE. Note that iprove uses
MiniSat [18] as the SAT solver. Despite the fact that ABC supports a BDD-based
circuit representation and manipulation, we implemented our own BDD compo-
nent (based on the BuDDy library [2]) that is tailored for evolutionary circuit
approximation.

Extensibility. Due to its modular architecture, ADAC can be easily extended.
Apart from the extensions mentioned above, we are working on a new component
for error evaluation based on SAT counting methods (e.g. #SAT [4]) that could
offer formal guarantees and a better scalability for the mean error and error-rate
metrics, and on new candidate circuit generators counter-examples produced

ADAC: Automated Design of Approximate Circuits 617

during the verification of candidate circuits. In a long term perspective, we plan
to generalise the underlying methods and support also design of approximate
sequential circuits.

3 Evaluation, Related Works, and Applications

We first compare the performance of the different methods of circuit error eval-
uation supported in ADAC. For that, we use results from adder approximation
obtained from 10 runs, each for 5 min. The table in Fig. 2 shows average runtimes
of a single error evaluation using the bit-parallel simulation, the BDD-based app-
roach, and the SAT-based approach. The reported speedups are with respect to
the simulation. We can see that the simulation provides the best performance for
small bit-widths only, but it does not scale well The SAT-based method offers
the best scalability and dominates for larger circuits, but it supports the WCE
evaluation only. The BDD-based method, like simulation, supports all metrics
and significantly outperforms the simulation for larger circuits. Note that, for
more complex circuits such as multipliers, we would observe similar results with
a worse relative performance of the BDD-based approach.

There indeed exist also other known methods for computing approximation
errors for arithmetic circuits, including methods based on BDDs [6] or a SAT-
based miter solution [5]. Comparing to ADAC, these methods are less scalable,
which is demonstrated by the fact that they have been used for approximating
multipliers limited to 8-bit operands and adders limited to 16-bit operands only.
Apart from that, there are efficient methods for exact equivalence checking based
on algebraic computations [8,16]. However, they are so far not known for approx-
imate equivalence checking.

Fig. 2. (Left) Performance of error evaluation methods for adders. (Right) A compari-
son of 16-bit approximate multipliers designed by ADAC vs. the best known solutions.

Next, we compare the quality of approximate circuits obtained using ADAC
with circuits that appeared in the literature. We consider 16-bit multipliers
since existing approaches are not able to handle larger and more complex cir-
cuits. The different points in Fig. 2 correspond to circuits with different trade-

618 M. Češka et al.

offs between WCE in % and the power-delay product (PDP2), which is a key
non-functional circuit characteristic. These circuits were obtained using vari-
ous existing approaches including: (M1) configurable circuits from the lpACLib
library [17], (M2) the bit-significance-driven logic compression [15], (M3) the
bit-width truncation [10], (M4) compositional techniques [11], and (M5) circuits
from the EvoApproxLib library [13]. We can see that just the bit-width trun-
cation can provide a quality of results comparable with ADAC (in terms of the
PDP reduction for the given WCE), but for large target errors (20% WCE or
more) only. For small target errors, ADAC clearly dominates.

Note that, for each target WCE, we performed 30 independent runs of CGP
to obtain statistically significant results. For each run, ADAC was executed for
2 h on an Intel Xeon X5670 2.4 GHz processor using a single core. Also note that
the individual runs are independent and thus can be easily parallelised.

Fig. 3. Approximate multipliers designed by
ADAC. 100% refers to PDP of the accurate
circuits for the given bit-width.

Further, Fig. 3 presents approx-
imate multipliers up to 32 bits
obtained by ADAC. It shows Pareto
fronts representing circuits with dif-
ferent compromises between WCE in
% and PDP, and demonstrates that
ADAC goes beyond capabilities of
existing methods and tools. For each
target WCE, ADAC was executed
for 4 hours in the case of the 24-bit
instances and for 6 hours in the case
of the larger instances. Note that a
32-bit exact multiplier requires over
6,300 gates, and, to the best of our
knowledge, ADAC is the first tool that is able to approximate such complex
circuits with formal error guarantees.

Besides the approaches mentioned above, there also exist general-purpose
methods, such as SALSA [14] or SASIMI [15], approximating circuits indepen-
dently of their structure. We were unable to perform a direct comparison with
them due to their implementation is not available, but based on the published
results, ADAC is able to provide a significantly better scalability.

Practical Impacts. The following list briefly characterises several resource-
aware applications that build on approximate circuits. The circuits were obtained
using prototype implementations of the above mentioned approaches that are
now integrated in ADAC.

Approximate multipliers for convolutional neural networks [14]. In such net-
works, millions of multiplications have to be performed. The usage of application-
specific approximate multipliers led to 90% savings in terms of power consump-
tion of the data path for a negligible drop in classification accuracy.
2 PDP characterises both the speed and energy efficiency of the circuit.

ADAC: Automated Design of Approximate Circuits 619

Approximate Adders and Subtractors for a Discrete Convolutional Transforma-
tion [22]. These adders and subtractors were designed to reduce the power con-
sumption in video compression for the High Efficiency Video Coding (HEVC)
standard. They show better quality/power trade-offs than implementations avail-
able in the literature. For example, a 25% power reduction for the same error
was obtained in comparison with a recent highly-optimised implementation.

Approximate Adders and Multipliers for Image Processing [20]. These circuits
were used in the development of efficient hardware implementations of filters and
edge detectors. A 50% reduction was observed in the number of look-up tables
used in a field programmable gate array for a negligible drop in the image visual
quality.

References

1. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

2. BuDDy: A BDD package, January 2018. http://buddy.sourceforge.net/manual/
main.html

3. Češka, M., Matyáš, J., Mrazek, V., Sekanina, L., Vasicek, Z., Vojnar, T.: Approxi-
mating complex arithmetic circuits with formal error guarantees: 32-bit multipliers
accomplished. In: Proceedings of the ICCAD 2017, pp. 416–423. IEEE (2017)

4. Chakraborty, S., Meel, K.S., Mistry, R., Vardi, M.Y.: Approximate probabilistic
inference via word-level counting. In: Proceedings of the AAAI 2016, pp. 3218–
3224. AAAI Press (2016)

5. Chandrasekharan, A., Soeken, M., Große, D., Drechsler, R.: Precise error deter-
mination of approximated components in sequential circuits with model checking.
In: Proceedings of the DAC 2016, pp. 129:1–129:6. ACM (2016)

6. Chandrasekharan, A., Soeken, M., et al.: Approximation-aware rewriting of AIGs
for error tolerant applications. In: Proceedings of the ICCAD 2016, pp. 83:1–83:8.
ACM (2016)

7. Chippa, V.K., Chakradhar, S.T., Roy, K., Raghunathan, A.: Analysis and char-
acterization of inherent application resilience for approximate computing. In: Pro-
ceedings of the DAC 2013, pp. 1–9. IEEE (2013)

8. Ciesielski, M., Yu, C., Brown, W., Liu, D., Rossi, A.: Verification of gate-level
arithmetic circuits by function extraction. In: Proceedings of the DAC 2015. ACM
(2015)

9. Han, C.-S., Jiang, J.-H.R.: When boolean satisfiability meets gaussian elimination
in a simplex way. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 410–426. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31424-7 31

10. Jiang, H., Liu, C., Liu, L., Lombardi, F., Han, J.: A review, classification, and com-
parative evaluation of approximate arithmetic circuits. J. Emerg. Technol. Comput.
Syst. 13(4), 60:1–60:34 (2017)

11. Kulkarni, P., Gupta, P., Ercegovac, M.D.: Trading accuracy for power in a multi-
plier architecture. J. Low Power Electron. 7(4), 490–501 (2011)

12. Miller, J.F.: Cartesian Genetic Programming. Springer, Berlin (2011). https://doi.
org/10.1007/978-3-642-17310-3

https://doi.org/10.1007/978-3-642-14295-6_5
http://buddy.sourceforge.net/manual/main.html
http://buddy.sourceforge.net/manual/main.html
https://doi.org/10.1007/978-3-642-31424-7_31
https://doi.org/10.1007/978-3-642-31424-7_31
https://doi.org/10.1007/978-3-642-17310-3
https://doi.org/10.1007/978-3-642-17310-3

620 M. Češka et al.

13. Mrazek, V., Hrbacek, R., et al.: EvoApprox8B: library of approximate adders and
multipliers for circuit design and benchmarking of approximation methods. In:
Proceedings of the DATE 2017, pp. 258–261. EDAA (2017)

14. Mrazek, V., Sarwar, S.S., Sekanina, L., Vasicek, Z., Roy, K.: Design of power-
efficient approximate multipliers for approximate artificial neural networks. In:
Proceedings of the ICCAD 2016, pp. 81:1–81:7. ACM (2016)

15. Qiqieh, I., Shafik, R., et al.: Energy-efficient approximate multiplier design using
bit significance-driven logic compression. In: Proceedings of the DATE 2017. EDAA
(2017)

16. Sayed-Ahmed, A., Große, D., et al.: Formal verification of integer multipliers by
combining Gröbner basis with logic reduction. In: Proceedings of the DATE 2016,
pp. 1048–1053. IEEE (2016)

17. Shafique, M., Ahmad, W., et al.: A low latency generic accuracy configurable adder.
In: Proceedings of the DAC 2015, pp. 86:1–86:6. ACM (2015)

18. Sorensson, N., Een, N.: MiniSat v1.13 – a sat solver with conflict-clause minimiza-
tion. SAT 2005, no. 53, pp. 1–2 (2005)

19. Synopsys design compiler, January 2018. https://www.synopsys.com/
20. Vasicek, Z., Mrazek, V., Sekanina, L.: Evolutionary functional approximation of

circuits implemented into FPGAs. In: Proceedings of the SSCI 2016, pp. 1–8. IEEE
(2016)

21. Vasicek, Z., Sekanina, L.: Evolutionary approach to approximate digital circuits
design. Trans. Evol. Comput. 19(3), 432–444 (2015)

22. Vasicek, Z., Mrazek, V., Sekanina, L.: Towards low power approximate DCT archi-
tecture for HEVC standard. In: Proceedings of the DATE 2017, pp. 1576–1581.
EDAA (2017)

23. Vasicek, Z., Sekanina, L.: Evolutionary design of complex approximate combina-
tional circuits. Genet. Program Evolvable Mach. 17(2), 169–192 (2016)

24. Vaš́ıček, Z., Slaný, K.: Efficient phenotype evaluation in cartesian genetic pro-
gramming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.)
EuroGP 2012. LNCS, vol. 7244, pp. 266–278. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29139-5 23

25. Wolf, C.: Yosys open synthesis suite, January 2018. http://www.clifford.at/yosys/

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://www.synopsys.com/
https://doi.org/10.1007/978-3-642-29139-5_23
https://doi.org/10.1007/978-3-642-29139-5_23
http://www.clifford.at/yosys/
http://creativecommons.org/licenses/by/4.0/

Probabilistic Systems

Value Iteration for Simple Stochastic
Games: Stopping Criterion and Learning

Algorithm

Edon Kelmendi, Julia Krämer, Jan Křet́ınský(B),
and Maximilian Weininger

Technical University of Munich, Munich, Germany
jan.kretinsky@tum.de

Abstract. Simple stochastic games can be solved by value iteration
(VI), which yields a sequence of under-approximations of the value of
the game. This sequence is guaranteed to converge to the value only in
the limit. Since no stopping criterion is known, this technique does not
provide any guarantees on its results. We provide the first stopping cri-
terion for VI on simple stochastic games. It is achieved by additionally
computing a convergent sequence of over-approximations of the value,
relying on an analysis of the game graph. Consequently, VI becomes an
anytime algorithm returning the approximation of the value and the cur-
rent error bound. As another consequence, we can provide a simulation-
based asynchronous VI algorithm, which yields the same guarantees, but
without necessarily exploring the whole game graph.

1 Introduction

Simple Stochastic Game. (SG) [Con92] is a zero-sum two-player game played
on a graph by Maximizer and Minimizer, who choose actions in their respective
vertices (also called states). Each action is associated with a probability distri-
bution determining the next state to move to. The objective of Maximizer is
to maximize the probability of reaching a given target state; the objective of
Minimizer is the opposite.

Stochastic games constitute a fundamental problem for several reasons. From
the theoretical point of view, the complexity of this problem1 is known to be
in UP ∩ coUP [HK66], but no polynomial-time algorithm is known. Further,

This research was funded in part by the German Excellence Initiative and the Euro-
pean Union Seventh Framework Programme under grant agreement No. 291763 for
TUM – IAS, the Studienstiftung des deutschen Volkes project “Formal methods for
analysis of attack-defence diagrams”, the Czech Science Foundation grant No. 18-
11193S, TUM IGSSE Grant 10.06 (PARSEC), and the German Research Foundation
(DFG) project KR 4890/2-1 “Statistical Unbounded Verification”.

1 Formally, the problem is to decide, for a given p ∈ [0, 1] whether Maximizer has a
strategy ensuring probability at least p to reach the target.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 623–642, 2018.
https://doi.org/10.1007/978-3-319-96145-3_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_36&domain=pdf

624 E. Kelmendi et al.

several other important problems can be reduced to SG, for instance parity
games, mean-payoff games, discounted-payoff games and their stochastic exten-
sions [CF11]. The task of solving SG is also polynomial-time equivalent to solv-
ing perfect information Shapley, Everett and Gillette games [AM09]. Besides,
the problem is practically relevant in verification and synthesis. SG can model
reactive systems, with players corresponding to the controller of the system and
to its environment, where quantified uncertainty is explicitly modelled. This is
useful in many application domains, ranging from smart energy management
[CFK+13a] to autonomous urban driving [CKSW13], robot motion planning
[LaV00] to self-adaptive systems [CMG14]; for various recent case studies, see
e.g. [SK16]. Finally, since Markov decision processes (MDP) [Put14] are a special
case with only one player, SG can serve as abstractions of large MDP [KKNP10].

Solution Techniques. There are several classes of algorithms for solving SG,
most importantly strategy iteration (SI) algorithms [HK66] and value iteration
(VI) algorithms [Con92]. Since the repetitive evaluation of strategies in SI is
often slow in practice, VI is usually preferred, similarly to the special case of
MDPs [KM17]. For instance, the most used probabilistic model checker PRISM
[KNP11] and its branch PRISM-Games [CFK+13a] use VI for MDP and SG
as the default option, respectively. However, while SI is in principle a precise
method, VI is an approximative method, which converges only in the limit.
Unfortunately, there is no known stopping criterion for VI applied to SG. Conse-
quently, there are no guarantees on the results returned in finite time. Therefore,
current tools stop when the difference between the two most recent approxima-
tions is low, and thus may return arbitrarily imprecise results [HM17].

Value Iteration with Guarantees. In the special case of MDP, in order to
obtain bounds on the imprecision of the result, one can employ a bounded variant
of VI [MLG05,BCC+14] (also called interval iteration [HM17]). Here one com-
putes not only an under-approximation, but also an over-approximation of the
actual value as follows. On the one hand, iterative computation of the least fix-
point of Bellman equations yields an under-approximating sequence converging
to the value. On the other hand, iterative computation of the greatest fixpoint
yields an over-approximation, which, however, does not converge to the value.
Moreover, it often results in the trivial bound of 1. A solution suggested for
MDPs [BCC+14,HM17] is to modify the underlying graph, namely to collapse
end components. In the resulting MDP there is only one fixpoint, thus the least
and greatest fixpoint coincide and both approximating sequences converge to
the actual value. In contrast, for general SG no procedure where the greatest
fixpoint converges to the value is known. In this paper we provide one, yielding
a stopping criterion. We show that the pre-processing approach of collapsing is
not applicable in general and provide a solution on the original graph. We also
characterize SG where the fixpoints coincide and no processing is needed. The
main technical challenge is that states in an end component in SG can have
different values, in contrast to the case of MDP.

Value Iteration for Simple Stochastic Games 625

Practical Efficiency Using Guarantees. We further utilize the obtained
guarantees to practically improve our algorithm. Similar to the MDP
case [BCC+14], the quantification of the error allows for ignoring parts of the
state space, and thus a speed up without jeopardizing the correctness of the
result. Indeed, we provide a technique where some states are not explored and
processed at all, but their potential effect is still taken into account The informa-
tion is further used to decide the states to be explored next and to be analyzed
in more detail. To this end, simulations and learning are used as tools. While
for MDP this idea has already demonstrated speed ups in orders of magnitude
[BCC+14,ACD+17], this paper provides the first technique of this kind for SG.
Our contribution is summarized as follows

– We introduce a VI algorithm yielding both under- and over-approximation
sequences, both of which converge to the value of the game. Thus we present
the first stopping criterion for VI on SG and the first anytime algorithm
with guaranteed precision. We also characterize when a simpler solution is
sufficient.

– We provide a learning-based algorithm, which preserves the guarantees, but
is in some cases more efficient since it avoids exploring the whole state space.

– We evaluate the running times of the algorithms experimentally, concluding
that obtaining guarantees requires an overhead that is either negligible or
mitigated by the learning-based approach.

Related Work. The works closest to ours are the following. As mentioned
above, [BCC+14,HM17] describe the solution to the special case of MDP. While
[BCC+14] also provides a learning-based algorithm, [HM17] discusses the con-
vergence rate and the exact solution. The basic algorithm of [HM17] is imple-
mented in PRISM [BKL+17] and the learning approach of [BCC+14] in Storm
[DJKV17a]. The extension for SG where the interleaving of players is severely
limited (every end component belongs to one player only) is discussed in [Ujm15].

Further, in the area of probabilistic planning, bounded real-time dynamic
programming [MLG05] is related to our learning-based approach. However, it
is limited to the setting of stopping MDP where the target sink or the non-
target sink is reached almost surely under any pair of strategies and thus the
fixpoints coincide. Our algorithm works for general SG, not only for stopping
ones, without any blowup.

For SG, the tools implementing the standard SI and/or VI algorithms are
PRISM-games [CFK+13a], GAVS+ [CKLB11] and GIST [CHJR10]. The latter
two are, however, neither maintained nor accessible via the links provided in
their publications any more.

Apart from fundamental algorithms to solve SG, there are various practically
efficient heuristics that, however, provide none or weak guarantees, often based
on some form of learning [BT00,LL08,WT16,TT16,AY17,BBS08]. Finally, the
only currently available way to obtain any guarantees through VI is to perform
γ2 iterations and then round to the nearest multiple of 1/γ, yielding the value
of the game with precision 1/γ [CH08]; here γ cannot be freely chosen, but it

626 E. Kelmendi et al.

is a fixed number, exponential in the number of states and the used probability
denominators. However, since the precision cannot be chosen and the number of
iterations is always exponential, this approach is infeasible even for small games.

Organization of the Paper. Section 2 introduces the basic notions and revises
value iteration. Section 3 explains the idea of our approach on an example.
Section 4 provides a full technical treatment of the method as well as the learning-
based variation. Section 5 discusses experimental results and Sect. 6 concludes.
The appendix (available in [KKKW18]) gives technical details on the pseudocode
as well as the conducted experiments and provides more extensive proofs to the
theorems and lemmata; in this paper, there are only proof sketches and ideas.

2 Preliminaries

2.1 Basic Definitions

A probability distribution on a finite set X is a mapping δ : X → [0, 1], such
that

∑
x∈X δ(x) = 1. The set of all probability distributions on X is denoted

by D(X). Now we define stochastic games, in literature often referred as simple
stochastic games or stochastic two-player games with a reachability objective.

Definition 1 (SG). A stochastic game (SG) is a tuple (S ,S�,S©, s0,A,
Av, δ, 1, 0), where S is a finite set of states partitioned into the sets S� and
S© of states of the player Maximizer and Minimizer, respectively, s0, 1, 0 ∈ S
is the initial state, target state, and sink state, respectively, A is a finite set
of actions, Av : S → 2A assigns to every state a set of available actions, and
δ : S × A → D(S) is a transition function that given a state s and an action
a ∈ Av(s) yields a probability distribution over successor states.

A Markov decision process (MDP) is a special case of SG where S© = ∅.
We assume that SGs are non-blocking, so for all states s we have Av(s) �= ∅.
Further, 1 and 0 only have one action and it is a self-loop with probability 1.
Additionally, we can assume that the SG is preprocessed so that all states with
no path to 1 are merged with 0.

For a state s and an available action a ∈ Av(s), we denote the set of successors
by Post(s, a) := {s′ | δ(s, a, s′) > 0}. Finally, for any set of states T ⊆ S , we use
T� and T© to denote the states in T that belong to Maximizer and Minimizer,
whose states are drawn in the figures as � and ©, respectively.

The semantics of SG is given in the usual way by means of strategies and the
induced Markov chain and the respective probability space, as follows. An infi-
nite path ρ is an infinite sequence ρ = s0a0s1a1 · · · ∈ (S ×A)ω, such that for every
i ∈ N, ai ∈ Av(si) and si+1 ∈ Post(si, ai). Finite paths are defined analogously as
elements of (S × A)∗ × S . Since this paper deals with the reachability objective,
we can restrict our attention to memoryless strategies, which are optimal for this
objective. We still allow randomizing strategies, because they are needed for the
learning-based algorithm later on. A strategy of Maximizer or Minimizer is a
function σ : S� → D(A) or S© → D(A), respectively, such that σ(s) ∈ D(Av(s))

Value Iteration for Simple Stochastic Games 627

for all s. We call a strategy deterministic if it maps to Dirac distributions only.
Note that there are finitely many deterministic strategies. A pair (σ, τ) of strate-
gies of Maximizer and Minimizer induces a Markov chain Gσ,τ where the transi-
tion probabilities are defined as δ(s, s′) =

∑
a∈Av(s) σ(s, a) ·δ(s, a, s′) for states of

Maximizer and analogously for states of Minimizer, with σ replaced by τ . The
Markov chain induces a unique probability distribution P

σ,τ
s over measurable

sets of infinite paths [BK08, Chap. 10].
We write ♦1 := {ρ | ∃i ∈ N. ρ(i) = 1} to denote the (measurable) set of all

paths which eventually reach 1. For each s ∈ S , we define the value in s as

V(s) := sup
σ

inf
τ

P
σ,τ
s (♦1) = inf

τ
sup

σ
P

σ,τ
s (♦1),

where the equality follows from [Mar75]. We are interested not only in V(s0),
but also its ε-approximations and the corresponding (ε-)optimal strategies for
both players.

Now we recall a fundamental tool for analysis of MDP called end components.
We introduce the following notation. Given a set of states T ⊆ S , a state s ∈ T
and an action a ∈ Av(s), we say that (s, a) exits T if Post(s, a) �⊆ T . We define
an end component of a SG as the end component of the underlying MDP with
both players unified.

Definition 2 (EC). A non-empty set T ⊆ S of states is an end component
(EC) if there is a non-empty set B ⊆ ⋃

s∈T Av(s) of actions such that

1. for each s ∈ T, a ∈ B ∩ Av(s) we do not have (s, a) exits T ,
2. for each s, s′ ∈ T there is a finite path w = sa0 . . . ans′ ∈ (T × B)∗ × T , i.e.

the path stays inside T and only uses actions in B.

Intuitively, ECs correspond to bottom strongly connected components of the
Markov chains induced by possible strategies, so for some pair of strategies all
possible paths starting in the EC remain there. An end component T is a maximal
end component (MEC) if there is no other end component T ′ such that T ⊆ T ′.
Given an SG G, the set of its MECs is denoted by MEC(G) and can be computed
in polynomial time [CY95].

2.2 (Bounded) Value Iteration

The value function V satisfies the following system of equations, which is referred
to as the Bellman equations:

V(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

maxa∈Av(s) V(s, a) if s ∈ S�
mina∈Av(s) V(s, a) if s ∈ S©
1 if s = 1

0 if s = 0

(1)

628 E. Kelmendi et al.

where2

V(s, a) :=
∑

s′∈S

δ(s, a, s′) · V(s′) (2)

Moreover, V is the least solution to the Bellman equations, see e.g. [CH08].
To compute the value of V for all states in an SG, one can thus utilize the
iterative approximation method value iteration (VI) as follows. We start with a
lower bound function L0 : S → [0, 1] such that L0(1) = 1 and, for all other s ∈ S ,
L0(s) = 0. Then we repetitively apply Bellman updates (3) and (4)

Ln(s, a) :=
∑

s′∈S

δ(s, a, s′) · Ln−1(s
′) (3)

Ln(s) :=

{
maxa∈Av(s) Ln(s, a) if s ∈ S�
mina∈Av(s) Ln(s, a) if s ∈ S©

(4)

until convergence. Note that convergence may happen only in the limit even for
such a simple game as in Fig. 1 on the left. The sequence is monotonic, at all
times a lower bound on V , i.e. Li(s) ≤ V(s) for all s ∈ S , and the least fixpoint
satisfies L∗ := limn→∞ Ln = V.

Unfortunately, there is no known stopping criterion, i.e. no guarantees how
close the current under-approximation is to the value [HM17]. The current tools
stop when the difference between two successive approximations is smaller than
a certain threshold, which can lead to arbitrarily wrong results [HM17].

For the special case of MDP, it has been suggested to also compute the
greatest fixpoint [MLG05] and thus an upper bound as follows. The function
G : S → [0, 1] is initialized for all states s ∈ S as G0(s) = 1 except for G0(0) = 0.
Then we repetitively apply updates (3) and (4), where L is replaced by G. The
resulting sequence Gn is monotonic, provides an upper bound on V and the
greatest fixpoint G∗ := limn Gn is the greatest solution to the Bellman equations
on [0, 1]S .

This approach is called bounded value iteration (BVI) (or bounded real-
time dynamic programming (BRTDP) [MLG05,BCC+14] or interval iteration
[HM17]). If L∗ = G∗ then they are both equal to V and we say that BVI con-
verges. BVI is guaranteed to converge in MDP if the only ECs are those of
1 and 0 [BCC+14]. Otherwise, if there are non-trivial ECs they have to be
“collapsed”3. Computing the greatest fixpoint on the modified MDP results in
another sequence Ui of upper bounds on V, converging to U∗ := limn Un. Then
BVI converges even for general MDPs, U∗ = V [BCC+14], when transformed
this way. The next section illustrates this difficulty and the solution through
collapsing on an example.
2 Throughout the paper, for any function f : S → [0, 1] we overload the notation and

also write f(s, a) meaning
∑

s′∈S δ(s, a, s′) · f(s′).
3 All states of an EC are merged into one, all leaving actions are preserved and all

other actions are discarded. For more detail see [KKKW18, Appendix A.1].

Value Iteration for Simple Stochastic Games 629

In summary, all versions of BVI discussed so far and later on in the paper
follow the pattern of Algorithm1. In the naive version, UPDATE just performs
the Bellman update on L and U according to Eqs. (3) and (4).4 For a general
MDP, U does not converge to V, but to G∗, and thus the termination criterion
may never be met if G∗(s0)−V(s0) > 0. If the ECs are collapsed in pre-processing
then U converges to V.

For the general case of SG, the collapsing approach fails and this paper pro-
vides another version of BVI where U converges to V, based on a more detailed
structural analysis of the game.

Algorithm 1. Bounded value iteration algorithm
1: procedure BVI(precision ε > 0)
2: for s ∈ S do * Initialization * \
3: L(s) = 0 * Lower bound * \
4: U(s) = 1 * Upper bound * \
5: L(1) = 1 * Value of sinks is determined a priori * \
6: U(0) = 0

7: repeat
8: UPDATE(L, U) * Bellman updates or their modification * \
9: until U(s0) − L(s0) < ε * Guaranteed error bound * \

3 Example

In this section, we illustrate the issues preventing BVI convergence and our
solution on a few examples. Recall that G is the sequence converging to the
greatest solution of the Bellman equations, while U is in general any sequence
over-approximating V that one or another BVI algorithm suggests.

Firstly, we illustrate the issue that arises already for the special case of MDP.
Consider the MPD of Fig. 1 on the left. Although V(s) = V(t) = 0.5, we have
Gi(s) = Gi(t) = 1 for all i. Indeed, the upper bound for t is always updated
as the maximum of Gi(t, c) and Gi(t, b). Although Gi(t, c) decreases over time,
Gi(t, b) remains the same, namely equal to Gi(s), which in turn remains equal to
Gi(s, a) = Gi(t). This cyclic dependency lets both s and t remain in an “illusion”
that the value of the other one is 1.

The solution for MDP is to remove this cyclic dependency by collapsing all
MECs into singletons and removing the resulting purely self-looping actions.
Figure 1 in the middle shows the MDP after collapsing the EC {s, t}. This turns
the MDP into a stopping one, where 1 or 0 is under any strategy reached with
probability 1. In such MDP, there is a unique solution to the Bellman equations.
Therefore, the greatest fixpoint is equal to the least one and thus to V.

4 For the straightforward pseudocode, see [KKKW18, Appendix A.2].

630 E. Kelmendi et al.

Secondly, we illustrate the issues that additionally arise for general SG. It
turns out that the collapsing approach can be extended only to games where
all states of each EC belong to one player only [Ujm15]. In this case, both
Maximizer’s and Minimizer’s ECs are collapsed the same way as in MDP.

However, when both players are present in an EC, then collapsing may not
solve the issue. Consider the SG of Fig. 2. Here α and β represent the values of
the respective actions.5 There are three cases:

First, let α < β. If the bounds converge to these values we eventually observe
Gi(q, e) < Li(r, f) and learn the induced inequality. Since p is a Minimizer’s state
it will never pick the action leading to the greater value of β. Therefore, we can
safely merge p and q, and remove the action leading to r, as shown in the second
subfigure.

Second, if α > β, p and r can be merged in an analogous way, as shown in
the third subfigure.

Third, if α = β, both previous solutions as well as collapsing all three states
as in the fourth subfigure is possible. However, since the approximants may only
converge to α and β in the limit, we may not know in finite time which of these
cases applies and thus cannot decide for any of the collapses.

Consequently, the approach of collapsing is not applicable in general. In order
to ensure BVI convergence, we suggest a different method, which we call deflat-
ing. It does not involve changing the state space, but rather decreasing the upper
bound Ui to the least value that is currently provable (and thus still correct). To
this end, we analyze the exiting actions, i.e. with successors outside of the EC,
for the following reason. If the play stays in the EC forever, the target is never
reached and Minimizer wins. Therefore, Maximizer needs to pick some exiting
action to avoid staying in the EC.

s t

⊥

a

b
c

1
3

1
3

1
3

e

d

{s, t}

⊥

c
1
3

1
3

1
3

e

d

i Li({s, t}) Gi({s, t})

0 0 1
1 1

3
2
3

2 4
9

5
9

3 13
27

14
27

Fig. 1. Left: An MDP (as special case of SG) where BVI does not converge due to the
grayed EC. Middle: The same MDP where the EC is collapsed, making BVI converge.
Right: The approximations illustrating the convergence of the MDP in the middle.

5 Precisely, we consider them to stand for a probabilistic branching with probability
α (or β) to 1 and with the remaining probability to 0. To avoid clutter in the figure,
we omit this branching and depict only the value.

Value Iteration for Simple Stochastic Games 631

p

q

r

α

β

a

b

c

d

e

f

pq

r

α

β
d

e

f pr

q α

β

b

e

f

pqr

α

β

e

f

Fig. 2. Left: Collapsing ECs in SG may lead to incorrect results. The Greek letters on
the leaving arrows denote the values of the exiting actions. Right three figures: Correct
collapsing in different cases, depending on the relationship of α and β. In contrast to
MDP, some actions of the EC exiting the collapsed part have to be removed.

For the EC with the states s and t in Fig. 1, the only exiting action is c. In
this example, since c is the only exiting action, Ui(t, c) is the highest possible
upper bound that the EC can achieve. Thus, by decreasing the upper bound of
all states in the EC to that number6, we still have a safe upper bound. Moreover,
with this modification BVI converges in this example, intuitively because now
the upper bound of t depends on action c as it should.

For the example in Fig. 2, it is correct to decrease the upper bound to the
maximal exiting one, i.e. max{α̂, β̂}, where α̂ := Ui(a), β̂ := Ui(b) are the cur-
rent approximations of α and of β. However, this itself does not ensure BVI
convergence. Indeed, if for instance α̂ < β̂ then deflating all states to β̂ is not
tight enough, as values of p and q can even be bounded by α̂. In fact, we have
to find a certain sub-EC that corresponds to α̂, in this case {p, q} and set all its
upper bounds to α̂. We define and compute these sub-ECs in the next section.

In summary, the general structure of our convergent BVI algorithm is to
produce the sequence U by application of Bellman updates and occasionally find
the relevant sub-ECs and deflate them. The main technical challenge is that
states in an EC in SG can have different values, in contrast to the case of MDP.

4 Convergent Over-Approximation

In Sect. 4.1, we characterize SGs where Bellman equations have more solutions.
Based on the analysis, subsequent sections show how to alter the procedure
computing the sequence Gi over-approximating V so that the resulting tighter
sequence Ui still over-approximates V, but also converges to V. This ensures that
thus modified BVI converges. Section 4.4 presents the learning-based variant of
our BVI.

6 We choose the name “deflating” to evoke decreasing the overly high “pressure” in
the EC until it equalizes with the actual “pressure” outside.

632 E. Kelmendi et al.

4.1 Bloated End Components Cause Non-convergence

As we have seen in the example of Fig. 2, BVI generally does not converge due to
ECs with a particular structure of the exiting actions. The analysis of ECs relies
on the extremal values that can be achieved by exiting actions (in the example,
α and β). Given the value function V or just its current over-approximation Ui,
we define the most profitable exiting action for Maximizer (denoted by �) and
Minimizer (denoted by ©) as follows.

Definition 3 (bestExit). Given a set of states T ⊆ S and a function f : S →
[0, 1] (see footnote 2), the f-value of the best T -exiting action of Maximizer and
Minimizer, respectively, is defined as

bestExit�f (T) = max
s∈T�

(s,a) exits T

f(s, a)

bestExit©f (T) = min
s∈T©

(s,a) exits T

f(s, a)

with the convention that max∅ = 0 and min∅ = 1.

Example 1. In the example of Fig. 2 on the left with T = {p, q, r} and α < β,
we have bestExit�V (T) = β, bestExit©V (T) = 1. It is due to β < 1 that BVI does
not converge here. We generalize this in the following lemma. �
Lemma 1. Let T be an EC. For every m satisfying bestExit�V (T) ≤ m ≤
bestExit©V (T), there is a solution f : S → [0, 1] to the Bellman equations, which
on T is constant and equal to m.

Proof (Idea). Intuitively, such a constant m is a solution to the Bellman equa-
tions on T for the following reasons. As both players prefer getting m to exiting
and getting “only” the values of their respective bestExit, they both choose to
stay in the EC (and the extrema in the Bellman equations are realized on non-
exiting actions). On the one hand, Maximizer (Bellman equations with max)
is hoping for the promised m, which is however not backed up by any actions
actually exiting towards the target. On the other hand, Minimizer (Bellman
equations with min) does not realize that staying forever results in her optimal
value 0 instead of m. �
Corollary 1. If bestExit©V (T) > bestExit�V (T) for some EC T , then G∗ �= V.

Proof. Since there are m1,m2 such that bestExit�V (T) < m1 < m2 <

bestExit©V (T), by Lemma 1 there are two different solutions to the Bellman equa-
tions. In particular, G∗ > L∗ = V, and BVI does not converge. �

In accordance with our intuition that ECs satisfying the above inequality
should be deflated, we call them bloated.

Value Iteration for Simple Stochastic Games 633

Definition 4 (BEC). An EC T is called a bloated end component (BEC), if
bestExit©V (T) > bestExit�V (T).

Example 2. In the example of Fig. 2 on the left with α < β, the ECs {p, q} and
{p, q, r} are BECs. �
Example 3. If an EC T has no exiting actions of Minimizer (or no Minimizer’s
states at all, as in an MDP), then bestExit©V (T) = 1 (the case with min∅). Hence

all numbers between bestExit�V (T) and 1 are a solution to the Bellman equations
and G∗(s) = 1 for all states s ∈ T .

Analogously, if Maximizer does not have any exiting action in T , then it
holds that bestExit�V (T) = 0 (the case with max∅), T is a BEC and all numbers
between 0 and bestExit©V (T) are a solution to the Bellman equations.

Note that in MDP all ECs belong to one player, namely Maximizer. Conse-
quently, all ECs are BECs except for ECs where Maximizer has an exiting action
with value 1; all other ECs thus have to be collapsed (or deflated) to ensure BVI
convergence in MDPs. Interestingly, all non-trivial ECs in MDPs are a problem,
while in SGs through the presence of the other player some ECs can converge,
namely if both players want to exit (See e.g. [KKKW18, Appendix A.3]). �

We show that BECs are indeed the only obstacle for BVI convergence.

Theorem 1. If the SG contains no BECs except for {0} and {1}, then G∗ = V.

Proof (Sketch). Assume, towards a contradiction, that there is some state s
with a positive difference G∗(s) − V(s) > 0. Consider the set D of states with
the maximal difference. D can be shown to be an EC. Since it is not a BEC
there has to be an action exiting D and realizing the optimum in that state.
Consequently, this action also has the maximal difference, and all its successors,
too. Since some of the successors are outside of D, we get a contradiction with
the maximality of D. �

In Sect. 4.2, we show how to eliminate BECs by collapsing their “core” parts,
called below MSECs (maximal simple end components). Since MSECs can only
be identified with enough information about V, Sect. 4.3 shows how to avoid
direct a priori collapsing and instead dynamically deflate candidates for MSECs
in a conservative way.

4.2 Static MSEC Decomposition

Now we turn our attention to SG with BECs. Intuitively, since in a BEC all Min-
imizer’s exiting actions have a higher value than what Maximizer can achieve,
Minimizer does not want to use any of his own exiting actions and prefers stay-
ing in the EC (or steering Maximizer towards his worse exiting actions). Con-
sequently, only Maximizer wants to take an exiting action. In the MDP case he
can pick any desirable one. Indeed, he can wait until he reaches a state where
it is available. As a result, in MDP all states of an EC have the same value

634 E. Kelmendi et al.

and can all be collapsed into one state. In the SG case, he may be restricted
by Minimizer’s behaviour or even not given any chance to exit the EC at all.
As a result, a BEC may contain several parts (below denoted MSECs), each
with different value, intuitively corresponding to different exits. Thus instead of
MECs, we have to decompose into finer MSECs and only collapse these.

Definition 5 (Simple EC). An EC T is called simple (SEC), if for all s ∈ T

we have V(s) = bestExit�V (T).
A SEC C is maximal (MSEC) if there is no SEC C ′ such that C � C ′.

Intuitively, an EC is simple, if Minimizer cannot keep Maximizer away from
his bestExit. Independently of Minimizer’s decisions, Maximizer can reach the
bestExit almost surely, unless Minimizer decides to leave, in which case Maxi-
mizer could achieve an even higher value.

Example 4. Assume α < β in the example of Fig. 2. Then {p, q} is a SEC and an
MSEC. Further observe that action c is sub-optimal for Minimizer and removing
it does not affect the value of any state, but simplifies the graph structure.
Namely, it destructs the whole EC into several (here only one) SECs and some
non-EC states (here r). �

Algorithm 2, called FIND MSEC, shows how to compute MSECs. It returns
the set of all MSECs if called with parameter V. However, later we also call this
function with other parameters f : S → [0, 1]. The idea of the algorithm is the
following. The set X consists of Minimizer’s sub-optimal actions, leading to a
higher value. As such they cannot be a part of any SEC and thus should be
ignored when identifying SECs. (The previous example illustrates that ignoring
X is indeed safe as it does not change the value of the game.) We denote the
game G where the available actions Av are changed to the new available actions
Av′ (ignoring the Minimizer’s sub-optimal ones) as G[Av/Av′]. Once removed,
Minimizer has no choices to affect the value and thus each EC is simple.

Algorithm 2. FIND MSEC

1: function FIND MSEC(f : S → [0, 1])
2: X ← {(s, {a ∈ Av(s) | f(s, a) > f(s)}) | s ∈ S©}
3: Av′ ← Av \ X * Minimizer’s f -suboptimal actions removed * \
4: return MEC(G[Av/Av′]) * MEC(G[Av/Av′]) are MSECs of the original G * \

Lemma 2 (Correctness of Algorithm 2). T ∈ FIND MSEC(V) if and only
if T is a MSEC.

Proof (Sketch). “If”: As T is an MSEC, all states in T have the value
bestExit�V (T), and hence also all actions that stay inside T have this value.
Thus, no action that stays in T is removed by Line 3 and it is still a MEC
in the modified game.

Value Iteration for Simple Stochastic Games 635

“Only if”: If T ∈ FIND MSEC(V), then T is a MEC of the game where
the suboptimal available actions (those in X) of Minimizer have been removed.
Hence for all s ∈ T : V(s) = bestExit�V (T), because intuitively Minimizer has
no possibility to influence the value any further, since all actions that could do
so were in X and have been removed. Since T is a MEC in the modified game,
it certainly is an EC in the original game. Hence T is a SEC. The inclusion
maximality follows from the fact that we compute MECs in the modified game.
Thus T is an MSEC. �
Remark 1 (Algorithm with an oracle). In Sect. 3, we have seen that collapsing
MECs does not ensure BVI convergence. Collapsing does not preserve the values,
since in BECs we would be collapsing states with different values. Hence we want
to collapse only MSECs, where the values are the same. If, moreover, we remove
X in such a collapsed SG, then there are no (non-sink) ECs and BVI converges
on this SG to the original value.

The difficulty with this algorithm is that it requires an oracle to compare
values, for instance a sufficiently precise approximation of V. Consequently, we
cannot pre-compute the MSECs, but have to find them while running BVI.
Moreover, since the approximations converge only in the limit we may never be
able to conclude on simplicity of some ECs. For instance, if α = β in Fig. 2,
and if the approximations converge at different speeds, then Algorithm2 always
outputs only a part of the EC, although the whole EC on {p, q, r} is simple.

In MDPs, all ECs are simple, because there is no second player to be resolved
and all states in an EC have the same value. Thus for MDPs it suffices to collapse
all MECs, in contrast to SG.

4.3 Dynamic MSEC Decomposition

Since MSECs cannot be identified from approximants of V for sure, we refrain
from collapsing7 and instead only decrease the over-approximation in the corre-
sponding way. We call the method deflating, by which we mean decreasing the
upper bound of all states in an EC to its bestExit�U , see Algorithm 3. The pro-
cedure DEFLATE (called on the current upper bound Ui) decreases this upper
bound to the minimum possible value according to the current approximation
and thus prevents states from only depending on each other, as in SECs. Intu-
itively, it gradually approximates SECs and performs the corresponding adjust-
ments, but does not commit to any of the approximations.

Algorithm 3. DEFLATE

1: function DEFLATE(EC T , f : S → [0, 1])
2: for s ∈ T do
3: f(s) ← min(f(s), bestExit�

f (T)) * Decrease the upper bound * \
4: return f

7 Our subsequent method can be combined with local collapsing whenever the lower
and upper bounds on V are conclusive.

636 E. Kelmendi et al.

Lemma 3 (DEFLATE is sound). For any f : S → [0, 1] such that f ≥ V and
any EC T , DEFLATE(T, f) ≥ V.

This allows us to define our BVI algorithm as the naive BVI with only the
additional lines 3–4, see Algorithm 4.

Algorithm 4. UPDATE procedure for bounded value iteration on SG
1: procedure UPDATE(L : S → [0, 1], U : S → [0, 1])
2: L, U get updated according to Eq. (3) and (4) * Bellman updates * \
3: for T ∈ FIND MSEC(L) do * Use lower bound to find ECs * \
4: U ← DEFLATE(T, U) * and deflate the upper bound there * \

Theorem 2 (Soundness and completeness). Algorithm1 (calling Algo-
rithm4) produces monotonic sequences L under- and U over-approximating V,
and terminates.

Proof (Sketch). The crux is to show that U converges to V. We assume towards
a contradiction, that there exists a state s with limn→∞ Un(s) − V(s) > 0. Then
there exists a nonempty set of states X where the difference between limn→∞ Un

and V is maximal. If the upper bound of states in X depends on states outside of
X, this yields a contradiction, because then the difference between upper bound
and value would decrease in the next Bellman update. So X must be an EC where
all states depend on each other. However, if that is the case, calling DEFLATE
decreases the upper bound to something depending on the states outside of X,
thus also yielding a contradiction. �

Summary of Our Approach:

1. We cannot collapse MECs, because we cannot collapse BECs with non-
constant values.

2. If we remove X (the sub-optimal actions of Minimizer) we can collapse MECs
(now actually MSECs with constant values).

3. Since we know neither X nor SECs we gradually deflate SEC approximations.

4.4 Learning-Based Algorithm

Asynchronous value iteration selects in each round a subset T ⊆ S of states
and performs the Bellman update in that round only on T . Consequently, it
may speed up computation if “important” states are selected. However, using
the standard VI it is even more difficult to determine the current error bound.
Moreover, if some states are not selected infinitely often the lower bound may
not even converge.

In the setting of bounded value iteration, the current error bound is known
for each state and thus convergence can easily be enforced. This gave rise to

Value Iteration for Simple Stochastic Games 637

asynchronous VI, such as BRTDP (bounded real time dynamic programing) in
the setting of stopping MDPs [MLG05], where the states are selected as those
that appear on a simulation run. Very similar is the adaptation for general MDP
[BCC+14]. In order to simulate a run, the transition probabilities determine how
to resolve the probabilistic choice. In order to resolve the non-deterministic choice
of Maximizer, the “most promising action” is taken, i.e., with the highest U. This
choice is derived from a reinforcement algorithm called delayed Q-learning and
ensures convergence while practically performing well [BCC+14].

In this section, we harvest our convergence results and BVI algorithm for SG,
which allow us to trivially extend the asynchronous learning-based approach of
BRTDP to SGs. On the one hand, the only difference to the MDP algorithm
is how to resolve the choice for Minimizer. Since the situation is dual, we again
pick the “most promising action”, in this case with the lowest L. On the other
hand, the only difference to Algorithm1 calling Algorithm 4 is that the Bellman
updates of U and L are performed on the states of the simulation run only, see
lines 2–3 of Algorithm 5.

Algorithm 5. Update procedure for the learning/BRTDP version of BVI on
SG
1: procedure UPDATE(L : S → [0, 1], U : S → [0, 1])
2: ρ ← path s0, s1, . . . , s� of length � ≤ k, obtained by simulation where the

successor of s is s′ with probability δ(s, a, s′) and a is sampled randomly from
arg maxa U(s, a) and arg mina L(s, a) for s ∈ S� and s ∈ S©, respectively

3: L, U get updated by Eq. (3) and (4) on states s�, s�−1, . . . , s0 * all s ∈ ρ * \
4: for T ∈ FIND MSEC(L) do
5: DEFLATE(T, U)

If 1 or 0 is reached in a simulation, we can terminate it. It can happen that the
simulation cycles in an EC. To that end, we have a bound k on the maximum
number of steps. The choice of k is discussed in detail in [BCC+14] and we
use 2 · |S | to guarantee the possibility of reaching sinks as well as exploring new
states. If the simulation cycles in an EC, the subsequent call of DEFLATE ensures
that next time there is a positive probability to exit this EC. Further details can
be found in [KKKW18, Appendix A.4].

5 Experimental Results

We implemented both our algorithms as an extension of PRISM-
games [CFK+13a], a branch of PRISM [KNP11] that allows for modelling
SGs, utilizing previous work of [BCC+14,Ujm15] for MDP and SG with single-
player ECs. We tested the implementation on the SGs from the PRISM-games
case studies [gam] that have reachability properties and one additional model
from [CKJ12] that was also used in [Ujm15]. We compared the results with both

638 E. Kelmendi et al.

the explicit and the hybrid engine of PRISM-games, but since the models are
small both of them performed similar and we only display the results of the
hybrid engine in Table 1.

Furthermore we ran experiments on MDPs from the PRISM benchmark
suite [KNP12]. We compared our results there to the hybrid and explicit engine
of PRISM, the interval iteration implemented in PRISM [HM17], the hybrid
engine of Storm [DJKV17a] and the BRTDP implementation of [BCC+14].

Recall that the aim of the paper is not to provide a faster VI algorithm, but
rather the first guaranteed one. Consequently, the aim of the experiments is not
to show any speed ups, but to experimentally estimate the overhead needed for
computing the guarantees.

For information on the technical details of the experiments, all the models and
the tables for the experiments on MDPs we refer to [KKKW18, Appendix B].
Note that although some of the SG models are parametrized they could only
be scaled by manually changing the model file, which complicates extensive
benchmarking.

Although our approaches compute the additional upper bound to give the
convergence guarantees, for each of the experiments one of our algorithms per-
formed similar to PRISM-games. Table 1 shows this result for three of the
four SG models in the benchmarking set. On the fourth model, PRISM’s pre-
computations already solve the problem and hence it cannot be used to com-
pare the approaches. For completeness, the results are displayed in [KKKW18,
Appendix B.5].

Table 1. Experimental results for the experiments on SGs. The left two columns denote
the model and the given parameters, if present. Columns 3 to 5 display the verification
time in seconds for each of the solvers, namely PRISM-games (referred as PRISM),
our BVI algorithm (BVI) and our learning-based algorithm (BRTDP). The next two
columns compare the number of states that BRTDP explored (#States B) to the total
number of states in the model. The rightmost column shows the number of MSECs in
the model.

Model Parameters PRISM BVI BRTDP #States B #States #MSECs

mdsm prop= 1 8 8 17 767 62,245 1

prop= 2 4 4 29 407 62,245 1

cdmsn 2 2 3 1,212 1,240 1

cloud N=5 3 7 15 1,302 8,842 4,421

N=6 6 59 4 570 34,954 17,477

Whenever there are few MSECs, as in mdsm and cdmsn, BVI performs like
PRISM-games, because only little time is used for deflating. Apparently the
additional upper bound computation takes very little time in comparison to the
other tasks (e.g. parsing, generating the model, pre-computation) and does not

Value Iteration for Simple Stochastic Games 639

slow down the verification significantly. For cloud, BVI is slower than PRISM-
games, because there are thousands of MSECs and deflating them takes over
80% of the time. This comes from the fact that we need to compute the expen-
sive end component decomposition for each deflating step. BRTDP performs
well for cloud, because in this model, as well as generally often if there are
many MECs [BCC+14], only a small part of the state space is relevant for
convergence. For the other models, BRTDP is slower than the deterministic
approaches, because the models are so small that it is faster to first construct
them completely than to explore them by simulation.

Our more extensive experiments on MDPs compare the guaranteed
approaches based on collapsing (i.e. learning-based from [BCC+14] and deter-
ministic from [HM17]) to our guaranteed approaches based on deflating (so
BRTDP and BVI). Since both learning-based approaches as well as both deter-
ministic approaches perform similarly (see Table 2 in [KKKW18, Appendix B]),
we conclude that collapsing and deflating are both useful for practical purposes,
while the latter is also applicable to SGs. Furthermore we compared the usual
unguaranteed value iteration of PRISM’s explicit engine to BVI and saw that
our guaranteed approach did not take significantly more time in most cases. This
strengthens the point that the overhead for the computation of the guarantees
is negligible.

6 Conclusions

We have provided the first stopping criterion for value iteration on simple
stochastic games and an anytime algorithm with bounds on the current error
(guarantees on the precision of the result). The main technical challenge was
that states in end components in SG can have different values, in contrast to
the case of MDP. We have shown that collapsing is in general not possible, but
we utilized the analysis to obtain the procedure of deflating, a solution on the
original graph. Besides, whenever a SEC is identified for sure it can be collapsed
and the two techniques of collapsing and deflating can thus be combined.

The experiments indicate that the price to pay for the overhead to compute
the error bound is often negligible. For each of the available models, at least one
of our two implementations has performed similar to or better than the standard
approach that yields no guarantees. Further, the obtained guarantees open the
door to (e.g. learning-based) heuristics which treat only a part of the state space
and can thus potentially lead to huge improvements. Surprisingly, already our
straightforward adaptation of such an algorithm for MDP to SG yields inter-
esting results, palliating the overhead of our non-learning method, despite the
most naive implementation of deflating. Future work could reveal whether other
heuristics or more efficient implementation can lead to huge savings as in the
case of MDP [BCC+14].

640 E. Kelmendi et al.

References

[ACD+17] Ashok, P., Chatterjee, K., Daca, P., Křet́ınský, J., Meggendorfer, T.:
Value iteration for long-run average reward in Markov decision processes.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426,
pp. 201–221. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63387-9 10

[AM09] Andersson, D., Miltersen, P.B.: The complexity of solving stochastic games
on graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS,
vol. 5878, pp. 112–121. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10631-6 13

[AY17] Arslan, G., Yüksel, S.: Decentralized Q-learning for stochastic teams and
games. IEEE Trans. Autom. Control 62(4), 1545–1558 (2017)

[BBS08] Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of mul-
tiagent reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C
38(2), 156–172 (2008)

[BCC+14] Brázdil, T., Chatterjee, K., Chmeĺık, M., Forejt, V., Křet́ınský, J.,
Kwiatkowska, M., Parker, D., Ujma, M.: Verification of Markov decision
processes using learning algorithms. In: Cassez, F., Raskin, J.-F. (eds.)
ATVA 2014. LNCS, vol. 8837, pp. 98–114. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11936-6 8

[BK08] Baier, C., Katoen, J.-P.: Principles of Model Checking (2008)
[BKL+17] Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring

the reliability of your model checker: interval iteration for Markov decision
processes. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol.
10426, pp. 160–180. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63387-9 8

[BT00] Brafman, R.I., Tennenholtz, M.: A near-optimal polynomial time algorithm
for learning in certain classes of stochastic games. Artif. Intell. 121(1–2),
31–47 (2000)

[CF11] Chatterjee, K., Fijalkow, N.: A reduction from parity games to simple
stochastic games. In: GandALF, pp. 74–86 (2011)

[CFK+13a] Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-
games: a model checker for stochastic multi-player games. In: Piterman, N.,
Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 13

[CH08] Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith,
H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-0 7

[CHJR10] Chatterjee, K., Henzinger, T.A., Jobstmann, B., Radhakrishna, A.: Gist:
a solver for probabilistic games. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 665–669. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14295-6 57

[CKJ12] Calinescu, R., Kikuchi, S., Johnson, K.: Compositional reverification of
probabilistic safety properties for large-scale complex IT systems. In: Cali-
nescu, R., Garlan, D. (eds.) Monterey Workshop 2012. LNCS, vol. 7539,
pp. 303–329. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34059-8 16

https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1007/978-3-642-10631-6_13
https://doi.org/10.1007/978-3-642-10631-6_13
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-642-14295-6_57
https://doi.org/10.1007/978-3-642-34059-8_16
https://doi.org/10.1007/978-3-642-34059-8_16

Value Iteration for Simple Stochastic Games 641

[CKLB11] Cheng, C.-H., Knoll, A., Luttenberger, M., Buckl, C.: GAVS+: an open
platform for the research of algorithmic game solving. In: Abdulla, P.A.,
Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 258–261. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9 22

[CKSW13] Chen, T., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: Synthesis for multi-
objective stochastic games: an application to autonomous urban driving.
In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013.
LNCS, vol. 8054, pp. 322–337. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40196-1 28

[CMG14] Cámara, J., Moreno, G.A., Garlan, D.: Stochastic game analysis and
latency awareness for proactive self-adaptation. In: 9th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS 2014, Proceedings, Hyderabad, India, 2–3 June 2014, pp. 155–164
(2014)

[Con92] Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–
224 (1992)

[CY95] Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verifica-
tion. J. ACM 42(4), 857–907 (1995)

[DJKV17a] Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a
modern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.)
CAV 2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63390-9 31

[gam] PRISM-games Case Studies. prismmodelchecker.org/games/casestudies.php.
Accessed 18 Sept 2017

[HK66] Hoffman, A.J., Karp, R.M.: On nonterminating stochastic games. Manag.
Sci. 12(5), 359–370 (1966)

[HM17] Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and
IMDPs. Theor. Comput. Sci. 735, 111–131 (2018). https://doi.org/10.
1016/j.tcs.2016.12.003

[KKKW18] Kelmendi, E., Krämer, J., Křet́ınský, J., Weininger, M.: Value iteration for
simple stochastic games: stopping criterion and learning algorithm. Tech-
nical report abs/1804.04901, arXiv.org (2018)

[KKNP10] Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. Formal
Methods Syst. Des. 36(3), 246–280 (2010)

[KM17] Křet́ınský, J., Meggendorfer, T.: Efficient strategy iteration for mean pay-
off in Markov decision processes. In: D’Souza, D., Narayan Kumar, K.
(eds.) ATVA 2017. LNCS, vol. 10482, pp. 380–399. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68167-2 25

[KNP11] Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of prob-
abilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 47

[KNP12] Kwiatkowska, M., Norman, G., Parker, D.: The prism benchmark suite.
In: 9th International Conference on Quantitative Evaluation of Systems
(QEST 2012), pp. 203–204. IEEE (2012)

[LaV00] LaValle, S.M.: Robot motion planning: a game-theoretic foundation. Algo-
rithmica 26(3–4), 430–465 (2000)

[LL08] Li, J., Liu, W.: A novel heuristic Q-learning algorithm for solving stochastic
games. In: IJCNN, pp. 1135–1144 (2008)

https://doi.org/10.1007/978-3-642-19835-9_22
https://doi.org/10.1007/978-3-642-40196-1_28
https://doi.org/10.1007/978-3-642-40196-1_28
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
http://prismmodelchecker.org/games/casestudies.php
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
http://arxiv.org/abs/org
https://doi.org/10.1007/978-3-319-68167-2_25
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

642 E. Kelmendi et al.

[Mar75] Martin, D.A.: Borel determinacy. Ann. Math. 102, 363–371 (1975)
[MLG05] Mcmahan, H.B., Likhachev, M., Gordon, G.J.: Bounded real-time dynamic

programming: RTDP with monotone upper bounds and performance guar-
antees. In: ICML 2005, pp. 569–576 (2005)

[Put14] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley, Hoboken (2014)

[SK16] Svorenová, M., Kwiatkowska, M.: Quantitative verification and strategy
synthesis for stochastic games. Eur. J. Control 30, 15–30 (2016)

[TT16] Tcheukam, A., Tembine, H.: One swarm per queen: a particle swarm learn-
ing for stochastic games. In: SASO, pp. 144–145 (2016)

[Ujm15] Ujma, M.: On verification and controller synthesis for probabilistic systems
at runtime. Ph.D. thesis, Wolfson College, Oxford (2015)

[WT16] Wen, M., Topcu, U.: Probably approximately correct learning in stochastic
games with temporal logic specifications. In: IJCAI, pp. 3630–3636 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Sound Value Iteration

Tim Quatmann(B) and Joost-Pieter Katoen

RWTH Aachen University, Aachen, Germany
tim.quatmann@cs.rwth-aachen.de

Abstract. Computing reachability probabilities is at the heart of prob-
abilistic model checking. All model checkers compute these probabilities
in an iterative fashion using value iteration. This technique approximates
a fixed point from below by determining reachability probabilities for an
increasing number of steps. To avoid results that are significantly off,
variants have recently been proposed that converge from both below
and above. These procedures require starting values for both sides. We
present an alternative that does not require the a priori computation
of starting vectors and that converges faster on many benchmarks. The
crux of our technique is to give tight and safe bounds—whose computa-
tion is cheap—on the reachability probabilities. Lifting this technique to
expected rewards is trivial for both Markov chains and MDPs. Exper-
imental results on a large set of benchmarks show its scalability and
efficiency.

1 Introduction

Markov decision processes (MDPs) [1,2] have their roots in operations research
and stochastic control theory. They are frequently used for stochastic and
dynamic optimization problems and are widely applicable in, e.g., stochastic
scheduling and robotics. MDPs are also a natural model in randomized dis-
tributed computing where coin flips by the individual processes are mixed with
non-determinism arising from interleaving the processes’ behaviors. The central
problem for MDPs is to find a policy that determines what action to take in
the light of what is known about the system at the time of choice. The typical
aim is to optimize a given objective, such as minimizing the expected cost until
a given number of repairs, maximizing the probability of being operational for
1,000 steps, or minimizing the probability to reach a “bad” state.

Probabilistic model checking [3,4] provides a scalable alternative to tackle
these MDP problems, see the recent surveys [5,6]. The central computational
issue in MDP model checking is to solve a system of linear inequalities. In absence
of non-determinism—the MDP being a Markov Chain (MC)—a linear equation
system is obtained. After appropriate pre-computations, such as determining
the states for which no policy exists that eventually reaches the goal state, the
(in)equation system has a unique solution that coincides with the extremal value

This work is partially supported by the Sino-German Center project CAP (GZ 1023).

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 643–661, 2018.
https://doi.org/10.1007/978-3-319-96145-3_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_37&domain=pdf
http://orcid.org/0000-0002-2843-5511
http://orcid.org/0000-0002-6143-1926

644 T. Quatmann and J.-P. Katoen

that is sought for. Possible solution techniques to compute such solutions include
policy iteration, linear programming, and value iteration. Modern probabilistic
model checkers such as PRISM [7] and Storm [8] use value iteration by default.
This approximates a fixed point from below by determining the probabilities to
reach a target state within k steps in the k-th iteration. The iteration is typically
stopped if the difference between the value vectors of two successive (or vectors
that are further apart) is below the desired accuracy ε.

This procedure however can provide results that are significantly off, as the
iteration is stopped prematurely, e.g., since the probability mass in the MDP only
changes slightly in a series of computational steps due to a “slow” movement.
This problem is not new; similar problems, e.g., occur in iterative approaches to
compute long-run averages [9] and transient measures [10] and pop up in statisti-
cal model checking to decide when to stop simulating for unbounded reachability
properties [11]. As recently was shown, this phenomenon does not only occur for
hypothetical cases but affects practical benchmarks of MDP model checking too
[12]. To remedy this, Haddad and Monmege [13] proposed to iteratively approxi-
mate the (unique) fixed point from both below and above; a natural termination
criterion is to halt the computation once the two approximations differ less than
2·ε. This scheme requires two starting vectors, one for each approximation. For
reachability probabilities, the conservative values zero and one can be used. For
expected rewards, it is non-trivial to find an appropriate upper bound—how to
“guess” an adequate upper bound to the expected reward to reach a goal state?
Baier et al. [12] recently provided an algorithm to solve this issue.

This paper takes an alternative perspective to obtaining a sound variant of
value iteration. Our approach does not require the a priori computation of start-
ing vectors and converges faster on many benchmarks. The crux of our tech-
nique is to give tight and safe bounds—whose computation is cheap and that
are obtained during the course of value iteration—on the reachability probabil-
ities. The approach is simple and can be lifted straightforwardly to expected
rewards. The central idea is to split the desired probability for reaching a target
state into the sum of

(i) the probability for reaching a target state within k steps and
(ii) the probability for reaching a target state only after k steps.

We obtain (i) via k iterations of (standard) value iteration. A second instance
of value iteration computes the probability that a target state is still reachable
after k steps. We show that from this information safe lower and upper bounds for
(ii) can be derived. We illustrate that the same idea can be applied to expected
rewards, topological value iteration [14], and Gauss-Seidel value iteration. We
also discuss in detail its extension to MDPs and provide extensive experimental
evaluation using our implementation in the model checker Storm [8]. Our experi-
ments show that on many practical benchmarks we need significantly fewer iter-
ations, yielding a speed-up of about 20% on average. More importantly though,
is the conceptual simplicity of our approach.

Sound Value Iteration 645

s0 s1

s3 s2 s4

0.01
0.99

0.01

0.99

0.30.1

0.61 1

(a) A sample MC D.

s0 s1

s3 s2 s4

0.01

0.99

0.30.1

0.6

1

1

α 0.01

0.99

β

0.2
0.8

(b) A sample MDP M.

Fig. 1. Example models.

2 Preliminaries

For a finite set S and vector x ∈ R
|S|, let x[s] ∈ R denote the entry of x that

corresponds to s ∈ S. Let S′ ⊆ S and a ∈ R. We write x[S′] = a to denote that
x[s] = a for all s ∈ S′. Given x, y ∈ R

|S|, x ≤ y holds iff x[s] ≤ y[s] holds for
all s ∈ S. For a function f : R

|S| → R
|S| and k ≥ 0 we write fk for the function

obtained by applying f k times, i.e., f0(x) = x and fk(x) = f(fk−1(x)) if k > 0.

2.1 Probabilistic Models and Measures

We briefly present probabilistic models and their properties. More details can
be found in, e.g., [15].

Definition 1 (Probabilistic Models). A Markov Decision Process (MDP) is
a tuple M = (S,Act ,P, sI , ρ), where

– S is a finite set of states, Act is a finite set of actions, sI is the initial state,
– P : S × Act × S → [0, 1] is a transition probability function satisfying∑

s′∈S P(s, α, s′) ∈ {0, 1} for all s ∈ S, α ∈ Act, and
– ρ : S × Act → R is a reward function.

M is a Markov Chain (MC) if |Act | = 1.

Example 1. Figure 1 shows an example MC and an example MDP.

We often simplify notations for MCs by omitting the (unique) action. For an
MDP M = (S,Act ,P, sI , ρ), the set of enabled actions of state s ∈ S is given
by Act(s) = {α ∈ Act | ∑

s′∈S P(s, α, s′) = 1}. We assume that Act(s) �= ∅ for
each s ∈ S. Intuitively, upon performing action α at state s reward ρ(s, α) is
collected and with probability P(s, α, s′) we move to s′ ∈ S. Notice that rewards
can be positive or negative.

A state s ∈ S is called absorbing if P(s, α, s) = 1 for every α ∈ Act(s). A path
of M is an infinite alternating sequence π = s0α0s1α1 . . . where si ∈ S, αi ∈

646 T. Quatmann and J.-P. Katoen

Act(si), and P(si, αi, si+1) > 0 for all i ≥ 0. The set of paths of M is denoted by
PathsM. The set of paths that start at s ∈ S is given by PathsM,s. A finite path
π̂ = s0α0 . . . αn−1sn is a finite prefix of a path ending with last(π̂) = sn ∈ S.
|π̂| = n is the length of π̂, PathsM

fin is the set of finite paths of M, and PathsM,s
fin

is the set of finite paths that start at state s ∈ S. We consider LTL-like notations
for sets of paths. For k ∈ N ∪ {∞} and G,H ⊆ S let

H U≤k G = {s0α0s1 · · · ∈ PathsM,sI | s0, . . . , sj−1 ∈ H, sj ∈ G for some j ≤ k}
denote the set of paths that, starting from the initial state sI , only visit states in
H until after at most k steps a state in G is reached. Sets H U>k G and H U=k G
are defined similarly. We use the shorthands ♦≤kG := S U≤k G, ♦G := ♦≤∞G,
and �≤kG := PathsM,sI \ ♦≤k(S \ G).

A (deterministic) scheduler for M is a function σ : PathsM
fin → Act such

that σ(π̂) ∈ Act(last(π̂)) for all π̂ ∈ PathsM
fin . The set of (deterministic) sched-

ulers for M is SM. σ ∈ SM is called positional if σ(π̂) only depends on
the last state of π̂, i.e., for all π̂, π̂′ ∈ PathsM

fin we have last(π̂) = last(π̂′)
implies σ(π̂) = σ(π̂′). For MDP M and scheduler σ ∈ SM the probabil-
ity measure over finite paths is given by PrM,σ

fin : PathsM,sI

fin → [0, 1] with
PrM,σ

fin (s0 . . . sn) =
∏n−1

i=0 P(si, σ(s0 . . . si), si+1). The probability measure PrM,σ

over measurable sets of infinite paths is obtained via a standard cylinder set con-
struction [15].

Definition 2 (Reachability Probability). The reachability probability of
MDP M = (S,Act ,P, sI , ρ), G ⊆ S, and σ ∈ SM is given by PrM,σ(♦G).

For k ∈ N∪{∞}, the function �≤kG : ♦G → R yields the k-bounded reachability
reward of a path π = s0α0s1 · · · ∈ ♦G. We set �≤kG(π) =

∑j−1
i=0 ρ(si, αi), where

j = min({i ≥ 0 | si ∈ G} ∪ {k}). We write �G instead of �≤∞G.

Definition 3 (Expected Reward). The expected (reachability) reward of
MDP M = (S,Act ,P, sI , ρ), G ⊆ S, and σ ∈ SM with PrM,σ(♦G) = 1 is
given by the expectation E

M,σ(�G) =
∫

π∈♦G
�G(π) dPrM,σ(π).

We write PrM,σ
s and E

M,σ
s for the probability measure and expectation obtained

by changing the initial state of M to s ∈ S. If M is a Markov chain,
there is only a single scheduler. In this case we may omit the superscript σ
from PrM,σ and E

M,σ. We also omit the superscript M if it is clear from
the context. The maximal reachability probability of M and G is given by
Prmax(♦G) = maxσ∈SM Prσ(♦G). There is a a positional scheduler that attains
this maximum [16]. The same holds for minimal reachability probabilities and
maximal or minimal expected rewards.

Example 2. Consider the MDP M from Fig. 1(b). We are interested in the
maximal probability to reach state s4 given by Prmax(♦{s4}). Since s4 is not
reachable from s3 we have Prmax

s3
(♦{s4}) = 0. Intuitively, choosing action β

at state s0 makes reaching s3 more likely, which should be avoided in order

Sound Value Iteration 647

to maximize the probability to reach s4. We therefore assume a scheduler σ
that always chooses action α at state s0. Starting from the initial state s0,
we then eventually take the transition from s2 to s3 or the transition from s2

to s4 with probability one. The resulting probability to reach s4 is given by
Prmax(♦{s4}) = Prσ(♦{s4}) = 0.3/(0.1 + 0.3) = 0.75.

2.2 Probabilistic Model Checking via Interval Iteration

In the following we present approaches to compute reachability probabilities
and expected rewards. We consider approximative computations. Exact compu-
tations are handled in e.g. [17,18] For the sake of clarity, we focus on reachability
probabilities and sketch how the techniques can be lifted to expected rewards.

Reachability Probabilities. We fix an MDP M = (S,Act ,P, sI , ρ), a set of
goal states G ⊆ S, and a precision parameter ε > 0.

Problem 1. Compute an ε-approximation of the maximal reachability probabil-
ity Prmax(♦G), i.e., compute a value r ∈ [0, 1] with |r − Prmax(♦G)| < ε.

We briefly sketch how to compute such a value r via interval iteration [12,13,19].
The computation for minimal reachability probabilities is analogous.

W.l.o.g. it is assumed that the states in G are absorbing. Using graph algo-
rithms, we compute S0 = {s ∈ S | Prmax

s (♦G) = 0} and partition the state space
of M into S = S0 ∪· G ∪· S? with S? = S \ (G ∪ S0). If sI ∈ S0 or sI ∈ G, the
probability Prmax(♦G) is 0 or 1, respectively. From now on we assume sI ∈ S?.

We say that M is contracting with respect to S′ ⊆ S if Prσ
s (♦S′) = 1 for all

s ∈ S and for all σ ∈ SM. We assume that M is contracting with respect to
G ∪ S0. Otherwise, we apply a transformation on the so-called end components1

of M, yielding a contracting MDP M′ with the same maximal reachability
probability as M. Roughly, this transformation replaces each end component
of M with a single state whose enabled actions coincide with the actions that
previously lead outside of the end component. This step is detailed in [13,19].

We have x∗[s] = Prmax
s (♦G) for s ∈ S and the unique fixpoint x∗ of the

function f : R
|S| → R

|S| with f(x)[S0] = 0, f(x)[G] = 1, and

f(x)[s] = max
α∈Act(s)

∑

s′∈S

P(s, α, s′) · x[s′]

for s ∈ S?. Hence, computing Prmax(♦G) reduces to finding the fixpoint of f .
A popular technique for this purpose is the value iteration algorithm [1].

Given a starting vector x ∈ R
|S| with x[S0] = 0 and x[G] = 1, standard value

iteration computes fk(x) for increasing k until maxs∈S |fk(x)[s]−fk−1(x)[s]| < ε
holds for a predefined precision ε > 0. As pointed out in, e.g., [13], there is no

1 Intuitively, an end component is a set of states S′ ⊆ S such that there is a scheduler
inducing that from any s ∈ S′ exactly the states in S′ are visited infinitely often.

648 T. Quatmann and J.-P. Katoen

guarantee on the preciseness of the result r = fk(x)[sI], i.e., standard value
iteration does not give any evidence on the error |r − Prmax(♦G)|. The intuitive
reason is that value iteration only approximates the fixpoint x∗ from one side,
yielding no indication on the distance between the current result and x∗.

Example 3. Consider the MDP M from Fig. 1(b). We invoked standard value
iteration in PRISM [7] and Storm [8] to compute the reachability probability
Prmax(♦{s4}). Recall from Example 2 that the correct solution is 0.75. With
(absolute) precision ε = 10−6 both model checkers returned 0.7248. Notice that
the user can improve the precision by considering, e.g., ε = 10−8 which yields
0.7497. However, there is no guarantee on the preciseness of a given result.

The interval iteration algorithm [12,13,19] addresses the impreciseness of
value iteration. The idea is to approach the fixpoint x∗ from below and from
above. The first step is to find starting vectors x�, xu ∈ R

|S| satisfying x�[S0] =
xu[S0] = 0, x�[G] = xu[G] = 1, and x� ≤ x∗ ≤ xu. As the entries of x∗ are
probabilities, it is always valid to set x�[S?] = 0 and xu[S?] = 1. We have
fk(x�) ≤ x∗ ≤ fk(xu) for any k ≥ 0. Interval iteration computes fk(x�) and
fk(xu) for increasing k until maxs∈S |fk(x�)[s] − fk(xu)[s]| < 2ε. For the result
r = 1/2 · (fk(x�)[sI] + fk(xu)[sI]) we obtain that |r − Prmax(♦G)| < ε, i.e., we
get a sound approximation of the maximal reachability probability.

Example 4. We invoked interval iteration in PRISM and Storm to compute the
reachability probability Prmax(♦{s4}) for the MDP M from Fig. 1(b). Both
implementations correctly yield an ε-approximation of Prmax(♦{s4}), where we
considered ε = 10−6. However, both PRISM and Storm required roughly 300,000
iterations for convergence.

Expected Rewards. Whereas [13,19] only consider reachability probabilities,
[12] extends interval iteration to compute expected rewards. Let M be an MDP
and G be a set of absorbing states such that M is contracting with respect to G.

Problem 2. Compute an ε-approximation of the maximal expected reachability
reward E

max(�G), i.e., compute a value r ∈ R with |r − E
max(�G)| < ε.

We have x∗[s] = E
max
s (�G) for the unique fixpoint x∗ of g : R

|S| → R
|S| with

g(x)[G] = 0 and g(x)[s] = max
α∈Act(s)

ρ(s, α) +
∑

s′∈S

P(s, α, s′) · x[s′]

for s /∈ G. As for reachability probabilities, interval iteration can be applied to
approximate this fixpoint. The crux lies in finding appropriate starting vectors
x�, xu ∈ R

|S| guaranteeing x� ≤ x∗ ≤ xu. To this end, [12] describe graph based
algorithms that give an upper bound on the expected number of times each
individual state s ∈ S \ G is visited. This then yields an approximation of the
expected amount of reward collected at the various states.

Sound Value Iteration 649

3 Sound Value Iteration for MCs

We present an algorithm for computing reachability probabilities and expected
rewards as in Problems 1 and 2. The algorithm is an alternative to the inter-
val iteration approach [12,20] but (i) does not require an a priori computation
of starting vectors x�, xu ∈ R

|S| and (ii) converges faster on many practical
benchmarks as shown in Sect. 5. For the sake of simplicity, we first restrict to
computing reachability probabilities on MCs.

In the following, let D = (S,P, sI , ρ) be an MC, G ⊆ S be a set of absorbing
goal states and ε > 0 be a precision parameter. We consider the partition S =
S0 ∪· G∪· S? as in Sect. 2.2. The following theorem captures the key insight of our
algorithm.

Theorem 1. For MC D let G and S? be as above and k ≥ 0 with Prs(�≤kS?) <
1 for all s ∈ S?. We have

Pr(♦≤kG) + Pr(�≤kS?) · min
s∈S?

Prs(♦≤kG)
1 − Prs(�≤kS?)

≤ Pr(♦G) ≤Pr(♦≤kG) + Pr(�≤kS?) · max
s∈S?

Prs(♦≤kG)
1 − Prs(�≤kS?)

.

Theorem 1 allows us to approximate Pr(♦G) by computing for increasing k ∈ N

– Pr(♦≤kG), the probability to reach a state in G within k steps, and
– Pr(�≤kS?), the probability to stay in S? during the first k steps.

This can be realized via a value-iteration based procedure. The obtained bounds
on Pr(♦G) can be tightened arbitrarily since Pr(�≤kS?) approaches 0 for increas-
ing k. In the following, we address the correctness of Theorem 1, describe the
details of our algorithm, and indicate how the results can be lifted to expected
rewards.

3.1 Approximating Reachability Probabilities

To approximate the reachability probability Pr(♦G), we consider the step
bounded reachability probability Pr(♦≤kG) for k ≥ 0 and provide a lower and
an upper bound for the ‘missing’ probability Pr(♦G)−Pr(♦≤kG). Note that ♦G
is the disjoint union of the paths that reach G within k steps (given by ♦≤kG)
and the paths that reach G only after k steps (given by S? U>k G).

Lemma 1. For any k ≥ 0 we have Pr(♦G) = Pr(♦≤kG) + Pr(S? U>k G).

A path π ∈ S? U>k G reaches some state s ∈ S? after exactly k steps. This
yields the partition S? U>k G =

⋃·s∈S?
(S? U=k{s} ∩ ♦G). It follows that

Pr(S? U>k G) =
∑

s∈S?

Pr(S? U=k {s}) · Prs(♦G).

650 T. Quatmann and J.-P. Katoen

Consider �, u ∈ [0, 1] with � ≤ Prs(♦G) ≤ u for all s ∈ S?, i.e., � and u are
lower and upper bounds for the reachability probabilities within S?. We have

∑

s∈S?

Pr(S? U=k{s}) · Prs(♦G) ≤
∑

s∈S?

Pr(S? U=k{s}) · u = Pr(�≤kS?) · u.

We can argue similar for the lower bound �. With Lemma 1 we get the fol-
lowing.

Proposition 1. For MC D with G, S?, �, u as above and any k ≥ 0 we have

Pr(♦≤kG) + Pr(�≤kS?) · � ≤ Pr(♦G) ≤ Pr(♦≤kG) + Pr(�≤kS?) · u.

Remark 1. The bounds for Pr(♦G) given by Proposition 1 are similar to the
bounds obtained after performing k iterations of interval iteration with starting
vectors x�, xu ∈ R

|S|, where x�[S?] = � and xu[S?] = u.

We now discuss how the bounds � and u can be obtained from the step bounded
probabilities Prs(♦≤kG) and Prs(�≤kS?) for s ∈ S?. We focus on the upper
bound u. The reasoning for the lower bound � is similar.

Let smax ∈ S? be a state with maximal reachability probability, that is smax ∈
arg maxs∈S?

Prs(♦G). From Proposition 1 we get

Prsmax(♦G) ≤ Prsmax(♦≤kG) + Prsmax(�≤kS?) · Prsmax(♦G).

We solve the inequality for Prsmax(♦G) (assuming Prs(�≤kS?) < 1 for all
s ∈ S?):

Prsmax(♦G) ≤ Prsmax(♦≤kG)
1 − Prsmax(�≤kS?)

≤ max
s∈S?

Prs(♦≤kG)
1 − Prs(�≤kS?)

.

Proposition 2. For MC D let G and S? be as above and k ≥ 0 such that
Prs(�≤kS?) < 1 for all s ∈ S?. For every ŝ ∈ S? we have

min
s∈S?

Prs(♦≤kG)
1 − Prs(�≤kS?)

≤ Prŝ(♦G) ≤ max
s∈S?

Prs(♦≤kG)
1 − Prs(�≤kS?)

.

Theorem 1 is a direct consequence of Propositions 1 and 2.

3.2 Extending the Value Iteration Approach

Recall the standard value iteration algorithm for approximating Pr(♦G) as
discussed in Sect. 2.2. The function f : R

|S| → R
|S| for MCs simplifies to

f(x)[S0] = 0, f(x)[G] = 1, and f(x)[s] =
∑

s′∈S P(s, s′) · x[s′] for s ∈ S?. We
can compute the k-step bounded reachability probability at every state s ∈ S

Sound Value Iteration 651

Input : MC D = (S,P, sI , ρ), absorbing states G ⊆ S, precision ε > 0
Output : r ∈ R with |r − Pr(♦G)| < ε

1 S? ← S \ ({s ∈ S | Prs(♦G) = 0} ∪ G
)

2 initialize x0, y0 ∈ R
|S| with x0[G] = 1, x0[S \ G] = 0, y0[S?] = 1, y0[S \ S?] = 0

3 �0 ← −∞; u0 ← +∞
4 k ← 0
5 repeat
6 k ← k + 1
7 xk ← f(xk−1); yk ← h(yk−1)
8 if yk[s] < 1 for all s ∈ S? then

9 �k ← max(�k−1, mins∈S?
xk[s]

1−yk[s]
); uk ← min(uk−1, maxs∈S?

xk[s]
1−yk[s]

)

10 until yk[sI] · (uk − �k) < 2 · ε

11 return xk[sI] + yk[sI] · �k+uk
2

Algorithm 1: Sound value iteration for MCs.

by performing k iterations of value iteration [15, Remark 10.104]. More pre-
cisely, when applying f k times on starting vector x ∈ R

|S| with x[G] = 1 and
x[S \ G] = 0 we get Prs(♦≤kG) = fk(x)[s]. The probabilities Prs(�≤kS?) for
s ∈ S can be computed similarly. Let h : R

|S| → R
|S| with h(y)[S \ S?] = 0 and

h(y)[s] =
∑

s′∈S P(s, s′) · y[s′] for s ∈ S?. For starting vector y ∈ R
|S| with

y[S?] = 1 and y[S \ S?] = 0 we get Prs(�≤kS?) = hk(y)[s].
Algorithm 1 depicts our approach. It maintains vectors xk, yk ∈ R

|S|

which, after k iterations of the loop, store the k-step bounded probabilities
Prs(♦≤kG) and Prs(�≤kS?), respectively. Additionally, the algorithm considers
lower bounds �k and upper bounds uk such that the following invariant holds.

Lemma 2. After executing the loop of Algorithm1 k times we have for all s ∈ S?

that xk[s] = Prs(♦≤kG), yk[s] = Prs(�≤kS?), and �k ≤ Prs(♦G) ≤ uk.

The correctness of the algorithm follows from Theorem1. Termination is guaran-
teed since Pr(♦(S0 ∪ G)) = 1 and therefore limk→∞ Pr(�≤kS?) = Pr(�S?) = 0.

Theorem 2. Algorithm1 terminates for any MC D, goal states G, and precision
ε > 0. The returned value r satisfies |r − Pr(♦G)| < ε.

Example 5. We apply Algorithm1 for the MC in Fig. 1(a) and the set of goal
states G = {s4}. We have S? = {s0, s1, s2}. After k = 3 iterations it holds that

x3[s0] = 0.00003 x3[s1] = 0.003 x3[s2] = 0.3
y3[s0] = 0.99996 y3[s1] = 0.996 y3[s2] = 0.6

Hence, x3[s]
1−y3[s]

= 3
4 = 0.75 for all s ∈ S?. We get �3 = u3 = 0.75. The algorithm

converges for any ε > 0 and returns the correct solution x3[s0] + y3[s0] · 0.75 =
0.75.

652 T. Quatmann and J.-P. Katoen

3.3 Sound Value Iteration for Expected Rewards

We lift our approach to expected rewards in a straightforward manner. Let G ⊆ S
be a set of absorbing goal states of MC D such that Pr(♦G) = 1. Further let S? =
S\G. For k ≥ 0 we observe that the expected reward E(�G) can be split into the
expected reward collected within k steps and the expected reward collected only
after k steps, i.e., E(�G) = E(�≤kG)+

∑
s∈S?

Pr(S? U=k{s})·Es(�G). Following
a similar reasoning as in Sect. 3.1 we can show the following.
Theorem 3. For MC D let G and S? be as before and k ≥ 0 such that
Prs(�≤kS?) < 1 for all s ∈ S?. We have

E(�≤kG) + Pr(�≤kS?) · min
s∈S?

Es(�≤kG)
1 − Prs(�≤kS?)

≤ E(�G) ≤ E(�≤kG) + Pr(�≤kS?) · max
s∈S?

Es(�≤kG)
1 − Prs(�≤kS?)

.

Recall the function g : R
|S| → R

|S| from Sect. 2.2, given by g(x)[G] = 0 and
g(x)[s] = ρ(s) +

∑
s′∈S P(s, s′) · x[s′] for s ∈ S?. For s ∈ S and x ∈ R

|S| with
x[S] = 0 we have Es(�≤kG) = gk(x)[s]. We modify Algorithm 1 such that it
considers function g instead of function f . Then, the returned value r satisfies
|r − E(�G)| < ε.

3.4 Optimizations

Algorithm 1 can make use of initial bounds �0, u0 ∈ R with �0 ≤ Prs(♦G) ≤ u0

for all s ∈ S?. Such bounds could be derived, e.g., from domain knowledge or
during preprocessing [12]. The algorithm always chooses the largest available
lower bound for �k and the lowest available upper bound for uk, respectively. If
Algorithm 1 and interval iteration are initialized with the same bounds, Algo-
rithm1 always requires as most as many iterations compared to interval iteration
(cf. Remark 1).

Gauss-Seidel value iteration [1,12] is an optimization for standard value iter-
ation and interval iteration that potentially leads to faster convergence. When
computing f(x)[s] for s ∈ S?, the idea is to consider already computed results
f(x)[s′] from the current iteration. Formally, let ≺ ⊆ S × S be some strict total
ordering of the states. Gauss-Seidel value iteration considers instead of function
f the function f≺ : R

|S| → R
|S| with f≺[S0] = 0, f≺[G] = 1, and

f≺(x)[s] =
∑

s′≺s

P(s, s′) · f≺(x)[s′] +
∑

s′
≺s

P(s, s′) · x[s′].

Values f≺(x)[s] for s ∈ S are computed in the order defined by ≺. This idea can
also be applied to our approach. To this end, we replace f by f≺ and h by h≺,
where h≺ is defined similarly. More details are given in [21].

Topological value iteration [14] employs the graphical structure of the MC D.
The idea is to decompose the states S of D into strongly connected components2

2 S′ ⊆ S is a connected component if s can be reached from s′ for all s, s′ ∈ S′. S′ is
a strongly connected component if no superset of S′ is a connected component.

Sound Value Iteration 653

(SCCs) that are analyzed individually. The procedure can improve the runtime
of classical value iteration since for a single iteration only the values for the
current SCC have to be updated. A topological variant of interval iteration is
introduced in [12]. Given these results, sound value iteration can be extended
similarly.

4 Sound Value Iteration for MDPs

We extend sound value iteration to compute reachability probabilities in MDPs.
Assume an MDP M = (S,Act ,P, sI , ρ) and a set of absorbing goal states G.
For simplicity, we focus on maximal reachability probabilities, i.e., we compute
Prmax(♦G). Minimal reachability probabilities and expected rewards are analo-
gous. As in Sect. 2.2 we consider the partition S = S0 ∪· G ∪· S? such that M is
contracting with respect to G ∪ S0.

4.1 Approximating Maximal Reachability Probabilities

We argue that our results for MCs also hold for MDPs under a given scheduler
σ ∈ SM. Let k ≥ 0 such that Prσ

s (�≤kS?) < 1 for all s ∈ S?. Following the
reasoning as in Sect. 3.1 we get

Prσ(♦≤kG) + Prσ(�≤kS?) · min
s∈S?

Prσ
s (♦≤kG)

1 − Prσ
s (�≤kS?)

≤ Prσ(♦G) ≤ Prmax(♦G).

Next, assume an upper bound u ∈ R with Prmax
s (♦G) ≤ u for all s ∈ S?. For

a scheduler σmax ∈ SM that attains the maximal reachability probability, i.e.,
σmax ∈ arg maxσ∈SMPrσ(♦G) it holds that

Prmax(♦G) = Prσmax(♦G) ≤ Prσmax(♦≤kG) + Prσmax(�≤kS?) · u

≤ max
σ∈SM

(
Prσ(♦≤kG) + Prσ(�≤kS?) · u

)
.

We obtain the following theorem which is the basis of our algorithm.

Theorem 4. For MDP M let G, S?, and u be as above. Assume σ ∈ SM

and k ≥ 0 such that σ ∈ arg maxσ′∈SMPrσ′
(♦≤kG) + Prσ′

(�≤kS?) · u and
Prσ

s (�≤kS?) < 1 for all s ∈ S?. We have

Prσ(♦≤kG) + Prσ(�≤kS?) · min
s∈S?

Prσ
s (♦≤kG)

1 − Prσ
s (�≤kS?)

≤ Prmax(♦G) ≤ Prσ(♦≤kG) + Prσ(�≤kS?) · u.

Similar to the results for MCs it also holds that Prmax(♦G) ≤ maxσ∈SM ûσ
k

with

ûσ
k := Prσ(♦≤kG) + Prσ(�≤kS?) · max

s∈S?

Prσ
s (♦≤kG)

1 − Prσ
s (�≤kS?)

.

654 T. Quatmann and J.-P. Katoen

s0 s1 s2

s4s3

s6s5

α 0.8

β

0.40.3

0.3

0.2

0.9

0.1

0.1

0.9

1 1

1 1
(a) Sample MDP M.

Prσα
s0 Prσβα

s0 Prσββ
s0 Prσ

s1 Prσ
s2

♦≤1G 0 0.3 0.3 0.1 0.1
�≤1S? 0.8 0.4 0.4 0.9 0
♦≤2G 0.1 0.3 0.42 0.1 0.1
�≤2S? 0.72 0.32 0.16 0 0

(b) Step bounded probabilities for M.

Fig. 2. Example MDP with corresponding step bounded probabilities.

However, this upper bound can not trivially be embedded in a value iteration
based procedure. Intuitively, in order to compute the upper bound for iteration
k, one can not necessarily build on the results for iteration k − 1.

Example 6. Consider the MDP M given in Fig. 2(a). Let G = {s3, s4} be the
set of goal states. We therefore have S? = {s0, s1, s2}. In Fig. 2(b) we list step
bounded probabilities with respect to the possible schedulers, where σα, σβα,
and σββ refer to schedulers with σα(s0) = α and for γ ∈ {α, β}, σβγ(s0) = β
and σβγ(s0βs0) = γ. Notice that the probability measures Prσ

s1
and Prσ

s2
are

independent of the considered scheduler σ. For step bounds k ∈ {1, 2} we get

– maxσ∈SM ûσ
1 = ûσα

1 = 0 + 0.8 · max(0, 1, 0) = 0.8 and
– maxσ∈SM ûσ

2 = û
σββ

2 = 0.42 + 0.16 · max(0.5, 0.19, 1) = 0.5.

4.2 Extending the Value Iteration Approach

The idea of our algorithm is to compute the bounds for Prmax(♦G) as in The-
orem 4 for increasing k ≥ 0. Algorithm 2 outlines the procedure. Similar to
Algorithm 1 for MCs, vectors xk, yk ∈ R

|S| store the step bounded probabili-
ties Prσk

s (♦≤kG) and Prσk
s (�≤kS?) for any s ∈ S. In addition, schedulers σk and

upper bounds uk ≥ maxs∈S? Prmax
s (♦G) are computed in a way that Theorem4

is applicable.

Lemma 3. After executing k iterations of Algorithm2 we have for all s ∈ S?

that xk[s] = Prσk
s (♦≤kG), yk[s] = Prσk

s (�≤kS?), and �k ≤ Prmax
s (♦G) ≤ uk,

where σk ∈ arg maxσ∈SMPrσ
s (♦≤kG) + Prσ

s (�≤kS?) · uk.

The lemma holds for k = 0 as x0, y0, and u0 are initialized accordingly. For
k > 0 we assume that the claim holds after k − 1 iterations, i.e., for xk−1, yk−1,
uk−1 and scheduler σk−1. The results of the kth iteration are obtained as follows.

The function findAction illustrated in Algorithm3 determines the choices of
a scheduler σk ∈ arg maxσ∈SMPrσ

s (♦≤kG) + Prσ
s (�≤kS?) · uk−1 for s ∈ S?. The

idea is to consider at state s an action σk(s) = α ∈ Act(s) that maximizes

Prσk
s (♦≤kG) + Prσk

s (�≤kS?) · uk−1 =
∑

s′∈S

P(s, α, s′)·(xk−1[s′] + yk−1[s′] · uk−1).

Sound Value Iteration 655

Input : MDP M = (S,Act ,P, sI , ρ), absorbing states G ⊆ S, precision ε > 0
Output : r ∈ R with |r − Prmax(♦G)| < ε

1 S0 ← {s ∈ S | Prmax
s (♦G) = 0}

2 assert that M is contracting with respect to G ∪ S0

3 S? ← S \ (S0 ∪ G)

4 initialize x0, y0 ∈ R
|S| with x0[G] = 1, x0[S \ G] = 0, y0[S?] = 1, y0[S \ S?] = 0

5 �0 ← −∞; u0 ← +∞; d0 ← −∞
6 k ← 0
7 repeat
8 k ← k + 1

9 initialize xk, yk ∈ R
|S| with xk[G] = 1, xk[S0] = 0, yk[S \ S?] = 0

10 dk ← dk−1

11 foreach s ∈ S? do
12 α ← findAction(xk−1, yk−1, s, uk−1)
13 dk ← max(dk, decisionValue(xk−1, yk−1, s, α))
14 xk[s] ← ∑

s′∈S P(s, α, s′) · xk−1[s
′]

15 yk[s] ← ∑
s′∈S P(s, α, s′) · yk−1[s

′]

16 if yk[s] < 1 for all s ∈ S? then

17 �k ← max(�k−1, mins∈S?
xk[s]

1−yk[s]
)

18 uk ← min(uk−1, max(dk, max,∈S?
xk[s]

1−yk[s]
))

19 until yk[sI] · (uk − �k) < 2 · ε

20 return xk[sI] + yk[sI] · �k+uk
2

Algorithm 2: Sound value iteration for MDPs

For the case where no real upper bound is known (i.e., uk−1 = ∞) we implicitly
assume a sufficiently large value for uk−1 such that Prσ

s (♦≤kG) becomes negli-
gible. Upon leaving state s, σk mimics σk−1, i.e., we set σk(sαs1α1 . . . sn) =
σk−1(s1α1 . . . sn). After executing Line 15 of Algorithm2 we have xk[s] =
Prσk

s (♦≤kG) and yk[s] = Prσk
s (�≤kS?).

It remains to derive an upper bound uk. To ensure that Lemma 3 holds we
require (i) uk ≥ maxs∈S? Prmax

s (♦G) and (ii) uk ∈ Uk, where

Uk = {u ∈ R | σk ∈ arg max
σ∈SM

Prσ
s (♦≤kG) + Prσ

s (�≤kS?) · u for all s ∈ S?}.

Intuitively, the set Uk ⊆ R consists of all possible upper bounds u for which
σk is still optimal. Uk ⊆ is convex as it can be represented as a conjunction of
inequalities with U0 = R and u ∈ Uk if and only if u ∈ Uk−1 and for all s ∈ S?

with σk(s) = α and for all β ∈ Act(s) \ {α}
∑

s′∈S

P(s, α, s′)·(xk−1[s′] + yk−1[s′] · u) ≥
∑

s′∈S

P(s, β, s′)·(xk−1[s′] + yk−1[s′] · u).

The algorithm maintains the so-called decision value dk which corresponds to the
minimum of Uk (or −∞ if the minimum does not exist). Algorithm4 outlines the

656 T. Quatmann and J.-P. Katoen

1 function findAction(x, y, s, u)
2 if u �= ∞ then
3 return α ∈ arg maxα∈Act(s)

∑
s′∈S P(s, α, s′) · (x[s′] + y[s′] · u)

4 else
5 return α ∈ arg maxα∈Act(s)

∑
s′∈S P(s, α, s′) · (y[s′])

Algorithm 3: Computation of optimal action.

1 function decisionValue(x, y, s, α)
2 d ← −∞
3 foreach β ∈ Act(s) \ {α} do
4 yΔ ← ∑

s′∈S(P(s, α, s′) − P(s, β, s′)) · y[s′]
5 if yΔ > 0 then
6 xΔ ← ∑

s′∈S(P(s, β, s′) − P(s, α, s′)) · x[s′]
7 d ← max(d, xΔ/yΔ)

8 return d

Algorithm 4: Computation of decision value.

procedure to obtain the decision value at a given state. Our algorithm ensures
that uk is only set to a value in [dk, uk−1] ⊆ Uk.

Lemma 4. After executing Line 18 of Algorithm2: uk ≥ maxs∈S? Prmax
s (♦G).

To show that uk is a valid upper bound, let smax ∈ arg maxs∈S?
Prmax

s (♦G) and
u∗ = Prmax

smax
(♦G). From Theorem 4, uk−1 ≥ u∗, and uk−1 ∈ Uk we get

u∗ ≤ max
σ∈SM

Prσ
smax

(♦≤kG) + Prσ
smax

(�≤kS?) · uk−1

= Prσk
smax

(♦≤kG) + Prσk
smax

(�≤kS?) · uk−1 = xk[smax] + yk[smax] · uk−1

which yields a new upper bound xk[smax] + yk[smax] · uk−1 ≥ u∗. We repeat this
scheme as follows. Let v0 := uk−1 and for i > 0 let vi := xk[smax]+yk[smax]·vi−1.
We can show that vi−1 ∈ Uk implies vi ≥ u∗. Assuming yk[smax] < 1, the
sequence v0, v1, v2, . . . converges to v∞ := limi→∞ vi = xk[smax]

1−yk[smax] . We distin-

guish three cases to show that uk = min(uk−1,max(dk,maxs∈S?
xk[s]

1−yk[s])) ≥ u∗.

– If v∞ > uk−1, then also maxs∈S?
xk[s]

1−yk[s] > uk−1. Hence uk = uk−1 ≥ u∗.
– If dk ≤ v∞ ≤ uk−1, we can show that vi ≤ vi−1. It follows that for all i > 0,

vi−1 ∈ Uk, implying vi ≥ u∗. Thus we get uk = maxs∈S?
xk[s]

1−yk[s] ≥ v∞ ≥ u∗.
– If v∞ < dk then there is an i ≥ 0 with vi ≥ dk and u∗ ≤ vi+1 < dk. It follows

that uk = dk ≥ u∗.

Sound Value Iteration 657

Example 7. Reconsider the MDP M from Fig. 2(a) and goal states G = {s3, s4}.
The maximal reachability probability is attained for a scheduler that always
chooses β at state s0, which results in Prmax(♦G) = 0.5. We now illustrate how
Algorithm 2 approximates this value by sketching the first two iterations. For
the first iteration findAction yields action α at s0. We obtain:

x1[s0] = 0, x1[s1] = 0.1, x1[s2] = 0.1, y1[s0] = 0.8, y1[s1] = 0.9, y1[s2] = 0,
d1 = 0.3/(0.8 − 0.4) = 0.75, �1 = min(0, 1, 0) = 0, u1 = max(0.75, 0, 1, 0) = 1.

In the second iteration findAction yields again α for s0 and we get:

x2[s0] = 0.08, x2[s1] = 0.19, x2[s2] = 0.1, y2[s0] = 0.72, y2[s1] = 0, y2[s2] = 0,
d2 = 0.75, �2 = min(0.29, 0.19, 0.1) = 0.1, u2 = max(0.75, 0.29, 0.19, 0.1) = 0.75.

Due to the decision value we do not set the upper bound u2 to 0.29 < Prmax(♦G).

Theorem 5. Algorithm2 terminates for any MDP M, goal states G and pre-
cision ε > 0. The returned value r satisfies |r − Prmax(♦G)| ≤ ε.

The correctness of the algorithm follows from Theorem 4 and Lemma 3. Ter-
mination follows since M is contracting with respect to S0 ∪ G, implying
limk→∞ Prσ(�≤kS?) = 0. The optimizations for Algorithm1 mentioned in
Sect. 3.4 can be applied to Algorithm2 as well.

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
·101

0

1

2

3

4
·101

0 1 2 3 4
·102

0

1

2

3

4
·102

0 1 2 3 4
·103

0

1

2

3

4
·103

(a) Model checking times (in seconds).

0 1 2
·102

0

1

2

·102

0 5 10 15
·103

0

5

10

15
·103

0 1 2 3 4
·105

0

1

2

3

4
·105

0 5 10
·107

0

5

10

·107

(b) Required iterations.

Fig. 3. Comparison of sound value iteration (x-axis) and interval iteration (y-axis).

658 T. Quatmann and J.-P. Katoen

5 Experimental Evaluation

Implementation. We implemented sound value iteration for MCs and MDPs
into the model checker Storm [8]. The implementation computes reachability
probabilities and expected rewards using explicit data structures such as sparse
matrices and vectors. Moreover, Multi-objective model checking is supported,
where we straightforwardly extend the value iteration-based approach of [22] to
sound value iteration. We also implemented the optimizations given in Sect. 3.4.

The implementation is available at www.stormchecker.org.

Experimental Results. We considered a wide range of case studies including

– all MCs, MDPs, and CTMCs from the PRISM benchmark suite [23],
– several case studies from the PRISM website www.prismmodelchecker.org,
– Markov automata accompanying IMCA [24], and
– multi-objective MDPs considered in [22].

In total, 130 model and property instances were considered. For CTMCs and
Markov automata we computed (untimed) reachability probabilities or expected
rewards on the underlying MC and the underlying MDP, respectively. In all
experiments the precision parameter was given by ε = 10−6.

We compare sound value iteration (SVI) with interval iteration (II) as pre-
sented in [12,13]. We consider the Gauss-Seidel variant of the approaches and
compute initial bounds �0 and u0 as in [12]. For a better comparison we consider
the implementation of II in Storm. [21] gives a comparison with the implemen-
tation of II in PRISM. The experiments were run on a single core (2GHz) of an
HP BL685C G7 with 192GB of available memory. However, almost all experi-
ments required less than 4GB. We measured model checking times and required
iterations. All logfiles and considered benchmarks are available at [25].

Figure 3(a) depicts the model checking times for SVI (x-axis) and II (y-axis).
For better readability, the benchmarks are divided into four plots with different
scales. Triangles (�) and circles (•) indicate MC and MDP benchmarks, respec-
tively. Similarly, Fig. 3(b) shows the required iterations of the approaches. We
observe that SVI converged faster and required fewer iterations for almost all
MCs and MDPs. SVI performed particularly well on the challenging instances
where many iterations are required. Similar observations were made when com-
paring the topological variants of SVI and II. Both approaches were still com-
petitive if no a priori bounds are given to SVI. More details are given in [21].

Figure 4 indicates the model checking times of SVI and II as well as their
topological variants. For reference, we also consider standard (unsound) value
iteration (VI). The x-axis depicts the number of instances that have been solved
by the corresponding approach within the time limit indicated on the y-axis.
Hence, a point (x, y) means that for x instances the model checking time was less
or equal than y. We observe that the topological variant of SVI yielded the best
run times among all sound approaches and even competes with (unsound) VI.

www.stormchecker.org
www.prismmodelchecker.org

Sound Value Iteration 659

50 60 70 80 90 100 110 120 130

100

101

102

103

Number of solved instances

T
im

e
(s

ec
on

ds
)

II SVI topol. II topol. SVI VI

Fig. 4. Runtime comparison between different approaches.

6 Conclusion

In this paper we presented a sound variant of the value iteration algorithm which
safely approximates reachability probabilities and expected rewards in MCs and
MDPs. Experiments on a large set of benchmarks indicate that our approach is
a reasonable alternative to the recently proposed interval iteration algorithm.

References

1. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, Hoboken (1994)

2. Feinberg, E.A., Shwartz, A.: Handbook of Markov Decision Processes: Methods
and Applications. Kluwer, Dordrecht (2002)

3. Katoen, J.P.: The probabilistic model checking landscape. In: LICS, pp. 31–45.
ACM (2016)

4. Baier, C.: Probabilistic model checking. In: Dependable Software Systems Engi-
neering. NATO Science for Peace and Security Series - D: Information and Com-
munication Security, vol. 45, pp. 1–23. IOS Press (2016)

5. Etessami, K.: Analysis of probabilistic processes and automata theory. In: Hand-
book of Automata Theory. European Mathematical Society (2016, to appear)

6. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Probabilistic model checking.
In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model
Checking, pp. 963–999. Springer, Cham (2018)

7. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

660 T. Quatmann and J.-P. Katoen

8. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

9. Katoen, J., Zapreev, I.S.: Safe on-the-fly steady-state detection for time-bounded
reachability. In: QEST, pp. 301–310. IEEE Computer Society (2006)

10. Malhotra, M.: A computationally efficient technique for transient analysis of
repairable markovian systems. Perform. Eval. 24(4), 311–331 (1996)

11. Daca, P., Henzinger, T.A., Kret́ınský, J., Petrov, T.: Faster statistical model check-
ing for unbounded temporal properties. ACM Trans. Comput. Log. 18(2), 12:1–
12:25 (2017)

12. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-
ability of your model checker: interval iteration for markov decision processes.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 160–180.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 8

13. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci. 735, 111–131 (2017)

14. Dai, P., Weld, D.S., Goldsmith, J.: Topological value iteration algorithms. J. Artif.
Intell. Res. 42, 181–209 (2011)

15. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

16. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems.
Math. Oper. Res. 16(3), 580–595 (1991)

17. Giro, S.: Efficient computation of exact solutions for quantitative model checking.
In: QAPL. EPTCS, vol. 85, pp. 17–32 (2012)

18. Bauer, M.S., Mathur, U., Chadha, R., Sistla, A.P., Viswanathan, M.: Exact quan-
titative probabilistic model checking through rational search. In: FMCAD, pp.
92–99. IEEE (2017)

19. Brázdil, T., et al.: Verification of Markov decision processes using learning algo-
rithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–
114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 8

20. Haddad, S., Monmege, B.: Reachability in MDPs: refining convergence of value
iteration. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol.
8762, pp. 125–137. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11439-2 10

21. Quatmann, T., Katoen, J.P.: Sound value iteration. Technical report, CoRR
abs/1804.05001 (2018)

22. Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model
checking. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 317–
332. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-6 25

23. Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: Pro-
ceedings of QEST, pp. 203–204. IEEE CS (2012)

24. Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and anal-
ysis of markov reward automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014.
LNCS, vol. 8837, pp. 168–184. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11936-6 13

25. Quatmann, T., Katoen, J.P.: Experimental Results for Sound Value Iteration.
figshare (2018). https://doi.org/10.6084/m9.figshare.6139052

https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1007/978-3-642-33386-6_25
https://doi.org/10.1007/978-3-319-11936-6_13
https://doi.org/10.1007/978-3-319-11936-6_13
https://doi.org/10.6084/m9.figshare.6139052

Sound Value Iteration 661

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Safety-Aware Apprenticeship Learning

Weichao Zhou and Wenchao Li(B)

Department of Electrical and Computer Engineering, Boston University, Boston, USA
{zwc662,wenchao}@bu.edu

Abstract. Apprenticeship learning (AL) is a kind of Learning from
Demonstration techniques where the reward function of a Markov Deci-
sion Process (MDP) is unknown to the learning agent and the agent has
to derive a good policy by observing an expert’s demonstrations. In this
paper, we study the problem of how to make AL algorithms inherently
safe while still meeting its learning objective. We consider a setting where
the unknown reward function is assumed to be a linear combination of
a set of state features, and the safety property is specified in Probabilis-
tic Computation Tree Logic (PCTL). By embedding probabilistic model
checking inside AL, we propose a novel counterexample-guided approach
that can ensure safety while retaining performance of the learnt policy.
We demonstrate the effectiveness of our approach on several challenging
AL scenarios where safety is essential.

1 Introduction

The rapid progress of artificial intelligence (AI) comes with a growing concern
over its safety when deployed in real-life systems and situations. As highlighted in
[3], if the objective function of an AI agent is wrongly specified, then maximizing
that objective function may lead to harmful results. In addition, the objective
function or the training data may focus only on accomplishing a specific task and
ignore other aspects, such as safety constraints, of the environment. In this paper,
we propose a novel framework that combines explicit safety specification with
learning from data. We consider safety specification expressed in Probabilistic
Computation Tree Logic (PCTL) and show how probabilistic model checking
can be used to ensure safety and retain performance of a learning algorithm
known as apprenticeship learning (AL).

We consider the formulation of apprenticeship learning by Abbeel and Ng [1].
The concept of AL is closely related to reinforcement learning (RL) where an
agent learns what actions to take in an environment (known as a policy) by
maximizing some notion of long-term reward. In AL, however, the agent is not
given the reward function, but instead has to first estimate it from a set of expert
demonstrations via a technique called inverse reinforcement learning [18]. The
formulation assumes that the reward function is expressible as a linear combina-
tion of known state features. An expert demonstrates the task by maximizing this
reward function and the agent tries to derive a policy that can match the feature
expectations of the expert’s demonstrations. Apprenticeship learning can also be
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 662–680, 2018.
https://doi.org/10.1007/978-3-319-96145-3_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_38&domain=pdf

Safety-Aware Apprenticeship Learning 663

viewed as an instance of the class of techniques known as Learning from Demon-
stration (LfD). One issue with LfD is that the expert often can only demonstrate
how the task works but not how the task may fail. This is because failure may
cause irrecoverable damages to the system such as crashing a vehicle. In general,
the lack of “negative examples” can cause a heavy bias in how the learning agent
constructs the reward estimate. In fact, even if all the demonstrations are safe,
the agent may still end up learning an unsafe policy.

The key idea of this paper is to incorporate formal verification in appren-
ticeship learning. We are inspired by the line of work on formal inductive syn-
thesis [10] and counterexample-guided inductive synthesis [22]. Our approach
is also similar in spirit to the recent work on safety-constrained reinforcement
learning [11]. However, our approach uses the results of model checking in a
novel way. We consider safety specification expressed in probabilistic computa-
tion tree logic (PCTL). We employ a verification-in-the-loop approach by embed-
ding PCTL model checking as a safety checking mechanism inside the learning
phase of AL. In particular, when a learnt policy does not satisfy the PCTL for-
mula, we leverage counterexamples generated by the model checker to steer the
policy search in AL. In essence, counterexample generation can be viewed as
supplementing negative examples for the learner. Thus, the learner will try to
find a policy that not only imitates the expert’s demonstrations but also stays
away from the failure scenarios as captured by the counterexamples.

In summary, we make the following contributions in this paper.

– We propose a novel framework for incorporating formal safety guarantees in
Learning from Demonstration.

– We develop a novel algorithm called CounterExample Guided Apprenticeship
Learning (CEGAL) that combines probabilistic model checking with the
optimization-based approach of apprenticeship learning.

– We demonstrate that our approach can guarantee safety for a set of case
studies and attain performance comparable to that of using apprenticeship
learning alone.

The rest of the paper is organized as follows. Section 2 reviews background
information on apprenticeship learning and PCTL model checking. Section 3
defines the safety-aware apprenticeship learning problem and gives an overview
of our approach. Section 4 illustrates the counterexample-guided learning frame-
work. Section 5 describes the proposed algorithm in detail. Section 6 presents
a set of experimental results demonstrating the effectiveness of our approach.
Section 7 discusses related work. Section 8 concludes and offers future directions.

2 Preliminaries

2.1 Markov Decision Process and Discrete-Time Markov Chain

Markov Decision Process (MDP) is a tuple M = (S,A, T, γ, s0, R), where S
is a finite set of states; A is a set of actions; T : S × A × S → [0, 1] is a

664 W. Zhou and W. Li

transition function describing the probability of transitioning from one state
s ∈ S to another state by taking action a ∈ A in state s; R : S → R is a reward
function which maps each state s ∈ S to a real number indicating the reward
of being in state s; s0 ∈ S is the initial state; γ ∈ [0, 1) is a discount factor
which describes how future rewards attenuate when a sequence of transitions is
made. A deterministic and stationary (or memoryless) policy π : S → A for an
MDP M is a mapping from states to actions, i.e. the policy deterministically
selects what action to take solely based on the current state. In this paper, we
restrict ourselves to deterministic and stationary policy. A policy π for an MDP
M induces a Discrete-Time Markov Chain (DTMC) Mπ = (S, Tπ, s0), where
Tπ : S × S → [0, 1] is the probability of transitioning from a state s to another

state in one step. A trajectory τ = s0
Tπ(s0,s1)>0−−−−−−−−→ s1

Tπ(s1,s2)>0−−−−−−−−→ s2, . . . , is a

sequence of states where si ∈ S. The accumulated reward of τ is
∞∑

i=0

γiR(si).

The value function Vπ : S → R measures the expectation of accumulated reward

E[
∞∑

i=0

γiR(si)] starting from a state s and following policy π. An optimal policy

π for MDP M is a policy that maximizes the value function [4].

2.2 Apprenticeship Learning via Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) aims at recovering the reward function R
of M\R = (S,A, T, γ, s0) from a set of m trajectories ΓE = {τ0, τ1, . . . , τm−1}
demonstrated by an expert. Apprenticeship learning (AL) [1] assumes that the
reward function is a linear combination of state features, i.e. R(s) = ωT f(s)
where f : S → [0, 1]k is a vector of known features over states S and ω ∈ R

k is an
unknown weight vector that satisfies ||ω||2 ≤ 1. The expected features of a policy
π are the expected values of the cumulative discounted state features f(s) by fol-
lowing π on M , i.e. μπ = E[

∑∞
t=0 γtf(st)|π]. Let μE denote the expected features

of the unknown expert’s policy πE . μE can be approximated by the expected

features of expert’s m demonstrated trajectories μ̂E = 1
m

∑
τ∈ΓE

∞∑
t=0

γtf(st) if m

is large enough. With a slight abuse of notations, we use μΓ to also denote the
expected features of a set of paths Γ . Given an error bound ε, a policy π∗ is
defined to be ε-close to πE if its expected features μπ∗ satisfies ||μE −μπ∗ ||2 ≤ ε.
The expected features of a policy can be calculated by using Monte Carlo
method, value iteration or linear programming [1,4].

The algorithm proposed by Abbeel and Ng [1] starts with a random policy
π0 and its expected features μπ0 . Assuming that in iteration i, a set of i candi-
date policies Π = {π0, π1, . . . , πi−1} and their corresponding expected features
{μπ|π ∈ Π} have been found, the algorithm solves the following optimization
problem.

δ = max
ω

min
π∈Π

ωT (μ̂E − μπ) s.t. ||ω||2 ≤ 1 (1)

The optimal ω is used to find the corresponding optimal policy πi and the
expected features μπi

. If δ ≤ ε, then the algorithm terminates and πi is produced

Safety-Aware Apprenticeship Learning 665

as the output. Otherwise, μπi
is added to the set of features for the candidate

policy set Π and the algorithm continues to the next iteration.

2.3 PCTL Model Checking

Probabilistic model checking can be used to verify properties of a stochastic
system such as “is the probability that the agent reaches the unsafe area within
10 steps smaller than 5%?”. Probabilistic Computation Tree Logic (PCTL) [7]
allows for probabilistic quantification of properties. The syntax of PCTL includes
state formulas and path formulas [13]. A state formula φ asserts property of a
single state s ∈ S whereas a path formula ψ asserts property of a trajectory.

φ ::= true | li | ¬φi | φi ∧ φj | P��p∗ [ψ] (2)

ψ ::= Xφ | φ1U≤kφ2 | φ1Uφ2 (3)

where li is atomic proposition and φi, φj are state formulas; �� ∈ {≤,≥, <,>};
P��p∗ [ψ] means that the probability of generating a trajectory that satisfies for-
mula ψ is �� p∗. Xφ asserts that the next state after initial state in the trajectory
satisfies φ; φ1 U≤k φ2 asserts that φ2 is satisfied in at most k transitions and all
preceding states satisfy φ1; φ1 Uφ2 asserts that φ2 will be eventually satisfied
and all preceding states satisfy φ1. The semantics of PCTL is defined by a sat-
isfaction relation |= as follows.

s |= true iff state s ∈ S (4)
s |= φ iff state s satisfies the state formula φ (5)
τ |= ψ iff trajectory τ satisfies the path formula ψ. (6)

Additionally, |=min denotes the minimal satisfaction relation [6] between τ
and ψ. Defining pref(τ) as the set of all prefixes of trajectory τ including τ
itself, then τ |=min ψ iff (τ |= ψ) ∧ (∀τ ′ ∈ pref(τ)\τ, τ ′

� ψ). For instance,
if ψ = φ1 U≤k φ2, then for any finite trajectory τ |=min φ1U≤kφ2, only the
final state in τ satisfies φ2. Let P (τ) be the probability of transitioning along a
trajectory τ and let Γψ be the set of all finite trajectories that satisfy τ |=min ψ,
the value of PCTL property ψ is defined as P=?|s0 [ψ] =

∑
τ∈Γψ

P (τ). For a DTMC

Mπ and a state formula φ = P≤p∗ [ψ], Mπ |= φ iff P=?|s0 [ψ] ≤ p∗.
A counterexample of φ is a set cex ⊆ Γψ that satisfies

∑
τ∈cex

P (τ) > p∗.

Let P(Γ) =
∑

τ∈Γ

P (τ) be the sum of probabilities of all trajectories in a set Γ .

Let CEXφ ⊆ 2Γψ be the set of all counterexamples for a formula φ such that
(∀cex ∈ CEXφ, P(cex) > p∗) and (∀Γ ∈ 2Γψ\CEXφ, P(Γ) ≤ p∗). A minimal
counterexample is a set cex ∈ CEXφ such that ∀cex′ ∈ CEXφ, |cex| ≤ |cex′|.
By converting DTMC Mπ into a weighted directed graph, counterexample can
be found by solving a k-shortest paths (KSP) problem or a hop-constrained
KSP (HKSP) problem [6]. Alternatively, counterexamples can be found by using
Satisfiability Modulo Theory solving or mixed integer linear programming to

666 W. Zhou and W. Li

determine the minimal critical subsystems that capture the counterexamples in
Mπ [23].

A policy can also be synthesized by solving the objective min
π

P=?[ψ] for an
MDP M . This problem can be solved by linear programming or policy iteration
(and value iteration for step-bounded reachability) [14].

3 Problem Formulation and Overview

Suppose there are some unsafe states in an MDP\RM = (S,A, T, γ, s0). A
safety issue in apprenticeship learning means that an agent following the learnt
policy would have a higher probability of entering those unsafe states than it
should. There are multiple reasons that can give rise to this issue. First, it
is possible that the expert policy πE itself has a high probability of reaching
the unsafe states. Second, human experts often tend to perform only successful
demonstrations that do not highlight the unwanted situations [21]. This lack of
negative examples in the training set can cause the learning agent to be unaware
of the existence of those unsafe states.

Fig. 1. The 8 × 8 grid-world. (a) Lighter grid cells have higher rewards than the darker
ones. The two black grid cells have the lowest rewards, while the two white ones have
the highest rewards. The grid cells enclosed by red lines are considered unsafe. (b)
The blue line is an example trajectory demonstrated by the expert. (c) Only the goal
states are assigned high rewards and there is little difference between the unsafe states
and their nearby states. As a result, the learnt policy has a high probability of passing
through the unsafe states as indicated by the cyan line. (d) p∗ = 20%. The learnt policy
is optimal to a reward function that correctly assigns low rewards to the unsafe states.
(Color figure online)

We use a 8 × 8 grid-world navigation example as shown in Fig. 1 to illustrate
this problem. An agent starts from the upper-left corner and moves from cell to
cell until it reaches the lower-right corner. The ‘unsafe’ cells are enclosed by the
red lines. These represent regions that the agent should avoid. In each step, the
agent can choose to stay in current cell or move to an adjacent cell but with 20%
chance of moving randomly instead of following its decision. The goal area, the
unsafe area and the reward mapping for all states are shown in Fig. 1(a). For
each state s ∈ S, its feature vector consists of 4 radial basis feature functions
with respect to the squared Euclidean distances between s and the 4 states with
the highest or lowest rewards as shown in Fig. 1(a). In addition, a specification

Safety-Aware Apprenticeship Learning 667

Φ formalized in PCTL is used to capture the safety requirement. In (7), p∗ is
the required upper bound of the probability of reaching an unsafe state within
t = 64 steps.

Φ ::= P≤p∗ [true U≤t unsafe] (7)

Let πE be the optimal policy under the reward map shown in Fig. 1(a). The
probability of entering an unsafe region within 64 steps by following πE is 24.6%.
Now consider the scenario where the expert performs a number of demonstra-
tions by following πE . All demonstrated trajectories in this case successfully reach
the goal areas without ever passing through any of the unsafe regions. Figure 1(b)
shows a representative trajectory (in blue) among 10, 000 such demonstrated tra-
jectories. The resulting reward map by running the AL algorithm on these 10,000
demonstrations is shown in Fig. 1(c). Observe that only the goal area has been
learnt whereas the agent is oblivious to the unsafe regions (treating them in the
same way as other dark cells). In fact, the probability of reaching an unsafe state
within 64 steps with this policy turns out to be 82.6% (thus violating the safety
requirement by a large margin). To make matters worse, the value of p∗ may
be decided or revised after a policy has been learnt. In those cases, even the
original expert policy πE may be unsafe, e.g., when p∗ = 20%. Thus, we need to
adapt the original AL algorithm so that it will take into account of such safety
requirement. Figure 1(d) shows the resulting reward map learned using our pro-
posed algorithm (to be described in detail later) for p∗ = 20%. It clearly matches
well with the color differentiation in the original reward map and captures both
the goal states and the unsafe regions. This policy has an unsafe probability of
19.0%. We are now ready to state our problem.

Definition 1. The safety-aware apprenticeship learning (SafeAL)
problem is, given an MDP\R, a set of m trajectories {τ0, τ1, . . . , τm−1} demon-
strated by an expert, and a specification Φ, to learn a policy π that satisfies Φ
and is ε-close to the expert policy πE.

Remark 1. We note that a solution may not always exist for the SafeAL problem.
While the decision problem of checking whether a solution exists is of theoretical
interest, in this paper, we focus on tackling the problem of finding a policy π
that satisfies a PCTL formula Φ (if Φ is satisfiable) and whose performance is as
close to that of the expert’s as possible, i.e. we relax the condition on μπ being
ε-close to μE .

4 A Framework for Safety-Aware Learning

In this section, we describe a general framework for safety-aware learning. This
novel framework utilizes information from both the expert demonstrations and
a verifier. The proposed framework is illustrated in Fig. 2. Similar to the coun-
terexample-guided inductive synthesis (CEGIS) paradigm [22], our framework
consists of a verifier and a learner. The verifier checks if a candidate policy sat-
isfies the safety specification Φ. In case Φ is not satisfied, the verifier generates a

668 W. Zhou and W. Li

counterexample for Φ. The main difference from CEGIS is that our framework
considers not only functional correctness, e.g., safety, but also performance (as
captured by the learning objective). Starting from an initial policy π0, each time
the learner learns a new policy, the verifier checks if the specification is satis-
fied. If true, then this policy is added to the candidate set, otherwise the verifier
will generate a (minimal) counterexample and add it to the counterexample set.
During the learning phase, the learner uses both the counterexample set and
candidate set to find a policy that is close to the (unknown) expert policy and
far away from the counterexamples. The goal is to find a policy that is ε-close
to the expert policy and satisfies the specification. For the grid-world example
introduced in Sect. 3, when p∗ = 5% (thus presenting a stricter safety require-
ment compared to the expert policy πE), our approach produces a policy with
only 4.2% of reaching an unsafe state within 64 steps (with the correspondingly
inferred reward mapping shown in Fig. 1(d)).

Fig. 2. Our safety-aware learning framework. Given an initial policy π0, a specification
Φ and a learning objective (as captured by ε), the framework iterates between a verifier
and a learner to search for a policy π∗ that satisfies both Φ and ε. One invariant that
this framework maintains is that all the πi’s in the candidate policy set satisfy Φ.

Learning from a (minimal) counterexample cexπ of a policy π is similar to
learning from expert demonstrations. The basic principle of the AL algorithm
proposed in [1] is to find a weight vector ω under which the expected reward of
πE maximally outperforms any mixture of the policies in the candidate policy set
Π = {π0, π1, π2, . . .}. Thus, ω can be viewed as the normal vector of the hyper-
plane ωT (μ−μE) = 0 that has the maximal distance to the convex hull of the set
{μπ | π ∈ Π} as illustrated in the 2D feature space in Fig. 3(a). It can be shown

Safety-Aware Apprenticeship Learning 669

Fig. 3. (a) Learn from expert. (b) Learn from both expert demonstrations and coun-
terexamples.

that ωT μπ ≥ ωT μπ′ for all previously found π′s. Intuitively, this helps to move
the candidate μπ closer to μE . Similarly, we can apply the same max-margin sep-
aration principle to maximize the distance between the candidate policies and
the counterexamples (in the μ space). Let CEX = {cex0, cex1, cex2, ...} denote
the set of counterexamples of the policies that do not satisfy the specification Φ.
Maximizing the distance between the convex hulls of the sets {μcex |cex ∈ CEX}
and {μπ | π ∈ Π} is equivalent to maximizing the distance between the paral-
lel supporting hyperplanes of the two convex hulls as shown in Fig. 3(b). The
corresponding optimization function is given in Eq. (8).

δ = max
ω

min
π∈Π,cex∈CEX

ωT (μπ − μcex) s.t. ||ω||2 ≤ 1 (8)

To attain good performance similar to that of the expert, we still want to
learn from μE . Thus, the overall problem can be formulated as a multi-objective
optimization problem that combines (1) and (8) into (9).

max
ω

min
π∈Π,π̃∈Π,cex∈CEX

(ωT (μE − μπ), ωT (μπ̃ − μcex)) s.t. ||ω||2 ≤ 1 (9)

5 Counterexample-Guided Apprenticeship Learning

In this section, we introduce the CounterExample Guided Apprenticeship Learn-
ing (CEGAL) algorithm to solve the SafeAL problem. It can be viewed as a
special case of the safety-aware learning framework described in the previous
section. In addition to combining policy verification, counterexample generation
and AL, our approach uses an adaptive weighting scheme to weight the separa-
tion from μE with the separation from μcex.

max
ω

min
π∈ΠS ,π̃∈ΠS ,cex∈CEX

ωT (k(μE − μπ) + (1 − k)(μπ̃ − μcex)) (10)

s.t. ||ω||2 ≤ 1, k ∈ [0, 1]
ωT (μE − μπ) ≤ ωT (μE − μπ′), ∀π′ ∈ ΠS

ωT (μπ̃ − μcex) ≤ ωT (μπ̃′ − μcex′), ∀π̃′ ∈ ΠS ,∀cex′ ∈ CEX

670 W. Zhou and W. Li

In essence, we take a weighted-sum approach for solving the multi-objective
optimization problem (9). Assuming that ΠS = {π1, π2, π3, . . .} is a set of can-
didate policies that all satisfy Φ, CEX = {cex1, cex2, cex3, . . .} is a set of coun-
terexamples. We introduce a parameter k and change (9) into a weighted sum
optimization problem (10). Note that π and π̃ can be different. The optimal
ω solved from (10) can be used to generate a new policy πω by using algo-
rithms such as policy iteration. We use a probabilistic model checker, such as
PRISM [13], to check if πω satisfies Φ. If it does, then it will be added to ΠS .
Otherwise, a counterexample generator, such as COMICS [9], is used to generate
a (minimal) counterexample cexπω

, which will be added to CEX.

Algorithm 1. Counterexample-Guided Apprenticeship Learning (CEGAL)
1: Input:
2: M ← A partially known MDP\R; f ← A vector of feature functions
3: μE ← The expected features of expert trajectories {τ0, τ1, . . . , τm}
4: Φ ← Specification; ε ← Error bound for the expected features;
5: σ, α ∈ (0, 1) ← Error bound σ and step length α for the parameter k;
6: Initialization:
7: If ||μE − μπ0 ||2 ≤ ε, then return π0 � π0 is the initial safe policy
8: ΠS ← {π0}, CEX ← ∅ � Initialize candidate and counterexample set
9: inf ← 0, sup ← 1, k ← sup � Initialize multi-optimization parameter k

10: π1 ← Policy learnt from μE via apprenticeship learning
11: Iteration i (i ≥ 1):
12: Verifier:
13: status ← Model Checker(M, πi, Φ)
14: If status = SAT, then go to Learner
15: If status = UNSAT
16: cexπi ← Counterexample Generator(M, πi, Φ)
17: Add cexπi to CEX and solve μcexπi

, go to Learner
18: Learner:
19: If status = SAT
20: If ||μE − μπi ||2 ≤ ε, then return π∗ ← πi

21: � Terminate. πi is ε-close to πE

22: Add πi to ΠS , inf ← k, k ← sup � Update ΠS , inf and reset k
23: If status = UNSAT
24: If |k − inf | ≤ σ, then return π∗ ← argmin

π∈ΠS

||μE − μπ||2
25: � Terminate. k is too close to its lower bound.
26: k ← α · inf + (1 − α)k � Decrease k to learn for safety
27: ωi+1 ← argmax

ω
min

π∈ΠS ,π̃∈ΠS ,cex∈CEX
ωT (k(μE −μπ)+ (1− k)(μπ̃ −μcex))

28: � Note that the multi-objective optimization function recovers AL when k = 1
29: πi+1, μπi+1 ← Compute the optimal policy πi+1 and its expected features

μπi+1 for the MDP M with reward R(s) = ωT
i+1f(s)

30: Go to next iteration

Algorithm 1 describes CEGAL in detail. With a constant sup = 1 and a
variable inf ∈ [0, sup] for the upper and lower bounds respectively, the learner

Safety-Aware Apprenticeship Learning 671

determines the value of k within [inf, sup] in each iteration depending on the
outcome of the verifier and uses k in solving (10) in line 27. Like most nonlinear
optimization algorithms, this algorithm requires an initial guess, which is an
initial safe policy π0 to make ΠS nonempty. A good initial candidate would
be the maximally safe policy for example obtained using PRISM-games [15].
Without loss of generality, we assume this policy satisfies Φ. Suppose in iteration
i, an intermediate policy πi learnt by the learner in iteration i − 1 is verified to
satisfy Φ, then we increase inf to inf = k and reset k to k = sup as shown in
line 22. If πi does not satisfy Φ, then we reduce k to k = α · inf + (1 − α)k as
shown in line 26 where α ∈ (0, 1) is a step length parameter. If |k − inf | ≤ σ
and πi still does not satisfy Φ, the algorithm chooses from ΠS a best safe policy
π∗ which has the smallest margin to πE as shown in line 24. If πi satisfies Φ and
is ε-close to πE , the algorithm outputs πi as show in line 19. For the occasions
when πi satisfies Φ and inf = sup = k = 1, solving (10) is equivalent to solving
(1) as in the original AL algorithm.

Remark 2. The initial policy π0 does not have to be maximally safe, although
such a policy can be used to verify if Φ is satisfiable at all. Naively safe policies
often suffice for obtaining a safe and performant output at the end. Such a policy
can be obtained easily in many settings, e.g., in the grid-world example one safe
policy is simply staying in the initial cell. In both cases, π0 typically has very
low performance since satisfying Φ is the only requirement for it.

Theorem 1. Given an initial policy π0 that satisfies Φ, Algorithm1 is guar-
anteed to output a policy π∗, such that (1) π∗ satisfies Φ, and (2) the per-
formance of π∗ is at least as good as that of π0 when compared to πE, i.e.
‖μE − μπ∗‖2 ≤ ‖μE − μπ0‖2.

Proof Sketch. The first part of the guarantee can be proven by case splitting.
Algorithm 1 outputs π∗ either when π∗ satisfies Φ and is ε-close to πE , or when
|k − inf | ≤ σ in some iteration. In the first case, π∗ clearly satisfies Φ. In the
second case, π∗ is selected from the set ΠS which contains all the policies that
have been found to satisfy Φ so far, so π∗ satisfies Φ. For the second part of the
guarantee, the initial policy π0 is the final output π∗ if π0 satisfies Φ and is ε-
close to πE . Otherwise, π0 is added to ΠS if it satisfies Φ. During the iteration, if
|k−inf | ≤ σ in some iteration, then the final output is π∗ = argmin

π∈ΠS

||μE −μπ||2,
so it must satisfy ‖μE −μπ∗‖2 ≤ ‖μE −μπ0‖2. If a learnt policy π∗ satisfies Φ and
is ε-close to πE , then Algorithm 1 outputs π∗ without adding it to ΠS . Obviously
‖μE − μπ‖2 > ε,∀π ∈ ΠS , so ‖μE − μπ∗‖2 ≤ ‖μE − μπ0‖2.

Discussion. In the worst case, CEGAL will return the initial safe policy. However,
this can be because a policy that simultaneously satisfies Φ and is ε-close to
the expert’s demonstrations does not exist. Comparing to AL which offers no
safety guarantee and finding the maximally safe policy which has very poor
performance, CEGAL provides a principled way of guaranteeing safety while
retaining performance.

672 W. Zhou and W. Li

Convergence. Algorithm 1 is guaranteed to terminate. Let inft be the tth assigned
value of inf . After inft is given, k is decreased from k0 = sup iteratively by
ki = α · inft + (1 − α)ki−1 until either |ki − inft| ≤ σ in line 24 or a new safe
policy is found in line 18. The update of k satisfies the following equality.

|ki+1 − inft|
|ki − inft| =

α · inft + (1 − α)ki − inft

ki − inft
= 1 − α (11)

Thus, it takes no more than 1 + log1−α
σ

sup−inft
iterations for either the

algorithm to terminate in line 24 or a new safe policy to be found in line 18. If a
new safe policy is found in line 18, inf will be assigned in line 22 by the current
value of k as inft+1 = k which obviously satisfies inft+1 − inft ≥ (1−α)σ. After
the assignment of inft+1, the iterative update of k resumes. Since sup−inft ≤ 1,
the following inequality holds.

|inft+1 − sup|
|inft − sup| ≤ sup − inft − (1 − α)σ

sup − inft
≤ 1 − (1 − α)σ (12)

Obviously, starting from an initial inf = inf0 < sup, with the alternating
update of inf and k, inf will keep getting close to sup unless the algorithm
terminates as in line 24 or a safe policy ε-close to πE is found as in line 19. The
extreme case is that finally inf = sup after no more than sup−inf0

(1−α)σ updates on
inf . Then, the problem becomes AL. Therefore, the worst case of this algorithm
can have two phases. In the first phase, inf increases from inf = 0 to inf = sup.
Between each two consecutive updates (t, t + 1) on inf , there are no more than
log1−α

(1−α)σ
sup−inft

updates on k before inf is increased from inft to inft+1. Overall,
this phase takes no more than

∑

0≤i<
sup−inf0
(1−α)σ

log1−α

(1 − α)σ
sup − inf0 − i · (1 − α)σ

=
∑

0≤i< 1
(1−α)σ

log1−α

(1 − α)σ
1 − i · (1 − α)σ

(13)
iterations to reduce the multi-objective optimization problem to original appren-
ticeship learning and then the second phase begins. Since k = sup, the iteration
will stop immediately when an unsafe policy is learnt as in line 24. This phase
will not take more iterations than original AL algorithm does to converge and
the convergence result of AL is given in [1].

In each iteration, the algorithm first solves a second-order cone program-
ming (SOCP) problem (10) to learn a policy. SOCP problems can be solved in
polynomial time by interior-point (IP) methods [12]. PCTL model checking for
DTMCs can be solved in time linear in the size of the formula and polynomial in
the size of the state space [7]. Counterexample generation can be done either by
enumerating paths using the k-shortest path algorithm or determining a critical
subsystem using either a SMT formulation or mixed integer linear programming
(MILP) [23]. For the k-shortest path-based algorithm, it can be computationally
expensive sometimes to enumerate a large amount of paths (i.e. a large k) when
p∗ is large. This can be alleviated by using a smaller p∗ during calculation, which
is equivalent to considering only paths that have high probabilities.

Safety-Aware Apprenticeship Learning 673

6 Experiments

We evaluate our algorithm on three case studies: (1) grid-world, (2) cart-pole,
and (3) mountain-car. The cart-pole environment1 and the mountain-car envi-
ronment2 are obtained from OpenAI Gym. All experiments are carried out
on a quad-core i7-7700K processor running at 3.6 GHz with 16 GB of mem-
ory. Our prototype tool was implemented in Python3. The parameters are
γ = 0.99, ε = 10, σ = 10−5, α = 0.5 and the maximum number of iterations
is 50. For the OpenAI-gym experiments, in each step, the agent sends an action
to the OpenAI environment and the environment returns an observation and a
reward (0 or 1). We show that our algorithm can guarantee safety while retaining
the performance of the learnt policy compared with using AL alone.

6.1 Grid World

We first evaluate the scalability of our tool using the grid-world example. Table 1
shows the average runtime (per iteration) for the individual components of our
tool as the size of the grid-world increases. The first and second columns indicate
the size of the grid world and the resulting state space. The third column shows
the average runtime that policy iteration takes to compute an optimal policy π
for a known reward function. The forth column indicates the average runtime
that policy iteration takes to compute the expected features μ for a known policy.
The fifth column indicates the average runtime of verifying the PCTL formula
using PRISM. The last column indicates the average runtime that generating a
counterexample using COMICS.

Table 1. Average runtime per iteration in seconds.

Size Num. of states Compute π Compute μ MC Cex

8 × 8 64 0.02 0.02 1.39 0.014

16 × 16 256 0.05 0.05 1.43 0.014

32 × 32 1024 0.07 0.08 3.12 0.035

64 × 64 4096 6.52 25.88 22.877 1.59

6.2 Cart-Pole from OpenAI Gym

In the cart-pole environment as shown in Fig. 4(a), the goal is to keep the pole
on a cart from falling over as long as possible by moving the cart either to the
left or to the right in each time step. The maximum step length is t = 200. The

1 https://github.com/openai/gym/wiki/CartPole-v0.
2 https://github.com/openai/gym/wiki/MountainCar-v0.
3 https://github.com/zwc662/CAV2018.

https://github.com/openai/gym/wiki/CartPole-v0
https://github.com/openai/gym/wiki/MountainCar-v0
https://github.com/zwc662/CAV2018

674 W. Zhou and W. Li

position, velocity and angle of the cart and the pole are continuous values and
observable, but the actual dynamics of the system are unknown4.

Fig. 4. (a) The cart-pole environment. (b) The cart is at −0.3 and pole angle is −20◦.
(c) The cart is at 0.3 and pole angle is 20◦.

A maneuver is deemed unsafe if the pole angle is larger than ±20◦ while the
cart’s horizontal position is more than ±0.3 as shown in Fig. 4(b) and (c). We
formalize the safety requirement in PCTL as (14).

Φ ::= P≤p∗ [true U≤t (angle ≤ −20◦ ∧ position ≤ −0.3)
∨(angle ≥ 20◦ ∧ position ≥ 0.3)] (14)

Table 2. In the cart-pole environment, higher average steps mean better performance.
The safest policy is synthesized using PRISM-games.

MC Result Avg. Steps Num. of Iters

AL 49.1% 165 2

Safest Policy 0.0% 8 N.A.

p∗ = 30% 17.2% 121 10

p∗ = 25% 9.3% 136 14

p∗ = 20% 17.2% 122 10

p∗ = 15% 6.9% 118 22

p∗ = 10% 7.2% 136 22

p∗ = 5% 0.04% 83 50

We used 2000 demonstrations for which the pole is held upright without vio-
lating any of the safety conditions for all 200 steps in each demonstration. The
safest policy synthesized by PRISM-games is used as the initial safe policy. We
also compare the different policies learned by CEGAL for different safety thresh-
old p∗s. In Table 2, the policies are compared in terms of model checking results
4 The MDP is built from sampled data. The feature vector in each state contains

30 radial basis functions which depend on the squared Euclidean distances between
current state and other 30 states which are uniformly distributed in the state space.

Safety-Aware Apprenticeship Learning 675

(‘MC Result’) on the PCTL property in (14) using the constructed MDP, the
average steps (‘Avg. Steps’) that a policy (executed in the OpenAI environment)
can hold across 5000 rounds (the higher the better), and the number of iterations
(‘Num. of Iters’) it takes for the algorithm to terminate (either converge to an
ε-close policy, or terminate due to σ, or terminate after 50 iterations). The policy
in the first row is the result of using AL alone, which has the best performance
but also a 49.1% probability of violating the safety requirement. The safest pol-
icy as shown in the second row is always safe has almost no performance at all.
This policy simply letts the pole fall and thus does not risk moving the cart out
of the range [−0.3, 0.3]. On the other hand, it is clear that the policies learnt
using CEGAL always satisfy the safety requirement. From p∗ = 30% to 10%, the
performance of the learnt policy is comparable to that of the AL policy. How-
ever, when the safety threshold becomes very low, e.g., p∗ = 5%, the performance
of the learnt policy drops significantly. This reflects the phenomenon that the
tighter the safety condition is the less room for the agent to maneuver to achieve
a good performance.

6.3 Mountain-Car from OpenAI Gym

Our third experiment uses the mountain-car environment from OpenAI Gym.
As shown in Fig. 5(a), a car starts from the bottom of the valley and tries to
reach the mountaintop on the right as quickly as possible. In each time step
the car can perform one of the three actions, accelerating to the left, coasting,
and accelerating to the right. The agent fails if the step length reaches the
maximum (t = 66). The velocity and position of the car are continuous values
and observable while the exact dynamics are unknown5. In this game setting, the
car cannot reach the right mountaintop by simply accelerating to the right. It
has to accumulate momentum first by moving back and forth in the valley. The
safety rules we enforce are shown in Fig. 5(b). They correspond to speed limits
when the car is close to the left mountaintop or to the right mountaintop (in
case it is a cliff on the other side of the mountaintop). Similar to the previous
experiments, we considered 2000 expert demonstrations for which all of them
successfully reach the right mountaintop without violating any of the safety
conditions. The average number of steps for the expert to drive the car to the
right mountaintop is 40. We formalize the safety requirement in PCTL as (15).

Φ ::= P≤p∗ [true U≤t (speed ≤ −0.04 ∧ position ≤ −1.1)
∨(speed ≥ 0.04 ∧ position ≥ 0.5)] (15)

We compare the different policies using the same set of categories as in the
cart-pole example. The numbers are averaged over 5000 runs. As shown in the

5 The MDP is built from sampled data. The feature vector for each state contains 2
exponential functions and 18 radial basis functions which respectively depend on the
squared Euclidean distances between the current state and other 18 states which are
uniformly distributed in the state space.

676 W. Zhou and W. Li

Fig. 5. (a) The original mountain-car environment. (b) The mountain-car environment
with traffic rules: when the distance from the car to the left edge or the right edge is
shorter than 0.1, the speed of the car should be lower than 0.04.

first row, the policy learnt via AL6 has the highest probability of going over
the speed limits. We observed that this policy made the car speed up all the
way to the left mountaintop to maximize its potential energy. The safest policy
corresponds to simply staying in the bottom of the valley. The policies learnt
via CEGAL for safety threshold p∗ ranging from 60% to 50% not only have
lower probability of violating the speed limits but also achieve comparable per-
formance. As the safety threshold p∗ decreases further, the agent becomes more
conservative and it takes more time for the car to finish the task. For p∗ = 20%,
the agent never succeeds in reaching the top within 66 steps (Table 3).

Table 3. In the mountain-car environment, lower average steps mean better perfor-
mance. The safest policy is synthesized via PRISM-games.

MC Result Avg. steps Num. of Iters

Policy Learnt via AL 69.2% 54 50

Safest Policy 0.0% Fail N.A.

p∗ = 60% 43.4% 57 9

p∗ = 50% 47.2% 55 17

p∗ = 40% 29.3% 61 26

p∗ = 30% 18.9% 64 17

p∗ = 20% 4.9% Fail 40

7 Related Work

A taxonomy of AI safety problems is given in [3] where the issues of misspecified
objective or reward and insufficient or poorly curated training data are high-
lighted. There have been several attempts to address these issues from different
angles. The problem of safe exploration is studied in [8,17]. In particular, the
latter work proposes to add a safety constraint, which is evaluated by amount

6 AL did not converge to an ε-close policy in 50 iterations in this case.

Safety-Aware Apprenticeship Learning 677

of damage, to the optimization problem so that the optimal policy can maxi-
mize the return without violating the limit on the expected damage. An obvious
shortcoming of this approach is that actual failures will have to occur to properly
assess damage.

Formal methods have been applied to the problem of AI safety. In [5],
the authors propose to combine machine learning and reachability analysis for
dynamical models to achieve high performance and guarantee safety. In this
work, we focus on probabilistic models which are natural in many modern
machine learning methods. In [20], the authors propose to use formal specifi-
cation to synthesize a control policy for reinforcement learning. They consider
formal specifications captured in Linear Temporal Logic, whereas we consider
PCTL which matches better with the underlying probabilistic model. Recently,
the problem of safe reinforcement learning was explored in [2] where a moni-
tor (called shield) is used to enforce temporal logic properties either during the
learning phase or execution phase of the reinforcement learning algorithm. The
shield provides a list of safe actions each time the agent makes a decision so that
the temporal property is preserved. In [11], the authors also propose an approach
for controller synthesis in reinforcement learning. In this case, an SMT-solver is
used to find a scheduler (policy) for the synchronous product of an MDP and
a DTMC so that it satisfies both a probabilistic reachability property and an
expected cost property. Another approach that leverages PCTL model checking
is proposed in [16]. A so-called abstract Markov decision process (AMDP) model
of the environment is first built and PCTL model checking is then used to check
the satisfiability of safety specification. Our work is similar to these in spirit in
the application of formal methods. However, while the concept of AL is closely
related to reinforcement learning, an agent in the AL paradigm needs to learn a
policy from demonstrations without knowing the reward function a priori.

A distinguishing characteristic of our method is the tight integration of for-
mal verification with learning from data (apprenticeship learning in particular).
Among imitation or apprenticeship learning methods, margin based algorithms
[1,18,19] try to maximize the margin between the expert’s policy and all learnt
policies until the one with the smallest margin is produced. The apprenticeship
learning algorithm proposed by Abbeel and Ng [1] was largely motivated by the
support vector machine (SVM) in that features of expert demonstration is max-
imally separately from all features of all other candidate policies. Our algorithm
makes use of this observation when using counterexamples to steer the policy
search process. Recently, the idea of learning from failed demonstrations started
to emerge. In [21], the authors propose an IRL algorithm that can learn from
both successful and failed demonstrations. It is done by reformulating maximum
entropy algorithm in [24] to find a policy that maximally deviates from the failed
demonstrations while approaching the successful ones as much as possible. How-
ever, this entropy-based method requires obtaining many failed demonstrations
and can be very costly in practice.

Finally, our approach is inspired by the work on formal inductive synthe-
sis [10] and counterexample-guided inductive synthesis (CEGIS) [22]. These

678 W. Zhou and W. Li

frameworks typically combine a constraint-based synthesizer with a verification
oracle. In each iteration, the agent refines her hypothesis (i.e. generates a new
candidate solution) based on counterexamples provided by the oracle. Our app-
roach can be viewed as an extension of CEGIS where the objective is not just
functional correctness but also meeting certain learning criteria.

8 Conclusion and Future Work

We propose a counterexample-guided approach for combining probabilistic
model checking with apprenticeship learning to ensure safety of the appren-
ticehsip learning outcome. Our approach makes novel use of counterexamples
to steer the policy search process by reformulating the feature matching prob-
lem into a multi-objective optimization problem that additionally takes safety
into account. Our experiments indicate that the proposed approach can guar-
antee safety and retain performance for a set of benchmarks including examples
drawn from OpenAI Gym. In the future, we would like to explore other imita-
tion or apprenticeship learning algorithms and extend our techniques to those
settings.

Acknowledgement. This work is funded in part by the DARPA BRASS program
under agreement number FA8750-16-C-0043 and NSF grant CCF-1646497.

References

1. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning.
In: Proceedings of the Twenty-First International Conference on Machine Learning,
ICML 2004, p. 1. ACM, New York (2004)

2. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. CoRR, abs/1708.08611 (2017)

3. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Con-
crete problems in AI safety. CoRR, abs/1606.06565 (2016)

4. Bellman, R.: A Markovian decision process. Indiana Univ. Math. J. 6, 15 (1957)
5. Gillulay, J.H., Tomlin, C.J.: Guaranteed safe online learning of a bounded system.

In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2979–2984. IEEE (2011)

6. Han, T., Katoen, J.P., Berteun, D.: Counterexample generation in probabilistic
model checking. IEEE Trans. Softw. Eng. 35(2), 241–257 (2009)

7. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

8. Held, D., McCarthy, Z., Zhang, M., Shentu, F., Abbeel, P.: Probabilistically safe
policy transfer. CoRR, abs/1705.05394 (2017)

9. Jansen, N., Ábrahám, E., Scheffler, M., Volk, M., Vorpahl, A., Wimmer, R.,
Katoen, J., Becker, B.: The COMICS tool - computing minimal counterexamples
for discrete-time Markov chains. CoRR, abs/1206.0603 (2012)

10. Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta
Informatica 54(7), 693–726 (2017)

Safety-Aware Apprenticeship Learning 679

11. Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.-P.: Safety-constrained
reinforcement learning for MDPs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 130–146. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 8

12. Kuo, Y.-J., Mittelmann, H.D.: Interior point methods for second-order cone pro-
gramming and or applications. Comput. Optim. Appl. 28(3), 255–285 (2004)

13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46029-2 13

14. Kwiatkowska, M., Parker, D.: Automated verification and strategy synthesis for
probabilistic systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol.
8172, pp. 5–22. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-
8 2

15. Kwiatkowska, M., Parker, D., Wiltsche, C.: PRISM-games: verification and strat-
egy synthesis for stochastic multi-player games with multiple objectives. Int. J.
Softw. Tools Technol. Transfer 20, 195–210 (2017)

16. Mason, G.R., Calinescu, R.C., Kudenko, D., Banks, A.: Assured reinforcement
learning for safety-critical applications. In: Doctoral Consortium at the 10th Inter-
national Conference on Agents and Artificial Intelligence. SciTePress (2017)

17. Moldovan, T.M., Abbeel, P.: Safe exploration in Markov decision processes. arXiv
preprint arXiv:1205.4810 (2012)

18. Ng, A.Y., Russell, S.J.: Algorithms for inverse reinforcement learning. In: Pro-
ceedings of the Seventeenth International Conference on Machine Learning, ICML
2000, pp. 663–670. Morgan Kaufmann Publishers Inc., San Francisco (2000)

19. Ratliff, N.D., Bagnell, J.A., Zinkevich, M.A.: Maximum margin planning. In: Pro-
ceedings of the 23rd International Conference on Machine Learning, ICML 2006,
pp. 729–736. ACM, New York (2006)

20. Sadigh, D., Kim, E.S., Coogan, S., Sastry, S.S., Seshia, S.A.: A learning based
approach to control synthesis of Markov decision processes for linear temporal
logic specifications. CoRR, abs/1409.5486 (2014)

21. Shiarlis, K., Messias, J., Whiteson, S.: Inverse reinforcement learning from fail-
ure. In: Proceedings of the 2016 International Conference on Autonomous Agents
and Multiagent Systems, pp. 1060–1068. International Foundation for Autonomous
Agents and Multiagent Systems (2016)

22. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
sketching for finite programs. SIGOPS Oper. Syst. Rev. 40(5), 404–415 (2006)

23. Wimmer, R., Jansen, N., Ábrahám, E., Becker, B., Katoen, J.-P.: Minimal critical
subsystems for discrete-time Markov models. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 299–314. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28756-5 21

24. Ziebart, B.D., Maas, A., Bagnell, J.A., Dey, A.K.: Maximum entropy inverse rein-
forcement learning. In: Proceedings of the 23rd National Conference on Artificial
Intelligence, AAAI 2008, vol. 3, pp. 1433–1438. AAAI Press (2008)

https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1007/978-3-662-49674-9_8
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/978-3-319-02444-8_2
https://doi.org/10.1007/978-3-319-02444-8_2
http://arxiv.org/abs/1205.4810
https://doi.org/10.1007/978-3-642-28756-5_21
https://doi.org/10.1007/978-3-642-28756-5_21

680 W. Zhou and W. Li

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Deciding Probabilistic Bisimilarity
Distance One for Labelled Markov Chains

Qiyi Tang(B) and Franck van Breugel

DisCoVeri Group, York University, Toronto, Canada
{qiyitang,franck}@eecs.yorku.ca

Abstract. Probabilistic bisimilarity is an equivalence relation that cap-
tures which states of a labelled Markov chain behave the same. Since this
behavioural equivalence only identifies states that transition to states
that behave exactly the same with exactly the same probability, this
notion of equivalence is not robust. Probabilistic bisimilarity distances
provide a quantitative generalization of probabilistic bisimilarity. The
distance of states captures the similarity of their behaviour. The smaller
the distance, the more alike the states behave. In particular, states are
probabilistic bisimilar if and only if their distance is zero. This quantita-
tive notion is robust in that small changes in the transition probabilities
result in small changes in the distances.

During the last decade, several algorithms have been proposed to
approximate and compute the probabilistic bisimilarity distances. The
main result of this paper is an algorithm that decides distance one in
O(n2 + m2), where n is the number of states and m is the number of
transitions of the labelled Markov chain. The algorithm is the key new
ingredient of our algorithm to compute the distances. The state of the art
algorithm can compute distances for labelled Markov chains up to 150
states. For one such labelled Markov chain, that algorithm takes more
than 49 h. In contrast, our new algorithm only takes 13 ms. Further-
more, our algorithm can compute distances for labelled Markov chains
with more than 10,000 states in less than 50 min.

Keywords: Labelled Markov chain · Probabilistic bisimilarity
Probabilistic bisimilarity distance

1 Introduction

A behavioural equivalence captures which states of a model give rise to the same
behaviour. Bisimilarity, due to Milner [22] and Park [25], is one of the best
known behavioural equivalences. Verifying that an implementation satisfies a
specification boils down to checking that the model of the implementation gives
rise to the same behaviour as the model of the specification, that is, the models
are behavioural equivalent (see [1, Chap. 3]).

In this paper, we focus on models of probabilistic systems. These models can
capture randomized algorithms, probabilistic protocols, biological systems and
c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 681–699, 2018.
https://doi.org/10.1007/978-3-319-96145-3_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_39&domain=pdf

682 Q. Tang and F. van Breugel

many other systems in which probabilities play a central role. In particular, we
consider labelled Markov chains, that is, Markov chains the states of which are
labelled.

1 2 3 4 5 6

0 0

0

0

0

0 0

1 1 1 1 1 1

1
2

1
2

1
2 1

2
1
2

1
2

1
2

1
2 1

2
1
2

1
2

1
2 1

2

1
2

The above example shows how the behaviour of rolling a die can be mimicked
by flipping a coin, an example due to Knuth and Yao [19]. Six of the states
are labelled with the values of a die and the other states are labelled zero. In
this example, we are interested in the labels representing the value of a die.
As the reader can easily verify, the states with these labels are each reached
with probability 1

6 from the initial, top most, state. In general, labels are used
to identify particular states that have properties of interest. As a consequence,
states with different labels are not behaviourally equivalent.

Probabilistic bisimilarity, due to Larsen and Skou [21], is a key behavioural
equivalence for labelled Markov chains. As shown by Katoen et al. [16], mini-
mizing a labelled Markov chain by identifying those states that are probabilis-
tic bisimilar speeds up model checking. Probabilistic bisimilarity only identifies
those states that behave exactly the same with exactly the same probability. If,
for example, we replace the fair coin in the above example with a biased one,
then none of the states labelled with zero in the original model with the fair coin
are behaviourally equivalent to any of the states labelled with zero in the model
with the biased coin. Behavioural equivalences like probabilistic bisimilarity rely
on the transition probabilities and, as a result, are sensitive to minor changes
of those probabilities. That is, such behavioural equivalences are not robust, as
first observed by Giacalone et al. [12].

The probabilistic bisimilarity distances that we study in this paper were first
defined by Desharnais et al. in [11]. Each pair of states of a labelled Markov
chain is assigned a distance, a real number in the unit interval [0, 1]. This dis-
tance captures the similarity of the behaviour of the states. The smaller the
distance, the more alike the states behave. In particular, states have distance
zero if and only if they are probabilistic bisimilar. This provides a quantitative
generalization of probabilistic bisimilarity that is robust in that small changes
in the transition probabilities give rise to small changes in the distances. For
example, we can model a biased die by using a biased coin instead of a fair coin
in the above example. Let us assume that the odds of heads of the biased coin,
that is, going to the left, is 51

100 . A state labelled zero in the model of the fair die

Deciding Probabilistic Bisimilarity Distance One for Labelled Markov Chains 683

has a non-trivial distance, that is, a distance greater than zero and smaller than
one, to the corresponding state in the model of the biased die. For example, the
initial states have distance about 0.036. We refer the reader to [7] for a more
detailed discussion of a similar example.

As we already mentioned earlier, behavioural equivalences can be used to
verify that an implementation satisfies a specification. Similarly, the distances
can be used to check how similar an implementation is to a specification. We
also mentioned that probabilistic bisimilarity can be used to speed up model
checking. The distances can be used in a similar way, by identifying those states
that behave almost the same, that is, have a small distance (see [3,23,26]).

We focus in this paper on computing the probabilistic bisimilarity distances.
In particular, we present a decision procedure for distance one. That is, we com-
pute the set of pairs of states that have distance one. Recall that distance one
is the maximal distance and, therefore, captures that states behave very differ-
ently. States with different labels have distance one. However, also states with
the same label can have distance one, as the next example illustrates.

0 0 1

1 1
2

1

1
2

Instead of computing the set of state pairs that have distance one, we compute
the complement, that is, the set of state pairs with distance smaller than one.
Obviously, the set of state pairs with distance zero is included in this set. First,
we decide distance zero. As we mentioned earlier, distance zero coincides with
probabilistic bisimilarity. The first decision procedure for probabilistic bisimi-
larity was provided by Baier [4]. More efficient decision procedures were subse-
quently proposed by Derisavi et al. [10] and also by Valmari and Franceschinis
[30]. The latter two both run in O(m log n), where n and m are the number
of states and transitions of the labelled Markov chain. Subsequently, we use
a traversal of a directed graph derived from the labelled Markov chain. This
traversal takes O(n2 + m2).

The decision procedures for distance zero and one can be used to compute
or approximate probabilistic bisimilarity distances as indicated below.

D0

D1

SPI •

Q DI

SPPI

few non-trivial distances many non-trivial distances

small distances approximate distances

684 Q. Tang and F. van Breugel

Once we have computed the sets D0 and D1 of state pairs that have distance
zero or one, we can easily compute the number of state pairs with non-trivial
distances. If the number of non-trivial distances is small, then we can use the
simple policy iteration (SPI) algorithm due to Bacci et al. [2] to compute those
distances. Otherwise, we can either compute all distances smaller than a chosen
ε > 0 or we can approximate the distances up to some chosen accuracy α > 0.
In the former case, we first compute a query set Q of state pairs that contains
all state pairs the distances of which are at most ε. Subsequently, we apply the
simple partial policy iteration (SPPI) algorithm due to Bacci et al. [2] to compute
the distances for all state pairs in Q. In the latter case, we start with a pair of
distance functions, one being a lower-bound and the other being an upper-bound
of the probabilistic bisimilarity distances, and iteratively improve the accuracy of
those until they are α close. We call this new approximation algorithm distance
iteration (DI) as it is similar in spirit to Bellman’s value iteration [5].

Chen et al. [8] presented an algorithm to compute the distances by means of
Khachiyan’s ellipsoid method [17]. Though the algorithm is polynomial time, in
practice it is not as efficient as the policy iteration algorithms (see the examples
in [28, Sect. 8]). The state of the art algorithm to compute the probabilistic
bisimilarity distances consists of two components: D0 and SPI. To compare this
algorithm with our new algorithm consisting of the components D0, D1 and SPI,
we implemented all the components in Java and ran both implementations on
several labelled Markov chains. These labelled Markov chains model random-
ized algorithms and probabilistic protocols that are part of the distribution of
probabilistic model checkers such as PRISM [20]. Whereas the original state of
the art algorithm can handle labelled Markov chains with up to 150 states, our
new algorithm can handle more than 10,000 states. Furthermore, for one such
labelled Markov chain with 150 states, the original algorithm takes more than
49 h, whereas our new algorithm takes only 13 ms. Also, the new algorithm con-
sisting of the components D0, D1, Q and SPPI to compute only small distances
along with the new algorithm consisting of the components D0, D1 and DI to
approximate the distances give rise to even less execution times for a number of
the labelled Markov chains.

The main contributions of this paper are

– a polynomial decision procedure for distance one,
– an algorithm to compute the probabilistic bisimilarity distances,
– an algorithm to compute those probabilistic bisimilarity distances smaller

than some given ε > 0, and
– an approximation algorithm to compute the probabilistic bisimilarity dis-

tances up to some given accuracy α > 0.

Furthermore, by means of experiments we have shown that these three new
algorithms are very effective, improving significantly on the state of the art.

Deciding Probabilistic Bisimilarity Distance One for Labelled Markov Chains 685

2 Labelled Markov Chains and Probabilistic Bisimilarity
Distances

We start by reviewing the model of interest, labelled Markov chains, its most
well known behavioural equivalence, probabilistic bisimilarity due to Larsen and
Skou [21], and the probabilistic bisimilarity pseudometric due to Desharnais et
al. [11]. We denote the set of rational probability distributions on a set S by
Distr(S). For μ ∈ Distr(S), its support is defined by support(μ) = { s ∈ S |
μ(s) > 0 }. Instead of S × S, we often write S2.

Definition 1. A labelled Markov chain is a tuple 〈S,L, τ, �〉 consisting of

– a nonempty finite set S of states,
– a nonempty finite set L of labels,
– a transition function τ : S → Distr(S), and
– a labelling function � : S → L.

For the remainder of this section, we fix such a labelled Markov chain
〈S,L, τ, �〉.
Definition 2. Let μ, ν ∈ Distr(S). The set Ω(μ, ν) of couplings of μ and ν is
defined by

Ω(μ, ν) =
{

ω ∈ Distr(S2)
∣∣∣∣

∀s ∈ S :
∑

t∈S ω(s, t) = μ(s)∧
∀t ∈ S :

∑
s∈S ω(s, t) = ν(t)

}
.

Note that ω ∈ Ω(μ, ν) is a joint probability distribution with marginals μ
and ν. The following proposition will be used to prove Proposition 5.

Proposition 1. For all μ, ν ∈ Distr(S) and X ⊆ S2,

∀ω ∈ Ω(μ, ν) : support(ω) ⊆ X if and only if support(μ) × support(ν) ⊆ X.

Definition 3. An equivalence relation R ⊆ S2 is a probabilistic bisimulation
if for all (s, t) ∈ R, �(s) = �(t) and there exists ω ∈ Ω(τ(s), τ(t)) such that
support(ω) ⊆ R. Probabilistic bisimilarity, denoted ∼, is the largest probabilistic
bisimulation.

The probabilistic bisimilarity pseudometric of Desharnais et al. [11] maps
each pair of states of a labelled Markov chain to a distance, an element of the
unit interval [0, 1]. Hence, the pseudometric is a function from S2 to [0, 1], that
is, an element of [0, 1]S

2
. As we will discuss below, it can be defined as a fixed

point of the following function.

Definition 4. The function Δ : [0, 1]S
2 → [0, 1]S

2
is defined by

Δ(d)(s, t) =

⎧
⎨

⎩

1 if �(s)
= �(t)
min

ω∈Ω(τ(s),τ(t))

∑

u,v∈S

ω(u, v) d(u, v) otherwise

686 Q. Tang and F. van Breugel

Since a concave function on a convex polytope attains its minimum (see [18,
p. 260]), the above minimum exists. We will use this fact in Proposition 4, one
of the key technical results in this paper. We endow the set [0, 1]S

2
of functions

from S2 to [0, 1] with the following partial order: d � e if d(s, t) ≤ e(s, t) for
all s, t ∈ S. The set [0, 1]S

2
together with the order � form a complete lattice

(see [9, Chap. 2]). The function Δ is monotone (see [6, Sect. 3]). According to
the Knaster-Tarski fixed point theorem [29, Theorem 1], a monotone function
on a complete lattice has a least fixed point. Hence, Δ has a least fixed point,
which we denote by μ(Δ). This fixed point assigns to each pair of states their
probabilistic bisimilarity distance.

Given that μ(Δ) captures the probabilistic bisimilarity distances, we define
the following sets.

D0 = {(s, t) ∈ S2 | μ(Δ)(s, t) = 0}
D1 = {(s, t) ∈ S2 | μ(Δ)(s, t) = 1}

The probabilistic bisimilarity pseudometric μ(Δ) provides a quantitative gen-
eralization of probabilistic bisimilarity as captured by the following result by
Desharnais et al. [11, Theorem 1].

Theorem 1. D0 = { (s, t) ∈ S2 | s ∼ t }.

3 Distance One

We concluded the previous section with the characterization of D0 as the set of
state pairs that are probabilistic bisimilar. In this section we present a charac-
terization of D1 as a fixed point of the function introduced in Definition 5.

Let us consider the case that the probabilistic bisimilarity distance of states s
and t is one, that is, μ(Δ)(s, t) = 1. Then Δ(μ(Δ))(s, t) = 1. From the def-
inition of Δ, we can conclude that either �(s)
= �(t), or for all couplings
ω ∈ Ω(τ(s), τ(t)) we have support(ω) ⊆ D1.

We partition the set S2 of state pairs into

S2
0 = {(s, t) ∈ S2 | s ∼ t}

S2
1 = {(s, t) ∈ S2 | �(s)
= �(t)}

S2
? = S2 \ (S2

0 ∪ S2
1)

Hence, if μ(Δ)(s, t) = 1, then either (s, t) ∈ S2
1 , or (s, t) ∈ S2

? and for all
couplings ω ∈ Ω(τ(s), τ(t)) we have support(ω) ⊆ D1. This leads us to the
following function.

Definition 5. The function Γ : 2S2 → 2S2
is defined by

Γ (X) = S2
1 ∪ { (s, t) ∈ S2

? | ∀ω ∈ Ω(τ(s), τ(t)) : support(ω) ⊆ X }.

Proposition 2. The function Γ is monotone.

Deciding Probabilistic Bisimilarity Distance One for Labelled Markov Chains 687

Since the set 2S2
of subsets of S2 endowed with the order ⊆ is a complete

lattice (see [9, Example 2.6(2)]) and the function Γ is monotone, we can conclude
from the Knaster-Tarski fixed point theorem that Γ has a greatest fixed point,
which we denote by ν(Γ). Next, we show that D1 is a fixed point of Γ .

Proposition 3. D1 = Γ (D1).

Since we have already seen that D1 is a fixed point of Γ , we have that
D1 ⊆ ν(Γ). To conclude that D1 is the greatest fixed point of Γ , it remains to
show that ν(Γ) ⊆ D1, which is equivalent to the following.

Proposition 4. ν(Γ) \ D1 = ∅.
Proof. Towards a contradiction, assume that ν(Γ) \ D1
= ∅. Let

m = min{μ(Δ)(s, t) | (s, t) ∈ ν(Γ) \ D1}
M = {(s, t) ∈ ν(Γ) \ D1 | μ(Δ)(s, t) = m}

S2
1S2

0 M
D1

ν(Γ)

Since ν(Γ) \ D1
= ∅, we have that M
= ∅. Furthermore,

M ⊆ ν(Γ) \ D1. (1)

Since ν(Γ) \ D1 ⊆ ν(Γ), we have

M ⊆ ν(Γ) = Γ (ν(Γ)) ⊆ S2
1 ∪ S2

? . (2)

For all (s, t) ∈ M ,

(s, t) ∈ ν(Γ) ∧ (s, t)
∈ D1 [(1)]
⇒ (s, t) ∈ Γ (ν(Γ)) ∧ (s, t)
∈ S2

1

⇒ ∀ω ∈ Ω(τ(s), τ(t)) : support(ω) ⊆ ν(Γ). (3)

For each (s, t) ∈ M , let

ωs,t = argmin
ω∈Ω(τ(s),τ(t))

∑

u,v∈S

ω(u, v)μ(Δ)(u, v). (4)

We distinguish the following two cases.

688 Q. Tang and F. van Breugel

– Assume that there exists (s, t) ∈ M such that support(ωs,t) ∩ D1
= ∅. Let

p =
∑

(u,v)∈ν (Γ)∩D1

ωs,t(u, v).

By (3), we have that support(ωs,t) ⊆ ν(Γ). Since support(ωs,t) ∩ D1
= ∅
by assumption, we can conclude that p > 0. Again using the fact that
support(ωs,t) ⊆ ν(Γ), we have that

∑

(u,v)∈ν (Γ)\D1

ωs,t(u, v) = 1 − p. (5)

Furthermore,

m = μ(Δ)(s, t)
= Δ(μ(Δ))(s, t)

= min
ω∈Ω(τ(s),τ(t))

∑

u,v∈S

ω(u, v)μ(Δ)(u, v)

=
∑

u,v∈S

ωs,t(u, v)μ(Δ)(u, v) [(4)]

=
∑

(u,v)∈ν (Γ)

ωs,t(u, v)μ(Δ)(u, v) [(3)]

=
∑

(u,v)∈ν (Γ)∩D1

ωs,t(u, v)μ(Δ)(u, v) +
∑

(u,v)∈ν (Γ)\D1

ωs,t(u, v)μ(Δ)(u, v)

= p +
∑

(u,v)∈ν (Γ)\D1

ωs,t(u, v)μ(Δ)(u, v)

≥ p + (1 − p)m.

The last step follows from (5) and the fact that μ(Δ)(u, v) ≥ m for all
(u, v) ∈ ν(Γ) \ D1. From the facts that p > 0 and m ≥ p + (1 − p)m we can
conclude that m ≥ 1. This contradicts (1).

– Otherwise, support(ωs,t) ∩ D1 = ∅ for all (s, t) ∈ M . Next, we will show
that M is a probabilistic bisimulation under this assumption. From the fact
that M is a probabilistic bisimulation, we can conclude from Theorem1 that
μ(Δ)(s, t) = 0 for all (s, t) ∈ M . Hence, since M
= ∅ we have that M ∩S2

0
= ∅
which contradicts (2).
Next, we prove that M is a probabilistic bisimulation. Let (s, t) ∈ M . Since
M ⊆ ν(Γ) \ D1 by (1), we have that (s, t)
∈ D1 and, hence, Δ(μ(Δ))(s, t) =
μ(Δ)(s, t) < 1. From the definition of Δ, we can conclude that �(s) = �(t).
Since

m = μ(Δ)(s, t)

=
∑

(u,v)∈ν (Γ)\D1

ωs,t(u, v)μ(Δ)(u, v) [as above]

Deciding Probabilistic Bisimilarity Distance One for Labelled Markov Chains 689

and μ(Δ)(u, v) ≥ m for all (u, v) ∈ ν(Γ) \ D1, we can conclude that
μ(Δ)(u, v) = m for all (u, v) ∈ support(ωs,t). Hence, support(ωs,t) ⊆ M .
Therefore, M is a probabilistic bisimulation. ��

Theorem 2. D1 = ν(Γ).

Proof. Immediate consequence of Proposition 3 and 4. ��
We have shown that D1 can be characterized as the greatest fixed point of Γ .

Next, we will show that D1 can be decided in polynomial time.

Theorem 3. Distance one can be decided in O(n2 + m2).

Proof. As we will show in Theorem 5, distance smaller than one can be decided
in O(n2 + m2). Hence, distance one can be decided in O(n2 + m2) as well. ��

4 Distance Smaller Than One

To compute the set of state pairs which have distance one, we can first compute
the set of state pairs which have distance less than one. The latter set we denote
by D<1. We can then obtain D1 by taking the complement of D<1. As we will
discuss below, D<1 can be characterized as the least fixed point of the following
function.

Definition 6. The function Γ: 2S2 → 2S2
is defined by

Γ(X) = S2 \ Γ (S2 \ X).

The next theorem follows from Theorem 2.

Theorem 4. D<1 = μ(Γ).

Next, we show that the computation of D<1 can be formulated as a reach-
ability problem on a directed graph which is induced by the labelled Markov
chain. Thus, we can use standard search algorithms, for example, breadth-first
search, on the induced graph.

Next, we present the graph induced by the labelled Markov chain.

Definition 7. The directed graph G = (V,E) is defined by

V = S2
0 ∪ S2

?

E = { 〈(u, v), (s, t)〉 | τ(s)(u) > 0 ∧ τ(t)(v) > 0 }
We are left to show that in the graph G defined above, a vertex (s, t) is

reachable from some vertex in S2
0 if and only if the state pair (s, t) in the labelled

Markov chain has distance less than one.
As we have discussed earlier, if a state pair (s, t) has distance one, either s

and t have different labels, or for all couplings ω ∈ Ω(τ(s), τ(t)) we have that
support(ω) ⊆ D1. To avoid the universal quantification over couplings, we will
use Proposition 1 in the proof of following proposition.

690 Q. Tang and F. van Breugel

Proposition 5. μ(Γ) = { (s, t) | (s, t) is reachable from some (u, v) ∈ S2
0 }.

Theorem 5. Distance smaller than one can be decided in O(n2 + m2).

Proof. Distance smaller than one can be decided as follows.

1. Decide distance zero.
2. Breadth-first search of G, with the queue initially containing the pairs of

states that have distance zero.

By Theorem 4 and Proposition 5, we have that s and t have distance smaller
than one if and only if (s, t) is reachable in the directed graph G from some
(u, v) such that u and v have distance zero. These reachable state pairs can be
computed using breadth-first search, with the queue initially containing S2

0 .
Distance zero, that is, probabilistic bisimilarity, can be decided in O(m log n)

as shown by Derisavi et al. in [10]. The directed graph G has n2 vertices and m2

edges. Hence, breadth-first search takes O(n2 + m2). ��

5 Number of Non-trivial Distances

As we have already discussed earlier, distance zero captures that states behave
exactly the same, that is, they are probabilistic bisimilar, and distance one indi-
cates that states behave very differently. The remaining distances, that is, those
greater than zero and smaller than one, we call non-trivial. Being able to deter-
mine quickly the number of non-trivial distances of a labelled Markov chain
allows us to decide whether computing all these non-trivial distances (using
some policy iteration algorithm) is feasible.

To determine the number of non-trivial distances of a labelled Markov chain,
we use the following algorithm.

1. Decide distance zero.
2. Decide distance one.

As first proved by Baier [4], distance zero, that is, probabilistic bisimilarity,
can be decided in polynomial time. As we proved in Theorem3, distance one
can be decided in polynomial time as well. Hence, we can compute the number
of non-trivial distances in polynomial time.

To decide distance zero, we implemented the algorithm to decide probabilistic
bisimilarity due to Derisavi et al. [10] in Java. We also implemented our algorithm
to decide distance one, described in the proof of Theorems 3 and 5.

We applied our implementation to labelled Markov chains that model ran-
domized algorithms and probabilistic protocols. These labelled Markov chains
have been obtained from the verification tool PRISM [20]. We compute the num-
ber of non-trivial distances for two models: the randomized self-stabilising algo-
rithm due to Herman [14] and the bounded retransmission protocol by Helmink
et al. [13].

Deciding Probabilistic Bisimilarity Distance One for Labelled Markov Chains 691

For the randomized self-stabilising algorithm, the size of the labelled Markov
chain grows exponentially in the numbers of processes, N . The results for the
randomized self-stabilising algorithm are shown in the table below. As we can
see from the table, for systems up to 128 states, the algorithm runs for less than
a second. For the system with 512 states, the algorithm terminates within seven
minutes. For the case N = 3, there are only 12 non-trivial distances. The size
is so small that we can easily compute all the non-trivial distances. Section 6
will use the simple policy iteration algorithm as the next step to compute them.
The same applies to the case N = 5. For N = 7 or 9, the number of non-trivial
distances is around 11,000 and 200,000, respectively. This makes computing all
of them infeasible. Thus, instead of computing all of them, we need to find
alternative ways to handle systems with a large number of non-trivial distances.
We will discuss two alternative ways in Sects. 7 and 8. Moreover, in this example,
as |D1| = |S2

1 |, we know that all the state pairs with distance one are those that
have different labels.

N |S| D0 + D1 Non-trivial |D0| |D1| |S2
1 |

3 8 1.00 ms 12 38 14 14

5 32 6.06 ms 280 304 440 440

7 128 0.77 s 11,032 2,160 3,192 3,192

9 512 378.42 s 230,712 13,648 17,784 17,784

In the bounded retransmission protocol, there are two parameters: N denotes
the number of chunks and M the maximum allowed number of retransmissions
of each chunk. The results are shown in the table below. The algorithm can
handle systems up to 3,526 states within 11 min. In this example, there are no
non-trivial distances. As a consequence, deciding distance zero and one suffices
to compute all the distances in this case.

N M S D0 + D1 |D0| |D1| |S2
1 |

16 2 677 3.0 s 456,977 1,352 1,352

16 3 886 8.6 s 783,226 1,770 1,770

16 4 1,095 17.5 s 1,196,837 2,188 2,188

16 5 1,304 22.8 s 1,697,810 2,606 2,606

32 2 1,349 24.7 s 1,817,105 2,696 2,696

32 3 1,766 69.7 s 3,115,226 3,530 3,530

32 4 2,183 141.0 s 4,761,125 4,364 4,364

32 5 2,600 208.6 s 6,754,802 5,198 5,198

64 2 2,693 235.2 s 7,246,865 5,384 5,384

64 3 3,526 616.4 s 12,425,626 7,050 7,050

692 Q. Tang and F. van Breugel

6 All Distances

To compute all distances of a labelled Markov chain, we augment the existing
state of the art algorithm, which is based on algorithms due to Derisavi et al.
[10] (step 1) and Bacci et al. [2] (step 3), by incorporating our decision procedure
(step 2) as follows.

1. Decide distance zero.
2. Decide distance one.
3. Simple policy iteration.

Given that we not only decide distance zero, but also distance one, before
running simple policy iteration, the correctness of the simple policy iteration
algorithm in the augmented setting needs an adjusted proof.

As we already discussed in the previous section, step 1 and 2 are polynomial
time. However, step 3 may take at least exponential time in the worst case, as
we have shown in [27]. Hence, the overall algorithm is exponential time.

The first example we consider here is the synchronous leader election protocol
of Itai and Rodeh [15] which is taken from PRISM. The protocol takes the
number of processors, N , and a constant K as parameters. We compare the
running time of our new algorithm with the state of the art algorithm, that
combines algorithms due to Derisavi et al. and due to Bacci et al. The results
are shown in the table below. In this protocol, the number of non-trivial distances
is zero. Thus, our new algorithm terminates without running step 3 which is the
simple policy iteration algorithm. On the other hand, the original simple policy
iteration algorithm computes the distances of all the elements in the set D1 \S2

1 ,
the size of which is huge as can be seen from the last two columns of the table.

N K |S| D0 + SPI D0 + D1 + SPI Speed-up |D0| |D1| |S2
1 |

3 2 26 4 s 1 ms 4,281 122 554 50

3 4 147 49 h 13 ms 13,800,000 7,419 14,190 292

3 6 459 - 214 ms - 88,671 122,010 916

3 8 1,059 - 3 s - 508,851 612,630 2,116

4 2 61 812 s 3 ms 305,000 459 3, 262 120

4 4 812 - 388 ms - 145,780 513,564 1,622

4 6 3,962 - 82 s - 4,350,292 11,347,152 7,922

4 8 12,400 - 2,971 s - 46, 198,188 107,561,812 24,798

5 2 141 - 6 ms - 2,399 17,482 280

5 4 4,244 - 33 s - 3,318,662 14,692,874 8,486

6 2 335 - 25 ms - 14,327 97,898 668

The simple policy iteration algorithm can only handle a limited number of
states. For the labelled Markov chain with 26 states (N = 3 and K = 2) the
simple policy iteration algorithm takes four seconds, while our new algorithm

Deciding Probabilistic Bisimilarity Distance One for Labelled Markov Chains 693

takes one millisecond. The speed-up is more than 4,000 times. For the labelled
Markov chain with 61 states (N = 4 and K = 2), the simple policy iteration
algorithm runs in 812 s, while our new algorithm takes three milliseconds. The
speed-up of the new algorithm is 30,000 times. The biggest system the simple
policy iteration algorithm can handle is the one with 147 states (N = 3 and K =
4) and it takes more than 49 h. In contrast, our new algorithm terminates within
13 ms. That makes the new algorithm seven orders of magnitude faster than the
state of the art algorithm. This example also shows that the new algorithm can
handle systems with at least 12,400 states.

In the second example, we model two dies, one using a fair coin and the other
one using a biased coin. The goal is to compute the probabilistic bisimilarity
distance between these two dies. An implementation of the die algorithm is part
of PRISM. The resulting labelled Markov chain has 20 states.

As there are only 30 non-trivial distances, we run the simple policy iteration
algorithm as step 3. The new algorithm is about 46 times faster than the original
algorithm.

|S| D0+SPI D0 + D1 + SPI Speed-up Non-trivial |D0| |D1| |S2
1 |

20 5.55 s 0.12 s 46.25 30 20 350 198

7 Small Distances

As we have discussed in Sect. 5, for systems of which the number of non-trivial
distances is so large that computing all of them is infeasible, we have to find
alternative ways. In practice, as we only identify the state pairs with small dis-
tances, we can cut down the number of non-trivial distances by only computing
those with small distances.

To compute the non-trivial distances smaller than a positive number, ε, we
use the following algorithm.

1. Decide distance zero.
2. Decide distance one.
3. Compute the query set

Q = { (s, t) ∈ S2 \ (D0 ∪ D1) | Δ(d)(s, t) ≤ ε }
where

d(s, t) =
{

1 if (s, t) ∈ D1

0 otherwise

4. Simple partial policy iteration for Q.

The first two steps remain the same. In step 3, we compute a query set Q
that contains all state pairs with distances no greater than ε, as shown in Propo-
sition 6. In step 4, we use this set as the query set to run the simple partial policy
iteration algorithm by Bacci et al. [2].

694 Q. Tang and F. van Breugel

Proposition 6. Let d be the distance function defined in step 3. For all (s, t) ∈
S2 \ (D0 ∪ D1), if μ(Δ)(s, t) ≤ ε, then Δ(d)(s, t) ≤ ε.

Given that we not only decide distance zero, but also distance one, before
running simple partial policy iteration, the correctness of the simple partial
policy iteration algorithm in the augmented setting needs an adjusted proof.

As we have seen before, step 1 and 2 take polynomial time. In step 3, com-
puting Δ(d) corresponds to solving a minimum cost network flow problem. Such
a problem can be solved in polynomial time using, for example, Orlin’s network
simplex algorithm [24]. As we have shown in [28], step 4 takes at least expo-
nential time in the worst case. Therefore, the overall algorithm is exponential
time.

We consider the randomized quicksort algorithm, an implementation of which
is part of jpf-probabilistic [31]. The input of the algorithm is the list to be sorted.
The list of size 6 gives rise to a labelled Markov chain with 82 states. We compare
the running time of the new algorithm for small distances (D0 +D1 +Q + SPPI)
to the original algorithm (D0 + SPI) and the new algorithm presented in Sect. 6
(D0 + D1 + SPI). The original algorithm (D0 + SPI) takes about 14 h, the new
algorithm which incorporates the decision procedure of distance one takes less
than 7 h. For ε = 0.1, the new algorithm for small distances takes 57 min. This
makes it about 7 times faster than the algorithm presented in Sect. 6 and about
15 times faster than the original simple policy iteration algorithm. For ε = 0.01,
the new algorithm for small distances takes even less time, namely 41 min. As
can be seen in the table below, the total number of non-trivial distances is 2,300.
The simple partial policy iteration algorithm starts with the query set Q but
may have to compute the distances of other state pairs as well. The total number
of state pairs considered by the simple partial policy iteration algorithm can be
found in the column labelled Total.

ε D0 + D1 + Q + SPPI |Q| Total Non-trivial

0.1 57 min 96 1,002 2,300

0.01 41 min 84 842 2,300

8 Approximation Algorithm

We propose another solution to deal with a large number of non-trivial distances
by approximating the distances rather than computing the exact values. To
approximate the distances such that the approximate values differ from the exact
ones by at most α, a positive number, we use the following algorithm.

1. Decide distance zero.
2. Decide distance one.

Deciding Probabilistic Bisimilarity Distance One for Labelled Markov Chains 695

3. l(s, t) =
{

1 if (s, t) ∈ D1

0 otherwise

u(s, t) =
{

0 if (s, t) ∈ D0

1 otherwise
repeat

f o r each (s, t) ∈ S2 \ (D0 ∪ D1)
i f l(s, t)
= u(s, t)

l(s, t) = Δ(l)(s, t)
u(s, t) = Δ(u)(s, t)

u n t i l ‖l − u‖ ≤ α

Again, the first two steps remain the same. Step 3 contains the new approx-
imation algorithm called distance iteration (DI). In this step, we define two
distance functions, a lower-bound l and an upper-bound u. We repeatedly apply
Δ to these two functions until the difference of the non-trivial distances in these
two functions is smaller than the threshold α. For each state pair we end up
with an interval of at most size α in which their distance lies. To prove the algo-
rithm correct, we modify the function Δ defining the probabilistic bisimilarity
distances slightly as follows.

Definition 8. The function Δ0 : [0, 1]S
2 → [0, 1]S

2
is defined by

Δ0(d)(s, t) =
{

0 if (s, t) ∈ D0

Δ(d)(s, t) otherwise

Some properties of Δ0, which are key to the correctness proof of the above
algorithm, are collected in the following theorem.

Theorem 6.

(a) The function Δ0 is monotone.
(b) The function Δ0 is nonexpansive.
(c) μ(Δ0) = μ(Δ).
(d) μ(Δ0) = ν(Δ0).
(e) μ(Δ0) = supm∈N

Δm
0 (d0), where d0(s, t) = 0 for all s, t ∈ S.

(f) ν(Δ0) = infn∈N Δn
0 (d1), where d1(s, t) = 1 for all s, t ∈ S.

Let us use randomized quicksort introduced in Sect. 7 and the randomized
self-stabilising algorithm due to Herman [14] introduced in Sect. 5 as examples.
Recall that for the randomized self-stabilising algorithm, when N = 7, the num-
ber of non-trivial distances is 11,032, which we are not able to handle using the
simple policy iteration algorithm. We apply the approximation algorithm to this
model and the randomized quicksort example with 82 states and present the
results below. The accuracy α is set to be 0.01.

The approximation algorithm for randomized quicksort runs for about
14 min, which is about 3 to 4 times faster than the algorithm for small distances in
Sect. 7. For the randomized self-stabilising algorithm with 128 states, the approx-
imation algorithm terminates in about 54 h. Although the number of non-trivial

696 Q. Tang and F. van Breugel

distances for the randomized self-stabilising algorithm is about 5 times of that of
the randomized quicksort, the running time is more than 200 times slower. It is
unknown whether this approximation algorithm has exponential running time.

Model |S| Non-trivial D0 + D1+DI

Randomized quicksort 82 2,300 14 min

Randomized self-stabilising algorithm 128 11,032 54 h

9 Conclusion

In this paper, we have presented a decision procedure for probabilistic bisim-
ilarity distance one. This decision procedure provides the basis for three new
algorithms to compute and approximate the probabilistic bisimilarity distances
of a labelled Markov chain. The first algorithm decides distance zero, then decides
distance one, and finally uses simple policy iteration to compute the remaining
distances. As shown experimentally, this new algorithm significantly improves
the state of the art algorithm that only decides distance zero and then uses sim-
ple policy iteration. The second algorithm computes all probabilistic bisimilarity
distances that are smaller than some given upper bound, by deciding distance
zero, deciding distance one, computing a query set, and running simple partial
policy iteration for that query set. This second algorithm can handle labelled
Markov chains that have considerably more non-trivial distances than our first
algorithm. The third algorithm approximates the probabilistic bisimilarity dis-
tances up to a given accuracy, deciding distance zero, deciding distance one and
running distance iteration. Also this third algorithm can handle labelled Markov
chains that have considerably more non-trivial distances than our first algorithm.
Whereas we know that the first two algorithms take at least exponential time
in the worst case, the analysis of the running time of the third algorithm has
not yet been determined. Moreover, if we are only interested in the probabilistic
bisimilarity distances for a few state pairs, with pre-computation of distance zero
and one we can exclude the state pairs with trivial distances. We can add the
remaining state pairs to a query set and run simple partial policy iteration to
get the distances. Alternatively, we can modify the distance iteration algorithm
to approximate the distances for the predefined state pairs. The details of these
new algorithms will be studied in the future.

Acknowledgements. The authors would like to thank Daniela Petrisan, Eric Rup-
pert and Dana Scott for discussions related to this research. The authors are also
grateful to the referees for their constructive feedback.

Deciding Probabilistic Bisimilarity Distance One for Labelled Markov Chains 697

References

1. Aceto, L., Ingolfsdottir, A., Larsen, K., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, Cambridge (2003)

2. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-fly exact computation of
bisimilarity distances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS,
vol. 7795, pp. 1–15. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36742-7 1

3. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On the metric-based approxi-
mate minimization of Markov chains. In: Chatzigiannakis, I., Indyk, P., Kuhn, F.,
Muscholl, A. (eds.) Proceedings of the 44th International Colloquium on Automata,
Languages, and Programming, Warsaw, Poland, July 2017. Leibniz International
Proceedings in Informatics, vol. 80, pp. 104:1–104:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2017)

4. Baier, C.: Polynomial time algorithms for testing probabilistic bisimulation and
simulation. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp.
50–61. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5 57

5. Bellman, R.: A Markovian decision process. J. Math. Mech. 6(5), 679–684 (1957)
6. van Breugel, F.: On behavioural pseudometrics and closure ordinals. Inf. Process.

Lett. 112(18), 715–718 (2012)
7. van Breugel, F.: Probabilistic bisimilarity distances. ACM SIGLOG News 4(4),

33–51 (2017)
8. Chen, D., van Breugel, F., Worrell, J.: On the complexity of computing probabilis-

tic bisimilarity. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 437–451.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28729-9 29

9. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University
Press, Cambridge (2002)

10. Derisavi, S., Hermanns, H., Sanders, W.: Optimal state-space lumping in Markov
chains. In. Process. Lett. 87(6), 309–315 (2003)

11. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labeled
Markov systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol.
1664, pp. 258–273. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48320-9 19

12. Giacalone, A., Jou, C.-C., Smolka, S.: Algebraic reasoning for probabilistic con-
current systems. In: Proceedings of the IFIP WG 2.2/2.3 Working Conference on
Programming Concepts and Methods, Sea of Gallilee, Israel, April 1990, pp. 443–
458. North-Holland (1990)

13. Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof-checking a data link pro-
tocol. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp.
127–165. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58085-9 75

14. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990)
15. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Inf. Comput.

88(1), 60–87 (1990)
16. Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation minimisation

mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71209-1 9

17. Khachiyan, L.: A polynomial algorithm in linear programming. Sov. Math. Dokl.
20(1), 191–194 (1979)

https://doi.org/10.1007/978-3-642-36742-7_1
https://doi.org/10.1007/978-3-642-36742-7_1
https://doi.org/10.1007/3-540-61474-5_57
https://doi.org/10.1007/978-3-642-28729-9_29
https://doi.org/10.1007/3-540-48320-9_19
https://doi.org/10.1007/3-540-48320-9_19
https://doi.org/10.1007/3-540-58085-9_75
https://doi.org/10.1007/978-3-540-71209-1_9
https://doi.org/10.1007/978-3-540-71209-1_9

698 Q. Tang and F. van Breugel

18. Klee, V., Witzgall, C.: Facets and vertices of transportation polytopes. In: Dantzig,
G., Veinott, A. (eds.) Proceedings of 5th Summer Seminar on the Mathematis of
the Decision Sciences, Stanford, CA, USA, July/August 1967. Lectures in Applied
Mathematics, vol. 11, pp. 257–282. AMS (1967)

19. Knuth, D., Yao, A.: The complexity of nonuniform random number generation.
In: Traub, J. (ed.) Proceedings of a Symposium on New Directions and Recent
Results in Algorithms and Complexity, Pittsburgh, PA, USA, April 1976, pp. 375–
428. Academic Press (1976)

20. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

21. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. In: Proceedings
of the 16th Annual ACM Symposium on Principles of Programming Languages,
Austin, TX, USA, January 1989, pp. 344–352. ACM (1989)

22. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

23. Murthy, A., et al.: Approximate bisimulations for sodium channel dynamics. In:
Gilbert, D., Heiner, M. (eds.) CMSB 2012. LNCS, pp. 267–287. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-33636-2 16

24. Orlin, J.: A polynomial time primal network simplex algorithm for minimum cost
flows. Math. Program. 78(2), 109–129 (1997)

25. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

26. Sen, P., Deshpande, A., Getoor, L.: Bisimulation-based approximate lifted infer-
ence. In: Bilmes, J., Ng, A. (eds.) Proceedings of the 25th Conference on Uncer-
tainty in Artificial Intelligence, Montreal, QC, Canada, pp. 496–505. AUAI Press
(2009)

27. Tang, Q., van Breugel, F.: Computing probabilistic bisimilarity distances via policy
iteration. In: Desharnais, J., Jagadeesan, R. (eds.) Proceedings of the 27th Inter-
national Conference on Concurrency Theory, Quebec City, QC, Canada, August
2016. Leibniz International Proceedings in Informatics, vol. 59, pp. 22:1–22:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

28. Tang, Q., van Breugel, F.: Algorithms to compute probabilistic bisimilarity dis-
tances for labelled Markov chains. In: Meyer, R., Nestmann, U. (eds.) Proceedings
of the 28th International Conference on Concurrency Theory, Berlin, Germany,
September 2017. Leibniz International Proceedings in Informatics, vol. 85, pp.
27:1–27:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

29. Tarski, A.: A lattice-theoretic fixed point theorem and its applications. Pac. J.
Math. 5(2), 285–309 (1955)

30. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2 4

31. Zhang, X., van Breugel, F.: Model checking randomized algorithms with Java
PathFinder. In: Proceedings of the 7th International Conference on the Quantita-
tive Evaluation of Systems, Williamsburg, VA, USA, September 2010, pp. 157–158.
IEEE (2010)

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-642-33636-2_16
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/978-3-642-12002-2_4

Deciding Probabilistic Bisimilarity Distance One for Labelled Markov Chains 699

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

Abate, Alessandro I-270
Akshay, S. I-251
Albarghouthi, Aws I-327
Albert, Elvira II-392
Anderson, Greg I-407
Argyros, George I-427
Arndt, Hannah II-3

Backes, John II-20
Bansal, Suguman I-367, II-99
Bardin, Sébastien II-294
Barrett, Clark II-236
Bartocci, Ezio I-449, I-547
Bauer, Matthew S. II-117
Becchi, Anna I-230
Berzish, Murphy II-45
Biere, Armin I-587
Bloem, Roderick I-547
Blondin, Michael I-604
Blotsky, Dmitry II-45
Bonichon, Richard II-294
Bønneland, Frederik M. I-527
Bouajjani, Ahmed II-336, II-372
Büning, Julian II-447

Češka, Milan I-612
Chadha, Rohit II-117
Chakraborty, Supratik I-251
Chatterjee, Krishnendu II-178
Chaudhuri, Swarat II-99
Chen, Taolue II-487
Cheval, Vincent II-28
Chudnov, Andrey II-430
Collins, Nathan II-413, II-430
Cook, Byron I-38, II-430, II-467
Cordeiro, Lucas I-183
Coti, Camille II-354
Cousot, Patrick II-75

D’Antoni, Loris I-386, I-427
David, Cristina I-270
Dillig, Isil I-407
Dodds, Joey II-430
Dohrau, Jérôme II-55

Dreossi, Tommaso I-3
Dureja, Rohit II-37

Eilers, Marco I-596, II-12
Emmi, Michael I-487
Enea, Constantin I-487, II-336, II-372
Esparza, Javier I-604

Fan, Chuchu I-347
Farinier, Benjamin II-294
Fedyukovich, Grigory I-124, I-164
Feng, Yijun I-507
Finkbeiner, Bernd I-144, I-289
Frehse, Goran I-468
Fremont, Daniel J. I-307

Gacek, Andrew II-20
Ganesh, Vijay II-45, II-275
Gao, Pengfei II-157
Gao, Sicun II-219
Ghassabani, Elaheh II-20
Giacobazzi, Roberto II-75
Giacobbe, Mirco I-468
Goel, Shubham I-251
Gómez-Zamalloa, Miguel II-392
Goubault, Eric II-523
Grishchenko, Ilya I-51
Gu, Ronghui II-317
Gupta, Aarti I-124, I-164, II-136

Hahn, Christopher I-144, I-289
Hassan, Mostafa II-12
He, Jinlong II-487
Henzinger, Monika II-178
Henzinger, Thomas A. I-449, I-468
Hsu, Justin I-327
Hu, Qinheping I-386
Huffman, Brian II-430

Isabel, Miguel II-392

Jaax, Stefan I-604
Jansen, Christina II-3
Jensen, Peter Gjøl I-527

Jha, Somesh I-3
Ji, Kailiang II-372

Kabir, Ifaz II-45
Katoen, Joost-Pieter I-507, I-643, II-3
Kelmendi, Edon I-623
Kesseli, Pascal I-183, I-270
Khazem, Kareem II-467
Kolokolova, Antonina II-275
Kong, Hui I-449
Kong, Soonho II-219
Kragl, Bernhard I-79
Krämer, Julia I-623
Kremer, Steve II-28
Křetínský, Jan I-567, I-623
Kroening, Daniel I-183, I-270, II-467
Kulal, Sumith I-251

Larsen, Kim Guldstrand I-527
Li, Haokun I-507
Li, Jianwen II-37
Li, Wenchao I-662
Loitzenbauer, Veronika II-178
Lukert, Philip I-289
Luttenberger, Michael I-578

MacCárthaigh, Colm II-430
Maffei, Matteo I-51
Magill, Stephen II-430
Malik, Sharad II-136
Matheja, Christoph II-3
Mathur, Umang I-347
Matyáš, Jiří I-612
McMillan, Kenneth L. I-191, I-407
Meggendorfer, Tobias I-567
Mertens, Eric II-430
Meyer, Philipp J. I-578
Mitra, Sayan I-347
Mora, Federico II-45
Mrazek, Vojtech I-612
Mullen, Eric II-430
Müller, Peter I-596, II-12, II-55
Münger, Severin II-55
Muñiz, Marco I-527
Mutluergil, Suha Orhun II-336

Namjoshi, Kedar S. I-367
Nguyen, Huyen T. T. II-354
Nickovic, Dejan I-547

Niemetz, Aina I-587, II-236
Noll, Thomas II-3, II-447

Oraee, Simin II-178

Petrucci, Laure II-354
Pick, Lauren I-164
Pike, Lee II-413
Polgreen, Elizabeth I-270
Potet, Marie-Laure II-294
Prasad Sistla, A. II-117
Preiner, Mathias I-587, II-236
Pu, Geguang II-37
Püschel, Markus I-211
Putot, Sylvie II-523

Qadeer, Shaz I-79, II-372
Quatmann, Tim I-643

Rabe, Markus N. II-256
Rakotonirina, Itsaka II-28
Ranzato, Francesco II-75
Rasmussen, Cameron II-256
Reynolds, Andrew II-236
Robere, Robert II-275
Rodríguez, César II-354
Roeck, Franz I-547
Rozier, Kristin Yvonne II-37
Rubio, Albert II-392

Sa’ar, Yaniv I-367
Sahlmann, Lorenz II-523
Satake, Yuki I-105
Schemmel, Daniel II-447
Schneidewind, Clara I-51
Schrammel, Peter I-183
Sekanina, Lukas I-612
Seshia, Sanjit A. I-3, I-307, II-256
Shah, Shetal I-251
Sickert, Salomon I-567, I-578
Singh, Gagandeep I-211
Solar-Lezama, Armando II-219
Song, Fu II-157, II-487
Soria Dustmann, Oscar II-447
Sousa, Marcelo II-354
Srba, Jiří I-527
Stenger, Marvin I-289
Subramanyan, Pramod II-136
Summers, Alexander J. II-55

702 Author Index

Tang, Qiyi I-681
Tasiran, Serdar II-336, II-430, II-467
Tautschnig, Michael II-467
Tentrup, Leander I-289, II-256
Tinelli, Cesare II-236
Toman, Viktor II-178
Tomb, Aaron II-413, II-430
Torfah, Hazem I-144
Trtik, Marek I-183
Tullsen, Mark II-413
Tuttle, Mark R. II-467

Unno, Hiroshi I-105
Urban, Caterina II-12, II-55

van Breugel, Franck I-681
van Dijk, Tom II-198
Vardi, Moshe Y. II-37, II-99
Vasicek, Zdenek I-612
Vechev, Martin I-211
Viswanathan, Mahesh I-347, II-117
Vizel, Yakir II-136
Vojnar, Tomáš I-612

Wagner, Lucas II-20
Walther, Christoph II-505

Wang, Chao II-157
Wang, Guozhen II-487
Wang, Xinyu I-407
Wehrle, Klaus II-447
Weininger, Maximilian I-623
Westbrook, Eddy II-430
Whalen, Mike II-20
Wolf, Clifford I-587
Wu, Zhilin II-487

Xia, Bican I-507

Yahav, Eran I-27
Yan, Jun II-487
Yang, Junfeng II-317
Yang, Weikun II-136
Yuan, Xinhao II-317

Zaffanella, Enea I-230
Zhan, Naijun I-507
Zhang, Jun II-157
Zhang, Yueling I-124
Zheng, Yunhui II-45
Zhou, Weichao I-662
Ziegler, Christopher I-567

Author Index 703

	Preface
	Organization
	Contents – Part I
	Contents -- Part II
	Invited Papers
	Semantic Adversarial Deep Learning
	1 Introduction
	2 Background
	3 Attacks
	3.1 Test-Time Attacks
	3.2 Adversarial Training
	3.3 Black Box Attacks
	3.4 Defenses

	4 Semantic Adversarial Analysis and Training
	4.1 Compositional Falsification
	4.2 Semantic Training

	5 Conclusion
	References

	From Programs to Interpretable Deep Models and Back
	1 Introduction
	1.1 Motivating Tasks

	2 From Programs to Deep Models
	2.1 Representation
	2.2 Code2vec: Learning Code Embeddings
	2.3 Code2seq: Generating Sequences from Structured Representations of Code

	3 From Deep Models to Automata
	3.1 What Has a Network Learned?
	3.2 Counterexamples

	4 Conclusion
	References

	Formal Reasoning About the Security of Amazon Web Services
	1 Introduction
	2 Security of the Cloud
	3 Securing Customers in the Cloud
	4 Challenges
	5 Conclusion
	References

	Tutorials
	Foundations and Tools for the Static Analysis of Ethereum Smart Contracts
	1 Introduction
	2 Background on Ethereum
	2.1 Ethereum
	2.2 EVM Bytecode

	3 Overview on Formal Verification Approaches
	3.1 Verification
	3.2 Design
	3.3 Open Challenges

	4 Semantics
	4.1 Execution Configurations
	4.2 Small-Step Rules

	5 Security Properties
	5.1 Preliminary Notations
	5.2 Single-Entrancy

	6 Verification
	6.1 Abstract Semantics
	6.2 Abstract Configurations
	6.3 Abstract Execution Rules

	7 Verifying Security Properties
	7.1 Over-Approximating Single-Entrancy
	7.2 Examples
	7.3 Discussion

	8 Conclusion
	References

	Layered Concurrent Programs
	1 Introduction
	1.1 Related Work

	2 Concurrent Programs
	2.1 Running Example

	3 Layered Concurrent Programs
	3.1 Type Checker
	3.2 Concurrent Program Extraction
	3.3 Running Example

	4 Refinement Checking
	4.1 From Preemptive to Cooperative Semantics
	4.2 Refinement Checker Programs

	5 Conclusion
	References

	Model Checking
	Propositional Dynamic Logic for Higher-Order Functional Programs
	1 Introduction
	2 Higher-Order Traces
	2.1 Trace Semantics for Higher-Order Functional Programs

	3 Propositional Dynamic Logic over Higher-Order Traces
	4 Applications of HOT-PDL
	4.1 Dependent Refinement Types
	4.2 Stack-Based Access Control Properties

	5 HOT-PDL Model Checking
	6 Related Work
	7 Conclusion and Future Work
	References

	Syntax-Guided Termination Analysis
	1 Introduction
	2 Background and Notation
	3 Exploiting Program Syntax
	4 Proving Termination
	4.1 Synthesizing Linear Termination Arguments
	4.2 Synthesizing Lexicographic Termination Arguments

	5 Proving Non-termination
	5.1 Synthesizing Non-terminating Refinements
	5.2 Integrating Algorithms Together

	6 Evaluation
	6.1 Performance on Terminating Benchmarks
	6.2 Performance on Non-terminating Benchmarks
	6.3 Large-Scale Benchmarks

	7 Related Work
	8 Conclusion
	References

	Model Checking Quantitative Hyperproperties
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 HyperLTL
	2.2 System Model
	2.3 Automata over Infinite Words

	3 Quantitative Hyperproperties
	4 Model Checking Quantitative Hyperproperties
	4.1 Standard Model Checking Algorithm: Encoding Quantitative Hyperproperties in HyperLTL
	4.2 Counting-Based Model Checking Algorithm
	4.3 Büchi Automata for Quantitative Hyperproperties
	4.4 Counting Models of -Automata

	5 A Max#Sat-Based Approach
	5.1 Experiments

	6 Conclusion
	References

	Exploiting Synchrony and Symmetry in Relational Verification
	1 Introduction
	2 Motivating Example
	3 Background and Notation
	4 Leveraging Relational Specifications
	4.1 Synchronizing Loops
	4.2 Synchronizing Conditionals
	4.3 Discovering and Exploiting Symmetries

	5 Instantiation of Strategies in Forward Analysis
	6 Implementation and Evaluation
	6.1 Stackoverflow Benchmarks
	6.2 Modified Stackoverflow Benchmarks

	7 Related Work
	8 Conclusions and Future Work
	References

	JBMC: A Bounded Model Checking Tool for Verifying Java Bytecode
	1 Introduction
	2 JBMC: A Bounded Model Checker for Java Bytecode
	2.1 Architecture and Implementation
	2.2 Java Operational Model
	2.3 String Solver
	2.4 JBMC Usage

	3 Experimental Evaluation
	3.1 Objectives and Setup
	3.2 Results

	4 Conclusions and Future Work
	References

	Eager Abstraction for Symbolic Model Checking
	1 Introduction
	2 Preliminaries
	3 A Schema-Based Abstraction Class
	4 Example Abstractions in the Class
	5 Proof Methodology
	6 Case Studies
	7 Conclusion
	References

	Program Analysis Using Polyhedra
	Fast Numerical Program Analysis with Reinforcement Learning
	1 Introduction
	2 Reinforcement Learning for Static Analysis
	2.1 Reinforcement Learning
	2.2 Instantiation of RL to Static Analysis

	3 Polyhedra Analysis and Approximate Transformers
	3.1 Polyhedra Analysis
	3.2 Online Decomposition
	3.3 Approximating the Polyhedra Join

	4 Reinforcement Learning for Polyhedra Analysis
	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	References

	A Direct Encoding for NNC Polyhedra
	1 Introduction
	2 Preliminaries
	3 Direct Representations for NNC Polyhedra
	4 The New Conversion Algorithm
	4.1 Processing the Skeleton
	4.2 Processing the Non-skeleton
	4.3 Duality

	5 Experimental Evaluation
	6 Conclusion
	References

	Synthesis
	What's Hard About Boolean Functional Synthesis?
	1 Introduction
	2 Notations and Problem Statement
	3 Complexity-Theoretical Limits
	4 Phase 1: Efficient Polynomial-Sized Synthesis
	5 Phase 2: Counterexample-Guided Refinement
	6 Experimental Results
	7 Conclusion
	References

	Counterexample Guided Inductive Synthesis Modulo Theories
	1 Introduction
	2 Preliminaries
	2.1 The Program Synthesis Problem
	2.2 CounterExample Guided Inductive Synthesis
	2.3 DPLL(T)

	3 Motivating Example
	4 CEGIS(T)
	4.1 Overview
	4.2 CEGIS(T) with a Theory Solver Based on FM Elimination
	4.3 CEGIS(T) with an SMT-based Theory Solver

	5 Experimental Evaluation
	5.1 Implementation
	5.2 Benchmarks
	5.3 Experimental Setup
	5.4 Results
	5.5 Threats to Validity

	6 Related Work
	7 Conclusion
	References

	Synthesizing Reactive Systems from Hyperproperties
	1 Introduction
	2 Preliminaries
	3 HyperLTL Synthesis
	4 Bounded Realizability
	5 Bounded Unrealizability
	6 Evaluation
	7 Conclusion
	References

	Reactive Control Improvisation
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Synthesis Games

	3 Problem Definition
	3.1 Motivating Example
	3.2 Reactive Control Improvisation

	4 Existence of Improvisers
	4.1 Width and Realizability
	4.2 Improviser Construction: Discussion
	4.3 Improviser Construction: Details

	5 A Generic Improviser
	6 Reachability Games and DFAs
	7 Temporal Logics and Other Specifications
	8 Conclusion
	References

	Constraint-Based Synthesis of Coupling Proofs
	1 Introduction
	2 Overview and Illustration
	2.1 Introducing f-Couplings
	2.2 Simulating a Fair Coin

	3 A Proof Rule for Coupling Proofs
	3.1 Distributions and Couplings
	3.2 Program Model
	3.3 Coupled Postconditions
	3.4 Proof Rules for Uniformity and Independence

	4 Constraint-Based Formulation of Proof Rules
	4.1 Generating Logical and Probabilistic Constraints
	4.2 Constraint Transformation

	5 Dealing with Loops
	6 Implementation and Evaluation
	7 Related Work
	References

	Controller Synthesis Made Real: Reach-Avoid Specifications and Linear Dynamics
	1 Introduction
	2 Preliminaries and Problem Statement
	2.1 Discrete Time Linear Control Systems
	2.2 Bounded Controller Synthesis Problem

	3 Synthesis Algorithm
	3.1 Overview
	3.2 Synthesizing the Tracking Controller K
	3.3 Reachset Over-Approximation with Tracking Controller
	3.4 Shaping Ellipsoids for Tight Over-Approximating Hyper-rectangles
	3.5 Synthesis of Open-Loop Controller
	3.6 Synthesis Algorithm Putting It All Together

	4 RealSyn Implementation and Evaluation
	4.1 Implementation
	4.2 Evaluation

	5 Conclusion
	References

	Synthesis of Asynchronous Reactive Programs from Temporal Specifications
	1 Introduction
	2 Preliminaries
	3 Symbolic Asynchronous Synthesis
	3.1 Basic Formulations and Properties
	3.2 The Pnueli-Rosner Closure
	3.3 The Closure Automaton Construction
	3.4 Symbolic Construction

	4 Implementation and Experiments
	5 Efficiently Solvable Subclasses of LTL
	6 Conclusions and Related Work
	References

	Syntax-Guided Synthesis with Quantitative Syntactic Objectives
	1 Introduction
	2 Illustrative Example
	3 SyGuS with Quantitative Objectives
	3.1 Weights over Semirings
	3.2 Weighted Tree Grammars
	3.3 QSyGuS

	4 Solving QSyGuS Problems via Grammar Reduction
	4.1 From QSyGuS to SyGuS
	4.2 Finding an Optimal Solution

	5 Implementation and Evaluation
	5.1 Effectiveness of QSyGuS Solver
	5.2 Solving Time for Different Iterations
	5.3 Solution Weight Across Iterations
	5.4 Multi-objective Optimization

	6 Related Work
	7 Conclusion
	References

	Learning
	Learning Abstractions for Program Synthesis
	1 Introduction
	2 Illustrative Example
	3 Overall Abstraction Learning Algorithm
	4 Learning Abstract Domain Using Tree Interpolation
	5 Synthesis of Abstract Transformers
	5.1 Example Generation

	6 Soundness and Completeness
	7 Implementation and Evaluation
	7.1 Abstraction Learning
	7.2 Evaluating the Usefulness of Learned Abstractions

	8 Related Work
	9 Limitations
	10 Conclusion
	References

	The Learnability of Symbolic Automata
	1 Introduction
	2 Background
	2.1 Boolean Algebras and Symbolic Automata
	2.2 Learning Model

	3 The MAT* Algorithm
	3.1 The Classification Tree
	3.2 Building an s-FA Model
	3.3 Processing Counterexamples

	4 Correctness and Completeness of MAT*
	5 Learnable Boolean Algebras
	6 Evaluation
	6.1 Equality Algebra Learning
	6.2 BDD Algebra Learning
	6.3 s-FA Algebra Learning

	7 Related Work
	References

	Runtime Verification, Hybrid and Timed Systems
	Reachable Set Over-Approximation for Nonlinear Systems Using Piecewise Barrier Tubes
	1 Introduction
	2 Preliminaries
	3 Computing Barrier Certificates
	4 Piecewise Barrier Tubes
	4.1 Constructing an Enclosure Box
	4.2 Compute a Barrier Tube Inside a Box
	4.3 Compute Piecewise Barrier Tube

	5 Implementation and Experiments
	6 Conclusion
	References

	Space-Time Interpolants
	1 Introduction
	2 Motivating Example
	3 Hybrid Automata with Piecewise Affine Dynamics
	4 Time Abstraction Using Interval Arithmetic
	4.1 Continuous Dynamics
	4.2 Hybrid Dynamics

	5 Space Abstraction Using Support Functions
	5.1 Support Functions
	5.2 Computing Template Polyhedra

	6 Abstraction Refinement Using Space-Time Interpolants
	6.1 Halfspace Interpolation
	6.2 Time Partitioning
	6.3 Abstraction Refinement

	7 Experimental Evaluation
	8 Related Work
	9 Conclusion
	References

	Monitoring Weak Consistency
	1 Introduction
	2 Weak Consistency
	3 Minimal Visibility Extensions
	4 Efficient Monitoring of Consistency Models
	5 Empirical Results
	6 Related Work
	7 Conclusion
	References

	Monitoring CTMCs by Multi-clock Timed Automata
	1 Introduction
	2 Preliminaries
	2.1 Continuous-Time Markov Chain (CTMC)
	2.2 Deterministic Timed Automaton (DTA)
	2.3 Piecewise-Deterministic Markov Process (PDP)

	3 Reduction to the Reachability Probability of EPDP
	4 Approximating the Reachability Probability of EPDP
	4.1 Reduction to a PDE System
	4.2 Reduction to an ODE System
	4.3 Numerical Solution
	4.4 Complexity Analysis

	5 Experimental Results
	6 Concluding Remarks
	References

	Start Pruning When Time Gets Urgent: Partial Order Reduction for Timed Systems
	1 Introduction
	2 Partial Order Reduction for Timed Systems
	3 Timed-Arc Petri Nets
	3.1 Reachability Logic and Interesting Sets of Transitions

	4 Partial Order Reductions for TAPN
	5 Implementation and Experiments
	6 Conclusion
	References

	A Counting Semantics for Monitoring LTL Specifications over Finite Traces
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Counting Finitary Semantics for LTL
	4.1 Definitions
	4.2 Semantics
	4.3 Evaluation

	5 Examples
	6 Conclusion
	References

	Tools
	Rabinizer 4: From LTL to Your Favourite Deterministic Automaton
	1 Introduction
	2 Functionality
	2.1 Translations
	2.2 Verification and Synthesis

	3 Optimizations, Implementation, and Evaluation
	4 Conclusion
	References

	Strix: Explicit Reactive Synthesis Strikes Back!
	1 Introduction
	2 Design and Implementation
	3 Experimental Evaluation
	3.1 Effects of Minimization
	3.2 Synthesis of Complete AMBA AHB Arbiter
	3.3 Discussion

	References

	 BTOR2 , BtorMC and Boolector 3.0
	1 Format Description
	2 Sequential Extension
	3 Witness Format
	4 Tools
	5 Experiments
	6 Conclusion
	References

	Nagini: A Static Verifier for Python
	1 Introduction
	2 Language and Specifications
	3 Implementation
	4 Evaluation
	References

	Peregrine: A Tool for the Analysis of Population Protocols
	1 Introduction
	2 Population Protocols
	3 Analyzing Population Protocols
	References

	ADAC: Automated Design of Approximate Circuits
	1 Introduction
	2 Architecture and Implementation
	3 Evaluation, Related Works, and Applications
	References

	Probabilistic Systems
	Value Iteration for Simple Stochastic Games: Stopping Criterion and Learning Algorithm
	1 Introduction
	2 Preliminaries
	2.1 Basic Definitions
	2.2 (Bounded) Value Iteration

	3 Example
	4 Convergent Over-Approximation
	4.1 Bloated End Components Cause Non-convergence
	4.2 Static MSEC Decomposition
	4.3 Dynamic MSEC Decomposition
	4.4 Learning-Based Algorithm

	5 Experimental Results
	6 Conclusions
	References

	Sound Value Iteration
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Models and Measures
	2.2 Probabilistic Model Checking via Interval Iteration

	3 Sound Value Iteration for MCs
	3.1 Approximating Reachability Probabilities
	3.2 Extending the Value Iteration Approach
	3.3 Sound Value Iteration for Expected Rewards
	3.4 Optimizations

	4 Sound Value Iteration for MDPs
	4.1 Approximating Maximal Reachability Probabilities
	4.2 Extending the Value Iteration Approach

	5 Experimental Evaluation
	6 Conclusion
	References

	Safety-Aware Apprenticeship Learning
	1 Introduction
	2 Preliminaries
	2.1 Markov Decision Process and Discrete-Time Markov Chain
	2.2 Apprenticeship Learning via Inverse Reinforcement Learning
	2.3 PCTL Model Checking

	3 Problem Formulation and Overview
	4 A Framework for Safety-Aware Learning
	5 Counterexample-Guided Apprenticeship Learning
	6 Experiments
	6.1 Grid World
	6.2 Cart-Pole from OpenAI Gym
	6.3 Mountain-Car from OpenAI Gym

	7 Related Work
	8 Conclusion and Future Work
	References

	Deciding Probabilistic Bisimilarity Distance One for Labelled Markov Chains
	1 Introduction
	2 Labelled Markov Chains and Probabilistic Bisimilarity Distances
	3 Distance One
	4 Distance Smaller Than One
	5 Number of Non-trivial Distances
	6 All Distances
	7 Small Distances
	8 Approximation Algorithm
	9 Conclusion
	References

	Author Index

