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Abstract: Flight Maneuver Recognition (FMR) refers to the automatic recognition of a series of
aircraft flight patterns and is a key technology in many fields. The chaotic nature of its input
data and the professional complexity of the identification process make it difficult and expensive
to identify, and none of the existing models have general generalization capabilities. A general
framework is proposed in this paper, which can be used for all kinds of flight tasks, independent
of the aircraft type. We first preprocessed the raw data with unsupervised clustering method,
segmented it into maneuver sequences, then reconstructed the sequences in phase space, calculated
their approximate entropy, quantitatively characterized the sequence complexity, and distinguished
the flight maneuvers. Experiments on a real flight training dataset have shown that the framework
can quickly and correctly identify various flight maneuvers for multiple aircraft types with minimal
human intervention.

Keywords: Flight Maneuver Recognition (FMR); unsupervised clustering; phase space reconstruction

1. Introduction

Flight Maneuver, according to the standard definition given by the Federal Aviation
Administration (FAA) [1], refers to a series of flight patterns of an aircraft under the control
of the pilot. FMR as a key technology for automatic evaluation of flight technology is the
focus of research on the application of artificial intelligence in the field of flight training.
In the 1970s, for one-on-one, air-to-air combat training, NASA developed an adaptive
maneuvering logic computer program (AML) [2,3], which provides an virtual competitor
for human pilots at NASA Langley Research Center’s (LRC) Differential Maneuvering
Simulator (DMS). As AI, AML recognizes the maneuvers and intentions of the opponent
and makes the right decisions to drive the next maneuvers. In addition, the study of flight
maneuvers’ aircraft loads is an important issue in the field of flight safety involving aircraft
design, flight certification, and accident investigation, and FMR is the basic technology
for this study. Barndt G. [4] examined how the Navy could process raw parameter data
generated by HUMS to identify the maneuvers flown so as to support the structural
monitoring function in 2007. Many studies in this area have been generated since then.

Although there is also a wide demand for FMR in the field of UAV and air combat
research, due to the limitation of data sources and author’s concentration, this paper only
focuses on manned fixed-wing civil aviation training flight.

The raw data of FMR is multivariate time-series data generated from nonlinear aircraft
power system, which has typical chaotic characteristics and cannot be directly applied
to common time series analysis methods. As an artificial mechanical operating system,
the data performance of the same flight maneuver of different pilots of different types of
aircraft is very different, not to mention the influence of environmental factors such as
weather variation.

Mathematics 2022, 10, 1196. https://doi.org/10.3390/math10071196 https://www.mdpi.com/journal/mathematics
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Essentially, FMR is a multiple nonlinear time-series pattern-recognition problem [5].
Pattern-recognition problems mainly include classification and clustering.

Classification-based FMR

In the time-series classification problem, feature volume construction and classifier
design are the core problems. Time-series classification aims to take the whole time series
as input to assign a discrete label. In FMR, different maneuvers often have different lengths
due to differences in aircraft types, and the same maneuvers have different lengths due
to differences in pilot operating habits. It is more difficult than the general classification
problem owing to the inequational length of the classified time-series data, which makes it
impossible to apply the general classification algorithm directly.

In order to solve these difficulties, there are usually two approaches. First, define the
appropriate distance degree using a distance-based pattern-recognition method, such as
Dynamic Time Warping (DTW) distance [6–8], Locality Sensitive Hash (LSH) distance [9],
and Approximate Entropy [10]. The advantages of these methods are that they conform to
the basic principles of pattern recognition; the more similar the patterns are, the smaller
their distances are; and the algorithms are simple and easy to implement, do not limit
the length of the time series between patterns, and can analyze nonlinear time series.
The significant disadvantages are expensive calculation and inability to identify subtle
differences between patterns.

Second, using knowledge rules or context-dependent modeling, each sequence is rep-
resented by an equal-length and same-dimension feature vector of model parameters and
then trained and classified by a conventional classification algorithm, which is a domain-
related approach called the model-based method. In general, model-based FMR methods
can be divided into four categories: (1) feature extraction-based [11–14], (2) expert knowl-
edge rule-based [15–27], (3) probabilistic graphical model-based [28–31], and (4) neural
network-based [32–36].

(1) The main methods for feature extraction are SVD and SVM methods, combined
with least squares or hierarchical classification methods, which reduce the computational
effort by reducing the number of dimensions and compressing the data. The models are
simple and easy to train but are not complete, and they are sensitive to temporal length and
require manual prior knowledge. (2) The expert knowledge rule model method needs to
establish the artificial rule knowledge database first, then use the pattern-matching query
method to achieve recognition. The knowledge rule extraction method includes Natural
Language Processing, Genetic Algorithm, and Swarm Optimization. This type of method
is very widely used, with high recognition efficiency and correct rate, but the unavoidable
disadvantages are high labor cost; the fact that a certain model only corresponds to a certain
type of aircraft type or flight task; and the inability of the method be generalized. (3) The
probabilistic graphical model-based mainly uses hidden Markov model (HMM), Kalman
filtering, and dynamic Bayesian methods, which can not only identify but also predict
and only need a few parameters to form a complete model but cannot handle nonlinear
time series. (4) The model based on neural network work uses deep neural network
with fully supervised training method to constitute the model, with high recognition rate
and good model maturity but also with high cost of integration with labeled data and
computational complexity. Different aircraft types correspond to different models and need
to be completely retrained.

Naturally, hybrid methods combining multiple methods have also been proposed [37,38];
these methods have better recognition performance but still do not have the ability to generalize.

Clustering-based FMR

In addition, some scholars have also conducted FMR from the perspective of cluster-
ing [39–42]. These methods do not require prior knowledge with the ability to generalize.
However, the clustering results rely heavily on good temporal segmentation, and most
of the papers appearing now use manual segmentation without automatic segmentation
capability, and the clustered results still need to be interpreted by human experts and
cannot correspond automatically.

2
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In summary, it can be found that the existing literature methods all perform FMR for a
certain task of a certain aircraft model and generally have the significant disadvantages of
relying on manual expert knowledge, being unable to automatically segment, and being
difficult to generalize.

To the best of our knowledge, there is no general framework that can automatically segment
sequences and quickly discriminate between maneuvers with minimal human intervention.

This paper proposes a new general framework; the general idea is to integrate the
automatic segmentation capability of unsupervised clustering and the ability of information
entropy to distinguish sequence complexity.

This paper is organized as follows. Section 2 introduces the automatic segmentation
method of flight maneuver sequence. Section 3 introduces the automatic recognition
method of maneuver segments. Section 4 completely elaborates the overall framework of
automatic FMR processing. Section 5 covers the experimental process and experimental
results, and the conclusion is given in Section 6.

2. Sequence Segmentation

2.1. The Trend Fragmentation Algorithm

In this paper, a key parameter is selected for trend identification, and the index of
all trend segments is obtained using the slope method combined with a height change
threshold, using a sliding model with a double window.

The slope method is based on the least square method, where the sequence to be
segmented is fitted to a straight line, and the main trend of the sequence is determined by
comparing the slope of the line with a threshold size.

Set D = (y1, y2, · · · , ym)
T is a sample set, X = (x1, x2, · · · , xm)

T is the time sequence
set, Di is a subset of the samples, i = (1, 2, · · · , L), and L is the number of trend segments.
The model parameters are obtained by fitting the least squares method as in Equation (1).

ωi = (ki, bi)
T =
(

Di
T Di

)−1
Di

T ·Xi, i = (1, 2, · · · , L) (1)

The height-change threshold is used to determine long, slow-climbing, or circling
maneuvers in flight, which have small slopes and long durations and can be misjudged
based on the slope alone. The algorithm is described in Algorithm 1.

The core of Algorithm 1 is to use the sliding double window method to fit the slope to
the original data and determine the flight attitude as ascending, leveling, or descending
at that time based on the slope and use the change in attitude as the signal for automatic
sequence segmentation. The ks is slope threshold, Δs is height-change threshold, ω is fitting
matrix, F is the fixed window, S is the sliding window, Oj is the output subsequence, f is
the flag bit, and takes values in the range {‘U’, ‘L’, ‘D’}.

2.2. The Clustering Algorithm

With Algorithm 1, we obtain the trend segments, and this section will use the dynamic
clustering method ISODATA (Iterative Self Organizing Data Analysis Techniques Algo-
rithm) to complete the segment classification. ISODATA algorithm automatically selects a
number of samples as cluster centers and adjusts the class centers by sample mean iteration
in subsEquationuent calculations and realizes the adjustment of cluster center data by
merging and splitting of patterns. However, the input data are time series, so the algorithm
cannot be used directly; therefore, this paper improves the algorithm to TS-ISODATA, and
the algorithm is described as follows Algorithm 2.

For input raw data X =

⎡
⎢⎣

x11 · · · x1n
...

. . .
...

xm1 · · · xmn

⎤
⎥⎦, n parameters, m data points of the

fragment, normalized as

xij =
xij − xj,min

xj,max − xj,min
− 0.5 (2)

3
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calculate its statistics as

xi =
1
m ∑m

j=1 xij, si =
1
m

√
∑m

j=1

(
xij − xi

)2
(i = 1, 2, · · · , n) (3)

Algorithm 1 The Trend Fragmentation Algorithm.

Input : sample set D = (y1, y2, · · · , ym)
T ; time sequence set X = (x1, x2, · · · , xm)

T ;

1. Set slope threshold ks and height-change threshold Δs;
2. Initial value of fitting parameter ω = (k, b)T ;

3. Initialize the fixed window F =
(

xFstart , x2, · · · , xFend

)T , Fstart = 1, Fend = h;

4. Initialize the sliding window S =
(

xSstart , x2, · · · , xSend

)T , Sstart = 1, Send = h;
5. Initialize the output sequence Oj = (xFstart , xFend , f );

6. Read a samples subset Di =
(
ySstart , · · · , ySend

)T ; time sequence set Xi = S;
7. Least squares fitting model to obtain parameters: ωi;
8. If k ≥ ks, identifies Xi as an upward trend, set f = ‘U’;
9. Otherwise, if −ks < k < ks identifies Xi as a level trend, set f = ‘L’;
10. Otherwise, identifies Xi as a downward trend, set f = ‘D’;
11. If Xi is not a level trend, and k’s signs are unchanged, set

Fstart = Fstart, Fend = Fend + 1, Sstart = Sstart + 1, Send = Send + 1;
12. Otherwise, if k’s signs are changed, set Oj = (xFstart , xFend , f ),

Fstart = Sstart, Fend = Fstart + h, Sstart = Sstart + 1, Send = Send + 1;
13. If Xi is a level trend, set Fstart = Fstart, Fend = Fend + 1, Sstart = Sstart + 1, Send = Send + 1;

14. Least squares fitting model to obtain parameters: ωl =
(

Dl
T Dl
)−1Dl

T ·Xl ;
15. Calculate fixed window height change Δ = |kl ·(Fend − Fstart)|;
16. If |kl | > ks, set f = ‘L’, set Oj = (xFstart , xFend , f ),

Fstart = Sstart, Fend = Fstart + h, Sstart = Sstart + 1, Send = Send + 1;
17. If |kl | < ks, and Δ > Δs, set f = ‘U’ (kl > 0) or ‘D’ (kl < 0), set Oj = (xFstart , xFend , f ),

Fstart = Sstart, Fend = Fstart + h, Sstart = Sstart + 1, Send = Send + 1;
18. Otherwise, if |kl | < ks, and Δ < Δs, set

Fstart = Fstart, Fend = Fend + 1, Sstart = Sstart + 1, Send = Send + 1;
19. If Send ≥ m, end iterations; otherwise, go back to 7.

Output : O.

Algorithm 2 TS-ISODATA Algorithm.

Input : X, trend sequence O;

1. Normalized processing xij;
2. Statistics calculation xi, si;
3. Construct feature vectors y = (x1, s1, x2, s2, · · · , xn, sn)

T ;
4. Randomly select k0 samples as initial clustering centers C =

{
c1, c2, · · · , ck0

}
;

5. Calculate the distance from each sample xi to the cluster center of the k0 cluster centers and
assign it to the class with the min distance;

6. Determine whether the number of elements in each class above is less than Nmin. If so,
discard the class, make k = k − 1, and reassign the samples to the class with the min
distance;

7. For each category ci, recalculate the clustering centers ci =
1
|ci | ∑x∈xi

x;

8. If the current k ≤ 1
2 k0, split operation;

9. If the current k ≥ 2k0, merge operation;
10. Terminate if the maximum number of iterations is reached; otherwise, go back to 2.

Output: Clustering results

4
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3. Flight Maneuver Recognition

Algorithm 2 assigns the fragment to a specific class without knowing which flight
maneuvers it is. In this section, the algorithm will use phase reconstruction to reconstruct
the feature space and identify specific classes of flight maneuvers based on the principle
that different maneuvers have different approximate entropy.

3.1. Phase Space Reconstruction

Due to the superiority of PSR (phase space reconstruction) for chaotic time-series
computation [43], this paper adopts a multivariate data fusion reconstruction method
based on Bayesian estimation theory, and the main calculation steps are as follows.

3.1.1. Reconstruction Parameters

The phase space reconstruction technique has two key parameters: the dimension of
the embedding m and the delay time τ, which are determined here using the C-C method.

1. Define the correlation integral corresponding to each point y of the embedded time
series in the reconstructed phase space as in Equation (4).

C(m, N, r, t) =
2

M(M − 1) ∑
1≤i≤j≤m

θ
(
r − dij

)
(4)

dij = ‖Yi − Yj‖∞, θ(z) =
{

0, z < 0
1, z > 0

(5)

where Yi is the reconstructed phase space vector, M is the number of vectors
M = N − (m − 1)τ, m is the embedding dimension, N is the number of points of
the original time series, t is time, and θ(z) is the associative integral, a cumulative
distribution function that expresses the probability that the distance between any two
points in the phase space is less than the radius r. Here, the distance between points is
expressed as an infinite number of parameters of the difference of vectors.

2. Split the given time series into t equationual and disjoint subsequences as Equation (6),
where t is the reconstruction time delay.

x1 = {x1, xt+1, · · · , xN−t+1}, x2 = {x1, xt+2, · · · , xN−t+2}, · · · , xt = {x1, x2t, · · · , xN} (6)

3. Calculate the original sequence’s S1 and each sequence’s S2:

S1(m, N, r, t) = C(m, N, r, t)− Cm(1, N, r, t) (7)

S2(m, r, t) =
1
t

t

∑
s=1

[Cs(m, N, r, t)− Cm
s (1, r, t)] (8)

4. Select the two radiuses r with the max and min values and define the increments ΔS2:

ΔS2(m, t) = max
{

S2
(
m, rj, t

)}− min
{

S2
(
m, rj, t

)}
(9)

5. Calculate the statistics:

S2(t) =
1
16

5

∑
m=2

4

∑
j=1

S2
(
m, rj, t

)
(10)

ΔS(t) =
1
4

5

∑
m=2

ΔS(m, t) (11)

S2cor(t) = ΔS2(m, t) + |S2(m, r, t)| (12)

6. Take the value corresponding to the first zero point of S2(t) or the first minimal value
of ΔS(t) as the optimal time delay τ.

5
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7. Let the t corresponding to the global minimum of S2cor(t) be the length of the time
series window and the embedding dimension m.

3.1.2. Fusion Phase

As previously stated, the single variable delay time is τ, and the embedding dimen-
sion is m. To ensure that the multivariate is fully expanded in the same phase space
without distortion, each variable’s τ = min(τi), and m = max(mi), (i = 1, 2, · · · , r). Each
reconstructed sequence expression Xi as in Equation (13).

Xi =

⎡
⎢⎢⎢⎣

xi,1 xi,1+τ . . . xi,1+(m−1)τ
xi,2 xi,2+τ . . . xi,2+(m−1)τ

...
...

...
...

xi,M xi,M+τ . . . xi,M+(m−1)τ

⎤
⎥⎥⎥⎦, i = 1, 2, · · · , r (13)

Extract the r reconstructed sequences of the same position k out of phase points in
Equation (13) to form the fusion set Dk = [x1, x2, · · · , xr]. The specific expression is given
in Equation (14). ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x1 =
[

x1,k x1,k+τ . . . x1,k+(m−1)τ
]

x2 =
[

x2,k x2,k+τ . . . x2,k+(m−1)τ
]

...
xr =

[
xr,k xr,k+τ . . . xr,k+(m−1)τ

] (14)

Let the expression of the phase point at position k after fusion be zk, and the optimal
fusion phase point at k is obtained according to Equation (15).

p(zk|x1, x2, · · · , xr) =
p(x1, x2, · · · , xr|zk)

p(x1, x2, · · · , xr)
·p(zk) (15)

Let p(zk|x1, x2, · · · , xr) obey a normal distribution with mean z and variance δ2.
According to (16) and (17), the calculation gives (18).⎧⎪⎪⎨

⎪⎪⎩
1

σ2 =
r
∑

i=1

1
σi

2 +
1

σ0
2

z
σ2 =

r
∑

i=1

xi
σi

2 +
z0

σ0
2

(16)

γexp[−1
2

r

∑
i=1

(
xi − zk

σi

)2
− 1

2

(
zk − z0

σ0

)2
]=

1√
2πσ

exp[− 1
2

(
zk − z

σ

)2
]

(17)

z =
∑r

i=1
xi
σi

2 +
z0

σ0
2

∑r
i=1

1
σi

2 +
1

σ0
2

(18)

The final Bayesian estimate of the optimal fusion phase point at position k is obtained
as in Equation (19), where the upper and lower limits of ω are the maximum and minimum
values of the phase point, and the PSR can be completed after finding all M position
phase points.

ẑk =
∫

ω
zk

1√
2πσ

exp[−1
2

(
zk − z

σ
)2
]

dzk, ∀k = 1, 2, · · · , M (19)

3.2. Recursion Graphs and Approximate Entropy

Recursion graphs (RP) is an effective method for qualitative analysis of nonlinear
dynamical systems, which can reveal the internal state evolution process of the system by
using the image-change pattern. It is generally implemented using the Heaviside function.

6
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The black dots in the RP diagram indicate that the attractor trajectories reach the same
region of the orbit at different moments and vice versa for the white dots.

Approximate entropy can quantitatively analyze the structural complexity of nonlin-
ear systems [44] as defined in Equation (20). Different flight maneuvers generally have
different complexity and have different approximate entropy. By calculating the approx-
imate entropy and combining with the maneuvers entropy library, we can know which
maneuver it is.

ApEn(m, r) = lim
N→∞

[
Φm(r)− Φm+1(r)

]
, Φm(r) =

1
N − m + 1

N−m+1

∑
i=1

lnCm
i (r) (20)

Cm
i (r) =

1
N − m

{
d
[
Xi, Xj

]
< r
}

(21)

d
[
Xi, Xj

]
= max

k=0,1,··· ,m−1

∣∣∣xi+k − xj+k

∣∣∣ (22)

where i = (1, 2, · · · , N − m + 1), j = (1, 2, · · · , N − m + 1), and i 	= j.

4. The FMR General Framework

The general idea of the generic framework proposed in this paper is to integrate the
automatic segmentation capability of unsupervised clustering and the information entropy
capability of distinguishing sequence complexity.

First, the original input data are processed using a dynamic clustering method such
as ISODATA, and the algorithm outputs the segmented, unknown kinds of maneuver
sequences. Second, the multivariate phase space reconstruction calculation is applied to
establish the complete phase space of the dynamical system. Then, the recurrence map and
approximate entropy are calculated in the new phase space to analyze the complexity of
the sequences qualitatively and quantitatively. Finally, according to the principle that the
complexity of different kinds of maneuver sequences is different, the specific kind of the
sequence is determined based on the calculation results so as to complete the FMR. The
specific flow chart is shown in Figure 1.

In the flow chart, the raw flight data are first preprocessed to extract some of the
parameter columns. The speed, altitude, roll angle, and pitch angle form a parameter
matrix, which is involved in the unsupervised clustering calculation. Using the double-
window algorithm, the trend identification is completed by using the normal load as the
slope primitive, and the trend is used to segment the whole raw sequence into subseries
and output the index values. Based on the index values of subsequences in the previous
step, parameter fragments are extracted for each of the four parameter sequences. The
extracted four parameter fragments are fed into the C-C algorithm, and the phase space
reconstruction is performed according to the calculated minimum delay time and maximum
embedding dimension, respectively, and the phase points at the same position in these four
spaces are fused to extract the action fragments. After a comprehensive analysis of the
qualitative values of the recurrence map and the quantitative values of the approximate
entropy, the action recognition results are finally obtained.
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Figure 1. A general framework for FMR.

5. Experiments

The experimental environment is Windows 10 operating system, Anaconda develop-
ment environment, python language, and Matlab7.1 simulation platform. The visualization
tool is the three-dimensional flight path recovery system (3D-FPRS) developed by the au-
thor’s team. The system is based on the open-source CesiumJS platform and implemented
using WebGL, HTML5 technology, which can reduce the input flight raw data into 3D
dynamic visualization of flight trajectory.

The experimental raw data were obtained from CAFUC real flight training records: the
aircraft type is C172R, file name 1 log_210721ZUCK, 5724 lines; file name 2 log_210316ZUUU,
6445 lines. Due to the problem of data accuracy, 1104 rows of data in log_210721ZUCK and
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4626 rows of data in log_210316ZUUU were used during the experiment, with six columns
of data in each row, totaling 34,380 pieces of data. The total length of the experimental
sequence was 5730. The whole raw flight data are visualized as Figure 2.

 

Figure 2. The visualization of whole raw flight data (file 1 and file 2).

The speed, sideslip angle, altitude, pitch angle, roll angle, and normal overload are
considered as key data during the experiment, with other multi-column flight parameter
data participating in the feature dataprocessing.

TS-ISODATA model has six clustering parameters, and K = 7, L = 1, and I = 100 were
selected in the experiment, and the genetic algorithm was used to find θn, θS, θC. The final
optimal parameter setting values obtained are θn = 1, θS = 0.0373, and θC = 0.0043, and
the evaluation result using this set of parameter values is 6.3823. The input raw sequence
is segmented into 96 maneuver segments. The segmentation calculation process takes an
average of 76 s.

The index of the extracted motorized fragment for a particular experiment was (0, 54,
108, 162, 216, 270, 378, 432, 486, 540, 594, 648, 702, 756, 810, 864, 918, 972, 1026, 1080, 1134,
1188, 1242, 1296, 1350, 1404, 1458, 1512, 1566, 1674, 1728, 1782, 1836, 1890, 1944, 1998, 2052,
2160, 2214, 2268, 2322, 2376, 2430, 2484, 2538, 2592, 2646, 2700, 2754, 2808, 2862, 2916, 3024,
3078, 3132, 3186, 3240, 3294, 3348, 3402, 3456, 3510, 3564, 3618, 3672, 3726, 3780, 3834, 3888,
3942, 3996, 4050, 4104, 4158, 4212, 4266, 4320, 4374, 4428, 4482, 4536, 4590, 4644, 4698, 4752,
4806, 4860, 4914, 4968, 5022, 5076, 5130, 5184, 5238, 5292, 5346, 5368), where each index
number represents the specific moment when the file was imported,

The feature vector extracted according to this was (1:{−0.131, 0.108, 0.203, 0.090,
−0.039, 0.057, 0.176, 0.099, 0.203, 0.101, 0.472, 0.017},2:{0.018, 0.096, −0.042, 0.091, 0.034,
0.029, 0.074, 0.050, −0.094, 0.109, 0.164, 0.055}, . . . ,96:{0.018, 0.096, −0.042, 0.091, 0.034,
0.029, 0.074, 0.050, −0.094, 0.109, 0.164, 0.055}). The result of clustering is shown in Table 1.
The clustering calculation process takes an average of 121 s.

Table 1. TS-ISODATA clustering results.

Categories Corresponding Maneuver Segments

1 8,9,16,18,23,24,31,34,35,42,45,48,52,55,60,63,67,74,77,82,19,28,37,40,49,58,69,79
2 1,87,92,94
3 3,5,12,14,15,20,27,33,36,39,41,51,54,57,62,81,84,88,95,96,11,25,38,43,65,68,71,72,
4 4,6,22,53,50,66,73,89,91,2,7,10,13,17,21,26,29,30,44,47,32,46,56,59,61,64,70,75,83,85,76,78,80,86,90,93

9
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After preliminary expert analysis, category 4 are all transitional-level flights between
complex maneuvers, which are not significant, so this paper uses PSR method to study the
recurrence graph and approximate entropy of category 1, 2, and 3. The ApEn results are
given in Table 2.

Table 2. The ApEn value for categories 1–3.

Categories 1 2 3 4 5 6 7 8 9 10 Average

1 0.3937 0.3148 0.4985 0.3512 0.2881 0.4112 0.3309 0.2490 0.3989 0.4117 0.3648
2 0.3166 0.3594 0.4252 0.0870 0.2491 0.0408 0.0870 0.0741 0.1295 0.1922 0.1961
3 0.1346 0.0941 0.2007 0.1178 0.0953 0.1457 0.1178 0.0953 0.1419 0.0344 0.1177

Experimental results show that the dataset as a multivariate time series does fit
the chaotic nonlinear dynamical system characteristics. Similar maneuvers show similar
characteristics on the recurrence graph, with close values of approximate entropy (ApEn),
while different maneuvers vary widely. Thus, the phase space reconstruction recognition
method based on approximate entropy can distinguish the recognition of flight maneuvers,
especially complex maneuvers.

Three samples of the trace recovery visualization and recurrence map experiment are
given in Figures 3–5.

  
(a) (b) 

Figure 3. (a) Category 1 maneuver visualization reduction; (b) the maneuver’s RP and ApEn value.

 
 

(a) (b) 

Figure 4. (a) Category 2 maneuver visualization reduction; (b) the maneuver’s RP and ApEn value.
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(a) (b) 

Figure 5. (a) Category 3 maneuver visualization reduction; (b) the maneuver’s RP and ApEn value.

In order to study what exactly these three categories of maneuvers are, this paper
uses the recurrence diagrams of these three categories of maneuvers in conjunction with
the visual flight path recovery system to be able to clearly distinguish the categories of
maneuvers. As shown in Figures 3a, 4a and 5a, category 1 is Eight maneuver, category 2 is
RectangularCourse maneuver, and category 3 is Spin maneuver. Not only do these three
categories of maneuvers have different ApEn value, but their RPs also have significant
differences, which perfectly match the complexity level given by flight experts as shown in
Figures 3b, 4b and 5b. The RP and ApEn calculation process takes an average of 88 s.

The overall average time of the whole framework automatic FMR calculation process
is 285 s with 5730 raw input data.

In order to verify that the framework can be applied to multiple aircraft types,
we selected two other datasets to complete the validation experiments, which are also
from CAFUC real flight training records: aircraft types SR20 and DA42, file 3 name
log_210521_ZHCC (13,750 lines), and file 4 name log_210531_ZUUU (13,018 lines); the raw
flight data are visualized as Figure 6.

  
(a) (b) 

Figure 6. (a) File 1 visualization; (b) file 2 visualization.

In addition, in order to do comparison experiments, the project team developed an
expert validation aid tool (EVAT) as shown in Figure 7.

The system is also based on the CesiumJS platform, which can not only be reduced to
3D dynamic visualization of flight trajectory but also can display each second of temporal
parameters and mark them in sequence, helping flight experts to judge flight movements
with the naked eye.

With this tool, three flight experts made flight maneuvers judgments on the above two
experimental files and two validation files, frame by frame, respectively, and the complete
comparison results are shown in Table 3 below.
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Figure 7. Expert validation aid tool (EVAT).

Table 3. The overall experimental results.

Categories
File 1 + File 2

C172, 5730 Lines
File 3

SR20, 13,750 Lines
File 4

DA32, 13,018 Lines
Average

Number FMR Expert Accuracy (%) FMR Expert Accuracy (%) FMR Expert Accuracy (%) Accuracy

1 28 26 92.3 6 5 80 49 50 98.2 90.2
2 4 4 100 20 24 83.3 7 5 60 81.1
3 28 26 92.3 10 8 75 15 17 88.2 85.2

Time (seconds) Ratio Ratio Ratio Ratio
285 15,675 55 382 17,569 45.9 349 21,638 62 54.3

The experimental results in Table 3 show that the method in this paper can perform
FMR for three types of aircraft and different file lengths, with the highest accuracy rate
for category 1 (Eight maneuver), and the lowest accuracy rate for category 2 (Rectangular-
Course maneuver), with an overall average accuracy rate of 85.5%. The reason why the
Eight maneuver accuracy is the highest is because the maneuver is significantly different
from others, and the RectangularCourse maneuver accuracy is the lowest because the
maneuver is generally time-consuming, which is accompanied by a half-spin maneuver,
and the number of such maneuvers is small, so the recognition is not effective.

In terms of time consumption, the consumption time is related to the document
length, and overall, the recognition speed of this paper is 54.3 times faster than human
flight experts.

The comparison experiments were difficult to design and implement because none
of the other papers disclosed the datasets used, and some of the papers corresponded to
aircraft types that were fighter jets or UAVs, which differed greatly from the temporal
nature of this paper; neither did any of the other methods cover temporal segmentation
and automatic recognition. However, we still completed the recognition experiments using
the same datasets provided in this paper, files 1 and 2, and the experimental results are
shown in the following Table 4.

Table 4. The comparison experiments results.

Methods DTW [4] RF-SVM [10] Expert System [15] DBM [29] CNN-LSTM [33] Ours

Accuracy (%) 79.6 61 89.6 77 71 85.5

Time (Seconds) 314 276 656 295 489 285

From the results, we can see that under the same flight-type condition, the accuracy of
this paper’s method is second only to the expert system, and the speed is second only to
SVM, which is better than other methods in the comprehensive evaluation. More impor-
tantly, if we want to follow the aircraft model, except for this paper, all other methods have
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to retrain the model or redesign the knowledge rules, which does not have generalization
ability in practical application scenarios.

6. Conclusions

In this paper, a general framework was constructed for the first time for automated
FMR based on dynamic clustering and phase space reconstruction. The framework decom-
poses the FMR task into two parts, which are automatic maneuver sequence segmentation
and automatic maneuver class identification. The automatic maneuver sequence segmenta-
tion was implemented by the improved dynamic clustering method TS-ISODATA, which
solves the problem of self-organized iterative clustering of multivariate time series and suc-
cessfully segments the input data into multiple segments and automatically clusters them
into four classes. Due to the chaotic nature of the flight dynamics system, the automatic
recognition of maneuver categories partially reconstructs the phase space of multivariate
fusion, transforms the representational dimensional change patterns of flight maneuvers
that are difficult to organize into attractive subsequences that are easy to identify, and
generates recursive graphs from them to calculate ApEn values that can characterize the
complexity of maneuvers. With the help of a visual 3D flight-track reduction system, the
flight maneuver categories are easily identified. With an input sequence of 5000 s, the entire
framework computation process takes an average of 285 s, which is 54 times faster than
human expert recognition, with an overall accuracy rate of 85.5%.

In the next step, the entropy corresponding to different flight actions can be solidified
so as to form an automatic identification library for fast and automatic classification output.
This step requires collecting a large number of samples of a particular flight maneuver
and deriving a reasonable range of approximate entropy values through a large number
of experiments, and the range of values among the maneuvers should not overlap to
avoid duality. According to different entropy value ranges corresponding to different
aircraft maneuvers categories, automatic identification rules were established to realize
the final automatic output of flight maneuvers. For maneuvers with close approximate
entropy values and little difference, the complexity of the recurrence graph should be
considered, and the difference enhancement of information entropy should be designed to
further strengthen the difference between maneuvers. In addition, as a pattern-recognition
category, although the method in this paper has better generalization ability and does not
require pre-training, it is computationally intensive and time-consuming and cannot realize
online real-time recognition. At this stage, it can only be used for post-flight analysis to
support the next application, such as flight technology scoring based on a specific flight
maneuver and post-accident investigation after a flight accident. In the future, the principle
of the method can be explored in depth to simplify the computation process.
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Abstract: Climate disasters such as floods and droughts often bring heavy losses to human life, na-
tional economy, and public safety. El Niño/Southern Oscillation (ENSO) is one of the most important
inter-annual climate signals in the tropics and has a global impact on atmospheric circulation and
precipitation. To address the impact of climate change, accurate ENSO forecasts can help prevent
related climate disasters. Traditional prediction methods mainly include statistical methods and
dynamic methods. However, due to the variability and diversity of the temporal and spatial evolution
of ENSO, traditional methods still have great uncertainty in predicting ENSO. In recent years, with
the rapid development of artificial intelligence technology, it has gradually penetrated into all aspects
of people’s lives, and the climate field has also benefited. For example, deep learning methods in
artificial intelligence can automatically learn and train from a large amount of sample data, obtain
excellent feature representation, and effectively improve the performance of various learning tasks.
It is widely used in computer vision, natural language processing, and other fields. In 2019, Ham
et al. used a convolutional neural network (CNN) model in ENSO forecasting 18 months in advance,
and the winter ENSO forecasting skill could reach 0.64, far exceeding the dynamic model with a
forecasting skill of 0.5. The research results were regarded as the pioneering work of deep learning in
the field of weather forecasting. This paper introduces the traditional ENSO forecasting methods and
focuses on summarizing the various latest artificial intelligence methods and their forecasting effects
for ENSO forecasting, so as to provide useful reference for future research by researchers.

Keywords: climate disasters; ENSO forecasting; artificial intelligence; machine learning; deep learning

MSC: 68-xx; 68-11

1. Introduction

Climate change is a difficult problem facing the world today, and it affects people’s
production and life to a large extent. The most prominent El Niño-Southern Oscillation
(ENSO) phenomenon is the most important interannual signal of short-term climate change
on the earth [1]. It will have a great impact on the climate, environment, and socio-
economics on a global scale.

ENSO is wind and sea surface temperature oscillations that occur in the equatorial
eastern Pacific. In 1969, Bjerknes [2] proposed that El Niño and the Southern Oscillation are
two different manifestations of the same physical phenomenon in nature, which is reflected
in the ocean as the El Niño phenomenon and in the atmosphere as the Southern Oscillation
phenomenon. El Niño refers to the phenomenon of abnormal warming of the ocean every
two to seven years (every four years on average) in the equatorial eastern Pacific Ocean,
and the opposite cold phenomenon is called La Niña [3]. The Southern Oscillation refers
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to the mutual movement of the atmosphere between the eastern tropical Pacific and the
western tropical Pacific, and the cycle is also approximately four years. El Niño and La
Niña are closely related to the Southern Oscillation. When the Southern Oscillation index
has a persistent negative value, an El Niño phenomenon will occur in that year, and on the
contrary, a La Niña phenomenon will occur in that year.

Since ENSO is a global ocean–atmosphere interaction, it has a huge impact on crop
yields, temperature, and rainfall on Earth. In 1997-1998, fires triggered by an unusual
drought caused by ENSO destroyed large swathes of tropical rainforest worldwide [4]. Hur-
ricanes caused considerable damage in the United States from 1925-1997, with an average
annual loss of $5.2 billion [5]. In ENSO years, flood risk anomalies exist in basins spanning
almost half of the Earth’s surface [6]. The World Health Organization estimates that over
the past 30 years, anthropogenic warming and precipitation have claimed 150,000 lives
each year [7]. In order to deal with the threat of such climate disasters, knowing and
understanding the laws of climate change and making effective climate predictions in
advance are crucial to reducing disaster losses around the world.

ENSO prediction is one of the most important issues in climate science, affecting both
interannual climate predictions and decadal predictions of near-term global climate change.
Since the 1980s, scientists from all over the world have been working on ENSO prediction
research [8]. Since the relevant time scale of SST variability in most of the tropical Pacific
Ocean is about 1 year, the ENSO event dominates the SST variability [9], and the occurrence
of ENSO is reflected by the sea surface temperature anomaly (SSTA); therefore, ENSO is
predicted. The phenomenon is equivalent to predicting SSTA. In addition, among all the
indices, Niño3.4 is the most commonly used index to measure ENSO phenomena, and the
Niño3.4 index is the mean sea temperature in the range of 5◦ N~5◦ S 170◦ W~120◦ W.

ENSO projections are by far the most successful of short-term climate predictions.
Traditional ENSO prediction models are mainly divided into two categories: statistical
models and dynamic models. Statistical models analyze and predict ENSO through a
series of statistical methods, such as the linear transpose model (LIM), nonlinear canonical
correlation analysis (NLCCA), singular spectrum analysis (SSA), etc. Essentially, this is
accidental, they do not take full advantage of the laws of physics. The dynamic models
are mainly based on the dynamic theory of atmosphere–ocean interaction, such as the
intermediate coupled model (ICM), the hybrid coupled model (HCM), and the coupled
circulation model (CGCM) [10]. It is successful in short-term prediction, but it does
not make full use of the large amount of existing real historical data. For long-term
prediction, the pure dynamic method is difficult to work. Practice has shown that both
dynamic methods and statistical methods have a certain accuracy, and both can reflect
some of the laws of atmospheric motion [11–13], but due to the variability and diversity of
ENSO spatiotemporal evolution, traditional methods of predicting ENSO still have great
deficiencies, especially in the 21st century; the intensified influence of the extratropical
atmosphere on the tropics makes ENSO more complex and unpredictable.

The concept of artificial intelligence first came from the Dartmouth Conference on
Computers in 1956, and its essence is to hope that machines can think and respond similarly
to human brains. Machine learning is an important way to realize artificial intelligence. As
the most important branch of machine learning, deep learning has developed rapidly in
recent years and is now widely used in image recognition, natural language processing,
and other fields.

The concept of deep learning, which refers to the machine learning process of obtaining
a deep network structure containing multiple levels through a certain training method
based on sample data, was first proposed by Hinton et al. [14] at the University of Toronto
in 2006. Figure 1 shows the relationship among artificial intelligence, machine learning,
artificial neural networks and deep learning. Unlike machine learning, the deep learning
feature extraction process is performed automatically through deep neural networks. The
features in the neural network are obtained through learning. Under normal circumstances,
when the network layer is shallow, the extracted features are less representative of the
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original data. When the number of network layers is deep, the features extracted by the
model will be more representative. When the task to be solved is more complex, the
parameter requirements of the model are also higher, and the number of network layers at
this time is often deeper, which means that more complex tasks can be solved. Therefore,
it can be considered that the deeper the network layer, the stronger the feature extraction
ability. Currently, the commonly used deep neural network models mainly include CNN,
recurrent neural network (RNN), deep belief network (DBN), and the deep autoencoder
and generative adversarial network (GAN).

Figure 1. The relationship between artificial intelligence, machine learning, artificial neural networks,
and deep learning.

With the wide application of machine learning and deep learning in various fields in
recent years, some scholars have begun to use machine learning or deep learning technology
to predict meteorological elements (wind speed, temperature, etc.) or climate phenomena,
such as ENSO, and have obtained better results. This paper will summarize the previous
research results and make a more complete summary of ENSO predictions combined with
deep learning.

This paper is organized as follows: Section 1 outlines the main learning knowledge and
development status in ENSO forecasting; Section 2 focuses on traditional ENSO forecasting
methods; Section 3 is the key part of this paper, introducing the related models and theories
of deep learning in artificial intelligence and the existing ENSO prediction methods and
applications of deep learning in artificial intelligence; Section 4 summarizes the ENSO
forecasting methods in tabular form and discusses the existing deficiencies and future
development directions of ENSO predictions; finally, Section 5 provides a summary of the
full text.

2. Traditional Methods

In this section, we will focus on the existing theories or conclusions of traditional ENSO
forecasting methods. There are generally two methods for traditional ENSO prediction,
namely, the statistical model and the dynamic model. The following will list the currently
commonly used ENSO forecast methods and related ENSO forecast knowledge.

2.1. Climate Dynamics Methods

The dynamic method uses dynamic equations to model the ocean, atmosphere, land,
and other spheres and their interactions and uses the computer to gradually integrate
to simulate the evolution of the atmosphere. Since the first coupled ENSO model was
developed [15,16], various types of coupled models have been designed and used for ENSO
simulation and prediction. The coupling models mainly include the simple coupled model

19



Mathematics 2022, 10, 3793

(SCM) [17], intermediate coupled model (ICM) [16], hybrid coupled model (HCM) [18],
and fully coupled circulation models (GCMs) [19]. Dynamical models have become the
main tool for studying the mechanism, simulation, and prediction of ENSO, and the
prediction time reaches 6–12 months. Ref. [17] identified several free equatorial modes
for simple coupled ocean–atmosphere models and found that they included unstable and
damped modes at large regional scales and long periods, systematically exploring the
effects of ocean thermodynamics on the behavior of unstable modes. Ref. [16] developed
an atmosphere–ocean coupled model to study the ENSO phenomenon. In the absence
of anomalous external forcing, the coupled model reproduces some key features of the
observed phenomenon. The results show that the mean sea surface temperature, wind,
and ocean current field determine the characteristic spatial structure of the ENSO anomaly.
Ref. [18] conducted a series of hindcast and prediction experiments using the HCM of the
tropical ocean–atmosphere system. It shows real skills in forecasting fall/winter tropical
Pacific SST up to 18 months in advance. Ref. [19] used an integrated ocean–atmosphere
circulation model (OAGCM) for climate prediction. Both model performance and data
assimilation schemes for climate simulations were improved to yield better forecasting skills.
Most OAGCMs can now proficiently predict the Indian Ocean Dipole (IOD) 1–2 seasons in
advance, with ENSOs up to 6–9 months ahead.

In recent years, many forecasting systems have been put into use. The National
Climate Center of China Meteorological Administration (BCC/CMA) developed the ENSO
Monitoring, Analysis and Prediction System (SEMAP2) [20]. The system consists of five
subsystems: real-time monitoring of tropical atmosphere and ocean, dynamic diagnosis,
physical-based statistical prediction, model ensemble prediction, and simulation-based
model prediction [21] correction, which can realize the feedback process of ENSO changes
and dynamics in the recent year real-time monitoring and can provide users with forecasts
of the ENSO index and related main variable processes in the coming year. Since the spring
of 2013, SEMAP2 has been applied to ENSO business meetings organized by the National
Climate Center several consecutive times and given forecast opinions, with good results
and was adopted by forecasters many times. Especially in the spring of 2014, the prediction
of the evolution trend of El Niño in summer and autumn was basically in line with reality
and more accurately predicted the weak central EI Nino event in the winter of 2014/15 and
accurately predicted the development of El Niño since the spring of 2015. Trends and Type
Conversions. The forecasting system is still in use to this day. The fifth-generation seasonal
forecast system SEAS5 was put into use in November 2017 by the European Centre for
Medium-Range Weather Forecasts. It is a coupled dynamical model that includes higher
resolution models of the atmosphere, ocean, and sea ice. An important improvement
in SEAS5 is the weakening of the cold tongue bias in the equatorial Pacific, while the
amplitude of El Niño is closer to the actual value and improves the prediction ability of El
Niño in the central and western Pacific, making it show particular advantages in ENSO
predictions. When the forecast period is 9 months, the correlation coefficient of SEAS5 to
ENSO forecast reaches more than 0.7 [22].

If the starting time of the prediction model is advanced by more than 6 months,
the prediction ability of the traditional method model will be greatly reduced due to
the phenomenon of the spring predictability barrier (SPB) [1]. The SPB phenomenon was
discovered by Webster et al. [23] in the dynamic prediction model. Wang et al. [24] proposed
that the largest vertical temperature gradient and the weakest east–west thermal difference
in spring are conducive to the growth of the coupled system disturbance, which in turn
makes the spring sea-air coupling the most unstable, which is conducive to the generation
of the SPB phenomenon. Chen et al. [25] proposed a novel ENSO prediction model (EPM)
that combines tropical states and extratropical ocean–atmosphere interactions, which
can significantly improve ENSO forecasting skills beyond the spring-predictable barriers.
Although dynamical models are successful in short-term predictions, pure dynamical
methods are ineffective for long-term predictions.
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2.2. Mathematical Statistical Methods

The statistical ENSO prediction method is to realize the analysis and prediction of
ENSO phenomenon by sorting, summarizing, and analyzing historical ENSO indicators.
Statistical models include linear statistical models and nonlinear statistical models. The
former is constructed using linear methods such as multiple linear regression, canonical
correlation, and Markov chains, while the latter is mainly constructed using machine
learning methods such as Bayesian and neural networks.

2.2.1. Traditional Linear Statistical Methods

Among the traditional linear statistical methods, there are two outstanding classi-
cal methods, Holt Winters (HW) method and autoregressive integrated moving average
(ARIMA) method. The HW method is a short-term statistical method [26] that proposes a
forecasting expression for exponentially weighted moving averages for forecasting time
series with seasonal patterns and repeating forms, using a technique called “exponential
smoothing”, reducing the volatility of time-series data, allowing for a clearer understanding
of its rationale [27]. In 2014, Mike et al. used the HW model to predict the SST index in
the Niño3 region from 1933 to 2012 by 1 month and 12 months in advance, with a root
mean square error of 0.303 and 1.309. To address the shortcoming that the HW model is
not suitable for periodically stationary time series, they proposed an improved HW model
called the dynamic seasonal model (DSM). Experiments show that this model predicts
monthly Nino3 in sample analysis Area, and is better than the deterministic seasonal
model and HW model in terms of sea surface temperature index and intraday stock return
changes [28].

ARIMA, also known as the integrated moving average autoregressive model, is one
of the time series forecasting analysis methods. In 2011, Matthieu et al. [29] developed a
time-series analysis method using ARIMA to investigate the temporal correlation between
monthly P. falciparum case numbers and ENSO measured by SOI at Cayenne General
Hospital from 1996 to 2009. Results showed that an El Niño lag of 3 months had a positive
effect on P. falciparum cases (p < 0.001), and adding SOI data to the ARIMA model reduced
the Akaike information criterion (AIC) [30] by 4%. However, ARIMA cannot return
estimates of seasonal components [31]. In addition, Penland et al. [32] proposed to represent
the Indo-Pacific SSTAs as a stable linear process driven by spatially coherent stochastic
forcing, obtain the relevant parameters that best fit the stable linear process through
observations, and then make assumptions about stability and linearity. The experimental
results show that the optimal model can achieve a sample correlation of 67% between
two time series predicted 7 months in advance. The multiple linear regression model
proposed by Tseng et al. [33] only relies on five evolutions of thermocline depth anomalies
and zonal surface wind modulation over a 25-day period. It successfully post-reported
all ENSOs except the 2000/01 La Niña. Xue et al. [34] established a forecast model using
the linear Markov model, using sea surface temperature, sea level height, and wind stress
as predictors. When the forecast period is 6 months, its forecast-related skill reaches 0.8.
Kondrashov et al. [35] obtained the stochastic forcing model of ENSO by polynomial
regression analysis. When the forecast period is 6 months, the correlation coefficient
exceeds 0.6.

The ENSO phenomenon is a highly complex and dynamic pattern whose trend over
time is nonlinear. Traditional statistical methods have poor fitting effect on nonlinear data
sets, and are not ideal for complex pattern recognition and knowledge discovery.

2.2.2. Machine Learning Methods

The ML-based ENSO prediction method is realized by learning and mining historical
ENSO index features and establishing an ENSO prediction model. In 1998, Tangang et al. [36]
and Jiang Guorong et al. [37] found that the combination of the neural network algorithm
and empirical orthogonal function analysis method can have unexpected effects on ENSO
forecasting. In 2009, Silvestre and William [38] proposed two nonlinear regression models,
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Bayesian neural network (BNN) and support vector regression (SVR). Temperature can be
used as a predictor of SST anomalies in the tropical Pacific for 3–15 months. The results
show that the BNN model has better overall prediction performance than the SVR model.
Liu Kefeng et al. [39] also found that the multi-step hierarchical prediction method based
on the combination of support vector machine and wavelet decomposition method can
effectively predict the time series of sea temperature anomalies. Feng et al. [40] proposed
a toolbox “climatelearn”, combined with some machine learning methods, to predict the
occurrence of El Niño and Niño3.4 indices. In 2016, in terms of ENSO forecasting, the
zero-mean random error model of ICM was proposed [41], called the ensemble-mean
model, which showed better results than the deterministic ICM on ENSO forecasting.
Peter D et al. [42] combined the classic autoregressive synthetic moving average technique
with an artificial neural network to predict the ENSO index. In addition, Li Chentong used
the decision tree algorithm to establish a multi-modal ENSO prediction result intelligent
consultation system. He used four decision tree model methods (boosting-based GBDT,
XGBoost, lightGBM, and bagging-based RF), respectively, and established a multi-modal
ENSO forecasting result intelligent consultation system according to different advance
forecasting times.

ML-based methods, especially those based on deep networks, tend to be more complex,
take longer to compute, and have poor predictive ability for very long sequences of ENSO
indices. In addition, for the long-time series Niño 3.4 index and SOI data, they not only
have approximately periodic interannual variation characteristics but also have a large
amount of high-frequency random noise due to seasonal variation, which seriously reduces
the predictive ability of numerical simulation models. Therefore, ENSO events are still
difficult to predict with a lead time of more than one year.

3. Deep Learning Methods

With the rapid development of big data and deep learning methods in recent years,
prediction methods based on deep learning have been widely used in various fields, and
some scholars have begun to use deep learning to improve ENSO forecasting skills. This
section mainly introduces the related models and theories of spatiotemporal sequences in
deep learning and the application of deep learning in ENSO prediction, including shallow
neural networks, CNNs, RNNs, and graph neural networks (GNN).

3.1. Shallow Neural Networks

In 1986, Rumelhar and Hinton [43] proposed the back-propagation algorithm, which
solved the complex calculation problem of the two-layer neural network, which led to the
research upsurge of the two-layer neural network in the industry. In addition to an input
layer and an output layer, a two-layer neural network also includes an intermediate layer,
where both the intermediate layer and the output layer are computational layers. Its matrix
change formula is: (

W(1) ∗ a(1)
)
= a(2)

g
(

W(2) ∗ a(2)
)
= z (1)

In each layer of the neural network, except for the output layer, there will be a bias
unit. As in linear regression models and logistic regression models. The matrix operation
of the neural network after considering the bias is as follows:

g
(

W(1) ∗ a(1) + b(1)
)
= a(2)

g
(

W(2) ∗ a(2) + b(2)
)
= z (2)

Different from the single-layer neural network, it is theoretically proven that the two-
layer neural network can approximate any continuous function infinitely, that is to say,
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in the face of complex nonlinear classification tasks, the two-layer neural network can
better classify.

The multi-layer neural network continues to add layers after the output layer of the
two-layer neural network. Its advantage is that it can represent features in a deeper way and
has a stronger ability to simulate functions. The BP neural network is a concept proposed
by scientists headed by Rumelhart and McClelland in 1986. It is a multi-layer feedforward
neural network trained according to the error back-propagation algorithm. In other words,
it is a feedforward multi-layer perceptron (MLP) trained using the BP algorithm. The
BP neural network is widely used in meteorological forecasting. The classic BP neural
network is generally divided into three layers, namely, the input layer, the hidden layer,
and the output layer. The main idea of its training is: input data, use the back-propagation
algorithm to continuously adjust and train the weights and thresholds of the network,
adjust the weights and thresholds according to the prediction error, and output the results
that are close to the expectations until the predicted results can reach the expectations. The
topology of the BP neural network is shown in Figure 2.

Figure 2. BP neural network topology diagram.

When the BP neural network processes data, the network should be initialized first
and the network parameters should be set; The second step is to calculate the output of
the hidden layer, the output formula is shown in Formula (3), where X represents the
input variable, ωij, a are the input connection weight of the layer and the hidden layer
and the threshold of the hidden layer, l is the number of nodes in the hidden layer, f is
the activation function of the hidden layer; then the output layer is calculated, and the
predicted output Y of the BP network is shown in formula (4), Among them, H is the
output of the hidden layer, ωij, b are the connection weights and thresholds, respectively;
The formula for calculating the error is shown in (5), where Yk is the predicted value of the
network, Ok is the actual expected value; We update the weights and update the network
connection weights ωij, ωjk through the prediction error e. The formula is shown in (6),
and η is the learning rate; the network thresholds a and b are updated according to the
prediction error e, and the formula is shown in (7); Finally, determine whether the iteration
can end. If the algorithm iteration does not end, we return to the second step until the
algorithm ends.

Hj = f

(
n

∑
i=1

ωijxi + aj

)
, j = 1, 2, . . . , l (3)

Yk =
l

∑
j=1

Hjωjk + bk, k = 1, 2, . . . , m (4)

ek = Yk − Ok, k = 1, 2, . . . , m (5)

ωij = ωij + ηHj
(
1 − Hj

)
xi

m
∑

k=1
ωjkek, i = 1, 2, . . . , n; j = 1, 2, . . . , l

ωjk = ωjk + ηHjek, j = 1, . . . , l; k = 1, . . . , m
(6)
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aj = aj + ηHj(1 − H)xi
m
∑

k=1
ωjkek, j = 1, . . . , l

bk = bk + ηek, k = 1, . . . , m
(7)

Many researchers initially tried to apply shallow neural networks to ENSO prediction
and achieved good results. Jiang Guorong et al. [37] used the back-propagation (BP)
algorithm for ENSO forecasting, which could better predict the changing trend of SST in
key areas. However, forecast skill assessment depends on forecast time, which is inversely
proportional. Baawain et al. [44] designed a three-layer multi-layer perceptron model,
and the hidden layer and output layer were trained using a logical activation function
through an error back-propagation algorithm. Ravi et al. [45] used the ANN model to select
the Niño1+2, Niño3, Niño3.4, and Niño4 indices as the predictors of the Indian summer
monsoon rainfall index (ISMRI) for prediction. The results show that the neural network
model has better predictive power than all linear regression models. Mekanik et al. [46]
found through experiments that using the lagged ENSO-DMI index combined with ANN
to predict spring rainfall can achieve a 96.96% correlation. This method can be used in
areas of the world where there is a relationship between rainfall and large-scale climate
patterns that cannot be established by linear methods. Petersik and Dijkstra et al. [47]
used an ensemble of Gaussian density neural networks and quantile regression neural
networks to train ENSO indices and ocean heat content with a small amount of data to
predict ENSO. For 1963–2017 assessments, these models are highly correlated with longer
lead times. However, the shallow neural network has limited ability to represent complex
functions, and its generalization ability for complex classification problems is restricted to
a certain extent, and the shallow neural network tends to fall into a local minimum during
training, which is prone to overfitting during testing. The multi-layer neural network can
represent complex functions with fewer parameters by learning a deep nonlinear network
structure and has strong feature learning ability. A multi-layer neural network has great
potential to solve complex nonlinear stochastic problems with many influencing factors
such as climate prediction.

3.2. Convolutional Neural Networks

Research on CNNs began in the 1980s and 1990s, and time delay networks and LeNet-5
were the first CNNs. Yann LeCun et al. [48] proposed a CNN algorithm based on gradient
learning in 1998 and applied it to handwritten digit recognition. In 2012, Hinton et al. [49]
won the classification competition, which opened the prelude to the gradual domination of
CNNs in the field of computer vision.

As a type of neural network, CNN can effectively extract features contained in images,
so it is widely used in fields involving image processing (such as image recognition, object
detection, etc.) [49,50]. For meteorological data, the distribution field of a certain element at
a certain time can be regarded as an image, and it can be used as the input of CNN. Using
CNN to solve it is actually a nonlinear regression of the global ocean element field and the
Nino3.4 regional SST in the next few months.

The main structure of CNN includes input layer, convolution layer, pooling layer,
fully connected layer, and output layer. The main function of the convolution layer is to
enhance the original signal features and reduce noise through convolution operations. The
expression for convolution in calculus is:

S(t) =
∫

x(t − a)w(a)da (8)

The discrete form is:
s(t) = ∑

a
x(t − a)ω(a) (9)

This formula can be expressed as a matrix:

(t) = (X ∗ W)(t) (10)
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Among them, ∗ represents the convolution operation; if it is a two-dimensional convolution,
it is represented as:

s(i, j) = (X ∗ W)(i, j) = ∑
m

∑
n

x(i − m, j − n)w(m, n) (11)

The convolution formula in CNN is slightly different from the definition in mathemat-
ics. For example, for two-dimensional convolution, it is defined as:

s(i, j) = (X ∗ W)(i, j) = ∑
m

∑
n

x(i + m, j + n)w(m, n) (12)

Among them, W is the convolution kernel, and X is the input. If X is a two-dimensional
input matrix, then W is also a two-dimensional matrix. However, if X is a multidimensional
tensor, then W is also a multidimensional tensor.

The main purpose of the pooling layer is to reduce the amount of data processing and
speed up network training while retaining useful information. Commonly used pooling
operations include average pooling and maximum pooling. The results of max pooling
and average pooling are as follows:

yil+1 , jil+1 , d =
1

HW ∑
0≤i≤H,0≤j≤W

xl
il+1 × H + i, jl+1 × W + j, dl (13)

yil+1 , jil+1 , d = max
0≤i≤H,0≤j≤W

xl
il+1 × H + i, jl+1 × W + j, dl (14)

The activation function layer is also called the nonlinear mapping layer. The purpose
is to increase the expressive ability (nonlinearity) of the entire network. The main activation
functions include the sigmoid function, the tanh function, and the relu function. The
formula of the activation function is shown in (15). After several layers of convolution and
pooling operations, the obtained feature maps are expanded row by row, connected into
vectors, and input into the fully connected network. The fully connected layer integrates
the features in the feature map to obtain the high-level meaning of the image features,
which is then used for image classification.

sigmoid(x) =
1

1 + e−x

tanh(x) =
1 − e−2x

1 + e−2x (15)

relu(x) =
{

0 (x ≤ 0)
x (x > 0)

CNNs are applied in many fields of weather forecasting, and they are also helpful
for ENSO forecasting. In September 2019, Ham et al. [51] first proposed using a CNN
for ENSO prediction. The model structure is shown in Figure 3. CNN requires a large
number of images for training in order to improve the accuracy of prediction. Despite the
large scale of meteorological data, the use of CNNs in ENSO forecasting has encountered
difficulties with data shortages. Ham et al. proposed to combine climate models with
artificial intelligence methods, using dozens of global climate models from CMIP5 to
generate a series of simulated data based on historical ocean data. As a result, scientists not
only have a set of actual historical observations but also thousands of simulation results for
training. The research results show that when the prediction time is more than 6 months,
the prediction ability of the CNN method for the Nino3.4 index is significantly higher than
that of the current international best dynamic prediction system. When tested on real data
from 1984 to 2017, CNN was able to predict El Niño events 18 months in advance. At the
time, the research results were regarded as the pioneering work of deep learning in the
field of weather forecasting.
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Figure 3. Structure of the CNN model for ENSO prediction [51].

However, the defects of CNN itself, including fixed input vector size and inconsistent
input and output size, limit its application in time-series forecasting. In 2020, Yan et al. [52]
proposed the ensemble empirical mode decomposition-temporal convolutional network
(EEMD-TCN) hybrid method, which decomposes the variable Niño3.4 exponent and
SOI into relatively flat subcomponents; then, The TCN model is used to predict each
subcomponent in advance, and finally, the sub-prediction results are combined to obtain
the final ENSO prediction result. The TCN residual module diagram is shown in Figure 4.
TCN is a variant of CNN that uses random convolution and dilation for sequential data
with temporality and large receptive fields. Empirical mode decomposition can decompose
high-frequency time series Niño 3.4 index and SOI data into multiple adaptive orthogonal
components, improving the prediction accuracy of the model. The experimental results
show that the TCN method has a good effect in the advance prediction of ENSO, which
has important guiding significance for the research into ENSO. In response to the problem
of data shortage, in addition to [51] using climate models to generate a large amount of
simulated data, in 2021, Hu [53] et al. used dropout and transfer learning to overcome the
problem of insufficient data during model training and proposed a model based on a deep
residual convolutional neural network. The model effectively predicts the Niño 3.4 index
with a lead time of 20 months during the 1984–2017 evaluation period, three months
more than the existing optimal model. In addition, they also use heterogeneous transfer
learning. This model achieved 83.3% accuracy for forecasting the 12-month-lead EI Niño
type. However, many forecasts only consider temporality and the lack of spatial features
in ENSO. In 2022, Zhao [54] et al. proposed an end-to-end spatial temporal semantic
network, named STSNet, which consists of three main modules: (1) Geographic semantic
enhancement module (GSEM) distinguishes various latitude and longitude through a
learnable adaptive weight matrix; (2) A novel spatiotemporal convolutional module(STCM)
is designed specially to extract the multidimensional features by alternating the execution
of temporal and spatial convolution and temporal attention; (3) Combining and exploiting
multi-scale temporal information in a three-stream temporal scale module (3sTSM) to
further improve performance. Figure 5 illustrates the pipeline of the proposed STSNet. The
results show that STSNet can simultaneously provide effective ENSO predictions for 16
months with higher correlation and lower bias compared to other deep learning models.
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Figure 4. The TCN residual module [52].
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Figure 5. The pipeline of the proposed STSNet [54].

3.3. Recurrent Neural Network

When the input data has dependencies and is a sequential pattern, the results of CNNs
are generally not very good, because there is no correlation between the previous input
of the CNN and the next input. In 1982, Hopfield [55] proposed RNN. RNN is used to
solve the problem that the training sample input is a continuous sequence, and the length
of the sequence is different, such as the problem based on the time series. RNNs enable
deep learning models to make breakthroughs in solving problems in NLP domains such as
speech recognition [56], language models [57], machine translation [58], and time series
analysis. In 1997, Jurgen Schmidhuber et al. [59] proposed long short-term memory (LSTM),
a novel RNN variant structure that uses gating units and memory mechanisms to capture
long-term temporal dependencies, and successfully solves gradient disappearance and
the explosion problem, which controls the flow of information through learnable gates.
The structure comparison of RNN and LSTM is shown in Figure 6. Among them, LSTM
introduces the concepts of the forgetting gate, input gate, and output gate, thus, modifying
the calculation method of the hidden state in RNN. The formula is as follows:

It = σ(XtWxi + Ht−1Whi + bi) (16)

Ft = σ
(

XtWx f + Ht−1Wh f + b f

)
(17)

Ot = σ(XtWxo + Ht−1Who + bo) (18)

Among them, Wxi, Wx f , Wxo and Whi, Wh f , Who are all learnable weight parameters,
and bi, b f , bo are learnable offset parameters. The candidate cell in long short-term memory
∼
Ct uses the hyperbolic tangent function tanh in the range [−1, 1] as the activation function:

∼
Ct = tanh(XtWxc + Ht−1Whc + bc) (19)

The flow of information in the hidden state can be controlled by input gates, forget-
ting gates, and output gates with element values in the range [0, 1]: this can usually be

performed with the element-wise multiplication operator . The calculation of the cell
∼
Ct

at the current moment combines the information of the cell at the previous moment and
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the candidate cell at the current moment, and controls the flow of information through the
forgetting gate and the input gate:

Ct = Ft  Ct−1 + It 
∼
Ct (20)

Next, the information flow from the cell to the hidden layer variable Ht can be con-
trolled by the output gate:

Ht = Ot  tanh(Ct) (21)

In 2017, Zhang, Wang [60], and others defined the SST prediction problem as a time-
series regression problem and used LSTM as the main layer of the network structure to
predict the Bohai Sea temperature. The experimental results compared with SVR show
that the LSTM network has better prediction performance. In 2018, Clifford et al. [61] used
the “climate complex network” to extract meteorological data features, used the extracted
features as predictors, and used LSTM to predict the Nino3.4 index. Experiments show
that training LSTM models on network metric time series datasets has great potential for
predicting ENSO phenomena many steps ahead. In 2021, Zhou et al. [62] used LSTM to
build a tropical Pacific Niño3.4 index forecast model and analyzed the seasonal forecast
error of the model. The results show that for the 1997/1998 and 2015/2016 strong eastern-
type El Niño events, the model can more accurately predict the trends and peaks of the
events, and the anomalous correlation coefficient (ACC) reaches more than 0.93. However,
for the 1991/1992 and 2002/2003 weak central El Niño events, it did not perform well in
peak forecasting.

Figure 6. Comparison of the RNN and LSTM structure.

Shi X et al. [63] proposed the concept of convolutional long short-term memory
(ConvLSTM) and established an end-to-end trainable for the precipitation now-prediction
problem by stacking multiple ConvLSTM layers to form an encoder–decoder structure The
model diagram is shown in Figure 7. ConvLSTM is designed to solve the problem of 3D
data prediction; the unit can receive 2D matrices and even higher dimensional inputs at
each time step. The key improvement is that the Hadamard product between the weights
and the input is replaced by a convolution operation, as shown in Equation (22). It can
not only establish temporal relationships similar to LSTM but also describe local spatial
features by extracting features similar to CNN.

it = σ(Wxi ∗ Xt + Whi ∗ Xt−1 + bi)
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ft = σ
(

Wx f ∗ Xt + Wh f ∗ Ht−1 + b f

)
ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + bo) (22)

∼
Ct = tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)

Ct = ft  Ct−1 + it 
∼
Ct

Ht = ot  tanh(Ct)

Figure 7. Encoding-forecasting ConvLSTM network [63].

Among them, “∗” represents the convolution operation, “” represents Hadamard
product. The difference between ConvLSTM and LSTM is only that the input-to-state and
state-to-state parts are replaced by fully connected calculations with convolution calculations.

In 2019, Dandan He et al. [64] established a deep learning ENSO prediction model
(DLENSO) using ConvLSTM to predict ENSO by directly predicting SST in the tropical
Pacific. DLENSO is a sequence-to-sequence model. Its encoder and decoder are both Con-
vLSTM, and the input and prediction targets are both spatiotemporal sequences. DLENSO
is superior to the LSTM model and the deterministic prediction model and is almost equiv-
alent to the ensemble average in the medium and long-term prediction models. To capture
both spatial and temporal correlations in SST and improve prediction skills over longer
time horizons, Mu [65] et al. proposed the ConvLSTM-RM model, which is a hybrid of
convolutional LSTM and rolling mechanism, and used it to build an end-to-end trainable
model for the ENSO prediction problem. Their experiments on historical SST datasets show
that ConvLSTM-RM outperforms seven well-known methods on multiple time horizons (6
months, 9 months, and 12 months). The deep learning methods used above are all super-
vised learning, the training data are all labeled, and the cost of data labeling is often huge. In
recent years, unsupervised learning has been mined and gradually developed. The biggest
advantage of unsupervised learning is that it does not need to label the data so it can save a
lot of manpower and resources. At the same time, compared with the limited labels marked
by supervised learning, the features that can be learned by unsupervised learning are more
adaptive and rich. In 2021, Geng et al. [66] regarded ENSO prediction as an unsupervised
spatiotemporal prediction problem and designed a dense convolution–long short-term
memory (DC-LSTM). The model diagram is shown in Figure 8. To obtain a more adequately
trained model, they added historical simulated data to the training set. The experimental
results show that the DC-LSTM method is more suitable for large area and single factor
prediction. During the 1994–2010 validation period, the full-season correlation ability of
the Nino3.4 index of DC-LSTM was higher than that of the existing dynamic models and
regression neural networks, and the prediction effect for a lead time of up to 20 months
was much higher than [51]. In 2022, Lu et al. [67] developed a new hybrid model, POP-Net,
to predict SST in Niño 3.4 regions by combining POP analysis procedures with CNN and
LSTM. POP-Net achieved a high correlation of 17-month lead-time predictions (correlation
coefficient over 0.5) during the 1994–2020 validation period. In addition, POP-Net also
mitigates SPB.
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Figure 8. Model structure diagram of DC-LSTM [66].

RNNs also have their own flaws. The RNN is often used to process sequence data,
but the disadvantage is that it is not suitable for long sequences, and the gradient is easy
to vanish. LSTM is proposed to deal with the problem of gradient disappearance. It
is especially suitable for long sequences, but the disadvantage is the large amount of
calculation; GRU is proposed to simplify the calculation of LSTM; obviously, GRU lost a
gate in LSTM. Obviously, if the parameters are less, the natural calculation will be faster.
When the training set is large, the performance is naturally not as good as LSTM.

3.4. Graph Neural Networks

The concept of GNN was first proposed by Gori [68] and others in 2005. The RNN
framework was used to deal with undirected graphs, directed graphs, labeled graphs, and
cyclic graphs. The feature map and node aggregation of the method generate a vector
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representation for each node, which cannot well deal with the complex and changeable
graph data in reality. Bruna et al. [69] proposed to apply CNN to graphs, and through clever
transformation of convolution operators, they proposed the graph convolutional network
(GCN) and derived many variants. The proposal of GCN is the “pioneering work” of the
graph neural network. For the first time, the convolution operation in image processing is
simply used in the processing of graph structure data, which reduces the computational
complexity of the graph neural network model. The calculation of the Laplacian matrix in
the calculation process has since become past tense. Supposing we have a batch of graph
data, which has N nodes and each node has its own characteristics, we let the characteristics
of these nodes form an N × D-dimensional matrix X, and then the relationship between
each node will also form an N × D. An N-dimensional matrix A is called an adjacency
matrix. X and A are the inputs to our model, and the formula for GCN is as follows:

H(l+1) = σ

(
˜

D
− 1

2 ˜
A

˜
D

− 1
2

H(l)W(l)

)
(23)

Among them,
˜
A = A + I, I is the identity matrix;

˜
D is the degree matrix of

˜
A; H is the

feature of each layer; for the input layer, H is X; σ is the nonlinear activation function. The
model of GCN is shown in Figure 9.

Figure 9. Graph convolutional neural networks [68].

In 2021, Cachay et al. [70] first proposed the application of a graph neural network in
seasonal forecasting and published it in NIPS. They advocated defining the ONI prediction
problem as a graph regression problem and modeled it using GNNs that generalized
convolutions to non-Euclidean data, thus, allowing us to model large-scale global con-
nections as edges of the graph, except in graph convolutional neural networks, and they
also designed a new graph-connected learning module to enable GNN models to learn
large-scale spatial interactions together with practical ENSO prediction tasks. The model
surpasses the state-of-the-art deep learning-based CNN model in ENSO prediction, and
is also more effective than the LSTM model and the dynamic model, and its correlation
coefficients in ENSO predictions 1 month, 3 months, and 6 months ahead of time reach
0.97, 0.92, and 0.78. The heat map of its effect is shown in Figure 10. Simply using the
graphical model can achieve such excellent results. If the graphical model is combined with
the power coupler, will there be new gains? Practice brings true knowledge. Bin [71] et al.
designed a graph-based multivariate air–sea coupler (ASC) using the features of multiple
physical variables to learn multivariate synergy through graph convolution. Based on this
coupler, an ENSO deep learning prediction model, ENSO-ASC, was proposed, which uses
stacked ConvLSTM layers as the skeleton of the encoder to extract spatiotemporal features,
and the decoder consists of stacked transform convolutional layers and upsampling layers.
The model structure diagram is shown in Figure 11. The experimental results show that
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ENSO-ASC outperforms other models; sea surface temperature and zonal wind are two
important predictors; and the Niño 3.4 index has correlations of over 0.78, 0.65, and 0.5
for lead times of 6, 12, and 18 months, respectively. Through this case, we can see that
combining deep learning models with multivariate air–sea couplers or other dynamical
models can improve the effectiveness and superiority of predicting ENSO and analyzing
underlying dynamical mechanisms in a complex manner.

Figure 10. Heatmap of the effect of GNN predicting ENSO [70]. (a–d) respectively represent the heat
map of GNN’s prediction of ENSO on a time scale of 1, 3, 6 and 9 months in advance.

Figure 11. The structure of ENSO-ASC [71].

However, many recent cross-domain studies have found that GNN models do not
provide the expected performance. When the researchers compared them to simpler tree-
based baseline models, GNNs could not even outperform the baseline models. GNN can
only perform feature denoising and cannot learn nonlinear manifolds. GNNs can, therefore,
be viewed as a mechanism for graph learning models (e.g., for feature denoising) rather
than as a complete end-to-end model. It has to be said that GNN, as an emerging neural
network, has great prospects for development.

4. Discussion

We summarize the traditional and deep learning methods for ENSO prediction listed
in this paper in Table 1. More than half a century of ENSO research has achieved significant
results, especially the possibility of real-time prediction of its advance month–season scale,
such as the current linear statistical models or the dynamic models based on mathematical
equations can predict ENSO at least 6 months in advance. We have achieved better real-time
forecasting, but there are still large errors and uncertainties in forecasting skills. On the
other hand, deep learning methods were put into use in ENSO forecasting and have greatly
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improved our forecasting ability for ENSO. The experimental indicators show that most
spatiotemporal neural networks are suitable for ENSO prediction. Although deep learning
methods can improve the accuracy of ENSO forecasting, artificial intelligence methods
are not developed for the field of science, and research using neural networks to predict
climate phenomena is still in its infancy, so there are still many problems.

Table 1. Summary of deep learning and its application in ENSO forecasting.

Method Specific Method Generalize Features

Traditional
Method

Dynamic Methods

Using dynamic equations, the
ocean, atmosphere, land, and other
spheres and their interactions are

modeled, and the computer is
gradually integrated to simulate
the evolution of the atmosphere.
Ranging from relatively simple

physical models to comprehensive
fully coupled models.

The averaging skills of dynamic
models are generally better than
statistical models, but in practice,

it is difficult to simulate the
interannual average variation of
sea surface temperature due to
uncertainty in initial conditions.

The emergence of SPB
phenomenon.

Statistical
Methods

Linear
Statistical
Methods

Realize the analysis and prediction
of ENSO phenomenon by sorting,

summarizing, and analyzing
historical ENSO indicators.

Statistical models require past
long-term forecast data to discover

potential relationships, but
observations of the tropical Pacific

did not begin until the 1990s.
Compared to complex dynamic

models, statistical models reduce
cost and are easier to develop.

Machine
Learning
Methods

Nonlinear statistical method, by
learning and mining historical

ENSO index features, using
machine learning models to

capture the nonlinear features of
ENSO for prediction.

Deep
Learning
Methods

Convolutional Neural Network

CNN is a kind of feed-forward
neural network with convolution

calculation and deep structure
from inputting original

information, self-learning features,
as the network goes from front to

back, combining features from
shallow to deep.

The forecasting skills of CNN are
much higher than the current

state-of-the-art dynamic models
and can also better predict the

detailed regional distribution of
SST, overcoming the weaknesses

of the dynamic prediction models.
CNN is less affected by SPB, but it

is not suitable for time-series
forecasting.

Recurrent Neural Network

RNNs are a pattern for text,
sequence data recognition. Its

input includes more than just the
currently seen input example. It

also includes information that the
network perceives at the last
minute. Using this property,

information can circulate in the
network for any length of time.
Including LSTM, ConvLSTM,

ConvGRU, etc.

RNN is suitable for solving
sequence problems with

continuous and different length of
training sample input, such as

time-series-based problems. The
model can more accurately predict

the trend and peak of strong El
Niño events, but it is not good for

weak El Niño peaks.

Graph Neural Network

GNN is a deep learning method
based on a graph structure, where
data is represented in the form of a

graph, and information flow is
explicitly modeled through edge

connections.

The gridded climate data can be
naturally mapped to the nodes of
GNN, and the prediction effect of
GNN in the first 6 months exceeds
the current state-of-the-art CNN
model. However, there are still
problems such as difficulty in

predicting extreme ENSO events
and limited training samples.
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First, deep learning has better modeling capabilities on the basis of big data, while the
number of climate observation samples is small, especially for extreme events. In this case,
the self-learning ability of deep learning methods is greatly limited, so the development of
deep learning methods for small sample events is a current development direction. Second,
in recent years, deep learning models have become more and more complex. Generally
speaking, the more complex the model, the better its learning ability, but the problem is
that the interpretability of the model results is worse.

In addition, when making long-term predictions, the prediction of ENSO event peaks
has the problem of underestimation and prediction lag. We could try to introduce some
random disturbance mechanisms so that the model can predict greater intensity. ENSO
will also have the SPB problem in long-term forecasting, which is a difficult point in
dynamic forecasting. More in-depth parameter adjustment work can be performed on
the learning rates of different optimizers in the deep learning model, perhaps by finding
hyperparameters that mitigate SPB in the training set. In addition, in order to improve the
accuracy and length of ENSO predictions, we could try the spatiotemporal prediction model
and graph neural network model recently proposed by AI, and use observation data and
simulated data for training to increase the amount of training data. With sufficient data, we
may be able to train a better model. At present, most of the research on artificial intelligence
to improve ENSO prediction and other aspects mainly stays on the direct application of
related artificial intelligence technology. Considering that phenomena such as ENSO in
earth science research have clear temporal and spatial structures and evolution laws of
physical processes, the ability to organically combine the temporal and spatial evolution
characteristics of ENSO based on physical analysis methods with artificial intelligence
methods based on big data to further improve ENSO Forecasting skills is a hot topic in
the field of climate change. It is also worth continuing to explore how to combine deep
learning with meteorology and climate in the future.

5. Conclusions

The severe cold and heat caused by the climate change caused by ENSO affect people’s
daily life, and improving the accuracy of ENSO prediction is still a direction that researchers
need to work on. This paper summarizes the main knowledge and development status of
ENSO forecasting, including traditional ENSO forecasting methods and the application
of artificial intelligence in ENSO forecasting. In this paper, artificial intelligence methods
are divided into machine learning methods and deep learning methods. In the section
on machine learning, the main methods such as decision tree, Bayesian, support vector
machine and ARIMA are reviewed in ENSO forecasting. In the deep learning section,
we summarized convolutional neural networks, recurrent neural networks, graph neural
networks and their variants, focusing on the performance of these models in ENSO predic-
tion. Table 1 provides an overview of various ENSO prediction methods and compares the
advantages and disadvantages of each method. From the introductions in Sections 2 and 3,
it can be seen that the application of deep learning in ENSO prediction is widely effective
and has great potential to further improve the prediction accuracy and length. By combin-
ing deep learning and meteorological science, researchers have drawn more conclusions,
contributing to better climate predictions in the future. Finally, we analyzed the problems
and research directions of artificial intelligence in ENSO prediction for future researchers’
reference and further development and better use of deep learning to expand more ways to
help predict ENSO and even other climate problems.
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Abstract: An intrusion detection system is one of the main defense lines used to provide security to
data, information, and computer networks. The problems of this security system are the increased
processing time, high false alarm rate, and low detection rate that occur due to the large amount of
data containing various irrelevant and redundant features. Therefore, feature selection can solve
this problem by reducing the number of features. Choosing appropriate feature selection methods
that can reduce the number of features without a negative effect on the classification accuracy is a
major challenge. This challenge motivated us to investigate the application of different wrapper
feature selection techniques in intrusion detection. The performance of the selected techniques, such
as the genetic algorithm (GA), sequential forward selection (SFS), and sequential backward selection
(SBS), were analyzed, addressed, and compared to the existing techniques. The efficiency of the three
feature selection techniques with two classification methods, including support vector machine (SVM)
and multi perceptron (MLP), was compared. The CICIDS2017, CSE-CIC-IDS218, and NSL-KDD
datasets were considered for the experiments. The efficiency of the proposed models was proved in
the experimental results, which indicated that it had highest accuracy in the selected datasets.

Keywords: intrusion detection; genetic algorithm; greedy search; backward elimination learning;
NSL-KDD; CIC-IDS-2017; CIC-IDS2018

MSC: 68M25

1. Introduction

Currently, the internet is necessary for storing and transferring the diverse information
of users, companies, and governments. Protecting and securing systems and information is
necessary. One of the most efficient existing systems used to secure systems and control
intrusion activities is the intrusion detection system (IDS). In recent years, several IDSs have
been proposed. These security systems have many problems such as an increasing pro-
cessing time, high false positive rate (FPR), and low detection rate (DR), which are caused
by the large amount of data containing various irrelevant and redundant features [1,2].
Feature selection (FS) can solve these problems by reducing the number of features and
selecting only useful features. Several feature selection methods are available, but the task
of finding which one is suitable for IDS that provides the minimum number of features
with the maximum accuracy is a major challenge [2,3]. This challenge motivated us to
investigate the application of different FS techniques in intrusion detection. The perfor-
mance of the selected techniques, such as the GA [4], SFS [5], and SBS [3] were analyzed,
addressed, and compared with existing techniques. This study used the recent CICIDS2017
and CSE-CIC-IDS218 [6] datasets as well as the NSL-KDD [7] dataset.

1.1. Intrusion Detection System

IDS is a software or hardware that monitors activities inside and outside the network
to detect abnormal ones [3]. It is one of the most important mechanisms that protect
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systems and networks against malicious activities [6,8]. This system generates alarms if
any abnormal pattern is recognized. IDSs have two types: host-based IDS, which focuses
on individual computers, and network-based IDS, which focuses on the traffic between
computers. Based on the detection method, IDS can be classified into two categories,
namely signature-based and anomaly-based detection [1,9].

1.1.1. Signature-Based Detection

This detection method is also known as misuse detection. It uses the attack signature
database to identify intrusions or abnormal activities. When a packet signature matches
with a signature in the database, IDSs detect that packet as an intrusion. This detection
type can detect known attacks only [1].

1.1.2. Anomaly-Based Detection

In this detection type, IDSs build profiles of the normal network packets. They then
analyze and monitor the network packets. When there is any deviation from the normal
profile, IDSs detect the abnormal activity. This detection type can detect known and
unknown attacks [1].

1.2. Feature Selection Methods

Feature selection methods select the relevant and useful features from a dataset.
The goal of FS techniques is to increase the accuracy and detection rate and decrease the
execution time and false positive rate. To achieve this goal, FS measures the importance of
features and only allows the most important features to enter the classification. The number
of features is then reduced as well as the classification time. There are two types of FS
methods based on evaluation criteria [8,10]. The first type is the filter method, which it is
independent of the classifier. It analyzes each single feature and decides which features are
useful and should be trained based on statistical measures [8,11,12]. The second type is the
wrapper method, which is dependent on the classifier. In contrast to filter methods, wrapper
methods use machine learning algorithms to determine the best feature subset to provide a
high classification performance [8,10–12]. The filter and wrapper FS methods are based on
two components: a search strategy (e.g., GA, SFS, and SBS) and an objective function or
fitness function (e.g., classifier performance in wrapper methods and statistical measure
in filter methods). The search strategy determines the optimal subset of features that
provide high accuracy and low false alarms results based on the classifier’s performance (in
wrapper methods) or statistical measures such as information gain (in filter methods) [13].
The search strategy can be made up of exhaustive, heuristic, and random searches [14].
Exhaustive searches are time consuming and impractical because of the large number
of combinations to evaluate. For example, a search of an 2n−1 possible feature subsets
in n features dataset becomes an NP-hard problem as the number of features grow [13].
Heuristic searches such as the forward sequential search and fuzzy systems and random
searches such as the GA perform better in large datasets [15–17].

Filter selection methods are faster and have a lower level of complexity than wrapper
methods, but the latter are more accurate [18]. Therefore, we used wrapper methods in
our study to build an efficient IDS model that provides a low FPR and high ACC with the
minimum number of features.

Several features selection methods are available such as the GA, SBS, and SFS, but the
problem is to find which one is more suitable for an intrusion detection system (IDS) that
provides a minimum number of features with maximum accuracy [2,3].

1.2.1. Sequential Forward Selection (SFS) and Sequential Backward Selection (SBS)

SFS and SBS are simple search techniques that run in iterations and make a greedy
decision to select the best local solution in each iteration based on the objective function.

The SFS algorithm starts with an empty set and adds one feature to the subset at each
iteration until a stopping criterion is met such as the search is completed or the desired
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number of subset features is reached. After that, it returns the local optimal solution among
iterations or the solution in the desired number of subset features. Figure 1a shows an SFS
methodology in which a dataset has three features: F1, F2, and F3. In the first iteration,
SFS generates and evaluates several subsets that contain only one feature from the complete
set of features. The feature that has the maximum objective function is selected as a local
optimal solution in this iteration. In the second iteration, it also generates and evaluates
several subsets, in which one feature is added to the selected feature from the previous
iteration. Subsequently, each subset is evaluated to select the best local optimal solution.
In the third iteration, a feature is added to the selected features from the previous iteration;
in this case, the complete set of features is evaluated. Finally, it returns the best local optimal
solution among these iterations as the output. By contrast, the SBS algorithm starts from a
complete set of features and iteratively removes one feature until a stopping criterion is
met. After that, it returns the local optimal solution among iterations or the solution in
the desired number of subset features. Figure 1b shows an SBS methodology in which a
dataset has three features: F1, F2 and F3.

 
(a) (b) 

Figure 1. (a) An example of SFS; (b) an example of SBS.

1.2.2. Genetic Algorithm

The GA is a metaheuristic search and work algorithm based on a direct Darwinian
natural selection analogy and genetics in biological systems [12,13]. It is composed of four
components: a population of individuals, a fitness function, a selection function, and a
genetic operator (e.g., crossover and mutations). The GA randomly generates a population
of individuals or chromosomes in which each chromosome represents a solution to the
problem [12,13]. The fitness function determines the chromosome’s chance of being chosen
to create the offspring or the next generation individuals. The selection function selects the
parents of the offspring from the current generation, and then the crossover and mutation
are applied to the selected parents to generate the offspring or the next generation of
individuals. Several selection functions are available, such as the tournament selection
method, roulette wheel, and rank selection [13]. Crossover and mutation operators are then
applied to the selected individuals or chromosomes to create offspring or the generation
of new individuals. Crossover is the exchange of individual bits between two randomly
selected parents. Mutation is the alteration of individual bits to generate new individuals.
New and different individuals are generated from the current generation after applying
crossover and mutation operators. The evaluation of individuals, selection, crossover,
and mutation are repeated in a predefined number of generations until a stopping criterion
is met.

2. Related Work

Sarvari et al. [19] used the wrapper cuckoo search algorithm (CSA) as an FS technique
to build an efficient IDS model. They applied the FS method and trained an artificial neural
network (ANN) using a multiverse optimizer (MVO). The proposed model, called MCF &
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MVO-ANN, was evaluated using the NSL-KDD dataset. As a result, their model achieved
a high ACC (98.16%), a high DR (96.83%), and a low FPR (0.03%).

Saleh et al. [8] presented an IDS approach based on the wrapper NBFS technique to
select the best feature subsets. The proposed model combines optimized support vector
machines (OSVMs) and prioritized k-nearest neighbors (PKNN) techniques. They used
OSVM for rejecting outliers and PKNN to detect attacks. The experimental results indicate
that NBFS achieves a higher DR (approximately 90.28%) than other techniques using an
NB classifier with 18 selected features. The proposed model also gives a higher DR (95.77%
using the NSL-KDD dataset and 93.28% using KDD Cup99) than other techniques.

Ates et al. [5] used the greedy search (GS) algorithm and SVM to detect distributed
denial of service (DDoS) attacks. They used GS for FS and SVM as a classifier. The proposed
model calculates the distances between the probability distributions of header informa-
tion using the GS algorithm and Kullback–Leibler divergence. In the testing phase, they
used a dataset collected from the MIT Darpa 2000 dataset and a university network and
achieved a high AC of 99.99% and a low FPR of 0.001% for the MIT Darpa 200 dataset.
However, the proposed model needs to be evaluated using a standard dataset to compare
its performance results with recent models.

Asdaghi et al. [20] proposed a new backward elimination (BE) method called Smart-BT
for web spam detection. They used index of balance accuracy values as a performance
metric. The proposed model uses the chi-square as a pre-processing process. Afterward,
Smart-BT selects the relevant and useful features by eliminating a set of features from
the initial set. The experimental results show that the Smart-BT gives better classification
results than other existing FS techniques such as the ranker search algorithm and particle
swarm optimization (PSO) techniques.

Tao et al. [4] introduced an FS technique based on the GA and SVM to improve the IDS.
They presented a new fitness function for the chosen FS method to determine the optimal
feature subset. The experimental results indicate that their model succeeds in minimizing
the number of features to 19 features and achieves a high DR and low FPR using the KDD
Cup99 dataset. However, the determination of the weight values for the TPR and selected
feature number is carried out manually.

Thakkar and Lohiya [3] presented a performance analysis of FS techniques in IDSs.
Chi-square, IG, and recursive feature elimination (REF) were implemented separately as FSs
with several ML classifiers such as SVM and ANN. For determining the best combination
performance in terms of FS technique and machine learning classifier using the NSL-KDD
dataset, they conducted several experiments and reported that the combination of SVM and
REF performs well compared with other techniques. The average ACC, precision, recall,
and F-score rates were 98.95%, 99.2%, 99.75%, and 98.40%, respectively, for the SVM-REF
model.

G Suseendran and T. Nathiya [10] presented a GS FS method to increase the accuracy
and decrease the false alarm rate in IDSs. They used correlation feature selection (CFS) to
evaluate the selected feature subsets. The RF classifier is used in their model. The experi-
ments showed that their model achieves 98.32% in terms of ACC and 0.40% in terms of the
false alarm rate using the NSL-KDD dataset.

Aslahi et al. [21] used the GA for FS and SVM as a classifier for building a new IDS
model. Their model reduces the amount of features to 10 features from the original 41
features. The KDD dataset was used in their experiments. Their model achieves 97.30% in
terms of accuracy and 1.70% in terms of false alarm rate.

J. Lee et al. [22] proposed a sequential forward floating search (SFFS) method to
increase the ACC and decrease the false alarm rate in IDSs. They used a SFFS to select
the optimal feature set and RF classifier for the evaluation. The NSL-KDD dataset was
used in the experiments for the proposed model. The experiments proved that their model
achieves a 0.40% false alarm rate and 99.89% ACC with 10 selected features.

Li et al. [15] proposed a modified random mutation hill climbing (MRMHC) method
as a wrapper FS technique. They used a modified linear SVM as an evaluation criterion.
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MRMHC generates an initial subset from the complete set of features. Then, the MLSVM
evaluates the selected subset and select the best subset. Their experiments on the KDD Cup
dataset showed that their approach has a high ACC and low detection time.

Li Y et al. [23] used a gradual feature removal method to select the important features
in IDSs. This method deletes the less important features gradually. They used SVM classifier
as an objective function in their proposed model. Their model selected 19 features from the
KDD Cup dataset, which was used in the experiments. The results obtained an ACC of
98.62%.

Raman et al. [24] proposed a hypergraph-based GA (HG-GA) to build an adaptive
IDS with a high ACC and low false alarm rate. HG-GA is used for FS in their proposed
model, and SVM is used for classification. In their experiments, they used the NSL-KDD
dataset. The proposed model achieves an ACC of 97.14% and a false alarm rate of 0.83%.

Khammassi and Krichen [13] used the GA for FS and linear regression as a classifi-
cation algorithm. This wrapper approach selects the important features from the original
datasets (KDD99 and UNSW-NB15). Then, the DT classifier uses the selected features to
measure the efficiency of the selected features. An accuracy of 99.90% and false alarm rate
of 0.11% were obtained in their experiments for the KDD99 dataset with 18 features.

Zhou and Cheng [25] developed an IDS model based on correlation-based FS (CSF)
and the bat algorithm (BA). They combined RF, C4.5, and forest attributes to build an
ensemble approach. The proposed model was evaluated using several IDS datasets such
as the CICIDS2017 and NSL-KDD datasets. Their model obtains 94.04% in terms of the
detection rate, 2.38% in terms of the FPR and 96.76% in terms of ACC.

Hua Y. [26] developed a hybrid filter and wrapper FS method based on IG and
LightGBM. An under-sampling technique was used to balance the used CICIDS2017 dataset.
The proposed model achieves an ACC of 98.37%, a precision of 98.17%, and a recall of
98.37% with 10 selected features.

Sugandh Seth et al. [27] used random forest (RF) and principal component analysis
(PCA) as a hybrid feature selection method. A light gradient boosting machine (LightGBM)
classifier was used to classify the instances of the CIC-IDS-2018 dataset. The authors used
an under-sampling technique to balance the dataset. Their model achieves 97.73% in terms
of accuracy and a 97.57% F1-Score with 24 selected features.

Alazzam et al. [28] used the pigeon inspired optimizer (PIO) technique. They designed
two models of the POI such as the sigmoid PIO and binary cosine PIO to determine the
optimal number of features. In the binary PIO, the calculation of the velocity of pigeons
is based on the cosine similarity. Their models were evaluated using the decision tree
(DT) technique. Through experiments, the models were evaluated using the UNSW-NB15,
NSL-KDD, and KDDCUP99 datasets. The result indicate that the proposed model (cosine
PIO) outperforms several proposed FS algorithms in terms of AC, F-score, FPR, and TPR.

Mazini et al. [29] used the wrapper artificial bee colony (ABC) algorithm for FS to build
an efficient anomaly IDS. The AdaBoost classifier is used for evaluation and classification.
Through simulation, the model was evaluated using the ISCXIDS2012 and NSL-KDD
datasets. As a result, the proposed model achieves a high DR (99.61%), low FPR (0.01%),
and high ACC (98.90%). However, the parameter settings for FS are determined manually.

Aween Saeed and Noor Jameel [30] used the particle swarm optimization algorithm
with a decision tree (DT) to build a wrapper feature selection model for IDS. The authors
trained and tested their model using a DT classifier. Their model selected 19 features from
the CIC-IDS-2018 dataset, which was used in the experiments. The results obtained an
ACC of 99.52%.

Jahed Shaikh and Deepak Kshirsagar [31] used information gain (IG) and a correlation
attribute evaluation as a feature selection method to select the optimal number of features
from the CIS-IDS-2017 dataset. A PART rule-based machine learning classifier was used to
evaluate the proposed model. An accuracy of 99.98% and false alarm rate of 1.35% were
obtained in their experiments with 56 features.
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Patil and Kshirsagar [32] presented an IDS model based on information gain (IG) and
ranker method as a feature selection method. The J48 classifier was used to evaluate the
selected features. Their model selected 75 features from the CIC-IDS-2017 dataset, which
was used in the experiments. The results obtained an ACC of 87.44%.

Many of the above FS techniques have not been evaluated on high-dimension datasets
such as CICI-IDS-2017 and CSE-CIC-IDS-2018, which contain more features (80 features)
compared with KDD Cup99 and NSL-KDD, which contain 41 features [17]. In addition,
certain researchers did not mention the obtained number of selected features, which affects
the execution time in terms of classification [2]. Moreover, BE, GA, and GS techniques
achieved high results in previous works [3–5,31]. Hence, the present study investigated
these FS techniques using several standard datasets to determine the most appropriate
technique that provides the minimum number of relevant features with maximum accuracy.
A summary of the literature review is shown in Table 1.

Table 1. Summary of the literature review.

Ref.
Feature Selection

Algorithm
Classification

Algorithm
Dataset

Number of
Features

Result (%)

[3] REF SVM NSL-KDD - ACC: 98.95
F-score: 99.75

[4] GA SVM KDD Cup99 19

[5] Greedy Search SVM MIT Darpa 2000 - ACC: 99.99
FPR: 0.001

[8] NBFS PKNN + OSVMs NSL-KDD - DR: 95.77

[10] Greedy Search + CFS RF NSL-KDD - ACC: 98.32
FPR: 0.40

[13] GA DT KDD99 18 ACC: 99.90
FPR: 0.11

[15] MRMHC MLSVM KDD Cup 4 TPR: 80.00
FPR: 3.65

[19] CSA MCF & MVO-ANN NSL-KDD 22
ACC: 98.81
DR: 97.25
FPR: 0.03

[21] GA SVM KDD Cup 10 ACC: 97.30
FPR: 1.70

[22] SFFS RF NSL-KDD 10 ACC: 99.89
FPR: 0.40

[23] Gradual feature removal SVM KDD Cup 19 ACC: 98.62

[24] HG-GA SVM NSL-KDD - ACC: 97.14
FPR: 0.83

[25] CSF + BA RF + C4.5 + FOREST
ATTRIBUTE

NSL-KDD
CICIDS2017 -

ACC: 96.76
DR: 94.04
FPR: 2.38

[26] IG LightGBM CICIDS2017 10 ACC: 98.37

[27]
Hybrid Feature

Selection
(RF + PCA)

Light GBM CICIDS2018 24 ACC: 97.73

[28] Sigmoid POI DT NSL-KDD 18 ACC: 86.90
FPR: 6.40

[28] Cosine POI DT NSL-KDD 5 ACC: 86.90
FPR: 8.80
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Table 1. Cont.

Ref.
Feature Selection

Algorithm
Classification

Algorithm
Dataset

Number of
Features

Result (%)

[29] ABC AdaBoost NSL-KDD 25 ACC: 98.90
FPR: 0.01

[30] Binary-particle swarm
optimization Decision tree CICIDS2018 19 ACC: 99.52

[31]
IG and correlation

attribute evaluation
methods

PART CICIDS2017 56 ACC: 99.98
FPR: 1.35

[32] Information gain and
ranker algorithm J48 CICIDS2017 75 ACC: 87.44

3. Methodology

Figure 2 shows the methodology which includes: database selection, pre-processing,
feature selection, classification, evaluation, as well as the analysis and comparison of results
steps. We will explain these steps in the following subsections.

Figure 2. The methodology.

3.1. Dataset Selection

New cybersecurity datasets are available, so this work used three different datasets,
namely NSL-KDD, CIC-IDS-2017, and CIC-IDS-2018, for the experiments. All of these
datasets were explored to determine which was the most suitable dataset for building an
efficient IDS.

3.1.1. NSL-KDD

The NSL-KDD dataset is one of the most widely used benchmarks for IDSs [8,19,28].
It is an upgraded version of the old KDD Cup99 dataset [7]. It has four attack categories:
user to root attack (U2R), denial of service attack (DoS), probing attack, and remote to local
attack (R2L). The full NSL-KDD training dataset contains 125,973 records, whereas the full
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NSL-KDD testing dataset contains 22,254 records. There are 41 features in the NSL-KDD
dataset: three of them are nominal or symbolic features, and the rest are numeric features.

3.1.2. CIC-IDS-2017

The CIC-IDS-2017 dataset is a network traffic dataset that consists of both normal and
a variety of attack data developed by the Faculty of Computer Science, University of New
Brunswick and the Canadian Institute of Cybersecurity (CIC) in 2017. This dataset was
captured over a duration of five days, and it uses a large variety of attack types [25,33,34].
In the CIC 2017 dataset, the attack simulation is divided into seven categories namely,
botnet, brute force attack, DoS attack, DdoS attack, infiltration attack, web attack, and heart
bleed attack [25,34]. This dataset contains over 2.5 million records and 78 features, including
the label column, and 19.70% of CIC-IDS-2017 is attack traffic. The dataset has a class
imbalance. An unequal distribution between majority and minority classes in databases is
known as class imbalance, which affects the performance of classification [34].

3.1.3. CIC-IDS-2018

The CIC-IDS-2018 dataset is a network traffic dataset consisting of both normal and a
variety of attack data developed by the Faculty of Computer Science, University of New
Brunswick, the CIC, and the Communications Security Establishment (CSE) in 2018 [6].
The structure of this dataset is similar to the previous dataset, and both have a class
imbalance. Roughly 17% of the total number of records, which is 16,233,002 records,
is attack traffic.

3.2. Preprocessing

The datasets must be preprocessed to avoid inconsistent, irrelevant, and missing data
that affect the performance of the IDS. This step may include several tasks such as removing
null or missing values, resampling, and scaling.

Certain datasets have missing, null, or symbolic values. These types of data structures
make the classification algorithms difficult to handle. Therefore, missing values or null
values are removed, and symbolic values are mapped to numeric values. Duplicated
records and features should be removed to prevent the classifiers from being biased to the
most frequent records [28]. Certain machine learning classifiers such as SVM and MLP
are sensitive to feature scaling and require the scaling of a dataset because these classifiers
provide weights to the input features according to their data points and inferences for
output. Therefore, scaling all the used datasets before the FS, training, and testing phases is
highly recommended.

The highly unbalanced datasets in the CIC-IDS-2017 and CIC-IDS-2018 datasets affect
the performance of the classifier. The random under-sampling (RUS) technique is used
to balance the class distribution. The RUS technique, in which specific majority instances
are removed to balance a dataset, provides a good result compared with other sampling
methods in the context of the CIC-IDS-2017 dataset [35].

3.3. Feature Subset Selection

This work focused on FS techniques and considered different wrapper FS techniques
such as SFS, SBS, and the GA. Different machine learning techniques such as MLP and
SVM were applied as the objective functions for the chosen FS techniques.

Not all features of the NSL-KDD, CIC-IDS-2017, and CIC-IDS-2018 datasets are impor-
tant to build an efficient IDS. A subset of these features can achieve high a ACC and low
FPR. Moreover, eliminating certain features using FS techniques is necessary to build an
efficient IDS with a high accuracy and low false alarms. In this study, the performance of
SFS, SBS, and GA FS techniques were explored. We used the wrapper FS approach. This
approach is based on three components: a search strategy, a classifier, and an evaluation
function [13,14]. We used three search strategies (SFS, SBS, and the GA). In each search
strategy, we used SVM and MLP as classifiers. The evaluation of the feature subsets was a
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fitness function based on a custom score of the cross-validation of the previous classifiers.
Cross-validation is a resampling technique that divides the dataset into equal different
portions to train and test a model on different iterations. Cross-validation gives an insight
on how the model can be generalized to an unknown dataset, and it is a useful technique to
identify the overfitting of a model. In the FS phase, two-fold, five-fold, and ten-fold cross
validation are used. Our goal in this study was to propose an FS method that increases the
ACC and decreases the false alarm rate with the minimum number of features. Therefore,
our objective function or fitness function was based on three criteria: the classification
accuracy of SVM or MLP, the false alarm rate or FPR, and the number of selected features.
Hence, the subset having the smallest number of features, the highest ACC, and the lowest
FPR produces the highest objective function.

Several objective functions are available. Hence, we investigated several objective
functions in the FS phase. Bamakan et al. [36] proposed an objective function based on the
detection rate, the false alarm rate of the classifier, and the number of selected features,
as shown in Equation (1). Hang and Wang [37] proposed an objective function based on
the accuracy and the number of selected features, as shown in Equation (2).

Objective Function(X) = DR(X) ∗ WA + (1 − FPR) ∗ WF + (1 − N ∗ WN) (1)

Objective Function(X) = ACC(X) ∗ WA + (1 − N ∗ WN) (2)

where N is the number of selected features in the subset, WA is a predefined weight for the
accuracy score of the subset, WF is a predefined weight for the FPR of the subset, WD is a
predefined weight for the DR of the subset, and WN is a predefined weight for the number
of selected features in the subset. All the weights should be in range [0–1].

In the following, we explain the selected FS techniques in this study, which were the
SFS, SBS, and GA feature methods.

3.3.1. Sequential Forward Selection (SFS)

SFS is a wrapper FS that selects k features from an initial d features dataset where k
< d through a number of iterations. It selects the best feature subset by starting from an
empty dataset and adding one feature at a time based on the classifier performance in an
iterative process until a stopping criterion is met, such as a feature subset of the specified
size k being reached. If the desired number of features is in a range (e.g., 1–40), SFS selects
the feature subset that contains the highest objective function (e.g., accuracy) in that range.
SFS flowchart is shown in Figure 3.

3.3.2. Sequential Backward Selection (SBS)

This method is essentially the reverse of the above method. It selects the best feature
subset by starting from the original full feature dataset and removes one feature at a time
based on the classifier performance in an iterative process until a stopping criterion is met,
such as a feature subset of the specified size k being reached. If the desired number of
features is in a range (e.g., 1–40), SBS selects the feature subset that contains the highest
objective function (e.g., accuracy) in that range. SBS flowchart is shown in Figure 4.
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Figure 3. SFS flowchart.

Figure 4. SBS flowchart.

3.3.3. Genetic Algorithm (GA)

The GA is composed of five components: the initiation of the population, a fitness func-
tion, a selection function, genetic operators (e.g., crossover and mutations), and stopping
criteria. Below, we explain each component in a separate section.

Population Initiation

First, the GA randomly generates a population of individuals or chromosomes in
which each chromosome represents a solution for the problem [12,13]. Each chromosome or
individual is encoded as binary; a feature is either included or not in the subset. The num-

48



Mathematics 2022, 10, 4745

ber of individuals or the population size is defined by the user (n_population). A large
population size provides a large search space to the GA but it increases the required time to
evaluate all the individuals of the population. In contrast, a small population size provides
a small search space to the GA but the required time to evaluate all the individuals of
population is less than in the first situation.

Fitness Function

The fitness function determines the chromosome’s chance of being chosen to create
the offspring or the next generation. The fitness function can be any metric of the classifier
performance, such as accuracy. For example, if the classifier accuracy is chosen to be the
fitness function, the chromosome having the highest accuracy produces the highest fitness
value [13].

Selection Function

The selection function selects the parents of offspring or the next generation of individ-
uals from the current generation. In this study, we used the tournament selection method
that selects the best individuals from a population of individuals. It randomly selects a
predefined number of individuals (tournament_size) and runs a tournament among them.
The individual or chromosome with the best fitness is the winner of the tournament and it
is selected for generating the next generation. The tournament selection is repeated several
times, as specified by the user. The best induvial with the highest fitness function among
other individuals in each generation is added to the population of the next generation.
Hence, each generation in the GA has an individual that has the highest fitness function
among its previous generations.

Crossover Process

The crossover operator is used to generate new offspring or solutions from the current
solutions (the parents). For each two randomly selected individuals or chromosomes,
a crossover is performed with a predefined probability in a range [0–1]. Several crossover
operators are available, such as one-point, two-point, and uniform crossovers. In this
study, we used a uniform crossover in which each bit in a parent’s chromone is swapped
based on a predefined probability and a random number in a range [0–1]. For instance,
if the predefined probability is 0.5 and the random number is 0.7, in this case the random
number is equal to or greater than the predefined probability. Therefore, bit swapping
occurs. This process is repeated for all bits in the parents’ chromosome. Hence, we have
two probabilities: a probability for applying crossover between two individuals and a
probability for exchanging the bit value between two individuals.

Mutation Process

Mutation, which is applied after the crossover process, is the alteration of individual
bits to generate new individuals from the current individuals. Several mutation operators
are available, such as inversion mutation, insertion mutation, and flip-bit mutation [38].
In this study, we used flip-bit mutation, which switches certain bits from 1 to 0 or vice
versa. Two probabilities are used in mutation: the probability of applying mutation on
the individual and the probability of mutation or flipping the bit value of the individ-
ual. New different individuals are generated from the current generation after applying
crossover and mutation operators.

Stopping Criteria

The evaluation of individuals, selection, crossover, and mutation are repeated in a
predefined number of generations until a stopping criterion is met (e.g., the maximum
number of generation or a specified number of generations is reached when the objective
function cannot improve).
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3.4. Classification

The selected feature subsets are then fed to a classifier such as MLP and SVM to classify
the inputs as normal or attack traffic. Different classifiers are investigated to identify the
most suitable one for training and testing the IDS model.

3.4.1. Support Vector Machine (SVM)

SVM is a supervised learning model that provides a good level of accuracy in classifi-
cation problems [4,8,10,21,33]. SVM builds one or more hyperplanes by using the nearest
training data points of each data (called support vectors). Then, it tries to maximize the
margin between the data points. In the implementation of SVMs, there are certain kernel
functions such as polynomial, sigmoid, and radial kernel functions (RBF). Making the
trade-off between constant C and the type of kernel function is crucial to achieve a good
result for the classification [8].

3.4.2. Artificial Neural Network Multi Perceptron (ANN-MLP)

MLP is also a supervised learning model. It is a class of feedforward ANN. There are
at least three layers in MLP: an input, hidden, and output layer [19]. Each layer contains
one or more neurons. Each neuron connects with a specific weight to every neuron in the
following layer [19]. The learning in MLP occurs by changing the weights after each input
of data.

3.5. Evaluation

The performance of each FS technique is evaluated on the basis of performance
measures such as ACC, FPR and F1 score as well as the number of selected features. Several
metrics are available for evaluating feature selection algorithms such as accuracy, false
positive rate, detection rate, and precision. These metrics can be calculated using the
confusion matrix that is represented by the following four main parameters:

• True positive (TP): represents number of attack samples classified correctly.
• True negative (TN): represents number of normal samples classified correctly.
• False positive (FP): represents number of normal samples classified wrongly.
• False negative (FN): represents number of attack samples classified wrongly.

In binary classification, a confusion matrix is a table or matrix of size 2 × 2 that is used
to describe the performance of machine learning classifiers. A confusion matrix is shown
in Table 2, where each column represents the predictive records and each row represents
the actual records.

Table 2. Confusion matrix.

Predictive Records

Actual records
TP FP

FN TN

The definition and formulas of the performance metrics are as follows [28]:

- Accuracy: represents the proportion of correct classified instances to the total number
of classifications, as in Equation (3).

Accuracy = (TP + TN)/(TP + TN + FP + FN) (3)

- FPR (a.k.a. false alarms): represents the proportion of the normal instances that are
identified as attack or abnormal instances, as in Equation (4).

FPR = FP/(TN + FP) (4)
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- Precision: represents the ratio of correctly predicted positive instances to the total
predicted positive instances, as in Equation (5).

Percision = TP/TP + FP (5)

- Recall (a.k.a. detection rate (DR)): represents the ratio of correctly predicted positive
instances to the overall number of actual positive instances, as in Equation (6).

Recall = TP/TP + FN (6)

- F1 score: represents the weighted average of precision and recall values, as in Equation
(7).

F1 score = 2 ∗ percision ∗ recall
percision + recall

(7)

3.6. Analysis and Comparison of Results

The results obtained from the previous step were analyzed and compared with one
another to select an efficient IDS model with a high accuracy, low false alarm, and a small
number of features.

4. Implementation

In this section, the experimental settings are presented, and the effectiveness of the
SFS, SBS, and GA methods are illustrated. The experimental environment was set up as
follows: a desktop computer running Windows 10 on an Intel Core i9-12th Gen with 48
GB RAM, Anaconda 3 with Python 3 distribution, the Scikit-learn library, and the Jupyter
notebook [39]. Figure 5 illustrates and summarizes the steps of implementation, which are
presented in detail.

Figure 5. Implementation flowchart.

4.1. Preprocessing

The processing phase we used consist of eight steps which are:

1. In the NSL-KDD dataset, three categorical features, which are flag, service, and proto-
col_type features, are mapped to numeric values ranging from 0 to N − 1, where N is
the number of symbols in the feature.

2. Missing values or null values are removed from the CIC-IDS-2017 and CIC-IDS-2018
datasets. A script written in Python is used for removing these records.
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3. A duplicate feature in CIC-IDS-2017, namely Fwd Header Length, is removed man-
ually. The timestamp feature is removed manually in CIC-IDS-2018. In addition,
ten features are removed manually in CIC-IDS-2017 and CIC-IDS-2018, as they have
zero values.

4. Duplicated records are removed in all datasets. A script written in Python is used for
removing these records.

5. The class label is mapped to 0 for normal class and 1 for attack. As we use binary clas-
sification in this study, all the sub-category attack labels are mapped to 1. The resulted
label feature contains 0 for normal records and 1 for attack records.

6. The StandardScaler method from the sklearn library in Python is applied to standard-
ize the feature variance in all the used datasets.

7. All datasets are split into 70% training and 30% testing datasets.
8. The random under-sampling (RUS) technique is applied in all training datasets.

4.2. Feature Selection

The scikit-learn library and Jupyter notebook are used to implement SFS, SBS, and GA
FS methods. The performance evaluation of the selected features of the subsets in each
iteration in SFS, SBS, and the GA is carried out using the cross-validation technique in
which the dataset is randomly divided into several K subsets. One subset is used for testing
the model, and the remaining subsets are used for training. This process is iterated K times,
and the testing subset is different in each iteration [13]. Table 3 shows the selected weights
in the selected fitness functions.

Table 3. Parameters of fitness functions.

Objective Function Parameter Value

Equation (1)

WD 0.45

WF 0.45

WN 0.1

Equation (2)
WA 0.94

WN 0.06

Implementation of SFS, SBS and the GA

The MLxtend library in Python is used to implement SFS and SBS, while the Sklearn-
genetic, which is a genetic FS module for scikit-learn, is used to implement the GA [40,41].
SVM and MLP are used separately as estimators in SFS, SBS and the GA. To evaluate the
subsets of selected features in each iteration, two-fold, five-fold, and ten-fold cross valida-
tion are used separately in the implementation of SFS, SBS and the GA. The parameters
of SFS and SBS are configured as shown in Table 4, while the parameters of the GA are
configured as shown in Table 5.

Table 4. Parameters of SFS and SBS.

Parameter Value Parameter Value

Estimator
SVM n_jobs −1

MLP floating False

Scoring
Equation (1)

cv

2

Equation (2) 5

k_features

NSL-KDD (1,40) 10

CIC-IDS-2017 (1,66) forward True (SFS)

CIC-IDS-2018 (1,67) False (SBS)
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Table 5. Parameters of GA.

Parameter Value Parameter Value

Estimator
SVM crossover_proba 0.6

MLP crossover_independent_proba 0.6

Scoring
Equation (1) mutation_proba 0.1

Equation (2) mutation_indenpdent_proba 0.1

Max_features

NSL-KDD (40) caching True

CIC-IDS-2017 (66)

n_gen_no_change

NSL-KDD (50)

CIC-IDS-2018 (67) CIC-IDS-2017 (65)

n_population

NSL-KDD (60) CIC-IDS-2018 (65)

CIC-IDS-2017 (80) n_jobs −1

CIC-IDS-2018 (80) verbose 1

n_generations NSL-KDD (50)

cv

2

CIC-IDS-2017 (65) 5

CIC-IDS-2018 (65) 10

4.3. Training and Testing

For each selected subset, we transform the original training dataset to have the same
number of selected features from the FS phase. The selected feature subsets from the
previous FS methods are fitted into the same used classifier in the FS phase to determine
and evaluate the performance of the selected feature subset. Hence, SVM is used to evaluate
the selected feature subsets selected from the FS phase when SVM is used as an objective
function. MLP is used to evaluate the selected feature subsets selected from the FS phase
when MLP is used an objective function.

4.4. Results and Discussion

The experimental results of the chosen feature selection methods are presented in this
section.

Table 6 shows the result of SFS, SBS and the GA based on SVM and MLP in the NSL-
KDD dataset using an objective function based on accuracy and the number of selected
features. As shown in the table, the results are presented and compared using different cross
validations such as two-fold, five-fold, and ten-fold cross validation for each combination
of FS method and classifier. The highest accuracy among all these combinations is 99.23%
with the GA+SVM, with a 0.77% false alarm rate and 29 selected features using two-fold
cross validation in the feature selection phase. This model also has the highest F1 score,
of 99.20%, among the models. The lowest false alarm rate among these combinations is
0.73% with the GA+SVM, with an accuracy of 99.06%. SBS+SVM performs well with a
different number of folds. It obtained 98.92%,98.95%, and 98.99% in terms of accuracy and
1.20%, 1.36%, and 1.16% in terms of FPR, respectively, with the same selected number of
features (10 features). A graphical illustration of Table 6 is shown in Figure 6.

Table 7 shows the result of SFS, SBS, and the GA based on SVM and MLP in the CIC-
IDS-2017 dataset using an objective function based on accuracy and the number of selected
features. As shown in the table, the highest accuracy among all these combinations is 99.96%
with the GA+MLP, with a 0.03% false alarm rate and 40 selected features using five-fold
cross validation in the feature selection phase. The lowest false alarm rate among all these
combinations is 0.01% with SFS+MLP and the GA+SVM, with accuracies of 88.74% and
99.9%, respectively. SBS+SVM performs well with a different number of folds. It obtained
99.65%, 99.81%, and 99.75% in terms of accuracy and 0.50%, 0.13%, and 0.27% in terms of
FPR, with the six, five, and five selected features, respectively. An illustration of Table 7 is
shown in Figure 7.
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Table 6. Performance of SFS, SBS and the GA using objective function based on accuracy and number
of selected features in NSL-KDD.

Metric Fold SFS+SVM SFS+MLP SBS+SVM SBS+MLP GA+SVM GA+MLP

A
cc

ur
ac

y
(%

) 2 98.94 97.83 98.95 98.25 99.23 99.01

5 98.80 97.66 98.82 98.81 99.16 99.02

10 98.89 98.78 98.88 98.16 99.06 99.06

N
um

be
r

of
se

le
ct

ed
fe

at
ur

es

2 10 9 10 16 29 38

5 9 9 10 14 27 35

10 10 13 10 13 29 36

FP
R

(%
) 2 1.14 2.51 0.99 1.50 0.77 0.95

5 1.44 2.84 1.18 1.26 0.84 1.20

10 1.39 1.59 1.26 1.84 0.73 1.16

F1
(%

) 2 98.90 97.75 98.81 98.17 99.20 98.98

5 98.76 97.59 98.77 98.77 99.13 98.98

10 98.85 98.83 98.84 98.09 99.03 99.02

  

  

Figure 6. Performance of SFS, SBS and GA using objective function based on accuracy and number
of selected features in NSL-KDD.
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Table 7. Performance of SFS, SBS, and GA using objective function based on accuracy and number of
selected features in CIC-IDS-2017.

Metric Fold SFS+SVM SFS+MLP SBS+SVM SBS+MLP GA+SVM GA+MLP

A
cc

ur
ac

y
(%

) 2 99.75 99.83 99.65 94.79 99.94 99.93

5 99.78 89.61 99.81 99.84 99.94 99.96

10 99.28 88.74 99.75 99.83 99.9 99.91

N
um

be
r

of
se

le
ct

ed
fe

at
ur

es

2 5 7 5 6 42 44

5 5 5 6 5 39 40

10 5 5 5 6 45 38

FP
R

(%
) 2 0.27 0.04 0.5 1.12 0.02 0.02

5 0.22 0.03 0.13 0.17 0.02 0.03

10 1.44 0.01 0.27 0.12 0.01 0.03

F1
(%

) 2 99.78 99.86 99.69 95.24 99.95 99.96

5 99.81 89.93 99.83 99.86 99.93 99.94

10 99.36 89.00 99.78 99.85 99.93 99.39

  

  

Figure 7. Performance of SFS, SBS, and GA using objective function based on accuracy and number
of selected features in CIC-IDS-2017.

Table 8 shows the result of SFS, SBS, and the GA based on SVM and MLP in the
CIC-IDS-2018 dataset using an objective function based on accuracy and the number of
selected features. As shown in the table, the highest accuracy among all these combinations
is 99.87% with the SFS+MLP and SBS+MLP models. SFS+MLP obtains a lower FPR, of 0.1%,
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than SBS+MLP with eight selected features using five-fold cross validation in the feature
selection phase. Three models, which are SFS+MLP, SBS+SVM, and the GA+MLP obtain
the lowest false alarm rate, of 0.1%, among the models. A demonstration of Table 8 is
shown in Figure 8.

Table 8. Performance of SFS, SBS, and GA using objective function based on accuracy and number of
selected features in CIC-IDS-2018.

Metric Fold SFS+SVM SFS+MLP SBS+SVM SBS+MLP GA+SVM GA+MLP

A
cc

ur
ac

y
(%

) 2 99.46 99.87 99.78 99.87 99.71 99.69

5 97.67 99.87 99.64 99.51 99.82 99.83

10 97.72 99.80 99.69 99.67 99.8 99.78

N
um

be
r

of
se

le
ct

ed
fe

at
ur

es

2 21 11 7 8 18 23

5 6 8 7 10 21 26

10 6 8 8 11 24 25

FP
R

(%
) 2 0.32 0.90 0.10 0.90 0.16 0.21

5 0.18 0.10 0.10 0.84 0.16 0.10

10 0.30 0.30 0.20 0.90 0.19 0.17

F1
(%

) 2 99.46 99.88 99.77 99.88 99.71 99.69

5 97.61 99.85 99.64 99.51 99.82 99.80

10 97.63 99.80 99.71 99.74 99.80 99.75

  

  

Figure 8. Performance of SFS, SBS, and GA using objective function based on accuracy and number
of selected features in CIC-IDS-2018.
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Table 9 shows the result of SFS, SBS, and the GA based on SVM and MLP in the
NSL-KDD dataset using an objective function based on detection rate, false positive rate,
and number of selected features. As shown in the table, the GA+SVM obtains the highest
accuracy and lowest false alarm rate among all these combinations. It obtains an accuracy
of 99.21% and an FPR of 0.83% with 30 selected features using 10-fold cross validation
in the feature selection phase. In addition, this model obtains an accuracy of 99.19% and
an FPR of 0.81% with 33 selected features using five-fold cross validation in the feature
selection phase. Table 9 is depicted in Figure 9.

Table 9. Performance of SFS, SBS, and GA using objective function based on DR, FPR, and number of
selected features in NSL-KDD.

Metric Fold SFS+SVM SFS+MLP SBS+SVM SBS+MLP GA+SVM GA+MLP

A
cc

ur
ac

y
(%

) 2 98.77 97.83 97.76 97.7 99.18 99.11

5 98.19 97.66 98.82 97.99 99.19 98.98

10 98.19 98.82 98.65 97.93 99.21 98.93

N
um

be
r

of
se

le
ct

ed
fe

at
ur

es

2 9 9 6 9 27 37

5 7 9 10 10 33 28

10 7 12 8 10 30 39

FP
R

(%
) 2 1.46 2.51 1.94 2.76 0.89 0.85

5 1.85 2.84 1.81 1.76 0.81 1.17

10 1.85 1.65 1.82 2.64 0.83 1.28

F1
(%

) 2 98.72 97.96 97.66 97.63 99.15 99.08

5 98.12 97.59 98.78 97.91 99.16 98.92

10 98.12 98.09 98.61 98.01 99.18 98.88

  

Figure 9. Cont.
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Figure 9. Performance of SFS, SBS, and GA using objective function based on DR, FPR, and number
of selected features in NSL-KDD.

Table 10 shows the results of SFS, SBS, and the GA based on SVM and MLP in the
CIC-IDS-2017 dataset using an objective function based on the detection rate, false positive
rate, and number of selected features. As shown in the table, GA+MLP obtains the highest
accuracy, of 99.95%, among all these combinations and a low false alarm rate of 0.007% with
35 selected features using two-fold cross validation in the feature selection phase. The GA
models obtain a higher accuracy than the SFS and SBS models and give a low false alarm
rate (less than 0.035%) in all their combinations. Figure 10 displays Table 10 in its entirety.

Table 10. Performance of SFS, SBS, and GA using objective function based on DR, FPR, and number
of selected features in CIC-IDS-2017.

Metric Fold SFS+SVM SFS+MLP SBS+SVM SBS+MLP GA+SVM GA+MLP

A
cc

ur
ac

y
(%

) 2 97.86 98.07 99.86 96.41 99.94 99.95

5 99.87 97.9 99.9 98.17 99.93 99.91

10 99.87 97.62 99.89 94.72 99.94 99.93

N
um

be
r

of
se

le
ct

ed
fe

at
ur

es

2 27 17 16 10 38 35

5 31 24 14 14 42 40

10 29 24 19 9 41 33

FP
R

(%
) 2 0.06 0.05 0.03 0.03 0.003 0.007

5 0.09 0.003 0.05 0.05 0.03 0.01

10 0.06 0.05 0.04 0.04 0.02 0.005

F1
(%

) 2 98.08 98.28 99.88 96.74 99.93 99.92

5 99.89 98.12 99.92 98.36 99.93 99.93

10 99.89 97.86 99.91 95.12 99.92 99.89
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Figure 10. Performance of SFS, SBS, and GA using objective function based on DR, FPR, and number
of selected features in CIC-IDS-2017.

Table 11 shows the result of SFS, SBS, and the GA based on SVM and MLP in the
CIC-IDS-2018 dataset using an objective function based on the detection rate, false positive
rate, and number of selected features. As shown in the table, the GA+MLP obtains the
highest accuracy, of 99.92%, and lowest false alarm rate, of 0.07%, with 47 selected features
using two-fold cross validation in the feature selection phase. The GA models obtain a
higher accuracy than the SFS and SBS models and give a low false alarm rate (less than
0.20%) in all their combinations. Figure 11 depicts Table 11 in detail.

Table 11. Performance of SFS, SBS, and GA using objective function based on DR, FPR, and number
of selected features in CIC-IDS-2018.

Metric Fold SFS+SVM SFS+MLP SBS+SVM SBS+MLP GA+SVM GA+MLP

A
cc

ur
ac

y
(%

) 2 97.41 97.57 98.2 99.56 99.56 99.92

5 97.41 99.78 99.6 99.09 99.8 99.89

10 97.38 98.21 99.01 99.16 99.74 99.82
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Table 11. Cont.

Metric Fold SFS+SVM SFS+MLP SBS+SVM SBS+MLP GA+SVM GA+MLP

N
um

be
r

of
se

le
ct

ed
fe

at
ur

es

2 6 8 6 8 14 47

5 4 7 5 7 15 41

10 6 7 6 9 17 38

FP
R

(%
) 2 0.35 0.19 0.36 0.15 0.13 0.07

5 0.30 0.16 0.19 1.31 0.19 0.11

10 0.33 0.19 0.20 1.22 0.15 0.19

F1
(%

) 2 97.35 97.51 98.91 99.55 99.56 99.93

5 97.34 99.78 99.60 99.07 99.80 99.89

10 98.85 98.83 98.84 98.09 99.03 99.02

  

  

Figure 11. Performance of SFS, SBS, and GA using objective function based on DR, FPR, and number
of selected features in CIC-IDS-2018.

4.5. Performance Comparison with the Recent Methods

Tables 12–14 show the comparison between our best obtained results and those of
other recent methods in the NSL-KDD, CIC-IDS-2017, and CIC-IDS-2018 datasets.
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Table 12. Performance comparison with recent methods in NSL-KDD.

Ref. FS Tech. Classifier
Number of

Selected Features
ACC
(%)

FPR
(%)

[19] CSA MCF+MVO-ANN 22 98.81 0.02

[28] Sigmoid POI DT 18 86.90 6.40

[28] Cosine POI DT 5 88.30 8.80

[29] ABC AdaBoost 25 98.90 0.01

Proposed model GA SVM 29 99.23 0.77

Table 13. Performance comparison with recent methods CIC-IDS-2017.

Ref. FS Tech. Classifier
Number of

Selected Features
ACC
(%)

FPR
(%)

[31] IG and correlation attribute
evaluation methods PART 56 99.98 1.35

[32] Information gain and ranker
algorithm J48 75 87.44 -

[26] IG LightGBM 10 98.37 -

Proposed model GA MLP 35 99.95 0.007

Proposed model GA SVM 38 99.94 0.003

Table 14. Performance comparison with recent methods in CIC-IDS-2018.

Ref. FS Tech. Classifier
Number of

Selected Features
ACC
(%)

FPR
(%)

[27] Hybrid feature selection (RF + PCA) Light GBM 24 97.73 -

[30] Binary-particle swarm optimization Decision tree 19 99.52 -

Proposed model SFS MLP 11 99.87 0.90

Proposed model SBS MLP 8 99.87 0.90

Proposed model GA MLP 47 99.92 0.07

5. Conclusions

This paper has presented a comparative study of sequential forward selection, se-
quential backward selection, and genetic algorithm feature selection methods in intrusion
detection systems to select an efficient IDS model that provides a high accuracy and low
false alarm with a minimum number of features. The efficiencies of the three feature selec-
tion techniques with two classification methods, namely SVM and MLP, were compared.
These methods were applied to three publicly available intrusion detection system data sets,
namely NSL-KDD, CICIDS2017, and CICIDS2018. This paper has presented an assessment
of these datasets, identifying their limitations and providing solutions to overcome these
limitations.

The performance of the proposed models was analyzed, addressed, and compared
to existing techniques. The efficiencies of the proposed models were proven in the exper-
imental results, which indicated that the highest accuracy in the NSL-KDD dataset was
99.23%, achieved using the GA+SVM, with a 0.77% false alarm rate and 29 selected features
using two-fold cross validation in the feature selection phase. This model also has the
highest F1 score, of 99.20%, among the models. In the CICIDS2017 dataset, the highest
accuracy among the proposed models is 99.96%, achieved with the GA+MLP, with a 0.03%
false alarm rate and 40 selected features using five-fold cross validation in the feature
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selection phase. The lowest false alarm rate among the proposed models is 0.01% in the
case of SFS+MLP and the GA+SVM, with accuracies of 88.74% and 99.9%, respectively.
In the CSE-CIC-IDS218 dataset, SFS+MLP and SBS+MLP achieved an accuracy of 99.87%.
SFS+MLP obtains a lower FPR, of 0.10%, than SBS+MLP with eight selected features using
five-fold cross validation in the feature selection phase.
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Abstract: Maintenance decision-making is essential to achieve safe and reliable operation with high
performance for equipment. To avoid unexpected shutdown and increase machine life as well as
system efficiency, it is fundamental to design an effective maintenance decision-making scheme for
equipment. In this paper, we propose a novel maintenance decision-making method for equipment
based on Long Short-Term Memory (LSTM) and Markov decision process, which can provide specific
maintenance strategies in different degradation stages of the system. Specifically, the LSTM model
is firstly applied to predict the remaining service life of equipment to distinguish its health state
quantitatively. Then, based on the bearing residual life prediction curve, the degradation process
model is constructed, and the corresponding parameters of the model are identified. Finally, the
bearing degradation curve is obtained by the degradation process model, based on which the Markov
decision process model is constructed to provide accurate maintenance strategies for different health
conditions of system. To demonstrate the effectiveness of the proposed method, an experimental
study with the full life cycle data set of rolling bearings is carried out. The experimental results show
that the proposed method can achieve efficient maintenance decisions for bearings under different
health states, which provides a feasible solution for the maintenance of bearing systems.

Keywords: Markov decision process; maintenance decision-making; rolling bearing; LSTM

MSC: 90C40

1. Introduction

With the continuous improvement in modern industrialization, as well as the progress
of society and the rapid development of science and technology, mechanical equipment is
becoming more intelligent, systematic and modular. The functions of mechanical equip-
ment have become increasingly diversified to meet the growing requirements of industrial
production. In the process of long-term operation, mechanical equipment will be gradu-
ally aging, along with gradually declining operating performance and remaining life, the
possibility of failure will increase. Once the failure occurs, it may cause costly industrial
downtime, casualties or even serious social impact. Therefore, how to design effective
maintenance decision-making scheme, in order to ensure the long-term safe and stable
operation of the mechanical equipment is an urgent problem to be solved.

To ensure the reliable and safe operation of equipment, the existing research paid a lot
of attention to fault detection and diagnosis for different equipment via various means [1–4].
Actually, further study on effective maintenance decision-making method is also of great
importance. Due to the crucial role in mechanical equipment, maintenance decisions
for bearings have drawn increasing attention of many scholars [5,6]. The maintenance
decision-making scheme for the bearing system is also our focus in this paper.

To attain safe and reliable operation with high performance of equipment and achieve
the lowest possible maintenance costs at the same time, a novel maintenance decision-
making method for equipment based on LSTM and Markov decision process is proposed in
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this paper. To this end, the prediction curve of the bearing remaining life is firstly obtained
by applying the LSTM model. Then, the degradation process model is constructed, and the
corresponding parameters are estimated based on the bearing remaining life prediction
curve. Finally, based on the bearing degradation curve acquired by the degradation process
model, the Markov decision process model is applied to provide optimal maintenance
strategies for different health conditions of the system. The main contributions of this paper
are given as follows.

(1) A novel maintenance decision-making method is developed for rotating mechani-
cal system.

(2) An LSTM model is adopted to predict the remaining life of system, and the remaining
life prediction data are used as the input of the following degradation process model
to identify the model parameters.

(3) A maintenance decision-making model is constructed based on Markov decision
process to provide an effective maintenance solution for equipment. Furthermore, the
revenue of maintenance decisions under different health conditions is designed for the
instruction of maintenance strategies. Moreover, the maintenance decision-making
model is tested on the experimental platform of rolling bearings, and the effectiveness
of the proposed method has been validated.

The remainder of this paper is organized as follows. In Section 2, the related work
is reviewed, which summarizes the main research progress in the field of maintenance
decision-making. Section 3 presents the framework of the proposed method in detail,
including the prediction of remaining life based on LSTM and maintenance decision-
making model for bearings. The effectiveness of the proposed method is verified by the
experimental study in Section 4. Finally, the conclusions of this paper are summarized
in Section 5.

2. Literature Review

With the development of science and technology, as well as increasing demand for
economic and healthy operation of equipment, autonomous decision-making and equip-
ment maintenance decision-making has drawn increasing attention from the academy [7–9].
In the past decades, the research topic of maintenance decision-making has been widely
studied [10]. The existing methods can be mainly divided into two categories: time-based
maintenance (TBM) and condition-based maintenance (CBM).

Many scholars have made in-depth research on TBM strategy optimization. Buchholz,
Peter et al. [11] proposed a general model of partially observable states and non-exponential
fault, maintenance and repair time based on phase distribution. D.E. Ighravwe et al. [12]
proposed a fuzzy objective programming model and used it to establish a single objective
function of maintenance optimization considering random constraints, so as to generate
reliable information for fault maintenance plan. Considering the time-based preventive
maintenance scheduling problem under the uncertainty of unit life distribution, De Jonge
et al. [13] evaluated the long-term benefits of initially delaying preventive maintenance and
made the benefits maximization through the numerical research. Yiming Chen et al. [14]
proposed two optimization problems by taking the static availability or expected perfor-
mance capacity of the system as the goal.

The condition-based maintenance (CBM) is based on the methods of integrating cur-
rent state prediction, plan diagnosis and future state prediction. These methods can be
classified into physical model-based methods, data-driven methods and hybrid methods.
Guang Zou [15] developed a probabilistic maintenance optimization method using in-
formation value (VOI) calculation and Bayesian decision optimization. The VOI based
approach explicitly quantifies the added value of future inspections and gives the best
decision by directly modeling decision alternatives and evaluating their expected results.

In the field of CBM, more and more scholars use the Markov decision process to study
the degradation process of equipment. Paté-Cornell et al. [16] applied Markov chains with
four states to simulate the degradation process of production system, where time-based

66



Mathematics 2023, 11, 109

maintenance and three condition-based maintenance strategies are considered. The latter is
based on product inspection, machine signals and signals provided by product in service.
Minou C.A. Olde Keizer et al. [17] constructed a parallel system, which is subject to both
fault dependence and economic dependence by maintenance cost through load sharing. The
system is formulated as a Markov decision process, where the optimal replacement decision
is obtained to minimize the long-term average cost per unit time. Yaqiong Lv and Qianwen
Zhou et al. [9] proposed an intelligent predictive maintenance system for production
equipment multi granularity fault based on BP neural network and fuzzy decision-making,
which successfully realized the automatic predictive maintenance decision-making. Renny
Arismendi et al. [18] explored the application of piecewise deterministic Markov process
(PDMP) to cover different modeling assumptions, such as non-ignorable maintenance delay
and inspection-based status monitoring.

In addition, some researchers consider the combination of the two types of methods
in applications. Mckone and Weiss [19] combined CBM with TBM methods. The available
status information is limited to potential fault signals that may be received before the actual
fault. Therefore, the performance of CBM depends on the prediction accuracy. In some
cases, TBM or the combination of CBM and TBM is preferred.

From the state of art and development of the study on equipment maintenance
decision-making, existing research has been demonstrated by relatively ideal research
results in some respects. However, in the field of equipment maintenance decision-making,
less efforts have been reported to systematically map out the specific maintenance strategies
in different degradation stages of the system, which is worthy to be further explored. Due to
the superior ability to find a strategic solution with maximum return and broad application
prospects in automatic control and recommendation systems, the Markov decision process
has great potential in the field of equipment maintenance decision-making. Motivated by
the aforementioned studies, this paper develops a novel maintenance decision-making
scheme based on LSTM and Markov decision process, which can provide effective mainte-
nance strategies in different degradation stages of the equipment.

3. Methodology

The framework of the maintenance decision-making method proposed in this paper is
shown in Figure 1. Specifically, the LSTM model is applied to predict the remaining life
curve of the equipment. Then, based on the bearing remaining life prediction curve, the
degradation process model is constructed, and the parameters of the model are identified.
Finally, the bearing degradation curve is obtained by the degradation process model,
based on which the Markov decision process model is constructed to provide accurate
maintenance strategies for different health conditions of system.

3.1. Prediction of Remaining Life Based on LSTM

LSTM is a special type of Recurrent Neural Network (RNN) that can learn long-
term dependent information, which has been demonstrated by many successful applica-
tions [20,21].

The specific structure of LSTM is shown in Figure 2, where Xt is the input of cell state
at time t and Ht is the output of cell state at time t. LSTM realizes information protection
and control through three gate unit structures, including input gate, forgetting gate and
output gate.

(1) Forgetting gate

The first step in LSTM is to decide what information will be discarded from the cellular
state. The decision is made through the forgetting gate. The gate will read the output of the
hidden layer at the last moment and the input of the current cell, and then output a value
between 0 and 1, where 1 means “completely preserved”, 0 means “completely discarded”.

(2) Input gate
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The next step is to decide how much new information will be added to the cellular
state. To this end, there are two steps to be performed: first, the input gate determines
which information needs to be updated. A tanh layer generates a vector, which is the
alternative content for updating. In the second step, the two parts are combined to update
the cell state.

(3) Output gate

Finally, we need to determine the output value. This output will be based on the cell
state. Firstly, we run a sigmoid layer to determine which part of the cell state will be output.
Then, we deal with the cell state through tanh (get a value between −1 and 1) and multiply
it with the output of the sigmoid gate. Finally, we just output the part of the output we
determined.

Figure 1. Framework of the proposed approach.

Figure 2. LSTM Structure.
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Through the above three gating units, LSTM realizes the selective retention and output
of information, and meanwhile solves the problem of gradient disappearance of RNN.

The remaining life prediction based on LSTM can integrate the original learning
samples with the new learning mode to realize the re-training of samples. It can not only
improve the accuracy of remaining life prediction, but also has the characteristics of fast
convergence and high stability. Due to the great advantages in the processing of serial data,
LSTM is applied for remaining life prediction of bearings by making use of the vibration
signals in operation, which also have serial characteristics.

In what follows, the remaining life prediction data obtained by LSTM model will be
used to quantify the health status of the bearing.

3.2. Degradation Process Model

The bearing degradation curve in ideal conditions is shown in Figure 3. According to
the curve, the trend of the bearing degradation has the following characteristics [22]:

(1) The normal operation time of bearing is long, accounting for 80–90% of the whole life
cycle of the bearing.

(2) When a small crack appears on the surface of the bearing rolling elements or raceways,
the bearing begins to enter the degradation stage.

(3) When the degree of bearing degradation accumulates to a certain extent, the probabil-
ity of bearing damage and equipment failure will increase significantly

Figure 3. Bearing degradation curve.

The degradation quantity of rolling bearing in a certain period Δt is expressed as
Z(Δt), including both continuous degradation quantity and sudden degradation quantity
in the process of bearing degradation. The degradation process of bearing follows the
Gauss–Poisson process:

Z(Δt) = X(Δt) + βY(Δt) (1)

where X(Δt) denotes the continuous degradation of bearings, and X(Δt)~N
(
μ, σ2). Y(Δt)

represents the quantity of degradation due to sudden factors, and Y(Δt)~Poisson(λ). β is
the average degradation amount generated by each sudden degradation.

In order to evaluate the health state of the system, the health score is introduced in
the construction of degradation process model. The initial health score of the bearing is
set to be 1. After operation time t, the normal continuous degradation of the bearing is
denoted by X(t), and the quantity of sudden degradation is Y(t), then the health score of
the bearing is given by:

Ht = 1 −
t

∑
t=0

(X(t) + βY(t)) (2)

The parameters of the health state degradation process can be identified by the histori-
cal health score degradation data, which is discussed in the following.

69



Mathematics 2023, 11, 109

After obtaining the remaining life prediction data, the bearing health score degradation
data can be obtained from the following formula:

Ht(n) = H(t)− H(t + 1) (3)

Assume that HN(n)(n = 1, 2, 3, ..., N) is a group of historical degradation data of health
score, where n represents the state number. According to the health score degradation data
HN(n), the parameters in Equation (2) are estimated by calculating the central moments of
each order of HN(n). The estimation of parameters is given as follows:

E(HN) = μ + λβ (4)

D(HN) = σ2 + λβ2 (5)

E(HN − E(HN))
3 = β3λ (6)

E(HN − E(HN))
4

= 3σ2 + 3β4λ2 + β4λ + 6σ2β2λ
(7)

where μ, σ, λ, β are the parameters of rolling bearing degradation process. The central
moments of each order of the group of data are calculated by the health score degradation
data, which can be recorded as H1, H2, H3, . . . , Hn. The obtained central moments are
expressed as a1, a2, a3, a4 respectively, which can be calculated as follows:

a1 = E(HN) =
1
n

n

∑
N−1

HN (8)

a2 = D(HN) =
1
n

n

∑
N−1

(HN − a1)
2 (9)

a3 = E(HN − E(HN))
3 =

1
n

n

∑
N−1

(HN − a1)
3 (10)

a4 = E(HN − E(HN))
4 =

1
n

n

∑
N−1

(HN − a1)
4 (11)

Based on the above equations, each parameter of the Gauss–Poisson process model is
given by:

λ =
a4

3(
a4 − 3a2

2
)3 (12)

σ =

√
a2 −

a2
3

a4 − 3a2
2

(13)

μ = a1 −
a3

3(
a4 − 3a2

2
)2 (14)

β =
a4 − 3a2

2
a3

(15)

According to the above discussions, the parameters of the bearing degradation process
are completely identified.

3.3. Maintenance Decision-Making Model
3.3.1. Markov Decision Process Model

The health score (0–1) of the system can be obtained in Section 3.2. Higher health score
indicates better system health state. Health score 1 means that the system is completely
healthy, and health score 0 indicates that the system is failed.
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The health score can effectively represent the deterioration of the system, motivating
us to use to evaluate the health status of the system. The health score is divided into four
intervals: [1, 0.8), [0.8, 0.6), [0.6, 0.4) and [0.4, 0], corresponding to four different health
states of the bearing:

Healthy (that is, the bearing is under a completely healthy state with only slight degra-
dation),

Good (the bearing begins to deteriorate but is not obvious),
Sub-health (the bearing has been seriously degraded and its performance has been

obviously reduced),
Damaged (the bearing is completely damaged and cannot be used).
Their health states are recorded as 1, 2, 3, 4 respectively. Therefore, the health state set

of rolling bearing can be defined as S = {1, 2, 3, 4}, which is a continuous Markov process.
Since the bearing degradation process is continuous, the rolling bearing must be in a certain
state (health, good, sub-health, damage) at any time in its full life cycle [23]. The health
state transition process of rolling bearing is shown in Figure 4, where each circle represents
different health states, and the value in the circle represents the benefit of remaining in
each state.

Figure 4. State transition process model.

3.3.2. Transition Probability

In this paper, the Monte Carlo method is used to calculate the transition probability of
the Markov process [24]. The transition probability can be calculated as follows:

Pij =
Mij

Mi
(16)

where Pij is the transition probability of state from i to j; Mij is the number of samples
transferring from state i at the last moment to state j at the next moment, and Mi is the total
number of samples in state i.

3.3.3. Maintenance Effect

According to the impact of different maintenance modes on bearing service life, the
maintenance effect of different maintenance modes can be represented, as well as the impact
of different maintenance modes on the health status of the bearing.

In this paper, the effect of different maintenance modes in this paper is given as
follows. Simple maintenance applied to rolling bearings can prolong the bearing service
life by 10% on average. If the bearings are repaired by complete maintenance, the health
score can directly change to 1. If we apply state maintenance to repair rolling bearings,
the bearing service life can be extended by 40% on average. The health states transition
probability matrix under different maintenance states can be obtained through the health
score represented by the life extension.

3.3.4. Cost Analysis

Different maintenance modes of bearings under different health conditions brings
different cost, which has significant impact on the decision-making process. The cost
includes three parts:
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(1) Maintenance costs (the maintenance costs incurred by various maintenance activities);
(2) Continuous maintenance costs (the costs incurred from continuous care and mainte-

nance of rolling bearings to keep them healthy and effective);
(3) Signal detection costs (the costs caused by the vibration signal detection of the bearing

to identify the current health status).

At present, there is no uniform standard for the maintenance mode and cost of me-
chanical equipment, and the maintenance mode setting in this paper is only to verify the
effectiveness of this method. Therefore, this paper formulates the maintenance cost based
on some maintenance experience. To sum up, the costs of each simple maintenance, state
maintenance and complete maintenance are 15, 40 and 300, respectively, where the relative
value is selected to facilitate the calculation of the total reward.

For a Markov decision process, Gt is defined as the cumulative reward of the system,
which can be expressed as:

Gt = Rt+1 + Rt+2 + Rt+3 + · · · =
∞

∑
k=0

γkRt+k+1 (17)

where γ represents the discount factor, which is set as 1. Rt denotes the income at time t.

4. Experiment Analysis

4.1. Bearing Data Acquisition

The data used in this paper are the life cycle experimental data of bearings from
Xi’an Jiaotong University [25]. The experimental platform is shown in Figure 5 [26]. The
accelerated life tests for various types of bearings (including rolling bearings and sliding
bearings) under different working conditions can be carried out on the experimental
platform, where the life cycle data of the test bearings can be collected. The main bearing
operating parameters, including the radial force and the rotating speed, which can be
adjusted by the test-bed. The test bearing type is LDK UER204 rolling bearing, whose
parameters are shown in Table 1.

Figure 5. Bearing acceleration experimental platform [26].
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Table 1. LDK UER204 Bearing parameters.

Parameters Numerical Value

Diameter of inner race/mm 29.30
Outer ring raceway diameter/mm 39.80

Bearing pitch diameter/mm 34.55
Basic dynamic load rating/N 12,820

Ball diameter/mm 7.92
Number of balls 8
Contact angle/(◦) 0

Basic static load rating/kN 6.65

4.2. Prediction of the Remaining Useful Life of Bearings

The aforementioned data are used for the verification of the proposed method. Several
groups of data samples are selected as the training set from the bearing life cycle data
of Xi’an Jiaotong University, including Bearing 1_1, earing1_2 and Bearing1_4. While
Bearing1_5 is selected as the test set. (Operating condition: speed 2100 r/min, radial force
12 kN, sampling frequency 25.6 kHz, sampling interval 1 min, sampling duration 1.28 s).

The actual remaining life of the bearing is used as the training and testing label value y.
The process of label construction is discussed as follows. label 1 represents the bearing state
that it is in good condition, and label 0 means that the bearing is in complete failure. For
example, Bearing1–2 dataset has a total of 2496 groups of data, which means the total life
of the bearing is 2496 min. If the current sample is the 1000th datum, then the remaining
life of the bearing is 1496 min, and the value of the corresponding label y under the sample
is 1496/2496 = 0.599358. According to the remaining life of the rolling bearing, the data
samples, are labeled in the same manner.

The LSTM model is designed based on the Python open-source deep learning frame-
work. In the experiment, the Adam optimizer is selected to optimize the training loss
of LSTM model. Adam is a popular optimizer in the current architecture. Compared
with other optimizers, it can learn parameters adaptively, which has the advantages of
fast convergence, small memory requirements, and better processing of noise samples.
The obtained life prediction curve of Bearing1_5 is shown in Figure 6, and the prediction
accuracy rate is 96.7%.

Figure 6. Bearing life prediction curve.

To illustrate, the status of bearing is provided. As shown in Figure 7, at time point
400, the bearing status is shown as the left bearing, while at time point 1400, the bearing
status is shown as the right bearing. It can be seen that the left bearing is in good condition,
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while the right bearing has been severely worn, which is consistent with the life prediction
results by the LSTM model. Therefore, the method in this paper can fit well with the whole
life degrading trend of the bearing so as to predict the remaining life of it.

Figure 7. Bearings in two different states.

4.3. Parameters Estimation

At present, we have obtained the predicted value of the remaining life of the bearing.
Based on this, we subtract the predicted value of the remaining life of the bearing at adjacent
time points to obtain the deterioration of the bearing health score (HN(n)), then we can
calculate the relevant parameters of the model.

Based on the health score of bearing life prediction curve obtained in Figure 6, which
represents the degradation quantity of bearings, the parameters of the bearing degradation
process model are identified as follows:

μ = 0.000243, o = 0.0208 β = 0.000596, λ = 0.400

According to the obtained bearing degradation process model, we can estimate the
bearing degradation curve as shown in Figure 8.

Figure 8. Curve of Bearing Degradation Process.

Based on the bearing degradation curve, the transition probability of Markov decision
process can be calculated. According to the maintenance effect in Section 3.3, the impact of
each maintenance mode on the bearing health state transition is discussed as follows:
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The state transition probability matrix after simple maintenance is:

A1 =

⎡
⎢⎢⎣

1 0 0 0
0.64 0.36 0 0

0 0.27 0.63 0
0 0 0.09 0.91

⎤
⎥⎥⎦

The state transition probability matrix after condition-based maintenance is:

A2 =

⎡
⎢⎢⎣

1 0 0 0
1 0 0 0

0.14 0.71 0.15 0
0 0 0.29 0.71

⎤
⎥⎥⎦

The state transition probability matrix after complete maintenance is:

A3 =

⎡
⎢⎢⎣

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

⎤
⎥⎥⎦

According to Equation (16), the health state transition probability matrix of the rolling
bearing can be obtained as:

A4 =

⎡
⎢⎢⎣

0.977 0.023 0 0
0.067 0.916 0.017 0

0 0.034 0.933 0.033
0 0 0.013 0.987

⎤
⎥⎥⎦

The row of the above matrix represents the original state, and the column is the state
after transition. The value means the probability of transition from the original state to the
new state. Finally, the Markov decision process model of the entire bearing degradation
process is obtained as shown in Figure 9. Each circle of the figure represents the different
health states of the bearing, in which the value represents the benefit of remaining in each
state, and the value on the line of circles represents the transition probability of each state.

Figure 9. Markov Decision Model.

To calculate the value of each maintenance decision on each state, the Bellman equation
is used to iteratively calculate the value function of each state, and the following results
are obtained: Revenue in healthy state R1 = 4631.84, revenue in good state R2 = 4195.92,
revenue in sub-health state R3 = 2141.21, and revenue in damaged state R4 = 0.

The benefits of different maintenance modes under different conditions are obtained
by combining the effects of the above maintenance decisions on different health status, as
shown in Table 2.
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Table 2. Revenue from different maintenance decisions.

Maintenance Modes Health Good Sub-Health Damage

Simple maintenance 4616.84 4429.91 2466.86 177.71

Condition-based
maintenance

4591.84 4591.84 3908.72 580.95

Complete maintenance 4331.84 4331.84 4331.84 4331.84

4.4. Summary

It can be seen from Table 2 that when the rolling bearing is in healthy state, and
simple maintenance is applied, i.e., routine maintenance, the maximum benefit can be
obtained. While the benefit of condition-based maintenance is only slightly lower than that
of simple maintenance. When the rolling bearing is under good condition, the maximum
benefit can be obtained by carrying out appropriate condition maintenance according to
its condition, and considerable benefit can be gained by carrying out simple maintenance
or complete maintenance under this condition. If the rolling bearing is under sub-health
state, the benefit of complete maintenance, i.e., directly replacing the bearing, is the largest,
which is far greater than that of the other two maintenance modes. However, if the rolling
bearing has been damaged, only when the bearing is completely repaired, that is to say, the
replacement of the bearing can obtain greater benefits.

Our conclusions obtained above are consistent with the historical experience of bear-
ing maintenance, verifying that the proposed maintenance decision-making method can
provide effective guidance for the maintenance strategy of rolling bearings under differ-
ent states.

5. Conclusions

In this paper, a maintenance decision-making scheme for equipment is proposed
based on LSTM and Markov decision process, which can provide effective maintenance
decisions for system under different degradation stages. First, the LSTM model is adopted
to predict the remaining service life to distinguish the health state quantitatively. Then, the
degradation process model is constructed, and the parameters of the model are identified.
With the aid of the degradation curve obtained from the degradation process model, the
maintenance decision-making model is established based on the Markov decision process.
Moreover, to facilitate more appropriate maintenance strategy identification, the revenue of
maintenance decisions under different health conditions is analyzed. Experimental study
with the full life cycle data set of bearings is carried out to demonstrate the effectiveness
of the proposed method. Besides the rotating mechanical systems, the application of the
proposed method can be further extended to other industrial fields.
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Abstract: Internet of Things devices, platform programs, and network applications are all vulnerable
to cyberattacks (digital attacks), which can be prevented at different levels by using cybersecu-
rity protocol. In the Internet of Things (IoT), cyberattacks are specifically intended to retrieve or
change/destroy sensitive information that may exceed the IoT’s advantages. Furthermore, the de-
sign of a lightweight cybersecurity mechanism experiences a critical challenge that would perfectly
fit resource-constrained IoT devices. For instance, identifying the compromised devices and the
users’ data and services protection are the general challenges of cybersecurity on an IoT system that
should be considered. This paper proposes a secure cybersecurity system based on the integration
of cryptography with authentication (ELCA) that utilizes elliptic curve Diffie–Hellman (ECDH) to
undertake key distribution while the weak bits problem in the shared secret key is resolved. In
this paper, three systems of integration are investigated, while ELCA proposes secure integration
between authentication and encryption to facilitate confidentiality and authenticity transfer messages
between IoT devices over an insecure communication channel. Furthermore, the security of ELCA is
proven mathematically using the random oracle model and IoT adversary model. The findings of the
emulation results show the effectiveness of ELCA performance in terms of a reduced CPU execution
time by 50%, reduced storage cost by 32–19.6%, and reduced energy consumption by 41% compared
to the baseline cryptographic algorithms.

Keywords: IoT; ECDH; symmetric cryptographic; authentication

MSC: 68M25

1. Introduction

The Internet of Things (IoT) enables communication between various items and things
that have internetworking devices as well as technological devices. An IoT device is con-
figured with a unique IP address to perform various smart applications without human
intervention. Moreover, IoT devices are extremely heterogeneous, differ in their capabilities,
and have very limited resources in terms of storage capacity and processing complexity,
input/output hardware features, and sources of energy [1]. The cybersecurity mechanism
remains a significant challenge for IoT implementation and deployment due to the software
and hardware vulnerability against cyberattacks. Moreover, cybersecurity has become a
transversal discipline to guarantee the confidentiality, authenticity, and integrity of the
generated data, transmitted and/or stored on IoT devices. Privacy and security must be
ensured by the cybersecurity mechanism to generate trust in data, which is a decisive factor
in making critical decisions for the development of all areas involved in this interconnected
world. Generally, cyberattacks utilize the internet to gain unauthorized access to disable
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IoT devices, and destroy and disrupt the critical information of the IoT [2–6]. Regardless
of the network structure layers, the IoT is susceptible to numerous kinds of attacks at the
application, network, and sensing layers. The access control mechanism can effectively
monitor the access activities of resources by legitimate users [3]. For instance, cyberattacks
cause dangerous compromises on the IoT the strengths of which include sensor impris-
onment, known key security, stolen-verifier and controlled information, denial of service
(DoS), link sniffing, man-in-the-middle, forced delay, session hijacking, brute force, and
dictionary attacks [7–10]. Furthermore, key distribution is the predicament of the symmet-
ric cryptography, and it represents the essential challenge task in a resource-constrained
system such as the IoT. One of the practical solutions is using ECDH, which is considered
an appropriate solution for secret key distribution among IoT devices. This is primarily
due to ECDH having a smaller key size with higher security strength compared to an RSA
cryptosystem [11]. Furthermore, ECDH requires fewer CPU resources, which causes less
power consumption and processing delay compared to RSA.

Figure 1 illustrates the scenario of a cyberattack that can compromise the channel
communication between the sensor devices and the IoT gateway or compromise the IoT
cloud networks. The standard cryptosystem solutions (e.g., RSA, AES, DES) require
the imperative computation overhead, long key size, high memory capacity, and long
processing delay. As a result, they cannot be applied immediately to the technology or
sensors with the lowest resource requirements, such as the IoT. Therefore, it is a difficult task
to build effective, quick, small, and safe cryptographic techniques for the IoT. Additionally,
the IoT networks should put in place a minimal cybersecurity system to guard against
unauthorized attackers disclosing sensitive information and to confirm that users are
permitted to use IoT services (e.g., authentication and access control) [12–19].

 

Figure 1. Scenario of cyberattacks on the IoT network.

Cryptography, digital signature, and authentication are the essential solutions to de-
fend against cyberattacks on the IoT. One of the two widely used encryption techniques
symmetric (private key) or asymmetric (public key) encryption can be used with IoT cryp-
tography. The same key is used for the cryptographic operation in symmetric encryptions
at both the source and the destination. The distribution of the private key among IoT
devices determines how strong the symmetric encryption is. As opposed to symmetric
encryptions, asymmetric encryptions use two distinct keys: the public key and the private
key. The public key can be communicated across a secure channel to the authorized devices,
while the private key is kept hidden and never shared.

While encryption can guarantee privacy, message authentication can guarantee authen-
ticity/integrity of the received data. Nevertheless, IoT systems need both authentication
and confidentiality. It may be attractive to integrate encryption and authentication; how-
ever, not all combinations will provide both privacy and authentication. Certainly, it is a
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very difficult task to combine cryptographic tools securely, which means that, sometimes,
outstanding cryptographic tools can be integrated in a way that produces an insecure
combination. Consequently, without proven security of a specific combination, it is risky
to use it. The popular methods to merge message authentication and encryption can be
described as follows [11]:

• Method 1: Encrypt-and-authenticate (EAT), which means the original data should
be encrypted using K1 as C = Ek1(M) and the message authentication code should be
calculated using K2 as T = MACk2(M). The sending message is the pair (C, T), which
should be sent separately as shown in Figure 2a.

• Method 2: Authenticate-then-encrypt (ATE), which means the tag T is first calculated,
and then the original data and T are encrypted together. The sending message is
C = Ek1(M+T) where T = MACk2(M) as illustrated in Figure 2b.

• Method 3: Encrypt-then-authenticate (ETA), which means the original data M is first
encrypted using K1 as C = Ek1(M), and then the tag T is calculated over C. The sending
message is the pair (C, T) where T = MACk2(C) as illustrated in Figure 2c.

Figure 2. Integration methods between encryption and authentication: (a) Encrypt-and-authenticate;
(b) authenticate-then-encrypt; (c) encrypt-then-authenticate.
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1.1. Adversary Model on IoT

The main goal of an adversary cyberattack against the IoT is to disrupt its control
function by taking advantage of one or more weaknesses that a malicious adversary
could use to penetrate the IoT environment’s security system [20–22]. The adversary is
presumptively capable of reading, transmitting, and faking IoT network traffic, which could
raise concerns about sensed data, IoT device privacy, and IoT gateway control management.
The most crucial adversary attacks on ELCA are described as follows:

• Spoofing attack. To obtain the IoT device credential needed to access the sensed data,
the attacker intercepts or eavesdrops on the IoT network traffic.

• A man-in-the-middle. In this attack, the malicious adversary has the ability to connect
to any IoT device and listen to any network data. Additionally, the adversary can alter
the captured messages before they are transmitted to the receiver if it engages in active
man-in-the-middle behavior [8].

• A replay attacks. A replay attack creates a replica of the message to be used later,
as opposed to transmitting it directly to the recipient. An opponent does this by
intercepting the data and delaying, replaying, or retransmitting it.

• A brute force. Even though the domain parameters that both parties use for ECDH
are adequately robust, the malicious adversary in this attack tries every possible
combination of letters, digits, and characters to crack the shared secret key.

• A sensor capture attack. In this attack, the impostor adversary seizes a sensor node
and takes the shared secret key and shared domain parameters in order to carry out
unethical activities on the Internet of Things network.

• A stolen-verifier attack. If the imposter attacker has obtained the shared secret key
from an IoT device, they can pretend to be an authorized device to launch attacks
against other IoT devices, steal data, or get around access controls.

1.2. Research Motivation

The motivation of the proposed method is to develop a cybersecurity mechanism that
securely combines a lightweight cryptography with authentication to prevent a cyberattack
and fit the resource-constrained IoT system. In addition, the proposed solution protects IoT
messages from modification, and spoofing attacks.

1.3. Research Contribution

The following contributions are reported in this research:

• It proposes a lightweight symmetric encryption based on the scalar multiplication of
the hash function and the base point of the elliptic curve. The modular multiplicative
based on order of base point has been used to create the final ciphertext. Additionally,
the proposed ELCA confidentially distributes a shared secret key between IoT parties
over an insecure communication channel using the ECDH method. Indeed, the secure
shared key is an ephemeral that resolves the weak bits problem and is recommended
by RFC8442 to provide perfect forward secrecy.

• It proposes an efficacious secure combination between authentication and encryption
to facilitate confidentiality and authenticity transfer messages between IoT devices
over an insecure communication channel.

• A comprehensive cryptanalysis based on the random oracle model mathematically
proves the security of the proposed combination between authentication and encryp-
tion on the IoT.

• The well-known IoT adversary model is also exploited to verify the security strength
and to prove the security of the proposed scheme.

• Finally, the performance of the suggested ELCA is also evaluated in terms of CPU
execution time, power consumption, and storage cost through a number of emula-
tion experiments.
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The rest of this paper is organized as follows: the related works on authentication and
encryption over an IoT platform is presented in Section 2. The algorithm of the proposed
ELCA is explained in Section 3. Additionally, Section 4 describes the cybersecurity analysis
for the ELCA mechanisms. The implementation and evaluation of ELCA on the IoT is
presented in Section 5. Finally, Section 6 presents the conclusion and future work. All
notations used in ELCA are summarized in Table 1.

Table 1. Frequently used notation.

Notation Meaning Notation Meaning

C Ciphertext m Converting M to the
integer number

CCA Chosen-ciphertext attack MAC Message authentication
code

CPA Chosen-plaintext attack n Order of G

CMA Chosen-message attack O An extra point at infinity of
the curve

d Private key P Modular prime

D Destination node Pb Random point in the curve

ECC Elliptic curve
cryptography Pb.X1 X coordinate of Pb

ECDH Elliptic curve
Diffie–Hellman PPT Probabilistic polynomial

time

ELCA
Effective, lightweight

cryptographic and
authentication

PRF pseudorandom function

EU-CMA
Existentially unforgeable
under chosen-message

attack
Q Public key

G Base point generator ROM Random oracle model

h Subgroup cofactor S Source node

IND-CPA Indistinguishability
chosen-plaintext attack SSK/XK Shared secret key

M Plaintext message T Authentication tag

2. Related Works on Cryptographic and Authentication Algorithms

A small number of studies have previously been established to fit resource-constrained
devices, particularly for sensors and actuators on IoT networks, despite the fact that many
academics have investigated the security algorithms on the IoT. In our earlier work [23],
the digital certificate authority was used to link a public key to its owner using a digital
certificate, thereby authenticating the sender’s genuine identity. Therefore, the related
efforts in this research focus on creating simple cryptographic algorithms and lightweight
authentication across IoT networks.

Elliptic curve integrated encryption (ECIES), which is combined with advanced stan-
dard encryption and is known as ECIES AES, was proposed by V. Shoup. Additionally,
ECIES includes rabbit encryption, known as ECIES Ra, in accordance with the specifications
in RFC4503. NIST proposed a lightweight authenticated encryption with associated data
(AEAD) that can operate with a device that has limited resources, such as an Internet of
Things system [24]. The encryption and tag provided by AEAD can be used as a message
authentication code (MAC). AEAD provides data authentication, confidentiality, and in-
tegrity as a result. To match an IoT resource-constrained system, Byoungjin Seok et al. [25]
created secure device-to-device communication using the concepts of AEAD and ECC.
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A secure data sharing mechanism for device-to-device communication on the 5G mobile
system was presented by Atefeh et al. [26]. The virtual check concept was used in this study
as a system of encouragement to encourage manipulators’ involvement in the development
of data sharing. In the study suggested by Adeel et al. [27], a public key infrastructure (PKI)-
based lightweight authentication method was combined with elliptic ElGamal encryption.
Additionally, Yasir et al. [28] created a small cryptographic system that relies on ECC and
ElGamal over public key infrastructure (EEoP). Additionally, Adel et al. [29] proposed
a powerful multifactor authentication (CMA) system that makes use of the concept of
combining various hash functions with geolocation authentication over the IoT. In order to
verify the key generation, Sciancalepore et al. [30] integrated ECDH exchange with a digital
certificate. In order to enhance user authentication, Mohammad Ayoub et al. [31] created a
secure ECC-based authentication and encryption system that makes use of user credentials
and biometric parameters. Secure IoT (SIT), which makes use of a 64-bit key of Feistel
and a consistent substitution–permutation, was proposed by Muhammad U. et al. [32].
Shah et al. [33] presented the integration of Diffie–Hellman-based cryptography and au-
thentication. To share a secret key through the Internet of Things, multifactor authentication
is used. One-time passwords (OTPs) that rely on ECC and isogeny to ensure IoT security
were proposed by Badis Hammi et al. [34]. The OTP based on ECC’s unpredictability is not
guaranteed though. A safe system with privacy and authentication based on three factors
was proposed by Rangwani, D. et al. [35].

The limitations of the previous literature studies [23–35] are summarized in Table 2. In
this table, the main limitations can be specified in four facts: First, the integration between
authentication and encryption has not been proven to be secure. Second, the outstanding
construction of the IoT and the resource constraints have not been considered. Third,
the vulnerabilities of ECDH (i.e., weak bits and chosen-ciphertext attack) have not been
resolved and recovered. Finally, the cryptanalysis under a random oracle model has not
been investigated.

Table 2. Summary of Related Works.

Approaches Date Published Methodology and Features Limitations

AEAD [24] 2020
It provided the cipher and the tag that
offers data confidentiality, integrity, and

authentication.

It does not provide secure
integration.

B. Seok et al. [25] 2020

In order to accommodate an IoT system
with limited resources, it developed a

secure device-to-device communication
using the concepts of AEAD and ECC.

The cryptanalysis was not
studied.

Adeel et al. [27] 2019
In order to manage the public key

infrastructure (PKI), it combined the
two algorithms ElGamal and ECC.

It lacks the adversary mode
analysis.

Yasir et al. [28] 2017 It created a small-scale cryptography
system that utilizes ECC and ElGamal.

The cryptanalysis was not
studied.

Adel et al. [29] 2019

It proposed a secure multifactor
authentication (CMA) that uses robust
combiners of the hash functions and
geolocation authentication over IoT.

The time processing
complexity is high.

KMP [30] 2017
To verify the key generation, ECDH

exchange and a digital certificate were
included.

Due to the implicit certificate’s
power consumption, it does

not fit IoT resource
constraints.
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Table 2. Cont.

Approaches Date Published Methodology and Features Limitations

M. Ayoub et al. [31] 2020

It created a secure ECC-based
authentication and encryption system

that strengthens user authentication by
using personal information and

biometrics.

Due to the vulnerability of
biometric parameter mistake,

it does not fit IoT resource
constraints.

SIT [32] 2017
It used the idea of combination 64-bit

key of Feistel and a uniform
substitution–permutation.

Due to power consumption, it
does not fit the IoT resource

limitations.

Shah et al. [33] 2017

To share a secret key via an IoT
network, it integrated authentication

and cryptography based on
Diffie–Hellman.

It does not prove the security
for integration.

B. Hammi et al. [34] 2020 It proposed OTP that relies on ECC and
isogeny to guarantee IoT security.

The randomness of the OTP
based on ECC is not ensured.

Rangwani, D [35] 2021
It suggested a safe, private, and

three-factor authentication mechanism
for the Internet of Things.

It does not study the effect of
three-factor authentication on

the operating system.

3. System Design of ELCA Algorithm

The system design of the proposed ELCA algorithm mainly consists of key manage-
ment based on ECDH, symmetric encryption algorithm with a random padding system,
and message authentication based on multifactor hash function. This research proposes
secure integration between symmetric cryptography and authentication based on method 3
(e.g., encrypt-then-authenticate). The three algorithms are organized to guarantee cyberat-
tack protections on the IoT. The three proposed functions in this study were created under
the following presumptions:

• The IoT gateway has a robust security mechanism and hence cannot be compromised.
• The shared secret key (SSK) is calculated based on ECDH and it is considered as the

private key of the ELCA cryptography.
• SSK in all IoT devices uses the preinstalled two secure keys: the public key, which is

calculated at all involved IoT devices, and the private key, which is not known publicly.
• All keys in the proposed system are ephemeral (dynamic), which means they must be

changed in each new session.
• The domain parameters of the ECDH are inserted and programmed into all IoT devices

during the initialization session.
• The detail of ELCA is explained in the following sections.

3.1. Key Management Algorithm Based on ECDH

The exchange of the common secret key between the IoT devices is the essential
concern in traditional symmetric cryptography. This is primarily due to the insecure
communication channel that makes IoT devices susceptible to many cyberattacks. Conse-
quently, the proposed encryption mechanism utilizes the ECDH to securely calculate rather
than distribute a new SSK for each transmission session between IoT devices (i.e., forward
secrecy). The elliptic curve is a set of points identified by solving the following equation:

E =
{
(x, y)

∣∣y2 = x3 + ax + b
} ∪ {O},

where a, b ∈ K(Z/PZ) satisfy (4a3 + 27b2) 	= 0
(1)

where K presents an integer finite field over a modular prime P. An extra point at infinity
(e.g., O) has been added to the equation to add any point to itself. Let us assume that S
and D are the IoT source and the IoT destination, respectively. The domain parameters of
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elliptic curve consist of p, G, n, h which are the prime number, the base point generator, the
order of G, and the subgroup cofactor that is usually 1. These parameters demonstrate the
agreed information between S and D to utilize the ECDH key exchange protocol. In each
new session, the private key at S and D is generated using the random function, which
is selected between 1 and n-1. The public key is a point in the curve, namely Q, which is
produced using scalar multiplication of d and G (e.g., Q = d × G) as shown in Figure 3. In
this figure, S has a key pair (dS, QS) and D (dD, QD), which represent the private and public
keys at each node. Each S and D should receive the public key from the other party prior to
implementing the ECDH protocol. Later, S computes its SSK point as K(XK, YK) = dS × QD
and D computes its SSK point as K(XK, YK) = dD × QS. As a result, the agreed SSK is the x
coordinate of the point K, which is k1 = XK. Moreover, k2 = YK represents the agreed SSK
for authentication. It is interesting to note that the SSK that is calculated by both parties
is equal because dS × QD = dS × dD × G = dD × dS × G = dD × QS, where “ × ” denotes
elliptic curve scalar multiplication.

 

Figure 3. ECDH key management.

3.2. Secure Integration between Encryption and Authentication

The combination between encryption and authentication should be carefully designed
because it is very hard to combine cryptographic tools correctly to provide both privacy
and authenticity. This means that excellent cryptographic tools can sometimes be applied
in a way so that the result is not secure. This research proposes secure integration be-
tween symmetric cryptography and authentication based on the encrypt-then-authenticate
method called ELCA. In order to fit the maximum transmission unit in the IoT network,
the message M is parsed into several chunks based on Secp192r1 elliptic curve domain
parameters [36]. Hence, the maximum size of each chunk is 127 bytes, and the minimum
size is 24 bytes. The cryptographic steps of ELCA at the source node are implemented
as follows:

• Calculate E = StrToInt(Hash(XK)); the Hash is a secure cryptographic hash function
such as CMA [29] or SHA-256 [37].

• Calculate the curve point Pb(X1,Y1) = E × G; the ECC scalar multiplication has a
one-way function property, which means it is hard to reverse.

• Calculate the ciphertext Ci = (mi × X1) mod n; where i represents the chunk number.
The padding scheme is used to convert the chunk (Mi) to the integer number mi, which
should be agreed upon in reversible protocol.
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• Calculate a hash function for Ci as Z = StrToInt(Hash(C)) mod n.
• Calculate the authentication code as Ts = (YK × Z) mod n;
• The transmitted message is the pair (Ci,Ts).

The cryptographic steps of ELCA at the destination node upon receiving the pair
(Ci,Ts) are performed as follows:

• Calculate a hash function of the integer number m as Z = StrToInt(Hash(Ci)) mod n
where Hash() represents the similar cryptographic hash function that is used in the
encryption process.

• Calculate Td = (YK × Z) mod n.
• If Td = Ts, the message is accepted (e.g., message is authentic, and integrity checked).

Otherwise, the message is rejected.
• If the message is accepted, calculate E = StrToInt(Hash(XK)).
• Calculate the curve point Pb(X1,Y1) = E ×G.
• Calculate mi = (Ci × X1

−1) mod n where X1
−1 mod n can be resolved using a modular

multiplicative inverse.
• Convert the mi to string Mi and recover the plaintext M = where L is the number

of chunks.

Figure 4 shows the flow phases and Algorithm 1 presents the pseudo code of the
ELCA algorithm. In these figures, the source node and the destination must use the same
domain parameters of the ECDH equation. Upon the public key being calculated at the
two parties, it is sent to the other party, which can calculate the shared secret key. Finally,
the combination of encrypt-then-authenticate in ELCA is utilized as explained above.

Figure 4. Flow diagram of ELCA algorithm.
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Algorithm 1 Pseudo code of ELCA algorithm

ELCA at IoT Sender (S)

Input: Secp192r1 domain parameters p, a, b, G, n, h;
Output: QS, T, C; // QS: Public key of S, T: authentication tag C: Ciphertext
Start Algorithm (ELCA)

1 | While (new session start) do
2 | Determine the private key (dS); // 1 ≤ dS ≤ n
3 | QS = (dS × G); // QS: the public key of S
4 | Send_Public_key (QS); // Send the public key to destination
5 | Receive_Public_key(QD); // Receive the public key of D
6 | K(XK,YK) = dS × QD; // calculate the shared key
7 | For (i = 0; i<L; i++) // L: number of chunks
8 | mi = StrToInt(Mi); // convert the plaintext to an integer.
9 | E = StrToInt(Hash(XK)) mod n; // E: the hash fun. of key XK
10 | Pb(X1,Y1) = E × G;
11 | Ci = (mi × X1) mod n; // Ci: the ciphertext of message mi
12 | Z = StrToInt(Hash(Ci)) mod n; // hash fun. for integer m.
13 | TS = YK ×Z mod n; // TS: Authentication code at the sender
14 | Send(“Ci”+” TS”); // The source sends “Ci”+” TS” to D
15 | End; // For Loop Statement
16 | End; // While loop
17 End; // Algorithm

ELCA at IoT Receiver (D)

Input: the domain parameters p, a, b, G, n, h;
Output: QD, TS, C; // QD: Public key of D

18 Start Algorithm (ELCA)
19 | While (new session start) do
20 | Determine the private key (dD); // 1 ≤ dD ≤ n
21 | QD = (dD × G); // QD: the public key of D
22 | Send_Public_key (QD); // Send the public key to source node
23 | Receive_Public_key(QS); // Receive the public key from source
24 | K(XK,YK) = dD × QS; // if QS is a valid curve point, the shared key will be

calculated
25 | Foreach (msg received; i++) do
26 | Get(TS, Ci); // Receive the message pair (TS, Ci)
27 | Z = StrToInt(Hash(Ci)) mod n; // hash fun. for C
28 | TD = YK ×Z mod n; // TD: Authentication code at the destination
29 | If Td = Ts, the message is accepted. Otherwise, the message is rejected.
30 | E = StrToInt(Hash(XK)) mod n;
31 | Pb(X1,Y1) = E × G;
32 | mi = (Ci × X1

−1) mod n; // Recover the padded message
33 | For (i = 0; i<L; i++) // L: number of chunks
34 | M i = Convert_IntToStr(mi); // convert integer to plaintext.
35 | M = M + M i // concertante all chunks.
36 | End; // for loop
37 | End; // While loop
38 End; // Algorithm

4. Cybersecurity Analysis

In order to measure the security level of ELCA, the cryptanalysis for ELCA on the IoT
was developed and analyzed.

4.1. Cryptanalysis of ELCA

Let us imagine that, even if the shared secret key is unknown, the adversary may
decrypt encrypted messages and bypass the authentication and encryption of the ELCA
mechanism. The following are some examples of the most typical cryptanalysis attacks that
have been studied using the random oracle model:
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• Chosen-plaintext attack (CPA). It is expected that the adversary will obtain the cipher-
texts for any plaintexts of its choosing. Additionally, the adaptive CPA (CPA2) allows
the adversary to select a fresh input for ELCA (ELCAE) encryption based on an analysis
of the plaintext queries he previously selected and the accompanying ciphertexts [38].
By assuming that an advertiser A has access to an encryption oracle with any pair
of equal-length messages (m1, m2) as input, we can describe the definition of CPA
mathematically [20–22].

Definition 1. Let ELCAE = (K, E, D) be an encryption mechanism in ELCA, E is encryption, D is
decryption, and K is the space of all keys. The advantage of indistinguishability of chosen-plaintext
attack (IND-CPA) of A is defined as:

Advin−cPa
ELCAE

(A) = Pr[k ← K; C ← Ek(m1) : A(C) = 1]
−Pr[k ← K; C ← Ek(m2) : A(C) = 1]

(2)

• If the advantage of IND-CPA is negligible, which indicates that A is struggling, the
aforementioned equation demonstrates that ELCA is secure. Contrarily, ELCAE
is not stable if the IND-advantage of CPA is non-negligible, indicating that A is
performing well.

• Chosen-ciphertext attack (CCA). It is expected that the adversary will obtain the
decryption of any ciphertext(s) of its choosing. A further benefit of the adaptive CCA
(CCA2) is that the adversary can select a fresh input for the decryption of ELCA
(ELCAD) based on the analysis of his previously chosen queries [39].

Definition 2. Let ELCAE = (K, E, D) be an encryption mechanism in ELCA, and A is an adversary
who can access the encryption (E) and decryption (D) oracle. The advantage of IND-CCA of A is
defined as:

Advin−cca
ELCAE

(A) = Pr[k ← K; C ← Ek(mb); b ← {0, 1};
b′ ← A(Ek(.), Dk(.)) : b′ = b]

(3)

According to the aforementioned definition, the adversary is free to access the decryp-
tion oracle at any time and with any ciphertext C, with the exception of the previously
answered queries from its encryption oracle. Therefore, if the adversary who was provided
access to the oracles may find little benefit in differentiating the two occurrences of b (0/1),
then ELCAE can be regarded secure against IND-CCA.

4.1.1. Cryptanalysis of Combination between Cryptographic Tools

The combination cryptanalysis will use an all or nothing approach to validate both
message confidentiality and authentication for every possible combination between them.
This does not mean that the combination is not always secure for every encryption and
authentication; however, it means there exists even one case where the combination is
not secure. The security level that should be considered in the analysis is IND-CPA for
encryption and existentially unforgeable under chosen-message attack (EU-CMA) for
authentication. The two attacks (e.g., IND-CPA and EU-CMA) meet the requirement for
gaining chosen-ciphertext security together with existential unforgeability. Generally, the
proposed cryptanalysis approach to prove the security for the combination is to prove that a
given combination meets the definition of the secure communication channel [11]. Let tuple
of algorithms (K, ET, D, V) be a combination of (K, E, D) and (K, T, V), where K represents
the ECDH key-generation algorithm and produces shared secret keys (k1 = XK, k2 = YK).
The combination algorithm in ELCA is represented by ET, which receives a pair of keys
(k1, k2) and a message m as input and outputs C and authentication tag T. Furthermore, V
represents the verification procedure in ELCA, which applies a combination of E(XK) and
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T(YK) upon receiving a pair of keys (k1, k2) and a value C and/or T. Latterly, V outputs 1 or
0. The D represents the decryption algorithm in ELCA, which applies a combination of
E(XK) and T(YK) upon receiving a pair of keys (k1, k2) and a value C. Finally, D recovers the
original message m.

The satisfactory requirement is that for every k1 = XK, k2 = YK, and for every value
m, Dk1,k2 (ETk1,k2 (m)) = m and Vk1,k2 (ETk1,k2 (m)) = 1. The combination (K, ET, D, V) is
required to satisfy both a CCA-security and authentication security for ETk1,k2 as defined
in the following:

Definition 3. ELCA = (K, ET, D, V) is considered as a secure combination of encryption and
authentication if (K, E, D) has IND-CPA and the scheme (K, T, V) is EU-CMA.

Next we analyze the three combination approaches that are illustrated in Figure 2.

• Encrypt-and-authenticate (EAT). This combination can reveal the original message m
for any encryption mechanism. For instance, if (K, T, V) provides a secure message
authentication code and Tk(m) = (m, Tk(m)), it does not necessarily imply privacy.
Hence, the combination (Ek1(m), Tk2(m)) completely reveals m and is therefore not
IND-CPA. As a result, the EAT does not yield a secure combination of encryption and
message authentication.

• Authenticate-then-encrypt (ATE). Let us discuss the contrived encryption example
that suffices to show that the ATE method is not always secure.

� Let us assume that there exists an encryption (Ek(m)) mechanism that works as
follows: any 0 in m is changed to 00, and any 1 in m is changed randomly to 01
or 10. The decryption of C (Dk(C)) in this scheme works as follows: change 00
back to 0, and 01 and 10 back to 1. Nevertheless, a pair of bits 11 will result in ⊥.

� Define Ek(m) = PRF ⊕ Ek(m) and PRF is a pseudorandom function that creates
a new number for each message to encrypt.

� Let us study the cryptanalysis of the ATE combination based on Ek(m) with
any message authentication in the presence of a CCA attack. Let A be an
adversary who implements the CCA attack as follows. Given a challenge
C = Ek1 ((m, Tk2(m)), A basically complements the first two bits of C and
verifies if the resulting ciphertext is valid. If the new C is valid, then A decides
that the first bit of m was 1. This is primarily due to the fact that if the first bit
of m equals 1, then the first two bits of Ek1 (m) can be 01 or 10. Therefore, the
complement of these two bits still yields the same bit 1. However, if the new C
is not valid, then A decides that the first bit of m equals 0. This is mainly due
to the fact that 0 is mapped to 00 and so flipping these bits yields 11, which
means an incorrect C. Accordingly, m is null (⊥), which contradicts with the
assumption that Tk2 is still computed over m.

4.1.2. Proven Security of ETA Combination in ELCA Using ROM

The ETA combination in the proposed ELCA is proven secure based on the following
security analysis.

Theorem 1. Let ELCAE = (K, E, D) be the encryption of ELCA that is secure under IND-CPA,
and let ELCAM = (K, T, V) be the authentication of ELCA that is EU-CMA. Then, ELCA = (K,
ET, D, V) created by the encrypt-then-authenticate is a secure combination of ELCAE and ELCAM.

Methodology of Proof. The contradiction methodology is used to prove Theorem 1.
Since ELCAM is EU-CMA, all queries (except that obtained from encryption oracle) to the
decryption oracle can be assumed to be invalid. Thus, the cryptanalysis of ELCA can be
reduced to IND-CPA of ELCAE because the decryption oracle is effectually useless. At the
beginning, this paper proves that, except with negligible probability, the only valid queries
made by A were C that were previously obtained from the encryption oracle. Therefore, if
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ELCA is proven as not secure under CCA, then it should be that ELCAE is not secure under
IND-CPA, which contradicts the assumption in Theorem 1.

Proof. Let A be any PPT adversary that implements CCA attack on ELCA, which can be
denoted as PrivKCCA

A,ELCA (n). Additionally, let us define VQueryA,ELCA (n) to be the event
that A inputs a valid query (C,T) to its decryption oracle, which does not reply ⊥. Generally,
if we prove that the Pr[VQueryA,ELCA (n)] is at most negligible, then that will be sufficient
to prove Theorem 1. This is because if the decryption oracle does not reply ⊥, then T is a
valid tag for C. Consequently, if (C,T) is a valid input for the decryption oracle, this means
that A essential forged a message authentication. If the probability that VQuery occurs is
non-negligible, Amac can be constructed to break the message ELCAM as follows: Let us
define q(·) to be a polynomial that represents the upper bounds of queries that are issued
from A. The Mac − forgeAmac ,ELCAM

(n) is interacted by Amac, which calls the A with chosen
random ki for encryption where i ←{1, . . . . . . q(n)}. Moreover, Amac uses k1 and its MAC
oracle to simulate the encryption and decryption oracle for A. Let us assume that all queries
to the decryption oracle are invalid except the ith query, which is hoped to be valid. This
means if A queries the encryption oracle with M, Amac computes C = Ek1(M) and calls its
MAC oracle to obtain a hope forged T for C. Finally, Amac returns the pair (C,T) to A as its
oracle reply. On the other hand, if A sends any decryption oracle query (C,T) except ith,
Amac will review if (C,T) has been created before, then Amac returns M. Otherwise, Amac
returns ⊥. However, Amac returns (C,T) as its message authentication forgery and halts
upon receiving ith decryption oracle query from A. We remark that since ELCAM provides a
unique tag, this means that the query C was never requested by Amac to its MAC-tag oracle.
This is primarily due to (C,T) not being gained from an encryption query, which means
there is only a single likelihood that T is a valid tag for C. The probability that the ith query
is the first valid query by A is at least 1/q(n) since A makes at most q(n). Consequently,
the probability that Amac does well in Mac − forgeAmac ,ELCAM

(n) is at least 1/q(n) times the
probability that the VQuery event occurs. Subsequently, the probability of Amac to do well
in Mac − forgeAmac ,ELCAM

(n) is at most negligible probability; this means VQuery occurs
with at most negligible probability, which proves the first part of Theorem 1. As a result,
for some negligible function negl(n), the probability of VQuery can be written as:

Pr[VQueryA,ELCA(n)] < negl(n)

Given that the probability of VQuery happens at most negligible probability, the
combination of encrypt-then-authenticate in ELCA will be proven to be CCA-secure. For
simplicity, if we prove the security of ELCAE against IND-CPA attack, then ELCA is proven
secure. Let an adversary Aenc be created using A for the CPA experiment with ELCAE.
Aenc selects a key k2 and calls A. Each time A requests an encryption query for M, Aenc
calls its encryption oracle with M and receives back C. After that, Aenc calculates T = Tk2(C)
and returns the pair (C,T) to A. In contrast, when A requests a decryption query for the
pair (C,T), Aenc will search about the pair (C,T) in its history table, which was previously
generated from its encryption query, and returns M to A if it is available. Otherwise, Aenc
returns ⊥. It is clear to conclude that if Aenc succeeds in PrivKCPA when VQuery does not
happen, then this equals the success of A in PrivKCCA when VQuery does not happen,
which can be defined as follows [11]:

Pr[PrivKCPA
Aenc ,ELCAE

(n) = 1 ∩ ¬VQueryCPA
A,ELCA(n)]

= Pr[PrivKCCA
A,ELCA(n) = 1 ∩ ¬VQueryCPA

A,ELCA(n)]
(4)

Implying that:

Pr[PrivKCPA
Aenc ,ELCAE

(n) = 1]
≥ Pr[PrivKCPA

Aenc ,ELCAE
(n) = 1 ∩ ¬VQueryA,ELCA(n)]

= Pr[PrivKCCA
A,ELCA(n) = 1 ∩ ¬VQueryA,ELCA(n)]

(5)

91



Mathematics 2023, 11, 220

Let us use the contradiction by assuming a non-negligible function ε exists such that:

Pr[PrivKCCA
A,ELCA(n) = 1] =

1
2
+ ε(n) (6)

Using the fact that Pr[VQueryA,ELCA (n)] is negligible, this means it is smaller than
ε(n)/2. As a result, we can conclude the following:

Pr[PrivKCCA
A,ELCA(n) = 1 ∩ VQueryA,ELCA(n)] <

ε(n)
2

(7)

This means:

Pr[PrivKCCA
A,ELCA(n) = 1] =(

Pr[PrivKCCA
A,ELCA(n) = 1 ∩ VQueryA,ELCA(n)]
+Pr[PrivKCCA

A,ELCA(n) = 1 ∩ ¬VQueryA,ELCA(n)]

)

<
(

Pr[PrivKCCA
A,ELCA(n) = 1 ∩ ¬VQueryA,ELCA(n)] +

ε(n)
2

) (8)

By means that A succeeds in PrivKCCA with probability 1/2 + ε(n), then Equation (8)
can be expressed as:

Pr[PrivKCCA
A,ELCA(n) = 1 ∩ ¬VQueryA,ELCA(n)] >

Pr[PrivKCCA
A,ELCA(n) = 1]− ε(n)

2

= 1
2 + ε(n)− ε(n)

2 = 1
2 + ε(n)

2

(9)

Equations (5) and (9) can be combined as:

Pr[PrivKCPA
Aenc ,ELCAE

(n) = 1] >
1
2
+

ε(n)
2

(10)

Equation (10) shows that the advantage of Aenc to succeed in PrivKCPA is non-negligible
over 1/2. As a result, this contradicts IND-CPA of ELCAE and we conclude that the combi-
nation of encrypt-then-authenticate in ELCA is CCA-secure. �

4.2. ELCA Cybersecurity Analysis

ELCA contains important security features such as impersonation resilience against
key compromise and perfect forward secrecy (PFS). ELCA employs a hash function to
produce a pseudorandom function (PRF) since it may be thought of as a random oracle
function. As stated in Section 3, the ELCA’s (i.e., CMA’s) hash function uses the shared
secret key (XK) as an input to create the secure random parameter (H(XK)), which is then
multiplied by the base point (G) in a scalar manner to obtain the random point Pb(). To
protect against IND-CPA and replay attacks, Pb.X1 (i.e., the x coordinate of Pb) is a random
value that is periodically modified.

Proven Security of ELCA in ROM

The length of the shared secret key XK ∈ {0, 1}L can be represented as L = |XK| =
|n| = |p|, which is equals the length of the used elliptic curve Secp192r1 (e.g., 192 bits).
The hash function is instantiated in ROM using the established security in ELCA as
H(.) : {0, 1}∗ → {0, 1}L.

Theorem 2. If Pb is a (t,ε)-pseudorandom function (PRF), then the ELCA cryptographic is secure
against IND-CPA.
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Methodology of Proof. The second theorem is proven using the contradiction methodology.
Let us assume that A runs in PPT exist and that they compromise ELCAE’s security. With
non-negligible cost, algorithm A creates a PPT distinguisher B that separates the output
of Pb from a random number. Since Pb is a PRF, the prior conclusion that Pb is a random
function is incorrect. As a result, the initial hypothesis is incorrect, and the ELCAE needs to
be secure.

Proof . Let us assume A attacks ELCAE in the sense of IND-CPA and two messages M0, M1
are used as follows:

∣∣∣∣ Pr[H(XK) ← Z∗
n ; Pb ← H(XK)× G; C ← M0 × Pb.X1 : A(C) = 0]

−Pr[H(XK) ← Z∗
n ; Pb ← H(XK)× G; C ← M1 × Pb.X1 : A(C) = 0]

∣∣∣∣ = γ(L) (11)

where γ(L) is non-negligible. The algorithm B was constructed to distinguish Pb from
the random function. This can be accomplished by determining if Pb is a PRF or a totally
random function utilizing B’s ability to call Pb. B functions as follows: (1) Pick a random b
between 0 and 1, (2) B computes C = Pb.X1 × Mb mod n, (3) Run the experiment A(C) to
obtain A’s guess as to the encrypted message. A correctly predicted if b=, b then B estimates
the PRF and the result is “1” as indicated by B. However, A guessed incorrectly if b 	= b if B
guesses random function and this can be represented by B resulting as “0”. The algorithm
B distinguishes the output of Pb.X1 as:∣∣∣∣ Pr[H(XK) ← Z∗

n ; Pb ← (H(XK)× G); y ← Pb.X1 : B(y) = 1]
−Pr[y ← Z∗

n : B(y) = 1]

∣∣∣∣ (12)

We will study each of these terms separately as: P1 Pr[H(XK) ← Z∗
n;

Pb ← (H(XK)× G); y ← Pb.X1 : B(y) = 1], and P2 Pr[y ← Z∗
n : B(y) = 1]. In step 3, the

algorithm B obtained the following:

P1 = Pr[H(XK) ← Z∗
n ; Pb ← (H(XK)× G); y ← Pb.X1 :

b ∈ {0, 1}; b′ ← A(Pb.X1 × Mb) : b′ = b]
(13)

By using the condition on b gives:

P1 = Pr[H(XK) ← Z∗
n ; y ← Pb.X1 : A(Pb.X1 × M0) = 0]× Pr[b = 0]

+Pr[H(XK) ← Z∗
n ; y ← Pb.X1 : A(Pb.X1 × M1) = 0]× Pr[b = 1]

(14)

With applying the fact:

Pr[b = 0] = Pr[b = 1] =
1
2

and
Pr[H(XK) ← Z∗

n ; y ← Pb.X1 : A(Pb.X1 × M1) = 1] =
1 − Pr[H(XK) ← Z∗

n ; y ← Pb.X1 : A(Pb.X1 × M1) = 0]
(15)

gives:

P1 =
1
2
+

[
1
2
×
(

Pr[H(XK) ← Z∗
n ; y ← Pb.X1 : A(Pb.X1 × M0) = 0]

−Pr[H(XK) ← Z∗
n ; y ← Pb.X1 : A(Pb.X1 × M1) = 0]

)]
=

1
2
+

(
1
2
× γ(L)

)
(16)

P2 is calculated as:

P2 = Pr[y ← Z
∗
n : b ∈ {0, 1}; b′ ← A(Pb.X1 × Mb) : b′ = b] (17)
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As before, we eventually obtain:

P2 =
1
2
+

[
1
2
×
(

Pr[y ← Z∗
n : A(Pb.X1 × M0) = 0]

−Pr[y ← Z∗
n : A(Pb.X1 × M1) = 0]

)]
(18)

Since y is completely random and Pb = H(XK)× G, the probability of A wins when
breaking the one-time pad is 0. Therefore, P2 is 1/2. The final result after using all
parameters together gives:∣∣∣∣ Pr[H(XK) ← Z∗

n ; Pb ← (H(XK)× G);
y ← Pb.X1 : B(y) = 1]− Pr[y ← Z∗

n : B(y) = 1]

∣∣∣∣= |P1 − P2|
=
∣∣∣ 12 + γ(L)

2 − 1
2

∣∣∣ = γ(L)
2

(19)

Since the term γ(L) was non-negligible, the term γ(L)
2 is also non-negligible. As a

result, A has a non-zero advantage in breaking ELCAE and hence B has a non-negligible
advantage in breaking the PRF (i.e., distinguishing result of Pb from random). However,
this contradicts the fact that Pb is a (t, ε)-PRF. Since no such A may exist, the assumption
must be incorrect, thus ELCAE is secure against IND-CPA. �

4.3. Countermeasures Spoofing Attacks

ELCA can prevent spoofing attacks (e.g., replay attacks and the man-in-the-middle
attacks) using the secure combination integration between encryption and authentication.
Moreover, ELCA drops the reply packet from the intruders because of the following reasons:

• The MAC should be checked before performing the decryption process.
• The ephemeral shared secret key is computed at the source and destination.
• The three stages must be carried out by replay attacks before resending the inter-

cepted communication. These steps—calculating the shared secret key, encrypting
messages, and calculating the authentication tag—make it incredibly difficult to access
information without compromising the shared secret key and hash function.

4.4. Countermeasures against Brute Force Attacks

ELCA addresses the weak bits issue and offers perfect forward secrecy because the
shared secret key must change with each communication session. Additionally, the elliptic
curve discrete logarithm problem (ECDLP), which requires 0.886∗√k steps, must be solved
by the brute force attacker. This indicates that the security strength is 96, which will
probably require a lot of computer power [37,40].

4.5. Countermeasures against Session Hijacking Attack

Secure hash functions such as SHA-2 and CMA are applied using the shared secret
key in ELCA [29]. This method produces a random integer that can be used to create the
session identification, such as the digest of a shared secret key after it has been hashed. In
order to obtain access to the communication channel between the IoT parties, the attacker
must determine the authentication code if he is successful in cracking the session ID. This is
mostly because the verification process between the IoT sender and receiver of the session
requires the authentication code.

4.6. Countermeasures against IoT Device Capture and Stolen-Verifier Attacks

The ELCA cryptographic system uses the built-in multifactor hash functions (e.g.,
CMA [29]) that are burned during programming sessions inside all IoT devices to protect
against IoT device capture and stolen-verifier attacks. As stated in the assumption, the
multifactor hash functions used in ELCA are flashed and transformed into low level source
code language. Therefore, the stolen key will not function without disabling the hash
algorithms, preventing the hacker from accessing any safe data in the IoT device.
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5. Implementation and Performance Evaluation of ELCA on IoT

Based on the resource constraints in terms of computing cost, storage utilization, and
power consumption, the security software in IoT platforms should be assessed. Therefore,
ELCA adopted the concept of ECDH for exchanging the secret key advised by SECG/NIST
(such as Secp192r1) [37]. Following are some reasons why utilizing the Secp192r1 standard
elliptic curve in ELCA is advantageous:

• The size of the encryption and authentication keys is 24 bytes (192 bits), and the
processing latency for the ECDH to generate and exchange the secret key has been
assessed to be 0.576 s through experimental testing [31].

• It takes 0.886∗√k steps to determine the k-size of the acknowledged ideal algorithm
for the ECDLP. In general, if the security system employs at least 2*k-bit key size, a
k-bit security strength can be attained. Because of this, ELCA chose to employ the
Secp192r1 curve, which can offer 96-bit security strength [37,40].

• The 6LowPAN protocol, which uses a 40-byte header to establish connections between
IoT devices and sensor nodes, can be used to construct IoT devices with messages up
to 127 bytes in size [41].

Since Mininet-IoT can replicate the IoT hardware and communication description, it is
used in the assessment scenarios to implement and verify the performance of ELCA [42].
As can be shown in Figure 5, one IoT gateway (BaseST1), eight static IoT devices (sensors 1
through 8), two intruders (Intrudr6 and Intrudr7), and one mobile IoT device (IoTDev5)
make up the experiment’s IoT network topology. The adversary model that was covered in
the previous part is mostly implemented by intruders. Each IoT hardware board includes
two network interface cards, one for IPv4 and one for IPv6 communications with the IoT
base station (i.e., 6LowPAN). Additionally, all sensors, IoTDev5, and BaseST1 have the
suggested ELCA software uploaded. Additionally, all legitimate IoT devices exchange
public keys and secure packets utilizing client–server socket programming in combination
with ELCA code. BaseST1 implements the server code, and IoTDev5 and all sensors run the
client code. The settings and setup of the experiment are shown in Table 3. In Mininet-IoT,
the 6LowPAN protocol is implemented on the TCP/IP model using the 802.15.4 hwsim and
802.11 hwsim wireless models. Additionally, the wireless signal’s propagation model is set
up using a shadowing model, which depicts the actual signal degradation brought on by
signal impairments including attenuation, noise, and interference. In the experiment, the
grid network area measures 1000 m by 900 m, and random movement is used to construct
the mobility model of mobile devices. To investigate the effectiveness of ELCA against
intruders using dictionary and brute force attacks, the operating time of every experimental
program is set to 1000 s.

Table 3. Experiment Configuration.

Parameter Values

MAC and PHY 802.15.14_hmsim and 802.11_hmsim
Propagation Model Shadowing
Path loss exponent 3.0
Shadowing deviation (dB) 3.0
Event area (1000 m × 900 m)
Number of IoT devices 12
Coverage of IoT device 150 m
Cover range of BaseST1 250 m
Traffic Emulator TCP Socket client/server; 1000 messages.

Performance metrics CPU execution time, storage cost, and energy
consumption

ECDH curve Secp192r1
Message Size 127 bytes
Key size 192 Bits
Emulation duration 1000 s
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Figure 5. IoT mesh topology.

5.1. Performance Evaluation and Results Discussion

In terms of CPU execution time, memory utilization, and power consumption ex-
penses, the suggested integration of encryption and authentication (for example, ELCA)
was evaluated in terms of performance. For the three combinations of authentication and
encryption shown in Figure 2, a comparison of performance analysis was investigated.
Additionally, ECIES AES and ECIES Ra (RFC4503), two benchmark security algorithms,
were used to compare ELCA’s performance. Python is used throughout the source code and
is implemented in the Mininet-IoT emulator. Additionally, all baseline algorithms’ primary
source codes can be downloaded from the security website [43]. Numerous scenarios
were run, and each testbed was repeated ten times while exchanging 1000 packets. Finally,
using the mean and standard deviation as inputs and accepting 5% variation errors in the
sample, the average findings were determined with a confidence interval that exceeds 95%.
Furthermore, the memory profiler and cProfile programs offer deterministic cost profiling
of the baseline methods and ELCA. Memory profiler can be used to calculate an algorithm’s
execution time, storage expense, and energy usage. The product of CPU execution time
and the quantity of steps per execution (s/e) can be used to evaluate the entire cost of CPU
execution time. Additionally, the total cost of communication (send/received message)
data, sensed data, and the cost of the source code in a time unit can be used to calculate the
storage cost in each IoT device. Additionally, the total energy required by IoT devices (mJ)
can be calculated as the total energy used to carry out the security algorithm’s source code
plus any packet overhead [44].

5.1.1. Comparison between Integration Methods of Authentication and Encryption

In this experiment, the performance of using ELCA in three methods of integration
between authentication and encryption was evaluated. ELCA was implemented using the
three combination approaches (e.g., ATE, EAT and ETA) illustrated in Figure 2. Generally,
the results in Figure 6 show that the performance cost of BaseST1 in three combination is
higher than IoTDev5. This is mainly due to the type of connection in the IoT system is
many-to-one that means all sensor devices send the environment data to the sink (BaseST1).
The sink in Figure 6 manipulated the security for all data in the IoT system. As shown in
Figure 6a, the ELCA with ETA experiences on average 30.74% less CPU execution time
compared to ELCA with ATE, and it experiences on average 15% less CPU execution
time compared to ELCA with EAT. Moreover, Figure 6b illustrates that ELCA with ETA
experiences on average 22.5% less memory usage compared to ELCA with ATE, and it
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experiences on average 32.63% less memory usage compared to ELCA with EAT. Moreover,
Figure 6c shows that ELCA with ETA consumes on average 68.7% less energy consumption
compared to ELCA with ATE, and it consumes on average 52.5% less energy consumption
compared to ELCA with EAT. The results presented in Figure 6 show that the impressive
performance of the ELCA with ETA algorithm is mainly achieved due to the following
reasons: Firstly, ELCA with ETA uses fewer steps of call functions due to the verification
of authentication being implemented before the decryption, which causes a reduced CPU
execution time, less memory to be used, and reduced power consumption. However, ATE
and EAT must implement decryption and verification of authentication with all received
ciphertexts and tags, which consumes more resources in term of energy consumption,
storage cost, and CPU execution time. Finally, ATE and EAT consume higher call func-
tions, execution time, and communication overheads due to the frequent uses of scalar
multiplication and the inverse modular multiplicative in the decryption process.

Figure 6. Cont.
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Figure 6. Comparison between integration methods of authentication and encryption. (a) Execution
cost; (b) storage cost; (c) energy consumption.

5.1.2. Performance of Cryptographic Algorithms

It has been determined how well ELCA encryption (ELCA_E) performs in comparison
to ECIES_Ra and ECIES_AES. As can be seen in Figure 7a, ELCA_E executes with an
average execution time that is 50% lower than that of EDIDS_AES and averages 39.4%
lower than that of ECIES_Ra. Additionally, Figure 7b shows that ELCA_E uses memory
on average 19.6% and 32% less efficiently than ECIES_AES and ECIES_Ra. Additionally,
Figure 7c demonstrates that ELCA_E uses an average of 32.6% less energy than ECIES_Ra
and there is a difference of 41.2% between ECIES_AES and ELCA_E. The aforementioned
results show that ELCA E outperforms ECIES_AES and ECIES_Ra in terms of CPU time
execution, storage cost, and energy usage. This is mostly because of the following factors:
Firstly, ELCA_E uses less computing power and energy during encryption and decryption
because it is based on an effective mathematical random function. For each session between
IoT devices, ELCA_E generates an overall shared secret key that ensures perfect forward
secrecy of the encrypted message. Second, because fewer functions are called and there
are fewer execution steps for each function, ELCA_E uses less storage space. Finally,
ECIES_AES and ECIES_Ra employ more difficult and inefficient encryption and decryption
techniques than ELCA_E. In conclusion, the experimental findings demonstrate that the
suggested integration of authentication and encryption in ELCA is efficient, lightweight,
and offers exceptional performance in terms of CPU execution time, storage cost, and
energy consumption. More crucially, it fixes the issues with symmetric cryptography’s key
distribution and the verification of the sender’s identity in digital signatures.
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Figure 7. Comparison between ELCA encryption (ELCA_E) and baseline cryptographic algorithms
on IoT. (a) Execution cost; (b) storage cost; (c) energy consumption.
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6. Conclusions and Future Work

The proposed secure integration between encryption and authentication (e.g., ELCA)
algorithm was presented and compared with standard lightweight cryptographic schemes.
ELCA utilized ECDH to implement key distribution, while the weak bits problem in the
shared secret key is resolved. The security of ELCA was proven mathematically using the
IoT adversary model and the random oracle model. The finding in the experimental results
shows the efficiency and effectiveness of ELCA performance in terms of a reduced CPU
execution time by 50%, reduced storage cost by 32–19.6%, and reduced energy consumption
by 41% compared to the baseline cryptographic algorithms. The future work of this research
will focus on developing an unforgeable digital signature based on the three steps of hash
function inspections for IoT networks. Moreover, the weak bit problem will be resolved
using advanced key generation without concerns about the IoT key selection.
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Abstract: The rapidly increasing trend of retinal diseases needs serious attention, worldwide. Glau-
coma is a critical ophthalmic disease that can cause permanent vision impairment. Typically, oph-
thalmologists diagnose glaucoma using manual assessments which is an error-prone, subjective,
and time-consuming approach. Therefore, the development of automated methods is crucial to
strengthen and assist the existing diagnostic methods. In fundus imaging, optic cup (OC) and optic
disc (OD) segmentation are widely accepted by researchers for glaucoma screening assistance. Many
research studies proposed artificial intelligence (AI) based decision support systems for glaucoma
diagnosis. However, existing AI-based methods show serious limitations in terms of accuracy and
efficiency. Variations in backgrounds, pixel intensity values, and object size make the segmentation
challenging. Particularly, OC size is usually very small with unclear boundaries which makes its seg-
mentation even more difficult. To effectively address these problems, a novel feature excitation-based
dense segmentation network (FEDS-Net) is developed to provide accurate OD and OC segmentation.
FEDS-Net employs feature excitation and information aggregation (IA) mechanisms for enhancing
the OC and OD segmentation performance. FEDS-Net also uses rapid feature downsampling and
efficient convolutional depth for diverse and efficient learning of the network, respectively. The
proposed framework is comprehensively evaluated on three open databases: REFUGE, Drishti-GS,
and Rim-One-r3. FEDS-Net achieved outperforming segmentation performance compared with state-
of-the-art methods. A small number of required trainable parameters (2.73 million) also confirms the
superior computational efficiency of our proposed method.

Keywords: assisting glaucoma screening; convolutional neural network; deep learning; fundus
image analysis; information aggregation

MSC: 68T07

1. Introduction

Ophthalmic diseases have a significant impact on the well-being of human lives.
Retinal diseases are increasing at a rapid pace, worldwide [1]. Therefore, modern diagnostic
solutions need to be introduced for fast and accurate ophthalmic diagnosis. Glaucoma is a
publicly very common neurodegenerative disease that can cause permanent vision loss [2].
Early and accurate glaucoma screening is highly desirable for its effective treatment [2].
Typically, manual procedures and assessments are carried out by ophthalmologists for
glaucoma diagnosis. These manual procedures are usually time-consuming, subjective,
tedious, and error-prone. Hence, automatic methods are crucially required to assist the
existing approaches.
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Artificial intelligence (AI) is providing robust automation solutions to automate man-
ual procedures [3]. AI-based models significantly contributed to the biomedical and
diagnostic industry by introducing intelligent methods for delivering computer-assisted di-
agnosis [4]. Deep learning solved many complex diagnostic problems using convolutional
neural networks (CNNs). Specifically, CNN-based semantic segmentation has a proven
record in ophthalmic diagnostic support [5]. Fundus imaging is widely accepted by experts
for glaucoma screening [6]. Optic cup (OC) and optic disc (OD) segmentation are performed
for glaucoma detection. Glaucoma produces some morphological and structural changes
in OC and OD. Segmentation of both OC and OD provides exact area and boundaries
which consequently helps in glaucoma screening. Vertical cup-to-disc-ratio (V-CDR) is also
a widely accepted biomarker by researchers to help in glaucoma diagnosis [7]. The ratio
between the vertical diameter of OC and OD is calculated for computing V-CDR. Higher
values of V-CDR refer to a high chance of glaucoma occurrence. A high-performance
OC and OD segmentation is the preliminary step to obtain accurate V-CDR measures.
Similarly, enlargement in the OC size which is termed cupping is also a biomarker for
glaucoma diagnosis. Areas of OC and OD are computed to provide area-cup-to-disc-ratio
(A-CDR) [8]. A-CDR computations also assist ophthalmologists in the glaucoma screening
process. Pixel-wise segmentation of OC and OD enables the frameworks to obtain all
the above-mentioned computations for assisting the glaucoma diagnosis process. Hence,
accurate segmentation of OC and OD provides a solid foundation for supporting medical
experts in glaucoma screening.

Many research studies proposed OC and OD segmentation for glaucoma screening.
However, OC and OD segmentation is challenging because of the extensive variations in
the images. This variation includes different background effects, pixel intensity values,
sizes, and shapes. Specifically, the size of OC is usually quite small with unclear boundaries
that make its segmentation much more challenging. Therefore, existing methods exhibited
serious limitations in OC boundary predictions. Lastly, the OC and OD regions are very
small compared with those of the background class and it creates a class imbalance problem
that negatively impacts the learning of the network. To mitigate these challenges, a novel
feature excitation-based dense segmentation network (FEDS-Net) is developed for the
semantic segmentation of OC and OD. FEDS-Net is a novel development and it is not
based on any other network. FEDS-Net uses feature excitation and aggregation to obtain
accurate predictions for OC and OD classes. FEDS-Net also introduced abrupt feature
downsampling and aggregation mechanism for expanded learning.

Many research works proposed CNNs for glaucoma diagnosis using OC and OD
segmentation. Nevertheless, most of the methods employ expensive frameworks which use
a large number of parameters for training. A large number of parameters’ requirements not
only increases the training time but also enhances the memory requirements. To address
this problem, FEDS-Net designed an efficient depth mechanism to minimize the number of
parameters. FEDS-Net is evaluated using three open databases namely; REFUGE, Drishti-
GS, and Rim-One-r3. The proposed network showed excellent segmentation without
leveraging computational efficiency. FEDS-Net needs only 2.73 million parameters for
its training.

The contribution of this work is summarized as follows:

• A novel architecture, FEDS-Net, is developed for accurate OC and OD segmentation
to assist the existing glaucoma screening procedures. FEDS-Net uses feature excitation
and information aggregation (IA) to significantly improve prediction accuracy.

• In FEDS-Net, rapid feature downsampling (RFD) and efficient convolutional depth
(ECD) are also introduced for diverse and efficient learning, respectively.

• The proposed architecture is evaluated using three open databases: REFUGE1, Drishti-
GS2, and Rim-One-r33. FEDS-Net showed excellent performance compared with state-
of-the-art methods. In addition, outperforming results are obtained with a superior
computational efficiency having a requirement of only 2.73 million parameters for
full training.
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The remaining paper is organized as follows. In Sections 2 and 3 proposed methods
and results are presented, respectively. Discussion is provided in Section 4 whereas a
conclusion of the study is given in Section 5.

2. Related Work

Automatic glaucoma screening is a topic of vast interest. Many research studies
conducted to automate and assist the glaucoma diagnosis procedure. Existing studies can
be broadly divided into handcrafted and deep feature-based methods.

2.1. Methods Based on Handcrafted Features

Many research studies used handcrafted feature-based methods for automatic glau-
coma screening purposes. In this study [9], OD pixel-wise segmentation is performed
using the blood vessels inpainting mechanism. Initially, a region growing approach is used
and then a blood inpainting scheme is employed to detect OD region. Evaluation of the
proposed model is performed using multiple databases to analyze the effectiveness of the
method. Preprocessing employed in this method can be attributed as the limitation of this
study [9].

Similarly, another method [10] uses texture features for the glaucoma assessment.
Features were selected based using a proper feature selection structure. The proposed
method of this study includes preprocessing to obtain the region of interest (ROI) [10].
In a work [11], pixels belonging to OD are detected by combining edge detection with
a deformable model and Hough transform [11]. Preprocessing requirements to remove
retinal vessels can be considered the limitation of this work [11].

In a study [12], pixels of OD boundary were predicted by reconstructing the morphol-
ogy in fundus images. A convex hull estimation was carried out as the final step to extract
the boundary of OD [12]. A dataset that needs to be used for the preprocessing of this
method can be attributed as the limitation of this work [12]. Another method [13] uses
principal component analysis (PCA) for the conversion of original images to a grayscale
images. In this method, OD is automatically detected using mathematical morphology
in combination with PCA [13]. The proposed method in [14] eliminated peripapillary
atrophy for segmenting the OD area. A three-stage process pipeline based on ROI detection,
edge filtering, and Hough transform is used for eliminating peripapillary atrophy [14].
Approaching the obtained results using this method requires postprocessing [14].

In [15], OD region candidates are first selected using k-means clustering. Secondly, OD
area selection is finalized based on the maximum saliency. Preprocessing requirements can
be attributed as the limitation of this method [15]. Similarly in [16], an expert system using
an active contour approach is proposed for the OC and OD segmentation. Although this
method achieves a high sensitivity in performance, however, it needs preprocessing [16].
Another study [17] proposes a combination of level set and clustering for pixel-wise OC
and OD segmentation. At first, OD boundaries are roughly predicted using clustering, and
segmentation results were refined with the help of a level set approach [17].

2.2. Methods Based on Deep Features

Deep learning has a vital contribution to providing robust and intelligent solutions. In
many research works, deep feature-based solutions are presented almost in every field of
life [18]. Deep learning-based methods are usually accepted as an effective and efficient
choice for dealing with complex patterns in images and videos. Several methods are also
introduced for performing segmentation tasks to detect desired features or patterns from
medical images [19]. Segmentation networks provide pixel-wise predictions that help in
pixel-level image analysis. Deep feature-based segmentation algorithms are extensively
applied to retinal images for different disease quantification [20]. A recent study [5]
presented a prompt deep light-weight vessel segmentation network (PLVS-Net) to diagnose
diabetic retinopathy. PLVS-Net is based on prompt blocks that contain separable, standard,
and asymmetric convolutional layers. These prompt blocks ensure improved retinal vessels
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segmentation with enhanced computational efficiency [5]. However, the evaluation of their
method with datasets having less number of images can be attributed as the limitation of
this work. Subsequently, many image processing-based automated methods used OC and
OD segmentation to assist the glaucoma screening process [6]. In this work [6], a double
threshold method is employed; initially, background and retinal vessels are removed and
then super intensity pixels in OC and OD are segmented. Preprocessing requirements of
this method can be considered as the weakness of their proposed method [6]. In ref [7],
several deep feature-based methods associated with glaucoma are discussed. Along with
glaucoma screening, this study also emphasizes detecting glaucoma progression [7].

Although OC and OD segmentation is considered a gold standard for computer-aided
glaucoma diagnosis. Nevertheless, few methods use other features of fundus imaging
to strengthen the automated diagnosis [8]. In this work [8], OD and OC segmentation
process is followed by focal notch analysis of the neural rim to aid glaucoma screening.
Evaluation of the proposed method with a single dataset can be attributed as the limitation
of this work [8]. In a study [21], an encoder-decoder fashion architecture is used for
segmenting OC and OD, simultaneously. The framework used in this study provides both
image classification and segmentation outputs [21]. Comparatively poor segmentation
performance for OC can be attributed as the limitation of this study [21]. Similarly in [22],
optic disc segmentation is performed using a particle swarm optimization network. The
segmentation performance of mask R-CNN is improved using transfer learning combined
with optimization frameworks [22]. This method is limited to OD (not OC) segmentation
only [22].

The method proposed in [23] refers to an attention-based mechanism for the efficient
training process of the network. In this method, OD and OC refined segmentation is
also achieved using a cascading approach [23]. Cascading itself can be the limitation
of this method considering the case of transferring false prediction to the next stage [23].
Similarly in [24], a combination of DenseNet and a fully convolutional network is employed
for segmenting fundus images for glaucoma screening. The computational efficiency of
this framework is also enhanced using the feature reuse approach [24]. Limitation of
this method includes preprocessing requirement and inefficient training [24]. Another
method [25] employed different CNNs with DeepLabv3+ at the encoder end for segmenting
OD pixels. Moreover, image-level predictions (classification) are also generated using
transfer learning and pre-trained models [25]. This work shows several limitations in terms
of prior requirements such as transfer learning, preprocessing, and pretrained models [25].

A few methods also used adversarial learning for assisting the glaucoma screening
process [26]. In this method, the domain-shifting problem is addressed using a patch-based
adversarial framework [26]. The limitation of this study can be attributed to its preprocess-
ing and postprocessing requirements [26]. Subsequently, another method [27] based on
adversarial learning is used to segment retinal vessels and OD. In this study, the famous
U-Net [28] is used as the generator whereas multiple models serve for discrimination
purposes in adversarial learning [27]. In another study [29], a recurrent fully convolutional
mechanism is developed to overcome the problem of feature loss in CNNs. High-level
information along with edge information is processed to improve the pixel-wise OC and
OD segmentation performance [29]. Evaluation with a single database can be considered
the limitation of this study [29].

U-Net [28] is considered a benchmark architecture, especially for medical image seg-
mentation. Few studies reproduced and implemented U-Net on a computer for performing
OC and OD segmentation [30]. The effectiveness of U-Net with limited time was ana-
lyzed in OC and OD segmentation tasks. Subsequently, another method [31] made some
modifications to the standard U-Net [28] and evaluated for OC and OD segmentation.
Channels used in the convolutional layers of this network were optimized for an efficient
training process [31]. Preprocessing requirements can be attributed as the limitation of this
work [31].
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3. Material and Methods

3.1. Datasets

In our work, the proposed method is evaluated using three datasets containing fundus
images for OC and OD segmentation. All three datasets, namely; REFUGE1, Drishti-GS2,
and Rim-One-r33 [26] have original images with corresponding expert annotations. Sample
images for the REFUGE dataset are shown in Figure 1. Rows 1 and 2 in Figure 1 represent
original and groundtruth images, respectively. Pixels shown in black and gray colors of
groundtruth images represent OD and OC whereas white color shows the background class.
REFUGE has equally divided (400 images for each category) images for training, validation,
and testing purposes. REFUGE is among the latest and most challenging datasets because
of the extensive intra-dataset variations.

 

Figure 1. Sample images from the REFUGE dataset along with expert annotation images.

In Figure 2, sample images from Rim-One-r3 and Drishti-GS datasets are shown in
rows 1 and 2, respectively. Rim-One-r3 is collected by MIAG group (Spain) and it has a
total of 159 fundus images with expert annotations. The Drishti-GS dataset is also one of
the benchmark datasets for OC and OD segmentation. It has a total of 101 images with
50 training and 51 testing images. The OD and OC annotations for both Rim-One-r3 and
Drishti-GS are provided in Figure 2b,c. Black pixels in the groundtruth images represent
the background class whereas white pixels refer to desired classes (OC and OD). It is
worth noting that all three datasets have extensive variations in background effects, pixel
intensity values, objects (OC and OD) sizes, and illumination effects which makes its
segmentation challenging. In addition, most of the images have a small-sized OC with
unclear boundaries; therefore, accurate segmentation becomes even more challenging.

 
(a) (b) (c) 

Figure 2. Sample images from row 1: Rim-One-r3; row 2: Drishti-GS databases. (a) Original image
(b) groundtruth image with OD annotation (c) groundtruth image with the OC annotation.
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3.2. Proposed Method
3.2.1. Overview of the Proposed Method

OC and OD pixel-wise segmentation provides valuable analysis for glaucoma diag-
nosis and prognosis. Accurate segmentation of OC and OD is challenging because of
the high inter and intra-datasets variations along with an indistinct area of OC. A novel
architecture, FEDS-Net, is developed to overcome these challenges. An overview of the
proposed framework is shown in Figure 3. Input images are fed to the network and after
feature processing, the network provides a prediction mask for OC and/or OD at the
output. Networks usually require a large amount of training data for optimal learning of
the network. To fulfill this need, training images are resized and augmented to produce a
sufficient amount of training data. FEDS-Net uses feature excitation and IA mechanism
to boost the segmentation accuracy. Moreover, RFD and ECD ensure a diversified and
efficient learning of the network (details are provided in the subsequent subsection). The
trained model of FEDS-Net generates a prediction mask and predictions are compared
with groundtruth images for results generation. Resizing the prediction mask back to the
original size is carried out for a valid evaluation. Training images are used for training
purposes whereas testing is performed only for unseen test split. In the prediction mask,
white and black pixels represent desired (OC and/or OD) and undesired (background)
classes, respectively, whereas FEDS-Net provides segmented OC and/or OD at the output.

 
Figure 3. The overview diagram of the proposed method.

3.2.2. Explanation of the Proposed Method

Existing methods are usually based on some famous networks or use pre-trained
models as a backbone. In the case of OD and OC segmentation, famous segmentation
architectures such as U-Net [28] and SegNet [32] cannot deliver convincing results because
of the small object size with unclear boundaries. Both U-Net and SegNet architectures
exhibit vanishing gradient problems because of the excessively small final featuremap size.
FEDS-Net is developed from scratch, and it is not based on other architecture. The detailed
network architecture of FEDS-Net is shown in Figure 4. Training images from the training
split are resized for an efficient training process. Input images are provided to the network
using the image input layer. Image features are extracted and activations are produced
using convolutional layers. In FEDS-Net, spatial information from different stages of the
network is aggregated with spatial features at different IA points. FEDS-Net has a total of
five IA points almost at every stage of the network.
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Figure 4. The architecture of the proposed FEDS-Net (Con: Convolutional layer; BN: Batch normal-
ization layer; St-Con: Strided convolutional layer; BotlNeck: Bottleneck layer; RFD: Rapid feature
downsampling; Trans-Con: Transposed convolutional layer; GC: Grouped convolutional layer; ECD:
Efficient convolutional depth; PCL: Pixel classification layer; IA: Information aggregation).

In CNNs, the initial spatial feature has the potential to improve the prediction accuracy
of the network [33]. Therefore, initial spatial feature excitation is obtained by aggregating
features with different process levels and channels at IA-1. In IA-1, initial spatial features
from three different convolutional effects along with identity mapping from the first convo-
lutional layer are aggregated for initial feature excitation. The output of IA-1 is provided to
the strided convolutional (St-Con) layer via a bottleneck (BotlNeck) layer. Furthermore,
St-Con reduces the featuremap size and processes the spatial information from a series of
four convolution layers for further activations. Activated information from the series of
convolutional layers is further aggregated with the downsampled spatial feature using
St-Con at IA-2. It is notable that FEDS-Net architecture does not include maximum pooling
or unpooling layers to change the featuremap dimensions to avoid spatial loss caused by
these layers. Instead, FEDS-Net uses St-Con and transposed convolutional (Trans-Con)
layers to reduce and increase the featuremap size, respectively.

In CNNs, a relatively high stride value of St-Con results in more efficient learning of the
network [34]. Therefore, FEDS-Net uses RFD using a high stride of 4 in two St-Con layers.
The spatial information from IA-2 is further activated through a couple of convolutional
layers via a BotlNeck layer followed by a Str-Con. In IA-3, rapid downsampled features are
aggregated with spatial information from a couple of convolutional layers. This aggregated
information is provided to ECD. The ECD has valuable semantic information with the
maximum number of channels and minimum featuremap dimension. ECD is based on one
St-Con, four grouped convolutional layers, one IA point, and a BotlNeck layer. In CNNs, the
maximum depth of the network is the most expensive part of the network which strongly
hit the computational efficiency of the network. Nevertheless, FEDS-Net used four grouped
convolutional layers to contain the required number of parameters in maximum depth. In
ECD (IA-4), aggregated spatial information is further aggregated with downsampled and
activated spatial features through three convolutional layers. Feature aggregation in ECD
helps in learning semantics and consequently enhance prediction accuracy.
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Subsequently, the spatial information dimension is increased using a Trans-Con layer
and fed to IA-5 via a single convolutional layer. As earlier mentioned, initial features
have the potential to improve the overall learning of the network. These initial features
underwent RFD and were provided to IA-5 for aggregation with upsampled features from
ECD. The spatial dimension of final aggregated features, from IA-5, is increased using two
Trans-Con layers one after the other. The final spatial feature from the last Trans-Con layer
is refined using a couple of convolutional layers before providing to the softmax and pixel
classification layers (PCL) for pixel-wise predictions. PCL produces a prediction mask with
the marking of each pixel belonging to the respective class.

Key parts of the aggregation process are further explained using a schematic diagram
in Figure 5. Spatial information (Is) is fed to IA (x) via convolutional layers and it becomes
I′s. Similarly, initial features are represented with Fi and after undergoing RFD become
the rapid downsampled initial features (F′

rdi). In IA (x), I′s is aggregated with F′
rdi and it

provides aggregated spatial features (Fax), as follows.

Fax = I′s F′
rdi (1)

 

Figure 5. Schematic diagram showing information aggregation in FEDS-Net.

Because information aggregation is based on concatenation; therefore, aggregation
is represented with symbol ©. after activations through convolutional layers Fax become
F′

ax. Subsequently, F′
rdi is further refined through a series of convolutional layers and it is

represented with F′′
rdi. In convolutional depth, F′

ax is aggregated with F′′
rdi and finally, it

provides aggregated features from convolutional depth (Facd) as given below

Facd = F′
ax F′′

rdi (2)

Facd are further activated using convolution layers and final features out of convolu-
tion depth (F′

acd) are provided for upsampling before the prediction stage. This feature
aggregation in general and in the maximum depth, in particular, improves the overall
segmentation performance.

3.2.3. Training, Testing, and the Experimental Environment of the Proposed Method

In this study, experimentation is performed on three publicly available databases. The
data split of REFUGE and Drishti-GS databases are pre-defined by the dataset providers
and we followed the same official splits in our experiments. For the experimental work of
Rim-One-r3, the same data split used by [26] is followed for a fair comparison. Images from
the training split are resized using nearest neighbor interpolation for fast training of the
network. The limited availability of annotated medical data is a common limitation, world-
wide. Therefore, training images are augmented to create artificial images. In this work,
arithmetic and geometric operations such as cropping, flipping, and rotation are randomly
used for augmentation. No preprocessing is involved for the training of FEDS-Net.

As shown in sample images (Figures 1 and 2), pixels of desired classes (OC and OD) are
significantly dominated by undesired class (background) pixels and this scenario triggers a
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class-imbalance problem. In the experimental work of this study, dice loss (DL) is employed
as the loss function for the training of the network. DL mitigates the class-imbalance
problem and minimizes the metric while backpropagation and ensures convergence of the
network for effective training. Mathematically, DL is expressed as follows

DL = 1 −
(

2 × ∑A
k PPro−kGTruth−k

∑A
k P2

Pro−k + ∑A
k G2

True−k

)
(3)

In the above mathematical expression, A symbolizes all pixels which are available
whereas k represents the current pixel. The probability of prediction for k pixel is referred
by PPro−k and the true groundtruth label is represented by GTruth−k. P represents generated
label after prediction whereas G denotes the groundtruth.

The proposed method is comprehensively evaluated on three publicly available
databases. Testing was conducted only on the unseen testing split of the respective database
for a fair evaluation. A trained model by FEDS-Net is applied to the testing images and
a pixels-level prediction mask is generated for each image. The pixels of the prediction
mask are compared with those of the groundtruth pixels to compute results on the bases of
evaluation measures. In semantic segmentation, accuracy (AC), sensitivity (S), specificity
(SPE), dice similarity coefficient (DSC), and Jaccard index (JCI) are the commonly accepted
measures for evaluation [35]. In evaluation measures, true positive (tp), true negative
(tn), false positive ( f p), and false negative ( f n) pixels are computed for the evaluation
purposes. Mathematically evaluation measures can be given, as follows

AC =
tp + tn

tp + f n + f p + tn
(4)

S =
tp

tp + f n
(5)

SPE =
tn

tn + f p
(6)

DSC =
2 tp

2 tp + f p + f n
(7)

JCI =
tp

tp + f p + f n
(8)

FEDS-Net is developed from scratch and all the experimental work is performed
using MATLAB 2021a [36] framework. In addition, Intel ® Core™ i7 CPU950@3.7 GHz
processor (Intel Corporation, Seoul, Republic of Korea) with an NVIDIA GeForce GTX
1080 graphics processing unit (GPU) [37] (NVIDIA Corporation, Seoul, Republic of Korea)
having 8 GB graphics memory is used for experiments. Computational details related to
trainable parameters and inference time are presented in Tables 4 and 5, respectively in
Section 5.

4. Results

The proposed method is evaluated using three open databases containing retinal
fundus images. FEDS-Net delivered excellent segmentation results. Both qualitative and
quantitative results for all three databases are given in subsequent subsections.

4.1. FEDS-Net Evaluation Using REFUGE Database

REFUGE is one of the latest and most challenging datasets for OD and OC segmen-
tation. Images in REFUGE datasets are entirely different from the other two databases.
Nonetheless, FEDS-Net provided superior segmentation performance for both OC and
OD classes. Many images in the testing split have a very small OC area with indistinct
boundaries. However, FEDS-Net delivered a better segmentation accuracy even for such
challenging cases. Qualitative good and poor segmentation results using FEDS-Net on the
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REFUGE database are shown in Figures 6 and 7, respectively. Poor results are perhaps
because of the unclear objects’ boundaries along with the small size of OC.

 
(a) (b) (c) 

Figure 6. Good OC and OD segmentation qualitative results on the REFUGE database, attained
by applying FEDS-Net. (a) Input image, (b) corresponding groundtruth image, and (c) segmented
output images (tp pixels for OD and OC are indicated in yellow and blue, respectively. Likewise, red
and green show fn and fp pixels, respectively).

(a) (b) (c) 

Figure 7. Poor OC and OD segmentation qualitative sample results on the REFUGE database, attained
by applying FEDS-Net. (a) Input image, (b) corresponding groundtruth image, and (c) segmented
output images (tp pixels for OD and OC are indicated in yellow and blue, respectively. Likewise, red
and green show fn and fp pixels, respectively).
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Quantitative OC and OD segmentation results are further compared with those of
the state-of-the-art methods to confirm the effectiveness of the proposed method. The
listed results in Table 1 show a better segmentation performance of FEDS-Net compared
with existing methods. It is worth notable that most of the methods require extensive
preprocessing to achieve the desired performance. Instead, the proposed method did not
employ any preprocessing to keep the method straightforward.

Table 1. Segmentation quantitative results comparison of FEDS-Net with state-of-the-art methods
using the REFUGE database. “-“ indicates that no result is available (unit: %). (OC: optic cup;
OD: optic disc; AC: accuracy; S: sensitivity; SPE: specificity; DSC: dice similarity coefficient; JCI:
jaccard index).

Methods
OC OD

AC S SPE DSC JCI AC S SPE DSC JCI

Variational auto-encoder [38] - - - 88.91 - - - - 95.81 -
Patch-based pOSALseg-T [26] - - - 88.2 - - - - 96.0 -

M-Ada [21] - - - 88.25 - - - 95.85 -
SLSR-Net [39] 99.90 94.70 99.90 89.50 81.50 99.80 96.90 99.90 96.50 93.30

U-Net + VGG16 encoder [40] - - - - - 99.8 95.7 - 94.0 89.0
Mask-RCNN [41] - - - 85.4 - - - - 94.7 -

ET-Net [42] - - - 89.1 - - - - 95.2 -
U-Net [28] - - - 85.4 - - - - 93.0 -

Self-attention [23] 85.36 95.09
Team masker [43] - - - 88.3 - - - - 94.6 -

Cascaded network [25] - - - 88.04 - - - - 93.31 -
Team BUCT [43] - - - 87.2 - - - - 95.2 -

Segtran (eff-B4) [44] - - - 87.2 - - - - 96.1 -
Multi-modal approach [45] - - - - 79.02 - - - - 92.25

Conditional GAN [46] - - - - 80.0 - - - - 88.4
FEDS-Net (Proposed method) 99.91 90.40 99.96 89.80 82.13 99.89 96.62 99.94 96.53 93.39

4.2. FEDS-Net Evaluation Using Drishti-GS Database

Evaluation of FEDS-Net is extended to benchmark Drishti-GS database. Images in
the Drishti-GS database are entirely different from those of the other two databases of this
study. Nevertheless, the proposed method provided superior segmentation accuracies
for the Drishti-GS database too. Qualitative results of OD and OC segmentation on the
Drishti-GS database are presented in Figures 8 and 9, respectively. Figure 8 (rows 1–3),
shows good OD segmentation visual results whereas Figure 8 (row 4) shows sample visual
result of relatively poor segmentation. Similarly, good segmentation qualitative results for
OC segmentation of the Drishti-GS database are shown in Figure 9 (rows 1–3) whereas the
relatively poor visual result is shown in Figure 9 (row 4). Poor segmentation cases can be
attributed to indistinct object boundaries.

In Table 2, quantitative results produced by FEDS-Net are compared with state-of-
the-art methods on the Drishti-GS database. Results confirm a convincing performance
by FEDS-Net using its feature excitation and IA mechanism. FEDS-Net ensures a high
segmentation performance without disregarding the training parameters’ overheads. FEDS-
Net used a small number of training parameters to achieve outperforming results.

4.3. FEDS-Net Evaluation Using Rim-One-r3 Database

The proposed method is further evaluated using the Rim-One-r3 database with chal-
lenging pixel intensity variations. FEDS-Net effectively deals with these variations using
its architectural strengths. Qualitative results produced by FEDS-Net for the OD and OC
segmentation are provided in Figures 10 and 11, respectively. Qualitative results confirm
that FEDS-Net provides excellent segmentation accuracy for different pixel intensity varia-
tions and illumination effects. Good segmentation performance’s qualitative results are
presented in Figures 10 and 11 (rows 1–3) whereas relatively poor segmentation is shown
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in Figures 10 and 11 (row 4). Poor segmentation cases can be attributed to indistinct objects’
boundaries along with variations in pixel intensity values and illumination effects.

 
(a) (b) (c) 

Figure 8. Good OD segmentation qualitative results on the Drishti-GS database, attained by applying
FEDS-Net. (a) Input image, (b) corresponding groundtruth image, and (c) segmented output images
(tp and fn pixels for OD are indicated in blue and red, respectively. Whereas, fp pixels are presented
with green color) (Rows 1–3: good segmentation results; Row 4: poor segmentation result).

 
(a) (b) (c) 

Figure 9. Good OC segmentation qualitative results on the Drishti-GS database, attained by applying
FEDS-Net. (a) Input image, (b) corresponding groundtruth image, and (c) segmented output images
(tp and fn pixels for OD are indicated in yellow and red, respectively, whereas fp pixels are presented
in green color) (Rows 1–3: good segmentation results; Row 4: poor segmentation result).
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Table 2. Segmentation quantitative results comparison of FEDS-Net with state-of-the-art methods
using the Drishti-GS database. “-” indicates that no result is available (unit: %). (OC: optic cup;
OD: optic disc; AC: accuracy; S: sensitivity; SPE: specificity; DSC: dice similarity coefficient; JCI:
jaccard index).

Methods
OC OD

AC S SPE DSC JCI AC S SPE DSC JCI

U-Net with VGG16 encoder [40] - - - - - 99.79 97.54 - 96.5 93.1
Mod U-Net [47] - - - 88.7 80.4 - - - 97.3 94.9
RACE-Net [48] - - - 87.0 - - - - 97.0 -
RetinaGAN [27] - - - - - - - - 96.7 -

Entropy sampling [49] - - - 87.1 - - - - 97.3 -
FC-DenseNet [24] 99.4 - - 82.8 71.1 99.6 - - 94.9 90.4

Depth estimation [50] - - - 83.0 - - - - 97.0 -
FCN and adversarial [51] - - - 85.0 75.0 - - - - -

Edge smoothing approach [52] - - - 81.0 - - - - 95.0 -
Modified U-Net [31] - - - 85.0 - - - - - -
Shape regression [53] - - - 85.0 - - - - 95.0 -

Multi-Stage framework [54] - - - 84.0 - - - - 97.0 -
Drishti-GS Challenge [55] - - - 79.0 - - - - 96.0 -

Edge TPU [30] - - - 88.0 - - - - 90.0 -
U-Net [28] 98.1 86.5 98.3 70.2 57.8 99.2 92.8 99.4 91.3 85.8

NAS-U2-Net [56] - - - 87.69 - - - - 96.95 -
FEDS-Net (Proposed method) 99.66 93.28 99.81 90.40 83.38 99.86 97.64 99.94 98.01 95.99

 
(a) (b) (c) 

Figure 10. Good OD segmentation qualitative results on the Rim-One-r3 database, attained by
applying FEDS-Net. (a) Input image, (b) corresponding groundtruth image, and (c) segmented output
images (tp and fn pixels for OD are indicated in blue and red, respectively. Whereas fp pixels are
presented with green color) (Rows 1–3: good segmentation results; Row 4: poor segmentation result).
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(a) (b) (c) 

Figure 11. Good OC segmentation qualitative results on the Rim-One-r3 database, attained by
applying FEDS-Net. (a) Input image, (b) corresponding groundtruth image, and (c) segmented output
images (tp and fn pixels for OD are indicated in yellow and red, respectively. Whereas fp pixels are
presented in green color) (Rows 1–3: good segmentation results; Row 4: poor segmentation result).

FEDS-Net quantitative results are listed in Table 3 for comparison with existing meth-
ods. Results exhibit a competitive and convincing performance by the proposed method.
Aggregation of features results in effective training; therefore, FEDS-net maintains its better
performance even dealing with challenging variations.

Table 3. Segmentation quantitative results comparison of FEDS-Net with state-of-the-art methods
using Rim-One-r3 database. “-” indicates that no result is available (unit: %). (OC: optic cup;
OD: optic disc; AC: accuracy; S: sensitivity; SPE: specificity; DSC: dice similarity coefficient; JCI:
jaccard index).

Methods
OC OD

AC S SPE DSC JCI AC S SPE DSC JCI

Patch-based pOSALseg-T [26] - - - 85.6 - - - - 96.8 -
DRIU [57] - - - - - - - - 95.5 -

U-Net with modification [31] - - - - - - - - 95.0 -
RetinaGAN [27] - - - - - - - - 95.5 -

Entropy sampling [49] - - - 82.4 - - - - 94.2 -
Auto-encoder [58] - - - - - 99.45 87.30 99.81 90.2 88.24

Edge TPU [30] - - - 84.0 - - - - 85.0 -
FEDS-Net (Proposed method) 99.60 87.67 99.80 86.20 76.20 99.73 96.97 99.86 97.01 94.13

5. Discussion

The trend of ophthalmic diseases is on the rise, worldwide. Ophthalmologists have
to examine many glaucoma-suspected patients daily. Typically, glaucoma-related exami-
nations are conducted manually which is subjective, time-consuming, and prone to error
procedure. Therefore, the need of the time is to assist ophthalmologists with AI-based
automated solutions. Hundreds of research studies accepted that OC and OD segmentation
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can assist the glaucoma diagnosis process. However, OC and OD segmentation task has
many associated challenges. Fundus images have a high variation in pixel intensity values,
backgrounds, OC/OD sizes, and illuminations that makes the segmentation tricky. In
addition, OC size is usually very small and its boundary is too indistinct to accurately
segment. Nevertheless, FEDS-Net overcomes these challenges using feature excitation, IA,
RFD, and ECD in its architecture. Computational efficiency is another serious criterion for
modern AI-based frameworks. In most cases, existing methods show serious limitations
in computational efficiency and require a large number of parameters for the complete
training of their model. FEDS-Net not only provides excellent segmentation accuracies but
also maintains computational efficiency. FEDS-Net requires only 2.73 million parameters
which turns out to confirm its computational strength. The comparison of FEDS-Net with
existing methods in terms of required trainable parameters is listed in Table 4. Parameters’
comparison exhibits that the proposed method requires a smaller number of parameters
compared with those of the state-of-the-art methods. In addition, inference time (per
image) for all three datasets using FEDS-Net is also computed and presented in Table 5. A
considerably less inference time is also because of the computational effectiveness of the
proposed method.

Table 4. Comparison of trainable parameters with those of the existing methods. (OC: optic cup; OD:
optic disc; DSC: dice similarity coefficient).

Methods Number of Parameters (Million)
DSC (%)

OC OD

Team masker [43] 1224 88.3 94.6
Mask-RCNN [41] 127 85.4 94.7

Segtran (eff-B4) [44] 93.1 87.2 96.1
pOSAL (Xception) [26] 41.3 88.5 95.3

U-Net [28] 31.03 85.4 93.0
U-Net with VGG16 encoder [40] 16.8 - 94.0

pOSAL (MobileNetV2) [26] 5.8 88.5 95.6
FEDS-Net (Proposed) 2.73 89.80 96.53

Table 5. Inference time (per image) computation using FEDS-Net.

Sr. Dataset Inference Time (Seconds)

1 REFUGE 0.11
2 Rim-One-r3 0.091
3 Drishti-GS 0.097

5.1. Assisting the Glaucoma Screening Process

Automated glaucoma diagnosis methods are required to strengthen existing tradi-
tional glaucoma screening methods. The OC and OD segmentation can provide valuable
computational and morphological details that can work as parallel support for ophthalmol-
ogists [26]. Accurate OC and OD segmentation can lead to providing precise V-CDR value
and V-CDR is an important biomarker for ophthalmologists in glaucoma diagnosis and
prognosis. Glaucoma usually causes cupping, which refers to an increase in the size of OC.
The increased size of OC increases the V-CDR value which consequently reflects a high risk
of glaucoma [53]. V-CDR is mathematically expressed as

V − CDR =
vDc

vDD
(9)

In the above mathematical expression, vDc represents the vertical diameter of the cup
area whereas vDD symbolizes disc area. The ratio between both vertical diameters of the
cup and disc provides a V-CDR value. A sample V-CDR computation from the REFUGE
database is presented in Figure 12. The CDR value of groundtruth image is represented by
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CDRgt whereas predicted CDR by FEDS-Net is shown with CDRpr. The computed CDR
by FEDS-Net is quite closer to that of the CDRgt value that confirms the effectiveness of
FEDS-Net in accurately segmenting the OC and OD.

 

Figure 12. Sample CDR computation using the REFUGE dataset.

Although V-CDR computation provides potential insight for assisting the glaucoma
screening process, nevertheless; segmentation-based glaucoma screening is not limited
to only V-CDR computations. The area-cup-to-disc-ratio (Ar-CDR) is another measure to
assess the glaucoma occurrence [8]. Ar-CDR is the ratio between the area of the cup region
and the disc region. Glaucoma occurrence and progression bring changes in the area of
OC and OD (mainly OC); therefore; Ar-CDR can also provide considerable assistance in
glaucoma diagnosis and prognosis [8]. V-CDR has a limitation in selecting a reference
center point for calculating vertical diameters whereas Ar-CDR is an area-based approach
and does not require any reference point. Moreover, glaucoma progression can also be
assessed by analyzing the change in the area of only OC during patients’ multiple visits [17].
The rim area between OD and OC is termed a neural rim. The notching phenomenon is
the shrinkage of the neural rim, it can be also analyzed for glaucoma screening. Similarly,
the disc damage likelihood scale (DDLS) is calculated for the estimation and quantification
of this disease [59]. The DDLS can be computed by taking the ratio between the thinnest
part of the neural rim and disc diameter [59]. Subsequently, the inferior superior nasal and
temporal (ISNT) rule also provides a solid basis to discriminate between glaucomatous
and non-glaucomatous cases [60]. According to the ISNT rule, the width of the neural
rim should be biggest to smallest for the inferior, superior, nasal, and temporal regions,
respectively [60]. Cases satisfying the ISNT rule are classified as non-glaucomatous cases
otherwise vice-versa.

5.2. OC and OD Segmentation for the Diagnosis of Other Diseases

Accurate segmentation of OC and OD not only assists in glaucoma screening but also
helps in the diagnosis of some other diseases. Alzheimer’s disease (AD) is a neurodegenera-
tive problem that can be assessed using OC and OD segmentation [61]. Similar to glaucoma
suspects, a high V-CDR value refers to a high risk of AD. Subsequently, poor cognitive
function is common among postmenopausal women [62]. Medical experts consider V-CDR
for cognitive assessment of the patient. Hence, accurate OC and OD segmentation is also
crucial for assisting in the diagnosis of numerous diseases.

5.3. Demonstrating Learning of the Network using Heat Activation Maps

Understanding the learning process or feature selection of a CNN is very hard to
visually explain. Gradient-weighted class activation mapping (Grad-CAM) [63] is used for
the visual demonstration of network learning. In Figure 13, heat activation maps of OD and
OC using the Rim-One-r3 database are presented in rows 1 and 2, respectively. As shown
in Figure 13c–f, heat activation maps are extracted from different layers of the network to
assess the learning process. Grad-CAM refers to the main features selected by the CNN
during training and marks them with distinguished colors. Figure 13 (last column) is taken
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from the last layers of the network, and it confirms that FEDS-net rightfully focuses on
desired classes without any biases.

 
(a) (b) (c) (d) (e) (f) 

Figure 13. Visual explanation of FEDS-Net learning process using heat activation maps with Rim-
One-r3 database. Activation maps for the OD and OC are provided in rows 1 and 2, respectively.
(a) Input image. (b) groundtruth image. Heat activation maps extracted from (c) Initial layer, (d) first
convolutional layer after IA-2, (e) convolutional layer after ECD, and (f) final convolutional layer of
the network.

6. Conclusions

Glaucoma is one of the most critical ophthalmic diseases that can lead to irreversible
vision loss. Glaucoma is typically diagnosed with manual assessments which is a time-
consuming, error-prone, and inefficient procedure. Therefore, AI-based automatic methods
are desirable to assist ophthalmologists in glaucoma diagnosis. Most of the existing AI-
based methods require complex preprocessing, lack segmentation performance, and show
serious limitations in terms of computational efficiency. To address all these problems,
a novel architecture FEDS-Net is developed for accurate segmentation of OC and OD.
FEDS-Net uses feature excitation and IA mechanism to enhance the prediction accuracies.
Moreover, FEDS-Net employs ECD and RFD blocks for diverse and efficient learning of
the network. The proposed method is evaluated on three challenging databases; REFUGE,
Drishti-GS, and Rim-One-r3. FEDS-Net showed outperforming segmentation performance
without disregarding the computational requirements of the network. FEDS-Net requires
only 2.73 million training parameters for its complete training. FEDS-Net produced better
results compared with those of state-of-the-art methods. Hence, the proposed method can
be used as second-level support for ophthalmologists in glaucoma diagnosis and prognosis.

Relatively low segmentation accuracies for OC because of its indistinct boundaries
can be attributed as the common limitation for all methods. Although FEDS-Net deliv-
ered a better performance for OC, still more techniques can be researched for further
improvement. In the future, we intend to explore more techniques for enhancing OC
segmentation performance.
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Abstract: Choosing the best attribute from a dataset is a crucial step in effective logic mining since it
has the greatest impact on improving the performance of the induced logic. This can be achieved
by removing any irrelevant attributes that could become a logical rule. Numerous strategies are
available in the literature to address this issue. However, these approaches only consider low-order
logical rules, which limit the logical connection in the clause. Even though some methods produce
excellent performance metrics, incorporating optimal higher-order logical rules into logic mining
is challenging due to the large number of attributes involved. Furthermore, suboptimal logical
rules are trained on an ineffective discrete Hopfield neural network, which leads to suboptimal
induced logic. In this paper, we propose higher-order logic mining incorporating a log-linear analysis
during the pre-processing phase, the multi-unit 3-satisfiability-based reverse analysis with a log-linear
approach. The proposed logic mining also integrates a multi-unit discrete Hopfield neural network
to ensure that each 3-satisfiability logic is learned separately. In this context, our proposed logic
mining employs three unique optimization layers to improve the final induced logic. Extensive
experiments are conducted on 15 real-life datasets from various fields of study. The experimental
results demonstrated that our proposed logic mining method outperforms state-of-the-art methods
in terms of widely used performance metrics.

Keywords: logic mining; data mining; log-linear analysis; reverse analysis; statistical classification;
evolutionary computation; discrete Hopfield neural network

MSC: 68T07

1. Introduction

Data mining is the process of discovering patterns, relationships, and insights from
large datasets using various mathematical and computational techniques. It involves
extracting valuable information from data and transforming it into an understandable
structure for further use. Data mining is commonly used in various fields, such as business,
healthcare, and science, to make informed decisions and predictions [1–4]. In theory,
data mining enables us to make an informed decision or to explore the outcome of a
decision without making the decision itself. Thus, this method of handling data can be
used in a multitude of real-life applications, including those in the medical [5], water
research [6], stock market [7], data mining [8], landslide prediction [9], education [10], and
diagnostics [11] fields, among others [12,13]. With the rapid advancement of science and
technology, it is vital to return to the fundamentals of data mining. Typically, data are
converted into a certain rule and processed by an AI platform [14]. The AI platform is then
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used to explore the behavior of the dataset and to provide the end user with interpretable
rules. In this context, the data must be easily interpreted by both AI and humans, so that
the AI system governing the outcome can be well understood [15]. This leads us to the
main issue with data mining: most of the rules extracted from datasets are not optimally
interpreted by early and end users. To overcome this problem, instead of extracting rules
from the data using the black box model, the data can be represented in terms of logic that
is supported by mathematics. Therefore, one must understand how logic can be applied to
represent data in artificial neural networks.

One of the most challenging tasks in creating an optimal logic mining method is
choosing the right logic to represent the dataset. The logic is then learned using intelligent
systems, such as a discrete Hopfield neural network (DHNN) [16]. The first implementation
of logic in an ANN was pioneered by Abdullah [17], where logic was implemented in a
DHNN. In that paper, the synaptic weight of a neuron was obtained by comparing the
cost function of a logic with the Lyapunov energy function. By computing the synaptic
weight of the network, the optimal final neuron state corresponding to the learned logic
could be obtained. Following the introduction of logic into the DHNN, several variants of
logic from the literature were implemented into DHNNs. Kasihmuddin et al. [18] proposed
incorporating 2-satisfiability logic (2SAT) into a DHNN with exactly two neurons per clause.
With the aid of a mutation operator during the retrieval phase, the proposed logic in the
DHNN was reported to outperform all existing state-of-the-art DHNNs in governing 2SAT
logic. In [19], the first non-systematic logic, random 2-satisfiability logic (RAN2SAT), was
implemented into a DHNN. The first and second clauses of the RAN2SAT formulation
were connected by a disjunction. Despite facing learning problems during the learning
phase, RAN2SAT was still compatible with a lower number of neurons. Interestingly, this
study attracted a large number of studies in the field of non-systematic logic. Recently,
Zamri et al. [20] proposed weighted random 2-satisfiability (r2SAT) logic in a DHNN as an
extension of RAN2SAT. The proposed logic required an additional phase, the logic phase,
to ensure that each logic embedded into the DHNN had a certain ratio of negated literals.
Thus, the DHNN had more search space to represent the neuron in terms of the logical
rule. Gao et al. [21] proposed Y-type random 2-satisfiability logic (YRAN2SAT), which
randomly generates a first- and second-order clause. This logic exhibits an interesting
behavior because YRAN2SAT can be represented in terms of systematic and non-systematic
logical rules. Despite the rapid development of logic in DHNNs, the use of higher-order
systematic logic in DHNNs is limited to a single-unit DHNN. For example, the work by
Mansor et al. [22] demonstrated the use of a single-unit DHNN that has limited storage
information, which leads to a potential overfitting issue when the data are represented in
the form of logic.

DHNN, which is governed by logic, plays a pivotal role in creating an optimal logic
mining method. Logic mining is a subset of data mining where the information from
the dataset is extracted in the form of logical rules. Logic mining was first proposed by
Sathasivam and Abdullah [23], namely a reverse analysis that extracted logical rules from
real-life datasets. In that paper, Wan Abdullah’s method was utilized to find the synaptic
weight of the neuron responsible for the final induced logic. The induced logic was verified
using support and confidence metrics. The main issue with that study was the absence of
general induced logic that represents the behavior of the dataset. To tackle this problem,
Kho et al. [24] proposed a novel logic mining method called 2-satisfiability reverse analysis
(2SATRA) to extract information from the dataset in the form of 2SAT. Compared with the
previous method, 2SATRA has the capability to produce induced logic that can classify
the outcome of the dataset. The proposed 2SATRA was reported to be useful in extracting
logical rules in E-games in terms of error and accuracy. Zamri et al. [25] proposed a higher-
order logic mining method by representing data in the form of 3SAT. With the aid of the
clonal selection algorithm (CSA), the proposed logic mining method (3SATRA) managed
to extract optimal induced logic from data on Amazon employees’ resource access. Despite
reporting huge success in obtaining the best induced logic for the dataset, the quality of the
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logic learned by DHNN was far from optimal. Jamaludin et al. [26] argued that the logic
used during logic mining can be further optimized by applying a permutation to change
the configuration of the attribute in the 2SAT. This argument led to the development of
permutations 2SATRA and P2SATRA, where all possible 2SAT containing the attributes
of the datasets were embedded into a DHNN. The proposed P2SATRA was reported to
outperform the state-of the art logic mining methods in extracting the best induced logic
from the benchmark dataset. In another study, Jamaludin et al. [27] ensured that each
induced logic produced by logic mining must be derived from the final neuron state that
achieved the global minimum energy. This led to the introduction of an energy-based
2-satisfiability reverse analysis method (E2SATRA), where the proposed logic mining
method was utilized to extract a logical rule from E-recruitment data. By using the induced
logic, the behavior of the potential recruits could be optimally classified. Although the
proposed E2SATRA was reported to obtain global induced logic, there is a high chance
that the selected attribute is an insignificant variable for the logical rule. In this context, the
insignificant attribute makes the final induced logic uninterpretable.

Due to the potential pitfall of unsupervised logic mining, Kasihmuddin et al. [28]
proposed the first supervised logic mining, the supervised 2-satisfiability-based reverse
analysis method (S2SATRA). In this model, the calculation for each attribute is computed
with respect to the outcome of the datasets. The proposed S2SATRA has outperformed all
the state-of-the-art logic mining models in various performance metrics. After supervised
learning was introduced, Jamaludin et al. [29] proposed another interesting logic mining
model by capitalizing on the log-linear model (A2SATRA) to extract significant attributes
with respect to the outcome of the dataset. The proposed A2SATRA uses the k-Way
interaction to ensure only significant attributes represent the 2-satisfiability logic. After
obtaining the best logic, the DHNN learns the logic and produces the induced logic for
dataset classification. Despite the usefulness of supervised learning in the context of logic
mining, previous studies only utilized only a single objective function, which leads to
potential overfitting during the learning phase of a DHNN. Another possible issue with
current logic mining is the lack of higher-order logic to represent the induced logic. Higher-
order logic, such as 3SAT logic, is crucial to ensure that more attributes fit into each logical
clause. In other words, each attribute allows for more than one attribute to be connected,
which we believe will improve the generalizability of the induced logic. Although the work
of Zamri et al. [25] shows some development in terms of higher-order logic, the selection of
attributes from the datasets was still poorly executed and prone to potential overfitting.

According to the existing literature [29], the log-linear model has been found to be
effective in representing data classification. By utilizing a multi-unit discrete Hopfield
neural network governed by higher-order logic and a permutation operator, our proposed
logic mining method is able to obtain optimal induced logic for a real-life dataset. Therefore,
these are the contributions of this paper:

(a) A log-linear approach is formulated by selecting significant attributes with respect to
the final logical outcome. The log-linear approach removes insignificant attributes
from datasets before being translated into a higher-order logical rule (3-satisfiability),
which reduces the complexity of the logic mining to select the best attribute to repre-
sent the dataset.

(b) A novel objective function that utilizes both true positives and true negatives when
deriving optimal 3-satisfiability logic is formulated. In this context, the logic mining
method selects the top and best logic before entering the learning phase of the discrete
Hopfield neural network. Using multi optimal logical rules that maximize the objective
function, that the search space of the network can be expanded in one direction.

(c) A multi-unit discrete Hopfield neural network that is governed by the best logic
obtained from the datasets is proposed. The multi-unit discrete Hopfield neural
network independently learns the logic from the datasets and derives respective
synaptic weights using Wan Abdullah’s method. Using the multi-unit network, the
number of induced logics that represent the behavior of the datasets can be increased.
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(d) A permutation operator of 3-satisfiability logic is proposed in a discrete Hopfield neu-
ral network. In this case, the chosen attribute from the log-linear analysis undergoes
permutation to ensure that the optimal attribute configuration in each logical clause
can be obtained. By allowing logical permutation, logic mining has the capability to
identify the highest performing induced logic in terms of a confusion matrix.

(e) An extensive analysis of the proposed hybrid logic mining is performed in real-life
datasets. The performance of the proposed hybrid logic mining is compared with
state-of-the-art logic mining methods. In this context, various performance metrics are
analyzed to validate the performance of the proposed logic mining method. A non-
parametric test is performed to validate the superiority of the proposed logic mining.

This paper is organized as follows: Section 2 presents the motivation behind the paper.
Then, in Section 3, we introduce the higher-order 3-satisfiability representation. Next, in
Section 4, we explain how 3-satisfiabilty is implemented into a DHNN. Section 5 described
the integration of a log-linear model into 3SATRA. Section 6 outlines the experimental
setup. The most important parts of the paper are presented in Section 7 where we discuss
the simulation of log-linear model in a 3-satisfiability-based reverse multi-unit. Section 8,
we reveal the limitation of our research and in Section 9 discussed future work. Finally, we
conclude with the results of our findings in Section 10.

2. Motivation

In this section, we discuss the motivation behind our work. Each motivation addresses
the problem with existing logic mining and how our proposed logic mining can fill these
gaps in the field.

2.1. Lack of Higher-Order Logic to Represent Selected Attributes

Logical rules play a pivotal role in representing the information in a dataset. In the
conventional paradigm, attributes with more connection to the logical rule have the capacity
to store more information. In current methods of logic mining, such as 2SATRA [26] and
E2SATRA [27], logic is limited to the second order, where only two attributes are embedded
into the clause. In this context, each attribute connects with only one attribute to satisfy
the clause. This causes problems in satisfying the interpretation of the logic during the
learning phase because the probability of the 2SAT being satisfied is less than that of a
higher-order clause [29]. There are two potential issues with lower-order logic in logic
mining. Firstly, obtaining the wrong synaptic weight can lead to a wrong final neuron
state during the retrieval phase of a DHNN, which can impact the performance of the
induced logic. Secondly, lower-order logic has a smaller search space, which may not be
sufficient to accurately represent the behavior of the dataset. On the other hand, higher-
order logic can represent more attributes, which can improve the generalizability of the
induced logic. Furthermore, the permutation operator can be implemented to explore more
possible combinations of attributes, which can lead to the discovery of better solutions. The
work by Jamaludin et al. [30] demonstrated that a permutation operator can reveal possible
induced logical rules. However, if the number of attributes is low, the performance of logic
mining will not improve. This will result in a huge loss in potential optimal induced logic.
Although there are some attempts to realize higher-order logic mining, such as the work
proposed by Zamri et al. [25], where 3SAT was utilized to represent logic in logic mining,
there has not been any attempts to represent the “right” 3SAT logic because all attributes in
the dataset have equal probability of being chosen. In this paper, we propose a higher-order
logic mining by capitalizing on the use of 3-satisfiability logic to represent attributes in a
dataset. In this context, our proposed logic mining. will utilize log-linear models to extract
the most optimal attribute with respect to the logical outcome.

2.2. Limited Single-Unit DHNN

Due to its simplicity and effective synaptic weight management, a DHNN governed
by logic has good potential in learning the behavior of a dataset. Given the simplicity
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of DHNNs such as content addressable memory (CAM) and effective synaptic weight
management, a DHNN has the capability to retain information about the dataset and to
retrieve any necessary rules during the retrieval phase. Despite demonstrating stellar
performance in simulated learning [20,21], DHNNs have been shown to be ineffective at
extracting information from real-life datasets. This is due to only one logic being translated
into CAM, which leads to a single outcome, because only one set of synaptic weights
was learned during the learning phase of the DHNN. In this context, the possibility of
logic mining obtaining the most optimal induced logic is reduced drastically. For instance,
the logic mining method proposed by Kho et al. [24] embedded the single best logic into
DHNN. Since each DHNN can only learn one type of logic, the final induced logic obtained
from logic mining was limited to the direction of the local field. When the number of
induced logical rules was small, the performance of the logic mining deteriorated. A
similar observation was found in the work by Alway et al. [31], where a single-unit DHNN
reduced the probability of the network arriving at the optimal induced logic. To remedy
this matter, this paper proposes a multi-unit DHNN to increase the solution space for logic
mining. After obtaining a few logical rules with high fitness values, each logic is learned by
the DHNN. In this context, each DHNN learns the logic independently and recommends
their own induced logic without any interaction between other CAMs. This perspective
helps the logic mining method achieve optimal induced logic [32].

2.3. Issue with Single Objective Function

In addition to the multi-unit DHNN discussed in Section 2.2, the quality of the best
logic must be improved to reduce potential overfitting of the DHNN. Generally, the objec-
tive function of logic mining during the pre-processing phase is to maximize the number of
true positives. For example, the logic mining proposed by Zamri et al. [25] depends solely
on the number of positive outcomes from the learning phase and does not consider the
number of true negatives although both outcomes are consistent with the learned logic. In
the event of all outcomes achieving all true negatives, the proposed logic mining is reduced
to a random classifier because the DHNN is unable to obtain the most optimal synaptic
weight. A similar observation was reported in the work by Kasihmuddin et al. [26]. Despite
achieving optimal induced logic using S2SATRA, the induced logic could learn data that
led to true positives. This is the major limitation of the proposed S2SATRA because most of
the logic from the dataset that yields true negatives are ignored. In this context, the learning
data embedded into the DHNN is reduced drastically, which reduces the sensitivity of
the logic mining towards more specialized datasets. To address the root of this problem,
the best logic obtained from the pre-processing phase must be flexible enough without
sacrificing valuable information about the learning data. In this way, the objective function
of the best logic must accommodate the frequency of the true negative outcome. In this
paper, we propose a logic mining that maximizes any logical outcomes that are both true
positives and true negatives before being learned by the DHNN. Therefore, the proposed
logic mining contributes to enhancing the search ability of induced logic in extracting more
accurate logical rules from a dataset.

3. Higher-Order 3-Satisfiability Representation

The systematic 3SAT is a logical rule that strictly comprises three variables in each
clause with disjunction between the clauses. This logic was popularized in several promi-
nent studies, such as [22], where each variable represented information about the applica-
tion or problem. Since 3SAT was proven in NP by [33], there was no efficient method to
guarantee that a consistent assignment that satisfies 3SAT can be found by the algorithm.
Based on [25], 3SAT consists of the following features:

(a) A set of n variables, L1,L2, L3, . . . . . . Ln;
(b) A set of literals, where a literal is a variable L or a negation of variable L;
(c) A set of m distinct clauses, which are connected with the logical AND (∧) and in

which each Mi consists of exactly three literals variables forming the k-SAT clause
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and every logical clause normally has exactly k variables that are linked with the OR
(∧) operator.

The general formula for 3SAT can be defined as follows:
By considering features (a)–(c), the formulation for 3SAT can be generalized as follows:

L3SAT = ∧m
i=jCi where Ci = ∨3

i=j
(
xij,yij,zij

)
(1)

where each clause contains exactly three literals. Note that each variable in the clause can
be 1, which represents true, or −1, which represents false. The goal of Equation (1) is to
align all the states of the variable so that L3SAT = 1.

The suggested logical formula of L3SAT is shown in Equation (2):

L3SAT = (A ∨ B ∨ C) ∧ (D ∨ E ∨ F) ∧ (G ∨ H ∨ I) (2)

As presented in Equation (2), L3SAT is satisfiable when (A, B, C, D, E, F, G, H & I)
in the initial neuron state are {−1,−1,−1,−1,−1,−1, 1, 1, 1}, which represents true. On the
other hand, if (A, B, C, D, E, F, G, H & I) in the initial neuron state is
{−1,−1,−1,−1,−1,−1, 1, 1, 1}, it is not satisfied. This logical structure does not con-
sider redundant literals. The dimensionality feature, which permits only three decisions
to affect the outcome of the datasets, is another benefit of suggesting three variables per
clause. When a logical rule is embedded into an artificial neural network, the choice of
three-dimensional model remains interpretable based on the logical rule. Furthermore, we
need to save the interaction between the variables in the sentence. Optimizing the value of
k is necessary as reaching k = 3 is the primary goal. This study also utilized a permutation
operator in the logical structure. The basic definition of the L3SAT is as follows:

Li
3SAT = ∧n

u=1Cu where Cu = ∨k
v=1

(
Xa

uvw, Yb
uvw, Zc

uvw

)
, k = 3 (3)

where a, b, and c are the arrays of attributes and a 	= b 	= c. Then, Xa
uvw, Yb

uvw is the selected
attributes a and b, respectively. The 3SAT logical structure is a higher-order logical structure
that is probably satisfied and compatible into the DHNN. The logical structure obtains the
correct synaptic weight in order to achieve the global minimum value. The possible logical
structure after the permutation is shown in Equations (4) and (5).

L1
3SAT = (C ∨ E ∨ H) ∧ (G ∨ F ∨ I) ∧ (D ∨ B ∨ A) (4)

L2
3SAT = (G ∨ D ∨ C) ∧ (F ∨ V ∨ H) ∧ (E ∨ A ∨ B) (5)

Equation (4) has a difference in the arrangement of the literals in each clause in the
logical structure. The logical permutation in both equations gives a higher accuracy for the
logical structure.

4. 3-Satisfiability (L3SAT) in Discrete Hopfield Neural Network

The discrete Hopfield neural network (DHNN) consists of interconnected neurons
that have input and output patterns in the form of discrete vectors. The network’s weights
are symmetrical, and there are no self-connections [17]. The symmetrical synaptic weights
are connected by interconnected neurons in a conventional recurrent network. Low compu-
tation, high convergence, and good content addressable memory (CAM) are all elements
of this network [24]. Furthermore, in this study, the HNN is compatible with the bipo-
lar neuron representation, and the fundamental neuron update can be expressed using

128



Mathematics 2023, 11, 2121

Equation (6), and the fundamental neuron update can be expressed using Equation (6).
HNN’s general asynchronous updating rule is as follows:

Si =

⎧⎪⎨
⎪⎩

1,
N
∑
j

WijSj ≥ ε

−1, otherwise
(6)

where Si is the weight for units a to b, and ε refers to the threshold of the HNN.
To incorporate L3SAT into a DHNN, a neuron is assigned to each variable in Equation (3).

Each neuron is defined in [–1,1], which stands for false and true, respectively. To model
neurons collectively, the cost function associated with the L3SAT must be minimized. In
general, the cost function, δL3SAT, is formulated as follows:

δL3SAT =
NC

∑
u=1

NV

∏
v=1

wuv (7)

where NV denotes the number of variables, whereas NC denotes the number of clauses,
and Equation (8) presents the definition of the L3SAT inconsistency:

wuv =

{
1
2 (1−Sx) , i f x
1
2 (1+Sx), Otherwise

(8)

Before identifying any inconsistencies in the L3SAT, the first step is to identify the
cost function of the L3SAT. In the learning phase, the αL3SAT must be able to produce at
least the minimum cost function so that the synaptic weight results can guarantee that the
proposed L3SAT can be modelled into the DHNN. The final neuron state of the DHNN
will be sequentially updated in the retrieval phase using the local field HαL3SAT , shows in
Equation (9):

hL(t) =
n
∑

c=1,c 	=b

n
∑

b=1,b 	=c
W (3)

abc S bS c +
n
∑

b=1,b 	=a
W (2)

ab S b + W (1)
c (9)

where the synaptic weights are connected at the third order W (3)
abc , second order W (2)

ab , and

first order W (1)
c . The most recent final neuron state Si, is as followed by Equation (10):

Si =
{

1, tanhhL(t) ≥ 0
−1, Otherwise (10)

The hyperbolic tangent activation function (HTAF), abbreviated as hL(t), is shown in
Equation (11):

tanh(hi) =
ehL(t) − eh(t)L

ehL(t) + eh(t)L
(11)

It is important that, according to [23], HTAF capacity is non-linearly classified and that
the optimal solution is differentiated by minimizing neuron oscillation during the retrieval
phase in the DHNN. The final neuron state generated by DHNN-L3SAT denotes the L3SAT
performance. The properties of DHNN, as described by Theorem 1 in [17], include its
tendency to converge, which is also corroborated by [18].

Theorem 1. Assume that N = (W, θ), where θ is the model’s threshold for the DHNN. Assume
that W is a symmetric matrix with nonnegative diagonal components and that N operates in an
asynchronous mode. DHNN will then always reach a stable state.

Since the suggested 3SAT into DHNN does not contain a hidden layer, the network
must be examined before transferring into the ideal neuron state. It will be simple to
evaluate the optimality as Lyapunov energy in this scenario that be instantly identify if the
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final neuron state was captured in a suboptimal condition. The following is the formulation
of the HδL3SAT Lyapunov energy function, which relates to the DHNN-L3SAT.

HL3SAT(t) = − 1
3

n
∑

a=1,a1b1c

n
∑

b=1,a1b1c

n
∑

c=1,a1b1c
W (3)

abc S aS bS c

− 1
2

n
∑

a=1,a1

n
∑

b=1,a1b
W (2)

ab S aS b − n
∑

a=1
W (1)

a S a

(12)

The value of HδL3SAT is the absolute final energy, and HδL3SAT is monotonically re-
duced to produce the minimum energy Hmin

δL3SAT . According to [17] and [22], the number of
clauses can be used to predict the absolute minimum energy of any logical rule. The lowest
energy of the L3SAT is presented in Equation (13) as this paper addresses logical rules that
include three variables per phase. Hmin

δL3SAT is calculated using Equation (13).

H min
δL3SAT

= −1
8

n
(

χ 3
i

)
(13)

Meanwhile, χ 3
i and a represent the third order and three literal clauses in HδL3SAT .

Finally, to identify the global and local minimum solutions, Equation (14) can be used.
Significantly, the final neuron states will reach the global minimum solution if it is satisfied;
if not satisfied, they become the local minimum solution. υ is the tolerance value, which is
an indicator of a satisfied solution.∣∣∣H δL3SAT − H min

δL3SAT

∣∣∣ ≤ υ (14)

Figure 1 presents a schematic 3SAT outline, and Figure 2 presents a flow chart of the
DHNN-3SAT steps using the following pseudocode. G3SATRAμ then updates the neuron
at time t + 1. In Figure 1, the main block represented by the black dotted lines shows the
higher-order logic based on the number of clauses. Inside the higher-order logic block, the
blue, red, and green lines indicate the connections between the neurons labelled w2

ij=w2
ji,

w3
ijk=w3

kji = w3
jki, and w1

i=w1
j , respectively.

 

Figure 1. Schematic diagram for DHNN-L3SAT.
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Figure 2. Flow chart of the workflow of G3SATRAμ.

The methodology used in this study is illustrated in Figure 2 and comprises a logic
phase and a training phase. The flow chart shows that the pre-processing method is involved
in the learning phase, making it a critical step. Therefore, the quality and appropriateness of
the pre-processing method can significantly influence the performance of the logic mining
model. To evaluate the performance of the induced logic after completing the training phase,
performance metrics were utilized. These metrics were used to determine whether the
G3SATRAμ model accurately predicted the outcome or if it required improvement.

5. Proposed Higher-Order Log-Linear Model in Logic Mining

This paper discusses the method of a higher-order log-linear analysis and the objective
function of a multi-unit DHNN. The following section explores the formulation of a log-
linear model, including the selection of significant attributes, and the creation of a multi-unit
DHNN. Furthermore, in each section, the log-linear formula is well explained according to
the objective function.
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5.1. Log-Linear Analysis to Represent 3-Satisfiability Logic

One of the significant applications of logic in DHNN is logic mining. Logic mining
is used to extract logical rules from real-life datasets. Logic mining is different from data
mining methods in the literature [23–31] because the end product for logic mining is a
classification model based on SAT rules. The main goal of logic mining is to extract a logical
rule that explains the behavior of the dataset. Note that logic mining that utilizes 3SAT in
a DHNN was first proposed by Zamri et al. [25] and can be abbreviated as 3SATRA. In
this context, it is imperative for logic mining to have a more effective DHNN model that is
governed by higher-order logic. However, a real-life dataset might consist of hundreds of
attributes and often contributes to the “curse of dimensionality” [32] in logic mining. One
of the possible solutions to this problem is choosing the right attribute to be processed by
logic mining.

One of the possible methods of extracting the right attributes is through a log-linear
analysis. In this paper, we propose a log-linear analysis using 3SATRA or G3SATRAμ. Let
N be the quantity of variables that represents the attribute Pi = (P1, P2, P3, . . . . . . PN) in
bipolar form Pi = {−1, 1}. Before proceeding to the DHNN, we are required to extract
the best r attributes from the total of N from the datasets. The log-linear model is used to
examine whether there is a significant difference between the proportion of categories with
two or more group variables [33]. This model expresses the log of an expected frequency
in a contingency table as a summation of the function for all parameters involved in the
datasets. Note that the two-way table with respect to the expected frequency, Lij, for a
column is given as follows if each of the neurons is independent from each other [34].

Lij = nrij = nri+r+j (15)

where n is the sum of entries, while ρi and ρj stand for partial distributions for the variables
in the i-th row (row probabilities) and j-th column (column probabilities), respectively. The
outcome of performing a linear regression on Equation (15) is shown in Equation (16):

ln Lij = ln n + ln ρi+ + ln ρ+j (16)

The frequency for the cross-tabulation cell is predicted using a linear model for the
log-linear function. The margins and interaction between the variables should be measured
in a two-way table known as a saturated model. Equation (17) shows the formulation for
the saturation model:

ln Lij = ρ + ρi+ + ρ+j + ρij, i 	= j (17)

where ρ = ln n is the true outcomes, while ρi+ = ln ρi+, ρ+j = ln ρ+j are the basic outcomes
of neurons Si and Sj, respectively. According to [29], the association parameter that repre-
sents the ability to adapt the log expected cell frequency is expressed using only the partial
distribution of each variable and kij. Equation (18) reproduces the observed frequencies
fij perfectly, known as a saturated model. G2 and the Pearson chi square χ2 are used to
evaluate the goodness of fit to acquire the likelihood ratio.

G2 = 2
i

∑
i=1

j

∑
j=1

fij ln

(
fij

Lij

)
(18)

χ2 =
i

∑
i=1

j
∑

j=1
fij

[
ln
(

fij − Lij
)2 − ln

(
Lij
)]

=
i

∑
i=1

j
∑

j=1
fij ln ( fij−Lij)

2

Lij

(19)

Equations (18) and (19) are employed to identify the results based on both the statistical
sample size and targeted model [35]. Additionally, the values of these two statistics are
computationally the same. In the log-linear analysis, determination of the significance level
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requires assessing both the parameter and the goodness of fit. In G3SATRAμ model, the
significance of the parameters is evaluated using a partial association test, which calculates
the difference in values for the relevant degrees of freedom (df) in the model. Essentially,
this means that if there is a relationship between a pair of variables, the null hypothesis
test can be selected [36]. Additionally, the null hypothesis is rejected when the parameter
values of each individual variable are found to be significantly associated. The alternative
hypothesis assumes that there is a significant difference between the observed data and the
population parameter. In hypothesis testing, the goal is to reject the null hypothesis in favor
of the alternative hypothesis based on statistical evidence [37]. The outcomes of the variables
are shown by the generated parameter, by indicating the both Pi and Pj values. G3SATRAμ
is then embedded into the DHNN and can be formulated using the Pi and Pj values, whereas
Pi and Pj are significant p-values for attributes Si and Sj, respectively. Additionally, min|Pi|
represents the lowest significant p-value between Si and Sj. To guarantee the final model of
L3SAT, this work implemented a log-linear analysis and embedded it into a DHNN model
according to [38]. It is important to note that neither neuron was considered in the L3SAT
formulation when evaluating the performance of each neuron. Another consideration in this
suggested method is the changes in traditional k-SATRA proposed by [24,25] if Equation
(20) for all variables cannot reach the threshold variable when 0 ≤ Pi ≤ α. Furthermore,
determining the neuron negativity presents the biggest problem in Equation (15). The essence
of a log-linear analysis is to remove any weak neurons, as indicated by Equations (18) and (19).
In this study, we apply a log-linear analysis in the 3-satisfiability-based reverse analysis multi-
unit approach or G3SATRAμ in order to determine which attributes in the dataset will be
selected to represent specific variables in the G3SATRAμ. In particular, G3SATRAμ utilizes
a log-linear analysis to select the best nine attributes that have the strongest interactions
among the dataset outcomes. To apply higher-order logic, the selected nine attributes are
randomly permuted. The selected ideal attribute will then be represented as an induced
logic in the form of a 3SAT, which will be embedded into the DHNN. This method was also
implemented by [30], in work on the 2SAT logical rule based on a six-attribute selection. This
method obtains the optimal solution when we compare the logic mining method introduced
by [30] with 2SAT logical rules.

5.2. New Objective Function with Multi-Unit DHNN

In previous studies, such as [24–29], the objective function of the pre-processing phase
is to find the best logic Lbest

3SAT that maximizes the true positive TP. After obtaining the most
optimal Lbest

3SAT , the DHNN will learn this logic and obtain the optimal synaptic weight,
which leads to the final induced logic. The main issue with this procedure is the lack of
consideration of another important variable, which is the true negative TN. A previous
study [39] failed to consider the TN, which plays a pivotal role in obtaining a negative
variable in the induced logic. In this paper, we propose a new objective function that
considers L3SAT and maximizes the summation of TP and TN. The formulation of the
objective function is as follows:

max
{∣∣Pij = 1

∣∣+ ∣∣Qij = −1
∣∣}, j ∈ N (20)

where
∣∣TPij = 1

∣∣ is the cardinality of TP in set j that has a state equal to 1. Note that j represents
the DHNN unit. In other words, Lbest

3SAT represents the initial behavior of the dataset before
being learned by the DHNN. Equation (20) is different from the work by Zamri et al. [25],
where only Lbest

3SAT with the highest frequency was chosen. In this paper, the top k logic that
satisfies the condition in Equation (20) is chosen to proceed to the learning phase.

5.3. Lbest
3SAT in Multi-Unit DHNN

The next strategy to learn Lbest
3SAT through the DHNN is proposing a multi-unit DHNN

that processes several Lbest
3SAT independently. This strategy ensures that the proposed

G3SATRAμ can cover more search space during the retrieval phase. This can be im-
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plemented by capitalizing on the synaptic weight from different types of Lbest
3SAT , which

leads to different directions in the final neuron state. Kasihmuddin et al. [18] proposed a
mutation DHNN to address a similar concern by increasing the search space by mutating
the final neuron state. However, due to the limited number of synaptic weights produced
by the Wan Abdullah method, the final neuron state tends to converge towards a similar
neuron state. From this perspective, we can obtain different types of final neuron states just
by obtaining different logic during the learning phase of the DHNN [40]. The equation that
governs the multi-unit DHNN is given as follows:

μj = ∧NC
j=1 (Ai ∨ Bi ∨ Ci) , j ∈ R

N
max
j=1

|n [(p = 1) ∨ (Q = −1)]| (21)

where μj refers to a multi-unit DHNN in which the structure leads to LLearn
3SAT = �. After

obtaining a satisfactory interpretation, the synaptic weight of Lbest
3SAT can be obtained and is

stored as CAM in each multi-unit DHNN. During the retrieval phase of the DHNN, the
final neuron state SB

i is obtained using Equation (9) and is transformed into the following
induced logic.

SInduced
i =

{
Si, SB

i = 1
Sj , SB

i = −1
(22)

Next, using the obtained induced logic, the outcome of the induced logic is compared
with the testing data. In this context, the comparison is only made with all of the proposed
Lbest

3SAT from different DHNN units. Algorithm 1 shows the pseudocode of the proposed work.

Algorithm 1: pseudocode of DHNN − L3SAT.

Input

Set all attributes L1,L2, L3, . . . . . . Ln with respect to LLearn
3SAT = � GC, and trial

Output

The best induced logic LInduced
3SAT

Begin

Initialize algorithm parameters;
Define the attribute for L1,L2, L3, . . . . . . Ln with respect to LBest

3SAT
Search the p-value for each Attribute;
for (α < p) do
if Equation (7) is satisfied then
Assign Li as Si and continue;
while (i ≤ GC) do

Using Equation (21) to find the LBest
3SAT

Check the clause satisfaction for LBest
3SAT

Compute HδL3SAT using Equation (12)
Compute the synaptic weight associated with LBest

3SAT by using WA approach:
Store the synaptic weight and LBest

3SAT in CAM;
Initialize the final neuron state;

for (k ≤ trial)
Compute hi using Equation (9);
Convert SB

i to the logical from using Equation (22);
Combine SB

i to form induced logic LInduced
3SAT

Compare the outcome of the LInduced
3SAT with the LTest

3SAT continue; -
k ← k + 1
end for

i← i + 1
end for

End
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6. Experimental Setup

To validate the performance of the proposed G3SATRAμ, the experiment setup must
be performed according to the following setup:

6.1. Benchmark Dataset

The Linduced
i for 15 datasets is extracted using the log-linear analysis in Section 5.1.

These datasets and their assigned labels are retrieved from the UCI machine learning
repository (https://archive.ics.uci.edu/ml/datasets.php) and Kaggle open set (https://
www.kaggle.com/datasets). The dataset was downloaded on 6 November 2022 from the
respective website. To avoid possible bias, we chose datasets from different fields of studies
(refer to Table 1). Table 1 shows the details of each selected dataset.

Table 1. Details of each selected dataset.

Code Dataset Data Link Attribute Instances Missing Value Field Outcomes

L1 Horse Colic UCI Machine Learning
Repository: Horse Colic Data Set 27 300 Yes Zoology Surgery

L2 Credit
Approval

https://achive.ics.uci.edu/ml/
datasets/credit+approval 15 690 Yes Finance Class

L3 Absenteeism https://achive.ics.uci.edu/ml/
datasets/Absenteeism+at+work 21 740 No Business Time in hours

L4 Early-Stage
Diabetes

https://achive.ics.uci.edu/ml/
datasets/Early+stage+diabtes+
risk+prediction+dataset.

17 520 Yes Medical Class

L5
Chronic
Kidney
Disease

https://achive.ics.uci.edu/ml/
datasets/chronic_kidney_disease 24 400 yes Medical Classification

L6 Spec heart https://achive.ics.uci.edu/ml/
datasets/SPECT+Heart 22 267 No Medical Diagnosis

L7 Congressional
Voting Records

https://achive.ics.uci.edu/ml/
datasets/congressional+voing+
records

16 435 Yes Social Class

L8 Hepatitis https://achive.ics.uci.edu/ml/
datasets/Hepatitis 19 155 Yes Medical Class

L9
Autistic

disorder for
children

https://achive.ics.uci.edu/ml/
datasets/Autistic+Spectrum+
Disorder+Screeing+Data+for+
Children++

21 292 Yes Medical Class

L10 Automobile https://achive.ics.uci.edu/ml/
datasets/Automobilee 26 205 Yes Automotive Price

L11 Primary Tumor https://achive.ics.uci.edu/ml/
datasets/primary+tumor 17 339 Yes Medical Classification

L12 Facebook
metrics

https://arhive.ics.uci.edu/ml/
datasets/Facebook+metrics 19 500 Yes Business Total

Interactions

L13 Hungarian
Chicken Pox

UCI Machine Learning
Repostory: Hungarian Chicken
pox Cases Data Set

20 521 No Life Country

L14 Alcohol effect
on math study

https://www.kaggle.com/
datasets/whenamancodes/
alcohol-effects-on-study?
select=Maths.csv

33 395 No Educational Grade

L15 Soybean-Large
UCI Machine Learning
Repository: Soybean (Large)
Data Set

35 307 Yes Life Overall
Diagnosis

There are two main criteria for choosing datasets. First, each dataset must contain at
least 15 attributes. This is important for validating the capability of the log-linear model
in extracting the best attributes during the pre-processing phase. In other words, if we
choose datasets that have less than 10 attributes, the proposed model G3SATRAμ would
provide the same results as the work by Zamri et al. [25]. Second, the number of instances
must be more than 200 to avoid overfitting in G3SATRAμ. When the number of instance
is very low, there is a high chance that the learning data will consist only of FP and FN,
which leads to random LBest

3SAT selection. In addition, k-means clustering [30] will be used to
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convert the value of the dataset into bipolar form Si = {−1, 1}. This conversion is crucial
to ensure that the proposed G3SATRAμ can be compared with other existing work. Since
each attribute is represented in bipolar form, the missing data are assigned randomly to
1 or −1. According to Sathasivam [38], the CAM dismisses the outlier data in the bipolar
form as being the fault tolerance of the DHNN.

The continuous attribute values in the dataset are standardized using k-means clus-
tering by converting them into bipolar representations. The method used for k-means
clustering was inspired by the work of [24,25,31]. To address the issue of missing values,
they are replaced with a random bipolar state (either 1 or −1), but the selected datasets
should have very few missing values to ensure that the learning phase is not affected.

In addition, all simulations utilize the train-split [30] method, where the training phase
contains 60% of instances and the testing phase contains 40% of instances. This method
has been used in various studies [24–31], where a further testing percentage was used to
confirm the effectiveness of the Linduced

i . This study used k cross validation on the limited
sampling instances to estimate how the dataset is expected to perform in the testing phase;
those same instances are not used during the training phase for the model.

6.2. Performance Metrics

Based on popular classification metrics such as accuracy (Acc), precision (PREC), sen-
sitivity (SEN), F1 score (F1), and Matthews correlation coefficient (MCC), the effectiveness
of the suggested model can be assessed. Acc is applied to figure out the percentage of
true-positive and true-negative predictions over the total number of instances. The num-
bers of instances accurately anticipated a positive and negative cases are known as the
true positive (TP) and true negative (TN), respectively, whereas false-positive (FP) and
false negative (FN) instances are the sum of the number of falsely anticipated negative and
positive outcomes, respectively. The Acc value can be measured using Equation (23), as
shown in [41]:

ACC =
TP + TN

TP + TN + FP + FN
(23)

SEN examines the positive tendencies of the instances accurately anticipated in a
particular situation, as mentioned by [42].

SEN =
TP

TP + FN
(24)

According to [43], PREC is used to analyze the number of positive outcomes among
the false-positive outcomes from the predicted outcomes. The PREC can be formulated
as follows:

PREC =
TP

TP + FP
(25)

F1 is also one of the metrics used to measure accuracy. F1 is the modulation in-
dex of the sensitivity and precision parameters. The F1 formula is presented in the
following equation:

F1 =
2TP

2(TP + FP)
(26)

The effectiveness of the logic mining process is evaluated in the Matthews correlation
coefficient (MCC), which considers all the elements of a confusion matrix. According to [44],
MCC is a valid indicator for evaluating the quality of the proposed model and may be
applied in various sizes of classes.

MCC =
TPTN − FPFN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(27)
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6.3. Baseline Methods

The performance of the G3SATRAμ model is compared with numerous well-known
current works to confirm the efficiency of the suggested methodology. Even though
there are numerous classification algorithms that have been introduced, including those
proposed by [43–47], none of these studies have demonstrated that induced logical rules
can effectively categorize and extract patterns from a dataset.. Note that the authors of [48]
have proposed logic mining that utilizes a log-linear model, but the order of the logic is
lower than what we propose in this paper. In addition, our proposed G3SATRAμ model is
incomparable with the work in [49] due to the structure of the radial basis function neural
network (RBFNN), which only produced a single Linduced

i . Thus, our proposed G3SATRAμ
model is compared with the following state-of-the-art logic mining methods:

(a) 2SATRA [24] was the first attempt at extracting the best Qi
induced from datasets. This

logic mining method utilizes systematic Q2SAT as a logical rule during training and
testing phase. As for the preprocessing phase, 2SATRA uses random selection to
choose the best attribute. In terms of the best logic Qbest

2SAT , 2SATRA uses the objective
function that maximizes the number of TP. In addition, 2SATRA only uses a single-
unit DHNN.

(b) E2SATRA [27] utilizes energy-based logic mining to ensure that the Qi
induced always

follows the dynamic of the Lyapunov function. During the retrieval phase of the
DHNN, the neuron state that achieves the local minimum energy is discarded. In
this context, the number of Qi

induced is theoretically lower than those of 2SATRA and
P2SATRA. E2SATRA uses similar objective functions to that of 2SATRA and only
utilizes a single-unit DHNN.

(c) L2SATRA was inspired by the work of [50], which employed the log-linear method to
extract a model for an ovarian cyst dataset. This standard selection method utilized
characteristics and incorporated conventional 2SATRA based on a log-linear analysis.
Although the log-linear method was utilized to extract the best attributes, L2SATRA
does not contain a permutation operator. L2SATRA uses a similar objective function
to that of 2SATRA and only utilizes a single-unit DHNN.

(d) P2SATRA [26] is an extension of the work by [51], where Q2SAT was formulated
with a permutation operator and took into consideration various configurations for
the literals in C(2)

i . The permutation operator determines all the possibility search
spaces of the Qi

induced and leads to the highest accuracy value. P2SATRA uses similar
objective functions to that of 2SATRA and only utilizes a single-unit DHNN.

(e) RA [23] is the earliest logic mining that utilizes HornSAT when extracting a logical
rule from a dataset. The initial RA does not contain any pre-processing phases and
generalized induced logic. In this paper, the RA is the systematic second-order logic
during the preprocessing phase. During the retrieval phase, only a Qi

induced that has
the property of HornSAT is chosen. RA uses a similar objective function to that of
2SATRA and only utilizes a single-unit DHNN.

(f) A2SATRA was inspired by [30], and its permutation operator investigates every
conceivable search space that is connected only to the selected attributes. Attributes
are selected by focusing only on a log-linear analysis by selecting significant attributes
in the form of a contingency table. In the context of the learning and testing phases,
A2SATRA uses a similar objective function to that of 2SATRA and only utilizes a
single-unit DHNN.

6.4. G3SATRAμ Configuration Model

The configuration model of G3SATRAμ was built based on a log-linear analysis, which
consists of a multidimensional examination dataset in the form of a contingency table that
presents the relationship between the qualitative and discrete scales. However, G3SATRAμ
concentrates on only one-way interactions to identify the minor qualities that could poten-
tially cause the logic to overfit. Equation (16) is used to measure the likelihood ratio to detect
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any significant effects and to carry out a primary interaction analysis. Significant attributes
are determined using Equation (18) and the permutation attributes are determined using
Equation (19). The permutation operator in Equation (20) is used to expose all the inter-
connections among the variables of G3SATRAμ. Equation (21) determines the significant
attribute applied. We incorporate the configuration of the LBest

3SAT into DHNN-3SAT using the
optimal attribute which leads to Linduced

i via Equation (2).
Table 2 shows the k-Way model and higher-order effects component for k = 1, whereby

the saturated model yields the significant effect components. We want to understand how
the variables interact with one another rather than with all the attributes; hence, k = 1
is the most important value to observe how using G3SATRAμ into DHNN can create
interactions between variables by concentrating just on one specific variable at a time. Due
to the p-value of the Pearson chi square being less than 0.05, it is possible to infer that the
number of iterations representing the trial variable stops at one point significantly more
often than expected by chance. Table 2 shows that the first-order effects have a substantial
impact on the model. Even though in Table 2 it was indicated that the first-order effect
had a significant impact on the analysis, we still need to consider partial relationships
among all the variables. As a result, to obtain the partial association findings, the variables
selected before being expressing in the 3SAT logical structure are analyzed. The parameters
are selected based on the p-value by excluding unimportant qualities from the datasets
(p-value = 0.05).

Table 2. Contingency table with significant values.

Dataset
Code

df
Likelihood Ratio Pearson Number of

IterationsChi Square Sig. Chi Square Sig.

L1 6560 2577.08 >0.05 29,311.98 >0.05 2
L2 6560 6177.97 >0.05 83,385.89 >0.05 2
L3 2186 6232.99 <0.05 66,353.66 >0.05 2
L4 59,048 6659.89 >0.05 716,016.90 >0.05 2
L5 59,048 5162.86 >0.05 511,554.83 >0.05 2
L6 59,048 3575.83 >0.05 461,730.61 >0.05 2
L7 59,048 6027.20 >0.05 1,159,233.06 >0.05 2
L8 59,048 2037.78 >0.05 144,991.25 >0.05 2
L9 59,048 3460.08 >0.05 150,161.62 >0.05 2

L10 59,048 2944.39 >0.05 352,648.78 >0.05 2
L11 59,048 4531.92 >0.05 402,552.85 >0.05 2
L12 59,048 6618.33 >0.05 791,465.19 >0.05 2
L13 59,048 1635.73 >0.05 780,527.78 >0.05 2
L14 59,048 4592.94 >0.05 181,834.70 >0.05 2
L15 59,048 1448.48 >0.05 177,047.00 >0.05 2

6.5. Experimental Design

In this experiment, we used IBM SPSS Statistics version 27 to perform a log-linear
analysis on each dataset in Table 1. The specific concentrations used are listed in Table 3,
which provides a comprehensive overview of the experimental parameters and their
respective values. We used cross-validation to identify the most important attribute, which
we then used for logic mining in DEV C++ Version 5.11. The simulation ran on a device
with an AMD Ryzen 5 3500U processor, Radeon Vega Mobile Gfx, and 8 GB of RAM
running on Windows 10. To ensure consistent results, we ran all trials on the same device
to avoid any potential errors during the simulation.
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Table 3. The parameters for each standard logic mining method.

Parameter G3SATRAμ E2SATRA RA(HornSat) L2SATRA A2SATRA 2SATRA P2SATRA 3SATRA

Number of Variable 9 6 6 6 6 6 6 9
Number of Clauses 3 3 3 3 3 3 3 3
Neuron
Combination [52] 100 100 100 100 100 100 100 100

Attribute Selection Log Linear Random Random Log Linear Log Linear Random Random Random
Energy Tol 0.001 0.001 - 0.001 0.001 - - -
Learning Iteration 100 100 100 100 100 100 100 100
Learning
Method [26] ES ES ES ES ES ES ES ES

Selection rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Trial [40] 100 100 100 100 100 100 100 100
CPU time [49] 24 h 24 h 24 h 24 h 24 h 24 h 24 h 24 h
Logical
Permutation (GC) 100 100 100 100 100 100 100 100

Activation
Function [53] HTAF HTAF HTAF HTAF HTAF HTAF HTAF HTAF

p-value 0.05 - - 0.05 0.05 - - -

7. Results and Discussion

The primary aim of this study is to assess the performance of logic mining when using
a pre-processing structure to select attributes. In this section, we evaluate its performance
by comparing G3SATRAμ with existing work. The results of each performance metric for
G3SATRAμ (the existing logic mining = G3SATRAμ), where + is the existing logic mining
loss in G3SATRAμ and - is the existing surplus by G3SATRAμ, compared with existing
methods, showed good results and are discussed in this section.

7.1. Accuracy for Current and G3SATRAμ Logic Mining Models

Table 4 shows the ACC results for the selected logic mining model. There are several
variations in the performances for G3SATRAμ. The bold values indicate that the logic
mining method achieved the maximum value. Diff refers to the differences between the
proposed logic mining method (G3SATRAμ) and the selected existing logic mining method.
Table 4 also displays the average value and minimum, maximum, and average ranks of the
Friedman test. The accuracy values were recorded following computing using Equation (23).

Table 4. Acc value for G3SATRAμ in comparison with state-of-the-art logic mining methods.

Code G3SATRAμ
E2SATRA RA(HornSAT) L2SATRA A2SATRA 2SATRA P2SATRA 3SATRA

ACC Diff ACC Diff ACC Diff ACC Diff ACC Diff ACC Diff ACC Diff

L1 0.655 0.567↓ 0.088 0.475↓ 0.180 0.423↓ 0.232 0.602↓ 0.053 0.453↓ 0.202 0.600↓ 0.055 0.602↓ 0.053
L2 0.720 0.474↓ 0.246 0.442↓ 0.278 0.564↓ 0.155 0.686↓ 0.033 0.519↓ 0.201 0.845↑ −0.125 0.670↓ 0.050
L3 0.666 0.566↓ 0.100 0.484↓ 0.182 0.461↓ 0.205 0.597↓ 0.070 0.502↓ 0.164 0.571↓ 0.095 0.566↓ 0.101
L4 0.823 0.534↓ 0.289 0.619↓ 0.204 0.595↓ 0.228 0.855↑ −0.032 0.574↓ 0.249 0.778↓ 0.045 0.677↓ 0.146
L5 0.939 0.763↓ 0.176 0.509↓ 0.430 0.770↓ 0.169 0.923↓ 0.016 0.454↓ 0.485 0.980↑ −0.041 0.576↓ 0.363
L6 0.757 0.553↓ 0.204 0.703↓ 0.054 0.564↓ 0.193 0.665↓ 0.092 0.619↓ 0.138 0.759↑ −0.002 0.684↓ 0.073
L7 0.868 0.431↓ 0.437 0.421↓ 0.447 0.686↓ 0.182 0.869↑ −0.001 0.440↓ 0.428 0.778↓ 0.090 0.786↓ 0.082
L8 0.858 0.384↓ 0.474 0.539↓ 0.319 0.432↓ 0.426 0.826↓ 0.032 0.387↓ 0.471 0.829↓ 0.029 0.671↓ 0.187
L9 0.776 0.723↓ 0.053 0.485↓ 0.291 0.617↓ 0.159 0.762↓ 0.014 0.747↓ 0.029 0.754↓ 0.022 0.651↓ 0.125
L10 0.812 0.737↓ 0.076 0.400↓ 0.412 0.471↓ 0.341 0.671↓ 0.141 0.776↓ 0.037 0.873↑ −0.061 0.739↓ 0.073
L11 0.690 0.557↓ 0.132 0.619↓ 0.071 0.576↓ 0.113 0.613↓ 0.076 0.619↓ 0.071 0.676↓ 0.013 0.572↓ 0.118
L12 0.910 0.497↓ 0.413 0.468↓ 0.442 0.345↓ 0.565 0.771↓ 0.139 0.467↓ 0.443 0.970↑ −0.060 0.567↓ 0.343
L13 0.751 0.646↓ 0.105 0.376↓ 0.375 0.530↓ 0.222 0.708↓ 0.043 0.652↓ 0.100 0.751↓ 0.000 0.641↓ 0.110
L14 0.695 0.547↓ 0.148 0.544↓ 0.151 0.466↓ 0.229 0.638↓ 0.057 0.547↓ 0.148 0.589↓ 0.106 0.668↓ 0.027
L15 0.724 0.607↓ 0.117 0.521↓ 0.203 0.623↓ 0.101 0.624↓ 0.099 0.62↓3 0.101 0.707↓ 0.016 0.626↓ 0.098
+/=/− 9/0/6 15/0/0 15/0/0 15/0/0 13/0/2 15/0/0 10/0/5 15/0/0
Avg 0.776 0.572 0.507 0.542 0.721 0.559 0.764 0.646
Min 0.655 0.384 0.376 0.345 0.597 0.387 0.571 0.566
Max 0.939 0.763 0.703 0.770 0.923 0.776 0.980 0.786
Avg Rank 1.600 6.170 6.430 6.500 3.070 5.700 2.230 4.300

Note: The symbol ↑ indicates that the logic mining has a higher accuracy value, while ↓ indicates a lower accuracy
value. The bold numbers under diff are comparison values for G3SATRAμ vs. current logic mining methods.
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(a) Several decent performances resulted from the G3SATRAμ. The application of the
log-linear analysis is assumed to be highly effective in pre-processing methods, as
it identifies significant attributes with a p-value of p ≤ 0.05. This results in optimal
synaptic weight values associated with the resulting attributes for L3SAT [50]. Further-
more, since the logical rules embedded in the G3SATRAμ model are well-structured,
the outcomes have the potential to achieve higher values for the true positives (TPs)
and true negatives (TNs).

(b) The dataset L11 (Facebook Metric) was significant because its accuracy rating was
almost 1. Therefore, we can conclude that the induced logic obtained an accuracy that
was very close to 1 for all TP and TN. However, a study by [26] found that, when
compared with the log-linear integration method using the nine-attribute permuta-
tion method, the P2SATRA method with restrictions improved identification of the
best induced logic and produced more satisfactory results based on true data. This
indicates that, in terms of the performance of the dataset, the local field can extract
the best induced logic [54].

(c) According to Table 4, there are several values for our proposed logic in which an
accuracy of Acc > 0.8 was achieved. Therefore, we can deduce that the proposed logic
mining method G3SATRAμ separate true positives from true negative for datasets.
Therefore, our work applied Wan Abdullah’s approach to obtain optimal synaptic
weight stands [17] to decrease the false negative values that can be produced in
clauses [23].

(d) The induced logic retrieved for L8 is L = A ← B ← C ∧ D ∧ E . L8 refers to symptoms
of hepatis disorder, with attribute A, B, C, D, E, F, G, H, and I representing steroid,
antivirals, fatigue, malaise, anorexia, liver big, liver firm, spleen palpable, ascites,
and varices, respectively. According to the induced logic, the symptoms of hepatis
disorder increase when bilirubin increases by about 60% for factors A, C, E, and G.

(e) The Friedman rank test was performed on each dataset with α = 0.05 and degree
of freedom (d f = 7). The Acc p-value is less than 0.05

(
χ2 = 69.269

)
. The null

hypothesis, which claimed that all logic mining models perform identically, was
rejected. As mentioned by [30], the highest average rank is evidence of the superior
performance of a logic mining model. In this research, the proposed G3SATRAμ
model achieved a mean rank of approximately 1.6 among the other logic mining
models. However, the second-highest rank was achieved by P2SATRA [21], which
closely competed with our model, with an average rank of approximately 2.23.

As shown in Figure 3, we can conclude that the high ACC value is due to the effective
training phase, which leads to an optimal synaptic weight for the 3SAT logical rule. This
enables the network to retrieve the optimal induced logic through a local field (Equation (9)).
By using a log-linear analysis to select the best attribute, we can further improve the
accuracy by obtaining optimal synaptic weights, which leads to higher true positive (TP)
and true negative (TN) values. Additionally, the log-linear model can eliminate non-
significant attributes, resulting in lower false positive (FP) and false negative (FN) values.
Comparing our work with RA(HornSAT) [18], we observe that the non-flexible synaptic
weight of their logical structure results in lower TP and TN values. The suboptimal synaptic
weight also leads to suboptimal induced P, which is further exacerbated when attributes
are randomly selected in RA(HornSAT). This feature contributes to the lower TP and TN
values in RA(HornSAT).
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Figure 3. Accuracy of logic mining models.

7.2. Precision for Current and G3SATRAμ Logic Mining Models

The PREC values for the chosen logic mining model are displayed in Table 5 below.
G3SATRAμ shows several variations in performance for each dataset. The values in bold
show that the specific logic mining method reached its maximum value. Diff denotes
the differences between the chosen current logic mining and the proposed logic mining
(G3SATRAμ). Table 5 also shows the Friedman test’s average value, minimum and max-
imum ranks, and range for ranks. The precision values here were predicated based on
Equation (25).

Table 5. PREC value for G3SATRAμ in comparison with state-of-the-art logic mining methods.

Code G3SATRAμ
E2SATRA RA(HornSAT) L2SATRA A2SATRA 2SATRA P2SATRA 3SATRA

PREC Diff PREC Diff PREC Diff PREC Diff PREC Diff PREC Diff PREC Diff

L1 0.693 0.659↓ 0.034 0.610↓ 0.083 0.518↓ 0.175 0.674↓ 0.019 0.537↓ 0.156 0.628↓ 0.065 0.634↓ 0.059
L2 0.628 0.440↓ 0.188 0.444↓ 0.185 0.451↓ 0.177 0.611↓ 0.017 0.461↓ 0.167 0.751 −0.123 0.604↓ 0.024
L3 0.547 0.410↓ 0.137 0.372↓ 0.175 0.355↓ 0.192 0.286↓ 0.261 0.371↓ 0.176 0.391↓ 0.156 0.443↓ 0.105
L4 0.883 0.634↓ 0.250 0.655↓ 0.229 0.751↓ 0.132 0.910 −0.027 0.648↓ 0.235 0.823↓ 0.060 0.687↓ 0.196
L5 0.917 0.901↓ 0.016 0.606↓ 0.311 0.703↓ 0.213 0.864↓ 0.053 0.568↓ 0.348 0.938 −0.021 0.614↓ 0.303
L6 0.916 0.745↓ 0.171 0.787↓ 0.129 0.850↓ 0.066 0.937 −0.021 0.793↓ 0.123 0.906↓ 0.010 0.788↓ 0.128
L7 0.888 0.442↓ 0.446 0.590↓ 0.297 0.838↓ 0.050 0.915 −0.028 0.552↓ 0.335 0.815↓ 0.073 0.861↓ 0.026
L8 0.898 0.867↓ 0.030 0.842↓ 0.055 0.889↓ 0.009 0.866↓ 0.031 0.718↓ 0.180 0.880↓ 0.018 0.800↓ 0.097
L9 0.720 0.732 −0.012 0.495↓ 0.225 0.580↓ 0.140 0.710↓ 0.010 0.687↓ 0.033 0.700↓ 0.020 0.609↓ 0.112
L10 0.700 0.606↓ 0.094 0.379↓ 0.321 − − 0.599↓ 0.102 0.671↓ 0.029 0.815 −0.115 0.603↓ 0.097
L11 0.676 0.469↓ 0.207 0.462↓ 0.214 0.542↓ 0.134 0.573↓ 0.103 0.462↓ 0.214 0.634↓ 0.042 0.525↓ 0.151
L12 0.790 − − 0.264↓ 0.527 0.279↓ 0.512 0.612↓ 0.178 0.287↓ 0.503 0.950 −0.160 0.405↓ 0.386
L13 0.639 0.521↓ 0.118 0.336↓ 0.303 0.448↓ 0.192 0.582↓ 0.058 0.554↓ 0.085 0.644 −0.005 0.541↓ 0.099
L14 0.668 0.542↓ 0.125 0.545↓ 0.122 0.422↓ 0.246 0.605↓ 0.063 0.542↓ 0.125 0.571↓ 0.097 0.631↓ 0.036
L15 0.739 0.636↓ 0.102 0.581↓ 0.157 0.648↓ 0.090 0.649↓ 0.089 0.650↓ 0.089 0.699↓ 0.040 0.654↓ 0.084
‘+/=/− 6/0/9 13/0/2 15/0/0 14/0/1 12/0/3 15/0/0 10/0/5 15/0/0
Avg 0.753 0.615 0.531 0.591 0.693 0.567 0.743 0.627
Min 0.547 0.410 0.264 0.279 0.286 0.287 0.391 0.405
Max 0.917 0.901 0.842 0.889 0.937 0.793 0.950 0.861
Avg Rank 1.6 5.330 6.200 5.470 3.270 5.600 2.530 6.000

Note: The symbol ↑ indicates that the logic mining method has higher precision values, while ↓ indicates lower precision
values. The bold number under diff is a comparison value for G3SATRAμ vs. the current logic mining method.

(a) PREC shows that G3SATRAμ performs better than other logic mining models across
all 15 datasets. This demonstrates the capability of G3SATRAμ to extract a high value
for true positives. G3SATRAμ improved the performance of the 3SATRA proposed
by [20] by embedding optimal attributes in the 3SAT and retrieving optimally induced
logic that is important to the dataset. As a result, G3SATRAμ is more capable than
other current logic mining models at producing successful outcomes.
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(b) G3SATRAμ achieved a PREC that is very close to 1 (Precision = 1) in two datasets, L5
and L6. There, it shows that the induced LBest

3SAT retrieved by G3SATRAμ can predict
positive outcomes with certainty. Every dataset output from the induced LBest

3SAT equals
1. The proposed logic mining model G3SATRAμ yields a precision that is almost
equal to 1 in datasets L5 and L6. Therefore, the final neuron states obtained from the
local field provide a satisfactory interpretation as a result [25].

(c) In comparison with A2SATRA proposed by [30], the proposed G3SATRAμ in this
paper is able to more accurately predict positive instances, with the exception of three
datasets (L4, L6, and L7). While P2SATRA suggested by [21] may still predict the best
induced logic for five datasets (L2, L5, L10, L12, and L13), the G3SATRAμ model can
achieve higher positive values for these specific datasets.

(d) This proposed G3SATRAμ model outperforms other logic mining models such as
E2SATRA, RA, 2SATRA, 3SATRA, and L2SATRA in terms of achieving higher values
of true positives (TPs) and true negatives (TNs). It has been demonstrated that using a
log-linear analysis for attribute selection and multi-unit theory in 3SAT leads to more
accurate TP values.

(e) The average rank of the proposed G3SATRAμ logic mining model is 1.600, which
is higher than the average rank of other models. The closest competing method is
P2SATRA, with an average rank of 2.530. The statistical analysis confirms that our
proposed model G3SATRAμ is superior to the other methods. This means that our
model is very good at identifying both positive and negative results.

In Figure 4, the precision value is higher compared with other existing logic mining
methods such as RA(HornSAT), E2STRA, 2SATRA, and A2SATRA. The proposed model
using a log-linear analysis achieved a higher Pbest value by selecting the perfect attribute
from the whole dataset. The permutation operated within a very large searching space
to reduce the cost function. The multidimensional solution in the proposed systematic
logical structure led to obtaining more TNs and less FPs. The existing logic mining methods
L2SATRA [50] and A2SATRA [30] obtained sup-optimal performances in the testing phase,
obtaining more FPs that reduce the precision value for their model.

 
Figure 4. Precision of logic mining models.
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7.3. Sensitivity for Current and G3SATRAμ Logic Mining Models

Table 6 shows the SEN results for the selected logic mining model. There are variations
in the performances of the G3SATRAμ. Whereas the bold values indicate that the particular
logic mining achieved the maximum value, diff refers to the differences between the
proposed logic mining method (G3SATRAμ) and the selected existing logic mining method.
Table 6 also displays the average value and minimum, maximum, and average ranks from
the Friedman test. These SEN values were obtained using Equation (24).

Table 6. SEN values for G3SATRAμ in comparison with state-of-the-art logic mining methods.

Code G3SATRAμ
E2SATRA RA L2SATRA A2SATRA 2SATRA P2SATRA 3SATRA

SEN Diff SEN Diff SEN Diff SEN Diff SEN Diff SEN Diff SEN Diff

L1 0.769 0.586↓ 0.183 0.389↓ 0.380 0.514↓ 0.255 0.670↓ 0.099 0.562↓ 0.207 0.843↑ −0.074 0.784↑ −0.015
L2 0.643 0.663↑ −0.021 0.522↓ 0.121 0.596↓ 0.047 0.513↓ 0.130 0.809↑ −0.167 0.914↑ −0.271 0.648↑ −0.006
L3 0.516 0.436↓ 0.080 0.610↑ −0.094 0.515↓ 0.001 0.185↓ 0.330 0.506↓ 0.010 0.339↓ 0.177 0.720↑ −0.204
L4 0.777 0.505↓ 0.272 0.774↓ 0.003 0.554↓ 0.223 0.838↑ −0.061 0.524↓ 0.253 0.736↓ 0.041 0.792↑ −0.015
L5 0.937 0.720↓ 0.217 0.834↓ 0.104 0.923↓ 0.015 0.947↑ −0.009 0.676↓ 0.262 0.956↑ −0.019 0.876↓ 0.062
L6 0.755 0.667↓ 0.088 0.859↑ −0.104 0.575↓ 0.180 0.613↓ 0.141 0.678↓ 0.076 0.778↑ −0.023 0.811↑ −0.056
L7 0.901 0.195↓ 0.705 0.384↓ 0.516 0.608↓ 0.293 0.867↓ 0.034 0.516↓ 0.385 0.831↓ 0.070 0.784↓ 0.116
L8 0.921 0.260↓ 0.661 0.522↓ 0.398 0.353↓ 0.568 0.918↓ 0.003 0.428↓ 0.492 0.895↓ 0.026 0.807↓ 0.113
L9 0.921 0.754↓ 0.168 0.700↓ 0.221 0.940↑ −0.019 0.907↓ 0.014 0.926↑ −0.004 0.894↓ 0.027 0.893↓ 0.029
L10 0.860 0.711↓ 0.148 0.900↑ −0.040 0.299↓ 0.561 0.455↓ 0.405 0.802↓ 0.058 0.887↑ −0.027 0.926↑ −0.067
L11 0.596 0.668↑ −0.072 0.507↓ 0.089 0.602↑ −0.006 0.443↓ 0.153 0.507↓ 0.089 0.578↓ 0.018 0.801↑ −0.205
L12 0.933 0.537↓ 0.396 0.519↓ 0.414 0.862↓ 0.071 0.496↓ 0.437 0.586↓ 0.347 0.941↑ −0.008 0.654↓ 0.279
L13 0.759 0.585↓ 0.175 0.727↓ 0.032 0.832↑ −0.072 0.773↑ −0.014 0.755↓ 0.004 0.694↓ 0.066 0.779↑ −0.020
L14 0.855 0.958↑ −0.102 0.814↓ 0.041 0.588↓ 0.267 0.903↑ −0.048 0.958↑ −0.102 0.887↑ −0.031 0.904↑ −0.048
L15 0.852 0.695↓ 0.157 0.697↓ 0.156 0.822↓ 0.031 0.854↑ −0.001 0.827↓ 0.026 0.912↑ −0.060 0.810↓ 0.043
‘+/=/− 2/0/13 12/0/3 12/0/3 12/0/3 10/0/5 12/0/3 8/0/7 6/0/9
Avg 0.800 0.596 0.651 0.639 0.692 0.671 0.806 0.799
Min 0.516 0.195 0.384 0.299 0.185 0.428 0.339 0.648
Max 0.937 0.958 0.900 0.940 0.947 0.958 0.956 0.926
Avg Rank 2.97↑ 5.87 5.33 5.2 4.53 4.8 3.13 4.17

Note: The symbol ↑ indicates that the logic mining method has a higher sensitivity value, while ↓ indicates a
lower sensitivity value. The bold number under diff is a comparison value for G3SATRAμ vs. current logic mining
methods.

(a) Our proposed logic mining method G3SATRAμ outperformed the 3SATRA and
P2SATRA. This demonstrates the importance of the log-linear-approach-chosen fea-
tures for a given dataset not being significant for the dataset. The random selection
proposed by [26] successfully retrieved Qtest

2SAT = 1 for all outcomes.
(b) Our G3SATRAμ model achieved a SEN close to 1 (0.937), indicating its ability to

predict positive outcomes in the retrieval phase of the DHNN for the L5 dataset. For
the other datasets, our model demonstrated high TN and TP values compared with
other logic mining models. In fact, for the L7 and L8 datasets, our proposed model
achieved higher TN and TP values than other models.

(c) There are some instances where the sensitivity was not recorded due to the lack
of a positive outcome for that dataset in the logic mining methods E2SATRA and
L2SATRA. Furthermore, there is a good likelihood that the dataset represents an
actual situation and that the testing data only contains negative classes. It follows that
the induced QBest is bias towards to the negative class.

(d) For all of the datasets, the Friedman rank test was performed with α = 0.05 and d f = 7.
The p-value for Sen is <0.05, and

(
χ2 = 18.698

)
. As a result, the null hypothesis that

all logic mining models perform equally well was rejected. According to Table 6,
G3SATRAμ’s performance still displays a competitive Sen value when compared
with other published work such as 3SATRA, P2SATRA, and A2SATRA. The lowest
statistical average rank achieved in the logic mining method E2SATRA was 5.80. This
statical test can predict that A3SATRA can still reach the Linduced

Best when adding another
optimization layer, which would increase the DHNN’s complexity.

Similarly, to the precision metrics, the confusion metric for sensitivity also achieves a
higher TP value in the proposed logical structure G3SATRAμ when compared with other
logical structures, except P2SATRA [26]. Figure 5 shows the selection of random attributes
and the permutation operator obtaining an accurate local field to achieve the best optimal
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solution. The G3SATRAμ is not bad in terms of the optimal solution when we used the
Friedman rank test. Its ranking value was still of a higher order compared with the other
current logic mining methods.

 
Figure 5. Sensitivity of logic mining models.

7.4. F1 for Current and G3SATRAμ Logic Mining Models

Table 7 shows the F1 result for the selected logic mining model. There is variation in
the performances for the G3SATRAμ. Whereas the bold values indicate that the particular
logic mining method achieved the maximum value, diff refers to the differences between
the proposed logic mining method (G3SATRAμ) and the selected existing logic mining
method. Table 7 also displays the average value and minimum, maximum, and average
ranks from the Friedman test. These F1 values were computed using Equation (26).

Table 7. FI value for G3SATRAμ in comparison with state-of-the-art logic mining methods.

Code

G3SATRAμ E2SATRA RA(HornSAT) L2SATRA A2SATRA 2SATRA P2SATRA 3SATRA

FI Score FI
Score Diff FI

Score Diff FI
Score Diff FI

Score Diff FI
Score Diff FI

Score Diff FI
Score Diff

L1 0.726 0.610↓ 0.116 0.461↓ 0.265 0.512↓ 0.214 0.666↓ 0.060 0.549↓ 0.178 0.712↓ 0.014 0.700↓ 0.026
L2 0.630 0.504↓ 0.127 0.423↓ 0.207 0.508↓ 0.122 0.546↓ 0.085 0.569↓ 0.061 0.820↑ −0.190 0.607↓ 0.023
L3 0.529 0.415↓ 0.114 0.455↓ 0.074 0.411↓ 0.118 0.195↓ 0.334 0.425↓ 0.104 0.354↓ 0.175 0.547↑ −0.018
L4 0.826 0.548↓ 0.278 0.684↓ 0.142 0.625↓ 0.202 0.870↑ −0.044 0.569↓ 0.257 0.776↓ 0.050 0.722↓ 0.104
L5 0.919 0.759↓ 0.160 0.617↓ 0.303 0.739↓ 0.181 0.886↓ 0.034 0.553↓ 0.366 0.947↑ −0.027 0.663↓ 0.257
L6 0.827 0.698↓ 0.129 0.816↓ 0.011 0.667↓ 0.160 0.741↓ 0.086 0.722↓ 0.105 0.835↑ −0.008 0.796↓ 0.031
L7 0.893 0.259↓ 0.634 0.448↓ 0.445 0.702↓ 0.191 0.890↓ 0.003 0.522↓ 0.371 0.820↓ 0.073 0.817↓ 0.075
L8 0.909 0.392↓ 0.517 0.635↓ 0.274 0.467↓ 0.442 0.891↓ 0.018 0.509↓ 0.400 0.886↓ 0.022 0.787↓ 0.122
L9 0.807 0.735↓ 0.072 0.577↓ 0.230 0.716↓ 0.091 0.795↓ 0.012 0.788↓ 0.019 0.785↓ 0.023 0.723↓ 0.084
L10 0.770 0.639↓ 0.130 0.531↓ 0.239 0.250↓ 0.520 0.504↓ 0.266 0.727↓ 0.043 0.839↑ −0.069 0.726↓ 0.044
L11 0.618 0.515↓ 0.103 0.463↓ 0.155 0.554↓ 0.064 0.410↓ 0.208 0.463↓ 0.155 0.539↓ 0.079 0.626↑ −0.008
L12 0.854 0.302↓ 0.552 0.334↓ 0.520 0.419↓ 0.435 0.546↓ 0.308 0.348↓ 0.506 0.946↑ −0.092 0.479↓ 0.374
L13 0.686 0.511↓ 0.175 0.456↓ 0.230 0.564↓ 0.122 0.655↓ 0.031 0.621↓ 0.065 0.665↓ 0.021 0.619↓ 0.067
L14 0.747 0.690↓ 0.056 0.652↓ 0.095 0.464↓ 0.283 0.724↓ 0.023 0.690↓ 0.056 0.694↓ 0.053 0.740↓ 0.007
L15 0.787 0.633↓ 0.154 0.622↓ 0.164 0.719↓ 0.068 0.728↓ 0.059 0.722↓ 0.065 0.789↑ −0.002 0.723↓ 0.064
‘+/=/− 6/0/9 15/0/0 15/0/0 15/0/0 14/0/1 15/0/0 8/0/7 13/0/2
Avg 0.769 0.547 0.545 0.555 0.670 0.585 0.760 0.685
Min 0.529 0.259 0.334 0.250 0.195 0.348 0.354 0.479
Max 0.919 0.759 0.816 0.739 0.891 0.788 0.947 0.817
Avg Rank 1.53 5.930 6.330 5.870 3.800 5.000 2.400 5.130

Note: The symbol ↑ indicates that the logic mining method has a higher FI Score, while ↓ indicates a lower FI
score. The bold number under diff is a comparison value for G3SATRAμ and current logic mining methods.
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(a) The multi-unit G3SATRAμ forms quite a good number of positive outcomes when
learning from all the datasets [41]. When we compare P2SATRA with the proposed
G3SATRAμ, performance is lacking in terms of retrieved positive outcomes. There-
fore, the authors of [29] stated that the optimal value for synaptic weight is kept in the
content addressable memory, and LBest

3SAT can enhance the local field when computing
the ideal final neuron state.

(b) One dataset, L5, obtained an F1 score of 0.921, which is close to 1, in the proposed
model G3SATRAμ. This shows that our proposed G3SATRAμ produced the correct
number of TPs during the retrieval phase of the DHNN, and as we know through
previous work [43], if F1 = 1, the model has perfect precision and recall (correct
positive predictions relative to total actual positives) efficiency.

(c) There is no instance where our data return an F1 score = 0; therefore, our proposed
logic was able to produce TPs. The Linduced

Best that was determined by computing the
local field is sensitive to correctly forecasted positive situations. The majority of
Linduced

Best leaned towards Ltest
3SAT = 1, reaching the value of F1. The induced logic led to

LLearn
3SAT = 1

(d) All datasets with α = 0.05 and seven degrees of freedom underwent the Friedman test
accurately. The F1 p-value is α ≤ 0.05, and

(
χ2 = 54.089

)
. Thus, the null hypothesis

that all logic mining models will perform equally well was rejected. However, com-
pared with the other works, G3SATRAμ obtained a great average rank equal to 1.53.
This is the outcome of G3SATRAμ’s ability to anticipate which attributes maximise
TP during the DHNN retrieval phase.

In Figure 6, we continue analyzing the FI value with all of the higher-order logical
structures; 3SAT has a higher probability of being a satisfied logic. Its higher-order logical
rule obtains the correct synaptic weight to achieve an ideal local field, which increases
accuracy. G3SATRAμ is still has the highest FI value compared to other logic mining
methods, which are second-order logical structures with a high probability of being an
unsatisfied condition. A successfully selected random attribute obtains more FP values in
the 15 selected datasets. As we can see, the 3SATRA proposed by [25] still can achieve an
optimal value close to that of G3SATRAμ due to both being higher-order logical structures.

 
Figure 6. FI Score of logic mining models.

145



Mathematics 2023, 11, 2121

In Figure 6, we continue analyzing the FI value with all of the higher order logical
structures; 3SAT has a higher probability of being a satisfied logic. It higher-order logical
rule obtain the correct synaptic weight to achieve an ideal local field, which increases its
accuracy. G3SATRAμ is still in the lead in terms of FI value compared with the other logic
mining methods that are second-order logical structures with very high chances of being
an unsatisfied condition. A successfully selected random attribute obtains more FP values
in the 15 selected datasets. As we can see, the 3SATRA proposed by [25] can still achieve an
optimal value close to that of G3SATRAμ due to both being higher-order logical structures.

7.5. Matthews Correlation Coefficient for Current and G3SATRAμ Logic Mining Models

The MCC result for the chosen logic mining model can be seen in Table 8. G3SATRAμ
displays a variety of linear capabilities. The bold numbers, on the other hand, show that a
given logic mining approach has reached its maximum value. Diff represents the differences
between the chosen existing logic mining method and the suggested logic mining method
(G3SATRAμ). The average value and minimum, maximum, and average ranks of the
Friedman test are shown in Table 8. These MCC values were obtained using Equation (27).

Table 8. MCC value for G3SATRAμ in comparison with state-of-the-art logic mining methods.

Code
G3SATRAμ E2SATRA RA(HORNSAT) L2SATRA A2SATRA 2SATRA P2SATRA 3SATRA

MCC MCC Diff MCC Diff MCC Diff MCC Diff MCC Diff MCC Diff MCC Diff

L1 0.272 0.102↓ 0.170 −0.010↓ 0.282 −0.196↓ 0.468 0.154↓ 0.118 −0.145↓ 0.417 0.076↓ 0.196 0.114↓ 0.158
L2 0.337 −0.018↓ 0.356 −0.016↓ 0.353 0.005↓ 0.332 0.257↓ 0.080 0.074↓ 0.263 0.623↑ −0.286 0.298↓ 0.039
L3 0.267 0.065↓ 0.201 0.022↓ 0.245 −0.078↓ 0.345 −0.004↓ 0.271 0.005↓ 0.262 0.042↓ 0.225 0.189↓ 0.077
L4 0.530 0.045↓ 0.485 0.148↓ 0.382 0.211↓ 0.319 0.611↑ −0.081 0.069↓ 0.461 0.441↓ 0.089 0.214↓ 0.316
L5 - - - - - - - - - - - - - - -
L6 - - - - - - - - - - - - - - -
L7 0.724 −0.060↓ 0.784 −0.144↓ 0.868 0.413↓ 0.310 0.730↑ −0.006 −0.186↓ 0.910 0.535↓ 0.189 0.567↓ 0.157
L8 0.486 0.054↓ 0.432 0.071↓ 0.415 0.146↓ 0.340 0.331↓ 0.155 −0.177↓ 0.662 0.354↓ 0.132 0.062↓ 0.424
L9 0.573 0.461↓ 0.113 −0.051↓ 0.624 0.269↓ 0.304 0.541↓ 0.032 0.523↓ 0.050 0.523↓ 0.050 0.327↓ 0.246
L10 0.624 0.454↓ 0.170 −0.002↓ 0.625 - - 0.269↓ 0.355 0.547↓ 0.077 0.750↓ −0.126 0.546↓ 0.078
L11 0.284 −0.049↓ 0.334 −0.074↓ 0.359 0.057↓ 0.228 0.060↑ 0.225 −0.074↓ 0.359 0.078↓ 0.207 0.090↓ 0.194
L12 0.797 - - −0.054↓ 0.851 - - 0.400↓ 0.397 - - 0.925↑ −0.128 0.186↓ 0.611
L13 0.497 0.290↓ 0.207 −0.116↓ 0.613 - - 0.434↓ 0.062 0.360↓ 0.136 0.467↓ 0.030 0.361↓ 0.136
L14 0.404 - - 0.073↓ 0.330 −0.107↓ 0.510 0.299↓ 0.105 - - 0.180↓ 0.223 0.372↓ 0.032
L15 0.399 - - −0.016↓ 0.415 - - - - - - 0.361↓ 0.038 0.141↓ 0.258
‘+/=/− 13/0/2 13/0/2 15/0/0 14/0/1 12/0/3 15/0/0 10/0/5 15/0/0
Avg 0.476 0.134 −0.013 0.080 0.340 0.100 0.412 0.267
Min 0.267 −0.060 −0.144 −0.196 −0.004 −0.186 0.042 0.062
Max 0.797 0.461 0.148 0.413 0.730 0.547 0.925 0.567
Avg Rank 1.87↑ 5.670 6.130 5.900 3.430 5.800 2.800 4.400

Note: The symbol ↑ indicates that the logic mining method has a higher MCC value, while ↓ indicates a lower
MCC value. The bold number under diff is a comparison value for G3SATRAμ vs. current logic mining methods.

(a) Our proposed logic mining method, the multi-unit G3SATRAμ, managed to obtain
optimal results for MCC, about 10 out of 15, for all datasets. The authors of [51]
mentioned that as the MCC value approaches 0, the values are able to predict which
attributes will be randomly selected. In this aspect, the MCC value analysis assists in
determining the effectiveness of the confusion matrix derived from the induced logic
extracted by G3SATRAμ.

(b) The log-linear analysis proposed by [30] is able to produce the best attribute selection in
A2SATRA and G3SATRAμ to obtain instances of positive outcomes, with MCC = > 0.5 in
this research analysis. As a result, the MCC values of the five datasets in the G3SATRAμ
model are more than 0.5 among the 15 dataset (L4, L7, L9, L10, and L12).

(c) Datasets L5 and L6 obtained values of zero, as the MCC was not registered because
no positive outcome was registered throughout the dataset. This indicates in the
G3SATRAμ model, Ltest

3SAT is not reliable. In some the other logic mining methods,
the false values of zero in logic mining methods E2SATRA, L2SATRA, and 2SATRA
Ltest

3SAT are not reliable in certain datasets.
(d) All datasets with α = 0.05 and df = 7 were subjected to a Friedman rank test. The

MCC p-value is α ≤ 0.05, and
(
χ2 = 51.854

)
. As a result, the null hypothesis that all

logic mining models perform equally well was rejected. The highest average rank
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among the currently used methods is 1.87, for G3SATRAμ. At the same time, notice
that P2SATRA, with an average rank of 2.800, is the method that most closely rivals
G3SATRAμ. As a result, it indicates that all the confusion matrices proposed in this
study statistically support G3SATRAμ’s superiority over those in previous studies.

According to the findings in Figure 7, G3SATRAμ has a greater MCC value than
the other available methods. This model capitalizes on higher-order k-satisfiability logic
as opposed to the model put forth by [26], where only second-order logic was used to
represent the dataset. Throughout this condition, G3SATRAμ has a greater logical capacity
to reflect the dataset’s dimensionality. The proposed log-linear analysis in Equation (20)
can filter a greater number of non-significant attributes using higher values of k, which
results in well-balanced TPs and TNs. For learning in the HNN, G3SATRAμ additionally
obtains more than one LBest

3SAT , preventing the network from becoming overfit with a single
LInduced

3SAT . As a result, the LBest
3SAT in the G3SATRAμ has a greater MCC value, preventing

it from becoming a random classifier. E2SATRA was found to have several drawbacks
E2SATRA uses 2SAT poor capacity in a satisfied logical rule. The lower-order logical
structure retrieves worse CAM than higher-order logic, which can minimize the energy
(PBest = Pinduced). LInduced

3SAT significantly achieves a smaller search space. There is a higher
chance that only one induced logic was discovered during the learning phase, which caused
the MCC value to be close to zero, converging to the random classifier.

 
Figure 7. MCC of logic mining models.

From Figure 8, we can conclude that the Friedman test is a statistical test that does
not rely on specific assumptions about the data, and it is commonly used to compare three
or more related groups or conditions. This test is preferred when the data do not meet
the criteria needed for parametric tests, such as a normal distribution or homogeneity
of variances. In the Friedman test, the highest rank refers to the logic mining method
with the highest median rank across all the logic mining included in the study, which
indicates that it performed the best or had the most favorable outcome compared with all
the other logic mining methods compared. Similarly, the lower ranking is a crucial element
in interpreting the results of the Friedman test as it helps to identify which treatment or
condition performed the worst and suggests that it may require improvement or elimination
in future studies.
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Figure 8. Friedman test results for logic mining models.

According to the results of the test, the G3SATRAμ model achieved the highest av-
erage rank among all the logic mining models that were discussed. This means that the
G3SATRAμ model performed better than the other models. The second highest aver-
age rank among the logic mining models was achieved by the P2SATRA model. The
permutation operator used in the P2SATRA model had a significant impact on its perfor-
mance during the statistical test. Overall, the results of the Friedman test indicate that
the G3SATRAμ model is the best performing logic mining model among those evaluated.
However, it is important to note that the test only evaluated a specific set of models and
may not necessarily generalize to other models or scenarios. In contrast, the RA(HornSAT)
achieved the lowest rank in a Friedman test result. This indicates that it had the lowest me-
dian rank among all the proposed logic mining approaches in the study and performed the
worst or had the least favorable outcome among all the logic mining methods compared.

In summary, the proposed logical structure G3SATRAμ demonstrates superior per-
formance compared with other logic mining methods, according to the technical analysis.
The G3SATRAμ uses a log-linear analysis to select the best attributes, which results in
optimal synaptic weights, leading to higher true positives and true negatives and lower
false positives and false negatives. The different performance metrics such as accuracy,
precision, sensitivity, MCC, and F1 score showed that the proposed method outperforms
the other logical mining methods, except for P2SATRA in sensitivity, which achieved more
true positives. Additionally, the statistical test results ranked the proposed method as the
best among the other methods. The goal of this study was to assess the effectiveness of the
proposed method relative to other logic mining techniques using a range of performance
metrics and statistical tests. This evaluation aimed to determine whether the proposed
method performs better than other methods and, if so, to what degree.

8. Limitation of G3SATRAμ

The aim of logic mining is to extract rules and patterns from data that can be used to
make predictions or to gain insights into the underlying structure of the data. However,
like any other scientific method, logic mining has its limitations. There may be cases where
the data are too noisy or where the patterns are too complex for the method to effectively
identify useful rules. There may also be situations where the method is too computationally
expensive or requires too much data to be practical.
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Therefore, in this study, we aim to explore these limitations in more detail. By identify-
ing and understanding the limitations of logic mining, we can find ways to enhance the
effectiveness of logic mining techniques.

(a) Only focusing the log-linear approach on selecting significant attributes. Firstly, by
removing insignificant attributes from the dataset before translation into higher-order
logical rules, the complexity of the logic mining process can be reduced, which can
lead to a faster and more efficient G3SATRAμ model in the training phase. The
selected attribute that best represents the dataset can improve the overall accuracy
and performance of the logic mining model and can reduce the risk of overfitting,
which can improve the generalizability and applicability of the G3SATRAμ.

(b) Selecting multi-unit optimal 3-satisfiability logical rules is dependent on the selection of
true positive and true negative values. Relying on a single set of values for true positives
and true negatives may not be sufficient in capturing the intricacies of the dataset, thus
resulting in suboptimal solutions. However, using multi-unit optimal logical rules may
lead to a substantial expansion of the search space for the discrete Hopfield neural network,
particularly when dealing with highly complex or noisy datasets.

(c) The multi-unit discrete Hopfield neural network may not always be effective in
learning and deriving the best logic from the dataset. The accuracy and performance
of the network may be affected by the quality and quantity of the data used in the
analysis. Therefore, the use of Wan Abdullah’s method to derive synaptic weights can
be effective for highly complex or noisy datasets. Using a multi-unit neural network,
the amount of induced logic that represents the behavior of the datasets increases.

(d) The proposed permutation operator for 3-satisfiability logic in a discrete Hopfield
neural network enables the identification of the optimal attribute configuration for
each logical clause, which can lead to the generation of more accurate and efficient
induced logic. Additionally, the use of permutation provides flexibility in the iden-
tification of the highest performing induced logic in terms of a confusion matrix,
which can improve the overall accuracy and performance of the model. Moreover, the
ability to identify the highest performing induced logic through permutation enables
the selection of the most relevant and significant attributes, which can lead to more
meaningful and interpretable results.

9. Future Work

In selecting a network for our needs, we opted for DHNN over RBFNN and others
due to the need for an additional optimization layer when adjusting parameters. The
RBFNN requires multiple training phases (no-training, half-training, and full training) to
evaluate relevant parameters such as width and center. Even with the right parameters,
the feedforward RBFNN only creates a single piece of induced logic, which is usually a
simplified linear classifier with no utility. However, this work does not compare DHNN
options, such as the one presented by [48]. Instead, this experiment examines the impact of
attribute selection on logic mining. It is important to note that in the G3SATRAμ method,
the interaction indicated by a log-linear analysis only depends on the integration of the
attributes and the solution. The method is biologically inspired and based on the premise
that the human brain is effective at removing unwanted details when the outcome is visible.

Selecting true positive and true negative values from the performance of the logic
mining and discrete Hopfield neural network involves experimenting with various selection
strategies, such as using different thresholds or weights for each value and evaluating
their impact on the quality of the induced logics and the overall performance of the
network [55,56]. Another idea could be to explore the use of other machine learning
techniques in conjunction with the proposed hybrid logic mining approach, such as deep
learning or reinforcement learning. This could involve investigating how these techniques
can be integrated with the discrete Hopfield neural network to further enhance the accuracy
and efficiency of the logic mining process, particularly when dealing with large and complex
datasets. Finally, other potential studies can apply the proposed hybrid logic mining
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method to specific real-world problems or applications, such as fraud detection or medical
diagnoses. This could involve adapting the approach to the specific requirements and
characteristics of the problem domain and evaluating its performance and effectiveness in
comparison with existing solutions.

10. Conclusions

In this paper, we proposed a new logic mining G3SATRAμ that utilizes several fresh
perspectives. First, we formulated a log-linear approach by selecting significant higher-order
attributes with respect to the final logical outcome. Using this approach, we reduced the
number of insignificant attributes in the datasets. Second, a new objective function that
utilizes both true positives and negatives during the pre-processing phase was proposed. The
new objective function considers negative outcomes, which were not considered in previous
state-of-the-art methods. Third, this paper proposed the first multi-unit DHNN where
each unit learns from individual LBest

3SAT, which leads to diversification of the induced logic.
Fourth, the proposed logic mining in this paper utilizes a permutation operator to ensure the
optimal arrangement of the attribute was used during the learning phase of a DHNN. Finally,
extensive experimentation using various real-life datasets was performed in G3SATRAμ
and was compared with other state-of-the-art logic mining methods. Based on these results,
our proposed G3SATRAμ was observed to outperform the state-of-the-art logic mining
methods in terms of various performance metrics and statistical validation. Ultimately,
this signifies the robustness of the G3SATRAμ in extracting the most optimal logical rule.
As for future work, the proposed G3SATRAμ can be implemented using non-satisfiable
logic such as maximum satisfiability. This study provides a new perspective in extracting
datasets that have negative outcomes in nature. In addition, metaheuristics algorithms such
as reinforcement learning and simulated annealing can be implemented during the learning
phase of a DHNN to ensure only that correct synaptic weights are obtained.
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Abstract: Internet-enabled (IoT) devices are typically small, low-powered devices used for sensing
and computing that enable remote monitoring and control of various environments through the
Internet. Despite their usefulness in achieving a more connected cyber-physical world, these devices
are vulnerable to ransomware attacks due to their limited resources and connectivity. To combat these
threats, machine learning (ML) can be leveraged to identify and prevent ransomware attacks on IoT
devices before they can cause significant damage. In this research paper, we explore the use of ML
techniques to enhance ransomware defense in IoT devices running on the PureOS operating system.
We have developed a ransomware detection framework using machine learning, which combines
the XGBoost and ElasticNet algorithms in a hybrid approach. The design and implementation of
our framework are based on the evaluation of various existing machine learning techniques. Our
approach was tested using a dataset of real-world ransomware attacks on IoT devices and achieved
high accuracy (90%) and low false-positive rates, demonstrating its effectiveness in detecting and
preventing ransomware attacks on IoT devices running PureOS.

Keywords: ransomware detection; machine learning; malware analysis; feature extraction; Internet
of Things (IoT)

MSC: 68M25

1. Introduction

1.1. Background on Ransomware Attacks

The Internet of Things (IoT) is causing a significant transformation in the way people
live and work. The prevalence of internet-connected devices in households is rising, includ-
ing but not limited to smart thermostats, light bulbs, speakers, and virtual assistants, which
can be remotely controlled through mobile devices. IoT devices are used extensively across
various industries, e.g., mining, utilities, agriculture, automotive, discrete manufacturing,
etc., to collect data at various stages of operations to leverage artificial intelligence (AI) and
predictive analytics [1]. Incorporating these sensors enables monitoring and control of a
process or environment in real-time, resulting in faster and more rational decision-making.

Although IoT devices have immense potential, their vulnerability to network attacks
remains a significant concern. Network threats, such as data theft, phishing attempts, spoofing,
and denial of service, can affect IoT devices. These attacks can lead to additional cybersecurity
risks, such as ransomware, which can be incredibly expensive and time-consuming to fix
for enterprises. The number of ransomware attacks has surged in recent years. One notable
incident was the WannaCry ransomware attack in 2017, which affected a large number of
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computers globally, including many IoT devices [2]. Another incident in 2019 targeted a smart
building in Finland, which caused considerable damage [3]. In 2020, a German hospital was
also affected by ransomware that targeted an IoT device, resulting in the shutdown of critical
systems, including emergency services. A report recently published by Sonic Wall highlighted
a 77% increase in malware attacks on IoT devices during the first half of 2022 [4]. According
to the report, ransomware attacks had decreased by 23%, whereas cryptojacking attacks had
increased by 30%, and intrusion attempts had increased by 19%. These numbers point to
the growing threat of ransomware attacks on IoT devices and underscore the need for more
robust security measures to handle such attacks.

1.2. The Need for Effective Defense Mechanisms against Ransomware Attacks

We assert that IoT devices require effective protection measures due to their character-
istics as well as their applications. The following are some of the reasons that support our
assertion:

(a) Due to their compact and low-cost form factors, many devices in the IoT suffer from
processing power and memory constraints. They may not have the resources to
run computer-intensive security programs or communicate at a high bandwidth.
Therefore, they become increasingly susceptible to ransomware anomalies as the
number of linked devices grows.

(b) Because of a lack of robust security measures and standards, many IoT devices are
vulnerable to attacks. This is a real concern, especially for older devices that were not
always built with safety in mind.

(c) Sensitive information, such as medical records, financial records, and personal prefer-
ences, is frequently collected by IoT devices. These sensors’ data could be stolen and
utilized for nefarious purposes if they were hacked.

(d) The hardware, software, and network architecture that make up an IoT system can be
rather complicated. Because of this complexity, proactively spotting and preventing ran-
somware is challenging. Due to heterogeneous operational and functional requirements,
integrating IoT equipment into older, less secure systems is widespread. Therefore, it
could be challenging to protect these systems without causing operational disruptions.

Despite all these challenges, putting security first is essential for the IoT devices to
realize a secure IoT paradigm.

1.3. The Role of Machine Learning in Ransomware Defense

Machine learning (ML) can play an important role in ransomware defense in IoT by
helping to detect and prevent ransomware attacks before they can cause significant damage.
For example, ML algorithms can be trained to recognize patterns in IoT network traffic that
may indicate that a malware attack is potentially underway. This can include detecting
unusual network behavior, such as a sudden surge in traffic or a large number of requests
for a particular type of data. ML models can be trained on the existing attacks data and be
used to predict/identify similar attacks in the future. Several predictive modeling systems
have been developed for malware detection such as:

(a) Random Forest algorithm with an ensemble of decision trees was used to classify
malware samples in [4].

(b) Support Vector Machine (SVM) is a supervised learning algorithm that has been used
for classification and regression analysis [5,6].

(c) In probability theory, Bayes’ theorem is the basis for the Naive Bayes algorithm and
has been used in spam detection to identify malware [6].

(d) Decision trees [7] are another ML technique that has been frequently employed in
combination with other supportive algorithms for malware detection.

(e) Logistic regression [8] is a statistical method used to figure out how likely a binary
outcome is to happen. It has been used successfully in programs that look for malware.

(f) Neural Networks [9] have also been used successfully in malware detection applications.
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Traditionally, researchers use various features to train machine learning models to
identify the signatures or behaviors of malware. These models are then used to create
a framework that could identify and mitigate specific anomalies such as ransomware.
The following are some of the widely used factors that are used to train ML models for
malware-detecting systems:

(a) Unusual or high-volume network traffic [10], as well as traffic from unknown sources,
ports, or protocols, are just some of the indicators that were uncovered by ML models
monitoring network activity.

(b) System calls are used by malware to communicate with the operating system and
were a telltale sign of malicious software [11]. Models trained with ML were very
vigilant on system calls for signs of malicious activity.

(c) Resource use anomalies [12] caused by malware, such as high central processing unit
(CPU) or memory usage, were easily detectable by ML models.

(d) Anomalous activity, such as changes to system settings [13] or user behavior that does
not make sense, might be a telltale sign of malware and was detected using ML models.

(e) The software on IoT devices was analyzed by ML models for the presence of recog-
nized malware signatures or dangerous patterns.

1.4. PureOS

PureOS is an open-source operating system based on the Linux kernel and includes
pre-installed privacy-enhancing tools, such as the Tor Browser and hypertext transfer
protocol secure (HTTPS-Everywhere) and has strong default encryption for user data.
PureOS has a built-in feature. “PureBoot”, that uses a “Heads” firmware payload to enable
a user to boot the system from a trusted source and check the integrity of the system’s
firmware and boot process. PureBoot is a great way to establish an effective measure for
preventing malware installation on a device.

Like any operating system, PureOS is also a target of “unpatched security flaws”,
“misconfigured settings”, “weak authentication”, “social engineering vulnerabilities (e.g.,
fake software updates, etc.)”, and “supply-chain attack (e.g., inserting backdoors or other
malicious code during the manufacturing or distribution process)”. Ultimately, any success-
ful anomalous attempt can trigger an enterprise-wide impact that may reflect the horrific
consequences of ransomware.

The main objective of this paper is to put forward and investigate solutions to miti-
gate the impact of ransomware vulnerabilities on IoT devices that run PureOS [14]. The
following are the main contributions of this work:

i. We investigated 15,000 samples (i.e., ransomware and benign) instances, detailing
hitherto unreported facets of ransomware attacks with an emphasis on shared traits
amongst malware families.

iii. We outlined the design process behind the fundamental components of ransomware
samples and discussed how this knowledge can be leveraged to prevent future intru-
sion. In devastating ransomware cyberattacks of varying degrees of complexity, our
research demonstrated that aberrant control efforts should be reliably monitored.

iii. We proposed methods to counter the widespread threat of dissimilar ransomware
attacks. We have suggested a generic approach to detecting such risks, one that
makes no presumptions about the specific methods through which user records are
maliciously made unavailable.

The rest of the paper is organized as follows. Section 2 is dedicated to presenting a
comprehensive literature review, while Section 3 delves into the intricate details of data
collection, augmentation, balancing, and processing techniques. In Section 4, we present
our approach, while Section 5 expounds upon the practical implementation and rigorous
testing of our proposed ransomware analysis and identification architecture. Ultimately,
the paper culminates in Section 6, where a conclusion is reached.
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2. Literature Review

The NIST 2018 framework [15] proposes the adoption of a Framework Core consisting
of five fundamental functions, i.e., Identify, Protect, Detect, Respond, and Recover, to
structure cybersecurity activities optimally. These elements aid organizations in formu-
lating their cybersecurity risk management strategy by arranging data, supporting risk
management decisions, reducing risks, and enhancing performance through the integration
of previous experiences.

Organizations are mandated by the NIST guidelines to implement targeted strategies
to combat malware effectively. These strategies encompass various aspects, including the
timely identification and characterization of incidents, the swift dissemination of pertinent
information, evaluation of actions that may hinder recovery efforts, reinforcement of
information sharing within network environments, implementation of corrective measures
to prevent a recurrence, monitoring of precursor events or indicators for future incident
detection, and the acquisition of supplementary tools and resources for incident detection,
analysis, and mitigation. By proactively adopting these measures, organizations can
fortify their systems against potential threats and maintain their resilience in the face
of cyber-attacks. From the earliest extensive analyses of ransomware behavior [16,17],
scholars have advanced diverse perspectives and multifarious tools and techniques to
detect ransomware behavior, including but not limited to filesystem activity monitoring
and application programming interface (API) hooking. It is significant to note that while
static analysis, particularly signature-based detection, retains its status as a conventional
method for detecting malware in general, it is not as widely utilized in the context of
ransomware detection. Despite many antivirus tools incorporating ransomware signatures
into their databases, current research primarily accentuates the significance of behavioral
approaches, potentially in response to the ubiquitous adoption of ransomware-as-a-service
(RaaS) and the inclination of ransomware authors to imitate one another, resulting in the
emergence of a profusion of dissimilar and transient variations.

The increasing prevalence of ransomware among attackers has led to a surge in its
popularity within the realm of cybersecurity research. Upadhyaya et al. [18] conducted a
comprehensive analysis of the anatomy and features of ransomware, a type of malicious
software that frequently blocks access to task manager, command prompts, and other
executable files, rendering the infected system unusable. Nevertheless, the present study
focuses exclusively on CTB Locker, a specific type of ransomware, and explores its modus
operandi in terms of infiltration, its process of generating a Bitcoin wallet for each target,
and its payment system facilitated through the Tor network. Meanwhile, certain physicists
have suggested the implementation of quantum cryptography systems that are impervious
to loopholes, which have been compared to illusory mirages. Conversely, others advocate
taking proactive measures such as safeguarding digital assets and maintaining routine
backups in preparation for any future attacks. In Gagneja’s [19] analysis, several methods
are identified by which ransomware infiltrates a system by exploiting security vulnera-
bilities within outdated applications on a victim’s computer. As a consequence of such
an attack, backup files and directories are deliberately removed to obstruct the system’s
restoration process, leading to the eventual encryption of vital system files. To counteract
these malicious activities, it was recommended to provide comprehensive training to per-
sonnel on all matters related to system security, ensuring the timely installation of patches
to address any potential security weaknesses, implementing firewall protection, conducting
regular email scanning, and employing only licensed operating systems as preventative
measures against the possibility of ransomware attacks.

Celdrán and Moon, in their respective works [20,21], present an evaluation of the
impact of various techniques such as hash-coded string extraction, file format analysis, file
fingerprinting, packer detection, and disassembly on the efficacy of static and dynamic
analysis. The primary objective of this analysis was to yield two critical advantages. The
first advantage is the safety that static analysis affords during the evaluation process,
given that there is no need to execute the malware. Secondly, the method provides more
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profound insights into the execution pathways of malware, enabling a more comprehensive
understanding of its operations. Furthermore, the research illustrated that in the realm
of binary analysis, two primary methodologies can be employed for malware analysis:
static analysis and dynamic analysis. Static analysis involves scrutinizing the binary
without execution as a preliminary step. This approach does not necessarily necessitate the
utilization of a virtual environment and can be challenging to utilize with packed binaries
unless they are unpacked manually. However, static analysis is capable of rendering an
extensive and all-encompassing view of the code coverage with a low false positive rate.
Conversely, dynamic analysis requires the binary to be executed first before being analyzed.
To start the analysis process, a virtual environment must be configured, and packed binaries
are automatically unpacked. While dynamic analysis provides insight into the path of
execution of running modules, its false positive rate is notably high.

Dargahi et al. [22] formulated a systematic classification of the distinguishing attributes
of ransomware from the perspective of cybercriminals using the Cyber Kill Chain (CKC)
model. This work explores the interconnectedness between various ransomware charac-
teristics and the different stages of the Cyber Kill Chain (CKC). It focuses on how factors
such as payload delivery and access prevention play a role throughout the CKC, starting
from the weaponization phase and progressing until the desired objectives are achieved.
Although Dargahi et al.’s approach is innovative, its scope was narrow. The authors solely
analyzed crypto-ransomware that targets desktop systems and its malevolent attributes,
such as the potentiality of botnet deployments. The authors did not assess the efficacy
or feasibility of alternative strategies nor explore mobile or IoT platforms, which can be
susceptible to ransomware attacks.

Furthermore, it is essential to note that the taxonomy proposed by Dargahi et al. [22]
is only one of several approaches to categorizing ransomware. Other researchers have
proposed alternative taxonomies that focus on different aspects of ransomware behavior,
such as the analysis of network traffic or the identification of ransomware families based on
code similarities. While Dargahi et al.’s method was valuable in identifying the objectives
and motives of ransomware attackers, it did not provide insights into the best practices for
preventing or mitigating ransomware attacks.

Table 1 provides a comprehensive overview of different ransomware detection tech-
niques, presented in existing works, and their respective features, advantages, and disad-
vantages. Signature-based techniques are well-established and effective against known
ransomware variants, but can be ineffective against new or polymorphic variants. Heuristic-
based techniques can detect new or unknown variants, but may have a higher false-negative
rate and limited ability to differentiate between benign and malicious activity. Machine-
learning-based techniques offer the ability to learn and adapt to new variants, but require
significant amounts of representative data and may produce false positives. Hybrid ap-
proaches provide a combination of signature and machine-learning-based techniques
for improved accuracy, but can be resource-intensive. It’s important to note that the ef-
fectiveness of each technique may vary depending on the specific implementation, the
ransomware being targeted, and the context in which the detection is taking place.

Overall, we have reviewed 298 research papers that were searched with the keyword
“Ransomware” on Google Scholar that were published from the year 2010 to April 2023,
and we have found a few issues that have not been properly covered in existing research.
The first issue we encountered pertains to the widespread and interchangeable usage of the
term “ransomware” and “crypto-ransomware”, which may indicate a lack of consensus
among researchers as to whether these two terms are technically equivalent or whether
non-crypto-ransomware can be classified as ransomware at all.

Another issue we identified is the lack of a universal standard for defining benign or
malicious (ransomware-like) behaviors. Ransomware is a type of malware that is primarily
designed to extort ransom payments from users, and while it is generally agreed that
different variants of ransomware share two common features, namely, blocking user access
to resources (often files) and attempting to extort ransom payments, researchers have
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divergent views on which additional features or feature combinations are indicative of
malicious behavior.

Table 1. Comparison of ransomware detection techniques and their features, advantages, and isadvantages.

Detection Technique Features Advantages Disadvantages

Signature-based Hash values, file names,
behavior patterns

High accuracy, low false
positive rate

Inability to detect new, unknown
ransomware variants, ineffective
against polymorphic ransomware

Heuristic-based Behavior patterns, file access
patterns, network traffic

Ability to detect new,
unknown ransomware
variants, low false positive
rate, effective against
polymorphic ransomware

Higher false negative rate, limited
ability to differentiate between
benign and malicious activity

Machine learning-based
Dynamic behavior analysis,
system calls, network traffic,
entropy, header information

Ability to detect new,
unknown ransomware
variants, ability to
differentiate between benign
and malicious activity, high
accuracy, effective against
polymorphic ransomware

Requires large, representative
datasets for training, may be
susceptible to adversarial attacks,
may produce false positives
due to benign software with
similar behavior

Hybrid approach

Combination of
signature-based and
machine-learning-based
techniques

Improved accuracy and ability
to detect new, unknown
ransomware variants,
effective against polymorphic
ransomware

May be more complex and
resource-intensive, may
still miss new, unknown
ransomware variants

Furthermore, we observed a lack of uniform usage of terminologies in the context of
mitigation strategies, which could potentially lead to confusion and misunderstandings.
Finally, we found that there is no universally accepted standard for evaluating and compar-
ing the effectiveness of different strategies, further underscoring the need for additional
research in this area.

3. Data Collection and Preparation

3.1. Data Collection and Processing Techniques

In this section, we discuss our procedure for selecting ransomware samples, which played
a vital role in our study’s malware dataset collection. To assemble the ransomware datasets, we
utilized the widely used malware analyzer Anubis and ESET NOD32 [23], as well as a plethora
of publicly available malware archives and anecdotal research in online security forums.
We compiled and analyzed a dataset comprising more than 15,000 ransomware samples.
Our analysis aimed to uncover novel insights into previously undocumented aspects of
ransomware attacks and identify commonalities among different malware families. To ensure
the validity and precision of the dataset, we conducted a rigorous examination of multiple
factors. These included assessing the reliability and diversity of the data sources, evaluating
the size and diversity of the dataset, verifying the accuracy of pre-labeled ransomware
classifications, performing meticulous data preprocessing and normalization, ensuring the
integrity of the data, and considering the timeframe during which the data were collected. The
validation process involved meticulous checks for inconsistencies, errors, and biases within
the dataset. Furthermore, we compared our dataset with other publicly available datasets or
ground truth data to further validate its reliability.

We have adopted the dynamic analysis technique that involved running ransomware
in a controlled environment such as a sandbox and virtual machine to observe its behavior
and capture relevant data such as system calls, network traffic, and registry modifications.
The dynamic analysis helped us understand the dissimilar characteristics of the ransomware
dataset. Ransomware characteristics include, but are not limited to, metadata, behavior
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logs, network traffic, malware landscape, representativeness (i.e., ransomware families,
types, and variants), transferability of threat models, imbalance (i.e., data noise and errors),
and temporality (i.e., time-period and frequency of malware sample collection).

3.2. Preprocessing and Feature Engineering

For data preprocessing and feature engineering of ransomware, we have removed
duplicate and irrelevant data, handled missing values, and scaled the ransomware log data
to ensure that features are comparable. Effective data preprocessing and feature engineering
improve the accuracy of ransomware detection and facilitate the development of a robust
security framework. Feature engineering involved the examination of file size, file type,
file entropy, API calls, code obfuscation, code analysis, sandbox analysis, and evaluation of
digital signatures if files are digitally signed by the creator for feature detection of malware.

3.3. Data Augmentation and Balancing Techniques

For ransomware data augmentation, we applied two techniques: (a) random noise
(i.e., adding random noise (e.g., irrelevant features, redundant features, missing codes, and
significantly different data points) to the malware samples to make them more robust to
variations in the data), and (b) random cropping (i.e., cropping the malware samples to
a smaller size). The purpose of data augmentation for ransomware was to increase the
size and variability of the malware dataset used to train the applied machine learning
model. By generating new samples from the existing dataset through data augmentation
techniques, we were able to create a more diverse and representative training set, which
led to the proposed method to improve model performance and generalization.

Consequently, data augmentation helped to address the problem of imbalanced datasets,
where the number of samples in each class was not equal. We employed the Synthetic Minority
Over-sampling Technique (SMOTE) to balance the dataset, by generating synthetic samples
that increased the number of minority class samples. This helped us tackle the problem of
class imbalance, where there were significantly fewer samples in the minority class compared
to the benign class. SMOTE also prevented overfitting, as it increased the size of the minority
class, leading to a better generalization of the model to new data. Consequently, SMOTE was
instrumental in accurately classifying new malware samples.

Table 2 exhibits the pseudocode that outlines how Synthetic Minority Over-sampling
Technique (SMOTE) can be applied to identify ransomware in a dataset.

Table 2. Assessing the feasibility of SMOTE for ransomware detection in a dataset.

SMOTE Applicability to Identify Ransomware in a Dataset

(1) Load the ransomware dataset.
(2) Split the dataset into training and testing sets.
(3) Determine the minority class (i.e., ransomware samples).
(4) Apply SMOTE to the training set to generate synthetic samples for the minority class:

(a) Determine the number of synthetic samples to generate based on the desired ratio of minority to majority samples.
(b) Select a random minority sample.
(c) Identify its k nearest neighbors.
(d) Randomly select one of the k nearest neighbors and use it to create a new synthetic sample by interpolating between

the selected sample and its neighbor.
(e) Repeat steps b–d until the desired number of synthetic samples is generated.

(5) Combine the original training set with the generated synthetic samples to create a new, balanced training set.
(6) Train a machine learning model on the new training set.
(7) Evaluate the model’s performance on the testing set, using metrics such as precision, recall, and F1-score.

If the model’s performance is satisfactory, use it to predict whether new samples are ransomware or not.
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3.4. Focused Ransomware Variants

To evaluate the effectiveness of our proposed ransomware detection framework in
a real-world scenario, we needed to test it on actual ransomware samples. However, the
ransomware variants we had access to were not compatible with the PureOS operating
environment. Therefore, we re-implemented the ransomware variants to make them
suitable for the PureOS environment. This process involved analyzing the following
ransomware code and modifying it to ensure that it could be executed and studied within
the PureOS environment.

i. The Kryptik [24] ransomware is a type of malware that is often disseminated through
email phishing campaigns and exploit kits. This advanced form of ransomware uses
encryption algorithms to lock down the victim’s files, rendering them inaccessible.
Kryptik ransomware was re-designed to evade detection by antivirus software (i.e.,
Virus Chaser [25]) and uses command-and-control (C&C) servers to obtain instruc-
tions from the attacker. It employs encryption algorithms (i.e., RSA-2048 and AES-256)
to encrypt the victim’s files, rendering them inaccessible. It utilizes obfuscation tech-
niques to conceal its activities. The impact of Kryptik ransomware can be catastrophic,
resulting in critical data loss and disrupting business operations.

ii. We have re-implemented the Cloud Snooper [26] ransomware to target cloud-based
systems and services (i.e., Tonido cloud platform [27] through the Nautilus file manager
plugin). It exploited the weaknesses in cloud infrastructure to gain unauthorized access
to the victim’s network. Some of the notable features of Cloud Snooper ransomware
include its ability to bypass firewalls and intrusion detection systems and encrypt files.
It operated covertly to evade detection and caused severe damage to the victim (i.e.,
sandbox experimental setup. The impact of Cloud Snooper ransomware was particularly
devastating, as it resulted in the loss of sensitive information and disruption of normal
OS operations (i.e., encrypting or locking files, modifying system settings, and interfering
with the normal functioning of applications and system processes).

iii. The WannaCry [28] ransomware was first identified in May 2017. It spread rapidly,
infecting over 230,000 computers in over 150 countries within just a few days. Originally,
the ransomware used a vulnerability in Microsoft Windows known as EternalBlue to
spread from one computer to another, making it particularly dangerous. Key features of
WannaCry were as follows:

a. It encrypts files on the infected system using the AES encryption algorithm,
making them inaccessible to the user.

b. It can spread rapidly across a network, infecting other vulnerable computers
without any user interaction.

c. A “kill switch” was built into the code of WannaCry, allowing researchers to halt
the spread of the ransomware by registering a domain name that the malware
checked before encrypting files.

WannaCry was altered and reprogrammed to accommodate the PureOS functional re-
quirements that were originally implemented to specifically targeted systems running
Microsoft Windows operating systems, with a particular focus on older, unsupported
versions such as Windows Server 2003 and Server 2022. The ransomware payload
was delivered as a PureOS executable file disguised as a software update. Once the
file was executed, it installed ransomware on the system and began encrypting files.
We have used AES encryption to encrypt files on the infected system, with a unique
key generated for each system. The re-implemented ransomware also encrypted the
key itself using RSA encryption, making it intolerable to decrypt the files without the
private key presumably held by the attackers.

iv. LockBit [29] is a file-encrypting ransomware that uses a combination of RSA and
AES encryption algorithms to encrypt the victim’s files. Once the files are encrypted,
the ransomware displays a ransom note, demanding payment in exchange for the
decryption key. We re-designed the malware by granting it the ability to spread across
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a network and infect multiple devices connected to it. Revised implementation was
equipped with a timer feature that deletes files after a set amount of time, which means
that the anomaly must be counter-measured to diminish the impact. This ransomware
was keen to target critical files, such as documents, images, and databases.

v. Re-programmed Black Basta [30] ransomware used AES-256 encryption to encrypt
files on the victim’s PureOS mounted computer (i.e., including desktops, laptops, and
servers). It appended a unique extension to encrypted files, making them unusable
until they are decrypted. The encryption process took several minutes or in some
iterations even hours, depending on the size of the files.

vi. Revised Hive [31] ransomware used a combination of RSA and AES encryption
algorithms to lock the victim’s files (i.e., experimental setup). It entered the system
through an exploit kit and could spread to other connected devices on the sandbox
network. The ransomware could erase shadow copies and backup files to obstruct the
victim’s efforts to recover their encrypted data.

vii. ALPHV, BlackCat, and Noberus [31] are three distinct ransomware families with
their own unique features, system and network targets, technical details, and impact.
Common features included its use of double extortion tactics, which involve not
only encrypting a victim’s files (i.e., AES-256, and RSA), but also stealing sensitive
data. We re-implemented these ransomware variants by using multiple techniques
to evade detection, including code obfuscation, anti-debugging techniques, and pro-
cess injection. During certain experimental iterations, we appended the “.noberus”
extension to encrypted files. We have observed that ransomware typically appends a
unique extension to encrypted files as a way to differentiate them from their original
unencrypted state.

viii. PureOS-focused AvosLocker [32] used strong encryption algorithms (such as AES-256
and RSA) to encrypt files on a victim’s computer or network. AvosLocker targeted
the honeypot computer and network that was vulnerable to its distribution method
(such as outdated Remote Desktop Protocol (RDP)) and contains vulnerabilities that
can be exploited. In the revised implementation, AvosLocker generated a unique
encryption key for each infected computer, which was stored on the attacker’s (i.e.,
anomaly) server. The impact of this ransomware was severe, as it caused the victim to
lose access to important files and data.

ix. The Conti [33] ransomware is a highly advanced and complex malware that uses a
sophisticated encryption algorithm to encrypt files on a victim’s computer system. It
can spread through a network, infecting other connected systems. The vulnerabilities
that Conti exploits in PureOS include exploiting weaknesses in the RDP protocol
to gain access to internet-connected systems, exploiting vulnerabilities in VPN and
remote access software such as Pulse Secure VPN, Fortinet VPN, and Citrix ADC, and
exploiting vulnerabilities in web servers such as Apache and Nginx to gain unautho-
rized access to victims’ systems. To achieve our goal, we have ensured that Conti
ransomware uses a combination of symmetric and asymmetric encryption techniques
to encrypt the files of its victims (i.e., random 256-bit ChaCha symmetric key for each
file’s encryption and an asymmetric encryption algorithm RSA cryptography for the
encryption of the ChaCha key). Furthermore, it communicated with its C&C server
using an encrypted channel, making it difficult to track its activities.

x. We implemented REvil [34] ransomware more powerfully by using stronger encryp-
tion algorithms such as RSA-2048 and AES-256. This allowed the ransomware to
encrypt not only local files but also files on network shares and mapped drives. As
a result, any PureOS-based computing system, including the Librem Server, work-
stations (such as the Librem 14 and Librem Mini), and cellular devices (such as the
Librem 5) could potentially be targeted [35]. After infecting a victim’s computer, the
ransomware was designed to remain there by creating a scheduled task or modifying
the registry. Furthermore, we made the ransomware even more malicious by adding
the ability to exfiltrate sensitive data before encrypting it.
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xi. We implemented DarkSide [35] ransomware by enforcing strong encryption algo-
rithms, such as RSA and AES, to encrypt files on a victim’s computer and prevent
them from being accessed without meeting the adversary criteria. Various obfuscation
techniques (i.e., (a) code encryption and obfuscation, (b) applying the polymorphic
code, (c) applying the dynamically linked to system libraries, (d) malware code com-
pression, and (e) equipping it with an anti-debugging capacity to detect when it is
being analyzed or debugged and takes actions to evade or disable the analysis) were
introduced to evade detection.

xii. The Babuk [36] ransomware was re-designed to use a combination of symmetric
and asymmetric encryption algorithms to encrypt data on the target system. It used
a per-file random 256-bit ChaCha symmetric key for each file’s encryption, and an
asymmetric encryption algorithm such as RSA cryptography for the encryption of the
ChaCha key. The asymmetric encryption algorithm is used to securely transmit the
ChaCha key to the ransomware operator, allowing them to decrypt the files. Babuk’s
feature allowed it to steal data from infected systems. These data were then encrypted
and sent to the ransomware operator (i.e., adversarial process). It was also capable
of terminating running processes, deleting shadow volume copies, and disabling the
PureOS System Restore feature.

xiii. To satisfy the experimental requirement, we redesigned the Egregor [37] ransomware
that enabled it to use a mix of symmetric and asymmetric encryption algorithms to
encrypt files on the targeted computer. The process involved generating a unique
256-bit ChaCha symmetric key for each file and using the RSA algorithm to encrypt
the ChaCha key for secure transmission to the attacker (i.e., automated process), which
could then decrypt the files. Moreover, the ransomware had various capabilities such
as appending a random extension to the encrypted files, exploiting vulnerabilities in
RDP connections and exploit kits, stealing data from infected computers, terminat-
ing processes, removing shadow volume copies, and disabling the PureOS System
Restore function. Upon infecting the computer, the ransomware compressed the
encrypted files into a single archive using an encryption and compression technique
(i.e., “Lossless” and “Huffman coding” [35] compression).

xiv. The updated/re-designed version of the Avaddon [37] ransomware had numerous
functions, such as employing both symmetric and asymmetric encryption methods to
encrypt files. It used the RSA algorithm to encrypt files and used an exclusive AES-256
key for each file, making it challenging to decrypt without the key. The ransomware
also added a distinct extension to each encrypted file, making it hard to recognize and
retrieve the files. Moreover, the malware was equipped with an extended capacity to
extract sensitive data from the infected system and forward it to the attacker node (i.e.,
an automated process). It could terminate ongoing processes and deactivate various
operating system security features, including PureBoot [38].

4. Applied Machine Learning Models for Ransomware Defense

4.1. Overview of Different Machine Learning Models

Detecting malware using machine learning is a complex undertaking that has been a
focus of research for many years. With the increasing sophistication of ransomware, there
is a constant race between security researchers and malware creators to stay ahead of each
other. This means that research in this field will always remain important and relevant.
Even if a new machine learning method is developed that is capable of identifying all types
of ransomwares, it is likely that malware creators will eventually develop new techniques
to evade detection. As a result, the pursuit of improving malware detection methods is an
ongoing process that requires continuous innovation and adaptation to keep up with the
evolving threat landscape.

Our study aimed to identify the most effective ML approach(es) for detecting ransomware
and benign executable files. To achieve this, we have adopted a three-step methodology.
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Firstly, we conducted a thorough review of state-of-the-art machine learning methods
(random forest, support vector machine (SVM), decision tree, naïve Bayes, AdaBoost, etc.)
and examined the datasets and data collection methods used in recent research to identify
the most promising techniques.

Secondly, we re-implemented and trained the three most effective methods identified
in the first step using our collected dataset. By re-implementing and training these methods,
we aimed to assess their performance on our specific dataset and compare their accuracy in
detecting malicious software.

Ultimately, by using real-world samples, we evaluated the effectiveness of each
method in identifying malware and determining which approach offers the best per-
formance for detecting malicious software. Overall, our research endeavored to contribute
to the development of a more accurate and reliable ransomware detection method that can
enhance cybersecurity and protect against evolving threats.

To accomplish our goal of achieving the desired impact, we performed a comparative
analysis of a hybrid-supervised learning approach in three different scenarios. These
scenarios were designed to represent different levels of stringency when it came to the
samples considered.

(a) The first scenario was very strict, and only a very well-characterized set of samples
were included.

(b) The second scenario was less strict and included a broader range of well-studied samples.
(c) The third scenario was the most realistic, representing the actual conditions faced by

vendors of ransomware detection solutions.

By designing these three scenarios, we gained insight into how the use of a smaller,
more distinct dataset compared to a larger, more varied one can impact the proposed
framework. This analysis helped us understand the effects of the framework in a more
nuanced way, leading to a better accomplishment of our goal. Overall, our comparative
analysis and experimental outcome provided valuable information that helped us make
more informed decisions when it comes to implementing supervised learning approaches
in real-world scenarios.

4.2. Selection of Appropriate Machine Learning Models

(a) We wanted to find the best machine-learning model for detecting ransomware. There-
fore, we created a set of criteria for our search. The criteria are not exhaustive but
include the following: the selected model should have high accuracy in detecting
ransomware and be able to minimize false positives and false negatives.

(b) The model should be scalable and perform well even when dealing with small or
large datasets.

(c) It should be able to generalize well to new and unseen ransomware samples.
(d) The model should be robust and able to perform well in the presence of noise, adver-

sarial attacks, and other anomalies.
(e) The model should provide clear and interpretable explanations for its decisions and

predictions.
(f) It should be efficient in terms of computation time, memory usage, and power consumption.
(g) The model should be flexible and easily adaptable to changing ransomware attack

patterns with the ability to incorporate new data.

We have explored the relevance of using regression models for detecting ransomware,
as they possess the capability to estimate the likelihood of a file or behavior being malicious.
This is important, especially because conventional techniques such as signature-based
detection may not be effective in detecting new or unknown malware variants. The
regression model (XGBoost (i.e., useful for dealing with large datasets and is known for
its speed and scalability) [39], and ElasticNet (i.e., to achieve a balance between sparsity
and accuracy)) [40] was trained on a dataset of labeled instances, where each example
was a file or behavior that was either “malicious” or “benign”. By analyzing the features
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of these instances, the model could then predict the probability of a new file or behavior
being malicious. Some of the initial features that were leveraged for ransomware detection
included file size and entropy, the presence of specific strings or signatures, API calls and
their arguments, and network traffic patterns. It is worth noting that both XGbBoost and
ElasticNet regression have been proven to be useful in machine learning applications where
the input data have many features and some of them are correlated. By identifying the key
features that are essential for predicting the target outcome, the process of feature selection
enhances the practicality of the application.

Referring to Figure 1, in the pseudocode provided above (Table 3), the functions col-

lect_data() and preprocess_data(data) serve the purposes of data collection and data prepro-
cessing, respectively. The function split_data(preprocessed_data, test_size = 0.2) splits the
preprocessed data into training and testing sets, perform_elasticnet(train_data) identifies the
most important features for predicting ransomware using ElasticNet, and select_features(data,

important_features) selects only the important features from the data. Similarly, the function
train_xgboost(train_data_selected) trains the XGBoost model on the selected features and
validate_model(model, test_data_selected) validates the model’s performance on the testing
data. We used tune_hyperparameters(model, train_data_selected) to fine-tune the model’s
hyperparameters and evaluate_model_performance(tuned_model_performance) to obtain
the performance evaluation of the tuned model. Finally, deploy_model(tuned_model) is
used to deploy the tuned model for use in a production environment.

Table 3. Detecting ransomware using XGBoost and ElasticNet.

Pseudocode for Detecting Ransomware Using XGBoost and ElasticNet

(1) Collect and preprocess the data:

(a) data = collect_data()
(b) preprocessed_data = preprocess_data(data)

(2) Split the data:

(a) train_data, test_data = split_data(preprocessed_data, test_size = 0.2)

(3) Feature selection:

(a) important_features = perform_elasticnet(train_data)
(b) train_data_selected = select_features(train_data, important_features)
(c) test_data_selected = select_features(test_data, important_features)

(4) Train the model:

(a) model = train_hybrid_xgboost_elasticnet(train_data_selected)
(b) model_performance = validate_model(model, test_data_selected)

(5) Tune the model:

(a) tuned_model = tune_hyperparameters(model, train_data_selected)
(b) tuned_model_performance = validate_model(tuned_model, test_data_selected)

(6) Evaluate the model:

(a) evaluate_model_performance(tuned_model_performance)

(7) Deploy the model:

(a) deploy_model(tuned_model)

Thus, detecting ransomware using XGBoost involved training a machine learning
model using features that helped to distinguish between normal and ransomware behavior.
Data related to “file access patterns” was formulated as:

XGBoost(Ransomware) = w1 ∗ num_of _files_created + w2 ∗ num_of _files_deleted
+w3 ∗ num_of _files_renamed + w4 ∗ num_of _files_read + b

(1)

where w1, w2, w3, and w4 are the weights assigned to the number of files created, deleted,
renamed, and read, respectively, and “b” is the bias term.
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Data related to “network traffic patterns” was formulated as:

XGBoost(Ransomware) = w1 ∗ num_of _outgoing_connections + w2∗
num_of _incoming_connections + w3 ∗ num_of _data_packets_sent + w4∗

num_of _data_packets_received + b
(2)

where w1, w2, w3, and w4 are the weights assigned to the number of outgoing connections,
incoming connections, data packets sent, and data packets received, respectively, and b is
the bias term. Data related to “system call patterns” was formulated as:

XGBoost(Ransomware) = w1 ∗ num_of _system_calls + w2∗
num_of _suspicious_system_calls + b

(3)

where w1 and w2 are the weights assigned to the total number of system calls and suspicious
system calls, respectively, and b is the bias term.

 

Figure 1. Flow diagram of ransomware detection criteria using XGBoost and ElasticNet.
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The experiment was revised with a unique dataset using ElasticNet methodology by
following conventional steps (i.e., collection of an indicative dataset, processing the data for
feature normalization, splitting data into training and testing sets, training the ML model,
and testing the model using a metric such as accuracy, precision, or recall.

ElasticNet loss function was evaluated as:

min
(

1/
(

2 ∗ nsamples

)
||y − Xw||22 + alpha ∗ l4ratio ∗ ||w|+ 0.5 ∗ alpha ∗ (1 − l4ratio) ∗ ||w||22

)
(4)

where

i. “n_samples” is the number of samples in the dataset.
ii. “y” is the target variable in the dataset.
iii. “X” is the matrix of features in the dataset.
iv. “W” is the vector of coefficients that are learned by the model.
v. “14_ratio” is a hyperparameter that controls the balance between purportedly L1 and

L2 regularization. As asserted, the L1 regularization promotes sparsity in the learned
coefficients, while L2 regularization promotes small, non-zero coefficients.

vi. “Alpha” is a hyperparameter that controls the strength of the regularization. Higher
values of alpha lead to more regularization.

In this scenario, the ElasticNet loss function is referred to as a combination of L1 and
L2 regularization. The L1 regularization term is given by alpha ∗ l4ratio∗||w||1 , which is the
sum of the absolute values of the coefficients multiplied by a scaling factor alpha ∗ l4_ratio.
The L2 regularization term is given by 0.5 ∗ alpha ∗ (1 − l4ratio)∗

∣∣|w||22 , which is the sum of
the squares of the coefficients multiplied by a scaling factor 0.5 ∗ alpha ∗ (1 − l4ratio). The
L1 scaling factors are designed to balance the strength of the two regularization terms.

4.3. Feature Selection and Model Tuning

To develop effective ransomware detection methods, it was necessary to extract rel-
evant features from the ransomware. This process involved closely analyzing the ran-
somware’s code and behavior to identify specific characteristics or patterns that can dis-
tinguish it from other types of malwares. Reimplemented ransomware possesses distinct
features that are useful in identifying and detecting them. These features are unique to
ransomware and can differentiate it from other types of malwares. Some of the essential
ransomware features include, but are not limited to:

i. Atypical network activity that is not typical for the system.
ii. Alterations to file extensions are not typical for the system.
iii. Suspicious processes with names that are random or located in unusual directories.
iv. Changes to the registry.
v. Unusual CPU or disk usage that is not typical for the system.
vi. Pop-up messages or warnings.
vii. Atypical system crashes or errors.
viii. Encryption key generation by malware.
ix. Usage of non-standard encryption algorithms.
x. Unusual behavior, such as modification of file timestamps or the creation of decoy

files to deceive the victim.
xi. Atypical file access patterns that are not typical for the system.
xii. Large numbers of file deletions.
xiii. Changes to file permissions that are not typical for the system.
xiv. Random file names on large file datasets, all at once.
xv. Large numbers of failed login attempts.
xvi. Unusual file sizes that are not typical for the system.

Once the relevant features were extracted, they were used to train the machine learning
model for detecting and classifying ransomware in real-world scenarios. This approach
allowed for more effective ransomware detection, as it leverages the unique characteristics
of ransomware to identify and mitigate threats. Furthermore, by continually updating
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the feature extraction process, the detection model was adapted to the evolving threat
landscape of ransomware attacks.

4.4. Evaluation of Model Performance

To evaluate the performance of our model for detecting ransomware using XGBoost and
ElasticNet, we used well-known ML model evaluation metrics, i.e., accuracy, precision, recall,
and F1-score. The followings are the main steps performed for the performance evaluation:

1. Split the data into training and testing sets.
2. Perform feature selection using ElasticNet to identify the most important features for

predicting ransomware.
3. Train an XGBoost model on the selected features using the training set.
4. Predict the labels of the test set using the trained model.
5. Evaluate the performance of the model.

Table 4 depicts the model code in which X and y are the features and labels of the
data, respectively. train_test_split() was used to split the data into training and testing sets.
perform_elasticnet() identifies the important features using ElasticNet. select_features()

selects the important features from the data. train_xgboost() trains the XGBoost model on
the selected features. predict() predicts the labels of the test set. Ultimately, the evaluation
metrics are computed using the appropriate functions from scikit-learn (accuracy_score(),
precision_score(), recall_score(). It is worth highlighting that the importance of employing
parameters test_size and random_state is as follows:

i. The test_size parameter specifies the proportion of the data that will be used for testing,
while the remaining data are used for training. For example, a test_size of 0.2 means that
20% of the data will be used for testing, and 80% will be used for training.

ii. The random_state parameter is used to set the seed for the random number generator,
which ensures that the results are reproducible. This is important because the random
sampling of data for training and testing can affect the performance metrics of the
model. By setting the random_state parameter to a specific value, the same random
sampling will occur every time the code is run, ensuring that the results are consistent
and reproducible.

Table 4. Algorithmic outline for assessing model performance.

Pseudocode for Evaluating the Performance of the Model

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)

# Perform feature selection using ElasticNet
important_features = perform_elasticnet(X_train, y_train)

# Select the important features
X_train_selected = select_features(X_train, important_features)
X_test_selected = select_features(X_test, important_features)

# Train an XGBoost model on the selected features
model = train_xgboost(X_train_selected, y_train)

# Predict the labels of the test set
y_pred = model.predict(X_test_selected)

# Compute the evaluation metrics
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
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To compute the accuracy, precision, recall, and F1-score for detecting ransomware
using XGBoost and ElasticNet, it was necessary to obtain a set of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) values for the proposed model.
These values were obtained by comparing the predictions made by the XGBoost and
ElasticNet models to the actual labels of the data.

Once the model had the TP, TN, FP, and FN values, it calculated the following metrics:

Accuracy = (TP + TN)/(TP + TN + FP + FN). : Theproportionof correctly
classifiedinstancesamonginstances.

(5)

Precision = TP/(TP + FP). : Theproportionof correctlyidentifiedpositiveinstances
amongallpositiveinstances.

(6)

Recall = TP/(TP + FP). : Theproportionof correctlyidentifiedpositiveinstances
amongallactualpositiveinstances.

(7)

F1-score = 2 ∗ (Precision ∗ Recall)/(Precision + Recall). : Theharmonicmeans
of precisionandrecall, whichgivesabalancedmeasureof bothmetrics.

(8)

Table 5 presents the performance of the ransomware detection model in accurately
identifying distinct types of ransomware. The table also shows the model’s ability to
minimize false positives and false negatives. False positives refer to cases when the model
indicates that a system or file has ransomware, when in fact it does not, while false negatives
occur when the model fails to detect the presence of ransomware that is there. By providing
this information, the dataset enabled us to assess the model’s ability to accurately identify
diverse types of ransomwares. Furthermore, the dataset includes key performance metrics
such as Accuracy, Precision, Recall, and F-Score, which were frequently employed to gauge
the effectiveness of the model. These metrics enabled us to compare the effectiveness of
various ransomware detection variables in terms of their accuracy in identifying different
types of ransomware while minimizing the number of false positives and false negatives.

Table 5. Testing the proposed method on a limited dataset of ransomware anomalies to determine its
average performance.

Ransomware False/Positive False/Negative Accuracy Precision Recall F-Score

Kryptik 3.21 1.95 85 0.823 0.853 0.869

Cloud Snooper 1.67 2.84 92 0.882 0.830 0.863

WannaCry 0.95 2.18 81 0.854 0.818 0.861

LockBit 3.53 3.34 88 0.801 0.846 0.832

Black Basta 2.47 1.17 84 0.888 0.839 0.854

Revised Hive 1.92 2.53 89 0.820 0.817 0.829

ALPHV/BlackCat/Noberus 2.99 2.28 95 0.847 0.856 0.844

AvosLocker 1.42 1.11 83 0.897 0.824 0.819

Conti 3.76 3.89 87 0.876 0.811 0.876

REvil 1.08 3.48 80 0.815 0.857 0.877

DarkSide 2.27 1.73 91 0.809 0.814 0.816

Babuk 0.85 3.29 94 0.865 0.847 0.823

Egregor 3.94 3.747 82 0.839 0.819 0.881

Avaddon 2.04 1.09 90 0.896 0.862 0.858

168



Mathematics 2023, 11, 2481

The effectiveness of our feature selection criteria was evaluated by comparing infor-
mation gain and chi-square methods using the Naïve Bayes classifier. The feature sets were
created using 28, 56, 84, 122, and 140 features. Table 6 presents the similarities between
the two approaches and their classification performance using four metrics: True Positive,
False Positive, Precision, and F-Score. The Bayesian predictor with attributes selected via
information gain and chi-square techniques was used to generate the results of the detection
process. The results indicated a positive correlation between the number of features used
and anomaly detection in both methods, suggesting that accuracy improved when the
features were optimized.

Table 6. The level of accuracy achieved by the hybrid “XGBoost and ElasticNet” method in detecting
a specific ransomware variant.

Feature Optimization Applied Feature Count TP Rate (%) FP Rate Precision F-Score

Information Gain

140 82.96 2.74 0.928 0.844

112 86.02 2.12 0.867 0.804

84 81.75 3.14 0.923 0.823

56 85.14 2.58 0.849 0.862

28 83 1.98 0.882 0.818

Chi-Square

140 91.94 2.54 0.798 0.844

112 92.13 3.10 0.826 0.804

84 91.56 2.28 0.771 0.823

56 92.01 3.30 0.793 0.862

28 92.32 1.99 0.810 0.818

We have also used Information Gain as a metric to measure the usefulness of a feature
in splitting the data into different classes. It calculated the reduction in entropy achieved
by splitting the data on a particular feature. The higher the Information Gain, the more
useful the feature is in the classification process. Similarly, Chi-Square is used to determine
whether there was a significant association between two categorical variables. In the context
of feature selection, Chi-Square was employed to identify features that were significantly
associated with the target variable. The higher the Chi-Square score, the more significant
the association between the feature and the target variable.

To use these metrics to detect ransomware, we selected the features with the highest
Information Gain or Chi-Square score and used them to train the projected model. The
selected features were able to distinguish between ransomware and non-ransomware
samples with high accuracy. Furthermore, to select the best feature count and metric
for detecting ransomware, we compared the TP rate, FP rate, Precision, and F-Score for
each combination of feature count and metric. We plotted the results to visualize the
performance of each combination.

We have formulated Information Gain as:

Information Gain = Entropy(S) − ∑[p(v) × Entropy(Sv)] (9)

where,

• S is the original dataset.
• v is a specific value of the feature being considered.
• p(v) is the proportion of the number of elements in S that have the value v to the

number of elements in S.
• Sv is the subset of S where the feature has the value v.
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• Entropy(S) is the entropy of the original dataset S.
• Entropy(Sv) is the entropy of the subset Sv.

The entropy Entropy(S) for the original dataset S is calculated using the following principle:

Entropy(S) = −∑ [p(c) × log2(p(c))]. (10)

where c is a class label in S, and p(c) is the proportion of the number of elements in S that
belong to class c to the number of elements in S. This formula gives the entropy of the
original dataset S based on the class labels in the dataset.

Once the entropy of the original dataset S is calculated, we then used the formula for
information gain to determine the importance of each feature in S. The information gain
measures the reduction in entropy achieved by splitting the data based on a particular feature.

To estimate the Chi-Square, the following formula was employed:

χ2 = ∑ [(O − E)2/E] (11)

where,

• O is the observed frequency for a given feature and the presence of ransomware.
• E is the expected frequency for the same feature and ransomware presence.
• ∑ is the summation over all possible values of the feature and ransomware presence.

The expected frequency was calculated based on the assumption that the feature and
the presence of ransomware were independent. If the observed frequency significantly
differs from the expected frequency, it suggests that there was a correlation between the
feature and the presence of ransomware. In the proposed ransomware detection, Chi-
Square was used to identify features that are significantly correlated with ransomware.
These features were then used as input for the applied machine learning model (i.e., hybrid
XGBoost and ElasticNet) to detect ransomware.

5. Implementation and Testing

Our model was trained using different configurations:

1. The first one involved a Librem 14 laptop equipped with an Intel Core i7 10710U processor
with 6 cores and 12 threads, DDR4 RAM of 64 GB, Intel UHD Graphics 620 GPU, M.2 SSD
storage of 2 TB (NVMe), PureBoot firmware, and a PureOS operating system.

2. The second configuration used a Librem 5 smartphone, which had an NXP® i.MX 8M
Quad core Cortex A53 processor with 64-bit ARM architecture running at a maximum of
1.5 GHz (along with an auxiliary Cortex M4), Vivante GC7000Lite GPU, 3 GB of RAM,
32 GB eMMC internal storage, and a PureOS operating system.

The model was trained with 15,000 instances obtained from an experimental setup. The
dataset comprised 27% legitimate instances, 15% crypto miners, 13% memory dumps, 4%
RAT-rated files, and 41% ransomware samples, which were customized versions of Kryp-
tik, Cloud Snooper, WannaCry, LockBit, Black Basta, Hive, ALPHV/BlackCat/Noberus,
AvosLocker, Conti, REvil, DarkSide, Babuk, and Avaddon. The data were updated as of 23
March 2023. We utilized a simulation model in the VMware NSX sandbox [41] to generate
ransomware sample strings. By employing Full-system Mirroring alongside NSX Sandbox,
we ensured precise detection capabilities. To gain a deeper understanding of the sandbox’s
configurations, we additionally executed our script in the Cuckoo Sandbox [42]. This
allowed us to observe the behavior of the file within a practical and isolated environment.
The decision was made to trust the actual behavior of the files, monitored by the sandbox,
allowing us to identify specific features extracted through the sandbox’s monitoring.

To identify the necessary prerequisites for a specific action, we employed two separate
testing environments. The feature set comprised 140 characteristics, with 30 of them
consisting of calls to API packages that encompassed all PureOS application programming
interfaces. An outline of the ransomware versions employed in the evaluation stage is
provided in Table 7.
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Table 7. A high-level view of the analyzed ransomware variants.

Ransomware Encoding Lock Remote Access Trojan Sample Size (%)

Kryptik � � � 4

Cloud Snooper � � � 9

WannaCry � - - 7

LockBit � � - 5

Black Basta � - - 11

Revised Hive � � - 8

ALPHV/BlackCat/Noberus � - - 10

AvosLocker � � � 6

Conti � - � 12

REvil � - � 3

DarkSide � - � 8

Babuk � � - 2

Egregor � � � 9

Avaddon � � - 6

Cuckoo sandbox was capable of analyzing a wide range of file extensions including
.js, .hta, .psi, .pdf, .ppt, .ps1, .python, .vbs, .zip, etc. Furthermore, applets, classes (e.g., bin,
cpl, dll, etc.), functions (e.g., DllMain, arguments, loader, etc.), dumps (e.g., memory.dump,
dump.pcap, tlsmaster.txt, and files.json for metadata extraction), .bson, shots, and more
were also examined.

The APIs that were used to facilitate or trigger ransomware operations included a
variety of types from various categories. These include, but are not limited to, ShellExe-
cute, CreateProcess, WriteProcessMemory, VirtualAllocEx, RegOpenKey, RegCreateKey,
RegSetValue, HttpSendRequest, and LoadLibrary. These APIs belong to a range of different
categories such as system calls, networking, input/output, file system, cryptography, and
user interface. It is important to note that these APIs were utilized maliciously by threat
actors (i.e., pre-fabricated anomalies) to carry out ransomware attacks.

The ransomware we used for encrypting the data (i.e., files of varying sizes ranging
from 100KB to 1GB) on the hacked system employed RSA-2048, AES-256, and ChaCha-256
encryption algorithms. We carried out a thorough investigation of the time taken by these
algorithms and found that the ChaCha-256 had the fastest encryption speed among the
three, making it a more efficient option for use in ransomware attacks. The time-based
encryption comparison is shown in Figure 2 and can be summarized as:

(a) Ransomware attackers are using advanced encryption algorithms such as RSA-2048,
AES-256, and ChaCha-256 to encrypt victim data, making it inaccessible without the
decryption key.

(b) The speed at which encryption algorithms operate can impact the success of a ran-
somware attack. In this case, ChaCha-256 was found to be the fastest among the three
encryption algorithms, making it a potentially more effective choice for attackers.

(c) As a result of the faster encryption speed, ChaCha-256 may become more prevalent in
future ransomware attacks.
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Figure 2. The use of RSA-2048, AES-256, and ChaCha-256 for time-based encryption comparisons.

Figure 3 shows the effect of selecting a subset of features from a dataset of ransomware
characteristics based on their variance. The variance threshold is a value that is set to
determine the minimum variance a feature must have to be included in the subset. During
the optimization process, we noticed that by varying the variance threshold, it is possible to
select different numbers of features for the subset. By setting a variance threshold for each
feature, only those that significantly differ across the dataset will be included in the subset.
If the variance threshold is set high, only features with high variance are included in the
subset, leading to a smaller number of ransomware features. In contrast, if the variance
threshold is set low, more features with lower variance are included, resulting in a larger
number of ransomware features.

It is important to note that the number of ransomware features selected for the subset
can have a significant impact on the performance of applied machine learning models (i.e.,
XGBoost and ElasticNet). Therefore, selecting the optimal number of ransomware features
with varying variance thresholds is a crucial step in developing effective ransomware
detection and prevention systems.

The study conducted tests on the entire dataset, using a cross-validation technique that
involved 25 folds, and splitting the data into training and testing subsets randomly, with
60% of the data used for training and 40% for testing. Table 8 presents the performance of
six different machine learning algorithms in detecting and preventing ransomware attacks.
The metrics (i.e., accuracy, precision, recall, and F-score) were evaluated using both a
25-fold cross-validation technique and a 60% split training/test set approach. The proposed
algorithm, the hybrid XGBoost and ElasticNet, has the highest routine across evaluation
techniques, indicating that it outperforms the other algorithms. The results highlight the
potential of machine learning algorithms in detecting and preventing ransomware attacks
and provide insights into which algorithms perform better in this context.
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Figure 3. Dimensionality in the number of characteristics with various thresholds for variance.

Table 8. The outcomes of the Accuracy, Precession, Recall, and F-Score.

Sr# ML Algorithm
Accuracy Precession Recall F-Score

25 Folds 60% Split 25 Folds 60% Split 25 Folds 60% Split 25 Folds 60% Split

1

Reinforcement
learning (Markovic
Decision Process +
Q-Learning) [43]

0.867 0.865 0.867 0.865 0.845 0.842 0.874 0.872

2 K-Nearest Neighbors
Algorithm [44] 0.872 0.870 0.872 0.871 0.855 0.853 0.880 0.882

3 Support Vector
Machine [45] 0.845 0.846 0.846 0.842 0.803 0.806 0.845 0.842

4 Stochastic Gradient
Descent [46] 0.811 0.816 0.813 0.817 0.733 0.725 0.804 0.818

5 Naive Bayes [44] 0.512 0.532 0.672 0.666 0.551 0.533 0.865 0.847

6 Hybrid XGBoost and
ElasticNet 0.901 0.907 0.921 0.917 0.920 0.933 0.921 0.927

Limitations

The proposed research has primarily focused on exploring the robustness of classifiers
that solely examine the structure of binary programs (i.e., of benign and ransomware
samples). However, the methods (i.e., hybrid XGBoost and ElasticNet) we have applied
would not affect classifiers that consider the execution of such programs, and extract
features such as the sequence of system calls. The reason for this limitation is that the
data we introduce and modify are not executed during the program runtime. To deal
with active features, an attacker would have to resort to using binary rewriting techniques,
which are practical modifications specifically designed for this purpose. These alterations
involve manipulating the program’s anomalous code by adding new branches or replacing
semantically equivalent instructions, which can be used to encode ransomware in a way
that has broad applicability.
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6. Conclusions and Future Work

It can be asserted with a high degree of certainty that machine learning algorithms
have proven to be efficacious tools in identifying and detecting malicious software. How-
ever, designing such systems is often difficult because they involve complex features that
can make it hard to understand how the models learn and accurately identify the real
characteristics of malware. Consequently, systems that have these weaknesses can uninten-
tionally incorporate false patterns, which may make them more vulnerable to attacks from
malicious actors.

The focal point of this article is the detection of PureOS-specific ransomware, a perni-
cious and insidious threat that has proliferated with unprecedented velocity in recent years.
We conducted a comprehensive examination of the efficacy of various single feature type
sets in identifying this type of ransomware, while also considering the customary tactics
employed by malevolent actors to camouflage their nefarious activities.

To further refine and optimize these techniques, we exploited hybrid machine learning
methodologies, such as XGBoost and ElasticNet, to scrutinize and assess the strength and
validity of the developed systems. The ultimate goal was to propose effective methodolo-
gies for the judicious implementation of these techniques. Accordingly, experimental work
was conducted to evaluate the potential impact of these methodologies on the detection of
ransomware and to enhance the design process of hybrid machine-learning-based systems.

It is clear from the results that our approach performs exceptionally well in detecting
ransomware patterns with high accuracy and a low false-negative rate. This work shows
that ML techniques can be used to significantly improve the effectiveness and efficiency of
cybersecurity defenses against ransomware attacks.

We assert that combining multiple machine learning models can improve the overall
detection accuracy and reduce false positives. This work might provide a boost to ensemble
learning techniques, especially in the area of cyber security.
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Abstract: This paper applies a new artificial intelligence architecture, the temporal fusion transformer
(TFT), for the joint GDP forecasting of 25 OECD countries at different time horizons. This new
attention-based architecture offers significant advantages over other deep learning methods. First,
results are interpretable since the impact of each explanatory variable on each forecast can be
calculated. Second, it allows for visualizing persistent temporal patterns and identifying significant
events and different regimes. Third, it provides quantile regressions and permits training the model
on multiple time series from different distributions. Results suggest that TFTs outperform regression
models, especially in periods of turbulence such as the COVID-19 shock. Interesting economic
interpretations are obtained depending on whether the country has domestic demand-led or export-
led growth. In essence, TFT is revealed as a new tool that artificial intelligence provides to economists
and policy makers, with enormous prospects for the future.

Keywords: GDP; deep learning; time fusion transformers; multi-horizon forecasting; interpretability

MSC: 37M10

1. Introduction

The Great Recession, the COVID-19 pandemic, and the war in Ukraine increased the
uncertainty surrounding the economic cycle. Preceding these crises, the world economy
underwent a process of financialization over the preceding two decades, characterized
by a broad range of shifts in the relationship between the financial and real sectors. This
phenomenon elevated the significance of financial actors in the economy ([1]). It altered the
aspects of micro and macro dynamics. This translated the dynamics of financial markets,
in particular, nonlinearities and long-term dependencies ([2,3]), into features of different
business cycle indicators, including real GDP. Consequently, forecasting macroeconomic
data, such as real GDP growth, became a more complex task.

The effect of an explanatory variable on real GDP depends on how it is interrelated
with other explanatory variables, which, in addition, can vary over time. An example of
that is the evidence that we obtain in this study on the loss of the predictive power of the
slope of the yield curve to anticipate the business cycle. In different previous studies, the
yield curve was revealed as an extremely powerful predictor of recessions ([4–9]).

The existence of long-range dependence and non-linearities in a business cycle time
series ([10–13]) opens the door to the use of artificial intelligence (AI) techniques to forecast
real GDP. AI is the development of computer-based algorithms that can perform tasks
similar to human intelligence being able to modify their actions, thus maximizing their
chances of success. Such algorithms are increasingly capable of solving extremely complex
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problems, such as helping in decision-making processes; including the classification and
evaluation of large amounts of data.

This paper contributes to the real GDP forecasting literature by proposing the ap-
plication of temporal fusion transformers (TFTs). This state-of-the-art time series model,
developed by [14], is encompassed within deep neural networks (DNNs). This new
attention-based architecture offers significant comparative advantages over regression
models and other deep learning methods. First, it can be applied to univariate and multi-
variate time series. Second, three types of explanatory variables can be used: temporal data
known only up to the present, temporal data with known inputs into the future, and/or
exogenous static/categorical variables. Third, it allows working with heterogeneous time
series, so that it can train on multiple time series from different distributions. Fourth, the
TFT architecture splits processing into local preprocessing and global processing. The first
one captures specific events and the second one the common features of all the time series.
Fifth, the results are interpretable since the impact of each explanatory variable on each
forecast can be calculated by analysing the variable selection weights. Sixth, it allows for
visualizing persistent temporal patterns and identifying significant events and different
regimes. Finally, it provides quantile regressions and permits computing simulations
based on a known input into the future. This feature is especially valuable to evaluate
macroeconomic policies.

We apply TFTs for the joint GDP forecasting of 25 OECD countries using macroeco-
nomic and financial variables. Since TFTs allow multi-horizon forecasts, we will forecast at
different time horizons: one, two, three, and four quarters. It requires the data sample to
be partitioned into three datasets: the training dataset, the validation dataset, and finally
the test dataset. The obtained results are compared with those of a benchmark ARIMA
model using two standard metrics, mean absolute error (MAE) and root mean square
error (RMSE).

TFT outperforms the standard ARIMA in the two proposed metrics, MAE and RMSE.
The performance of TFT forecasts was compared to that of the ARIMA model separately,
in recession and expansion sub-periods, in order to give greater robustness to the results
obtained at a global level. TFT outperforms ARIMA in periods of economic slowdown or
global recession as well as in periods of stable growth; in this case, the improvement is
marginal. Results suggest that TFTs outperform regression models, especially in periods of
turbulence, such as the COVID-19 shock. Interesting economic interpretations are obtained
depending on whether the country has domestic demand-led or export-led growth. The
obtained results show that the TFT forecasts improvements are significantly greater in
demand-driven growth countries.

The use of TFTs to predict real GDP yields very interesting results regarding the
importance of the explanatory variables. While the slope of the curve has limited predictive
power, it is worth noting that the variable measuring the indebtedness of the non-financial
private sectors demonstrates a remarkable ability to anticipate future trends. This variable
played a catalytic role in the Great Recession once the value of collateral began to deteriorate,
in accordance with Hyman Minsky’s financial instability hypothesis ([15,16]). In this regard,
recent studies show the high persistence of the ratio of private debt to GDP for different
OECD countries, and the key importance of macroprudential policy, as one of the pillars
of macroeconomic policy ([17]). Finally, it should be noted that the importance of the
explanatory variables in predicting real GDP might vary somewhat depending on the
phase of the economic cycle or the forecast time horizon. TFTs are capable of capturing this.

The rest of the paper is organized as follows: Section 2 discusses the theoretical
framework that allows us to use financial variables, composite leading indicators, the
credit cycle, and international trade as predictors of economic growth. Section 3 reviews
the literature on forecasting economic growth using deep learning and regression models.
Section 4 formulates the methodology designed, using TFTs, for the joint forecasting of the
GDPs of a substantial number of countries, and details the description of the sample and
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the variables used. Section 5 discusses the empirical results obtained. Finally, Section 6
presents the conclusions, pointing out future lines of research.

2. Predictors of GDP Growth: A Literature Review

Over decades, economists devoted a substantial amount of effort to model economic
growth. There exists a wide literature that supports the importance of different kinds
of variables to predict the evolution of GDP. Throughout this section, we review a list
of variables from a broad array of candidates and describe how they are related to the
business cycle.

2.1. Financial Variables and Leading Indicators

Financial variables, such as the prices of financial instruments, interest rates, interest
rate spreads, stock price indexes, and monetary aggregates, have significant predictive
content for economic activity since they are forward-looking variables, and therefore, are
useful indicators in macroeconomic prediction. For a comprehensive literature review,
see [18].

1. The Yield Curve. The spreads between interest rates for different maturities tend
to be interpreted as the market expectations of future rates corresponding to the period
between the two maturities. Intuitively, long-term rates incorporate the expectations of
financial markets on future short-term rates. Consequently, a negative-sloped or flat curve
means that markets’ prospects involve a decrease in future real interest rates, which is
associated with weak economic activity or downturn.

Evidence on the predictive power of the spread between long-term and short-term
government bond rates, called the slope of the yield curve, for inflation and real economic
activity is wide and robust across countries and time periods ([4,5,19–23]).

Ref. [6] provides the theoretical basis for this statistical evidence. In particular, the
main implication of the analytical rational expectations model is that the relationships are
not structural since they are influenced by the monetary policy regime. In other words, the
extent to which the yield curve is a good predictor depends on the form of the monetary
policy reaction function, which, in turn, may depend on explicit policy objectives. The yield
curve has predictive power, for example, if the monetary authority follows strict or flexible
inflation targeting or if policy follows the [24] rule.

We hypothesize that the impact of the yield curve on economic growth will de-
pend on how it interacts non-linearly with the global credit spread cycle and the official
interest rates.

2. Corporate Bond Spreads. Asset purchase programs, forward guidance, and other
unconventional monetary policies can lower long-term interest rates, altering the informa-
tion content of the yield curve. However, even in such circumstances, the behavior of the
corporate bond credit spread curve varies over the business cycle, potentially containing
more information about the future.

Many studies focused on corporate bond spreads ([25–31]), providing strong evidence
for the link between this spread and the economic activity.

We include in our model the ratio of the Moody’s U.S. Baa corporate bond yields to
that of Aaa as a global proxy for credit spread.

3. The Composite Leading Indicator. The combination of multiple leading variables in
composite leading indicators (CLIs) pursues a more accurate prediction of the development
of the reference series. CLIs are designed to predict the development of the business cycle,
focusing on the identification of turning points that occur when the growth rate moves from
an expansion period to a contraction period or vice versa. Empirical evidence supporting
the usefulness of the CLI, both in-sample and out-of-sample real-time, in a real time context,
is wide. Some examples are [4,32–35].

We include in our model the CLI built by OECD (see [36]), which captures fluctuations
of the economic activity around its long-term potential level. This CLI shows short-term
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economic movements in qualitative rather than quantitative terms. A CLI reading above
(below) 100 precedes levels of GDP above (below) its long-term trend.

4. The Industrials Commodity Price Index. The CRB Raw Industrials Spot Index,
drawn from Bloomberg, is a synthetic measure of price movements of 13 sensitive basic
commodities whose markets are presumed to be among the first to be influenced by changes
in economic conditions. As such, it serves as one early indication of imminent changes in
business activity.

The criteria for the selection of commodities are: (i) wide use for further processing
(basic); (ii) freely traded in an open market; (iii) sensitive to changing conditions significant
in those markets; and (iv) sufficiently homogeneous or standardized so that uniform and
representative price quotations can be obtained over a period of time.

Then, the Spot Market Index is defined as the unweighted geometric mean of the
individual commodity price relatives (i.e., the ratios of the current prices to the base
period prices).

Different papers empirically examine the interactions between commodity prices,
money, interest rates, goods, and economic growth ([37–41]). In particular, Ref. [41] ex-
plores how the commodity market can predict GDP growth for countries worldwide, rather
than a few specific countries or regions. They find commodity returns significantly pre-
dict the next quarter’s GDP growth, and thus can be considered as leading indicators of
economic growth.

2.2. The Credit Cycle

The credit cycle and the economic cycle are closely related. Many studies provide
empirical evidence supporting that endogenous credit supply expansions precede a decline
in real GDP (see [42], for a review). The intuition is that, in the supply side of financial
markets, risk appetite and the debt accumulation evolve over the business cycle following
a regular process, and ultimately, this credit cycle translates to the real economy through
defaults that materialize credit risk, and the end, financial constraints affecting the real
economy. In particular, the Minsky’s financial instability hypothesis ([15,16,43,44]) predicts
that, for a given microeconomic condition, the likelihood of facing credit constraints
decreases in periods of GDP expansion and increases in periods of contraction.

We include in our model the measurement of private indebtedness at the country level
developed and published by the Bank for International Settlements (BIS). Specifically, it is
defined as the ratio of the total debt of non-financial private sectors at market value of one
country over its nominal GDP.

2.3. World Trade and Economic Integration across Countries

As was first stressed by the classics, Adam Smith and David Ricardo, trade promotes
growth by allowing the optimal use of resources. Empirical evidence is profuse and
supports that trade tends to favor development, given that it stimulates technical progress,
which is spread across countries through the importation of capital goods that incorporate
innovations (for a survey, see [45]).

Particularly, exports promote economic growth through several channels: they en-
hance a better allocation of resources through specialization on goods that have an im-
proved comparative advantage, favoring productivity gains through economies of scale,
spillover effects, and learning-by-doing. In this sense, trade integration enables a higher ex-
ternal demand that increases the probability and/or intensity of exporting, and therefore, of
economic growth, especially in periods where domestic demand is under pressure ([46–48]).

International trade was also identified as a channel through which shocks are interna-
tionally transmitted, contributing to the synchronization in business cycles across countries.
In particular, countries joining a currency union may lose their ability to stabilize cyclical
fluctuations through independent counter-cyclical monetary policy. In general, empirical
research found that pairs of countries with relatively strong economic linkages, not only in
terms of trade intensity, but also in terms of financial and institutional integration, tend
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to have highly correlated business cycles. For example, Refs. [49–51] find that the closer
the trade linkages are, the higher the correlation in countries’ business cycles are as well.
Similarly, Ref. [52] shows that more financially integrated countries display more correlated
business cycles.

We incorporate in our model the World Trade Volume Index that is monthly computed
by the Netherlands Bureau for Economic Policy Analysis. This index, defined as the
arithmetic average of world exports and imports of goods, constitutes an indicator of global
economic activity. It covers the United States, Japan, EU, and four groups of emerging
countries: Asian countries (excluding Japan), Eastern Europe and CIS countries, Latin
America, and Africa and the Middle East.

Here, we have to emphasize the ability of the temporal fusions transformers method-
ology to capture cross-country business cycle co-movements, even if the drivers of this
synchronization are not explicitly introduced in the list of explanatory variables.

3. Forecasting Economic Growth Using Deep Learning and Regression Models:
Literature Review

The Great Recession (2007–2009) and the COVID-19 pandemic increased the uncer-
tainty surrounding the economic cycle. This indetermination occurs in a context of the
financialization of the global economy in recent decades, understood as a broad set of
changes in the relationship between the financial sector and the real sector, which gave
greater weight than before to financial motives and actors, consequently affecting the
different relationships between macroeconomic and/or financial variables.

The influence of macroeconomic and/or financial variables on the business cycle was
extensively detailed in the previous section. In this one, we collect the different technical
contributions to the forecasting of the business cycle, measured by GDP in real terms, from
advanced regression models, especially in time series analysis, for the use of AI techniques.

3.1. The Use of Regression Models for Business Cycle Forecasting

There is a wide variety of regression models used in macroeconomic research in or-
der to forecast economic activity. They range from the early ARIMA ([53–55]), or VAR
models ([56,57]) to those more complex ones that analyze the cycle from an explicit non-
linear perspective. VAR models are particularly useful for forecasting purpose but suffer
from a major drawback, as they require the estimation of many potentially non-significant
parameters. This over-parametrization problem, resulting in multicollinearity and loss of
degrees of freedom, leads to inefficient estimates and large out-of-sample forecast errors.
To face this problem, there are two main approaches. The first one consist in identifying
non-significant lags through statistical tests and estimating the restricted version of the
model that incorporates the identified restrictions on the parameters of the model. The
second approach uses quasi-VAR models, which specify an unequal number of lags for the
different equations.

Alternatively, some authors ([58,59]) propose a Bayesian VAR or BVAR model. Instead
of eliminating the longest lags, the Bayesian method imposes restrictions on the coefficients
of the model, assuming that these coefficients are more likely to approach zero than the
coefficients of the shortest lags. Within the VAR family, in order to capture the systemic
dimension while retaining the advantage of estimating a single equation, structural vec-
tor autoregressive (SVAR) models emerged ([60,61]). Finally, it is worth mentioning the
time-varying parameter VAR models, which successfully model regime-switching time
series ([62–64]).

Within business cycle modeling from an explicit nonlinear perspective, the range is
very broad. They include, for example, smooth transition regression (STR) models, which
are a general class of reduced-form, state-dependent, nonlinear time series models in which
the transition between states is, generally, generated endogenously, and where smooth
transition autoregression (STAR) models are a particular case. See [65–67].
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Ref. [68] shows that the STR models include particular cases, in addition to the STAR,
the exponential autoregressive (EAR), the threshold autoregressive (TAR), and the SETAR
models. TAR and SETAR models are those which, maintaining the idea that the level
and time structure in an economic phenomenon depend on the cyclical phase in which
it is found, provide a relatively simple way of introducing non-linear elements in the
econometric analysis of time series. See [69–71].

Finally, within the nonlinear modeling of the business cycle, we distinguish those
models where the state of the cycle can be represented by a binary state variable whose
evolution is explicitly characterized by a Markov chain. This state variable conditions the
parameters of a linear model that completes the representation of the observed dynamics.
We refer to Markov-switching autoregression (MS-AR) models, see [57,72–79], and further
generalize the MS-AR model to a MS-VAR time series model.

Ref. [80] use a small set of variables (real GDP, the inflation rate, and the short-term
interest rate) to analyze atheoretical (time series) and theoretical (structural) regression
models, as well as linear and nonlinear, to test whether the decline in U.S. real GDP
during the Great Recession had the potential to be predicted. Their results suggest that
structural (theoretical) models, especially the nonlinear model, perform well on average
at all forecast horizons in ex post, out-of-sample forecasts, although at certain forecast
horizons, certain nonlinear atheoretical models perform better. The nonlinear theoretical
model also dominates in the ex ante, out-of-sample forecasts of the Great Recession.

3.2. Forecasting Real GDP Using Artificial Intelligence Models

Forecasting real GDP growth, such as with other macroeconomic data, is a far from
straightforward process. Starting from the causal relationship between dependent and
independent variables, traditional economic models use predetermined relevant variables
to make predictions, adopting top-down and theory-driven approaches ([81]). This process,
in relation to the data and methods used, is founded on economic intuition and forecasters’
judgment. If any of the forecasters’ assumptions are not met, the models will produce
inaccurate predictions.

The effect of an explanatory variable on real GDP depends on how it is interrelated
with other explanatory ones, which, in addition, can vary over time. This feature cannot
be modeled using the conventional regression framework, opening the door to the use
of AI techniques. AI is the development of computer-based algorithms that can perform
tasks similar to human intelligence, being able to modify their actions to maximize their
chances of success. Such algorithms are increasingly capable of solving extremely complex
problems, and can assist in decision-making, including the classification and evaluation of
large amounts of data.

Unlike many traditional economic forecasting models, AI machine learning models
focus on pure prediction ([82]). Being more flexible than traditional economic forecast-
ing models, they produce predictions without predetermined assumptions or judgments.
Therefore, thanks to the development of new algorithms and the increase in computing
power, machine learning models were actively applied in various fields, from forecasting
transportation, traffic or electricity flows ([14,83,84]), to forecasting housing prices ([85])
or financial market volatility ([14,86]). In most of the fields analyzed, machine learning
methods perform better than traditional econometric models, including cases with low-
frequency data. Looking at their application to economics, such as the inflation forecasting
studies of [87,88], they produce robust predictions.

Ref. [89] divides AI learning methods into four major groups: unsupervised, super-
vised, semi-supervised, and reinforcement learning.

Almost all the AI models applied for business cycle forecasting fall within the super-
vised learning models, although elements of reinforcement learning can also be incorpo-
rated. For real GDP forecasting, different AI models are used: K-nearest neighbor ([90–92]);
decision trees, boosted trees, gradient boosting and/or random forest ([91,93–98]); artificial
neural networks and their deep learning extensions ([99–101]); ordinary and alternative
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support vector machines ([91,101–103]); and Boltzmann machines ([101]). These papers
find that all these learning algorithms can outperform traditional statistical models, thus
offering a relevant addition to the field of economic forecasting.

It is important to remark that most machine learning techniques, such as random
forest or gradient boosting algorithms, are not ideal for time series forecasting since they
ignore the time order of the features. They assume that the value of each feature at a certain
time step is independent of the value of the same feature at the previous time step. This is
violated in time series data, where serial correlations are essential.

Because of this, recurrent neural networks (RNNs), such as gated recurrent units
(GRUs) and long short-term memory networks (LSTMs), are extensively used to solve
time series forecasting problems since they are capable of capturing the dependencies
between time steps. The problem with these DNNs is that they cannot correctly capture
long-range dependencies. This issue is solved in the transformer architecture, initially
presented in [104].

This paper is a contribution to the real GDP forecasting literature based on the ap-
plication of AI. It proposes the application of TFTs, recently developed by [14], which are
encompassed within DNNs. TFTs provide considerable advantages that will be detailed in
the next section.

4. Methodology and Database

We will apply a new deep learning model, the temporal fusion transformers, for
forecasting jointly the real GDP on a quarterly basis for 25 OECD countries at different
time horizons. We will detail the main features of TFTs, explaining both the attributes that
make them very suitable for forecasting macroeconomic variables and the different blocks
of their architecture. We will then explain in detail the methodology we designed for the
joint forecasting of the GDPs of a substantial number of countries.

4.1. Temporal Fusion Transformers for Forecasting Real GDP

TFT ([14]) is the state-of-the-art model for interpretable, multi-horizon time series fore-
casting. This attention-based architecture is specifically designed for time series prediction
and provides several advantages over other deep learning models (Figure 1).

Figure 1. The TFT advantages. Source: [14].

First, TFTs support different types of variables as inputs: time series that are only
known up to the present (this is the type of data that most models work with); time series
with known values in the future; and static or time-invariant variables. All these variables
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can be categorical or continuous. Due to its ability to process static variables, TFTs permit
training on multiple time series, from different distributions. This is extremely important
because it enabled us to train the model with data from different countries, significantly
increasing the size of the dataset, something essential for machine learning models.

Most models are not able to work with known future values and this is essential for
certain time series problems. For example, from the perspective of a central bank, the
model’s ability to work with known future values of a given explanatory variable will
allow for an analysis of the impact of monetary policy (interest rates and/or quantitative
easing) on a given macroeconomic variable under study, be it inflation and/or real GDP.

Secondly, TFTs allow multi-horizon quantile prediction through multi-step forecasts
by calculating prediction intervals using the quantile loss function. The user can define
these forecasting intervals.

Finally, one main property of TFTs is their interpretability. Most deep learning archi-
tectures are “black box” models and their predictions cannot be explained. Generally, AI
explanatory methods obtain interpretability measures in a differentiated process from the
estimation one. Common post hoc machine learning explanatory techniques, such as SHAP
or LIME, do not take into account the temporal order of the inputs, ignoring dependen-
cies between time steps that are essential in time series. TFTs address this weakness by
incorporating variable selection networks (VSN) that provide variable selection weights,
which quantify the importance of each feature in the prediction of each observation in
the dataset. Then, selection weights are collected for each variable across the entire test
set to compute any statistic that characterizes each sampling distribution. In addition to
quantifying the importance of each input variable in prediction, TFTs permit us to visualize
persistent temporal patterns, different regimes, and significant events. For this purpose,
TFTs employ a self-attention mechanism that estimates the attention weights that measure
the importance of each period.

Having already explained the capabilities that make the TFT ideal for economic
forecasting, we will now briefly explain its architecture before detailing the methodology
we designed for the joint forecasting of real GDP for a considerable number of countries.
See Figure 2.

Figure 2. TFT architecture. Source: [14].
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TFT has a complex architecture, which gives it enormous flexibility and computing
potential, the main blocks being:

1-Gating mechanisms: Gating mechanisms give TFTs the ability to skip unused parts
of the architecture. This is especially important in small or noisy datasets, where a simpler
model can enhance performance (as the problem solved in this paper). This gated residual
network (GRN) is one of the main blocks of TFTs. The GRN takes in the main input and a
context vector and decides whether additional dense layers are useful or these layers can
be skipped through the residual connection. See Figure 3.

Figure 3. GRN Scheme. Source: [14].

2-Variable selection networks (VSN): In most prediction problems, we have variables
that do not increase the prediction ability of the model. TFT introduced variable selection
networks: this part of the architecture removes irrelevant inputs that decrease the algorithm
performance and provides information about the most relevant variables just by analyzing
the weights assigned to each one.

3-Static covariate encoders: TFT is able to use information from static data thanks to
separate GRN encoders that produce different context vectors that are connected to several
parts of the architecture. These kinds of encoders are especially important for our problem
since they allow the model to train with data from different countries.

4-LSTM Encoder-Decoder: This sequence-to-sequence layer is used for local process-
ing; it captures short-term time dependencies. Known future inputs are directly connected
to the decoder.

5-Interpretable multi-head self-attention: TFT has a self-attention mechanism that
makes the model capable of learning long-term relationships: it integrates information
from any time step. This transformer architecture presents some changes in comparison
to standard transformers ([104]); these modifications allow for conducting interpretability
studies by the analysis of attention weights.

6-Dense layers: Several dense layers are part of the model; these layers learn through
different non-linear transformations. The final dense layer generates prediction intervals in
addition to point forecasts.

7-Loss function: TFT is trained by minimizing the quantile loss of all quantile outputs.
We use the following quantiles: {0.02, 0.1, 0.25, 0.5, 0.75, 0.9, and 0.98}. The following
equation represents the loss function:

L (Ω, W) = ∑
yt∈Ω

. ∑
q∈Q

. ∑τmax
τ=1

QL(yt, ŷ(q, t − τ, τ), q)
Mτmax

(1)

QL(yt, ŷ, q) = q(y − ŷ)+ + (1 − q)(ŷ − y)+ . (2)
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4.2. Methodology

In this section, we provide a brief explanation of the data used in the training, valida-
tion, and test datasets, the hyperparameter configuration, and the model specifications for
each forecast horizon.

The target value (y) of our neural network is the GDP logarithmic growth rate, ex-
pressed as:

y = log
GDP(t+s)

GDP(t)
, s = 1, 2, 3 or 4 (3)

where s denotes the number of quarters. For example, in the case of the annual growth rate
forecast, it would be:

y = log
GDP(t+4)

GDP(t)
. (4)

This means that we will train our network with four different target values and
different hyperparameters settings depending on the forecast horizon. We will measure the
performance of the models using two different metrics, the RMSE and the MAE. For each
date, the dataset is composed of the data from 25 OECD selected countries. Thus, we will
simultaneously train and forecast for all of them.

The main disadvantage of machine learning models for macroeconomic forecasting is
the lack of available data. We used the Python library PyTorch Forecasting to implement
the TFT; this package does not have stochastic gradient descent available. Because of this,
we need to refit the model for each forecast to incorporate the data from the latest available
observation. This is critical to forecast the GDP since the economic paradigm can change
suddenly.

As shown in Figure 4, the first observation that belongs to the test dataset is the first
quarter of 2009 and the last one is the third quarter of 2021. PyTorch Forecasting uses the
last available quarter as the validation dataset; therefore, the validation and test datasets
will contain one observation per country in each forecast.

Figure 4. Quarterly prediction methodology.

When we make predictions greater than one quarter (s = 2, 3, or 4 quarters), the test
dataset contains the GDP logarithmic growth rate that corresponds to those s periods. The
forecast that we will use to check the model performance is the last one, in order to avoid
overlapping data. We can see in Figure 5 how we may predict Q4 2009 when the last data
available are Q4 2008. Even though our test dataset contains four annual growth rates, we
only use the last one since it is the first prediction that does not contain any information
from the test dataset.
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Figure 5. Annual prediction methodology.

The hyperparameters used to forecast at different time horizons are the same, with
the only exception being the number of epochs. The main hyperparameters are shown in
Table 1.

Table 1. Main hyperparameters.

Main Hyperparameters
Forecast Horizon

1Q 2Q 3Q 4Q

Epochs 13 17 19 20
Learning rate 0.03

Dropout 0.1
Number of heads 1

State size 16
Batch size 64
Quantiles 0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98

Normalized GroupNormalizer

The GroupNormalizer scales by groups (in this application, countries). It means that
for each group, a scaler is fitted and applied.

In Appendix B, we added the code for annual predictions and how we compute the
RMSE and the MAE for the whole dataset.

4.3. Sample Data and Variables

The database used in this paper comes from different combined sources corresponding
to the period 1990–2021 for 25 OECD countries (See Table 2). (i) The Organization for
Economic Co-operation and Development (OECD) for GDP in volume index, and main
economic indicators; (ii) The Bank for International Settlements (BIS) for the Total Debt Non
Financial Private Sectors over GDP; (iii) Federal Reserve Economic Data (FRED), Federal
Reserve Bank of St. Louis for Credit Spreads; (iv) Netherlands Bureau for Economic Policy
Analysis (CPB) for World Trade data; and (v) Bloomberg for CRB Raw Industrials Spot
Index. Table 3 shows detailed information about the variables, the reason for use, and the
sources.

Table 2. Selected countries.

Australia Italy United Kingdom
Austria Japan United States
Belgium Korea South Africa
Canada Mexico

Denmark Netherlands
Finland New Zealand
France Norway

Germany Portugal
Greece Spain
Iceland Sweden
Ireland Switzerland
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Table 3. Variables description.

Variable Definition Reason of Use Source

Dependent variable

GDP logarithmic growth rateit

GDP in volume index, hundredths,
2015 = 100, of every country i in
year t.

Dependent variable for the country’ s
economic growth. OECD

Independent variables
Idiosyncratic variables

Yield curve (YCit)
It is the ratio of long-term interest
rates on sovereign debt to
short-term interest rates.

The slope of the yield curve was shown
empirically to be a significant predictor
of inflation and real economic activity.
Quite a few academic studies suggested
that the slope of the yield curve seems
to be extremely promising as a
predictor of recessions. See [4–9]. We
hypothesize that its impact on
economic growth will depend on how
it interacts non-linearly with the global
credit spread cycle and official
interest rates.

OECD

Debt non-financial private
sectors/GDP (private debt/GDP)it

Ratio of the total debt of
non-financial private sectors at
market value of one country over
its nominal GDP. It is developed,
calculated and updated by the Bank
for International Settlements (BIS).
This index is regularly updated.

It captures the progression of risk
appetite and the debt accumulation
process. During an economic expansion
investors’ risk appetite tends to
increase; the longer the expansion,
without any major setback, the higher
the risk appetite, indebtedness, and
economic growth—exactly the opposite
during periods of deleveraging and
private balance sheet
recessions ([15,16,43,44,48,105–107]).
Ref. [108] found an increase in the
household debt to GDP ratio predicts
lower GDP growth and higher
unemployment in the medium run for
an unbalanced panel of 30 countries
from 1960 to 2012. Ref. [17] found for
almost all of the 43 OECD countries
analyzed that the private debt-to-GDP
ratio is highly persistent. These results
suggest long-lived effects of shocks to
the private debt-to-GDP ratio, which
require appropriate policy actions.

BIS

OECD composite leading
indicator (CLIit)

The OECD Composite Leading
Indicator (CLI) is an aggregate time
series displaying a reasonably
consistent leading relationship with
the reference series for the business
cycle of a country (GDP). A CLI
reading above (below) 100 is always
an indication that anticipates levels
of GDP above(below)
long-term trend.

The composite leading indicator (CLI)
is designed to provide early signals of
turning points in business cycles
showing fluctuation in the economic
activity around its long term potential
level. Different research found that the
composite leading indicators (CLI) are
useful for forecasting gross demand
product (GDP), both in sample and in
an out-of-sample real-time
exercise ([4,32–34,38]).

OECD

Common variables
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Table 3. Cont.

Variable Definition Reason of Use Source

Global Credit spread cycle (GCSCt)

The ratio of the Moody’s U.S. BAA
corporate bond yields to that of
AAA is taken as a proxy for the
global credit spread cycle.

Much research indicates the usefulness
of credit curve information to predict
economic activity ([25–29,31]). Most
unconventional monetary policies, such
as asset purchase programs and
forward guidance, aim to lower
long-term rates, significantly affecting
the information content of the yield
curve. However, even in such
circumstances, the behaviour of the
corporate bond credit spread curve
varies over the business cycle,
potentially containing more
information about the future economy.
More recently, research ([30]) found
credit spread curve information in
higher deciles (implying low credit
quality) is statistically significant and
economically important for predicting
the business cycle.

FRED,
Federal
Reserve
Bank of
St. Louis

CRB RIND Index (CRBRINDt) CRB Raw Industrials Spot Index

It is a measure of the price movements
of 13 sensitive basic commodities
whose markets are presumed to be
among the first to be influenced by
changes in economic conditions. As
such, it serves as one early indication of
impending changes in business activity.

Bloomberg

World Trade volume Index (WTVIt)

The monthly world trade volume
index is computed by the CPB
(Netherlands Bureau for Economic
Policy Analysis) and is defined as
arithmetic average of world exports
and world imports of goods. The
series covers United States, Japan
and EU and four groups of
emerging countries: OPEC, Asian
newly industrialised countries
(Taiwan, Hong Kong, Singapore
and South Korea), transition
countries (central and eastern
European countries including
Turkey and ex-Soviet Union’s
countries) and other
emerging economies

It is an indicator of global economic
activity. Although, after the financial
crisis in 2008, the growth rate in world
trade is unusually low relative to
growth in world GDP ([109]), a higher
external demand increases the
probability and/or intensity of
exporting, and therefore, of economic
growth, especially in periods where
domestic demand is under
pressure ([46–48]).

CPB

5. Results and Discussion

The TFT model is estimated for the 25 OECD countries listed in Table 2, focusing the
analysis of the results of 10 representative countries that were selected taking into account
their heterogeneity in terms of size, growth pattern (demand-led or export-led growth),
and monetary sovereignty.

In this section, we present and discuss the most important results. First, in Section 5.1
we will discuss the results obtained over the entire test period for all forecast horizons
and differentiating them across the 10 representative countries. Second, in Section 5.2,
we will present the results across different sub-periods defined to observe differences in
performance, depending on the stage of the business cycle. Finally, we will provide some
concrete examples of TFT forecasts and their interpretability.
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5.1. Performance over the Entire Period

Table 4 shows how TFT outperforms the standard ARIMA over the entire test period
for the selected countries in two metrics: mean absolute error (MAE) and root mean square
error (RMSE). Percentages reflect the error excess of ARIMA relative to TFT. For example,
for an annual forecast, ARIMA RMSE is 188.27% higher than that of TFT. Improvements
occur for all forecast time horizons.

Table 4. Improvement of the MAE and RMSE of TFT relative to ARIMA.

Metric t + 1 t + 2 t + 3 t + 4

MAE 8.38% 33.89% *** 47.98% *** 48.53% ***
RMSE a 12.44% 88.80% *** 151.85% *** 157.07% ***

a RMSE is the average of the RMSEs calculated at country level. Note: *** significant coefficient at 1%.

To evaluate the statistical significance of the results, we perform a one-tailed hypothesis
tests on the TFT error metrics. We compute the 99th percentile of the bootstrap distribution
of the TFT error metrics and compare this critical value against the error metrics of the
benchmark model. For the two metrics and across all forecast horizons’, except for one
quarter, ARIMA error measures are higher than the 99th percentile of the TFT error metric
distribution, confirming that TFT error metrics are statistically lower than the ARIMA ones,
at the 1% significance level (see Appendix A).

Table 5 shows the increases in the two considered error metrics (MAE and RMSE), for
the ARIMA model with respect to the TFT in the 10 selected countries for the 1-quarter and
1-year forecasts. It shows that the TFT forecasts are usually more accurate than ARIMA,
being that these improvements greater in demand-driven growth countries.

Table 5. Improvement of the MAE and RMSE of TFT relative to ARIMA by country.

CAN GER DNK SPA FRA GBR ITA JPN POR USA

MAE
t + 1 3.0% −8.0% 11.0% 23.3% 20.8% 25.0% −5.8% 5.0% 1.1% −2.1%
t + 4 17.0% 4.2% 12.0% 113.8% 78.3% 103.5% 41.6% 1.8% 49.1% 36.8%

RMSE
t + 1 9.1% −19.1% 16.9% 21.1% 20.6% 45.4% −0.7% −1.1% 1.4% 2.4%
t + 4 63.3% 12.3% 7.6% 327.2% 205.2% 416.5% 92.0% 2.7% 127.1% 128.2%

One of TFT’s most interesting features is its interpretability. Figure 6 shows the encoder
variables importance for one quarter (LHS) and annual (RHS) forecasts.

Figure 6. Encoder variables importance for one quarter (left hand side) and annual predictions (right

hand side).

As expected, the most important predictor is the nearest lag of real GDP growth,
which reflects the autoregressive behavior of the time series. Likewise, the OECD Leading
Indicator Index provides early signals of turning points in business cycles ([4,32–34,109]).
The CRB Raw Industrial Spot Index’s relevance confirms it serves as an early indicator
of impending changes in global business activity ([41]). The change in the World Trade
Volume Index is an indicator of the global external demand, and its importance depicts
how it affects countries’ business activity.
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It is remarkable the predictive capacity of the variable that captures the indebtedness
of the non-financial private sectors as a percentage of GDP, which played a catalytic role in
the Great Recession once the value of collateral began to deteriorate in accordance with
Hyman Minsky’s financial instability hypothesis ([15,16]). Recent studies provide evidence
on the high persistence of the ratio of private debt to GDP for different OECD countries
and the key importance of macroprudential policy in this area ([17]).

Related to this variable, our proxy of global credit spread cycle (USA Credit Spread) is
economically important for predicting the business cycle ([25–31]). In contrast, the limited
forecasting capacity of the yield curve in TFT suggests that the slope of the sovereign debt
interest rate curve diminished its predictive power, compared to previous work ([4–9]), in
anticipating the evolution of the business cycle. This loss of forecasting accuracy occurs in
a context where quantitative easing policies gained importance. More research is needed to
understand the effects of quantitative easing on the yield curve’s predictive power.

5.2. Performance over Expansive and Recessive Periods

A comparison of TFT versus ARIMA was performed in both recession and expansion
sub-periods in order to give greater robustness to the results obtained at a global level.
Table 6 shows how TFT clearly outperforms the standard ARIMA during the COVID-
19 pandemic and behaves almost equally in the rest of sub-periods. The difference in
performance between both models increases in long-term forecasts due to the TFT ability
to capture nonlinearities.

Table 6. Improvement of the MAE and RMSE a of TFT relative to ARIMA by period.

Period Metric t + 1 t + 2 t + 3 t + 4

2008–2011
MAE 13.82% 10.04% −3.54% −5.85%
RMSE a 10.96% 5.31% −3.52% −4.14%

2012–2015
MAE 0.18% −2.42% 8.01% 26.59%
RMSE a −2.76% −0.99% 4.35% 21.72%

2016–2019
MAE −4.85% 6.56% −10.54% 0.67%
RMSE a −6.20% 4.83% −6.85% 0.01%

2020–2021 (Q3)
MAE 9.43% 56.12% 116.82% 115.92%
RMSE a 12.47% 94.64% 190.81% 204.09%

a RMSE is the average of the RMSEs calculated at country level.

Table 7 exhibits the increases in the two considered error metrics (MAE and RMSE), for
the ARIMA model with respect to the TFT, in the 10 selected countries for 1-year forecasts
over the different sub-periods. In general, TFT forecasts are more accurate than those of the
ARIMA, being that these improvements are greater in periods of economic slowdown or
recession, in particular, in demand-driven growth countries.

Table 7. Improvement of the MAE and RMSE of TFT relative to ARIMA by period and country in
annual forecast.

Period Metric CAN DEU DNK ESP FRA GBR ITA JPN POR USA

2008–2011
MAE −13.4% −14.2% 10.0% 9.0% −20.8% −31.0% −1.7% −2.1% 19.9% −7.4%
RMSE −0.7% −13.0% 5.3% −0.2% −10.2% −18.5% 1.0% −2.2% 5.3% −5.9%

2012–2015
MAE 15.8% −10.2% 27.4% 49.4% 34.3% −27.8% 100.2% 3.2% 81.0% −17.7%
RMSE 6.4% −5.8% 21.6% 32.9% 29.5% −26.6% 70.2% −2.3% 74.1% 7.4%

2016–2019
MAE −15.8% 80.5% 6.5% −11.7% 40.0% −24.0% −21.3% −17.2% −29.0% 40.2%
RMSE −11.0% 77.6% −2.4% −21.0% 38.3% −23.3% −18.7% −22.5% −23.0% 41.8%

2020–2021 (Q3) MAE 61.6% 19.1% 11.6% 201.3% 140.6% 237.5% 68.6% 18.4% 79.1% 111.8%
RMSE 94.9% 41.6% 12.3% 363.3% 219.7% 476.6% 105.7% 16.2% 149.7% 190.8%
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5.3. Forecast Examples

In order to provide a better understanding of the TFT, in this section, we present
concrete examples of its predictions and their interpretability. We show the quantile
forecast for Spain and the United States for two years, 2011 and 2017. The first year displays
how the model works in a period of turbulence, while the second presents its performance
in a period of stable growth.

Figure 7 represents the quantile forecast for Spain (LHS) and the USA (RHS) for the
year 2011. In addition to the point forecasts (orange line), the confidence intervals for
different significance levels (2%, 10%, 25%, 50%, 75%, 90%, and 98%) are plotted. The
primary y-axis represents the accumulated logarithmic growth rate, while the secondary
y-axis provides information of which of the previous periods has more importance in each
prediction. This aspect is obtained by analyzing the attention weights. As expected, the
Great Recession has a great importance.

Figure 7. 2011 quantile forecast for Spain (left hand side) and the USA (right hand side).

Figure 8 shows the encoder variables importance for the 2011 forecast. Variable
time_idx, which represents the temporal sequence, is the most important one, followed
by the World Trade Volume Index, the autoregressive component, the OECD Leading
Indicator, and the CRB Raw Industrial Spot Index. Otherwise, the private debt to GDP
ratio and our proxy of global credit spread cycle (USA Credit Spread) are not as relevant,
as most of private deleveraging process already occurred. Finally, the yield curve spread
predictive power is almost insignificant.

Figure 8. Encoder variables importance for the year 2011 forecast.

Figure 9 displays the quantile forecasting results for Spain (LHS) and the USA (RHS)
in 2017, including the predicted values compared to the observed ones, the prediction
intervals, and the relative importance of each lag in the forecast (grey line).
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Figure 9. 2017 quantile forecast for Spain (left hand side) and USA (right hand side).

Figure 10 depicts the encoder variables importance for the 2017 forecast. The variable
that captures the temporal sequence (time_idx) is revealed as the most important one,
followed by the autoregressive component and the OECD leading indicator.

Figure 10. Encoder variables importance for the 2017 forecast.

6. Concluding Remarks

The main contribution of this paper is that it is the first to apply a new artificial
intelligence architecture, TFTs, recently developed by [14], to the joint forecasting of GDP
growth for a large number of OECD countries at different time horizons. Its relevance lies
in the fact that this AI architecture offers important comparative advantages over regression
models and other deep learning methods in a context where the time series characteristics
of business cycle indicators are affected by long-run non-linearities. Mainly, it enables the
training of the model on multiple time series from different distributions; it allows for
visualizing persistent temporal patterns and identifying significant events and different
regimes, providing quantile regressions for forecasts and interpretable results since the
impact of each explanatory variable is quantified.

Future research aims to reinforce and improve the results obtained, incorporating
additionally countries and more explanatory variables. Furthermore, it will be necessary to
compare their results with models that are much richer than baseline ARIMA models, both
regression models (dynamic factor models [110]) and deep learning models, especially state-
of-the-art methods such as the sample convolution and interaction network (SCINet) [111],
Informer [112], DeepAR [84], or frequency improved legendre memory model (FiLM) [113].

The results of the joint GDP forecasting of 25 OECD countries at different time
horizons—one, two, three, and four quarters—using macroeconomic and financial variables
outperform those obtained with the benchmark (ARIMA) in terms of both the MAE and
the RMSE, especially in periods of turbulence, such as the COVID-19 shock. The obtained
results show that TFT forecasts improvements are greater in the demand-driven growth
countries than in export-led growth ones.
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The use of TFTs to predict real GDP yields very interesting results regarding the
importance of the explanatory variables. The relative importance of variables might vary
somewhat, depending on the phase of the economic cycle or the forecast time horizon.
It is remarkable the predictive capacity of the autoregressive component and the OECD
composite leading indicator, in addition to the CRB Raw Industrial Spot Index, as well as
the variable that captures the indebtedness of the non-financial private sectors, which is
related to our proxy of global credit spread cycle (USA Credit Spread), and the world trade
indicator. On the opposite side, it is worth highlighting the low predictive power of the
slope of the yield curve.

Future research should exploit the one main ability of TFTs, which is the possibility of
incorporating the effects of known future inputs in the predictions. It allows policymakers
to perform the impact assessment of changes in instrumental economic variables, such as
interest rates, taxes, etc. Given that one of the findings in this paper are the importance of
private debt in forecasting real GDP, this framework could be used to simulate the effects
of credit tightening measures.

Finally, it would be very interesting to exploit one of the most outstanding features of
TFTs, the possibility of identifying different economic regimes. Several studies ([114–116])
suggest the hypothesis that, in the last decades, the only source of growth in the western
countries is bubble generation (financial or real estate). This new AI architecture would be
useful to identify the blow-up periods and the subsequent bursting ones.

In short, TFTs are revealed as a new AI tool available to economists and policymakers,
with enormous potential in the prediction of economic cycles.
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Appendix A. One Sided Tests for the Outperforming of TFT GDP Forecast with

Respect the Benchmark ARIMA

We formally test the improvement of the MAE and RMSE metrics of TFT relative
to ARIMA using the bootstrap one-sided test. The null hypothesis is that the difference
between the metrics of both estimation procedures is not significant against the alternative
hypothesis of the metric, for the TFT is lower than that for the ARIMA. We compute the
99% critical value of the distribution of the TFT metric (MAE or RMSE) using bootstrap
resampling. Then, we calculate the percentage difference of the ARIMA metric (MAE or
RMSE, respectively) relative to this bootstrap critical value. As shown in Table A1, for both
metrics, all the test-statistics for periods greater than one quarter are positive. Therefore,
we can conclude that TFT outperforms ARIMA at the 99% significance level for most
prediction horizons.

Table A1. Percentage difference of the ARIMA performance metric (MAE and RMSE) of ARIMA
relative to the 99% critical value of the bootstrap distribution for the TFT metric.

Metric t + 1 t + 2 t + 3 t + 4

MAE −18.59% 8.21% 25.02% 26.22%
RMSE a −20.05% 60.46% 118.43% 120.20%

a RMSE is the average of the RMSE calculated at country level.
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Appendix B. Code for Annual Forecast
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Abstract: Deep learning models with convolutional operators have received widespread attention
for their good image denoising performance. However, since the convolutional operation prefers
to extract local features, the extracted features may lose some global information, such as texture,
structure, and color characteristics, when the object in the image is large. To address this issue, this
paper proposes an N-shaped convolutional neural network with the ability to extract multi-scale
features to capture more useful information and alleviate the problem of global information loss. The
proposed network has two main parts: a multi-scale input layer and a multi-scale feature extraction
layer. The former uses a two-dimensional Haar wavelet to create an image pyramid, which contains
the corrupted image’s high- and low-frequency components at different scales. The latter uses a
U-shaped convolutional network to extract features at different scales from this image pyramid. The
method sets the mean-squared error as the loss function and uses the residual learning strategy to
learn the image noise directly. Compared with some existing image denoising methods, the proposed
method shows good performance in gray and color image denoising, especially in textures and
contours.

Keywords: image denoising; wavelet transform; Unet; image pyramid; multi-scale features

MSC: 68U10

1. Introduction

Image denoising is one of the basic tasks of computer vision and is of wide interest
to academia and industry, as it can effectively improve image quality. The purpose of
image denoising is to remove noise from a corrupted image and restore its original content
as much as possible. In many computer vision tasks, image denoising is often used as a
preprocessing method to improve the practical performance of advanced computer vision
tasks [1]. Over the past few decades, many outstanding image denoising methods, as shown
in Figure 1, have been proposed, including filtering-based [2,3], sparse-representation-
based [4–8], external-prior-based [9–12], low-rank-representation-based [13,14], and deep-
learning-based methods [15–18].

Filtering-based methods were the first techniques to be applied to image denoising
and rely on the self-similarity of images. Well-known approaches include Gaussian filtering,
mean filtering, and median filtering. These three methods assume that the pixels in an
image do not exist in isolation and have connections to other pixels. However, Buades
et al. [2] found that similar pixels are not limited to local areas, and making full use of the
redundant information in an image can improve the image denoising performance. Hence,
they proposed a nonlocal mean filtering method (NLM) based on existing smoothing
filtering methods. Although NLM can achieve good denoising performance, it needs to
find a sufficient number of similar blocks when computing each pixel, which gives it high
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computational complexity. To solve this problem, Kostadin et al. [3] proposed a block-
matching and 3D filtering (BM3D) method, which has a good denoising performance and
fast computational speed.

Figure 1. Classification of image denoising methods.

Sparse-representation-based methods are based on image sparsity and achieve image
denoising by training an over-complete dictionary. A more representative case is the
K-singular value decomposition (KSVD) method using sparse representation [4]. Inspired
by KSVD, Mairal et al. [5] combined image self-similarity with sparse coding to decompose
similar patches using similar sparse patterns, thus forming a Learned Simultaneous Sparse
Coding (LSSC) method. Although sparse representation models have shown good results
in image denoising, the sparse representation of traditional models may not be accurate
enough due to the degradation of the observed images. To further improve the performance
of image denoising based on sparse representation, Dong et al. [6] proposed a nonlocally
centralized sparse representation (NCSR), which transformed the denoising problem into
a problem of suppressing sparse coding noise. In addition, because the sparse coding of
images using a single transform can limit performance, Wen et al. [7] proposed a structured
over-complete sparsifying transform model with block cosparsity (OCTOBOS). These
methods [4–7] have exhibited good results in denoising additive Gaussian white noise
(AWGN); however, it is difficult to obtain good performance in real image denoising. To
achieve better denoising of real images, Xu et al. [8] proposed a trilateral weighted sparse
coding scheme (TWSC).

External-prior-based methods realize image denoising by using the statistical proper-
ties of natural images. A representative method is the denoising method based on expected
patch log likelihood (EPLL) proposed by Zoran and Weiss [9]. This method applies the
Gaussian mixture model to learn prior knowledge from a large number of natural image
blocks and applies it to the denoising of other natural images. Similar to EPLL, Xu et al. [10]
proposed a patch group prior-based denoising method (PGPD) to learn the self-similar
features of natural images from groups of similar patches using the Gaussian mixture distri-
bution. Inspired by EPLL, Chen et al. [11] proposed an external patch prior-guided internal
clustering approach by combining an image external prior and an internal self-similarity
prior, which is named PCLR. To improve the texture restoration capability of the image
denoising method, Zou et al. [12] proposed a gradient histogram preservation method
(GHP) based on texture enhancement. GHP improves texture recovery by preserving the
gradient distribution of the corrupted image.

Low-rank representation-based methods exploit the low-rank properties of natural
images and achieve denoising by extracting their low-rank components. A typical case is
the Weighted Nuclear Norm Minimization (WNNM) proposed by Gu et al. [13]. Low-rank
matrix factorization is also a method used to extract low-rank components from a dataset
and is often applied in cases where the image size is large and its rank is much smaller
than the length and width of the dataset. The most well-known method is the low-rank
matrix factorization based on variational Bayesian (VBMFL), which was proposed by Zhao
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et al. [14]. This method improves the robustness of the model to outliers by using a Laplace
distribution to establish a noise model.

Deep-learning-based denoising methods are currently the most popular. They usually
learn the direct mapping from the corrupted image to the clean image or the noise. Since
deep-learning-based denoising methods do not rely on image priori (e.g., self-similarity,
sparsity, gradient, statistical properties, and low-rank properties), they do not have to
spend much time finding and processing similar blocks in the images. Thus, they not
only achieve a good denoising performance but also have a fast inference speed. Schmidt
et al. [15] proposed a method based on a cascade of shrinkage fields (CSF) to improve
the denoising performance while considering computational efficiency. Chen et al. [16]
extended conventional nonlinear reaction–diffusion models with several parametrized
linear filters as well as several parametrized influence functions and proposed a trainable
nonlinear reaction–diffusion method (TNRD). Although CSF and TNRD show good denois-
ing performance, they can only provide the best denoising results at known noise levels.
To solve the problem of blind image denoising, Zhang et al. [17] proposed a deep learning
method using a denoising convolutional neural network (DnCNN), which was the first
application of residual learning to general image denoising. The application of residual
learning to image denoising has greatly improved the denoising performance of networks
and inspired many outstanding denoising methods based on deep learning [17–22]. In
addition, Zhang et al. [18] further improved the DnCNN and proposed a fast and flexible
denoising convolutional neural network (FFDNet), which achieves a good trade-off be-
tween the inference speed and denoising performance by downsampling and manually
inputting a noise estimation map. Binh et al. [23] combined DnCNN with ResNet and pro-
posed a convolutional denoising neural network called FlashLight CNN. A complex-valued
deep convolutional neural network called CDNet was proposed by Quan et al. [24], and it
effectively improved the denoising performance of the network. Guan et al. [25] proposed
an image denoising method for remote sensing images called MRFENet. It demonstrated
good denoising performance and preserved the edge details of the images. Zhang et al. [26]
utilized dilated convolutions to capture more contextual information and then proposed a
hybrid denoising neural network called HDCNN to enhance the denoising performance
of CNN networks in complex application scenarios. Tian et al. [27] combined dynamic
convolution, wavelet transform, and discriminative learning to propose a convolutional
neural network based on the wavelet transform called Multi-stage Image Denoising CNN
with the Wavelet Transform (MWDCNN). To reduce the parameter size and training burden
of deep denoising networks, Tang et al. [28] employed a cascaded residual network and
proposed a lightweight, multi-scale, efficient convolutional neural network.

The results of most denoising methods are obtained directly from the fusion of high-
level features, while low-level features containing texture and contour information are
ignored, resulting in the loss of some important information. Furthermore, since the
convolutional operation prefers to extract local features, it is difficult to extract global
information such as textures and contours when the objects in the image are relatively
large. To solve these problems, an N-shaped convolutional neural network, named NSNet,
using multi-scale features is proposed in this paper. In this model, a 2D Haar wavelet is
used to construct an image pyramid that contains high- and low-frequency components
of the corrupted image at different scales. The multi-scale features are extracted from the
image pyramid by a U-shaped convolutional network [29], and the low- and high-level
features are fused by skip connections in the U-shaped network. The 2D Haar wavelet is
widely used in image denoising, and many scholars have achieved excellent denoising
performance with it [30–33]. To verify the denoising performance of NSNet, the denoising
of gray and color images was carried out at different noise levels and compared with
existing denoising methods. The contributions of this work are summarized as follows:

(1) An N-shaped convolutional neural network for extracting multi-scale information
is proposed. The network exploits multi-scale information to compensate for the
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drawbacks of convolutional operations in extracting global features, which effectively
improves the network’s ability to recover textures and contours.

(2) A scheme for constructing image pyramids using a 2D Haar wavelet is proposed. The
image pyramid is obtained by using a multi-scale 2D Haar wavelet, and each layer
of the pyramid contains one low-frequency component and three high-frequency
components. In image denoising, the high-frequency components can be used as an
estimate of the noise level to facilitate denoising.

(3) NSNet shows good denoising performance for AWGN at a noise level range of (0, 55)
and good recovery of textures and contours. It provides a solution for applications
that need not only denoising but also texture and contour recovery.

The rest of this paper is organized as follows. Section 2 presents the techniques in-
volved in the proposed model. Section 3 describes the proposed NSNet and the construction
of the image pyramid in detail. Section 4 presents the results of experiments, and Section 5
concludes the paper.

2. Theoretical Aspects

2.1. The 2D Haar Wavelet

The process of decomposing an image using the 2D Haar wavelet is shown in Figure 2.
The blocks with five-pointed stars in the figure are the finite impulse response filter.
hϕ =

{
1/

√
2, 1/

√
2
}

denotes a low-pass filter, and hψ =
{
−1/

√
2, 1/

√
2
}

denotes a high-
pass filter. The down arrow (↓) indicates downsampling, which means adding two adjacent
pixels in the column or row direction.

Figure 2. The 2D Haar wavelet transform.

The image is first processed with the two filters separately and is compressed in the
column direction to obtain a low-frequency component L and a high-frequency component
H. The two components are then processed with low- and high-pass filters in turn and
compressed in the row direction to obtain the low-frequency component LL, the high-
frequency component LH in the vertical direction, the high-frequency component HL in
the horizontal direction, and the high-frequency component HH in the diagonal direction.
According to the principle of 2D Haar wavelets, assuming that the corrupted image is
X ∈ Rm×n, the formulas for the components of the image can be simplified as

Aij = X(2i, 2j), Bij = X(2i + 1, 2j) (1)

Cij = X(2i, 2j + 1), Dij = X(2i + 1, 2j + 1) (2)

LLij =
1
2
(

Aij + Bij + Cij + Dij
)
, HLij =

1
2
(

Bij + Dij − Aij − Cij
)

(3)

LHij =
1
2
(
Cij + Dij − Aij − Bij

)
, HHij =

1
2
(

Aij + Dij − Bij − Cij
)

(4)
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where {i|0 ≤ i ≤ m/2} and {j|0 ≤ j ≤ n}. The two-scale 2D Haar wavelet applied to the
image “Monarch” is shown in Figure 3. Through the 2D Haar wavelet, the image is
decomposed into three high-frequency components (LH, HL, HH) and a low-frequency
component (LL).

Figure 3. Two-scale 2D Haar wavelet processing results on the image “Monarch”.

2.2. U-Shaped Convolutional Network

The U-shaped convolutional network was first proposed by Ronneberger et al. [29].
The network has been widely used in various fields for its powerful encoding and decoding
capabilities [34,35]. The U-shaped convolutional network includes four downsampling
operators and four upsampling operators and uses skip connections at the same stage,
which not only gives the network the ability to extract multi-scale features but also ensures
that the output integrates more low-level features [21]. The structure of the U-shaped
convolutional network with batch normalization (BN) is shown in Figure 4.

Figure 4. Network structure of the U-shaped network with BN.

When the neural network becomes very deep, an internal covariate offset may occur,
which can lead to two problems: (1) it affects the learning efficiency and makes the learning
process unstable, and (2) it makes the input data of the later layers too large or small, thus
falling into the saturation area of the activation function and causing the learning process to
stop prematurely. To solve the problem of the internal covariate offset, a general approach is
to add BN, as proposed by Ioffe and Szegedy [36], to the U-shaped convolutional network.

The BN layer is usually placed between the convolutional operation and the Rectified
Linear Unit (ReLU), and the parameters of the BN layer are adjusted by training. Suppos-
ing that there is a mini-batch B = {X1···m} of size m, and the parameters to be learned
are γ and β, the BN process can be expressed as

γ =
√

Var[x], β = E[x], (5)
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μB =
1
m

m

∑
i=1

xi, δ2
B =

1
m

m

∑
i=1

(xi − μB)
2, (6)

x̂i =
xi − μB√

δ2
B + ε

, yi = γx̂i + β, (7)

where ε is a constant added to the mini-batch variance for numerical stability.

2.3. Residual Learning

When the network becomes very deep, some convolutional layers may appear to
have identity mapping, resulting in degradation problems and vanishing and exploding
gradients. To solve this problem, He et al. [37] proposed a residual network with the
residual block shown in Figure 5. It connects the input and output directly through
a shortcut connection, allowing F(x) to learn small changes. This not only allows the
convolutional layer to maintain identity mapping but also avoids vanishing and exploding
gradients. The relationship between the input x and output x∗ of the residual block is

x∗ = F(x) + x. (8)

Figure 5. Basic structure of a residual block.

In image denoising, when the noise level is low, the mapping from the noisy image
to the clean image is close to an identity mapping, which is not conducive to the training
of the network. To solve this problem, Zhang et al. [17] first applied residual learning to
image denoising. Assuming that the input image is Input and the output image is Output,
their relationship is

F(x) = Output − Input. (9)

It can be seen from (9) that residual learning for image denoising uses noise as the
training target, which is a valuable technique for improving the denoising performance of
the model.

3. The Proposed NSNet Model

In this section, the proposed NSNet model is introduced in detail; its architecture
is shown in Figure 6. It mainly consists of a multi-scale input layer and a multi-scale
feature extraction layer. The multi-scale input layer uses a 2D Haar wavelet to create an
image pyramid, which decomposes the corrupted image into high- and low-frequency
components at different scales. The multi-scale feature extraction layer uses a U-shaped
convolutional network to extract features at different scales from the image pyramid.
Additionally, NSNet sets the mean-squared error as the loss function and uses the residual
learning strategy to learn the noise directly.
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Figure 6. Architecture of NSNet.

The 2D Haar wavelet can decompose the image into four sub-images, each with a size
half that of the original image. By using a 2D Haar wavelet to decompose the image, we
can obtain

LL1, (LH1, HL1, HH1) = dwt(y), (10)

where dwt(·) represents the 2D Haar wavelet, y is the corrupted image, LL1 is the low-
frequency component, and LH1, HL1, and HH1 are the high-frequency components. Then,
the 2D Haar wavelet is applied once again to the low-frequency component LL1 to obtain

LL2, (LH2, HL2, HH2) = dwt(LL1), (11)

Finally, to obtain the image pyramid shown in Figure 7, the same operation is repeated
twice, resulting in

LL3, (LH3, HL3, HH3) = dwt(LL2), (12)

LL4, (LH4, HL4, HH4) = dwt(LL3). (13)

Figure 7. Image pyramid constructed by a 2D Haar wavelet.

The image pyramid contains images at five different scales, each of which corresponds
to a different stage of the U-shaped convolutional network. In addition to the original scale,
each scale contains a low-frequency component LL and three high-frequency components
LH, HL, and HH. As shown in Figure 7, the low-frequency component is close to the
corrupted input image, while the high-frequency components contain a lot of noise and
some textures, which can be considered an estimate of the noise level.

The image degradation model is established as y = x + v, where y denotes the
corrupted image, x denotes the clean image, and v denotes the noise. The proposed model
inputs the corrupted image y into the network to predict the noise v ≈ F(y) and finally
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obtains the clean image x = y − v through simple subtraction. The mean-squared error is
used as the loss function:

L(θ) =
1

2N

N

∑
i=1

||F(yi; θ)− (yi − xi)||2F, (14)

where θ represents the parameter set of the model, N is the total number of images, and
xi and yi represent the ith clean image and noisy image, respectively.

For convenience, the proposed model trained at a known noise level is named NSNet-
S, and the model trained at an unknown noise level is named NSNet-B. The pseudo-code
of the proposed method is shown in Algorithm 1.

Algorithm 1 The algorithm of NSNet

Input: All training images D from the observed dataset, denoising mode (B or S), noise level
noiseL, range of noise level noiseR, maximum epoch Mepoch.
Output: The trained network f .

1: Initialing model parameters θ and learning rate η;
2: Sampling m patches (x1, · · · , xm) from D;
3: for epoch = 1 to Mepoch do

4: if epoch > 30 then

5: η ← η/10 ;
6: end if

7: Set ĝ = 0;
8: for i = 1 to m do

9: if mode == “B” then

10: Setting noiseL as an integer at the range noiseR randomly;
11: end if

12: Adding Gaussian noise with the noise level of noiseL to xi:
yi = xi + noisei;

13: Performing multi-scale wavelet transform on yi to obtain y1
i , y2

i , y3
i , y4

i :
y1

i = {LL1, LH1, HL1, HH1} = dwt(yi), y2
i = {LL2, LH2, HL2, HH2} = dwt(LL1),

y3
i = {LL3, LH3, HL3, HH3} = dwt(LL2), y4

i = {LL4, LH4, HL4, HH4} = dwt(LL3);
14: Predicting noise using the network f with parameter θ:

outi ← f
(
yi, y1

i , y2
i , y3

i , y4
i ; θ
)

;
15: Calculating the loss according to Equation (14);
16: Computing the gradient: ĝ ← ĝ + 1

m∇θ L(θ) ;
17: end for

18: Updating θ: θ ← θ − η × ĝ ;
19: end for

4. Experimental Results

Gray image denoising and color image denoising were carried out to compare the
denoising performance of the proposed NSNet with those of existing models, including
NLM [2], BM3D [3], KSVD [4], NCSR [6], OCTOBOS [7], TWSC [8], GHP [9], EPLL [10],
PGPD [11], PCLR [12], WNNM [13], CSF [15], TNRD [16], and FFDNet [18]. Moreover,
two different types of DnCNNs [17] were also selected as the compared models. They
are DnCNN-S and DnCNN-B, which are trained at known and unknown noise levels,
respectively.

4.1. Evaluation Metrics

The results of all denoising methods were analyzed quantitatively in terms of the peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM).
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(1) Supposing that the recovered image is I ∈ Rm×n and the corrupted image is
K ∈ Rm×n, the PSNR is calculated as

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2, (15)

PSNR = 10·log10

(
MAX2

I
MSE

)
, (16)

where MSE is the mean-squared error, and MAXI denotes the maximum value of the
pixels in the image. In general, MAXI = 255 if each pixel is represented in 8-bit binary
form or 1 if it is represented in 1-bit binary.

(2) The SSIM is calculated as

SSIM(I, K) =
(2μIμK + c1)(σIK + c2)(

μ2
I + μ2

K + c1
)(

σ2
I + σ2

K + c2
) (17)

where μI and μK denote the means of I and K, respectively, and σI and σK denote their stan-
dard deviations, while σIK denotes the covariance of I and K, and c1 and c2 are constants.

4.2. Experimental Setting

For the ablation experiment, NSNet, NSNet without BN, Unet, and Unet without BN were
compared. All compared methods were trained using 400 images of size 180 × 180 pixels, as
mentioned in [17]. The test sets were Set12, which is widely used in the evaluation of denoising
methods, and BSD68 [38]. In training the model, the size of the patch was set to 48 × 48, and
128 × 618 patches were cropped from the 400 images. Four denoising methods were trained
at noise levels of 15, 25, 35, 45, and 50. For a noise level of α, the noise was generated by a
Gaussian distribution with a mean of zero and a variance of α.

For the denoising of gray images, the 400 images were still used as the training set, and
128 × 2934 patches of size 48 × 48 were cropped from them. Since most image denoising
methods can only obtain the best denoising performance at a known noise level, to achieve
a fair comparison, the proposed method was trained at an unknown noise level and at noise
levels of 15, 25, and 50. The test sets were Set12 and BSD68, neither of which participated
in model training.

For color image denoising, 432 images were selected from the color image dataset
CBSD500 [39] as training samples, and the remaining 68 images (CBSD68) were used as
the test set. The test set also included Kodak24 [40] and McMaster [41]. In this experiment,
96 × 3900 patches were cropped from the 432 images to train the color image denoising
model. The other settings were largely consistent with the settings used for gray image
denoising. The specific settings of NSNet are shown in Table 1.

Table 1. Specific settings of NSNet used in all experiments.

Experiment Model Noise Level Patch Size Number of Patches

Ablation experiment NSNet-S 15, 25, 35, 45,
50 48 × 48 128 × 618

Gray image denoising NSNet-S 15, 25, 50 48 × 48 128 × 2934
Gray image denoising NSNet-B (0, 55) 48 × 48 128 × 2934
Color image denoising NSNet-B (0, 55) 48 × 48 96 × 3900

When training NSNet-S, each clean image input to the model was corrupted by the
same level of noise. When training NSNet-B, each clean image input to the model was
corrupted by noise at a level drawn randomly from the range (0, 55). The Adam optimizer
was used to tune the model with an initial learning rate of 0.001. The maximum training
epoch was 50. After 30 epochs, the learning rate was adjusted to 0.0001. The size of
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each mini-batch was set to 128. The denoising network was trained in PyTorch, and all
experiments were carried out in the pycharm environment running on a PC with an AMD
Ryzen 9 5900HX with Radeon Graphics 3.30 GHz CPU and an NVIDIA GeForce RTX
3070 Laptop GPU.

4.3. Ablation Experiment

This section describes the ablation experiment that was carried out to demonstrate
the effectiveness of the main components of the proposed model. The experiment tested
the denoising performance of NSNet, Unet, NSNet without BN, and Unet without BN at
noise levels of 15, 25, 35, 45, and 50. The denoising results on the Set12 dataset and the gray
version of BSD68 are shown in Table 2, in which values with # and * represent the best and
second-best denoising performance, respectively.

Table 2. Average PSNR/SSIM of four denoising methods in the ablation experiment.

Model
Nosie
Level

Method

NSNet Unet NSNet(-BN) Unet(-BN)

Set12

σ = 15 32.90 #/0.9040 # 32.75/0.9017 32.76 */0.9025 * 31.81/0.8835
σ = 25 30.50 #/0.8643 # 30.48 */0.8640 * 30.33/0.8610 30.28/0.8602
σ = 35 28.95 #/0.8319 # 28.89 */0.8300 * 28.65/0.8243 28.77/0.8270
σ = 45 27.81 #/0.8041 # 27.80 */0.8029 * 27.66/0.7993 26.52/0.7945
σ = 50 27.32 #/0.7910 # 27.32 */0.7901 * 26.93/0.7737 26.90/0.7724

BSD68

σ = 15 31.79 #/0.8927 # 31.71 */0.8912 * 31.70/0.8916 * 31.04/0.8748
σ = 25 29.31 #/0.8322 # 29.29 */0.8321 * 29.20/0.8294 29.18/0.8288
σ = 35 27.82 #/0.7849 # 27.76 */0.7810 * 27.65/0.7779 27.71/0.7788
σ = 45 26.78 #/0.7446 # 26.77 */0.7442 * 26.70/0.7413 26.63/0.7364
σ = 50 26.35 #/0.7267 # 26.34 */0.7260 * 26.10/0.7101 26.11/0.7106

Note: NSNet(-BN) means NSNet without BN, and Unet(-BN) means Unet without BN. # The best denoising
performance. * The second-best denoising performance.

The denoising performance of NSNet is better than that of Unet at all noise levels,
which shows that multi-scale input can improve the denoising performance. The results for
NSNet and NSNet without BN show that the denoising performance of NSNet is greatly
improved after adding the BN layer. As mentioned in [29], the BN layer can improve
the denoising performance of the neural network. At all noise levels, NSNet without BN
achieves better denoising than Unet without BN, and its denoising performance is close to
that of Unet at low noise levels, which indicates that the multi-scale input greatly improved
the denoising performance of the model at low noise levels. With increases in the noise
level, the structure of the compressed image is increasingly corrupted; thus, it cannot
provide accurate information for the network. In this case, the performance of NSNet is
similar to that of Unet. For example, the denoising performance of NSNet is similar to that
of Unet at a noise level of 50.

4.4. Gray Image Denoising

In this experiment, AWGN was added to Set12 and the gray version of BSD68, and the
noise levels were set to 15, 25, and 50. The denoising results of all methods on Set12 are
shown in Tables 3–5. Due to insufficient parameters, CSF cannot be tested at a noise level
of 50.

Table 3 shows the denoising results of all methods at a noise level of 15. NSNet-S has a
better denoising performance than other methods and obtained the first-ranked denoising
performance on ten images. NSNet-S ranked a very close second in terms of denoising
the image “House”. In this case, the denoising performance of NSNet-S is 1.86 dB higher
than that of the worst method, NLM, on average, and 0.1 dB higher than that of DnCNN-S,
on average, in terms of PSNR. The average results of all methods show that there is little
difference in the denoising performance of most methods at a noise level of 15. At a
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low noise level, the self-similarity, sparsity, and low-rank properties of the image are still
relatively complete, and the traditional denoising methods (e.g., BM3D, NCSR, TWSC,
PCLR, WNNM) also achieve a good denoising performance.

Table 3. PSNRs of all methods on Set12 at a noise level of 15.

Model C.man House Pappers Starfish Monar. Airpl. Parrot Lena Barbara Boat Man Couple Average

NLM 30.05 33.23 31.59 30.30 30.47 29.42 30.07 33.16 31.33 31.25 31.27 30.97 31.09
BM3D 31.92 34.95 32.70 31.15 31.86 31.08 31.38 34.27 33.11 32.14 31.93 32.11 32.38
KSVD 31.46 34.24 32.20 30.70 31.41 30.75 30.95 33.71 32.42 31.76 31.53 31.47 31.89
NCSR 32.01 35.04 32.66 31.50 32.25 31.19 31.37 34.12 33.06 32.08 31.98 32.00 32.44
OCTOBOS 31.91 34.32 32.49 31.04 31.72 30.98 31.29 33.91 32.59 31.87 31.74 31.77 32.14
TWSC 32.01 35.11 # 32.83 31.64 32.47 31.14 31.52 34.39 33.64 # 32.24 32.09 32.15 32.60
EPLL 31.82 34.14 32.58 31.08 32.03 31.16 31.40 33.87 31.34 31.91 31.97 31.91 32.10
GHP 31.48 34.07 32.40 31.09 31.63 30.77 31.16 33.54 32.01 31.72 31.62 31.54 31.92
PCLR 32.23 35.07 33.00 31.75 32.63 31.45 31.62 34.27 33.12 32.25 32.16 32.14 32.64
PGPD 31.83 34.79 32.61 31.25 32.15 31.19 31.32 34.04 32.74 32.03 31.99 32.07 32.33
WNNM 32.18 35.15 32.97 31.83 32.72 31.40 31.61 34.38 33.61 * 32.28 32.12 32.18 32.70

CSF 31.95 34.40 32.83 31.56 32.34 31.34 31.36 34.07 31.93 32.01 32.09 31.99 32.32
TNRD 32.19 34.55 33.03 31.76 32.57 31.47 31.63 34.25 32.14 32.15 32.24 32.11 32.51
DnCNN-

S 32.59 * 34.99 33.24 * 32.13 * 33.25 * 31.67 * 31.88 * 34.58 32.61 32.42 * 32.43 * 32.43 * 32.85 *

DnCNN-
B 32.14 34.96 33.09 31.92 33.08 31.54 31.64 34.52 32.03 32.36 32.37 32.38 32.67

FFDnet 32.37 35.05 33.01 31.95 32.92 31.55 31.79 34.60 * 32.48 32.36 32.37 32.43 * 32.74
NSNet-

S 32.67 # 35.09 * 33.33 # 32.29 # 33.32 # 31.79 # 31.97 # 34.69 # 32.80 32.50 # 32.48 # 32.52 # 32.95 #

NSNet-
B 32.02 34.63 32.74 32.08 32.87 31.31 31.60 34.42 30.59 32.29 32.18 32.20 32.41

Note: # The best denoising performance. * The second-best denoising performance.

Table 4. PSNRs of all methods on Set12 at a noise level of 25.

Model C.man House Pappers Starfish Monar. Airpl. Parrot Lena Barbara Boat Man Couple Average

NLM 29.97 30.38 29.02 27.82 28.07 27.33 27.98 30.38 28.59 28.74 28.80 28.32 28.61
BM3D 29.45 32.86 30.16 28.56 29.25 28.43 28.93 32.08 30.72 29.91 29.62 29.72 29.98
KSVD 28.90 32.10 29.65 28.19 28.81 28.16 28.46 31.36 29.58 29.32 29.11 28.88 29.38
NCSR 29.43 32.89 30.05 28.77 29.43 28.45 28.86 31.92 30.62 29.77 29.58 29.49 29.94
OCTOBOS 29.25 32.08 29.78 28.24 28.78 28.28 28.67 31.56 29.88 29.51 29.26 29.23 29.54
TWSC 29.54 33.05 30.32 28.98 29.71 28.55 29.08 32.22 31.26 # 29.99 29.71 29.79 30.18
EPLL 29.24 32.04 30.07 28.43 29.30 28.56 28.91 31.62 28.55 29.69 29.63 29.48 29.63
GHP 29.28 32.50 30.04 28.66 29.02 28.28 28.87 31.69 30.29 29.71 29.49 29.37 29.77
PCLR 29.67 32.98 30.46 28.87 29.75 28.77 29.13 32.17 30.65 30.00 29.77 29.73 30.16
PGPD 29.26 32.79 30.07 28.49 29.29 28.54 28.80 31.93 30.28 29.82 29.66 29.68 29.88
WNNM 29.64 33.23 30.40 29.03 29.85 28.70 29.13 32.25 31.24 * 30.03 29.77 29.82 30.26

CSF 29.47 32.40 30.28 28.80 29.62 28.72 28.89 31.80 29.03 29.77 29.72 29.53 29.84
TNRD 29.71 32.54 30.55 29.02 29.86 28.89 29.18 32.01 29.41 29.92 29.88 29.71 30.06
DnCNN-

S 30.21 # 33.10 30.82 * 29.36 30.41 * 29.08 * 29.44 * 32.41 30.01 30.20 30.08 30.08 30.43 *

DnCNN-
B 30.03 33.04 30.73 29.24 30.37 29.06 29.35 32.40 29.67 30.19 30.06 30.05 30.35

FFDnet 30.05 33.26 * 30.72 29.28 30.29 29.01 29.42 32.57 * 29.98 30.23 * 30.07 * 30.15 * 30.42
NSNet-

S 30.12 * 33.30 # 31.05 # 29.90 # 30.48 # 29.24 # 29.45 # 32.64 # 30.39 30.27 # 30.14 # 30.22 # 30.60 #

NSNet-
B 30.05 33.05 30.62 29.62 * 30.33 28.97 29.39 32.57 * 27.54 30.23 * 29.99 30.05 30.20

Note: # The best denoising performance. * The second-best denoising performance.

213



Mathematics 2023, 11, 2772

Table 5. PSNRs of all methods on Set12 at a noise level of 50.

Model C.man House Pappers Starfish Monar. Airpl. Parrot Lena Barbara Boat Man Couple Average

NLM 24.26 25.69 24.79 23.88 24.16 23.60 24.35 25.97 24.31 24.80 25.06 24.41 24.61
BM3D 26.13 29.69 26.68 25.04 25.82 25.10 25.90 29.05 27.23 26.78 26.81 26.46 26.73
KSVD 25.68 27.97 26.09 24.53 25.30 24.61 25.38 27.86 25.47 25.95 26.10 25.30 25.85
NCSR 26.15 29.62 26.53 25.09 25.77 24.93 25.71 28.90 26.99 26.67 26.67 26.19 26.60
OCTOBOS 25.62 28.59 26.15 24.57 25.04 24.86 25.39 28.37 26.17 26.30 26.27 25.82 26.10
TWSC 26.46 30.17 26.88 25.41 26.27 25.38 26.11 29.08 27.54 * 26.88 26.82 26.48 26.96
EPLL 26.03 28.77 26.63 25.04 25.78 25.24 25.84 28.42 24.82 26.65 26.72 26.24 26.35
GHP 25.91 28.51 26.38 24.39 25.53 24.76 25.71 27.43 25.44 25.99 25.92 25.46 25.95
PCLR 26.56 29.77 27.03 25.32 26.24 25.50 26.15 29.11 27.11 26.99 26.94 26.55 26.94
PGPD 26.40 29.73 26.69 25.10 25.89 25.34 25.84 29.00 26.84 26.82 26.84 26.47 26.75
WNNM 26.42 30.33 26.91 25.43 26.32 25.42 26.09 29.25 27.79 # 26.97 26.94 26.64 27.04

CSF - - - - - - - - - - - - -
TNRD 26.61 29.49 27.08 25.42 26.32 25.59 26.16 28.94 25.70 26.94 26.99 26.50 26.81
DnCNN-

S 27.26 29.96 27.35 25.64 26.83 25.83 26.42 29.34 26.15 27.19 27.19 26.86 27.17

DnCNN-
B 27.26 29.91 27.35 25.60 26.84 25.82 26.48 29.34 26.32 27.18 27.17 26.87 27.18

FFDnet 27.24 30.36 * 27.41 25.68 26.92 25.79 26.57 # 29.63 26.41 27.30 * 27.26 * 27.04 * 27.30 *
NSNet-

S 27.38 # 30.43 # 27.54 # 26.24 * 26.93 * 25.96 # 26.50 29.74 # 27.04 27.38 # 27.31 # 27.14 # 27.47 #

NSNet-
B 27.35 * 30.24 27.47 * 26.17 # 26.94 # 25.89 * 26.54 * 29.70 * 25.46 27.30 * 27.19 27.01 27.27

Note: # The best denoising performance. * The second-best denoising performance.

Table 4 shows the denoising results obtained by all methods at a noise level of 25. With
increases in the noise level, the best and second-best denoising performance was obtained
with the deep-learning-based methods, which shows the superiority of deep learning in
image denoising. As the noise level increases, the self-similarity and other features of
the image are increasingly corrupted, which leads to the fact that the traditional image-
prior-based denoising methods are no longer advantageous. The deep-learning-based
denoising methods learn the potential noise directly from the corrupted image and rely
less on the prior knowledge of the image. This allows them to achieve a good denoising
performance, even at high noise levels. In this case, NSNet-S is ranked first in terms of
denoising performance on ten images and second on one image. NSNet-B is ranked second
in terms of denoising performance on three images. The denoising performance of NSNet-S
is 1.99 dB higher than that of the worst method, NLM, and 0.17 dB higher than that of
the second-best method, DnCNN-S, in terms of PSNR. Compared with the traditional
denoising methods BM3D, NCSR, TWSC, and WNNM, NSNet-B is close to WNNM and
outperforms BM3D, NCSR, and TWSC at a noise level of 25.

Table 5 shows the denoising results obtained by all methods at a noise level of 50. In
this case, NSNet-S is ranked first in terms of denoising performance on eight images and
second on two images. NSNet-B is ranked first in terms of denoising performance on two
images and second on six images. Compared with other methods, NSNet-B provides a
better denoising performance at a high noise level. The reason for this may be that an image
with high noise will cause a greater deviation than one with low noise, and the network
will pay more attention to the restoration of images with high noise when training NSNet-B.
In this case, NSNet-S is 2.86 dB higher than the worst method, NLM, and 0.17 dB higher
than the second-best method, FFDNet. NSNet-B also has an outstanding performance; its
denoising performance surpasses that of DnCNN-B and WNNM and differs from that of
FFDNet by only 0.03 dB.

In the above three experiments, NSNet shows a good denoising performance in most
cases, although that of NSNet on the image “Barbara” is not as good as that of traditional
methods (e.g., TWSC, WNNM). “Barbara” has similar rich textures, and the method based
on image self-similarity can effectively use them to achieve better denoising. Both texture
and noise are high-frequency information; therefore, image denoising methods that use
residual learning tend to treat texture as noise, which makes the denoising performance
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of the proposed model poor. In addition, the same experiments were conducted on the
dataset BSD68 to better demonstrate the denoising performance of NSNet. The average
PSNRs and SSIMs of all methods on Set12 and BSD68 are shown in Table 6. Compared
with other methods, the average denoising performance of NSNet-S on the two datasets is
the best, and NSNet-B has a better denoising performance at a high noise level.

Table 6. Average PSNRs/SSIMs of all methods on datasets Set12 and BSD68.

Model
Set 12 BSD68

σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50

NLM 31.09/0.8594 28.62/0.7711 24.61/0.5695 29.82/0.8322 27.56/0.7296 24.01/0.5212
BM3D 32.38/0.8957 29.98/0.8510 26.73/0.7681 31.08/0.8722 28.57/0.8017 25.62/0.6869
KSVD 31.89/0.8847 29.38/0.8308 25.85/0.7260 30.86/0.8677 28.29/0.7889 25.18/0.6548
NCSR 32.44/0.8958 29.94/0.8501 26.60/0.7673 31.19/0.8770 28.61/0.8045 25.59/0.6864

OCTOBOS 32.14/0.8889 29.54/0.8378 26.10/0.7433 31.08/0.8744 28.46/0.7989 25.33/0.6705
TWSC 32.60/0.8989 30.18/0.8549 26.96/0.7731 31.28/0.8782 28.76/0.8077 25.77/0.6903
EPLL 32.10/0.8936 29.63/0.8444 26.35/0.7475 31.19/0.8825 28.68/0.8123 25.68/0.6877
GHP 31.92/0.8693 29.77/0.8415 25.95/0.7562 30.83/0.8513 28.49/0.8039 24.94/0.6809
PCLR 32.64/0.8979 30.16/0.8542 26.94/0.7763 31.38/0.8799 28.84/0.8106 25.88/0.6970
PGPD 32.33/0.8900 29.88/0.8447 26.75/0.7602 31.14/0.8705 28.64/0.8019 25.76/0.6877

WNNM 32.70/0.8982 30.26/0.8557 27.04/0.7775 31.32/0.8766 28.80/0.8029 24.43/0.6838
CSF 32.32/0.8923 29.84/0.8450 -/- 31.24/0.8746 28.73/0.8055 -/-

TNRD 32.51/0.8967 30.06/0.8520 26.81/0.7666 31.42/0.8825 28.91/0.8155 25.96/0.7024
DnCNN-S 32.85 */0.9025 * 30.43 */0.8616 27.17/0.7828 31.74 */0.8907 * 29.23 */0.8279 26.24/0.7189
DnCNN-B 32.67/0.9000 30.35/0.8599 27.18/0.7816 31.62/0.8868 29.16/0.8244 26.23/0.7164

FFDnet 32.74/0.9024 30.42/0.8631 * 27.30 */0.7900 * 31.64/0.8902 29.19/0.8828 26.29/0.7239
NSNet-S 32.95 #/0.9054 # 30.59 #/0.8662 # 27.47 #/0.7956 # 31.81 #/0.8936 # 29.33 #/0.8339 # 26.42 #/0.7316 #

NSNet-B 32.41/0.8943 30.20/0.8595 27.27/0.7895 31.46/0.8870 29.18/0.8304 * 26.32 */0.7242 *

Note: # The best denoising performance. * The second-best denoising performance.

Figures 8 and 9 show the denoising performance of all compared methods on gray
images at noise levels of 25 and 50, respectively. In order to facilitate the comparison of
the denoising performance, the results were transformed into pseudo-color images. The
red box in Figure 8 shows the restoration effect of all compared methods on the “grass”. It
can be seen that NSNet’s recovery of the “grass” is closer to the clean image than the other
compared methods and results in sharper and clearer edges and textures. The red box in
Figure 9 further demonstrates the advantages of NSNet in edge and texture restoration. As
shown in Figure 9, compared to other methods, NSNet can not only make the edges and
textures sharper but also restore more image details.

4.5. Color Image Denoising

The previous section compared the denoising performance of the methods on gray
images, where BM3D, DnCNN, and FFDNet had the better denoising performance and
computational speed. In the experiment described in this subsection, these methods were
selected for a further comparative test of the denoising ability of the proposed model with
color images. The datasets used here are the color versions of CBSD68, Kodak24, and
McMaster.
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Figure 8. Results of some denoising methods at a noise level of 25.
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Figure 9. Results of some denoising methods at a noise level of 50.

The denoising performance of four methods (BM3D, DnCNN, FFDNet, and NSNet) at
noise levels of 35, 45, and 55 is shown in Table 7. The proposed NSNet is the best model in
the denoising experiments with CBSD68 and Kodak24, with McMaster ranked second.
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Table 7. Average PSNRs/SSIMs of all methods on color images.

Dataset
Noise
Level

Method

BM3D DnCNN FFDNet NSNet

CBSD68
σ = 35 28.88/0.8160 29.60 */0.8422 * 29.59/0.8408 29.69 #/0.8481 #

σ = 45 27.84/0.7793 28.43/0.8060 * 28.44 */0.8048 28.58 #/0.8150 #

σ = 55 26.97/0.7468 27.50/0.7736 27.56 */0.7738 * 27.70 #/0.7854 #

Kodak24
σ = 35 29.89/0.8208 30.45/0.8387 30.56 */0.8405 * 30.67 #/0.8478 #

σ = 45 28.91/0.7906 29.31/0.8057 29.44 */0.8083 * 29.59 #/0.8187 #

σ = 55 28.06/0.7629 28.38/0.7753 28.57 */0.7811 * 28.72 #/0.7929 #

McMaster
σ = 35 29.93/0.8237 30.15/0.8392 30.83 #/0.8550 # 30.60 */0.8527 *
σ = 45 29.00/0.7988 29.08/0.8116 29.68 #/0.8275 * 29.55 */0.8281 #

σ = 55 28.13/0.7712 28.17/0.7832 28.76 #/0.8032 * 28.73 */0.8049 #

Note: # The best denoising performance. * The second-best denoising performance.

In the denoising experiment with the dataset CBSD68, NSNet performed 0.81 dB better
than BM3D, 0.09 dB better than DnCNN, and 0.1 dB better than FFDNet at a noise level of
35. It was 0.74 dB better than BM3D, 0.15 dB better than DnCNN, and 0.14 dB better than
FFDNet at a noise level of 45, and 0.73 dB better than BM3D, 0.2 dB better than DnCNN,
and 0.14 dB better than FFDNet at a noise level of 55. In the denoising experiment with
the dataset Kodak24, NSNet was 0.78 dB better than BM3D, 0.22 dB better than DnCNN,
and 0.11 dB better than FFDNet at a noise level of 35. It was 0.68 dB better than BM3D,
0.28 dB better than DnCNN, and 0.15dB better than FFDNet at a noise level of 45, and
0.66 dB better than BM3D, 0.34 dB better than DnCNN, and 0.15 dB better than FFDNet at
a noise level of 55. In the denoising experiment using the McMaster dataset, although the
denoising performance of NSNet was not as good as that of FFDNet, the comparison of all
methods in terms of SSIM shows that NSNet is able to recover the structure of the color
image better.

Figure 10 shows the denoising results of four methods (BM3D, DnCNN, FFDNet,
and NSNet) on one image of the public dataset CBSD68 at a noise level of 45. To better
demonstrate the denoising performance of the proposed method, two representative parts
are highlighted. These show that NSNet repairs the texture better than other methods.
Figure 11 shows the denoising results of four methods at a noise level of 40. NSNet has a
more significant repair effect on “stone” in the image, and its recovery of textures is better
than those of other methods.

Figure 10. Comparison of denoising results on one color image of the public dataset CBSD68 [39] at a
noise level of 45.
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Figure 11. Comparison of denoising results on one color image of the public dataset CBSD68 [39] at a
noise level of 40.

5. Conclusions

In this study, an N-shaped convolutional network that can extract multi-scale informa-
tion is proposed. NSNet is able to extract multi-scale information from corrupted images
and uses it to compensate for the drawbacks of convolutional operations in extracting global
features, thus enhancing NSNet’s ability to capture global information and reconstruct
textures and contours. Ablation experiments demonstrate that extracting multi-scale infor-
mation is beneficial to improving the denoising performance of the model at noise levels in
the range of (0, 50). Gray and color image denoising experiments demonstrate that NSNet
outperforms many existing image denoising methods at noise levels of 15, 25, and 50, es-
pecially at high noise levels. In addition, NSNet has a good blind denoising performance,
where its performance at high noise levels is close to that at known noise levels.
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Abstract: Several Sun models suggest a radioactive balance, where the concentration of greenhouse
gases and the albedo effect are related to the Earth’s surface temperature. There is a considerable
increment in greenhouse gases due to anthropogenic activities. Climate change correlates with this
alteration in the atmosphere and an increase in surface temperature. Efficient forecasting of climate
change and its impacts could be helpful to respond to the threat of c.c. and develop sustainably.
Many studies have predicted temperature changes in the coming years. The global community has to
create a model that can realize good predictions to ensure the best way to deal with this warming.
Thus, we propose a finite-time thermodynamic (FTT) approach in the current work. FTT can solve
problems such as the faint young Sun paradox. In addition, we use different machine learning models
to evaluate our method and compare the experimental prediction and results.

Keywords: clustering; machine learning; greenhouse gas; finite-time thermodynamics; climate
change

MSC: 68U01

1. Introduction

The issue of climate change stands as one of the most significant obstacles that human-
ity must confront. Thus, extensive scientific evidence demonstrates that the altering climate
has significantly impacted societies throughout history and in the present, posing severe
effects for the future. Modern advancements in quantitative empirical studies have shed
light on the crucial interconnections within the interconnected climate–human system [1].
Various statistical studies have explored the cause-and-effect relationship between partic-
ular climate conditions and their influence on social interaction, agriculture, economics,
migratory flows, and health [2].

The emergence of scientific efforts in different fields has created a consensus concern-
ing the sustainable development of initiatives and strategies to mitigate climate change.
The most severe consequences of climate change directly affect the health of citizens due to
human activities causing the proliferation of greenhouse gases in the atmosphere, which
induces the increase in temperatures and alteration of the hydrologic cycle [3]. The analysis
of the climate change situation is very timely, because secondary effects are associated
with the negative impact on agriculture, the geographic distribution of infectious diseases,
large-scale migrations, clean water access, and others [4].

Machine learning techniques have recently successfully employed statistical down-
scaling methods for global climate models. According to Nourani et al. [5], a diverse range
of machine learning models have been developed and used in groundwater modeling
and other prediction tasks within the field of environmental engineering [6]. Prediction
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models focused on machine learning to analyze climate variables such as precipitation and
temperature have been proposed in other studies to improve accuracy [7]. The support
vector regression model, the adaptive neurofuzzy inference system, and the feedforward
neural network (FFNN) are the most frequently employed machine learning models to
analyze climate change and particular groundwater levels [8,9]. Other approaches are
based on Gaussian models, which are suitable methods for global climate modeling [10].

Recently, there has been a growing emergence of deep learning models that have
garnered significant attention across various engineering disciplines due to their ability
to extract features from data. Among these models, the long short-term memory (LSTM)
neural network stands out as a powerful deep learning model capable of capturing sequen-
tial characteristics from time series data. LSTM has already been successfully applied in
groundwater-level modeling, as demonstrated by Nourani et al. [11]. According to the
literature review, decision trees, random forests, and artificial neural networks are the most
commonly applied machine algorithms to analyze climate change risk assessment. They
have enabled the identification, classification, and detection of targets and environmental
and structural features, particularly flood and landslide risk events [12].

In the same context, analyzing changes in hydrological systems directly impacts
global climate change, in which classic machine learning algorithms could be limited to
quantifying events related to the climate variability in those hydrological systems. However,
the Gaussian process regression method has been demonstrated to improve the analysis
concerning nonlinear climate variables [13].

On the other hand, the literature reports a crucial synergy between the physics-based
models and machine-learning techniques to develop hybrid approaches to climate change
analysis [14]. Thus, Chukwujindu et al. [15] revealed a crucial relationship between physics
and artificial intelligence to understand better the climate change caused by solar radiation.

According to the development and integration of multidisciplinary fields, the last
years have involved applying physics theories to analyze various Earth phenomena. Now,
physicists and computer scientists have demonstrated enormous interest in studying the
aforementioned secondary effects of climate change. In this sense, Jusup et al. [16] consid-
ered “social physics” an essential tool to quantify social and environmental phenomena.
Moreover, this approach is oriented toward analyzing different issues in which this dis-
cipline can explicitly explain each phenomenon. For instance, in addressing the climate
change topic, the use of network area to describe the complex problem of Earth’s climate
system evidences how physics methods are suitable to work in a multidisciplinary way
with other fields to face this issue quantitatively.

Addressing the risks associated with climate change, Steffen et al. [17] recognized the
relationship between the social community and climate. Therefore, this strategy extends
beyond solely understanding the physical aspects, and requires mobilizing human action.
Scientists are striving to meet this challenge by integrating climate science, social sciences,
computer science, and humanities, resulting in a new field called earth system science,
which aims to foster a holistic understanding of the Earth’s complex dynamics.

On the other hand, global warming is a visible consequence of the heightened in-
tensity and frequency of extreme weather and climate events, which encompass a range
of phenomena, including heatwaves, droughts, wildfires, floods, and hurricanes. These
extreme events pose a substantial risk to human lives and livelihoods, evident through
consequences such as fresh and clean water scarcity and diminished food production. Such
extreme events are characterized by the climatic variable surpassing a critical threshold. It
is worth noting that some extreme events may arise from natural climate variability and
are not directly linked to human-induced forces [18].

There is a high degree of confidence that the anthropogenic rise in greenhouse gas
concentrations and other human-induced factors is responsible for more than 50% of the
reported global average surface temperature accumulation between 1951 and 2010 [16].

Thus, considering the theoretical foundations presented in [16,19], we propose a finite-
time thermodynamic approach to model and predict Earth’s global warming, comparing
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the results of the model with the implementation of machine learning techniques to assess
the predictions.

Finite-time thermodynamics (FTT) has been developed by placing realistic limits on
irreversible processes through various properties, such as power, efficiency, and dissipa-
tion. FTT can be considered an extension of classical equilibrium thermodynamics (CET),
in which thermodynamic models more similar to the real world are sought compared to
those given by CET. So, these models consider the irreversibilities of the system [20,21].
The approach incorporates the constraints of finite-time operation; constraints on system
variables; and generic models for the sources of irreversibility, and thus the production
of entropy such as finite rate, heat transfer, friction, and heat leakage, among others [22].
Moreover, an extreme or optimum of a thermodynamically significant variable is calculated,
such as minimizing entropy production, maximizing energy or availability, and maximiz-
ing power and efficiency [22]. The pioneering work of the FTT corresponds to Curzon
and Ahlborn [20,22], in which the fundamental limits of a power plant used a machine
endoreversible model. This is made up of an endoreversible Carnot cycle, where the irre-
versible processes involve the exchange of heat between the thermal reservoirs and the
active substance.

The thermal engine is composed of two temperature stores, T1 and T2, where T1 > T2,
two irreversible components that are the two thermal resistances, which produce thermal
flows towards the reversible Carnot engine with intermediate temperatures T1w and T2w,
with T1w > T2w, placed between the intermediate stores. The model considers a linear heat
transfer between two irreversible components (thermal conductances α and β) conductances
(see Figure 1).

Figure 1. Scheme of a endoreversible model proposed by De Vos [23].

Summing up, Figure 1 shows a schematic representation of the endoreversible Curzon–
Ahlborn engine. It is built by two reservoirs of temperatures T1 and T2, respectively: α and
β, which denote thermal conductance constants, and a reversible Carnot engine represented
by T1ω and T1ω, where P is the power output of the cycle.
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A problem solved by finite-time thermodynamics efficiently is the so-called weak
young Sun paradox proposed by Sagan and Mullen [24]. This study presents a drawback
for understanding the early stages of planet Earth, since the Sun’s luminosity about 4.5 Gyr
ago was between 70–80% of its value to operate [24–26]. So, it represents a terrestrial
temperature below the water freezing point. The planet’s surface temperature is controlled
by the solar radiation it acquires and its interchange with the gases in the atmosphere. We
consider a blackbody radiative equilibrium between the young Sun and the Earth obtained
in a surface temperature T = 255K, low enough to keep most of the planet’s surface frozen
down to 1–2 Gyr [24]. However, several studies, together with sedimentary records, suggest
the existence of an average surface temperature capable of having liquid water for almost
the entire history of the planet [24]. So, to resolve such a paradox, the first assumption is
taken that solar radiation has increased in the Sun’s lifetime due to the increase in density
of the solar nucleus [24]. The luminosity of the young Sun has been estimated to be 30%
less than the actual value received from the Sun, according to what was said by Gough [24],
where Isc is the present luminosity of the Sun and t0 ≈ 4.56 Gyr, which is the present age
of the Sun. Equation (1) shows the evolution of the Sun’s luminosity, and this equation
affects the amount of average solar radiation q̄s = Isc(1 − ρ)/4 received by the planet.
The equation of the luminosity of Gough is expressed in the following way:

I(t) =
[

1 + 0.4
(

1 − t
t0

)]−1
Isc (1)

Based on the foundation, the problem of thermodynamic equilibrium between the solar
system’s planets depends on the influx of solar incident Isc, the Earth’s albedo ρ, and the
effect of greenhouse γ. Thus, the issue of the thermal equilibrium among solar system
planets and a correct temperature estimation is solved based on the atmosphere’s physical
characteristics. Curzon and Ahlborn [22] introduced the finite-time thermodynamics
concept. They achieved this using a Carnot cycle model, incorporating limited heat transfer
between the heat reservoir and the working substance, all within a maximum-power
operating regime. Following its initial introduction, finite-time thermodynamics underwent
further development to encompass various operating regimes, including—but not limited
to—efficiency power, ecological function, and more. Using the FTT-based approach in
creating models for power converters results in more accurate representations of their
operational levels in real-world scenarios. In [20], an atmospheric convection model,
known as the Gordon–Zarmi (GZ) model, was introduced to estimate the temperature of
the Earth’s lowest atmospheric layer and establish an upper limit for average wind power.
The GZ model incorporates a convection cell, an endoreversible Carnot cycle, and two
external thermal reservoirs, such as air, surrounding the active substance.

The study presented in [27] examined the endoreversible model and recognized that
there is a dissipation of wind energy. The authors proposed to derive an upper limit for
the efficiency of converting solar energy into wind energy, which is approximately 8.3%,
assuming the atmospheric “heat engine” is fully powered by a complete power engine.

On the other hand, Van der Wel improved a new efficiency of the solar energy upper
bound wmax ≈ 10.23% with another endoreversible model based on convective Hadley
cells [24,28]. The peculiarity of the GZ models is that they offer a potential resolution to
the paradox known as the “young and weak Sun”, which was initially introduced by Carl
Sagan and George Mullen in 1972 [25,26]. The GZ and Gough models examine the evolution
of the solar constant, enabling the investigation of potential future scenarios for Earth’s
temperature. These models employ various objective functions, including maximum power,
efficient power, and ecological function, to analyze and assess these scenarios.

Hence, the present research study aims to investigate the planet’s surface temperatures
resulting from the escalating levels of greenhouse gases. The approach involves analyzing
the thermodynamic behavior of the atmosphere within a finite-time regime. We decided
to employ this methodology, considering the good results in predicting climate change in
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several geologic eras in the past. So, it is possible to modify and set the endoreversible
machine model to forecast temperatures derived from climate change in the coming years.

The remaining paper is organized as follows: The subsequent section consists of com-
prehensive state-of-the-art climate change models based on different approaches. Section 3
describes the preliminary foundations concerning finite-time thermodynamics; Section 4
outlines the methods related to the proposed endoreversible model; and Section 5 describes
the proposed model and its peculiarities. Section 6 shows the experimental results, and the
discussion of the outcomes and findings are included in Section 7, and the last section
involves the conclusion and future works.

2. Related Work

Global warming caused by human activities represents one of the most significant
challenges of the present time. The classical approaches concerning climate change have
studied complex systems such as differential equations and developments in chaos theory.
Nevertheless, the large amount of data available allows us to use artificial intelligence
techniques, which are more straightforward than those used by the areas of complexity
science, resulting in the prediction of future scenarios due to climate change.

According to Houghton [29], global warming is a climate system where several vari-
ables are responsible for raising global average temperatures. Most of these effects are
related to the radiative balance of the planetary atmosphere: water vapor feedback, cloud
radiation feedback, and ocean circulation feedback. In consequence, all of them refer to the
albedo and greenhouse effects. Therefore, to forecast global warming, a set of characteristics
that affect the global emission of greenhouse gases must be taken. These gases have had a
notable increase due to anthropogenic behavior and activity. Development projections of
global average temperature changes for the present century are in the range of 0.15–0.6 °C
per decade. Understanding this problem allows us to consider humans’ and ecosystems’
impacts and adaptive capacity [29].

One of the major consequences of global warming is the melting of ice bodies on the
Earth. The Arctic Sea is one of the leading indicators of the increase in average temperature.
The study of the ice concentration and the rise in sea level has various approaches, one of
which that is widely used is deep learning techniques to predict how the ice concentration
changes with the increase in average temperature [30]. In the same way that the Arctic
layers and their melting show the effect of climate change, all oceans experience the same
significant warming and a rising sea level, so it is necessary to generate diagnostic and
prognostic prediction models to elucidate these increases and their risks, since they are
associated with other adverse events such as the propagation of cycles, lack of rain, and the
growth and spread of diseases. According to diverse authors, the combination of machine
learning and deep learning techniques can give us entirely accurate predictions for the
future [31–34].

In the study carried out by Sidhu et al. [35], the use of machine learning is analyzed to
understand the impact of climate change on different types of crops, taking into account
climate–yield relationships. The authors compared the usual linear regression technique for
estimating historical data to approximate yield against climate change and using boosted
regression trees. The conclusions suggested that interpreting results based on a single
model can generate biases in the information obtained.

On the other hand, due to the high economic and social impacts associated with
climate change, it is essential to understand the causes and identify the patterns of the
obtained data to make correct predictions. According to Zheng et al. [36], the construction of
a reliable model based on experimental data and the relationship between temperature and
the concentration of gases in the atmosphere such as carbon dioxide (CO2), nitrous oxide
(N2O) and methane (CH4), is the first challenge to address the climate change problem.
Zheng’s study used various learning techniques, such as linear regression, support vector
machines, and random forests to build an accurate model that would identify changes in the
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atmosphere’s increasing temperature, dominated mainly by the increase in the temperature
of CO2 due to its higher concentration within greenhouse gases.

Different authors argue that the construction of a reliable model combined with the
temperature dataset and machine learning prediction tools will help us to have a better
understanding of the phenomenon, and thus be able to make a good forecast that allows
us to face the risks of climate change. The thermal equilibrium model was studied by De
Vos and Flater [28], who analyzed solar radiation as an energy converter used to examine
the average temperature of a planet. It is carried out by the radiation from the planet’s
surface and the irradiance reaching Earth. This analysis takes into account the physical
characteristics of the atmosphere, such as friendliness and the albedo effect [22,27,28]. Thus,
the total flux Q appears as shown in Equation (2).

Q = 4πR2σ

(
(1 − ρ)

f
4

T4
s − (1 − γ)T4

p

)
(2)

It is the first thermodynamic model that allows for a dynamic study of the different
layers of the atmosphere, with the lowest layer corresponding to the temperature on the
planetary surface. This development can analyze various scenarios where greenhouse
gases and albedo concentrations are modified. The feasibility of the model was tested in
the study of geological eras, and several authors carried out the solution of the faint young
Sun paradox [24,25]. The study of the solar converters under the regime of finite-time
thermodynamics was analyzed in this work, changing the parameters to current time,
considering the increase in CO2 main greenhouse gas [36]; its relationship with albedo was
developed too. In addition, a dissipation of energy in the system has realistic results at the
current time.

According to the state of the art, there are several proposals related to analyzing global
climate change based on prediction models developed with deep learning approaches, us-
ing specifically convolutional and recurrent neural networks. In [37], a method to efficiently
predict weather forecasting was proposed by designing a model based on a convolutional
neural network (CNN). Thus, Miloshevich et al. [38] proposed a methodology to create
forecasting artifacts trained with data of 8000-year models, considering an infrastructure
defined by a set of various CNNs, which was primarily focused on describing extreme
heatwave datasets.

On the other hand, the CNN architecture has been widely employed to assess pre-
dictions between the hourly soil temperature and the subsurface depth. Thus, ref. [39]
described a one-dimensional CNN prediction model to demonstrate that the air tempera-
ture and surface thermal radiation directly impact the soil temperature prediction model,
affecting global warming.

Diverse studies have revealed that climate change rushes the increasing global temper-
ature, causing a rise in the international sea level. Consequently, Hassan [40] implemented
a set of different multivariable prediction models based on the principal deep learning
techniques: recurrent neural networks (RNN), long short-term memory networks (LSTM),
gated recurrent unit networks (GRU), and WaveNet as a particular case of CNN. The mod-
els used 29 years of data with multiple variables such as changes in the ocean heat content,
level of carbon dioxide, mass variation in the Greenland and Antarctica regions, and global
temperature anomalies.

According to Ghimire et al. [41], the use of a convolutional neural network with a
multilayer perceptron (MLP) generates efficient forecasts of global solar radiation (GSR).
The outcomes of their model achieved a relative error of less than 10%, generating a model
with very high performance compared to climate models, especially in models developed
with convective cells, such as Gordon and Zarmi-type models. Therefore, using CNN
enriches the predictions of the climate models, inducing better forecasts that detect extreme
weather events caused by climate change.

In consequence, the impact of climate change is reflected in the manifestation of
extreme weather events such as droughts, floods, and heat waves. So, improving the
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methods for predicting global warming and its effects allows for adapting as a society
to the planet’s dynamic environment. An issue to analyze with climate change is its
correlation with the hydroclimatic systems of the Earth. Larson et al. [42] proposed a deep
convolutional residual regressive neural network to determine river basins’ response to
the water cycle’s flows. The analysis revealed that this architecture and the catchment
flow data exhibited satisfactory prediction performance for various locations at different
time scales.

Natural disasters are related to climate change; some examples of these events include
flash floods, droughts, and hurricanes. Thus, the Pacific Ocean weather phenomenon
known as El Niño-Southern Oscillation (ENSO) is caused by cyclical changes in sea surface
temperature (SST) and temperatures in the atmosphere near the tropics. The ENSO impact
generates temperature variations, making them slightly warmer or colder up to extreme
temperatures, inducing natural disasters. As claimed by Jonnalagadda and Hashemi [43],
the use of the adaptive graph convolutional recurrent neural network (AGCRNN) can cap-
ture the temporal relationships of features with the Oceanic Niño Index (ONI), increasing
the prediction time from three months to eighteen months, surpassing the current dynamic
and statistical models.

In recent years, it has been observed that the automated detection of extreme weather
events has increased. Therefore, it is required to improve the prediction performance to
deal with these weather anomalies. Current research has shown that new convolutional
neural network architectures enhance meteorological event detection. According to La-
combe et al. [44], the use of weighted loss functions counteracting the class imbalance in
the data together with a correct architecture could show a significant improvement of the
prediction up to 39.2% concerning events as natural cyclones. Due to the high impacts of
extreme weather events, an energy transition that does not depend on the burning of fossil
fuels, the main generator of greenhouse gases, is urgent. Photovoltaic power production is
a good power generation option. However, this type of energy production is sensitive to
weather, and can generate variations depending on weather conditions. To make realistic
energy production forecasts, Ramakrishnan et al. [45] suggested a combined CNN and
LSTM model, obtaining a better percentage of photovoltaic yield prediction, considering
slow climate fluctuations and substantial climatic variations.

On the other hand, among the most significant consequences of climate change is
related to the solar energy generation of power systems. Recently, the accuracy of intrahour
solar forecasting has been a crucial topic to be analyzed in the field due to two critical
aspects: (1) the accuracy of prediction models considering the dynamic coverage of clouds,
and (2) the short forecast horizon for a minimal time window [46]. Thus, different proposals
and methods to face these aspects have been proposed. Caldas and Alonso-Suárez [47]
designed a hybrid model to predict solar irradiance, merging sky (cloud status) data
provided by images and irradiance measures. The outcomes revealed that the model is
efficient in preserving solar energy resources. In this sense, Pedro et al. [48] presented a
study to compare machine learning algorithms such as k-nearest neighbors and gradient
boosting in tasks to classify data based on intrahour forecasting and irradiance, taking
information from sky images. Moreover, solar energy is the most favorable renewable
source of electricity, employing a system based on a photovoltaic power supply. In [49],
an artificial neural model was designed to predict solar irradiance values without using the
detection of clouds.

3. Preliminary

3.1. Finite-Time Thermodynamics

The endoreversible Carnot machine is not in thermodynamic equilibrium with the
reservoirs and the active substance. There is a separation between the internally reversible
processes and the irreversibilities at the system boundaries, where internal processes
with fast relaxation times can be considered reversible and the entropy change for the
thermodynamic universe ΔSu of the machine is positive, the entropy being of our null
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working substance ΔSw = 0. This definition is known as the endoreversibility hypothesis;
when the model proposed by Curzon and Ahlborn [22] evolves in finite time, the model’s
power is nonzero, unlike that given by CET [50].

3.2. Curzon and Ahlborn Engine

The engine has thermal conductances that comply with Fourier’s law for heat conduc-
tion (Q̇ = −λ∇T). In the present work, we will use the following notation to refer to the
heat flows Q = Q̇, such that:

Q1 = α(T1 − T1w) (3)

Q2 = β(T2w − T2) (4)

A form of solution to the Curzon and Ahlborn [22] engine and the machine schematic
was proposed in [27]. From the conservation of energy, we have the heat flow Q1 from the
upper reservoir, towards the reversible machine with power P to the output flow Q2 [51].
By the entropic conservation of the system, ΣS = 0. Therefore, the production of entropy
must be zero, whereas for the reversible internal machine, we assume that its entropy
changes are zero (endoreversibility hypothesis) [23,28,51,52].

σ =
Q1

T1w
− Q2

T2w
= 0 (5)

From Equation (5) with the second law of thermodynamics, we have the following
relationship for thermal conductors T1w and T2w.

T1w =
α

α + β
T1 +

β

α + β

1
1 − η

T2 (6)

T2w =
α

α + β
(1 − η)T1 +

β

α + β
T2 (7)

Substituting T1w in Equation (6) and T2w in Equation (7) with our flow Q1 and Q2, we
obtain Equations (8) and (9).

Q1 = γ
T1 − T2 − T1η

1 − η
(8)

Q2 = T2

(
β(T1(1 − η)− T2)

γ(1 − η)T1 + βT2

)
(9)

with the expression:

γ =
αβ

α + β

Thus, from the definition of efficiency, we can obtain an expression for the power
given by:

P = γ
η(T1 − T2 − T1η)

1 − η
(10)

Resulting in efficiency at maximum power for the Curzon–Ahlborn machine known
in finite-time thermodynamics as ηca that satisfies 0 < ηca < ηc.

ηCA = 1 −
√

T2

T1
(11)

In the endoreversible Curzon–Ahlborn model, the dissipation will be given by formu-
las that have been derived that show the efficiency of an engine under maximum power
conditions [20,21].

Φrb = Q2 − T2

T1
Q1 (12)
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4. Materials and Methods

4.1. Gordon and Zarmi (GZ) Model

The atmospheric convection model proposed by GZ consists of a cell as an endore-
versible Carnot cycle between two thermal reservoirs of extreme temperatures: the tem-
perature T1 is the working fluid (atmosphere) temperature at the lowest altitude in the
system, related to the temperature of Earth’s surface; the temperature in the highest part
of the working fluid is the cold reservoir in the GZ model, and the temperature is related
to the cosmic background radiation T2 = 3K (see Figure 2) [20]. The input energy is solar
radiation, the active substance is the atmosphere, and the work performed by the fluid of
the thermal machine is the mean power of the winds. The GZ convection cell consists of
several components, including two isothermal branches where the atmosphere absorbs
heat at lower altitudes. Additionally, two intermediate adiabatic branches are assumed to
be instantaneous, and the remaining branch releases heat at higher altitudes into the uni-
verse [53]. The GZ maximizes the work per cycle W, subject to thermodynamic restrictions
and the average solar radiation flux qs [20,53].

q̄s =
Isc(1 − ρ)

4
(13)

The GZ model works with a Sun–Earth–wind system as an endoreversible engine,
in which the input heat is the solar radiation, the active substance is the atmosphere, and the
labor produced by this cycle is the mean power of the winds. The cold store for this machine
is outer space, with the temperature of the cosmic background radiation of 3K [20].

Figure 2. Simplified schema proposed by the GZ diagram of a cyclic heat engine driven by solar
energy, the heat input is the solar radiation per area qs, and the working fluid is the atmosphere.
In contrast, the work output is the maximum wind energy. The model can obtain maximum and
minimum temperatures of the atmosphere without considering any other effect on the Earth apart
from the one already described in the convective cell [20].

Figure 2 shows a schematic view of the simplified system, including its isothermal and
adiabatic branches. In addition, this diagram is a simplified version of a thermal engine
driven by solar energy. The description of this figure is denoted as follows:
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1. The atmosphere absorbs solar radiation at low altitudes through two isothermal
branches. At the same time, heat is pushed out at high altitudes through another
branch, in which the atmosphere rejects the excess heat.

2. There are two intermediate adiabats characterized by ascending and descending air
currents, which occur instantaneously.

The temperatures associated with the four-cycle branches are as follows:

1. T1 represents the temperature of the working fluid in the isothermal branch situated
at the lowest altitude. Here, the working fluid absorbs solar radiation during every
half cycle.

2. In the second half of the cycle, heat is released from the working fluid at temperature
T2 (at the highest altitude of the cell) through blackbody radiation, which is directed to-
wards the cold reservoir at temperature Tex (representing the 3K background radiation
of the universe) [20,54].

The objective of this model is to maximize the work per cycle, equivalent to maximizing
the average power output, according to certain thermodynamic restrictions. From the first
law of thermodynamics for this model, we have the following:

ΔU = −W +
∫ t=tc

t=0
qs(t)− σ[T4(t)− Tex4(t)]dt = 0 (14)

where ΔU is the change in internal energy of the active substance, σ is the Stefan–Boltzman
constant (5.67 × 10−8 W

m2K4 ), tc is the cycle time, and T is the temperature of the active
substance. The entropy change is subject to the endoreversibility restriction.

ΔS =
∫ t=tc

t=0

(
qs(t)− σ[T4(t)− T4

ex(t)]
T(t)

)
dt = 0 (15)

The variables T, Text are functions associated with the time.

T(t) =
{

T1 0 ≤ t ≤ tc/2
T2 tc/2 ≤ t ≤ tc

(16)

Tex(t) = 3k 0 ≤ t ≤ tc (17)

The variable qs is a function of time, Isc is the average solar constant over the Earth’s
surface (1372.7 W/m2), the average albedo ρ = 0.35, and the average values are as follows:

qs(t) =
{

Isc(1 − ρ)/2 0 ≤ t ≤ tc/2
0 tc/2 ≤ t ≤ tc

(18)

T̄ = (T1 + T2)/2 (19)

T̄n = (Tn
1 + Tn

2 )/2 (20)

The mean power of the winds is obtained by:

P =
W
t0

= q̄s + σT4
ex − σT̄4 (21)

The model used by GZ considers the following approximation q̄s >> σT4
ex; we have

the following Equation:
P = q̄s − σT̄4 (22)

From the endoreversibility condition, the variables T, Tex and the mean values we
obtained are:

ΔSint =
q̄s

T1
− σ

2
(T3

1 + T3
2 ) (23)
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To maximize P subject to the endoreversibility condition, the Lagrangian is de-
fined in terms of the Lagrange multiplier λ and the thermodynamic constraint given
by L = P − λΔS, so that:

L = T4(t) + λ[qs(t)/T(t)− σT3(t)] (24)

For finding the extreme of L, that is, solving ∂L(t)
∂T(t) = 0, we have the following system

of equations:

T5
1 (t) + 3σλT4

1 /4 − λqs(t)/4 = 0 (25)

T5
2 (t) + 3σλT4

2 /4 = 0 (26)

GZ found the following temperature values for the lowest and highest layers of the
Earth’s atmosphere T1 = 277K, T2 = 192K and Pmax = 17.1 W

m2 . These values are not far
from the literature Pmax = 7 W

m2 , T1 = 290K (on the surface) and T2 = 195K (between 75 and
90 km). Gordon and Zarmi [20] stated that their mean power of winds should be taken as
an upper limit.

4.2. Nonendoreversibility Parameter in G-Z

In recent studies, the nonendoreversibility parameter R has been used to investigate
the thermal machines of TTF. This parameter was introduced from the Clausius inequality,
considering a clearance measure in the endoreversible regime [55].

ΔSw1 + ΔSw2 ≤ 0 (27)

ΔSw1 changes in the hot isotherm and ΔSw2 in the cold compression isotherm, in the
endoreversible case. Thus, this inequality becomes equality in the following equation.

ΔSw1 + RΔSw2 = 0, (28)

where R is given by:

R =
ΔSw1

‖ΔSw2‖ (29)

where R = ΔSw1
‖ΔSw2‖ ; the parameter of non-endoreversibility is in the interval 0 ≤ R ≤ 1,

where R = 1 is the endoreversible limit [51]. The previous GZ convection cell process is
enriched using the parameter R. Thus, to maximize P subject to the endorreversibility
condition plus the parameter R, the Lagrangean L = P − λΔS to occupy is given as follows:

L =
σ

2
(T4

1 + T4
2 ) + λ

[
q̄s

T1
− Rσ(T3

1 + T3
2 )

2

]
(30)

Solving ∂L(t)
∂T(t) = 0 to find the extrema of the Lagrangian; solving the system numerically, it is

found that for a nonendoreversibility parameter R = 0.953 [55] for ρ = 0.35, Isc = 1372.7 W/m2.
GZ found the following temperature values for the lowest and highest layers of the Earth’s
atmosphere T1 = 280.562K, T2 = 194.293K.

5. The Proposed Model

5.1. Greenhouse Factor

The planet’s surface temperature computation is modified by adding the greenhouse
parameter γ. Therefore, it is necessary to add the greenhouse effect to the equations
proposed by the thermodynamics of finite times, to obtain the temperatures of the lower
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and upper layers of our active substance (in this case, the air). Thus, the equations for
entropy and internal energy are also changed.

ΔU = −w +
∫ t=tc

t=0
qs(t)− σ(1 − γ)[T4(t)− Tex4(t)]dt = 0 (31)

Equation (15) is expressed in terms of the nonendoreversibility parameter and the
greenhouse factor, giving as a result the following expression:

ΔS =
∫ t=tc

t=0

(
qs(t)− R(1 − γ)σ[T4(t)− T4

ex(t)]
T(t)

)
dt = 0 (32)

From the G-Z section, the average power of the winds P = wc
t , in which q̄s >> σT4

ex,
the power expression output for the case of the greenhouse effect is of the form:

P = q̄s − σ

2
(1 − γ)[T4

1 + T4
2 ] (33)

Equations (31) and (32) show us a greenhouse factor acting on the two layers of the
atmosphere with temperatures T1 and T2. To maximize P subject to the endoreversibility
condition, we defined the Lagrangian in terms of the Lagrange multiplier λ and the
thermodynamic constraint given by L = P − λΔS, so that:

L = q̄s − σ

2
(1 − γ)[T4

1 + T4
2 ]− λ

{
q̄s

T1
− σ

2
(1 − γ)[T3

1 + T3
2 ]

}
(34)

where λ is a Lagrange multiplier. By solving the Euler–Lagrange equations ∂L(t)
∂T(t) = 0,

a system of equations is obtained, which allows us to calculate the extremes of the power.
For ∂L(t)

∂T1(t)
= 0:

T5
1 − 3

4
RλT4

1 − q̄s

2σ(1 − γ)
= 0 (35)

For the case ∂L(t)
∂T2(t)

= 0:

T2 =
3R
4

λ (36)

Finally, for ∂L(t)
∂λ = 0 we have:

q̄s

T1
− σ

2
(1 − γ)[T3

1 + T3
2 ] = 0 (37)

Eliminating λ and giving the value of qs ≈ 229 W/m2 [50], we have two equations
whose numerical solution provides the highest and lowest layer surface temperatures.
The low of the Earth’s atmosphere is under a regime of maximum power in terms of the
nonendoreversibility parameter R, the albedo ρ, the greenhouse effect γ, and the current
solar constant Isc.

T5
1 − T2T4

1 − 2qs

3Rσ(1 − γ)
T2 = 0 (38)

T4
1 + T3

2 T1 − 2q̄s

Rσ(1 − γ)
= 0 (39)

234



Mathematics 2023, 11, 3060

5.2. Greenhouse Factor in the Lowest Layer of the Atmosphere Average Surface Temperature

The power for the G-Z model is given by P = wc
t , where for Tex = 3K q̄s >> σT4

ex, the
output power expression with the greenhouse effect in the lower part is the following:

P = q̄s − σR
2
[(1 − γ)T4

1 + T4
2 ] (40)

It is necessary to maximize P subject to the endoreversibility condition and the green-
house effect at the bottom. Then, the Lagrangian is defined in terms of the Lagrange multiplier
λ and the constraint on thermodynamics showing the following Lagrangian expression:

L = q̄s − σ

2
[(1 − γ)T4

1 + T4
2 ]− λ

{
q̄s

T1
− σ

2
[(1 − γ)T3

1 + T3
2 ]

}
(41)

Solving the Euler–Lagrange equations ∂L(t)
∂T(t) = 0, we obtain the following equations:

For ∂L(t)
∂T1(t)

= 0:

T5
1 − 3

4
RλT4

1 − q̄s

2σ(1 − γ)
= 0 (42)

For ∂L(t)
∂T2(t)

= 0:

T2 =
3R
4

λ (43)

For ∂L(t)
∂λ = 0, we have:

q̄s

T1
− σ

2
[(1 − γ)T3

1 + T3
2 ] = 0 (44)

Removing the λ parameters from Equations (42)–(44), we obtain:

T5
1 − T2T4

1 − 2q̄s

3Rσ(1 − γ)
T2 = 0 (45)

T4
1 +

1
(1 − γ)

T3
2 T1 − 2̄qs

Rσ(1 − γ)
= 0 (46)

The FTT models are developed as engines that use the conversion of solar energy
into wind energy; the hypothesis is that atmospheric work as a “heat engine” provides
reasonable values for the average power of winds and extreme temperatures in specific
layers of the atmosphere. To compute the efficiency of the energy converter, it is necessary
to take the average power output associated with the yearly average solar radiation flux qs
expressed per unit area of the Earth’s surface (see Equation (47)). Therefore, solar energy
efficiency or performance is defined as w = P/qs.

w =
(1 − γ)(R − 1) + R4(1 − η)3[1 − R(1 − η)]

R[(1 − γ) + R3(1 − η)3]
(47)

Thus, for the endoreversible case R = 1:

w =
η(1 − η)3

(1 − γ) + (1 − η)3 (48)

Equation (48) shows us that even for an endoreversible case, the efficiency of solar
energy depends on the greenhouse effect. For a regime at maximum power for γ = 0,
7.67% of the solar energy qs can be converted into energy, regardless of the planet and the
solar system.

Nevertheless, it does not represent a realistic model of the atmosphere of the planets.
The model can be extended by considering other thermodynamic regimes, such as the
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ecological and efficient power regimes. Other conditions, such as physical and geometric
issues about the planet, improve our thermal engine, which implies more accurate predic-
tions. According to the model developed by De Vos and Flatter [27], they obtained a value
ω = 9.64% whereas a Hadley-type considers a convection cell and divides the planet into
two hemispheres, thus generating different heat exchanges where radiation is received or
emitted from their surface areas.

The models proposed by De Vos as well as Gordon and Zarmi [20,27] can compute
the temperatures of the atmosphere of some past or future periods of the Earth, as was
carried out in the study by Angulo and Barranco-Jiménez [24], where the temperatures of
early age were calculated with enough accuracy. In the present work, we worked similarly,
but for a future time of the atmosphere (prediction event), we considered the atmosphere’s
physical characteristics, such as the albedo greenhouse effect. The model created by De
Vos shows an excellent relationship between the theoretical and experimental data. Our
proposed work approximated the albedo dependent on the greenhouse effect with a = 0.072,
b = 0.4955, and c = 0.1527.

ρ = aγ2 + bγ + c (49)

The GZ-type models with the greenhouse factor and the albedo condition above,
and the atmosphere represented by Equations (45) and (46), allow us to obtain temperatures
of the highest and lowest layers of the atmosphere. It is necessary to determine the
atmospheric characteristics of the GZ-type models. According to the solution of the faint
young Sun paradox presented in [24], the finite-time thermodynamics models efficiently
resolve the paradox, calculating the planet’s average surface temperature from different
geological stages. Using scenarios where the luminosity of the Sun is taken into account
through the Gough Equation (1), it is necessary to modify this equation to actual luminosity,
as represented in Equation (50).

I(t) =
[

1 + 0.4
(

1 − t + t0

t0

)]−1
Isc (50)

Using the albedo ρ (Equation (49)), the average solar radiation flux, and greenhouse
coefficient γ, we modified the scheme proposed by Angulo and Barranco to determine
the effects of climate change due to the increase in greenhouse gas, taking the relationship
proposed in our work. That relationship between the albedo and greenhouse effect is
represented in Equation (49), including the present-day values for average luminosity,
its variation per year (Equation 50), and the changes directly proportional to the flux qs
expressed in Equation (13). Nevertheless, it is necessary to consider the dissipation in
the maximum power regime to obtain realistic results. This modification allows results
to be obtained to predict the effects of climate change in future years. Thus, the average
temperature of the surface (Ts) at present will be based on the existing relationship in the
dissipation (Equation (12)) of the system in maximum-power conditions in the GZ-type
model with Equations (45) and (46).

Ts = T1 + T2

(
β(T1(1 − ηCA)− T2)

γ(1 − ηCA)T1 + βT2

)
− T2γ(T1 − T2 − T1ηCA)

T1(1 − ηCA)
(51)

Simplifying:

Ts = T1 + T2
(

T1(1 − ηCA)− T2
(1 − ηCA)T1 + T2

)
− T2

T1

(
(T1 − T2 − T1ηCA)

(1 − ηCA)

)
(52)

6. Experimental Results

It is necessary to determine possible and future scenarios for the growth of greenhouse
gases. Most of the concentration of gases in the atmosphere has presented a significant
increase since the 1970s due to industrial activities. According to the Mauna Loa labo-
ratory in Hawaii [53,56], the data show a massive rise in CO2 by the empirical formula
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concentration for the interval 1975 ≤ t ≤ 2100 [53]. So, the expression obtained by Wubbles
concerning the trace gas trends and their potential role in climate change is valid for this
methodology [53].

[CO2] = 330e0.0056(t−1975) (53)

According to Equation (49), the albedo and the greenhouse effect are related. For the
Earth, the value of the greenhouse effect can be defined as γ = (Es − F)/Es, where Es
is the surface emission and F is the outgoing radiation [24]. Moreover, it is noticed that
the increase in greenhouse gases rises over time, according to Wubbles and different
experimental measurements. With all these characteristics, the natural average temperature
(Ts) and its possible evolution in the coming years can be determined with reasonable
accuracy. To test the GZ model, a dissipation φrb, developed in this work, is considered,
solving numerically with R = 1 and different values of γ are related to the year. It is
a data compilation by Berkeley Earth. The study shows the temperature of the Earth’s
surface, and the experimentally measured temperatures Tobs were compared against our
theoretically calculated temperatures Ts to use a forecasting technique later to determine
the future of temperatures.

On the other hand, the comparison was made using machine learning techniques
such as linear regression, Ridge regression, and artificial neural networks. Concerning
the implementation, we used the Scikit-learn framework for regression methods and the
TensorFlow package with Keras for designing the artificial neural network. The parameters
for the artificial intelligence-based approach were described according to the formalism
of Scikit-learn and TensorFlow Keras. Thus, the setup parameters and configuration were
established as follows:

• Linear regression: train_size = X_train, X_test, y_train, y_test =
train_test_split(X, y, train_size = 0.8)

• Ridge regression: train_size = X_train, X_test, y_train, y_test =
train_test_split(X, y, train_size = 0.8)

• Neural network optimizer was implemented by applying Adam’s algorithm. The re-
gression loss was defined by MeanSquaredError. Moreover, four layers were estab-
lished with the activation functions: linear, linear, relu, linear.

Data Preprocessing

To analyze the complexity of climate change, the terrestrial and oceanic temperatures
of the planet were measured. The used data are a compilation of a dataset provided by
Berkeley Laboratory. Other widely used datasets are MLOST NOAA Land-Ocean Surface
Temperature and GISTEM from NASA [57–59]. The data compilation by Berkeley records
land average temperatures in the format yyyy/mm/dd. So, a split was made by year,
month, and day, taking the temperature of each month, and the mean temperature per year
was computed. It was observed that there is a correlation with a value of 0.89 between the
variables of the year and the land average temperature from the year 1975 to 2015 [57–59].
Figure 3 shows the climatology of the average annual terrestrial temperature between 1951
and 1980 from the Berkeley Earth Data with a global mean of 9.17 Celsius. In our work,
the mean experimental temperature of each year was compared with the obtained data
from our theoretical model.

The results of the data and the surface temperatures Ts obtained from the model
expressed in Equation (52) that was developed in this work are shown in Table 1. All the
results regarding data are presented in degrees Celsius.
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Table 1. Average temperatures observed and computed by the GZ-type model.

Year Tobs Ts

1975 8.74 8.41
1976 8.34 8.44
1977 8.85 8.48
1978 8.69 8.51
1979 8.73 8.55
1980 8.98 8.58
1981 9.16 8.62
1982 8.63 8.65
1983 9.02 8.69
1984 8.65 8.73
1985 8.65 8.77
1986 8.83 8.80
1987 8.99 8.84
1988 9.20 8.88
1989 8.922 8.92
1990 9.23 8.96
1991 9.17 9.00
1992 8.83 9.04
1993 8.86 9.08
1994 9.03 9.12
1995 9.34 9.16
1996 9.03 9.21
1997 9.20 9.24
1998 9.52 9.29
1999 9.28 9.33
2000 9.20 9.37
2001 9.41 9.38
2002 9.57 9.46
2003 9.52 9.50
2004 9.32 9.48
2005 9.70 9.59
2006 9.53 9.64
2007 9.73 9.73
2008 9.43 9.74
2009 9.50 9.78
2010 9.703 9.82
2011 9.51 9.87
2012 9.507 9.92
2013 9.606 9.97
2014 9.570 10.02
2015 9.831 10.07

The temperature increase due to greenhouse gas growth has been analyzed since 1975.
It was fixed this year because of the significant increase in the concentration of CO2, as
shown by the experimental development of Wubbles in Equation (53), when seeing the
correlations of the observational variables of the temperature of the Berkeley database.
We can notice a high correlation between the year and the land’s average temperature,
and the correlation is equal to 0.89. Therefore, a linear regression model is sufficient in
this case to make a future prediction of the temperature. In the following plot (Figure 4,
average temperatures observed and calculated by the GZ-type model), we can observe a
relationship between the average temperature per year measured against the temperature
of the modified GZ model.
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Figure 3. Climatology of annual mean land temperature. NCAR, Climate Data Guide [59].

Figure 4. Average temperatures observed and computed by the GZ-type model compared with the
average measured yearly temperature.

Thus, (Figure 5, average temperatures observed since 1975 with linear regression)
shows how a linear regression adjusts perfectly to predict the evolution of the temperature
from the year 1975. It is possible to infer how the temperature change will be towards the
year 2100 thanks to this type of modeling.

On the other hand, Table 2 presents the future prediction of the temperatures using
linear regression (LR), ridge regression (RR), and an artificial neural network (ANN). Thus,
the ANN has five layers: an input layer with a linear activation function; three layers with
a rectified linear activation function, or Relu or ReLU for short; and an output layer with a
linear activation function. All techniques were applied to the observed temperatures (Tobs)
and the models’ temperatures used in the present work. In the same way, the third column
shows the temperatures computed (Ts) from our model of Gordon and Zarmi (GZM)
without applying a linear regression, where the physical characteristics of the atmosphere
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are taken into account and what theoretical temperature would be reached. In addition,
Table 2 depicts the entire prediction made up to 2100, starting in 2016.

Table 2. Average temperatures observed and computed by the GZ type model.

Year Tobs with LR Ts with LR Tobs with RR
Tobs with

NN
Ts with GZM

2016 9.839 10.049 9.845 10.089 10.121
2017 9.842 10.094 9.860 10.094 10.176
2018 9.845 10.135 9.869 10.099 10.228
2019 9.860 10.178 9.884 10.105 10.281
2020 9.885 10.219 9.907 10.110 10.334
2021 9.913 10.251 9.937 10.115 10.387
2022 9.941 10.292 9.967 10.120 10.440
2023 9.969 10.333 9.996 10.125 10.495
2024 9.997 10.374 10.026 10.130 10.550
2025 10.025 10.426 10.056 10.135 10.606
2026 10.053 10.456 10.086 10.140 10.663
2027 10.081 10.497 10.116 10.144 10.720
2028 10.109 10.538 10.146 10.149 10.777
2029 10.137 10.579 10.175 10.154 10.836
2030 10.165 10.620 10.205 10.159 10.895
2031 10.193 10.661 10.235 10.164 10.954
2032 10.221 10.702 10.265 10.169 11.014
2033 10.249 10.743 10.295 10.174 11.018
2034 10.277 10.784 10.325 10.179 11.138
2035 10.305 10.825 10.354 10.184 11.200
2036 10.333 10.866 10.384 10.189 11.263
2037 10.361 10.907 10.414 10.194 11.327
2038 10.389 10.948 10.444 10.199 11.392
2039 10.417 10.989 10.474 10.204 11.456
2040 10.445 11.030 10.504 10.209 11.524
2041 10.473 11.071 10.533 10.213 11.591
2042 10.501 11.112 10.563 10.218 11.659
2043 10.529 11.153 10.593 10.223 11.728
2044 10.557 11.194 10.623 10.233 11.798
2045 10.585 11.235 10.653 10.238 11.868
2046 10.613 11.276 10.683 10.243 11.939
2047 10.641 11.317 10.713 10.246 12.012
2048 10.669 11.358 10.742 10.248 12.085
2049 10.697 11.399 10.772 10.253 12.159
2050 10.725 11.440 10.802 10.258 12.234
2051 10.753 11.481 10.832 10.263 12.311
2052 10.781 11.522 10.862 10.268 12.388
2053 10.809 11.563 10.892 10.272 12.465
2054 10.837 11.604 10.921 10.277 12.545
2055 10.865 11.645 10.951 10.282 12.625
2056 10.893 11.686 10.981 10.287 12.707
2057 10.921 11.727 11.011 10.292 12.789
2058 10.949 11.768 11.041 10.297 12.872
2059 10.977 11.809 11.071 10.302 12.957
2060 11.005 11.850 11.100 10.307 13.043
2061 11.033 11.891 11.130 10.312 13.129
2062 11.061 11.932 11.160 10.317 13.218
2063 11.089 11.973 11.190 10.322 13.308
2064 11.117 12.014 11.220 10.327 13.398
2065 11.145 12.055 11.250 10.332 13.490
2066 11.173 12.096 11.279 10.336 13.584
2067 11.201 12.137 11.309 10.341 13.659
2068 11.229 12.178 11.339 10.346 13.775
2069 11.257 12.219 11.369 10.351 13.872
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Table 2. Cont.

Year Tobs with LR Ts with LR Tobs with RR
Tobs with

NN
Ts with GZM

2070 11.285 12.260 11.399 10.356 13.972
2071 11.313 12.301 11.429 10.361 14.072
2072 11.341 12.342 11.458 10.366 14.174
2073 11.369 12.383 11.488 10.371 14.277
2074 11.397 12.424 11.518 10.376 14.383
2075 11.425 12.465 11.548 10.381 14.490
2076 11.453 12.506 11.578 10.386 14.599
2077 11.481 12.547 11.608 10.390 14.709
2078 11.509 12.588 11.637 10.396 14.820
2079 11.537 12.629 11.667 10.401 14.935
2080 11.565 12.670 11.697 10.405 15.050
2081 11.593 12.711 11.727 10.410 15.168
2082 11.621 12.752 11.757 10.415 15.287
2083 11.649 12.793 11.787 10.420 15.408
2084 11.677 12.834 11.816 10.425 15.533
2085 11.705 12.875 11.846 10.430 15.658
2086 11.733 12.916 11.876 10.435 15.786
2087 11.761 12.957 11.906 10.440 15.916
2088 11.789 12.998 11.936 10.445 16.048
2089 11.817 13.039 11.966 10.450 16.183
2090 11.845 13.080 11.995 10.455 16.320
2091 11.873 13.121 12.025 10.460 16.460
2092 11.901 13.162 12.055 10.465 16.601
2093 11.929 13.203 12.085 10.469 16.746
2094 11.957 13.244 12.115 10.474 16.894
2095 11.985 13.285 12.145 10.479 17.043
2096 12.013 13.326 12.174 10.484 17.196
2097 12.041 13.367 12.204 10.489 17.352
2098 12.069 13.408 12.234 10.494 17.511
2099 12.097 13.449 12.264 10.499 17.673
2100 12.125 13.490 12.294 10.504 17.838

Figure 5. Average temperatures observed since 1975 with linear regression adjusted to predict the
rise of mean temperature.

Moreover, Figure 6 shows the evolution of the surface temperature (Ts), according
to the predictions made by the model proposed in our work with the initials GZM and
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the temperature prediction from the experimental data (Tobs ). Thus, TS and Tobs were
forecasted using machine learning techniques.

Figure 6. Comparison of the evolution of temperature from the year 2020 to 2100 through theoretical
and experimental models.

From a correlation analysis between the temperature variables under different machine
learning techniques, such as linear regression (LR), ridge regression (RR), artificial neural
network (ANN), and the proposed endoreversible model (GZM), it can be observed that
the GZM model is more suitable with a linear relationship (see Figure 7).

Figure 7. Comparison of the correlation between year variables and observed temperatures with the
theoretical model.
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7. Discussion

According to several authors, the changes in the concentration of gases in the atmo-
sphere, mainly greenhouse gases, in addition to their directed relationship with the albedo
effect, are related to climate change [24,29,60,61].

Climate model development and the implications in a model’s prediction reliability
can be difficult, because the climate is a complex system with many variables and factors.
The models are fully coupled when studying a complete interaction among the global
radiation budget, different layers of the atmosphere, physical and chemical atmospheric
processes, and their implications in the biosphere. The models are considered partially cou-
pled and developed in a system of Sun–atmosphere–ocean. Differential equations represent
the governing equations that describe atmospheric and ocean circulation, geophysical fluid
dynamics, continuity equations, the input of solar radiation, and physical thermodynamic
processes [29,61–65]. Therefore, global climate models can have many degrees of freedom.

Nevertheless, these models are very complex and expensive to solve through analytical
and computational methods. Thus, the nonlinearity leads to multiple solutions that must
be carefully analyzed to find physically acceptable results and predictions. A method
used to work with these chaotic systems is the use of approximations or attractors, the
use and development of simplified climate models, or the linearization of global climate
models [29,65–67].

In this work, we used a climate model based on the Gordon–Zarmi approach, where
the system is represented like a heat engine that describes an Earth–atmosphere–Sun system,
providing reasonable values of extreme temperatures in the layers of the atmosphere.
The model solved the paradox of the young and weak Sun, proposing a series of scenarios
with the different greenhouse effect and albedo values, taking into account the luminosity
of the Sun and the evolution of these values over time. These variables are responsible for
generating global warming, and the obtained prediction is correlated with the estimated
warming values from experimental data.

According to Houghton et al. [29], it is essential to note that since the climate is a chaotic
system, its predictions become very complicated, so using climate models and predictions
made from experimental data through numerical techniques or machine learning help to
provide robustness to future predictions.

In this analysis of climate change, an endoreversible modeling of the Gordon and
Zarmi type was carried out. Unlike other finite-time thermodynamic studies for studying
the atmosphere, adjustments were made to give the model realistic results if applied. As for
the climatic analysis of geological eras, as observed in other works, it is noticed that the
results do not correspond to what is reported by observations of the current temperature.
According to Levario et al. [21], for a correct thermodynamic optimization of power plants,
it is necessary to consider the system’s variations. Therefore, the modeling was performed
considering those variations, the change in luminosity per year, the increase in greenhouse
gas, and its relationship with the terrestrial albedo, thus adapting it to our model of winds at
maximum power. In this way, the family from Equation (45) to Equation (53) complements
the system to calculate climate change due to atmospheric conditions and the increase in
greenhouse gases by anthropogenic conditions.

From Table 1, an increase in the average temperature of the Earth’s surface can be seen
from 1975 to 2015, both in the observational (experimental) model and the theoretical model
developed in our work. The rise in temperature in both cases is related to the increase in
greenhouse gases in the atmosphere.

In Figure 2, we can appreciate the differences between the points obtained experimen-
tally (observation and measures in the laboratory) and the modeling proposed in our work.
Suppose we observe Figure 3 and correlation analysis; in that case, the experimental points
in blue show a high linear tendency, so linear or ridge regression is an excellent technique
for correctly predicting temperature increases.

On the other hand, the points of our previously mentioned modeling of the GZM
would seem to show the same linear trend, so in Table 2, two comparisons were made,
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taking into account a linear regression with Ts LR and an analysis obtained directly from
our modeling with Ts GZM. As a result, we obtained a difference between the analysis
with LR and GZM. This is explained considering that the temperature observations only
recorded points in our vector. In contrast, the modeling records these points, and the
physical information of the atmosphere is saved, as well as the thermodynamic variables of
the system, which gives us results of the mean temperature increase with more value than
those obtained by an analysis of experimental points.

Moreover, Figure 4 shows a plot of the predictions made from the experimental
data Tobs and the modeling of the GZM system. It is important to note that in future
scenarios with forecasting by GZM, the average temperature is higher than that obtained
by the data of the evolution of the observed temperatures Tobs from various machine
learning techniques. Nevertheless, the rate of temperature increase is in the range per
decade, according to [29]. The plot shows that the temperature evolution in the case of
the construction of an ANN, LR, and RR grows in a widespread gradual way compared
with our proposed model. The GZM model saves the atmosphere’s physical characteristics,
such as entropic relationships, radiation conditions, and irradiance. It helps to present
more realistic behavior in the data, unlike the other forecasting, which only shows us a
regression of the linear type without considering the evolution of the physical parameters
caused by the alterations in the Earth’s atmosphere.

The most significant challenge for developing a sun model is establishing a critical
finite-time thermodynamics condition. Developing objective functions that characterize the
“optimal” modes of operation is not a trivial task. However, there are no established criteria
to set the objective functions, so the objective of the modeling itself is the one that affects
the construction of the “heat engine”, in addition to affecting its behavior in the energy
converter and its performance [68].

Solar energy converters under the branch of FTT have been developed to create
models with better coupled experimental and theoretical results. These energy converters
are focused on entropy minimization and output power maximization, among others.
According to De Vos [28], the Curzon and Ahlborn engine is valid when the heat transfer is
linear or Newtonian, so another challenge related to these modeling types is to work the
heat transfer linearly.

8. Conclusions and Future Work

In this article, we proposed a new finite-time thermodynamics approach to predict
changes in surface temperature in the lowest layer of the atmosphere that corresponds to
the average temperature. The proposed approach considers the evolution in albedo and
greenhouse gases, the change in luminosity per year, and the system’s dissipation in the
regime of maximum-power conditions. Our model achieves predictions in the range of
future projections, obtaining better results than the machine learning techniques used in
the experiments. Another area for improvement is that it performs a simple climate model,
avoiding the complexity of modeling the climate as a chaotic system. The current modeling
is a modification of previous models of the GZ type that, in addition to obtaining realistic
values of the extreme temperatures of the system, also allows us to carry out the evolution
of temperatures according to the modifications of the physical processes of the planet in a
rate of change of time.

Thus, an increase in temperature is linked to physical conditions such as irradiance
and radiation. Moreover, a comparison with different machine learning techniques showed
a rise in temperature in all these methods. It is crucial to notice that machine learning
algorithms do not preserve atmospheric information in the period studied. Therefore,
the forecasting could present a bias in the prediction because these are trained only with
experimental data without considering the variables that generate climate change. The com-
parison gives robustness to the model when comparing the experimental data with the
theoretical ones. As mentioned previously, due to the high degrees of freedom of the
climate model, interdisciplinary works are necessary to face new challenges in climate
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warming. All the techniques and our modeling demonstrated an increase in temperature.
We can conclude the success of our model by comparing it with our experimental data.
In addition, according to Houghton [29], the projections of global average temperature
changes are in the range of 0.15 °C–0.6 °C per decade, which is in the threshold of the
obtained values.

In the present work, the endoreversible engines of FTT deal with the problem of the
radiative thermal balance between planets, generating a Sun–Earth–wind system through
an atmospheric heat engine that allows for the optimization of the extreme values of
the model to find the maximum output power and entropy minimization, among others.
Thus, these values allow us to work under different thermal regimes of the FTT, namely
the maximum power regime (MPR), maximum ecological regime (MER), and maximum
efficiency power (MEPR). This model was created under the MER regime. According
to several authors, to fully model, it is necessary to generalize various cases and verify
experimental data due to climate variability as a subject of study. Therefore, an extension
of our research work would be to analyze the other thermodynamic regimes. We have to
propose several cases of increases in greenhouse gases and the albedo effect, compare them
with the experimental data, and complement them with deep learning techniques. All
theoretical predictions will always be compared against experimental data to face climate
change in the best way.

On the other hand, it is necessary to conduct studies concerning the atmosphere and
consider a wind engine the most common control in obtaining the maximum power as it
works, collecting data from these experiments and generating machine learning models
to characterize the phenomenon. In this paper, studying other regimes will allow us to
analyze the whole spectrum of our modeling (wind engine) and thus observe all cases of
global warming.
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Abstract: The generation and analysis of vast amounts of data have become increasingly prevalent
in diverse applications. In this study, we propose a novel approach to address the challenge of
rule explosion in association rule mining by utilizing the coverage-based representations of clusters
determined by K-modes. We utilize the FP-Growth algorithm to generate class association rules
(CARs). To further enhance the interpretability and compactness of the rule set, we employ the
K-modes clustering algorithm with a distance metric that binarizes the rules. The optimal number
of clusters is determined using the silhouette score. Representative rules are then selected based
on their coverage within each cluster. To evaluate the effectiveness of our approach, we conducted
experimental evaluations on both UCI and Kaggle datasets. The results demonstrate a significant
reduction in the rule space (71 rules on average, which is the best result among all state-of-the-art rule-
learning algorithms), aligning with our goal of producing compact classifiers. Our approach offers
a promising solution for managing rule complexity in association rule mining, thereby facilitating
improved rule interpretation and analysis, while maintaining a significantly similar classification
accuracy (ACMKC: 80.0% on average) to other rule learners on most of the datasets.

Keywords: class association rules; clustering; representative rule; model coverage; classification

MSC: 90C90

1. Introduction

In the modern era of data-driven applications, there has been a significant increase in
the gathering and retention of large amounts of data. Extracting association rules from these
extensive datasets and reducing their complex combinations has become a crucial method
for uncovering valuable insights [1]. However, a major hurdle lies in the sheer number
of rules discovered in real-world datasets, which requires the crucial task of pruning and
clustering rules to create classifiers that are concise, precise, and easy to understand.

Association rule (AR) mining [2] seeks to create all relevant rules in a database, ad-
hering to user-defined thresholds for minimum support and confidence. On the other
hand, classification rule mining focuses on extracting a subset of rules to develop precise
and effective models for predicting labels of ambiguous objects. Combining these two
crucial data-mining methods in Associative Classification (AC) allows for the creation of a
cohesive framework [3,4]. Association rules utilize many of the AC techniques presented
by researchers to create efficient and accurate classifiers [5–12]. Although their effectiveness
depends on user-defined factors like minimum support and confidence, research investiga-
tions have shown that AC methods can be more accurate than conventional categorization
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systems. Unsupervised learning techniques like clustering [13–15] also play a significant
part. Partitional clustering or hierarchical clustering are two categories of clustering tech-
niques. In partitional clustering [16,17], objects are divided into distinct clusters to ensure
that objects inside a cluster are more similar than those in other clusters. On the other hand,
nested partitions make up a hierarchy in hierarchical clustering [18]. While the top–down
method starts with a single cluster that contains all items and then splits them into smaller
clusters, the bottom–up method joins smaller clusters to create bigger ones.

Our research focuses on generating strong class association rules (CARs) using the
“FP-Growth” algorithm for frequent itemsets, satisfying minimum support and confidence
requirements. Additionally, we propose an approach to associative classification utilizing
K-modes clustering with a novel distance metric built on direct measurements like rule
items to reduce the rule space. Our method represents rules as binary vectors of itemsets,
enabling efficient similarity calculation and making it compatible with clustering techniques
like K-modes. We explore the benefits and methodology of K-modes clustering, which
reveals hidden patterns in itemsets and provides computational efficiency for large datasets
compared to other clustering approaches. Moreover, we introduce a two-step process
using the silhouette score to determine the optimal number of clusters, ensuring a balance
between cohesion and separation. After clustering the CARs, we select a representative
CAR for each cluster using two approaches based on dataset coverage and rules similarity,
aiming to enhance coverage and classification accuracy.

In order to assess the effectiveness of our proposed techniques, we carried out ex-
periments on 13 meticulously chosen datasets sourced from the UCI Machine Learning
Database Repository [19] and Kaggle. A comparative evaluation was conducted, comparing
our methods against seven well-known associative and classical classification algorithms.
These algorithms include Decision Table and Naïve Bayes (DTNB) [20], Decision Table
(DT) [21], Classification Based on Predictive Association rules (CPAR) [22], Classification
based on Multiple Association Rules (CMAR) [18], C4.5 [23], Classification-Based Associa-
tion (CBA) [3], and Simple Associative Classifier (SA) [24].

Experimental results showed that ACMKC achieved the best result when comparing
the average number of classification rules while maintaining the similar classification
accuracy with other models. The ACMKC model showed great advantage to produce
statistically smaller classifiers on bigger datasets, which was the primary goal of the study.

The following sections of the paper are structured as follows: Section 2 includes
past works related to our research. Section 3 presents a comprehensive explanation of
our proposed methodology. Section 4 focuses on the experimental evaluation. Section 5
outlines the conclusion and future plans. The paper concludes with the Acknowledgement
and References sections.

2. Related Work

Our proposed approach introduces innovation in the selection of “strong” class as-
sociation rules, the clustering process, and the determination of a “representative” class
association rule for each cluster. Other relevant studies also address the concept of clus-
tering CARs, but they employ various approaches. This section discusses these related
approaches to clustering CARs, highlighting both the similarities and differences compared
to our proposed approach.

To the best of our knowledge, and due to the lack of information relating to the combi-
nation of class association rules and clustering, our approach serves as a coalescence of these
two to create a method of determining representative class association rules for clusters.
While there are methods that employ associative classification and clustering to accomplish
a similar feat, ours differs in that it uses CARS instead of associative classification.

The techniques used in [25] involve Association Rule Classification and Clustering
units. In the Association Rule Classification unit, the Apriori Algorithm is applied to
identify regularities between flow parameters; it is used for the finer classification and pre-
diction of IPs and ports for future application servicing. This approach focuses on deriving
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association rules to enhance classification accuracy. On the other hand, in the Clustering
unit, both K-Mean and Model-based clustering algorithms are compared to determine the
optimum performance. Unsupervised clustering techniques group datasets with similar
characteristics together, aiding the classification process. K-Mean partitions data into k
groups to minimize the Euclidean distance of cluster centers. Model-Based Clustering
assumes a data model and utilizes the Mclust package with Expectation–Maximization
(EM) for parameter estimation and hierarchical clustering. These techniques differ from
K-modes and class association rules by exploring distinct approaches to data representation,
rule generation, and clustering strategies for classification tasks.

A new method researchers propose utilizes K-means (partitional) clustering to cluster
association rules [26]. The primary objective of this research is to cluster discovered
association rules to facilitate user selection of the most suitable rules. Four steps make up
the algorithm: (1) The “Apriori” algorithm is used to extract ARs from frequent patterns;
(2) Lift, Cosinus, Conviction, and Information Gain are computed for all rules generated in
step 1; (3) Using the K-means algorithm, a set of association rules is divided into disjoint
clusters; they attempt to cluster the rules that share the fewest similarities. Euclidean and
degree of similarity distances are used; (4) Finally, the group of rules is ranked from best to
worst based on the centroid of each cluster.

The CPAR algorithm is introduced by Yin and Han as a fusion of associative classifica-
tion and traditional rule-based classification methods. CPAR employs a greedy algorithm
and draws inspiration from the First-Order Inductive Learner (FOIL) [27] technique to
directly generate rules from the training dataset, deviating from the generation of a vast
number of candidate rules derived from frequent itemsets in other associative classification
approaches. CPAR evaluates each rule using expected accuracy to address overfitting and
employs a distinct classification process. Firstly, it selects all rules whose bodies match the
testing example; then, it extracts the best k rules for each class among the selected rules.
Finally, CPAR compares the average expected accuracy of the best k rules per class from
step 2 and predicts the class label associated with the highest expected accuracy.

CMAR, an associative classification method, employs multiple association rules for
classification. It extends the efficient FP-Growth algorithm [28] to mine large datasets and
introduces a novel data structure called a CR-tree. The CR-tree aims to store and retrieve
a large number of rules compactly and efficiently by utilizing a prefix tree structure that
explores rule sharing, resulting in significant compactness. Additionally, the CR-tree acts
as an index structure for rules, enabling efficient rule retrieval. In the rule selection phase,
CMAR identifies highly confident and related rules by considering dataset coverage and
analyzing their correlation. For each rule R, all examples covered by R are identified, and
if R correctly classifies an example, it is selected for inclusion in the final classifier. The
cover count of examples covered by R is incremented by 1, with a cover count threshold C
initially applied. If the cover count of an example exceeds C, that example is removed. This
iterative process continues until both the training dataset and rule set are empty.

Liu, Hsu, and Ma developed the heuristic technique known as CBA [3] in 1998. Its
structure is similar to associative classification algorithms and includes steps for rule
development and selection. CBA uses an iterative process for rule creation comparable
to the Apriori algorithm [2]. CBA detects frequent rule-items and creates strong class
association rules from these frequent itemsets by repeatedly examining the data. A pruning
technique based on a pessimistic error rate is used in the rule-generation phase. Rules are
extracted depending on dataset coverage during the rule-selection step. A rule qualifies
as a prospective classifier candidate if it accurately classifies at least one example. Finally,
based on the assessment of total error, rules are added to the final classifier.

In reference [29], a classifier named J&B was developed through a thorough explo-
ration of the complete example space, resulting in a straightforward and accurate clas-
sifier. Our selection of strong class association rules was based on their contribution to
enhancing the coverage of the learning set. J&B incorporates a stopping criterion in the
rule-selection process, which relies on the coverage of the training dataset. In the represen-
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tative CAR-selection process of this study, we employed the J&B approach without using a
stopping condition. There is no need to use a stopping criterion in this method because
the size of the classifier, which is decided by the number of clusters, is determined using a
separate strategy.

Conditional market-basket difference (CMBP) and conditional market-basket log-
likelihood (CMBL) approaches are two further strategies suggested in [30]. This method
groups association rules using a new normalized distance metric. Agglomerative clustering
is used to group the rules based on distance. In addition, the rules are clustered using
self-organizing maps and multi-dimensionally scaled in a vector space. This approach is
relatively similar to ours, but instead of using “indirect” measurements based on CAR
support and coverage, we suggest a new normalized distance metric based on “direct” and
“combined” distances between class association rules.

Another related strategy is mining clusters with ARs [31]. The FP-Growth algorithm
generates the rules in this case. However, a unique distance metric (based on K-modes) is
afterward applied to identify similarities between rules. Provided is the list of products
purchased by each client, and rules are clustered using a top–down hierarchical clustering
algorithm to identify clusters in a population of customers. After clustering the rules, we
introduce a specific distance metric to assess the effectiveness of the clustering process.

3. Methodology

Our approach (Compact, Accurate and Descriptive Associative Classifier) is divided
into 3 main actions outlined in the preceding section. The following subsections go into
further depth about each of these steps.

3.1. Class Association Rule Generation

In this subsection, we address the method of finding the strong CARs from frequent
itemsets. The process of creating ARs typically consists of two primary stages: first, all
frequent itemsets from the training dataset are found using the least support; then, we use
these frequent itemsets along with minimum confidence to create strong association rules.
The identical process used for AR creation is also followed in the discovery of CARs. The
main distinction is that in the rule-generation phase, the rule’s result in CAR generation
comprises just the class label, whereas the rule’s result in AR generation might contain
any frequent itemset. In the first step, the “FP-Growth” algorithm is employed to discover
frequent itemsets. The “FP-Growth” algorithm uses a “growth” technique to decrease the
number of itemset candidates at each level, therefore speeding up the search process. To
create the 2-frequent itemset and beyond, it starts by determining the 1-frequent itemset.
Since they cannot add to frequent itemsets, any infrequent itemsets found during the
procedure are discarded. By completing this trimming step before calculating the support
at each level, the temporal complexity of the algorithm is decreased. After obtaining
every frequent itemset from the training datasets, creating strong class association rules
(CARs) that meet the minimal support and minimum confidence requirements is a simple
process. The frequent itemsets found in the first stage serve as the basis for these rules. The
confidence of a rule can be calculated using the following formula:

con f idence(A → B) =
support_count(A ∪ B)

support_count(A)
(1)

In Equation (1), the support count of an itemset is used, where A represents the
premise (itemset on the left-hand side of the rule), B represents the consequence (class
label on the right-hand side of the rule), support_count(A ∪ B) represents the number
of transactions that contain both itemsets A and B, and support_count(A) represents the
number of transactions that contain itemset A. On the basis of the prior equation, the
following procedures can be used to build strong class association rules that satisfy the
minimum confidence threshold:
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• Generate all nonempty subsets S for each frequent itemset L and a class label C.
• For each nonempty subset S of L, output the strong rule R in the form of “S → C”

if support_count(R)
support_count(S) ≤ min_con f , where min_con f represents the minimum confidence

threshold.

3.2. Clustering

Clustering algorithms put comparable examples together into clusters, where the
examples in each cluster differ from the examples in other clusters and share commonalities
with each other. Among the different clustering techniques, K-modes is a noteworthy one.
Because of its unique benefits in some situations, such as efficiently managing datasets
with discrete qualities or categorical variables, like the suggested distance matrix we use to
describe association rules, the K-modes technique is used.

3.2.1. Distance Metric

We suggest a new distance metric in this part that is based on direct measurements
for rule items. Our main objective is to decrease the rule space by using direct distance
measurements for clustering.

The encoding of rules as a binary vector of itemsets is one of our work’s contributions.
With this structure, calculating similarities across rules is quick and easy, and our binary
governed dataset is a perfect fit for clustering methods like K-modes.

The antecedent, or left side of the rule, is taken into consideration when we are
calculating the distance between the rules that have the same class value.

Let R = {r1, r2, . . . , rn} be a rule set, and each rule is denoted as follows: r = {a1, a2, . . . , ak}
→ {c}, where {a1, a2, . . . , ak} are values of the attribute and c is a class value. We first
transfer the rule items ai into a binary vector. The existing attribute’s value is replaced
with 1 and the remaining attribute’s values (which were not present in a rule) are replaced
with 0.

Example: Let us assume that attribute Windy has two values: “T” and “F”, and
attribute Temperature has three values: “Hot”, “Mild” and “Cool”. An antecedent of
the example rule is as follows: Windy = T and Temp = Cool; a subsetted example of the
represented rule is shown below.

Rule Windy = T Windy = F Temp = Hot Temp = Mild Temp = Cool

{Windy=T,
Temp=Cool} 1 0 0 0 1

After transferring the rules into binary vectors, we use a simple method of computing
the distance between two rules as follows:

Given two rules (rule1, rule2):

rule1 = {y1, y2, . . . , yk} → {c}

rule2 = {z1, z2, . . . , zk} → {c}
where {y1, y2, . . . , yk and z1, z2, . . . , zk} ⊆ 0, 1, and c ∈ C. We compute the similarity
between rule1 and rule2 as follows:

distance(rule1, rule2) =
k

∑
i=1

|yi − zi| (2)

3.2.2. K-Modes

In K-modes, the clustering process involves iteratively assigning examples to clus-
ters, considering the modes (the most frequent values) of the categorical attributes. This
approach seeks to identify groups of examples that share similar modes across all categor-
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ical variables, ensuring that the resulting clusters are internally cohesive. By employing
K-modes, we can achieve several benefits. Firstly, it allows us to capture the inherent
structure within the itemsets contained in the rules, revealing patterns and associations
that might be hidden in numerical-based clustering methods. Secondly, K-modes offers
computational efficiency and scalability for large datasets with categorical variables. It
can handle high-dimensional data and handle a large number of categories within each at-
tribute, making it suitable for real-world applications with diverse and complex categorical
data. The K-modes algorithm is described in Algorithm 1.

Algorithm 1 The K-modes algorithm for partitioning, where each cluster’s center is repre-
sented by the median value of the objects in the cluster.
Input: k: the number of clusters, D: a dataset containing n rules
Output: A set of k clusters

1: Arbitrarily choose k rules from D as the initial cluster centers;
2: repeat
3: (Re)assign each rule to the cluster to which the rule is the most similar based on the median

value of the rules in the cluster;
4: Update the cluster medians, i.e., calculate the median value of the rules for each cluster;
5: until no change.

We run the K-modes method twice. Since Algorithm 1 takes the number of clusters in
advance, we initially run the algorithm to determine the optimal number of clusters. Then,
the algorithm is run again with the determined optimal clusters. When determining the
optimal number of clusters in K-modes, the silhouette score can be utilized as a metric. The
silhouette score assists in identifying the “natural” number of clusters by evaluating the
cohesion and separation of examples within the clusters.

To calculate the silhouette score, each example is assigned to a cluster, and the follow-
ing values are computed:

• The average dissimilarity (distance) between an example i and all other examples
within the same cluster. This value measures how well an example fits within its
assigned cluster with lower values indicating better cohesion.

• The average dissimilarity (distance) between an example i and all examples in the near-
est neighboring cluster. This value captures the separation or dissimilarity between an
example and other clusters with higher values indicating greater dissimilarity.

By computing the silhouette scores for all examples across a range of cluster numbers,
the optimal number of clusters can be identified. The “natural” number of clusters corre-
sponds to the point where the silhouette score is highest, indicating the configuration with
the best balance of cohesion and separation. The algorithm that identifies the “natural”
number of clusters is presented in Algorithm 2.

Algorithm 2 Computing the optimal number of clusters.
Input: D: a dataset containing n rules; max_clusters: the maximum number of clusters to search for
Output: Optimal number of clusters

1: Opt_number_o f _cluster = 1;
2: Best_score = 1;
3: for (k = 2; k ≤ max_clusters; k ++) do
4: Run K-modes with dataset D and number of clusters as k;
5: Calculate silhouette_score;
6: if silhouette_score >= Best_score then
7: Best_score = silhouette_score;
8: Opt_number_o f _cluster = k;
9: end if

10: end for
11: return Opt_number_o f _clusters

254



Mathematics 2023, 11, 3978

3.3. Extracting the Representative CAR

After locating each cluster, the last step is to separate the representative CARs from
each cluster to create a descriptive, compact, and useful associative classifier. In this
work, we extracted representative rules based on dataset coverage while considering the
rules similarity.

The decision was made to utilize this approach in order to raise the classification
accuracy and overall coverage. It is not necessary to consider the outer-class overlapping
problem—which indicates that some samples from different classes have similar charac-
teristics—because we are clustering similar rules with the same class value. However, we
should avoid the inter-class overlapping problem, which arises when multiple rules from
the same class cover the same samples. By choosing the representative CARs according
to database coverage, we work around this issue. When the coverage of the rules is the
same, we take into account how similar the rules are to each other. This means that we
select the CAR that is closest to the cluster center (it has the lowest average distance to all
other rules). The steps are described in Algorithm 3.

Algorithm 3 A Representative CAR based on Dataset Coverage and Minimum Distance.
Input: A set of class association rules in CARs array, a training dataset D and
covered_traindata array
Output: Three representative class association rules

1: CARs = sort(CARs, coverage, minimum_distance);
2: Representative_CARs. add (CARs[1]):
3: for (i = 2; i ≤ CARs.length; i ++) do
4: for (j = 1; j ≤ D.length; j ++) do
5: if covered_traindata[j] = false then
6: if CARs[i] covers D[j] then
7: covered_traindata[j] = true;
8: increment contribution of CARs[i] by 1;
9: end if

10: end if
11: end for
12: if contribution of CARs[i] > 0 then
13: Representative_CARs. add (CARs[i]);
14: break;
15: end if
16: if Representative_CARs. length = 3 then
17: return Representative_CARs;
18: end if
19: end for

Firstly, class association rules within the cluster are sorted (line 1) by coverage and
minimum_distance in descending order by the following criteria: Given two rules R1 and R2,
R1 is said to have a higher rank than R2, which is denoted as R1 > R2,

• If and only if, coverage(R1) > coverage(R2); or
• If coverage(R1) = coverage(R2) but, minimumdistance(R1) > minimumdistance(R2);
• If the entire set of parameters of the rules is equal, we may choose any of one of them.

After sorting the rules based on coverage and minimum distance, we extracted the
top three rules for each cluster. We selected three rules as optimal according to experi-
ments. Each potential rule is checked (Lines 3–19); if it covers at least one new example
(Lines 12–15), then we add it to the representative CARs array and remove all the examples
covered by that rule; otherwise, we continue.

255



Mathematics 2023, 11, 3978

Associative Classification Model

After extracting the representative class association rules, we produce our explainable,
compact and descriptive model which is represented in Algorithm 4.

Algorithm 4 Compact and Explainable Associative Classification Model.
Input: A distance matrix d and number of clusters S
Output: Cluster heights (AHCCLH), Cluster of CARs (AHCCLC)

1: Initialization: minimum support and minimum confidence thresholds are set to generate
the CARs;

2: Generate: The frequent itemsets are generated from the dataset by using the FP-Growth
algorithm and used to produce strong class association rules, which are sorted based
on confidence and support. Cars are then groupped according to class label;

3: Cluster: For each group of CARs, the K-modes clustering algorithm is utilized to cluster
them. For this purpose, the newly developed distance metric (Section 3.2.1) is used
to find the similarity between CARs, and the optimal number of clusters is identified
based on the silhouette score (Algorithm 2);

4: Extract representative rules: Three representative rules are extracted for each cluster
according to Algorithm 3:

5: Producing final model: For each class value, all the rules extracted from each cluster are
collected to produce the final compact and explainable associative classification model.

4. Results

Experimental assessment supported the accomplishment of the scientific goals. Thir-
teen real-world datasets from Kaggle and the UCI Machine Learning Database Repository
were used to test our models. By comparing our classifier’s classification accuracy and
rule count to those of eight well-known rule-based classification algorithms (DTNB, DT,
C4.5, CPAR, CMAR, CBA, and SA), we were able to assess its performance. A paired
t-test was used to determine the statistical significance of each difference (with a 95% level
of significance).

Associative classifiers were run with default parameters at minimum support = 1%
and minimum confidence = 50%. We utilized their WEKA workbench implementation with
default parameters for the other classification models. The description of the datasets is
shown in Table 1.

An evaluation methodology that uses 10-fold cross-validation was used to achieve
all experimental outcomes. Table 2 displays the experimental findings for classification
accuracy (mean values throughout the 10-fold cross-validation with standard deviations).

Table 2 shows that the ACMKC model achieved the best accuracies on the “Abalone”,
“Adult”, “Connect4” and “Diabetes” datasets among all classification models and obtained
comparable accuracies on other datasets. Our proposed model attained the third highest
result on average accuracy with 80.0%, which was slightly lower than the results of the C4.5
(82.7%) and CMAR (82.4%) models. Rule-based models DTNB, DT, and C4.5 obtained better
accuracies on the “Car.Evn” and “Nursery” datasets than associative classifications CPAR,
CMAR, CBA, SA, and ACMKC. The main reason is that those datasets are imbalanced,
which causes a problem in the rule-generation part of AC models (AC models were not able
to produce enough class association rules for each class value with imbalanced datasets).
Interestingly, CPAR and CMAR achieved over 99% accuracy on the “Mushroom” dataset,
which was 15–25% higher than other rule learners.
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Table 1. Datasets description.

Dataset
Attributes Classes Records

Analyzed
Rules

Car.Evn 7 4 1728 10,000

Tic-Tac-Toe 10 2 958 10,000

Nursery 9 5 12,960 20,000

Mushroom 23 2 8124 20,000

Abalone 9 3 4177 10,000

Adult 15 2 45,221 20,000

Laptop 11 3 1303 10,000

Chess 37 2 3196 10,000

Connect4 43 3 67,557 10,000

Airplane 17 2 103,904 20,000

Airline Reviews 8 2 129,455 20,000

Diabetes 13 2 70,692 10,000

Recruitment 7 2 215 1000

Table 2. Evaluation of classification models on accuracy.

Dataset DTNB DT C4.5 CPAR CMAR CBA SA ACMKC

Car.Evn 95.4 ± 0.8 91.3 ± 1.7 92.1 ± 1.7 78.1 ± 2.5 86.7 ± 2.1 91.2 ± 3.9 86.2 ± 2.1 83.0 ± 3.0
Tic-Tac-Toe 69.9 ± 2.7 74.4 ± 4.4 85.2 ± 2.7 70.5 ± 1.6 95.3 ± 1.8 73.1 ± 0.8 91.7 ± 1.5 74.4 ± 3.7
Nursery 94.0 ± 1.5 93.6 ± 1.2 95.4 ± 1.4 78.9 ± 1.2 91.7 ± 2.2 92.1 ± 2.4 91.6 ± 1.2 85.6 ± 1.3
Mushroom 75.0 ± 7.2 53.4 ± 8.3 78.7 ± 8.4 99.1 ± 0.0 99.4 ± 0.0 75.6 ± 10.9 73.1 ± 6.0 83.0 ± 0.9
Abalone 62.1 ± 1.3 61.8 ± 1.5 62.3 ± 1.2 60.2 ± 1.1 58.3 ± 1.7 61.1 ± 1.0 61.0 ± 0.9 66.9 ± 5.3
Adult 73.0 ± 4.1 82.0 ± 2.3 82.4 ± 4.7 77.4 ± 2.9 80.2 ± 2.4 81.8 ± 3.4 80.8 ± 2.6 82.8 ± 4.5
Laptop 75.7 ± 2.6 72.9 ± 2.9 75.3 ± 2.3 70.9 ± 2.7 72.8 ± 1.0 75.4 ± 2.0 72.0 ± 1.4 71.5 ± 3.3
Chess 93.7 ± 3.0 97.3 ± 3.1 98.9 ± 3.6 93.7 ± 3.2 93.8 ± 2.9 95.4 ± 2.9 92.2 ± 3.8 95.7 ± 2.7
Connect4 78.8 ± 5.9 76.7 ± 7.7 80.0 ± 6.8 68.6 ± 4.4 68.8 ± 4.7 80.9 ± 8.1 78.7 ± 6.0 82.4 ± 4.4
Airplane 89.6 ± 0.9 93.2 ± 0.3 95.7 ± 0.2 88.2 ± 1.3 91.7 ± 2.2 75.7 ± 6.9 77.4 ± 8.1 83.2 ± 0.8
Airline Reviews 94.0 ± 1.0 94.0 ± 1.9 93.8 ± 1.4 96.0 ± 0.9 94.2 ± 1.2 74.2 ± 1.8 76.2 ± 2.6 92.1 ± 2.1
Diabetes 72.9 ± 0.6 73.1 ± 0.5 72.9 ± 0.4 69.9 ± 1.7 70.9 ± 0.6 71.7 ± 2.4 70.0 ± 1.7 74.2 ± 1.5
Recruitment 65.1 ± 5.2 67.5 ± 5.9 63.0 ± 6.4 63.8 ± 3.4 67.2 ± 2.8 64.4 ± 2.5 61.6 ± 4.1 65.3 ± 5.5

Average (%): 79.9 ± 2.8 79.3 ± 3.2 82.7 ± 3.2 78.8 ± 2.1 82.4 ± 2.0 77.8 ± 3.8 77.9 ± 3.2 80.0 ± 3.0

Table 3 displays statistically significant testing (wins/losses counts) on accuracy be-
tween ACMKC and other classification methods. The following represent the results
displayed below: W: our approach was significantly better than the algorithms being com-
pared; L: the selected rule-learning algorithm significantly outperformed our algorithm; N:
no significant difference has been detected in the comparison.

It can be seen from Table 3 that our proposed model outperformed SA (8/3/2) and
CPAR (7/3/3) methods based on win/losses counts. Although ACMKC statistically lost
to the C4.5 model on 6 datasets out of 13, it achieved comparable results with DTNB,
DT and CMAR algorithms and had a slightly better result than CBA (5/3/5) in terms of
win/losses counts.

In our goal to develop an association rule-based model that significantly reduces the
required number of rules, we find our model uses far less rules that many other common
rule-based and associative classification models, which is shown in Table 4. On average, for
the datasets we tested, our model produced 71 rules with the other two closest algorithms
being CPAR at 90 rules and CBA at 95 rules. Our method beats the other compared methods
for seven out of thirteen datasets and performs in the top two for the least amount of rules
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for ten of the thirteen tested datasets. The other models in comparison produced far more
rules on average.

Table 3. Comparison of classification models on accuracy based on statistically significant wins/
losses counts.

DTNB DT C4.5 CPAR CMAR CBA SA

W 5 3 3 7 4 5 8
L 4 3 6 3 5 3 3
N 4 7 4 3 4 5 2

Table 4. Evaluation of classification models based on number of rules.

Dataset DTNB DT C4.5 CPAR CMAR CBA SA ACMKC

Car.Evn 144 432 123 40 567 72 160 21
Tic-Tac-Toe 258 121 88 11 166 23 60 48
Nursery 1240 804 301 60 1935 141 175 132
Mushroom 50 50 26 19 100 15 70 12
Abalone 165 60 49 17 834 132 155 36
Adult 737 1571 279 120 3411 126 130 101
Laptop 101 101 72 41 783 39 75 45
Chess 507 101 31 14 282 14 120 12
Connect4 3826 952 3973 657 6877 349 600 267
Airplane 3201 4444 772 41 391 104 660 120
Airline Reviews 186 890 259 117 3218 121 140 99
Diabetes 160 244 221 37 3572 95 160 24
Recruitment 20 8 13 10 106 15 14 12

Average: 773 1060 477 90 1710 95 184 71

The main advantage of our model is producing noticeably smaller classifiers on bigger
datasets comparing to other rule-based and associative classification models (illustrated in
Figure 1).

When the size of the dataset increases, the number of rules in the DTNB, DT, C4.5
and CMAR models also rises. However, ACMKC is not sensitive to the dataset size, which
can be proven on selected datasets in Figure 1. Figure 1 illustrates the huge advantage
of our proposed model compared to other classification models in terms of classifier size.
Table 5 provides detailed information on the statistically significant win/loss counts of our
methods when compared to other classification models for the number of rules.

Table 5 shows that ACMKC statistically outperformed all the models on the number
of rules according to the win/losses counts. Although ACMKC achieved slightly worse
results than the C4.5 and CMAR algorithms on accuracy, it produced statistically smaller
classifiers than those models in all datasets. Our proposed model achieved statistically
better results than DTNB on every dataset and DT on 12 datasets out of 13 in terms of
classifier size. Our model had a statistically worse result than CBA on three datasets and
CPAR on four datasets, and there were no statistical differences between those methods on
three datasets out of 13.

As displayed in Figure 2, our method provides competitive accuracies against the
other classification models while utilizing significantly less rules. Only the CPAR algorithm
provides a similar result when trading accuracy and number of rules; yet, on average, our
method utilizes far less rules.
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Figure 1. Comparison of classification models on bigger datasets based on classifier size.

Table 5. Comparison of classification models on rules based on statistically significant wins/
losses counts.

DTNB DT C4.5 CPAR CMAR CBA SA

W 13 12 12 6 13 7 12
L 0 1 0 4 0 3 0
N 0 0 1 3 0 3 1

Figure 2. Comparison of classification models in terms of average accuracy and number of rules.

It is of note that not only does our method perform comparably and sometimes
better in regard to accuracy, it also has better precision, recall and F-measure scoreswhen
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comparing our method to other class association rule algorithms used in classification tasks
(shown in Figure 3). As mentioned above, it does this while producing significantly fewer
rules than other methods, which was the main goal of this research.

Figure 3. Comparison of classification models on “precision”, “recall” and “F-measure”.

5. Conclusions

By exhaustively searching the whole example space utilizing constraints and clustering,
the fundamental goal of this research is to produce a compact and meaningful yet accurate
classifier. According to experimental findings, ACMKC greatly decreased the number of
classification rules while retaining classification accuracy, which was the major objective of
this study. More specifically, the ACMKC method outperformed all other models in terms
of average number of rules with 71 rules, which was ten times better than the results of
the DTNB, DT, and CMAR algorithms. The proposed model’s overall accuracy was on par
with that of all other models, and it was the third highest between all classification models.

The advantage of the proposed model over previous rule-based and associative clas-
sification models was demonstrated experimentally by the fact that it produced smaller
classifiers on larger datasets.

In future work, we plan to optimize our model ACMKC to improve its time complexity,
which is a major drawback of our method. We also would like to investigate ways of
including numeric attributes into the associative classification models, as using clustering
on class association rules with numeric attributes may reveal new interesting perspectives
on the subject.
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