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Abstract: Unmanned aerial vehicle (UAV) based object detection plays a pivotal role in civil and
military fields. Unfortunately, the problem is more challenging than general visual object detection
due to the significant appearance deterioration in images captured by drones. Considering that video
contains more abundant visual features and motion information, a better idea for UAV based image
object detection is to enhance target appearance in reference frame by aggregating the features in
neighboring frames. However, simple feature aggregation methods will frequently introduce the
interference of background into targets. To solve this problem, we proposed a more effective module,
termed Temporal Attention Gated Recurrent Unit (TA-GRU), to extract effective temporal information
based on recurrent neural networks and transformers. TA-GRU works as an add-on module to bring
existing static object detectors to high performance video object detectors, with negligible extra
computational cost. To validate the efficacy of our module, we selected YOLOv7 as baseline and
carried out comprehensive experiments on the VisDrone2019-VID dataset. Our TA-GRU empowered
YOLOv7 to not only boost the detection accuracy by 5.86% in the mean average precision (mAP) on
the challenging VisDrone dataset, but also to reach a running speed of 24 frames per second (fps).

Keywords: drone video object detection; deformable transformer; recurrent neural network;
feature aggregation

1. Introduction

Recently, computer vision researchers are becoming more and more interested in
the field of video object detection (VOD). Images obtained by moving platforms often
suffer from appearance deterioration due to motion blur, partial occlusion, and rare poses,
especially by unmanned aerial vehicles (UAV). These issues have hindered advanced
image-based object detectors from reaching a higher standard for challenging real-world
scenarios such as drone vision.

Previous VOD methods [1–4] attempted to leverage the rich temporal and motion
context in videos. Some methods [4,5] utilize the motion information extracted by an extra
optical flow net to guide feature fusion. However, it is difficult to obtain accurate flow
features for videos. In contrast, some methods [6,7] attempt to exploit the video context
by long short-term memory networks (LSTM). LSTM combines temporal features from
different video frames with a forgetting gate and an update gate. Nevertheless, when it
comes to UAV images, LSTM-based VOD methods are proven to introduce a significant
amount of noise into targets due to the rapid changes in appearance and the small size
of objects in drone footage. Other approaches [1,8] leverage deformable convolution to
estimate object motion and utilize the displacement to align features in multiple frames.
Recently, the transformer model has been utilized to learn video context features for object
detection [3], and this method obtains state-of-the-art results on the ImageNet-VID dataset.

Drones 2023, 7, 466. https://doi.org/10.3390/drones7070466 https://www.mdpi.com/journal/drones
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Deformable Detection Transformer (Deformable DETR) is employed in this method to
boost object detection performance on drone videos.

Our philosophy is to acquire rich, high accuracy while maintaining a lower com-
putation burden. We made some tune-ups according to previous works on video object
detection. We chose Gated Recurrent Unit (GRU), Deformable Detection Transformer
(Deformable DETR), DeformAlign module, and temporal attention and fusion module
to compose our temporal processing module. The proposed method captures temporal
context from known video frames to enhance target features in the current frame. To
achieve this, we employ the GRU to fuse features of different images. Notably, we depart
from the commonly used Convolutional Gated Recurrent Unit (Conv-GRU) and instead
use a Deformable Detection Transformer (Deformable DETR) in place of convolution. This
modification enables our network to better focus on areas relevant to the targets being
detected. Additionally, drone videos often suffer from significant degradation in visual
quality; we employ deformable convolution to effectively learn the deviations between the
features of reference frame and temporal features. This process enables us to accurately
align the temporal features with the reference frame features by taking into account the
offsets. Notably, the frames that are most relevant to a given reference frame are probably
its immediate neighbors. To reflect this, neighboring frames are always assigned with
higher weights than frames far from the reference frame in the proposed temporal attention
module. We then use a weighted fusion method to combine the aligned temporal features
with the reference frame features, resulting in a set of fused features that are subsequently
fed into the detection network to generate detection results for the reference frame.

The main contributions are summarized as follows:

• We proposed an effective and efficient TA-GRU module to model the temporal context
between videos. It is very effective to handle appearance deterioration in drone vision,
and it can easily be used to promote existing static image object detectors to effective
video object detection methods.

• We proposed a new state-of-the-art video object detection method, which not only
achieves top performance on the VisDrone2019-VID dataset, but also runs in real-time.

• Compared to previous works, we integrated recurrent neural networks, transformer
layers, and feature alignment and fusion modules to create a more effective module
for handling temporal features in drone videos.

2. Related Work

Image-based Object Detection: Image-based detectors can be categorized broadly
into two groups: two-stage detectors and one-stage detectors. Two-stage detectors first
generate region proposals and then refine and classify them. Some representative methods
in this category include R-CNN [9], SSD [10], RetinaNet [11], Fast RCNN [12], and Faster
R-CNN [13]. While two-stage detectors tend to be more accurate, they are also slower. On
the other hand, one-stage detectors are usually faster but less accurate, as they directly
predict the region proposals based on the feature map. Relevant research in the field
of object detection includes various iterations of the YOLO series, such as YOLOv5 [5],
YOLOX [14], and YOLOv7 [6]. In our work, we utilized YOLOv7 as the base detector and
extended its capabilities for video object detection.

Video Object Detection: Compared to image object detection, video object detection
provides more comprehensive information about targets, including motion and richer
appearance details. In recent years, researchers have tried to utilize neighboring frame
features to enhance reference frame features. However, the presence of varying offsets in
each frame poses a significant challenge to effectively utilizing these features. Previous
studies attempted to address this issue by aligning the neighboring frame features with the
reference frame features. Alternatively, some methods choose to overlook the offsets in each
frame and instead use specialized modules to extract temporal information from videos.

Feature Aggregation: To address the issue of significant degradation in the visual
quality of drone videos, various previous methods focus on feature aggregation. This
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technique involves enhancing the reference features by combining the features of adja-
cent frames. For instance, FGFA [4] and THP [15] utilize the optical flow produced by
FlowNet [14] to model motion relations and align various frames. Alternatively, the optical-
flow-based framework [5] categorizes video images based on the background, acquires
the optical flow of the input sequence using FlowNet [14], and eventually aggregates the
optical flow to model motion relations. Nevertheless, flow-warping-based techniques have
some drawbacks. Firstly, drone videos frequently comprise numerous small objects, which
make it challenging to accurately extract optical flow. Secondly, it is important to note that
obtaining optical flow demands a considerable amount of computational resources, which
can make real-time detection a challenging task. In contrast, some other approaches employ
deformable convolution to compute the offsets in different frames. This method allows
for the adaptive adjustment of convolutional kernel parameters to obtain corresponding
offsets. For instance, STSN [8] utilizes stacked 6-layer deformable convolutional layers to
gradually aggregate the temporal contexts. TCE-Net [1] takes into account that the con-
tribution of neighboring frames to the reference frame may differ. To align frames, it uses
a single deformable convolutional layer and a temporal attention module, which assigns
weights to frames based on their respective contributions. However, the task of drone
video object detection presents significant challenges, and relying solely on a single de-
formable convolutional layer can make it difficult to accurately compute the offset between
neighboring frames and the reference frame. To avoid introducing excessive computation,
simply increasing the number of deformable convolutional layers is not the ideal solution.
Our approach, however, is to utilize the GRU module in our TA-GRU to transfer temporal
features and incorporate a temporal context enhanced aggregation module to obtain the
fusion features that are then fed to the detection network. This method allows us to avoid
the need for aligning every neighboring frame with a reference frame and instead adopt a
frame-by-frame alignment strategy, which not only reduces computation but also enhances
alignment accuracy.

Some recent studies have utilized recurrent neural networks, such as long short-term
memory networks (LSTM), to propagate temporal features that contain previous video
features. STMN [6] and Association LSTM [7] attempt to model object association between
different frames by applying LSTM or its variants. However, the object association modeled
by these methods is often imprecise, particularly in drone videos. On the other hand,
Conv-GRU utilizes convolution to replace linear calculation, which introduces significant
challenges to the GRU module originally used for calculating sequences. TPN [16] adopts
a unique method of object tracking which differs from general video object detections.
The proposed approach involves linking multiple frames of the same object to generate a
segment of tube, which is then fed into an ED-LSTM network to capture temporal context.
However, this method introduces significant background noise that can compromise the
accuracy of the results. To address this issue, recent research has explored the use of
transformers for video object detection. TransVOD [3] demonstrated that incorporating
self-attention and cross-attention modules can improve the model’s focus on the target
regions. Building on this work, our TA-GRU method aggregates temporal features and
applies deformable attention instead of convolution to enhance performance. We elaborate
on the details of TA-GRU in Section 3.

3. Proposed Method

To enable both high accuracy and high efficiency for UAV based image object detection,
we proposed a new, highly effective video object detection framework termed TA-GRU
YOLOv7. Particularly, we designed four effective modules including, the Temporal Atten-
tion Gated Recurrent Unit (TA-GRU) to enhance attention to target features in the current
frame and improve the accuracy of motion information extraction between frames; the Tem-
poral Deformable Transformer Layer (TDTL) to reduce additional computational overhead
and strengthen the target features; a new deformable alignment module (DeformAlign)
to extract motion information and align features from two frames; as well as a temporal
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attention based fusion module (TA-Fusion) to integrate useful information from temporal
features into the current frame feature.

3.1. Overview of TA-GRU YOLOv7

YOLOv7 is one of the most popular image object detectors, at present, due to its
great balance between speed and accuracy. Compared with the previous YOLO structures,
the backbone of YOLOv7 has a more intensive hop connection structure, which makes it
possible to extract richer and more diverse features from the input image. At the same time,
it uses an innovative downsampling structure that could reduce the number of parameters
while maintaining high accuracy, making it highly efficient and effective. It uses max
pooling and features with a step size of 2 × 2 for parallel extraction and compression.
As a mature and representative image object detector, YOLOv7 has already reached a
performance bottleneck. Therefore, we selected it as the baseline for our study on how to
effectively enhance the performance of current single frame image detection algorithms in
the context of video object detection problems.

The architecture of TA-GRU YOLOv7 is illustrated in Figure 1, which takes multiple
frames of a video clip as inputs and generates detection results for each frame as outputs.
In order to make sure that our TA-GRU module can be handily applied to various single
frame image detectors, we retained all structures of YOLOv7 and only added our TA-GRU
module at the neck of YOLOv7, which serves to confirm the efficacy of our module. Our
TA-GRU module contains four main components: Temporal Attention Gated Recurrent
Unit (TA-GRU) to propagate temporal features, Temporal Deformable Transformer Layer
(TDTL) to increase the attention on target regions, DeformAlign to model object motion
and align the features from frame-to-frame, and temporal attention and temporal fusion
module (TA-Fusion) to aggregate features from videos.

Figure 1. Architecture of TA-GRU. In TA-GRU, input features xt interact with temporal features
ht−1 through a temporal processing module (temporal alignment and fusion) to obtain enhanced
features to feed to the detection head. Additionally, temporal features ht−1 will be updated by update
gate features zt, where sel f _attn is self-deformable transformer layer, cross_attn is cross-deformable
transformer layer.

Analysis of Model Complexity. Here, we analyzed the model complexity of our
proposed modules to the existing object detectors. These methods have two main computa-
tional loads: 1. feature extraction network from the backbone Cbackbone; 2. detection head
Chead. Therefore, the total computational complexity is O(Cbackbone + Chead).

In our proposed models, we introduced a simple but effective module Ctemporal to
extract the temporal information in drone videos. Therefore, during the training process, the
computational complexity of our model is defined as O

(
Cbackbone + Chead + Ctemporal

)
. We

only increased the computational overhead required for the temporal processing module.
Adding our module only increases the parameters of the model from 37,245,102 parameters
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to 46,451,727 parameters. However, it surpassed the baseline in terms of detection accuracy
by a significant margin.

3.2. Model Design

Convolutional Gated Recurrent Unit (Conv-GRU). Gated Recurrent Unit (GRU) neural
network is a recurrent neural network, a variant of LSTM. Based on LSTM neural network,
the cell structure is optimized to reduce parameters and accelerate training speed. The
overall Convolutional Gated Recurrent Unit (Convolutional GRU) architecture is shown
in Figure 2. There, xt is the feature extracted by backbone, which uses convolution to
compute the update gate and reset gate to renew the temporal feature ht−1. However, this
temporal feature contains a lot of background from previous frames due to the complexity
of drone images. To solve this problem, we aimed to incorporate additional modules into
the Conv-GRU architecture to perform deeper temporal feature processing and improve its
attention towards the target region. Additionally, inspired by TransVOD [3], we explored
the effectiveness of deformable transformer layers in drone video object detection tasks.
Based on our experiments, incorporating deformable transformer layers prior to subsequent
temporal feature processing enables our network to effectively concentrate on the target
area and, to a certain extent, mitigates the impact of background information on the
temporal feature processing stage.

Figure 2. Architecture of Conv-GRU. It is constituted by the reset gate, update gate, and main body
of Conv-GRU.

The calculation formula is shown in Equation (1):

zt = σ(Wxz ∗ xt + Whz ∗ ht−1)
rt = σ(Wxr ∗ xt + Whr ∗ ht−1)

h′t = tanh(Wx ∗ xt + rt (Wh ∗ ht−1))
ht = (1− zt) h′t + zt ht−1

(1)

where σ is mean Sigmoid activation function, tanh is tanh activation function, is element-
wise multiplication, ∗ is convolution, xt is input features extracted by backbone, and
Wxz, Whz, Wxr, Whr, Wx, Wh are the 2D convolutional kernels whose parameters are
optimized end-to-end.

Temporal Attention Gated Recurrent Unit (TA-GRU). Different from the original Conv-
GRU, we modified it to make it extend to drone video object detections. The overall
Temporal Attention Gated Recurrent Unit (TA-GRU) architecture is shown in Figure 1. We
used it to propagate temporal features to more effectively retain temporal information;
we chose deformable transformer layer to replace the original convolutional layer and
added the temporary processing module (temporal alignment and fusion) to aggregate
input and temporal features. The deformable transformer layer can enable the model
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to focus more effectively on target areas, and it is better at handling temporal inputs
than traditional convolutional layers, resulting in improved performance compared to
traditional convolutional layers. In TA-GRU module, the temporal features are propagated
frame-by-frame between inputs to improve each frame appearance features. The final
outputs will be batch inputs. The specific formula is shown in Equation (2):

Zt = σ(cross_attn(Whz, sel f _attn(Wxz, xt), Ht−1))
Rt = σ(cross_attn(Whr, sel f _attn(Wxr, xt), Ht−1))

H′t = tanh((sel f _attn(Wx, xt) + Tem_prc(Rt Ht−1))
Ht = (1− Zt) H′t + Zt H′t

(2)

where σ is mean Sigmoid activation function, tanh is tanh activation function, is element-
wise multiplication, sel f _attn is self-deformable attention, cross_attn is cross-deformable
attention, Tem_prc is the mean after temporal processing on temporal features, xt is input
features extracted by backbone, and Wxz, Whz, Wxr, Whr, Wx are the weight matrix of
deformable attention whose parameters are optimized end-to-end.

Temporal Deformable Transformer Layer (TDTL). To our knowledge, there are a lot of
tiny objects in drone videos, which will introduce much background. Previous work [17]
has addressed this issue by adding a transformer layer at the neck of the model to enhance
the features extracted from the backbone. However, the general transformer layer [18]
will introduce much computation overhead. The viewpoint in DETR [19] suggests that
the more relevant area to the target area is often its nearby area. Furthermore, a video
object detector was built using a deformable transformer within TransVOD [3] and attained
satisfactory detection outcomes. Therefore, we utilized a deformable transformer layer to
build our Temporal Deformable Transformer Layer (TDTL). This module will make the
model pay more attention on target areas to improve the features. As shown in Figure 3,
the deformable transformer layer only assigns a small, fixed number of keys for each
query. Given an input feature map x ∈ RC×H×W , let i index a 2D reference point pi. The
deformable attention feature is calculated by Equation (3):

De f ormAttn(x, pi) = ∑N
n=1 Wn

[
∑K

k=1 AnikW ′
nx(pi + Δpnik)

]
(3)

where n indexes the attention head, k indexes the sampled keys, Δpnik and Anik denote
the sampling offset and attention weight of the kth sampling point in the nth attention
head, respectively, and the scalar attention weight Anik lies in range [0, 1], normalized by
∑K

k=1 Anik = 1.

Figure 3. Architecture of Temporal Deformable Transformer Layer (TDTL). To reduce huge compu-
tation overhead on a typical transformer layer, the deformable transformer layer only attends to a
small set of key sampling points around the reference.

We chose self-deformable attention to improve the attention on target areas of the input
features, then used cross-deformable attention to complete the interaction with temporal
features. By implementing this approach, our model becomes more adept at emphasizing
the features of the current frame during the update of temporal features while also giving
due consideration to the previous temporal features when determining which information
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should be preserved. This enhanced flexibility enables our network to focus more precisely
on the specific areas of interest.

DeformAlign. We noticed that same object features are usually not spatially aligned
across frames due to video motion. Without proper feature alignment before aggregation,
the object detector may generate numerous false recognitions and imprecise localizations.
Therefore, recent works [1,8] have utilized deformable convolution [20] to compute offset
caused by movement between different frames to align different frame features. The
architecture of the DeformAlign module is shown in Figure 4. Different from the deformable
convolution module, we needed model motion in different frames so we used an extra
convolution layer to simply fuse different frame features. Then, we used two different
convolutions to compute the offsets and corresponding weights by choosing the fused
features as inputs and utilized the offsets and weights to align neighboring frame features to
the reference frame features. Given the prevalence of small targets in drone imagery, where
the inter-frame motion of these targets may not be substantial, we found that a single layer
of deformable convolution was sufficient to effectively capture their motion information.

Figure 4. Architecture of DeformAlign. We used an extra convolution layer to simply fuse different
features connected by channel. We used bilinear interpolation in a deformable convolution module
to align the features of neighboring frames to the reference frame.

Two-dimensional convolution samples were positioned on a uniformly spaced grid
R, and we used weight W to sum the sampling values. For example, when we use a
convolution that kernel_size = 3× 3, stride = 1 to compute the pixel at position p0, we can
obtain the corresponding new value on feature map y by following Equation (4):

y(p0) = ∑N
i=1 Wpi ·x(p0 + Δpi) (4)

where N = kernel − size, Δpi = {(−1,−1), (−1, 0) · · · (1, 1)} , Wpi is the corresponding
weight at p0 + Δpi.

Deformable convolution introduces two additional convolutional layers to adaptively
calculate offset Δpn and weight Δwn. We can compute the aligned pixel at p0 by following
Equation (5):

yalign(p0) = ∑N
i=1 Wpi ·x(p0 + Δpi + Δpn)·Δwn (5)

It uses bilinear interpolation to achieve the process of p0 + Δpi + Δpn.
Temporal Attention and Temporal Fusion Module (TA-Fusion). TCE-Net [1] notices

that there are different contributions to reference frame features in different frame features.
The goal of temporal attention is to compute frame similarity in an embedding space to
focus on ‘when’ it is important given neighboring frames. Intuitively, at location p, if the
aligned features falign are close to reference features ft, they should be assigned higher
weights. Here, dot product similarity metric is used to measure the similarity. Additionally,
temporal fusion is proposed to aggregate features from neighboring frames to model
temporal context. We used a 1 × 1 × C convolutional network to fuse the aligned temporal
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features with the features of the current frame. During the training process, the parameters
of the fusion network were adaptively updated, enhancing the efficiency of feature fusion
in our model and improving overall performance.

The weights of temporal attention map are estimated by Equation (6):

Mt(p) = σ( falign(p)· ft(p)) (6)

where σ is Sigmoid activation function. The architecture of the temporal attention and
temporal fusion module is shown in Figure 5.

Figure 5. Architecture of Temporal Attention and Temporal Fusion module. We used dot product to
measure the similarity of falign and ft. Then, we used the similarity metric to assign different weights
for each frame. Finally, we chose a 1× 1×C convolution layer to aggregate features.

As shown in Figure 5, the temporal attention maps have the same spatial size with ft
and are then multiplied in a pixel-wise manner to the original aligned features falign.

4. Experiments

4.1. Training Dataset and DETAILS

Training Dataset. We trained and tested on the VisDrone2019-VID dataset [21], which
includes 288 video clips taken by the UAV platform at different angles and heights. All
videos are fully annotated with object bounding box, object category, and tracking IDs.
There are 10 object categories (‘pedestrian’, ‘people’, ‘bicycle’, ‘car’, ‘van’, ‘truck’, ‘tricycle’,
‘awning-tricycle’, ‘bus’, ‘motor’) consisting of 261,908 images, 24,201 for training images,
2846 for validate images, and 6635 for test images. Unlike other general video object
detection datasets, there are a lot of tiny objects and severe appearance deterioration in it.
Thus, we needed a video object detection method that could aggregate extensive tiny object
features to solve the appearance deterioration. Mean average precision (mAP) (average of
all 10 IoU thresholds, ranging from [0.5:0.95]) and AP50 were used as the evaluation metric.

Implementation Details. Our modules rely on one NVIDIA RTX3090 GPU for both
training and testing. Additionally, our experiments show that the diversity of the video clips
in VisDrone2019-VID is significantly lower when compared to ImageNet-VID. Hence, it
was necessary for us to perform additional data processing on VisDrone2019-VID. Referring
to the method in TCE-Net [1], we chose a temporal stride predictor that took the differences
between features t and features k to select which frames to aggregate. This predictor takes
the differences between features t and features k, i.e., ( ft − fk), as input and predicts the
deviation score between frame t and frame k. The deviation score is formally defined as
the motion intersection-over-union (IoU). If IoU < 0.5, the temporal stride is set to 1. If
0.5 < IoU < 0.7, the temporal stride is set to 2. Furthermore, if IoU > 0.7, the temporal stride
is set to 4. Inspired by FGFA [4], we firstly used VisDrone2019-DET to pretrain our model
by setting batch_size = 1. We then used the pretrained model weights as the resume model
to continue training on VisDrone2019-VID. Because the VisDrone2019-VID training set is
a bit small, we only trained the model on VisDrone2019-VID trainset for 70 epochs, and
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the first 2 epochs were used for warm-up. We used an SGD optimizer for training and
5 × 10−4 as the initial learning rate with the cosine learning rate schedule. The learning
rate of the last epoch decays to 0.01 of the initial learning rates. Considering the small
objects in the drone image, we assigned the size of the image to 1280 pixels. The important
parameters of the training process were set, as shown in Table 1.

Table 1. Training parameter setting table.

Parameters Setup

Epochs 70
Batch Size 4
Image Size 1280× 1280

Initial Learning Rate 2× 10−4

Final Learning Rate 2× 10−6

Momentum 0.937
Weight-Decay 5× 10−4

Image Scale 0.6
Image Flip Left-Right 0.5

Mosaic 0
Image Translation 0.2

Image Rotation 0.2
Image Perspective 2× 10−5

Data Analysis. Based on our past experience, it is crucial to analyze the dataset
thoroughly before designing and training a model in order to construct an effective one.
Upon reviewing the VisDrone2019-VID dataset, we observed the presence of numerous
small objects, as well as some appearance deterioration such as part occlusion, motion blur,
and video defocus. Therefore, there is an urgent need to develop a simple yet effective
VOD framework that can be fully end-to-end.

In Figure 6, there are numerous objects smaller than 4 pixels. While these objects
aided in training our temporal aggregated module, they should not be included in the
computation of the model loss function. Typical methods for handling the ignore regions
in the VisDron2019-VID dataset involve replacing them with gray squares. However, our
experiments show that this approach can result in a loss of image information, particularly
in UAV images, which is not conducive to training the temporal aggregated module. To
prevent our model from detecting ignore regions and to retain useful training information,
we chose to map the predicted bounding box back to the original images and set the
intersection-over-union (IoU) to 0.7 about ground truth bounding box and ignore regions,
thus excluding the ignore regions from loss calculation. This method has proven to be more
effective than simply replacing the ignored regions with gray squares, resulting in a 0.72%
increase in mean average precision (mAP).

 

Figure 6. Illustration of the ‘ignore region’ in the VisDrone2019-VID dataset.
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4.2. Comparisons to State-of-the-Art

Table 2 shows the comparison of TA-GRU YOLOv7 with other state-of-the-art methods.
With the use of temporal post-processing techniques, D&T adopts a well-designed tubelet
rescore technique, while others use Seq-NMS. The results demonstrate that our TA-GRU
module is effective when compared to image-based object detectors such as YOLOv7.

Table 2. Object detection results on VisDrone2019-VID.

Methods mAP (%) AP50 (%) Aggregate Frames FPS

TA-GRU YOLOv7 24.57 48.79 2 24
YOLOv7 [22] 18.71 40.26 - 45

TA-GRU YOLOX 19.41 40.59 2 -
YOLOX [23] 16.86 35.62 - -

TA-GRU YOLOv7-tiny 0.165 0.296 2 -
YOLOv7-tiny 0.103 0.212 - -

FGFA [4] 18.33 39.71 21 4
STSN [8] 18.52 39.87 27 -
D&T [24] 17.04 35.37 - -
FPN [25] 16.72 39.12 - -

CornerNet [26] 16.49 35.79 - -
CenterNet [27] 15.75 34.53 - -
CFE-SSDv2 [28] 21.57 44.75 - 21

Table 2 shows that TA-GRU YOLOv7 achieves a higher mean average precision
(mAP) than YOLOv7, with an improvement of 5.86% mAP. Moreover, the computational
overhead introduced by our method is small, which provides strong evidence for its
effectiveness. Compared with FGFA (18.33% mAP), TA-GRU YOLOv7 obtains 24.57% mAP,
outperforming it by 6.24%. Furthermore, TA-GRU YOLOv7 only aggregates a temporal
feature and reference frame feature, while FGFA is 21. Additionally, with a deformable
convolution detector and temporal post-processing, STSN obtains 18.52% mAP. However,
TA-GRU YOLOv7 obtains 24.57% mAP, which is about 6.05% higher than it. The detection
effect of some scenes is shown in Figure 7.

Figure 7. Examples of the detection effect.

Table 3, presented below, illustrates the detection outcomes of our model across
various categories in the VisDrone2019-VID dataset. Our model has achieved outstanding
detection performance across the vast majority of categories.
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Table 3. The detection of our network on various categories on VisDrone2019-VID dataset.

Classification mAP (%) AP50 (%) P R

all 24.57 48.79 0.577 0.513
pedestrian 29.1 68.1 0.658 0.668

people 18.5 49.7 0.56 0.579
bicycle 30.1 65.0 0.572 0.663

car 40.1 63.6 0.737 0.636
van 26.0 43.7 0.725 0.422

truck 32.1 56.1 0.636 0.578
tricycle 16.7 37.8 0.537 0.428

awning-tricycle 12.9 25.8 0.496 0.261
bus 25.4 33.4 0.368 0.345

motor 14.3 42.3 0.481 0.547

4.3. Ablation Study and Analysis

In order to evaluate the effectiveness of our proposed methods, we conducted a
series of experiments to analyze the impact of key components. This section provides a
detailed analysis of our findings, including experimental results and insights into how each
component contributes to the overall success of our approach.

Ablation for TA-GRU YOLOv7

Table 4 compares our TA-GRU YOLOv7 with the single-frame baseline and its variants.

Table 4. Accuracy and runtime of different methods on VisDrone2019-VID validation. The runtime
contains data processing, which is measured on one NVIDIA RTX3090 GPU.

Methods (a) (b) (c) (d) (e) (f)

Conv-GRU?
√ √ √

TA-GRU?
√ √

DeformAlign?
√ √ √ √

Temporal Attention and Temporal
Fusion module?

√ √ √

end-to-end training?
√ √ √ √ √

mAP (%) 18.71 16.55 20.03 23.96 24.57 23.82
AP50 (%) 40.26 37.29 41.68 47.61 48.79 47.23

Method (a) is the single-frame baseline. It has a mAP of 18.71% using YOLOv7.
It outperforms the video detector, FGFA, by 0.38%. This indicates that our baseline is
competitive and serves as a valid reference for evaluation.

Method (b) is a naive feature aggregation approach and a degenerated variant of
TA-GRU YOLOv7, which uses Conv-GRU to aggregate temporal features. The variant
is also trained end-to-end in the same way as TA-GRU YOLOv7. The mAP decreases
to 16.55%, 2.16% shy of baseline (a). This indicates that using traditional feature fusion
networks to directly aggregate complex drone video features can potentially introduce
background interference.

Method (c) adds the DeformAlign module into (b) to align neighboring frame features
to the reference frame features. It obtains a mAP of 20.03%, 1.32% higher than that of
(a) and 3.48% higher than that of (b). This result suggests that when features are aligned to
the same spatial position, it enhances the fusion of effective features in the fusion network.
However, introducing noise remains inevitable.

Method (d) adds the temporal attention and temporal fusion module to (c). It increases
the mAP score from 20.03% to 23.96%. Figure 8 shows that images with distinct appearance
features are assigned varying weights depending on how similar they are to the features of
the reference frame. This also effectively eliminates the impact of noise information from
adjacent frames on the features of the reference frame.
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Figure 8. Images with distinct appearance features are assigned varying weights. The weight is
determined by both the distance and similarity to the reference frame.

Method (e) is the proposed TA-GRU YOLOv7 method, which uses deformable atten-
tion to replace the convolution layer in (d). It increases the mAP score from 23.96% to
24.57%. It suggests that the deformable attention make model pays more attention to target
areas to effectively promote the information from nearby frames in feature aggregation. The
proposed TA-GRU YOLOv7 method improves the overall mAP score by 5.86% compared
to the single-frame baseline (a).

Method (f) is a degenerated version of (e) without using end-to-end training. It takes
the feature and the detection sub-networks from the single-frame baseline (a). During
training, these modules are fixed and only the embedding temporal extracted module is
learnt. It is clearly worse than (e). This indicates the importance of end-to-end training in
TA-GRU YOLOv7.

5. Conclusions

This work presents an accurate, simple yet effective VOD framework in a fully end-
to-end manner. Because our approach focuses on improving feature quality, it would be
complementary to existing single frameworks for better accuracy in video frames. Our
primary contribution is the integration of recurrent neural networks, transformer layers,
and feature alignment and fusion modules. Ablation experiments show the effectiveness
of our modules. Together, the proposed model not only achieves a 24.57% mAP score
on VisDorne2019-VID, but also reaches a running speed of 24 frames per second (fps).
However, more annotation data and precise motion estimation may be beneficial for im-
provements. Indeed, our module currently lacks proficiency in handling long-term motion
information, and the degradation of appearance characteristics in various objects within
UAV images presents a challenge for our module’s ability to effectively learn temporal
information. Addressing this issue is a key objective for our next stage of development.
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Abstract: In complex mining environments, driverless mining trucks are required to cooperate
with multiple intelligent systems. They must perform obstacle avoidance based on factors such as
the site road width, obstacle type, vehicle body movement state, and ground concavity-convexity.
Targeting the open-pit mining area, this paper proposes an intelligent mining road object detection
(IMOD) model developed using a 5G-multi-UAV and a deep learning approach. The IMOD model
employs data sensors to monitor surface data in real time within a multisystem collaborative 5G
network. The model transmits data to various intelligent systems and edge devices in real time,
and the unmanned mining card constructs the driving area on the fly. The IMOD model utilizes
a convolutional neural network to identify obstacles in front of driverless mining trucks in real
time, optimizing multisystem collaborative control and driverless mining truck scheduling based on
obstacle data. Multiple systems cooperate to maneuver around obstacles, including avoiding static
obstacles, such as standing and lying dummies, empty oil drums, and vehicles; continuously avoiding
multiple obstacles; and avoiding dynamic obstacles such as walking people and moving vehicles.
For this study, we independently collected and constructed an obstacle image dataset specific to
the mining area, and experimental tests and analyses reveal that the IMOD model maintains a
smooth route and stable vehicle movement attitude, ensuring the safety of driverless mining trucks
as well as of personnel and equipment in the mining area. The ablation and robustness experiments
demonstrate that the IMOD model outperforms the unmodified YOLOv5 model, with an average
improvement of approximately 9.4% across multiple performance measures. Additionally, compared
with other algorithms, this model shows significant performance improvements.

Keywords: multisystem collaboration; 5G-multi-UAV systems; multiscale feature fusion; pyramid
model

1. Introduction

Smart mines integrate modern information, control technology, and mining technology
to achieve the goals of efficiency, safety, and environmental protection. The use of automatic
driving applications in mining trucks reduces manual demand in key production links at
open-pit mines while promoting efficient collaboration. This development is supported
by 5G and other networking technologies that enable all-around communication between
vehicles, roads, and management platforms, with the ultimate goal of optimizing mine
operations [1]. The four scenarios for 5G automatic driving in mine operations are loading,
transportation, unloading, and operational support. To effectively realize these processes
while improving accuracy and efficiency, there are requirements of remote control driving
systems for mining trucks as well as cooperation among various construction machinery
through the integration of cutting-edge multisystems aimed at resolving the travel path
planning issues specifically associated with mining truck movements.

Drones 2023, 7, 250. https://doi.org/10.3390/drones7040250 https://www.mdpi.com/journal/drones
15



Drones 2023, 7, 250

Internationally, there is continuing growth in the demand for industrial-grade drones,
which are widely used in numerous industries. With the high growth in demand for
logistics and transport expected in the coming years, the drone transport market holds
great promise but also faces risks and challenges. Unmanned aerial systems (UASs) are
versatile, advanced high-tech equipment with extensive scientific, social, and strategic
applications that have the potential to trigger transformative industrial and societal change.
UAS equipment is widely used in a variety of scenarios, such as pesticide spraying, courier
transport delivery, video filming, and aerial inspection and monitoring, resulting in greater
convenience in terms of human labor.

Worldwide, the development of civil drones is still in its early stages, but countries
around the globe recognize the potential of drones in both military and civilian applications,
leading to the issuance of numerous policies and regulatory documents [2]. In the realm of
intelligent mining, advancements have been made from truck intelligence to collaborative
intelligence through the integration of vehicle-road-cloud superagents [3]. This innovative
approach allows for autonomous networked intelligent integration, unlocking limitless
possibilities for networked systems to overcome traditional constraints on time and space
interaction within open-pit mining areas.

Currently, 5G-multi-UAV applications remain at a nascent stage within open-pit
mining areas, including auxiliary driving and early warning services, among others. The
next phase will involve more complex applications serving not only L4 automatic driving
but also manned driving for different levels of automatic driving scenarios [4].

In Figure 1, the 5G network is shown as an integrated vehicle-road-cloud scenario.
This paper proposes the IMOD model, which combines 5G-multi-UAV and deep learning
methods for open-pit mining environments. The IMOD model uses data sensors to monitor
surface data in real time and transmit them to driverless mining trucks. The unmanned
mine truck utilizes a deep learning algorithm to identify obstacles in real time and build a
driving area that avoids static, dynamic, and multiple continuous obstacles. The IMOD
model ensures the safety of driverless vehicles, personnel, and equipment by ensuring the
smooth running of vehicles while avoiding obstacles.

Figure 1. A 5G-multi-UAV vehicle-road-cloud integration scene in an open-air intelligent mining area.

The contributions of this paper include: (1) proposing an IMOD automatic driving
model based on 5G-multi-UAV for enhancing safety in mining areas; (2) constructing an
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obstacle image dataset through field collection and manual marking; and (3) improving
multiscale obstacle detection capabilities through cross-modal data fusion.

The second section presents related work, followed by a presentation of the IMOD
autopilot model based on 5G-multi-UAV in Section 3. In Section 4, we provide experimental
analysis results, followed by our conclusions in Section 5.

2. Related Work

2.1. Multisystem Collaboration Scenarios and Applications in Open-Pit Mines

Automated driving in open-pit mines continues to adhere to the standard production
workflow of drilling, blasting, mining, transportation, and discharging [5]. Considering
the process of mining transport operations and platooning, automatic driving scenarios
in mines can be classified into three categories: loading, transporting, and unloading.
Additionally, there are maintenance support scenarios, such as refueling and water replen-
ishment, that facilitate the aforementioned operational processes. To implement intelligent
networked automatic driving applications effectively, the realization of remote control
driving capabilities for mining trucks is required. Moreover, there is a demand for seamless
operation coordination between these trucks and other construction machinery as well as
accurate planning of their travel path to ensure safe autonomous operation.

In this scenario, an unmanned mining truck travels to a loading point, where it re-
ceives payloads from excavators, shovels, and other equipment. The entire process involves
communication between the mining trucks, equipment, and cloud platforms during entry,
loading, and transportation to the designated destination along with providing updates
such as on position/speed/direction/acceleration. Loading equipment also sends posi-
tional and directional information for efficient operations.

During abnormal conditions, triggering an emergency brake feature that initiates
remote control mode provides increased safety measures by triggering alarms alerting
excavators about any danger. Cloud-based systems provide troubleshooting assistance,
resolving issues experienced during material transport.

For autonomous driving in mining trucks, a cloud platform is utilized for planning
paths while integrating environmental information. The vehicle interacts with other ve-
hicles/equipment/cloud platforms, ensuring safe driving via functions such as forward
collision warning and over-the-horizon perception while being capable of emergency
braking followed by remote takeover, if required.

The unloading process requires communication/cooperation among various pieces
of equipment (bulldozers/loaders/cloud platforms). In using planned tasks/paths, as-
sistance is provided by the surrounding environment perception resulting in real-time
status/information exchange between the mining truck/unloading equipment, leading
to efficient cooperation. Again, it should be capable of emergency braking followed by a
remote takeover in case of any abnormal situations.

Finally, refueling/water replenishment/maintenance tasks require organizing mainte-
nance or overhaul tasks by the cloud platform when necessary, with support task execution
planning via coordination between the truck/platform detecting faults or insufficient
oil/water using planned paths periodically broadcasting real-time status/task information
with availability for remote takeover in case of abnormalities.

2.2. 5G-Based Multi-UAV Collaboration Technology in Mining Areas

Using complex networks such as 5G/4G/MEC and V2X, along with cloud comput-
ing, big data, and artificial intelligence technologies, we can achieve ubiquitous network
connectivity between vehicles, roads, people, and cloud service platforms. This enables
environmental awareness and integrated computing while allowing for decision control
across end-users, road management systems, and cloud architectures. These advancements
provide safer, more efficient, and intelligent solutions for automatic vehicle driving as well
as traffic optimization services that promote green practices [6].
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The integration of 5G and multi-UAV facilitates business operations by primarily
focusing on three major points: network convergence to connect vehicles and roads to
the 5G network, data fusion through MEC for processing interactive or roadside sensing
data, and business integration by syncing roadside sensing results with the cloud while
supporting on-demand, multicast, and roadside broadcast for both 5G and multi-UAV.
This collaboration between vehicles, roads, and clouds is a crucial part of the overall
business process.

To enhance infrastructure services as well as network connections, this method pro-
poses utilizing human vehicle roads as service objects while incorporating edge clouds for
digital infrastructure support. The mining area multisystem cooperation approach based on
5G-multi-UAV provides redundant information service across multiple channels along with
high-speed slicing interconnection and collaborative perception for the vehicle-road-cloud
integration; this involves end-to-end communication protection paired with high-precision
positioning services, resulting in a unified service system including one network platform
that caters to various terminals in different scenarios.

Platform: Establishing a 5G vehicle-road collaborative service platform to accelerate
scene innovation through technological advancements and open standard interfaces.

Map: Integrating high-precision maps with applications to improve driving safety,
offering unified basic coordinates and supporting environmental perception assistance,
path planning, and decision-making with real-time updates on the edge map information.

Network: Creating a 5G-multi-UAV wireless scene library for exploring optimal access
experience for various scenarios. Intelligent network connection hierarchical services cater
to the differentiated needs of different IoV businesses based on demand awareness [7].

Roadside: Building multisource fusion sensing platforms across all-weather self-
developed vehicle-roadside-cloud systems facilitating low delay/high-efficiency transmis-
sion of roadside sensor data from vehicles, enabling supercomputing fusion processing at
MEC-edge cloud nodes via collaborative communication computing methodologies.

Application: Utilizing cloud-side collaborations via 5G + edge cloud technology pro-
viding early vehicle-road collaboration warning services to realize multi-UAV collaboration
defined under IoV’s scene service logo defining unicast/multicast broadcast services.

The implementation of drones as a flying platform poses difficulties due to their
unique operating characteristics. Communication and safety risks are also high. However,
various overhead angles for aerial photography can be achieved through drone usage. In
the field of security, drones have been employed in dispatching security communications,
commanding assisted patrols, and performing line planning in cases involving electricity.
Drones are also widely used in consulting, resource exploration, urban planning, and
other areas.

When it comes to secure communication with drones, it is important to pay attention
to physical layer security technology, as conventional techniques do not guarantee secure
transmission against brute-force cracking attempts [8]. Physical layer security techniques
that can be adopted for UAVs include beamforming, artificial noise (AN), power allocation,
and cooperative interference, among others.

2.3. Obstacle Detection for Unmanned Mine Trucks

With the remarkable advancements in GPU performance, many scholars worldwide
have recently utilized deep learning methods for target detection. The design principle of
convolutional neural networks is to simulate synapses of brain neurons by establishing
different characteristic neuron links. With regard to target detection, these networks focus
on developing different levels of receptive fields and high-dimensional feature information
through multiscale feature extraction and classification via a multilevel cascade design.
Region-CNN is the first algorithm that successfully applied deep learning to target detec-
tion [9]. It uses CNNs to extract features from region proposals and then performs SVM
classification and bbox regression, resulting in greater accuracy than traditional methods.
Its successor, fast R-CNN, utilizes shared convolution features for improved detection
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efficiency while also reducing computational complexity with high accuracy [10]. Another
study [11] proposed an engineering vehicle detection algorithm based on faster R-CNN,
which adjusts the position of ROI pooling layers and adds a convolution layer in the feature
classification part, thereby enhancing model accuracy. Furthermore, ref. [12] introduces
several differently sized RPNs into traditional faster R-CNN structures, allowing for larger
vehicle detection, whilst [13], building upon faster R-CNN, improved object feature ex-
traction by combining multilayered feedforwarding alongside the output of each context
layer, enriching robustness against smaller or occluded targets that may confound other
models. In the literature [14], there is a suggestion for improving domain adaptive fast R-
CNN algorithms by refining their respective region proposal network (RPN) configuration;
multiscale training helps mine difficult samples during secondary training, leading toward
expanded small-target capability-albeit at a considerable computational expense.

Given the slow execution speed of the R-CNN algorithm, the one-stage detection
method pioneered in [15] creatively integrated candidate frame extraction and feature
classification, developing several versions [16]. The you only look once (YOLO) target
detection algorithm enables higher accuracy and faster detection. Another example [17]
improved YOLOv4 by adjusting the size of the detection layer for smaller objects and
replacing the backbone with CSPLocknet-19, effectively achieving a good average accuracy
(mAP) and frames per second (FPS) on low-cost edge hardware. In [18], an improved
vehicle detection method using the YOLOv5 network under different traffic scenarios
was proposed, utilizing flip-mosaic to enhance the perception of small targets, thereby
increasing the accuracy of detection while reducing false positives. By adding an SSH
module after YOLOv7’s pafpn structure to merge context information, the small object
detection ability was improved. In recent years, the one-stage target detection algorithm
has gained popularity across various fields due to its strong generalization performance
and fast processing.

The open-pit mining environment is complex and dynamic, necessitating the use
of a target detection algorithm based on convolutional neural networks. The selected
algorithm must satisfy the real-time and high-precision requirements for obstacle detection
by unmanned mining trucks. After analyzing the existing algorithms, we selected the
YOLOv5 network based on its suitability for detecting obstacles within an open-pit mining
area [19]. Obstacle detection using only two-dimensional image methods often produces
inaccurate distance information; multisensor fusion that combines stereo vision with laser
radar can provide more accurate results. Currently, YOLOv5 and YOLOX algorithms
demonstrate favorable obstacle detection performance. Notably, YOLOV5-s and YOLOX-s
are lightweight models recommended for mobile deployment devices but still require
improvement in detecting occluded and small-scale targets.

Automatic driving solutions in the field of mining primarily comprise three modules:
a central control system, automatic driving trucks, and other engineering vehicle coor-
dination kits. In cloud-based remote monitoring, the scheduling platform serves as the
central control system, whereas automatic driving trucks operate with perception abilities
to make intelligent decisions automatically, thereby reducing operational costs while
increasing transportation efficiency through improved safety measures between vehicles
such as excavator coordination kits or other vehicle support tools. With the integration
of these solutions into practices such as travel path planning during onsite applications
or collaborative management activities located within various sections throughout the
mine site, significant improvements have been made toward safer operations for lower
overall cost.

3. 5G-Multi-UAV-Based IMOD Autonomous Driving Model

The complex and variable background information present on unstructured roads
within open-pit mining areas, coupled with the varying size and characteristics of obstacles
as well as dependence on natural lighting conditions, resulting in frequent changes to
road information, pose a challenge for obstacle detection [20]. Although such roads are
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typically simple pavements, frequently being traversed by heavy-duty trucks increases the
likelihood of pavement damage and deformation.

The one-stage target detection algorithm YOLOv5 utilizes mosaic image enhance-
ment and adaptive anchor frame calculation at its input. Its backbone network integrates
focus and CSP structures, whereas the neck module uses FPN structures to enhance se-
mantic information across different scales. The PAN structure fosters location aware-
ness across these scales, thereby improving multiscale target detection performance. The
lightweight YOLOv5-s and YOLOX-s target detection algorithms have strong performance
in detecting targets across multiple scales and are well-suited for deployment on resource-
constrained devices.

Based on the 5G-multi-UAV architecture, Figure 2 displays the IMOD collaborative
system for a mining scene. Using the YOLOv5-s network structure as a basic framework,
this paper presents an IMOD obstacle target detection model that adapts feature fusion
to address challenges related to high-density occlusion of targets, low detection accuracy,
and miss rate in detecting small-scale targets within open-pit mining areas. The specific
improvements are summarized as follows:

(1) To cope with the negative impact of adjacent scale feature fusion on models, we
propose utilizing a feature fusion factor and improving the calculation method. By
increasing effective samples post-fusion, this approach improves learning abilities
toward small and medium-sized scale targets.

(2) To enhance the detection accuracy of smaller targets in open-pit mining areas, reinforc-
ing shallow feature layer information extraction via added shallow detection layers
is crucial.

(3) Adaptively selecting appropriate receptive field features during model training can
help tackle insufficient feature information extraction in scenes containing vehicles
and pedestrians with significant scaling changes. Therefore, an adaptive receptive
field fusion module based on the concept of an RFB [21] network structure is proposed.

(4) For efficiently detecting dense small-scale targets with high occlusion, we introduce
StrongFocalLoss as a loss function while incorporating the CA attention mechanism to
alter model focus toward relevant features, resulting in improved algorithmic accuracy.

Figure 2. The IMOD mining scene collaborative system architecture based on 5G-multi-UAV.

3.1. Effective Fusion of Adjacent Scale Features

In small-scale target detection tasks involving occluding vehicles and pedestrians, the
difficulty lies in extracting feature information due to their limited scale. Shallow networks
have limited capacity to learn such information, whereas deep networks fail to provide
sufficient support for shallow networks, thus impacting the successful detection of small
targets. The neck network of the YOLOv5-s algorithm utilizes the bidirectional feature
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pyramids and horizontal connection structures of PAFPN for different scale feature fusion.
However, some scales exhibit large response values across adjacent feature maps, leading
to the identification of only one layer during network learning based on rough response
value estimation, resulting in poor detection accuracy and convergence effectiveness.

The challenge in multisystem collaborative target detection stems from variations
in image scale, sparse distribution of targets, a high number of targets, and small target
size. Balancing the computational demand for processing high-resolution UAV images
with limited computing power presents additional difficulties. To address these problems,
the IMOD model uses three layers of feature maps that differ in size to detect objects at
different scales. The model employs YOLOv5 as its base feature network and leverages
inter-layer connections to extract more semantically informative features that facilitate
effective object recognition while minimizing interference information. Selective channel
expansion used by the IMOD does not excessively impact the model’s parameter size
and avoids unnecessary training operations, thereby maximizing detection accuracy while
ensuring algorithmic speediness.

The effectiveness of the same sample can vary in characteristic maps of different scales.
Deep and shallow layers contribute differently to target information at various scales,
and their impact on other layers has both advantages and disadvantages. To alleviate the
negative effects of feature fusion, it is necessary to adjust the participation rate of deep
features in shallow feature learning by filtering out invalid samples during adjacent layer
transmission. This ensures more effective samples are available for learning on deep feature
maps, which improves detection performance for targets of different sizes. An improved
adjacent scale feature fusion strategy is proposed here to address these challenges. The
expression for the FPN’s feature fusion process is as follows:

Pi = fconv( flateral(Ci) + ai+1
i ∗ fupsample(Pi+1)). (1)

Here, Ci and Pi+1 signify the feature map of layer i prior to and after feature fusion,
respectively. The term flateral represents the one-in-FPN horizontal connection by convolu-
tion operation, whereas fupsample denotes an operation that increases the resolution twofold.
In addition, fconv indicates a convolution operation for processing features, whereas ai+1

i
signifies the factor for fusing features that should be multiplied when transferring layer
i + 1 feature maps into those of layer i.

This study derived its proposed feature fusion factors through statistical analysis with
calculated corresponding target numbers for each layer using this formula:

ai+1
i = NPi+1 , /NPi (2)

The proposed method in [22] utilizes an attention module for calculating the fusion
factor, incorporating the BAM attention mechanism from [23] and enhancing the efficiency
of feature fusion between adjacent scales, as illustrated in Figure 3. The feature fusion
factor is computed to alleviate the negative effects during the feature fusion process, with
its formula expressed as follows:

ai+1
i = Ms(Ci, Pi+1) ·Mc(Ci, Pi+1) (3)

Here, Ci′ represents the feature map obtained by Ci after a 1 × 1 convolution opera-
tion, whereas Pi+1′ denotes a feature map that was likewise processed through a twofold
upsampling operation from Pi+1. Both Ms and Mc denote spatial and channel attention
modules used within the adjacent scale feature high-efficiency fusion (AFHF) module, as
depicted in Figure 3.
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Figure 3. Adjacent scale feature high-efficiency fusion (AFHF).

The spatial attention module plays a crucial role in analyzing the differences between
adjacent feature maps at different layers of transmission and filtering out invalid samples
passed from deep to shallow layers. The Ms module is represented by the following formula:

Ms(C
′
i , P

′
i+1) = σ( f5(So f tmax′( f1 f3 f3 f1(C

′
i))− So f tmax′( f1 f3 f3 f1(P

′
i+1))) (4)

Here, σ represents the sigmoid activation function, and f1, f3, and f5 specify convolu-
tion operations with varying kernel sizes and shared parameter information. Additionally,
So f tmax′ refers to an operation involving multiplication across the row and column dimen-
sions of feature maps after a softmax operation has been applied. Overall, these techniques
aid in accurately identifying invalid sample data within drone imagery datasets at various
depths of analysis.

Each feature map channel contains a significant amount of information. The channel
attention module (CAM) focuses on the meaningful content within the feature map, and,
in conjunction with the spatial attention module (SAM), it can more effectively process
features at the channel level to reduce meaningless channels for improved performance.
The formula for the MC module is:

Mc(C
′
i , P

′
i+1) = σ(MLP(GAP(C

′
i); GAP(P

′
i+1))) (5)

Here, “GAP” represents global average pooling operation, while MLP represents a
multilayer perceptron with a hidden layer composed of fully connected layers along with
ReLU activation that reduces channel dimensions to 1/r times their original size before
expanding them back out again. The specific experiment uses r = 16 in this instance,
whereas sigmoid is used as an activation function.

3.2. Multiscale Wide Field-of-View Adaptive Fusion Module

In open-pit mining environments, heavily obscured targets such as vehicles and
pedestrians present challenges due to the scale of the involved objects. In such scenarios,
contextual information can be utilized to improve recognition performance. The YOLOv5-s
algorithm leverages SPPF spatial pyramid pooling modules to increase the perceptual field
while segregating critical contextual features from multiple sources for fusion purposes.
However, this approach may hinder feature extraction accuracy during target detection by
interfering with the extraction of significant key features, resulting in inadequate informa-
tion capture.
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Therefore, this paper proposes using an adapted RFB-s network structure, which effec-
tively increases the receptive field area for adaptive fusion whilst addressing shortcomings
experienced with previous approaches. Figure 4 illustrates the improved methodology
employed in our study.

Figure 4. SRFB-s module of IMOD.

The proposed RFB-s module employs several techniques to optimize the structural
design. First, the input feature map is subjected to a 1 × 1 convolution operation, which
reduces both channel count and computational load. Asymmetric convolutional layers
are then used to further reduce parameter size before applying 3 × 3 dilated convolutions
that expand the feature perceptual field across three rates (1, 3, and 5). Each such branch
undergoes stitching, followed by another round of 1 × 1 convolution fusion operations
that yield a final output fulfilling the fusion requirements of each stage. Critically, our
approach incorporates shortcut regularization [24], which not only accelerates training
but also reconciles issues around exploding or vanishing gradient flow via the merging of
multiscale perceptual features with their original counterparts.

To further enhance the receptive field, the improved module for object detection in
drone imagery, referred to as SRFB-s (strong receptive field block), adopts the overall struc-
ture of multi-branch null convolution. It replaces 3 × 3 convolutions with more efficient
1 × 3 and 3 × 1 asymmetric convolutions to reduce parameter count and computational
effort. The module also includes additional perceptual field branches to provide a wider
range of features, including contextual information. Additionally, it utilizes the ASFF
network [25] to adaptively fuse feature maps and selects optimal fusion methods based
on scale targets during training to prevent irrelevant background noise degradation while
enhancing detection capabilities under occlusion, large-scale changes, etc.

3.3. Attention Mechanism and Loss Function Optimization

In object detection in open-pit mining scenes, challenges concerning considerable scale
variations together with occlusions are encountered. During feature extraction, the model
integrates extensive amounts of invalid feature information stemming from background
clutter as well as undetected targets, which negatively affect valid target information
extraction. To mitigate such concerns, researchers worldwide utilize attention mechanisms
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that highlight crucial features while ignoring irrelevant data, thus improving overall model
performance. The coordinate attention (CA) module, introduced in [26], filters out invalid
details, instead emphasizing relevant ones by incorporating novel encoding methods along
two spatial directions, integrating coordinate information into generated attention maps
for lightweight networks.

The role of the loss function is essential to enhance object detection and localization
in open-pit mining scene models. The loss function comprises three critical components:
localization loss, confidence loss, and classification loss. The formula is described as follows:

Loss = LocalizationLoss + Con f idenceLoss + Classi f icationLoss (6)

The localization loss function shows varying effectiveness depending on different
detection scenarios. To enhance open-pit scenario detection of occluded targets, small-scale
targets, and medium-sized targets, this model employs StrongFocalLoss for calculating
target frame localization loss; it applies the FocalLoss function for confidence loss in contrast
to the conventionally employed cross-entropy loss function BCEclsloss. The experiment
uses the StrongFocalLoss loss function instead of cross-entropy for classification loss,
resulting in more effective object recognition.

SFL(σ) = −|y− σ|α((1− y) lg(1− σ) + y lg(1− σ)) (7)

where σ represents the prediction, and |y− σ|α(α ≥ 0), with scaling factor α, is a quality
label ranging from 0 to 1 that denotes the absolute value of distance. This hyperparameter
controls the downscaling rate, which can be set for optimal performance; in the literature,
examples such as the recent study of Yuan et al. [27] suggest an experimentally specific
variety of this parameter, where α = 2.

In open-pit mining scenarios, targets are often occluded or densely distributed at small
scales, causing overlaps between candidate frames and leading to reduced classification
accuracy within model loss functions subject to non-maximal suppression post-processing
analyses. These deficiencies may be compensated for by introducing SFL into models
that uncover obscured targets or those appearing on dense small-scale settings found in
open-pit mining scenes more accurately relative to earlier work.

3.4. Improved Multiscale Obstacle Object Detection Model

The YOLOv5-s algorithm detects large, medium, and small targets using three scales
of 20 × 20, 40 × 40, and 80 × 80. Due to the presence of a considerable number of
small-scale and densely occluded targets in open-pit scenes, target features mostly exist at
shallow network layers. To improve the accuracy of detecting smaller objects, we add a
160 × 160 shallow detection layer. However, as model complexity increases with this
change, we reduced the deep feature layer to 20 × 20. This reduction allows for obtaining
enough information required for larger-scale object detection, such as trucks or forklifts,
leading to significant decreases in accuracy overall.

Comparing models in terms of improvements based on multiple metrics indicates
that adding an extra shallow layer substantially improves model performance without
inferring complexities unacceptable for practical deployment while still retaining the crucial
20 × 20 deep detection layer necessary for the precise identification of large-scale objects
such as trucks or sprinklers. Figure 5 shows our improved IMOD model architecture, which
includes both the original scales and one added scale per the recommendations.
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Figure 5. The structure of the IMOD model.

4. Experimental Analysis

4.1. Network Model Ablation Study

To fully examine the efficacy of the three proposed improvement strategies in this
paper, their impact on the performance of YOLOv5-s was investigated by conducting
ablation and robustness experiments. Evaluation metrics including parameter count,
weight size, computation volume (GFLOPS), mean average precision (mAP), and single-
frame detection time (FPS) were evaluated. The mAP was computed at an intersection over
a union threshold of 0.5 using the following formula:

P = TP/(TP/FP) (8)

R = TP/(TP + FP) (9)

mAP =
1
C

c

∑
i=1

APi =
1
C

1∫
0

P(R)dR (10)

where P is the accuracy rate, TP is true positive cases, FP is false positive cases, and FN is
false negative cases.

Figure 6 presents the training loss curves of localization, classification, and confidence
losses, indicating that the improved model converges faster than before. Furthermore,
Figure 7 reports an enhanced mAP achieved by the improved model.
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Figure 6. Comparison of training loss curves.

Figure 7. Validation set mAP comparison map.

4.2. Robustness Experiment

The team utilizes intelligent driving data centers to acquire on-road datasets for large-
scale real-world scenarios, one of which is the BUUISE-MO dataset shown in Figure 8, a
mine obstacle image dataset.

Figure 8. The BUUISE-MO mine obstacle image dataset.

26



Drones 2023, 7, 250

The BUUISE-MO dataset has a picture resolution of 1920 × 1080, a training set of 7220,
and a test set of 2500, for a total of 9720 images, as shown in Figure 8. The dataset contains
15 categories including truck, forklift, car, excavator, person, signboard, and others, with
6041 (large), 9230 (medium), and 12,043 (small) labels. This dataset is appropriate for the
task of detecting small objects.

4.3. Comparative Experiment
4.3.1. Network Model Ablation Experiment

To verify the feasibility of the improved strategy and to explore its effect on model
performance, different improvement methods were integrated into the original network
structure. Ablation experiments were performed on the BUUISE-MO dataset to evaluate
all aspects of the index, such as changes in model structure, parameter count, and computa-
tional complexity due to these improvements. Table 1 reports specific ablation experiment
results, where � denotes integration with our proposed method. The proposed strategy
displays varying levels of improvement across both datasets without impacting real-time
detection capabilities. Additionally, it facilitates higher detection accuracy for target objects
within open-pit mining areas while validating feasibility through the successful completion
of the ablation study.

Table 1. Experimental results of the ablation study on the IMOD model using the BUUISE-MO dataset.

CA SRFB-s AFHF SFL 4-Scale mAP@0.5 FPS

� 0.495 144
� 0.494 146

� 0.481 155
� 0.478 154

� 0.492 152
� � 0.514 123

� � � 0.515 122
� � � � 0.528 120
� � � � � 0.543 120

In this article, the IMOD model is proposed, which employs 5G-based multi-UAV and
deep learning methods to enhance unmanned mining vehicle behavior via multisystem
coordination in an open-pit mining environment. An autonomous mine obstacle image
dataset is constructed and experimentally analyzed to address difficulties with recognizing
small-scale targets amidst complex road scenes in mining areas. The IMOD model effec-
tively enhances safety for driverless vehicles and personnel/equipment within mining
zones. Future work should focus on improving the accuracy of small target recognition
under abnormal illumination conditions and addressing error correction resulting from
data desynchronization caused by multisystem coordinated power outages.

The BUUISE-MO dataset was chosen for quantitative and qualitative analysis to demon-
strate the degree of improvement achieved by the improved algorithm on various targets.
Table 2 displays the average accuracy of different enhanced algorithms for each target.

Upon comparison of Tables 1 and 2, it was determined that the inferior performance
of the model in open-pit mining environments can be attributed to an increase in occluded
targets and smaller targets. Although the SRFB-S module and AFHF module have been
demonstrated to improve the detection accuracy for trucks, signboards, excavators, persons,
forklifts, and cars within this scene, real-time detection is sacrificed as a result. The addition
of both CA attentional modules and SFL loss functions resulted in improvements of 0.3%
and 0.2%, respectively, without compromising other features. Implementing four detection
branches presents the potential for significantly enhancing small target detection accuracy
at the cost of increased model complexity.
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Table 2. Average accuracy of improved models for various types of targets.

Algorithm Truck Signboard Excavator Person Car Forklift

YOLOv5-s 0.732 0.556 0.537 0.556 0.413 0.365
v5s-SRFB-s 0.754 0.582 0.563 0.587 0.406 0.398
v5s-AFHF 0.756 0.576 0.564 0.573 0.414 0.386

v5s-CA 0.726 0.562 0.541 0.555 0.417 0.373
v5s-SFL 0.744 0.546 0.542 0.546 0.414 0.313

v5s-4-scale 0.757 0.574 0.565 0.573 0.41 0.384
IMOD 0.815 0.592 0.612 0.596 0.489 0.396

4.3.2. Robustness Experiment

To validate the robustness and generalization of our improved model in complex
road scenarios with significant occlusion and shadow factors, we utilized the BUUISE-MO
dataset [28] for experimental verification. After undergoing thorough training involving
320 iterations, our model achieved stability while producing results during validation that
are detailed in Table 3.

Table 3. Experimental results showing improved model robustness on the BUUISE-MO dataset.

Algorithm mAP@0.5 FPS Parameter/M GFLOPs

YOLOv5-s 0.466 155 7.08 16.2
YOLOv5-m 0.512 129 20.85 47

IMOD 0.535 120 11.19 20.4

To further validate whether the improved algorithm can be generalized to basic
object detection scenarios, we removed small objects in the BDD100K dataset that have
a significant impact on detection and evaluated our approach using both the BDD100K
dataset (with six classes) and VOC dataset. After training for 320 epochs, the model showed
stable performance, as demonstrated in Figures 9 and 10.

The data analysis presented in the above table indicates that, although the algo-
rithm can be applied to basic object detection scenarios, its performance does not ex-
hibit significant improvements. However, when compared with the YOLOv5-s algo-
rithm, the enhanced approach demonstrates improved detection accuracy in complex
road-scene datasets. This finding provides evidence that the enhanced model is both robust
and generalizable.

��

Figure 9. Comparison of detection results of different models for major targets.
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Figure 10. Comparison of core parameters computing performance.

4.3.3. Comparative Experiment

To demonstrate the efficacy of the IMOD algorithm, we compared it with four state-
of-the-art algorithms, namely faster R-CNN, YOLOv4, YOLOv5-s, and YOLOv5-m, us-
ing the BDD100K dataset [29] as a benchmark. Detection accuracy and speed were
employed as evaluation metrics. The experimental results are presented in Table 4 for
comparison purposes.

Table 4. Performance comparison of different algorithms on the BDD100K dataset.

Algorithm Backbone mAP@0.5 FPS (V100)

YOLOv4 CSPDarknet53 0.452 65
IMOD Darknet53 0.318 12

YOLOv5-s CSPDarknet53 0.467 105
YOLOv5-m CSPDarknet53 0.511 89

IMOD CSPDarknet53 0.534 80

According to the results in Table 4, obtained from different algorithmic models applied
on the BDD100K dataset, the enhanced YOLOv5 algorithm outperforms other prevalent
models based on both detection accuracy and speed metrics. In contrast to the YOLOv5-s
and YOLOv5-m algorithms, with swift performance but lower detection accuracy, the en-
hanced YOLOv5 algorithm manifests superiority over real-time model operation conditions
while delivering prominent overall performance, resulting in improved object recognition
in intricate road scenarios. This has practical significance, demonstrating its beneficial
applicability scope.

5. Conclusions

We proposed an object detection algorithm for complex road scenes in open-pit mining
environments, aiming to address the problems of low detection accuracy, false detection,
and missed detection of road occlusion targets and small-scale targets. Our algorithm is
based on adaptive feature fusion using the YOLOv5-s algorithm as a starting point. We
introduce a feature fusion factor to reduce negative impacts caused by adjacent scale fusion
strategies, increase effective samples after feature fusion, and improve learning ability for
small- to medium-sized targets. Additionally, we propose an improved receptive field
module that extracts more target feature information from shallow feature layers. Finally,
we introduce a CA attention mechanism and StrongFocalLoss loss function to improve
model accuracy for dense occlusion targets and small-scale targets.

We autonomously collect and construct a mine obstacle image dataset to facilitate
experimental testing of our approach. Our results show that our approach effectively
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addresses issues of blockage and small-scale target recognition in complex road scenarios
found in mining areas, with use cases demonstrating the IMOD model increases the safety
of unmanned vehicles while preserving equipment fidelity required at industrial scales.

Future work will involve improving recognition accuracy under abnormal illumination
conditions as well as correcting errors due to data synchrony caused by multisystem
shutdowns during network operations. Developing lightweight architectures toward
facilitating deployment on mobile terminals while simultaneously enhancing overall model
accuracy is also essential.
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Abstract: Efficient exploration is a critical issue in swarm UAVs with substantial research interest due
to its applications in search and rescue missions. In this study, we propose a cooperative exploration
approach that uses multiple unmanned aerial vehicles (UAVs). Our approach allows UAVs to
explore separate areas dynamically, resulting in increased efficiency and decreased redundancy. We
use a novel dynamic centroid-based method to partition the 3D working area for each UAV, with
each UAV generating new targets in its partitioned area only using the onboard computational
resource. To ensure the cooperation and exploration of the unknown, we use a next-best-view (NBV)
method based on rapidly-exploring random tree (RRT), which generates a tree in the partitioned area
until a threshold is reached. We compare this approach with three classical methods using Gazebo
simulation, including a Voronoi-based area partition method, a coordination method for reducing
scanning repetition between UAVs, and a greedy method that works according to its exploration
planner without any interaction. We also conduct practical experiments to verify the effectiveness of
our proposed method.

Keywords: path planning; collaborative exploration; area partition; swarm UAVs

1. Introduction

Using swarm unmanned aerial vehicles (UAVs) to execute collaborative missions
in local areas has become an important direction of development in unmanned system
applications in recent years. Small UAVs are characterized by their ease of deployment and
agility [1], but the problem of collaborative control has always been challenging, especially
in search and rescue missions [2,3] where the environment structure may change and the
UAV swarm may not have prior knowledge of the task area. This requires the ability of
autonomy to be able to avoid obstacles and accurately reach the task area, as well as the
ability of intelligence to build environment maps and even identify specific targets [4–6].

In this study, we consider using a UAV swarm for exploring unknown areas and
dispatching multiple UAVs to collaboratively map specific areas, in order to achieve rapid
area reconnaissance. Therefore, we hope that the system can run efficiently and handle
the problem of perception overlap or motion interference between UAVs [7–10]. Each
participating individual can maintain a relative balance in task partitioning appropriately
and dynamically. At the same time, the system needs to have a certain degree of robustness
so that the task can be completed even if some individuals in the swarm are damaged [11].

Based on the above considerations, we propose a decentralized collaborative explo-
ration method in this paper. The key of our method is a novel dynamic centroid-based
partition algorithm, allowing the work area of each UAV to be dynamically adjusted as
the mission progresses. The framework structure of the entire system is shown in Figure 1.
Each UAV independently runs localization, mapping, partitioning, and planning, with only
a small amount of pose and weight parameters shared among the network. After the

Drones 2023, 7, 337. https://doi.org/10.3390/drones7060337 https://www.mdpi.com/journal/drones
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initial partitioning is generated, to ensure independence in their work, each individual
UAV prioritizes finding unexplored target directions in their own area. Within the par-
titioning calculation, based on the receding horizon next-best-view (NBV) exploration
planner [12], our proposed method generates rapidly-exploring random tree (RRT) [13]
with a constrained range, and the task can be quantitatively represented. By composing the
information of the UAV swarm’s pose and task weight, we adopt the concept of centroid,
whose variation results from changes in area partitioning, ensuring flexibility in mutual
work. In the mapping module, Octomap [14] is used to provide a quantitative expression
as free, occupied, and unknown for exploration.

Figure 1. System framework. The modules of localization, mapping, partition, and planning are run
independently in each UAV. All of the working UAVs connect to a 5G WiFi for information exchange.
Poses and platform weights are shared to dynamically adjust the partition areas. The details of
partition and weight calculation are discussed in Section 4.

The main contributions of this paper are as follows:

• We propose a dynamic centroid-based area partition method that takes into account
both the positions and current tasks of each UAV during the exploration process. This
approach ensures that the UAVs that detect fewer tasks are allocated more mission
area in the next step, maximizing the efficiency of the exploration process.

• The NBV exploration planner has been improved by making modifications so that
it only samples within a dynamically partitioned area. Additionally, we have in-
novatively formulated a weight to describe task quantity for the purpose of more
effective partitioning.

• The performance of the proposed method is validated by comparing with three classic
multi-UAV cooperative exploration methods in both indoor and outdoor simulation
environments. The practical experiment is also conducted to verify its feasibility.

The remainder of this paper is organized as follows. In Section 2, the works related to
swarm UAVs’ cooperative exploration and mapping are reviewed. Section 4 is devoted to
describing the details of our method, and in Section 5, comparative experiments in simula-
tion environments are given. The results of practical experiments are discussed in Section 6.
Finally, Section 7 concludes this paper and points out potential future improvements.

2. Related Work

In recent years, significant progress has been made within the academic community
regarding collaborative exploration by multiple UAVs in unknown environments [15].
In light of our research focus, this paper will examine three areas related to collaborative
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exploration: methods for multi-UAV coordination, multi-UAV mapping, and exploration
in unknown environments.

2.1. Multi-UAV Coordination for Exploration

Using multiple UAVs to increase exploration efficiency is a common practice, and re-
lated issues have been extensively studied [16]. One classic method involves maximizing
overall utility while minimizing the potential overlap of measurements among UAVs [8].
This idea has been employed in many works such as [10,11,17]. However, as the number
of UAVs increases, uncertainty [18] and redundant scanning between them become more
prevalent, especially in larger environments where the sensor range is relatively small
compared to the scale of the environment.

In conventional multi-agent allocation problems, a TSP-greedy allocation (TSGA)
planner with ideal centralized architecture and communication assumptions is utilized to
optimize global utility [19]. This approach considers the whole global task, which may
be time-consuming for collecting tasks in the center. Alternatively, a dynamic Voronoi
partition has been utilized in [7,10] to assign different target locations to individual UAVs,
guaranteeing the separateness between them. However, this area partition-based method
may not always be optimal as it does not consider the exploring process of each UAV,
resulting in less efficient task allocation.

Therefore, in this paper, a dynamic centroid-based area partition is proposed, which
considers the exploration process of each UAV for more reasonable task allocation. When a
UAV has an insufficient number of candidates, it will be assigned a larger partitioned area
to explore. The partition is processed dynamically to adapt to changing situations.

2.2. Multi-UAV Mapping for Exploration

To perform target selection and quantitative calculation in planning, it is necessary to
have a map that depicts the environment and further exploration areas. Two representative
volumetric mapping methods used in UAV exploration are truncated signed distance field
(TSDF) [20] and occupancy [14]. When employing multi-UAV mapping methods, the key
issue is often the map merging [21]. Previous works such as [8,17] involve each UAV
maintaining its local map and correcting odometry errors while exploring. They then
transmit their local maps with uncertain information to a central work station who can
combine local maps into a global one for further optimization. In [22], sensor messages
are shared among UAVs, and Gaussian mixture models (GMMs) are adopted to assist the
exploration planner of each UAV. In [11], two maps are utilized: a low-resolution map
for navigation and a high-resolution map for reconstruction. In order to achieve efficient
coordination in a decentralized method, it is crucial to share the global map message among
UAVs as quickly as possible. This is one of the central issues that we address in this paper.

2.3. Exploration in Unknown Environments

While fully functional UAVs possess autonomous sensing and computing capabili-
ties, the exploration planner enables them to independently perform tasks in unknown
environments. Existing works fall into two categories when executing under unknown:
frontier-based methods [23–25] and sampling-based methods [11,13,26,27]. With given
frontier clusters [28] or sampled viewpoints [27], an information-theoretic measure is
optimized to calculate information gain, resulting in reduced map uncertainty. The frontier-
based method explicitly computes the boundary between the known and unknown areas
and assigns UAVs to frontiers iteratively, but the frontier selection process can be time-
consuming as it traverses all surface voxels in a large environment [23]. Some methods
reject unsuitable frontiers during selection [1] to ease the computational burden. On the
other hand, the sampling-based method randomly selects viewpoints in free areas, such as
the rapidly-exploring random tree (RRT) [13] and probabilistic roadmap planner (PRM) [3],
which deliver speed and probabilistic completeness. However, these two methods could
converge locally.
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The two mentioned categories were widely used in the exploration planning of a
single UAV. However, for multi-UAV exploration, a coordination module is required to
prevent collisions and redundancies. The NBV method [12] is commonly utilized in such
scenarios. This method iteratively selects viewpoints in free space to refresh candidates’
paths, ensuring a consistent update rate. Our proposed method follows this approach by
integrating the strengths of the sampling-based method. This enables frequent recollection
of viewpoints to avoid collisions and facilitate flexible collaboration between UAVs.

3. Problem Statement

The task of multi-UAV exploration in an unknown environment performs the pro-
cess of exploring and mapping iteratively. A 3D workspace WS of known size is given
before the task for establishing the concerned area; all UAVs will explore the workspace.
Exploration processing by a UAV team contains N identical UAV with four degrees of
freedom, as the 3D position [x, y, z]T ∈ R3 and the yaw angle ψ ∈ S1. The UAV state can
be described as x = [x, y, z, ψ]T . In each platform, a depth camera is equipped to collect the
environment information with a certain field of view.

The environment is reconstructed by an OctomapM, and the occupancy probability
of each gird m ∈ M is initialized as P(m) = 0.5. The posterior occupancy probability
P(m | x1:t, z1:t) is updated by the depth measurement z1:t and the UAV state x1:t from initial
time to current time t. The grids in the map will be gradually scanned by the sensor and
identified as either free grids M f = {m | P(m | x1:t, z1:t) < Pf ree, m ∈ M} or occupied
gridsMo = {m | P(m | x1:t, z1:t) > Pocc, m ∈ M}. Pf and Po are given thresholds. Given a
map M at time t, the receding horizon exploration planner decides an optimal path T ∗
in every period. To seek the T ∗ for the UAV so that it gathers measurements that reduce
unknown space and maintain coordination, a cost function is formulated to measure the
value of the candidate path, considering the uncertainty of the map M, the UAV team
information RT, the location of waypoints in path T , and the time cost of the path c(T ).

T ∗ = arg maxT f (M, RT, T , c(T )). (1)

UAVs visit unknown spaces independently according to the outputs of the exploration
planner. We assume that the UAVs are equipped with an accurate localization system.
From the initial state, the UAVs are deployed and set with a connected network and a
known relative position as in a practical task application.

4. Method

This paper describes the implementation of a decentralized structure, as illustrated
in Figure 1. Each platform performs RRT-based planning, area partitioning, and mapping
independently. The core parts of our proposed modules are as follows.

4.1. Dynamic Centroid-Based Area Partition

The area for each available UAV is partitioned using a dynamic centroid-based method,
and each UAV is only responsible for its own refined area. Assuming that all of the UAVs
work with the same efficiency using the same exploring planner on the same platform,
a supposed idea is allocating UAVs equal assignments to prevent any UAV falls idle
prematurely. However, it is not easy to count the tasks of all individual UAVs and re-
allocate them in a decentralized structure.

To quantify the assignments of each UAV, we introduce the number of effective
candidate nodes per unit space. The candidate nodes are generated by an RRT-based
planner described in Section 4.3. In the area partition method, the candidate viewpoints
are randomly sampled in the whole given workspaceWS , and nodes are generated when
viewpoints are placed in a given partitioned area PA. When effective candidate nodes Ne,
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which can lead to environmental observation and the space volume VE
PA, of the executable

area are known, the weight w can be calculated as:

w = Ne/VE
PA. (2)

The executable space volume VE
PA in the PA can be approximated as Equation (3). The VE

PA
represents the volume of a space, which is free, and the RRT-based planner in Section 4.3
can build a tree there.

VE
PA ≈ VWS/

Cloop

NT
= VWS × NT/Cloop. (3)

The number of node sampling loops Cloop is counted to calculate the size of the
executable exploration area. With the executable space bigger, the Cloop is smaller because it
is more likely to generate a candidate in PA successfully. An average number of samples
required to generate a node can be formulated by NT/Cloop.

The proposed dynamic centroid-based area partition calculates a virtual centroid
Xc = (xc, yc) adjusted from the information of platform weights wi for UAVi and its
positions Xi = (x, y) for the 2D projection from the poses, expressed in Equation (4). UAVs
explore 3D space and map a 3D Octomap, while the two-dimensional coordinates of UAVs
for partitioning the 3D area are considered to be the simplest form of calculation.

Xc =
∑N

i=1 wi · Xi

∑N
i=1 wi

. (4)

As illustrated in Figure 2 and depicted in Equations (5) and (6), the partition ray Prs
for the area partition are generated according to the included angle between the j th and
(j + 1) th UAV when starting from the virtual centroid. θPrj is the angle from x axis to Prj
in a counterclockwise direction.

Prj(T) = Xc + (cos θPrj , sin θPrj)T, T � 0, (5)

θPrj1 /θPrj2 ∝ wj+1/wj. (6)

Figure 2. The partitioning process of UAVj. Each UAV computes a virtual centroid, and a 3D self-
responsible area is partitioned by the nearest two planes P , defined by partition rays Pr and the axis
of the centroid.

For UAVj, its exploring space PAj is bounded by two vertical planes Pj and Pj−1,
which are defined by partition rays and the axis of the centroid, see Equation (7). As il-
lustrated in Figure 2, the pink area in the sector space marks the two-dimensional plane
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projection of the exploration space allocated ahead. The partition area is formulated by
Equation (8). After the coordinates of the three-dimensional point under the x and y axes
are converted to the polar coordinate system, the angle should be between θPrj−1 and θPrj .

Pj =

{
p |
−−−−−−−−−−−−−−−−−−−−−−−−→(

cos
(

θPrj +
π

2

)
, sin

(
θPrj +

π

2

)
, 0
)
· �p = 0

}
, (7)

PAj = {(x, y, z) | x = ρ cos θ, y = ρ sin θ, z ∈ R, ρ ∈ R+, θPrj−1 < θ < θPrj}. (8)

The core computing of the area partition is carried out on every UAV, and the platform
weights and positions are shared between UAVs in real-time. With the change of them,
every platform can adjust the working PA dynamically. The UAV with more detected tasks
in the same volume space will attain more weight, the virtual centroid and the dividing
planes will tend to be closer to it, and its PA in the next iteration will shrink. This tactic
ensures the area assignment is in a relatively balanced condition, thus making the whole
exploration more efficient.

4.2. Distributed Ray-Cast Mapping

A numerically environmental expression is necessary for cooperative exploring. In a
unified space, a shared environment could be divided into the unknown, occupied, or
free parts. Due to its simple and fast searching character, the OctoMap is adopted in our
method. Within it, the unknown, occupied, or free space can be represented by the cubic
volume (voxel) in an octree.

In our decentralized setup, all recent sensor outputs, including poses, are shared
among the UAVs, as depicted in Figure 1. The use of 5G WiFi ensures high-quality in-
formation sharing. We assume that the initial relative position is known, and a perfect
localization node runs on each UAV to provide accurate real-time position data. By using
the known initial relative position, the poses can be transformed into a unified coordinate
system. Consequently, each UAV maintains its own global map with a unified coordinate
system to enable cooperative planning, as illustrated in Figure 3. Collecting and aligning
information within the team as much as possible promotes collaboration. In this mode,
each UAV can consider the most comprehensive global information available.

(a) (b)

Figure 3. Distributed ray-cast mapping. As (a) shows, three small axes represent the UAV, and the
big axis represents the origin of a unified coordinate system. The depth measurement is visualized by
point clouds of various colours, where blue denotes objects that are far away and red indicates those that
are in close proximity. As the UAV wander, (b) shows the map expressed by Octomap simultaneously.
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4.3. Decentralized Cooperative Exploration Planner

The approach presented in this paper constitutes an enhancement of a receding hori-
zon NBV planner [12]. The planner is based on a sampling strategy that leverages RRT to
generate plausible target points and feasible trajectories in free space. Each UAV runs the
same planner, leveraging the same hardware and algorithms. The planning process is for-
malized in Algorithm 1. The RRT algorithm iteratively generates random points throughout
the workspace, stopping when a point is placed within the PA of the corresponding UAV.

Algorithm 1 Decentralized Cooperative Exploration Planner

1: for Exploration is not over do
2: Obtain the latest weights and poses of all UAVs
3: Do the area partition
4: Initialize the RRT T
5: Initialize the Ne = 0, Cloop = 0.
6: for NT < Ninit or G(nbest) = 0 do
7: if NT < Nthreshold then
8: while True do
9: Cloop = Cloop + 1.

10: generate candidate C ← X ∼ Uni f orm(WS)
11: if C is in PA then
12: generate node n ← Connect(C, T)
13: if G(n)! = 0 then
14: Ne = Ne + 1
15: end if
16: break
17: end if
18: else
19: generate candidate C ← X ∼ Uni f orm(WS)
20: generate node n ← Connect(C, T)
21: end if
22: if NT > NMAX then
23: Exploration is over and break
24: end if
25: Update nbest and BestBranch
26: end for
27: update weight w = Ne × Cloop/NT
28: Share the latest weight in the team
29: Execute the planned path
30: end for

Throughout the process, the planner generates a tree T consisting of nodes in the
free space of an OctoMapM. Each node n corresponds to a potential viewpoint, with its
state denoted by ξ = (x, y, z, ψ)T , reflecting position and yaw. The tree is constrained to
remain in the collision-free space to guarantee safe planning. For UAVj, the best node nj

best
is selected based on Equation (9), which considers the feasibility of the path. The function
G(n) reflects the gain of the parent node, and a novel information value (with related
parameters) can be expressed as g(M, n,Pj,Pj−1) in Equation (10). This optimization
aims to minimize Equation (1) considering M for information measurements and path
planning, nodes corresponding to the path, and Pj,Pj−1 aggregating team information to
enable coordination.

nj
best = arg maxn∈Tj G(n), (9)

G(n) = G(nparent) + g(M, n,Pj,Pj−1), (10)
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and
g(M, n,Pj,Pj−1) = ∑

v∈FOV(ξ)∩M
V(v)× e−λc(σ)∏ f . (11)

In this context, the function V(v) takes a value of 1 if the voxel v is unexplored, and
0 otherwise. Our objective is to explore the unknown space, and the visible voxels within
the field of view of the sensor are accumulated to form a basic visibility score. The cost of a
path from the initial node n0 to n is determined by the RRT algorithm and denoted by c(σ).
To enable collaboration among the UAVs, the product function ∏ f is utilized, as shown
in Figure 4. Each plane P exerts a repulsive factor of f = 1 + 1/d, where d is the distance
between the candidate node and the plane P . The term e−λc(σ) causes the visibility score to
decrease smoothly as the path cost increases, while e−∏ 1+1/d drives the UAVs away from
the Pj and Pj−1.

Figure 4. The planning process of UAVj. The dj and dj−1 are calculated to formulate the factor f j

and f j−1.

The algorithm initializes the value of n0 in tree T as the current state of the UAV
during the first initialization. Otherwise, the initial tree would be set as the previous best
branch. The BestBranch is defined as the branch from n0 to nbest. To ensure that sufficient
environmental information is obtained while generating nodes, the tree T must have a
minimum of Ninit nodes, and loops continue until a valuable solution is obtained with
G(nbest) = 0. To prevent the UAV from idling due to unreasonable area partitioning,
the partition constraint is disabled when the number of tree nodes NT exceeds a certain
threshold Nthreshold. Once NT > NMAX , the exploration is deemed to be completed. In each
iteration, the first segment of the BestBranch is considered the planned path. The weight w
can be updated using Equation (12) according to Equation (2). SinceWS is assumed to be
given and VWS is constant and known, it is omitted.

w = Ne/VE
PA ≈ Ne × Sampleloop/(VWS × NT). (12)

The algorithm presented in this paper is intended to be executed on each UAV inde-
pendently. The planner and the area partition calculation are interdependent, and a smaller
partition area can make it more difficult for the planner to generate an effective trajectory,
resulting in a smaller weight. In turn, a smaller weight can lead to a larger partition being
provided to the UAV during the partition area calculation.

40



Drones 2023, 7, 337

5. Evaluation in Simulation

To demonstrate the superiority of the proposed method, we compared it with three
representative algorithms. The first was the greedy method for group application, which
did not employ cooperative settings (referred to as “greedy” in this context). The second [11]
was the classic method that discounted the information gain based on the repeating area
(referred to as “coordination” in this context). In this method, the gain was reduced based
on the area within the sensor range of the current best nodes of other UAVs. The third
method [7] used dynamic Voronoi partitions to assign different target locations to individual
UAVs, minimizing duplicated exploration areas (referred to as “Voronoi” in this context).
All of the three algorithms were decentralized and used RRT to generate candidate points.

Simulation experiments were conducted using Gazebo. All of the methods were tested
with the same virtual UAVs and environmental settings. Each UAV was equipped with
a depth camera that had a field of view [60, 90]◦ in the vertical and horizontal directions.
For the indoor scenario, the camera was mounted with a downward pitch angle of 15◦.
For the outdoor scenario, it was mounted with a pitch angle of 35◦. For all of the simulation
experiments, the maximum velocity was set as ψ̇max = 0.5 rad/s and vmax = 0.25 m/s,
while the size of the collision detection box was assumed to be 0.5× 0.5× 0.3 m3.

5.1. Indoor Scenario

For the indoor scenario, a regular single-story space with limited furniture and weigh-
ing structures but no other obstacles was used with dimensions of 20× 12× 3 m3, as shown
in Figure 5a. The proposed method was tested 20 times on teams consisting of 2, 3, 4, and
5 UAVs with the same initial position, where the relative distances between UAVs were less
than 50 cm. Each UAV was equipped with a depth camera, and the maximum length of
RRT was set to 1 m, while the maximum sensor range was dsensor

max = 4 m. The partition con-
straint became invalid when iterative tree nodes reached a threshold, NT > Nthreshold = 30,
and exploration also stopped when NT > NMAX = 150. The minimum node number of
each RRT iteration was Ninit = 15, and the space within the maximum planner range of
dplanner

max = 2.5 m was used to calculate the gain, with the value of λ set to 0.5.
To evaluate efficiency, the exploration completion time was measured using a team

of 5 UAVs as shown in Figure 6a. The exploration completion degree was plotted over
time to reflect the exploration process, as depicted in Figure 6b. The results showed that
with an increase in the number of UAVs, the exploration time decreased for all of the
methods, albeit at a lower rate of decline for larger teams. For two UAVs, the proposed
and Voronoi methods show similar performance with mean values of 185.4 s and 191.8 s,
respectively. For a team of 5 UAVs, our proposed method outperformed other methods
with lower variance and mean values of 86.2 s, while the voronoi, coordination, and greedy
methods took 98 s, 125.5 s, and 185.4 s, respectively. The proposed method ensured efficient
exploration with fewer scan repetitions by spacing out UAVs, which led to less backtracking
and smaller variance. On the other hand, more space would be allocated to the UAVs that
detect fewer tasks in our method, thus resulting in overall efficiency.

In addition, Figure 6b showed a turning point during exploration, where the speed
of exploration began to differ at about 50 s. The proposed method experienced the explo-
ration bottleneck later than the voronoi, coordination, and greedy methods, respectively.
The greedy method failed to cooperate, leading to multiple UAVs exploring the same area,
and scan repetitions. Although the coordination method cooperated through a designed
gain, it could not avoid scan repetitions. The Voronoi-based partition method restricted
individual UAVs to their partitioned areas without considering detection efficiency for
unknown spaces, and this could cause UAVs to fall idle when such areas became fewer.
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(a) (b)

(c) (d)

Figure 5. Simulation environments and their exploration results. (a) A 20× 12× 3 m3 indoor scenario,
a regular single-story space; (b) a 40 × 40 × 9 m3 outdoor scenario, a typical urban community.
The colored points on the floor represent the initial positions of UAVs, with red indicating 2 UAVs,
orange for 3 UAVs, yellow for 4 UAVs, and green for 5 UAVs. (c,d) are the exploration results
for both scenarios. (The following figures in this paper have the same meaning, where the spatial
structure and depth information are depicted using grids of different colours.)
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Figure 6. Numerical analysis of indoor simulation. (a) shows the exploration time of a team with 2, 3,
4, and 5 UAVs. (b) shows the team of 5 UAVs in one trial. Three other algorithms are compared.

42



Drones 2023, 7, 337

5.2. Large Outdoor Scenario

The second scenario involves an outdoor space measuring 40× 40× 9 m3, which
is a typical urban community with multiple buildings and complex spatial structures,
including spatial dead ends, as shown in Figure 5b. Since the outdoor environment is
more extensive, the maximum length of the RRT planner is set to 3 m based on empirical
experiments. During the trials, many depth value frames exceeding 7 m were observed,
and the trial settings were adjusted to dsensor

max = 8.5 m with a mounting pitch of 35◦ to
obtain more ground measurements, where dplanner

max = 3.5 m with Ninit = 30, Nthreshold = 80,
and NMAX = 250.
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Figure 7. Numerical analysis of outdoor simulation. (a) shows the exploration time of the team with
2, 3, 4, and 5 UAVs. (b) shows the team of 5 UAVs in one trial. Three other algorithms are compared.

For each planner, 20 trials were conducted for teams consisting of 2, 3, 4, and 5 UAVs,
starting from the same initial position, where the relative distances between UAVs were
less than 100 cm. Similar to the indoor scenario, the results of the algorithms (indicated in
Figure 7) show that the proposed method outperforms the voronoi, coordination, and greedy
methods, with a mean completion time of 376.7 s for a team of 5 UAVs. In contrast,
the voronoi, coordination, and greedy methods gave mean completion times of 428.8 s,
657.8 s, and 771.5 s, respectively. The experiment also shows that as the scenario size
increases, the greedy method, without cooperation, becomes increasingly random and
unintelligent. The variance of the results is significantly larger in the outdoor scenario.

In both scenarios, the exploration completion rate exhibits a decreasing trend. This
trend can be attributed to the fact that at the start of the exploration, there were many
unknown areas, and the UAVs can find enough task points with fewer sampling times.
Regardless of the efficiency of the planning algorithm, the UAVs could detect unknown
spaces that were not pre-included in the planning, which could lead to efficient exploration
in the beginning. As the environment has been continuously explored, the unknown area
has decreased, and the time required to calculate the targets has become longer. Especially
with the use of the receding horizon method, the UAVs often re-visited those optimal targets
due to being confined to local optima, which would slow down the rate of exploration at
the later stage.

6. Evaluation in Practical Experiments

To further validate the proposed method, practical indoor experiments were con-
ducted with three self-assembly UAVs equipped with depth cameras flying in a room with
obstacles, as shown in Figure 8b. A 10× 8× 3 m3 bounding box was used to constrain the
space for exploration. Due to the UAV structure, the cameras could only be mounted with a
downward pitch angle of 5◦ on the front side, and the UAVs’ precise location was ensured
through the use of VICON, a motion capture system, for safe piloting. Parameter values for
the practical experiments were set based on the simulation experiments conducted for the
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indoor scenario. Although limitations such as hardware restrictions, network bandwidth,
and flight trajectory control were not the primary focus of this paper, multiple trials were
carried out to ensure the proposed method’s usability. Table 1 summarizes some of the
critical parameters employed in the practical experiments.

(a) (b)

Figure 8. The practical experiments. (a) shows the initial status of three UAVs; they are placed on the
same side of a room. (b) shows three UAVs are performing exploration in one trial; a 10× 8× 3 m3

virtual boundary is set to bound the exploring space.

Table 1. Important parameters in practical experiments.

Parameter Value Parameter Value

vmax 0.1 m/s ψ̇max 0.5 rad/s

dplanner
max 1.5 m dsensor

max 2.5 m

λ 0.5 MaxTreeLength 0.8 m

Ninit 10 NMAX 100

Nthreshold 30 Mounting pitch 5◦

The proposed algorithm was tested in a practical experiment involving a team of
three UAVs, as shown in Figure 8. The UAVs were initially positioned closely together on
the same side of the exploration area, which is typical for real deployments. The exploration
process was repeated 20 times, with a maximum exploration time of 232.2 s, a minimum of
194.6 s, and an average of 209.4 s. The decentralized nature of the planner ensures that the
UAVs can perform their tasks robustly, with interruptions to one UAV having no impact
on the work of others, as demonstrated in Figure 9. The effectiveness and usability of
the proposed method in a practical scenario are demonstrated by the exploration maps at
six different sampling times, as shown in Figure 10. The virtual centroid in three colors
dynamically changes during the exploration process, and the working area of each UAV
is partitioned reasonably and iteratively. The UAV denoted as the yellow on the left
moves gradually to the lower-left area after completing its task in the upper-left corner
and collaborates with the UAV in the lower-right section to adjust the task areas. In the
final map of Figure 10, the gap areas on the ground were detected, which were affected
by the range of the depth camera. We can assume that using more robust sensors such
as 3D LiDAR could alleviate this phenomenon, but such an approach requires greater
consideration of the comprehensiveness of the experimental system and its applicability to
different settings, which needs to be further considered in future research.
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(a) (b)

Figure 9. Robust coordination case. (a) shows UAV represented by the red arrow has stopped
exploring due to insufficient power at an early stage; (b) shows other UAVs continue to finish the
task. The yellow one helps the red to explore the bottom right corner of this environment.

Figure 10. The mapping process of one practical experiment. The sampling times display the
complete process of three UAVs collaborating on exploration, with each UAV’s designated area being
continuously updated. The UAV represented by the yellow icon on the left gradually moves towards
the lower region, collaborating with the other UAVs to adjust the exploration area. In the final map,
gaps on the ground were influenced by the depth camera’s perception range. It is assumed that using
more powerful sensors such as 3D LiDAR [29] may mitigate this phenomenon, but this approach
necessitates further consideration of the experimental system’s applicability.
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7. Conclusions and Future Work

To improve the efficiency and reliability of cooperative exploration in unknown envi-
ronments, a dynamic centroid-based area partition method has been implemented in this
study, which takes into account both position and task information throughout the process.
This method assigns more space to UAVs that detect fewer tasks, which ensures that each
UAV undertakes the exploration mission evenly. Additionally, an NBV exploration method
has been improved by sampling candidates in their partitioned area and formulating the
weight, which also quantifies the task. The proposed method has been compared to three
other methods in two simulation environments and found to be faster than traditional
methods. Practical experiments have also demonstrated the effectiveness of this approach.
However, the randomness of the sampling process introduces variability, which could
lead to local minima. This sampling uncertainty, resulting in an unreasonable partition,
prevents us from providing a stable and precise exploration process description in different
trials with the same setting. To address this issue, future research will investigate the use
of frontier-based methods that provide an accurate number of tasks, allowing for more
rational partitioning results. Additionally, alternative sensing methods or equipment could
be considered to enhance the perception of swarm UAVs.
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Abstract: During long-distance flight, unmanned aerial vehicles (UAVs) need to perform cross-
domain authentication to prove their identity and receive information from the ground control station
(GCS). However, the GCS needs to verify all drones arriving at the area it is responsible for, which
leads to the GCS being unable to complete authentication in time when facing cross-domain requests
from a large number of drones. Additionally, due to potential threats from attackers, drones and GCSs
are likely to be deceived. To improve the efficiency and security of cross-domain authentication, we
propose an efficient blockchain-based cross-domain authentication scheme for the Internet of Drones
(BCDAIoD). By using a consortium chain with a multi-chain architecture, the proposed method
can query and update different types of data efficiently. By mutual authentication before cross-
domain authentication, drones can compose drone groups to lighten the authentication workload
of domain management nodes. BCDAIoD uses the notification mechanism between domains to
enable path planning for drones in advance, which can further improve the efficiency of cross-domain
authentication. The performance of BCDAIoD was evaluated through experiments. The results
show that the cross-domain authentication time cost and computational overhead of BCDAIoD are
significantly lower those of than existing methods when the number of drones is large.

Keywords: blockchain; Internet of Drone; cross-domain authentication; security protocol;
multi-UAVs; group policy

1. Introduction

The increasing demand for unmanned aerial vehicles (UAVs) and Internet of Drones
(IoD) in civil and military applications has been noticed in the last few decades [1]. IoD
usually consists of a number of drones, ground control stations (GCS), and a communication
network for data exchange. Drones can obtain information through sensors and exchange
information through the network. They can also communicate with GCS and other drones
for proper navigation [2]. The available space of the air traffic network (ATN) is much
larger than that of the ground traffic network (GTN). Reasonable use of the ATN can reduce
the burden of the GTN. Furthermore, using ATN can also avoid the congestion of the GTN.
Therefore, many companies try to use drones as air transport tools for cargo transportation,
so as to promote logistics efficiency [3].

During long-distance flights, drones are likely to enter other IoD domains where
they need to pass identity authentication and obtain necessary information such as flight
routes to continue their tasks. In the IoD, wireless communication between drones is
easy to eavesdrop on, resulting in information leakage [4–7]. Furthermore, attackers can
conduct replay attacks or identity forgery to interrupt the IoD [8–10]. In addition, once
drone transportation forms a complete industry, the number of drones may be quite large.
The resource overhead of complex authentication mechanisms, such as computation and
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storage, is a huge challenge for identity authentication servers [11–13]. At the same time, it
also increases the cross-domain waiting time for drones to obtain necessary information.

Centralized authentication techniques [14–16] are widely adopted in traditional in-
formation systems. However, in an IoD environment, if conventional centralized au-
thentication approaches are applied, the workload of the authentication service center
increases exponentially as the system scales up [17]. Therefore, traditional authentica-
tion technology is not suitable for the IoD environment. At present, there are also some
studies using public key infrastructure (PKI), trusted third party (TTP), or blockchain
technology to verify the identity of the drone and the authenticity of the task [18,19]. The
existing methods are shown in Figure 1a. However, the existing studies rarely consider the
efficiency of cross-domain authentication in the case of a large number of drones. Addition-
ally, when the number of drones is large, the time cost of cross-domain authentication is
also very high.

Figure 1. Comparison of existing methods and this paper. (a) Ideas of existing methods. (b) The idea
of the method proposed in this paper.

When facing a large number of drones, existing drone cross-domain authentication
methods lead to a surge in communication and computational costs for the IoD, increase
the waiting time of the drones, and further reduce the overall operational efficiency of the
IoD. At the same time, the existing methods cannot guarantee the anonymity of drones
when performing the task, and attackers can obtain the connection between the sender
and receiver through the identity and task information of the drone, which may leak the
user’s privacy. Therefore, existing methods cannot meet the cross-domain authentication
requirements for large-scale drone cargo transportation scenarios. Therefore, we propose a
novel cross-domain authentication scheme for the IoD based on blockchain technology.

Blockchain has the advantages of decentralization, openness, being tamper-proof,
traceability, and anonymity [20]. The decentralization is consistent with the distributed
network structure of the IoD. Furthermore, the openness can well satisfy the requirements
for drones to join and leave the network freely [21]. The advantages of being tamper-
proof and traceability ensure the reliability and non-repudiation of data in the network,
and the advantage of anonymity protects the data by addressing with address instead of
addressing with identity. However, there are three potential challenges to using blockchain
for authentication. (1) In the IoD, there are various types of data and the scale of data is
large, meaning the single-chain structure may lead to query inefficiency and throughput
bottleneck. (2) In the authentication process, a large number of drones may cause a high

50



Drones 2023, 7, 302

authentication delay time and increase the waiting time of drones. (3) The authentication
server needs to authenticate the UAV identity information, verify the transaction in the
blockchain, and upload the task information. A large number of drones to be authenticated
may cause server interruptions.

To address the above challenges, we propose an efficient cross-domain authentication
scheme based on blockchain. As shown in Figure 1b, the main idea is that drones should
authenticate each other before cross-domain authentication to form a mutually endorsed
group. To ensure that the identities and tasks of drones in each group are real and trusted,
we designed an authentication mechanism based on domain signature, encryption, and
domain private chain. In this way, drones with the same out-of-domain range (Rout)
compose a drone group. Considering the continuity of drone tasks in the process of cross-
domain tasks, we designed a notification mechanism between domains combined with
the concepts of token, permission, and authority. The main contributions of this paper
are as follows.

(1) We propose an efficient blockchain-based cross-domain authentication scheme
for the Internet of Drones (BCDAIoD). By using a consortium chain with a multi-chain
architecture, the proposed method can query and update different types of data efficiently,
which can also facilitate the domain management node to manage and control the drones.
Additionally, we describe the mission model of the drones.

(2) In order to improve the efficiency of the cross-domain authentication of drones, we
designed an establishment method of drone groups and a group cross-domain authentica-
tion method based on blockchain, encryption, and challenge–response game. By mutual
authentication before cross-domain authentication, drones can compose drone groups
to lighten the authentication workload of domain management nodes and improve the
efficiency of cross-domain authentication.

(3) We propose a notification mechanism between domains that can enable the man-
agement node of the next domain to know the task information of the drones in ad-
vance. The management node of the next domain can plan space resources reasonably
and plan the flight path for drones in advance, which can also ensure the continuity of the
tasks of drones.

The remainder of this article is organized as follows. The literature is reviewed in
Section 2. The framework of BCDAIoD, the consortium blockchain architecture, and the
mission model of the drones are presented in Section 3. In Section 4, we first propose the
single-drone cross-domain authentication method. Then, we propose the establishment
mechanism of drone groups, the drone group cross-domain authentication method, and the
notification mechanism between domains. Section 5 describes the simulation experiments
and shows the experimental evaluation results of the BCDAIoD method. In Section 6, we
analyze the security of BCDAIoD. Finally, Section 7 concludes this paper.

2. Related Works

(1) IoD management scheme

IoD has received widespread attention due to its potential application prospects.
Therefore, there are studies targeting the management scheme of IoD. In order to facilitate
the information acquisition of drones and users in IoD, Al-Hilo et al. [22] proposed a
collaborative and management framework between UAVs and roadside units. Arafeh
et al. [23] proposed a blockchain-based UAV management method that can verify the
authenticity of information in IoD networks. By using blockchain and trust policies, García-
Magariño et al. [24] proposed a UAV management approach which can also maintain
security in IoD by corroborating information about events from different sources. However,
the above UAV management framework mainly focuses on data security and neglects the
management efficiency when facing a large number of drones. Additionally, the blockchain-
based methods have not been able to reasonably partition the data storage on the chain,
leading to low query efficiency and data isolation.
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(2) Cross-domain authentication scheme based on cryptography

During the task execution, drones need to verify their identity through cross-domain
authentication. Meanwhile, in order to address potential threats, researchers have proposed
some cross-domain authentication schemes based on cryptography. To protect drones
against various types of possible attacks, Wazid et al. [25] proposed a remote authentication
and key management scheme. Srinivas et al. [26] designed a three-factor authentication
scheme which relies on elliptic-curve cryptography (ECC). Tanveer et al. [27] leveraged ECC
along with symmetric encryption and hash function, and proposed a robust authentication
mechanism for IoD. For the sensitive environment in which an attacker might trap data
from the open network channel, Jan et al. [28] proposed a verifiably secure ECC-based
authentication scheme for IoD. Additionally, Rajamanickam et al. [29] proposed an ECC-
based authentication protocol for insider attack protection in IoD scenarios that can protect
the IoD from several known attacks, especially insider attacks. Ever et al. [30] proposed
a secure authentication framework using elliptic-curve crypto-systems to ensure data
confidentiality. However, the above methods guarantee the security of IoD by performing
multiple process parameter calculations on the device, registration center, and control
center, which increase the computational burden.

(3) Cross-domain authentication scheme based on blockchain

Considering the interoperability and complexity characteristics of IoD systems, many
existing research studies have applied blockchain technology in the cross-domain authen-
tication area of IoT systems. To solve the single point of failure problem, Feng et al. [31]
employed blockchain and multiple signatures based on threshold sharing to build a cross-
domain authentication framework. To avoid reliance on a trusted third party, Shen et al. [32]
introduced a consortium blockchain to construct trust among different domains and present
an efficient blockchain-assisted secure device authentication mechanism. By using a hi-
erarchy of local and global smart contracts, Gauhar et al. [33] proposed a decentralized
blockchain-based authentication mechanism which uses a proof-of-authenticity mechanism
to find and retrieve device hashes stored in local blockchain. Zhang et al. [34] proposed a
thoroughly cross-domain authentication scheme based on blockchain, allowing participants
from different domains with different settings to complete the authentication. However, the
above methods neglect the anonymity of drones when performing the task, which may leak
the user’s privacy. Additionally, the methods do not take into account the communication
and computational costs of IoD when facing a large number of drones.

3. Overview of BCDAIoD

3.1. The BCDAIoD Framework

To improve the efficiency of data query, BCDAIoD uses a multi-chain architecture to
reasonably partition the data storage on the consortium blockchain. Additionally, domain
private chains are used to ensure the anonymity of drones. The framework of the proposed
BCDAIoD scheme is shown in Figure 2. The BCDAIoD framework includes four layers: an
application layer, service support layer, data storage layer, and network layer.

In the network layer, a P2P network is used for communication between consortium
nodes (CNs) and UAVs. Additionally, CNs can transmit information through the P2P
network, such as mission information. Each CN manages a certain domain and maintains a
private chain. The UAVs can also communicate with each other through the P2P network.

In the data storage layer, the UAV device information, task information, address
information of CNs, smart contracts, and user registration information are stored in the
consortium blockchain (CBC) in a specified format. At the same time, the CNs store the
details of the above information in local databases. The architecture of the consortium
blockchain is described in Section 3.2. For identity authentication and UAV grouping, the
CNs also maintain a private chain to store the device ID on PBC (Pid) and the out-of-domain
range (Rout) information of UAVs.
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Figure 2. The BCDAIoD framework.

The service support layer provides support for users, CNs, and UAVs to interact with
the data storage layer and the network layer. It mainly includes the consensus mechanism,
smart contract, identity authentication mechanism, access control strategy, path planning
algorithm, and communication protocol. The consensus mechanism can ensure that the
information of each block is consistent. The smart contract can conduct trusted transactions
in the form of commitment without a trusted third party. The identity authentication
mechanism and access control strategy can ensure that UAVs enter the correct domains and
obtain their own path information. By using the path planning algorithm, the CNs obtain
the next domain IDs and calculate the paths in their domains for UAVs. The communication
protocol supports the communication among users, UAVs, and CNs.

By using the functions of the application layer, users can submit registration appli-
cations to the CNs, release tasks, and query the status of tasks. The CNs can manage the
information of the UAV devices, tasks, and paths, as well as perform identity authentication
and path planning. The UAVs can query task information, view path information, and
submit cross-domain authentication requests to perform tasks. To facilitate the introduction
of subsequent methods, Table 1 lists the key symbols and their definitions.

Table 1. The symbol definitions.

Symbol Definition Symbol Definition

CBC Consortium blockchain PBC Private blockchain

CN Consortium node CNid ID of consortium node

Pidi Device ID of i on PBC Didi Device ID of i on CBC

Mid Task ID GList Group member list

Rout Out-of-domain range Tout Expected time out of domain

di Drone marked with i PKi Public key of i

SKi Private key of i Enc(∗) Elliptic curve encryption

PBHi
Block number of the PBC block that

includes the task information of i ks Session key

Token Cross-domain token H(∗) Hash function
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Table 1. Cont.

Symbol Definition Symbol Definition

Tstamp Time stamp of the Token Mdj
ID verification information

ack Challenge rspi Response of i

3.2. Architecture of Consortium Blockchain

The scale of data to be processed by the CNs is very large and there are various
types of data. All the data being stored in a single chain leads to low query efficiency,
poor data isolation, and difficulty to expand. Therefore, we designed the multi-chain
architecture of the CBC to improve the efficiency of the CNs. As shown in Figure 3, the
multi-chain architecture of the CBC mainly includes the Mission chain, User chain, Address
chain, Devices chain, and Contract chain. The CNs are also responsible for the private
blockchain (PBC) in their domain. Similar to cellular mobile communication networks, the
proposed framework achieves service coverage in large-scale open areas by combining
CNs. Additionally, there are cross-domain channels between the domains, so as to facilitate
the formation of groups and the cross-domain authentication of UAVs with the same Rout.

Figure 3. The multi-chain architecture of CBC.

The Mission chain mainly stores task information, and the data structure can be
expressed as Equation (1), where Mid is the current task ID; Did is the drone’s ID on the
CBC that can be provided to or queried by the CNs; CNidn is the ID of the CN that is
responsible for the next domain; CNidd is the ID of the CN that manages the destination
domain; CNidc is the CN ID of the current domain; Rout is the expected range out of the
current domain; and Tout represents the current expected time out of the domain.

Mission = (Mid, Did, CNidn, CNidd, CNidc, Rout, Tout) (1)

The User chain mainly stores the necessary information of the registered users. The
stored information can be expressed as Equation (2), where Uid is the user ID for the
consortium authentication, CNidr is the CN ID of the registration place, and Fu is the
current user account balance. The other registration details of the user are directly stored in
the local database of the registration place’s CN.

User = (Uid, CNidr, Fu) (2)

The Address chain mainly stores the domain range information of the CN, which can
be expressed as Equation (3), where CNid represents the ID of a CN; PKcn represents the
public key of the CN; and RGcn represents the domain range of the CN.

Address = (CNid, PKcn, RGcn) (3)
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The Devices chain mainly stores the necessary information of the UAV registered in the
CBC, which can be expressed as Equation (4), where PKd is the public key of a UAV; Mod
is the module of the UAV; and Pol is the execution strategy of the UAV. The registration
details of other UAVs can be directly stored in the local databases of the registration
place’s CN.

Devices = (Did, PKd, CNidr, Mod, Pol) (4)

The Contract chain mainly stores the contract information, which can be expressed as
Equation (5), where Cid is the current contract ID, V is the current contract version, and
Cont is the current contract content.

Contract = (Cid, V, Cont) (5)

The PBC chain mainly stores the necessary information for the intradomain authen-
tication of the UAVs, which can be expressed as Equation (6), where Pid represents the
temporary ID of a UAV in a domain.

PBC = (Pid, Rout, PKd) (6)

3.3. Mission Model of Drone

We designed a scenario of a drone delivery in an Internet of Drones environment, as
shown in Figure 4. Each domain CN in the consortium blockchain can be regarded as a
server with strong computing power and storage capacity, which is responsible for drone
management and scheduling in a certain location area. The drone delivery process mainly
includes three phases: registration, task release, and task execution.

 
Figure 4. Scenario of drone delivery.

3.3.1. Registration Mechanism

In the proposed framework, both drones and users need to register in the CBC. The
drone registration process includes the following steps. The user registration process is
similar to the drone registration process, which is not described in detail here.

Step 1. Drone dj submits a registration request REG =
(

Rrequest, macdj
, in fdj

)
to cni,

where Rrequest denotes registration request, macdj
denotes the hardware ID of dj, and in fdj
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denotes the detailed information of dj, such as drone model, maximum sailing distance,
and payload.

Step 2. After receiving the registration request, cni determines the acceptable task type
of dj (Poldj

), such as selecting tasks with reasonable distance according to
power consumption.

Step 3. Then, cni sends the registration request REG’ =
(

Rrequest, macdj
, CNidi, Poldj

)
to the other nodes in the CBC.

Step 4. After the members of the CBC reach a consensus, the CNs assign a device ID
in the CBC (Diddj

) to the dj and update the Devices chain. Furthermore, cni calculates the
public key (PKdj

) and private key (SKdj
) for dj. Then, cni sends the SKdj

to dj.
Step 5. cni sends the Diddj

and its public key PKcni to dj. Additionally, cni calculates

EncSKcni

(
Diddj

)
and sends it to dj. Then, cni stores the registration time, model, and other

detailed information of dj in the local database.

3.3.2. Task Release Mechanism

When a user submits a delivery task request, the CN in charge of the current domain
selects a suitable drone to perform the task. The process includes the following steps.

Step 1. When a user submits a delivery task request to the cni, cni queries the available
drone from the local database, selects an appropriate drone dk according to the acceptable
task type, and plans a delivery path for dk. Additionally, cni calculates Rout and Tout.

Step 2. At the same time, cni queries the Address chain to find the ID of the destination
domain (CNidd) and the next domain ( CNidn) that dk will pass through.

Step 3. Then, cni sends a mission request mission =
(Did, CNidn, CNidd, CNidc, Rout, Tout) to the other CNs in the CBC and calculates the ID
on the PBC (Piddk

) for dk. Then, cni uses SKcni to generate EncSKcni

(
Piddk

)
.

Step 4. After the members of the CBC reach a consensus, the CNs assign the mission ID
(Mid) and update the Mission chain with mission’ =
(Mid, Did, CNidn, CNidd, CNidc, Rout, Tout).

Step 5. Then, cni updates the PBC, and sends the necessary information to the drone
dk. The information is shown in Table 2. Then, dk starts the task. Correspondingly, dk
updates its own PBC during the execution of the task.

Table 2. The symbol definitions.

Symbol Definition

Flight path The flight path in the current domain.

Piddk
Device ID of dk on the PBC.

SKdk
Private key of dk.

PKcni Public key of cni for intradomain authentication between drones.

PKcnn Public key of cnn(the CNof the next domain) for cross-domain authentication.

EncSKcni

(
Diddk

)
The identification for cross-domain authentication.

EncSKcni

(
Piddk

)
The identification for intradomain authentication.

PBC The private blockchain of the current domain.

PBHdk
The block number of the PBC block that includes the task information of dk.

Step 6. Finally, the cni stores the detailed information in the local database and removes
the drone dk from the available drones of the local database.

Furthermore, we make the following assumptions:
(1) We consider that each CN has the public keys of the other CNs, and the private

key of each CN is not leaked; (2) The private key of the drone carrying out the task is not
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leaked; (3) Attackers cannot deduce the private key from the public key, or it takes too
much time.

3.3.3. Task Execution Method

After the task starts, the drone dk flies to the destination according to the planned path.
If dk needs to pass through other domains, the method described in Section 4 is used for
cross-domain authentication. After successful cross-domain authentication, dk enters the
next domain and receives the necessary information from the CN, in a similar method to
Step 5 in the task release phase. In this way, dk flies to the destination domain.

When dk reaches the destination domain and completes the task, the CN in charge of
the destination domain (cnd) publishes a task completion confirmation,
missionF = (Mid, Did, 0, CNidd, CNidd, 0, 0), in the Mission chain to prove that the task
has been completed.

Finally, the cnd is responsible for recycling the drone dk. By querying the Did of dk
and other information in the Devices chain, cnd stores the necessary information of dk in
the local database and updates the available device database.

4. Cross-Domain Authentication of Drones

Drones may fly to other domains during the execution of tasks. Therefore, we de-
signed a UAV cross-domain authentication method combining public key infrastructure
and blockchain technology. In this section, we first propose a single-drone cross-domain
authentication method. Then, considering that the cross-domain authentication of a large
number of UAVs may cause a long waiting time for UAVs, we propose an establishment
mechanism of UAV groups and a drone group cross-domain authentication method. Addi-
tionally, we propose a notification mechanism between domains to let the CNs prepare for
UAV cross-domain and path planning in advance.

4.1. Single-Drone Cross-Domain Authentication Method

The single-drone cross-domain authentication method is shown in Figure 5. This
method uses public key infrastructure and a challenge–response mechanism to ensure
the authenticity of the UAV’s identity, and ensures the authenticity of the UAV’s task
by querying the Mission chain of the CBC. At the same time, a session key can also be
generated during this process.

When drone dj wants to fly to the next domain (Domainn), dj firstly send its cross-
domain request (CRMdj

) to the CN in charge of Domainn (cnn). The CRMdj
can be ex-

pressed as Equation (7), where Crequest represents the cross-domain request and
EncSKcni

(
Diddj

)
represents the Did of dj encrypted with the private key of the current

domain CN.
CRMdj

=
(

Crequest, EncSKcni

(
Diddj

))
(7)

After receiving the CRMdj
from dj, cnn uses the PKcni to decrypt the EncSKcni

(
Diddj

)
to obtain the Diddj

. Then, cnn checks whether there is the incomplete Mission chain
transaction trans∗ of the corresponding Diddj

. The trans∗ can be generated through the
notification mechanism (detailed in Section 4.4). Then, cnn searches the Devices chain
to obtain the public key (PKdj) of dj according to the Diddj

. If trans∗dj
exists, cnn sends a

random number x with PKdj
encryption to dj as a challenge ack. Then, dj decrypts ack with

SKdj
to obtain x, and sends back x + 1 and a random number y with PKcnn encryption as

a response, rspj = EncPKcnn
(x + 1|| y). Then, cnn checks rspj to determine whether dj has

the declared identity and obtains y. If dj passes the verification, cnn sends back a response,
rspcn = EncPKdj

(y + 1), as a confirmation message. Then, the session key between dj and

cnn can be generated by ks = H(x || y) .
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Figure 5. The single-drone cross-domain authentication method.

In this way, cnn can determine the identity and task information of dj. Then, cnn

sends the Token to dj. The Token of dj can be expressed as Equation (8), where, Pid’
dj

represents the device ID of dj in the Domainn, Tstamp represents the time stamp of the
Token, Pdj

represents the permission that dj has for obtaining the necessary information,

and hash
(

Pid’
dj

∣∣∣∣Tstamp
∣∣∣∣Pdj

)
represents the hash value of the combination of Pid’

dj
, Tstamp,

and Pdj
.

Token =
(

hash
(

Pid’
dj

∣∣∣∣Tstamp
∣∣∣∣Pdj

)
, Pid’

dj
, Tstamp, Pdj

)
(8)

Finally, dj obtains its Pid’
dj

and uses the Token to obtain the flight path and other
necessary information from the CN of the next domain. At the same time, cnn updates the
Mission chain by using the method proposed in Section 4.4.

In the UAV cargo transportation scenario, there are many UAVs flying to the same
next domain. Therefore, we propose a method of drone group cross-domain authentication
to improve the efficiency of UAV cross-domain authentication. The idea of this method
is that UAVs compose a group through mutual authentication before the cross-domain
authentication. In this way, the proposed method can lighten the authentication workload
of the CN and improve the speed of the UAV cross-domain authentication. The method is
mainly divided into two stages: (1) the formation of a UAV group (in Section 4.2), and (2)
the cross-domain authentication of a UAV group (in Section 4.3).

4.2. Establishment Mechanism of UAV Groups

The establishment mechanism of UAV groups mainly includes two parts: (1) the
method of building a new drone group and (2) the method of joining a drone group. In the
process of building or joining a drone group, drones need to use verification strategies to
verify each other. The verification strategy is shown in Figure 6.
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Figure 6. Two-way authentication strategy between drones.

When drone dj and drone dn start the verification, dj firstly sends its verification
information Mdj

to dn. Mdj
can be expressed as Equation (9), where, Taut represents the

two-way authentication request, EncSKcni

(
Piddj

)
represents the Pid of dj encrypted with

the private key of the current domain CN, and PBHdj
represents the PBC block height of

the block that includes the task information of dj.

Mdj
=
(

Taut, EncSKcni

(
Piddj

)
, PBHdj

)
(9)

After receiving the verification information from dj, dn uses the PKcni to decrypt the

EncSKcni

(
Piddj

)
to obtain the Piddj

. Then, dn searches the local PBC according to PBHdj

and queries whether the corresponding information is there. If PBHdj
is bigger than the

block height of the local PBC, it updates the PBC from the CN. After that, dn obtains the
public key (PKdj

) of dj from the PBC. Then, a random number x is encrypted by PKdj
as a

challenge ack, and dn sends its Mdn and ack to dj.
After receiving the Mdn and ack, dj decrypts the EncSKcni (Piddn) to obtain the Piddn .

Additionally, dj searches the local PBC according to PBHdj
and queries whether the corre-

sponding information is there. If PBHdj
is bigger than the block height of the local PBC, it

updates the PBC from the CN. Then, dj obtains the public key (PKdn ) of dn from the PBC.
Additionally, dj decrypts the ack with SKdj

to obtain x, and sends back x + 1 and a random
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number y with PKdn encryption as a response, rspj = EncPKdn
(x + 1||y) . According to

the notification mechanism between domains described in Section 4.4, local PBCs saved
by drones store task information for a period of time in the future, and the PBCs can be
updated by drones after mutual authentication. Therefore, in theory, drones do not need or
rarely need to update blocks through the CN, and they only need to update blocks through
the CN at most once during a two-way authentication period.

Next, dn decrypts rspj with SKdn and checks whether x + 1 is received within a certain
period of time to determine whether dj has the declared identity. Then, dn obtains y and
sends back a response, rspn = EncPKdj

(y + 1), to dj. After receiving the rspn, dj decrypts

the rspn with SKdj
and checks the response. After successful identity authentication, the

session key between dj and dn can be generated by ks = H(x || y) . Then, dj and dn can
communicate with each other and update their PBCs.

By using the proposed verification strategy, drones can confirm each other’s identity,
generate session keys, and update the PBCs. In the process of moving, drones try to join a
group or build a new one, as shown in Figure 7.

 
Figure 7. The establishment method of UAV groups.

(1) Method of building a new drone group

During flight in the current domain, a drone dj broadcasts to inquire whether there
is a drone group with the same Rout. If there is no drone group, dj tries to build a new
group and continues to broadcast to inquire whether there are drones with the same Rout.
If dj finds other drones with the same Rout, the drones and dj send each other verification
information, verify each other (as shown in Figure 6), and then reach consensus to build a
group. Usually, the number of initial group members is small (about 2–4 drones). In order
to stabilize the drone group, the initial members need to authenticate each other and build
communication links with a session key.

Each drone group selects a group leader dl by voting. For cross-domain authentication,
dl generates a member list, GList, of the drone group. The GList can be expressed as
Equation (10), where Piddi

represents the Pid of di. Then, the drones compose a drone
group successfully.

GList =
{

Piddi

∣∣ ∀ di in the group
}

(10)
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(2) Method of joining a drone group

If dj finds a group after broadcasting, it sends verification information Mdj
to the group

leader (dl) to join the group. Then, dl randomly chooses one drone to verify the dj together.
After that, dl determines whether dj can join the group according to the authentication
result. If dj passes the verification, dl adds the Pid and public key of dj to the GListdl
maintained by itself, and send its GListdl

to dj. Then, dj saves the GListdl
and broadcasts

its own GListdj
as a confirmation of joining the group. Additionally, the other drones in the

group update their GList.
At the same time, in order to prevent the loss of drones, the drones in the group send

inquiry and response signals regularly. Additionally, drones with forged identities cannot
build or join a group because they cannot send the correct response.

4.3. Drone Group Cross-Domain Authentication Method

The drone group cross-domain authentication method proposed in this paper is shown
in Figure 8. When a drone group is ready for cross-domain authentication, the group leader
of the group (dl) sends a group cross-domain request (GCMdl

) to the CN of the next domain
(cnn). The GCMdl

sent by dl can be expressed as Equation (11), where GCrequest represents
the group cross-domain request, EncSKcni

(
Diddl

)
represents the Did of dl encrypted with

the private key of the current domain CN (cni), and GListdl
is the group member list of dl .

GCMdl
=
(

GCrequest, EncSKcni

(
Diddl

)
, GListdl

)
(11)

After receiving the GCMdl
from dl , cnn verifies the group leader through the single-

drone cross-domain authentication method proposed in Section 4.1. Then, cnn obtains the
GListdl

. If dl passes validation, cnn sends dl a Token. After receiving the Token, dl sends a
group cross-domain signal to the drone group. Then, the other drones in the group send
group cross-domain requests to cnn. The group cross-domain request sent by dj (GCMdj

)

can be expressed as Equation (12), where EncPKcnn

(
Piddj

, xj

)
represents the device ID on

the PBC and a random number xj encrypted with the public key of cnn. Additionally,

EncPKcnn

(
Piddj

, xj

)
is generated by dj after dj joins or builds a group.

GCMdj
=
(

GCrequest, EncPKcnn

(
Piddj

, xj

)
, EncSKcni

(
Diddj

))
(12)

After receiving the GCMdj
, cnn decrypts the EncSKcni

(
Diddj

)
to obtain the Did of dj.

Additionally, cnn checks whether the incomplete Mission chain transaction trans∗ of the
corresponding Diddj

is there. Then, cnn searches the Devices chain to obtain the public key

of dj. Additionally, cnn decrypts the EncPKcnn

(
Piddj

, xj

)
to obtain the Pid and xj of dj. If

Piddj
is in the GListdl

, cnn generates the Token for dj according to the equivalence between

Pid and Did. Next, cnn sends a response, rspj
cn = EncPKdj

(
yj
)
, to dj. After decrypting rspj

cn

and obtaining yj, dj can generate a session key by ksj = H(xj
∣∣∣∣ yj) .

In this way, cnn verifies the drones and distributes the Tokens to the drones in the
group. Finally, the drones in the group obtain their Pids and use their Tokens to obtain the
flight path and other necessary information from cnn. At the same time, cnn updates the
Mission chain by using the method proposed in Section 4.4.
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Figure 8. Drone group cross-domain authentication strategy.

4.4. Notification Mechanism between Domains

When a drone enters a new domain, the CN of the domain needs to publish a trans-
action to the Mission chain for uploading and updating the task information of the drone.
After reaching a consensus, a CN packages a certain number of transactions and generates
a new block on the Mission chain. The CNs of the other domains query the Mission chain
at regular intervals and collect the task information of drones flying to their own domains.
In this way, the CNs can plan the path for the drones in advance according to the Rout, the
destination, and other information of the task. The specific method is as follows.

In the domain Domaini, the CN of Domaini (cni) uses Algorithm 1 to find the trans-
actions of the next domain (CNidn), which is Domaini, at regular intervals. Firstly, the
algorithm obtains the latest block height of the Mission chain. Then, it searches blocks
that have not been queried to obtain the transactions that include the latest drone task
information. By comparing the CNidn in the transaction (trans.CNidn) and the CNid of
cni (cni.CNid), the algorithm determines whether the next domain in the transaction is
the current domain, and then saves the task information. Then, cni obtains the list of
transactions (Listtrans) and the latest block height (NHbc).
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Algorithm 1. Task information query algorithm.

Input: Mission, LHbc // Mission chain and the block height of the last query.
Output: Listtrans, NHbc // List of transactions and the latest block height.
1. Initialize variable NHbc // Initialize the latest block height.
2. Initialize variable Listtrans // Initialize the list of transactions.
3. NHbc = getHeight(Mission) // Obtain the latest block height of the Mission chain.
4. for block in range(LHbc,NHbc) // Search blocks that have not been queried.
5. trans = read(block) // Read the transactions on the blocks.
6. if(trans.CNidn = = cni.CNid) // Determine whether the next domain in the trans is the
current domain.
7. Listtrans.add(trans) // Save the task information.
8. else continue
9. end if
10. end for
11. return Listtrans, NHbc

When it has obtained the Listtrans and the relevant task information, cni calls on
Algorithm 2 to preprocess the tasks. For each transaction in the Listtrans, the algorithm
receives Mid, Did, CNidd, Rout, and Tout from the transaction. Then, it calls on the path
planning algorithm to plan a flight path for the drone and obtain the CN ID of the next
domain (CNid’

n), the range out of the current domain (Rout’), and the current expected
time cost out of the domain (TC∗). For drone cross-domain authentication, the algorithm
reads the Address chain and obtains the public key (PKcnn ) of CNid’

n. Then, it reads the
Devices chain and obtain the PKd of the drone. Additionally, it generates the device ID
in this domain (Pid′) and the permission (P) for the drone. Then, the algorithm submits
the transaction (Pid′, Rout’, PKd) to the PBC. In this way, the PBC of the drone currently
flying to the next domain has the information about the drones performing tasks in that
domain for a period of time in the future. Additionally, it generates an incomplete Mission
chain transaction, trans∗ =

(
Mid, Did, CNid’

n, CNidd, CNid’
c, Rout’, TC∗

)
, and the TC∗

in trans∗ is updated when the drone arrives. At the same time, cni packages the PBC
transactions and generates a new block on the PBC at certain intervals, or the number of
transactions meets the requirement.

Algorithm 2. Task preprocessing algorithm.

Input: Listtrans
Output: trans∗, Pid′, P, PKcnn
1. Initialize variable Rout′ , TC∗ // Initialization range and expected time cost out of the
current domain.
2. Initialize variable CNid′n // Initialization variable CNid of the next domain.
3. Initialize variable CNid′c = cni.CNid // Initialization variable CNid of the current domain.
4. for each transaction in Listtrans
5. Get Mid, Did, CNidd, Rout, Tout from the transaction.
6. Use path planning algorism to plan flight path for the drone and get CNid′n, Rout′c, and TC∗.
7. Read Address chain and get the PKcnn of CNid′n.
8. Read Devices chain and get the PKd of the drone.
9. Create Pid′ and P // Generate device ID in this domain and the permission for the drone.
10. submit(Pid′, Rout′ , PKd) ->PBC // Submit the PBC transaction to the PBC.
11. trans∗ = (Mid, Did, CNid′n, CNidd, CNid′c, Rout′ , TC∗) // Generate the Mission
chain transaction.
12. end for
13. cni packages PBC transactions and generates a new block on the PBC at certain intervals or
the number of transactions meets the requirement.
14. return trans∗, Pid′, P, PKcnn .

When a drone dj has passed the cross-domain authentication and entered the domain
Domaini, cni uses Algorithm 3 to publish a transaction for updating the task information of
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dj. Above all, cni obtains the task start time (TSTdj) of dj in the domain. Then, cni calculates
the expected time out of the domain by Tout’

dj = TSTdj + TC∗. After that, the Mission
chain transaction including the task information of dj is published, which can be expressed

as trans =
(

Mid, Diddj, CNid’
n, CNidd, CNid’

c, Rout’
dj, Tout’

dj

)
. We consider that all the

CNs in the CBC are trusted. Therefore, this paper uses the Raft consensus mechanism to
package the transactions and generate new blocks. In addition, the Pid’

dj, Pdj, and PKcnn

generated in Algorithm 2 are sent to the dj during the cross-domain authentication process.

Algorithm 3. Task information update algorithm.

Input: Mission information
Output: True or False
1. Initialise variable isUploaded = FALSE // Initialization variable, upload success or not.
2. Get task start time (TSTdj

) of dj in the domain.
3. Compute Tout′dj

= TSTdj
+ TC∗ // Calculate the expected time out of the domain.

4. trans =
(

Mid, Diddj
, CNid′n, CNidd, CNid′c, Rout′dj

, Tout′dj

)
// Generate transaction

including task information of dj.
5. Publish the trans to the Mission chain.
6. isUploaded = TRUE // Upload successfully.
7. return isUploaded.

5. Performance Evaluation

5.1. Experimental Settings

We analyzed the performance of the proposed scheme by conducting simulation
experiments. The performance of the method proposed in this paper was measured in terms
of computational overhead, communication overhead, and cross-domain authentication
time cost. The configuration of the PC for the experiments is: CPU: Intel Core i7-8550,
RAM: 8 GB, OS: Ubuntu 18.04, 64-bit. Hyperledger Fabric is an open source project from
the Linux Foundation. We used Hyperledger Fabric v1.4 to build the blockchain, and
the consensus on the consortium blockchain was reached through the Raft algorithm.
Additionally, we used the JPBC v2.0 bilinear pair cryptography library from Italy GAS Lab
to generate the public and private keys, and to encrypt and decrypt messages and ciphertext,
respectively. The applied elliptic curve is a Type A elliptic curve with an order length of
160 bits (y2 = x3 + x). Raspberry Pi, as an embedded single-board computer (SBC) from Uk
Raspberry Pi Foundation that is easy to use for coding and other implementations, is widely
used in the existing studies. To further evaluate the feasibility of the proposed scheme, we
used Raspberry Pi 4B SBCs to simulate the drones. The configuration of the Raspberry
Pi 4B is: CPU: Quad-core Cortex-A72, RAM: 8 GB, OS: Ubuntu 18.04, 64-bit. We also
compared the proposed method with existing methods [25–27] that use a ground station
as a trusted third party for identity authentication, as well as existing methods [31–33] for
identity authentication through ground stations and blockchain architectures.

5.2. Computational Overhead
5.2.1. Materials and Methods

To evaluate the computational overhead of the proposed framework, we analyzed
the computational operations required by each entity in different phases of tasks. Simple
operations, such as integer addition and concatenation operation, were not taken into
consideration because of their low computational expense. Specific notations are listed as
follows. CN: A consortium node in charge of a domain; dj: A drone in a drone group or
a single drone; dl : The group leader of a drone group or a single drone; RG: Registration
mechanism; TR: Task-release mechanism; SC: Single-drone cross-domain authentication
method; TA: Two-way authentication strategy; NG: Method of building a new group; JG:
Method of joining a drone group; DGC: The drone group cross-domain authentication
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method; NMD: Notification mechanism between domains; DAT: Operation of determining
the acceptable task type of a drone; BC: One reading or writing operation on blockchain;
GKP: Operation of generating a public–private key pair for dj; CAS: One asymmetric
encrypt/decrypt operation; LD: One reading or writing operation on local database; PP:
One path planning operation; HO: One hash operation; N: The number of drones to
compose a group or in a group; and GL: Operation of generating, updating, or distributing
a group member list.

Table 3 shows the computational overhead that each entity needs to undertake in dif-
ferent task model phases. For example, in the process of DGC, the total computational cost
that a CN needs to undertake is 4CAS + BC + HO + (N − 1) × (3CAS + HO). Specifically, it
denotes the total overhead of performing four asymmetric encrypt/decrypt operations, one
blockchain operation, one hash operation, and N – 1 times (3CAS + HO). The function 3CAS
+ HO represents the computational overhead required by the CN for the cross-domain
authentication of an ordinary drone in the drone group. Additionally, the computational
overhead that the CN needs to undertake for the cross-domain authentication of the group
leader (dl) is 4CAS + BC + HO, which is the same as the cost of the CN in the process of SC.
In addition, the computational overhead of dj in the process of DGC is CAS + HO, which
is reduced by two asymmetric encrypt/decrypt operations compared to that of dj in the
process of SC. In the process of NG, although the computational cost of dj is (N − 1) × TA,

the overall computational overhead of the drone group is N(N−1)
2 TA because only one TA

is required between two drones.

Table 3. The computational overhead in different phases of tasks.

RG TR SC TA NG JG DGC NMD

CN
DAT + GKP

+ BC + CAS +
LD

PP + 3BC +
CAS

4CAS + BC +
HO - - -

4CAS + BC +
HO + (N−1)
× (3CAS +
BC + HO)

4BC + PP

dj - - 3CAS + HO 4CAS + BC +
HO (N − 1) × TA 2TA + GL CAS + HO

dl - - - 4CAS + BC +
HO

(N − 1) × TA +
GL TA + GL 3CAS + HO

Note: “-” means no relevant operation.

To evaluate the efficiency of the proposed cross-domain authentication scheme, we
firstly evaluated the computational time cost of the single-drone cross-domain (SC) au-
thentication and the drone group cross-domain (DGC) authentication. Additionally, we
evaluated the computational time consumption of the CN side and the UAV side in differ-
ent situations. Secondly, we compared the computational time cost of our method with
that of existing methods [25–27,31–33]. To further illustrate the advantages of our method,
we also evaluated the variation in the computational time overhead with the number of
drones, and compared it with that of existing methods [25,31].

5.2.2. Results and Discussion

In the cases of SC and DGC, the computational time of the main operations is shown
in Table 4. The time cost in the table is the average time cost of executing the corresponding
operation 100 times on the corresponding platform.
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Table 4. The computational time of the main operations.

Notation Description CN UAV

TEE ECC encrypt operation 2.43 ms 7.24 ms

TED ECC decrypt operation 3.61 ms 9.31 ms

THO Hash function 0.03 ms 0.32 ms

TBC Blockchain query 0.17 ms 0.63 ms

The computational time consumption of the CN side and the UAV side in different
situations is shown in Figure 9. In the SC case, the time consumption of the CN side is
{2 × 3.61 + 2 × 2.43 + 0.17 + 0.03} = 12.28 ms, and the time consumption of the UAV side
is {2 × 9.31 + 7.24 + 0.32} = 26.18 ms. In the case of DGC, the computational time cost
needs to consider the scale of the drones. The time consumption of the UAV group leader is
{2 × 9.31 + 7.24 + 0.32} = 26.18 ms, and the time cost of an ordinary UAV in the group is
{9.31 + 0.32} = 9.63 ms. The minimum average time consumption of the CN side is the time
consumption when dealing with ordinary UAVs, i.e., {2 × 3.61 + 2.43 + 0.17 + 0.03} = 9.85 ms.
The maximum average time consumption on the CN side is when there are only two drones,
that is, {(12.28 + 9.85)/2} = 11.07 ms. Therefore, the average computational time consump-
tion interval of the CN side is (9.85 ms, 11.07 ms).

Figure 9. The computational time cost of SC and DGC.

The computational time cost of the proposed method and existing methods are shown
in Figure 10. In the SC case, the computational time cost of our method is
{12.28 + 26.18} = 38.46 ms. The figure also shows the maximum average computational
time cost in the case of DGC, which is the average computational time cost required for
each drone to cross domains when two drones perform DGC. The time cost is calculated
by {(26.18 + 9.63 + 9.85 + 12.28)/2} = 28.97 ms. The existing methods for authenticating
identity through a ground station as a trusted third party, as reported by Wazid et al. [25],
Srinivas et al. [26], and Tanveer et al. [27], require 42.36 ms, 39.32 ms, and 38.12 ms, re-
spectively. The existing methods for identity authentication through ground stations and
blockchain architectures, as reported by Feng et al. [31], Shen et al. [32], and
Gauhar et al. [33], require 32.93 ms, 36.87 ms, and 34.52 ms, respectively. Although
the computational time cost of SC is not significantly different from that of existing
methods [25–27,31–33], that of DGC is lower than that of other methods. Therefore, it
can be considered that the DGC method can reduce the computational time cost of UAV
cross-domain authentication. Figure 11 shows the computational time cost of cross-domain
authentication when the number of drones increases. The computational time cost of DGC
can be expressed as {26.18 + 12.28 + (N − 1)(9.63 + 9.85)} = 19.48N + 18.98 ms. As shown in
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Figure 11, the time cost of each method increases linearly as the number of drones increases.
Compared with the existing methods [25,31], the DGC method proposed in this paper has
significant advantages when the number of drones is large.

 
Figure 10. The comparison of computational time cost of different methods [25–27,31–33].

 
Figure 11. The computational time cost with increasing number of drones [25,31].

5.3. Communication Overhead
5.3.1. Materials and Methods

To evaluate the communication overhead of the proposed framework, we analyzed
the number of communicated messages (bits) transmitted in different task model phases
and compared it with existing advanced authentication schemes. In the SC case, the
communicated messages are: CRM :

{
Crequest, EncSKcni

(
Diddj

)}
, ack :

{
EncPKdj

(x)
}

,

rspj :
{

EncPKcnn
(x + 1|| y)

}
, and rspcn :

{
EncPKdj

(y + 1)
}

. The length of the CRM, ack,

rspj, and rspcn is {64 + 4026} = 4090 bits, 1094 bits, 1094 bits, and 1094 bits, respectively.
Thus, the total communication cost of the SC is 7372 bits. In the two-way authentication
(TA) case, the communicated messages are: Mdj

:
{

Taut, EncSKcni

(
Piddj

)
, PBHdj

}
, Mdn :{

Taut, EncSKcni
(Piddn), PBHdn

}
, ack :

{
EncPKdj

(x)
}

, rspj :
{

EncPKdn
(x + 1

∣∣∣∣∣∣y )
}

, and

rspn :
{

EncPKdj
(y + 1)

}
. The length of the Mdj

, Mdn , ack, rspj, and rspn is

{32 + 2350 + 128} = 2510 bits, 2510 bits, 1094 bits, 1094 bits, and 1094 bits, respectively. Thus,
the total communication cost of the SC is 8302 bits. The communicated messages in the DGC
case can be divided into two parts: (a) the communicated messages in the group leader
authentication process, and (b) the communicated messages in an ordinary group member
authentication process. The communicated messages in the group leader authentication
process are: GCMdl

:
{

GCrequest, EncSKcni

(
Diddl

)
, GListdl

}
, ack :

{
EncPKdl

(x)
}

, rspj :
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{
EncPKcnn

(x + 1|| y)
}

, and rspcn :
{

EncPKdl
(y + 1)

}
. The length of the GCMdl

, ack, rspj,
and rspcn is {64 + 4026 + N× 64} = 4090 + 64N bits, 1094 bits, 1094 bits, and 1094 bits, respec-
tively. Thus, the total communication cost of (a) is 7372 + 64N bits, where N is the number
of members in the drone group. The communicated messages in an ordinary group member
authentication process are: GCMdj

:
{

GCrequest, EncPKcnn

(
Piddj

, xj

)
, EncSKcni

(
Diddj

)}
,

and rspj
cn = EncPKdj

(
yj
)
. The length of the GCMdj

and rspj
cn is {32 + 2570 + 4026} = 6628 bits

and 1094 bits, respectively. Thus, the total communication cost of (b) is 7722 bits. For a drone
group with N members, the total communication cost is
{a) + (N − 1)b)} = {7372 + 64N + 7722N−7722} = 7786N-350 bits. The average cost per drone
is 7786− 350/N bits.

5.3.2. Results and Discussion

Figure 12 shows the communication overhead required at different stages of tasks.
The average minimum overhead for the DGC case is in the situation when two drones
compose a group (7611 bits). To evaluate the cross-domain communication overhead, we
compared our method with the existing novel methods, as shown in Figure 13. Among
them, the methods proposed by Wazid et al. [25], Srinivas et al. [26], and Tanveer et al. [27],
authenticating identity through a ground station as a trusted third party, require 6642 bits,
5938 bits, and 5522 bits, respectively. The above methods [25–27] mainly guarantee the
credibility of the identity by performing multiple process parameter calculations on the
device, registration center, and control center. Therefore, the communication overhead
of the above methods is relatively lower than that of our method, but it increases the
computational burden. The methods for identity authentication through ground stations
and blockchain architectures proposed by Feng et al. [31], Shen et al. [32], and Gauhar
et al. [33] require 7168 bits, 9280 bits, and 7680 bits, respectively. We noticed that the
communication cost of DGC is higher than that of SC, and the maximum communication
overhead difference between DGC and SC is 7786 − 7372 = 414 bits. Additionally, Figure 10
shows that the computational time cost of SC is 38.46 ms, and the maximum average
computational time cost of DGC is 28.97 ms. SC is 9.49 ms slower than DGC, and the
difference increases as the number of drones increases. Therefore, it can be concluded
that when the communication rate is higher than 414/9.49 = 43.6 b/ms = 43.6 kbps, DGC
outperforms SC. As far as we know, a communication rate of 43.6 kbps is easily achievable.
Therefore, while ensuring the overall efficiency of cross-domain authentication, it is feasible
to consider increasing a portion of communication overhead to ensure security.

 

Figure 12. The communication cost in different task model phases.
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Figure 13. The comparison of communication cost of different methods [25–27,31–33].

The total communication time cost mainly includes transmission delay and prop-
agation delay. The transmission delay can be expressed as Sizedata/Tr, where Sizedata
represents the size of the transmission data, and Tr represents the transmission rate of the
channel. According to different transmission frequencies and communication bandwidths,
Tr varies from tens of Kb to tens of Mb per second. Figure 14 shows how the transmission
delay in the communicated messages changes with the transmission rate from 200 Kbps to
10 Mbps. We selected the minimum communication cost (Tanveer et al. [27]) and the maxi-
mum communication cost (Shen et al. [32]) among the comparison methods to compare
them with our method. When the transmission rate is 5 Mps, the transmission time taken
by SC, DGC_max, Tanveer et al. [27], and Shen et al. [32] is 1.43 ms, 1.51 ms, 1.07 ms, and
1.8 ms, respectively. The propagation delay can be expressed as Dis/Velwave, where Dis is
the distance between the two sides of the communication and Velwave is the propagation
speed of the wave in the vacuum (about 3× 105km/s). Generally, the range of the domain
is around 1 km. Therefore, propagation delay can be ignored.

 
Figure 14. The transmission delay with increasing transmission rate [27,32].

5.4. Cross-Domain Authentication Time Cost

The total cross-domain time includes the computational time and communication
time. Based on the experimental results in Section 5.2 and 5.3, we further evaluated the
total cross-domain time taken by the method proposed in this paper by comparing it with
the existing novel methods [25–27,31–33].

The experimental results are shown in Figure 15. The communication time cost of each
scheme is that recorded when the transmission rate is 5 Mps. The total cross-domain time
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taken by the DGC proposed in this paper can be expressed as {19.48N + 18.98 + 1.55N − 0.07}
= 21.03N + 18.91 ms, where N is the number of members in the drone group. In the case
of cross-domain authentication for one drone, the SC method, Wazid et al. [25], Srinivas
et al. [26], Tanveer et al. [27], Feng et al. [31], Shen et al. [32], and Gauhar et al. [33] require
39.89 ms, 43.69 ms, 40.51 ms, 39.19 ms, 34.37 ms, 38.67 ms, and 36.06 ms, respectively. The
communication time cost of DGC in the figure (30.49 ms) is the average value for two drones.
It can be seen that DGC has a better cross-domain authentication performance compared
with the other methods [25–27,31–33]. Figure 16 shows the cross-domain authentication
time cost when the number of drones increases. It can be seen that the DGC method
proposed in this article has significant advantages when the number of drones is large.

 
Figure 15. The comparison of cross-domain authentication time cost of different methods [25–27,31–33].

Figure 16. The cross-domain authentication time cost with increasing number of drones [25–27,31–33].

6. Security Analysis

We used the widely used Dolev and Yao (DY) threat model [35] to evaluate the security
of the proposed method. In the DY threat model, a malicious attacker (MA) can inject,
delete, eavesdrop, forge, or modify the exchanged messages over a public channel [36].
In this way, an MA can perform various security attacks on drones or CNs. The possible
attacks and descriptions are as follows:

(1) Replay attack: An MA replays authentication messages to deceive the CN.
(2) Forgery attack: An MA generates an illegal or false ID to deceive the CN.
(3) Impersonation attack: An MA obtains authentication messages by impersonating

terminals or eavesdropping on a channel, and impersonates a legitimate device to
deceive the CN.
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(4) Man-in-the-middle attack: An MA captures authentication messages and spoofs both
parties of the communication.

(5) Database tampering: An MA attempts to tamper with the identity information in the
database to pass the authentication.

Additionally, we made two assumptions: (a) The private keys of the CNs and drones
are not revealed; and (b) An MA cannot deduce the private key from the public key,
or it takes a lot of time. Considering the potential threats, we analyzed and compared
the proposed scheme with the existing cross-domain authentication methods in terms of
mutual authentication, cross-domain authentication, decentralization, anonymity, task path
untraceability, path planning in advance, resilience to replay attacks, resilience to forgery
attacks, resilience to impersonation attacks, resilience to man-in-the-middle attacks, and
resilience to database tampering. The security analysis and comparison results are shown
in Table 5.

Table 5. Security analysis and comparison results.

Features [25] [26] [27] [31] [32] [33] Ours

Mutual authentication Yes Yes Yes Yes Yes Yes Yes

Cross-domain authentication Yes Yes Yes Yes Yes Yes Yes

Decentralization No No No Yes Yes Yes Yes

Anonymity Yes Yes Yes Yes No No Yes

Task path untraceability No No No No No No Yes

Path planning in advance No No No No No No Yes

Resilient to replay attack Yes Yes Yes Yes Yes Yes Yes

Resilient to forgery attack Yes Yes Yes Yes Yes Yes Yes

Resilient to impersonation attack Yes Yes Yes Yes No Yes Yes

Resilient to man-in-the-middle attack Yes Yes Yes Yes Yes No Yes

Resilient to database tampering No No No Yes Yes Yes Yes

All the methods can well support mutual authentication and cross-domain authentica-
tion functions. At the same time, due to the use of blockchain technology and temporary
intradomain ID methods, our method also has good decentralization and anonymity.
Drones have different temporary IDs in different domains, and their device IDs on the CBC
and all mission information can only be queried by the consortium nodes. Therefore, an
MA cannot obtain the complete flight path of the drone, namely, task path untraceability.
The notification mechanism between domains designed in this paper allows CNs to plan
their paths in advance, which can improve their perception of the overall network situation.
For possible attacks, we make the following analysis:

(1) Resilience to replay attacks: During the process of cross-domain authentication, the
CNs and drones use PKI and a challenge–response mechanism to perform identity
authentication and generate a session key. An MA cannot obtain useful information
through this attack.

(2) Resilience to forgery attacks: The CNs need to query the Devices chain and the
Mission chain transaction to confirm identity, and an MA cannot forge identity on the
consortium chain.

(3) Resilience to impersonation attacks: Unregistered drones cannot obtain a legal Did,
public key, and private key. In the process of the challenge–response game, an MA
cannot decrypt the ciphertext to complete the verification. Therefore, it is difficult to
implement an impersonation attack.
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(4) Resilience to man-in-the-middle attacks: The communication data are encrypted by a
public key or session key, which solves the problem of private data leakage. Even if
the data are captured, the MA cannot decrypt the ciphertext to obtain the message.

(4) Resilience to database tampering: The important data are stored on the consortium
blockchain. Only when the MA holds more than 51% of the nodes can it change the
data in the blockchain, which is impracticable.

7. Conclusions

During long-distance flights for cargo transportation, drones need to apply cross-
domain authentication mechanisms to enter the next domain. However, due to public
wireless communication channels, drones are vulnerable to various security attacks in
the process of cross-domain authentication. When facing a large number of cross-domain
requests from drones, a CN requires significant computational and time overhead, which
may lead to long waiting times for the cross-domain authentication of drones. To address
this problem, we proposed BCDAIoD, an efficient blockchain-based cross-domain authenti-
cation scheme for the Internet of Drones. The BCDAIoD method includes a single-drone
cross-domain authentication method, an establishment mechanism of drone groups, a
drone group cross-domain authentication method, and a notification mechanism between
domains. By taking advantage of blockchain, PKI, and the challenge–response game,
BCDAIoD can ensure the authenticity and integrity of data, and can effectively prevent
various attacks on drones and CNs. Furthermore, BCDAIoD uses the CBC and notification
mechanism between domains to enable CNs to plan paths for drones in advance, which
can further improve the efficiency of drone cross-domain authentication and task execu-
tion. The main contribution of this article is that BCDAIoD can improve the efficiency
and security of the cross-domain authentication of drones. Experiment results show that
the cross-domain authentication time cost and computational overhead of BCDAIoD are
significantly lower than those of the existing state-of-the-art methods when facing a large
number of drones.

Nevertheless, there are still limitations when applying BCDAIoD. First, blockchain
brings additional communication and storage costs to the drone network. For example,
drones in the IoD communicate with each other and update their local blockchains. Second,
a small number of drones flying to the same destination or drones being far apart from
each other may lead to drone group establishment failure. Hence, to address the above
limitations, we seek to further simplify storage data in the block and design block pruning
algorithms for the PBC to reduce communication and storage costs in future extensions of
this work. At the same time, we will also attempt to design an optimization algorithm that
dynamically adjusts between single-drone and drone group cross-domain methods based
on the current state of IoD.

Author Contributions: Conceptualization, G.Q. and Y.Z.; methodology, G.Q. and T.Y.; software,
T.Y. and G.Q.; investigation, G.Q. and Y.Q.; validation, G.Q., Y.Z. and T.Y.; result analysis, T.Y.,
Y.Q.; writing—original draft preparation, G.Q.; writing—review and editing, Y.Z. and G.Q.; super-
vision, Y.Z.; funding acquisition, Y.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (General
Program) under Grant No. 61572253.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

72



Drones 2023, 7, 302

References

1. Hassan, M.A.; Javed, A.R.; Hassan, T.; Band, S.S.; Sitharthan, R.; Rizwan, M. Reinforcing communication on the internet of aerial
vehicles. IEEE Trans. Green Commun. Netw. 2022, 6, 1288–1297. [CrossRef]

2. Salah, K.; Rehman, M.H.U.; Nizamuddin, N.; Al-Fuqaha, A. Blockchain for AI: Review and open research challenges. IEEE Access
2019, 7, 10127–10149. [CrossRef]

3. Farah, M.F.; Mrad, M.; Ramadan, Z.; Hamdane, H. Handle with Care: Adoption of Drone Delivery Services. In Proceedings of the
Advances in National Brand and Private Label Marketing: Seventh International Conference, Barcelona, Spain, 17–20 June 2020;
pp. 22–29.

4. Makhdoom, I.; Zhou, I.; Abolhasan, M.; Lipman, J.; Ni, W. PrivySharing: A blockchain-based framework for privacy-preserving
and secure data sharing in smart cities. Comput. Secur. 2020, 88, 101653. [CrossRef]

5. Li, X.; Wang, Y.; Vijayakumar, P.; He, D.; Kumar, N.; Ma, J. Blockchain-based mutual-healing group key distribution scheme in
unmanned aerial vehicles ad-hoc network. IEEE Trans. Veh. Technol. 2019, 68, 11309–11322. [CrossRef]

6. Qiu, J.; Grace, D.; Ding, G.; Yao, J.; Wu, Q. Blockchain-Based Secure Spectrum Trading for Unmanned-Aerial-Vehicle-Assisted
Cellular Networks: An Operator’s Perspective. IEEE Internet Things J. 2020, 7, 451–466. [CrossRef]

7. Bera, B.; Chattaraj, D.; Das, A.K. Designing secure blockchain-based access control scheme in IoT-enabled Internet of Drones
deployment. Comput. Commun. 2020, 153, 229–249. [CrossRef]

8. Yapıcı, Y.; Rupasinghe, N.; Güvenç, I.; Dai, H.; Bhuyan, A. Physical layer security for NOMA transmission in mmWave drone
networks. IEEE Trans. Veh. Technol. 2021, 70, 3568–3582. [CrossRef]

9. Asheralieva, A.; Niyato, D. Distributed dynamic resource management and pricing in the IoT systems with blockchain-as-a-service
and UAV-enabled mobile edge computing. IEEE Internet Things J. 2020, 7, 1974–1993. [CrossRef]

10. Li, T.; Liu, W.; Wang, T.; Ming, Z.; Li, X.; Ma, M. Trust data collections via vehicles joint with unmanned aerial vehicles in the
smart Internet of Things. Trans. Emerg. Telecommun. Technol. 2022, 33, e3956. [CrossRef]

11. Nakamura, S.; Enokido, T.; Takizawa, M. Information flow control based on the CapBAC (capability-based access control) model
in the IoT. Int. J. Mob. Comput. Multimed. Commun. 2019, 10, 13–25. [CrossRef]

12. Ali, G.; Ahmad, N.; Cao, Y.; Ali, Q.E.; Azim, F.; Cruickshank, H. BCON: Blockchain based access CONtrol across multiple conflict
of interest domains. J. Netw. Comput. Appl. 2019, 147, 102440. [CrossRef]

13. Wang, Y.; Wang, H.; Wei, X.; Zhao, K.; Fan, J.; Chen, J.; Jia, R. Service Function Chain Scheduling in Heterogeneous Multi-UAV
Edge Computing. Drones 2023, 7, 132. [CrossRef]

14. Jha, S.; Sural, S.; Atluri, V.; Vaidya, J. Specification and verification of separation of duty constraints in attribute-based access
control. IEEE Trans. Inf. Forensics Secur. 2017, 13, 897–911. [CrossRef]

15. Sandhu, R.S.; Coyne, E.J.; Feinstein, H.L.; Youman, C.E. Role-based access control models. Computer 1996, 29, 38–47. [CrossRef]
16. Xu, S.; Ning, J.; Li, Y.; Zhang, Y.; Xu, G.; Huang, X.; Deng, R.H. Match in my way: Fine-grained bilateral access control for secure

cloud-fog computing. IEEE Trans. Dependable Secur. Comput. 2022, 19, 1064–1077. [CrossRef]
17. Wang, K.; Zhang, X.; Qiao, X.; Li, X.; Cheng, W.; Cong, Y.; Liu, K. Adjustable Fully Adaptive Cross-Entropy Algorithms for Task

Assignment of Multi-UAVs. Drones 2023, 7, 204. [CrossRef]
18. Abdel-Malek, M.A.; Akkaya, K.; Bhuyan, A.; Ibrahim, A.S. A proxy Signature-Based swarm drone authentication with leader

selection in 5G networks. IEEE Access 2022, 10, 57485–57498. [CrossRef]
19. Fysarakis, K.; Soultatos, O.; Manifavas, C.; Papaefstathiou, I.; Askoxylakis, I. XSACd-Cross-domain resource sharing & access

control for smart environment. Future Gener. Comput. Syst. 2018, 80, 572–582.
20. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. In Decentralized Business Review; Scholastica: Seoul, Korea, 2008;

p. 21260.
21. Mehta, P.; Gupta, R.; Tanwar, S. Blockchain envisioned drone networks: Challenges, solutions, and comparisons. Comput.

Commun. 2020, 151, 518–538. [CrossRef]
22. Al-Hilo, A.; Samir, M.; Assi, C.; Sharafeddine, S.; Ebrahimi, D. Cooperative content delivery in UAV-RSU assisted vehicular

networks. In Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond,
London, UK, 21–25 September 2020; pp. 73–78.

23. Arafeh, M.; El Barachi, M.; Mourad, A.; Belqasmi, F. A blockchain based architecture for the detection of fake sensing in mobile
crowdsensing. In Proceedings of the 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech), Split,
Croatia, 18–21 June 2019; pp. 1–6.

24. García-Magariño, I.; Lacuesta, R.; Rajarajan, M.; Lloret, J. Security in networks of unmanned aerial vehicles for surveillance with
an agent-based approach inspired by the principles of blockchain. Ad Hoc Netw. 2019, 86, 72–82. [CrossRef]

25. Wazid, M.; Das, A.K.; Kumar, N.; Alazab, M. Designing authenticated key management scheme in 6G-enabled network in a box
deployed for industrial applications. IEEE Trans. Ind. Inform. 2020, 17, 7174–7184. [CrossRef]

26. Srinivas, J.; Das, A.K.; Wazid, M.; Vasilakos, A.V. Designing secure user authentication protocol for big data collection in IoT-based
intelligent transportation system. IEEE Internet Things J. 2020, 8, 7727–7744. [CrossRef]

27. Tanveer, M.; Alkhayyat, A.; Naushad, A.; Kumar, N.; Alharbi, A.G. RUAM-IoD: A robust user authentication mechanism for the
Internet of Drones. IEEE Access 2022, 10, 19836–19851. [CrossRef]

28. Jan, S.U.; Abbasi, I.A.; Algarni, F.; Khan, A.S. A verifiably secure ECC based authentication scheme for securing IoD using FANET.
IEEE Access 2022, 10, 95321–95343. [CrossRef]

73



Drones 2023, 7, 302

29. Rajamanickam, S.; Vollala, S.; Ramasubramanian, N. EAPIOD: ECC based authentication protocol for insider attack protection in
IoD scenario. Secur. Priv. 2022, 5, e248. [CrossRef]

30. Ever, Y.K. A secure authentication scheme framework for mobile-sinks used in the internet of drones applications. Comput.
Commun. 2020, 155, 143–149. [CrossRef]

31. Feng, C.; Liu, B.; Guo, Z.; Yu, K.; Qin, Z.; Choo, K.K.R. Blockchain-based cross-domain authentication for intelligent 5G-enabled
internet of drones. IEEE Internet Things J. 2021, 9, 6224–6238. [CrossRef]

32. Shen, M.; Liu, H.; Zhu, L.; Xu, K.; Yu, H.; Du, X.; Guizani, M. Blockchain-assisted secure device authentication for cross-domain
industrial IoT. IEEE J. Sel. Areas Commun. 2020, 38, 942–954. [CrossRef]

33. Ali, G.; Ahmad, N.; Cao, Y.; Khan, S.; Cruickshank, H.; Qazi, E.A.; Ali, A. xDBAuth: Blockchain based cross domain authentication
and authorization framework for Internet of Things. IEEE Access 2020, 8, 58800–58816. [CrossRef]

34. Zhang, H.; Chen, X.; Lan, X.; Jin, H.; Cao, Q. BTCAS: A blockchain-based thoroughly cross-domain authentication scheme. J. Inf.
Secur. Appl. 2020, 55, 102538. [CrossRef]

35. Dolev, D.; Yao, A. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 29, 198–208. [CrossRef]
36. Yu, S.; Das, A.K.; Park, Y.; Lorenz, P. SLAP-IoD: Secure and lightweight authentication protocol using physical unclonable

functions for internet of drones in smart city environments. IEEE Trans. Veh. Technol. 2022, 71, 10374–10388. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

74



Citation: Li, Y.; Shu, F.; Hu, J.; Yan, S.;

Song, H.; Zhu, W.; Tian, D.; Song, Y.;

Wang, J. Machine Learning Methods

for Inferring the Number of UAV

Emitters via Massive MIMO Receive

Array. Drones 2023, 7, 256. https://

doi.org/10.3390/drones7040256

Academic Editor: Emmanouel T.

Michailidis

Received: 14 March 2023

Revised: 6 April 2023

Accepted: 8 April 2023

Published: 10 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Machine Learning Methods for Inferring the Number of UAV
Emitters via Massive MIMO Receive Array

Yifan Li 1, Feng Shu 1,2,*, Jinsong Hu 3, Shihao Yan 4, Haiwei Song 5, Weiqiang Zhu 5, Da Tian 5, Yaoliang Song 1

and Jiangzhou Wang 6

1 School of Electronic and Optical Engineering, Nanjing University of Science and Technology,
Nanjing 210094, China

2 School of Information and Communication Engineering, Hainan University, Haikou 570228, China
3 College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China
4 School of Science and Security Research Institute, Edith Cowan University, Perth, WA 6027, Australia
5 8511 Research Institute, China Aerospace Science and Industry Corporation, Nanjing 210007, China
6 School of Engineering, University of Kent, Canterbury CT2 7NT, UK
* Correspondence: shufeng0101@163.com

Abstract: To provide important prior knowledge for the direction of arrival (DOA) estimation of UAV
emitters in future wireless networks, we present a complete DOA preprocessing system for inferring
the number of emitters via a massive multiple-input multiple-output (MIMO) receive array. Firstly,
in order to eliminate the noise signals, two high-precision signal detectors, the square root of the
maximum eigenvalue times the minimum eigenvalue (SR-MME) and the geometric mean (GM), are
proposed. Compared to other detectors, SR-MME and GM can achieve a high detection probability
while maintaining extremely low false alarm probability. Secondly, if the existence of emitters is
determined by detectors, we need to further confirm their number. Therefore, we perform feature
extraction on the the eigenvalue sequence of a sample covariance matrix to construct a feature vector
and innovatively propose a multi-layer neural network (ML-NN). Additionally, the support vector
machine (SVM) and naive Bayesian classifier (NBC) are also designed. The simulation results show
that the machine learning-based methods can achieve good results in signal classification, especially
neural networks, which can always maintain the classification accuracy above 70% with the massive
MIMO receive array. Finally, we analyze the classical signal classification methods, Akaike (AIC)
and minimum description length (MDL). It is concluded that the two methods are not suitable for
scenarios with massive MIMO arrays, and they also have much worse performance than machine
learning-based classifiers.

Keywords: unmanned aerial vehicle (UAV); massive MIMO; threshold detection; emitter number
detection; machine learning; information criterion

1. Introduction

With the advantages of high mobility and low cost, unmanned aerial vehicles (UAVs)
play important roles in wireless networks for implementing tasks like weather monitoring,
traffic control, emergency search, communication relaying, etc. [1]. However, unlike tradi-
tional ground-to-ground (G2G) communications, UAV communications have some special
characteristics and challenges, e.g., the high mobility leads to the UAV communication
channels changing much faster, the high flight altitude requires the ground base stations
to provide larger 3D signal coverage for UAVs, and the line of sight (LoS) paths between
UAVs and base stations are vulnerable to interference from ground users over the same
frequency [2]. As is known to us, massive multiple-input multiple-output (MIMO) is a key
technology in 5G or future 6G systems [3,4]; it can make significant improvements in system
capacity, reliability, and spectral efficiency by using techniques such as spatial multiplexing,
diversity, and beamforming [5]. Compared to small arrays, the higher array gain of massive
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MIMO arrays can make a great extension of signal coverage [6], and experimental results
in [7] showed massive MIMO works well with LoS mobile channels. So in view of the
problems that UAV communications face, it is natural to consider the combination of UAVs
and massive MIMO technology [8]. In [9], a nonstationary 3D geometry-based model was
proposed for UAV-to-ground massive MIMO channels; this model considered the realistic
scenarios and discussed the impact of some important UAV parameters such as altitude
and flight velocity, so it can give some inspiration for future research on 6G standard UAV
channel models. As UAVs often appear as clusters, the potential of massive MIMO ground
station communication with UAV swarms was explored in [10], and a realistic geometric
model was also developed.

Because of the high mobility of UAVs, it is necessary for ground base stations to
obtain direction-of-arrival (DOA) information of UAVs in a timely manner for channel
estimation and communication security. For most DOA estimation algorithms, such as
MUSIC and ESPRIT, the number of emitters is required prior knowledge, but the number
is usually unknown [11]. So inferring the number of emitters has been an active topic in
array processing for a few decades [12]. In recent years, the potential of massive MIMO
technology in array processing has also been gradually discovered [13], as the larger number
of antennas can decrease the beamwidth and then increase the angular resolution of the
arrays [14]. Therefore, considering the realistic needs of UAV communications and the
advantages of massive MIMO technology in array processing, we will study the methods
for inferring the number of UAV emitters via a massive MIMO receive array in this work.

In general, the solutions for inferring the number of emitters can be divided into two
main categories. The first is based on the information-theoretic criteria and another is
based on the analysis of the covariance matrices. Since detecting the number of signal
sources can be viewed as a typical model order selection problem, Akaike firstly proposed
a method focusing on finding the minimum Kullback–Leibler (KL) discrepancy between
the probability density function (PDF) of obtained data and that of models for selection [15],
and this method is now called AIC. Schwarz introduced Bayesian information criterion
(BIC) based on Akaike’s work [16], and Rissanen also derived a similar criterion called
MDL [17]. Ref. [18] provided a good summary of these classical information criteria. In
the last decade, Lu and Zoubir proposed the generalized Bayesian information criterion
(GBIC) [19] and flexible detection criterion (FDC) [20], which effectively improved the
performance on source enumeration. The other basic method for enumerating the number
of sources is performing analysis on the covariance matrices of signals received by arrays.
Williams and Johnson proposed a sphericity test for source enumeration in [21], which
was based on a hypothesis test for the covariance matrix. Ref. [22] gave a bootstrap-based
method to estimate the null distributions of the test statistics. Wax and Adler solved this
problem by performing signal subspace matching [23].

Signal detection is another technique adopted in this work. In order to reduce the
interference of the noise to the detection of signal number, some good methods were
proposed, such as classic signal detection algorithms containing energy detection [24],
matched-filter detection [25], cyclostationarity-based detection [26], etc. On the basis of
these methods, Zeng and Liang proposed two eigenvalue-based algorithms in [27], Zhang
et al. used the generalized likelihood ratio test (GLRT) approach to improve detection
performance [28], and an eigenvalue-based LRT algorithm was also given in [29].

In recent years, machine learning (ML) has played an important role in the fields of
array signal processing [30] and UAV communications [31], and now the ML-based methods
used in 5G mainly include supervised learning, unsupervised learning, and reinforcement
learning [32]. Thilina et al. compared the performance of unsupervised learning approaches
and supervised learning approaches for cooperative spectrum sensing [33]. A machine
learning-based DOA measurement method was also proposed in [34], and ref. [35] used a
neural network for power allocation in a wireless communication network.

In this paper, we will combine the techniques mentioned above for inferring the
number of UAV emitters via massive MIMO receive array. First, the pure noise signals

76



Drones 2023, 7, 256

are separated by threshold detectors, and then the feature vectors are extracted from
the sample covariance matrices of the remaining signals. Finally, the ML-NN and other
machine learning methods are used to classify the signals for determining the number of
emitters. Therefore, our main contributions are summarized as follows:

1. A DOA preprocessing system is proposed for obtaining the number of UAV emitters
via a massive MIMO array. The main steps of this system include signal detection and
inferring the number of emitters. The received signals are first inputted into signal
detectors. If the detection result shows the presence of emitters, this signal is further
transmitted to signal classifiers to determine the number of emitters.

2. Two high-precision signal detectors, the square root of the maximum eigenvalue times
the minimum eigenvalue (SR-MME) and the geometric mean (GM), are proposed in
Section 3. Their thresholds and probability of detection are also derived with the aid
of random matrix theories. The simulation results show that SR-MME and GM have
significant improvement in detection performance compared with the MME detector
proposed in [27] and the M-MME detector proposed in [36], even though the SNR is
very low and the number of samples is small. The simulation results also show that
SR-MME and GM can maintain a low false alarm probability while achieving a high
detection probability.

3. Since the existence of emitters is known, we innovatively introduce machine learning-
based classifiers to infer their number, including multi-layer neural networks (ML-
NNs), support vector machine (SVM), and naive Bayesian classifier (NBC). Important
features which make up feature vectors are also extracted from eigenvalue sequences
of signals’ sample covariance matrices. The results show that machine learning meth-
ods are very suitable for performing signal classification, especially neural networks,
because they can achieve a classification accuracy of 70%, even under extreme con-
ditions. Finally, we validate the classification performance of AIC and MDL under
different SNR and number of receive antennas. We show that they are unapplicable
to scenarios with low SNR and massive MIMO receive arrays compared to machine
learning-based methods.

The rest of the paper is organized as follows. In Section 2, we present a specific
system model and assumptions. Two high-precision signal detectors are given in Section 3.
Section 4 shows how to perform feature extraction on received signals and classify them by
machine learning methods. Then, the advantages of the proposed detectors and classifiers
are presented through simulation results in Section 5. Finally, Section 6 draws conclusions.

Notation: Matrices, vectors, and scalars are denoted by letters of bold upper case,
bold lower case, and lower case, respectively. Signs (·)T , (·)∗, and (·)H represent transpose,
conjugate, and conjugate transpose. IM denotes the M×M identity matrix. diag{·} stands
for diagonal matrix.

2. System Model

As the system shown in Figure 1, we consider a scenario with K far-field UAV emitters
and one massive MIMO receiver equipped with an M-element uniform linear array (ULA).
The signals transmitted by the kth UAV are denoted by sk(t)ej2π fct, where sk(t) is the
baseband signal and fc is the carrier frequency. Referring to [37], the received signals at the
mth antenna are given by

ym(t) =
K

∑
k=1

sk(t)ej2π fcte−j2π fcτk,m + vm(t), (1)

where vm(t) ∼ CN (0, σ2
v ) represents the additive white Gaussian noise (AWGN) term, and

τk,m denotes the propagation delay from the kth UAV to the mth antenna, expressed by

τk,m = τ0 −
(m− 1)d sin θk

c
, (2)
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where τ0 is the propagation delay from the UAV to the reference point on the receive array,
θk is the angle of signal incidence from the kth UAV, d = λ/2 represents the space between
array elements, and c denotes the speed of light. Then received signals go through ADC
and down converter, and we obtain

ym(n) =
K

∑
k=1

e−j2π(m−1)d sin θk/λsk(n) + vm(n), (3)

and by combining all the M antennas, we obtain

y(n) =
K

∑
k=1

a(θk)sk(n) + v(n), (4)

where v(n) = [v1(n), . . . , vM(n)]T denotes the noise vector and

a(θk) = [1, e−j2πd sin θk/λ, . . . , e−j2π(M−1)d sin θk/λ]T , (5)

is the array manifold.
Initially, it is not clear whether the UAVs exist, so we should consider two situations,

including the signals’ presence and only noise [38]. By turning (4) to matrix form, we obtain

H0 : y(n) = v(n) H1 : y(n) = As(n) + v(n), (6)

where s(n) = [s1(n), . . . , sK(n)]T , A = [a(θ1), . . . , a(θK)]. Then the covariance matrix of the
received signal can be expressed by

Qy = AQsAH + σ2
vIM =

K

∑
k=1

σ2
s,ka(θk)a

H(θk) + σ2
vIM. (7)

where Qs = E[S(n)SH(n)]= diag{σ2
s,1, . . . , σ2

s,K}.
Since the base station is equipped with a massive array, M � K and rank(A) = K.

Then the eigenvalues of Qy satisfy the following properties

λ1 ≥ λ2 ≥ . . . ≥ λK︸ ︷︷ ︸
signal subspace

> λK+1 = . . . = λM = σ2
v︸ ︷︷ ︸

noise subspace

, (8)

and
λm = ρm + σ2

v , (9)

where ρ1 ≥ . . . ≥ ρK > ρK+1 = . . . = ρM = 0 are the eigenvalues of AQsAH .
In practice, the covariance matrix of received signal y cannot be obtained accurately,

so the sample covariance matrix of the received signal is usually used to approximate it:

Q̂y =
1
N

N

∑
n=1

y(n)yH(n) =
1
N

YYH , (10)

where
H0 : Y = V H1 : Y = AS + V, (11)

and S = [s(1), s(2), . . . , s(N)], V = [v(1), v(2), . . . , v(N)].
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Figure 1. The procedure of proposed system for inferring the number of UAV emitters by massive
MIMO receive array.

3. Signal Detectors

As shown in Figure 1, after the sample covariance matrix of the received signal is
obtained, we take eigenvalue decomposition (EVD) on it. For the two situations in (11),
eigenvalues are represented by λ1(Q̂y,H0) ≥ . . . ≥ λM(Q̂y,H0) and λ1(Q̂y,H1) ≥ . . . ≥
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λM(Q̂y,H1), respectively. For convenience, we consider moving the constant 1/N to the
left-hand side of (10). Assuming σ2

v = 1, we obtain

RH0 = VVH , (12a)

RH1 = NAQ̂SAH + RH0 , (12b)

where RH0 is a Wishart matrix and Q̂S is the sample covariance matrix of S. The eigenvalues
of RH0 and RH1 can also be expressed as λ1(RH0) ≥ . . . ≥ λM(RH0) and λ1(RH1) ≥ . . . ≥
λM(RH1), where λm(RH0) = Nλm(Q̂y,H0) and λm(RH1) = Nλm(Q̂y,H1). Since RH0 is a
complex Gaussian Wishart matrix, its largest eigenvalue should follow Tracy–Widom
distribution of order 2 [39]:

λmax(RH0)− μ

ν

d−→ T W2, (13)

where

μ = (
√

M +
√

N)2, (14a)

ν =
√

μ

(
1√
M

+
1√
N

)1/3
, (14b)

are center and scaling parameters. Then the cumulative distribution function (CDF) of the
largest eigenvalue, i.e., F(x), can be approximated as

F(x) ≈ F2

(
x− μ

ν

)
, (15)

where F2(x) denotes the distribution function of T W2. Referring to [40,41], it is defined as

F2(x) = exp
{
−
∫ ∞

x
(a− x)q2(a)da

}
, (16)

where q(a) is the solution of Painlevé II differential equation

q′′(a) = aq(a) + 2q3(a). (17)

with boundary condition q(a) ∼ Ai(a) as a → ∞, where Ai(a) represents the Airy func-
tion [42]. The value of F2(x) can be computed by using software packages such as [43].

In addition, for the Wishart matrix RH0 , if lim
N→+∞

M
N = z (z ∈ [0, 1]), its maximum

and minimum eigenvalues can be approximated as (
√

N +
√

M)2 and (
√

N −
√

M)2,
respectively. Next we will present several high-performance signal detectors based on the
knowledge given earlier.

3.1. Proposed SR-MME Detector

The SR-MME detector is defined as the square root of the maximum eigenvalue times
the minimum eigenvalue, and is given by√

λmax(Q̂y)λmin(Q̂y)
H1
≷
H0

γ1, (18)

where λmax(Q̂y), λmin(Q̂y) are maximum and minimum eigenvalues, respectively, of
sample covariance matrix Q̂y, and γ1 denotes the judgment threshold.

At the end of judgment, there will be four possible results: true positive (TP), false
positive (FP), true negative (TN), false negative (FN). From a probabilistic perspective, we
know PTP + PTN = 1 and PFP + PFN = 1, where the probability of FP is also called false
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alarm (FA) probability, so only TP and FP situations need to be addressed. Therefore, PFA
of the SR-MME detector is defined as

PFA = P
(√

λmax(Q̂y,H0)λmin(Q̂y,H0) > γ1

)
= P

(
λmax(RH0) >

(Nγ1)
2

λmin(RH0)

)

= P

⎛⎜⎝λmax(RH0)− μ

ν
>

(
Nγ1√

N−
√

M

)2
− μ

ν

⎞⎟⎠
= 1− F2

⎛⎜⎝
(

Nγ1√
N−

√
M

)2
− μ

ν

⎞⎟⎠.

(19)

Then the threshold can be derived as

γ1 =

√
N −

√
M

N

√
νF−1

2 (1− PFA) + μ. (20)

When the signal exists, the sample covariance matrix (12b) is no longer a Wishart
matrix. As shown in [27], its maximum and minimum eigenvalues can be approximated as

λmax(RH1)≈Nρ1 + λmax(RH0), (21a)

λmin(RH1)≈NρM +
√

N(
√

N −
√

M), (21b)

The detection probability PD, i.e., PTP, is given by

PD = P
(√

λmax(Q̂y,H1)λmin(Q̂y,H1) > γ1

)
= P

(
λmax(RH1) >

(Nγ1)
2

λmin(RH1)

)

= P

⎛⎜⎝λmax(RH0)− μ

ν
>

(Nγ1)
2

NρM+N−
√

MN
− Nρ1 − μ

ν

⎞⎟⎠
= 1− F2

⎛⎜⎝ (Nγ1)
2

NρM+N−
√

MN
− ρ1 − μ

ν

⎞⎟⎠.

(22)

3.2. Proposed GM Detector

The geometric mean (GM) detector is defined as

M

√√√√ M

∏
m=1

λm(Q̂y)
H1
≷
H0

γ2, (23)
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where λm(Q̂y) is the eigenvalue of the sample covariance matrix and γ2 represents the
judgment threshold of this detector. Similar to SR-MME detector, the false alarm probability
of the GM detector is given by

PFA = P

⎛⎝ M

√√√√ M

∏
m=1

λm(Q̂y,H0) > γ2

⎞⎠
= P

(
λmax(RH0) > γM

2
λmax(RH0)

det(Q̂y,H0)

)

= P

⎛⎜⎝λmax(RH0)− μ

ν
>

γM
2

(
√

N+
√

M)2

det(Q̂y,H0 )
− μ

ν

⎞⎟⎠

= 1− F2

⎛⎜⎝γM
2

(
√

N+
√

M)2

det(Q̂y,H0 )
− μ

ν

⎞⎟⎠,

(24)

and the threshold is

γ2 =
M

√√√√(
νF−1

2 (1− PFA) + μ
)

det(Q̂y,H0)

(
√

N +
√

M)2
. (25)

Finally, the detection probability of the GM detector can be expressed by

PD = P

⎛⎝ M

√√√√ M

∏
m=1

λm(Q̂y,H1) > γ2

⎞⎠
= P

(
λmax(RH0) > γM

2
λmax(RH0)

det(Q̂y,H1)

)

= 1− F2

⎛⎜⎝γM
2

(
√

N+
√

M)2

det(Q̂y,H1 )
− μ

ν

⎞⎟⎠.

(26)

4. Proposed Classifiers for Inferring the Number of UAV Emitters

The detectors proposed in Section 3 are designed for detecting whether the signals
received by the base station are from UAV emitters or noise only. If the UAVs are present,
we need to further determine their number. Therefore, a multi-layer neural network (ML-
NN) classifier is given in the following. Support vector machine (SVM) classifier and naive
Bayesian classifier (NBC) are also discussed as benchmarks.

4.1. Feature Selection and Extraction

As can be seen in Figure 1, after the sampling of the received signal, taking eigenvalue
decomposition on the sample covariance matrix Q̂y, we can obtain eigenvalues λ̂1 ≥
λ̂2 ≥ . . . ≥ λ̂M. Although the sample covariance matrix is only an approximation of the
actual received signal covariance matrix, its eigenvalues also approximately satisfy (8) if
the sample number N is large enough, i.e., the maximum K eigenvalues belong to signal
subspace. Therefore, this character can be used to determine the number of signal emitters.
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Firstly, the following features of {λ̂m}M
m=1 are selected to construct the feature space of

received signal Y, where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̂max, λ̂min

λ̄ =
1
M

M

∑
m=1

λ̂m, λ̃ =

(
M

∏
m=1

λ̂m

)1/M

σλ̂ =

√
∑M

m=1(λ̂m − λ̄)2

M
.

(27)

As the number of emitters grows, the features also increase. In order to enlarge the
discrimination between the different signals, we perform log operations on them. Then,
the feature vector of any received signal is given by

x =
(
log(λ̂max), log(λ̂min), log(λ̄), log(λ̃), log(σλ̂)

)
. (28)

Since the signal received by the base station is derived from different emitters, and it is
a typical multiclass problem, machine learning-based methods are very suitable. Assuming
there are most K emitters in the coverage area of the base station, we can obtain a K-elements
classifier based on the existing training data and then substitute the signal to be detected
into this classifier for classification. Then we will introduce several high-performance
classification algorithms.

4.2. Proposed Multi-Layer Neural Network Classifier

We first take a set of received signals for training, such as X = {(xi, gi)}i=1,2,..., where
gi = [gi,1, . . . , gi,k, . . . , gi,K] is the corresponding output vector. It is a unit vector if signal i
belongs to class k, gi,k = 1. As is shown in Figure 2, the input of this neural network is a
feature vector defined in (28), and the input layer is constructed of five neurons. Since most
K emitters are in the coverage area of the base station, the number of neurons in the output
layer is also K and the outputs of these neurons are denoted by {ĝ1, ĝ2, . . . , ĝK}. Assuming
there are a total s hidden layers in this network, these hidden layers contain q1, q2, . . . , qs
neurons, respectively. Therefore, referring to [44], the input received by the j1th neuron of
hidden layer 1 can be represented as

α1,j1 =
5

∑
h=1

vh,j1x(h), (29)

where vh,j1 is the connection coefficient between the hth neuron of the input layer and the
j1th neuron of hidden layer 1. Then, the output of this neuron is given by

z1
j1 = f (α1,j1 − δ1,j1), (30)

where δ1,j1 denotes the threshold of the jth neuron of hidden layer 1. f (·) is the activation
function, and usually a sigmoid function is adopted, which can be defined as

sigmoid(x) =
1

1 + e−x . (31)

We can deduce the input and output of the rest of the hidden layers from hidden layer
1, and the output from the jsth neuron of hidden layer s is given as

zs
js = f (αs,js − δs,js)

= f

(
qs−1

∑
js−1=1

ujs−1,js zs−1
js−1
− δs,js

)
,

(32)
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where ujs−1,js represents the connection coefficient between the js−1th neuron of hidden
layer s− 1 and the jsth neuron of hidden layer s. Since the output of the last hidden layer is
transmitted to the output layer, the final output of this network is

ĝk = f (βk − εk) = f

(
qs

∑
js=1

wjs ,kzs
js − εk

)
, (33)

where wjs ,k is the connection coefficient between hidden layer s and the output layer, and
εk is the threshold of the kth neuron of the output layer.

When the input signal is x1, the ideal output is gi. However, the actual output of this
neural network is ĝi = [ĝi,1, . . . , ĝi,k, . . . , ĝi,K], then the mean squared error (MSE) between
ideal output and actual output is derived as

Ei =
1
K

K

∑
k=1

(ĝi,k − gi,k)
2, (34)

Based on the classification error, we can update all the (5q1 +∑s−1
t=1 qtqt+1 + qsK) connection

coefficients and (∑s
t=1 qt + K) thresholds of this neural network. Taking the jsth neuron of

hidden layer s as an example, we obtain

wl+1
js ,k = wl

js ,k + Δwl
js ,k, (35a)

δl+1
s,js = δl

s,js + Δδl
s,js , (35b)

where l represents the number of iterations. According to the gradient descent method, the
update terms are defined as

Δwl
js ,k = −η

∂Ei

∂wl
js ,k

= −η
∂Ei
∂ĝi,k

· ∂ĝi,k

∂βk
· ∂βk

∂wl
js ,k

= −2η

K
zs

js · Gi,k,

(36)

and
Δδl

s,js = −η
∂Ei

∂δl
s,js

= −η
K

∑
k=1

∂Ei
∂ĝi,k

· ∂ĝi,k

∂βk
· ∂βk

∂zs
js
·

∂zs
js

∂δl
s,js

= −2η

K
zs

js(1− zs
js) ·

K

∑
k=1

wl
js ,kGi,k,

(37)

where η is the learning rate and

Gi,k = ĝi,k(1− ĝi,k)(ĝi,k − gi,k). (38)

All the parameters in the neural network are updated in each iteration until the
parameters change less than a certain threshold or a certain number of iterations is reached.
Therefore, the final classification result for signal i is given by

Ci = arg max
k

ĝL
i,k, (39)

where Ci ∈ {1, 2, . . . , K}.
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Figure 2. Multi-layer neural network.

4.3. Support Vector Machine Classifier

Since determining the number of signal sources is a K-elements classification problem,
it can be decomposed into K(K − 1)/2 binary classification problems and each of these
binary classification problems can be solved by the support vector machine (SVM) method.
Given a training sample set D = {(x1, g1), (x2, g2), . . . , (xs, gs)}, where gi = {−1,+1},
gi = −1 denotes that signal i belongs to class 1 and gi = +1 denotes that this signal belongs
to class 2. The separable hyperplane for the sample space can be expressed by

wTx + b = 0, (40)

where w is the normal vector which determines the direction of this hyperplane, and b
denotes the bias which is defined as the distance from the hyperplane to the original point.
Therefore, the separable hyperplane can be denoted as (w, b).

Assuming the samples can be classified by hyperplane (w, b) accurately, if gi = −1,
we can obtain wTxi + b < 0, and if gi = +1, we obtain wTxi + b > 0. Then the following
conditions should be satisfied: {

wTxi + b ≥ +1, gi = +1

wTxi + b ≤ −1, gi = −1.
(41)

The samples closest to the separable hyperplane make the equalities in (41) hold, and they
are support vectors. The sum of the distance from the two heterologous support vectors
to the hyperplane is called the margin, and it is defined as δ = 2

‖w‖ . For maximizing the
margin of the separable hyperplane, the optimization problem can be designed as

min
w,b

1
2
‖w‖2 (42a)

s.t. gi(w
Txi + b) ≥ 1. (42b)

Actually, the training samples can hardly be linearly separated in the current sample
space. Firstly, we map the samples to a higher-dimensional feature space. Then the model
of the separable hyperplane is modified as

f (x) = wTφ(x) + b. (43)

Secondly, to avoid overfitting, we introduce the concept of soft margin. This concept
allows SVM to make errors in the classification of some samples, i.e., these samples can
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not satisfy constraint gi(w
Tφ(xi) + b) ≥ 1. Consequently, the optimization problem (42) is

transformed to maximize the margin while minimizing the classification error:

min
w,b,ξi

1
2
‖w‖2 + C

s

∑
i=1

ξi, (44a)

s.t. gi(w
Tφ(xi) + b) ≥ 1− ξi, (44b)

ξi ≥ 0. (44c)

where C > 0 is the regularization constant, ξi ≥ 0 is a slack variable, and ξi ≥ 1 means
sample xi is misclassified.

Obviously, (44) is a quadratic programming (QP) problem, and it can be solved by the
Lagrangian multiplier method. Therefore, the Lagrangian of (44) is given by

L(w, b, ξ, α, β) =
1
2
‖w‖2 + C

s

∑
i=1

ξi −
s

∑
i=1

βiξi

+
s

∑
i=1

αi

[
1− ξi − gi(w

Tφ(xi) + b)
]
,

(45)

where αi ≥ 0 and βi ≥ 0 are Lagrangian multipliers. Computing the partial derivatives of
w, b, ξi, we obtain

w =
s

∑
i=1

αigiφ(xi), (46a)

s

∑
i=1

αigi = 0, (46b)

C = αi + βi. (46c)

Taking them into Equation (45), the dual problem of (44) is derived as

max
αi

s

∑
i=1

αi −
1
2

s

∑
i=1

s

∑
j=1

αiαjgigjκ(xi, xj), (47a)

s.t. (46b), (47b)

0 ≤ αi ≤ C, (47c)

where κ(xi, xj) = φ(xi)
Tφ(xj) is the kernel function.

Since (44) contains the inequality constraint, the above optimization procedure must
satisfy the KKT conditions ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

αi ≥ 0, βi ≥ 0

gi f (xi)− 1 + ξi ≥ 0

αi(gi f (xi)− 1 + ξi) = 0

ξi ≥ 0, βiξi = 0.

(48)

4.4. Naive Bayesian Classifier

As given in (28), three features of the ith signal are considered in our problem. We
assume that the five features are independent of each other, then according to Bayes’
theorem, the probability that the ith signal belongs to a certain class is

P(ck|xi) =
P(ck)P(xi|ck)

P(xi)
=

P(ck)P(xi|ck)

∑K
k=1 P(xi|ck)P(ck)

, (49)
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where ck, k ∈ D = {1, 2, . . . , K} is the label for classification. Therefore, the NBC for our
problem can be verified as

h(xi) = arg max
k∈D

P(ck)P(xi|ck). (50)

The training process is based on the training set to estimate the class prior probability
P(ck) and conditional probability P(xi|ck). Since the features in (28) are continuous, we
can suppose P(xi|ck) ∼ N (μk, Σk), where μk and Σk are the mean and covariance matrix of
feature vectors for all training samples that belong to class k. Therefore, the conditional
probability can be represented by its PDF as

P(xi|ck) =
1

(
√

2π)5|Σ|1/2
e−

1
2 (xi−μk)

TΣ−1
k (xi−μk). (51)

Then, we can compute the logarithm of (50). Finally, the NBC can be transformed as

h(xi) = arg max
k∈D

ln(P(ck)P(xi|ck))

= arg max
k∈D

(
ln P(ck)−

5
2

ln 2π − 1
2

ln |Σk|

−1
2
(xi − μk)

TΣ−1
k (xi − μk)

)
.

(52)

5. Simulation Results

In this section, representative simulation results are given to show the high perfor-
mance of signal detectors and classifiers proposed in this paper. Next, we will compare the
two proposed signal detectors with existing detectors.

5.1. Signal Detectors

Firstly, it is assumed that there are three UAV emitters in the coverage area of the base
station, i.e., K = 3 and the signals used in this simulation are randomly generated signals.
After sampling the received signal, we can obtain the sample covariance matrix. The
largest eigenvalue of the noise-only sample covariance matrix (RH0 ) follows Tracy–Widom
distribution of order 2, so we want to use its statistical properties to derive PFA, PD, and γ
of the signal detectors. However, (17) is difficult to evaluate, since we cannot obtain the
CDF of T W2. Fortunately, M. Prähofer and H. Spohn fitted this function and gave tables
for the CDF of the Tracy–Widom distribution in [45]. We may select a part of the values
and put them in Table 1. To highlight the advantages of our proposed signal detectors,
we also introduce two existing detectors for comparison. The two detectors, M-MME and
MME [27], are defined as

M-MME :
λmax(Q̂y) + λmin(Q̂y)

2

H1
≷
H0

γ4, (53a)

MME :
λmax(Q̂y)

λmin(Q̂y)

H1
≷
H0

γ3. (53b)

As can be seen in Figure 3, the relationship between SNR and probability of detec-
tion is plotted, where the probability of false alarm PFA = 10−4, the number of receive
antennas M = 64, the number of snapshots N = 100, and the final results are obtained
from 5000 Monte-Carlo simulations. Among these four detectors, SR-MME has the best
performance across all SNR values, especially in the low-SNR region. In extremely poor
communication conditions, i.e., SNR in the range from −30 dB to −20 dB, M-MME and
MME can hardly detect the presence of the signal sources, while SR-MME can keep the
detection probability above 85%, so we can say that SR-MME is the best signal detector for
the low-SNR situations. For the GM detector, its detection probability is slightly less than
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SR-MME in the low-SNR situation, but it still has a great improvement compared to the
other two detectors.

Table 1. Numerical table for the Tracy–Widom distribution of order 2.

t −3.70 −2.90 −1.80 −0.60 −0.23 0.49 1.32 2.06 2.68

F2(t) 0.01 0.1 0.5 0.9 0.95 0.99 0.999 0.9999 0.99999
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Figure 3. Probability of detection versus SNR, PFA = 10−4, N = 100.

Figure 4 presents the detection probability of these four signal detectors with the
number of samples, where M = 64, PFA = 10−4 and SNR = −20 dB. The overall trend
of the curves in this figure is similar to Figure 3, with SR-MME still the best performing
of these four signal detectors and achieving a detection probability of at least 93%. The
detection performance of the GM detector also improves as the number of samples increases,
especially when N ranges between 100 and 200. GM has a significant improvement
compared with M-MME and MME. Therefore, the robust performance of SR-MME and
GM at a lower number of samples can help us save lots of time and spatial resources, and
not at the cost of a loss of detection performance.
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Figure 4. Probability of detection versus number of samples, SNR = −20 dB, PFA = 10−4.
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Figure 5 shows the most commonly used indicator in the field of threshold detection,
the Receiver Operating Characteristic (ROC) curve. It evaluates a detector comprehensively
in terms of both detection probability and false alarm probability. The parameters involved
in this simulation are M = 64, N = 200, and SNR = −20 dB. The ROC curve of SR-
MME is above the other three curves, so it is the best detector for the overall performance.
Correspondingly, the MME has the worst performance. For GM and M-MME, due to
a cross-over of their ROC curves, the area under ROC curve (AUC) is introduced for
comparing their performance. Since the axes in this figure employ scientific counting, after
converting it to ordinary coordinates, the AUC value of M-MME is larger than GM. From
this perspective, M-MME performs better than GM. However, in practice, we would prefer
a relatively low false alarm probability, so GM will be more useful, since it can guarantee a
low false alarm probability while maintaining a high detection probability.
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Figure 5. ROC curve, SNR = −20 dB, N = 200.

5.2. Signal Classifiers

After the presence of the emitters is determined by the signal detectors, we need to
further determine the number of emitters. According to the three machine learning-based
signal classifiers, the first step is to design an appropriate training set. As mentioned
in Section 4, the feature vector of received signals is given by (28), so the training set is
defined as

{X1, . . . , Xk, . . . , XK}, (54)

where
Xk =

{
(xk,1, k), (xk,2, k), . . . , (xk,i, k), . . .

}
, (55)

and K ∈ {1, 2, 3}. For the training of ML-NN, the epoch size is 400, and the learning
rate is set as 0.01. The input layer and output layer have five neurons and three neurons,
respectively, and the hidden layer size of the three-layer NN is 10; the four-layer NN has
two hidden layers, and their sizes are 7 and 5.

In order to compare the complexity of the ML-based methods mentioned in our work,
Table 2 gives the training duration of each classifier at different amounts of training data.
The neural network takes more training time as the number of training samples is small.
When the amount of training data reaches 50, the average training duration of SVM exceeds
the three-layer neural network. Unlike other classifiers, the change in the number of
training samples has less impact on NBC.
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Table 2. Average training duration of different classifiers.

Classifiers
Number of Training Samples

10 20 30 40 50 100

4-layer Neural Network 0.734149 0.809213 0.936686 1.038361 1.133686 1.660306

3-layer Neural Network 0.629034 0.705787 0.799842 0.875255 0.949917 1.356083

SVM 0.221015 0.333413 0.520857 0.753500 1.007692 3.077889

NBC 0.090488 0.092070 0.093222 0.094849 0.095326 0.113129

Figure 6 plots the relationship between the classification accuracy of the four classifiers
and SNR, where M = 64, N = 200, and K = 3 in the test. This figure shows that ML-NNs
have much stronger performance than NBC in all the SNR regions, and the accuracy of
SVM is obviously lower than ML-NNs when SNR ≥ −18 dB. Since neural networks have
strong learning ability, the deeper networks will cause overfitting and result in the decrease
in classification accuracy; we only consider 3L-NN and 4L-NN in this work.

By observing the curves of the signal detectors and the signal classifiers about SNR
in Figures 3 and 6, we can find when SNR = −20 dB and PFA = 10−4; the PD of SR-MME
can achieve 95%. Since PFA + PAN = 1, SR-MME almost separates all the noise while
ensuring a high signal detection rate. However, for the optimal neural network-based
signal classifier, its classification accuracy at SNR = −20 dB is also only about 70%, that is,
if the noise is directly added to the classification process, nearly 30% of the noise will be
misclassified as signals. Therefore, we believe that adding the step of signal detection is
necessary. Moreover, the time required to perform one signal detection was approximately
0.04 s, and the training duration required for the four-layer neural network after adding
noise is also increased to about 1.02 s when the number of training sample is 10. Therefore,
using the signal detectors can also save time.

-30 -25 -20 -15 -10 -5 0

SNR(dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

4-layer Neural Network
3-layer Neural Network
SVM
Naive Bayes Classifier

Figure 6. Classification accuracy versus SNR, M = 64.

In Figure 7, we show classification accuracy varying with the number of received
antennas when SNR = −15 dB, and other conditions are the same as Figure 6. In general,
the array containing 64 antennas or more can be called a massive array. Therefore, as can
be seen in this figure, the classification accuracy of neural networks can approach nearly
100% when a massive receive array is adopted. The performance of SVM and NBC is worse
than the neural network with a massive receive array.
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Figure 7. Classification accuracy versus number of receive antennas, SNR = −15 dB.

5.3. Analysis of Classic Classifiers

AIC and MDL are two classic information-theoretic criteria for model selection, which
were proposed by Akaike [15,46], Schwartz [16], and Rissanen [17]. In Akaike’s works, the
AIC criterion is defined as

AIC(m) = −2 log L(M−m)N
m + 2m(2M−m), (56)

where m ∈ {0, 1, . . . , M− 1} and

Lm =
∏M

i=m+1 λ̂
1/(M−m)
i

1
M−m ∑M

i=m+1 λ̂i
. (57)

The classification results of received signals are determined by AIC criterion as

AIC(C) = min(AIC(0), AIC(1), . . . , AIC(M− 1)), (58)

where C is the number of emitters.
Similarly, the definition of the MDL criterion is given as

MDL(m) = −2 log L(M−m)N
m +

1
2

m(2M−m) log N. (59)

MDL modified the bias term based on AIC, leading to improved classification performance.
The classification result of MDL is

MDL(C) = min(MDL(0), MDL(1), . . . , MDL(M− 1)). (60)

The former papers only verified the work performance of AIC and MDL with a small-
sized receiving array, such as arrays with around eight antennas. To find out whether
these two methods can maintain good performance with a massive receive array, we
present a curve between their classification accuracy and the number of receive antennas.
Unfortunately, as shown in Figure 8, AIC and MDL can only achieve good performance
when the number of receive antennas is between 8 and 36. Once the number of receive
antennas exceeds 36, their classification accuracy drops sharply until the number of emitters
is completely inaccessible at 44 antennas. By analyzing the definitions of AIC and MDL,
since the number of receive antennas is equal to the number of possible classifications,
the corresponding model complexity increases when the number of antennas increases. If
the model is too complex, the values of AIC and MDL will increase, and this will result
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in overfitting. Thus, we can conclude that AIC and MDL are not applicable for scenarios
using massive receive arrays.
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Figure 8. Classification accuracy versus number of receive antennas for AIC and MDL, SNR = 0 dB.

To compare the performance differences between traditional and machine learning-
based methods, we plot the classification accuracy of these methods with SNR in Figure 9,
where M = 32. Although this is not a massive array scenario, the machine learning-based
method still has higher classification accuracy than the AIC and MDL. Therefore, machine
learning-based signal classifiers are robust and are applicable to a broader SNR range and
array size.
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Figure 9. Classification accuracy versus SNR, M = 32.

6. Conclusions

In order to provide the vital prior knowledge for DOA estimation, a DOA preprocess-
ing system containing signal detectors and ML-based signal classifiers has been proposed
for inferring the number of UAV emitters in a massive MIMO system. Two high-precision
signal detectors, i.e., SR-MME and GM, can quickly and accurately judge the presence
of the signal emitters based on the statistical characteristics of the received signals and
the threshold detection theory. Simulation results showed that the proposed SR-MME
and GM have much better detection performance than existing detectors like MME and
M-MME, especially in the low-SNR region and situations with a small number of samples.
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After determining the presence of signals, the specific number of emitters can be further
determined by ML-based classifiers including ML-NN, SVM, and NBC. Compared to tradi-
tional methods, like AIC and MDL, the proposed methods can work well with a massive
MIMO array and have higher accuracy when SNR is low. In conclusion, we believe that
the proposed system and method will be helpful for the future implementation of UAV
massive MIMO communications.
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Abstract: Communication is the cornerstone of UAV swarms to transmit information and achieve
cooperation. However, artificially designed communication protocols usually rely on prior expert
knowledge and lack flexibility and adaptability, which may limit the communication ability between
UAVs and is not conducive to swarm cooperation. This paper adopts a new data-driven approach
to study how reinforcement learning can be utilized to jointly learn the cooperative communication
and action policies for UAV swarms. Firstly, the communication policy of a UAV is defined, so that
the UAV can autonomously decide the content of the message sent out according to its real-time
status. Secondly, neural networks are designed to approximate the communication and action
policies of the UAV, and their policy gradient optimization procedures are deduced, respectively.
Then, a reinforcement learning algorithm is proposed to jointly learn the communication and
action policies of UAV swarms. Numerical simulation results verify that the policies learned by
the proposed algorithm are superior to the existing benchmark algorithms in terms of multi-target
tracking performance, scalability in different scenarios, and robustness under communication failures.

Keywords: UAV swarms; reinforcement learning; cooperation; communication; policy gradient

1. Introduction

Multi-target tracking (MTT) is an important application of unmanned aerial vehicle
(UAV) swarms, which is widely applied to environmental monitoring, border patrol, anti-
terrorism, emergency response, etc. [1–3]. However, due to constraints, such as flight
distance, endurance, sensor coverage, etc., the individual abilities are usually insufficient
to meet the task requirements, so UAVs need to communicate to achieve information
sharing and better cooperation [4,5], then improve the MTT capability.

Currently, the communication between UAVs mainly follows the manually designed
communication protocol, and UAVs transmit specific messages in accordance with spe-
cific formats and prescriptions [6–8]. However, the design of the communication protocol
requires prior knowledge and is highly task-relevant [9], and manually customized pro-
tocols may bring side effects, such as insufficient flexibility and versatility, which may
affect the communication capabilities of UAVs and are not conducive to their efficient
cooperation in highly dynamic environments.

With the development of multi-agent deep reinforcement learning (MADRL), many
works using MADRL to learn the complex cooperative action policies of UAVs have
appeared. This also provides a new idea for learning cooperative communication, that
is, applying this advanced artificial intelligence technique to learn the effective commu-
nication between UAVs to achieve efficient cooperation. Different from those methods
using manually customized communication protocols, such as value function decomposi-
tion [10,11] and reward shaping [8,12,13], communication learning is a more general and
exploratory cooperation enhancement method. It empowers UAVs to learn how to actively
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share knowledge to achieve cooperation without requiring expert domain knowledge
and experience [14,15]. In addition, the learned communication policy enables the UAV
to independently decide the content according to its real-time status, so as to improve
the autonomy and adaptability of the UAVs. Therefore, this method can easily be extended
to different multi-agent systems, such as unmanned transportation networks, logistics
robots, etc., but is not limited to the MTT scenarios in this paper.

This paper no longer follows the traditional idea of manually designing the commu-
nication protocol, but adopts a new data-driven idea to model the communication protocol
as the communication policy, then uses a deep neural network (DNN) to approximate and fit
the policy. On that basis, this paper proposes an MADRL algorithm to learn the communication
and action policies of a UAV simultaneously; thus, the UAV learns how to communicate with
others for better cooperation, thereby improving the overall MTT capability of UAV swarms.
Then, the effectiveness of the proposed algorithm is verified through numerical simulation
experiments, and the performance of the learned policies is further tested.

The major contributions and innovations of this paper include:

(1) Different from the manually designed communication protocol, the communication
learning in this paper enables the UAV to independently decide the message content
to be published according to its current state and endows the UAV with the ability
of active communication and autonomous cooperation.

(2) The communication policy of a UAV is parameterized as a function from its input variable
to the published message. Then, two neural networks based on an attention mechanism
are designed to approximate the communication and action policies, respectively, which
can not only automatically distinguish the important messages received but also scale
to the dynamic changes of the local communication topology.

(3) To maximize the rewards of neighboring UAVs, a gradient optimization procedure
for deterministic communication policy over continuous space is derived. Then, a
MADRL algorithm for UAV swarms is proposed to jointly learn the continuous
communication and discrete action policies of the UAVs.

The paper is organized as follows. Section 2 summarizes the related works. In
Section 3, the background and some definitions about reinforcement learning are intro-
duced. Section 4 analyzes the MTT problem and establishes the mathematician models.
Then, the communication settings of UAV swarms are configured. Next, the specific meth-
ods are proposed in Section 5, including the models of communication and action policies,
the derivations of policy gradient , and the corresponding algorithm. Then, numerical simu-
lation experiments are implemented in Section 6 to verify the effectiveness of the proposed
algorithm. A discussion of the proposed algorithm and numerical simulation experiments
is presented in Section 7. Finally, Section 8 gives the summary and outlook of the paper.

2. Related Works

As an emerging research hotspot, the MADRL-based communication learning research
in recent years can be classified into several categories, including communication protocol,
communication structure, communication object, and communication timing, etc.

2.1. Communication Protocol

The communication protocol specifies the textual content that agents communicate
with each other. Foerster et al. [16] firstly proposed two communication learning methods:
reinforced inter-agent learning (RIAL) and differentiable ning (DIAL) to learn the com-
munication protocol between two agents. Although they can only learn the simple low-
dimensional communication protocols between two agents, their findings inspired a lot
of follow-up works. Similarly, grounded semantic network (GSN) [15] was proposed to en-
code high-dimensional observation information and transmit it to other agents to realize
information sharing. Experiments verified that GSN can reduce the limitations caused by
the individual partial observability and improve the cooperation between agents. Pesce
and Emanuele [17] proposed a memory-shared communication mechanism in which each
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agent can generate a belief state about its local observation and store it in a shared memory,
and all agents can access and update the memory to achieve message passing between
agents. However, in complex and drastically dynamic scenarios, the belief states generated
by different agents may be all kinds of strange, which is not conducive to establishing
a stable cooperative relationship between agents.

2.2. Communication Structure

Communication structure focuses on how the communication messages flow between
agents. Peng et al. [18] modeled the communication link between agents as the bidirectionally-
coordinated nets (BiCNet), which can not only transfer information between agents but also store
local memory. However, the chain relationship in BiCNet is not necessarily suitable and accurate
to capture the interactions between agents. In addition, BiCNet can be extremely complex and
fragile when the scale of the agents is large. Therefore, BiCNet cannot be scaled well to the large-
scale and highly dynamic UAV swarms. CommNet [14] assumed that each agent can globally
receive and average the messages from the hidden layers of all other agents’ neural networks.
It can scale well to the population changes of agents but cannot distinguish the importance
of the messages from different agents, which may overwhelm some important ones. Moreover,
global communication is usually impractical for swarms. With the introduction of graph neural
networks (GNNs), communication learning methods based on graph attention network (GAT)
have been proposed, such as ATOC [19], GA-Comm and GA-AC [20]. The graph attention
network can adaptively assign the weight of neighbor nodes, which improves the flexibility
and adaptability of the communication of agents.

2.3. Communication Object

In the study of communicating object, an agent learns to choose which adjacent
agent(s) to communicate with peer-to-peer rather than broadcast. Ding et al. [21] proposed
the individually inferred communication (I2C) algorithm to train a neural network that
maps an agent’s local observation to others’ index codes to determine who to communicate
with. Similarly, targeted multi-agent communication (TARMAC) [22] was proposed to learn
the communication objects of each agent and the message to be sent. The simulation
verified that TARMAC can learn effective communication in a simple discrete environment,
enabling effective cooperation among agents.

2.4. Communication Timing

In some competition and confrontation scenarios, an agent may only need to commu-
nicate with neighbors at certain important moments, thereby reducing the communication
frequency and bandwidth requirements. To learn when to communicate, the individual-
ized controlled continuous communication model (IC3Net) [23] assumed that each agent’s
action variable set includes a physical movement and a discrete communication switch
signal. The later one is modeled as a gating unit that controls whether the agent publishes
its communication message to the outside.

Although there are many related studies on communication learning, there are few
works applicable to UAV swarms. Aiming at the MTT problem of UAV swarms, how
to learn the efficient, scalable and robust communication between UAVs to achieve active
cooperation and improve the MTT capability of UAVs is the focus of this paper.

3. Preliminary

3.1. Decentralized Partially Observable Markov Decision Process (Dec-POMDP)

Dec-POMDP [24] is a model of a Markov decision process (MDP) for multi-agents in
which each one can only partially observe the environment and make its action decision
accordingly. For n agents, each one is indexed by i ∈ [1, n]; the Dec-POMDP at every step
(the subscript t is omitted for convenience) can be described as:

(N, S,A, O, Z, T, R, γ), (1)
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where N is the collective set of all agents, S is the global state space denoting all agents’
and the environment’s configurations, and s ∈ S denotes the current and specific state. The
joint action space of all agents is denoted as A : A1 × · · · × An in which ai ∈ Ai is agent i’s
specific action; O : (O1, · · · , On) denotes all agents’ joint observation space; Z : oi = Z(s, i)
denotes the individual observation model of agent i given the global state s, and oi ∈ Oi is
agent i’s local observation. T : P(s′ | s, a) → [0, 1] denotes the probability of s transiting
to new state s′ executing joint action a : (a1, · · · , an); R is the reward function; γ ∈ [0, 1] is
the constant discount factor.

In Dec-POMDP, each agent makes its action decision following individual policy
πi : Oi �→ Ai, and the joint policy is denoted as π : (π(1), · · · , π(n)). Then, all agents
execute the joint action to refresh the environment. Given a specific joint observation o
and all agents’ joint policy π, if each agent can access its private reward ri

t at every time

step t, Vπ(o) = Eπ [
∞
∑

t=0

N
∑

i=1
γtri

t | ot=0 = o] denotes the state-value function of all agents.

Furthermoremore, executing the joint action a, their action-value function is denoted

as Qπ(o, a) = Eπ [
∞
∑

t=0

N
∑

i=1
γtri

t | (o, a)t=0 = (o, a)].

3.2. Actor–Critic (AC)

AC combines the policy gradient and value function approximation methods in which
each actor is a policy function to predict the agent’s action, and each critic is a value function
to evaluate the performance of the policy function [25]. Thus, the policy function πθ , which
is parameterized with θ, can be optimized via maximizing the value function, and the policy
gradient with respect to θ is:

∇θ J(θ) = Es,a∼πθ(s)[∇θ log πθ(a | s)Qπ(s, a)], (2)

where the value function can be optimized via minimizing the square of the temporal-
difference (TD) error [25].

3.3. Deep Deterministic Policy Gradient (DDPG)

DDPG is an extended version of AC in which the policy function directly outputs
a deterministic action value (a = πθ(s)) instead of a probability distribution over the action
space (a ∼ πθ(a | s)). Then the gradient of the policy function is:

∇θ J(θ) = Es

[
∇θπθ(s)∇aQπ(s, a) |a=πθ(s)

]
. (3)

The value function in DDPG is updated with the frozen network trick, and in addition
to the two networks appearing in AC, the target-policy function and the target-value
function are used to improve training stability [26].

4. Problem Formulation

4.1. Problem Description

The research focus of this paper is to explore a communication and action policies
joint learning method to achieve swarm cooperation. To reduce the learning difficulty,
we make reasonable assumptions and simplifications of the models of both the UAV
and the target. As shown in Figure 1, a large number of homogeneous small fixed-
wing UAVs track an unknown number of moving targets on the ground. Each UAV
can only perceive the targets below it but cannot distinguish the specific identities or in-
dices of the tracked targets. It is assumed that the UAVs move at a uniform constant speed
in a two-dimensional plane and rotate their headings according to the local communication
messages and observation information. However, since the targets are non-cooperative
and there is no explicit target assignment, a single UAV may track multiple aggregated
targets, or multiple UAVs may cooperatively track one or multiple targets simultaneously.
Therefore, the UAVs should cooperate in a decentralized manner to keep targets within

98



Drones 2022, 6, 339

their field of view and track as many targets as possible. In addition, the UAVs should also
satisfy the safety constraints, such as avoiding collisions, crossing boundaries, etc.

Figure 1. MTT scenario for UAV swarms.

4.1.1. Kinematic Model

There are n UAVs and m targets in the two-dimensional mission area. The motions
of these UAVs and targets can be modeled with two-dimensional plane motion models. For
any UAV i, i ∈ [1, n], its speed is denoted as vU, the heading angular is denoted as θU, and
the control variable is its heading angular rate θ̇U. Then, the kinematic model is described
by its position and heading, that is:⎧⎪⎨⎪⎩

xi
U,t+1 = xi

U,t + vi
U cos θi

U,tΔt, 0 ≤ xi
U,t ≤ xmax

yi
U,t+1 = yi

U,t + vi
U sin θi

U,tΔt, 0 ≤ yi
U,t ≤ ymax

θi
U,t+1 = θi

U,t + θ̇i
U,tΔt, −θ̇max ≤ θ̇i

U,t ≤ θ̇max

(4)

where the subscription t is denoted as the current time, Δt is the discrete time step, θ̇max is
the UAV’s maximum heading angular rate, and xmax and ymax are the maximum boundaries.

Similarly, for any target k, k ∈ [1, m], its kinematic model can also be described with
the position [xk

T, yk
T] and heading angular θk

T, and the difference is that the target’s heading
angular rate θ̇k

T is assumed to be a bounded random variable.

4.1.2. Target Observation Model

Shown in Figure 2, each UAV can only observe these targets in a circle with radius do
below it and can resolve the position, speed and other information of the tracked targets
from the raw observation but cannot identify their specific indexes. The ground projection
distance between UAV i and target k is denoted as di,k, and target k is tracked by UAV
i when di,k ≤ do. The observation is denoted as ok

T = [xk
T, yk

T, vk
xT

, vk
yT
]. Furthermore,

the observation information ok
T should be transformed from a global coordinate to UAV i’s

local coordinate considering partial observability, denoted as oi,k
T .

Suppose UAV i can obtain the relative location information oi
B between itself and

the boundaries of the task area through its GEO-fencing system and its partial observation
of the targets. Then, the environment is denoted as oi = { oi

B, {oi,k
T } | ∀k ∈ [1, m], di,k � do}.
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Figure 2. Target observation diagram.

4.1.3. Action Space

The purpose of this paper is to learn the cooperative policy of UAV swarms rather
than the precise control of each individual. To facilitate the learning process, the action
space of each UAV can be discretized into a limited number of action primitives as follows:

θ̇U,t =
2na − Na − 1

Na − 1
θ̇max, na ∈ [1, Na], (5)

where Na is the cardinality of the discrete action set.

4.1.4. Reward Shaping

In MTT, UAVs are expected to track as many targets as possible. Therefore, each UAV
should keep the tracked targets within its field of view as much as possible, while maximizing
observation benefits by avoiding observation outside the boundaries and repeated tracking.
Thus, the reward of each UAV i is shaped as the sum of multiple items, including:

(1) Target Tracking Reward: Since the observation range of a UAV is limited, a naive
idea is that the target should be as close as possible to the UAV’s observation center.
Accordingly, the target tracking reward of UAV i to target k is defined as:

ri,k
tar =

{
1 +

(
ro − di,k

)
/ro di,k ≤ ro,

0 else .
(6)

When UAV i tracks multiple targets, its target tracking reward is ri
tar = ∑m

k=1 ri,k
tar.

Specifically, the constant bias 1 in Equation (6) can encourage the UAV to track more
targets rather than just obsessing over a single target. For example, when tracking
two targets, ri

tar � 2, but when tracking a single target, ri
tar < 2.

(2) Repeated Observation Penalty: Repeated observation of a target by multiple UAVs
may not increase the number of tracked targets but may increase the risk of collision
due to the proximity of the UAVs. Therefore, to improve the observation efficiency
and track more targets, a penalty item is defined to guide the UAV i and j, j �= i
to avoid repeated observations, that is:

ri,j
rt =

{
−0.5× exp

((
2× ro − di,j)/(2× ro)

)
di,j ≤ 2× ro,

0 else ,
(7)

and ri,j
rt = rj,i

rt . In Equation (7), if di,j > 2 × ro, there is no observational overlap
between UAV i and j, and UAV i’s repeated observation penalty is ri

rt = ∑n
j=1,j �=i ri,j

rt .
(3) Boundary Penalty: To effectively capture and track targets, UAV i’s observation area

should always be within the boundaries. When the observation range is outside
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the boundaries, the outside part is invalid. To this end, the minimum distance
from UAV i to all boundaries is di

bound, and the boundary penalty item is defined as:

ri
bound =

{
−0.5×

(
ro − di

bound

)
/ro di

bound < do

0 else .
(8)

To sum up, the individual reward of UAV i is shaped as:

ri = ri
tar + ri

rt + ri
bound. (9)

4.2. Communication Settings

To cooperate among UAVs, they need to follow certain communication protocols
to exchange information, and communication within a UAV swarm should meet the
following requirements:

(1) Local communication: In a large-scale UAV swarm, each one is both the communi-
cation receiving and output nodes, and all the nodes constitute a complex network.
Considering the limitation of communication power, each one only communicates
with the neighbors within its maximum communication range, which can effectively
reduce the complexity of the communication network;

(2) Direct communication: The MTT problem requires high timeliness of communication
between UAVs. Therefore, to reduce the communication delay, it is assumed that each
UAV only communicates with adjacent ones in a single-hop, and multi-hop bridge
communication with ones outside the communication range is not considered;

(3) Broadcast communication: To reduce bandwidth requirements and avoid commu-
nication congestion, each UAV broadcasts the same message to its neighbors once,
instead of sending one-to-one multiple times;

(4) Dynamic communication: The rapid movement of UAVs leads to dramatic changes
in communication network and asymmetry between uplink and downlink. To this
end, it is assumed that all neighbors within the communication range can receive
the messages sent by a UAV to improve the dynamics and reliability of the communi-
cation network;

(5) Autonomous communication: In complex scenarios, UAVs should be able to au-
tonomously decide the content of messages to be sent based on their local observations,
so as to promote efficient cooperation between them;

(6) Safe communication: To improve the survivability of UAVs in the confrontation sce-
narios, the anti-jamming and anti-interception capabilities of communication should
be improved to protect communication messages from being deciphered by non-
receivers and improve communication security, etc.

5. Methods

5.1. Communication and Action Policies Modeling

Based on the above settings, the set of UAV i’s neighbors that can communicate locally
with it at time t is denoted as N i

t . Its communication and action decision-making processes
is shown in Figure 3. Specifically, j ∈ N i

t , ai
t is its heading angular rate θ̇i

U,t; mi
t indicates

the continuous and deterministic message that is about to be published to the neighbors.
Here, UAV i can receive the messages from itself and all neighbors in the last moment; ci

t

is denoted as ci
t =

{
mi

t−1, mj
t−1 | ∀j ∈ N i

t

}
. UAV i makes its action and communication

decisions based on its local observation and the messages received. Then, the action policy
is defined as:

ai
t ∼ πa

(
a | oi

t, ci
t

)
, (10)

and the communication policy is defined as:

mi
t = πc

(
oi

t, ci
t

)
. (11)
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Figure 3. Communication and action decision-making processes.

The communication and action decision process of UAV i is as follows:

(1) At each time t, UAV i accesses its local observation oi
t and receives message set ci

t;
(2) Input oi

t and ci
t into both Equations (10) and (11) to output its action ai

t and message mi
t;

(3) Execute joint action (a1
t , · · · , ai

t, · · · , an
t ) to refresh the environment and publish mes-

sage mi
t to the neighboring UAVs, then receive the reward ri

t from the environment;
(4) t = t + 1, and continue to step (1).

The input variables of both UAV i’s action and communication policies are the local
observation and the received messages. As the UAVs and targets move continually, both
the number of objects observed and the number of messages received by UAV i are dynam-
ically changing accordingly. However, the input dimension of a neural network is usually
fixed at initialization, and input variables with uncertain cardinality cannot be directly
input into the neural network.

In MTT, each UAV can interpret the precise physical features of the tracked targets, such
as their speeds, positions, etc. These explicit feature sets can be encoded as a dimension-
determined input variable using feature embedding methods in [27]. Unfortunately, the mes-
sage received from a neighbor is usually high-dimensional and often cryptic, i.e., its content
composition may be time-varying, depending on the context of the sender, and has no definite
physical properties. Therefore, the received messages cannot be easily encoded as a fixed-
dimensional feature embedding. To this end, we adopt the graph attention mechanism [28]
(GAT) to aggregate the received messages for each UAV, and its ability to extract and aggregate
variable-length messages has been verified by [29,30].
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Thus, the communication and action policies of UAV i can be approximated with
neural networks. Take communication policy as an example, the overview of its neural
network is shown in Figure 4, and the aggregation process of its communication messages
in the dashed box on the right is as follows:

(1) At time t, transform the communication messages with function F whose parameters
can be learned to obtain the high-level feature [28], and denote F(mi

t−1) as query ,

which represents the prior knowledge of UAV i, while {F(mj
t−1) | ∀j ∈ N i

t } are the set
of sources, and each one indicates the received message to be aggregated;

(2) The correlation coefficient from any adjacent UAV j, j ∈ N i
t to the central UAV i is

defined as:
eij = 〈F(mi

t−1), F(mj
t−1)〉, j ∈ N i

t (12)

the inner product represents a parameter-free calculation, which outputs a scalar that
measures the correlation;

(3) Use the softmax function to normalize the similarity set {eij | ∀j ∈ N i
t } to obtain

the weight set {wij | ∀j ∈ N i
t } in which

wij =
exp(eij)

∑j∈N i
t

exp(eij)
(13)

(4) Weighted summation over the source set yields the aggregated message ĉi
t:

ĉi
t = ∑

j∈N i
t

wijF
(

mj
t−1

)
(14)

Then, oi
t and ĉi

t are concatenated and input into the following hidden layers to calculate
the output message mi

t, and Equation (11) is redefined as:

mi
t = πc

(
oi

t, GAT
({

mi
t−1, mj

t−1 | ∀j ∈ N i
t

})
; θc

)
(15)

where θc is the parameter of the communication neural network, and the GAT component
is a part of the network.

Similarly, the action policy could also be approximated by a neural network, only
the output layer should be modified accordingly. Then, the discrete actions of each UAV i
obey the distribution:

ai
t ∼ πa

(
a | oi

t, GAT
({

mi
t−1, mj

t−1 | ∀j ∈ N i
t

})
; θa

)
(16)

where θa is the parameter of the action neural network.
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Figure 4. The overview of communication policy neural network.

5.2. Policy Gradient Optimization

Assuming that the action and communication policies of a UAV are independent of
each other, the latter is frozen when training the action neural network and vice versa.

5.2.1. Action Policy Gradient

To learn the action policy πa, the action-value function is defined as Qi(oi, ci, ai; φQ), and
φQ is its parameter, which is updated by minimizing the following loss function:

Li
Q(φQ) = Eπa [

1
2
(yi −Q(oi, ci, ai; φQ))

2] (17)

where yi = ri + γQ(oi ′, ci ′, ai ′; φ−Q) |ai ′∼πa(a|oi ′ ,ci ′ ;θa)
, φ−Q is the parameter of the correspond-

ing target network, ai ′ is the next action, oi ′ and ci ′ are the local observations and the set
of received messages at the next moment, respectively. The time-difference(TD) error
is denoted as δi = ri + γQ(oi ′, ci ′, ai ′; φ−Q)− Q(oi, ci, ai; φQ), and the gradient of this loss
function with respect to φQ performing gradient descent is:

∇φQLi
Q(φQ) = −δ∇φQ Q(oi, ci, ai; φQ) (18)

Then, the action policy is updated via maximizing the action-value function:

Ji
a(θa) = Eπa [Q(oi, ci, ai; φQ)|ai∼πa(a|oi ,ci ;θa)

] (19)

and the policy gradient is:

∇θa Ji
a(θa) = ∇θa log π(ai | oi, ci; θa)δ

i (20)

5.2.2. Communication Policy Gradient

In local communication topography, all the adjacent UAVs receive the message mi
t that

is an input variable of their next action and communication decisions. Given the action
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policy πa, the parameter of the action-value function φQ, and UAV i’s current input variables
(oi

t, ci
t), the communication objective is denoted as:

Ji
c(θc) =

1
| N i | ∑

j∈N i

Eπc [Q(oj
t+1, (cj/i

t+1, mi
t), aj

t+1; φQ)

|
mi

t=πc(oi
t ,c

i
t ;θc),a

j
t+1∼π(a|oj

t+1,(cj/i
t+1,mi

t);θa)
],

(21)

where cj/i
t+1 is the set of UAV j’s received messages except mi

t.
Then, the communication policy gradient is derived according to the policy gradient

theorem and the chain derivation rule as:

∇θc Ji
c(θc) =

1
| N i | ∑

j∈N i

Eπc [∇θc πc(oi
t, ci

t; θc)

· ∇mi
t
log πa(a | oj

t+1, (cj/i
t+1, mi

t); θa)Q(oj
t+1, (cj/i

t+1, mi
t), aj

t+1; φQ)

+∇θc πc(oi
t, ci

t; θc)∇mi
t
Q(oj

t+1, (cj/i
t+1, mi

t), aj
t+1; φQ)].

(22)

For simplicity, the conditional term in Equation (21) is omitted. Thus, given the input
variables of UAV i at the current moment t and that of all adjacent UAVs N i at the next
moment t + 1, the communication policy gradient can be calculated via Equation (22).
Then, the policy can be updated accordingly.

Note that the objective functions, Equations (17), (19) and (21), are non-convex when
using neural networks to approximate them, respectively. The common optimizers, such
as MBSGD (mini-batch stochastic gradient descent) or Adam (adaptive moment estimation)
in PyTorch, are usually adopted to solve these optimization problems.

5.2.3. Joint Communication and Action Policies Learning

As mentioned above, when calculating UAV i’s action policy gradient, its observation
and messages received are required. However, for the communication policy gradient,
in addition to these variables, it is necessary to further obtain the relevant variables of each
adjacent UAV at the next moment. Employing the experience-sharing training mecha-
nism [27] to train the communication and action policy neural networks, the action experi-
ence is denoted as ei

a = (oi, ci, ai, ri, oi ′, ci ′), and the communication experience is denoted
as ei

c = (oi, ci, {oj′ , cj′ , aj′ | ∀j ∈ N i}). Utilizing the centralized-training decentralized-
execution (CTDE) framework, an algorithm for jointly learning the communication and
action policies for UAV swarms is proposed, and its pseudo-code is as follows.

In Algorithm 1, the two policy networks are not coupled with each other. During
centralized training, they both have private experience buffers, and when one network is
updated, the other one is frozen. However, communication policy gradient can backprop-
agate across UAVs, which enables closed-loop feedback updates of the communication
policy. In decentralized execution, each UAV can decide its action and what to publish to
its adjacent UAVs based on its own observation and received messages.

105



Drones 2022, 6, 339

Algorithm 1 Joint communication-action multi-agent deep reinforcement learning

Initialize: Neural network parameter: action policy, θa; communication policy, θc; action-
value function and its target function, φQ and φ−Q . Action experience buffer: D1.
Communication experience buffer: D2

//Centralized-Training:

1: for epi = 1: episodes do

2: Environment Reset
3: for t = 1 : T do

4: for i = 1: n do

5: Access observation oi and message set ci, and execute policy πa and policy
πc to output action ai and message mi, respectively

6: end for

7: Execute joint action {a1, a2, · · · , an} to update immediate rewards {r1, r2, · · · rn}
and joint observation at next moment {o1′, o2′, · · · , on ′}

8: for i = 1: n do

9: Publish message mi, receive the neighbors’ messages to form ci ′

10: Push action experience (oi, ci, ai, ri, oi ′, ci ′) into buffer D1

11: Push communication experience (oi, ci, {oj ′, cj ′, aj ′ | ∀j ∈N i}) into buffer D2
12: end for

13: Randomly sample B1 experiences from D1
14: Minimize loss function LQ to update the action-value function:

LQ(φQ) =
1

2B1

B1

∑
k=1

[(yk −Q(ok, ck, ak; φQ))
2
];

15: if Update target network then

φ−Q ← lr−φQ + (1− lr−)φ−Q ;

16: end if

17: Update parameter θa with gradient:

∇θa Ja(θa) ≈
1
B1

B1

∑
k=1
∇θa log π(ak | ok, ck; θa)δ

k

18: Randomly sample B2 experiences from D2
19: Perform Equation (22), and update communication policy network parameter

with gradient:

∇θc Jc(θc) ≈
1
B2

B2

∑
k=1
∇θc Jk

c (o
k, ck; θc)

20: end for

21: end for

//Decentralized-Execution:

22: Environment Reset
23: Load shared action policy πa and communication policy πc for each UAV
24: for t = 1 : T do

25: For each UAV i, access oi and ci, and execute πa and πc to output its action ai and
message mi, respectively

26: Execute joint action {a1, a2, · · · , an} to update environment, and each UAV i pub-
lishes message mi

27: end for
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6. Experiments

6.1. Benchmark Algorithms

In this paper, the proposed Algorithm 1 is named Att-Message for simplification, and
we hardly see from the existing literature that techniques other than MADRL can achieve
the similar goal of solving communication and action policies for large-scale UAV swarms
to cooperate. Thus, we select and adopt several benchmark algorithms that are commonly
used by researchers from [14,19], and the non-communication one , including:

(1) No-Comm. Literally, in No-Comm, each UAV can only receive local observation
and selfishly maximize its individual rewards. There is no clear communication
channel between UAVs and naturally no explicit cooperation or competition. Thus,
the communication policy is πc = Null, and the action policy is:

ai ∼ πa(a | oi; θa). (23)

(2) Local-CommNet. In CommNet [14], it is assumed that each agent can receive all
agents’ communication messages. It should be adapted to the local communication
configuration of UAV swarms in this paper, named Local-CommNet.
Specifically, each UAV publishes the hidden layer information h of its action policy
network to its adjacent UAVs, i.e., mj

t−1 = hj
t−1, Then, the messages received by UAV

i are denoted as:
ci

t
.
= {hj

t−1 | ∀j ∈ N i
t }. (24)

Next, ci
t is aggregated using the average pooling method to obtain:

ĉi
t =

1
| N i

t |
∑

j∈N i
t

hj
t−1. (25)

(3) Att-Hidden. In addition to the average pooling method, the GAT can also be used
to aggregate ci

t [12,19]. Then:

ĉi
t = GAT({hi

t−1, hj
t−1 | ∀j ∈ N i

t }). (26)

The message of each UAV is its hidden layer information of the action policy network,
and there is no separate communication policy network. So GAT, as an encoder, could
be a component of the action policy network. The network can be updated according
to the input variable (oi

t, {hi
t−1, hj

t−1 | ∀j ∈ N i
t }) following Equation (20).

6.2. Settings

In this section, the effectiveness of the proposed algorithm is verified by numerical
simulation experiments. According to the problem description (Section 4.1), the training
environmental parameters are set in Table 1. These parameters have been used in our
previous work [8,27], and the rationality has been verified. During testing, the environment
size and the numbers of UAVs and targets may change. The hyper-parameters of those
algorithms are configured in Table 2.
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Table 1. Environmental parameters.

Object Parameter Value

Environment Shape Square
Size 2 km × 2 km

UAV

Quantity (n) 10
Communication Range (dc) 500 m

Observation Range (do) 200 m
Flight Speed (vU) 20 m/s

Max Heading Angular Rate (θ̇max) 30◦/s
Cardinality of Action Set (Na) 7

Target

Quantity(m) 10
Moving Speed (vT) 5 m/s

Max Steering Angular Rate 30◦/s

Table 2. Hyper-parameters configuration.

Hyper-Parameter Value

Iteration Episode 2× 103

Replay Buffer 5× 105

Max Step 200
Batch Size 64

Target Network Update Interval 100
Action Policy Learning Rate 1× 10−4

Communication Policy Learning Rate 5× 10−5

Communication Policy Output Dimension 100
Discount Factor 0.95

To evaluate the tracking performance of UAV swarms, the following metrics are defined:

(1) Average Reward:

1
Tn

T

∑
t=1

n

∑
i=1

ri
t, (27)

where ri
t has been defined in Equation (9), which comprehensively evaluates the per-

formance of UAV swarms from the aspects of target tracking, repeated observation,
safe flight, etc.

(2) Average Target:

1
Tn

T

∑
t=1

n

∑
i=1

m

∑
k=1

1(i, k),1(i, k) =

{
1, d(i,k) � do;
0, else.

(28)

which evaluates the number of targets tracked from the perspective of each UAV.
(3) Collective Target:

1
T

T

∑
t=1

m

∑
k=1

1(k), 1(k) =

{
1, ∃i ∈ [1, n], s.t. d(i,k) � do;
0, else.

(29)

which evaluates the number of targets tracked by all the UAVs.
(4) Coverage:

1
Tm

T

∑
t=1

m

∑
k=1

1(k), 1(k) =

{
1, ∃i ∈ [1, n], s.t. d(i,k) � do;
0, else.

(30)

which is denoted as the proportion of the tracked targets to all targets.
Furthermore, the coverage rate, as a normalized indicator, can evaluate the tracking
capability of UAV swarms in different scenarios from the perspective of targets.
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6.3. Validity Verification

The neural networks in the four algorithms are randomly initialized and trained, and
the curves of the defined metrics are plotted in Figure 5. Overall, the MTT performance
of the Att-Message is the best, followed by Att-Hidden and Local-CommNet; the last one is
No-Comm. Again, there is no explicit communication and cooperation between the UAVs
in No-Comm, and each UAV greedily maximizes its private interest.
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(a) Average reward curves.
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(c) Collective target curves.

Figure 5. The metric curves during the training process of the four algorithms.
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Looking at specifics, (1) the three algorithms using explicit communication outperform
No-Comm without communication, which indicates that communication can effectively
promote the cooperation between UAVs, thereby improving the tracking performance
of UAV swarms; (2) the comprehensive performance of Att-Hidden using GAT is better
than that of Local-CommNet, but the UAV in both algorithms transmits the hidden layer
of the action policy network. The reason may be that GAT can better aggregate the received
messages, then effectively improve the action policy of UAVs and the cooperation between
them; (3) furthermore, the comprehensive performance of the Att-Message is superior to
that of Att-Hidden, indicating that compared with the hidden layer of the action policy
neural network, the communication message can better capture the information that is
helpful for cooperation. It is also proved that the communication policy in Att-Message can
be optimized based on feedback from other UAVs to facilitate cooperation between UAVs.

Furthermore, Figure 6 intuitively visualizes the tracking process of the UAVs using
the four algorithms, respectively, and the snapshots verify the previous conclusions again.
In addition, it can be seen that executing the policies learned by Att-Message, the UAVs
emerge with obvious cooperative behaviors. For example, when a target escapes the obser-
vation range of a UAV, the adjacent UAVs can quickly track and recapture the target again.
Alternatively, there is a tendency to avoid getting too close between the UAVs to avoid
repeated tracking as much as possible and to improve the observation coverage to capture
more targets.
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X(m)

Y
(m
)

(c) Att-Hidden

X(m)

Y
(m
)

(d) Att-Message

Figure 6. Visualization of MTT executing different algorithms.
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6.4. Scalability Test

To test whether the policies learned by the above four algorithms can be scaled to other
scenarios beyond the training one, these policies were executed for 100 rounds in different
scenarios, and the metrics of single-step are counted in Table 3.

Table 3. Result statistics of scalability test.

Map Size n
m Metrics

Algorithm

No-Comm
Local-

CommNet
Att-Hidden

Att-
Message

1000 5
5

Average
Reward –1.3108 –0.8653 –0.2912 –0.3554

Average
Target 1.0626 1.1393 1.0513 1.2109

Coverage 0.6555 0.7370 0.7626 0.7915

1000 10
10

Average
Reward –4.1760 –2.5640 –1.6756 –1.4816

Average
Target 1.9919 1.9792 1.4915 1.6382

Coverage 0.7692 0.8278 0.8508 0.8722

2000 10
10

Average
Reward –0.8157 –0.0425 0.0645 0.0776

Average
Target 0.7190 0.8166 0.7589 0.8777

Coverage 0.5357 0.6207 0.6275 0.6714

2000 20
20

Average
Reward –2.5680 –1.1612 –0.5765 –0.5166

Average
Target 1.2339 1.3396 1.0992 1.2432

Coverage 0.6581 0.7523 0.7586 0.8026

2000 50
50

Average
Reward –6.9769 –6.1045 –3.3002 −3.0900

Average
Target 2.5686 2.5803 1.9871 2.1014

Coverage 0.8562 0.8475 0.9100 0.9183

5000 100
100

Average
Reward –2.2617 –1.1111 –0.9921 −0.5119

Average
Target 1.1118 1.1958 1.1712 1.0925

Coverage 0.6170 0.7174 0.7297 0.7542

5000 200
200

Average
Reward –4.5219 –3.7763 –2.2895 –2.0386

Average
Target 1.8413 1.9586 1.4805 1.6496

Coverage 0.7743 0.8177 0.8392 0.8705

10,000 1000
1000

Average
Reward –6.0707 –5.3054 –3.4510 –3.1223

Average
Target 2.2993 2.3369 1.7754 1.9648

Coverage 0.8242 0.8406 0.8814 0.9043

The statistical results generally indicate that the average reward and coverage of the three
algorithms that introduce explicit communication in different scenarios are significantly better
than No-Comm without communication, which once again verify the effectiveness of the com-
munication. Specifically, Att-Message performs better than other algorithms in terms of av-
erage reward and coverage, which directly reflects that the UAVs adopting the action
and communication policies learned with Att-Message can better cooperate to track more
targets in different scenarios. However, in the scenario with dense UAVs and targets, the
average targets of No-Comm and Local-CommNet are higher, indicating that the indi-
vidual performance of a single UAV is excellent, while the cooperation between UAVs
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is much lower. This also reveals the importance of cooperation for the emergence of
swarm intelligence.

Combined with the visualization in Figure 6, the numerical results verify that UAV
swarms can learn more efficient communication and action policies by using Att-Message
and can scale these policies to different scenarios and achieve better performance.

6.5. Communication Failure Assessment

The above experiments assume perfect communication between UAVs; that is,
the messages can always be received correctly by the adjacent UAVs. However, how
does the performance of the UAVs change if there is a communication failure, while
the UAVs still execute the policies learned while communicating perfectly? In this paper,
two communication failures are assumed here: message loss and message error. The former
refers to the message not being received due to communication disconnection or delay;
and the later refers to the received message being inconsistent with the sent one due
to electromagnetic interference or other reasons. Here, the error message is assumed to be
a random noise signal. Under different failure probabilities, such as {0, 0.1, · · · , 1.0}, the
UAVs execute the policies learned by the four algorithms, respectively.

The variation trends of the metrics with the failure probability under the two failures
are plotted in Figures 7 and 8, respectively. At first glance, the corresponding statistical
metric curves in both the two failure cases have similar trends; that is, when the probability
gradually increases, the average reward and collective target curves of the three explicit
communication-based algorithms gradually decrease, while the average target curve
gradually increases, and the metric curves of No-Comm (without communication) is
approximately flat. For the same failure probability, the descending order of comprehensive
performance of the four algorithms is: Att-Message > Att-Hidden > Local-CommNet >
No-Comm, which is consistent with the training results.
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Figure 7. The variation trends of the metrics with communication error probability.
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Figure 8. The variation trends of the metrics with communication loss probability.

It is conceivable that when the probability increases, the available messages gradually
dwindle, and the comprehensive performance of the former three algorithms with commu-
nication gradually deteriorates. The reason is that the reduction of useful messages leads
to increased conflicts between UAVs and a decrease in cooperation. Moreover, as the prob-
ability increases, the average targets of the former three algorithms gradually increase,
indicating that the UAVs shortsightedly maximize the number of targets tracked by indi-
viduals. In addition, when the communication is paralyzed, each UAV makes a completely
independent decision. It can be seen that the comprehensive performance of Att-Message
is the best, which reveals that while learning the communication policy, the UAVs can
also learn a better action policy for tracking targets. Therefore, even the communication
fails, and the improvement of the individual MTT capability can also feed back the overall
capability of the swarm to a certain extent.

In summary, when there is a communication failure, such as message loss or error,
the comprehensive performance of the communication and action policies learned by
the proposed algorithm would be affected to a certain extent, but it is also better than
the other three benchmark algorithms. The numerical results also demonstrate the robust-
ness of the learned policies.
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7. Discussion

As mentioned earlier, the research object of this paper is large-scale UAV swarms
in which each UAV can only communicate and interact locally with the adjacent ones
when making decisions. In local topology and ignoring other factors, the computational
complexity of the action and communication policies for processing (aggregating) a message
is assumed to be a unit, denoted as O(1), and the average cardinal number of the message
set is denoted as |c|.

Then, in the decentralized execution, the computational complexity of the action
and communication policies of each UAV is O(|c|) according to Equations (16) and (15),
respectively. In centralized training, the computational complexity of updating action
policy is also O(|c|) according to Equation (20), and that of the communication policy is
O(2|c|2) since a message can influence the communication and action decisions at the next
step of all adjacent UAVs according to Equation (22).

Therefore, similar to most MADRL algorithms adopting the CTDE framework, the
training of the proposed algorithm requires more computational resources than execu-
tion, which is suitable for offline implementation. The offline training in this paper was
deployed on the computer equipped with Intel (R) Xeon E5 CPU (Manufacturer: Intel
Corporation, Santa Clara, CA, USA) and GTX Titan X GPU (Manufacturer: ASUS,Taiwan)
, the operating system was Ubuntu 16.04 LTS, and the algorithm was implemented by
Pytorch. Then the learned policies can be performed online without retraining. The specific
requirement of computational resources should comprehensively take the constraints, such
as computing platform, neural network design and optimization, decision frequency and
so on, into consideration.

Moreover, in the observation of a target, we only consider the simple numerical
information, such as its location and speed, but not the real-time image, and the communi-
cation policy can also compress and encode the high-dimensional information to realize
lightweight embedding interaction. These can further improve the feasibility of the algo-
rithm in real-world scenarios.

8. Conclusions and Future Works

Communication is an important medium for transferring information and realizing
cooperation between UAVs. This paper adopts a data-driven approach to learn the co-
operative communication and action policies of UAV swarms and improve their com-
munication and MTT capabilities. Specifically: (1) The communication policy of a UAV is
mapped from the input variables to the message sent out, so that the UAV can autonomously
decide the content of the message according to its real-time status. (2) The neural networks
based on the attention mechanism are designed to approximate the communication and action
policies, where the attention mechanism can distinguish the importance of different messages
and aggregate the variable number of messages into a fixed-length code to adapt to the dy-
namic changes of the local communication topology. (3) To maximize the cumulative reward
of the adjacent UAVs, the gradient optimization process of the continuous communication
policy is derived. (4) Based on the CTDE framework, a reinforcement learning algorithm is
proposed to jointly learn the communication and action policies of UAV swarms. The numerical
simulation verifies that the proposed algorithm can learn effective cooperative communication
and action policies to conduct the cooperation of UAV swarms, thereby improving their MTT
ability, and the learned policies are robust to communication failures.

Although the communication policy in this paper can extract the message that is
beneficial to cooperation, the physical meaning of the message cannot be explicitly parsed.
Therefore, the interpretability of the message remains to be further explored. How to rea-
sonably set the output dimension of the communication policy neural network, that is,
the length of the message, also needs to be further solved. If the output dimension is too
small, it may limit the communication capability of the UAV; otherwise, it may increase
the difficulty of learning, which is not conducive to learning an effective communication
policy. In addition, it is necessary to take more complex scenarios into consideration and
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establish more accurate models to investigate how the physical aspects of both the UAVs
and targets would affect the MTT performance.
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Abstract: With the rapid development of unmanned aerial vehicles (UAVs), often referred to as drones,
their security issues are attracting more and more attention. Due to open-access communication
environments, UAVs may raise security concerns, including authentication threats as well as the
leakage of location and other sensitive data to unauthorized entities. Elliptic curve cryptography
(ECC) is widely favored in authentication protocol design due to its security and performance.
However, we found it still has the following two problems: inflexibility and a lack of backward
security. This paper proposes an ECC-based identity authentication protocol LAPEC for UAVs.
LAPEC can guarantee the backward secrecy of session keys and is more flexible to use. The time cost
of LAPEC was analyzed, and its overhead did not increase too much when compared with other
authentication methods.

Keywords: UAV; internet of drones; authentication protocol; key agreement

1. Introduction

Unmanned aerial vehicles (UAVs) have experienced rapid developments in recent
years and have attracted the interest of researchers [1]. They have been deployed for
many applications and missions such as data transmission, surveillance, cellular service
provisioning, package delivery, firefighting, traffic monitoring, military operations, agricul-
ture, etc. [2,3]. Here, a common UAV scenario (target surveillance as an example) is shown
in Figure 1.

Figure 1. A common UAV scenario (target surveillance as an example).

In the above scenario, a drone is controlled by the user. After it has received the control
signal from the user, it collects the data of the targets (e.g., video, photo) and sends the data
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to the closest ground control station (GCS). Since the GCS connects to the data processing
center (DPC) through the network, it can send the data of the targets to the DPC. Finally,
the DPC utilizes the data from the GCS to analyze the behavior of the targets.

UAV communication relies on wireless channels, which makes UAVs vulnerable to
many attacks such as replay attacks, man-in-the-middle attacks, and masquerading attacks.
These attacks can have serious consequences, which can lead to commercial and non-
commercial losses. Attackers may also aim to exploit these UAVs to eavesdrop on sensitive
information, tamper with data, or cause malicious interference [4,5].

With the rapid development of the internet of drones (IoD), the security of the IoD is
becoming more and more important. Among many, authentication is one of the research
hotspots in the field of IoD security. Because most drones have shortcomings (such as
low computing power, small storage space, etc.), it is difficult to directly apply traditional
identity authentication and key agreement protocols within the IoD [2]. Thus, it is necessary
to design identity authentication and key agreement protocols suitable for the IoD [3]. The
traditional security provisioning applicable to distributed networks fails to give similar
results for UAVs [6]. The large-scale deployment of UAVs is hindered due to these many
security challenges [7,8].

Aiming at the lack of a pre-registration process and the backward security of session
keys in the EDHOC (ephemeral Diffie–Hellman over COSE) protocol, an ECC (elliptic curve
cryptography)-based authentication protocol for the IoD (called LAPEC) is proposed in this
paper, which can achieve high security and an acceptable time overhead. A formal security
proof is given for the proposed LAPEC protocol to demonstrate its security properties. At
the end of the paper, a time cost analysis and a comparison of LAPEC with other protocols
are carried out.

2. Background and Related Works

In order to deal with the authentication issues of the IoD, some researchers have pro-
posed various solutions in recent years. Due to the versatility of RFID technology [9], which
is ideal for identifying and tracking objects, some researchers use it in the identification
and authentication of UAVs [10] in both commercial and/or military scenarios. In this case,
these drones can be equipped with RFID tags and be required to pass through a reader
checkpoint whereby the tag is scanned and its credentials sent to a secure server unit for
verification. Either the drone is authenticated, or if not, it can be intercepted [11]. Authen-
tication methods based on RFID are simple and easy to use, but securing an RFID-based
system is a challenging task due to the computational capability of RFID tags being very
limited [12,13].

To address this issue of RFID-based authentication methods, the concept of physically
unclonable function (PUF) technology [14–16] has been introduced. A PUF is a function
derived from a physical characteristic and is used to produce a device-specific output
for any input such as with a fingerprint. With the inclusion of PUF, RFID can ensure
hardware security. However, these methods can deal with problems related to one-to-one
authentication, but they fail to provide solutions for dynamic and large-scale networks [6].

2.1. Elliptical Curve Cryptography Scheme

Some researchers [4,17] have presented authentication protocols based on elliptic
curve cryptography (ECC). Although they increase the level of security, their techniques
are far from being scalable.

ECC is an asymmetric public key cryptography [18], whose theoretical basis comes
from elliptic curves. Compared with traditional public key cryptography (such as RSA, etc.),
ECC requires less computation and uses a shorter key length to achieve the same key
strength as RSA.

The design of using ECC for a public key cryptosystem is based on the following two
mathematical problems about chaotic maps: (1) the discrete logarithm problem based on
ECC (ECDLP); (2) the computational Diffie–Hellman problem based on ECC (ECDHP).
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Ever [19] proposed an authentication framework for the IoD using elliptic curve
cryptosystems, but it still has some of the inherent issues of ECC. Tao [20] has proposed
a two-way identity authentication scheme based on the SM2 algorithm and adopted the
pre-shared secret information to improve the efficiency of authentication, but how to
securely pre-share the secret is also an issue. Lin [21] proposed a certificate signing based
on elliptic curve multiple authentication schemes, but it still has inherent issues with
certificate mechanisms.

Some related work can be found in [22–32], and we will compare ours with them
when analyzing the time cost in Section 5.

2.2. EDHOC Scheme

The EDHOC protocol is one of the most practical used for the IoT, so we will discuss it
and compare it with our proposed protocol. The EDHOC protocol is based on the SIGMA
(SIGn and Mac) protocol structure, which is a series of theoretical protocols with a large
number of variants. The EDHOC protocol uses digital signatures for authentication. Similar
protocols include the IKEv2 (RFC7296) [33] and TLS 1.3 (RFC8446) [34] protocols. EDHOC
implements the SIGMA-I variant as Mac-then-Sign. EDHOC consists of three messages
(message_1, message_2, message_3) that map directly to the three messages in SIGMA-I.
The scheme of EDHOC is shown in Figure 2, showing it needs three messages to finish
the authentication. Message_1 is composed of method (authentication method), SUITES_I
(array of cipher suites which the Initiator supports), G_X (the ephemeral public key of the
Initiator), C_I (variable length connection identifier), and EAD_1 (external authorization
data). Message_2 is composed of G_Y_CIPHERTEXT_2 (the concatenation of G_Y and
CIPHERTEXT_2) and C_R (variable length connection identifier). Message_3 is composed
of CIPHERTEXT_3.

Figure 2. Interaction flow of the EDHOC Scheme.

2.3. Problem Analysis

The EDHOC protocol and some other protocol solutions for limited UAV devices
have taken into account the characteristics of insufficient computing and storage space of
UAV devices. They have carried out lightweight optimizations in the protocol process,
encryption, and decryption. However, the EDHOC protocol has the following shortcomings
in terms of deployment flexibility and security:

• Public key preset problem.

In the process of the EDHOC protocol, since the signature and verification operations
of the certificate are not required, the burden of the device is greatly reduced. However,
in actual use, the two parties who authenticate by default have the public key of the
other party. Therefore, this requires EDHOC to preset the other party’s public key in the
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implementation, which will cause the UAV devices to face extreme inflexibility during
large-scale deployment and use. It may bring a lot of inconvenience.

• Session key backward security.

Backward security, also known as future security or post-compromise security (PCS),
was formally defined by Katriel et al. [35]. Backward security means that after the long-term
key or session key is leaked or compromised, the security of messages after the session can
still be guaranteed.

The scheme of EDHOC relies on the automatic update of the symmetric session key
after completing the authentication and key negotiation process. Therefore, EDHOC needs
to use the symmetric session key to secure the subsequent messages. Once the session key
is leaked or compromised, the subsequent messages will face significant security risks, that
is to say, backward secrecy cannot be guaranteed.

3. Proposed Scheme

3.1. Design Principles

Aiming at the problems of inflexibility and security of EDHOC, this section proposes
an enhanced elliptic-curve-based lightweight authentication protocol for IoD, which is
named LAPEC (lightweight authentication protocol over elliptic curve). The main design
ideas are as follows:

(1) In view of the inflexibility of EDHOC use, the corresponding pre-registration steps
are designed to reduce the use of public key certificates of both parties, and users do not
need to configure the public key in advance, which is flexible in large-scale deployment
and use.

(2) For backward security, based on the non-interactive zero-knowledge proof protocol,
a corresponding session key update mechanism is designed to ensure the security of
message communication. Even if the session key is leaked, the attacker cannot complete
the zero-knowledge proof, so the key cannot be modified and session-backward security
is guaranteed. In the session key update phase, the Schnorr zero-knowledge proof is
introduced to design the session key update process.

In the LAPEC protocol, (1) a pre-registration process is added, which is before the
authentication process, and (2) a new session key update process is designed using the
zero-knowledge proof to increase the backward security of the session key.

Therefore, the LAPEC protocol consists of three phases: the pre-registration phase,
the authentication phase, and the session key update phase. Figure 3 shows the general
process of interaction flow of a LAPEC message.

Figure 3. The general process of interaction flow of a LAPEC message.

122



Drones 2023, 7, 315

3.2. Symbols and Meanings

This section describes the overall design of the LAPEC protocol message structure.
LAPEC mainly includes three processes: a pre-registration process, an authentication and
key negotiation process, and a session key update process. The parameters and meanings
used in the LAPEC protocol are shown in Table 1:

Table 1. Symbols in LAPEC.

Symbols Meaning

DEV, GWN the UAV DEV, its ground control station (gateway) GWN
P_A, P_B Ephemeral public key for device A and B
P_D, P_G Authentication public key of the device and the gateway

ID_CRED_D, ID_CRED_G The public key identifier of the device and the gateway

AEAD(K;(Plaintext)) Additional data are encrypted with authentication using a key K
derived from the shared secret

Extract Pseudorandom key generation function
Expand Symmetric key generation function
MAC Message authentication code

tD The current timestamp of the device
tG The current timestamp of the gateway
Δt Maximum time interval allowed

H_m Hash of message data
H(*) Collision resistant hash function
|| Connect operation
⊕ XOR operation

The proposed LAPEC scheme mainly includes the pre-registration phase, the authenti-
cation and key negotiation phase, and the key update phase. Figure 4 shows the interaction
messages during the scheme process.

Figure 4. The interaction messages of LAPEC process.
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3.3. Pre-Registration Phase

UAV devices and a ground station (serviced as a gateway) respectively hold their own
authentication public and private key pairs: <D, P_D> and <G, P_G>. Among them, D and
G represent the private key for both parties to authenticate. Key pairs generate as follows:
P_D = DP, P_G = GP. Among them, P is the base point of the elliptic curve recognized by
both parties.

At the same time, both parties also need to use ID_CRED_D and ID_CRED_G as the
identifiers of the above authentication keys. Both parties calculate the following results:
C_D = H(ID_CRED_D||P_D), C_G = H(ID_CRED_G||P_G).

In the pre-registration phase shown in Figure 4, the device sends the first message
to GWN, which is formatted as <P_D||ID_CRED_D||H(ID_CRED_D||P_D)>. After
receiving the first message from the device, GWN will respond with a reply message
formatted as <P_G||ID_CRED_G||H(ID_CRED_G||P_G)>.

3.4. Authentication Phase

The interaction process during authentication is shown in Figure 5.

 

Figure 5. Authentication Phase of interaction process showing the authentication process.

(1) Step 1

Firstly, the UAV device generates the current timestamp tD1 to determine the freshness
of the message, selects a random number A, and calculates the ephemeral public key:
P_A = A × P.

Secondly, the device needs to determine the cipher suite suite_D. The function of the
suite parameter is to ensure that both parties use the same cipher algorithm in the next
protocol process, especially to determine the AEAD algorithm that both parties need to use
and the parameters required by the Extract and Expand functions to generate a key.

Finally, the device connects the above parameters and sends Message_1 (Step 1 shown
in Figure 5) to the ground station GWN via the open channel:

Message_1 = ID_CRED_D||P_A||suite_D||tD1

(2) Step 2

After the ground station, GWN receives the first message, it first needs to extract and
verify the parameters (Step 2: Measuring shown in Figure 5). It mainly checks whether
the time when GWN receives the message meets the timeliness and whether it supports
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the cipher suite suite_D contained in Message_1. For timeliness, it records the current
timestamp tG1, and judges: |tG1 − tD1| < Δt?

If the above decoding or verification process fails, GWN must send back an authenti-
cation error message and abort the process. If GWN does not support the selected cipher
suite, it will return the parameter suite_G containing its own supported cipher suites.

(3) Step 3

After successfully decoding Message_1, the ground station GWN selects a random
number B, calculates the ephemeral public key, and saves it as its own temporary public–
private key pair: P_B = B × P.

In the process of identity authentication and key generation, corresponding crypto-
graphic algorithms are required to encrypt plaintext or decrypt ciphertext. The Extract and
Expand functions are used with a hash algorithm in the selected cipher suite to derive the
key. Extract is used to derive a uniform pseudorandom key (PRK) of fixed length from
the shared secret. Expand is used to derive other key material from PRK. The process of
generating the intermediate key PRK is as follows: PRK = Extract(salt, IKM), where salt is
the added salt value, and IKM represents the input key material. The Extract function is
specifically determined by the suite parameter in Step 1.

The keys used in LAPEC are derived from PRK using Expand function, and the
process of generating the symmetric key K is as follows: K = Expand(PRK, H). Among
them, PRK is the pseudo-random intermediate key generated by the above Extract function,
and H represents the text hash value of a certain message.

The ground station GWN first needs to calculate the shared secret P_AB according
to P_A and B: P_AB = B × P_A. GWN uses P_AB to calculate the first and the second
PRK: PRK_1 = Extract(tD1, P_AB), PRK_2 = Extract(PRK_1, P_GA). Among them, P_GA is
the shared secret calculated from P_A and G: P_GA = G × P_A.

After the generation of the PRK is completed at the ground station GWN, the generation
of the symmetric key K used for authentication needs to be performed. GWN first needs to
generate K_1 using the Expand function described in Step 2, the generated PRK_1, and text
hash H_1. The calculations of H_1 and K_1 are as follows:

H_1 = H(Message_1||tG1||P_B).

K_1 = Expand(PRK_1, H_1).

Similarly, GWN also generates the symmetric key K_2:

K_2 = Expand(PRK_2, H_1).

Next, GWN constructs a message authentication code (MAC), which is calculated
using the AEAD algorithm in the selected cipher suite. AEAD constructs an additional
piece of auxiliary authentication data during encryption to ensure that after decryption
using the symmetric key, it can be judged whether the symmetric key used is correct. The
AEAD algorithm is used to encrypt the auxiliary authentication data external_aad_G with
the key K_2 generated above:

external_aad_G = AEAD(H_1||P_G||tG1)

MAC_2 = AEAD(K_2, external_aad_G).

Finally, GWN uses another key K_1 generated above to perform XOR encryption with
MAC_2 to obtain the authentication data segment of Message_2: Auth_G = K_1⊕MAC_2.

Then, GWN connects the authentication data segment with other parameters to get
Message_2 (Step 3 shown in Figure 5), and sends it to the device for authentication via the
open channel:

Message_2 = ID_CRED_G||P_B||Auth_G||tG1
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(4) Step 4

After receiving message_2, the UVA device should handle message_2 (Step 4: Verify
shown in Figure 5) as follows

1. Decode message_2 and record the timestamp to determine the freshness of the message.
2. XOR the Auth_G with the key K_1 to decrypt the Auth_G field.
3. Verify MAC_2 using the algorithm in the selected cipher suite.

If the timestamp or AEAD algorithm fails to verify the authentication packet of MAC_2,
an error message is returned and the protocol process is aborted.

The UAV device also needs to calculate the shared secret P_AB according to P_B and
A. The calculation process is P_AB = A × P_B. Next, similar to Step 3, the UAV device also
uses P_AB to calculate PRK: PRK_1 = Extract(tD1, P_AB), PRK_2 = Extract(PRK_1, P_GA),
PRK_3 = Extract(PRK_2, P_DB), where P_DB = D × P_B.

The UAV device also needs to generate K_1′:

H_1 = H(Message_1||tG1||P_B)

K_1′ = Expand(PRK_1, H_1).

Similarly, the device side generates the symmetric key K_2′:

K_2′ = Expand(PRK_2, H_1).

After the key is generated, the verification process can be performed. The UAV device
first performs the following XOR decryption for the Auth_G part:

MAC_2′ = K_1′⊕Auth_G.

Then, it uses the generated K_2′ as the key to decrypt the MAC_2′:

external_aad_G′ = AEAD_dec(K_2′, MAC_2′)

where AEAD_dec(K, M) is a decryption function that uses the key K to decrypt and verify
the encrypted message M. AEAD determines whether the key K_2 is correct or not by
comparing the decrypted auxiliary authentication data:

external_aad_G′ = external_aad_G?

(5) Step 5

After the UAV device completes the processing of the authentication data packet to the
ground station, if the authentication is passed, it constructs Message_3. During the verification
process in Step 3, the UAV device has completed the calculation of the pseudo-random keys
PRK_1, PRK_2, and PRK_3, as well as the keys K_1 and K_2 used for verification. In order to
construct the authentication data packet MAC_3, the UAV device first calculates the text hash
value H_2 as follows: H_2 = H(H_1||Auth_G||P_B||tG1). K_3 is constructed using H_2 and
pseudo-random key PRK_3 as follows: K_3 = Expand(PRK_3, H_2).

Similar to Step 3, the additional authentication data of MAC_3 are constructed as follows:

external_aad_D = H_1||P_D||tG1

At this point, the UAV device can construct MAC_3 as:

MAC_3 = AEAD(K_3, external_aad_D)

Finally, the UAV device calculates the encryption key K_4 of Auth_D:

K_4 = Expand(PRK_2, H_2)

Auth_D = AEAD(K_4, MAC_3||tG1||H_2).
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The UAV device connects the generated Auth_D with the timestamp to get the final
Message_3 (Step 5 shown in Figure 5) and sends it to GWN.

Message_3 = Auth_D||tD2

(6) Step 6

After the ground station, GWN receives the corresponding Message_3. It first needs
to authenticate the device (Step 6: Verify shown in Figure 5). The intermediate pseudo-
random key has been calculated in Step 3. At this time, the gateway needs to calculate H_2,
K_3′, and K_4′:

H_2 = H(H_1||Auth_G||P_B||tG1)

K_3′ = Expand(PRK_3, H_2)

K_4′ = Expand(PRK_2, H_2).

Similarly, GWN uses AEAD to decrypt the authentication packet contained in ciphertext_3:

MAC_3′||tG1||H_2 = AEAD_dec(K_4′, Auth_D)

external_aad_D′ = AEAD_dec(K_3′, MAC_3′||tG1||H_2).

AEAD determines whether the key K_3 is correct or not by comparing the decrypted
auxiliary authentication data, that is, verifying external_aad_D′ = external_aad_D?

If the verification is successful, GWN also considers whether the UAV device’s identity
is legal and can construct the session key. If unsuccessful, the UAV device identity authenti-
cation fails, and GWN immediately terminates the authentication process and returns an
authentication failure message.

If the UAV device is authenticated, both parties can calculate the session key separately
by first calculating the text hash value H_3:

H_3 = H(H_2, Auth_D)

SK = Expand(PRK_3, H_3)

Both parties encrypt subsequent messages and communicate via SK.

3.5. Session Key Update Phase

Figure 6 shows the message interaction process in the session key update phase, which
is part of Figure 4.

Figure 6. Session Key Update Phase.
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After successfully completing the mutual authentication and key negotiation process,
both parties should communicate by sharing the secret session key SK. If the session key
needs to be updated (i.e., the session key has a valid time), either party will initiate a key
update request.

The entity that needs to initiate the update of the session key (presumably the D
party) first selects a random number X′ and calculates the temporary public–private
key pair G_X′ = X′ × P. Party D calculates the following results and sends them to
GWN: c = H(P_D||G_X′).

The UAV device constructs the following response based on challenge c: z = X′ + c × D,
where D is the authentication public key of the UAV device, and c is the challenge result
calculated by the above formula. The device constructs and sends a session key change
request message (step Change SK in Figure 6): Message_ChangeSK = Enc(SK, G_X′||z||tD).

After GWN receives the session key change request, it checks the following steps (step
Verify in Figure 6):

1. Decode the message and obtain and check the freshness of the message.
2. Calculate random challenges.
3. Calculate and check:

z × P = G_X′ + c × P_D?

If not, the receiver aborts the session key update procedure and returns an update
failure error message. If so, GWN considers that the identity of the requester for updating
the session key is legitimate, and the receiver generates the updated session key according
to the following steps:

P_GX′ = X′ × P_G

Next, both parties calculate:

PRK_x = Extract(PRK_3, P_GX′)

H_4 = H(Message_ChangeSK)

SK′ = Expand(PRK_x, H_4)

Both parties can then communicate via updated encrypted session key SK′ in follow-
up messages.

4. Security Analysis

4.1. Security Properties Analysis

In this section, the security properties of LAPEC are discussed. The LAPEC protocol
has five security attributes: backward security, anti-replay attack, forward security, anti-
masquerade attack, and session key confidentiality. However, the EDHOC protocol has
four security attributes, which are shown in Table 2:

Table 2. Security properties of protocols.

Security Properties LAPEC EDHOC

Backward Security �
Anti-replay Attack � �
Forward Security � �

Session Key Confidentiality � �
Anti-Camouflage Attack � �

4.2. Security Properties Proof

This section will formally prove the backward security, anti-replay attack, forward
security, anti-masquerading attack, and session key secrecy of LAPEC.
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Theorem 1. The LAPEC protocol can inherit the anti-replay attack, forward security, anti-masquerading
attack, and session key confidentiality of EDHOC in the authentication negotiation process.

Proof. Since the pre-registration process added to the LAPEC protocol does not change
the key calculation in the authentication protocol phase, the LAPEC protocol can inherit
the security properties of EDHOC during the authentication phase. According to the
formal analysis of EDHOC using Tamarin tools, LAPEC can at least inherit the following
security properties: forward security, session key independence, anti-replay attack, and
anti-masquerading attack. �

Lemma 1. The LAPEC protocol has the security properties of anti-replay attack, anti-masquerading
attack, and session key confidentiality.

Proof. According to Theorem 1, the LAPEC protocol can inherit the relevant security
properties of EDHOC in the authentication negotiation process, so the LAPEC protocol
has the security properties of anti-replay attack, anti-masquerading attack, and session key
confidentiality. �

Suppose that attacker A can launch different attacks by interrogating the oracles as
shown in Table 3.

Table 3. Oracles and description.

Oracle Description

Creat (D, r, G) Create a new session oracle with peer G as D’s identity r
Send (D, i, M) Execute and return the result at the ith session oracle of D
Corrupt (C) Leak C’s long-term key

Test-session (s) If b = 1, C outputs the current session key SK. If b = 0, C returns a
random number. If no session key is generated, returns null.

Randomness (C, i) Leak the random number in the ith session of C
Session-key (s) Leaked session key SK

Hsm (C) Hardware security module for C
Guess (b) End game

Definition 1. After receiving the last expected message M3, C will generate a session key and enter
the accept state. All communication messages M1, M2, and M3 are concatenated in sequence to
form a session identifier.

Definition 2. If D and G meet the following conditions, they are defined as a partnership: (1) D
and G are both in the accepted state; (2) D and G authenticate each other and share the same
session ID.

Definition 3 (Semantic Security). The correct probability of an adversary A guessing coin b is
an advantage of its authentication scheme Semantic Security (AKE):

AdvC
AKE = |2Pr [Succ(A)] − 1| = |2Pr [b = b′] − 1|.

Definition 4. Attacker A has the following equation for the ECDLP problem within time tA:

AdvA
ECDLP(tA)≤ ε, ε > 0

ε is the advantage of A for the semantic safety of the ECDLP problem within time tA.

Theorem 2. The LAPEC protocol has session key backward security.

Let A be a polynomial-time adversary whose running time upper limit is tA. In order to
destroy the backward security of the protocol, A can perform at most Hash Oracle queries,
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Send queries and Execute queries qH, qS, qE times, and session-key queries, respectively.
Then, for A, we have:

AdvC
PCS ≤ 2qH/2lH + 10qS/2lr + 4qSAdvA

ECDLP(tA)

Proof. Game 0, Game 1, Game 2, Game 3, Game 4, Game 5 are a defined set of games, and
Succi is the probability of correctly guessing coin b in Game i. �

Game 0: Assume that Game 0 is the same as the actual scheme in the random oracle, with:

AdvC
PCS = |2Pr[Succ0] − 1|

Game 1: Query the oracle in Game 1. Since Game 0 and Game 1 are indistinguishable,
there are:

Pr[Succ0] = Pr[Succ1]

Game 2: Game 2 considers that the Hash function collides with the key update
message. According to the birthday paradox, the probability of Hash query collision is at
most qH/2lH, so there are:

|Pr[Succ2] − Pr[Succ1]| ≤ qH/2lH

Game 3: The adversary tries to query the oracle machine to guess the random number
directly from the message. The probability of guessing the random number will not exceed
2qS/2lr. Therefore, there are:

|Pr[Succ3] − Pr[Succ2]| ≤ 2qS/2lr

Game 4: Adversary A will guess attack by asking about corruption.
C1: Adversary A attempts to use the advantages of ECDLP to crack the session key

after updating without the participation of the oracle H. Since two random numbers are
required for ECDH exchange during the process of updating the session key, the probability
will not exceed 2qSAdvA

ECDLP(tA).
C2: Since random number participation and a zero-knowledge proof are required in

the process of updating the session key, and the parameter guessing of zero-knowledge
proof is similar to random number guessing, the probability will not exceed 3qS/2lr.

In summary, we can get:

|Pr[Succ4] − Pr[Succ3]| ≤ 3qS/2lr + 2qSAdvA
ECDLP(tA)

After completing the game, adversary A has no more advantage in guessing b, so
there is:

Pr[Succ4] = 1/2

From the triangle inequality, we can get:

|Pr[Succ0] − 1/2| = |Pr[Succ4]-Pr[Succ1]|≤ qH/2lH + 5qS/2lr + 2qSAdvAECDLP(tA)

Thus:
AdvC

PCS ≤ 2qH/2lH + 10qS/2lr + 4qSAdvA
ECDLP(tA)

The theorem is proved.

5. Time Cost Analysis

5.1. Computation Cost Analysis

In the process of identity authentication and key negotiation, the main overhead is
concentrated on the encryption and decryption calculation, key storage, and message
interaction of the cryptosystem. In terms of time overhead, related primitive operations
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and communication overhead are mainly considered [36–39]. The primitive operation and
time overhead of the authentication protocol based on ECC are shown in Table 4:

Table 4. Computation cost of ECC-based schemes.

Scheme Time Cost Total

User GWN UAV

Xu [22] - - - 9TH + 4TSM
Wu F [23] 2TSM + 13TH 14TH 2TSM + 4TH 22TH
Jiang [24] 8TH + 2TSM 9TH + TSM 6TH 23TH + 3TSM
Li X [25] 8TH + 3TSM 7TH + TSM 4TH + 2TSM 19TH + 6TSM
Li X [26] 2TSM + 8TH TSM + 9TH 4TH 3TSM + 21TH

Chang [27] 11TH + 5TSM 10TH + 4TSM 4TH + TSM 25TH + 10TSM
Lu [28] - - - 6TSM + 13TH + 4TS

Saeed [29] TSM + 3TH + 2TS 2TSM + 3TH 2TSM + 3TH + 2TS 5TSM + 9TH + 4TS
Bander [30] 3TSM + 6TH + 3TS TSM + 9TH + 7TS 2TSM + 5TH + 3TS 6TSM + 21TH + 13TS
Deebak [31] - - - 19TH + 12TEX

LAPEC - 3TSM + 6TH + 2TS 3TSM + 6TH + 2TS 6TSM + 12TH + 4TS

In the table, User represents the user of the UAV, while GWN and UAV represent the
ground control station (gateway) and the UAV, respectively. TSM represents the overhead
of the ECC scalar multiply operation, TA represents the overhead of the point-add oper-
ation, TH represents the overhead of the hash operation, TS represents the overhead of
symmetric encryption/decryption, and TEX represents the exponential function to execute
the computational complexity.

In terms of communication overhead, the LAPEC protocol only needs to perform
the interaction in the pre-registration phase when the LAPEC protocol is connected for
the first time and it is quite small. The pre-registration phase only performs 2TH which
costs almost 10% of the authentication phase computation cost (6TSM + 12TH + 4TS). After
the second connection, only the overhead of the authentication phase and the session key
update phase is considered.

• For the authentication phase:

In order to facilitate the time cost comparison without the hardware platform, re-
fer to the experimental results of Roy et al. [32]. The overhead of hash operations and
symmetric encryption and decryption operations is about 8% and 14% of elliptic curve
scalar multiplication operations. As it is shown in Table 4, LAPEC has a computational
overhead similar to most schemes in the authentication phase (for example, schemes such
as Lu [28], Bander [30], Deebak [31], etc.). However, the computation cost of LAPEC is
a little higher than the scheme of Saeed [29]. What is more, LAPEC is better than some
ECC-based schemes.

• For the session key update phase:

Since some schemes do not design corresponding key update steps, this paper uses
the default key Diffie–Hellman exchange for comparison.

As we can see, LAPEC needs to complete the zero-knowledge proof in the key update
phase, so one more scalar multiplication operation TM is required. We perform a zero-
knowledge proof session key update phase after five traditional update processes. In this
update method, the phase only increases the computational overhead by about 8% but still
maintains backward security.

5.2. Communication Cost Analysis

The EDHOC protocol has great advantages in the number of message exchanges
(3 messages) and the computational overhead in the authentication negotiation stage.
Therefore, we mainly compare the LAPEC protocol with the EDHOC protocol to analyze
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the performance overhead. In terms of communication overhead, the protocol is divided
into the following three stages for analysis:

• Message Interaction Cost

Messaging cost refers to the number of message interactions and the latency of the
communication channel. In fact, the channel delay occupies a large overhead in the
authentication protocol.

Since both EDHOC and LAPEC conduct authentication negotiation through three
messages, it can be considered that the message channel delay and the number of inter-
actions are the same. Similarly, the session key update phase does not add new message
interactions, so LAPEC’s update phase is also the same as EDHOC.

For the pre-registration phase, LAPEC adds two messages. However, as mentioned in
the previous section, the pre-registration phase is only performed on the first connection,
and the subsequent authentication and update phases have significantly more messages
than the pre-registration phase.

• Message Size Cost

In the pre-registration stage, the LAPEC protocol needs to send two pre-registration
messages; the message sizes are 32 bytes, respectively.

In the authentication negotiation stage, the LAPEC protocol needs to send three
authentication negotiation messages; the message sizes are 36, 65, and 128.

In the session key update phase, the LAPEC protocol needs to send two session key up-
date messages; the message sizes are 64 and 32, respectively. Meanwhile, the EDHOC protocol
needs to send two session key update messages. The message sizes are 32, respectively.

Assuming that the network bandwidth is the same as M, the analysis results are shown
in Table 5.

Table 5. Message size cost of EDHOC AND LAPEC.

Phase LAPEC (Bytes) EDHOC (Bytes)

Pre-registration 32 + 32 0
Authentication 36 + 65 + 128 38 + 66 + 129

Key Update 64 + 32 32 + 32

From Table 5, LAPEC adds message overhead in the pre-authentication phase, but it
only needs to be considered when connecting for the first time, and it is only a small part
of the overall connection process (in the experiment, less than 10%).

For the key update phase, it increases the message size by about 50%. However, it is
only about 14% compared to the authentication phase messages. Considering that most of
the actual overhead is the channel delay of message exchange, these increases are acceptable
as long as the number of message exchanges during the update phase is guaranteed to
be equal.

At the same time, it can be seen that in the process of protocol implementation, the
number of public key operations such as elliptic curve scalar multiplication between the two
parties should be minimized, and the number of message exchanges should be controlled.

6. Conclusions

This paper proposed an ECC-based identity authentication protocol LAPEC for UAVs.
We introduced the interaction process of the LAPEC protocol in detail, and we proved that
it has session key backward security. In the end, we compared the LAPEC protocol with
other authentication protocols and found that the time overhead of the LAPEC protocol
is small. However, due to the need to increase the backward security in the key update
phase, the time overhead in the session key update phase only increased by about 8%.
Since the pre-authentication phase is only required when connecting for the first time, the
extra overhead added to the pre-authentication phase was only about 10% of the entire
authentication process.
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In the future, we will continue to optimize the LAPEC protocol and apply it in multiple
scenarios such as the authentication between UAV–UAV communications.
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Abstract: Cooperative formation control is the research basis for various tasks in the multi-UAV
network. However, in a complex environment with different interference sources and obstacles,
it is difficult for multiple UAVs to maintain their connectivity while avoiding obstacles. In this
paper, a Connectivity-Maintenance UAV Formation Control (CMUFC) algorithm is proposed to
help multi-UAV networks maintain their communication connectivity by changing the formation
topology adaptively under interference and reconstructing the broken communication topology of
a multi-UAV network. Furthermore, through the speed-based artificial potential field (SAPF), this
algorithm helps the multi-UAV formation to avoid various obstacles. Simulation results verify that
the CMUFC algorithm is capable of forming, maintaining, and reconstructing multi-UAV formation
in complex environments.

Keywords: multi-UAV network; connectivity maintenance; formation control; complex environment

1. Introduction

With the rapid development of UAV technology, the multi-UAV network is widely
used in civil and military fields such as disaster rescue, air reconnaissance, etc. [1–5]. The
communication topology of the multi-UAV network affects its work efficiency, and its
connectivity can be maintained by controlling the topology of the multi-UAV formation.
Therefore, it is fundamental to carry out research on the formation topology control
of multi-UAVs. During the actual flight, the limited communication range of UAVs
and different environmental factors, such as obstacles and interference sources, will
affect the connectivity of the multi-UAV network. Thus, it is necessary to maintain
connectivity of the entire multi-UAV network by controlling multi-UAV formations in
complex environments [6].

Scholars at home and abroad have conducted many studies on connectivity main-
tenance between UAVs. An UAV formation control law was proposed to generate a
leader–follower structure based on consistency under the balance of control constraints
and communication constraints, so as to avoid collisions and maintain connectivity
between UAVs [7]. The authors in [8] proposed using the graph coalition formation
game to model the cooperation between UAVs, which can quickly restore the required
connectivity between UAV networks. In [9], the connectivity methods were compared in
four application scenarios, mainly by increasing or decreasing the communication links
between UAVs to increase or decrease the connectivity of UAV clusters. A connectivity
tracking algorithm was proposed to track the connectivity distribution over time, and
the results are analyzed. The authors in [10] used the second-order integral characteristic
to solve the time-varying formation tracking control problem of multiple UAVs. We
consider the correspondence between multi-UAV connectivity and formation control
and maintain the connectivity of multi-UAV networks through formation control in
complex environments. These papers also consider the problem of UAV formation flight
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in the case of limited communication. The authors in [11] studied the formation control
problem of multiple agents in the noise environment and transformed the formation
control problem into the convergence problem of the infinite product of general random
matrix sequences. A flight strategy was proposed to improve the multi-UAV cooperative
search ability under the condition of limited resources. A multi-UAV cooperative search
model was established. The optimization function of the model considers communica-
tion cost and formation benefit to ensure multi-UAV Effectiveness of Human–Machine
Search [12]. A new adaptive formation control method was proposed for UAVs with
limited leader information and communication. The method was extended to replace
the leader with adjacent UAVs, where the leader can convey location and direction
information [13].

In addition, the formation obstacle avoidance problem of UAVs needs to be con-
sidered in the process of formation flight. The aim is the formation and maintenance
of a specific configuration to adapt to mission requirements and friendly aircrafts.
Currently widely used strategies include the leader–follower method [14], virtual
structure method [15], behavior-based control method [16], and the consensus algo-
rithm [17]. Among them, the algorithm based on consensus theory emphasizes the
synchronization, cooperation, and substitutability among individuals. This algorithm
meets the characteristics of decentralization, autonomy, and autonomy of UAVs; it thus
gradually became the main method and research direction to solve in the formation
control of UAVs. In addition, the obstacle avoidance problem of UAVs needs to be
considered in the process of formation flight. The artificial potential field (APF) al-
gorithm proposed by Khatib [18] in 1986 stands out among many obstacle avoidance
algorithms because of its simple structure, easy real-time control, and rapid response to
environmental changes. An observer-based memory consensus protocol was proposed
in [19] for achieving the consensus of nonlinear multi-agent systems with Markov
switching topologies. This approach was applicable for an observer-based nonlinear
multi-agent system which was described by switched undirected topologies. In [20],
the authors solved the consensus problem in multi-agent systems with Markov jump,
time-varying delay, and uncertainties. In [21], the authors developed a consistent
algorithm to decompose the motion of UAV into three directions, but the constraint
processing of instructions in the algorithm convergence process is too cumbersome,
which is not conducive to engineering implementation. The authors in [22] introduced
a particle swarm optimization algorithm to deal with static and dynamic obstacles.
They added UAV formation configuration requirements to the consensus algorithm.
An adaptive distributed control algorithm was proposed to realize the problem of
cooperative formation of heterogeneous vertical take-off and landing UAVs under the
condition of parameter uncertainty in [23]. In [24], the authors developed a novel de-
centralized adaptive consensus formation control method. Each UAV sets a coordinate
and controls its relative position with adjacent UAVs to obtain the desired formation.
A multi-UAV formation system based on the leader–follower model was proposed
in [25]. The follower predicts the state of the leader, maintains a relative position in
the formation, and finally reaches a consensus with the leader. A topology control
algorithm was proposed in [26] to complete the distributed communication mainte-
nance and formation configuration of four quadrotor UAVs. However, the security
requirements for the long-running machine in the cluster are very high.

In this paper, aiming at connectivity maintenance of a multi-UAV network and
obstacle avoidance of multi-UAV formation, we design a formation control algorithm
to overcome the connectivity maintenance and obstacle avoidance problem. The
main challenge is to design an excellent formation control algorithm to ensure the
connectivity and security of the multi-UAV network during the actual flight due to the
limited communication range of UAVs and the existence of different environmental
factors, such as obstacles and interference sources. Specifically, the formation switching
of the multi-UAV network or the failure of some communication networks will cause
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the system connectivity to be destroyed. Therefore, the designed formation control
algorithm requires the ability to maintain the system connectivity. At the same time,
considering the flying speed of a UAV, the designed algorithm requires timely and safe
obstacle avoidance. Thus, it is quite necessary to maintain the connectivity of an entire
multi-UAV network by controlling multi-UAV formations in complex environments.

This paper proposes a Connectivity-Maintenance UAV Formation Control algorithm,
called CMUFC, for the multi-UAV network to complete tasks in complex environments with
various obstacles and interference sources. This algorithm considers the communication
range and kinematics constraints of UAVs and overcomes the problem of maintaining
connectivity when a multi-UAV network is disturbed and avoids obstacles. This paper has
the following contributions:

• The CMUFC algorithm maintains the connectivity of the multi-UAV network through
adaptive scaling formation, and the UAV changes its relative position with other UAVs
to maintain the stability of the entire system in the case of interference.

• A speed-based artificial potential field (SAPF) algorithm, which helps UAVs avoid
obstacles safely in the process of rapid flight, is proposed. Combined with the SAPF
and the consensus formation control algorithm, it overcomes the problem of local
minimum and solves the problem that APF cannot make UAVs tend to the specified
formation.

• Aiming at the situation that the formation of a multi-UAV network is forced to change
in order to avoid obstacles, a recursive self-repairing formation algorithm based on
layering is used to enable the multi-UAV to complete the formation reconstruction
and maintain the connectivity of the multi-UAV network.

The rest of this paper is organized as follows. Section 2 describes the system model.
Section 3 introduces the Connectivity-Maintenance UAV Formation Control algorithm.
Section 4 verifies and analyzes our algorithm. Finally, concluding remarks are provided in
Section 5.

2. System Model

As shown in Figure 1, this paper considers the formation control problem of multi-
UAV connectivity maintenance in complex environments where there are K interference
sources of different interference powers and O obstacles of different sizes. In the considered
multi-UAV scenario, we construct the model in a 3D Cartesian coordinate system. Among
them, M UAVs are modeled as discs with a radius lmin. Let puav

i (t) = [puav
ix (t), puav

iy (t), H],
i ∈ [1, 2, . . . , M], t ∈ [1, 2, . . . , Ti] denote the 3D position of the UAV, where H is the altitude
of the UAV,which is assumed to be fixed; Ti denotes the time for UAV i to complete its
mission. The o-th obstacle is modeled as a disk with radius ro, o ∈ [1, 2, . . . , O], and its
position is pobs

o (t) = [pobs
ox (t), pobs

oy (t)]. The position of the interference source k is pint
k (t) =

[pint
kx (t), pint

ky (t)], and its transmission power is Pint
k , k ∈ [1, 2, . . . , K]. The target location of

the multi-UAV network is ptar = [ptar
x , ptar

y ].
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Figure 1. System model.

2.1. Formation Control Model

When multiple UAVs form a formation and fly jointly, they must maintain a fixed
geometric shape with each other. At the same time, they must meet mission requirements
and adapt to surrounding environmental constraints, such as obstacle avoidance. This
paper adopts the virtual structure method. That is, a virtual structure is established in the
formation, and each UAV only needs to follow a certain point or a certain edge in the virtual
structure to realize formation control. The task of the multi-UAV network we consider is to
maintain communication connectivity and generate the formation of UAVs while avoiding
obstacles. The dynamic system of UAV can be abstracted as a double integral dynamic
system

ṗi = vi, v̇i = ui, i = 1, . . . , M (1)

where ṗi and v̇i represent the derivatives of puav
i and vi, respectively. ui ∈ Rm is the accel-

eration and control inputs for UAV i. The control input ui helps UAVs form a designated
formation. According to the double-integral dynamic system in Equation (1), the consensus
method for a multi-UAV network consisting of M UAVs is expressed as

ui = −
M

∑
j=1

aij(t)[(puav
i − puav

j ) + γ(t)(vi − vj)], i = 1, 2, . . . , M (2)

where γ(t) is a positive number and aij is the (i, j)-th term in the Laplacian matrix of an
undirected graph GM. The consensus formation control algorithm of a double integral
dynamic system makes the relative position between UAVs tend to the set value by control-
ling the input ui, so as to form the formation of multiple UAVs. In addition, the speed and
acceleration of the UAV must be less than its maximum limit

vi ≤ vmax, ui ≤ amax (3)

where vi, amax are the maximum speed and maximum acceleration of the UAV, respectively.

2.2. Communication Model
2.2.1. Topology Model

In terms of multi-UAV formation control, directed graphs and undirected graphs have
different effects on the stability, convergence speed, and robustness of formation control.
In general, directed graphs require more complex control algorithms and coordination
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strategies. In order to reduce the impact of communication delay and other factors on
the multi-UAV network topology control, this paper considers two-way communication
between UAVs to transmit information such as position and speed. Thus, the topology
of the multi-UAV network is represented by an undirected graph GM ≡ (QM, EM, WM),
where QM = {1, 2, . . . , M} denotes a non-empty finite set of UAVs. EM ⊆ QM × QM is
the edge set of the communication links connecting two UAVs. If there is a reachable
communication link between UAV i and UAV j, it means that there is an edge Eij in the
undirected graph GM, and Qi can obtain the information consisting of position and speed
from Qj. WM ⊆ QM ×QM represents the weight matrix of communication links between
UAVs in the network topology, and we think that the communication between UAVs is
symmetric, i.e., Wij = Wji, ∀Eij. Specifically, WM is described as the communication quality
matrix, where Wij represents the communication weight between UAV i and UAV j, which
is related to the communication distance between two UAVs. An undirected graph is
connected if there is an undirected path between any two different UAVs in the undirected
graph GM.

Figure 2 shows the correspondence between the formation structure and communica-
tion topology of the multi-UAV network. By controlling the relative position between two
UAVs, the distance between them satisfies the communication requirements, p1 − p2 ≤ Rc,
E12 = 1. That is, the multi-unmanned systems maintain connectivity.

Figure 2. Multi-UAV network.

As shown in Figure 3, the network topologies considered in this paper include string
type, ring type, tree type, and star type. There is at least one undirected path between every
two UAVs in the multi-UAV network to ensure the connectivity of the system.
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(a) string type (b) ring type

(c) tree type (d) star type

Figure 3. Communication topology.

2.2.2. Channel Model

1. UAV–UAV Channel Model

In this paper, the communication between UAVs in the time-varying channel is
considered, and only the average path loss is considered. The power of the signal
transmitted by UAV i to UAV j is expressed as

Pj =

(
λ

4πdij

)α
GiGj

Lm
Pi (4)

where Gi is the transmitting antenna gain of UAV i, Gj is the receiving antenna gain
of UAV j, λ is the wavelength, dij indicates the distance between UAV i and UAV j,
α denotes the average path loss constant, Lm is the loss factor, and Pi is the signal
transmission power of UAV i.

2. UAV–Interference source Channel Model

The transmission scenario in an urban area is considered, where the elevation
angle-dependent probability LoS channel model is considered between the UAV and
the ground interference source [27]. The instantaneous interference from ground
interference source k to UAV i is as follows

Pi,k = Pk(PLoS(θ)β0di,k
−α + (1− PLoS(θ))κβ0di,k

−α) (5)

where di,k is the distance between UAV i and interference source k, β0 = (λ/4π)2 is
the path loss at a reference distance of 1m under LoS conditions, λ is the carrier, κ < 1
is the additional attenuation factor due to NLoS propagation, and α is the path loss
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exponent, which is modeled as a monotonically decreasing function of the height H
of the UAV. The probability PLoS(θ) of having a LoS environment is modeled as

PLoS(θ) =
1

1 + a · exp(−b(θ − a))
(6)

Among them, a and b are modeling parameters, and θ is the elevation angle from
interference source k to UAV i, namely

θ = arcsin(H/di,k(t)) (7)

where H is the height of the UAV. The probability of an NLoS environment is given by

PNLoS(θ) = 1− PLoS(θ) (8)

The instantaneous interference received by UAV i from all ground interference
sources is

Pi,K = ∑
k

Pi,k (9)

Therefore, the maximum transmission distance Rc between UAVs is expressed as

Rc =
λ

4π

⎛⎝ Pi

σ2 + Pi,K · 10
SINRth

10

⎞⎠ 1
α

(10)

where σ2 is the average power of the noise in the wireless channel and SINRth is
the signal to interference plus noise ratio (SINR) threshold. In order to ensure the
connectivity of the multi-UAV network, there is at least one undirected link between
every two UAVs; the communication between adjacent UAVs in the undirected path
needs to meet its maximum transmission distance.

3. Connectivity-Maintenance UAV Formation Control Algorithm

The multi-UAV network maintains connectivity. That is, there is at least one undirected
path between every two UAVs, and the communication between adjacent UAVs in this
undirected path needs to meet its maximum transmission distance. In areas where there are
interference sources, the CMUFC algorithm helps UAVs adaptively change the formation
structure to maintain the connectivity of multi-UAV communication topology. In addition,
this algorithm combines the SAPF and the consensus formation control algorithm to help
the multi-UAV formation to fly to the target position and avoid obstacles, while making
the flight distance between the UAVs meet the connectivity requirements.

3.1. Connectivity Maintenance of Multi-UAV Network under Interference

Figure 4 shows the collision zone and communication interaction zone around the
UAV, where Rc is the maximum transmission distance of signals between UAVs, lo is the
maximum range of influence of obstacles on the UAV, and lmin is the radius of the UAV.
In order to maintain system connectivity, the distance between two adjacent UAVs dij in
the undirected path cannot be greater than the maximum transmission distance Rc. In this
paper, the effects of interference sources and obstacles on the connectivity of multi-UAV
networks are considered.
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Figure 4. Area classification around UAV.

The situation of the interference of a UAV is shown in Figure 5. When the multi-UAV
network is interfered by an interference source, the maximum transmission distance of
the UAV signal is reduced. The closer the UAV is to the interference source, the smaller
the communication range. This situation reflects the actual UAV formation. That is, the
distance between UAVs is scaled adaptively to maintain the connectivity of the system.

Figure 5. Influence of interference source for UAV communication range.
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3.2. Multi-UAV Formation Control under Obstacle Avoidance

In this paper, the SAPF algorithm and consensus control algorithm are combined to
help UAV formation avoid obstacles and keep formation. SAPF is used to help UAVs
fly to the target and avoid obstacles, and the consensus control algorithm is used to help
multiple UAVs form a specified communication topology. The two algorithms are combined
to simultaneously ensure that no collision occurs between UAVs and communication
interaction can be maintained. That is,

lmin ≤ dij ≤ Rc (11)

The SAPF algorithm establishes an attractive potential field for the target and a
repulsive potential field for the obstacle. The two potential fields are combined to avoid the
collision between the UAV and the obstacle in the process of flying to the target position.
The attractive and repulsive potential fields are expressed as

Uatt(p) =
1
2

katt · l2(puav, ptar) (12)

Urep(p) =

⎧⎪⎨⎪⎩
1
2

krep(
1

l(puav, pobs)
− 1

lo
)

2
, l(puav, pobs) ≤ lo

0 , l(puav, pobs) > lo

(13)

where katt is the attraction gain factor, krep is the repulsive force gain coefficient, l(puav, ptar)

denotes the vector distance between UAV and target position, l(puav, pobs) is the vector
distance between the UAV and the obstacle, i.e., the Euclidean distance between two points.
lo is a constant that represents the maximum range over which the obstacle can affect the
UAV. The attractive and repulsive forces are the negative gradients of the attractive and
repulsive potential fields, respectively, and the attractive and repulsive force functions are
expressed as

Fatt(p) = −∇(Uatt(p)) = −katt · l(puav, ptar) (14)

Frep(p) =

⎧⎪⎨⎪⎩krep(
1

l(puav, pobs)
− 1

lo
) · 1

l2(puav, pobs)
· ∂(l(puav, pobs))

∂(p)
, l(puav, pobs) ≤ lo

0 , l(puav, pobs) > lo

(15)

Then, adding the speed steering force to solve the local minimum problem, the speed
steering force is expressed as

Fv
rep =

⎧⎪⎨⎪⎩
kv

rep(
1

l(puav, pobs)
− 1

lo
) · v, l(puav, pobs) ≤ lo

0 ,l(puav, pobs) > lo

(16)

where kv
rep is the speed repulsion force gain coefficient, v is the speed of the UAV, and the

direction of Fv
rep is perpendicular to v. Therefore, the resultant repulsive force is expressed as

Fsum
rep = Frep(p) + Fv

rep (17)

In addition, this paper adopts the formation control mode of the virtual pilot. Then,
the consensus algorithm, according to the double integral dynamic system shown in
Equation (2), is further expressed as

ui = −
n

∑
j=1

aij(t)(c1(puav
i − puav

j − Δhij) + c2(vi − vj))− fr, i = 1, 2, . . . , n (18)
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fr = c3(puav
i − p∇) + c4(vi − v∇) (19)

where c1 and c3 are stiffness gains, c2 and c4 are damping gains, aij(t) represents the
adjacency matrix of each UAV communication topology in a multi-UAV network, and Δhij
is the relative position of UAV i and UAV j. p∇ and v∇ are the speed and position of the
virtual leader. That is, fr represents the tracking item of the virtual leader by the UAV.

Therefore, based on the SAPF generated forces derived from each UAV’s current posi-
tion and speed and environmental conditions, combined with the control inputs generated
by the consensus control algorithm, the control inputs for UAV i in the multi-UAV network
are as follows

Fi
sum = Fi

att + Fsum,i
rep + ui ·mi (20)

where mi is the mass of UAV i. In summary, the formation control algorithm of multi-UAV
network controls the flight direction and speed of UAV i by controlling the input Fi

sum to
solve the obstacle avoidance problem of multi-UAV network.

3.3. Formation and Connectivity Restoration of Multi-UAV Network

As shown in Figure 6, UAVs move away from the formation in order to avoid obstacles
during flight. UAV 3 loses connection with the formation to avoid obstacles, and UAV
5 restores connectivity to the multi-UAV network as a repair UAV. In this paper, a layer-
based recursive self-healing formation algorithm is used for the situation that a multi-UAV
network cannot maintain connectivity when UAVs have to stay away from the system in
order to avoid obstacles during flight. When the topology of multi-UAV network formation
is forced to change, the algorithm can maintain the connectivity of the system network and
complete formation reconstruction without changing the network topology relationship of
UAVs. The proposed algorithm block diagram is shown in Figure 7.

Figure 6. Influence of obstacle for UAV topology.
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Figure 7. Algorithm block diagram of topology reconfiguration.

Before the departure of the multi-UAV network, UAVs are divided into layers ac-
cording to the number of communication links of them. If there is a communication link
between UAV i and UAV j, then Eij = 1. Select UAV i, satisfying arg max ∑

j
Eij, ∀i, as the

first layer of the multi-UAV network. If there are UAVs with the same number of links,
select the UAV close to the target position. Then, the UAVs that have a communication link
with the UAVs on the first layer are used as the second layer, and the division method of
the third layer and subsequent layers is the same as above. Then, number each UAV in
order from top to bottom and from left to right and assign weights to UAVs according to
the position difference of each UAV in the expected formation. Generally, the multi-UAV
expected formation is divided into three layers from top to bottom according to the princi-
ple of hierarchical division, and the basic formation configuration is obtained. The position
of the first UAV in the initial formation is generally at the center UAV of the first layer. The
numbering method of the second layer specifies the relative position of each UAV in order
from left to right. The naming method of the third layer and subsequent layers is the same
as that of the second layer. After layering, two control mechanisms, hierarchical weight βq
and intra-layer position weight βp, were established by setting the corresponding weight
coefficients to ensure the stability of the UAV reconstruction formation. The UAVs in the
first layer have the largest βq, which decrease according to the increase of the number of
layers; the position weights βq within the layer decrease in order from left to right. For
V-shaped formations, each UAV βq within the same layer is equal,βp is not equal, and
βq >> βp.

When a UAV is damaged or forced to leave the system, the child UAV of the problem
UAV is used as the repair UAV. The multi-UAV formation is traversed down along the
communication link until the entire UAV formation is traversed. Then, the repair subnet is
established. If there are multiple child UAVs, the child UAV that can reach the expected
position of the problem UAV the fastest is judged as the repair UAV according to the
position, speed, and acceleration of each child UAV at the current moment. If there are
multiple problematic UAVs, select the child UAV of the problematic UAV with a larger
weight to repair the missing position. The repair UAV first flies to the desired position of the
problem UAV, so as to establish connectivity with other child UAVs of the original problem
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UAV. The repair UAV is within the maximum communication link range with the root UAV
of the problem UAV and approaches the movement direction of the problem UAV when it
leaves the team. It then restores the connection with the problem UAV as much as possible.
If the connection with the problem UAV cannot be restored, the sub-UAV of the repair also
approaches the problem UAV to form a serial link to expand the communication range.

After the repair subnetwork is established, the weights of the sub-UAVs of the problem
UAVs are updated. First, each UAV recalculates the current weights according to the
formation in the repair subnetwork. It then sends the new weights to the UAVs through
the link. Human–machine and the repair UAV sums the new weight and its own weight to
realize the weight update.

3.4. Connectivity-Maintenance Formation Control Algorithm

Algorithm 1 shows the pseudocode of the CMUFC algorithm. First, initialize the
position of M UAVs in the multi-UAV network, as well as the radius, maximum speed,
acceleration and other parameters of the UAVs. Randomly initialize the positions of
O obstacles and K interference sources. Set the transmit power of interference sources,
the influence range of obstacles, etc. (lines 1–2). Let Ti denote the mission completion
time of UAV i, where i ∈ {1, 2, . . . , M}. Divide each task duration Ti in the discrete
time domain into multiple time steps t according to a fixed time interval Δt. That is, t is
represented as the t-th time period Δt. Second, at each time slot t, for each UAV i, first
calculate the communication distance according to the interference power and path loss
of the interference source. Then, calculate the distance between it and other UAVs with
communication links in the system. Calculate the distance between it and the target position
and obstacle position. After that, calculate the resultant force generated by the multi-UAV
formation obstacle avoidance control algorithm according to the distance. Finally, calculate
the position of the UAV under the constraints of speed and acceleration at time t + 1 (lines
5–8). Third, judge whether there is an undirected path in the multi-UAV network at time
t + 1 to satisfy the system connectivity. If it exists, continue looping. If it does not exist
according to the CMUFC algorithm, the problem UAV is set as the root UAV, and its child
UAVs are used as the repair UAV. Then, let it fly to the expected position to restore system
connectivity (lines 9–13).

Algorithm 1 CMUFC

1: Initialize the physical parameters of M UAVs
2: Initialize the physical parameters of O obstacles and K interference sources
3: for t = 1, . . . , T do
4: for i = 1, . . . , M do
5: Calculate the communication distance of UAV i in Equation (10)
6: Calculate the distance between UAV i and neighboring UAVs in the undirected

path
7: Calculate the resultant force of UAV i in Equation (20)
8: Calculate the position of UAV i under the constraints at time t + 1
9: if there is an undirected path in the multi-UAV network then

10: Continue the cycle
11: else
12: Repair system connectivity
13: end if
14: end for
15: end for

4. Simulation Results

In this section, we simulate a V-formation multi-UAV network and analyze the simu-
lation results. The relevant parameters of the simulation are shown in Table 1.

146



Drones 2023, 7, 229

Table 1. Simulation Parameters.

Parameter Value

Number of UAVs M = 5
Transmitting power of UAVs Puav = 36 dBm

Maximum speed of UAV vmax = 30 m/s
Maximum acceleration of UAV amax = 30 m/s2

Number of interference sources K = 3. 1
Power of interference sources Pint = 10–36 dBm

Number of obstacles O = 10
Obstacle size ro = 30–50 m

Position attractive force coefficient katt = 0.1
Position repulsive force coefficient krep = 1500
Speed repulsive force coefficient kv

rep = 100
Radius of influence of obstacles lo = 100 m

Safe radius of the UAV lmin = 10 m

We simulate the performance of the CMUFC algorithm in different scenarios and
compare it with the traditional formation control algorithm by APF. The scenario where
there are interference sources is shown in Figure 8, and the powers of these three inter-
ference sources are 23 dBm, 26 dBm, and 10 dBm, respectively. The CMUFC algorithm
helps UAVs to fly to areas with less interference, thereby maintaining the connectivity of
the multi-UAV network. Figure 9 shows the communication range of UAVs. When the
multi-UAV network is closer to the interference source, the communication range is smaller.
Among them, UAV1 and UAV4 are the UAV communication ranges calculated by our pro-
posed algorithm, and UAV1′ and UAV4′ are the communication ranges calculated by the
traditional formation control algorithm. Figure 10 shows the distance between two UAVs.
The proposed algorithm can help the multi-UAV network adaptively reduce the formation
distance to maintain the connectivity of the entire network when the communication range
decreases. In addition, as shown in Figure 10, the farthest distance between two UAVs
in the multi-UAV network, UAV1 and UAV4, satisfies the communication requirements
of UAVs shown in Figure 9. However, the traditional formation control algorithm makes
the distance between UAVs far greater than its communication distance, resulting in the
inability of the multi-UAV network to maintain connectivity.

Figure 8. Multi-UAV flight under interference.
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Figure 9. Communication distance of UAVs under interference.

Figure 10. Distance between UAVs under interference.

Furthermore, we simulate a complex environment with obstacles and interference
sources as shown in Figure 11, where the power of the interference source is 36 dBm, and
the radius of the obstacle is 30–50 m. The CMUFC algorithm helps the multi-UAV network
fly away from the interference source to maintain connectivity. Due to the existence of
interference, the communication distance between UAVs is reduced, making it easier for
UAVs to collide with obstacles. Compared with the traditional formation control algorithm,
our algorithm keeps the multi-UAV network away from obstacles and improves safety. The
distance between UAV1 and UAV4 when flying in a complex environment is shown in
Figure 12. The CMUFC algorithm helps UAVs shorten the distance between them without
colliding with each other to maintain the connectivity of the entire system when UAVs are
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interfered. Figure 13 shows the communication distance of UAVs in complex environments.
Compared with the traditional formation control algorithm, the CMUCF algorithm controls
the flight distance between the UAVs to be less than its communication distance in their
entire flight.

Figure 11. Multi-UAV flight in complex environment.

Figure 12. Distance between UAVs in complex environment.
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Figure 13. Communication distance of UAVs in complex environment.

5. Conclusions

We investigated the problem of maintaining the connectivity of multi-UAV networks
in complex environments. For complex environments with obstacles and interference
sources, the CMUFC algorithm helps multi-UAV networks safely avoid obstacles and
maintain connectivity during flight. In order to solve the problem that UAVs may collide
with obstacles during fast flight, the traditional APF is improved, and SAPF is proposed
to help UAVs avoid obstacles more safely. In addition, in order to solve the situation that
UAVs leave the team and are forced to change the communication topology during the
obstacle avoidance process, the proposed method helps the multi-UAV network to perform
formation reconstruction. The simulation results show that the CMUFC algorithm is helpful
for multiple UAVs to form, maintain, and reconstruct the formation during their flight.
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Abstract: An efficient control of large-scale unmanned aerial vehicle (UAV) swarm to establish a
complex formation is one of the most challenging tasks. This paper investigates a novel multi-layer
topology network and consensus control approach for a large-scale UAV swarm moving under a
stable configuration. The proposed topology can make the swarm remain robust in spite of the
large number of UAVs. Then a potential function-based controller is developed to control the UAVs
in realizing autonomous configuration swarming under the consideration of mutual collision, and
the stability of the controller from the individual UAV to the entire swarm system is analyzed by a
Lyapunov approach. Afterwards, a yaw angle adjustment approach for the UAVs to reach consensus
is developed for the multi-layer swarm, then the direction state of each UAV converges with a fast
rate. Finally, simulations are performed on the large-scale UAV swarm system to demonstrate the
effectiveness of the proposed scheme.

Keywords: multi-layer graph; potential function; consensus control; UAV swarm

1. Introduction

Over the past few decades, the investigation of large-scale swarm has received exten-
sive attention in different fields, such as biology, physics, medicine, sociology,
engineering, et al. [1–3]. Swarm refers to a super large-scale isomorphic individual, based
on group dynamics and information perception, supported by efficient and safe collabora-
tive interaction between individuals, with the emergence of swarm intelligence as the core,
and based on a comprehensive integration of open architecture. It is a complex system with
the advantages of invulnerability, adaptive dynamic configuration, functional distribution,
and intelligent features. The Boid model is the first model established by Reynold to
simulate group behavior [4], and three heuristic rules are introduced in this model, namely
separation, cohesion and alignment. On the basis of these three rules, many scholars
have conducted in-depth investigation on the swarming movement [5,6]. For example,
Olfati-Saber R [7] proposes a theoretical framework of distributed swarm algorithms, and
swarm in free space and multiple obstacles avoidance are also considered. Inspired by the
above work, Su H et al. [8] revisits the problem of multiagent system in the absence of the
above two assumptions.

Combining robot technology with swarm algorithms is one of the hotspots [9,10]. In
particular, Enrica Soria et al. [11] published in the journal Nature combines the local princi-
ples of potential field methods into an objective function and optimizes those principles
with knowledge of the agent’s dynamics and environment, resulting in improving drone
swarm speed, order and safety. In [12], a multi-layer grouping coordination methodology
is proposed to achieve different shape configuration for a large-scale agents. In [13], a
new topology approach based on multilevel construction is adopted to present swarm
robots of different shapes in the desired region. A novel multi-layer graph is presented
by [14] for multi-agent systems to enable scalability of the interaction networks, and the
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model predictive control method is applied for tracking trajectories; In [15], a multi-layer
formation control scheme and a layered distributed finite-time estimator is designed for
agents, which impels them to reach the desired positions and velocities according to the the
information of agents in their prior layers. In practice, many issues need to be considered
in order to implement formation control approaches successfully, such as the avoidance of
the obstacles and collisions.

The artificial potential field (APF) models provides an effective solution for practical
applications, which attracts the agent to the target and repulses it for avoidance, and
can be executed quickly and provides a viable solution [16]. In [17], a rotating potential
field is introduced, which makes the UAVs can escape from the oscillations and ensures
that the follower-leader maintains the desired angles and distances. Based on the APF
approach in [18], a novel automatic vehicles motion planning and tracking framework
is presented, and the effectiveness is validated in real experiment. In [19], an adaptive
synchronized tracking control based on the neural network is applied to boat by combining
with APF and robust H∞ methods, and the artificial potential method is used to guarantee
the boat maintaining desired distance with obstacles. In [20], different forms of potential
field functions are used for repulsion, velocity alignment and interaction with walls and
obstacles, and the proposed model is validated on a self-organized swarm of 30 drones.

Consensus control of multiagent systems is also a hotspot now, which means all the
agents in the system converge to the same state by the specific control law. In [21], a dis-
tributed active anti-disturbance cooperative control method with a finite-time disturbance
observer is proposed to achieve the consensus in finite time for the agents. In [22], the
consensus control problem is investigated under an event-triggered mean-square consensus
control law for a class of discrete time-varying stochastic multi-agent system. There are
three approaches proposed by [23] for consensus control of the multi-agent systems on
directed graphs, and some correlative examples are presented to validate the effectiveness.
In [24], the synergistic trajectory tracking problem of UAVs formation is investigated, both
the position tracking to the desired position and the attitude tracking to the command
attitude signal are achieved with the stability analysis and simulations validation.

The main challenges that impede the solving of the configuration and consensus
problem for the swarm are the large-sclae of the community and the chronological order
of configuration and consensus. Therefore, we have carried out the following research to
solve these problems. In order to improve the scalability of the network topology under
the large size of the swarm situation, based on the concept of [14], a multi-layer network
graph model is proposed for the large-scale UAV swarm, which allows the configuration to
be more adjustable and robust. After the configuration of the swarm is completed, to make
each UAV in the swarm reach an agreement, a multi-layer recursive consensus control
concept is designed for the UAV swarm, so that the yaw angles of UAVs in each layer tend
to be consistent.

The remainder of the paper is organized as follows. Section 2 describes some pre-
liminaries and formulates the problem to be investigated in this paper. In Section 3,
the multi-layer UAVs swarm configuration control strategy and the consensus concept are
proposed. The effectiveness of the proposed methodologies is illustrated by numerical
analysis in Section 4. Finally, the results of our work are briefly summarized in Section 5.

2. Preliminaries and Problem Statements

2.1. Graph Theory

In this subsection, some introductions of the graph theory are listed. Firstly, we define
undirected graph G = (ν, ε) as the interaction topology which consists of ν = (1, 2, . . . , n) a
list of vertices , whose elements represent individual UAV in the swarm,
and ε ⊆ ((i, j) : i, j ∈ ν, i �= j; ) a list of edges, containing unordered pairs of vertices. An
edge (i, j) ∈ ε of the undirected graph G means that the UAV i and UAV j can exchange in-
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formation. For the undirected graph G, the adjacency matrix is given by A =
[
aij
]
∈ RN×N

with aij = 0 ⇔ (i, j) ∈ ε , aij = aji. The neighboring set of agent is denoted in [25]:

Ni = {j ∈ ν : aij �= 0} = {j ∈ ν : (i, j) ∈ ε} (1)

2.2. Problem Descriptions

The consistency problem aims at designing appropriate protocols such that the group
of UAVs can reach consensus, exploiting only local information exchange among neighbors
and unreliable information exchange and dynamically changing interaction topologies. In
this paper, our target is to regulate the entire swarm (from each agent to multilayer) move
at a same velocity (the same magnitude and direction)and maintain constant distances
between the same agent layers. Based on the vicsek model, our hypothesis implies that
each agent in the same layer adjusts its velocity by adding to it a weighted average of
the differences of its velocity with the others. Then the potential function is necessary to
proposed for maintaining a constant distance of each UAV and each layer such that their
potentials become minima. In the next section, we will describe the control strategy for our
multi-layer grouping swarm specifically.

For brevity, two assumptions is given as follows

Assumption 1. We assume the Large-scale UAVs swarm consisting n UAVs with the same
dynamic characteristics flying in a same altitude space. Therefore, the working environment of each
UAV can be consider a two-dimensional space.

Assumption 2. In the case of controlling large-scale swarm, we assume each UAV as a point mass,
which means the influence of the size and shape of each UAV can be ignored.

3. Multi-Layer Consensus Control Architecture

3.1. Multi-Layer Graph Model

The proposed multi-layer UAVs swarm model is a multipartite network, which is
composed of a series of similar layer structures. In each layer, a certain number of subgroups
form a higher layer network by the corresponding control law. Note that each layer is
strictly follows the same network characteristics, such as position distribution, potential
function, velocity consistency, and so on. Based on the above rules, a hierarchical network
structure is constructed.

When the multi-layer structure is considered, the first layer characterized by the position-
based interaction forms a primary formation configuration. We assume that the whole swarm
includes n UAVs, l layers, and there can only be No neighbors from the independent UAVs
to each subgroups. We assume that n is divisible by No + 1. Therefore, the undirect graph
of the first layer can be defined as G1 = (ν1, ε1), where ν1 = (1, 2, . . . , n/(No + 1)) and
ε1 ⊆ ((i, j) : i, j ∈ ν1, i �= j; ); The second layer undirected graph consists of the first layer,
which is defined as G2 = (ν2, ε2), where ν2 =

(
1, 2, . . . , n/(No + 1)2

)
and second list of

edges ε2 ⊆ ((i, j) : i, j ∈ ν2, i �= j; ); Based on the above rules, we denote Gm = (νm, εm),
m = 1, 2, . . . l as the interaction network topology to characterize the underlying infor-
mation flow among the UAVs in the mth layer, where νm =

(
1, 2, . . . , n/(No + 1)m) and

εm ⊆ ((i, j) : i, j ∈ νm, i �= j; ). Then the neighboring set from the first layer to the mth layer
can be denoted as N1

i , N2
i , ..., Nm

i .

3.2. Swarm Configuration

Based on the above conclusions, in order to realize the multi-layer grouping configura-
tion of the whole swarm, firstly we define the dynamic of each UAV as follows:{

ẋi = vi
v̇i = ui

i = 1, 2, ..., n (2)
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From single agent to multi-agent system, the dynamic protocol of the UAV swarm in
each layer is described as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f irst layer
{

ẋ1
i = v1

i
v̇1

i = u1
i = f 1

sum − k1 ẋ1
i

i ∈ ν1

second layer
{

ẋ2
i = v2

i
v̇2

i = u2
i = f 2

sum − k1 ẋ2
i

i ∈ ν2

...

mth layer
{

ẋm
i = vm

i
v̇m

i = um
i = f m

sum − k1 ẋm
i

i ∈ νm

(3)

where x1
i , v1

i ∈ Rn are respectively the position and velocity of each UAV in the subgroup
of first layer, u1

i ∈ Rn is the control input acting on it, f 1
sum is the resultant force contains

obstacle avoidance force and collision avoidance force between UAVs. For the second layer,
x2

i , v2
i ∈ Rk2 and u2

i ∈ Rk2 are respectively the position, velocity and the control input of the
UAV in the subgroup of second layer, where k2 = n/(No + 1) is the element number of the
ν2; and f 2

sum is the resultant force contains not only mutual forces from each UAV but also
has potential field force from other subgroups in the second layer. Silimarly, xm

i , vm
i ∈ Rkm

and um
i ∈ Rkm are respectively the position, velocity and the control input of the UAV in

the subgroup of mth layer, where km = n/(No + 1)(m−1) is the element number of the νm;
and the resultant force f m

sum contains the mutual forces from each UAV in the whole global
and the potential field forces from the second layer to the mth layer. Furthermore, k1 is a
positive constant for damping action.

By analyzing the dynamic model of the UAV (2), we design the corresponding control
law to make UAVs reach their desired configuration. Two forces will be engendered based
on the designed potential functions to drive all the UAVs move into the desired position
and avoid mutual collisions.

The mathematical expression of potential function is as follows

Vij(dij) =

{
− ξ

dij
r0

ln(
dij
r0
) +

dij
r0

xi ∈ N1
i

0 otherwise
(4)

where ξ is the positive control coefficient, dij =
∥∥xi − xj

∥∥ is the distance between agent i
and agent j, r0 is the desired radius between each UAV.

Differentiating (3) with respect to dij yields a potential force as

fij = −∇Vij(dij) =

{
ξ ln(

dij
r0
) xi ∈ N1

i
0 otherwise

(5)

In another case, when UAV i and UAV j are not well-defined neighbors, both can be
regarded as obstacles to each other. Therefore, another potential function to avoid obstacles
is necessary to proposed as follows

Vo(dio) =

{
η(r0 − dio)

xi−xj
dio

dio < r0

0 dio ≥ r0
(6)

where η is the positive control gain, xo is the position of the obstacle o. dio = ‖xi − xo‖ is
the distance between UAV i and the obstacles.

Then we define the set of the obstacles as

Oi = {j /∈ Ni|dio < r0 } (7)
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The corresponding force obtained from Vo is

fio = −∇Vo(dio) =

{
η

dio
2 r0(xi − xo) dio < r0

0 dio ≥ r0
(8)

Based on the above two forces, the resultant force f 1
sum for the first layer is expressed

as follows

f 1
sum= ∑

j∈N1
i

fij + ∑
o∈Oi

fio (9)

the control input can be described as follows

u1
i = ∑

j∈N1
i

fij + ∑
o∈Oi

fio − k1 ẋ1
i

= − ∑
j∈N1

i

∇Vij(dij)− ∑
o∈Oi

∇Vo(dio)− k1 ẋ1
i

(10)

For the second layer, in addition to the mutual force between the individual UAV, the
swarm are also affected by the potential field force between the subgroups. We define the
potential function of the second layer as follows

V2
ij (d

2
ij) =

⎧⎨⎩ −ξ
d2

ij

r2
0

ln(
d2

ij

r2
0
) +

d2
ij

r2
0

x2
i ∈ N2

i

0 otherwise
(11)

where d2
ij =

∥∥∥x2
i − x2

j

∥∥∥, r2
0 is the desired distance of the second layer. Then the correspond-

ing potentional force is expressed as follows

f 2
ij = −∇V2

ij (d
2
ij) (12)

At the same time, each UAV in the swarm has gathered within a fixed area, then the
force to avoid obstacles disappears. Therefore, resultant force f 2

sum are combined as follows

f 2
sum= ∑

j∈N1
i

fij + ∑
j∈N2

i

f 2
ij (13)

The control law u2
i of the second layer can be describe as follows

u2
i = ∑

j∈N1
i

fij + ∑
j∈N2

i

f 2
ij − k1 ẋ2

i

= − ∑
j∈N1

i

∇Vij(dij)− ∑
j∈N1

i

∇V2
ij (d

2
ij)− k1 ẋ2

i
(14)

For the mth layer, we assume it as the last layer of the whole swarm, then each UAV in
mth layer is subject to global forces. The potential function is described as follows

Vm
ij (d

m
ij ) =

{
−ξ

dm
ij

rm
0

ln(
dm

ij
rm

0
) +

dm
ij

rm
0

xm
i ∈ Nm

i
0 otherwise

(15)

where dm
ij =

∥∥∥xm
i − xm

j

∥∥∥, rm
0 is the desired distance of the second layer. Then the correspond-

ing potentional force is expressed as follows

f m
ij = −∇Vm

ij (d
m
ij ) (16)
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Different from (13), the resultant force f m
sum combines all the forces from the first layer to

the mth layer in the global, and the form is as follows

f m
sum= ∑

j∈N1
i

fij + ∑
j∈N2

i

f 2
ij + . . . + ∑

j∈Nm−1
i

f m−1
ij + ∑

j∈Nm
i

f m
ij (17)

The global control law um
i is list as follows

um
i = ∑

j∈N1
i

fij + ∑
j∈N2

i

f 2
ij + . . . + ∑

j∈Nm−1
i

f m−1
ij + ∑

j∈Nm
i

f m
ij − k1 ẋm

i

= − ∑
j∈N1

i

∇Vij(dij)− ∑
j∈N2

i

∇V2
ij (d

2
ij)− . . .− ∑

j∈Nm−1
i

∇Vm−1
ij (dm−1

ij )

− ∑
j∈Nm

i

∇Vm
ij (d

m
ij )− k1 ẋm

i

(18)

The control law of the entire UAV swarm are completed. Furthermore, the stability of
the configuration needs to be analyzed.

Theorem 1. Consider a subgroup of n UAVs with dynamics (2), under the control law (10), each
UAV can stay at a desired position and the forces and velocity converge to zero finally.

Proof of Theorem 1. Define a Lyapunov function candidate as

V1 = ∑
j∈N1

i

Vij(dij) + ∑
o∈Oi

Vo(dio) +
1
2

ẋ1
i

T
ẋ1

i (19)

From the above conclusion we can get V1 is non-negative. Differentiating (19) with respect
to time and combining with (2), (3) and (10), we have

V̇1 = ẋ1
i

T
( ∑

j∈N1
i

∇Vij(dij) + ∑
o∈Oi

∇Vo(dio) + ẍ1
i )

= ẋ1
i

T
(− f 1

sum + u1
i )

= −k1 ẋ1
i

T ẋ1
i

≤ 0

(20)

Thus the energy of each UAV i (i = 1, 2, ..., n) monotonically decreasing. From the
analysis we can conclude that the velocity of UAVs eventually converge as the same.

Theorem 2. For the entire swarm with n agents, under the global control law (18), all the UAVs
can arrive at the desired positions, the potential forces from the first layer to the mth layer and
velocity converge to zero finally.

Proof of Theorem 2. Define the global Lyapunov function candidate as

Vm =
n
∑

i=1
( ∑

j∈N1
i

Vij(dij) + ∑
j∈N2

i

V2
ij (d

2
ij)+ . . . + ∑

j∈Nm−1
i

Vm−1
ij (dm−1

ij )

+ ∑
j∈Nm

i

Vm
ij (d

m
ij ) +

1
2 ẋm

i
T ẋm

i )
(21)

From the (5), (11) and (15) we can get Vm is non-negative.
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Differentiating (21) with respect to time and combining with (3) and (18), we have

V̇m =
n
∑

i=1
ẋm

i
T( ∑

j∈N1
i

∇Vij(dij) + ∑
j∈N2

i

∇V2
ij (d

2
ij)

+ . . . + ∑
j∈Nm−1

i

∇Vm−1
ij (dm−1

ij ) + ∑
j∈Nm

i

∇Vm
ij (d

m
ij ) + ẍm

i )

=
n
∑

i=1
ẋm

i
T(− f m

sum + um
i )

= −k1
n
∑

i=1
ẋm

i
T ẋm

i

≤ 0

(22)

Therefore, the total potential energy can approach the minimumwe and ẋm
i → 0 as t → ∞

for all the UAVs in the swarm, and so is ẍm
i . As a result, the multi-layer configuration of

the swarm is constructed.

3.3. Consensus Strategy

In this subsection, all the UAVs in the swarm have formed a fixed formation configu-
ration based on the potential function control law. However, the yaw angle ψ of each UAV
is still arbitrarily uncertain. In order to keep the flight states of all the UAVs in consensus, a
yaw angle adjustment method based on the concept of the Vicsek model [26] is proposed
for the multi-layer UAVs swarm.

For simplicity, we relabel each UAV in different layers. The edge of the first layer is
ε1 ⊆ ((i1, j1) : i1, j1 ∈ ν1, i1 �= j1;). For the second layer, ε2 ⊆ ((i2, j2) : i2, j2 ∈ ν2, i2 �= j2;).
For the mth layer, the edge is labeled as εm ⊆ ((im, jm) : im, jm ∈ νm, im �= jm;). Then the
UAVs in each subgroup make corresponding updates according to the states of the previous
subgroups, and finally achieve consensus.

For the first layer, the UAVs yaw angle adjustment strategy is as follows

ψi1(t + 1) = arctan

No+1
∑

j1=1
sin ψj1(t)

No+1
∑

j1=1
cos ψj1(t)

(23)

The attitude of the UAV i1 can be updated according to the attitude of all the UAVs in the
same subgroup. Therefore, the consensus of the first layer is achieved.

For the second layer, the UAVs yaw angle are adjusted by the following approach

ψi2(t + 1) = arctan

No+1
∑

j2=1
sin ψj2 (t)

No+1
∑

j2=1
cos ψj2 (t)

= arctan

No+1
∑

j2=1
sin( 1

No+1

No+1
∑

j1=1
ψj1

(t))

No+1
∑

j2=1
cos( 1

No+1

No+1
∑

j1=1
ψj1

(t))

(24)

Therefore, ψi2 is obtained from the average of the yaw angles of the individual UAVs
in all the subgroups for the first layer.

Based on the above strategy, the UAVs yaw angle adjustment strategy for the mth
layer is as follows
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ψim(t + 1) = arctan

No+1
∑

jm=1
sin ψj2 (t)

No+1
∑

jm=1
cos ψj2 (t)

= arctan

No+1
∑

jm=1
sin( 1

No+1

No+1
∑

jm−1=1
ψjm−1

(t))

No+1
∑

jm=1
cos( 1

No+1

No+1
∑

jm−1=1
ψjm−1

(t))

(25)

In the above, we describe the consensus strategy between different layers, then all
the UAVs in the swarm achieve consensus eventually. For the specific example of the
UAVs swarm, as shown in Figure 1, assume n = 9, No = 2, there are nine UAVs labeled as
A1, . . . , A9, then the whole swarm can be combined as three first layer subgroups named as
G1

1 , G2
1 , G3

1 ,which constitute a second layer G2. Futhermore, G1
1 is composed of A1, A2, A3, G2

1
and G3

1 are consisted of A4, A5, A6, A7, A8, A9, respectively. Then we set the communication
between G1

1 and G2
1 are connected by A2 and A4, G2

1 and G3
1 are connected by A6 and A8,

G1
1 and G3

1 are connected by A3 and A7. Firstly, the UAV swarm achieves the desired
configuration through the forces between the UAV individuals and between the same
layers. Taking A2 as an example, A2 is subjected to the forces of A1 and A3, namely fA2 A1
and fA2 A3 , A2 is also subject to f 2

G1
1G2

1
and f 2

G1
1G3

1
, which are the components between G1

1

and G2
1 and between G1

1 and G3
1 , respectively. After the whole swarm reaches the desired

configuration, the resultant force of A2 is zero. Furthermore, let G1
1 , G2

1and G3
1 achieve

intra-group consensus through the yaw angle adjustment stragety (23), and reach the same
yaw angle ψA1 , ψA4 and ψA7 respectively. For the second layer, G2 achieve the intra-group
consistent yaw angle from the average of the ψA1 , ψA4 and ψA7 . Based on this rule, the
entire swarm achieves consensus eventually.

Figure 1. Communication topology with n = 9, No = 2.

4. Simulation Study

To illustrate the effectiveness of the proposed multi-layer topology and the consensus
algorithm, corresponding simulation results under different conditions are presented in
this section. For the multi-layer UAVs swarm, we consider a group of networked UAVs
with n = 27, No = 2, which contains two layer subgroups. The control parameters are
chosen as r0 = 2 m, r2

0 = 4 m, ξ = 20, η = 5.

160



Drones 2022, 6, 402

4.1. Swarm Configuration

For the proposed multi-layer UAVs system, all the UAVs are randomly distributed in
a fixed working area. Firstly, based on the adjacent principle, under the control law (10),
all the neighbors in the UAVs swarm are assigned to establish the multi-layer network
topology. All the UAVs move towards their desired location and keep the desired distances
with their neighbours under the forces between the UAV individuals and the forces between
layers at the same level, the repulsive forces makes UAVs avoid collisions and keep the
desired distance between them, while the force between layers makes the UAV swarm
achieve the desired configuration, then the resultant force from the artificial potential
converges to zero. In different situations, the number of UAVs in the whole system and the
number of their neighbors can be seted arbitrarily, so as to adjust the structure of the entire
network topology. When all the UAVs complete the assignment of neighbors, the first layer
topology within a set of subgroups is constructed, under the swarm configuration control
law (14), all the subgroups can be treated as independent individuals, then the neighbors
are assigned to these subgroups and the second layer network topology is established.
Based on this rule, the subgroups will adjust their position and form a higher level group,
until all the UAVs achieve the desired configuration. Here, we take 27 UAVs as an example
to illustrate the effectiveness of control laws. As shown in Figure 2, in the initial state,
the distance between UAV individuals is arbitrary, within the range of 25 m, then after
the UAVs start to communicate with each other, in a short iteration step, the UAVs at
any position converge quickly. When the step reaches around 150, the distance between
UAVs is within 2 m, and the expected configuration is basically achieved. As a result, all
UAVs in the swarm of each layer tend to be at the desired distance with the high formation
configuration results after 800 steps.

Figure 2. The distance between all neighbor UAVs in the configuration.

4.2. Consensus Control

When the swarm have achieved the desired configuration, the proposed consensus
control approach will adjust the attitude of all the UAVs to achieve consensus. Figure 3
shows the process of achieving consensus from the initial yaw angle states. After the system
completes the desired configuration, the UAVs have arbitrary yaw angles. Then, under
the control law (23), the three UAVs in each group in the first layer adjust the yaw angles
to reach a consistent state, and then control law (24) enables the unification of the yaw
angle of UAVs between layers. It can be seen that when step = 150, the yaw angle of UAV
basically reaches 3 degree. After step = 500, the swarm completes the unification of yaw
angle. As a result, all the UAVs realize the motion consensus according to the proposed
recursive consensus control concept, while maintaining the desired swarm configuration
and moving in the same direction.
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Figure 3. The yaw angle of each UAV in the configuration.

5. Conclusions

The current paper proposed a multilayer framework based on the multi-layer con-
cept to deal with the multiagent problem with arbitrary number of UAVs. The primary
contribution is that the designed multi-layer structure can be used to form the desired
configuration and keep consensus under the context of large-scale UAVs swarm with
Assumption 1 and Assumption 2, rather than moving into random positions. A potential
function-based multi-layer controller is developed to drive all the UAVs to achieve the
desired configuration precisely without collisions. Then all the UAVs reach an agreement
through the consensus algorithm. The stability of the system is proved by the Lyapunov
approach. The simulation studies demonstrated the effectiveness of the proposed methods
for the UAVs swarm. In our future work, the trajectory tracking and the obstacle avoidance
of the large-scale UAVs swarm will be investigated under the Active Disturbance Rejection
Control approach.
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Abstract: Mobile edge computing (MEC) is a novel paradigm that offers numerous possibilities for
Internet of Things (IoT) applications. In typical use cases, unmanned aerial vehicles (UAVs) that can
be applied to monitoring and logistics have received wide attention. However, subject to their own
flexible maneuverability, limited computational capability, and battery energy, UAVs need to offload
computation-intensive tasks to ensure the quality of service. In this paper, we solve this problem for
UAV systems in a 5G heterogeneous network environment by proposing an innovative distributed
framework that jointly considers transmission assessment and task offloading. Specifically, we
devised a fuzzy logic-based offloading assessment mechanism at the UAV side, which can adaptively
avoid risky wireless links based on the motion state of an UAV and performance transmission metrics.
We introduce a multi-agent advantage actor–critic deep reinforcement learning (DRL) framework to
enable the UAVs to optimize the system utility by learning the best policies from the environment.
This requires decisions on computing modes as well as the choices of radio access technologies (RATs)
and MEC servers in the case of offloading. The results validate the convergence and applicability of
our scheme. Compared with the benchmarks, the proposed scheme is superior in many aspects, such
as reducing task completion delay and energy consumption.

Keywords: unmanned aerial vehicle; heterogeneous networks; computation offloading; fuzzy logic;
deep reinforcement learning

1. Introduction

Unmanned aerial vehicles (UAVs) have become popular in recent years, thanks to their
mobility, flexibility, and limited costs [1,2]. For instance, when UAV swarms are equipped
with sensing devices, they can be candidates for rapid computing and communication
in scenarios, such as reconnaissance, property surveillance, transportation, agriculture
4.0, etc. [3,4]. In the future, UAV swarms will play a more prominent role in enhancing
existing services and enabling new ones [5]. However, novel services tend to be more
computation-intensive, which is a significant challenge for UAVs with limited on-board
computing power and battery capacity.

In order to alleviate the strain on device resources, multi-access edge computing (MEC)
has received significant attention. By deploying powerful computing units at the edge of
the network to serve devices, MEC can provide computation resources to UAV swarms
in close proximity; as a result, the transmission delay between them as well as the energy
consumed locally are greatly shortened [6]. In other words, by utilizing MEC, UAV swarms
are able to offload task data to edge servers via wireless transmission to assist computing.

The transmission link and network node selections need to be seriously considered
in the task-offloading process [7]. Previous studies [8,9] have mostly been offloaded via
cellular networks, which can cause base station (BS) overload and network congestion in
the face of large-scale UAV swarm connections. Fortunately, thanks to the recent popular 5G
heterogeneous network architecture, which integrates different radio access technologies
(RATs), UAVs can also offload tasks through access points (APs) of deployed Wi-Fi networks,
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thus reducing the pressure on a single cellular network and enhancing the exploits on
available network resources [10]. As a result, different UAV tasks will face many choices
when selecting the target network nodes to request services, and facilities in close proximity
are not always the best choice. Notably, although the UAV link selection in a network-sparse
environment is small and relatively fixed [11], a critical concern of this paper is how flying
UAVs adaptively evaluate and select transmission links in a distributed manner to achieve
flexible and stable offloading in hotspots with overlapped coverage of heterogeneous
networks.

For task offloading, previous works have mainly focused on developing strategies
under system certainty or used centralized approaches when faced with environmental
dynamics. In most cases, they fall short of settling the multi-UAV offloading problem in
unknown environments, particularly when multiple heterogeneous network nodes are de-
ployed and UAVs fly arbitrarily. In addition, the heuristics or dynamic programming meth-
ods commonly used to achieve optimal task-offloading solutions may be time-consuming
due to the large number of iterations required. As a result, these approaches may not be
suitable for real-time offloading decision-making in dynamic environments. Accordingly,
reinforcement learning (RL) has the potential to alleviate excessive computational demands,
so as to enable learning for the agents. Previous online schemes based on RL have coped
with system uncertainty to a certain extent, while offloading strategies are made centrally
by the system or independently by each agent.

In this paper, we propose a distributed task-offloading scheme for multi-UAVs in MEC-
assisted heterogeneous networks with the objective of maximizing the utilities of all UAVs
for processing tasks through multi-UAV collaboration. To prevent UAVs from offloading
via easily disconnected communication links and poorly performing service nodes, we
propose an offloading assessment mechanism for UAV swarms based on fuzzy logic. In the
framework, UAV velocity and transmission quality are jointly considered, and UAVs can
make assessments locally and efficiently based on the perceived information. Subsequently,
we designed an offloading algorithm by applying deep reinforcement learning (DRL),
which adopts multi-agent advantage actor–critic (A2C) policy optimization to automatically
and effectively work out the optimal solution, so as to reduce the task completion time and
energy consumption of an UAV swarm in a MEC environment.

The contributions of this paper are summarized as follows:

• We introduce a multi-agent task-offloading model in a heterogeneous network en-
vironment (which is different from the existing works that consider single-network
scenarios or independent devices). Moreover, the optimization problem is formulated
as a Markov decision process (MDP), which is beneficial for solving the sequential
offloading decision-making for UAV swarm in dynamic environments.

• To facilitate stable offloading of UAVs in any motion state, we devised a fuzzy logic-
based offloading assessment mechanism. The mechanism is executed in a decentral-
ized manner on the UAV with low complexity and can adaptively identify available
offloading nodes that are prone to disconnection or have undesirable transmission
quality.

• Based on the multi-agent DRL framework, we propose a distributed offloading scheme
named DOMUS. DOMUS effectively enables each UAV to learn the joint optimal policy,
such as determining the computing mode and selecting the RATs and MEC servers in
the offloading case.

• We performed different numerical simulations to verify the rationality and efficiency
of the DOMUS scheme. The evaluation results show that the DOMUS proposed
is capable of rapidly converging to a stable reward, achieving the optimal offload-
ing performance in energy consumption and delay by comparing with four other
benchmarks.

The rest of the paper is structured as follows. Section 2 presents the related works
on task offloading. Section 3 illustrates the system model, presents the mathematical
presentation of the task computing model, formulates a utility model for the performance
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metrics of task computing, and defines the optimization problem. An offloading assessment
mechanism based on fuzzy logic is devised in Section 4. In Section 5, we propose a
distributed task-offloading algorithm by applying the multi-agent DRL framework. Finally,
Section 6 demonstrates and compares the efficiency of the proposed scheme and Section 7
summarizes this paper. For ease of reference, the definitions of the key symbols are listed
in Table 1.

Table 1. Key symbol definitions.

Symbols Definition

U = {1, ..., U} Set of UAVs
M = {1, ..., M} Set of servers
κu Task of UAV u ∈ U
du,κ Data size of κu
cu,κ Computation resources required by task κu
α1

u,κ , α2
u,κ Offloading decisions

λu Computational capability of UAV u ∈ U
λm Computational capability of server m ∈ M
lloc
u,κ Execution time in local computing

eloc
u,κ Energy consumption in local computing

ρe
u Energy consumption coefficient per CPU cycle

ξc
u,κ , ξw

u,κ Transmission rate via cellular and Wi-Fi networks, respectively
Bc

u, Bw
u Allocated bandwidth to the UAV u from cellular and Wi-Fi networks, respectively

Pc
u,κ , Pw

u,κ Transmission power of the UAV u via cellular and Wi-Fi connectivities, respectively
Gc

u,κ , Gw
u,κ Channel gain over cellular and Wi-Fi networks, respectively

(σc
u,κ)

2, (σw
u,κ)

2 Noise power of the channel over cellular and Wi-Fi networks, respectively
du,m Distance between the UAV u and the server m
ltr
u,κ,m Task transmission time in the MEC offloading

emec
u,κ Task execution time on the server

emec
u,κ Transmission energy consumption in the MEC offloading

lmec
u,κ Total time in the MEC offloading

êu Maximum energy constraint of the UAV u
l̂u,k, b̂u,k, p̂u,k Tolerable upper bound values for delay, BER, and PLR, respectively
wd,κ , we,κ Balance factors for delay and energy consumption, respectively
Ĉm Computation capacity of the server m
Fu Utility of the UAV u
f uzzy(·) Fuzzy logic processor
pm

u,κ Packet loss rate generated in the data transmission
bm

u,κ Bit error rate generated in the data transmission
χm Offloading probability

2. Related Work

Effective offloading of computer-intensive application tasks for smart devices, espe-
cially UAVs, is becoming more critical. Accordingly, many studies related to task offloading
are being proposed. In this section, we briefly outline the related work.

Some studies consider centralized controllers to realize offloading decisions. Li et al. [12]
considered that the tasks performed in Maritime environments have strict delay requirements;
they designed a genetic-based offloading algorithm for energy-starved UAVs, which optimizes
energy consumption under the task delay constraint. Guo et al. [13] studied task offloading in
a MEC system and attempted to minimize the system overhead by expressing the offloading
as a mixed-integer non-linear programming problem, proposing a heuristic algorithm based
on a greedy policy. Zhang et al. [14] integrated latency and energy consumption to obtain
the offloading utility, which was combined with simulated annealing to make offloading
strategies in MEC, so as to enhance the utility. These efforts [12–14] have global coordination
but require UAVs to upload private information related to the tasks executed and real-time
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status to enable centralized offloading decision-making. This will significantly increase the
burden on the centralized controller when the scale of the UAV swarm increases.

As network environments become larger and more complex, distributed frameworks
are becoming more popular in some computation-offloading efforts [15,16]. Dai et al. [1]
developed a vehicle-assisted offloading architecture for UAVs in smart cities, where vehicles
and UAVs are matched according to preferences and the offloading process of data are
modeled as part of a bargaining game to enhance the offloading efficiency and optimize the
system utility. Zhou et al. [17] modeled the interaction in offloading as part of a Stackelberg
game and maximized the utility of the system. To select a suitable service provider for
the offloaded task of UAV, Gu et al. [18] devised an evolutionary game-based offloading
approach to make a trade-off between latency, energy, and cost. However, these methods
require multiple interactions and iterations of all participants to reach a satisfactory optimal
solution, and they are not always suitable for making real-time decisions due to the fact that
UAVs have good maneuverability, which can lead to rapid changes in environmental states.

Swarm intelligence is a popular approach used in multi-UAV systems and can enable
global behavior to emerge from UAV clusters through operations such as interactions. As a
result, swarm intelligence algorithms have received more attention in the implementation
of UAV offloading. You et al. [19] introduced a computation-offloading scheme based
on particle swarm optimization, which can offload tasks to low-latency MEC servers and
balance the load on the servers. Li et al. [20] constructed an offloading model, which
aims to minimize the delay of whole UAVs under the constraint of consumed energy;
they applied the bat algorithm to solve the model. In [21], Asaamoning et al. researched
computing offloading in a networked control system consisting of UAVs and discussed
the application of swarm intelligence approaches, such as ant colony optimization and bee
colony optimization. In addition, these swarm intelligence approaches can help determine
the optimal positions of drone base stations, which can provide support for drones to act as
base stations in the next generation of the Internet of Things [22,23].

Some studies on computation offloading in MEC tend to leverage reinforcement
learning because of its strength in adapting to dynamic environments. Chen et al. [24]
constructed task-offloading architecture based on deep deterministic policy gradients to
optimize the offloading performance. Different from these schemes, refs. [24–26], our work
devises the distributed decision-making mechanism by leveraging the multi-agent DRL
framework, which can collaboratively deal with the optimization of offloading policies
for multi-UAVs with heterogeneous tasks. Although there are distributed approaches
for computation offloading decision-making that applies reinforcement learning, such
as Q-TOMEC [27], TORA [28], and a distributed offloading technique based on deep Q-
learning [29], these approaches utilize parallel deep neural networks instead of considering
collaboration among agents.

This paper considers the popular 5G heterogeneous network architecture rather than
a single network, as considered in many papers [8,9,30,31]. Correspondingly, it is impor-
tant to evaluate and choose the appropriate offloading link among many heterogeneous
networks for UAVs with good maneuverability. This is because an improper offloading
selection may lead to frequent service interruptions, network hand-offs, and transmission
link failures. However, existing offloading schemes are only concerned with task deadlines,
energy consumed, or a balance between the two. In order to make the offloading scheme
effective, we propose an offloading assessment mechanism that jointly considers the effects
of transmission quality and UAV mobility to ensure efficient data transmission. Further-
more, we designed the mechanism to be fully decentralized on the UAV side, so that the
mechanism has great scalability. To our knowledge, this is the first attempt to research the
link evaluation during the task offloading of an UAV swarm.

3. System Model and Problem Definition

In this section, we first depict the system model (Section 3.1), and present the mathe-
matical formulation of task computing models (Section 3.2). Then we formulate a utility
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function to evaluate the critical attributes that can affect the decision-making of UAVs
(Section 3.3). Finally, according to the system model and task computing models, we define
the optimization problem to be solved in this paper (Section 3.4).

3.1. System Model

The system in Figure 1 shows a flying UAV swarm that is defined by a group of agents
U = {1, . . . , U}. In addition, the wireless network is supported by heterogeneous RATs,
including Wi-Fi APs and cellular BSs; each is equipped with a MEC server that can provide
computational capability for the energy-constrained UAV swarms to process their tasks.
We letM = {1, . . . , M} indicate a set of geo-distributed MEC servers.

Figure 1. Task offloading for multi-UAV swarms in MEC-assisted 5G heterogeneous networks.

Furthermore, each UAV u ∈ U has a task to process at a certain time; we use a tuple
κu = {du,κ , cu,κ} to express the UAV task u; the data size of the task κu is indicated by du,κ ,
and the total computation resources required to complete κu are denoted by cu,κ . Moreover,
the application tasks place tight requirements on the quality of service (QoS) attributes,
such as delay, BER, and PLR when executing tasks.

In view of the above, each UAV in the system can perform its task κu by computing
locally, offloading to a MEC server through cellular BS or a Wi-Fi AP. Correspondingly,
when each UAV u performs its task κu, two binary variables (α1

u,κ and α2
u,κ) are used to

characterize the decisions made by the UAV u; we provide the following explanations for
them.

α1
u,κ =

{
0 local computing
1 κu is offloaded

(1)

α2
u,κ =

{
0 κu is offloaded to a BS server
1 κu is offloaded to a Wi-Fi server

(2)

in which α1
u,κ expresses the task κu computed locally or offloaded. In the second decision,

α2
u,κ = 0 or 1 means task κu is offloaded to a MEC server equipped with a cellular BS or

Wi-Fi AP, which occurs only when α1
u,κ = 1. These divergent task computing modes will

enable the UAVs to efficiently implement tasks and obtain great service performance.
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3.2. Task Computing Models

Considering the limitations on the energy and computational capabilities of UAVs, it
is important to study the hybrid task computing modes to support the UAVs in this paper.

(1) Local computing model

After the UAV u perceives the task data, it may process the tasks locally. The local
execution time can be computed as

lloc
u,κ =

cu,κ

λu
(3)

where λu indicates the computational capability of the UAV u and cu,κ denotes the needed
CPU amount to complete the task κ.

Let eloc
u,κ denote the energy consumed on local computing, which is represented by

eloc
u,κ = ρe

ucu,κ (4)

where ρe
u means the local energy consumption coefficient per CPU cycle.

(2) MEC offloading model

In this model, we consider that there is more than one UAV that will offload tasks to
the same MEC server in the same time period. In this case, if the UAV u performs the task
κ by MEC, the achieved data transmission rates via the cellular and Wi-Fi networks are
denoted by ξc

u,κ and ξw
u,κ , which are, respectively, presented in Equations (5) and (6) [32].

ξc
u,κ = Bc

u · log2(1 +
Pc

u,κGc
u,κ

(σc
u,κ)

2 + ∑u′ �=u Pc
u′ ,κ′G

c
u′ ,κ′

) (5)

ξw
u,κ = Bw

u · log2(1 +
Pw

u,κGw
u,κ

(σw
u,κ)

2 + ∑u′ �=u Pw
u′ ,κ′G

w
u′ ,κ′

) (6)

In Equation (5), Pc
u,κ means the transmission power of the UAV u for offloading the task

to the MEC server m via cellular connectivity; Gc
u,κ = d−ι

u,m is the channel gain because of the
path loss effect and shadowing, where the path loss coefficient is denoted by ι, the distance

between the UAV u and the server m is du,m, du,m =
√

dv2
u,m + dh2

u,m, where dvu,m and
dhu,m, respectively, indicate the vertical and horizontal distances between the UAV u and
the server m; (σc

u,κ)
2 denotes the noise power of the channel, u′ defines the other UAVs that

access the server m to process its task κ′, and Bc
u expresses the allocated bandwidth from

the cellular network. Additionally, the variables in Equation (6) have the same meanings as
those in Equation (5).

Then the transmission time ltr
u,κ,m of the task data for the UAV u can be represented as

ltr
u,κ,m =

⎧⎨⎩lc
u,κ = du,κ

ξc
u,κ

α1
u,κ = 1, α2

u,κ = 0

lw
u,κ = du,κ

ξw
u,κ

α1
u,κ = 1, α2

u,κ = 1
(7)

Here, ltr
u,κ,m is a general variable; it defines the transmission time lc

u,κ and lw
u,κ occurs in

the data transmission through the cellular or Wi-Fi network, respectively.
Accordingly, if the transmission power of the UAV u is indicated by Pu, and Pu ∈

{Pc
u,κ , Pw

u,κ}, the energy emec
u,κ consumed by the UAV u during data transmission can be

written as
emec

u,κ = Pultr
u,κ,m (8)
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After the task data are transmitted to the server m, similar to the local computing
model, the data processing time lexe

u,κ,m on the server m can be represented by

lexe
u,κ,m =

cu,κ

λm
(9)

in which λm denotes the computational capability of the server m. Thereby, the total time
consumed by the UAV u during offloading is expressed as

lmec
u,κ = ltr

u,κ,m + lexe
u,κ,m (10)

3.3. Utility Model in Task Computing

According to the utility theory, we designed a utility function to effectively evaluate
the consumed time and energy during the processing tasks. The function designed is
formulated as

φ(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 z = 0
1

1+( z
zmid )

ηz 0 < z ≤ zmid

( zmax−z
zmid )ηz

1+( zmax−z
zmid )ηz

zmid < z < zmax

0 z ≥ zmax

(11)

The value of φ(z) is mainly determined by the property of the designed function, such
as twice differentiability, monotonicity, and convexity-concavity, as well as the tolerable
upper bound zmax of the attribute z for an application task. Moreover, zmid = zmax

2 , ηz ≥ 2
characterizes the sensitivity of the application task to a specific attribute and determines
the steepness of the function.

To this end, when the UAV u adopts any task computing modes, the utility of the
consumed time and energy can be measured by the above-designed utility function in
Equation (11); we used φ(l) and φ(e) to express them, respectively. Then, on the basis of
the multi-attribute utility principle, performing the tasks for the UAV u can be measured
by the following utility Fu, which is the function of time and energy consumed when the
UAV u chooses a certain task computing mode. Moreover, Fu is represented as follows:

Fu = wd,κφ(l) + we,κφ(e) (12)

in which wd,κ and we,κ characterize the balance factors between the consumed time and
energy; hence, wd,κ + we,κ = 1.

3.4. Optimization Problem Formulation

Based on the system model constructed, our objective is to maximize the utility of
UAVs by making optimal task computation decisions. Thus, the optimization problem
under related constraints can be defined as follows:

P1 : max
Au

U

∑
u=1

Fu

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 : α1
u,κ ∈ {0, 1}, α2

u,κ ∈ {0, 1}, ∀u ∈ U
C2 : C′m(t) ≤ Ĉm, ∀m ∈ M
C3 : e < êu

C4 : l < l̂u,κ

C5 : p < p̂u,κ

C6 : b < b̂u,κ

(13)

The defined optimization problem is constrained by the binary offloading decision,
computation capacity of the MEC servers, battery energy of UAVs, and the QoS demands
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of the tasks performed. In Equation (13), Au denotes the decision set of each UAV. C1
indicates the offloading decision constraint, and C′m(t) = ∑ cu,κ expresses the computation
resources of the server m occupied by UAVs; therefore, C2 denotes whether server m ∈ M
is selected to provide service. The computation resources used by UAVs cannot exceed
the computation capacity of the server m at a certain time slot t. C3 indicates the battery
energy constraint of an UAV u ∈ U ; C4 denotes that the consumed time when executing
task κu should be controlled within the allowable delay threshold l̂u,κ . C5 and C6 express
whether the PLR and BER occurring in the data transmission should satisfy the tolerable
upper bound values for a certain task κu if processed by the MEC.

The optimization problem is an integer-programming problem; the feasible decision
number for task computation is (M + 1)U , which is commonly non-convex and NP-hard.
Conventional mathematical-based optimization approaches can work out the optimal
solution for the proposed problem theoretically but are unable to realize it in a short time.
The DRL approach is applicable for settling the decision-making problems with high-
dimensional solution spaces effectively, especially for the increased number of offloaded
tasks in future wireless networks. In view of the above, we will develop a multi-agent
A2C-based DRL scheme, which can find feasible offloading actions in polynomial time.

4. Offloading Assessment Based on Fuzzy Logic

In this section, by applying the fuzzy logic theory, we propose an assessment mecha-
nism to let the UAV swarm adaptively screen the available offloading nodes to reduce the
complexity and speed up the training progress of the MODUS proposed.

Fuzzy logic is quite distinct from binary logic, which is capable of making a decision
based on multi-valued logic. This characteristic enables the fuzzy logic system to handle
the input variables that have uncertain and incomplete data. The fuzzy logic-based ap-
proach can effectively rapidly respond to the dynamicity of the changing environment and
adaptively produce crisp values. The proposed offloading assessment algorithm based
on fuzzy logic involves processing the inputs containing the PLR, BER, and velocity pa-
rameters, then the input variables are processed through fuzzification, fuzzy inference,
and defuzzification; finally, the fuzzy logic system outputs a crisp value, i.e., offloading
probability, which signifies the fitness of a specific MEC server for the UAV task.

In particular, the fuzzy logic-based offloading assessment algorithm is deployed on
the UAV in a decentralized manner, and can regard all MEC servers perceived as the
candidate-offloading targets to be assessed. Algorithm 1 depicts the procedures of the
proposed offloading assessment scheme.

Algorithm 1 Fuzzy logic-based offloading assessment.

Input: Set of candidate-offloading nodesM.
Output: Available offloading node set M̃ for the UAV u.

1: while Obtaining sensor data in a time period do

2: for m = 1 : M do

3: Velocity, PLR, BER,←−M[m].velocity, .PLR, .BER according to Equations (14) and
(15);

4: BER, PLR←− Normal(BER), Normal(PLR);
5: χm ←− Fuzzy Logic (velocity, PLR, BER);
6: if χm < χ̂m then

7: M̃ ←− m;
8: end if

9: end for

10: end while
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In step 3 of Algorithm 1, each UAV senses nearby offloading nodes, observes the flying
velocity, and perceives the data of the PLR and BER with respect to candidate-offloading
targets by assuming that the UAV task u will be offloaded to the node.

The PLR occurring in data transmission can be commonly evaluated by

pm
u,κ = ς · du,κ · exp(−ϑ · Prss

σ2 · d2
u,m

) (14)

in which Prss indicates the received signal strength and σ2 ∈ {(σc
u,κ)

2, (σw
u,κ)

2} denotes the
noise power, ς and ϑ are two tunable parameters; both of them meet the condition that
0 < ς < 1, 0 < ϑ < 1.

The BER for a binary phase-shift keying modulation in an additive Gaussian white
noise environment is expressed as follows

bm
u,κ =

1
2

er f c(

√
Prss

σ2 ) (15)

where the er f c(.) is a Gauss complementary error function, it can be written as

er f c(x) =
2√
π

∫ ∞

x
e−μ2

dμ (16)

In particular, in step 4 of the algorithm, the obtained PLR and BER are normalized

by pm
u,κ

p̂u,κ
and bm

u,κ
b̂u,κ

so as to eliminate the unit difference before inputting it into the fuzzy

logic system. In step 5, the designed fuzzy logic system for offloading the assessment
maps the sensed data, including velocity, PLR, and BER into fuzzy sets according to the
membership functions (MFs) for each one; this process is called fuzzification. Afterward,
the fuzzy inference procedure infers the fuzzified inputs and produces fuzzy output based
on multiple IF-AND-THEN rules, which are designed by following empirically fuzzy rule
sets. Furthermore, based on the triggered fuzzy rule, the fuzzy logic system proceeds to the
defuzzification stage, which calculates and outputs a scalar value χm for the node m ∈ M
by applying the centroid defuzzifier method [33]. Moreover, χm ∈ [0, 1] can characterize
the fitness of the offloading node for the task κu of the UAV u; the higher the χm, the better
the fitness. Finally, in steps 6 and 7, the obtained χm is compared with its permitted upper
bound χ̂m; if the condition is satisfied, the node m ∈ M will be selected by the UAV u as
the available offloading target, and be included in M̃.

5. Multi-Agent A2C-Based Decentralized Task Offloading

The optimization problem formulated in Equation (13) is a sequential decision-making
problem in the dynamic environment. In this section, the problem of multi-UAV offloading
is a time-varying multi-agent MDP; we propose a decentralized task-offloading scheme
(DOMUS). We consider that the environmental dynamics of wireless networks are always
unknown; thus, the proposed algorithm applies a model-free DRL framework based on the
multi-agent A2C to enable each UAV agent to learn the optimal computing policy task via
training in polynomial time.

5.1. Multi-Agent MDP Model in the A2C Framework

In the A2C framework, the optimization problem in Equation (13) for the task implementa-
tion of multi-UAVs can be defined as a multi-agent MDP 〈U ,S , {Au}u∈U ,P , {Ru}u∈U 〉, which
will be interpreted in detail as follows.

(1) State space S . In a time slot t, each UAV agent observes the system state st ∈ S ,
which involves the location of the UAV and relevant information of tasks and situations
of the MEC environment; thus, the state st is constituted by a group of parameter metrics.
(1) loc(x, y, h): three-dimensional location of the UAV agent u; (2) (du,κ , cu,κ): data size and
required computation resources for the task κ; (3) l̂u,κ : maximum tolerable delay for the κu
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task; (4) SR = {Iu,1, . . . , Iu,M}: the signal-to-noise ratio vector between the UAV u and its
available offloading nodes in M̃; (5) Dist = {du,1, . . . , du,M}: the distance vector between
the UAV u and its available offloading nodes in M̃.

(2) Action space Au. The action taken in the time slot t for each UAV u is to decide
whether the task should be performed locally or offloaded to a MEC server, and if offloaded,
which server will be selected. Thus, according to the definitions of the task computing
decisions in Equations (1) and (2) in the system model, the action set for each UAV can be
represented as Au = {a1

u, a2
u, a3

u}, in which a1
u indicates α1

u,κ = 0, a2
u denotes α1

u,κ = 1 and
α2

u,κ = 0, and a3
u expresses α1

u,κ = 1 and α2
u,κ = 1.

(3) Reward function Ru. At state st, each UAV chooses an action and receives an
instant reward rt

u from the environment. It is known that the purpose of each agent is to
maximize its utility through improving the policy of task computing. For this reason, we
define the reward rt

u as the performance improvement between two utility values obtained
by the UAV within two consecutive time slots; the rt

u is written as

rt
u =

⎧⎪⎨⎪⎩
ε1 Ft

u − Ft−1
u > β

ε2 Ft
u − Ft−1

u < −β

0 otherwise,

(17)

where Ft
u refers to the utility of the UAV u for processing tasks at time slot t, ε1 > 0,

and ε2 < 0; both ε1 and ε2 denote the obtained instant rewards under two different
situations, i.e., Ft

u − Ft−1
u > β and Ft

u − Ft−1
u < −β, respectively. Moreover, β > 0 means the

sensitivity to utility changes of the UAV in MDP. Therefore, the reward rt
u can effectively

characterize the change directions of two utilities corresponding to two consecutive time
slots. Furthermore, the reward function Ru can be presented as Ru(s, a) = E[rt+1

u |st, at],
which is the expected value of the instant reward.

Therefore, in the multi-agent MDP model, at the current time slot t, if the state is st ∈ S
and the joint actions of agents in the system can be denoted as at = {a1, . . . , aU} ∈ A,
each agent u ∈ U can obtain a reward rt+1

u . Then the state will be transformed into a new
state st+1 ∈ S according to the transition probability P(st+1|st, at). Additionally, the policy
of agent u is denoted as the probability that the agent selects the action at a given state,
which can be expressed as πu(s, au). Then the joint policy of all agents can be formulated
as π(s, a) = ΠU

u=1πu(s, au), and the π(s, a) is written as π for simplicity.

5.2. Multi-Agent A2C Framework

As deep neural networks (DNNs) can offer accurate regression, A2C applies DNNs
to the actor and the critic networks to approximate the policy and value function. The
actor is a policy function πu(au|s; θu), which allows agent u to yield a policy and select
an action au under state s, where θu is a parameter of the DNN. We pack θu in a set
θ = θ1, . . . , θu, . . . , θU . The critic is a state value function V(s) used to evaluate the state.
Additionally, the advantage term expresses that there is a function ζ(s, a) = Q(s, a)−V(s)
to indicate the advantage of the selected action under a given state, where Q(s, a) represents
the action-value function.

The learning objective of the agent in A2C is to find a policy π that can maximize the
expected long-term system reward J(π) over all possible trajectories. Accordingly, our
optimization objective is to learn the optimal joint task computing policy πθ = π(a|s; θ) =
ΠU

u=1πu(au|s; θu) so as to maximize the globally averaged expected reward J(π) for agents,
which are represented as

πθ = Arg max
π

J(π) (18)
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in which J(π) is given as follows:

J(π) = lim
T

1
T

E[
T

∑
t=1

1
U ∑

u∈U
rt+1

u ]

= ∑
s∈S

ηπ(s) ∑
a∈A

π(s, a)
1
U ∑Ru(s, a)

(19)

where ηπ(s) = limt→∞ Pr(st = s|π) denotes the stationary probability distribution in the
Markov chain when the policy π is given.

Furthermore, our optimization problem aims to work out

max J(θ) = ∑
s∈S

ηθ(s) ∑
a∈A

π(a|s; θ)
1
U ∑Ru(s, a) (20)

where θ will be learned by the policy gradient method [34]. Moreover, based on the
objective function, the gradients for θ can be calculated as

∇θu J(θ) = E[∇θu log πθu
u ζπθ

u (s, a)] (21)

in which ζπθ

u (s, a) is the advantage function, represented by

ζπθ

u (s, a) = Qπθ
(s, a)−Vπθ

u (s, a−u) (22)

where we use a−u to present the actions adopted by other agents, except for agent u; Qπθ

indicates the action value function under the policy πθ for a given state–action pair (s, a),
while Vπθ

u is the state value function. They are given as follows:

Qπθ
(s, a) = ∑

t
E[

1
U ∑

u∈U
rt+1

u − J(θ)|s0 = s, a0 = a, πθ)] (23)

Vπθ

u (s, a−u) = ∑
au∈Au

πu(au|s; θu)Qπθ
(s, au, a−u)] (24)

A2C takes the temporal difference (TD) error as an unbiased estimation to evaluate the
advantage function, which reduces the complexity of the parameter update and improves
the stability of the algorithm. In this case, the advantage is approximated as

ζ(st, at) ≈
1
U

rt+1 + γV(st+1|st, at)−V(st) = δ(st) (25)

in which γ indicates the discounted factor.
The critic network estimates Q(s, a) with Qπθ

(s, a) and generates a TD error to express
whether the action taken by the agent is good or not, as well as updates the DNN parameter
θc with the gradient descent method. Additionally, each UAV u can share estimations from
the critic network with other UAVs nearby to effectively evaluate the actions. Then the
output of the critic network is further used to update the parameter θa for the actor network
of the UAV agent u, which aims at improving the probabilities of actions that perform
relatively well. In particular, the update to θa and θc can be presented as

θa ← θa +
∂ log π(at|st; θa)

∂θa δt(st; θc) (26)

θc ← θc + δt(st; θc)
∂V(st; θc)

∂θc (27)
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5.3. A2C-Based Decentralized Offloading Algorithm

In this section, based on the A2C model, we propose a distributed offloading algorithm
for multi-UAVs; its implementation is summarized in Algorithm 2.

Algorithm 2 A2C-based decentralized offloading algorithm.

Input: UAV swarm U , MEC server M, the learning rates lra, lrc of the actor and critic
network, the maximum episodes Epmax, the step size of one episode Epi, the update
interval Δt, and the discount factor γ;

Output: π∗ = {π∗u, u ∈ U} for all UAVs.
1: for UAV u = 1 : U do

2: Initialize the parameters θa
u and θc

u with respect to the actor and critic network;
3: end for

4: for Episode i = 1 : Epmax do

5: Reset the state: loc(x, y, h), (du,κ , cu,κ), l̂u,κ , SR = {Iu,1, . . . , Iu,M} and Dist =

{du,1, . . . , du,M};
6: for UAV u = 1 : U do

7: Execute Algorithm 1 to obtain M̃;
8: Obtain the state s0;
9: end for

10: for Step t = 1 : Epi do

11: for UAV u = 1 : U do

12: Takes action at
u by actor πu(at

u|st; θa
u);

13: end for

14: Perform computation offloading according to the joint actions at = {a1, . . . , aU};
15: Obtain the current reward rt = {r1, . . . , rU} and calculate the new state st+1 ;
16: if mod(Δt, t) == 0 then

17: Update θc for the critic networks based on Equation (26);
18: Compute θa for the actor networks using Equation (27);
19: end if

20: end for

21: end for

At the initial stage, we give the related parameters including the set of UAVs and
MEC servers, i.e., U ,M, the learning rate lra, lrc of the actor and critic network, maximum
number of training episodes Epmax and the step size Epi of one episode, update interval
Δt, as well as the discount factor γ. For each UAV u ∈ U , we initialize the actor parameter
θa

u and critic parameter θc
u. Afterward, at the start of each episode in the training stage,

the system state is randomly initialized, including the locations of UAVs and the relevant
information of tasks and situations of the MEC environment; each UAV will execute
Algorithm 1 to obtain the available offloading node set M̃, then the initial state s0 is
obtained (from steps 5 to 8).

Without loss of generality, one training episode is divided into Epi time slots. At time
slot t, each UAV adopts an action according to the policy πu(at

u|st; θa
u) in the actor, then

performs computation offloading according to the adopted action au ∈ at, and obtains the
instant reward ru ∈ rt; next, the state is updated to st+1 (from steps 11 to 15). Finally, once
every Δt, the algorithm updates the parameters of the actor and critic network by only
sampling the (st+1, at, st) (from steps 16 to 19). In order to enable the average reward to
converge to a stable value and learn the optimal policy, the iterative training will last for
Epmax episodes. After convergence, the algorithm only needs to save the actor network to
make offloading decisions for UAVs.

The computational complexity of Algorithm 1 is to explore the available offloading
nodes by each UAV, and the complexity of the designed fuzzy logic module is a constant;
thus, the complexity for Algorithm 1 is O(M) in the worst case. In Algorithm 2, at the
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training stage, each UAV agent evaluates the Q-value with the critic network by inputting
the joint actions of UAVs and the environment state; thus, the input and output sizes of the
critic network in UAV are U|S| and 1, respectively. Moreover, each UAV makes an action
by mapping the current state to the actor network; thereby, the input and output sizes of
the actor network in UAV are |S| and 1, respectively. After training is finished, the action
for each UAV can be obtained from its actor network only with the |S| input size and 1
output size. The computational complexity is proportional to the input and output sizes;
thus, the overall complexity of our DOMUS proposed is O(M + U|S|) .

6. Performance Evaluation

In this section, we perform a series of numerical simulations and evaluate the proposed
task-offloading scheme for the UAV swarm in MEC-assisted heterogeneous networks.

6.1. Parameter Settings

We consider a MEC-assisted heterogeneous network scenario where MEC servers
are randomly deployed in the 1000× 1000 m area, UAVs are randomly distributed, and
each UAV has a task to be processed. Concerning the communication parameters, the
maximum communication ranges for cellular and Wi-Fi networks are 400 and 200 m,
respectively [35,36]. The bandwidths of cellular and Wi-Fi networks are Bc = 4 MHz,
Bw = 5 MHz, the transmission power Pu of UAV is set at 10 W [37], and the Gaussian noise
power (σc

u,κ)
2 and (σw

u,κ)
2 are set as the same value, i.e., −100 dBm. The path loss follows

a distance-dependent model with a path loss coefficient of ι ≥ 1 [38,39]. Additionally,
the computational capability of MEC servers and UAVs are characterized by uniformly
distributed variables λm and λu, which are uniformly distributed in [5, 8] and [0.7, 1]
Gcycles/s [40], respectively. The computational capacity Ĉm of the server is uniformly
distributed in [9, 11] Gcycles. The energy consumed per CPU cycle denoted by ρe

u is
5× 10−10 J/cycle. For the computation tasks to be completed by UAVs, the data size du,κ
and the needed computation resources cu,κ are uniformly distributed in [4, 5] MB and [1.6, 2]
Gcycles. The weighting factors wd,κ and we,κ for delay and energy are commonly set to
be the same, i.e., 0.5. Furthermore, for the learning parameters, we set the learning rate
to lra = 0.001 and lrc = 0.004, and the discount factor γ to be equal to 0.99. Finally, we
summarize the above key parameters in Table 2.

Table 2. Parameter settings.

Symbol Value Symbol Value

Bc(MHz) 4 Bw (MHz) 5
σ2 (dBm) −100 Pu (W) 10
λm (Gcycles/s) [0.7, 1] λu (Gcycles/s) [5, 8]
Ĉm(Gcycles) [9, 11] ι ≥1
du,κ(MB) [4, 5] cu,κ(Gcycles) [1.6, 2]
ρe

u (J/cycles) 5× 10−10 γ 0.99
wd,κ 0.5 we,κ 0.5
lra 0.001 lrc 0.004

6.2. Fitness Demonstration of Offloading Targets

As shown in Figure 2, by executing Algorithm 1, we depict the relationship between
the fitness of servers, the velocity of UAVs, and the PLR and BER that occur during task
offloading. The fitness is characterized by the offloading probability in Algorithm 1. It
can be observed that the offloading probability is negatively correlated with the above
mentioned indicators, i.e., velocity, PLR, and BER. More specifically, Figure 2a,b shows
that the offloading probability experiences a rapid decline as the three indicators increase,
which validates the effectiveness and validity of the devised fuzzy logic-based offloading
assessment mechanism in adaptively evaluating offloading targets at the UAV side.
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(a)

(b)

Figure 2. Offloading probability versus velocity, PLR, and BER (a,b).

6.3. Convergence Performance

In order to demonstrate the convergence performance of the proposed DOMUS
scheme, we use the same parameter settings listed in Table 2 and plot the variation of
the average rewards for four and six UAVs in Figure 3. As shown in Figure 3, the reward
curves for different numbers of agents can rapidly converge and fluctuate within a small
range. This phenomenon can be attributed to the multi-agent A2C-based distributed of-
floading mechanism, in which the critic networks assess and guide the actor networks to
output better offloading policies for multi-UAVs at each learning episode.

Figure 3. Convergence of the proposed DOMUS.
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6.4. Impact of Weighting Factors

Figure 4a and b, respectfully, demonstrate the impact of energy consumption and
delay weighting factors on two performance metrics when UAVs perform tasks using
the proposed DOMUS scheme. Moreover, the number of UAVs is fixed at 6, and the
average data size of generated tasks is varied from 4 to 16 MB. In Figure 4a, the curves of
energy consumption increase with the average data size of tasks. However, a higher energy
consumption weighting factor results in lower energy consumption needed to complete
the tasks under the same data size.

(a)

(b)

Figure 4. Energy consumption and delay comparison in DOMUS under different weighting factors (a,b).

From Figure 4b, we can see that the delay incurred by performing tasks shows a
linearly increasing trend as the delay weighting factor increases. However, as the delay
weighting factor grows larger, less delay is required to complete the UAV tasks under the
same average data size. Therefore, the comparisons depicted in Figure 4a,b are consis-
tent with the theoretical data that both energy consumption and delay show noticeable
differences under different weighting factors when processing UAV tasks.

6.5. Performance Comparison

In the following section, we compare the proposed DOMUS with four task-offloading
schemes under different parameter settings. The comparative algorithms considered are:
(1) Greedy-based sequential tuning computation-offloading scheme (STCO) [41]; (2) Weight
improvement-based particle swarm optimization offloading algorithm (IWPSO) [42]; (3)
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Distance-dependent offloading scheme (DDO); (4) Smart ant colony optimization task-
offloading algorithm (SACO) [31].

(1) Impact of the number of UAVs. First, we set the weighting factors as wd,κ = we,κ =
0.5 and evaluated the performance of the proposed DOMUS under different numbers of
UAVs. Figure 5a shows a comparison of the overall energy consumption of all algorithms as
the number of UAVs increases. As shown, the DOMUS achieves lower energy consumption
compared to the STCO and SACO schemes. By relying on the multi-agent DRL model,
the DOMUS can learn the distribution of computation tasks and enable multi-UAVs to
almost always select proper offloading targets as the number of UAVs increases. The
STCO ignores future offloading decisions, resulting in decisions that are suboptimal from a
long-term perspective. The SACO algorithm may become trapped in local optimization
due to the feedback of pheromones in suboptimal solutions obtained in early iterations. In
Figure 5b, we plot the overall delay under different UAV numbers, which shows the same
trend with Figure 5a; the delay curves of other offloading schemes increase significantly
compared with DOMUS. Because the DOMUS can select actions without a non-minimum
delay for the current task of the UAV, it optimizes long-term performance. To prove this,
as shown in Figure 5c, we also recorded the average utility of UAVs as the number of
UAVs increased. Combined with Figure 5a,b, our proposed DOMUS can achieve lower
energy consumption and lower delay compared to the STCO offloading approaches, with
minimum improvements of 8.29% and 7.75%, respectively. Accordingly, the average utility
achieved by DOMUS is the highest among the different algorithms, with an improvement
of up to 12.82%.

(a) (b)

(c)

Figure 5. Energy consumption, delay, and utility comparison under different UAV numbers (a–c).

(2) Impact of data size. We set the number of UAVs to six and then investigated the
energy consumption, delay, and average utility required to complete tasks for UAVs with
different average task data sizes.

Figure 6 shows the impact of data transmission on energy consumption. Transmitting
larger amounts of data requires more communication resources, leading to increased com-
munication delays. In this case, as the data size increases, UAVs will consume more energy
for data transmission. Moreover, SACO’s energy consumption performance deteriorates as
the data size increases, primarily due to the gradually increasing tabu lists in the SACO al-
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gorithm that restrict the UAV selection. Our proposed DOMUS can explore policy learning
with great effectiveness, resulting in reduced energy consumption. In general, DOMUS
reduces energy consumption by up to 13.13% compared to other schemes.

Figure 6. Energy consumption comparison under different average data sizes.

Figure 7 compares the impact of average data size on task completion delay for UAVs.
As the data size increases, the delay to complete tasks also increases; when the data size of
the task is big, computing the task locally is necessary, which can reduce the transmission
delay but correspondingly increase the execution delay. Since the DNN can offer accurate
regression, in the proposed DOMUS, DNN is used both in the actor and the critic to
approximate the offloading policy and value function interactively, which enables each
UAV agent to select appropriate task-processing strategies. Nonetheless, when adopting
the STCO scheme, optimal task-processing strategies cannot be extensively derived. This is
because the STCO may not effectively take into account the optimization of the subsequent
execution of tasks. In summary, the DOMUS optimization results in up to a 6.77% delay
compared to other schemes.

Figure 7. Delay comparison under different average data sizes.

Figure 8 shows the average utility of UAVs for task processing with varying data sizes.
The figure shows that our DOMUS mechanism outperforms other schemes in terms of
utility, especially for large data sizes. This is because our proposed DOMUS maximizes the
utility of task processing for each UAV agent by learning the offloading policy over long
training episodes. STCO and SACO obtain similar utility, while the IWPSO method only
optimizes the utility from a single UAV perspective, resulting in poor performance, and the
DDO method presents the worst utility. Finally, the average utility of UAVs is improved by
at least 11.39% compared to the comparative schemes.
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Figure 8. Average utility comparison under different average data sizes.

(3) Joint impact of computational capability and network bandwidth. We conducted
a performance comparison between our proposed DOMUS and other benchmarks by
increasing the computational capability of MEC servers and network bandwidth. The
computational capability was changed from 2 to 5 Gcycles/s and the bandwidth (indicated
by B) increased from 1 to 4 MHz.

Figure 9 shows the joint impact of computational capability and bandwidth on the
transmission energy consumption required to complete the UAV tasks. As the computa-
tional capability and bandwidth increase, energy consumption decreases. This is because
most tasks are offloaded rather than processed locally, so as to reduce the task completion
time. The energy consumption in local computing is reduced for UAVs and the transmission
energy also reduces with the increased bandwidth. Therefore, whether the computation
resources and bandwidth resources are abundant will greatly affect the selection of the
computing mode and optimal offloading node. In addition, in our proposed DOMUS
scheme, the energy consumption curve rises moderately, and the energy consumption
performance for UAVs is significantly better than the DDO method, with an improvement
of at least 15.69% over other offloading methods.

Figure 9. Energy consumption comparison under different computational capabilities and network
bandwidths.

Figure 10 shows the task completion delay for UAVs with the variation in compu-
tational capability and bandwidth. It is observed that the delay performance changes
similarly to the consumed energy consumption. When more computational resources
and bandwidths are allocated to UAVs, they are attracted to offload tasks, resulting in
degraded delay not only in transmission links but also on servers. However, there still
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exists a performance gap between our proposed scheme and the other four benchmarks.
This is because our proposed DOMUS evaluates the quality of the communication link
and offloading nodes for each UAV using the fuzzy logic-based offloading assessment
mechanism, and further uses the A2C model to make offloading decisions by continuously
updating the parameters of DNNs to enhance the prediction ability of the critic network for
actions. This efficiently facilitates the optimization of offloading decisions. In general, the
overall delay in task processing was reduced by at least 4.89% compared to other offloading
approaches.

Figure 10. Delay comparison under different computational capabilities and network bandwidths.

Additionally, Figure 11 shows the variation of the average utility of UAVs as computa-
tional capability and network bandwidth vary. We can see from the figure that the utilities
of different offloading schemes increase as the computational capability bandwidth in-
creases. In particular, our proposed approach outperforms other approaches and improves
the utility of UAVs by up to 8.14%. This phenomenon indicates that the DOMUS proposed
can effectively enable multi-UAVs to explore the joint optimal task computing policy under
the guidance of the devised offloading A2C-based DRL framework in a dynamic network
environment.

Figure 11. Average utility comparison under different computational capabilities and network band-
widths.

(4) Impact of transmission power. To further demonstrate the scalability of the pro-
posed DOMUS scheme, we investigated the impact of varying transmission power of UAVs
on the overall delay and energy consumption to complete tasks, as shown in Figure 12. The
number of UAVs was set to 6. Generally, increasing the transmission power can result in a
higher data transmission rate, which helps to reduce data transmission delay. Accordingly,

183



Drones 2023, 7, 226

we observe from Figure 12a that all delay curves become smaller as the power gradually
increases. Nonetheless, as depicted in Figure 12b, a higher transmission power can lead to
a higher energy consumption when UAVs transmit task data due to the linear relationship
between them. Moreover, the proposed DOMUS achieves the lowest delay and energy
consumption among the five offloading approaches, which reduces the two metrics by at
least 4.66% and 9.26%, respectively.

(a)

(b)

Figure 12. Delay and energy comparison under different transmission power (a,b).

7. Conclusions

This paper addresses the task offloading of an UAV swarm in MEC-assisted 5G
heterogeneous networks. The objective is to optimize the utility of the multi-UAV system
for task processing and prevent UAVs from offloading via easily disconnected wireless links
and poorly-performing service nodes. We first devise an assessment mechanism to evaluate
the candidate-offloading nodes by utilizing fuzzy logic theory. Afterward, considering the
unknown environmental dynamics in heterogeneous networks, we model the optimization
problem as a multi-agent MDP and propose a decentralized task-offloading scheme called
DOMUS using the model-free DRL framework based on multi-agent A2C. In particular,
the simulation results reveal that the proposed DOMUS can achieve effective convergence
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as well as reduce the delay and energy consumption under various settings for completing
UAV tasks.

In future work, we will integrate the swarm intelligence approach into the proposed
learning framework to enhance the services of drone base stations with multiple UAVs.
By providing drone base station-enabled MEC architecture and realizing reasonable re-
source utilization with more advanced approaches, the much stricter requirements of
next-generation Internet of Things applications on reliable and efficient service perfor-
mances will be further satisfied.
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Abstract: This paper develops an unmanned aerial vehicle (UAV) deployment scheme in the context
of the directional modulation-based secure precise wireless transmissions (SPWTs) to achieve more
secure and more energy efficiency transmission, where the optimal UAV position for the SPWT is
derived to maximize the secrecy rate (SR) without frequency diverse array (FDA) and injecting any
artificial noise (AN) signaling. To be specific, the proposed scheme reveals that the optimal position
of UAV for maximizing the SR performance has to be placed at the null space of Eves channel, which
impels the received energy of the confidential message at the unintended receiver deteriorating to
zero, whilst benefits the one at the intended receiver by achieving its maximum value. Moreover, the
highly cost FDA structure is eliminated and transmit power is all allocated for transmitting a useful
message which shows its energy efficiency. Finally, simulation results verify the optimality of our
proposed scheme in terms of the achievable SR performance.

Keywords: three-dimensional UAV deployment; precise wireless transmission; physical layer security;
secrecy rate

1. Introduction

1.1. Background and Related Works

As a potential candidate for benefiting wireless transmission in physical layers [1–4],
the directional modulation (DM) technique has attracted extensive attention from the fact
that DM can transmit a confidential signal to a specific direction [5–7]. Technically, DM
is generally employed in two fashions: one is implemented on the radio frequency (RF)
frontend, employing the phased array (PA) to optimize the phase shift [5] while another
one is implemented on the baseband by utilizing orthogonal vector [6] or beamforming
operations [7]. Due to the broadcast nature of DM-based wireless communications, security
issues are unavoidable since the distance dimension of DM is threatened by the unintended
facility, although DM has an ability to enable the security in a directional aspect. To address
this problem, the authors of [8] proposed a linear frequency diverse array (LFDA) method
to achieve SPWT. However, the direction angle and distance achieved by LFDA may be
coupled, which means that there may exist multiple directions and distances receiving the
same confidential message as the desired users. As a further advancement, a number of DM
schemes taking the advantage of random frequency diverse array (RFDA) [9–11] have been
proposed to achieve secure precise wireless transmission (SPWT) for both the direction and
distance domains in which the frequency is randomly allocated on each transmit antenna
and the correlation direction and distance are decoupled.

Thereafter, SPWT develops repidly. In [12], the authors proposed two practical ran-
dom subcarrier selection schemes which increase the randomness of subcarriers based on
the random FDA, moreover it improves the stability of the SPWT system since a more
random selected subcarriers lead to a better performance. In [13], a hybrid beamforming
scheme with hybrid digital and analog SPWT structure was proposed, which reduces the

Drones 2023, 7, 224. https://doi.org/10.3390/drones7040224 https://www.mdpi.com/journal/drones
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circuit budget with low computational complexity and comparable secrecy performance, it
significantly increases the practicability of SPWT system. Since the wireless propagation
channel results in the security problem becoming more formidable due to the accessibility
of diverse devices. For [14] as an example, the authors clarify that the energy of the main
lobe is always formed around the desired receiver, but a number of the non-negligible side
lobes remain having comparatively appreciable power. It is indicated that the position of
the transmitter affects the distribution of those lobes, and then leading to a security risk. To
elaborate a little, when the eavesdropper is located on the side-lobe peak, the achievable se-
crecy rate (SR) performance will be gravely degraded. Therefore, deploying the transmitter
at an appropriate position has an important meaning for the secrecy performance.

As a matter of fact, most existing works regarding the SPWT focus on static scenarios,
which severely limits its application. Considering that unmanned aerial vehicle (UAV)
has been widely utilized in wireless communications due to bringing extensive benefits
(e.g., high probability air-to-ground channel [15] and mobility controllable [16]). Moreover,
UAV transmission technology has been researched wildly. In [17], the authors presented an
UAV autonomous landing scheme with model predictive controlled moving platform. The
authors in [18] proposed a novel approach for the Drone-BS in 5G communication systems,
using the meta-heuristic algorithm. Ref. [19] considered the UAV-enabled networks under
the probabilistic line-of-sight channel model in complex city environments and jointly
optimize the communication connection, the three-dimensional (3D) UAV trajectory, and
the transmit power of the UAV to increase the average secrecy rate. In [20], the authors
consider UAV networks for collecting data securely and covertly from ground users, a
full-duplex UAV intends to gather confidential information from a desired user through
wireless communication and generate artificial noise (AN) with random transmit power in
order to ensure a negligible probability of the desired user’s transmission being detected by
the undesired users. The authors in [21] proposed a detection strategy based on multiple
antennas with beam sweeping to detect the potential transmission of UAV in wireless
networks. In [22], a novel framework is established by jointly utilizing multiple measure-
ments of received signal strength from multiple base stations and multiple points on the
trajectory to improve the localization precision of UAV. In [23], the authors considered the
region constraint and proposed a received-signal-strength-based optimal scheme for drones
swarm passive location measurement. Thus, in this work we consider SPWT in the context
of UAV networks, which not only extends the static scenarios to the dynamic situations but
also matches the stringent requirement of SPWT for line-of-sight (LoS) communication link
from the transmitter to receiver.

1.2. Motivation

Note that in the previous works (e.g., [9–11]), the authors consider the SPWT system
model only in two-dimensional scenarios, which limits the practical applications scenarios.
At the same time, the FDA technique is generally employed to determine a specific position,
while this work casts off the high-cost FDA scheme but ingeniously achieves this goal
by fully taking advantage of the angle information in the three-dimensional (3D) space.
Against this background, this paper considers an SPWT scheme with the aid of a UAV
to improve the system’s security level. For a removable UAV transmitter, an analytical
solution to the optimal UAV position is derived for reducing the computational complexity.
Finally, simulation results show the efficiency of the proposed UAV deployment scheme in
terms of the achievable SR performance.

1.3. Contributions

In this paper, the main contributions are as follows.

1. We propose a novel SPTW framework with UAV secure communications which
improves transmission security by change UAV’s position.
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2. Proposed UAV SPWT scheme is based on DM but not FDA, which can reduce the
radio frequency chains’ cost. Meanwhile, the computational complexity will be
significantly reduced.

3. Conventional SPWT improves security performance with aided AN, while our pro-
posed scheme deploys the transmitter, e.g., UAV on the zero SINR space of Eve, and
the power originally allocated to artificial noise can be used to transmit useful infor-
mation, which greatly improves Bob’s signal-to-interference-and-noise ratio (SINR)
without affecting Eve’s SINR, thus enhancing the security performance.

The remainder of this paper is organized as follows: in Section 2, our system model of
proposed UAV SPWT is described, then the secrecy capacity performance based on UAV
SPWT structure and proposed UAV deployment scheme is analyzed. Section 3 presents the
simulation and the analysis. Finally, the conclusion is drawn in Section 4.

Notations: In this paper, scalar variables are denoted by italic symbols, vectors, and
matrices are denoted by letters of bold upper case and bold lower case, respectively.
Sign (·)T , (·)∗ tr(·) and (·)H denote transpose,conjugation, trace, and conjugate trans-
pose, respectively. ‖·‖ and |·| denote the norm and modulus, respectively. E[·] denotes
expectation operation.

2. Method

2.1. System Model

As shown in Figure 1, our considered SPWT system is composed of an UAV, a desired
user (Bob) and an eavesdropper (Eve). Herein, both Bob and Eve are equipped with a
single antenna while the UAV is equipped with a M× N rectangular antenna array, namely
the distance between any two adjacent antenna elements is identical. It should be noted
that, the antennas array should be any planar array, such as rectangular array or circular
array which can form both angle and distance depended 3D beams, in this paper, without
loss generality we assume the transmit antenna forms a rectangular antenna array. For
expression convenience, we set Bob as the origin and the ray formed from Bob to Eve
is defined as the positive direction of the X-axis. Moreover, we considered that Bob and
Eve are ground users, i.e., the Z-axis coordinates of both Bob and Eve are 0. We assume
that the UAV flies at a predetermined height g and parallel to the ground. The channels
between the users (Bob or Eve) are assumed as LoS channels which have been widely used
in UAV communication scenarios [24]. What is more important, it is difficult for SPWT
of applying in None-LoS (NLoS) channels, the reasons are as follows: Firstly, as NLOS
channel is independent on θ and R, the designed beamforming vectors have the possibility
of transmitting the confidential signal to any location. As a result, the security performance
might be seriously degraded. Secondly, as for NLOS channels, it changes with time, the
designed beamforming vectors can be only applied for a specific time. Therefore, with the
designed beamforming vectors in NLOS channel, confidential message may be transmitted
to any location as time goes. Lastly, in our proposed scheme, the invoked artificial noise
(AN) has an ability of disturbing the signal received at Eve, but having a negligible effect
on Bob. However, in NLOS channels, there exists an effect of gathering AN for Bob, thus
resulting in a serious secrecy rate performance degradation at Bob. Thus, the assumption
of the LoS channel in our proposed UAV and SPWT system is completely reasonable.

Due to the UAV serving the ground users, the relative positions of Bob and Eve is
assumed to be known by the UAV. Rationality analysis of this assumption is as follows. For
Bob, it is reasonable that the UAV knows his target user’s location. For Eve, we consider a
large number of users in our system, and all the users’ location (including desired users,
undesired users, and eavesdroppers) are known for Alice. The part of undesired users
are legitimate users in other time periods and they will not eavesdrop the the confidential
message. The other part of eavesdroppers are illegitimate users in all the time, however, the
eavesdroppers hidden in all the users, who is an undesired user or who is an eavesdropper
can not be determined. Thus, we can not determine which user is an eavesdropper, but
can consider a user who is most likely to be a eavesdropper. This scheme is obviously
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more reasonable and practical, and thus the Eve in our proposed system model is the most
likely eavesdropper, and we try to prevent his eavesdropping by our proposed scheme. In
conclusion, the assumption that the relative positions of Bob and Eve is known to the UAV.

Figure 1. System model.

According to the definition, the 3D coordinates of Bob is (0, 0, 0), of Eve is (XE, 0, 0)
while of the UAV is (XA, YA, g). Moreover, θA ∈ (0, 2π) is the yawing angle between a UAV-
filed direction and X-axis. Then, based on the established 3D rectangular coordinate system,
the angle relationship among UAV, Bob, and Eve can be derived. Specifically, the azimuth
angle of Bob with respect to UAV follows sin θB = YA√

X2
A+Y2

A
and cos θB = XA√

X2
A+Y2

A
, while

the azimuth angles of Eve with respect to UAV satisfies sin θE = YA√
(XA−XE)2+(YA)2

and

cos θE = XA−XE√
(XA−XE)2+(YA)2

. Owing to the existence of θA, the azimuth angles with respect

to the antenna array of the UAV are given by θ
′
B = θB − θA and θ

′
E = θE − θA, respectively.

Similarly, the pitch angles of Bob and of Eve related to the UAV can be, respectively, derived
as sin ϕB = g√

(XA)2+(YA)2+g2
and sin ϕE = g√

(XA−XE)2+(YA)2+g2
, where both ϕB and ϕE

satisfy ϕB, ϕE ∈ [0, π/2].
Due to UAV being a M× N rectangular antenna array, we define the array parallel

to the flight direction as the row, whilst arrays perpendicular to the direction of flight
as columns. As such, the subscripts m and n are used to denote the m-th row and n-th
column of the rectangular antenna array. Then, the steering vector for the antenna array is
expressed as

h(θ, ϕ) =
1√
MN

[ej2πψ1,1 . . . ej2πψm,n . . . ej2πψM,N ], (1)

where θ and ϕ respectively denote the receiver’s azimuth angle and the pitch angle relative
to the UAV, where ψm,n is
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ψm,n = − fc

c
[(m− 1)d cos θ

′
+ (n− 1)d sin θ

′
] cos ϕ. (2)

Herein, fc is the central carrier frequency, d = c/(2 fc) is the element spacing in the
transmit antenna array and c is the speed of light. Substituting (θ

′
B, ϕB) and (θ

′
E, ϕE) into

(1) and (2), respectively, we obtain the steering vector h(θ
′
B, ϕB) and h(θ

′
E, ϕE).

At the baseband, the transmit signal can be expressed as

s =
√

αPsvx +
√
(1− α)Psw, (3)

where α, Ps and x refer to the power allocation factor, total transmit power and a complex
symbol following E[|x|2] = 1. In addition, v ∈ CMN×1 and w ∈ CMN×1 denote the
beamforming and AN vectors, respectively.

To achieve precise transmission, v = h(θB, ϕB) is set to maximize the received power
of the confidential signal at Bob, while w = [IMN − h(θ

′
B, ϕB)h

H(θ
′
B, ϕB)]z is to project the

AN into the null space of Bob, where z is an AN vector consisting of MN complex Gaussian
variables with normalized power, i.e., z ∼ CN (0, IMN). Notably, UAV is usually an aerial
platform serving for terrestrial nodes, hence all the communication channels follow the
light of sight (LOS) model. Then, the received signal at Bob can be expressed as

yB =
√

αPshH
B vx +

√
(1− α)PshH

B w + nB =
√

αPsx + nB, (4)

while the received signal at Eve is

yE =
√

αPshH
E vx +

√
(1− α)PshH

E w + nE. (5)

In (4) and (5), hB and hE are the abbreviations of h(θ
′
B, ϕB) and h(θ

′
E, ϕE), respectively.

Moreover, nB and nE are the additive white Gaussian noises (AWGNs) at Bob and Eve
satisfying nB ∼ CN (0, σ2

B) and nE ∼ CN (0, σ2
E).

In this subsection, we propose the system model and give the received signal expres-
sion, it is clear to find that the received signal at Bob is independent of the UAV position
while the the received signal at Eve is related to hE which is a function of UAV position
information, e.g., (θE, ϕE). This shows that it is feasible to reduce the useful signal energy
at Eve by moving the position of UAV without reducing the useful signal energy at Bob, so
as to increase the security of UAV-based SPWT system.

2.2. Proposed UAV Deployment Schemes

In accordance with (4), the SPWT employs v to impel the power of the confidential
message at the desired receiver achieving its maximum. However, such a conventional
SPWT does not guarantee the power received by Eve at a minimum level, since the channel
spanning from UAV to Eve (i.e., hE) is affected by the relative position of them. As a result,
the security for the transmission of the confidential signal is unable to completely ensured.
To further enhance the security level of the UAV-dominated moving network, we maximize
the security rate (SR) performance by deploying the manoeuvrable UAV for shifting the
channel attribute.

Traditionally, the SR performance can be characterized by SR = log(1 + SINRB)−
log(1 + SINRE), where SINRB and SINRE refer to the signal-to-interference-and-noise ratio
of Bob and of Eve, respectively. In SPWT networks, v has been assigned as hB for benefiting
SINRB to arrive its maximum value. Naturally, the optimization problem related to θ

′
E and

ϕE can be simplified as
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min
θ
′
E ,ϕE

SINRE =
αPs|hH

E hB|2
(1− α)PshH

E w + σ2
E

s.t. 0 ≤ ϕE ≤
π

2
, 0 ≤ θ

′
E ≤ 2π. (6)

Since ϕE is the angle between the line between the from UAV to Eve and the horizontal
plane, thus in the constraint of Equation (6) it can not be larger than π

2 . Considering the fact
that SINRE is certainly non-negative, we associate that SINRE arrives its minimum when
the numerator of the objective function of (6) is equal to 0. Pertinently, we expand the term
hH

E hB as

hH
E hB =

1
MN

M,N

∑
m,n

ejπ[(m−1) cos θ
′
E+(n−1) sin θ

′
E ] cos ϕE×

e−jπ[(m−1) cos θ
′
B+(n−1) sin θ

′
B ] cos ϕB . (7)

Ideally, SINRE degrades to 0 as hH
E hB = 0, which indicates the maximum value of

the SR is reached in this case. Toward this direction, we aware from (7) that the optimality
condition of (6) achieves as the UAV deployment impels that hH

E is orthogonal to hB.
However, it can be shown from (7) that θ

′
E and ϕE are highly coupled, leading to a

tricky task in terms of simultaneously obtaining their optimal solutions. To mitigate the
difficulty of addressing the problem with respect to θ

′
E or ϕE, we do not jointly optimize

them but solve it by an ingenious way, which is also able to obtain the optimal solutions to
both θ

′
E or ϕE. To guarantee the ultimate result that hH

E hB = 0 and decouple the indivisible
relationship between θ

′
E and ϕE, without loss of generality, we can define ϕB = ϕE or

θ
′
B = θ

′
E to ease the conceived problem. For ϕB = ϕE as an example, the potential null points

of array pattern along the azimuth angle dimension satisfy the following condition [25]

hH
E hB =

1
MN

M

∑
m

ejπ(m−1)(cos θ
′
E−cos θ

′
B) cos ϕE ×

N

∑
n

ejπ(n−1)(sin θ
′
E−sin θ

′
B) cos ϕE ,

=
1

MN
· ejMπ(cos θ

′
E−cos θ

′
B) cos ϕE − 1

ejπ(cos θ
′
E−cos θ

′
B) cos ϕE − 1

× ejNπ(sin θ
′
E−sin θ

′
B) cos ϕE − 1

ejπ(sin θ
′
E−sin θ

′
B) cos ϕE − 1

. (8)

To compel that hH
E hB = 0, the following condition has to be satisfied, given by

Mπ(cos θ
′
E − cos θ

′
B) cos ϕE = ±2kπ, (9)

or

Nπ(sin θ
′
E − sin θ

′
B) cos ϕE = ±2kπ, (10)

where k has to ensure that k �= k′M and k �= k′N, herein k′ is an integer (i.e., k′ ∈ Z). Then,
the relationship between the optimal θ′E and the optimal θ′B can be obtained as

cos θ
′
E − cos θ

′
B =

±2k
M cos ϕE

, (11)

or

sin θ
′
E − sin θ

′
B =

±2k
N cos ϕE

. (12)

Taking ϕB = ϕE and UAV flies at a constant height into account, we are aware that the
X-coordinate of UAV satisfies XA = XE/2 and θB = π − θE, which can be readily verified
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according to our system model. Substituting θB = π − θE, θ
′
B = θB − θA and θ

′
E = θE − θA

into (22), we obtain a correspondingly modified expression regarding θB, shown as

cos θB =
±k

M cos ϕE cos θA
. (13)

Alternatively, the other modified expression with respect to θB according to (23) is

cos θB =
±k

N cos ϕE sin θA
. (14)

Remark 1. Considering that (cos θ
′
E − cos θ

′
B) ∈ [−2, 2] and cos ϕE ∈ [0, 1], thus (cos θ

′
E −

cos θ
′
B) cos ϕE ∈ [−2, 2]. When (cos θ

′
E − cos θ

′
B) �= 0, the denominator of the first term in (8)

regarding θ
′
B is unequal to 0. Naturally, (sin θ

′
E − sin θ

′
B) �= 0 holds. In a nutshell, our analysis

for the two denominators of (8) derives that sin θ
′
E − sin θ

′
B �= 0 and cos θ

′
E − cos θ

′
B �= 0.

Taking into account the relationship among θA, θ
′
B, θB, θ

′
E, and θE, the flight angle of UAV follows

cos θB cos θA �= 0 and cos θB sin θA �= 0, which further arrives θA �= pπ
2 , (p ∈ Z), thus the

denominators of (8) are unequal to 0. As a result, our analysis and derivation for the solution θB to
expression (8) is of physical significance.

Since ϕE ∈ [0, π/2] increases as YA increases in the domain of (−∞, 0), hence cos ϕE
decreases as YA ∈ (−∞, 0) increases. Similarly, cos ϕE increases as YA ∈ (0,+∞) increases.
With those in mind, we then have 1

N cos ϕE
∈ (1/N, 1/(N cos ϕ∗E)], where ϕ∗E refers to the

optimal pitch angle for maximizing 1
N cos ϕE

. As a matter of fact, ϕ∗E arrives in the case of
YA = 0, which further derives that

cos ϕ∗E =
XE/2√

(XE/2)2 + g2
. (15)

Furthermore, we note that the term ±k
sin θA

of (14) follows | ±k
sin θA

| ∈ [1,+∞), herein the
left extremum arrives as k = 1 and sin θA = 1. Hence, we conclude that θB has at least one
solution when |1/(N cos ϕ∗E)| ≤ 1.

With the above conclusion, we further derive the optimal solution θ∗B to characterize
YA, where YA can be determined once θ∗B is optimized. Upon substituting the original

definition cos θB = XA√
X2

A+Y2
A

and cos ϕE =

√
(XA−XE)2+(YA)2√

(XA−XE)2+(YA)2+g2
into the derivation of (13),

we have

XA√
X2

A + Y2
A

√
(XA − XE)2 + (YA)2√

(XA − XE)2 + (YA)2 + g2
=

±k
M cos θA

. (16)

Taking into account that XA = XE/2, YA can be obtained as

YA = ±

√
M2 cos2 θAX2

E − k2X2
E − 4k2g2

4k2 . (17)

Similarly, YA can also be obtained in accordance with (14) as

YA = ±

√
N2 sin2 θAX2

E − k2X2
E − 4k2g2

4k2 . (18)

Until now, we have obtained an analytical expression of UAV’s coordinate shown
of (17) or of (18). It is worth noting that, in a potentially infancy stage, the right term
M2 cos2 θAX2

E − k2X2
E − 4k2g2 of (17) or the term N2 sin2 θAX2

E − k2X2
E − 4k2g2 of (18) is not

inherently greater than or equal to 0, there is no solution satisfying (17) or (18). However,
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the parameters θA (the yawing angle of UAV) and g (the height of UAV) can be strategically
regulated by UAV’s attitude, hence at least one feasible solution to (17) or (18) is able to be
gained. Because of the analytical solution, the computational complexity is significantly
reduced when compared to directly addressing problem (6). For the given XA, once YA
is optimized by (17) or (18), we finish the UAV deployment problem. At such an optimal
coordinate (X∗A, Y∗A, g), SINRE degrades to zero while SINRB achieves its maximum value
αPS/σ2

B, thus ensuring that the maximum SR performance can be achieved.

Remark 2. Upon optimizing UAV deployment, we promulgate that the maximum SR performance
remains achievable, even though we have not split any precious power to the AN signaling. The
benefits are threefold: (1) from UAV’s perspective, the hardware structure becomes more simple
owing to removing the module of AN generator, which cuts down the expenditure and favors
lightening the weight of UAV; (2) for the perspective of energy efficiency, all the transmit power
is used to convey the confidential message, which contributes to Bob receiving a high-quality
signal; and (3) while for the computational complexity, our derived analytical solution to YA on the
basis of the 3-D spatial relation conspicuously mitigates the computational burden in terms of the
UAV deployment.

For ϕB = ϕE as our anther instance to decouple the indivisible relationship between
θB = θE, the potential null points of array pattern along the pitch angle dimension satisfy
the following condition,

hH
E hB =

1
MN

M

∑
m

ejπ(m−1) cos θE(cos ϕE−cos ϕB) ·
N

∑
n

ejπ(n−1) sin θE(cos ϕE−cos ϕB),

=
1

MN
· ejMπ cos θE(cos ϕE−cos ϕB) − 1

ejπ cos θE(cos ϕE−cos ϕB) − 1
· ejNπ sin θE(cos ϕE−cos ϕB) − 1

ejπ sin θE(cos ϕE−cos ϕB) − 1
. (19)

Similarly, let hH
E hB = 0, we have,

Mπ cos θE(cos ϕE − cos ϕB) = ±2lπ,

l �= l
′
M(l

′
= 1, 2, 3, . . .). (20)

or

Nπ sin θE(cos ϕE − cos ϕB) = ±2lπ,

l �= l
′
N(l

′
= 1, 2, 3, . . .). (21)

Then, the relationship θE and θB can be obtained as,

cos ϕE − cos ϕB =
±2l

M cos θE
,

l �= l
′
M(l

′
= 1, 2, 3, . . .). (22)

or

cos ϕE − cos ϕB =
±2l

N sin θE
,

l �= l
′
N(l

′
= 1, 2, 3, . . .). (23)

Note that, the azimuth angles satisfy the constraint of θB = θE. According to the
system model, the Y-coordinate of Alice must satisfy YA = 0. Since the azimuth angle
can be adjusted with the flight angle of Alice, i.e., the flight direction which we defined as
θA, its value range is (0, 2π). The X-coordinate range of Alice is (−∞, 0)

⋃
(XE,+∞) while

cos ϕE − cos ϕB is a monotone decreasing function about XA. Let l = 1, it is clear that when
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2
M cos θE

< 0 or 2
N sin θE

< 0, the X-coordinate XA ∈ (−∞, 0). Conversely, when 2
M cos θE

> 0
or 2

N sin θE
> 0, the X-coordinate XA ∈ (XE,+∞). Thus, the value of XA is existed and can

be easily obtained similar to the pitch angles scheme or by dichotomy method.
In this subsection, we propose the UAV deployment strategies from azimuth angel

dimension and pitch angel dimension, respectively. According to the derived equations, it
is clear that, based on our proposed two schemes, the received SINR at Eve achieves zero.
At the same time, the received SINR at Bob reaches its maximum value. Thus, the secrecy
rate is improved.

3. Simulation Results and Analysis

In this section, we evaluate the achievable SR performance of our proposed scheme via
numerical simulations, where the detailed system parameters are set as shown in Table 1.
The SR is defined as SR = log2(SINRB − SINRE). Without loss of generality, we assume
that the noise levels at Bob and Eve are identical, i.e., σ2

B = σ2
E. Moreover, the variable

argument k in both (13) and (14) are set to be 1.

Table 1. Simulation parameters setting.

Parameter Value

The number of transmitter antennas (M× N) 4× 4

Total signal bandwidth (B) 5 MHz

Total transmit power (P) 1 W

The height of UAV (g) 200 m

The eavesdropper’s position (XE, YE) (500 m, 0)

The flight angle of UAV (θA) π/4

Central carrier frequency ( fc) 3 GHz

Figure 2 shows the attainable SR performance of our proposed azimuth angles scheme
versus the signal-to-noise ratio (SNR), where SNR = 10 log

(
Ps/σ2). For comparison, we

consider the beamforming scheme proposed in [14], then three conventionally random
deployments are invoked to validate the efficiency of our proposed UAV deployment.
Firstly, it can be obviously noted that our proposed UAV deployment scheme is superior
to the other three random schemes in terms of the SR performance, albeit a negligible
computational complexity is increased. Moreover, the SR performance gap between the
proposed scheme and any other scheme becomes distinct as the SNR increases. Therefore,
the main benefits of our considered UAV deployment scheme stem from not only assuring
the precise transmission but also improving the security performance. On the other hand,
we note from Figure 2 that the theoretical SR performance, i.e., the maximum performance,
is coincident with that of our proposed scheme at any SNR. The result further verifies the
validness of our derived solution to the UAV deployment in the context of SPWT.

Figure 3 shows the attainable SR performance of our proposed pitch angles scheme
versus the SNR. Similarly, the three conventionally random deployments are invoked for
comparison. The results show that this proposed scheme is also superior to the conven-
tionally random deployments. This also proves that the basic ideas of the two methods
we proposed are completely correct. From Figures 2 and 3, it is clear to find, no matter
the azimuth angles scheme or pitch angles scheme we adopt, if only the deployed UAV
satisfies the constraint of hH

E hB = 0, the optimal secrecy rates can achieve by the optimal
beamforming of v = h(θB, ϕB).

To illustrate the efficiency of our proposed UAV-assisted SPWT scheme in gaining
the security, Figure 4 shows that the achievable SR performance varies as α increases. It
can be noted that the SR performances of the three conventional comparison schemes
are constantly unable to achieve the optimal SR performance even with the aid of power
allocation. In fact, the SR performance of the conventional scheme seriously degrades when
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the UAV is randomly deployed. Hence, properly arranging UAV has a momentous impact
on the SPWT. While for our proposed UAV deployment eliminating the AN signaling, it
overleaps the power split operation but remains gaining the maximum SR performance,
which further corroborates the potential value for the SPWT. Another interesting conclusion
is that the SR of our proposed scheme remains the maximum value and unchanged, this
means our proposed scheme do not need the artificial noise, this is because hH

E hB = 0,
regardless of the power of artificial noise, the received SNR at Eve is always 0. Thus,
artificial noise is unnecessary, and this brings the benefit of a budget reduction.
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Figure 2. The achievable SR performance versus SNR for our proposed azimuth angles scheme,
where three typically random deployments are invoked as the baselines.
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Figure 3. The achievable SR performance versus SNR for our proposed pitch angle scheme, where
three typically random deployments are invoked as the baselines.
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Figure 4. The achievable SR performance versus parameter α for the different scheme when SNR is
15 dB.

In summary, simulation results show that our proposed UAV deployment schemes
achieve the SR enhanced SPWT compared with an UAV randomly distributed scheme.
Moreover, the UAV transmit power is concentrated on transmitting confidential message
but not part-allocated to AN. Thus, our proposed UAV deployment SPWT schemes are
more secure and more energy efficiency.

4. Conclusions

In this letter, we proposed an UAV deployment scheme in the context of SPWT from the
perspective of azimuth angle and pitch angle. In this scheme, we abandoned FDA for the
first time and adopted the method of combining DM with 3D scenario, which reduces the
system budget significantly. Compared to the conventional method, the proposed scheme
is more superior in terms of the attainable SR performance. Moreover, our proposed UAV
deployment algorithm gives the analytical solutions which has almost no complexity, this
is also an important benefit of our proposed scheme. Interestingly, although we introduced
AN in this hybrid SPWT system, the mathematic analysis shows that when the allocated
power in AN is zero, the performance achieves the optimal, this means our proposed
scheme do not need AN assistance to achieve the optimal SR performance, which has a
powerful ability in economizing the precious energy resource.
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Abstract: Due to the advantages of strong mobility, flexible deployment, and low cost, unmanned
aerial vehicles (UAVs) are widely used in various industries. As a flying relay, UAVs can establish
line-of-sight (LOS) links for different scenarios, effectively improving communication quality. In this
paper, considering the limited energy budget of UAVs and the existence of multiple jammers, we
introduce a simultaneous wireless information and power transfer (SWIPT) technology and study
the problems of joint-trajectory planning, time, and power allocation to increase communication
performance. Specifically, the network includes multiple UAVs, source nodes (SNs), destination
nodes (DNs), and jammers. We assume that the UAVs need to communicate with DNs, the SNs
use the SWIPT technology to transmit wireless energy and information to UAVs, and the jammers
can interfere with the channel from UAVs to DNs. In this network, our target was to maximize
the throughput of DNs by optimizing the UAV’s trajectory, time, and power allocation under the
constraints of jammers and the actual motion of UAVs (including UAV energy budget, maximum
speed, and anti-collision constraints). Since the formulated problem was non-convex and difficult to
solve directly, we first decomposed the original problem into three subproblems. We then solved the
subproblems by applying a successive convex optimization technology and a slack variables method.
Finally, an efficient joint optimization algorithm was proposed to obtain a sub-optimal solution by
using a block coordinate descent method. Simulation results indicated that the proposed algorithm
has better performance than the four baseline schemes.

Keywords: UAV network; trajectory planning; power allocation; time allocation

1. Introduction

In recent years, due to high mobility, flexible deployment, and low cost, UAVs have
been widely used in many scenarios, such as intelligent transportation systems [1–3],
disaster relief, military activities, emergency communications, and so on [4–6]. In particular,
with the development of 5G technology, non-terrestrial networks have become the next
hot spot [7]. For example, [8] studied the extreme performance of a cognitive uplink fixed
satellite service and a fixed terrestrial service in the Ka-band 27.5–29.5 GHz frequency
range. Ref. [9] studied the physical layer security problem of a satellite network.

Compared with traditional communication methods, most of the wireless communica-
tion channels in UAV networks are dominated by line-of-sight (LOS) links [10], which can
reduce the obstruction of mountains and buildings so as to obtain better data transmission
effects. For example, for natural disasters scenes and ground network communication
failures, Ref. [11] used UAVs to provide support for ground base stations and proposed an
adaptive UAV deployment scheme to solve the communication network coverage problem.
Ref. [12] proposed a task-driven routing strategy for emergency UAVs network to enhance
rescue efficiency. Aiming at the post-disaster areas where infrastructure has been destroyed,
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Ref. [13] proposed an efficient data transmission scheme based on a particle swarm algo-
rithm to ensure communication quality. Ref. [14] studied a UAV deployment strategy for
disaster-affected areas to maximize the number of communication-coverage nodes.

Despite the widespread adoption of UAV-assisted communication technologies, there
are still some challenges in UAV networks. First, due to the openness of a UAV network
interface and the broadcast nature of electromagnetic waves, a UAV network is susceptible
to radio interference. For instance, the existence of malicious jammers could reduce the
communication quality between the nodes in a UAV network. Second, the battery capacity
of the UAV is limited, which greatly shortens total mission time [15–17].

In view of the problem that a UAV network is susceptible to radio interference, the high
mobility of UAVs could be used to improve a system’s performance through the reasonable
optimization of network resources [18–21]. Whereas, in a UAV network, the resources are
limited, coupled with each other, and the established problems are usually non-convex and
difficult to solve. Therefore, it is necessary to design a feasible optimization algorithm to
obtain a solution to the original problem. Based on this, a successive convex approximation
(SCA) [22] can be used as an effective method to solve the original non-convex problem.

To address the problem that the battery capacity of the UAV is limited, traditional
energy harvesting mechanisms represented by solar and wind energy have been exten-
sively studied [23,24]. For example, Ref. [23] studied the energy efficiency problem in
solar-powered UAV systems by optimizing the speed, acceleration, heading angle, and
transmission power of a UAV. Ref. [24] proposed an energy harvesting model based on
hybrid solar and wind power for a UAV system and obtained a solution to the signal-to-
noise ratio (SNR) outage minimization problem. Unfortunately, due to the limitations of
hardware technology, the traditional energy harvesting scheme will significantly increase
the take-off weight and lead to the degradation of the system’s performance. Based on
that, radio frequency (RF)-based SWIPT technology combined with UAV network resource
allocation optimization could provide an effective solution [25].

To be specific, SWIPT is a technology that integrates wireless power transfer (WPT)
and wireless information transfer (WIT). The power and information could be transferred
at the same time, as an RF signal carries both power and information [26]. Typically, time
switching (TS) and power splitting (PS) protocols are two common methods to implement
SWIPT [27]. The former depends on time-slot allocation, where part of the time slot is used
for energy transmission, and the other is used for information transmission and processing.
The latter depends on power allocation, where part of the power is used for information
transmission and processing, and the other is used for energy harvesting (EH).

1.1. Related Work

For UAV-assisted communication networks, due to the broadcast characteristics of
electromagnetic waves, the UAV network is vulnerable to malicious interference. Generally
speaking, an attack on the jammers on a UAV communication channel usually focuses on the
physical layer and is completed by transmitting high-power interference signals. Therefore,
many optimization schemes have been proposed to improve the system’s performance.

Based on the high mobility of UAVs, Refs. [28–31] studied the UAV communication
system in jamming environments from the perspective of trajectory planning. In [28], the au-
thors studied a dual-UAV communication system with malicious interference and min-
imized the flight time by optimizing the UAV trajectory with steering angle constraints
under the premise of meeting the information transmission requirements. In the scenario
with a dynamic jammer, Ref. [29] proposed an offline algorithm based on deep rein-
forcement learning to optimize the trajectory and minimize the mission completion time.
To ensure the reliability of the communication link, Ref. [30] maximized the average SINR
by planning a trajectory for UAVs under energy constraints. In [31], the authors studied a
UAV communication network with multiple jammers and optimized the UAV’s trajectory
by using the Dinklebach method and a non-convex optimization method to maximize the
energy efficiency of the system.
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However, the research on UAV network channel optimization in the above-mentioned
interference environment mainly focused on trajectory planning in the space domain.
Considering more degrees of freedom for a UAV network, Refs. [32–34] studied the multi-
domain optimization problem based on trajectory planning. In [32], the authors mitigated
the influence of jammers by jointly optimizing the UAV trajectory and signal transmission
power and maximizing the average-secrecy rate of an uplink and a downlink. For the proba-
bilistic LOS channel system, Ref. [33] studied a single UAV-assisted dual-user anti-jamming
network and maximized the system throughput by optimizing the UAV’s three-dimensional
position and the ground nodes’ signal transmission power, wherein the UAV provides
communication services for two users. In the scenario where jammers have imperfect
locations, considering the different requirements for service quality, Ref. [34] maximized
the minimum throughput, the average throughput, and the minimum throughput with
delay constraints on all nodes by optimizing the UAV trajectory, the task scheduling, and
the ground nodes’ signal transmission power, based on a successive convex approximation
method and a block coordinate descent method. In addition, for the application scenarios
of drones in package delivery, Ref. [35] maximized delivery and sensing utility under
energy constraints by jointly optimizing the route selection, sensing time, and delivery
weight allocation.

Moreover, on account of the fact that an RF signal carries both power and information,
many resource allocation schemes were proposed to make the best of finite energy based
on RF energy harvesting technology.

Aiming at the vulnerability of the UAV network, some existing works optimized UAV
channel quality in terms of security [25,36–38]. In [36], the authors proposed a scheme
based on power division and time switching to improve the security rate in a single UAV
relay system with eavesdroppers. To analyze the security of the physical layer, Ref. [37]
considered three attack scenarios: (1) a free-space optical eavesdropping attack, (2) a radio
frequency attack, and (3) both a free-space optical and a radio frequency attack. The authors
further studied the effects of SWIPT parameters and power amplifier efficiency on the
security of the system. In [25], the authors investigated two cooperative UAV-assisted
SWIPT networks. Specifically, they aimed to maximize the average-secrecy rate by jointly
optimizing the trajectory and power of the UAVs, as well as the PS ratio. In the scenario
where multiple eavesdroppers have imperfect locations, Ref. [38] improved the security of
the network by jointly optimizing the UAV’s position, noise power, PS, and TS ratios.

In addition, outage probability (OP) describes the probability of link failure and is often
used to evaluate the performance of SWIPT communication systems. In [39], the authors
obtained the closed-form expressions of outage probability and the bit-error rate in a UAV-
relay-assisted decode and forward (DF) network based on TS and PS protocols and analyzed
the transmission rate and delay limitation state. Moreover, a fast convergence algorithm
based on bandwidth and time allocation was proposed by [40] to optimize the outage
probability. In [41], the authors derived closed expressions of OP and throughput over
Nakagami-m fading channels in a DF two-way relay system. They also analyzed the effects
of the PS factor, threshold, fading severity, and parameters on the network’s performance,
wherein the two source nodes could communicate with each other with the help of a
relay. Also exploiting SWIPT, Ref. [42] proposed a novel UAV-relay-assisted amplifiers and
forwards (AF) network and derived connection- and secrecy-outage probabilities based on
a PS scheme.

Furthermore, considering the energy-constrained system, some existing works studied
the energy efficiency (EE) of networks. In [43], the energy efficiency was maximized
by optimizing the UAV position. However, the authors did not use the detailed energy
consumption expression of the rotary-wing UAV, but simply adopted the constant power.
Ref. [44] investigated a UAV-assisted non-orthogonal multiple access (NOMA) networks,
where the Dinkelbach method and successive convex optimization techniques were used
to maximize the energy efficiency of the system by designing a UAV’s location, beam
pattern, power, and time schedule. For a multi-user distributed antenna system, Ref. [45]
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maximized the energy efficiency by jointly-optimizing energy allocation and a PS ratio
based on the Lagrangian method. Ref. [46] explored SWIPT techniques for device-to-device
(D2D) communications based on a nonlinear energy system, optimized power, and the PS
ratio maximizing energy efficiency.

Meanwhile, as a promising technology, intelligent reflecting surface (IRS)-aided SWIPT
in UAV networks has drawn much attention recently [47,48]. In [47], the authors studied
a UAV network supported by IRS and SWIPT and proposed an alternating optimization
(AO) algorithm to minimize all users’ energy consumption. Moreover, the authors in [48]
investigated a UAV network equipped with IRS-aided SWIPT and developed an efficient
iterative algorithm based on successive convex approximation, block coordinate descent,
and time division multiple access (TDMA) protocols, to maximize the average-transmission
rate. Aiming at the security problem in an aerial intelligent reflecting surface (AIRS) net-
work, Ref. [49] proposed an AO algorithm based on the Riemannian manifold optimization
method, the SCA technique, and the element-wise BCD method to jointly design the AIRS’s
deployment and phase shift, so as to maximize the system’s secrecy rate.

In addition to the joint UAV trajectory planning and resource allocation optimization
methods mentioned above, some existing works proposed new optimization methods to
support a UAV communication network [50–52]. For example, considering the trajectory
planning problem of multi-UAV assisted networks in a post-disaster scenario, Ref. [50]
studied two heuristic algorithms to effectively utilize the UAVs’ energy, to improve the
communication coverage performance. In the RIS-based UAV-assisted IoT communication
scenario, Ref. [51] proposed a multi-UAV path planning/transmission scheduling algorithm
based on model predictive control (MPC) to improve system performance and reduce the
total energy consumption of UAVs. For the UAV-assisted mobile edge computing (MEC)
network communication scenario, Ref. [52] proposed a multi-agent deep reinforcement
learning-based UAV trajectory control algorithm to jointly optimize the geographical
fairness among all the user equipment, the fairness of every user-equipment load and the
users’ energy.

1.2. Motivation

In spite of the fact that the related works above have made great progress, there are
still several problems needing to be resolved. To be specific, most existing studies did not
consider the existence of multiple jammers, even though jammers have a significant impact
on the legitimate communication of the system. In addition, most of the existing works
considered a single UAV or a single ground node. That is because a multi-UAV system
needs to meet a series of requirements, such as an anti-collision constraint and mission
planning. These will increase the design difficulty and further increase the complexity
of the algorithm. Furthermore, most existing works based on a SWIPT network focused
on optimizing power or trajectory instead of multi-domains, including time, power, and
trajectory. Most importantly, due to the development of onboard batteries, the flight time
of UAVs is limited. The energy constraint problem greatly restricts further applications
of UAVs. Therefore, how to improve the communication quality of a UAV network has
always been a difficult and hot issue.

Inspired by the discussion above, we study a multi-UAV-assisted multi-user network
system. Specifically, where the SN can send information and energy to the power-limited
UAV, and the UAV uses the collected energy to communicate with the DN. It should be
noted that there are multiple jammers in the network blocking legitimate communication.
Different from the existing network, we introduce multiple UAVs based on SWIPT tech-
nology and fully consider the existence of jammers and the energy consumption of UAVs.
In addition, due to the complexity of the network, solving this joint optimization problem
was a considerable challenge. Thus, we introduced multiple slack variables and used the
SCA method to make the original problem satisfy the disciplined convex program (DCP)
rules so that the reformulated problem could be solved based on the solver CVX.
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1.3. Contributions

For the sake of solving the problems given above, a multi-domain optimization al-
gorithm based on the PS protocol that combines trajectory planning, time allocation, and
power splitting is proposed by us. We aim to maximize the throughput by considering all
constraints. The main contributions of this paper are as follows:

• We investigate a multi-UAV-assisted multi-user relay network in which the SNs use
SWIPT technology to transmit wireless energy and information to UAVs. The UAVs
use the collected energy to transmit information to the DNs, with the jammers inter-
fering with legitimate channel communications.

• Our goal was to jointly optimize UAV trajectories, time allocation, and power-splitting
factors, to mitigate interference and maximize the system throughput. Given that the
original problem is non-convex and difficult to solve directly, we decomposed the
original problem into three subproblems based on successive convex approximation,
block coordinate descent, and a slack variables method presenting an efficient joint
optimization algorithm to obtain a suboptimal solution.

• Simulation results indicate that the proposed scheme had better performance than
the four benchmark schemes. In addition, we discuss the impact of the number of
jammers and energy budgets on system performance and illustrate the effectiveness
of joint trajectory planning, time, and power allocation to mitigate interference.

The rest part of the paper is organized as follows. In Section 2, the system model is
introduced. In Section 3, we propose a joint optimization algorithm to solve the original
problem. In Section 4, we provide simulation results and some necessary discussions.
Finally, Section 5 concludes this paper.

2. System Model

Considering a multi-UAV enabled wireless communication network as shown in
Figure 1, which includes K1 quadcopter UAVs, K2 source nodes (SNs) and destination
nodes (DNs), and multiple jammers. Since each pair of ground nodes (SN and DN) is
equipped with a fixed UAV to provide communication services for them, then K1 = K2 = K.
In this system, we assume that the UAVs need to communicate with DNs, and the SNs use
SWIPT technology to transmit wireless energy and information to UAVs. Specifically, K
SNs stored information and energy. First, all SNs simultaneously send information and
energy to the UAV relays, and then, the UAV relays use the collected energy to forward the
information to the DNs in DF mode. It is assumed that the SNs, the UAVs, and the DNs are
each equipped with a single antenna, the jammers are equipped with K antennas, and the
jammers’ antennas are aimed at the signal transmission direction of the UAVs [53]. Thus,
The jammers which are far away from SNs and closer to UAVs interfere with the channel
from UAVs to DNs.

In order to describe the model in mathematical terms, we introduce a 3D Cartesian
coordinate system. Suppose the locations of SN k and DN k are wSk = (xSk , ySk , 0) and
wDk = (xDk , yDk , 0) respectively, k ∈ K = {1, 2, ..., K}. The system contains multiple jam-
mers, denoted as j ∈ J = {1, 2, ..., J}, and the location of the j-th jammer is wj = (xj, yj, 0).
At the same time, we discretize the UAVs mission period T into N time slots with equal
length δ, i.e., δ = T

N . Therefore, the position of UAV k flying at a height Z in any time slot
n ∈ N = {1, 2, ..., N} is denoted as qk[n] = (xk[n], yk[n]). Moreover, we assume that the
maximum flight speed of the UAV k is Vmax. Thus, we have the following:

‖qk[n]− qk[n− 1]‖ ≤ Vmaxδ, ∀k, n = 2, ..., N. (1)

which means that the UAV’s speed between two adjacent time slots cannot exceed the
maximum speed, where ‖•‖ represents the Euclidean norm. In addition, the distance
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between any two UAVs needs to be greater than a minimum safe distance of Dmin to avoid
collision and ensure safety. Thus,

‖qk[n]− ql [n]‖2 ≥ D2
min, ∀k, l, k �= l. (2)

Figure 1. UAV communication network.

Generally speaking, most of the wireless communication channels in UAV networks
are dominated by line-of-sight (LOS) links. Thus, following the free-space path loss model,
we can get the channel-power gain between SN k and UAV k as follows:

h2
SkUk

= βsu
∥∥qk[n]−wSk

∥∥−2
κ[n], ∀n. (3)

where βsu represents SN to UAV channel gain at the reference distance 1 m; κ[n] is a
small-scale fading with unit mean that is modeled by Rayleigh fading, i.e., E[|κ[n]|2] = 1.
Similarly, following the free-space path loss model, the channel-power gains from the
jammer j to UAV k, and from UAV k to DN k are:

h2
jUk

= β Ju
∥∥qk[n]−wj

∥∥−2, ∀n. (4)

h2
Uk Dk

= βud
∥∥qk[n]−wDk

∥∥−2, ∀n. (5)

where β Ju and βud represent jammer j to UAV k and UAV k to DN k channel gain at the
reference distance of 1 m, respectively.

2.1. Energy and Information Transmission Model

Inspired by [39], we use the PS protocol to describe the transmission process between
the nodes of the network. Specifically, the PS protocol is divided into two steps, as shown
in Figure 2, where τ is the time-allocation factor, α is the power-splitting factor, and Pk is
the transmit power from SN k to UAV. We first divide each time slot into τδ and (1− τ)δ.
During the first τδ process, the SN sends a signal to the UAV. According to the PS protocol,
the 1− α portion of the signal power is used by the UAV to receive and decode a specific
signal from the SN, and the remaining portion is used for energy harvesting. Note that
the energy collected by UAV from the SN is temporarily stored in the supercapacitor [54].
During the second (1− τ)δ process, the UAV uses the energy collected in the previous
stage to transmit the decoded data to the DN. It should be noted that due to the limitation
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of energy harvesting efficiency and signal fading, we consider the harvested energy to be
only used for signal processing and transmission. The energy consumed by the motor is
determined by its own battery capacity, which we will discuss later.

Figure 2. PS protocol.

Based on the above analysis, the UAV-received signal used for information processing
during a time slot can be expressed as follows:

yIN
k = (1− α)

√
PkhSkUk x + nsu. (6)

where x denotes a signal sent by SN, and nsu is additive white Gaussian noise (AWGN)
with mean 0 and variance σ2

su, i.e., nsu ∼ CN(0, σ2
su). Therefore, the signal-to-noise ratio

(SNR) of the received signal is as follows:

SNRkIN =
(1− α)Pkh2

SkUk

σ2
su

. (7)

Thus, the achievable rate from SN to UAV is as follows:

RSUk = τlog2
(
1 + SNRINk

)
, ∀k. (8)

It should be noted that in the actual network, the SNR needs to be greater than a
threshold γth1; otherwise, the information transmission will be interrupted. Thus, we have
the following:

SNRINk ≥ γth1, ∀k, ∀n. (9)

According to the PS protocol, the energy harvesting time during each time slot is τδ.
Therefore, the energy collected by the UAV in a slot can be expressed as follows:

EEH
k = ηαPkh2

SkUk
τδ. (10)

where η is energy collection efficiency. It should be noted that the collected energy cannot
exceed the maximum capacity of the supercapacitor. Thus, we have the following:

EEH
k ≤ Ecap

k (11)

where Ecap
k is the maximum capacity of the supercapacitor. Thus, the UAV’s transmission

power during the (1− τ)δ can be expressed as follows:

PUk =
EEH

k
(1− τ)δ

=
ηαPkh2

SkUk
τ

(1− τ)
. (12)

Due to the existence of the jammers, the received signal-to-interference-plus-noise-
ratio (SINR) at the DN needs to be greater than a threshold γth2 to ensure that the signal
transmission will not be interrupted. Thus, we have the following:

SINRDk =
PUk [n]h

2
Uk Dk

[n]

∑J
j=1 Pjh2

jUk
[n] + σ2

ud

≥ γth2, ∀n, ∀k. (13)
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where σ2
ud is the noise power, and Pj is the interference power. Thus, the achievable rate

from the UAV to the DN is as follows:

RUDk = (1− τ)log2(1 + SINRD), ∀k. (14)

In addition, the information-causality constraints of the system can be written as

n

∑
t=1

(τ)log2(1 + SNRINk ) ≥
n

∑
t=1

(1− τ)log2(1 + SINRD), n = 1, ..., N, ∀k. (15)

2.2. Energy Consumption Model

Compared to energy consumption related to information transmission and signal
decoding, UAVs need to consume more energy to maintain level flight. According to
existing achievements in [17], the propulsion power of a rotary-wing UAV in 2D horizontal
flight could be modeled as

Puav(v) = PB

(
1 +

3v2

v2
tip

)
︸ ︷︷ ︸

blade pro f ile

+ PI

(√
1 +

v4

4v4
0
− v2

2v4
0

) 1
2

︸ ︷︷ ︸
induced

+
1
2

d0ρsA0v3︸ ︷︷ ︸
parasite

(16)

where v means the UAV’s speed, PB and PI are the blade profile and induced powers,
respectively, when the UAV is hovering. vtip represents the tip speed of the rotor blade,
and v0 is the mean rotor-induced velocity. In addition, d0 is the fuselage drag ratio, ρ is the
air density, s is rotor solidity, and A0 is the rotor disc area. Therefore, we can get the sum of
the energy consumption of the UAV in a mission period T by

EUAV(v) =
∫ T

0
PI

(√
1 +

v4

4v4
0
− v2

2v4
0

) 1
2

dt +
∫ T

0
PB

(
1 +

3v2

v2
tip

)
+

1
2

d0ρsA0v3dt (17)

From the definition of time slot δ, we define the UAV’s speed as v = ‖qk[n]− qk[n− 1]‖
/

δ.
Thus, we can rewrite EUAV as

EUAV(Δq) =
N

∑
n=2

PI

(√
δ4 +

Δq4

4v4
0
− Δq2

2v4
0

) 1
2

+
N

∑
n=2

PB

(
δ +

3Δq2

δv2
tip

)
+

1
2

d0ρsA0
Δq3

δ2 (18)

where Δq = ‖qk[n]− qk[n− 1]‖. In summary, we get the energy consumption expression
of the rotary-wing UAV.

2.3. Problem Formulation

In this paper, our purpose is to maximize the throughput of UAV to the DN by
optimizing the trajectory q[n], time-allocation factor τ, and power-splitting factor α. Thus,
the throughput of the DN k over N time slots can be expressed as follows:

RDk =
N

∑
n=1

(1− τ)log2(1 + SINRD). (19)

Let μ denote the the minimum throughput of DNs, i.e., μ = min
k∈K

RDk , and define

Q = {qk[n], ∀k, ∀n}, τ = {τk[n], ∀k, ∀n}, α = {αk[n], ∀k, ∀n}, Eth as the UAV’s energy
budget, and qstart and qend as the start and endpoints of the UAV. The joint trajectory
planning, time, and power allocation optimization problem can be formulated as
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P1 : max
{Q,τ,α,μ}

μ (20a)

s.t. (1), (2), (9), (11), (13), (15) (20b)

EUAV(Δq) ≤ Eth, ∀k (20c)

μ ≤ RDk , ∀k (20d)

0 ≤ τ ≤ 1 (20e)

0 ≤ α ≤ 1 (20f)

qk[1] = qstart (20g)

qk[N] = qend (20h)

Note that problem P1 is difficult to solve directly since (2), (11), (13), (15), (20c), and
(20d) are non-convex. In the next section, we propose an efficient iterative algorithm to
obtain a feasible solution to original problem.

3. Joint Optimization

Since P1 is a non-convex problem, it is difficult to solve directly. In this section, we
divide P1 into three subproblems and obtain suboptimal solutions by applying a successive
convex approximation and a slack variables method. Then, we develop an overall iterative
algorithm based on the block coordinate descent technique to get a locally optimal solution.
The specific flow chart is shown in Figure 3.

Figure 3. The flow chart of solution to problem P1.
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3.1. Optimization of Trajectory

For any fixed power-splitting and time-allocation factors {α, τ}, the trajectory opti-
mization problem can be expressed as follows:

P2 : max
{Q,μ}

μ (21a)

s.t. (1), (2), (9), (11), (13), (15), (20c), (20d), (20g), (20h) (21b)

Note that the problem P2 is intractable due to the non-convexity of (2), (11), (13), (15),
(20c), and (20d). To tackle this issue, we first introduce slack variables {A[n], B[n], C[n]}.

Theorem 1. By introducing slack variables, problem P3 could be equivalently written as

P3 : max
{q[n],μ,A[n],··· ,D[n]}

μ (22a)

s.t. (1), (2), (9), (11), (15), (20c), (20g), (20h) (22b)

μ ≤
N

∑
n=2

(1− τk[n])log2

(
1 +

1
Ak[n]Bk[n]Ck[n]

)
(22c)

Ak[n] ≥
(

ηαPkβsuτk[n]
1− τk[n]

)−1∥∥qk[n]−wSk

∥∥2, ∀k, ∀n (22d)

Bk[n] ≥ β−1
ud

∥∥qk[n]−wDk

∥∥2, ∀k, ∀n (22e)

Ck[n] ≥
J

∑
j=1

Pjβ Ju
∥∥qk[n]−wj

∥∥−2
+ σ2

ud, ∀k, ∀n (22f)

1
Ak[n]Bk[n]Ck[n]

≥ γth2, ∀k, ∀n (22g)

Proof. The theorem can be proved by the method of contradiction. Specifically, if (22d)–(22f)
are strict equality constraints, problem P3 is equal to P2. Otherwise, by adjusting the slack
variables, the value of the objective can always be further optimized.

However, P3 is still difficult to solve because (15), (20c), and (22f) are non-convex
constraints, and the left-hand-side (LHS) of (2) and (22g), the right-hand-side (RHS) of (22c)
is convex. Consider that any convex function is globally lower-bounded by its first-order
Taylor expansion at any point [55]. Therefore, taking Taylor expansion approximately as
lower bound, we can obtain the following:

log2

(
1 +

1
A[n]B[n]C[n]

)
≥ log2

(
1 +

1
AiBiCi

)
− A[n]−Ai

Ai
(
1 + AiBiC

)
ln 2

− B[n]− Bi

Bi
(
1 + AiBiCi

)
ln 2

− C[n]−Ci

Ci
(
1 + AiBiCi

)
ln 2

(23)

where (Ai, Bi, Ci) is a given local point in the i-th iteration.
Ignoring the terms that are independent of the slack variables (A[n], B[n], C[n]), we

replace the RHS of (22c) with S[n]:

S[n] = −A[n]/Ai + B[n]/Bi + C[n]/Ci

(1 + AiBiCi) ln 2
(24)

μ ≤
N

∑
n=2

(1− τk[n])S[n] (25)
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Similar to Theorem 1, by introducing slack variables D[n], (22f) could be equivalently
written as follows:

Ck[n] ≥
J

∑
j=1

Pjβ JuDk,j(n)−1 + σ2
ud, ∀k, ∀n (26a)

0 ≤ Dk,j(n) ≤
∥∥qk[n]−wj

∥∥2, ∀k, ∀n, ∀j (26b)

However, we notice that the RHS of (26b) is convex with respect to trajectory Q, thus,
(26b) is still a non-convex constraint. Relying on the first-order Taylor expansion, we have
the lower bound as

∥∥qk[n]−wj
∥∥2 ≥

∥∥∥qi
k[n]−wj

∥∥∥2
+ 2(qi

k[n]−wj)
T × (qk[n]− qi

k[n]) = Ek,j[n], ∀k, ∀n, ∀j (27)

Thus, we reformulate (26b) as

0 ≤ Dk,j(n) ≤ Ek,j(n), ∀k, ∀n, ∀j (28)

For the non-convex constraint (22g). Since the LHS of (22g) is convex, we apply the
first-order Taylor expansion to get the lower bound at the i-th iteration point

1
A[n]B[n]C[n]

≥ 1
AiBiCi −

(A[n]−Ai)

(Ai)
2
BiCi

− (B[n]− Bi)

Ai(Bi)
2
Ci

− (C[n]−Ci)

AiBi(Ci)
2 ≥ γth2 (29)

For the LHS of (2), we can obtain the lower bound according to the first-order Taylor
expansion as

‖qk[n]− ql [n]‖2 ≥ −
∥∥∥qi

k[n]− qi
l [n]
∥∥∥2

+ 2(qi
k[n]− qi

l [n])
T × (qk[n]− ql [n]) (30)

Therefore, the non-convex constraint (2) can be rewritten as a convex constraint:∥∥∥qi
k[n]− qi

l [n]
∥∥∥2

+ 2(qi
k[n]− qi

l [n])
T × (qk[n]− ql [n]) ≥ D2

min, ∀k, l, k �= l. (31)

For the information-causality constraint (15), by introducing slack variables {F, G, H, I},
we have the following:

n

∑
t=1

(τ)log2

(
1 +

ηαPkτ

(1− τ)Fk[t]Gk[t]Hk[t]

)
≤

n

∑
t=1

(1− τ)log2

(
1 +

(1− α)Pk
σ2 Ik[t]

)
, n = 1, ..., N, ∀k. (32a)

Fk[n] ≤
J

∑
j=1

Pjh2
jUk

[n] + σ2
ud, n = 1, ..., N. (32b)

Gk[n] ≤ β−1
su
∥∥qk[n]−wSk

∥∥2, n = 1, ..., N. (32c)

Hk[n] ≤ β−1
ud

∥∥qk[n]−wDk

∥∥2, n = 1, ..., N. (32d)

Ik[n] ≥ β−1
su
∥∥qk[n]−wSk

∥∥2, n = 1, ..., N. (32e)

Since the RHS of (32a) is convex with respect to I, relying on the first-order Taylor
expansion, we have the following:

log2

(
1 +

(1− α)Pk
σ2 Ik

)
≥ log2

(
1 +

(1− α)Pk

σ2 Ii
k

)
− (1− α)Pk(Ik − Ii

k)(
σ2(Ii

k)
2
+ (1− α)Pk Ii

k

)
ln 2

= L (33)
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Thus, (32a) can be written as

n

∑
t=1

(τ)log2

(
1 +

ηαPkτ

(1− τ)Fk[t]Gk[t]Hk[t]

)
≤

n

∑
t=1

(1− τ)Lk[t], n = 1, ..., N, ∀k. (34)

For the non-convex constraint (32b), by introducing slack variables M, we have:

Fk[n] ≤
J

∑
j=1

Pj Mk,j[n] + σ2
ud, ∀k, ∀n. (35a)

1
Mk,j[n]

≥ β−1
Ju

∥∥qk[n]−wj
∥∥2, ∀k, ∀n, ∀j. (35b)

Since the LHS of (35b) is convex, we have the following:

1
Mk,j[n]

≥ 1
Mi

k,j[n]
−

Mk,j[n]−Mk,j[n]

Mi
k,j[n]

2 ≥ β−1
Ju

∥∥qk[n]−wj
∥∥2 (36)

Similar to (27), for the non-convex constraints (32c) and (32d), we have:

β−1
su

∥∥∥qi
k[n]−wSk

∥∥∥2
+ 2β−1

su (qi
k[n]−wSk )

T × (qk[n]− qi
k[n]) ≥ Gk[n], ∀k, ∀n. (37a)

β−1
ud

∥∥∥qi
k[n]−wDk

∥∥∥2
+ 2β−1

ud (q
i
k[n]−wDk )

T × (qk[n]− qi
k[n]) ≥ Hk[n], ∀k, ∀n. (37b)

Similarly, for the non-convex constraint (11), we have the following:

ηαPkβsuτδ

Ecap
k

≤
∥∥∥qi

k[n]−wSk

∥∥∥2
+ 2(qi

k[n]−wSk )
T × (qk[n]− qi

k[n]), ∀k, ∀n. (38)

Since the energy constraint expression (20c) is very complex and difficult to solve
directly, in order to facilitate the analysis, we introduce a slack variable O as follows:

Ok[n] ≥
(√

δ4 +
Δq4

k
4v4

0
− Δq2

k
2v4

0

) 1
2

(39)

We can further obtain:

O2
k [n] +

Δq2
k

v2
0
≥ δ4

O2
k [n]

, n = 2, ..., N, ∀k. (40)

Therefore, the energy consumption of the UAV k can be equivalently expressed as follows:

Eth ≥ Ek(Δqk, Ok[n]) =
N

∑
n=2

PB(δ +
3Δq2

δv2
tip

) +
1
2

d0ρsA0
Δq3

δ2 +
N

∑
n=2

PIOk[n] ≥ EUAV(Δqk), ∀k (41)

Finally, for non-convex constraint (40), we have the following:

O2
k [n] +

Δq2
k

v2
0
≥ Oi

k[n]
2 +

Δqi
k

2

v2
0

+ 2Oi
k[n](Ok[n]−Oi

k[n]) +
2Δqi

k
v2

0
(Δqk − Δqi

k) ≥
δ4

O2
k [n]

, ∀k. (42)
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As a result, the lower bound problem of P3 can be approximated as

P4 : max
{Q,A,...,O,μ}

μ (43a)

s.t. (1), (9), (20g), (20h), (22d), (22e), (25), (26a), (28), (29),

(31), (32e), (34), (35a), (36), (37a), (37b), (38), (41), (42) (43b)

Obviously, P4 is a convex optimization problem that could be solved efficiently by
some classical optimization techniques, such as the interior point method. In addition, it is
worth noting that the optimal objective value obtained from P4 usually serves as a lower
bound of P3.

3.2. Optimization of Power Splitting Factor

For any fixed UAV trajectory and time-allocation factor {Q, τ}, the power-splitting
factor optimization problem can be expressed as follows:

P5 : max
{α,μ}

μ (44a)

s.t. (9), (11), (13), (15), (20d), (20f) (44b)

It should be noted that problem P5 is not a standard convex optimization problem
because the LHS and the RHS of (15) are concave. Thus, consider that any concave function
is globally upper-bounded by its first-order Taylor expansion. Therefore, we can obtain
the following:

log2(1 + αP) ≤ log2

(
1 + αiP

)
+

(α− αi)P(
1 + αiP

)
ln 2

(45)

where

P =
ηPkh2

SkUk
τh2

Uk Dk

(1− τ)

(
J

∑
j=1

Pjh2
jUk

+ σ2
ud

) (46)

Thus, the lower bound problem of P5 can be approximated as

P6 : max
{α,μ}

μ (47a)

s.t. (9), (11), (13), (20d), (20f) (47b)
n

∑
t=1

(1− τ)

(
log2

(
1 + αi

k[t]P[t]
)
+

(αk[t]− αi
k[t])P[t](

1 + αi
k[t]P[t]

)
ln 2

)

≤
n

∑
t=1

(τ)log2(1 + SNRINk ), n = 1, ..., N, ∀k. (47c)

P6 is also a convex optimization problem that can be solved like P4. Additionally,
the optimal objective value obtained from P6 usually serves as a lower bound of P5.

3.3. Optimization of Time-Allocation Factor

For any given power-splitting factor and trajectory {α, Q}, we consider the subproblem
of optimizing the time-allocation factor as follows:

P7 : max
{τ,μ}

μ (48a)

s.t. (11), (13), (15), (20d), (20e) (48b)
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Further, we can transform the problem P7 into P8:

P8 : max
{τ,μ}

μ (49a)

s.t. (11), (13), (15), (20e) (49b)

μ ≤
N

∑
n=1

(1− τk[n])log2

(
1 +

τk[n]
1− τk[n]

Rk[n]
)

, ∀k (49c)

where

Rk[n] =
αk[n]ηPkh2

SkUk
[n]h2

Uk Dk
[n]

J
∑

J=1
Pjh2

jUk
[n] + σ2

ud

(50)

Since (15) and (49c) are non-convex, P8 is difficult to solve directly. To this end, we
introduce slack variables to solve this problem.

Theorem 2. By introducing slack variables {U, V, W, X}, problem P8 could be equivalently
written as follows:

P9 : max
{τ,μ,U,...,X}

μ (51a)

s.t. (11), (13), (20e) (51b)

μ ≤
N

∑
n=1

Uk[n]Vk[n], ∀k (51c)

0 ≤ Uk[n] ≤ 1− τk[n], ∀k, ∀n (51d)

0 ≤ Vk[n] ≤ log2

(
1 +

τk[n]
1− τk[n]

Rk[n]
)

, ∀k, ∀n (51e)

Wk[n] ≥ 1− τk[n], ∀k, ∀n (51f)

Xk[n] ≥ log2

(
1 +

τk[n]
1− τk[n]

Rk[n]
)

, ∀k, ∀n (51g)

n

∑
t=1

Wk[t]Xk[t] ≤
n

∑
t=1

(τ)log2(1 + SNRINk ), n = 1, ..., N, ∀k. (51h)

Proof. According to (51d) and (51e), we have the following:

N

∑
n=1

Uk[n]Vk[n] ≤
N

∑
n=1

(1− τk[n])log2

(
1 +

τk[n]
1− τk[n]

Rk[n]
)

(52)

According to (51f) and (51g), we have the following:

n

∑
t=1

(1− τk[t])log2

(
1 +

τk[t]
1− τk[t]

Rk[t]
)
≤

n

∑
t=1

Wk[t]Xk[t] (53)

Therefore, we prove the theorem by the method of contradiction. Specifically, if (52)
and (53) are strict equality constraints, combined with (51c) and (51h), we can know that
P9 is equal to P8. Otherwise, by adjusting the slack variables, the value of the objective
function can always be further optimized.

However, P9 is still a non-convex optimization problem that is difficult to solve directly.
Considering that (51c) has a product of functions (PF) structure, we can rewrite (51c) as a
function with the difference of convex (DC) structure, that is,

UV =
1
2
(U + V)2 − 1

2
(U2 + V2) (54)
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Since the first term in the RHS of (54) is convex, we can obtain a lower bound for (54)
by using first-order Taylor expansion, that is

1
2
(U + V)2 − 1

2
(U2 + V2) ≥ (Ui + Vi)(U + V)− 1

2
(Ui + Vi)2 − 1

2
(U2 + V2) = Y (55)

Thus, (51c) can be rewritten as

μ ≤
N

∑
n=2

Y (56)

For the non-convex constraint (51e), by introducing slack variables Z, we have:

0 ≤ Vk[n] ≤ log2(1 + Zk[n]Rk[n]) (57a)

0 ≤ Zk[n] ≤
τk[n]

1− τk[n]
(57b)

Furthermore, the RHS of the (57b) is convex on the domain (τ ∈ [0, 1]). Thus, we have
the following:

τk[n]
1− τk[n]

≥
(

1
1− τi

k[n]
− 1

)
+

τk[n]− τi
k[n]

(1− τi
k[n])

2 = Γ (58)

Thus, (57b) can be rewritten as

0 ≤ Z ≤ Γ (59)

Similar to the procedure of handling (51e), for the non-convex constraint (51g), by in-
troducing the slack variable Λ, we have

Xk[n] ≥ log2

(
1 +

Rk[n]
Λk[n]

)
(60a)

0 ≤ Λk[n] ≤
1− τk[n]

τk[n]
(60b)

For the (60b), we have

1− τk[n]
τk[n]

≥ 1
τi

k[n]
−
(
τk[n]− τi

k[n]
)(

τi
k[n]

)2 − 1 ≥ Λk[n] ≥ 0 (61)

According to (55), for the (51h), we have

n

∑
t=1

WX ≤
n

∑
t=1

1
2
(W + X)2 ≤

n

∑
t=1

(τ)log2(1 + SNRINk ), n = 1, ..., N, ∀k. (62)

As a result, the lower bound problem of P9 can be rewritten as

P10 : max
{τ,μ,U,...,Λ}

μ (63a)

s.t. (11), (13), (20e), (51d), (51f), (56), (57a), (59), (60a), (61), (62) (63b)

P10 is also a convex optimization problem that can be solved like P6. In addition,
the optimal objective value obtained from P10 usually serves as a lower bound of P9.

3.4. Algorithmic Architecture

According to the above analysis, we obtain the suboptimal solution of the original
problem P1 based on the block coordinate descent (BCD) method. As shown in Algorithm 1,
the algorithm alternately optimizes Q , α, and τ until convergence. Note that the initial
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point is the Taylor expansion point within the feasible region. Then, the convergence is
proved as follows:

Algorithm 1 Overall algorithm

1: Initialize i = 1. Set initial feasible point {Qi, αi, τi} and other slack variables.
2: Do
3: Solve problem P4 with given {Qi, αi, Ai, ..., Oi} to obtain the optimal solution
{Qi+1, Ai+1, ..., Oi+1},

4: Solve problem P6 with given {αi, Qi+1, τi} to obtain the optimal solution {αi+1},
5: Solve problem P10 with given {αi+1, Qi+1, ..., Λi} to obtain the optimal solution
{τi+1, ..., Λi+1}.

6: Update i = i + 1.
7: Until the objective value converges.
8: Output α∗ ← αi, Q∗ ← Qi, τ∗ ← τi.

We define μ(Qi, αi, τi), μ1(Q
i, αi, τi), μ2(Q

i, αi, τi), and μ3(Q
i, αi, τi) as the objective

values of problem P1, P4, P6 and P10 based on Qi, αi, and τi over i-th iteration. Thus,
we have

μ(Qi, αi, τi)
(a)
≤ μ1(Q

i+1, αi, τi)
(b)
≤ μ2(Q

i+1, αi+1, τi)

(c)
≤ μ3(Q

i+1, αi+1, τi+1)
(d)
≤ μ(Qi+1, αi+1, τi+1) (64)

where (a) holds because in Algorithm 1, problem P4 is solved to obtain the optimal solution
Qi+1 with given αi and τi at step 3; (b) holds because problem P6 is solved to obtain the
optimal solution αi+1 with given Qi+1 and τi at step 4; (c) holds because problem P10 is
solved to obtain the optimal solution τi+1 with given Qi+1 and αi+1 at step 5; (d) holds
because the optimal objective values of P4, P6 and P10 are upper bounded by original
problem P1, then the convergence can be guaranteed.

Finally, we briefly analyze the overall complexity of the algorithm. According to
Algorithm 1, the complexity of the algorithm is mainly dominated by steps 3, 4, and 5,
and the number of optimization variables increases with the multiples of K, J, and N.
Hence, the total computational complexity is O((KJN)3.5 log 1

ε ), where K is the number of
UAVs, J is the number of jammers, N is the number of time slots, and ε is the convergence
accuracy. In addition, it should be noted that the proposed scheme is an offline algorithm,
which requires path planning and resource allocation through a specific ground station
(such as QGroundControl in LINUX) before the mission is executed and does not need to
run on UAVs.

4. Simulation Results

In this section, simulation results and some detailed discussions are provided. We
first present the simulation settings and then analyze the effect of different energy budgets
and the number of jammers on the experimental results. Finally, we compare the proposed
algorithm with four baseline schemes to further illustrate the superiority of the joint
trajectory planning, time, and power allocation scheme.

4.1. Simulation Settings

In the simulation, we considered a communication system with four UAV nodes,
i.e., k = 4. In addition, it was assumed that the initial and end positions of the UAV
1–4 were (200, 50), (200, 70), (200, 90), (200, 110), and (50, 50), (50, 70), (50, 90), (50, 110),
respectively. The rest of the parameter settings are shown in Table 1.
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Table 1. Simulation Parameters Setting.

Parameter Notation Value

time slots N 50
minimum safe distance Dmin 10 m
Bandwidth B 10 MHz
SN to UAV channel gain βsu −30 dB
Jammer to UAV channel gain β Ju −60 dB
transmit power of SN Pk 30 W
transmit power of jammer Pj 5 W
energy collection efficiency η 0.8
additive white Gaussian noise σ2 −169 dBm
UAV maximum speed Vmax 10 m/s
the blade profile power PB 79.86 W
the induced power PI 88.63 W
the tip speed of the rotor blade vtip 120 m/s
the mean rotor induced velocity v0 4.03 m/s
the fuselage drag ratio d0 0.6
the air density ρ 1.225 kg/m3

the rotor solidity s 0.05

4.2. Effect of Energy Budgets

Figure 4 shows the 2D trajectories of four UAVs with different energy budgets. We
plotted the trajectories for Eth = 10,000 J, Eth = 15,000 J, and Eth = 20,000 J. It can be seen from
Figure 4 that from four initial points, UAVs 1− 4 needed to approach the SNs according
to the arc trajectory away from the jammers to ensure that more energy was collected to
maximize the throughput of the DNs, and then fly back to the endpoints we set. For a
different since the initial point was far from the source node, and in order to satisfy the
minimum distance constraint between UAVs, it needed to fly a greater distance. Since UAV
4 was closest to the jammers, in order to ensure the communication quality, UAV 4 needed to
be far away from the jammers under the constraint of the minimum safe distance and closer
to the corresponding source node so as to collect more energy to communicate with the
DN. Note that the UAVs cannot be infinitely close to the SNs, because while being closer to
the SNs could guarantee enough energy to be collected, it would make the UAVs far away
from the DNs, which would lead to the deterioration of the throughput. In addition, we
noticed that the flying distance of the UAV increased with the energy budget, because a
sufficient energy budget would ensure that the UAV was farther away from the jammers
when planning a more reasonable path to maximize the throughput of the DN.

Figure 5 demonstrates the speed of four UAVs with different energy budgets. We
observed that the UAVs’ speed could be divided into two stages. In the first stage, the UAVs
moved at high speed, and the speed decreased with time, but in the second stage, the UAVs
accelerated to the endpoints. This is because in the first stage, the jammers were closer to
the UAVs, and the UAVs needed to move away from the jammers at high speed to ensure
communication quality. As the UAVs kept getting closer to the optimal positions, the speed
needed to be reduced to collect more energy. However, due to the limited time, and energy
budgets, the UAVs could not fly at low speed for a long time; thus, the UAVs needed to
accelerate to the endpoints in the second stage. In addition, we can see that UAV 1 flew
the fastest, while UAV 3 was the slowest. This is because UAV 1 was the farthest from its
corresponding SN, and it needed to fly farther to collect more energy, while UAV 3 was
the closest to its corresponding SN, so the budget was sufficient to allow it to collect the
required energy with a lower speed. Finally, we observed that for the first 30 time slots and
the last 10 time slots of the total mission, the UAVs’ speed increased with energy budgets.
That was because larger energy budgets could keep the UAVs away from the jammers and
back to the endpoints at higher speed. These were as expected.
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Figure 4. Optimal trajectories in different energy budgets.
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Figure 5. UAV’s speed for different energy budgets.

Figure 6 and Figure 7 illustrate the variation of the power-splitting factor α and the
time-allocation factor τ. It can be seen that α increased with time, and τ first increased
and then decreased with time. This is because the UAVs moved away from the jammers
and approached optimal points over time, at which point the SNs needed to consume less
energy to ensure the SNR threshold constraint. As for τ, in the process of approaching
the optimal points, τ first increased to ensure that enough energy was collected. When
returning to the endpoints, in order to ensure the communication quality of the DNs, τ
decreased to improve the throughput of the DNs.

Figure 8 presents the achievable throughput over every time slot. It is shown that the
throughput increased first and then decreased. This was because the UAVs were initially far
away from the jammers and closer to the optimal points, thereby collecting enough energy
to increase the throughput. When returning to the endpoints, the throughput dropped as
the UAVs moved away from the optimal points and closer to the jammers. Moreover, we
noticed that the larger the UAV’s energy budget, the greater the achievable throughput,
which was in line with expectations.
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Furthermore, we increased the number of UAVs from 4 to 6, then 8 to further illustrate
the performance of the proposed scheme. We set the initial and end positions of UAV 5–8
as (200, 240), (200, 260), (200, 280), and (200, 300); and (50, 240), (50, 260), (50, 280), and (50,
300), respectively. The achievable system throughput versus time is shown in Figure 9. It
can be seen from Figure 9 that the throughput of the system increased with the number
of UAVs. Given the energy budget, when K = 8, the throughput of the system was at the
maximum; when K = 2, the throughput of the system was at the minimum. Moreover, it
can be seen that given the number of UAVs, the throughput of the system increased with
the energy budget. This was as expected.
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Figure 9. Achievable throughput over every time slot.

4.3. Effect of Jammers

Figure 10 shows the 2D trajectories of four UAVs with differing numbers of jammers.
We plotted the trajectories for J = 2, J = 3, and J = 4. The basic trajectories of the four
UAVs were consistent with those from Figure 4, and we will not repeat them here. It is
worth noting that the flight distance of the UAVs increased with the number of jammers.
Specifically, the more the number of jammers, the more obvious the interference effect, so
the UAVs needed to be farther away from the jammers to ensure the channel throughput.
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Figure 10. Optimal trajectories with different number of jammers.

220



Drones 2023, 7, 68

Figure 11 displays the achievable throughput with different numbers of jammers.
As can be seen from the figure, UAV 2 had the highest throughput. This is because UAV 2
was closer to the corresponding SN than UAV 1 and farther away from the jammers than
UAV 3 and UAV 4. Finally, we observed that the throughput of all four UAVs decreased
with the number of jammers. This was in line with our expectations and showed the
significance of our study.
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Figure 11. Achievable throughput with differing numbers of jammers.

Further, we increased the number of UAVs from 4 to 6, then 8 to further illustrate
the impact of jammers on system performance. The achievable system throughput versus
jammers is shown in Figure 12. As can be seen from Figure 12, the system throughput
increased with the number of UAVs. Given the same number of jammers, when K = 8,
the system throughput was at the maximum; when K = 2, the system throughput was at the
minimum. Additionally, it can be seen that given the same number of UAVs, the throughput
of the system decreased with the jammers. This was as expected.
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Figure 12. Achievable throughput with differing numbers of jammers.

4.4. Performance Comparison

In order to further illustrate the superiority of the proposed algorithm, in this subsec-
tion, we will compare our scheme with four baseline schemes:
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• Scheme 1: Our proposed joint trajectory planning, time, and power allocation scheme.
• Scheme 2: Optimizing the power-splitting factor α and UAV’s trajectory Q under the

fixed time-allocation factor τ.
• Scheme 3: Optimizing the time-allocation factor τ and UAV’s trajectory Q under the

fixed power-splitting factor α.
• Scheme 4: Optimizing the UAV’s trajectory Q under the fixed time-allocation factor τ

and power-splitting factor α.
• Scheme 5: Optimizing the power-splitting factor α and time-allocation factor τ under

circular trajectory.

We evaluated the average throughput of the two UAVs, as shown in Figure 13. For dy-
namic schemes 1–5, the throughput of the system first increased over time and then de-
creased as the UAVs moved away from the optimal positions and returned to the endpoints.
Also, we noticed that scheme 5 had the worst performance since the circular trajectory
had been set in advance. Moreover, at the best time slot, the average throughput of the
proposed scheme 1 was two times higher than schemes 2 and 3.
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Figure 13. Average throughput in different schemes.

Figure 14 shows the average throughput with different energy budgets. It can be
seen from Figure 14 that the average throughput of schemes 1–4 increased with the energy
budget. For scheme 5, since the flight trajectory had been set in advance, increasing the
energy budget did not bring about an improvement in average throughput. In addition, we
observed that the proposed scheme 1 had the best performance, and the average throughput
was increased by 40%, 50%, 150%, and 550% compared with schemes 2–5, respectively.

Figure 15 shows the average throughput of the system with differing number of jam-
mers. Consistent with our expectations, the average throughput of all schemes decreased
as the number of jammers increased. However, in comparison, the proposed scheme 1 had
the best performance. Even in the extreme case with 6 jammers, the throughput of scheme
1 was still improved by 26%, 33%, 160%, and 500% compared with schemes 2–5.
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Figure 14. Average throughput with different energy budgets.
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Figure 15. Average throughput with differing numbers of jammers.

5. Conclusions

This paper investigated joint trajectory planning, time, and power resource allocation
to maximize the throughput in UAV networks. Considering the limited energy budget
of UAVs and the existence of multiple jammers, we introduced SWIPT technology to
improve channel quality. Our goal was to maximize the throughput of the DNs. Since
the original problem is non-convex, taking into account the actual flight constraints of the
UAVs, we proposed an efficient joint optimization algorithm based on successive convex
approximations, a block coordinate descent, and the slack variables method to obtain
a suboptimal solution. Simulation results corroborated that the proposed scheme can
significantly improve the channel throughput and illustrated the effectiveness of joint
trajectory planning, time, and power allocation in mitigating interference. Finally, we
compared the proposed scheme with four benchmark schemes to highlight the superiority
of our study. In future work, we will consider the UAVs scenario with mobile nodes, more
complex channel models, and/or scheduling schemes such as multi-UAV coordination and
multi-point access.
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Notations

The following notations are used in this manuscript:

Notation Definition

wSk Location of the SN
wDk Location of the DN
wj Locations of the jammer
Z Height of the UAV
qk Locations of the UAV
T Total task time
N Number of time slots
δ Duration of each time slot
Vmax The maximum speed of the UAV
Dmin The minimum safe distance
hSkUk The channel-power gain between the SN and the UAV
hjUk

The channel-power gain between a jammer and a UAV
hUk Dk The channel-power gain between a UAV and the DN
Pk The transmit power of the SN
nsu Additive white Gaussian noise
α Power-splitting factor
τ Time-allocation factor
η Energy collection efficiency
PB The blade profile power
PI The induced power
vtip The tip speed of the rotor blade
v0 The mean rotor induced velocity
d0 The fuselage drag ratio
ρ The air density
s The rotor solidity
A0 The rotor disc area
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Abstract: Aiming at the cooperative passive location of moving targets by UAV swarm, this paper
constructs a passive location and tracking algorithm for a moving target based on the A optimization
criterion and the improved particle swarm optimization (PSO) algorithm. Firstly, the localization
method of cluster cooperative passive localization is selected and the measurement model is con-
structed. Then, the problem of improving passive location accuracy is transformed into the problem
of obtaining more target information. From the perspective of information theory, using the A crite-
rion as the optimization target, the passive localization process for static targets is further deduced.
The Recursive Neural Network (RNN) is used to predict the probability distribution of the target’s
location in the next moment so as to improve the localization method and make it suitable for the
localization of moving targets. The particle swarm algorithm is improved by using grouping and
time period strategy, and the algorithm flow of moving target location is constructed. Finally, through
the simulation verification and algorithm comparison, the advantages of the algorithm in this paper
are presented.

Keywords: passive location; UAV swarm; moving target; A optimization criterion; particle swarm
optimization; recursive neural network

1. Introduction

As electromagnetic space has become the fifth-dimensional battlefield after “land, sea,
air, and sky”, the importance and research efforts of various countries in electromagnetic
space have increased considerably. When using and radiating electromagnetic waves, the
position of electromagnetic space is exposed, and passive location emerges as the times
require [1–5]. However, the location accuracy of passive location decreases significantly
with the increase in the distance from the target, and the location efficiency is highly related
to the spatial position distribution of the location points. With the rapid development of
UAV technology, UAV has gradually become a new type of combat force in the future
battlefield with its unique advantages. Utilizing the distributed characteristics of UAV
swarms to optimize their spatial distribution and trajectory has become a new way to
improve the ability to passively locate targets.

The current research on passive location can be divided into two main directions. The
first is to study and improve the location accuracy algorithm, such as improving the time of
arrival (TOA) [6], time difference of arrival (TDOA) [7], received signal strength (RSS) [8],
and angle of arrival (AOA) [9,10]. Since this article does not involve the improvement of
the location algorithm, it will not be considerably discussed here.

The other major direction is to optimize the spatial location of passive location points
to improve location performance. It mainly includes two research contents: optimizing
the time-series spatial position of a single station and the spatial distribution position
of multiple stations. For a single-station location, [11] deduced the factors affecting the

Drones 2023, 7, 264. https://doi.org/10.3390/drones7040264 https://www.mdpi.com/journal/drones
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location error based on the AOA-based airborne platform location method and constructs a
method to reduce the single-station error. The authors of [12,13] extend the passive motion
location of a single station to a multi-station, and optimized the corresponding location
mode and designed a new objective function.

In studying the optimal configuration of a multi-station location, the general paradigm
is to first select or design a certain location index as the objective function. Then, through
theoretical derivation or numerical calculation, the aircraft coordinate parameters under
the optimal objective function are obtained, which is the optimal configuration of passive
location.

In [14,15], geometric dilution of precision (GDOP) is used as the objective function
of location, and the corresponding optimization function is designed to further improve
the accuracy of a passive location. The authors of [16] took the AOA location system as
the research object and deduced the conditions of the optimal passive location configu-
ration with the minimum circular error probable (CEP) as the criterion. In [17,18], the
Fisher information matrix (FIM) was considered as the objective function to study the
optimal multi-aircraft passive location configuration when FIM is the largest. In [19,20],
the value of the Cramer–Rao lower bound (CRLB) determinant was used as the objective
function to study the optimal location configuration of multiple stations under the TDOA
location system.

Table 1 shows a comparison of the main work and related research of this article and
the selection of the articles from the above-mentioned literature that conducted in-depth
research into this field of study.

Table 1. Comparison of main work.

Functions Implemented
Algorithm

in This Paper
Article [8] Article [13] Article [20]

Improved location
algorithm Yes Yes Yes No

Location using
multiple stations Yes No No Yes

Real-time optimization trajectory Yes No No No
Positioning by target’s motion characteristics Yes No No No

It can be seen from the above-mentioned literature and Table 1 that research on passive
location at this stage has mainly focused on the improvement of the passive location
method and static station deployment. That is, by designing various criteria to improve the
accuracy of passive location algorithms or based on different location systems, research
has been conducted on optimizing the station layout. However, there is little research
on the cooperative passive location of moving targets. At the same time, the method
of static station placement cannot be directly applied to the problem of the cooperative
passive location of moving objects because the passive location of stationary targets has
no constraints on the target point. The location of moving targets is a sequential decision-
making problem. That is, the optimization result in the next moment is subject to the
constraints of the position in the present moment and the performance parameters of the
platform. The subsequent location performance is also affected by the location accuracy of
the previous sequence. Although the localization of stationary targets cannot be directly
used to solve the problem of localization of dynamic targets, the two are not completely
unrelated. It can learn from the research ideas and methods of stationary target location,
combined with the characteristics of the moving target location. Thus, we aim to improve
the location method and promote its scope of application.

The results of the above-mentioned literature also focus on obtaining the optimal
spatial configuration. For the static layout of the site, the above-mentioned research has a
strong practical significance. However, for a spatial motion platform such as an unmanned
aerial vehicle cluster, the optimal configuration can be obtained directly, while ignoring the
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process of forming the optimal configuration, which requires a lot of time and computing
resources. Therefore, it is necessary to optimize the space location of UAVs in real time and
to achieve global optimization gradually.

Based on the perspective of information theory, this paper optimizes the spatial
trajectory of each UAV in the UAV swarm to improve the location efficiency. The main
contributions are as follows:

1. The real-time trajectory planning for the passive location of the UAV cluster is imple-
mented based on the RSS model.

2. Using the improved deep learning network to correct the target location probability
parameters in the positioning algorithm, a more accurate positioning of the moving
target is achieved.

3. The depth network can identify the target movement trend in complex mixed noise,
which provides a method to solve the problem of recognition in complex noise.

4. Designing particle grouping and time period to improve the particle swarm optimiza-
tion algorithm, the algorithm effect is improved.

The article is organized as follows. The passive location principle of the cluster and
the corresponding measurement model are constructed in Section 2. The optimization
process of static target and dynamic target location is analyzed, and the optimization
target function for the passive location of a moving target is constructed and derived in
Section 3. To address the shortcomings of particle swarm optimization, the grouping and
time period strategies are used to improve it in Section 4. The optimization function and
corresponding constraints for moving target localization are constructed, and the passive
location optimization process based on improved particle swarm optimization algorithm
are presented in Section 5. Simulation verification and algorithm comparison are performed
to highlight the advantages of the method in Section 6. The discussion and final conclusion
are presented in Sections 7 and 8, respectively.

2. Location Model and Optimization Criteria

2.1. Principles of RSS

Due to the attenuation of electromagnetic signals as they propagate in space, the
attenuation model of the electromagnetic signal is first constructed and the corresponding
parameters are determined. Then, according to the strength of the signal received by the
platforms in different positions, the position of the target can be calculated. This is the
principle of received signal strength (RSS) [21–24].

Therefore, it is only necessary to obtain the strength of the signal received by each
platform and the location parameters of each platform, and then passively locate the target
by using RSS, as shown in Figure 1.
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Figure 1. Schematic diagram of RSS location.
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In Figure 1, the target radiates electromagnetic signals and its coordinates are Rt = [xt,
yt]T. The three platforms Rx1, Rx2, and Rx3 receive radiation signals. Combined with the
constructed signal attenuation model, the distance ri between the target to be located and
each detection platform can be obtained. The RSS location equation is:⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
(xt − x1)

2 + (yt − y1)
2 = r1√

(xt − x2)
2 + (yt − y2)

2 = r2√
(xt − x3)

2 + (yt − y3)
2 = r3

(1)

By solving Formula (1), the RSS envelope of each receiving platform in Figure 1 can be
obtained. The place where the three circles overlap each other in Figure 1 is the area where
the target is located.

2.2. Measurement Model

This section builds a measurement model for the passive location of targets by UAV
swarms. The positioning target studied in this paper was located on the ground or sea,
and the height was set to zero. It was also assumed that the UAV flies on the same altitude
plane. Therefore, the positioning of this article did not consider the issue of height.

Assuming that there are M UAVs in the UAV swarm, the positional parameters and
spatial relationship between the UAV swarm and the target are shown in Figure 2.
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Figure 2. Schematic diagram of the passive location of the UAV swarm.

The location of the target is Rt = [xt, yt]T. The position and velocity of the i-th UAV are
Ri = [xi, yi]T and Rvi = [vxi, vyi]T, I = 1, 2, . . . , M, respectively. The connecting line between
the drone and the target has an included angle φi with the x-axis. The distance from the
target is ri = ||Ri − Rt||2, and the angle between any two UAVs and the target is ϕij, j = 1,
2, . . . , M.

The attenuation model of the signal in the atmosphere is:

ps = po − 10γi log10 di (2)

where po is the equivalent radiated power of the target-radiated signal. That is, the product
of the target-radiated power and the antenna gain. As these two parameters are not
the concern of the research in this paper, they are not introduced in detail here. γi is
the attenuation factor of the electromagnetic wave, and di is the length of the signal
propagation path. This paper assumed that the signal is not refracted. That is, di is the
distance ri between the UAV and the target [25]. Then, the signal strength ps of the signal
reaching the UAV receiving end can be calculated by Formula (2).

Due to the existence of electromagnetic interference and clutter in the atmosphere and
the thermal noise of the system in the signal receiver, the actual signal pir(k) received by the
receiver of the i-th UAV at time k can be expressed as:

pir(k) = pis(k) + n(k) (3)

230



Drones 2023, 7, 264

Among them, n(k) represents the measurement error that obeys the Gaussian distribu-
tion, that is, n(k) ~ N(0, σ2

i (di)). The error is related to the distance di between the targets,
satisfying:

σ2
i (di) = dα

i σ2
0 (4)

where σ2
0 is a constant and is the basic unit of measure for variance. α is the path attenuation

factor. According to Formulas (2)–(4) and the signal Pir(k) received by each UAV at time k,
the matrix of the received signal strength distribution of the UAV swarm can be obtained
as Pr(k). The Pr(k) covariance matrix is σp = diag

(
σ2

1 (k), σ2
2 (k), . . . σ2

M(k)
)
. Then, the signal

received by the UAV swarm can be denoted as Pr(k) ∼ N
(

Ps(k), σp
)
, where Ps(k) represents

the estimated target position using the pure signal that reaches the UAV.
After acquiring the signal energy of each point, the distance r from the target to the

sensor can be estimated according to the signal attenuation model. Since the positions of the
UAVs themselves are known, the multiple circles shown in Figure 1 can then be obtained
using Formula (1). The overlapping areas of the different circles are the target position.

It can be seen that positioning accuracy is related to the accuracy of the signal attenu-
ation model. The attenuation characteristics and corresponding parameters of the signal
attenuation model are accurate, and the distance between the UAV and the target can be
estimated well. Otherwise, the error is large. Scholars have conducted in-depth research
on this and constructed a variety of attenuation models to further ensure the accuracy of
distance estimation.

2.3. A Optimization Criterion

CRLB represents the theoretical limit of the error estimation performance when making
unbiased estimates. In practice, CRLB can be obtained by calculating the inverse matrix of
the FIM.

Evidently, the performance of CRLB is highly correlated with the accuracy of the
measured parameters. The more precise the measurement, the lower the error. As shown
in Figure 2, the measurement parameters obtained by the UAV about the target are highly
correlated with the spatial distribution of the UAV swarm. That is, a different spatial
distribution corresponds to a different CRLB. Therefore, based on CRLB, this paper opti-
mized the trajectory of the UAV swarm to achieve the efficiency of the passive location of
moving targets.

Since CRLB is in matrix form, it is not easy to use in conventional applications. Schol-
ars have proposed the A optimization criterion for CRLB whose physical meaning is to
minimize the mean square error (MSE).

The A optimization criterion can be expressed as:

FA = argmin[tr(CRLB)] = argmintr
(

J−1
)

(5)

where J represents the FIM of the measurement matrix, and −1 represents the inverse of
this matrix. Then, J−1 is CRLB.

3. Configuration Optimization Method for the Passive Location of Moving Target

3.1. Passive Location Methods for Static Objects

The passive location of stationary targets using UAV swarms includes three processes.
First, the relationship between CRLB and UAV swarm coordinates is constructed. Then,
using the A criterion, the space configuration of the UAV swarm corresponding to the
optimal CRLB matrix is obtained. By optimizing each subsequent moment in turn, the
trajectory of each UAV in the cluster can be obtained.

Assuming that the position of the target is Rt = [xt, yt]T and the measurement set of M
UAVs at a certain moment is Pr, FIM can be expressed as:

J =

[
Jxx Jxy
Jyx Jyy

]
(6)
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The elements of the i-th row and the j-th column of the four matrices in Formula (6)
can be expressed as: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

J
i,j
xx = E

[
∂

∂xti
ln( f (Pr; Rt))

∂
∂xtj

ln( f (Pr; Rt))
]

J
i,j
xy = E

[
∂

∂xti
ln( f (Pr; Rt))

∂
∂ytj

ln( f (Pr; Rt))
]

J
i,j
xy = E

[
∂

∂yti
ln( f (Pr; Rt))

∂
∂xtj

ln( f (Pr; Rt))
]

J
i,j
yy = E

[
∂

∂yti
ln( f (Pr; Rt))

∂
∂ytj

ln( f (Pr; Rt))
] (7)

where f (Pr; Rt) is the probability density distribution function of Pr, namely:

f (Pr; Rt) =
1

(2π)M/2
√

det(σp)
exp

[
−1

2
(Pr − Rt)

Tσ−1
p (Pr − Rt)

]
(8)

According to the definition of FIM and as shown in Formula (7), it is necessary to
obtain Jxx by continuously calculating the derivative twice. xti and xtj are related, that is,
the second derivative is not zero.

The horizontal axis position xt and the vertical axis position yt of the target coordinates
are independent of each other. Being independent of each other means that both Jyx and Jxy
are 0. Then, Formula (6) can be rewritten as:

J =

[
Jxx 0

0 Jyy

]
(9)

Similarly, since the horizontal and vertical coordinates of the target are relatively
independent, the processes of obtaining Jxx and Jyy are independent of each other, and the
calculation process is similar. This section analyzes Jxx.

Substituting Formula (8) into Formula (7), we obtained [26]:

J
i,j
xx =

1
σ2

p

∂Pr

∂xti

∂Pr

∂xtj
+

1
2

1
σ2

p

∂σp

∂xti

∂σp

∂xtj
(10)

The right side of the equal sign of Formula (10) can be regarded as the sum of two
parts, which can be expressed as:

J
i,j
xx = J

i,j
xx1 + J

i,j
xx2⎧⎨⎩ J

i,j
xx1 = ∇Rtx Pr

Tσ−1
p ∇Rtx Pt

J
i,j
xx2 = 1

2 Tr
(

σ−1
p

∂σp
∂xi

σ−1
p

∂σp
∂xj

) (11)

Among them,∇Rtx Pr
T is the Jacobian matrix obtained after the derivation of the target

abscissa Rtx using the measured value Pr
T , which is expressed as:

J1,1 =
50

(ln(10))2σ2
0

M

∑
i=1

γ2
i (1 + cos 2φi)

da+2
i

(12)

J1,2 = J2,1 =
50

(ln(10))2σ2
0

M

∑
i=1

γ2
i cos 2φi

da+2
i

(13)

J2,2 =
50

(ln(10))2σ2
0

M

∑
i=1

γ2
i (1− cos 2φi)

da+2
i

(14)

The meanings of the parameters in Formulas (11)–(13) are the same as those in Formu-
las (2)–(4), which are not repeated here.
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In Formula (11), Tr represents the trace of the matrix. Then, the two partial derivatives
are:

∂σp

∂xi
= σ2

0

⎡⎢⎢⎢⎣
dα−1

1 cos φ1 0 · · · 0
0 dα−1

2 cos φ2 · · · 0
...

...
. . .

...
0 0 · · · dα−1

M cos φM

⎤⎥⎥⎥⎦ (15)

∂σp

∂xj
= σ2

0

⎡⎢⎢⎢⎣
dα−1

1 sin φ1 0 · · · 0
0 dα−1

2 sin φ2 · · · 0
...

...
. . .

...
0 0 · · · dα−1

M sin φM

⎤⎥⎥⎥⎦ (16)

To further simplify Formula (11), let:

βi =
α2

d2
i
+

25γ2
i

(ln(10))2σ2
0 da+2

i

(17)

Then, Jxx can be expressed as:

Jxx =

⎡⎢⎢⎣
M
∑

i=1
βi +

M
∑

i=1
βi cos 2φi

M
∑

i=1
βi sin 2φi

M
∑

i=1
βi sin 2φi

M
∑

i=1
βi −

M
∑

i=1
βi cos 2φi

⎤⎥⎥⎦ (18)

Then, the corresponding CRLB can be expressed as:

J−1
xx =

1
det(Jxx)

⎡⎢⎢⎣
M
∑

i=1
βi −

M
∑

i=1
βi cos 2φi −

M
∑

i=1
βi sin 2φi

−
M
∑

i=1
βi sin 2φi

M
∑

i=1
βi +

M
∑

i=1
βi cos 2φi

⎤⎥⎥⎦ (19)

The value of the Jxx determinant can be expressed as:

det(Jxx) = 1
4

[(
M
∑

i=1
βi

)2

−
(

M
∑

i=1
βi cos(2φi)

)2

−
(

M
∑

i=1
βi sin(2φi)

)2
]

= 1
2

M
∑

i=1

M
∑

j=i+1
βiβ j

[
1− cos

(
2φi − 2φj

)] (20)

Then, according to the A optimization criterion, the objective function can be expressed
as:

Fopt
x = argmintr(J−1

xx ) = argmin
8

M
∑

i=1
βi

M
∑

i=1

M
∑

j=i+1
βiβ j

[
1− cos

(
2φi − 2φj

)] (21)

Combining Formulas (21) and (17), it can be seen that the location accuracy of the
target abscissa xt is related to the distance di between each UAV and the target. It is also
related to the angle difference φi − φj between any two drones.

Formula (21) only involves the estimation of the target abscissa xt. The estimation of
the target ordinate yt is the same as xt; thus, Formula (10) is modified as:

J
i,j
yy =

1
σ2

p

∂Pr

∂yti

∂Pr

∂ytj
+

1
2

1
σ2

p

∂σp

∂yti

∂σp

∂ytj
(22)
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The subsequent operation process is completely similar to Jxx in the previously men-
tioned article and is not repeated in this article.

Since the horizontal and vertical coordinates of the targets are independent of each
other, the effects of directly calculating J as well as Jxx and Jyy are equivalent. Therefore, the
optimization objective function for the passive location of stationary targets is:

Fopt = argmin
(

Fopt
x + Fopt

y

)
(23)

3.2. The Main Difference between the Location of Moving Objects and Stationary Objects

The key difference between the location of moving targets and stationary targets is
f (Pr; Rt) in Formula (8), that is, the probability density distribution function of the target
position changes in different trends with the location of the target.

In the process of locating a stationary target, since there is no prior information as
a support, the target obeys a uniform distribution on the x-axis and y-axis. That is, f (Pr;
Rt) obeys an equal probability distribution on the abscissa and ordinate axes. Then, as the
location progresses, it obeys the Gaussian distribution.

In the process of locating the moving target, as the location continues, the coordinates
of the target in the next moment does not obey a uniform distribution on the entire coordi-
nate axis. Instead, the f (Pr; Rt) of the target position in the next moment should be derived
by combining the existing multiple location results and the target movement trend.

That is, the main difference between the location of moving objects and stationary
objects is that, in the process of location moving objects, the probability density f (Pr; Rt) of
the spatial distribution of the objects should be adjusted in real time.

3.3. Probability Distribution Determination Method Based on Deep Combinatorial Network

With the continuous location, the probability distribution characteristics and parame-
ters of f (Pr; Rt) continue to change. However, due to differences in target characteristics
and intent, it is impossible to obtain a common or unambiguous expression. Therefore, this
section adopts an approach based on deep combinatorial networks. By training the deep
combinatorial network, a large number of iterations predicts the position of the target in
the next moment. Thus, probability is replaced by frequency, and the probability density
function of the spatial distribution of the target is quantified.

In order to improve the accuracy of target location prediction, the motion state of
the target must be identified first. The discrimination of the motion state is essentially a
classification problem. Because the types of target motion patterns are fixed, that is, the
total number of categories for classification is determined, this paper utilized convolutional
neural networks (CNN) to determine the motion state. The target trajectory prediction
is actually the prediction of the time series. A recursive neural network (RNN) has good
processing ability for time-series data.

Therefore, this section uses CNN and RNN to build a combined network architecture
to achieve target intent recognition and trajectory prediction. The network is divided into
two parts: offline training and online application; offline training is shown in Figure 3.

The specific process of offline training in Figure 3 can be described as:
Step 1: Set the target motion state and generate trajectory parameters in combination

with performance indicators. Then, data corresponding to different motion states are
generated. It is assumed that the target motion state includes three types: Constant Velocity
(CV), Constant Acceleration (CA), and Constant Turn Rate (CT).

Step 2: Combine the characteristics of the environment and noise to generate the
corresponding noise.

Step 3: Train the CNN for recognizing motion states.
Step 4: Train the RNN network parameters for predicting the trajectories of different

motion states.
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Figure 3. The process of offline training.

Through the above process, the CNN and RNN network training can be achieved.
Among them, Step 4 trains the corresponding network parameters according to the

different motion states of the target, which can improve the applicability of the network
and further improve the prediction accuracy.

The specific process of online application in Figure 4 can be described as:

Figure 4. The process of online application.

Step 1: Use the RSS passive location method to obtain the trajectory parameters of the
target. Input it into the CNN to identify the motion state of the target.

Step 2: According to the identified motion state, select and load the corresponding
RNN network parameters.

Step 3: Input the trajectory parameters of the target into the RNN to obtain the
predicted trajectory points of the target.

To date, the single prediction of the target trajectory using the deep combination
network has been achieved.

The core purpose of constructing a combined network is not to accurately predict the
position of the target, but to obtain f (Pr; Rt) in Formula (8). When used online, step 3 is
repeatedly executed to obtain the predicted values of the multiple sets of target positions.
Frequency is used instead of probability, as f (Pr; Rt) of the target in the next moment.

This way of obtaining f (Pr; Rt) is not limited by the probability density distribution
function and corresponding parameters. At the same time, it does not require sufficient
professional knowledge and mathematical skills to obtain the probability density distri-
bution function of the target in the next moment. This method is easy to operate and the
results are more accurate.
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At the same time, this strategy has another advantage. In practical situations, environ-
mental noise is generally a mixture of multiple different parameters and distribution types
of noise, and has time-varying characteristics. However, it is impossible to obtain the type
and corresponding parameters of each noise in this mixed noise. This also leads to actual
noise being much more complex than theoretical noise and inability to build a theoretical
model of environmental noise. Furthermore, subsequent quantitative analysis and formula
derivation cannot be carried out. The CNN network in this paper can construct noise
distribution based on actual measured parameters. The CNN network can be trained using
the previously measured target and noise measurements. This research can greatly improve
the accuracy of trajectory recognition in complex noise backgrounds.

Although deep learning can be used to predict the position of the target, it is still
necessary to combine the FIM to optimize the spatial position of the UAV and improve
the passive location accuracy. Therefore, its essence is still an NP-hard problem, and it is
difficult to obtain an analytical solution.

Therefore, this paper improved the particle swarm algorithm and optimized the
spatial position and trajectory of the UAV to improve the accuracy of the passive location
of moving targets. There are two main reasons for using the PSO algorithm in this article.

The first reason is that it is difficult to obtain the expression of the parameter f (Pr; Rt)
through theoretical derivation. Due to such constraints, even if f (Pr; Rt) is set, deriving
an analytical solution is extremely difficult and not universal. Therefore, this article used
intelligent optimization algorithms to solve it.

The second reason is that, compared to many other intelligent optimization algorithms,
the PSO algorithm is recognized as being the fastest. The in-depth research that has been
conducted on PSO is sufficient to ensure the effectiveness of PSO and, also due to the
extensive research on PSO, its algorithm has good stability.

4. Improved Particle Swarm Optimization Algorithm

4.1. Particle Swarm Optimization Algorithm and Its Shortcomings

Particle swarm optimization (PSO) [27,28] was established by observing the predation
characteristics of birds. The algorithm is simple to operate, efficient in searches, and has
been widely used in many fields.

Assume that the dimension of the search space to be optimized is D, the total number
of particles is N, and the total number of search iterations is T. Then, the updated iterative
formula for optimization is:

vt+1
id = ωvt

id + c1r1
(

pt
ibest − xt

id
)
+ c2r2

(
pt

gbest − xt
id

)
(24)

xt+1
id = xt

id + vt+1
id (25)

where vt
i =

(
vt

i1, vt
i2, · · · , vt

iD
)

represents the set of velocities of the i-th particle in each
dimension during the t-th iteration; xt

i represents the set of particle position, i = 1, 2, . . . ,
N, d = 1 , 2, . . . , D, t = 1, 2, . . . , T; ω is the inertia coefficient; c1 and c2 are learning factors;
and r1 and r2 are random numbers uniformly distributed between [0, 1]. pt

ibest and pt
gbest

are the best positions in individual history and population history, respectively.
Then, the fitness function corresponding to the particle position is calculated. The

better the fitness, the better the position of the particle. All particles adjust their speed
direction and move towards a better position by comparing their fitness functions with that
of other particles.

The above is the core formula and basic principle of the PSO algorithm. It can be seen
that the PSO algorithm only needs to adjust the flying speed of the particles to achieve
optimization.

Although PSO can easily achieve the local optimal solution, especially for typical
multimodal functions, its search efficiency is limited. This is due to the fact that particles
are easily influenced by other particles. Some particles are affected by other better particles
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when they do not search a certain area completely. All move towards the position of the
optimal particle at this stage, resulting in premature maturity.

If it is possible to conduct a complete and thorough search of each area, a global
comparison can be established. Or during the movement, a detailed search for the area
within the movement track can be performed. This can reduce the possibility of falling into
a local optimum. Therefore, this paper constructs a time-period-based hierarchical PSO
improvement strategy to improve the search performance of PSO.

4.2. Time-Period-Based Hierarchical PSO

The architecture of the time-period-based hierarchical PSO is shown in Figure 5.

 

j

Figure 5. Schematic diagram of the layered architecture.

The core idea of layering is to construct three groups according to the distribution of
particles: bottom layer, middle layer, and high layer. The bottom layer is explored in real
time, and after interaction, the fitness function is compared to obtain the middle and high
layers. The bottom layer of each group only interacts with the group, which ensures that
an area is fully searched. At the same time, the best bottom layer data in this group are
used as the middle layer. Then, the middle layer interacts occasionally, which balances
the contradiction between the global and local searches. Afterwards, the middle and high
layers guide the work of the lower layers, and the upper layers of different ethnic groups
occasionally interact, thereby changing the movement pattern.

In the above discussion, how the particles are grouped and how often the particles
between the middle and high layers exchange information seriously affect the algorithm
performance. For this reason, it is introduced in detail later.

4.3. Particle Grouping Strategy

First, the initial population is randomly generated, and the initial position of each
particle is obtained. Particles are grouped using the hierarchical clustering method. Hierar-
chical clustering method combines particles with similar distances into a group. In this way,
particles that are close to each other can be clustered, and the result is shown in Figure 6.

The relationship between particles can be directly seen from Figure 6. Then, the
number of groups is set, and the particles in the group are obtained. As shown in Figure 6,
using the hierarchical clustering method, the result obtained is a typical binary tree structure.
This structure is more intuitive. The red and blue lines are the grouped lines. If set to
four groups, the particles below the red line become a group according to the cross-linking
relationship of the grouping. The above is the process of grouping particles.

The hierarchical clustering method is a mature algorithm, and as there is a correspond-
ing code in MATLAB, it is not repeated in this article.
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Figure 6. Schematic diagram of the hierarchical clustering method results.

After that, the particles start to be optimized. In the initial stage, the fitness function
corresponding to each particle position is calculated. Then, a comparison within the
group is performed to obtain the optimal particle within the group. That is, pt

Mbest is
the best particle of the bottom layer, and it also becomes the particle of the middle layer.
Afterwards, each middle-layer particle is compared to obtain the position pt

Hbest of the
optimal particle of the group, that is, the high-level particles in Figure 5. Then, Formula (24)
can be modified as:

vt+1
id = ωvt

id + c1r1
(

pt
ibest − xt

id
)
+ c2r2

(
pt

Mbest − xt
id
)
+ c3r3

(
pt

Hbest − xt
id
)

(26)

The parameter definitions in Formula (26) are the same as those in Formula (24), and
are therefore not repeated here.

It can be seen from Formula (26) that the improved PSO is less affected by the global
optimal solution. At the same time, each ethnic group searches for the optimal solution
within its own territory as much as possible. This enables the adequate exploration of
multiple regions. Occasional high-level interactions between groups can ensure that each
group moves toward the optimal solution within the group. Ultimately, the possibility of
the premature maturity of the PSO algorithm is reduced.

4.4. Time Period

The frequency of interaction between particles in the middle layer affects the direction
of particle optimization. Therefore, this paper constructs a pattern of time periods to
optimize the interaction frequency of the middle layer.

Assuming that the update times of the middle and high particles are tM and tH,
respectively, that is, the middle layer optimal is updated only after every tM iterations,
Formula (26) is further modified as:

vt+1
id = ωvt

id + c1r1
(

pt
ibest − xt

id
)
+ mod(t,tM)

tM
r2
(

pt
Mbest − xt

id
)

+mod(t,tH)
tH

r3
(

pt
Hbest − xt

id
) (27)

where mod(a,b) is the remainder operation, that is, the remainder obtained after dividing a
by b.

In Formula (27), when the mod operation result is small, it means that the correspond-
ing optimal value has just been updated. At this time, it is more focused on letting the
particles search in their respective areas to obtain a better pt

ibest for subsequent updates. As
the search progresses, the mod results gradually increase, and the particles move closer to
the local optimum. It is ensured that, before the next update of the local optimal value, the
particle performed a more comprehensive search for the region where it is located, thereby
reducing the possibility of falling into the local optimal value.

However, as the search progresses, particles within a group do not always belong to the
same group. Instead, they regroup after multiple searches. This ensures a comprehensive
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search of the area. Therefore, in this paper, after every tG search, all particles were regrouped
according to the hierarchical clustering method in the previous section to improve the
search efficiency.

The idea of the time period is borrowed from the clock model. That is, important
parameters, such as the hour hand, should be updated slowly. Exploratory particles, such
as the minute and second hands, should be updated faster. In this way, the effective search
for the full dimension is better achieved, and the possibility of falling into a local optimum
is reduced.

To sum up, this section improves the PSO algorithm by designing the particle grouping
architecture and building the time period.

4.5. Algorithm Complexity Analysis

Due to the few parameters involved, the PSO algorithm has a significantly better
optimization speed than other intelligent algorithms. Therefore, the improvement of the
PSO algorithm should not affect its algorithm speed as much as possible. Therefore, this
section analyzes the computational complexity of the improved algorithm to ensure that
the speed of the algorithm does not drop significantly.

In terms of iterative update strategy, comparing Formulas (24) and (27), it can be seen
that the original PSO considers the influence of individual historical optimal and global
optimal on particle velocity. The improved PSO increases the impact of local optima on the
speed. The amount of calculation becomes 1.5 times the original, but only the subtraction
operation is performed without changing the complexity of the algorithm.

In terms of coefficients, the improved algorithm adjusts the learning factor c1 to mod
operation. This operation is linear, and only needs to be performed once per iteration and
the result recorded. That is, in each iteration, only one operation is performed. At the same
time, subsequent particles directly use this result without repeating the calculation. The
added computation has little impact compared to iterative operations.

At the level of algorithm architecture, in each iteration process, the original PSO
algorithm compares the fitness functions of all particles. Thereby, the maximum value
among the N fitness functions is obtained. In the improved PSO algorithm, due to the
design of the time period, although the comparison is also required, the comparison within
the group is mainly performed. Compared with the global comparison of the original PSO
algorithm, the computational complexity of the improved PSO algorithm is significantly
reduced. Although the improved algorithm also involves global comparison, due to the
hierarchical structure and time period, the fitness function and the number of comparisons
involved in this comparison are significantly lower than the global comparison of the
original algorithm.

In the improved algorithm, the hierarchical clustering method is used to group the
particles. This method needs to calculate the distance matrix between particles and then
classify them according to the distance. However, due to the design of the time period,
regrouping is performed only once after tG searches. Compared with the original algorithm,
each particle needs to update the fitness function corresponding to the calculation, and the
increased calculation amount of the improved algorithm is very small.

To sum up, the time-period-based hierarchical PSO improvement strategy constructed
in this paper only approximately increased the amount of computation to 1.5 times that of
the original PSO, without changing the algorithm’s complexity. Therefore, the improved
algorithm still retains the efficient characteristics of PSO.

5. Passive Location Algorithm Flow of the Moving Target Based on Improved PSO

5.1. Objective Function

Using UAV swarms to locate moving targets is an asymptotically optimal process.
Therefore, not only the location effect in the present moment, but also the subsequent
impact of the decision in the present moment, should be considered. In this way, the best
location effect can be achieved at a faster speed.
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Assuming a time k, the subsequent motion state of the UAV swarm and the target is
shown in Figure 7.

 

Figure 7. Movement situation diagram.

The coordinate of the i-th UAV in our UAV swarm is xi(k) and the target coordinate is
Rt(k).

At this time, the model predictive control (MPC) method was adopted. That is, the
optimization method of predicting H steps and executing one step was adopted. On the
basis of Formula (23), the objective function is adjusted as:

FHopt = argmin
H−1

∑
i=0

γiFopt(k + i) (28)

where γ is the decay factor. The MPC method used in Formula (28) is relatively mature,
and is not repeated in this paper.

5.2. Constraints

Constraints mainly include individual motion constraints and obstacle avoidance con-
straints, as well as cluster communication constraints and collision avoidance constraints.

It was assumed that the motion state of the UAV is at k and the next moment, that is,
the motion state at the moment k + Δk, as shown in Figure 8.

Figure 8. Schematic diagram of motion constraints.

The position and speed of m-th UAV at time k are Pk
m = [xk

m, yk
m] and vk

m = [vk
xm, vk

ym].
Taking it as the initial condition, it was optimized to obtain the position and velocity in
the next moment as Pk+Δk

m = [xk+Δk
m , yk+Δk

m ] and vk+Δk
m = [vk+Δk

m , vk+Δk
m ], respectively. The
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corresponding relationship is shown in Figure 8. Then, the motion constraints should be
satisfied, namely: {

Pk+Δk
m = Pk

m + vk
mΔk

‖Pk+Δk
m − Pk

m‖2 ≤ ‖vk
m‖2Δk

(29)

where ‖ ‖2 means to take the 2-norm. The relationship between the speeds is:

vk+Δk
m = vk

m + Δvk
m (30)

where Δvk
m is the value of the velocity change, which should satisfy:{ ‖Δvk

m‖2 ≤ Δvmax
vmin ≤ ‖vk+Δk

m ‖2 ≤ vmax
(31)

That is, the speed and the amount of speed change cannot exceed their allowable limit.
Similarly, the change amount Δθk

m of the UAV direction can be calculated according to
the velocity vector at two moments, which should satisfy:

Δθk
m ≤ Δθmax (32)

where | | represents the absolute value.
The above are the motion constraints that the UAV should meet.
The remaining three constraints are mainly reflected in the spatial distance. Among

them, the individual obstacle avoidance constraints are mainly that the minimum distance
between the UAV and the obstacle during the entire flight process cannot be lower than the
set safe distance.

The communication constraints of the swarm require that, for any UAV, there is at
least one UAV whose distance to the UAV is less than the set communication distance.

The collision avoidance constraint is the opposite, requiring that the distance between
any two UAVs is not lower than the set collision avoidance distance.

The above three constraints are relatively simple and are not described in detail in this
article.

5.3. Algorithm Optimization Process

In order to achieve the passive location of moving targets, the construction algorithm
flow is shown in Figure 9.

The algorithm flow of Figure 9 can be described as:
Step 1: Obtain the position of each UAV in swarm at time k and the signals received

by each platform.
Step 2: Construct the objective function shown in Formula (28) and construct the

corresponding constraints. Use the improved PSO algorithm and MPC for optimization.
Step 3: Judge whether the result satisfies the constraint conditions; if not, return to

Step 2; if it is satisfied, execute Step 4.
Step 4: Construct a time series of the location points obtained at this time and the

previous five moments. It is fed into the combined network to predict the target trajectory.
The predicted result is used to correct f (Pr; Rt) in Formula (8).

Step 5: Obtain the optimal coordinates of each drone in the next moment and then
update the position of the drone. Determine whether the final optimization time k is
reached. If it is not reached, return to Step 1; otherwise, the optimization ends.

The above is the algorithm flow of using UAV swarm to locate the moving target.
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Figure 9. Flowchart of the passive location algorithm for the moving target by UAV swarm.

6. Simulation and Verification

To verify the performance of the algorithm in this paper, it was assumed that the target
run for 60 min, 1–20 min for CV, 21–40 min for CT, and 41–60 min for CA.

Five UAVs took off near (0,0) with a speed limit of 200 m/min and performed the
cooperative passive location of the target.

The simulation environment was I7-10750H, with 2.60 GHz dominant frequency
and 16 G memory, and the simulation experiment was made on a platform based on
MATLAB 2020b.

6.1. Performance Verification of Deep Networks

To verify the performance of the network built in Section 3.3, this section conducts
simulation experiments on the network.

The data used to train the CNN network were the track data added with standard
Gaussian white noise. At the same time, it was necessary to identify the target’s motion
state in this minute; so, the training data were 60 s, which means to generate a data sequence
with a length of 60 based on the above motion state and corresponding time. The output of
the training was the motion state of the trajectory, namely, the three motion states of CV,
CA, and CT. This article set 60 points per minute. The target movement lasted for a total of
60 min. To ensure sufficient training data, 360,000 sets of data were generated for training,
and an additional 3600 sets of data were generated for testing. The test was passed when
the test error was set to not less than 95%.

Since the length of the data used for training was only 60, the data were not long.
Thus, the number of network layers was set to 7, that is, 5 of them were hidden layers,
the learning rate was 0.3, eight neurons per layer, and the number of iterations was 2000.
Comparing the algorithm with IMM-EKF [29], the result is shown in Figure 10.
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Figure 10. Comparison of the recognition results.

From Figure 10, it can be seen that CNN has three errors and IMM-EKF has six. CNN
is more accurate than IMM-EKF. This is because the basic function of CNN is recognition,
and the recognition effect will increase with the increase in training data. However, the
recognition effect of IMM-EKF is affected by noise, and the performance does not change
with the amount of training data. Therefore, CNN is more suitable for target motion state
recognition.

The data used to train the CNN-RNN composite network were input for 60 points, that
is, the position of the target and the motion state identified by the CNN per second. The
output was 60 track points that predict the target for the next minute. A total of 360,000 sets
of data were used for training and an additional 3600 sets for testing. The training was
completed after the number of iterations was reached.

Because the length of the data used for training was only 60, the number of RNN
network layers was set to 8 layers, that is, 6 layers were hidden layers, the learning rate was
0.3, 8 neurons per layer, and the number of iterations was 50,000. Comparing the algorithm
with the classical RNN, the result is shown in Figure 11.

Figure 11. Comparison of the average error.

As can be seen from Figure 11, the prediction results of the CNN-RNN network were
generally better than that of RNN. This is because there are actually three sets of RNN
networks with different parameters in CNN-RNN. That is, after the CNN identifies the
target motion state, the RNN loads the corresponding parameters to perform the prediction.
With more targeted networks, the results will certainly be more accurate. However, once
the CNN recognizes an error, the error spikes, as shown in Figure 11.
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6.2. Passive Location Performance Verification and Algorithm Comparison

The algorithm in this paper, the IMM-EFK in [29], and the location method in [30]
were compared, and the results are shown in Figure 12.

(a) 

(b) 

(c) 

Figure 12. Comparison of algorithm optimization results. (a) Optimization results of the algorithm in
this paper; (b) IMM−EKF optimization results; and (c) the results of the location method in [30].
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By comparing the three sets of results in Figure 12, it can be seen that the location
points of the algorithm in this paper are more coincident with the target trajectory.

It can be seen from Figure 12b that the method of IMM-EKF has better localization
accuracy. However, when the motion state of the target is converted, the IMM-EKF cannot
quickly identify the change of the motion state of the target. At the same time, after
identification, it is difficult to quickly establish a new tracking equation, resulting in a
significant decrease in the location efficiency at this time.

Literature [30] uses Doppler rate to improve the accuracy of moving target positioning
based on time delay and Doppler shift. Meanwhile, literature [30] establishes a pseudolinear
set of equations by introducing some additional variables. The analytic solution for moving
target positioning is given. The positioning CRLB is derived. However, by comparing
Figure 12a,c, it can be seen that the positioning method in literature [30] differs from that in
this paper in positioning accuracy. There are two main reasons.

The first is that, as can be seen from Figure 12c, the method in literature [30] has
always had a large error. This is because the method in literature [30] does not consider the
sequential nature of target motion, treating each localization as an independent localization.
As a result, its positioning performance will not improve with the progress of positioning.
The second reason is that the method in literature [30] does not achieve real-time planning
for the trajectory of unmanned aerial vehicles, but rather provides the ultimate ideal
location point distribution method. The real-time optimization is not achieved, and motion
conditions such as platform motion are not considered. This results in poor performance
during the positioning process.

The core reason why the algorithm in this paper is superior to other algorithms is
that this paper constructs a model of cooperative passive location from the perspective of
clusters. This article does not disassemble the five UAV into a “2 + 3” model, but optimizes
the five UAVs as a whole. It can be seen from Figure 12a that among the 5 UAVs, 3 UAVs
are flying towards the target, which is pulling in the relative distance between the cluster
and the target. The 2 UAVs flew towards a wide area, increasing the observation angles of
different drones. This also conforms to Formula (21), that is, the UAV swarm adjusts the
distance and angle factors that affect the location accuracy.

The algorithm in this paper obtains better location performance by adjusting the
distance between the cluster and the target and forming different observation angles at the
same time.

In order to further quantify and compare the location performance. Under the con-
dition that the simulation conditions remain unchanged, 30 Monte Carlo experimental
simulations are carried out for each algorithm. Take the average value of the errors at each
moment to obtain a comparison chart, as shown in Figure 13.

Figure 13. Comparison of average errors [30].
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As can be seen from Figure 13, the algorithm in this paper has two obvious advantages
over other algorithms. One is that the MPC is involved in the algorithm in this paper, so its
error decreases significantly faster than other algorithms.

The other is that the stability of the algorithm in this paper is stronger. When the
motion state of the target changes, it is difficult for each algorithm to judge the change in
the state at the first time, so there is a sudden change in error in Figure 13. By comparison,
it can be seen that, because the algorithm in this paper uses a combined network, the error
is less affected. At the same time, the algorithm also stabilizes faster.

To further compare the effectiveness of the positioning methods, this section counts
the positioning time of 30 Monte Carlo experiments of the above three methods. The results
are shown in Table 2.

Table 2. Comparison of time consumption of the three positioning algorithms.

Time Consumption Algorithm in This Paper IMM-EKF Method in [30]

Average total time 163.26 205.81 732.42
Average time for each point 2.71 3.43 12.21

As can be seen from Table 2, the algorithm in this paper is superior to the other two
algorithms in terms of efficiency. This is because, when using IMM-EKF to determine the
motion state of a target, it is necessary to calculate the probability of the target’s motion
state in the next moment based on its previous motion trajectory. The algorithm in this
paper only needs to input the trajectory into the trained network, and can directly predict
the position of the target in the next moment, which is faster.

The method in [30] provides an analytical solution, which can intuitively see the
relationship between factors affecting the target’s positioning accuracy and quantification.
However, in the solution process of [30], it involves performing inverse operations on a
large number of matrices, Which seriously affects the speed of the algorithm. Therefore, it
takes a long time.

6.3. Optimization Algorithm Performance Comparison

In order to further measure and compare the performance of the improved PSO
algorithm, the improved PSO in this paper was compared with the PSO in [31] and the
Holonic-PSO in [32]. The simulation conditions were the same, and 30 Monte Carlo
simulations were performed to obtain a comparison chart of the mean error value, as
shown in Figure 14.

Figure 14. Error comparison chart [31,32].

246



Drones 2023, 7, 264

It can be seen from Figure 14 that the performance of the algorithm in this paper is
more stable, because the algorithm in this paper can perform a more global search and
improve the algorithm efficiency.

The method in [31] is more focused on enabling PSO particles to jump out of the local
optimization with maximum probability, thereby achieving global search. To achieve this
goal, Formulas (5)–(7) in [31] set a method for generating approximately random search
directions. This setting can reduce the possibility of falling into a local optimum, but this
near-random approach has no significant effect on improving search performance.

The improvement idea of this article was inspired by [32] to group particles for search.
One disadvantage of [32] is that its particle search strategy, i.e., the updated equation of
particle state, is artificially adjusted. In the iterative process of [32], the first 80% of searches
and the last 20% of searches use different update equations. However, in [32], a simple
comparative experiment shows that the ratio of 80% to 20% is better, without indicating
whether it is optimal. Obviously, this ratio may vary depending on the issue.

At the same time, there is another reason why the method in this article is superior to
the above two methods. What this article aimed to solve is a sequential decision-making
problem. The optimization results of the previous moment affect the next moment. The
positioning accuracy of the previous moment is good, providing a good initial condition
for the next moment, and the positioning accuracy of the next moment will not be poor. If
the positioning effect at the previous moment is poor, it will also affect the positioning at
the next moment. Therefore, over time, compared to the other two methods, the effect of
this article becomes better and better.

In order to further compare the performance of the algorithms, the time of the three
optimization algorithms is also counted, and the results are shown in Table 3.

Table 3. Comparison of the time consumption of the three optimization algorithms.

Time Consumption Algorithm in This Paper IPSO in [31] HPSO in [32]

Average total time 163.26 116.46 164.47
Average time for each point 2.71 1.94 2.71

Through comparison, it can be seen that the algorithm speed in this article is weaker
than IPSO [31], but better than HPSO [32].

The improvement of the IPSO algorithm on the search direction of the particles is
still based on a random mode. Compared with the PSO algorithm, this search mode has
almost no significant change in the additional computation amount generated by the PSO
algorithm. Therefore, IPSO still maintains its high-speed solution efficiency. The algorithm
in this paper involves further information interaction between groups and particles, with
a significant increase in computational complexity. Therefore, the performance is weaker
than IPSO.

Both this algorithm and HPSO [32] involve particle grouping and information interac-
tion. However, in each iteration of the HPSO algorithm, the particle parameters at each
level are updated. In this article, by designing a clock cycle, particles at different levels
were updated according to the cycle, which reduces the amount of computation. This can
also allow different particle populations to conduct more detailed searches of their regions.

Under the main premise of ensuring positioning accuracy, the effectiveness of the
algorithm in this paper is even higher.

7. Discussion

This section mainly discusses the main contributions, application scenarios, algorithm
deficiencies, and follow-up work of this article.

This paper built a passive location method for moving targets based on RSS for UAV
clusters. The target probability distribution network was designed to predict the subsequent
location of the target more clearly and easily. Thus, the mature static target positioning
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method was extended to the target positioning. At the same time, the PSO algorithm was
improved in this paper. From the simulation comparison, the improved method had a
good performance.

The research results can be applied in many ways, mainly using a UAV cluster to
locate a target and achieve navigation without a GPS signal. UAV clusters can also be used
to search and rescue people with mobile phones. Sound and electromagnetic information
can be collected to build digital maps. It can also locate ships on the sea, or discover and
locate concealed radar.

Although this paper has conducted some research work, there are still some limitations.
Firstly, the positioning model does not take the altitude direction into account, so in practice,
this study is still far from achieving more accurate applications. Secondly, although the
network can suppress complex noise, its effect is limited. Finally, the real-time performance
of the algorithm needs further design. The PSO algorithm cannot increase speed further,
but as UAV clusters are multiple platforms, parallel computing can be considered. It is
feasible to exchange computing resources for optimization time.

To overcome these shortcomings, a passive positioning model of UAV in a three-
dimensional scene will be built in future research to improve the network to improve its
ability of target state recognition under strong noise background. Additionally, a framework
of parallel computing will be designed to test and improve the algorithm.

8. Conclusions

In this paper, the problem of improving passive location accuracy will be transformed
into the problem of obtaining more target information. Based on RSS and the A criterion,
a passive location method for moving objects was constructed. Firstly, the measurement
model of cluster passive location was constructed. After that, the relationship between
the UAV spatial position and the static target localization effectiveness was derived and
constructed. Then, the difference between stationary target and moving target location was
analyzed. In order to expand the scope of the application of the algorithm, the prediction
of the target position was realized by designing a deep combined network. Thereby, the
probability density distribution function required in the passive location process of the
moving target was obtained. Considering that trajectory optimization is an NP-Hard
problem and addressing the problem that the PSO algorithm easily falls into the local
optimum, a layered improvement strategy based on time period was designed to improve
PSO performance. Then, a passive location algorithm flow based on the improved PSO
was constructed. Through simulation verification and algorithm comparison, the feasibility
and performance advantages of the algorithm in this paper were highlighted.
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Abstract: This paper investigates the multiple unmanned aerial vehicle (multi-UAV) cooperative task
assignment problem. Specifically, we assign different types of UAVs to accomplish the classification,
attack, and verification tasks of targets under resource, precedence, and timing constraints. Due to
complex coupling among these tasks, we decompose the considered problem into two subproblems:
one with continuous and independent tasks and another with continuous and correlative tasks. To
solve them, we first present an adjustable, fully adaptive cross-entropy (AFACE) algorithm based on
the cross-entropy (CE) method, which serves as a stepping stone for developing other algorithms.
Secondly, to overcome task precedence in the first subproblem, we propose a mutually independent
AFACE (MIAFACE) algorithm, which converges faster than the CE method when obtaining the
optimal scheme vectors of these continuous and independent tasks. Thirdly, to deal with task
coupling in the second subproblem, we present a mutually correlative AFACE (MCAFACE) algorithm
to find the optimal scheme vectors of these continuous and correlative tasks, while its computational
complexity is inferior to that of the MIAFACE algorithm. Finally, numerical simulations demonstrate
that the proposed MIAFACE (MCAFACE, respectively) algorithm consumes less time than the existing
algorithms for the continuous and independent (correlative, respectively) task assignment problem.

Keywords: multi-UAVs; task assignment; AFACE algorithm; MIAFACE algorithm; MCAFACE
algorithm

1. Introduction

Due to its rapid deployment and nearly unlimited mobility, an unmanned aerial
vehicle (UAV) has great potential in both military and civilian applications, including
modern warfare, disaster search and rescue, traffic control, celestial exploration, and a
variety of other fields [1–4]. UAVs for these applications have limited capabilities and
require sufficient resources to perform tasks autonomously. As a result, multi-UAVs
can be regarded as a promising method by which to handle complex tasks. As more
attention is focused on them, two problems in multi-UAV collaboration, such as multi-
UAV cooperative path planning and cooperative task assignment, are becoming more
widely recognized. The main consideration of this paper is the multi-UAV cooperative task
assignment problem.

In recent years, many scholars have paid attention to the multi-UAV cooperative task
assignment problem, while the related research of this problem is as follows. Chen et al. [5]
utilized mixed integer linear programming (MILP) to address the problem of multi-UAV
cooperative task assignment and path planning for moving targets on the ground, but it
had low scalability while maintaining global optimality. References [6,7] used a heuristic
approach to produce near-optimal results in real time, which has been widely consid-
ered for large-scale problems and dynamic scenarios. For swarm intelligence algorithms,
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e.g., particle swarm optimization (PSO) [8], ant colony optimization (ACO) [9], and ge-
netic algorithm (GA) [10], when solving the task assignment problem, they had a fast
convergence speed and could effectively obtain optimal assignment schemes, but there is a
possibility of falling into local optimum. Moreover, the auction algorithm, game theory, and
reinforcement learning have also been applied to the multi-UAV task assignment problem.
Duan et al. [11] presented a novel hybrid “two-stage” auction algorithm that combines the
structural advantages of the centralized and distributed auction algorithms, which greatly
facilitates the performance of UAVs in dynamic task assignments. Chen et al. [12] stud-
ied the cooperative reconnaissance and spectrum access (CRSA) problem for task-driven
heterogeneous coalition-based UAV networks, and proposed a joint bandwidth allocation
and coalition formation (JBACF) algorithm to solve the task assignment and bandwidth
allocation. Qie et al. [13] proposed an artificial intelligence method called simultaneous
target assignment and path planning (STAPP) to solve the multi-UAV target assignment
and path planning problem, and the effectiveness of the algorithm was experimentally
verified. In addition, references [14–21] provide a variety of alternative algorithms for the
solution of analogous problems.

Similarly, some novel works on task assignment, e.g., UAV-assisted task assignment,
have been presented. Liu et al. [22] studied a UAV-assisted IoT system while present-
ing a nonconvex age-of-information (AoI) minimization problem, which was solved by
jointly optimizing task assignment, interaction point selection (IPT), and UAV trajectories.
Zhu et al. [23] considered the problem of task loss rate (TLR) fairness among IoTs and
equal energy consumption (EC) fairness among UAVs, and proposed a multiagent deep
deterministic policy gradient (MA-DDPG) method by which to assign UAVs to accomplish
tasks and guarantee the balance between IoT TLR and UAV EC. Seid et al. [24] considered
the assignment of UAVs to perform aerial base station tasks based on a multi-UAV-assisted
IoT network framework, while presenting a joint optimization problem for computational
offloading with energy harvesting (EH) and resource price, and the resource demands
and pricing strategies between IoT devices and UAVs were continuously adjusted by the
Stackelberg game. Hu et al. [25] considered the aging of cache refreshing, computation
offloading, and state updates in UAV-assisted vehicle task awareness, and formulated a
task-assignment energy-minimization problem that was solved by a deep deterministic
policy gradient (DDPG) method. Zhou et al. [26] studied UAV-assisted mobile crowd
sensing (MCS) scenarios and proposed a UAV-assisted multitasking assignment (UMA)
method, while demonstrating the effectiveness of UMA. In addition, compared the UAV-
assisted task assignment with the UAV task assignment, the difference is that UAVs play a
secondary role in the former while serving as the primary reconnaissance and attack objects
in the latter. Furthermore, the simulation scenarios in the paper are not consistent with the
existing works (e.g., references [22–26]).

In the complex stochastic network, the cross-entropy (CE) method [27], a relatively
new technique for dealing with combinatorial optimization problems, was initially utilized
to estimate rare event probabilities. Then, references [28,29] discussed and analysed its
convergence. Additionally, the cross-entropy (CE) method was proved by the authors
in [30] to be particularly meaningful for handling combinatorial optimization problems.
Since then, it has also been proven by many scholars to be a simple and effective tool for
different fields, e.g., vehicle routing [31], buffer allocation [31], and machine learning [32].
In addition, researchers have also considered applying the cross-entropy (CE) method to
the UAV task assignment [33–35]. However, the authors of these papers did not consider
the specific precedence and timing constraints among these tasks.

When it comes to task-assignment schemes in the field of UAVs, some researchers
usually assume that each UAV is assigned to only one target, and they rarely consider the
execution sequence and the time constraints among tasks. On the other hand, multi-UAVs
are sometimes needed to perform some complex combinatorial tasks, such as classifying
the target, attacking it, and then verifying the target’s damage level in a reasonable time
on the battlefield. In addition, such deterministic approaches may not be able to find the

252



Drones 2023, 7, 204

optimal solution in a reasonable time for large-scale task assignment problems. Under these
circumstances, we present an adjustable fully adaptive cross-entropy (AFACE) algorithm
based on CE method.

Therefore, the purpose of this paper is to study the AFACE algorithm for the multi-
UAV cooperative task assignment problem under resource, precedence, and timing con-
straints. The main contributions are summed up as follows.

• We consider the multi-UAV cooperative task assignment problem in which different
types of UAVs are assigned to perform classification, attack and verification tasks of
targets under resource, and precedence and timing constraints. Considering complex
coupling among these tasks, we decompose the considered problem into two subprob-
lems: one with continuous and independent tasks and another with continuous and
correlative tasks.

• We propose an AFACE algorithm, which changes the random sample and the quantile
at each iteration and adds a parameter to adjust the maximum sample based on the
CE method. Meanwhile, the algorithm serves as a stepping stone for developing other
algorithms.

• To overcome task precedence and task coupling existing in these two problems, re-
spectively, we present a mutually independent AFACE (MIAFACE) algorithm and a
mutually correlative AFACE (MCAFACE) algorithm with polynomial time complexity.
The former algorithm converges faster than the CE method, while the computational
complexity of the latter algorithm is inferior to that of the former algorithm.

• Simulation results demonstrate that both MIAFACE and MCAFACE algorithms con-
sume less time than other existing optimization algorithms for solving the correspond-
ing problem.

The rest of this paper is organized as follows. In Section 2, we introduce the related works
of the CE method and other algorithms for the UAV task assignment. Section 3 depicts the multi-
UAV cooperative task assignment problem with its mathematical formulation. In Section 4, we
decompose the considered problem into two subproblems, and propose an AFACE algorithm,
a MIAFACE algorithm, and a MCAFACE algorithm, and apply the latter two algorithms to
solving the corresponding problem. Section 5 conducts several simulations and comparisons to
verify the feasibility and effectiveness of the proposed algorithms. This paper is concluded in
Section 6.

2. Related Work

This section reviews the related works on CE method and other algorithms used for
UAV task assignment.

2.1. CE Method Used for UAV Task Assignment

Due to CE’s merits, the authors of [33] first proposed using the CE method for tackling
the multi-UAV task assignment problem to tackle the large traveling salesman problem
(TSP), the vehicle routing problem (VRP), and Markov decision process (MDP). In particular,
compared to other algorithms, CE could solve optimization problems efficiently because of
its ability to deal with these problems with nonlinear objective functions. Three separate
multi-UAV task assignment problems were then formulated, including a nonlinear objective
function with distance penalty, a nonlinear objective function with no distance penalty,
and nonlinear constraints. In these problems, the authors considered the distance penalty
and required that each task must be assigned to at least one vehicle. Then, the task scores
were considered as nonlinear functions, and the CE method was used to determine the
optimal schemes for the functions of these problems. Finally, simulation results verified
that the performance of the CE method was superior to other algorithms.

The authors in [34] considered the multi-UAV task assignment problem. Then,
the score function of this problem was determined with the constraint that each UAV
was used for only one task. Subsequently, the CE method was used to find the optimal
scheme of this problem. Finally, simulation results showed that the CE method outper-
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formed the Branch and Bound algorithm in solving the above problem, especially on a
large scale.

Referring to [33,34], the authors in [35] described the multitype UAV task assignment
problem. In this problem, different types of UAVs, or the same type of UAV as well as
resource constraints, were considered. The authors then formulated the problem and
provided a score function under resource constraints. Then, the CE method was used to
determine the optimal scheme of this problem by assigning multitype UAVs to complete
tasks. Finally, numerical simulations of the CE method for task assignment, as well as
comparisons with the exhaust search method, were conducted to verify its merits in solving
the considered problem.

In [36], the authors first analyzed the CE method, then redefined its construct and
applied it to UAV swarms. Subsequently, due to the robustness of this method, it could be
used as an effective measure to control UAV swarms in the face of obstacles and unforeseen
problems. Finally, it was validated to support UAV swarms in achieving mission objectives.

The authors of [37] considered the multi-UAV task assignment problem under resource
constraint and precedence constraint. The fully adaptive cross-entropy (FACE) algorithm
based on the CE method was then applied to solve the considered problem. Then, simu-
lation results verified that the FACE algorithm was better than the CE method and PSO
algorithm in terms of convergence speed.

2.2. Other Algorithms Used for UAV Task Assignment

The authors in [8] improved the PSO algorithm with an inertia weight factor and
applied it to handle the multi-UAV task assignment problem, then conducted several
simulations and comparisons. Then, it was verified that the improved algorithm has a
faster convergence speed and global optimization capability compared with the standard
PSO algorithm.

In [38], the authors presented a novel hierarchical task assignment method to solve
the multi-UAV task assignment problem, and the method was decomposed into two
phases, including the hierarchical decomposition phase and the task assignment phase.
The former phase reduced the computational complexity by using the balance cluster
method to simplify the large-scale UAV model; the latter phase maintained the diversity of
the population by an improved firefly algorithm. Then, simulations showed that compared
with other algorithms, the proposed hierarchical method becomes more efficient in terms
of search ability and convergence speed.

The authors in [39] defined the task assignment problem for cooperative multi-UAV
road network reconnaissance and formulated a multi-UAV road network reconnaissance
traveling salesman problem (MRRTSP) model. Furthermore, a customized genetic algo-
rithm for road network reconnaissance (CGA-RNR) was proposed and used to solve the
considered problem. Then, simulations showed that the algorithm can quickly obtain
feasible solutions and converge to the optimal solution.

3. Problem Description and Formulation

The main parameters of this paper is shown in Table 1.

Problem Description

On the battlefield, multi-UAVs are deployed to perform different tasks, for example,
to classify targets before attacking them, and then to verify them to check whether these
tasks have been accomplished. The problem considered in this paper is the selection of a
mix of the same type of UAV or different types of UAVs from their bases to perform the
classification, attack and verification tasks of targets. As shown in Figure 1, there are Nb
types of UAVs with the same speed, and the related components of this problem can be
defined as a 5-tuple {A,B,G,K, T }. In the 5-tuple, A := {1, 2, . . . , Nm} denotes the set of
task index of targets, B := {1, 2, . . . , Nb} represents the set of Nb bases, G := {1, 2, . . . , Nt}
denotes the set of Nt targets with known positions, K := {K1, K2, . . . , KNm} represents the
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set of Nm tasks of targets, and T := {T1, T2, . . . , TNm} denotes the set of the execution time
of Nm tasks of targets. Note that the time required to allocate tasks is ignored.

Table 1. Simulation parameter settings.

Variables Explanation

Nb The number of bases
Nt The number of targets
j The target index
K The set of tasks of targets

Nm The number of tasks of targets
m The task index of targets
X The set of all possible UAV deployment schemes
L The number of X for each task
z The maximum number of UAVs in each scheme of X
Z The set of all possible UAV deployment scheme indexes
k A UAV deployment scheme index or a UAV formation index

x(m) A feasible UAV deployment scheme vector of task m
xj(m) A feasible UAV deployment scheme or a UAV formation of task m of target j

g(xj(m); k) A 0–1 decision variable
Y The set of all feasible x(m)

Ω(x(m)) The performance of task m
Ω The performance vector of Ω(x(m))
ρ The total objective function

ψ(xj(2)) The reward benefit of the attack task of target j
ϕ(xj(m)) The cost of assigning UAV formation xj(m) to accomplish task m of target j

pj
k The probability of killing target j

pj
s The UAV survival probability of accomplishing tasks of target j

w1, w2 and w3 Weight coefficients
Pc and V The target identification certainty and the constant velocity of each UAV
yj and sj The value and the threat level of target j

dj(m) The farthest distance from the base corresponding to UAV formation xj(m) to target j
Dmax The maximum flying distance

Tm The execution time of task m

Figure 1. Task assignment diagram.
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Moreover, let x(m) = [x1(m), x2(m), . . . , xNt(m)]T denote a feasible UAV deployment
scheme vector, and define Y as the set of all feasible x(m). Let Z := {1, 2, . . . , L} be the set
of all possible UAV deployment scheme indices. Thus, x(m) satisfies

g(xj(m); k) =

{
1, i f φ(xj(m)) = k, j ∈ G, m ∈ A, k ∈ Z
0, i f φ(xj(m)) �= k, xj(m) ∈ X

, (1)

where j denotes the target index, m designates the task index, xj(m) is a feasible UAV
deployment scheme or a UAV formation of task m of target j, k represents a UAV deploy-
ment scheme index or a UAV formation index, φ(xj(m)) is an index function that serves to
output the subscript corresponding to xj(m) in X , and g(xj(m); k) is a 0–1 decision variable,
i.e., the kth UAV formation is assigned to accomplish task m of target j.

Then, the total objective function ρ based on x(m) is defined as

ρ =
Nm

∑
m=1

Ω(x(m))

=
Nt

∑
j=1

ψ(xj(2))−
Nm

∑
m=1

Nt

∑
j=1

ϕ(xj(m)),

(2)

where Ω(x(m)) is the subobjective function of task m, ψ(xj(2)) and ϕ(xj(m)) denote the
reward benefit of the attack task and the cost of assigning xj(m) to accomplish tasks of
target j, respectively, which are

ψ(xj(2)) = w1 × Pc × pj
k × yj (3)

ϕ(xj(m)) = w2 × pj
s × sj + w3 × (V × Tm + dj(m)), (4)

where Pc is the target identification certainty, yj represents the value of target j, sj denotes
the threat level of target j, V is the constant velocity of each UAV, Tm represents the execution
time of task m, dj(m) denotes the farthest distance from the bases corresponding to UAV
formation xj(m) to target j, w1, w2 and w3 represent weight coefficients, indicating the

information about the relative importance of each subobjective, pj
k denotes the probability

of killing target j, and pj
s is the UAV survival probability of accomplishing task m of target j.

In addition, pj
k and pj

s are defined as

pj
k = ∏

a∈xj(2)
paj (5)

pj
s = 1− ∏

b∈xj(m)

pbj, (6)

where a stands for a UAV in UAV formation xj(2); paj is the probability of killing target
j with UAV a, b represents a UAV in UAV formation xj(m), and pbj is the UAV survival
probability of accomplishing task m of target j with UAV b.

According to Equations (2)–(6), ρ is rewritten as

ρ =
Nt

∑
j=1

w1 × Pc × pj
k × yj −

Nm

∑
m=1

Nt

∑
j=1

[w2 × pj
s × sj

+ w3 × (V × Tm + dj(m))]. (7)

256



Drones 2023, 7, 204

Then, our objective is to maximize ρ, and the considered problem can be formulated as

P : max
x(m)∈Y

ρ =
Nm

∑
m=1

Ω(x(m)) (8)

s.t. w1 + w2 + w3 = 1, 0 ≤ w1, w2, w3 ≤ 1 (9)

dj(m) + V × Tm ≤ Dmax ∀j, m (10)

Kj
1 ≺ Kj

2 ≺ Kj
3 ∀j. (11)

Constraint (9) represents the range of w1, w2, and w3. Constraint (10) is that, for target
j, the sum of dj(m) and the farthest flying distance performed by the UAV formation xj(m)

does not exceed the maximum flying distance Dmax. Constraint (11) means that Kj
1, Kj

2, and

Kj
3 are the classification, attack, and verification tasks of the target j, which are executed in

a specific order, and ≺ denotes the preceding symbol.
According to Equation (11), the specific precedence and timing constraints are equal to⎧⎪⎨⎪⎩

tj
s1 ≥ s1, e1 ≥ tj

s1 + T1

tj
s2 ≥ s2, e2 ≥ tj

s2 + T2

tj
s3 ≥ s3, e3 ≥ tj

s3 + T3

, (12)

where [s1, e1], [s2, e2], and [s3, e3] represent the classification, attack, and verification time
windows and tj

s1, tj
s2 and tj

s3 denote the start time of classification, attack, and verification
tasks of the target j, respectively.

Moreover, we set a certain value γ, which ensures that the optimal scheme vector
x∗(m) conforms to Ω(x∗(m)) ≥ γ. After that, the maximum ρ∗ is written as

ρ∗ =
Nm

∑
m=1

Ω(x∗(m)) ≥ Nmγ. (13)

Therefore, to obtain x∗(m), we present an AFACE algorithm.

4. Algorithm Analysis

In this section, an AFACE algorithm will be introduced for the considered problem,
and the differences between the algorithm and cross-entropy (CE) method are that the
former changes the random sample Nt

d and the quantile θt at each iteration t, and adds a
parameter to adjust the maximum sample Nmax. For details, please refer to the analysis of
the algorithm below.

4.1. Adjustable Fully Adaptive Cross-Entropy Algorithm

Referring to the principle of CE method in references [30,35] and maximizing the
subobjective function Ω(x(m)) of the considered problem, we have

γ∗ = Ω(x∗(m)) = max
x(m)∈Y

Ω(x(m)), (14)

where γ∗ is the maximum of Ω(x(m)) on Y ; that is, the optimal scheme vector is x∗(m).
After that, transform this problem into a probability estimator problem, which can

be explained by the probability density function (PDF) f (·; u) with respect to u, and the
problem can be written as

�(γ) = Pu(Ω(x(m)) ≥ γ)

= ∑
x(m)

I{Ω(x(m))≥γ} f (x(m); u)

= Eu I{Ω(x(m))≥γ},

(15)
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where γ denotes a value close to γ∗, Pu represents the probability measure under which
the random vector x(m) has the PDF f (·; u), Eu is the corresponding expectation operator,
and I(x(m); γ), i.e., I{Ω(x(m))≥γ}, denotes the indicator function, which is

I(·; γ) =

{
1, i f Ω(x(m)) ≥ γ

0, i f Ω(x(m)) < γ
. (16)

Then, at the tth iteration of AFACE algorithm, we obtain

Ωt,1 ≤ · · ·Ωt,i ≤ · · · ≤ Ωt,Nt
d
, (17)

where Ωt,i (i = 1, 2, . . . , Nt
d) denotes the ith sample performance, and Ω(xi(m))) and Ωt,Nt

d

are defined by Ωt,i and Ω∗
t for convenience. Meanwhile, AFACE algorithm parameters Nt

d
and θt satisfy {

Nmin ≤ Nt
d ≤ Nmax

θt = βm/Nt
d

, (18)

where Nt
d denotes the random sample of the tth iteration, varying between Nmin and

Nmax (Nmin = N, Nmax = hN, h ∈ {2, 3, 4, 5}) and θt represents the quantile of the tth
iteration. The reason for presenting h is that by adjusting the size of Nmax, we can obtain the
optimal Nmax that matches the combat scenario, which can be conducted by the following
simulations in Section 5.

For the AFACE algorithm, the main idea is to update Nt
d and θt based on the elite

sample βm (βm = cmN), where cm and N are the elite sample influence coefficient of task m
(usually 0.01 ≤ cm ≤ 0.1) and the fixed random sample, respectively. Therefore, the set of
elite samples εt (εt ∈ Y) are comprised of such βm samples in {x1(m), x2(m), . . . , xNt

d
(m)}

with the highest performances Ωt,1, Ωt,2, . . . , Ωt,Nt
d
.

Next, referring to the formulas for solving γ̂t and v̂t of CE method [30], they are
modified as

γ̂t = Ω(�(1−θt)Nt
d�)

(19)

v̂t = arg max
v

∑
xi(m)∈εt

ln f (xi(m); v), (20)

where xi(m) is generated from f (·; u), f (·; v) denotes another PDF with respect to v on Y
via minimizing the Kullback–Leibler distance, γ̂t is equal to the worst sample performance
among the elite performances, while Ω∗

t is the best sample performance among the elite
performances, and v̂t converges to the probability density when Ω∗

t occurs.
Then, we devise a sampling scheme for each iteration t, ensuring high probability that{

Ω∗
t > Ω∗

t−1

γ̂t > γ̂t−1
. (21)

Moreover, we simultaneously generate two sequences to validate the correctness
of AFACE algorithm. One is the levels γ̂1, γ̂2, . . . , γ̂t, and the other is the parameters
v̂1, v̂2, . . . , v̂t. After that, the initialization process is set to v̂0 = u, and the quantile (1− θt)
is calculated at the tth iteration according to Equation (18), followed by the next two steps
of Algorithm 1.

In addition, the main steps of AFACE algorithm applied to solving the subobjective
function Ω(x(m)) of the considered problem are given by Algorithm 2.
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Algorithm 1 Adaptive updating of γ̂t and v̂t.

Adaptive updating of γ̂t:
1: Given a fixed v̂t−1 at the tth iteration;
2: Let γt be a (1− θt)-quantile of Ω(x(m)) under v̂t−1, then γt satisfies Pv̂t−1

(Ω(x(m)) ≤ γt) ≥
1− θt, where x(m) ∼ f (·; v̂t−1);

3: Obtain a simple estimator γ̂t of γt by drawing Nt
d random samples x1(m), x2(m), . . . , xNt

d
(m)

from f (·; v̂t−1);
4: Calculate and order all performances of Ω(x(m)) from smallest to biggest: Ωt,1 ≤ · · · ≤ Ωt,Nt

d
;

5: Compute γ̂t according to Equation (19);
Adaptive updating of v̂t:
6: Given a fixed γ̂t and v̂t−1 at the tth iteration, then derive v̂t according to Equation (20).

Algorithm 2 AFACE algorithm.
Input: v̂0, h, N.
Output: Ω∗

t .
1: Set t = 1, Nmin = N and Nmax = hN;
2: while at the tth iteration (t ≥ 1) do
3: if t = 1 then
4: Generate Nt

d (Nt
d = Nmin) random samples x1(m), x2(m), . . . , xNt

d
(m) from f (·; v̂0);

5: Calculate γ̂t and v̂t according to Equations (19) and (20);
6: else
7: Draw Nt

d (Nmin ≤ Nt
d ≤ Nmax) random samples x1(m), x2(m), . . . , xNt

d
(m) from f (·; v̂t−1);

8: end if
9: Update γ̂t and v̂t according to Algorithm 1, then calculate Ω∗

t ;
10: if Equation (21) occurs then
11: Set t = t + 1 and go to step 2;
12: else
13: Check whether or not Ω∗

t = · · · = Ω∗
t−d for some t ≥ d, e.g., d = 5;

14: if Ω∗
t = · · · = Ω∗

t−d then
15: Stop, obtain Ω∗

t and return Ω∗
t ;

16: else
17: Set t = t + 1, take random integer Nt

d in [Nmin, Nmax] and go to step 2;
18: end if
19: end if
20: end while

4.2. Adjustable Fully Adaptive Cross-Entropy Algorithm for Solving Problem

Considering complex coupling among the three tasks, we decompose the considered
problem P into two subproblems: the problem P1 with continuous and independent tasks
and the problem P2 with continuous and correlative tasks.

Before discussing the algorithm for solving problem P , we have to determine the
number of the available schemes for each task. Please refer to Theorem 1 for the specific
derivation process.

Theorem 1. Assume that z ≥ 1 and Nb = 3, the number of the available schemes for each task
of targets is L. Then, according to the mathematical formulas of permutation and combination,
we can obtain

L = 3z +
z(z− 1)(z + 7)

6
, z ≥ 1. (22)

Proof. Please see Appendix A.

4.2.1. Mutually Independent AFACE Algorithm for Solving Problem P1

In problem P1, assume that there are Nm continuous and mutually independent tasks
for each target. Time continuity among these tasks then needs to be considered. Assume
that there are L available schemes for each task, i.e., the scheme chosen by the previous
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task has no effect on the choice of the scheme for the next task, indicating that the available
schemes among these tasks are independent. Thus, the problem P1 is rewritten as

P1 : max
x(m)∈Y

ρ =
Nm

∑
m=1

Ω(x(m))

s.t. (9)− (12)

l1
m = L ∀m

, (23)

where l1
m is the available schemes when performing the mth task.

Considering time sequence and independence of the available schemes among these tasks,
we present a MIAFACE algorithm, which is a combination of Nm AFACE algorithms. For MI-
AFACE algorithm, we first introduce the probability matrix vector P = [P(1), P(2), . . . , P(Nm)]T

and the performance vector Ω = [Ω(x(1)), Ω(x(2)), . . . , Ω(x(Nm))]T, where P(m) and
Ω(x(m)) are the probability matrix and the performance of task m, respectively. Then,
P(m) is defined as

P(m) =

⎛⎜⎜⎜⎝
p(1|1, m) p(2|1, m) · · · p(l1

m|1, m)
p(1|2, m) p(2|2, m) · · · p(l1

m|2, m)
...

...
. . .

...
p(1|Nt, m) p(2|Nt, m) · · · p(l1

m|Nt, m)

⎞⎟⎟⎟⎠
Nt×l1

m

,

where p(k|j, m) represents the probability of assigning the kth UAV formation to accomplish

task m of target j and P(m) is subjected to
l1
m
∑

k=1
p(k|j, m) = 1.

Then, for the mth task, we initialize P0(m) = (p0(k|j, m))Nt×l1
m

with a uniform distribu-
tion. Let n1

jm be the number of the feasible schemes of target j, and define p0(k|j, m) := 1
n1

jm

as the element of P0(m). After that, we set v̂0 = P0(m).
At the tth iteration, we assume that the samples x1(m), x2(m), . . . , xNt

d1
(m) are drawn

from f (x(m); v̂t−1(m)). In addition, we calculate the performances Ωt,i (i = 1, 2, . . . , Nt
d1),

and order them from smallest to largest: Ωt,1 ≤ Ωt,2 ≤ · · · ≤ Ωt,Nt
d1

. It is noted that β1
m

is calculated by β1
m = c1

mN, and γ̂t is updated by Equation (20). After that, we compare
Ωt,i with γ̂t, and obtain all eligible performances greater than γ̂t and merge them into a
set S1 := {Ω(t,�(1−θt)Nt

d1�)
, Ω(t,�(1−θt)Nt

d1�+1), . . . , Ωt,Nt
d1
}, where β1

m is the number of the
element of S1, and Ω∗

t is the maximum element of S1. Then, pt(k|j, m) is calculated, and the
specific derivation process can be seen in Theorem 2. Thus, Pt(m) is the probability matrix
composed of pt(k|j, m), and v̂t is equal to Pt(m).

Theorem 2. Assume that there are Nm continuous and mutually independent tasks for each target.
After that, Nm tasks correspond to Nm AFACE algorithms, which has an elite sample of β1

m = c1
mN.

In the MIAFACE algorithm, c1 is a combined vector of c1
m, e.g., c1 = [c1

1, c1
2, . . . , c1

Nm
]T. Thus,

when performing the mth task, we can then obtain the updating formula of P(m) as follows:⎧⎪⎪⎨⎪⎪⎩p(k|j, m) =

c1
m N
∑

n=1
g(xn

j (m);k)

c1
m N

k ∈ {1, . . . , L}, n ∈ {1, . . . , c1
mN}, c1

m ∈ c1

. (24)

Proof. Please see Appendix B.

Through the iterative updating of P(m), the optimal probability matrix vector P∗ and
the maximum performance vector Ω∗ are obtained. Then, the main steps of the MIAFACE
algorithm applied to solving problem P1 are described in Algorithm 3, and the convergence
of the MIAFACE algorithm is similar to that of the CE method in [40].
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Algorithm 3 MIAFACE algorithm.

Input: Nm, l1
m, N, h.

Output: P∗, Ω∗.
1: Set Nmin = N and Nmax = hN;
2: for m = 1; m < Nm; m ++ do
3: Initialize P0(m) with a uniform distribution and define v̂0 = P0(m), then set t = 1;
4: while at the tth iteration (t ≥ 1) do
5: if t = 1 then
6: Generate Nt

d1 (Nt
d1 = Nmin) random samples x1(m), x2(m), . . . , xNt

d1
(m) from

f (·; v̂0);
7: else
8: Draw Nt

d1 (Nmin ≤ Nt
d1 ≤ Nmax) random samples x1(m), x2(m), . . . , xNt

d1
(m)

from f (·; v̂t−1);
9: end if

10: Update γ̂t according to Equation (19) and calculate Ω∗
t ;

11: Calculate pt(k|j, m) by Equation (A14) in Appendix B;

12: if
l1
m
∑

k=1
pt(k|j, m) = 1 and pt(k|j, m) ∈ {0, 1} then

13: Stop, obtain P∗t (m) and Ω∗
t , then P∗(m)← P∗t (m) and Ω(x∗(m))← Ω∗

t ;
14: else
15: Calculate Pt(m) and update v̂t by v̂t = Pt(m);
16: Set t = t + 1, take random integer Nt

d1 in [Nmin, Nmax], then go to step 4;
17: end if
18: end while
19: end for
20: Return P∗ and Ω∗.

4.2.2. Mutually Correlative AFACE Algorithm for Solving Problem P2

In problem P2, assume that there are Nm continuous and mutually correlative tasks
for each target. Then, time continuity among these tasks also needs to be considered.
Assume that when performing the mth task, there are only L−m + 1 available schemes
since m− 1 schemes have been deleted before performing the mth task. It means that the
available schemes among these tasks are correlative. Thus, the problem P2 is rewritten as

P2 : max
x(m)∈Y

ρ =
Nm

∑
m=1

Ω(x(m))

s.t. (9)− (12)

l2
m = L−m + 1 ∀m

, (25)

where l2
m is the remaining schemes when performing the mth task.

Considering time sequence and relevance of the available schemes among these
tasks, we present a MCAFACE algorithm, which is also combined by Nm AFACE algo-
rithms. For the MCAFACE algorithm, we first introduce the probability matrix vector
Q = [Q(1), Q(2), . . . , Q(Nm)]T and the performance vector Ω = [Ω(x(1)), Ω(x(2)), . . . ,
Ω(x(Nm))]T , where Q(m) and Ω(x(m)) are the probability matrix and the performance of
task m, respectively. Then, Q(m) is defined as

Q(m) =

⎛⎜⎜⎜⎝
q(1|1, m) q(2|1, m) · · · q(l2

m|1, m)
q(1|2, m) q(2|2, m) · · · q(l2

m|2, m)
...

...
. . .

...
q(1|Nt, m) q(2|Nt, m) · · · q(l2

m|Nt, m)

⎞⎟⎟⎟⎠
Nt×l2

m

,
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where q(k|j, m) represents the probability of assigning the kth UAV formation to accomplish

task m of target j and Q(m) is subjected to
l2
m
∑

k=1
q(k|j, m) = 1.

Then, for the mth task, we initialize Q0(m) = (q0(k|j, m))Nt×l2
m

with a uniform distri-
bution. Let n2

jm be the number of the feasible schemes of target j and define q0(k|j, m) := 1
n2

jm

as the element of Q0(m). After that, we set v̂0 = Q0(m).
At the tth iteration, we assume that the samples x1(m), x2(m), . . . , xNt

d2
(m) are drawn

from f (x(m); v̂t−1(m)). In addition, we calculate the performances Ωt,i (i = 1, 2, . . . , Nt
d2),

and order them from smallest to largest: Ωt,1 ≤ Ωt,2 ≤ · · · ≤ Ωt,Nt
d2

. It is noted that β2
m

is calculated by β2
m = c2

mN, and γ̂t is updated by (20). After that, we compare Ωt,i with
γ̂t, and obtain all eligible performances greater than γ̂t and merge them into a set S2 :=
{Ω(t,�(1−θt)Nt

d2�)
, Ω(t,�(1−θt)Nt

d2�+1), . . . , Ωt,Nt
d2
}, where β2

m is the number of the element of
S2 and Ω∗

t is the maximum element of S2. Then, qt(k|j, m) is calculated and the specific
derivation process can be found in Theorem 3. Thus, Qt(m) is the probability matrix
composed of qt(k|j, m), and v̂t is equivalent to Qt(m).

Theorem 3. Assume that there are Nm continuous and mutually correlative tasks for each target.
After that, the selected scheme is required to be deleted after each task is accomplished. The other
settings are the same as Theorem 2. Thus, when performing the mth task, we can obtain the updating
formula of Q(m), as follows:⎧⎪⎪⎨⎪⎪⎩q(k|j, m) =

c2
m N
∑

n=1
g(xn

j (m);k)

c2
m N

k ∈ {1, . . . , L−m + 1}, n ∈ {1, . . . , c2
mN}, c2

m ∈ c2

. (26)

Proof. Please see Appendix C.

Through the iterative updating of Q(m), the optimal probability matrix vector Q∗ and
the maximum performance vector Ω∗ are obtained. Then, the main steps of the MCAFACE
algorithm for dealing with problem P2 are explained in Algorithm 4, and the convergence
of the MCAFACE algorithm is also close to that of CE method in [40].
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Algorithm 4 MCAFACE algorithm.

Input: Nm, l2
m, N, h.

Output: Q∗, Ω∗.
1: Set Nmin = N and Nmax = hN;
2: for m = 1; m < Nm; m ++ do
3: Initialize Q0(m) with a uniform distribution and define v̂0 = Q0(m), then set t = 1;
4: while at the t-th iteration (t ≥ 1) do
5: if t = 1 then
6: Generate Nt

d2 (Nt
d2 = Nmin) random samples x1(m), x2(m), . . . , xNt

d2
(m) from

f (·; v̂0);
7: else
8: Draw Nt

d2 (Nmin ≤ Nt
d2 ≤ Nmax) random samples x1(m), x2(m), . . . , xNt

d2
(m)

from f (·; v̂t−1);
9: end if

10: Update γ̂t according to Equation (19) and calculate Ω∗
t ;

11: Calculate qt(k|j, m) by Equation (A15) in Appendix C;

12: if
l2
m
∑

k=1
qt(k|j, m) = 1 and qt(k|j, m) ∈ {0, 1} then

13: Stop, obtain Q∗
t (m) and Ω∗

t , then Q∗(m)← Q∗
t (m) and Ω(x∗(m))← Ω∗

t ;
14: else
15: Calculate Qt(m) and update v̂t by v̂t = Qt(m);
16: Set t = t + 1, take random integer Nt

d2 in [Nmin, Nmax], then go to step 4;
17: end if
18: end while
19: end for
20: Return Q∗ and Ω∗.

4.3. Complexity Analysis of the MIAFACE Algorithm and the MCAFACE Algorithm

Let Nm represent the number of tasks, nd denote the random sample to perform each
task, nf represent the iteration number of AFACE algorithm to perform each task, Ne denote
the elite sample, Nt represent the number of targets, and L denote the number of all possible
UAV deployment schemes. The computational complexity of AFACE algorithm is divided
into four parts: initialization C1, sample C2, sort C3, and update C4. Meanwhile, these parts
can be defined as

C1 = Nt × L (27)

C2 = nf × nd (28)

C3 = nf × nd log nd (29)

C4 = nf × (nd − Ne). (30)

Specifically, the computational complexity of AFACE algorithm can be written as

Cf = C1 + C2 + C3 + C4

= Nt × L + nf × (nd + nd log nd + nd − Ne)
. (31)

Obviously, nf increases with the increment of (Nt × L), i.e., nf ∝ (Nt × L). Then,
Equation (31) is rewritten as

Cf = Nt × L× (1 + nd + nd log nd + nd − Ne)

= Nt × L× (nd log nd + 2nd − Ne + 1)
, (32)

where nd log nd is greater than the other terms in the bracket on the right side of the
equation. Thus, the time complexity of AFACE algorithm can be computed as O(Nt × L×
nd log nd).
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When the proposed algorithms are applied to accomplishing Nm tasks of targets in
problems P1 and P2, respectively, according to Algorithm 3 and Equation (32), the compu-
tational complexity of MIAFACE algorithm is

Cmi = Nm × Cf. (33)

Thus, its time complexity is written as O(Nm × Nt × L× nd log nd). However, based
on Algorithm 4 and Equation (32), the computational complexity of the MCAFACE algo-
rithm is

Cmc =Nt × (L + L− 1 + · · ·+ L− Nm + 1)× (nd log nd + 2nd − Ne + 1)

=Nt × (Nm × L− (1 + 2 + · · ·+ Nm − 1))× (nd log nd + 2nd − Ne + 1)

=Nt × Nm × (L− (Nm − 1)
2

)× (nd log nd + 2nd − Ne + 1). (34)

Since Nm ≥ 3, its time complexity is approximately equal to O(Nm × Nt × (L− 1)×
nd log nd).

5. Simulation and Analysis

In order to verify the effectiveness of the proposed algorithms, we compared these
proposed algorithms with the CE method and other intelligent algorithms by applying
them to the multi-UAV cooperative task assignment problem. The simulations were imple-
mented in Pycharm Community’s 2019.1.1 x64 version of the programming environment
on an Intel Core PC with 8 GB memory. The total cumulative reward that the UAV forma-
tions earn by successfully completing three tasks from all targets are used to measure the
system performance.

On the basis of the above algorithms, various simulations were performed by assigning
three types of UAVs located in the corresponding bases to accomplish three tasks of
20 targets in a 200 m × 200 m combat scenario. The position of each base and these
targets are shown in Figure 2. Bases B1, B2, and B3 are located in (0,0), (0,200), and
(200,0), respectively. The information of three types of UAVs and 20 target are given
in Tables 2 and 3, respectively, where a and b represent two types of resources, for example,
the number of resources a and b needed for different types of UAVs or to accomplish
different tasks, and also they have no units.

Table 2. Information of three types of UAVs.

UAV Base
Uresource (Units)

pk ps
a b

Type A B1 1 2 0.9 0.7
Type B B2 2 2 0.8 0.8
Type C B3 3 3 0.7 0.9
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Figure 2. Initial bases and targets state.

Table 3. Information of 20 targets.

Target Position
Tresource

y s
K1 ([a,b]) K2 ([a,b]) K3 ([a,b])

Target 1 (23,85) [2,3] [2,3] [2,3] 30 2
Target 2 (35,90) [3,3] [3,3] [3,3] 70 6
Target 3 (48,95) [2,3] [2,3] [2,3] 50 4
Target 4 (92,35) [3,2] [3,2] [3,2] 100 10
Target 5 (95,28) [2,2] [2,2] [2,2] 120 8
Target 6 (100,32) [3,2] [3,2] [3,2] 40 5
Target 7 (45,105) [3,3] [3,3] [3,3] 65 3
Target 8 (90,30) [2,2] [2,2] [2,2] 78 7
Target 9 (88,40) [2,2] [2,2] [2,2] 35 9
Target 10 (50,100) [3,2] [3,2] [3,2] 63 5
Target 11 (160,170) [2,3] [5,3] [4,3] 30 2
Target 12 (165,178) [3,3] [5,3] [5,3] 70 6
Target 13 (132,155) [3,3] [5,3] [6,3] 50 4
Target 14 (90,150) [3,3] [3,5] [4,4] 100 10
Target 15 (162,175) [2,2] [4,5] [4,4] 120 8
Target 16 (140,155) [2,3] [6,3] [5,3] 40 5
Target 17 (82,134) [3,3] [4,3] [4,3] 65 3
Target 18 (148,152) [2,3] [4,2] [5,2] 78 7
Target 19 (145,160) [3,2] [3,4] [4,3] 35 9
Target 20 (95,160) [2,2] [3,4] [4,4] 63 5

Referring to Theorem 1, we note that when z exceeds 3, these simulations are com-
plicated. Thus, z is set to be 3, i.e., no more than 3 UAVs are needed to accomplish three
tasks of targets in a specific order, and then the total number of each type of UAV is un-
restricted. Then, each target in the following cases has 19 possible schemes, i.e., A, B,
C, AA, AB, AC, BB, BC, CC, AAA, AAB, AAC, ABB, ACC, BBB, BBC, BCC, CCC, and
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ABC, respectively, and these schemes correspond to numbers from 1 to 19. After that, we
can use a matching approach to quickly find the feasible schemes. The resources needed
to accomplish three tasks of targets are randomly generated and satisfy the maximum
cooperative number of UAVs.

In the following simulations, the notations used in the tables and the figures are
displayed as

• Uresource represents the initial resources consumed by three types of UAVs;
• Tresource represents the resources consumed by three tasks; and
• Time is CPU time in seconds for each case, and the time of each case is the average

consumption time of running 100 times of each algorithm.

The parameters of the CE method, MIAFACE algorithm, MCAFACE algorithm, PSO
algorithm, ACO algorithm, and GA algorithm are assumed to be set in Table 4, where the
settings of the speed and maximum flying distance of the UAV are referred to [35] and they
have no effect on the simulation results. For more detailed theory and parameter settings
of CE, PSO, ACO, and GA (see [8–10,30,35,41]). For the targets in Table 3, there are two
scenarios in the multi-UAV cooperative task assignment problem.

(1) In scenario 1, we consider the first 10 targets or more similar targets. When per-
forming the three tasks of each target, we obtain the identical optimal scheme vector
of each task. Therefore, the situation in which each target has different tasks but
each task has the same optimal scheme is called the problem with continuous and
independent tasks.

(2) In scenario 2, the last 10 targets or more similar targets are considered. When perform-
ing the three tasks of each target, we obtain the different optimal scheme vector of
each task. Thus, the situation in which each target has different tasks and each task
does not have the same optimal scheme is called the problem with continuous and
correlative tasks.

Table 4. Simulation parameter settings.

Parameter Value

The target identification Pc = 1
Weight coefficients w1 = 0.8, w2 = 0.18, w3 = 0.02
The UAV’s speed V = 40 m/s

The maximum flying distance Dmax = 1000 m
Time window of task K1 (s) [e1, s1] = [3, 10]
Time window of task K2 (s) [e2, s2] = [8, 20]
Time window of task K3 (s) [e3, s3] = [18, 26]

Consumption time of task K1 T1 = 5 s
Consumption time of task K2 T2 = 10 s
Consumption time of task K3 T3 = 5 s

The number of targets Nt ∈ [5, 20]
The fixed random samples N = 1000

The quantile in CE θ = 0.1
Inertial weight in PSO w = 0.75

Learning factors in PSO η1 = η2 = 0.5
The number of ants in ACO Na = 200

Pheromone evaporation coefficient in ACO ε = 0.9
Transfer probability in ACO Pa = 0.2

Mating probability in GA P1 = 0.8
Mutation probability in GA P2 = 0.01

5.1. Scenario 1

In case 1, we used the first 10 targets in Table 3 to perform continuous and independent
tasks of problem P1, and the results are shown in Table 5.

According to Table 5, we note that the optimal scheme vector and the total result
of CE and MIAFACE are identical, while that of MCAFACE is suboptimal to the other
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two algorithms. Moreover, we can obtain some observations. (i) For CE, the number of
iterations and the optimal scheme vector are both 4 and [3,3,3,2,2,2,3,2,2,3], respectively,
and the results of each task are −79.50, 274.90, and −79.50, and the sum of the results of
each task is 115.9. The situations of MIAFACE are similar to CE, except that the number
of iterations is 3. (ii) For MCAFACE, the numbers of iterations and the optimal scheme
vectors are 3, 2, 1 and [3,3,3,2,2,2,3,2,2,3], [9,9,9,7,7,7,9,7,7,9], [18,18,18,15,15,15,18,15,15,18],
respectively, and the results of each task are −79.50, 179.0, and −82.14, and the sum of the
results of each task is 17.36. (iii) The total times of using CE, MIAFACE and MCAFACE are
3.36, 3.29, and 2.17, respectively.

In case 2, we tested the MIAFACE algorithm and MCAFACE algorithm under h and
c1, and their times change with Nt in Figures 3a–c and 4a–c, respectively.

From Figures 3 and 4, the curves of MIAFACE and MCAFACE both show an increasing
trend as Nt grows, and their times increase with the increment of c1 and h. Meanwhile,
the time differences between the curves gradually increase with the growth of Nt in each
figure. In Figure 3a, the curve with h = 2 is at the lowest of the four curves, while the
curve with h = 5 is at the highest of the four curves. The remaining two curves are in the
middle, and the curve with h = 4 is at the top and the other one is at the bottom. Moreover,
the time ranges of the four curves are both approximately in [1,12]. In Figure 3b,c, their
situations are described similarly to Figure 3a, and their time ranges are in [1,14] and [1,15],
respectively. From Figure 4a, the order of the four curves is similar to Figure 3a. Moreover,
their time ranges are both roughly in [0.3,10]. In Figure 4b,c, their situations are analogous
to Figure 4a, and their time ranges are in [0.3,10] and [0.3,12], respectively.

In case 3, the CE method, PSO algorithm, ACO algorithm, and GA algorithm are
both used three times for three tasks continuously. We compared them with MIAFACE
algorithm by obtaining the same optimal score under h = 2 and c1, and their times change
with Nt in Figure 5a–c. Since MCAFACE algorithm obtains suboptimal results in scenario
1, it is not compared to other algorithms.

Table 5. Iterative results of three algorithms in case 1.

Algorithm CE MIAFACE MCAFACE

Task
K1 K1 K1
K2 K2 K2
K3 K3 K3

Iterations 4 3
3
2
1

Optimal scheme vector [3,3,3,2,2,2,3,2,2,3] [3,3,3,2,2,2,3,2,2,3]
[3,3,3,2,2,2,3,2,2,3]
[9,9,9,7,7,7,9,7,7,9]

[18,18,18,15,15,15,18,15,15,18]

Result of each task
−79.50 −79.50 −79.50
274.90 274.90 179.0
−79.50 −79.50 −82.14

Sum of each task’s result 115.9 115.9 17.36

Total time(s) 3.36 3.29 2.17
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(a) (b) (c)

Figure 3. Time changing with Nt under MIAFACE algorithm in scenario 1. (a) c1 = [0.01,0.02,0.03].
(b) c1 = [0.02,0.03,0.04]. (c) c1 = [0.03,0.04,0.05].

(a) (b) (c)

Figure 4. Time changing with Nt under MCAFACE algorithm in scenario 1. (a) c1 = [0.01,0.02,0.03].
(b) c1 = [0.02,0.03,0.04]. (c) c1 = [0.03,0.04,0.05].

(a) (b) (c)

Figure 5. Time changing with Nt under h = 2 and different algorithms in scenario 1.
(a) c1 = [0.01,0.02,0.03]. (b) c1 = [0.02,0.03,0.04]. (c) c1 = [0.03,0.04,0.05].

From Figure 5, we note that the curves of CE and MIAFACE grow linearly, while
the curves of PSO, ACO, and GA increase exponentially. In addition, their times increase
gradually with the increment of c1 and Nt. In Figure 5a, when Nt is in [5,20], the time
of MIAFACE is less than that of CE, and the time difference between the two algorithms
grows as Nt increases. Meanwhile, when Nt is below 8, the times of PSO, ACO, and GA are
lower than that of CE and MIAFACE, but when Nt is more than 8, the situation is reversed.
In addition, the time ranges of CE and MIAFACE are both approximately in [1,10], while
the times of other algorithms are over 20 when Nt is larger than 10. From Figure 5b,c,
their situations are similar to Figure 5a, except that the time difference between CE and
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MIAFACE in Figure 5b is lower than that in Figure 5a, and the time difference in Figure 5c
first decreases gradually to intersect at a point where Nt is 10, then increases slowly with
the increment of Nt.

5.2. Scenario 2

In case 4, we utilized the last 10 targets in Table 3 to perform continuous and correlative
tasks of problem P2, and the results are shown in Table 6.

According to Table 6, we note that the optimal scheme vectors and the total results of
CE, MIAFACE, and MCAFACE are the same. The reason for this phenomenon is that for
three tasks of the same 10 targets, the optimal scheme vectors are eventually obtained and
identical by using the three algorithms, which leads to the same score of the total objective
function; however, the consumption time by the different algorithms varies. Moreover,
some observations are available. First, for CE, the number of iterations and the sum of
each task’s result are 5 and 218.72, and the optimal solution vectors are [3,3,3,3,3,3,3,3,3,3],
[9,9,9,7,7,7,9,7,7,9], [18,18,18,15,15,15,18,15,15,18], and the results of each task are −298.65,
819.85, and −302.48, respectively. Secondly, the situations using MIAFACE and MCAFACE
are similar to that of CE, apart from the fact that the number of iterations in MIAFACE is 4
and the numbers of iterations in MCAFACE are 4, 4, and 3. Finally, the total times using
CE, MIAFACE, and MCAFACE are 7.33, 7.11, and 6.9, respectively.

In case 5, we tested the MIAFACE algorithm and MCAFACE algorithm under h and
c2, and their times change with Nt in Figures 6a–c and 7a–c, respectively.

From Figures 6 and 7, the variations of the curves, the times and the time differences
are both similar to Figures 3 and 4, while in Figures 6a and 7a, the time grows rapidly
when Nt is over 10. The reason is that the results of these two figures are suboptimal
to others. In Figure 6a, the order of the curves is the same as that of each figure in
Figures 3 and 4. In addition, the time ranges of these four curves are both approximately
in [1,50]. From Figure 6b,c, the situations are described similarly to that of Figure 6a and
their time ranges are in [2,30] and [2,32], except that their results are the optimal results.
In Figure 7, the situation of each figure is roughly similar to that of the corresponding figure
in Figure 6, apart from the fact that the time range is lower than that in Figure 6.

Table 6. Iterative results of three algorithms in case 4.

Algorithm CE MIAFACE MCAFACE

Task
K1 K1 K1
K2 K2 K2
K3 K3 K3

Iterations 5 4
4
4
3

Optimal scheme vector
[3,3,3,2,2,2,3,2,2,3] [3,3,3,2,2,2,3,2,2,3] [3,3,3,2,2,2,3,2,2,3]
[9,9,9,7,7,7,9,7,7,9] [9,9,9,7,7,7,9,7,7,9] [9,9,9,7,7,7,9,7,7,9]

[18,18,18,15,15,15,18,15,15,18] [18,18,18,15,15,15,18,15,15,18] [18,18,18,15,15,15,18,15,15,18]

Result of each task
−298.65 −298.65 −298.65
819.85 819.85 819.85
−302.48 −302.48 −302.48

Sum of each task’s result 218.72 218.72 218.72

Total time(s) 7.33 7.11 6.9

In case 6, we compared the CE method, MIAFACE algorithm, MCAFACE algorithm,
PSO algorithm, ACO algorithm, and GA algorithm by obtaining the same optimal score
under h = 2 and c2, and their times change with Nt in Figure 8a–c. The CE method,
PSO algorithm, ACO algorithm, and GA algorithm are also used three times for three
tasks continuously.
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From Figure 8, we note that for CE, MIAFACE, MCAFACE, PSO, ACO, and GA,
the variations of the curves and the times are similar to the case in Figure 5. In Figure 8a,
when Nt is below 11, the times of MIAFACE and MCAFACE are relatively close and less
than that of CE; however, when Nt is over 11, the times of MIAFACE and MCAFACE
grow quickly and more than that of CE due to obtaining the suboptimal results. Moreover,
the time ranges of CE, MIAFACE, and MCAFACE are both approximately in [1,30]. Mean-
while, the times of PSO, ACO, and GA are much higher than that of CE, MIAFACE, and
MCAFACE, and their time ranges are over 30 when Nt is more than 6. From Figure 8b,c,
the situations of PSO, ACO, and GA are similar to Figure 8a. In Figure 8b, the time differ-
ences between CE, MIAFACE, and MCAFACE grow as Nt increases. In addition, the time
of MCAFACE is lower than that of CE and MIAFACE, and the curves of CE and MIAFACE
intersect at Nt = 8 and the time of CE is also lower than that of MIAFACE when Nt is
below 8, then the situation is reversed after Nt exceeds 8. Moreover, the time ranges of CE,
MIAFACE, and MCAFACE are both in [2,22]. In Figure 8c, the time differences between
CE, MIAFACE, and MCAFACE decrease, and then increase as Nt grows. Furthermore,
the curves of CE, MIAFACE, and MCAFACE intersect at Nt = 9 and the time of CE is lower
than that of MIAFACE and MCAFACE when Nt is below 9, then the situation is reversed
after Nt exceeds 9.

(a) (b) (c)

Figure 6. Time changing with Nt under MIAFACE algorithm in scenario 2. (a) c2 = [0.01,0.02,0.03].
(b) c2 = [0.02,0.03,0.04]. (c) c2 = [0.03,0.04,0.05].

(a) (b) (c)

Figure 7. Time changing with Nt under MCAFACE algorithm in scenario 2. (a) c2 = [0.01,0.02,0.03].
(b) c2 = [0.02,0.03,0.04]. (c) c2 = [0.03,0.04,0.05].
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(a) (b) (c)

Figure 8. Time changing with Nt under h = 2 and different algorithms in scenario 2.
(a) c2 = [0.01,0.02,0.03]. (b) c2 = [0.02,0.03,0.04]. (c) c2 = [0.03,0.04,0.05].

5.3. Analysis

Analysing the results of case 1 and case 4, we note that the optimal scheme vectors
of using MIAFACE and MCAFACE algorithms in problems P1 and P2, respectively, are
obtained by initializing and updating the probability matrices P(m) and Q(m), which con-
forms to Algorithms 3 and 4 described in Section 4.2. In addition, the result of MCAFACE in
case 1 is suboptimal to that of other algorithms due to deleting the corresponding optimal
solution after the end of each task.

Comprehensively considering the situations of case 2 and case 5, we note that the times
of CE, MIAFACE, and MCAFACE increase with the increment of Nt, h, as well as c and
the time complexity of MCAFACE is lower than that of MIAFACE, and these phenomena
comply with the complexity analysis of MIAFACE and MCAFACE in Section 4.3. In
addition, the time of case 5 is superior to that of case 2 because there are more available
solutions for each target in case 5 than in case 2 after each iteration. Meanwhile, in case 5,
using MIAFACE and MCAFACE for solving this problem is easy to fall into local optimum
when c is inferior to a certain vector, e.g., c = [0.01, 0.02, 0.03]. The reason behind this
phenomenon is that when all elements in c are small and more solutions exist after each
iteration, the optimal scheme may not be selected during one of the iterations of MIAFACE
and MCAFACE, leading to a suboptimal result.

Comparing the situations of case 3 and case 6, we note that the times of PSO, ACO,
and GA are only related to the growth of Nt. Meanwhile, CE, MIAFACE, and MCAFACE
are superior to PSO, ACO, and GA for large-scale allocation problems, e.g., more than
8 targets of case 3 and 5 targets of case 6. Moreover, CE is inferior to MIAFACE in scenario
1, e.g., Figure 5, when Nt is over 10. Moreover, e.g., Figure 8c in scenario 2, MCAFACE is
superior to MIAFACE and CE when Nt is over 9.

6. Conclusions

In this paper, the multi-UAV cooperative task assignment problem was described
and formulated, and three types of UAVs were considered, cooperatively accomplishing
the classification, attack, and verification tasks of targets under resource, precedence, and
timing constraints. After that, considering complex coupling among these three tasks,
we decomposed the considered problem into two subproblems. In order to solve them,
we proposed an AFACE algorithm, a MIAFACE algorithm, and a MCAFACE algorithm.
Finally, simulation results verified that both MIAFACE and MCAFACE consume less time
than other intelligent algorithms for solving the corresponding problem.

Nevertheless, there still exist challenges when applying the MIAFACE algorithm and
MCAFACE algorithm to processing optimization problems, e.g., appropriate parameter
settings, falling into local optimum when using lower elements in c, etc. In future work, it
will be meaningful to concentrate on promoting these two algorithms on problems where
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it is vulnerable to local optimum when the number of samples is limited and on task
assignment problems in complex dynamic scenarios.
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Appendix A

If one of each type of UAVs is selected, i.e., z = 1, the possible schemes are written as

L = C1
Nb

C1
z = 3. (A1)

When z = 2, we can choose no more than three types of UAVs, and then

L = C1
Nb

C1
z + C2

Nb
C2

z = 9. (A2)

Once z ≥ 3, we can choose no more than three types of UAVs; thus

L = C1
Nb

C1
z︸ ︷︷ ︸

1 type

+C2
Nb

C2
z︸ ︷︷ ︸

2 types

+C3
Nb

C3
z︸ ︷︷ ︸

3 types

= 3z +
3z(z− 1)

2
+

z(z− 1)(z− 2)
6

= 3z +
z(z− 1)(z + 7)

6

. (A3)

As a conclusion, the number of the possible schemes for each task of targets can be
defined as

L = 3z +
z(z− 1)(z + 7)

6
, z ≥ 1. (A4)

Thus, we have successfully proven Theorem 1.

Appendix B

Inserting P(m) and Equation (1) into f (x(m); u), we define the problem P1 as

f (x(m); P(m)) =
Nt

∏
j=1

p(xj(m)|j, m)

=
Nt

∏
j=1

l1
m

∏
k=1

p(k|j, m)g(xj(m);k)

, (A5)

where p(k|j, m) represents the coefficient in the column k and the row j of P(m), g(xj(m); k)
is 1 if φ(xj(m)) equals k and 0 otherwise according to Equation (1).

After that, at the tth iteration, we assume that the samples x1(m), x2(m), . . . , xNt
d1
(m) are

drawn from f (x(m); v̂t−1(m)). In addition, we calculate the performances Ωt,i, and order them
from smallest to largest: Ωt,1 ≤ Ωt,2 ≤ · · · ≤ Ωt,Nt

d1
, and then define γ̂t(m) = Ω(Nt

d1−β1
m)

.
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Thus, Equation (A5) can be rewritten as follows:

arg max
P(m)

1
Nt

d1

Nt
d1

∑
i=1

I{Ω(xi(m))≥γ̂t(m)}

× ln f (xi(m); P(m))

. (A6)

In Equation (A6), I(xi(m); γ̂t(m)) is recognized, and when Nt
d1 → ∞, the problem

is equal to

max
P(m)

β1
m

∑
n=1

ln f (x(m); P(m)). (A7)

Putting Equation (A5) into Equation (A7), we have

max
P(m)

β1
m

∑
n=1

ln f (x(m); P(m))

= max
p(k|j,m)

β1
m

∑
n=1

ln

(
Nt
∏
j=1

l1
m

∏
k=1

p(k|j, m)
g(xn

j (m);k)
)

= max
p(k|j,m)

β1
m

∑
n=1

Nt
∑

j=1

l1
m
∑

k=1
g(xn

j (m); k) ln(p(k|j, m)).

(A8)

Then, we assume that rkj(m) = p(k|j, m), an
kj(m) = g(xn

j (m); k), and Equation (A8) is
modeled as

P11 : min
rkj(m)

(−
β1

m

∑
n=1

Nt

∑
j=1

l1
m

∑
k=1

an
kj(m) ln

(
rkj(m)

)
)

s.t.
l1
m

∑
k=1

rkj(m) = 1 ∀j, m

rkj(m) ≥ 0 ∀j, k, m

l1
m = L ∀m.

(A9)

Considering P11 as a convex problem and denoting the convex function by f (rkj(m)),
we can obtain the Lagrangian function

O(rkj(m), λj(m), μkj(m)) = f
(

rkj(m)
)
+

Nt
∑

j=1
λj(m)

(
L
∑

k=1
rkj(m)− 1

)
+

Nt
∑

j=1

L
∑

k=1
μkj(m)

(
−rkj(m)

) , (A10)

where λj(m) and μkj(m) are the relevant restraint coefficients.
Generally, for convex optimization problem, the Karush–Kuhn–Tucker (KKT) con-

dition is required and sufficient [42]. Thus, considering the KKT conditions of problem
in Equation (A10), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− akj(m)

rkj(m)
+ λj(m)− μkj(m) = 0

λj(m)

(
L
∑

k=1
rkj(m)− 1

)
= 0

μkj(m)rkj(m) = 0
λj(m) > 0
μkj(m) ≥ 0
rkj(m) ≥ 0

(A11)
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When solving Equation (A11), we obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
rkj(m) =

an
kj(m)

λj(m)−μkj(m)

λj(m) =
L
∑

k=1
an

kj(m)

μkj(m) = 0

. (A12)

Comparing λj(m) and rkj(m), we acquire the relationship between rkj(m) and an
kj(m), i.e.,

rkj(m) =
an

kj(m)

L
∑

k=1
an

kj(m)

. (A13)

Returning to our problem, the updating formula of P(m) is given by

p(k|j, m) =

β1
m

∑
n=1

g(xn
j (m); k)

β1
m

=

c1
m N
∑

n=1
g(xn

j (m); k)

c1
mN

, (A14)

where k ∈ {1, . . . , L}, n ∈ {1, . . . , c1
mN}, c1

m ∈ c1.
Therefore, we have successfully proven Theorem 2.

Appendix C

Calculating the updating formulas of Nm tasks continuously and correlatively is considered.
For the mth task, if m = 1, its optimal solution is taken from L schemes, and if

1 < m ≤ Nm, its optimal scheme is only taken from the remaining L− m + 1 solutions
since the m− 1 schemes selected before performing the mth task have been deleted.

Thus, referring to the proof process of Theorem 2, the updating formula of Q(m) in
problem P2 is

q(k|j, m) =

β2
m

∑
n=1

g(xn
j (m); k)

β2
m

=

c2
m N
∑

n=1
g(xn

j (m); k)

c2
mN

(A15)

where k ∈ {1, . . . , L−m + 1}, n ∈ {1, . . . , c2
mN}, c2

m ∈ c2.
Hence, we have successfully proven Theorem 3.
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Abstract: Unmanned aerial vehicles (UAVs) are becoming more and more widely used in battlefield
reconnaissance and target strikes because of their high cost-effectiveness, but task planning for
large-scale UAV swarms is a problem that needs to be solved. To solve the high-risk problem caused
by incomplete information for the combat area and the potential coordination between targets when
a heterogeneous UAV swarm performs reconnaissance and strike missions, this paper proposes
a distributed task-allocation algorithm. The method prioritizes tasks by evaluating the swarm’s
capability superiority to tasks to reduce the search space, uses the time coordination mechanism and
deterrent maneuver strategy to reduce the risk of reconnaissance missions, and uses the distributed
negotiation mechanism to allocate reconnaissance tasks and coordinated strike tasks. The simulation
results under the distributed framework verify the effectiveness of the distributed negotiation mecha-
nism, and the comparative experiments under different strategies show that the time coordination
mechanism and the deterrent maneuver strategy can effectively reduce the mission risk when the
target is unknown. The comparison with the centralized global optimization algorithm verifies the
efficiency and effectiveness of the proposed method when applied to large-scale UAV swarms. Since
the distributed negotiation task-allocation architecture avoids dependence on the highly reliable
network and the central node, it can further improve the reliability and scalability of the swarm, and
make it applicable to more complex combat environments.

Keywords: heterogeneous UAV swarm; reconnaissance and strike; distributed negotiate; time
coordination; deterrent maneuver

1. Introduction

The popularity of UAVs in civil aerial photography, agriculture, surveillance, and
mapping [1] has made people see its application prospects in more fields. As a low-cost,
low-risk, and cost-effective weapon or carrier, UAVs have frequently appeared on the
battlefield. It has become the focus of researchers to endow decentralized, heterogeneous,
and low-cost UAV swarms with autonomous coordination capabilities to complete more
complex tasks, because this is an important way to improve the flexibility and reliability of
small UAV swarms to perform combat tasks [2,3].

Since the battlefield is a highly confrontational environment, distributed collaboration
architecture is an important way to achieve large-scale swarm collaboration [4]. The cen-
tralized architecture that has been widely researched and applied has the advantage of a
simpler algorithm design, but it also has the problem of high requirements on the network
and central computing nodes. In contrast, each UAV node in a distributed architecture
communicates and cooperates with other UAVs as an independent entity. Since there are
no critical nodes in the network, the architecture is highly scalable and reliable.

According to the analysis of relevant researchers, the commonly used methods of
distributed task collaborative assignment can be divided into heuristic optimization algo-
rithms [5,6], market-based methods [7–10] and alliance-based methods [2,11] and so on [12].
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Heuristic optimization algorithms are widely used because they do not require gradi-
ent information and do not rely on problem models with good mathematical properties.
For example, in the literature [13], an improved pigeon-inspired optimization algorithm is
proposed to solve the optimization problem of cooperative target searches, while it adopts
a centralized control architecture. For multi-UAV cooperative execution of reconnaissance
missions, ref. [5] proposed an intelligent self-organized algorithm (ISOA) mission-planning
method. UAVs exchange status and planning information with each other, and locally opti-
mize route planning using the improved distributed ant colony algorithm to update route
planning, and repeat the process until the task is completed. However, the article assumes
that all UAVs are homogeneous and that the targets are find-and-destroy elements.Another
paper [14] implements a distributed task assignment method for UAV swarm reconnais-
sance missions based on the wolf pack algorithm, including a cooperative search algorithm
based on wolf reconnaissance behavior and a cooperative attack task assignment method
after the target is discovered. The algorithm has good scalability, but it does not consider
the risk of searching the unknown environment when optimizing the scheme.

The market-based method is one in which the bidders estimate the benefits of com-
pleting different tasks, broadcast the bids to each other, and win with the best one, and the
bidders re-evaluate after the environment or allocation plan is updated until there is no
conflict. Aiming at the task assignment problem of heterogeneous cooperative UAV, a
paper [7] proposed a task assignment algorithm based on improved CBGA (improved
consensus-based grouping algorithm, derived from CBBA [15]). The algorithm has a simple
structure, but less consideration is given to factors such as the cooperative relationship
between UAVs. To deal with real-time task allocation in resource-constrained wireless-
sensor networks, the authors of [16] proposed a reverse auction-based scheme using an
adaptive algorithm for each node (bidder) to locally calculate its best bid response with a
non-smooth and concave payoff function.

The formation of the alliance divides the large-scale UAV swarm into several small
UAV alliances through strategies such as cooperative games [11]. This architecture first
distributes tasks among the alliances, and then redistributes the received tasks within the
alliance to effectively reduce the dimension of the problem. Authors [2] use a layered
extended contract network protocol to realize the collaborative control of UAV swarms,
which has the advantage of solving speed when the swarm scale is large. However, this
literature ignores the influence of the division method of UAV subsets on the effect of
swarm behavior. For example, two UAVs that should have cooperated are divided into
different alliances, resulting in a decrease in the quality of the solution.

Researchers have also tried to combine the advantages of different architectures.
When the problem has complex constraints, it is difficult to converge to a good result
by directly applying CBBA and other methods, and repeated negotiations will cause
high communication costs. Therefore, some researches combine heuristic algorithms with
market-based methods. For example, the paper [17] considers task-time constraints and
obstacle constraints, uses intelligent optimization algorithms locally to optimize the scheme,
and then negotiates with other UAVs. Similarly, ref. [18] regards the minimum distance
sum and the minimum maximum completion time as the optimization goals, and first uses
the genetic algorithm (GA) to locally optimize, and then uses the CBAA-derived algorithm
to reach a consensus among nodes.

In terms of the factors concerned in the research of UAV swarm mission collabo-
ration, the factors considered mainly include UAV maneuvering distance [8,19], area
coverage [5,15], route planning [5,20], avoidance of no-fly zones [2], etc., while the threat of
cooperation between enemy platforms is rarely considered.

Aiming at the scenario where there may be a potential cooperative relationship be-
tween enemy targets, this paper proposes a distributed collaborative optimization method
for heterogeneous UAVs based on a negotiation mechanism and GA.

The main contributions of this paper include the following aspects:
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• The priority of tasks is evaluated by the swarm’s capability superiority over the tasks
to reduce the search space. The capability superiority is represented by the spatial
density and the capability availability of the tasks, and the attention mechanism is
combined to suppress the distant tasks to evaluate the task priority;

• The time coordination mechanism and deterrent maneuver strategy is used to reduce
the risk of reconnaissance missions. Due to the incomplete information of the task,
multiple UAVs are used to reconnaissance the dense tasks synchronously, and the
UAVs with strike capabilities are deployed with deterrent maneuver strategy to reduce
the risk of reconnaissance missions;

• A distributed task-assignment negotiation mechanism is designed so that UAVs
can run in a completely distributed manner. Compared with the centralized GA,
the proposed method can reduce the problem search space, improve the optimization
speed and the quality of the solution, and the distributed framework can also improve
the scalability and reliability of the swarm.

The remainder of this paper is organized as follows: the problem is defined and
described in Section 2. The distributed collaborative allocation method for heterogeneous
UAVs is described in Section 3. In Section 4, a distributed simulation environment is built,
and the proposed method is verified in this environment. Finally, we conclude the paper in
Section 5.

2. Problem Description

Assuming that there are several suspicious areas on the battlefield, a heterogeneous
UAV swarm with different reconnaissance and strike capabilities needs to be dispatched to
perform the reconnaissance and strike mission, and the UAV nodes communicate with each
other through a multi-hop ad hoc network. UAVs autonomously negotiate task-allocation
schemes for reconnaissance and strike targets. Since there may be a synergistic relationship
between enemy targets, the mission risk and mission completion time should be minimized
during mission execution.

The problem can be formalized as the problem of NU UAVs U = {ui|i = 1, 2, · · · , NU}
completing NT tasks T =

{
tj|j = 1, 2, · · · , NT

}
.

The state of UAV ui is denoted as ui =
〈

pi, υi, ai, Tp
i , Tb

i , T̄b
i , Ui

〉
where pi is the current

position; υi is the maximum flight speed; ai is the load capacity matrix of ui, as shown in
Table 1, the capacity between loads can be added but a single load cannot be split; Tp

i is
the task set that is perceived but has not decided the assignment; Tb

i and T̄b
i are the task

queue that ui will participate in and the task set that will not participate; Ui is the UAV
swarm status perceived by the ui, which can be updated through communication with
other UAVs.

Table 1. Example of payload capacity of ui.

Payload Type Scout Speed Penetration Ability Damage Ability Reusable

Scout payload 50 0 0 Y
Strike payload 1 0 40 60 N
Strike payload 2 0 80 40 N

The state of the task can be expressed as tj =
〈

pj, sj, aj
〉
, where pj is the position of

the task, sj is the area of the suspicious area where the task is located, and aj is the strike
capability required by the task. In the process of reconnaissance of suspicious areas by
UAVs with reconnaissance capabilities, existing targets can be found and aj can be obtained;
but when there is no target in the area, this conclusion can only be drawn after the UAV
has scouted the entire area, in this case aj = 0.

The connection relationship between UAVs is expressed as an adjacency matrix
L = [lim]i,m∈[1,NU ], and there is lim = 1 when distance dim ≤ dδ, otherwise lim = 0, and dδ

is the maximum distance for single-hop communication. When the reconnaissance node
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completes the reconnaissance task, it broadcasts the reconnaissance result (that is, whether
there is a target in the area and the required strike capability) to the swarm by using
the ad hoc network. Each UAV utilizes the perceived task status and the status of other
UAVs to optimize the distribution of reconnaissance and strike tasks by negotiating with
neighboring UAVs.

3. The Proposed Method

To solve the above problems, this paper proposes a distributed collaborative allocation
method of reconnaissance and strike tasks for heterogeneous UAVs, and its framework is
shown in Figure 1.

Figure 1. The framework of the collaborative allocation algorithm for reconnaissance and strike tasks.

This method consists of three main modules: negotiate for scout task assignment,
strike task assignment, and deterrence decision-making. When negotiating scout tasks,
this method first evaluates the tasks risk according to the degree of superiority of the
UAVs over the enemy, and assigns tasks with the goal of minimizing the degree of task
risk and the task completion time. Based on the perceived environmental information
and the historical status information obtained by communicating with neighbor nodes,
each UAV uses the GA to generate a local task-allocation and time-coordination plan after
analyzing the priority of each task, and negotiates with neighbors to resolve conflicts. After
the reconnaissance node discovers the enemy target, it will optimize the strike plan locally
and request the relevant nodes to coordinate execution. If the request is rejected, it will
re-optimize the strike plan until the strike mission is successfully assigned. When the nodes
with strike capability are idle, they will fly to the reconnaissance nodes with weak strike
capability to enhance their deterrence against the enemy and shorten the time from target
discovery to striking.

3.1. Negotiate for Scout Task Assignment

When a large number of reconnaissance tasks need to be allocated, this paper first
selects the reconnaissance tasks that should be completed first based on heuristic rules,
and then uses the local optimization and distributed negotiation mechanism to allocate
the tasks.
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3.1.1. Heuristic Rules

To reduce the risk of UAVs executing reconnaissance missions, task allocation shall be
based on the following rules:

• Give priority to the tasks that are isolated and in weak areas of the enemy;
• Give priority to the tasks where our strike capability is dominant;
• Give priority to nearby tasks.

Based on these rules, the priority evaluation method of tasks is defined as follows:

Definition 1. S-Sig function. To make each UAV pay more attention to the local environment,
referring to the sigmoid function, function fssig(x) is defined as:

fssig(x) =
1

1 + exp(4x− 4)
(1)

When 0 < x < 0.5, fssig(x) decays slowly. The decay speed increases with the increase of x
and reaches the maximum at x = 1. When x > 1, its decay speed decreases and lim

x→+∝
fssig(x) = 0.

In task-priority evaluation, this function can be used to smoothly suppress the priority of tasks that
are far away, while the priority of nodes that are close to the reference node is almost unaffected
by distance.

Definition 2. Spatial density of tasks. For the convenience of analysis, the typical influence radius
of a single UAV is set to ϕ according to the cruising speed and combat radius of the UAV. Referring
to the concept of kernel density estimation (KDE) in literature [21], we make the mutual influence
between targets attenuate with the increase of distance, and assume that the probability of mutual
cooperation between two targets within radius ϕ is large. Therefore, Equation (1) is used as the
kernel function to calculate the task space density, and for any task tj ∈ T, its space density ρj is
defined as:

ρj = ∑
tn∈T,j �=k

fssig
(
djn/ϕ

)
(2)

where djn is the Euclidean distance between task tj and tn. It can be inferred that ρj focuses on the
radius within 2ϕ, because when djn > 2ϕ, fssig

(
djn/ϕ

)
< 0.017.

Definition 3. Capability availability estimation of UAV. UAV ui estimates the capability availabil-
ity fCim(τ) of neighboring UAV um according to its internal perception state at time τ, which can be
expressed as:

fCim(τ) = ∏
c∈C

fimc(τ)
1/|C| (3)

fimc(τ) = ∑
uk∈Ui

fssig(dmk/ϕ)λτ−τik ςkc (4)

where C is the set of capability types involved in the problem; fimc(τ) is the availability of capabilities
of type c; Ui is the collection of UAVs perceived by ui; dmk is the distance between um and uk; τik is
the timestamp when ui receives the status of uk; λ is the coefficient that the weight of the information
from the neighboring UAV decays with time, that is, the longer the status of a UAV is updated,
the lower the weight. ςkc is the capability value of type c possessed by uk.

Definition 4. Capability availability estimation of task. Similar to Definition 3, UAV ui estimates
the capability availability fCij (τ) of task tj according to its internal perception state at time τ, which
can be expressed as:
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fCij (τ) = ∏
c∈C

fijc(τ)
1/|C| (5)

fijc(τ) = ∑
uk∈Ui

fssig

(
djk/ϕ

)
λτ−τik ςkc (6)

Definition 5. Task prioritization assessment. Define ηimj(τ) as the priority of task tj to um that is
evaluated by ui, and then ηimj(τ) can be expressed by the capability coverage of um at tj, namely:

ηimj(τ) =
1
ρj

fCim(τ) · fssig

(
dmj + α1 ·max

(
0, dij − ϕ

)
ϕ

)
(7)

the function max(·) means to take the maximum value, and α1 is the weighting coefficient of the
extra distance. dmj + α1 ·max

(
0, dij − ϕ

)
indicates that the distance between ui and tj should also

be considered when evaluating the capability coverage of um at tj, and the farther the distance is,
the greater the priority of task tj is suppressed.

It can be inferred from the definition of Equation (7) that the closer the task tj is to
ui and um, the lower its spatial density, and the more sufficient the UAV capability that
can cover it, the higher priority ui thinks um will gives to tj. This formula can be used for
ui to measure the superiority of our UAVs to different tasks, which is consistent with the
heuristic rules.

3.1.2. Collaborative Optimization of Reconnaissance Tasks Assignment

When assigning the given reconnaissance and strike tasks, the algorithm should strive
to maximize the proportion of task completion, minimize the total task completion time,
and minimize the degree of task risk. Therefore, the objective function of reconnaissance
task-allocation is defined as:

max
βsc

J(βsc) (8)

where

J(βsc) = ∑(
ui ,tj ,τs

j ,gj

)
∈βsc

gj(βsc) (9)

gj(βsc) = rj(βsc) · e−αr

(
τs

j −τ
)

(10)

rj(βsc) = rmax − αt · ∑
(um ,tn ,τs

n ,gn)∈βsc

[[
τs

j < τs
n

]]
· fssig

(
djn/ϕ

)
(11)

where the quaternion
(

ui, tj, τs
j , gj

)
indicates that ui will start reconnaissance tasks tj at time

τs
j , and the expected benefit is gj; αr is the coefficient of time for the discount of rewards;

reconnaissance task plan βsc is a collection of task assignment quaternions; τs
j and τs

n are
the start execution times of tasks tj and tn, respectively; rj(βsc) is the expected reward for
βsc to complete tj, which is composed of the maximum reward rmax and the estimated risk

for completing the task, and αt is the weight of risk; [[P]] =
{

1 If P is true
0 Otherwise

is an Iverson

bracket, and if the start time τs
n is later than τs

j in the scheme, tn will pose a threat to tj.
It can be inferred from Equation (9) that if adjacent tasks can be scouted at the same

time, the threat to each other can be reduced and the reward can be increased. However,
starting reconnaissance at the same time also means that some tasks need to be deliberately
postponed, leading to a decline in overall reward. Therefore, it is necessary to optimize the
time synergy of each plan.
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(1) Time-collaborative optimization of plan

The time-collaborative optimization of a plan is to optimize the specific start time of each
assigned reconnaissance task. For any two assignments

(
ui, tj, τs

j , gj

)
and (um, tn, τs

n, gn) in
plan βsc, if τs

j < τs
n, ui can postpone its task start time to the same as um to improve its task

reward rj(βsc). Express the updated plan as βsc′, then there is τs′
j = τs

n. Let Δτs
jn = τs

n − τs
j ,

then the gain of reward for time collaboration is:

Δgjn = gj
(

βsc′)− gj(βsc) = rj
(

βsc′) · e−αr(τs
n−τ) − rj(βsc) · e−αr

(
τs

j −τ
)

= e−αr

(
τs

j −τ
)[

rj
(

βsc′)e−αr ·Δτs
jn − rj(βsc)

]
= e−αr

(
τs

j −τ
)[(

rj(βsc) + αt · fssig
(
djn/ϕ

))
e−αr ·Δτs

jn − rj(βsc)
]

= e−αr

(
τs

j −τ
)[

rj(βsc)
(

e−αr ·Δτs
jn − 1

)
+ αt · fssig

(
djn/ϕ

)
e−αr ·Δτs

jn
]

(12)

Since the time collaboration between any two assignments in a plan will depend on
the recalculation of Equation (8), and the time collaborative optimization is an underlying
algorithm that will be called repeatedly, we define Algorithm 1 based on Equation (12) to
quickly optimize the time collaboration of the given plan.

Algorithm 1 Fast time-collaborative optimization

Input: The plan βsc that needs to optimize its time collaboration
Output: The updated plan βsc′.
1: while True do
2: Δgj∗n∗ ← max(

ui ,tj ,τs
j ,gj

)
∈βsc

(um ,tn ,τs
n ,gn)∈βsc

τs
j <τs

n

(
Δgjn

)
� Find the best time collaboration pair using Equation (12)

3: if Δgj∗n∗ > εg then
4: τs

j∗ ← τs
n∗ � Time collaboration when the gain of reward meets the threshold

5: else
6: return the updated βsc

7: end if
8: end while

(2) Optimization of task-assignment plan

The negotiation algorithm for reconnaissance tasks assignment consists of two parts:
(i) optimizing the assignment scheme under specified conditions; (ii) negotiating with other
nodes for conflict resolution.

The algorithm for optimizing the allocation plan under specified conditions is shown

as Algorithm 2. The optional input
↔

βsc =

{(
↔ui,

↔
t i

)
|i = 1, 2, · · · ,

↔
Nsc
}

is the specified

partial of the task-allocation plan, where
(
↔ui,

↔
t i

)
indicates that task

↔
t i is assigned to ↔ui,

and
↔

Nsc is the number of assigned pairs. The optional input 〈Usc, Tsc〉 is the set of scout
UAVs Usc and the set of tasks Tsc that need to be optimized for allocation.

If 〈Usc, Tsc〉 is not given, the algorithm will automatically select the set of scout UAVs
within nc hops to ui as Usc, and select tasks according to the priority ηimj(τ) of each task
tj. This strategy meets the heuristic rules described in Section 3.1.1, and can reduce the
optimization search space while preserving the high-quality solution space.
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Algorithm 2 Scout plan optimization within UAV ui

Input:
↔

βsc : Part of the task-assignment scheme that has been specified
〈Usc, Tsc〉: The set of scout UAVs and tasks that need to be optimized

Output: The optimized plan βsc.
1: if 〈Usc, Tsc〉 is not given then � Automatically select scout UAVs and tasks
2: Usc ← the set of scout UAVs within nc hops to ui
3: Init T0 as an empty list
4: while |Tsc| < Nsc max do � Iteratively add tasks according to the evaluated priority
5: for um in Usc do
6: if the latest task added to T0 for um is duplicated with existing tasks then
7: T0 ← add the next preferred task of um according to ηimj(τ) to T0
8: end if
9: end for

10: Tsc ←
{

tj|tj ∈ T0,
(
tj, ·
)

/∈
↔

βsc
}

� Remove duplicate tasks and tasks in
↔

βsc

11: if no task is added to T0 then
12: Break
13: end if
14: end while
15: end if

16: function fβ(βsc)

17: βsc ← βsc ∪
↔

βsc � Merge the specified and generated plans
18: Calculate τs

j of each assignment
(

ui, tj, τs
j , gj

)
∈ βsc with the predicted previous

task finish time and the travel time between ui and tj
19: Optimize the time collaborate of βsc with Algorithm 1
20: return J(βsc) � Calculate the fitness of βsc with Equation (9)
21: end function

22: βsc∗ ← Using GA to optimize the assignment of tasks in Tsc to Usc with the goal to
maximize fβ(βsc)

23: return the best plan βsc∗

After determining 〈Usc, Tsc〉, the algorithm optimizes the assignment of the tasks
based on GA, and its optimization goal is to maximize its fitness function fβ(βsc). In

fβ(βsc), it first merges plan βsc with the specified part of plan
↔

βsc; Then the start time of
the task is estimated according to the predicted finish time of the preceding task of the
UAV in each assignment and the travel time from the UAV to the corresponding task. Then,
Algorithm 1 is used to quickly optimize the time collaboration between the assignments.
Finally, the fitness is calculated according to the objective function defined by Equation (9).

When Algorithm 2 is used for conflict resolution optimization of multiple plans,

the non conflict part of the plan can be regarded as
↔

βsc and the conflict part as 〈Usc, Tsc〉,
which can reduce the search space of the optimization problem and improve the optimiza-
tion speed.

(3) Negotiation-based conflict resolution

After each UAV has generated or updated the best plan βsc∗ for scout task allocation,
it will send the plan to UAVs within nc hops. Let Bsc

i = {βsc
m|hop(ui, um) � nc} be the set of

scout task-allocation plans received by ui from other UAVs, then the scout task negotiation
and conflict resolution algorithm can be expressed as Algorithm 3. The received UAV uses
Algorithm 3 to resolve the conflict between its own plan and the received plan to update its
plan until there is no conflict between the plans of neighboring nodes.

284



Drones 2023, 7, 138

Algorithm 3 Scout plan conflict-resolving within UAV ui

Input: βsc
i : The latest local scout plan

Bsc
i : The set of received scout plans

Output: The updated local plan βsc
i .

1: βsc′
i ← βsc

i
2: Usc

i ←
{

um|(um, tn, τs
n, gn) ∈ βsc

i
}

3: for βsc
m in Bsc

i do

4:
↔

βsc
i ← consistent assignments between βsc

m and βsc′
i . � Lock the consistent part

5: β
con f lict
i ←

(
βsc′

i ∪ βsc
m

)
−

↔
βsc

i � The part of conflict assignments

6: Ucon f lict
i ←

{
um|(um, tn, τs

n, gn) ∈ β
con f lict
i

}
� Extract the UAVs in conflict part

7: Tcon f lict
i ←

{
tn|(um, tn, τs

n, gn) ∈ β
con f lict
i

}
� Extract the tasks in conflict part

8: βsc∗
i ← Re-optimize using Algorithm 2 with input

(
↔

βsc
i ,
〈

Ucon f lict
i , Tcon f lict

i

〉)
9: βsc′

i ←
{
(um, tn, τs

n, gn)|(um, tn, τs
n, gn) ∈ βsc∗

i , um ∈ Usc
i
}

� Only the task assignments of the UAVs belonging to Usc
i are retained

10: end for
11: if βsc

i inconsistent with βsc′
i then � If the task assignment changes

12: Broadcast βsc′
i � Broadcast the updated plan to neighbors within nc hops

13: end if
14: βsc

i ← βsc′
i � Replace the local plan with the new plan

15: Bsc
i ← ∅ � Clear the sets of received scout plan

16: return the updated βsc
i

In Algorithm 3, the received plans are conflict resolved with the local plan one by one.
For each task βsc

m, the consistent part between it and βsc′
i is locked, the UAVs and tasks

involved in the inconsistent part are extracted, and Algorithm 2 is used for re-optimization.
The reason for not merging all the plans at the same time is that the more plans received,

the lower the probability of obtaining assignments containing consistent parts, which makes
each iteration almost equal a full re-assignment, leading to low convergence efficiency.

3.2. Optimization of Strike Task Allocation

Let Tst
i represent the set of targets to strike in ui, and the capability requirements aj of

each discovered target tj is known; Tsc
i is the set of assigned reconnaissance tasks perceived

by ui; Ust
i is the idle UAVs with strike capability within nc hops to ui.

Since the targets that need to be struck are discovered dynamically, the scheduling of
UAVs with strike capability is not only related to the currently discovered tasks, but also
related to the tasks that may be discovered in the future. When optimizing strike capability
scheduling, it is necessary to take the nearby reconnaissance tasks into consideration, that
is, on the basis of ensuring that the capability requirements of discovered targets can be met,
the capability of deterrent reconnaissance tasks should be enhanced as much as possible.

Therefore, the optimization objective of strike task allocation is defined as:

min
βst

J
(

βst) (13)

where

J
(

βst) = ∑(
Uj ,tj ,τs

j

)
∈βst

[[[
tj ∈ Tst

i

]]
·
(

f us
(

tj, Uj

)
· Ξ + αc · Δς

(
tj, Uj

)
+ ατ · τmax

(
tj, Uj

))]

− αth · min(
Uj ,tj ,τs

j

)
∈βst

tj∈Tsc
i

⎛⎝ ∑
um∈Uj

ςm

⎞⎠/⎛⎝ 1∣∣∣Uj

∣∣∣ ∑
um∈Uj

dmj

νm

⎞⎠ (14)
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f us(tj, Uj
)
=

⎧⎨⎩ 0, aj � ∑
um∈Uj

ςm

1, else
(15)

Δς
(
tj, Uj

)
= ∑

c∈C

⎛⎝−ajc + ∑
um∈Uj

ςmc

⎞⎠ (16)

τmax
(
tj, Uj

)
= max

um∈Uj

(
dmj/νm

)
(17)

βst is the strike plan that composed of the strike capability assignment triplet
(

Uj, tj, τst
j

)
,

and the triplet indicates that the set of UAVs Uj need to arrive and strike tj at time τst
j .

f us(tj, Uj
)

is used to judge whether the capability requirements of task tj can be met by
the strike plan, and if not, a large constant Ξ will be added to the objective function
to make the algorithm give priority to met the capability requirements of tj. Δς

(
tj, Uj

)
represent the redundancy value of the strike capability assigned to tj, and τmax

(
tj, Uj

)
is

the latest arrival time of the strike capability assigned to tj, and these two are minimized
by the algorithm on the basis of meeting the capability requirements. αc and ατ are weight
coefficients. The part weighted by αth is expected to maximize the minimum deterrent
degree of reconnaissance tasks.

When a UAV discovers the target during reconnaissance, it triggers Algorithm 4 for
strike task allocation, which uses GA to minimize the objective function Equation (13).
After optimization, the number of strike loads required for each UAV is calculated in
detail, and the invitations are send to the UAVs participating in the strike of the target that
discovered by ui in the plan.

Algorithm 4 Strike plan Optimization within UAV ui

Input: nst: Strike UAV invitation hops
U¬st: The exclude set of strike UAVs
tui: The target that discovered by ui
Tst

i : The set of strike targets discovered by other nodes and to be assigned
Tsc

i : The set of assigned scout tasks perceived by ui
Output: Strike plan or the result that failed
1: Uth

i ← Idle strike UAVs within nst to ui, and not in U¬st

2: Tunion
i ← Tst

i ∪ Tsc
i ∪ {tui} � Taking strike and scout tasks into consideration

3: βst∗ ← Using GA to optimize the assignment of Uth
i to Tunion

i with the goal of Equation (13)
4:
(
Uui, tui, τst

ui
)
←
(
Uui, tui, τst

ui
)
∈ βst∗ � Extract the assignment for tui in βst∗

5: if meets the capacity requirements of tui then
6: Uui ← Sort Uui in ascending according to the distances between UAVs and tui
7: for um in Uui do � Calculate the loads that each UAV will contribute in detail
8: Occupy strike load of um one by one until tui is satisfied or all loads are occupied
9: end for

10: Recalculate the strike time τst
ui as the latest arrival time of the occupied UAVs

11: Send invitation to um ∈ Uui with the occupied loads and the strike time τst
ui

12: return
(
Uui, tui, τst

ui
)

13: else if nst < nst max then � Expand the request range for strike UAVs until nst max
14: nst ← nst + 1
15: Recursive optimize strike plan using Algorithm 4
16: else
17: return Failed � There is not enough strike UAVs to execute this task
18: end if

However, if any UAV rejects the invitation, it will be excluded and the scheme will be
optimized again until the strike task is successfully assigned.
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3.3. Deterrence Maneuver Optimization

To enhance the capability deterrence against potential enemy targets in the reconnais-
sance area and shorten the time from target detection to strike execution, each idle UAV
with strike capability tends to accompany other UAVs on reconnaissance tasks to provide
potential capability deterrence.

In the deterrence maneuver optimization, each UAV ui only considers the UAVs within
nc hops and the corresponding reconnaissance tasks of these UAVs. As there is no specific
requirement on arrival time and capability for deterrence, each UAV takes maximizing the
minimum task capability coverage as the optimization goal, and decides the destination
according to the perceived situation without negotiating with other UAVs. Consistent with
the part weighted by αth in Equation (14), the objective function of deterrence maneuver
optimization is as Equation (18) shows, and it periodically calls Algorithm 5 to update its
deterrence maneuvers.

max
βth

J
(

βth
)

(18)

where

J
(

βth
)
= min

(Uj ,tj)∈βth

⎛⎝ ∑
um∈Uj

ςm

⎞⎠/⎛⎝ 1∣∣Uj
∣∣ ∑

um∈Uj

dmj

νm

⎞⎠ (19)

Algorithm 5 Deterrence maneuver optimization within UAV ui

1: Uth
i ← Idle strike UAVs within nc hops to ui

2: Usc
i ← Scouting UAVs within nc hop to ui

3: Tsc
i ← The tasks being scouted by Usc

i
4: βth∗ ←Using GA to optimize the assignment of Uth

i to Tsc
i with the goal of Equation (18).

5: Extract the deterrence tasks of ui from βth∗ and maneuver to it.

4. Experiment and Result Analysis

4.1. Experiment Settings

In order to verify the distributed collaborative allocation method of reconnaissance
and strike tasks for heterogeneous UAVs proposed in this paper, a simulation environment
for heterogeneous UAV reconnaissance and strike tasks is built in Python 3.6 in this section,
and its framework is shown in Figure 2. The simulation environment control module
runs as an independent thread to support graphical user interface (GUI), scene generation,
simulation progress control, UAV model scheduling, message exchange between UAVs,
and interactive result determination between UAVs and tasks. The GUI is developed based
on PyQt5 (5.15.4), and pyqtgraph (0.11.1) is used for real-time graphing of the status of
UAVs and tasks. The GA used in Algorithms 2, 4 and 5 and the global optimization in
Section 4.5 are from the package sko (0.6.6).

A screenshot of the GUI is shown in Figure 3, and the meanings of different elements
are shown in the legend on the right. The display of elements such as text labels and topolog-
ical connections can be controlled in this interface to better observe the experimental effect.

To verify the effectiveness of the method in the heterogeneous UAV swarm scenario,
four kinds of UAVs are set in the simulation scene, including a mini scouter, mini striker,
mini scout and strike UAV, and medium scout and strike UAV. The UAVs are different
in flight velocity, scout speed, number of strike loads, and the capability of strike load.
The UAV types and their parameter settings are shown as Table 2.
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Figure 2. Distributed simulation environment for heterogeneous UAV reconnaissance and strike tasks.

Figure 3. The generated initial scenario contains 30 UAVs and 30 tasks.

Table 2. UAV type and its parameter setting.

UAV Type Velocity (m/s)
Scout Speed
(m2/s)

Number of
Strike Loads

Capability Vector
of Strike Loads

Mini scouter 40 10,000 0 —
Mini striker 50 — 1 [40, 40]
Mini SC&ST 50 6000 1 [80, 80]
Medium SC&ST 80 15,000 6 [100, 100]
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To simulate the war fog and the dynamic characteristics of the mission, five types of
tasks are set up in the experiment, each of which has a differently sized suspicious area
and required capability vector, as shown in Table 3. The fake target indicates that there is
no actual target in the region, and before the completion of reconnaissance, the specific
information of any target is unknown. Therefore, UAV reconnaissance and strike forces
need to cooperate more flexibly to reduce mission risk and the time interval from discovery
to strike.

Table 3. Task type and its parameter setting.

Task Type Area Size (m2) Required Capability Vector

Fake target 1× 106 —
Target type1 5× 105 [25, 30]
Target type2 2× 106 [100, 80]
Target type3 2× 106 [40, 150]
Target type4 4× 106 [200, 200]

The optimization result of GA is greatly affected by the population size πn, iteration
number πi and mutation probability πp. The larger the problem space, the larger πn and πi
should be, so as to carry out a broader search. For the GA used in Algorithms 2 and 4, we let
the number of permutations for assigning tasks to UAVs as nperm, and the parameters of the
GA are adaptively adjusted according to nperm before each task assignment optimization.

4.2. Scene Generation

The experiments were set up in a rectangular area of 10× 10 Km, without considering
the height. In order to better present the cooperative effect of the UAVs and observe the
operation effect, we set the total number of UAVs and tasks to 30, respectively. The pro-
portions of four types of UAVs are 6:20:6:2, respectively, and the specific number is the
total number of UAVs multiplied by the ratio and then rounded down, and the excess
number is added to the mini scouter. Therefore, when the total number of UAVs is set to 30,
the specific number of each UAV type is: 7, 17, 5, 1. Similarly, the ratio between the five
types of tasks is set to 15:7:4:2:1, and when the total number of tasks is 30, the number of
corresponding tasks is 16, 7, 4, 2, 1, respectively.

When generating a scene, the tasks are first randomly assigned to the experimental
area with a uniform distribution, each task is randomly assigned a task type, and the
quantity requirements of each task type is met. Similarly, initial positions and UAV types
are randomly assigned to each UAV. Then, the generated UAVs and tasks are registered into
the simulation control module of the experimental environment, and the information of all
UAVs and tasks is broadcast to each UAV as the initial information for decision-making.

The maximum single-hop communication distance of radio between UAVs is set
as dδ = 3 Km, and multi-hop transmission is supported. The synchronization of state
information and the negotiation of task assignments can only take place between two UAVs
when there is a communication link. Under the above constraints, the generated initial
scenario contains 30 UAVs and 30 tasks, as Figure 3 shows, and the corresponding task
types are shown in Table 4.

Table 4. Task IDs and corresponding task types in the scenario.

Task Type Tasks

Fake target T1, T5, T6, T7, T8, T12, T13, T18, T19, T20, T21, T22, T23, T24, T27, T28
Target type1 T9, T10, T11, T14, T16, T17, T29
Target type2 T3, T4, T15, T25
Target type3 T0, T26
Target type4 T2
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4.3. Reconnaissance Task Priority Assessment Results

Before optimizing the reconnaissance task assignment, each evaluator, i.e., reconnaissance-
capable UAV, evaluates the prior order of each task to each UAV using the evaluation
method defined in Section 3.1.1. We set the number of negotiation hops to nc = 2, and the
UAVs will take other reconnaissance UAVs within 2 hops into consideration. For the
scenario in Figure 3, the prior order of tasks to each UAV evaluated by different UAVs
are shown in Table 5, and the tasks marked in bold are selected by each evaluator using
Algorithm 2 to participate in this round of assignment.

Table 5. The prior order of tasks to each UAV evaluated by different UAVs at time=1.0. The bold
numbers are the tasks selected to participate in this round of assignment.

Evaluator Task Prior Order to Each UAV Evaluator Task Prior Order to Each UAV

U0

U0: (5, 23, 6, 20, 12, 10, 25, . . . )
U6: (5, 23, 6, 20, 12, 10, 25, . . . )
U13: (23, 5, 6, 12, 10, 25, 20, . . . )
U21: (5, 6, 23, 20, 12, 27, 10, . . . )

U14

U14: (15, 28, 3, 1, 14, 4, 7, . . . )
U5: (28, 15, 14, 3, 1, 4, 11, . . . )
U7: (15, 28, 3, 4, 14, 1, 11, . . . )
U9: (28, 15, 14, 3, 4, 1, 11, . . . )
U15: (1, 7, 15, 28, 9, 4, 3, . . . )
U19: (28, 15, 3, 14, 4, 1, 11, . . . )

U4
U4: (24, 21, 29, 11, 4, 0, 13, . . . )
U7: (4, 11, 29, 24, 21, 22, 13, . . . )
U24: (24, 21, 29, 11, 4, 0, 13, . . . )

U15

U15: (9, 19, 7, 16, 1, 18, 22, . . . )
U7: (7, 9, 16, 19, 1, 18, 15, . . . )
U14: (7, 9, 1, 19, 16, 18, 15, . . . )
U29: (19, 9, 7, 1, 16, 18, 22, . . . )

U5

U5: (28, 14, 15, 3, 1, 26, 4, . . . )
U7: (15, 28, 14, 3, 1, 4, 26, . . . )
U9: (14, 28, 15, 3, 26, 1, 2, . . . )
U14: (28, 15, 14, 3, 1, 26, 4, . . . )
U19: (28, 14, 15, 3, 1, 26, 4, . . . )

U19

U19: (14, 28, 15, 3, 2, 26, 4, . . . )
U5: (28, 14, 15, 3, 26, 2, 4, . . . )
U7: (15, 3, 28, 14, 4, 11, 2, . . . )
U9: (14, 28, 3, 15, 26, 2, 4, . . . )
U14: (15, 28, 3, 14, 4, 2, 11, . . . )

U6

U6: (6, 20, 5, 23, 27, 8, 12, . . . )
U0: (5, 23, 6, 20 , 27, 12, 10, . . . )
U13: (6, 23, 5, 20, 12, 27, 10, . . . )
U21: (6, 20, 5, 27, 23, 8, 12, . . . )

U21

U21: (6, 20, 27, 8, 5, 23, 2, . . . )
U0: (5, 23, 6, 20, 27, 8, 12, . . . )
U6: (6, 20, 5, 27, 23, 8, 12, . . . )
U9: (8, 27, 2, 20, 6, 3, 5, . . . )
U13: (6, 5, 23, 20, 27, 8, 12, . . . )

U7

U7: (15, 28, 3, 4, 11, 29, 24, . . . )
U4: (4, 11, 29, 24, 3, 15, 28, . . . )
U5: (28, 15, 3, 14, 4, 11, 1, . . . )
U9: (28, 3, 15, 14, 4, 11, 2, . . . )
U14: (15, 28, 3, 4, 11, 29, 14, . . . )
U15: (7, 15, 28, 16, 4, 29, 9, . . . )
U19: (15, 28, 3, 4, 14, 11, 2, . . . )
U24: (4, 11, 24, 29, 3, 15, 28, . . . )

U9

U9: (14, 28, 26, 3, 15, 2, 8, . . . )
U5: (14, 28, 15, 3, 26, 2, 8, . . . )
U7: (28, 15, 3, 14, 26, 2, 4, . . . )
U14: (28, 15, 14, 3, 26, 2, 4, . . . )
U19: (14, 28, 3, 15, 26, 2, 8, . . . )
U21: (3, 14, 26, 2, 28, 8, 15, . . . )

U24
U24: (21, 24, 0, 29, 11, 4, 12, . . . )
U4: (24, 21, 11, 29, 0, 4, 13, . . . )
U7: (24, 4, 11, 29, 21, 13, 22, . . . )

U29 U29: (19, 9, 1, 7, 16, 18, 15, . . . )
U15: (19, 9, 7, 1, 16, 18, 15, . . . )

U13

U13: (6, 23, 5, 12, 0, 10, 25, . . . )
U0: (23, 5, 6, 12, 10, 25, 0, . . . )
U6: (6, 5, 23, 12, 20, 10, 0, . . . )
U21: (6, 5, 23, 20, 12, 0, 10, . . . )

— —

Taking the evaluation results of U7 as an example, the reconnaissance capable UAVs
within 2 hops are U4, U5, U9, U14, U15, U19, U24, and U7 itself. The priority of task T15
ranks first for U7 since T15 is relatively close to U7, and the position of T15 can obtain more
sufficient strike capability. Although T4 is the closest to U7, it gets a prior order of 4th for
U7 because the unknown potential synergistic relationship between T11 and T4 increases
the risk of T4, and the low coverage of UAVs at T4 further reduces its priority.

It can be found that there is a large gap between U4’s task prior order as assessed by
U7 and U4. T24 ranked after U4 because T24 has a great advantage in distance. However,
the attention mechanism of U7 makes it pay more attention to the surrounding tasks, so
the priority of T24 to U4 is suppressed in the evaluation of U7. This cognitive difference
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caused by inconsistent environmental cognition or subjective preferences can be corrected
during the negotiation process with the other party.

Because each evaluator only considers several tasks with the highest priority in each
round of allocation, the search space for task-allocation optimization can be effectively reduced.

4.4. Reconnaissance Task Assignment

After the reconnaissance UAVs generate a reconnaissance plan and share it with each
other, each node uses Algorithm 3 to fuse the received plan with its own plan. The fusion
process of U7 is as Figure 4 shows, and at time=1, U7 tends to give priority to nearby
tasks due to its own attention mechanism, so its assignments include U4→T11, U14→T4,
and U24→T29. However, this attention mechanism can cause inconsistencies among the
generated plans when the distance between two UAVs is large. When merging the received
plans with its own, U7 will take out the inconsistent part and redistribute it. At this time,
its attention mechanism will be disabled, making the integrated plan more consistent with
the views of each participant.

Figure 4. Negotiation process based on conflict resolution.

When the conflict is resolved, the assignment of U7 in Figure 4 is consistent with the
updated assignments of other nodes, so this assignment is finally adopted and implemented.
The allocation results of the first round of reconnaissance tasks are shown as the green
target lines of each reconnaissance node in Figure 5a, and the specific allocation information
is shown in Table 6. The topology after a period of execution is shown in Figure 5b.

From the allocation results, it can be found that the distributed allocation algorithm
generally follows the principle of minimizing the completion time, but it also reflects the
algorithm’s expectation of enhancing the superiority over enemy and reducing mission
risks. For example, U13 chose T6 instead of T12 as the first mission, because it is easier for
the UAV swarms to form a superiority over enemy at T6. In contrast, the location of T12
is too dense and risky, and it should be executed after more UAVs are concentrated. The
mission groups (T5, T23) and (T15, T28) are also relatively dense, but since the UAV swarm
has a capability advantage here, the strategy of coordinating in time is adopted to reduce the
mission risk. In the time-coordinated formation, the UAVs that could have arrived earlier
choose to reduce the flight speed so that the formation can reach the targets at the same
time, thereby avoiding the coordinated strike of the enemy due to individual exposure.

When each UAV adopts the distributed task assignment algorithm in this paper,
the task scheduling Gantt chart is as Figure 6 shows. In it, the blue boxes represent the
reconnaissance behavior, and the red boxes represent strike behavior. From the Gantt
chart, it can be found that for UAVs with both reconnaissance and strike capabilities, such
as U0 and U5, when their own capabilities can meet the target capability requirements,
the strike can be carried out immediately. For example, U0’s strike on T10 and U5’s strike
on T11 are instant. For targets with strong defense capabilities, the coordinated strike of
multiple UAVs is required. For example, the strikes on T0 and T26 are all completed by
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the cooperation of four UAVs. Since the nodes with strike capability will maneuver to the
reconnaissance nodes for deterrence when they are idle, it allows reconnaissance nodes
that do not have strike capability can also strike quickly after discovering the target. For
example, U25 can launch a strike on T9 (discovered by U15) within 8 s after confirming the
strike mission.

Figure 5. Topology diagram for different simulation times. (a) Each reconnaissance UAV has con-
firmed the reconnaissance task before time = 8. (b) Each reconnaissance node executes reconnaissance
task, and the strike nodes perform deterrence maneuver at time = 30. The meanings of elements are
consistent with those in Figure 3.

Table 6. Allocation information and time coordination relationship of the first round of reconnais-
sance tasks.

UAV
ID

Current Pos
Task
ID

Task Pos τs
j (s)

Planned
υi(m/s)

Maximum
υi(m/s)

Collaborate
UAVs

U0 (1029.8, 204.3) T23 (1420.5, 729.8) 23.38 35.63 50 U6
U6 (2618.0, 202.9) T5 (1904.0, 377.2) 23.38 40.00 40 U0
U5 (9722.0, 4410.0) T28 (8364.7, 4143.4) 34.66 50.00 50 U7
U7 (6776.9, 5650.7) T15 (7634.8, 4636.8) 33.66 48.01 50 U5
U4 (3223.9, 5507.1) T24 (3931.8, 6108.0) 23.57 50.00 50 —
U9 (8777.8, 2235.3) T14 (8712.1, 2910.3) 22.95 40.00 40 —
U13 (1596.7, 2313.2) T6 (3348.8, 1669.4) 51.66 40.00 40 —
U14 (8179.1, 5827.7) T1 (9846.0, 6986.1) 56.75 40.00 40 —
U15 (8543.8, 9725.0 ) T9 (7617.9, 9429.2) 30.30 40.00 40 —
U19 (8114.8, 3937.6) T3 (6881.7, 3528.7) 22.24 80.00 80 —
U21 (3826.9, 436.9) T20 (4124.1, 67.6) 15.48 50.00 50 —
U24 (2615.7, 5425.9) T21 (3144.3, 4235.8) 39.56 40.00 40 —
U29 (9578.5, 9477.7) T19 (9387.9, 9928.5) 17.24 40.00 40 —
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Figure 6. Gantt chart for reconnaissance and strike tasks. Blue boxes represent reconnaissance and
red boxes represent strikes, and the triple elements represent mission confirmation time, duration of
maneuver and task execution, and the concatenation of task type and task ID respectively.

4.5. Comparison with Centralized Global Optimization Based on GA

In the proposed distributed framework, each UAV only focuses on the nearby UAVs
and tasks, and negotiates with the nearby UAVs to resolve the conflicts in the combat
plans. This distributed solution not only realizes decoupling between UAVs, but also
effectively reduces the search space of the task-allocation problem, and can improve the
speed of solving the problem. Based on the scenario shown in Figure 3, we compare the
proposed method with the centralized global optimization method based on GA in terms
of solving speed and quality. The experimental platform is a MSI GS65 notebook installed
with Windows system. Its CPU is i7-8750H, GPU is GTX1070 Max-Q, memory is 32 G,
and the SSD is 512 G.

We have counted the decision-making time consumption of each reconnaissance UAV
in steps 1-8 during the optimization of reconnaissance task allocation, because all UAVs
have confirmed their tasks at the end of the 8th simulation step. The results are shown in
Figure 7, and it can be found that the time consumed by each decision of each UAV is less
than 0.25 s. Without considering the communication delay, if the maximum decision time of
each step is taken as the cycle of this round of iteration, the total time of 8 simulation steps
is 1.02 s. From the time-consumption distribution, it can also be found that the first step
of decision-making only consumes a little time, while the second step of decision-making

293



Drones 2023, 7, 138

takes the most time, and then decreases gradually. This is because before the first decision,
there is no communication between nodes, and each node makes decisions independently.
The second decision is made after exchanging the results of the first round, and at this
time, each node is performing conflict resolution on multiple collected plans, so it takes
a lot of time. After the second step, the conflict between plans is gradually resolved, so
the decision-making time is also shortened and the final task-allocation plan is formed.
The optimization results are shown in Table 6, and from the global perspective, its fitness is
27.48 using Equation (9).

Figure 7. Time consumption of each UAV in the proposed method.

In the same scenario, we further use the centralized GA to optimize the reconnaissance
task-allocation problem from a global perspective, and the fitness curve obtained is shown
as the two CGA curves in Figure 8. In our proposed algorithm, the population number
πn and iteration number πi of GA are automatically adjusted according to the number of
permutations of the assignment problem. When this strategy is applied to the centralized
method, the obtained parameters of GA are πn = 32, πi = 30 and πp = 0.1. However,
the search space for the global optimization problem of assigning 30 tasks to 13 UAVs
is too large, so GA is difficult to converge to a good result under these parameters. In
order to further expand the search of the global GA to obtain a better result, we adjust the
parameters to πn = 400, πi = 200, πp = 0.3. We can find that after 27 rounds of iteration,
it has obtained a result with fitness close to that of the proposed paper, which consumes
about 4.9 s.

Figure 8. The fitness and time consumption of centralized GA.

Comparing the time consumption of the two methods, it can be found that the pro-
posed method effectively reduces the computing load of each single UAV through the idea
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of divide and conquer, and can be applied to more types of small UAVs. By observing
the change of fitness, we found that it is easy for centralized global optimization to fall
into local optimal solution when the problem space is large. If the swarm size is further
increased, it will be difficult for the centralized global optimization method to obtain good
results, while distributed collaborative optimization has better scalability.

4.6. Comparison with No Time Coordination and Deterrence Maneuver

To verify the effect of the proposed method on reducing the risk of mission execution
and improving the deterrence of strike capability, the spatial density of tasks represented
by Equation (2) is taken as the scout risk; the strike capability availability of tasks repre-
sented by Equation (5) is taken as the capability coverage. In each simulation scenario,
the average risk at the beginning of each scout task and the average strike capability
coverage for scouting tasks during the whole simulation process are counted. The com-
parison results with the algorithms without time coordination or deterrence maneuver are
shown in Table 7, and each result is the statistics of the mean and standard deviation of 10
simulation scenarios.

Table 7. The scout risk and strike capability coverage compared with no time coordination or
deterrence maneuver. Each result is the mean and standard deviation of 10 simulation scenarios.

Deterrence Maneuver Type
Enable Time Collaboration Disable Time Collaboration

Scout Risk Cap. Coverage Scout Risk Cap. Coverage

Enable deterrence maneuver 0.238 ± 0.065 153.1 ± 61.3 0.311 ± 0.090 166.6 ± 63.9
Disable deterrence maneuver 0.234 ± 0.048 131.5 ± 33.7 0.311 ± 0.091 116.7 ± 31.5

The statistics of the results show that time coordination can reduce the scout risk by
about 23%, and deterrence maneuver can improve the strike capability coverage by about
30%, which verifies the effectiveness of time coordination and maneuver deterrence.

4.7. Discussion
4.7.1. Computational Complexity Analysis

In the proposed method, the optimization of scout-task assignment needs to optimize
task allocation and time coordination between UAVs, which is the part with high com-
putational complexity of our proposed method. Therefore, analyzing the computational
complexity of this part will aid further improvement.

In Algorithm 2, the most time-consuming process is to use line 24 to optimize the plan
using GA. The computational complexity of GA can be expressed as O(πp × πi), where
πp is the population size and πi is the number of iterations. For each plan generated by
the GA, its fitness will be calculated through line 17-21 of Algorithm 2. Among them,
line 20 uses Algorithm 1 for time collaborative optimization. Let the number of UAVs in
the plan be N. The worst case of the while loop of Algorithm 1 will iterate N − 1 times,
and each loop needs to calculate N × (N − 1) time alignment reward gains according to
Equation (12), so the complexity of Algorithm 1 is about O(N3). Then line 21 of Algorithm 2
uses Equation (9) to calculate the fitness of the plan, in which the start time between any
two UAVs needs to be compared to evaluate the task threat, and thus the complexity is
about O(N2).

Therefore, the overall computational complexity of Algorithm 2 is about O(πp ×
πi × (N3 + N2)) ≈ O

(
πp × πi × N3). Among them, the settings of πp and πi not only

affect the calculation cost, but also affect the quality of the optimization results. In this
paper, these two parameters are simply linearly mapped from the number of allocation
combinations, and before deployment, it is necessary to further study the setting strategy of
these parameters to compromise between the calculation cost and the optimization quality.
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4.7.2. Method Characteristics under Different Network Connectivity

When the distributed UAV swarm is running, each UAV needs to perform regular
state synchronization and event-triggered task assignment negotiation with UAVs within
nc hops, which also means that each UAV needs to process information from other UAVs
within nc hops. When the mission area is relatively scattered and the connectivity of the
UAV network is low, the use of a limited range of autonomous collaboration can reduce the
consumption of the network and reduce the computational power consumption of each
UAV. While improving the reliability of the cluster, the distributed architecture can also
enhance the scalability of the cluster.

However, when the UAVs are concentrated, such as when the network is fully con-
nected in extreme cases, adopting a distributed architecture will reduce the operating
efficiency of the system. The fully connected network requires each UAV to process the
information of the entire battlefield, which indicates that each UAV should be equipped
with high-performance computing resources. Moreover, the additional negotiation com-
munication required by the distributed architecture will also increase the consumption of
the network.

Therefore, the proposed distributed approach should be combined with centralized
control when applied, and dynamically switch between the two according to the network
connectivity status.

4.7.3. Influence of Network Instability on the Proposed Method

The mutual communication between UAVs is the basis for task-assignment negotiation
and coordination during task execution. Due to the high-speed maneuvering of UAVs in 3D
space, the topology of the flying ad hoc network (FANET) [22] changes rapidly, which may
cause communication interruption, delay increase, and other problems. These problems
may further make the negotiation period of task assignment longer, or even cause conflicts
between the assigned plans due to the interruption of communication, and ultimately make
the overall task assignment result worse. Therefore, the next step is to evaluate the impact
of network instability on the method and study the corresponding strategies to improve
its robustness, which can also avoid making this problem a vulnerable point to attack by
the enemy.

Since the cooperation of UAVs in the proposed method mainly occurs between UAVs
within 2 hops, the route-maintenance strategy of FANET can pay more attention to the
optimization of short-distance routes to improve the QoS, which can not only improve the
speed of distributed task allocation in this paper, but also help avoid collisions between
UAVs and so on.

5. Conclusions

Due to the high risk of UAV clusters in executing reconnaissance and strike tasks
under the condition of insufficient enemy information and potential synergy between
targets, a distributed task-collaborative allocation method for heterogeneous UAV swarms
is proposed. This method establishes a distributed task-allocation framework composed of a
reconnaissance task-allocation method based on a negotiation mechanism and a strike task-
allocation method based on an invitation mechanism. The reconnaissance task-allocation
algorithm evaluates the task priority according to the superiority of the UAVs against
the tasks to reduce the complexity of the optimization problem. Reconnaissance UAVs
adopt a time-coordination strategy for reconnaissance, and UAVs with strike capabilities
perform deterrent maneuvers when they are idle to reduce mission risks during mission
execution. This method enables the UAV swarm to negotiate the allocation of tasks in a
distributed framework, and at the same time, the evaluation of the capability advantage
over the enemy, time coordination, and deterrence maneuver mechanism effectively reduce
the risk of unknown targets to UAVs. The distributed framework not only improves the
scalability of the swarm, but also enhances its reliability in the battlefield with a more
complex electromagnetic environment.
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Further research should include a more efficient algorithm that takes the negotiation
mechanism and the network state of the swarm as prior information to replace the GA
for the local optimization of UAVs, and should aim to obtain the best operating efficiency
under different network connectivity. The proposed method should be further combined
with a centralized or hierarchical task-allocation framework.
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Abstract: Supporting Artificial Intelligence (AI)-enhanced intelligent applications on the resource-
limited Unmanned Aerial Vehicle (UAV) platform is difficult due to the resource gap between the two.
It is promising to partition an AI application into a service function (SF) chain and then dispatch the
SFs onto multiple UAVs. However, it is still a challenging task to efficiently schedule the computation
and communication resources of multiple UAVs to support a large number of SF chains (SFCs). Under
the multi-UAV edge computing paradigm, this paper formulates the SFC scheduling problem as a
0–1 nonlinear integer programming problem. Then, a two-stage heuristic algorithm is put forward to
solve this problem. At the first stage, if the resources are surplus, the SFCs are deployed to UAV edge
servers in parallel based on our proposed pairing principle between SFCs and UAVs for minimizing
the completion time sum of tasks. In contrast, a revenue maximization heuristic method is adopted
to deploy the arrived SFCs in a serial service mode when the resource is insufficient. A series of
experiments are conducted to evaluate the performance of our proposal. Results show that our
algorithm outperforms other benchmark algorithms in the completion time sum of tasks, the overall
revenue, and the task execution success ratio.

Keywords: edge computing; unmanned aerial vehicle; artificial intelligence; service function chain

1. Introduction

Artificial Intelligence (AI)—in particular Deep Learning (DL)—techniques have been
widely adopted as a powerful tool in wireless communications and mobile computation
areas due to their unique advantages such as automated feature extraction and high gener-
alizability [1]. DL has been utilized from different perspectives for intelligent applications,
e.g., wireless spectrum sensing, object tracking, and channel estimation [2–4]. Although
the advantages are brought by DL techniques, fulfilling their intensive computation needs
is a new challenge for resource-limited Internet of Things (IoT) devices. Mobile edge
computing (MEC) is seen as a promising technology for solving this challenge [5–8]. It can
make computation resources closer to IoT devices, so that the computation-intensive and
delay-sensitive tasks can be offloaded to edge computing servers for executing.

For the IoT devices distributed in a rural area or even a hostile environment, less
communications and computation infrastructures are available for processing the sensed
big data. Due to the low operational cost, deployment flexibility, and high mobility, un-
manned aerial vehicle (UAV) is considered to be the optimal temporary platform for
emergency scenarios without infrastructure [9,10]. With this backdrop, introducing multi-
UAV-empowered edge computing paradigm for processing edge-side big data is neces-
sary [11,12]. Multiple UAVs can cooperate with each other in the sky to accept the data
processing tasks from the IoT devices on the ground to conduct DL-involved tasks. Typi-
cally, the application of processing a DL-involved task can be treated as a service function
chain (SFC) [13], in which several service functions (SFs) are connected in a sequential

Drones 2023, 7, 132. https://doi.org/10.3390/drones7020132 https://www.mdpi.com/journal/drones
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order. For instance, each SF could be a modular in the DL-involved application, such as
data pre-processing functions, deep neural network components, and target tracking, etc.
An SF is a static software template that can derive instances on demand based on the virtual
machine (VM) or docker technology [13–15]. A corresponding SF instance (SI) has to be
created whenever the UAV decides to process a task. Once all the SIs of SFs contained in an
SFC are successfully created, a task can pass through each instance sequentially to obtain
its required services. In addition, in order to be able to run SFCs with AI algorithms, it
is necessary to equip UAVs with custom-made AI processors. Compared with graphics
processing unit (GPU), field programmable gate array (FPGA) has obvious characteristics
of low power consumption and small size [16,17], which has been treated as a promising
solution on the UAV platforms without violating size, weight, and power constraints
inherent to UAV design. Considering that the UAV has limited computation resources
and storage resources, the SFs contained in one SFC and their corresponding SIs can be
distributed on multiple UAVs. When a large number of tasks are offloaded onto the UAV
network at the same time stage, massive SIs corresponding to the required SFs will have
to be created. In order to make full use of the limited computation and communication
resources of UAVs, an efficient SFC scheduling strategy is indispensable. However, it also
faces many challenges: (1) There is a complex matching relationship between tasks, SIs, and
SFCs due to the heterogeneity of UAVs and the resource requirements of the tasks. (2) There
is a complex trade-off between the communication and computation resource scheduling.
(3) It is hard to achieve a long-term multi-objective optimization for the scenario with con-
tinuous task arrival and unknown SFC requirements. Tremendous efforts have been made
in designing task scheduling algorithms in multi-UAV edge computing paradigms [18–34].
However, they often assume that each task is served by only one UAV and less attention
has been paid to SFC scheduling in a multi-UAV edge computing scenario. A detailed
analysis of existing efforts is presented in Section 2. With this backdrop, this paper firstly
formulates the SFC scheduling problem as a 0–1 nonlinear integer programming problem.
Then, a two-stage heuristic algorithm is put forward to derive a sub-optimal solution of the
problem. The main contributions of this paper are threefold:

(1) The SFC scheduling problem in heterogeneous “CPU + FPGA” computation archi-
tecture is formulated as a 0–1 nonlinear integer programming problem. The overall
revenue of the system and the completion time sum of tasks are optimized with vari-
ous resource constraints. To the best of our knowledge, this is the fist paper that has
studied the SFC scheduling problem considering FPGA resources in the multi-UAV
edge computing network;

(2) To solve the NP-hard problem with coupling variables, a two-stage heuristic algorithm
called ToRu is put forward. At the first stage, i.e., when the resources are abundant,
the SFCs of all tasks are deployed to UAV edge servers in parallel based on our
proposed pairing principle between SFCs and UAVs for minimizing the sum of all
tasks’ completion time; at the second stage, i.e., when the resources are insufficient,
a revenue maximization heuristic method is adopted to deploy the arrived SFCs
in a serial service mode. In order to obtain the long-term optimization, a time-slot
partitioning protocol is designed, based on which ToRu can operate repeatedly in
each time-slot;

(3) A series of experiments are conducted to evaluate the performance of our proposal.
Experimental results show that our proposed ToRu algorithm outperforms other
benchmark algorithms in the the sum of all tasks’ completion time, the overall revenue,
and the task execution success ratio.

The remaining of this paper is organized as follows. Section 2 summarizes related
work. The model and problem formulation of the proposed system are introduced in
Section 3. Section 4 describes the details of our proposed ToRu algorithm. The experiments
and analysis of the results are presented in Section 5. Finally, Section 6 concludes this paper.
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2. Related Work

In the multi-UAV edge computing system, according to the granularity of services
provided to users, the existing work can be roughly divided into two categories: task
scheduling and SFC scheduling. The difference between the two is mainly reflected in
the matching process between offloaded tasks and UAVs. The former only considers
whether the UAV’s hardware computation resources (such as CPU, RAM, etc.) meet the
task requirements; the latter further considers whether the SFs deployed on UAVs match
the offload tasks requirements and is closer to the real situation.

2.1. Task Scheduling

Considering the high complexity of the multi-UAV edge computing system, most task
scheduling optimization problems need to be solved by jointly optimizing user association,
computation resource allocation, trajectories of UAVs, the number of offloaded task bits, etc.
Most corresponding optimization models are non-convex, and it is difficult to obtain the
optimal solution in polynomial time. An alternating iteration method is currently widely
used to solve such complex non-convex optimization problems. It decouples a complex
non-convex problem into multiple simplified sub-problems that can be solved by typical
convex optimization or heuristic algorithm. Based on the alternating iteration algorithm,
Yu et al. [18] jointly optimized the number of local computing tasks and offloaded tasks,
trajectories of UAVs, and offloading matching strategy between UAVs and user terminals
for minimizing the energy consumption of user terminals; Zhang et al. [19] jointly opti-
mized user association, allocation of CPU frequency, power and spectrum resources, as
well as trajectory of UAVs based on the proposed double-loop structure with the aim of
maximizing the computation efficiency maximization. Luo et al. [20] jointly optimized the
task scheduling, bit allocation, and UAV trajectory for minimizing the energy consumption
of ground users. Wang et al. [21] presented a two-layer optimization method for minimiz-
ing system energy consumption, through jointly optimizing the deployment of UAVs and
offloading decision. Moreover, some scholars formulated the task scheduling problem as a
Markov decision process (MDP). A series of methods based on deep reinforcement learning
(DRL) are proposed: Chang et al. [22] proposed a reinforcement learning framework with
applying synthetic considerations of the terminals’ demand, risk, and geometric distance,
so as to provide better Quality-of-Service and path planning; Ren et al. [23] proposed a
real-time scalable scheduling approach in the dynamic edge computing environments
based on a DRL method; Xue et al. [24] established the User, UAV cost, and UAV revenue
model and then jointly optimized power control, resource allocation, and UE association for
minimizing the system energy consumption by a multi-agent reinforcement deep learning
algorithm (MADRL). Seid et al. [25] deployed a clustered multi-UAV to provide computing
services to users’ devices and proposed a MADRL-based approach for minimizing the
overall network computation cost while ensuring the quality of service. Wu et al. [26]
designed a pre-dispatch UAV-assisted vehicular edge computing networks to cope with
the demand of vehicles in multiple traffic jams, and then proposed a DRL-based energy
efficiency autonomous UAV deployment strategy. Furthermore, strategies based on game
theory [27,28] are also adopted to solve optimization problems. Each UAV was considered
as an individual player with private interests, the optimization problem was formulated as
an offloading game with at least one Nash equilibrium. Asheralieva et al. [29] presented a
novel game-theoretic and reinforcement learning framework for task offloading. A Stackel-
berg game approach is adopted in [30,31] for maximizing utilities.

2.2. SFC Scheduling

Qu et al. [32] studied the service provisioning in the UAV-enabled MEC networks,
where the SFs placement, UAV trajectory, task scheduling, and computation resource
allocation were jointly optimized, so as to minimize the overall energy consumption of all
users. A sub-optimal solution was achieved based on a proposed two-stage alternating
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optimization algorithm. However, the application considered in [32] only contains one SF,
so that SFC scheduling is not involved.

Wang et al. [33] proposed a reconfigurable service provisioning framework based
on SFCs for Space–Air–Ground-Integrated Networks (SAGINs), where the computation
and communications resource consumptions are balanced. Li et al. [34] investigated the
online mapping and scheduling of dynamic virtual network functions (VNFs) in SAGINs,
in which an Internet of Vehicles (IoV) service can be represented by a SFC formed with a
set of chained VNFs. However, in the proposed SFC construction process, only the capacity
constraints of CPU and buffer on NVF nodes are considered, and the channel resources
constraints between NVF nodes are ignored. In fact, the channel resources between NFV
nodes are very scarce in the wireless environment, and it often becomes the bottleneck factor
affecting the SFC construction. In addition, the SFC scheduling mentioned in [33,34] aims
to establish an end-to-end route for servicing data, where the data source and destination
nodes are separately located in different geographical regions. However, in the edge
computing scenario considered in this paper, the SFC scheduling aims to provide services
for requesting users, where the input of raw data and the output of computing results are
all located in the same access node. Moreover, dedicated hardware resources (such as GPU,
FPGA, etc.) supporting AI algorithm operation are also not considered in [33,34].

In summary, it is difficult to solve the SFC scheduling problem involved in this paper
with existing algorithms. To the best of our knowledge, compared with existing works,
this is the first paper that considers the SFC scheduling problem in a multi-UAV edge
computing network with FPGAs resources, which can provide services for complicated
intelligent application-oriented tasks in the weak infrastructure areas.

3. System Model and Problem Formulation

3.1. Network Model

In order to achieve a long-term SFC scheduling optimization, the management and
allocation of UAV network resources is particularly important. Inspired by [35], a two-layer
UAV network architecture is designed, in which one UAV with relatively high computing
and communication resource capability is used as the master, other UAVs as the slavers. As
shown in Figure 1, the edge computing network consists of one master UAV and M slave
UAVs with heterogeneous computation resources, which evenly hovers over the mission
area in a fully interconnected manner for performing time-sensitive AI tasks. The master
UAV controls all the computation and communication resources on the slave UAVs, and
it is responsible for instantiating the required SFCs. The slave UAVs are mainly used to
cover devices on the ground, receive the SFC requests and offloaded time-sensitive AI tasks.
When a slave UAV receives the SFC requirement of a ground device, it immediately reports
to the master UAV. Then, the master UAV creates an SFC instance for the requiring ground
device based on the resource of one or multiple salve UAVs. Eventually, the task offloaded
from the requiring ground device is processed on the created SFC instance. For simplicity of
description, the “heterogeneous Multi-UAV edge computing network” will be referred to as
“UAV network” for short in the rest of this paper. The slave UAV network can be denoted
by an directed complete graph G = (U ,L), where U is the slave UAV set, denoted as
U = {U1, U2, . . . , Um, . . . , UM}, 1 ≤ m ≤ M. Several SFs are deployed on each slave UAV,
which can be run by virtual machines (VMs) or docker technology [13–15]. L is the set of
wireless links between slave UAVs, denoted as L = {L1, L2, . . . , Lm, . . . , LM}, 1 ≤ m ≤ M.
Lm = {Lm,1, Lm,2, . . . , Lm,m′ , . . . , Lm,M} represents the wireless link sets of Um transmitting

data to other UAVs, in which Lm,m′ (1 ≤ m
′ ≤ M) indicates the wireless link of Um to

Um′ . We assume that UAVs use orthogonal frequency channels for communication without
collisions (e.g., OFDMA [36]). Thus, Lm,m′ is represented as a two-tuple: {rm,m′ , Nc

m}. rm,m′

is the data transmission rate on one sub-channel, Nc
m represents the current idle sub-channel

number. We define Nc
max as the maximum number of sub-channels on each slave UAV.

Nc
m ≤ Nc

max always holds.
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Figure 1. A heterogeneous Multi-UAV edge computing scenario. Each UAV deploys several SFs and
can receive the SFC required from the devices on the ground. The master UAV controls the resources
of the edge computing network, which can instantiate the required SFCs.

Considering that UAVs have the characteristics of line-of-sight (LoS) communication,
a free space attenuation model is adopted [36]. Then, rm,m′ can be expressed as:

rm,m′ = B log2(1 +
pmβ0

N0Bd2
m,m′

), 1 ≤ m, m
′ ≤ M, m �= m

′
. (1)

where β0 is the transmit power gain at a reference distance of one meter. pm is the trans-
mission power of Um. N0 is the noise power spectrum density. B is the bandwidth of a
sub-channel. dm,m′ is the distance between Um and Um′ . Note that when m = m

′
, rm,m′ = ∞.

In other words, this paper ignores the data exchanging time between two SF instances at
the same UAV. For ease of description, the main notations used in this paper are listed in
Table 1.

Table 1. Notations.

Notation Definition

Un The n-th UAV in U
SF Service Function
SI SF instances
SFC Service Function Chain
SFn The n-th SF
S̃1 The set of FPGA-independent SFs
S̃2 The set of FPGA-dependent SFs
Q1 The number of FPGA-independent SFs in S̃1
Q2 The number of FPGA-dependent SFs in S̃2
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Table 1. Cont.

Notation Definition

Sm The set of SF deployed on Um
SF∗m,q The q-th SF deployed on Um
T The set of tasks currently requesting services
Tn The n-th requesting task
Ncpu

m The number of CPU cores on Um

N f pga
m The number of FPGAs on Um

Ncpu
m,a The number of the current idle CPU cores on Um

N f pga
m,a The number of the current idle FPGAs on Um

nsi
m,q The number of SIs currently created corresponding to SF∗m,q

fm,q The frequency of CPU core on Um
am,q The processing speed of CP when running SI of SF∗m,q
Lm,m′ The wireless link of Um to Um′

rm,m′
The data transmission rate on one sub-channel of the link Lm,m′

Nc
m The number of current idle sub-channels on the link Lm,m′

on The source UAV that receives Tn
sn The required SFC of Tn
sk

n The k-th SF contained in the SFC required by Tn
ln The properties of Tn before its entering into an SFC
lk
n The properties of Tn when arriving at the instance of sk

n in its SFC
lk,0
n The length of Tn when arriving at sk

n
lk,1
n The number of CPU cycles required for processing one bit task on sk

n
lk,2
n The number of AI accelerator operations required for processing one bit task on sk

n

rn
The minimum requirement set for the transmission rate between the instances of SFCs
required by Tn

rk,k+1
n The minimum transmission rate requirement from the instance of sk

n to sk+1
n

cn The minimum computation resources requirement set of Tn for the instances of SFC.
ck,0

n The minimum CPU processing speed requirement of Tn on the instances of sk
n.

ck,1
n The minimum AI accelerator processing speed requirement of Tn on the instances of sk

n.
vn The revenue obtained through completing Tn
Tc

n The completion time of Tn
Xm

n,k The decision variable of creating the instance of sk
n

3.2. Service Model

In this paper, SFs are divided into two categories based on their resource requirements:
FPGA-independent SFs and FPGA-dependent SFs [15]. An SI corresponding to the FPGA-
independent SF is created only based on CPU resource. In contrast, only the combination
of CPU and FPGA resources can support the SI corresponding to the FPGA-dependent
SF. The set of FPGA-independent SFs are denoted by S̃1 = {SF1, SF2, . . . , SFn, . . . , SFQ1}.
SFn represents the n-th type of FPGA-independent SF, Q1 represents the number of
FPGA-independent SF types. Moreover, the set of FPGA-dependent SFs are denoted
by S̃2 = {SFQ1+1, SFQ1+2, . . . , SFn′ , . . . , SFQ1+Q2}. SFn′ represents the n

′
-th type of FPGA-

dependent SF, Q2 is the number of FPGA-dependent SF types. Considering the heterogene-
ity of UAVs, the SF set deployed on each UAV may be different. Therefore, the set of SFs de-
ployed on Um are denoted by Sm = {SF∗m,1, SF∗m,2, . . . , SF∗m,q, . . . , SF∗m,Qm

}, Qm ≤ (Q1 + Q2)

and Sm ⊆ (S̃1 ∪ S̃2). SF∗m,q is the q-th SF deployed on Um.
As shown in Figure 2, a general computation model for UAVs is considered in this

paper, which includes two parts: CPU and FPGA resources. The former includes several
CPU cores of the same type; the latter refers to some FPGAs, which can assist CPUs in per-
forming AI workload, such as FPGA-based convolutional network accelerator (CNN) [17].
The connection between CPU cores and FPGAs can be established dynamically through
internal bus (e.g., PCIe bus) [37]. The number of CPU cores and FPGAs on Um are denoted
by Ncpu

m and N f pga
m , respectively. Accordingly, Ncpu

m,a and N f pga
m,a separately represent the

number of current idle CPU cores and FPGAs. As shown in Figure 2, when creating an SI
of SF∗1,1, U1 firstly assigns idle CPU core #1 and FPGA #1 to it; then, the corresponding SF
software is separately loaded onto them. In contrast, only idle CPU core #4 is assigned to
SF∗1,4 before loading its SF software. The processing capacity of an SI corresponding to SF∗m,q
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is expressed as a two-tuple: { fm,q, am,q}. fm,q is the frequency of CPU core on Um, measured
in GHz; am,q is the processing speed of FPGA when running the SI of SF∗m,q, measured in
GOP/s [38]. Note that am,q = 0 when SF∗m,q is an FPGA-independent SF.

&WGA
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&WGA
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&WGA
ηϮ
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�KZ�
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�KZ�
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ϭ Ϯ

Figure 2. The creation process of SIs on U1. The SI of FPGA-dependent SF (i.e., SF∗1,1, SF∗1,2, and
SF∗1,3) occupies a CPU core and an FPGA. Moreover, the SI of FPGA-independent SF (i.e., SF∗1,4) only
occupies a CPU core.

From the perspective of information security, we stipulate that an SI independently
occupies a CPU core or a combination of ‘CPU + FPGA’. Therefore, the maximum number
of SIs that can be created simultaneously on one UAV is bounded. Define nsi

m,q to represent
the number of currently created SIs corresponding to SF∗m,q on Um, and the following
constraints must be satisfied [15].

nsi
m,q ≤ Ncpu

m , SF∗m,q ∈ S1, 1 ≤ m ≤ M. (2)

nsi
m,q ≤ N f pga

m , SF∗m,q ∈ S2, 1 ≤ m ≤ M. (3)

∑
SF∗m,q∈(Sm∩S̃2)

nsi
m,q ≤ N f pga

m , 1 ≤ m ≤ M. (4)

∑
SF∗m,q∈Sm

nsi
m,q ≤ Ncpu

m , 1 ≤ m ≤ M. (5)

Equation (2) ensures that the number of currently created SIs corresponding to any
FPGA-independent SF on Um does not exceed the number of CPU cores on it. Equation (3)
means that the number of currently created SIs corresponding to any FPGA-dependent SF
on Um does not exceed the number of FPGAs on it. Equation (4) guarantees that the total
number of currently created SIs corresponding to all FPGA-dependent SFs on Um does
not exceed the number of FPGAs on it. Equation (5) restricts the total number of currently
created SIs on Um to not exceed the number of CPU cores on it.

3.3. Task Model

The tasks currently requesting service are denoted as a set T = {T1, T2, . . . , Tn, . . . , TNt}.
Nt = |T | denotes the total number of tasks. We define a six-tuple for Tn as follows:
Tn = {on, sn, ln, rn, cn, vn}, 1 ≤ n ≤ Nt. on shows the source UAV that receives Tn. sn

indicates its required SFC, denoted as sn = {s0
n, s1

n, . . . sk
n, . . . , sNs

n
n , sNs

n+1
n }, 0 ≤ k ≤ Ns

n + 1.
s0

n is the SF that receives the tasks from the ground and transmits it to the s1
n, which has to

be instantiated at the source UAV, as shown in Figure 1. sNs
n+1

n is the SF that receives the
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computing result from sNs
n

n and transmits it to the ground, which also has to be instanti-
ated at the source UAV. Ns

n represents the total number of SFs contained in the required
SFC. When 1 ≤ k ≤ Ns

n, sk
n ∈ S represents the k-th SF contained in the required SFC,

which can be instantiated on any slave UAV that satisfies its resource requirements. ln
means the current properties of Tn when it arrives at each SF contained in sn, denoted
as ln = {l0

n, l1
n, l2

n, . . . lk
n, . . . , lNs

n
n , lNs

n+1
n }, 0 ≤ k ≤ Ns

n + 1. lk
n is the property of Tn when it

arrives at sk
n, denoted as lk

n = {lk,0
n , lk,1

n , lk,2
n }. lk,0

n is the current length of Tn; lk,1
n is the number

of CPU cycles required for processing one bit task; lk,2
n is the number of AI accelerator

operations required for processing one bit task. The computation resources consumed by
s0

n and sNs
n+1

n are considered to be negligible in this paper, since their instances require far
less computation resources than other AI instances. Therefore, l0,0

n and lNs
n+1,0

n represents
the initial length of Tn and its computing result, respectively; l0,1

n , l0,2
n , lNs

n+1,1
n and lNs

n+1,2
n

are equal to 0. rn represents the minimum transmission rate requirement between the SFs
contained in the required SFC, denoted as rn = {r0,1

n , r1,2
n , . . . , rNs

n−1,Ns
n

n , rNs
n ,Ns

n+1
n }. rk,k+1

n
(0 ≤ k ≤ Ns

n) indicates the minimum transmission rate requirement from sk
n to sk+1

n . cn
represents the minimum computation resources requirement when creating the instances
of SFs contained in the required SFC, denoted as cn = {c0

n, c1
n, c2

n, . . . , ck
n, . . . , cNs

n
n , cNs

n+1
n },

0 ≤ k ≤ Ns
n + 1. ck

n is the minimum computation resource requirement of initiating sk
n,

denoted as ck
n = {ck,0

n , ck,1
n }. ck,0

n is the minimum processing speed requirement for CPU,
measured in GHz; ck,1

n is the minimum processing speed requirement for AI accelerator,
measured in GOP/s. For c0

n and cNs
n+1

n , their values are 0. vn represents the revenue
obtained through completing Tn.

As shown in Figure 1, an SFC is unidirectional, and the task goes through each SF
sequentially. Furthermore, UAVs adopt the communication mode of orthogonal frequency
division multiple access. Therefore, the communication resources consumed between
adjacent SFs belong to the UAV instantiating the upstream SF. To sum up, for task Tn, it
is more reasonable to create the SF instances in the reverse order of the required SFC, i.e.,
the instance of sNs

n+1
n is created first, and the instance of s0

n is created last. Assume that the
instance of sk+1

n (0 ≤ k ≤ Ns
n) has been created on Um′ . If we want to continue creating the

instance of sk
n on Um, the following conditions have to be satisfied at the same time:

sk
n = SF∗m,q, 1 ≤ m ≤ M, 1 ≤ q ≤ Qm (6)

ck,0
n ≤ fm,q, 1 ≤ m ≤ M, 1 ≤ q ≤ Qm (7)

ck,1
n ≤ am,q, 1 ≤ m ≤ M, 1 ≤ q ≤ Qm (8)

� rk,k+1
n

rm,m′
� ≤ Nc

m, m �= m
′
. (9)

Equation (6) means that Um has to deploy the SF matching sk
n. Equations (7) and (8)

ensure that the SI of sk
n on Um can satisfy the computing requirement of Tn. Equation (9)

guarantees that Um has enough idle sub-channels for transmitting Tn to Um′ at a rate no
smaller than the required. Moreover, define tk

n as the stay time of Tn on the SI of sn,k, which
includes the executing time tk,1

n and transmitting time tk,2
n . tk,1

n can be expressed as:

tk,1
n =

{
lk,0
n lk,1

n
fm,q

+ lk,0
n lk,2

n
am,q

, 1 ≤ k ≤ Ns
n.

0, k = 0, k = Ns
n + 1.

(10)
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tk,2
n =

⎧⎪⎨⎪⎩
lk+1
n

� rk,k+1
n

r
m,m′

�r
m,m′

, m �= m
′
, 0 ≤ k ≤ Ns

n

0, m = m
′
, 0 ≤ k ≤ Ns

n.

(11)

We define the binary variable Xm
n,k to represent the decision of creating the SI of sk

n,
which can be expressed as:

Xm
n,k =

⎧⎨⎩
1, i f the SI o f sk

n is created on Um with satis f ying the constraints
o f Equations (6) to (9)

0, otherwise.
(12)

Considering that the SI of each SF contained in the required SFC is created at most one
time, the following constraints must be satisfied:

m=M

∑
m=1

Xm
n,k ≤ 1 (13)

Note that Xon
n,0 = 1 and Xon

n,Ns
n+1 = 1 always hold, since the SIs of s0

n and sNs
n+1

n have to
been created on the source UAV. Tn can be successfully executed only if the SIs of all SFs
contained in its required SFC have been successfully created. At this time, the following
formula holds.

k=Ns
n+1

∏
k=0

m=M

∑
m=1

Xm
n,k = 1. (14)

Lastly, we define Tc
n as the completion of Tn, which is expressed as follows:

Tc
n =

m=M

∑
m=1

k=Ns
n+1

∑
k=0

Xm
n,k(t

k,1
n + tk,2

n ), 1 ≤ n ≤ N

s.t. : Equations (1) to (14).

(15)

3.4. Problem Formulation

For the required SFC, there may be multiple strategies of creating its SIs. For a task,
it wants to be executed on the UAVs that can minimizes its completion time. On the
other hand, the UAV network wants to process all received tasks by making full use of
their limited computation resources and communication resources, so as to maximum
the revenue. In this paper, we aim at minimizing the completion time sum of all task
while maximizing the overall revenue of the UAV network by optimizing X = {Xm

n,k|1 ≤
n ≤ N, 1 ≤ m ≤ M, 0 ≤ k ≤ Ns

n + 1}.
Therefore, the first optimization goal is formulated as:

F1 =
n=N

∑
n=1

Tc
n

k=Ns
n+1

∏
k=0

m=M

∑
m=1

Xm
n,k (16)

The second optimization goal is formulated as:

F2 =
n=N

∑
n=1

vn

k=Ns
n+1

∏
k=0

m=M

∑
m=1

Xm
n,k (17)
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According to Equations (16) and (17), a multi-objective optimization problem can be
formulated as:

P1 : min
{X}

(F1,−F2)

s.t.C1 : 1 ≤ n ≤ N, 1 ≤ m ≤ M, 1 ≤ q ≤ Qm, 0 ≤ k ≤ Ns
n + 1

C2 : sk
n = SF∗m,q, ∀Xm

n,k = 1

C3 : Xon
n,0 = 1, Xon

n,Ns
n+1 = 1

C4 : Equations (1) ∼ (15)

(18)

Constraint (C1) specifies the valid ranges of the involved variables in Constraint
(C2)∼(C4). Constraint (C2) guarantees that the UAV of instantiating the required SF should
deploy this SF in advance. Constraint (C3) restricts that the SIs of the first SF and last SF of
an SFC have to be created on the source UAV. Constraint (C4) includes several constraints
related to the resource requirements and the resource capacities, which are the described in
detail after Equations (1)∼(15).

4. Proposed Approach

In P1, minimizing F1 is a 0–1 nonlinear integer programming problem. Minimizing
−F2 is equivalent to maximizing F2, which is also a 0–1 nonlinear integer programming
problem. At the same time, there is a close coupling relationship between F1 and F2.
Furthermore, the task properties considered in this paper are not known in advance.
Therefore, it is difficult to solve P1 effectively with traditional optimization algorithms in
an online manner. To tackle this problem in an online manner, we propose an efficient
online two-stage heuristic algorithm named ToRu with much lower complexity. In ToRu,
the minimization of the completion time sum of tasks is pursued in the case of abundant
resources (i.e., the first stage); on the contrary, when the resources are insufficient (i.e., the
second stage), the maximization of the UAV network revenue is pursued.

4.1. The ToRu Framework

The proposed ToRu is deployed on the master UAV. In order to providing a long-term
service for unknown tasks in an online manner, a time-slot partition protocol is designed,
as shown in Figure 3. The mission period is divided into time-slots with equal length.
One time-slot is the basic unit for SFC scheduling. At the beginning of each time-slot,
the master UAV starts ToRu with the requesting tasks arriving in the previous time-slot
and the current idle resources on the UAV network as input parameters. ToRu completes
SFC scheduling before the end of a time-slot and exits. According to the above process,
ToRu is executed repeatedly in each time-slot, thus enabling the UAV network to provide
the long-term service. Note that ToRu must complete SFC scheduling before the end of a
time-slot, otherwise the time-slot length needs to be increased, which indicates that the
number of task requesting service is too large. If ToRu completes SFC scheduling very
early before the end of the time-slot, it means that the number of tasks requesting service
is small and the time-slot length should be shortened, thus reducing the service waiting
time of tasks. Therefore, the time-slot partition protocol proposed in this paper has good
dynamic scalability.
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Figure 3. The time-slot partitioning protocol. The ToRu algorithm is started by the master UAV at
the beginning of each time-slot and ends at the end of each time-slot, which is repeatedly executed
in each time-slot to provide services for the requesting tasks in the previous time-slot. For example,
ToRu is executed in time-slot #2 to only provide services for requesting tasks in time-slot #1.

The pseudocode of the ToRu algorithm is illustrated in Algorithm 1. Firstly, it calls
Algorithm 2 with the task set T , the idle communication resource set L and idle com-
putation resource set R in the current time-slot as the input arguments. Note that R
is expressed as R = {R1, R2, . . . , Rm, . . . , RM}. The Rm = {Ncpu

m,a , N f pga
m,a ,Sm} means the

current idle computation resource and deployed SFs on Um. Then, the result returned
by Algorithm 2 is denoted as a four-tuple: {X̃, S̃u, F̃1, F̃2}. X̃ indicates a sub-optimal of
problem P1. S̃u means the task execution success ratio based on X̃, that is, the ratio of the
number of successfully completed tasks to the total number. F̃1 and F̃2 shows the sum
of the task completion time and the overall revenue based on X̃, respectively. If S̃u = 1,
the UAV network obtains the complete revenue from all tasks, and tasks also obtain the
approximate minimum completion time sum; otherwise, it indicates that the UAV resources
are insufficient, and Algorithm 3 is called for maximizing the overall revenue, regardless
of the task completion time. This is reasonable, since when resources are insufficient, the
number of the successfully completed tasks is more important than the task completion
time. Algorithm 3 has the same type of the input parameters and output results with
Algorithm 2. However, the F̃1 returned by Algorithm 3 only represents the completion
time sum of tasks that have been executed successfully.

Algorithm 1: General Framework of ToRu.
Input: the task set T , the idle communication resource set L, and the idle
computation resource setR.
Output: {X, Su,F1,F2}.

1: Initialize: X = 0, Su = 0,F1 = 0,F2 = 0;\\Su represents the task execution success
ratio based on X.

2: Obtain {X̃, S̃u, F̃1, F̃2} by calling Algorithm 2 with T , L andR as the input
parameters.

3: if Su < 1 then

4: Obtain {X̃, S̃u, F̃1, F̃2} by calling Algorithm 3 with T , L andR as the input
parameters.

5: end if

6: {X, Su,F1,F2} = {X̃, S̃u, F̃1, F̃2}.
7: return {X, Su,F1,F2}.
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Algorithm 2: Minimizing the completion time sum.
Input: the task set T , the idle communication resource set L, the idle computation resource setR.
Output: {X, Su,F1,F2}.
1: Initialize: X = 0, Su = 0,F1 = 0,F2 = 0, Lmax = 0, Nt = 0, sp = 0,n = 0, k = 0.
2: Nt = |T |.
3: Lmax = the maximum length of SFCs in T .
4: Instantiate the last SF of the SFC on its source UAV for each task.
5: Ttemp = Null.\\ Define a temporary set.
6: for p = 0 to p = Lmax − 2 do

7: for n = 1 to Nt do

8: k = Ns
n − p.

9: if k < 0 then

10: Continue.\\The SFC of Tn has been successfully instantiated.
11: else

12: Add the Tn to the set Ttemp.
13: end if

14: end for

15: while Ttemp != NULL do

16: for i = 1 to |Ttemp| do

17: Extract the i-th task Ti∗ from the set Ttemp, Ti∗ ∈ T .
18: Compute the candidate UAVs of the SF sk

i∗ for task Ti∗ according to C2∼C4.
19: if no the candidate UAVs then

20: Su = 0.
21: return {X, Su,F1,F2}.\\There are tasks that cannot be completed as required.
22: end if

23: end for

24: Select one task Tn∗ from the set Ttemp and instantiate its SF sk
n∗ on its optimal candidate UAV Um∗

based on our proposed principle in Section 4.2.
25: The remaining resources of Um∗ are refreshed through subtracting the resources consumed by

the instance of sk
n∗ .

26: Xm∗
n∗ ,k = 1, and delete Tn∗ from Ttemp.

27: end while

28: end for

29: Su = 1.
30: Obtain the value of F1 and F2 according to Equation (16) and Equation (17).
31: return {X, Su,F1,F2}.

Algorithm 3: Maximizing the overall revenue.
Input: the task set T , the idle communication resource set L, and the idle computation resource setR.
Output: {X, Su,F1,F2}.
1: Initialize: X = 0, Su = 0,F1 = 0,F2 = 0, Nt = 0, Nf ail = 0,n = 0, k = 0;
2: Nt = |T |;
3: Sort the tasks in T according to the value of vn/Ns

n. The larger the value, the higher the ranking.
4: for n = 1 to Nt do

5: Instantiate the SF sNs
n+1

n of the task Tn
6: for k = Ns

n to 0 do

7: Compute the candidate UAVs of the SF sk
n for the task Tn according to C2 ∼ C4;

8: if no the candidate UAVs then

9: Nf ail ++;
10: Release the resources previously allocated to the task Tn, and clear the corresponding

decision variable in X;
11: Continue;
12: end if

13: Select an optimal candidate UAV U∗
m based on the principle proposed in Section 4.3 for

instantiating the SF sk
n;

14: The remaining resources of Um∗ are refreshed through subtracting the resources consumed by
the instance of sk

n∗ .
15: Xm∗

n,k = 1;
16: end for

17: end for

18: Su = (Nt − Nf ail)/Nt;
19: Obtain the value of F1 and F2 according to Equation (16) and Equation (17).
20: return {X, Su,F1,F2}.
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4.2. Suboptimal Solution to Minimize the Completion Time Sum

When instantiating an SFC for a requesting task, the UAV network not only needs to
provide sufficient computation resources for each SF instance, but also to ensure that there
are sufficient wireless link resources between adjacent SF instances. In order to improve the
efficiency of SFC instantiation, this paper implements SF instantiation one-by-one according
to the reverse order of SFC. As shown in Figure 4, the downstream SF is first instantiated on
a UAV; then, the candidate UAVs that can instantiate the upstream SF are found according
to C2∼C4; finally, in order to efficiently match SFCs and computing resources, so as to
minimize the completion time sum of all tasks, this paper instantiates the SFCs of all tasks
in parallel mode with sufficient UAV network resources. This parallel mode refers to the
fact that only one SF in each SFC can be instantiated in a round of SF instantiation. After
multiple rounds of SF instantiation, the instantiations of all SFCs can be completed. If all
SFCs have the same length, the instantiations of all SFCs are completed at the same time.

Figure 4. Workflow chart of Algorithm 2. The last SF of the SFCs of T1∼T7 is simultaneously
instantiated on the source UAV in the 1-st round. In the 2-nd round, according to our proposed
principle, the candidate UAVs for the upstream SFs (i.e., s3

1, s2
2, s3

3, s4
4, s3

5, s2
6 and s4

7) is obtained,
respectively; then, these upstream SFs is instantiated one by one; next, go into the next round. When
the 6-th round is successfully completed, the SFCs of all tasks are successfully instantiated and
Algorithm 2 exits.

A typical process of the SFCs instantiation in parallel mode is shown in Figure 4.
Assume that the SFCs of task T1∼T7 need to be instantiated. The last SF of each SFC is first
simultaneously instantiated on the source UAV (i.e., 1-st round). Then, according to C2∼C4,
we separately identify candidate UAVs that can instantiate the upstream SF (i.e., 2-nd
round). Furthermore, we calculate the corresponding task stay time and the number of
sub-channels occupied when the upstream SF is instantiated on different candidate UAVs.
Finally, we select one optimal UAV for each upstream SF from the candidates based on our
proposed principle, which is described below:

1. The upstream SF with only one candidate UAV firstly are instantiated, which is
beneficial to maximizing F2. As shown in Figure 4, s3

1 contained in T1 has one
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candidate UAV, so it is firstly instantiated. When facing multiple such upstream SFs
(like s3

1), randomly select one of them for instantiation;
2. When all upstream SFs have multiple candidate UAVs, select the upstream SF with

the candidate UAV that does not occupy the sub-channel, and instantiate it on this
candidate UAV. As shown in Figure 4, s2

2 contained in T2 has multiple candidate UAVs,
and if it is instantiated on the candidate U8, no sub-channel is occupied. Therefore, s2

2
should be first initialized in the current situation. When facing multiple such upstream
SFs (like s2

2), randomly select one of them for instantiation;
3. If there is no upstream SF that satisfies the above principle 1 or principle 2, the

candidate UAVs of each upstream SF are divided into two categories based on the
number of idle channels: the candidate UAVs with the number of idle channels
greater than Ne are called “rich candidate UAVs”, the remaining UAVs are called
“poor candidate UAVs”. Considering the shortage of UAV wireless link resources, the
upstream SFs should be instantiated preferentially on candidate UAVs with abundant
link resources, i.e.,“rich candidate UAVs”, which is beneficial to maximizing F2.
Therefore, we first select an optimal UAV for the upstream SF with “rich candidate
UAVs”, the specific principles are as follows:

(a) The upstream SFs with only one “rich candidate UAV” are first instantiated. As
shown in Figure 4, s3

3 contained in T3 has only one “rich candidate UAV”, so it is
instantiated first. When facing multiple such upstream SFs (e.g., s3

3), randomly
select one of them for instantiation;

(b) When the remaining upstream SFs have multiple “rich candidate UAVs”, we rank
their candidate UAVs according to the stay time of a task executed on them, and
the candidate UAV with short stay time is ranked higher. The upstream SF with
the largest gap in the stay time between its first-ranked candidate UAV and its
second-ranked candidate one will first be instantiated on the first candidate one,
which is beneficial to minimizing F1. As shown in Figure 4, both s4

4 contained
in T4 and s3

5 contained in T5 have two “rich candidate UAV”. The gap in the
stay time of s4

4 (s3
5) on its different candidate UAVs is 10 ms (20 ms), so s3

5 is first
instantiated on the candidate U9. When the gap is the same, select one of them at
random for instantiation

In addition, when all upstream SFs with “rich candidate UAVs” have been instantiated
and there are still uninstantiated upstream SFs, i.e., the upstream SFs with only “poor
candidate UAVs”, we regard the “poor candidate UAVs” as “rich candidate UAVs” and
select the optimal UAVs for the uninstantiated SFs according to the above principle (a)
and (b). As shown in Figure 4, both s2

6 contained in T6 and s4
7 contained in T7 have only

“poor candidate UAV”, so they are lastly instantiated according to the above principle (a)
and (b). Note that once an SF is successfully instantiated, all candidate UAVs belonging
to uninstantiated SFs must be updated immediately before starting to select the optimal
UAV for the next uninstantiated SF (i.e., step 16∼25 in Algorithm 2). Repeat the above
operations until the SFCs of all tasks are instantiated, whose pseudocode is as shown in
Algorithm 2.

4.3. Suboptimal Solution to Maximize the Overall Revenue

When the UAV network resources are insufficient, in order to obtain more revenue,
UAVs naturally give priority to serving tasks that can pay more on average for each
SF instance, i.e., the task with the greatest value of vn/Ns

n is given priority. Different
from Algorithm 2, we adopt a serial service mode, that is, only after completing the SFC
instantiation of one task, we start to instantiate the SFC of the next task. Thus, the principle
of selecting one optimal UAV for each SF is also different from that in Section 4.2, which is
described as follows:

1. The UAV network first instantiates the SFC for a task with the greatest value of vn/Ns
n.

When facing multiple tasks with the same payment, the UAV randomly selects one
to serve;
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2. An SF is preferentially instantiated on the candidate UAV that does not occupy the
sub-channel;

3. If there is no task that satisfies the above principle 2, the candidate UAVs of each task
are divided into “rich candidate UAVs” and “poor candidate UAVs“ according to the
principle in Section 4.2. Then, we do the following:

(a) When the number of “rich candidate UAVs” is greater than 0, the candidate UAV
with the lowest performance is selected, and the high-performance UAVs are left
for subsequent tasks with higher computation requirement, which is beneficial
to maximizing F2;

(b) When the number of “rich candidate UAVs” is equal to 0, the above operations
are performed among “poor candidate UAVs”.

Repeat the above operations for the required SFCs of all tasks are instantiated, whose
pseudocode is as shown in Algorithm 3.

4.4. Computational Complexity Analysis

In order to show the feasibility and efficiency of the proposed ToRu algorithm, we
focus on its time computational complexity in this section. As shown in Algorithm 1,
when the idle resources of the UAV network are rich and the number of tasks requesting
service is small, ToRu only executes Algorithm 2; otherwise, it first executes Algorithm 2,
and then executes Algorithm 3. Next, we analyze the time complexity of Algorithm 2
and Algorithm 3, respectively. As shown in Algorithm 2, the maximum value of variable
|Ttemp| is equal to Nt, and its value decreases with the increase of the control variable p.
Therefore, the worst time complexity of Algorithm 2 is O(Lmax.Nt), where Lmax represents
the maximum number of SFs contained in an SFC, Nt represents the number of tasks
requesting service. Similarly, the maximum value of variable Ns

n in Algorithm 3 is equal to
Lmax, so that the worst time complexity of Algorithm 3 is also O(Lmax.Nt). To sum up, the
worst time complexity of the proposed ToRu algorithm is O(Lmax.Nt), which can obtain
the sub-optimal solution to the problem P1 in polynomial time.

5. Simulation and Results Analysis

This section first presents the experimental settings, then analyzes the results.

5.1. Experimental Settings

Platform Settings. All experiments were conducted on a PC that runs Ubuntu 18.04
with 3.2 GHz CPU and 16 GB RAM. The proposed ToRu algorithm was designed and
implemented using C++ language.

Parameter Settings. Consider a service scenario with 25 UAVs that are 500 m apart.
The number of tasks input into the simulation environment varies from 10 to 190. The main
parameter settings are included in Table 2.

Table 2. Parameter settings.

Parameter Value Parameter Value

M 25 Q 30
fm,q [1, 10] GHz am,q [2, 20] GOPS
Pm 1 W N0 10−20 W/Hz
B 1 MHz β0 1.42× 10−4

rk,k+1
n 10 Mbit Nc

m 8
lk,0
n [0.1, 10] Mbit lk,1

n [100, 1, 000, 000] Cycles
Ns

n [2, 5] lk,2
n [200, 2, 000, 000] OPs

Ncpu
m [10, 20] N f pga

m [10, 20]
dn,m 500 m vn [2, 20]

Experimental process. When the number of input tasks is given, the geographic
location of each task is generated randomly, and then the attributes of each task (such as
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task length, required SFC, task complexity, etc.) are generated randomly. Finally, each task
randomly requests service from a UAV that covers it. In addition, for a given number of
input tasks, we simulate 100 times and take the average of the simulation results as the
final value.

Comparison Benchmarks. To validate the necessity of each component of the compari-
son benchmarks design, we adopt a step-by-step evaluation philosophy in the experimental
design. For each benchmark algorithm, there are two steps: the order in which these SFCs
are instantiated, and the principle of instantiating SI contained in an SFC. For the first
step, similar to the greedy algorithm [20], two sorting strategies are chosen as comparison
benchmarks: (1) Revenue: the task with highest payment is firstly served; (2) Length: the
task with the shortest SFC length is firstly served. For the second step, three strategies
are chosen as comparison benchmarks: (1) Random: an SF is instantiated on a random
candidate UAV, similar to the random algorithm [32]; (2) Greedy: an SF is instantiated on a
candidate UAV with the best performance, similar to the greedy algorithm [20]; (3) Local:
an SF is only instantiated on a local UAV, similar to the local algorithm [32]. Similar to these
step-wise algorithms [20,32], we have 6 combination algorithms for comparison, marked
as “Revenue + Random”, “Revenue + Greedy”, “Revenue + Local”, “Length + Random”,
“Length + Greedy”, and “Length + Local”.

1. “Revenue + Random”: it first selects the task with the highest payment and performs
SFC scheduling for it; next, when instantiating one SF contained in an SFC, it always
randomly selects one from the candidate UAVs to instantiate this SF.

2. “Revenue + Greedy”: this algorithm first selects the task with the highest payment
and performs SFC scheduling for it; next, when instantiating one SF contained in an
SFC, it always selects the best performance one from the candidate UAVs to instantiate
this SF.

3. “Revenue + Local”: this algorithm first selects the task with the highest payment and
performs SFC scheduling for it; next, when instantiating one SF contained in an SFC,
it always selects the local one from the candidate UAVs to instantiate this SF.

4. “Length + Random”: this algorithm first selects the task with the shortest SFC length
and performs SFC scheduling for it; next, when instantiating one SF contained in an
SFC, it always randomly selects one from the candidate UAVs to instantiate this SF.

5. “Length + Greedy”: this algorithm first selects the task with the shortest SFC length
and performs SFC scheduling for it; next, when instantiating one SF contained in an
SFC, it always selects the best performance one from the candidate UAVs to instantiate
this SF.

6. “Length + Local”: this algorithm first selects the task with the shortest SFC length and
performs SFC scheduling for it; next, when instantiating one SF contained in an SFC,
it always selects the local one from the candidate UAVs to instantiate this SF.

5.2. Results and Analysis
5.2.1. The Completion Time Sum of Tasks

Figure 5 shows the completion time sum under the different tasks offloaded to the
UAV network. We can see that our proposed ToRu algorithm significantly outperforms
other algorithms in the completion time sum of tasks at the first stage, i.e., the stage before
the number of tasks reaches critical point. Figure 6 shows the simulation results of the first
stage in more detail. This is mainly because on the one hand, we instantiate each SF of the
SFCs of all tasks in a parallel mode; on the other hand, the pairing rules between SFs and
their candidate UAVs are designed from the global perspective, and each SF considers the
impact on other SFs when selecting candidate UAVs. Then, the performance of “Revenue +
Greedy” and “Length + Greedy” comes second. It is also reasonable, since both algorithms
greedily choose the UAV with the highest processing performance to instantiate the SFC.
Lastly, the Algorithm “Revenue + Random”, “Revenue + Local”, “Length + Random”, and
“Length + Local” have the worst performance because they do not consider the effect of
UAVs on the completion time when making their choices. However, with the increase
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of the number of tasks, the completion time sum of tasks also increases. This is because
the length and type of newly added tasks are random, so UAV computation resources are
used more fully and more tasks are executed successfully. Furthermore, as the number of
tasks continues to increase, the completion time sum of tasks in all algorithms no longer
increases, it even starts to decrease (e.g., “Length + Greedy”). The reason is that tasks
with less execution time are prioritized. To sum up, when the number of tasks exceeds
the critical point (i.e., tasks can not be executed 100%), it is meaningless to evaluate the
completion sum of tasks.
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Figure 5. The completion time sum with different algorithms during the whole simulation phase.
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Figure 6. The completion time sum with different algorithms in the stage of abundant resources.

315



Drones 2023, 7, 132

5.2.2. The Task Execution Success Ratio

Figure 7 shows the average execution success ratio of algorithms under different tasks.
The result shows that algorithm ToRu has the highest success ratio, especially with the
gradual increase of tasks, it can still maintain a high success ratio. This is mainly because
ToRu only selects candidate UAVs with low performance to meet the requirements when
instantiating SF, in other words, the improvement in the task execution success ratio comes
at the expense of individual task execution performance. The algorithms “Length + Local”
and “Revenue + Local” show the worst performance before the critical point, because they
do not fully utilize the resources of the UAV network. With the increase of the number of
tasks, “Length + Greedy” has the highest task execution success ratio. This is reasonable
since it serves tasks with the shortest SFCs first, which consume less computation and
communication resources. Finally, the algorithms “Length + Random” and “Revenue +
Random” shows the poor performance when the network load is heavy.
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Figure 7. The task execution success ratio with different algorithms.

5.2.3. The Overall Revenue

Figure 8 presents the overall revenue under different tasks. As can be seen in Figure 7,
when the number of tasks is small, the task execution success ratios of the algorithms except
“Length + Local” and “Revenue + Local” are all 100%. Therefore, they have equal revenue.
With the increase of tasks, the overall revenue of each algorithm increases rapidly before the
critical point, then, the growth becomes slow. Moreover, the overall revenue of algorithm
ToRu is always the largest among the seven algorithms because it not only ensures that
tasks with higher payments are executed, but also ensures a higher task execution success
rate. The algorithm “Revenue + Greedy” performs better, which is mainly because it first
completes tasks that pay more. In addition, we can see that the performance of algorithms
based on revenue sorting principle is better than that of algorithms based on length sorting,
which is reasonable.
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Figure 8. The overall revenue with different algorithms.

5.2.4. The Resources Utilization

Figures 9 and 10 show the utilization of channel and computation resources of different
algorithms, respectively. We can find that the channel resources consumed by the algorithm
ToRu increase with the number of tasks before the critical point. This is because the
resources are sufficient before the critical point, and the algorithm ToRu seeks to minimize
the completion time sum of tasks without caring about resource consumption. Due to
the limited communication resources between UAVs, it often becomes the bottleneck of
the task execution success ratio. When the number of tasks requesting service is small,
Algorithm 2 is executed. It instantiates each requested SFC in parallel mode, that is, it
selects the most preferred UAV for each SF contained in different SFCs at the same time,
which will lead to the premature consumption of the most preferred UAVs early. Therefore,
the probability that all SFs contained in one SFC are deployed on the same UAV will be
reduced. Different SFs contained in one SFC have to interact with each other, resulting in
the high channel utilization. On the contrary, when the number of tasks requesting service
is large, Algorithm 3 is executed. It instantiates each requested SFC in serial mode, that
is, it starts to instantiate the next SFC after having instantiated all SFs contained in the
previous SFC, so that the probability that all SFs contained in one SFC are instantiated
on the same UAV will be greatly increased. The interaction between different SFs on the
same UAV will no longer consume channel resources, thus, the channel utilization will be
rapidly reduced. As shown in Figure 9, after the critical point, the channel utilization in
the algorithm ToRu decreases greatly and remains stable at a low value. This inevitably
leads to the increase of the completion time sum of tasks (as shown in Figure 5), but it can
improve the task execution success ratio (as shown in Figure 7). The algorithms “Revenue
+ Local” and “Length + Local” do not consume channels because they only execute tasks
on the local UAV. The channel utilization of other algorithms increases sharply with the
increase of the number of tasks, so that their computation resources cannot be fully utilized,
as shown in Figure 10. This will reduce the task execution success ratio and the overall
revenue, as shown in Figures 7 and 8. It is obvious that the computation utilization of the
algorithm ToRu has reached 100%, which is the reason why its task execution success ratio
and overall revenue are the highest.
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Figure 9. The channel utilization with different algorithms.
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Figure 10. The computation resource utilization with different algorithms.

5.2.5. The Operation Time

Table 3 provides the operation time results of our proposed ToRu algorithm on average
under different number of tasks requesting service. We can see that the operation time of
ToRu is relatively small in the first stage (that is, before the number of tasks requesting
service reaches “critical point”, as shown in Figure 5). This is because as there are sufficient
resources at this stage, ToRu can exit after executing Algorithm 2. When the number
of tasks requesting service exceeds the “critical point” (i.e., 50), ToRu can judge that the
resources are insufficient after executing Algorithm 2, and it then continues to execute
Algorithm 3 for rescheduling SFCs. This undoubtedly increases the operation time, as
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shown in Table 3. However, as the number of tasks requesting service continues to increase,
the shortage of resources will become more obvious, which can be easily judged by several
loop operations of Algorithm 2. Therefore, the operation time of Algorithm 2 can be
ignored, and the operation time of ToRu only includes the one of Algorithm 3. As shown in
Table 3, the operation time of the ToRu algorithm decreased sharply after the number of
tasks requesting service exceeds 110, and then maintained a stable small increase. This is
consistent with our complexity analysis results in Section 4.4, indicating that our proposed
algorithm has good execution efficiency and scalability.

Table 3. Operation time of ToRu algorithm.

Number of Tasks Operation Time Number of Tasks Operation Time

Nt = 20 ∼ 2 ms Nt = 110 ∼ 34 ms
Nt = 30 ∼6 ms Nt = 120 ∼36 ms
Nt = 40 ∼14 ms Nt = 130 ∼38 ms
Nt = 50 ∼32 ms Nt = 140 ∼40 ms
Nt = 60 ∼50 ms Nt = 150 ∼46 ms
Nt = 70 ∼90 ms Nt = 160 ∼50 ms
Nt = 80 ∼95 ms Nt = 170 ∼56 ms
Nt = 90 ∼110 ms Nt = 180 ∼62 ms

Nt = 100 ∼126 ms Nt = 190 ∼74 ms

6. Conclusions

This paper formulates the SFC scheduling problem as a 0–1 nonlinear integer program-
ming problem in the multi-UAV edge computing network with CPU + FPGA computation
architecture. A two-stage heuristic algorithm named ToRu is put forward to derive a
sub-optimal solution of the problem. At the first stage, the SFCs of all tasks are scheduled
to UAV edge servers in parallel based on the our proposed pairing principle between SFCs
and UAVs for minimizing the completion time sum of tasks; at the second stage, a revenue
maximization heuristic is adopted to schedule the arrived SFCs in a serial service method.
A series of experiments were conducted to evaluate the performance of our proposal. The
results show that our algorithm outperforms other benchmark algorithms in the completion
time sum of tasks, the overall revenue, and the task execution success ratio.

The main limitation of ToRu algorithm lies in the fact that it is designed to realize
the online long-term SFC scheduling based on the stable UAV network topology. In other
words, it cannot be applied directly in the scenario where UAVs frequently join and exit.
In our future work, we plan to design a supplemental algorithm with network topology
prediction capability, which can help ToRu adapt to the dynamic scenario.
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