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A fast search method of buckling load
for telescopic boom structure

Tianjiao Zhao , Zhaohui Qi and Tianyu Wang

Abstract
The telescopic boom structures are extensively utilized in engineering applications involving large mobile cranes, aerial
work platforms of significant height, and similar mechanical devices. These are predominantly fabricated using solid-
webbed box types, latticed truss designs, or a combination thereof. Under load, they exhibit pronounced geometric non-
linear effects, with the relationship between load and displacement demonstrating marked nonlinear characteristics. This
paper focuses on the geometric nonlinear modeling of slender multi flexible beam structures. The overall structural sys-
tem is divided into several substructures, and the concept of multi flexible system modeling is borrowed to establish a
follow-up connected body foundation on each substructure. By decomposing the node displacement and rotation in the
substructure, the large displacement and large rotation of the node are decomposed into rigid body motion of the con-
nected base and small displacement and small rotation relative to the connected base, effectively representing the large
displacement and large rotation of the substructure as rigid body motion of the connected base. A modeling method for
the geometric nonlinear analysis of slender and flexible multibody beam structures is proposed. By decomposing the
nodal displacement and rotation within the substructures, the large displacement and rotation of the nodes are broken
down into the rigid body motion of the body-fixed coordinate and small displacement and rotation relative to the body-
fixed coordinate. This approach establishes the application conditions for calculating the structure’s virtual power of
deformation using traditional beam elements with linear strain. A method for solving the instability load of slender and
flexible multibody structures is proposed. This method integrates the characteristics of the system’s nonlinear
equilibrium equations with respect to load, by deriving the system equations with respect to a load increment control
parameter. This paper converts nonlinear equilibrium equations into first-order ordinary differential equation (ODE).
The method proposed in this paper provides a more efficient solution for the buckling load of the telescopic boom. It
can be used to systematically and quickly calculate the structure of the telescopic boom.
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Introduction

Mobile cranes are widely used in various fields of
construction machinery due to their strong flexibility and
wide extension range. As shown in Figure 1, the telescopic
arm structure, as its main load-bearing component, plays
an irreplaceable role.1–3 The lifting height during actual
work can reach tens or even hundreds of meters. The
extended structure of the telescopic arm is usually a
slender structure with obvious geometric nonlinear effects.

In addition, the stability of the structure is also the main
factor limiting lifting performance.
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A large number of relevant studies have been accu-
mulated in the structural analysis of telescopic boom,4–7

which have solved a lot of theoretical and practical engi-
neering problems, among which a considerable part of
the work is to complete the finite element modeling of
the entire structure directly by using the shell element in
commercial software, while the huge degree of freedom
and complex contact constraints often seriously affect
the computational efficiency and convergence. In many
existing literatures and specifications,8–13 the telescopic
arm is regarded as a ladder column with variable sec-
tion, and its deformation and instability are solved by
energy method, Rayleigh-Leeds method and precise
finite element method, etc. Ali Faghidian study a sta-
tionary variational framework of the Timoshenko–
Ehrenfest beam founded on the elasticity theory, And a
lot of valuable conclusions were obtained.32,33 In
essence, the problem of a single component with chang-
ing section is still stuck in the problem of a multi-
structure complex telescopic arm composed of multiple
hollow monomers with changing section thickness is
rarely studied. Akano and Olayiwola34,35 has conducted
in-depth related research and obtained many valuable
conclusions. Moreover, this equivalent step beam model
adopts the common method of superposition of bending
and torsional modulus of overlapped parts in engineer-
ing, which will undoubtedly produce false constraint
reaction in the overlapped parts.

In engineering, the long and thin structure after
bearing loads shows large deformation as a whole, but
it is still in the category of small deformation in a local
area. Considering this feature, many experts and scho-
lars have proposed corresponding geometric nonlinear
calculation methods.14,15 Compared with the TL
schema of the early reference initial configuration and
the UL schema of the current configuration,17–19 the
co-rotation coordinate method16 presents simple and
efficient advantages: it can apply the existing linear ele-
ments without the construction of complex nonlinear
elements, and is favored by engineering designers.20–22

Ali Faghidian proposed a new approach for inverse
reconstruction of eigenstrains and residual stresses in
autofrettaged spherical pressure Vessels.30,31

In the existing design codes, for the whole stability
calculation of long and thin compression bending mem-
bers,23–27 the section bending moment is often ampli-
fied by the magnification factor, so as to consider the
geometric nonlinear influence of the structure, and the
stability problem is transformed into the equivalent
stress calculation problem. However, this method is
only a simplified load verification method, which can-
not fully reflect the actual geometric nonlinear effect of
the structure or accurately predict the instability load,
nor can it provide the equilibrium path curve of the
solution process. Therefore, it is meaningful to develop
a solution strategy for unstable load that does not

depend on the initial value of the nonlinear equation
and can automatically adjust the incremental load
step. Ali Faghidian and Tounsi study the dynamic
characteristics of elastic nanobeams within the context
of the mixture unified gradient theory of elasticity.

The telescopic boom structure is characterized by
combination rules and many calculation conditions,
which often requires a large number of performance
calculations. Therefore, the problem worth studying is
whether the stability critical load of the structure can be
quickly searched by reducing the degree of freedom as
much as possible on the premise of accurately describ-
ing the geometric nonlinear effect of deformation and
the nested constraint relationship between the arm seg-
ments. The substructure is established with the contact
section nodes and cylinder hinge joints as the boundary
points. The internal node freedom of the substructure
can be represented by the boundary node freedom
through the internal equilibrium equation, and then
converted to the formal two-node super element.
Considering that the telescopic boom structure is in line
with the constraints and boundary conditions of the
actual equipment, the structural nonlinear balance
equation including lifting load parameters and the cor-
responding tangential stiffness matrix are established
by taking the degree of freedom of the super element
node as the system variable.

A modeling method for geometric nonlinear analysis
of slender multi-flexible beam structures is proposed.
Based on the modeling theory of multi-flexible system,
the flexible structure is divided into several sub-struc-
tures, and a continuous base is established on each sub-
structure. By decomposing the node displacement and
rotation in the substructure, the large displacement and
rotation of the node are decomposed into the rigid body
motion of the connected base and the small displace-
ment and rotation relative to the connected base. Thus,

Figure 1. Examples of telescopic booms for mobile cranes.
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the application conditions of calculating the virtual
power of structural deformation using the linear strain
of traditional beam elements are established. Finally,
the differential form of the equilibrium equation is used
to quickly solve the deformation equilibrium path and
instability load of the structure.

This paper is organized as follows: Section 2
describes the process of rope element discretization
between pulleys, and provides a generalized mass
matrix and force matrix considering model noise reduc-
tion. Section 3 describes how to establish a pulley block
model. Section 4 details the calculation method for
strain in the rope section in contact with pulley. Section
5 provides the boundary conditions for the driving
drum and a method for handling system constraints
that are not independent. Three numerical examples
are presented in Section 6 to validate the proposed
method. Section 7 summarizes some conclusions and
recommendations for complex systems containing
pulley blocks.

Splicing method of beam element with
variable section arm

The length of the arm segment of the telescopic arm
structure is much larger than the section size, which is a
typical hollow slender structure, so the arm segment
can be modeled by common beam elements. As shown
in Figure 2, the deformation virtual power of the beam
element

d�we = d�uT
e, vK�ue ð1Þ

Where

�ue = �u1; �u1; �u2; �u2

� �
ð2Þ

Under the condition of small strain, the stiffness
matrix in equation (1) is a constant matrix.The gravita-
tional virtual power in the direction g

d�wg =

ð
d�uv

T rgds�eg = d�uT
v Gg�eg ð3Þ

It should be noted that the joint parameters of the
traditional linear beam element stiffness matrix and the
gravity influence matrix are both the centroid displace-
ments of the left and right ends. However, in view of
some specific problems, the node parameters are often
selected to reflect the structural cross-section shape of
the feature points as nodes, as shown in Figure 3, Ali
Faghidian study the smoothed inverse eigenstrain
method for the reconstruction of residual fields from
limited residual strain measurements in axially
symmetric stress state.20–22 The common variable sec-
tion of the arm is composed of the upper cover plate
and the lower cover plate, part of the regular shape, the

whole of the irregular shape. In addition, the thickness
of the lower cover plate may change at a certain length
along the axis of the arm segment, and the change in
the thickness of the arm segment will only affect the
mass distribution of the section and the change of cen-
troid coordinates, but will not affect the change of the
relative position of the selected feature points, so that
there will be no non-coincidence of shared nodes
caused by the change in section.

In view of this type of cross section, the cross section
coordinate system is usually established at the center of
the semicircle of the lower cover plate, and it is more
appropriate to choose the displacement u1 and u2 of
the origin of the coordinate system as the description
variables. The coordinates of the section centroid in the
section coordinate system are (y, z), then there is

�u1 = û1 +Ge
�u1; �u2 = û2 +Ge

�u2 ð4Þ

among6

Ge =
0 z �y

�z 0 0

y 0 0

2
4

3
5 ð5Þ

The deformation virtual power and gravity virtual
power of the beam element are not at the center of the
node

Figure 2. Two-node spatial beam elements.

Figure 3. The change of cross-section.
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dŵe = dûT
e, vK̂ûe; dŵg = dûT

e, vĜg�eg ð6Þ

among

K̂= Ĝ
T

e KĜe; f̂g = Ĝ
T

e fg ð7Þ

Ĝe =

E3 3 3 Ge 03 3 3 03 3 3

03 3 3 E3 3 3 03 3 3 03 3 3

03 3 3 03 3 3 E3 3 3 Ge

03 3 3 03 3 3 03 3 3 E3 3 3

2
664

3
775 ð8Þ

The section is established by selecting suitable sec-
tion feature points as nodes.The displacement coordi-
nation between the centroid and the node realizes the
variable section of the arm splicing of each beam ele-
ment. As shown in Figure 4, when considering the first
arm segment with variable amplitude cylinder support
and over-mast connection, since its structural charac-
teristics contain constraints and external connecting
elements, the location of these constraints and external
connecting elements must be defined as the boundary
node of the substructure to ensure the accuracy and
effectiveness of the substructure division.

Displacements of substructural elements
and condensation of degrees of freedom

The elongated characteristics of the telescopic arm
often lead to the phenomenon of large displacement
and large rotation after loading, and the linear analysis

results may be obviously inconsistent with the reality.
Aiming at the geometric nonlinearity of slender struc-
tures, the corotational coordinate method first pro-
posed by Wempner28and Belytschk29decomposed the
displacement field of elements into rigid body rotation
with the element coordinate system and small displace-
ment relative to the element. Such units also show obvi-
ous advantages in specific applications.15 But on the
other hand, it is the same as the traditional method, if
the nonlinear analysis is to be done, all the elements in
the structure must be treated as nonlinear elements,
and finally the structural equilibrium equation is a set
of nonlinear equations with high dimension. In fact,
according to the characteristics of the telescopic arm
structure, each arm segment can be reasonably divided
into several substructures. The geometric nonlinear
effect is mainly reflected in the large displacement and
rotation of the connected coordinate system of the sub-
structure. The displacement rotation of each node in
the substructure relative to the connected coordinate
system can be treated as small displacement and small
rotation.

The substructure shown in Figure 5 consists of n
beam elements. The origin of the beam section coordi-
nate system is taken as the node of the generalized beam
element, and its diametries relative to the global coordi-
nate system are respectively r0, rn, Global rotation
parameter (Cardan Angle) u0, un.R0,Rn respectively are
instantaneous orientation matrix of cross section.
Ri(i= 0, 1, n) column vector can be represented by
the elements ai,bi, gi in the global rotation parameter
ui as

ti = c
b
i c

g
i g1 +(sa

i s
b
i c

g
i + ca

i s
g
i )g2 +(sa

i s
g
i � ca

i s
b
i c

g
i )g3

bi =(ca
i c

g
i � sa

i s
b
i s

g
i )g2 +(sa

i c
g
i + ca

i s
b
i s

g
i )g3 � c

b
i s

g
i g1

si = s
b
i g1 � sa

i c
b
i g2 + ca

i c
g
i g3

ð9Þ

among

Figure 4. Examples of substructures.

Figure 5. Beam elements in the substructures.
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sa
i = sinai, c

a
i = cosai

s
b
i = sinbi, c

b
i = cosbi

s
g
i = singi, c

g
i = cosgi

ð10Þ

The left-most section coordinate system ft0, b0, s0g
of the substructure is defined as the connected coordi-
nate system of the substructure, and the vector diameter
of any point in the substructure

r= r0 +RT
0 (�r+ �u) ð11Þ

Its rate of change

rv = r0, v +v0 3 (r� r0)+R0�uv ð12Þ

Among them, the vector radius r of a point in the
substructure at the initial moment (before deformation)
in the substructure connected coordinate system, after
deformation, become �r+ �u. Corresponding virtual
velocity

drv = dr0, v + dv0 3 (r� r0)+R0d�uv ð13Þ

dv ’ dv0 +R0d�uv ð14Þ

The global virtual velocity of freedom of any point
inside the substructure is decomposed into the transla-
tional rotational freedom of the substructure connected
coordinate system and the local virtual velocity of free-
dom of the current connected coordinate system. In
order to transform the virtual power equation into an
algebraic equation, it is necessary to give the functional
relationship between the global degree of freedom and
the global degree of freedom because the local degree
of freedom in the connected coordinate system is incon-
sistent with the global degree of freedom in the global
coordinate system. The displacement of the beam ele-
ment nodes in the connected coordinate system of the
substructure can be expressed as

�ui =RT
0 (ri � r0)� (�ri � �r0) ð15Þ

Its rate of change

�ui, v =RT
0 (ri, v � r0, v +(ri � r0)3 v0) ð16Þ

The corresponding local rotation angle �ui can be
obtained from the rotation matrix �Ri of the cross-
section relative to the substructure coordinate system

�Ri =RT
0Ri ð17Þ

Its rate of change

�ui, v ’RT
0 (vi �v0) ð18Þ

vi is the angular velocity of rotation in the cross-
sectional coordinate system, and its conversion rela-
tionship with the various elements ai,bi, gi in the over-
all rotation parameter ui is

vi =
1 0 sinbi

0 cosai � sinai cosbi

0 sinai cosai cosbi

2
4

3
5 ai, v

bi, v

gi, v

2
4

3
5=Tviui, v

ð19Þ

The displacement Angle of the node in the leftmost
section is zero relative to the connected coordinate sys-
tem of the substructure, and the displacement Angle of
all nodes described in the connected coordinate system
of the substructure is small displacement and small
rotation, which meets the characteristics of linear beam
elements. Moreover, the nodes in each substructure can
be divided into two categories: (1) boundary node sets
nb connected with other substructures; (2) The internal
node set ni, so that the internal degrees of freedom of
the substructure can be condensed to the boundary
degrees of freedom. As a nested structure, the telescopic
arm is characterized by one embedded into another
between different arm segments to form a telescopic
arm with multiple arm segments. The substructure divi-
sion of the telescopic arm is based on the overlap point
between the structural endpoint and the arm segment,
which is used to define the boundary of the substruc-
ture, and then realize the clear division of the substruc-
ture, as shown in Figure 6

In the substructure coordinate system, the stiffness
array of each beam element is assembled and divided
according to the freedom of internal node and the free-
dom of boundary node.

K=
Kbb Kbi

Kib Kii

� �
ð20Þ

Deformation virtual power

dwe = d�uT
b, v Kbb�ub +Kbi�uið Þ+ d�uT

i, v Kib�ub +Kii�uið Þ
ð21Þ

where, �ub represents the node displacement angle on
the leftmost and rightmost section of the substructure,
�ui represents the displacement and rotation angle of
internal nodes in the substructure

�ub = �u0; �u0; �un; �un

� �
; �ui = �u1; �u2; �un�1; �un�1

� �
ð22Þ

Physical virtual power

dwf =

ð
v

drv
T fgdv

= drT
0, vF0 + dvT

0T0 + d�uT
b, vGu�eg + d�uT

i, vGi�eg

ð23Þ
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fg is the density of the gravity line at any point within
the substructure, and F0,T0 is the resultant force and
moment of the equivalent nodal force of the physical
force relative to the origin of the connected coordinate
system, expressed as

F0 =R0

ð
v

�fgdv;T0 =R0

ð
v

(�r� �r0)3 �fgdv ð24Þ

Gu,Gi is the gravity influence coefficient matrix cor-
responding to the boundary and internal degrees of
freedom after the assembly of the substructure beam
elements, and �eg is the component of the gravitational
acceleration in the connected coordinate system of the
substructure. Due to the independence of substructure
boundary conditions and external forces from internal
degrees of freedom, d�ui, v is independent and the coeffi-
cients in the virtual power expression are not affected
by substructure splicing and system external forces.
According to the principle of virtual power

Kib�ub +Kii�ui =Gi�eg ð25Þ

It can be inferred from this

�ui =K�1
ii Gi�eg � K�1

ii Kib�ub ð26Þ

After the arm segment is divided into multiple sub-
structures, the large displacement rotation of the arm
segment can be described as the large displacement
rotation of the substructure coordinate system. The
deformation of the beam element in the substructure
coordinate system is small deformation, so it can be
considered that the displacement and rotation of the
element node in the substructure coordinate system is
small. Under this condition, the elements in the sub-
structure stiffness matrix are constant, so

d�ui, v =Tibd�ub, v ð27Þ

Substituting equations (27) and (28) into equation (22)
yields

dwe = d�uT
b, vKe �ub ð28Þ

Physical virtual power

dwf = drT
0, vF0 + dvT

0T0 + d�uT
b, vGe�eg ð29Þ

Among them, the incidence matrix

Tib = � K�1
ii Kib ð30Þ

The equivalent stiffness matrix and equivalent gravity
influence coefficient are expressed as

Ke =Kbb +TT
ibKib; Ge =Gb +TT

ibGi ð31Þ

In this way, the substructure assembled by splicing n
beam elements is reduced to a super generalized beam
element that represents all node degrees of freedom
using node displacements and rotations at both ends.

Substructure division of telescopic arm
and parallel constraint processing

The connection between the arm segment and the arm
segment in the telescopic boom structure is different
from the traditional multi-object structure. The com-
mon multi-object structure is connected in series by the
constrained typical local rigid area, which can be called
series connection. The telescopic arm structure is a sys-
tem composed of multiple hollow structures surrounded
and nested by layers. The sliding movement of the arm
section along the axial direction is constrained when
working, and the whole arm section is a flexible body
that can undergo large deformation. This connection
can be called parallel connection. As shown in Figure 5,
each arm segment of the telescopic arm is connected
through a pin hole. Although there are gaps between
them, they are very small compared with the section of
the arm segment. In addition, when the bending modu-
lus of each arm segment is of the same order of magni-
tude, the contact area is confined to the narrow area of

Figure 6. Telescopic arm structure and substructure.
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the left end of the inner arm and the right end of the
outer arm.

Each arm segment has at most four sections affected
by other arm segments: the left end face connecting the
pin shaft, the section contacting the right end face of
the outer arm, the section where the pin hole is con-
nected to the inner arm pin, and the right end face con-
tacting the inner beam. These four special section
nodes can be called the left end node, the outer contact
point, the inner contact point, and the right end node.
According to this feature of the telescopic arm, the four
nodes are used as boundary points to divide the sub-
structure of each arm segment, and multiple beam ele-
ments can be further divided within each substructure.
In this way, a complex telescopic arm structure with m
arm joints can be geometrically nonlinear analyzed by
3m� 2 substructures containing a total of 6(4m� 2)
node degrees of freedom.

As shown in Figures 7 and 8, taking arm segment 1
and 2 as an example, there are two types of constraint
relations between adjacent arm segments: (1) The pin
slider constraint between the left section of the inner

arm 3 and the inner contact section 1 of the outer arm;
Second, the right node section of the outer arm 2 and
the outer contact point section 4 of the inner arm are
bound by the slider lap. Here, the node vector diameter
and Angle corresponding to the section are expressed
as ri and the ai,bi, gi. Specific expression of the corre-
sponding section coordinate system fhi

1, h
i
2, h

i
3g is the

same as equation (10).
In the first type of constraint relation, the relative

motion of the section ffi� is limited by the pin connec-
tion of the shaft hole and the middle slider, which
means that the axial vector h1

3, h
3
3 overlaps, and there is

only relative rotation about the axis between the two,
which has the characteristics of rotating hinges in the
theory of multi-body systems. The corresponding con-
straint equation can be written as follows

r3 = r1 + ½ h1
1 h1

2 h1
3
�D�r

h3
3 � h1

1 = 0

h3
3 � h1

2 = 0

8><
>: ð32Þ

Where, D�r is the component of node r3 relative to the
coordinate system of section ffi in the initial state.
According to equation (33), r1,a1,b1, g1, g3 is selected
as an independent variable and r3,a3,b3 is selected as a
dependent variable.

In the second type of constraint relation, the sliders
between the sections ffl andÐ limit the relative transla-
tion along the main axis of the section and the relative
rotation around the plane normal, which has the
characteristics of prismatic hinge in the theory of multi-
body systems, and the corresponding constraint equa-
tion can be written as

(r4 � r2) � h2
1 = 0

(r4 � r2) � h2
2 = 0

h4
3 � h2

2 = 0

8><
>: ð33Þ

According to equation (34), r2,a2,b2, g2, r4 is selected
as an independent variable and a4,b4, g4 is selected as a
dependent variable. Therefore, equations (33) and (34)
together form the constraint equation between the two
adjacent inner and outer layers of the telescopic boom
structure.

Additional structural constraint relation
and equivalent nodal force

The boundary conditions of traditional structural prob-
lems are usually directly constrained displacement, and
the methods for dealing with such constraints have been
very mature; This degree of freedom is determined by
the joint deformation of the arm segment and the fixed
length of the variable amplitude cylinder support in the
working state. In addition, the external force received

Figure 7. Substructure division of the telescopic boom system.

Figure 8. Constraints between booms.
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by the arm section not only includes the self-weight and
the lifting weight, but also includes the additional exter-
nal force exerted by the arm head and the lifting rope.
The external force exerted by these additional structures
on the arm segment is not only related to the displace-
ment of the external force on the structure, but also to
the motion of the constraint structure itself.

Fundamental arm boundary constraints

The hinged part of the turntable and the basic arm is
shown in Figure 9. Due to the high concentration of
force on the pin position, it will be reinforced and
welded to the left end face of the arm joint.

There is a constraint relation between the node vec-
tor diameter of the left section A0 and the rotation para-
meter a1,b1, g1.

r1 = r0 +R0D�r1

a1 = g1 = 0

�
ð34Þ

Where, r0 is the vector diameter of the center point of
the pin, b1 is selected as the angle of coincidence
between the axis direction of the initial state and the
axis direction of the pin as an independent variable,
and r1,a1, g1 is a non-independent variable, then R0

can be expressed as

R0 =
cosb1 0 � sinb1

0 1 0

sinb1 0 cosb1

2
4

3
5 ð35Þ

The lower hinge point of the variable amplitude
cylinder is hinged with the turntable, and the upper
hinge point is hinged with the basic arm. In the work-
ing state, assuming that the length of the cylinder
remains constant, essentially a fixed distance constraint
is formed between the upper and lower hinge points.
The upper hinge point can be represented by the node

vector diameter r2 and rotation parameter a2,b2, g2 of
the section A2 it contacts

rup = r2 +R2D�r2 ð36Þ

Where R2 is the matrix composed of the base vector of
the section coordinate system. The constraint relation
of the variable amplitude cylinder to the basic arm is

rup � rdw

�� ��= d ð37Þ

Where d is the length of the cylinder.The first compo-
nent of the node r2 is selected as the independent vari-
able, and the other descriptive parameters of the section
A2 are non-independent variables.

Arm head, lifting weight, lifting rope additional joint
force

The boom head of the mobile crane telescopic arm is
welded on the right end face of the innermost arm, as
shown in Figure 10. One end of the lifting rope is con-
nected to the winch on the turntable, and the other end
is tangent to the surface of the guide wheel.

Figure 9. Connection between basic boom and turntable.

Figure 10. Connection between boom head and rope.
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The innermost arm section node connected to the
arm head is represented by D, and the arm head is
regarded as a rigid body with mass m. The vector dia-
metries of the center of mass of the arm head, the lifting
rope operating point and the lifting weight operating
point in the section coordinate system Rn connected to
the arm head are rm, rg, rp respectively. Then the mass
of the arm head and the additional equivalent nodal
force of the lifting weight on the node D can be
expressed as

Tm = mg; (Rnrm)3 mg½ � ð38Þ

Tg = Gg= gk k; (Rnrg)3 Gg= gk k
� �

ð39Þ

After the lifting rope bypasses the guide wheel, it is
connected with the n-rate lifting block, and the pulling
force of the rope is 1=n of the lifting weight G. The
direction of the working state is related to the node dis-
placement, which can be expressed as

n=(p1 � p2)= p1 � p2k k ð40Þ

Convert to adding equivalent node force at node D

Tn = Gn=n;Rnrp 3 Gn
�

n
� �

ð41Þ

Structural equilibrium equation and
tangential stiffness matrix

The degree of freedom of the substructure boundary
nodes after the condensation of each arm segment is
taken as the system variable, which is divided according
to translation and rotation, and the overall virtual
power equation of the telescopic arm structure can be
expressed as

X
k

(d �wT
k, v

�f
n

k + d�aT
k, v �mn

k + dwT
k0, vFk0 + daT

k0, vmk0)

=
X

i

(dwT
i, v f

a
i + daT

i, v �ma
i )

ð42Þ

Where f a
i and �ma

i are the external forces and external
torques acting on node i in the global coordinate sys-
tem; Fk0 and mk0 are the resultant torques generated by
the force of substructure k on the origin of the con-
nected coordinate system; �f

n

k and �mn
k are the equivalent

node-forces and torques of the substructure k in the
connected coordinate system, which can be expressed
respectively as

�f
n

k = Kww
ke �wk +Kwa

ke �ak

	 

� Gw

ke�eg ð43Þ

�mn
k = Kaa

ke �wk +Kaw
ke �ak

	 

� Ga

ke�eg ð44Þ

In the formula, the submatrices Kww
ke , K

wa
ke , K

aa
ke , K

aw
ke

can be obtained from the coacervated substructure
stiffness matrix Ke, and Gw

ke and Ga
ke can be obtained

from Ge. The equivalent nodal force and moment are
expressed in the connected coordinate system, and need
to be converted to the global coordinate system accord-
ing to the relationship between the local freedom and
the global freedom, and then the equation (43) can be
transformed into a solvable algebraic equation. It can
be obtained by equations (16)–(20)

d �wk, v =Tw½dwk0, v; dak0, v; dwkn, v; dakn, v� ð45Þ

d�ak, v =Ta½dwk0, v; dak0, v; dwkn, v; dakn, v� ð46Þ

Where

Tw =
0 0 0 0
�RT

0 RT
0 (ri � r0)3Tkv0 RT

0 0

� �
ð47Þ

Ta =
0 0 0 0
0 �RT

0Tkv0 0 RT
0Tkvi

� �
ð48Þ

The virtual power equation corresponding to the
equivalent nodal force and moment of substructure k

can be rewritten as

d �wT
k, v

�f
n

k + d�aT
k, v �mn

k

= dwT
k0, v(T

T
w1

�f
n

k +TT
a1 �mn

k)+ daT
k0, v(T

T
w2

�f
n

k +TT
a2 �mn

k)

+ dwT
kn, v(T

T
w3

�f
n

k +TT
a3 �mn

k)+ daT
kn, v(T

T
w4

�f
n

k +TT
a4 �mn

k)

ð49Þ

By defining the system description variable q, combined
with equations (43) and (50), the overall virtual power
equation of the telescopic boom structure can be
expressed as

dqT
v f(q)= 0 ð50Þ

Without loss of generality, the constraint equation of
the structure can be expressed as

g(q)= 0 ð51Þ

According to the constraint relation between adjacent
arm segments and the boundary conditions, the system
variables can be divided into two parts: non-
independent and independent

q= qdp; qip

� �
ð52Þ

The variational constraint equation derived from equa-
tion (52) can be expressed as

Gdpdqdp, v +Gipdqip, v = 0 ð53Þ

Zhao et al. 9



Nonindependent parts virtual variational can be repre-
sented by independent parts, there is a relationship

dqv =
�G�1

dp Gip

E

" #
dqid, v =Tiddqid, v ð54Þ

Thus, an algebraic equation for solution can be
obtained from the virtual power equation (51)

TT
id f(q)= 0 ð55Þ

At this time, the number of equations is the same as
the number of independent variables, and it is neces-
sary to add independent equations with the same num-
ber of non-independent variables to satisfy the solution
completeness. By combining the equilibrium equation
(56) and the constraint equation (52), the equation
required to solve the overall parameters of the node
can be obtained

TT
idf(q)= 0

g(q)= 0

�
ð56Þ

This is a set of highly nonlinear equations, giving the
corresponding tangential stiffness matrix can greatly
improve the solving efficiency. In order to obtain the
tangential stiffness matrix of the equilibrium equation,
the differential form of equation (56) needs to be given

dF=(TT
id(∂f=∂q)+ (∂TT

id

�
∂q)f)dq=(TT

idJfq + Jidq)dq

ð57Þ

In the first term of the equation

Jfq = ∂f=∂q ð58Þ

Relates to the resultant resultant moment Fk0 and mk0

of the origin of the connected coordinate system gener-
ated by the neutron structure k force of equation (43),
and the differential of the equivalent nodal force and
moment �f

n

k and �mn
k in the connected coordinate system

d�f
n

k =Kww
ke d�wk +Kwa

ke d�ak � Gw
keR

T
0 eg 3Tkv0dak0, v

ð59Þ

d �mn
k = Kaa

ke d�wk +Kaw
ke d�ak

	 

� Ga

keR
T
0 eg 3Tkv0dak0

ð60Þ

dFk0 =2Fk0 3Tkv0dak0, v; dmk0 =2mk0 3Tkv0dak0, v

ð61Þ

The relation between the differential of the local
parameters of a node and the global parameters can be
obtained by equations (46)–(47). namely

d�wk, v =Tw½dwk0, v; dak0, v; dwkn, v; dakn, v� ð62Þ

d�ak, v =Ta½dwk0, v; dak0, v; dwkn, v; dakn, v� ð63Þ

The second term of the formula requires the substitu-
tion of generalized forces f into the overall analysis

(∂TT
id

�
∂q)f=2 ∂GT

ip

.
∂q

� �
G�T

dp fdp � GT
ip ∂G�T

dp

.
∂q

� �
fdp

ð64Þ

Where fdp is the corresponding submatrix of the inde-
pendent degrees of freedom in the generalized force
matrix f. The differential form corresponding to the
supplementary constraint equation can be obtained
from equation (54)

dg=Gdpdqdp +Gipdqip =Gdq ð65Þ

By substituting equations (59)–(65) into equation (58)
and combining with equation (66), the desired tangen-
tial stiffness matrix can be obtained. According to the
principle of virtual power, the steps of finite element
are as follows: 1. To obtain the expression parameters
of each substructure; 2. Each substructure is assembled
to form the whole finite element equation (57), and the
constraint equation is written out to obtain the final
finite original equation. 3. Find the Jacobi matrix of
the whole equation.

Differential form of structural nonlinear
equilibrium equation

The equations for solving the deformation of the tele-
scopic boom structure are highly nonlinear, and the
selection of initial values seriously affects the conver-
gence of the iterative results. The lifting load is the main
parameter that causes the change of joint displacement.
By tracking the balance path of the telescopic boom
structure under different lifting loads, the deformation
corresponding to any load and the final instability load
can be quickly obtained. The balance equation of the
overall telescopic boom structure can be written in the
following form2

R(q)+ lG0 = 0 ð66Þ

Where q is a matrix composed of node displacement
and angle of the structure; The load G is applied to the
structure in a proportional manner and can be
expressed in the form of a unit load G0 increment and a
load control parameter l, then, G= lG0

The traditional load increment method increases the
applied load step by step in multiple load steps, and the
calculation result of the previous step is used as the ini-
tial equation value of the current step, which greatly
improves the degree of convergence and then tracks the
balance path. However, this method needs to set a fixed
load increment manually, which is too small to increase
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the calculation amount and reduce the calculation effi-
ciency. Too large and may fail to converge; Moreover,
because the region of the unstable load cannot be accu-
rately judged in advance, too large load increment is
likely to directly cross the extreme point, resulting in
failure to search the unstable load.

In view of this, this paper considers the derivation of
the balance equation of the telescopic boom structure
to the load control parameters and converts it into a
differential equation. By taking advantage of the auto-
matic adjustment of the step length in the conventional
differential equation solver, the function of automati-
cally adjusting the load step size according to the non-
linear degree corresponding to the current load state of
the system is realized. On the premise of ensuring the
convergence of the solution of each step, Fast tracking
of balance paths and search for unstable loads. Its main
operations are as follows:

(1) The structural equilibrium equation (67) takes
the derivative of the load control parameters to
obtain the differential equation

∂R

∂q

� �
∂q

∂l
+G0 = 0 ð67Þ

In the formula, ass is the tangential stiffness matrix
of the equilibrium equation, and frd exactly reflects the
nonlinear degree of the displacement-load curve under
the current load.

(2) According to the equilibrium equation (67), the
displacement angle q0 corresponding to no-load
(l= 0) is calculated as the initial value for
solving the differential equation.

(3) Given the upper limit of the load control coeffi-
cient lmax, in the interval l 2 0 lmax½ � integral
differential equation (68), the integral process:
a. At each step, the integral variable is corrected
with the equilibrium equation (67); b. Check
the termination conditions at all times (5).

(4) Trigger the termination condition (5), calculate
the termination, and obtain the unstable load
and the equilibrium path from the loading to
the unstable load; Without triggering the
termination condition (5), calculate to lmax,
and get the load limit Gmax= lmaxG0 and the
equilibrium path of loading to the load limit.

(5) If the system encounters extreme point instabil-
ity, the method of solving the differential
equation cannot pass the extreme point, and
the numerical performance is that the derivative
of the displacement to the load coefficient tends
to infinity, so it can be set

∂q

∂l

����
����ø e

∂q

∂l

����
����

initial

ð68Þ

Where e is the given threshold, representing the mul-
tiple of the ratio change of displacement-load control
parameters, which can be set according to specific cir-
cumstances. When the ratio change multiple of the
derivative of displacement to load control parameters
reaches the given threshold in the process of differential
solution, the corresponding load is the instability load
of the structure.

With the advantage of automatic adjustment of the
step size by the conventional differential solver, the
method can be solved quickly in a relatively long step
during the initial load increasing stage (linear deforma-
tion stage). At the same time, in the near instability
stage, the rapid automatic adjustment gradually
approaches the instability load in a small step. The
comprehensive performance of the telescopic boom is
determined by both the instability load and the strength
failure load, but the search of the instability load is the
premise of the calculation of the failure load, and the
former provides a lot of data for the latter, so the calcu-
lation and search of the failure load can be further com-
pleted on this basis.

Firstly, based on the analysis of the characteristics of
the equilibrium path curve, the slope ratio is established
as the criterion for judging the instability load. On this
basis, a new method to solve the instability load is pro-
posed, that is, the problem of solving the nonlinear
equilibrium equation of the system is transformed into
the problem of solving the initial value of ordinary dif-
ferential equation. This method can directly calculate
the slope of the displacement (Angle) relative to the
load in the equilibrium path curve, and capture the key
characteristics of the unstable load effectively.

Numerical examples

According to the derivation in the third section of the
article, the telescopic arm is divided into multiple indi-
vidual flexible bodies, and the connected foundation of
the individual flexible bodies is established using the
Cardan angle. Thus, the deformation of a single flexible
body is decomposed into the deformation of the con-
nected base in the overall coordinate system and the
elastic deformation inside the connected base.

Figure 11 shows a mobile crane expansion boom
structure composed of seven U-section boom segments
with an elastic modulus of 2.1Pa 3 1011Pa, Poisson’s
ratio of 0.3, and a density of 7850 kg/m3. The length of
the arm section is L, and each arm section contains 1
pin shaft and 4 pin holes (from left to right, the pin
hole numbers are 1,2,3,4), which are recorded as
L0, L1, L2, L3, L4 along the length of the arm section
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respectively; The thickness of the lower cover plate
changes when the length position is Ls, and the change
amount is Dt. The section form is the irregular complex
section composed of regular circular arc mentioned in
this paper. Tables 1 and 2 lists the dimensions of each
arm segment. The rotating shaft pin fixed on the left
end face of the basic arm is connected to the rotating
platform, and the amplitude is changed by the support
of the amplitude changing cylinder.

Moment of inertia of arm section

According to the geometric characteristics of the section
form shown in Figure 9, the center of the semicircle of

the lower cover plate is selected as the section node. The
section can be divided into several regular shapes with
respect to axial symmetry.

Iz =

ð
A

y2dA, Iy =

ð
A

z2dA ð69Þ

At the same time, the mass and centroid of each sec-
tion are calculated respectively, and the mass �m and cen-
troid (yc, zc) of the section are obtained after summations.
The calculation parameters corresponding to the section
dimensions in Table 2 are shown in Tables 3 and 4.

Division of arm joint substructure

Taking the cross section node of sliding block contact
between arm joints and the hinge section node of
variable amplitude cylinder as boundary points, each
arm section is divided into substructures as shown in
Figure 12 along the length direction, in which node
No. 3 is the node of cylinder connection cross section,
the innermost arm is divided into two substructures,
and the rest arms are divided into three substructures.
A total of 27 nodes and 20 substructural super units
are required for the 7-section arm to be divided.

Deformation of telescopic arm structure under
different working conditions

The deformation results under different working
conditions were obtained using the method proposed in
this paper for the telescopic arm structure shown in
Figure 9. The specific working condition selection is

Figure 11. The telescopic boom for mobile crane.

Table 1. Boom length position of pin shaft and hole, change of thickness of lower cover plate (units: mm).

L L0 L1 L2 L3 L4 Ls Dt

13,884 2314 242 5405 10,638 11,542 4000 0
13,888 2159 202 5400 10,598 11,502 4675 1
13,814 2163 202 5400 10,608 11,512 4626 1
13,719 2150 200 5398 10,596 11,500 4542 21
13,745 2152 200 5398 10,595 11,500 4510 1.5
13,447 2150 200 5398 10,595 11,500 4460 21
13,296 2157 - - - - - -

Table 2. Cross-sectional size of boom (units: mm).

w R1 R2 H1 H2 t1 t2

1600 200 800 700 1649 10 10
1520 200 760 415 1540 8 10
1438 200 719.5 380 1433 8 9
1360 200 680 340 1328 7 9
1280 200 642 330 1225 6 8.5
1204 200 604 300 1123 6 8.5
1128 200 566 275 1035 6 7.5
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shown in Table 5, where u is the initial variable angle,
and k1, k2, k3, k4, k5, k6 is the pin hole number inserted
sequentially from the left end of the adjacent inner arm
of the outer to inner 1–6 segments.

According to the method proposed in this article,
the differential form (68) of the structural equilibrium
equation with load parameters is solved, and the unit
load increment G0k k is selected as 104kg, that is, the
lifting load size is p=l G0k k. Figure 13 shows the

deformation of the telescopic arm structure under dif-
ferent loads of p in working conditions 1–3. For clear
display, the node displacement is magnified by 5 times.

Figure 14 shows that under the same working condi-
tions, as the load increases, the geometric linear effect
of the telescopic arm gradually increases; After increas-
ing the angle of variation, the pressure bearing effect of
the structure is significant, and under the same load,
the bending deformation will be significantly reduced.
Using the Shell181 element of ANSYS commercial soft-
ware to establish finite element models corresponding
to working conditions 2, 4, and 5, the variable ampli-
tude oil cylinder uses Link180, and the degree of free-
dom of the sliding block contact area between the arm
joints is established through local coupling connection,
as shown in Figure 14. The boundary conditions of the
finite element model are: the bottom end is fixed:

Tables 6 and 7 respectively list the displacement val-
ues and time consumption of the guide wheel axis cen-
ter of the arm head in the vertical direction calculated
using the method proposed in this paper under differ-
ent sizes of lifting loads in working conditions 2, 4, and

Table 4. (2). Calculation parameters of cross section after thickness change of lower cover plate (International unit).

yc zc EA EIy EIz GJ �m

0 0.172 1.27e10 5.49e9 4.39e9 3.80e9 4.75e2
0 0.0711 1.15e10 4.24e9 3.63e9 3.03e9 4.32e2
0 0.0783 1.03e10 3.29e9 2.84e9 2.36e9 3.84e2
0 0.0897 8.11e9 2.28e9 1.94e9 1.62e9 3.03e2
0 0.0055 8.26e9 1.93e9 1.76e9 1.42e9 3.09e2
0 0.0458 6.48e9 1.31e9 1.17e9 9.57e8 2.42e2
0 0.0352 6.04e9 1.04e9 9.46e8 7.62e8 2.26e2

Figure 12. Substructures’ division of the telescopic boom.

Table 3. (1). Calculation parameters of cross section before thickness change of lower cover plate (International unit).

yc zc EA EIy EIz GJ �m

0 0.172 1.27e10 5.49e9 4.39e9 3.80e9 4.75e2
0 0.0943 1.09e10 4.06e9 3.41e9 2.87e9 4.08e2
0 0.1028 9.66e9 3.13e9 2.65e9 2.22e9 3.61e2
0 0.0643 8.68e9 2.42e9 2.10e9 1.74e9 3.24e2
0 0.0371 7.48e9 1.79e9 1.58e9 1.29e9 2.79e2
0 0.0227 6.97e9 1.40e9 1.28e9 1.03e9 2.60e2
0 0.0352 6.04e9 1.04e9 9.46e8 7.62e8 2.26e2

Table 5. Calculated working condition.

working condition u k1 k2 k3 k4 k5 k6

1 60� 2 2 2 2 2 2
2 75� 2 2 2 2 2 2
3 85� 2 2 2 2 2 2
4 75� 3 3 2 2 1 1
5 75� 1 1 2 2 3 3
6 75� 4 4 4 4 4 4
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5, as well as the comparison with the results of ANSYS
shell element modeling analysis. From the data in the
table, it can be seen that the displacement solution
obtained by this method has very little difference from
the ANSYS solution. At the same time, when using

ANSYS shell element modeling, 82,806 nodes and
82,279 elements are divided, and 496,836 nonlinear
equations need to be solved; This article divides the
method into 27 nodes, 20 super units, and requires sol-
ving 162 nonlinear equations. The implementation of
variable step size in the solving process will save the
solving time in the linear deformation stage. In addi-
tion, programmatic modeling can be achieved with
only the size parameters shown in Tables 1 and 2, with-
out the need to repeat the modeling process in ANSYS,
providing a reliable model for large-scale and rapid cal-
culation of the lifting performance of mobile cranes. In
the analysis of buckling load, it is very important to
select the appropriate buckling index to determine the
value of the final buckling load. Although the determi-
nation of the most accurate instability index depends
on the validation and subsequent correction of the spe-
cific product test, the theoretical analysis of this paper
suggests that the selection of the instability index of 3 is
a relatively rational initial choice.

Unstable load of telescopic arm structure in fully
extended state

According to the method proposed in this article, the
differential form (68) of the structural balance equation
for the load parameters of the telescopic arm under
condition 6 of full extension in Table 5 is solved. The
unit load increment G0k k is still selected as 104kg, and
in the instability judgment condition equation (69), e is
6, indicating that the tangential slope ratio of the dis-
placement load curve has changed by 6 times compared
to the initial state. Select several displacement key
points for the analysis of the telescopic arm structure.
As shown in Figure 15, select the rightmost node of the
seventh arm and the rightmost node of the fourth arm
as reference points.

Figure 16 shows the variation curve of the reference
point displacement with respect to the lifting load,
where u represents the displacement of the rightmost
endpoint of the seventh arm and v represents the displa-
cement of the rightmost node of the fourth arm. From
the curve, it can be seen that when the load is small, the
vertical displacement basically remains linear; When
the load approaches instability, the displacement curve
becomes significantly steeper and exhibits significant
nonlinearity; In fact, when tracking the equilibrium
path, as the load increases to near the extreme point,
the step increment will gradually approach infinity.
When the slope ratio of the load displacement curve
reaches a certain value, it is already very close to the
unstable load, and the difference from the true unstable
load is very small. However, continuing to calculate
further will waste a lot of computational efficiency. In
practical engineering, the e value can be adjusted based

Figure 13. The deformation of telescopic boom.

Figure 14. The ANSYS model.
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on the comprehensive calculation efficiency and accu-
racy requirements, Continuing to increase the e value
can make the final load closer to the unstable load.

Figure 17 shows the deformation diagram of the
structure during the process of searching for an

unstable load balance path with a load of 21.36 t. To
display it clearly, the displacement is magnified by 5
times. It can be seen that the deformation of the tele-
scopic arm structure is very obvious at this time, with
the characteristic of nonlinear large displacement.

It can be seen from the buckling load performance
curves of the lower boom of two different telescopic
arm combinations that the buckling load curves of dif-
ferent buckling indexes do not change linearly. When
the instability index is small, the geometric nonlinear
effect of the structure is not obvious, and the buckling
load performance curve shows a certain linear effect.
As the instability index increases gradually, the non-
linear effect of the curve becomes obvious. With the
increase of the length of the telescopic arm, the instabil-
ity load it can carry also decreases greatly under the
same initial attitude Angle. At the same time, the stan-
dard telescopic arm belongs to the structure of overhan-
ging cantilever beam. As the working Angle decreases,
its axial force also gradually decreases under the same
load. From the Angle of Euler instability, it can be con-
cluded that the instability load gradually increases,
which also verifies the accuracy of the calculation
example.

Conclusions

By integrating the modeling concept of multi-flexible
system dynamics into the modeling process of geo-
metric nonlinearity of structures, this paper extends the
modeling method of geometric nonlinearity analysis of
slender multi-flexible structures. Based on the theory of
multi-flexible body modeling, the slender multi-flexible
body beam structure is divided into several substruc-
tures, and the following connected basis is established
for each substructure. On this basis, the deformation of
the substructure is decomposed into the rigid motion of
the connected base and the elastic deformation relative
to the connected base. Thus, an application condition
of calculating the deformation virtual power of beam
structures with large rotation is established by using the
linear strain of traditional beam elements. Specifically,
for conventional box-beam structures, the proposed
method can reduce the degree of freedom to less than
30% of the original degree of freedom.

Figure 15. The reference points of telescopic boom structure.

Figure 16. The displacements of reference points.

Table 6. The vertical displacements under different loads of conditions 2, 4, 5 (mm).

l= 4 l= 12 l= 20

Paper ANSYS Paper ANSYS Paper ANSYS

2 2181.1 2180.6 2577.2 2580.0 21126.6 21083.84
4 2238.2 2245.2 2722.0 2764.4 21424.8 21359.6
5 2315.4 2323.7 21264.4 21303.7 - -
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Based on the characteristics of the telescopic boom
structure of mobile cranes, this paper proposes a
method for modeling the telescopic boom super element
and quickly searching for the critical unstable load. The
method has the following characteristics: (1) consider-
ing the thickness change of the web plate, selecting
appropriate boundary nodes to establish a substructure,
condensing internal degrees of freedom, and obtaining
a two node super element that can be used to describe
geometric nonlinear effects; (2) The parallel constraint
relationship equation, boundary conditions, and addi-
tional node forces between adjacent arm nodes were
given, and the nonlinear balance equation and corre-
sponding tangent stiffness matrix of the structure with
load control parameters were derived; (3) Transforming
the balance equation into its differential form, com-
bined with existing numerical methods of differential
equations, a fast way to calculate the deformation path
and unstable load of the telescopic arm structure is
obtained. The accuracy of the method and its advan-
tages in programing and computational efficiency were
verified through numerical examples.

In order to accurately calculate the instability load
of slender and flexible structures, a new solution

method is proposed on the basis of considering the spe-
cific mechanical characteristics of the structures, that
is, the unknown external instability load is expressed as
the combination of load control parameters and unit
load increment, and the derivative of load control para-
meters is obtained through the system balance equa-
tion. The path tracking problem which traditionally
depends on incremental iterative solution is trans-
formed into an initial value problem for solving ordi-
nary differential equations (ODE).
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