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Case study: Condition-based
maintenance using cyclostationary
analysis and numerical modeling
with innovative indicators
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Abstract
Early detection and prompt intervention by maintenance engineers to mitigate the impact of breakdowns while enhan-
cing overall operational efficiency remain critical challenges. This study proposes an innovative approach aiming at
improving the diagnosis of gear faults. The objective is to assess the sensitivity and performance of traditional indicators
in comparison to cyclostationarity, examining their impact on noise levels and vibrational signatures. The initial phase
involves simulating gear signals under various conditions such as amplitude, rotation frequency, and meshing frequency,
providing the foundation for a thorough analysis of indicator sensitivity and performance. In the second phase, both sca-
lar and cyclostationary indicators were calculated. First, these indicators were compared against simulated signals, and
second, their sensitivity and roughness were evaluated using signals measured on the bearings of 101 BJR reducers. This
approach revealed that cyclostationary indicators are more sensitive than scalar indicators, suggesting an opportunity to
improve the prediction of signal roughness throughout the production process. By introducing new possibilities to
enhance the reliability of vibrational measurements, this method contributes to advancing the diagnosis of gear faults.
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Introduction

Condition-based preventive maintenance plays a crucial
role in industry by extending the lifespan of rotating
machines and reducing operational and maintenance
costs. Vibration analysis is widely employed for defect
detection and prevention. However, challenges persist
regarding the accuracy and reliability of defect
detection techniques, especially for gears. Significant
advancements have been made in psychoacoustic
roughness and cyclic roughness.1 Essential tools of
second-order cyclostationary process theory have led to
the development of sensors capable of detecting
and classifying common gear faults. These indicators

provide information in the form of unique scalar
values, simplifying their interpretation in terms of the
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probability of fault presence. They are also adaptable
to various levels of damage, whether in stationary or
non-stationary operation, and take into account uncer-
tainties related to the characteristic frequencies of sys-
tems, which are crucial for gear diagnostics. Several
studies have demonstrated the effectiveness of applying
second-order cyclostationarity in the analysis of vibra-
tion signals emitted by gears.2

This approach offers improved detection and locali-
zation capabilities for gear faults, including multiple
faults, thus enhancing the predictive maintenance of
gears. Experimental studies have been conducted using
vibrational signals to extract information related to
gearbox faults. The results have clearly demonstrated
the effectiveness of second-order cyclostationarity-
based analysis in detecting gear faults. Therefore, vibra-
tion analysis based on second-order cyclostationarity
proves to be a powerful method for detecting,3 localiz-
ing, and characterizing gear faults. This approach con-
tributes to enhancing the reliability and accuracy of
predictive maintenance for rotating machinery.

The authors conducted a study on entropy analysis
using field data from two wind turbines in China.4 The
use of entropy proves advantageous for detecting and
assessing the progression of preliminary bearing faults.
This method allows for a quantitative evaluation of
bearings. In another study,5,6 the authors developed a
fault diagnostic method based on an integral extension
of the multiscale entropy method and the least squares
support vector machine method. This approach has
been effective in diagnosing wind turbine faults, taking
into account the non-stationary and non-linear charac-
teristics of the vibration signal.

In the article,7 the authors propose a signal-processing
scheme for planetary gearboxes by combining the
improved Vold-Kalman filter (IVKF) and multiscale
sample entropy (MSSE). They demonstrate that this
method successfully identifies two types of planetary
gear faults (tooth crack and distributed wear) under
non-stationary working conditions. Furthermore, a new
fault diagnostic framework is introduced based on a long
short-term memory (LSTM) model.8 This method can
efficiently classify faults from raw time series signals
collected by one or multiple sensors, surpassing state-
of-the-art approaches. Other researchers have also
explored recent advances in gear fault diagnosis and
prognosis.9 This research provides a comprehensive
overview of the latest developments in gear fault diagno-
sis and prognosis, including methods based on machine
learning and deep learning. In Ref.,10 the authors pro-
pose a method to identify and online monitor gear wear
mechanisms using the second-order cyclostationary
(CS2) properties of vibrational signals. This method
shows promise for tracking degradation caused by fati-
gue pitting and other wear mechanisms. Furthermore,
the use of vibration analysis to detect faults in polymer

gears is explored in Ref..11 The statistical indicator RMS
is commonly used to detect pitting faults in polymer
gears. However, a new health indicator called ‘‘weighted
cyclostationary correntropy’’ (WCCO) is proposed to
more accurately assess the degradation behavior of the
gear surface over time.12 This approach has proven to be
effective in monitoring gear wear under different condi-
tions. In Ref.,13 the authors develop a scheme for the
optimal selection of the bandwidth of the Vold-Kalman
filter, ensuring the accuracy of the offshore wind turbine
condition monitoring process. Additionally, a new indi-
cator called ‘‘TEDIS’’ based on transmission error (TE)
is proposed to assess the severity of fatigue and predict
the remaining useful life (RUL) of gears.14 A compre-
hensive review of the current state of research on
vibration-based gear wear monitoring is presented in
Ref.15 This study includes the exploration of various gear
surface features, the analysis of relationships between
these vibrational characteristics, and provides recom-
mendations for future work in this field. Furthermore, in
the article,16 the use of statistical parameters such as beta
functions a and b for bearing fault detection is explored.
However, the results demonstrate that kurtosis and crest
factor are more sensitive than beta functions, highlight-
ing the importance of choosing the appropriate fault
indicators based on the application and machine charac-
teristics. Another study aims to detect cracks in gear
tooth roots by measuring their dynamic response.17 The
experimental results in Ref.18 demonstrate the possibility
of detecting cracks in gear tooth roots, but this method
requires the prior creation of cracks through fatigue on
the tooth root. In this study, two diagnostic methods,
namely cepstral analysis and envelope analysis, were
applied to detect gear faults operating at low speeds.
Both methods proved effective, but envelope analysis
complements cepstral analysis, providing a more precise
diagnosis.

An analysis and numerical simulation of the beha-
vior of a single-stage spur gear transmission are pro-
posed in Ref.19 Cepstral analysis has shown superior
effectiveness over spectral analysis in detecting localized
faults. Furthermore, in Ref.,20 envelope analysis and
scalar indicators are used to model the impulse response
of a resonance; kurtosis has proven to be a more sensi-
tive indicator than the crest factor for detecting defects
that generate periodic exciting forces. A methodology,
both numerical and experimental, has been developed
to identify and monitor spalling defects on gear teeth
using spectral analysis, cepstral analysis, and scalar
indicators.21 This study presents an approach to opti-
mize the use of scalar indicators in vibrational monitor-
ing of rotating machinery to detect defects causing
impulsive forces.22 Within the scope of this study, sev-
eral applications were examined, involving components
such as bearings and gears, using both real and simu-
lated data. These analyses highlighted the effectiveness
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of the developed autonomous diagnostic system. A pre-
processing step was put in place to maintain a constant
and effective statistical threshold. These indicators were
specifically designed to be used in an autonomous pro-
cess, allowing differentiation between different types of
defects within the machinery. Researchers have devel-
oped a methodology similar to that presented in the
previous article23 to optimize the use of scalar indica-
tors in vibrational monitoring of rotating machinery
for detecting defects causing impulsive forces.24

In article,25 an application of cepstral analysis in
studying gear vibrations is presented. This study high-
lights the relationship between cepstral resolution and
signal characteristics, providing valuable insights for
gear vibration analysis. In articles,26,27 the authors
describe a technique that combines wavelet-based mul-
tiresolution analysis and the Hilbert transform to pre-
dict gear tooth defects from vibration data. This
approach has shown promising results in detecting and
predicting gear tooth defects in real-world applications.
Additionally, a blind source separation technique based
on prior knowledge of the number of independent
sources present in the mixture is discussed in these arti-
cles, representing a significant advancement in the field
of vibration analysis and mechanical fault diagnosis. In
these articles, researchers explored various approaches
to solve the problem of detecting cyclostationary sig-
nals of interest, even in the absence of prior knowledge
of the number of sources. They employed techniques
like subspace decomposition and cyclostationary analy-
sis. To tackle this complex challenge, they introduced a
method known as distribution intensity modulation
(DIM), which is discussed in detail in related statistical
studies.28,29 Furthermore, a specific method for extract-
ing second-order cyclostationary components from
vibration signals has been developed.30 This method
allows for the estimation of the amount of energy asso-
ciated with each cyclical component of interest in the
frequency domain, which proves particularly useful for
monitoring the behavior of rotating machines operat-
ing at different loads and speeds. These advancements
contribute to improving the accuracy and reliability of
condition-based preventive maintenance.

In article,31 two diagnostic methods are evaluated:
phase demodulation analysis and time-frequency analy-
sis. These methods aim to overcome the limitations of
existing approaches, especially in the presence of signif-
icant variations in rotation speed or variable spectral
characteristics. Furthermore, in article,32 a new method
for detecting modulation in vibro-acoustic signals
emitted by rotating machinery is introduced. In
articles,33,34 a new indicator called ‘‘spectral kurtosis’’
(SK) is proposed, designed to detect and characterize
non-stationary signals. It has been demonstrated that
this indicator is effective for monitoring the vibrational
condition of rotating machinery. Additionally, in

articles,35,36 another innovative technique for detecting
modulation in vibro-acoustic signals produced by
rotating machinery is introduced. Machines inevitably
produce vibrations, which can lead to wear and even-
tual component failure. Vibration analysis is crucial for
detecting defects, particularly in gears and bearings,
and plays a key role in enabling proactive maintenance.
Most studies focus on reviewing condition-based main-
tenance (CBM) techniques and propose methods to
enhance defect detection by removing transfer function
effects from vibration signals. One such method was
validated on a gearbox with a tooth crack, demonstrat-
ing improved defect localization.37,38 In article39 pre-
sents various signal processing methods for monitoring
and diagnosing systems using acoustic and vibrational
measurements. Among these methods are cyclostation-
ary analysis and methods based on higher-order statis-
tics. Finally, article15 focuses on the study of failures
and condition-based maintenance methods for a turbo-
alternator using spectral analysis and cyclostationarity.
The study results highlight the effectiveness of spectral
analysis and cyclostationarity in detecting various types
of faults in rotating machinery. These methods contrib-
ute significantly to condition-based preventive mainte-
nance by enabling early detection of issues, preventing
costly breakdowns, and extending the lifespan of indus-
trial equipment.9 Furthermore, they contribute to
reducing maintenance costs by planning interventions
more accurately and avoiding unplanned production
downtime. This underscores the ongoing importance of
research and development in the field of rotating
machinery monitoring for the industry.

The cyclostationarity approach indeed plays a cru-
cial role in monitoring and detecting anomalies in
rotating machinery. The vibrations it analyzes provide
critical information for assessing the health and wear
of these machines. One of the major advantages of the
cyclostationarity method is its user-friendliness for
maintenance technicians or engineers who may not
necessarily be experts in signal processing.40 It relies on
band-pass filtering and decomposition techniques,
making it a powerful method for detecting mechanical
faults based on previously acquired knowledge. In sum-
mary, it contributes to improving the efficiency and
accuracy of diagnosis, which is essential for successful
preventive maintenance.

The development of new vibrational and cyclosta-
tionary indicators is crucial to enhance the reliability
and performance of condition-based preventive mainte-
nance. These technological advancements allow compa-
nies to optimize their operations by extending the
lifespan of rotating machinery while reducing mainte-
nance costs. Moreover, they contribute to ensuring
increased machine availability and enhanced industrial
process efficiency. By investing in the research and
development of these technologies, businesses can
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improve their competitiveness and maintain their assets
in a more cost-effective manner.

Sampling and scanning techniques

To apply a calculation algorithm, it is essential to digi-
tize the signal through an analog-to-digital converter at
a sampling frequency denoted as Fs_sample. The spec-
trum computation is performed over a specified number
of Ne _samples, with a time interval Dt corresponding
to Ne

Fs
for each block of Ne_samples utilized in the spec-

trum calculation. The theoretical spectrum is calculated
over sample points or spectral lines, but contemporary
analyzers typically display only Ne

2:56
spectral lines in

practice.41 If the maximum displayed frequency (Fmax)
is known, the sampling frequency (f sampling) is
determined by:

fsampling = 2:56 � Fmax ð1Þ

Gaussian white noise

Gaussian white noise, generated using the randn ()
function in Matlab�, is a widely employed random
function to model noise in signals. Its popularity stems
from its random characteristics and consistent power
spectral density across all frequencies. The amplitude of
the generated noise, represented as B (t), is commonly
adjusted using a multiplier coefficient denoted as Br.

To quantify the extent of noise in a signal, the signal-
to-noise ratio (SNR) is frequently employed. This ratio
is computed using the following formula42:

SNR= 20 � log Signal energy Srb
tð Þ

Noise energy B tð Þ

� �
ð2Þ

Numerical modeling and simulation of double gear
defects and scalar indicator calculation

This study aims to compare the vibrational response of
gears with and without noise to understand the influ-
ence of noise on the sensitivity of scalar indicators.
Utilizing a MATLAB program, we model and simulate
vibrational signals in the presence of single and/or dou-
ble defects, incorporating white noise into these signals.
The vibrational response of the gears is then analyzed
using scalar indicators, including RMS, FC, VC, K,
and entropy, both before and after the introduction of
noise. Examining the vibrational response of gears in
the presence of defects with and without noise contri-
butes to evaluating the efficacy of fault analysis and
diagnostic methods.

Our investigation further delves into the impact of
various simulation parameters on the vibrational
response of gears with defects. This includes

scrutinizing factors such as meshing frequencies, rota-
tional frequencies, and amplitudes. Finally, we will
conduct a comparative analysis of the vibrational
response of gears with defects, considering both scenar-
ios with and without noise. This comparative study
aims to elucidate the influence of noise on the sensitiv-
ity of the indicators.

A MATLAB program is utilized to model and simu-
late a signal with single and double defects using trigo-
nometric functions. Subsequently, white noise is
introduced to this signal, and the signal, along with its
spectrum and envelope spectrum, is visualized both
before and after the noise addition. Scalar indicators
are also calculated before and after incorporating the
noise. Simulation parameters, including gear frequen-
cies (Fm1, Fm2), rotational frequencies (Fr1, Fr2), and
defect amplitudes (A4, A5, A11, B11, A12, B12, A13,
B13), are predefined at the beginning of the program.

� The single defect is modeled as follows:

Ss tð Þ=A4�cos 2pfr1tð Þ+
X

A ið Þ� 1+A11cos 2pfr1tð Þð Þ�cos 2piFm1t+B11cos 2pfr1tð Þð Þð½
+ 1+A12cos 2p2fr1tð Þð Þ�cos 2piFm1t+B12cos 2p2fr1tð Þð Þ
+ 1+A13cos 2p3fr1tð Þð Þ�cos 2piFm1t+B13cos 2p3fr1tð Þð ÞÞ�

ð3Þ

The double defect is modeled by:

Sc tð Þ= A4�cos 2pfr1tð Þ+ A5 � cos 2pfr2tð Þ
+(1+A12cos(2p2fr2t))�cos(2pjFm2t+B12cos(2p2fr2t))

+ (1+A13cos(2p3fr2t))�cos(2pjFm2t+B13cos(2p3fr2t)) ) �
ð4Þ

Study of the influence of fault amplitudes on scalar indicators
and vibration signature. In the initial scenario, three dis-
tinct cases are investigated. In each case, fault ampli-
tudes are increased while keeping gear frequencies
(Fm1=600Hz, Fm2=800Hz) and rotational frequen-
cies (Fr1=15Hz, Fr2=7Hz) constant. This approach
allows for a comprehensive examination of the impact
of fault amplitude on the signal and its spectrum (see
Table 1), with other parameters held constant to ensure
accurate comparisons. The goal is to gain insights into
how variations in fault amplitudes influence the detec-
tion and diagnosis of issues within the signal.

Table 1. Fault amplitude values for ‘‘Case 1.’’

A4 A5 A11 B11 A12 B12 A13 B13

0 0 5 0.25 2 0.25 1 0.25
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A. Study of the influence of fault amplitudes on scalar
indicators. By analyzing the data presented in Table 2,
the following conclusions can be drawn:

Increasing the defect amplitudes (A4, A5, A11, B11,
A12, B12, A13, and B13) results in higher values of
RMS and VP for the signal, accompanied by an increase
in power entropy (entropy). Concurrently, there is a
reduction in kurtosis (K) and crest factor (CF).

The introduction of noise to the signal leads to an
elevation of both the root mean square (RMS) and
peak value (VP), along with an increase in entropy.
Meanwhile, there is a slight decrease in CF and K.

B. Study of the influence of fault amplitudes on the vibration
signature. In Figure 1(a), a noise-free time-domain
signal is depicted, illustrating a simulated double gear
fault. Figure 1(b) displays the spectrum of this signal,
distinctly revealing two gear mesh frequency modula-
tions (Fm1=600Hz and Fm2=800Hz) generated by
the rotational frequencies (Fr1=15Hz for the input
shaft carrying the pinion and Fr2=7Hz for the output
shaft carrying the wheel). These frequency modulations
indicate the presence of two individual faults, one on
the pinion and the other on the wheel.

In Figure 1(c), the envelope spectrum of the signal
provides additional confirmation of the existence of
both rotation frequencies (Fr1 and Fr2), along with their
harmonics. This verification strengthens the evidence of
the two individual faults, one on the pinion and the
other on the wheel. The envelope spectrum plays a cru-
cial role in accentuating these features, thereby contri-
buting to a more distinct detection and characterization
of the faults.

By introducing Gaussian white noise to the signal
depicted in Figure 1(a), the resulting signal is shown in
Figure 2(a), along with its spectrum in Figure 2(b), and
its envelope spectrum in Figure 2(c).

� The observations made are as follows:

Increasing the amplitude of defects (A4, A5, A11, B11,
A12, B12, A13, and B13) results in:

� An escalation in the amplitudes of meshing
frequencies (Fm1 and Fm2) and rotation frequen-
cies (Fr1 and Fr2), intensifying the severity of the
defects and indicating a larger simulated defect
size.

� The envelope spectrum of the simulated signal
distinctly highlights the misalignment phenom-
enon, which may not be as noticeable in the tra-
ditional spectrum. This suggests that envelope
spectrum analysis could be more sensitive for
detecting specific defect characteristics, such as
misalignment.

� The introduction of noise amplifies the ampli-
tudes of defects and influences scalar indicators
like RMS, kurtosis (K), and crest factor (CF).
This rise in defect amplitudes due to noise can
complicate defect detection and diagnosis, as it

Table 2. Variations in indicators with changes of amplitude.

Case 1 RMS FC VC K Entropy

Noise-free 5.0033 5.7515 28.7767 5.0811 –8.8416e+ 05
With noise 7.1021 4.4313 31.4714 3.4838 –1.9547e+ 06

Figure 1. Gear double fault signal: (a) gear meshing signal
without noise, (b) its spectrum, and (c) its envelope spectrum
‘‘Case 1.’’

Kebabsa et al. 5



has the potential to obscure or magnify certain
undesirable signals.

These observations underscore the importance of con-
sidering defect amplitude, noise, and the selection of
indicators in signal analysis for defect detection and
characterization in gear systems.

Study of the influence of rotation frequencies on scalar indica-
tors and vibration signature. Three different cases are
investigated. In each case, the rotation frequencies are
incremented (see Table 3), while maintaining constant
gear frequencies (Fm1=600Hz, Fm2=800Hz) and

fixed defect amplitudes (A4=0, A5=0, A11=5,
B11=0.25, A12=2, B12=0.25, A13=1, and
B13=0.25).

A. Study of the influence of rotation frequencies on scalar
indicators. By analyzing the data presented in Table 4,
the following conclusions can be drawn:

� Introducing noise to the signal results in an ele-
vation of the RMS and peak value (VP), along
with an increase in power entropy (entropy),
while the kurtosis (K) and crest factor (CF)
experience a slight decrease.

� In the absence of noise, the values of RMS, CF,
and K remain constant at 5, 5.8, and 5Hz,
respectively.

� In the presence of noise, the values of RMS,
CF, and K stabilize at 7, 4.5, and 3.5Hz,
respectively.

� These observations underscore the influence of
noise on scalar indicators, revealing that noise
contributes to higher RMS, VP, and entropy
values but lower K and CF values when com-
pared to the noise-free scenario.

B. Study of the influence of rotation frequencies on the vibra-
tion signature. In this scenario, the rotation frequencies
are held constant at Fr1=15Hz and Fr2=7Hz.

Figure 3(a) presents a noise-free time-domain signal
depicting a simulated double gear fault, while Figure
3(b) displays the spectrum of the noise-free signal. It
clearly illustrates the two modulation frequencies
Fm1=600Hz and Fm2=800Hz, generated by the
rotation frequencies Fr1=30Hz and Fr2=22Hz for
the input shaft carrying the pinion and the output shaft
carrying the wheel, respectively. This indicates the pres-
ence of two faults, one on the pinion and one on the
wheel. Figure 3(c) exhibits the envelope spectrum of the
noise-free signal, revealing the presence of both rota-
tion frequencies Fr1 and Fr2 along with their harmonics,
confirming the existence of two faults. Additionally, it
distinctly highlights the presence of an alignment fault.

By introducing Gaussian white noise to the signal
from Figure 3(a), the resulting signal is shown in Figure
4(a), accompanied by its spectrum in Figure 4(b) and
envelope spectrum in Figure 4(c).

Study of the influence of meshing frequencies on scalar indica-
tors and vibration signature. We investigate three different
cases. In each case, the values of gear mesh frequencies
Fm1 and Fm2 are incremented (see Table 5), while
maintaining constant rotation frequencies Fr1=15 Hz,
Fr2=7Hz, and fixed defect amplitudes (A4=0,
A5=0, A11=5, B11=0.25, A12=2, B12=0.25,
A13=1, B13=0.25).

Figure 2. Gear double fault signal: (a) gear meshing signal with
noise, (b) its spectrum, and (c) its envelope spectrum ‘‘Case 1.’’

Table 3. Rotation frequency values for each case.

Rotation Frequency Fr1 Fr2

Case 2 30 Hz Hz

6 Advances in Mechanical Engineering



A. Study of the influence of meshing frequencies on scalar
indicators. By analyzing the case presented in Table 6,
we can conclude the following:

� The introduction of noise to the signal results in
an increase in RMS and VP of the signal while

decreasing K and power entropy, with CF
experiencing a slight decrease.

� Noise amplifies the amplitudes of gear mesh fre-
quencies and influences scalar indicators such as
RMS, kurtosis (K), and crest factor (CF). In the
presence of noise, these indicators can be dis-
torted, potentially leading to erroneous interpre-
tations of the severity levels of defects.

B. Study of the influence of meshing frequencies on the
vibration signature. In this specific case, the meshing fre-
quencies are fixed at values of Fm1=4096Hz and
Fm2=8192Hz. Figure 5(a) exhibits a noise-free time

Table 4. Scalar indicators for case 2.

Case 2 RMS FC VC K Entropy

Noise-free 5.0033 5.7515 28.7767 5.0811 –8.8416e+ 05
With noise 7.1021 4.4313 31.4714 3.4838 –1.9547e+ 06

Figure 3. Signal of a double gear fault: (a) meshing signal
without noise, (b) its spectrum, and (c) its envelope spectrum
‘‘Case 2.’’

Figure 4. Signal of a double gear fault: (a) meshing signal with
noise, (b) its spectrum, and (c) its envelope spectrum ‘‘Case 2.’’

Table 5. The meshing frequency values for each case.

Meshing frequency Fm1 Fm2

Case 3 4096 Hz Hz

Kebabsa et al. 7



signal representing a simulated double gear fault. In
Figure 5(b), the spectrum of the signal without noise is
presented, clearly displaying two modulations of
the meshing frequency (Fm1=4096Hz and Fm2=
8192Hz). These modulations are generated by the
rotation frequencies (Fr1=15Hz for the input shaft
carrying the pinion and Fr2=7Hz for the output shaft
carrying the wheel), indicating the presence of two
individual defects, one on the pinion and the other on
the wheel.

Figure 5(c) illustrates the envelope spectrum of the
signal without noise. This envelope spectrum reveals
the presence of the two rotation frequencies, Fr1 and

Fr2, as well as their harmonics. This confirmation fur-
ther supports the presence of two defects, one on the
pinion and the other on the wheel. When Gaussian
white noise is added to the signal shown in Figure 5(a),
the resulting signal can be observed in Figure 6(a).
Additionally, the spectrum of this noisy signal is repre-
sented in Figure 6(b), while its envelope spectrum is dis-
played in Figure 6(c).

The introduction of Gaussian white noise facilitates
the analysis of how its presence affects both the fre-
quency content of the signal and its envelope spectrum.
These considerations are crucial when dealing with real-
world data and the detection of faults or anomalies in
signals.

Figure 5. Signal of a double gear fault: (a) meshing signal
without noise, (b) its spectrum, and (c) its envelope spectrum
‘‘Case 3.’’

Figure 6. Signal of a double gear fault: (a) meshing signal with
noise, (b) its spectrum, and (c) its envelope spectrum ‘‘Case 3.’’

Table 6. Scalar indicators for case 3.

Case 3 RMS FC VC K Entropy

Noise-free 5.1318 4.7768 24.5135 5.9507 –9.7631e+ 05
With noise 7.2075 4.4440 32.0298 3.8876 –2.0530e+ 06
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� Observation for Analysis

In conclusion, the thorough mathematical modeling of
a specific type of defect and the simulation of a gear
fault have enabled the examination of how defect
amplitudes, rotation frequencies, and meshing frequen-
cies impact the vibration signature and scalar indica-
tors. The key findings from this study are as follows:

� Altering fault amplitudes corresponds to an
increase in the simulated fault’s size and severity.

� The amplification of amplitudes in both the
meshing frequencies (Fm1 and Fm2) and the
rotation frequencies (Fr1 and Fr2) impacts the
severity of the defects, resulting in an increase in
the simulated defect’s size.

� The envelope spectrum of the simulated signal
effectively reveals the misalignment phenom-
enon, which is not readily apparent in the stan-
dard spectrum.

� Adding noise increases defect amplitudes and
impacts scalar indicators such as RMS, kurtosis
(K), and crest factor (CF). The kurtosis (K) val-
ues of approximately 3Hz and the crest factor
(CF) values of approximately 3 and 4Hz do not
provide reliable information on the presence of
the fault. In the presence of noise, these indica-
tors can be distorted, leading to erroneous inter-
pretations of fault severity levels.

� When there is a variation in rotation frequen-
cies, introducing noise to the signal leads to an
increase in the RMS and peak value (VP) of the
signal, along with an elevation in entropy.
However, there is a slight decrease in kurtosis
(K) and crest factor (CF). Specifically, kurtosis
(K) maintains values of approximately 5Hz
both in the absence and presence of noise, while
crest factor (CF) shows values of approximately
3Hz without noise and approximately 4Hz with
noise.

� When meshing frequencies are altered, introdu-
cing noise to the signal leads to an increase in
RMS and peak value (VP) of the signal.
However, it results in a decrease in kurtosis (K)
and entropy, with a slight decrease in crest fac-
tor (CF).

The presence of meshing frequencies generated by the
interaction of wheel and pinion teeth can pose a chal-
lenge in spectral analysis. These meshing frequencies
can mask or obscure individual rotational frequencies,
making it difficult to distinguish and isolate the specific
rotational frequencies associated with the wheel and
pinion when significant meshing frequencies are present
in the signal spectrum. This interference can complicate
the identification and characterization of other

vibration components and defects within the mechani-
cal system.

In summary, this study underscores the significance
of considering defect amplitudes, rotational frequencies,
and meshing frequencies when conducting vibration
analysis of gears. Additionally, it emphasizes the impact
of noise on scalar indicators and the challenges associ-
ated with distinguishing individual frequencies when
substantial meshing frequencies are present. These
insights are valuable for understanding and improving
diagnostic capabilities in the context of gear fault detec-
tion and analysis.

Cyclostationarity analysis: Theory,
indicators, and applications

In this section, we aim to provide a thorough under-
standing of the cyclostationary method, focusing spe-
cifically on its theoretical foundations, indicators, and
industrial applications. Our discussion will be orga-
nized as follows:

� Theoretical Bases of Cyclostationary Method

Explanation of key concepts and principles that under-
lie the cyclostationary method.

� Cyclostationary Indicator

Examination of the indicators associated with cyclosta-
tionary analysis, which enable the extraction and quan-
tification of periodicities within signals.

� Practical Applications of Cyclostationary
Analysis

Exploration of real-world applications of the cyclosta-
tionary method, with a detailed examination of its effec-
tiveness, including examples from simulated signals.

By covering these aspects, we aim to provide a com-
prehensive insight into the cyclostationary method and
its relevance in industrial settings for signal analysis and
fault detection.

Cyclostationarity is an approach that primarily uti-
lizes the distribution intensity modulation (DIM) func-
tion to detect and characterize variations within a
signal. Initially developed for diagnosing faults in vari-
ous applications, including gears, rolling and plain
bearings, and telecommunication signals, the spectral
correlation density method focuses on identifying
amplitude variations characterized by symmetrically
spaced sidebands in spectra. This approach enables the
visualization of modulation indicator values on a fre-
quency graph, which is a function of both the carrier
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frequency (f) and the modulation frequency (a) of the
signal.

When the signal is filtered in this way, in an idealized
case, it contains only the specified component without
any additional signal and with a very low noise level.
Thus, the filtered signal is composed of a set of three
elements:

xi = xDf t; f � iað Þ with i= �1, 0, 1f g ð5Þ

xi represents a single value of the signal, xDf t, fð Þ
indicates the filtered version of x(t) in a side frequency

band f � Df

2
; f + Df

2

h i
with Df being the step frequency.

In this context, when we mention that xDf t, fð Þ
represents a single value of the signal, we mean that
xDf t, fð Þ is a specific value or data point within the
filtered signal. This value is obtained by filtering the
original signal x(t) in a specific frequency range or

band, denoted as f � Df

2
; f + Df

2

h i
, where Df represents

the frequency step.
So, xDf t, fð Þ is the representation of the signal x(t)

after it has been filtered to isolate the frequency

component within the specified band f � Df

2
; f + Df

2

h i
.

This filtered signal value at time t and frequency f is a
result of the filtering process and reflects the signal’s
characteristics within that particular frequency range.

In Figure 7, a diagram illustrates the method used
with an open functionality model for a specific statisti-
cal function. This function is responsible for calculating
the spectral correlation intensity factor by defining a
filter interval [a1, a2]. The results of the last step of the
procedure include two types of indicators: the spectral
correlation density (SCD) and its corresponding inte-
gration (IDIM) for a determined frequency range.

We can see that symmetric filtering is conditioned by
three parameters: fs, a, and Df. The spectral correlation
density of the SCD analysis frequency range is carried
out as follows:

fmin =
amin

2
+

Df

2
, ð6Þ

And

fmax=
fs

2
� amax

2
� Df

2
, ð7Þ

Where fs is the sampling frequency of the measured
signal.

The proposal of the frequency f, for a given Df, is
called the distribution intensity modulation (DIM)
which can be expressed by:

DIM f ; að Þ= SCa
x f +

a

2

� �
SCa

x f � a

2

� �
, ð8Þ

The PSC index designates the product of the spectral
correlation.

The degree of cyclostationarity is a measure of the
energy ratio between the cyclic and non-cyclic compo-
nents of a stationary signal. Its mathematical expres-
sion is given by:

DSCa =

ð
Ra

x að Þ
�� ��2da= SC0

x að Þ
�� ��2da ð9Þ

Using spectral correlation, it is possible to reformu-
late expression (9).

DSCa =

ð
SCa

x að Þ
�� ��2df = SC0

x að Þ
�� ��2df ð10Þ

In some practical applications of DIM for vibra-
tional signals, the product of spectral correlation densi-
ties, such as distribution intensity modulation, might
not be the most useful measure due to large differences
in signal energy across different frequency bands. In

Figure 7. Proposed algorithm for calculating classical,
cyclostationary, DIM and IDIM indicators.
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such cases, interpreting DIM plans can be more effi-
cient when the absolute value of the spectral correlation
density is normalized to vary only between 0 and 1. For
this purpose, the proposed DIMPSC

Df can be extended to
use the coherence spectral density as a distribution
intensity modulation. The spectral coherence distribu-
tion density modulation function is obtained by3:

DIMPSCoh
Df f ,að Þ=

SCa
x f +a=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SC0
x f +a=2ð Þ

p
SC0

x fð Þ
SCa

x f �a=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SC0

x f �a=2ð Þ
p

SC0
x fð Þ

 !
ð11Þ

The distribution density modulation of (DIM)
represents the spectral correlation density, expressed by
different sources, is called (IDIM). This integration will
be selected over the entire band of carrier frequencies
defined by27:

DIM
f2
f1

a; Dfð Þ=
ðf2
f1

DIMDf f ; að Þdf ð12Þ

Where DIMDf (f ; a) is a vector calculated in the carrier
frequency band from f1 to f2.

34

Cyclostationary indicators

The psychoacoustic roughness and cyclic roughness
indicators, which measure the roughness of the signal,
can be used in fault detection through the integrated
spectral coherence and spectral coherence via cyclic
roughness (equations (13) and (14)), respectively. These
indicators facilitate fault characterization, early detec-
tion, and severity assessment. They can be computed
using the following equations43,44:

g2
x al, fkð Þ= jSX al, fkð Þj2

SX 0, fkð Þ SX 0, fkð Þ ð13Þ

I =
1

F1 F2

X
l, k

g2
x al, fkð Þ

 !
:g(fk) ð14Þ

With: g 2ð Þ
x represents the spectrum of the signal, g(fk) is

the weighting function for each frequency f and al, fkð Þ
is the autocorrelation coefficient between the indices l
and k.

F1 and F2: are the lower and upper limits of the
integration frequency range, respectively.

g 2ð Þ
x al, fkð Þ: Rapid estimation of spectral coherence

across frequency orders.
I: The Number of summed frequencies.
The results of the interpretations of Table 7 highlight

variations in cyclostationary indicators based on
different simulation parameters.

� In the first case, as shown in Table 7, the ‘‘psy-
choacoustic roughness’’ indicator increases in
the presence of noise, rising from 0.63 to 0.81Hz.
Similarly, the ‘‘cyclic roughness’’ indicator
exhibits an increase in its values with the intro-
duction of noise, going from 0.33 to 1.62Hz.

� In the second case, presented in Table 7, the
‘‘psychoacoustic roughness’’ indicator decreases
in the presence of noise, dropping from
0.58 to 0.35Hz, while the ‘‘cyclic roughness’’
indicator increases, ranging from 0.26 to 1.61Hz.

� Finally, in the third case described in Table 7,
the ‘‘psychoacoustic roughness’’ indicator experi-
ences a decrease in the presence of noise, decreas-
ing from 0.69 to 1.39Hz, while the ‘‘cyclic
roughness’’ indicator shows an increase, going
from 0.29 to 1.63Hz. These variations under-
score the impact of noise on cyclostationary
indicators.

Application of cyclostationary analysis to simulated
signals

The processing of the simulated signals presented in the
section above included various aspects such as ampli-
tudes, rotation frequencies, meshing frequencies, and
different scenarios. The spectral analysis conducted
allowed us to observe a substantial evolution or

Table 7. Variations of cyclostationary indicators with amplitude, rotation frequency, and mesh frequency changes.

Parameters Noise-free signal Noisy signal

Psychoacoustic roughness Cyclic roughness Psychoacoustic roughness Cyclic roughness

Amplitude Case 1 0.63074 0.33428 0.80978 1.6243
Case 2 0.63134 0.22614 0.5267 0.46398
Case 3 0.60115 0.19775 0.53828 0.41626

Rotation frequency Case 1 0.63074 0.33428 0.80978 1.6243
Case 2 0.57511 0.26089 0.34808 1.608
Case 3 0.53036 0.17754 0.17988 0.63315

Mesh frequency Case 1 0.63074 0.33428 0.80978 1.6243
Case 2 0.6039 0.23571 1.2882 0.8661
Case 3 0.68834 0.29908 1.3919 0.63091
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influence of the amplitudes on the rotation and mesh-
ing frequencies. To validate this outcome, we applied
the cyclostationarity method to the simulated signals.

A. Case 1: Fault amplitudes and varying fault amplitudes with
noise. The application of DIM to a simulated signal
without noise was investigated. In Figure 8(a), two
distinct cyclic frequencies are observed. The first funda-
mental cyclic frequency, a2=3.418 3 1023*fs ’ 14Hz
(with fs=4096Hz), is accompanied by multiple har-
monics, corresponding to twice the rotation frequency
of the pinion (2 3 Fr2). The second cyclic frequency,
a1=7.324 3 1023*fs ’ 30Hz (with fs=4096Hz), has
a significantly higher amplitude and is also accompa-
nied by harmonics, corresponding to twice the rotation
frequency of the wheel (2 3 Fr1). Additionally, a car-
rier frequency at 1200Hz, corresponding to the second
harmonic of the meshing frequency Fm1 (600Hz) and
its harmonics, as well as a carrier frequency at 1600Hz,
corresponding to the second harmonic of the meshing
frequency Fm2 (800Hz), are observed.

The use of IDIM, as illustrated in Figure 8(b),
enables a clearer identification of the fundamental cyc-
lic frequencies a2=14Hz (2 3 Fr2) and a1=30Hz
(2 3 Fr1) and their harmonics. This phenomenon
corresponds to a wear defect on both the wheel and the
pinion, in addition to alignment issues.

The application of DIM to a simulated signal with
noise was examined. Figure 9(a) reveals the emergence

of two cyclic frequencies: the first, a2=1.708 3

1023*fs ’ 7Hz (with fs=4096Hz), corresponds to
the rotation frequency of the pinion, while the second,
a1=3.662 3 1023*fs ’ 15Hz, exhibits significant
amplitude and corresponds to the rotation frequency of
the wheel. The modulations of these two cyclic frequen-
cies indicate generalized wear on both wheels’ teeth.
Additionally, the presence of two carrier frequencies at
600Hz (Fm1) and 800Hz (Fm2), as well as their respec-
tive harmonics, is observed.

The use of IDIM (Integration Correspondent to
DIM) allows for a clear highlighting of these two cyclic
frequencies and their modulations, as illustrated in
Figure 9(b).

B. Case 2: Rotational frequencies and varying rotational
frequencies with noise. The application of DIM to a
simulated signal without noise was investigated. Figure
10(a) reveals the emergence of two cyclic frequencies:
the first, a2=5.371 3 1023*fs ’ 22Hz (with fs=
4096Hz), corresponds to Fr2, while the second,
a1=7.324 3 1023*fs ’ 30Hz, exhibits significant
amplitude and corresponds to Fr1. The modulations of
these two cyclic frequencies indicate generalized wear
on both wheels’ teeth. Additionally, the presence of
two carrier frequencies at 600Hz (Fm1) and 800Hz
(Fm2), along with their harmonics, is observed.

The application of IDIM allows for a clear and visi-
ble highlighting of these two cyclic frequencies and their
modulations, as illustrated in Figure 10(b).

Figure 8. (a) Spectral correlation (DIM), (b) its integration
(IDIM) applied to the signal of Figure 1(a).

Figure 9. (a) Spectral correlation (DIM), (b) Its integration
(IDIM) applied to the signal of Figure 2(a).
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The application of DIM to a simulated signal with
noise was examined. Figure 11(a) depicts the emergence
of two cyclic frequencies: the first, a2=5.371 3

1023*fs ’ 22Hz (with fs=4096Hz), corresponds
to the rotation frequency of the pinion, while the
second, a1=7.324 3 1023*fs ’ 30Hz, exhibits signifi-
cant amplitude and corresponds to the rotation fre-
quency of the wheel. The modulations of these two
cyclic frequencies indicate generalized wear on both

wheels’ teeth. Additionally, the presence of two carrier
frequencies at 600Hz (Fm1) and 800Hz (Fm2), along
with their harmonics, is observed.

The application of IDIM allows for a clear and visi-
ble highlighting of these two cyclic frequencies and their
modulations, as illustrated in Figure 11(b).

C. Case 3: Varying meshing frequencies with and without
noise. The application of DIM to a simulated signal
without noise was investigated. Figure 12(a) does not
provide information about the presence of defects.
However, applying IDIM reveals two cyclic frequen-
cies: the first, a2=1.7 3 1023*fs’ 7Hz (with
fs=4096Hz), corresponds to the rotation frequency of
the pinion, while the second, a1=3.66 3 1023*fs’

15Hz, has significant amplitude and corresponds to the
rotation frequency of the wheel. The modulations of
these two cyclic frequencies indicate widespread wear
on both wheels’ teeth, as shown in Figure 12(b).

The application of DIM to a simulated signal with
noise was investigated. Figure 13(a) does not provide
information about the presence of defects. However,
applying IDIM reveals two cyclic frequencies: the first,
a2=1.7 3 1023*fs ’ 7Hz (with fs=4096Hz), corre-
sponds to the rotation frequency of the pinion, while
the second, a1=3.66 3 1023*fs ’ 15Hz, has signifi-
cant amplitude and corresponds to the rotation
frequency of the wheel. The modulations of these
two cyclic frequencies indicate generalized wear on
both wheels’ teeth, as illustrated in Figure 13(b).
Additionally, a peak corresponding to 14 3 Fr2 and

Figure 10. (a) Spectral correlation (DIM), (b) Its integration
(IDIM) applied to the signal of Figure 3(a).

Figure 11. (a) Spectral correlation (DIM), (b) Its integration
(IDIM) applied to the signal of Figure 4(a).

Figure 12. (a) Spectral correlation (DIM), (b) Its integration
(IDIM) applied to the signal of Figure 5 (a).
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another peak corresponding to 13 3 Fr1, which may
be attributed to the system’s resonance frequencies, are
observed.

The application of IDIM enhances the visibility of
cyclic frequencies and their modulations, facilitating the
detection and analysis of wear and alignment defects in
gear systems.

Experimental study

Description of the installation

In the ammonia unit, the 101 BJT cooling fan plays a
crucial role in the manufacturing process, particularly

in the ammonia reforming zone. Continuous monitor-
ing of this fan is essential.45 The fan system comprises a
turbine, speed reducer, fan, electric motor, and various
associated components, all equipped with an advanced
diagnostic system.

The turbofan 101 BJT operates by cooling furnace
101 B, utilizing two drive systems: a primary drive pow-
ered by the turbine and an emergency drive using an
electric motor that operates at a frequency of 15.56Hz.
The turbine consists of two wheels, each containing a
set of six blades (Np) grouped together. Both drive sys-
tems are connected to the main system through cou-
plings. The connection between the turbine, speed
reducer, and fan is established via a clutch coupling, as
depicted in Figure 14. This coupling mechanism disen-
gages automatically when the turbine’s speed falls
below that of the fan’s transmission shaft. Additionally,
to facilitate maintenance on the turbine, the transmis-
sion shaft is equipped with a mechanical release device.

Measurement acquisition and campaigns carried out

Vibration measurements were taken on the plain bear-
ings (P3 to P6) of the turbofan in three directions. Two
types of accelerometers were employed: a triaxial accel-
erometer (type 4524B-001) and an industrial acceler-
ometer (type 4511-001), as shown in Figure 15(a). To
collect and process these measurements, a Brüel &
Kjaer PULSE 16.1 analyzer equipped with PULSE
LABSHOP acquisition software was utilized, as
depicted in Figure 15(b).

Given the critical role of the 101 BJT turbofan in
the cooling process, continuous monitoring is essential.
The study was conducted at the national fertilizer
production company, where it was observed that this
system was primarily monitored offline, relying on
overall RMS velocity vibration levels. As these levels

Figure 13. (a) Spectral correlation (DIM), (b) Its integration
(IDIM) applied to the signal of Figure 6 (a).

Figure 14. Kinematic diagram of turbo fan 101 BJT, speed reducer GVAB 420.
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were found to be considerably high, test campaigns
were initiated across various frequency bands to diag-
nose the potential causes of this elevated vibration.
Table 8 summarizes the key data obtained from these
measurements. The objective of these signal measure-
ments was to detect possible impacts within the
mechanism, such as those resulting from bearings,
gears, blade wear, and more. The frequency bands used
by the maintenance department for monitoring the sys-
tem were inadequate for identifying the aforementioned
faults, as they typically occurred at higher frequencies,
except in the cases of shaft friction and plain bearing
wear.45

Analysis of turbofan 101 BJT and scalar indicators

The table below provides scalar indicators computed
for bearings 3 and 6 in the turbofan 101 BJR gearbox
(see Table 9). These indicators serve to evaluate the
presence of faults in each bearing. Upon analyzing these
indicators, the following conclusions can be drawn:

� For bearing 3 in the high-frequency range [0–
12,800 Hz], the value of K exceeds 3, indicating
the presence of faults in this bearing.
Additionally, the RMS and CF values are sub-
stantial, further supporting the indication of
defects.

� For bearing 6 in the low-frequency range [0–
1600 Hz], the value of K surpasses 3, suggesting
the presence of an anomaly in this bearing.
Furthermore, in the high-frequency range, the
RMS, VP, and K values all align to indicate the
presence of a fault in bearing 6.

Application of cyclostationarity to signals measured
on gearbox bearings and cyclostationary indicators

The table below displays cyclic indicators computed for
stages 3 and 6 of the turbofan 101 BJR gearbox (see
Table 10). From the analysis of these indicators, the
following conclusions can be drawn:

� For stage 3, both the psychoacoustic roughness
and cyclic roughness values increase as the fre-
quency range expands, rising from
1.53 to 1.71Hz and from 1.43 to 2.22Hz, respec-
tively. This suggests that these two indicators
become more reliable at higher frequencies.

� Similarly, for stage 6, the psychoacoustic rough-
ness and cyclic roughness values also exhibit an
increase as the frequency range extends, with
values going from 1.73 to 1.81Hz and from
1.98 to 2.52Hz, respectively. This indicates that
these indicators gain greater reliability at higher
frequencies as well.

Low-frequency analysis of the gear Reducer

A. Input bearing. The application of the DIM on the sig-
nal from stage 3 of the gearbox (see Figure 16), mea-
sured in the frequency band [0–1600Hz] and illustrated

Table 8. Measurement data.

Test
companions

Fmax Number
of Lines NL

Fs Df

1 [0–1600 Hz] 3200 4096 1 Hz
2 [0–12,800 Hz] 6400 32,768 2 Hz

Table 9. Calculated scalar indicators.

Bearing RMS VC FC K

P3 [0–1600 Hz] 3.4396 14.7411 4.9557 4.8941
P3 [0–12,800 Hz] 64.9784 268.7220 5.1356 5.3214
P6 [0–1600 Hz] 5.5878 25.1294 4.8572 4.5630
P6 [0–12,800 Hz] 75.0824 335.5770 5.4695 5.6570

Figure 15. (a) Location of accelerometers and (b) pulse analyzer 16.1.
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in Figure 17(a), reveals the appearance of two cyclic
frequencies: the first, a2=3.798 3 1023*fs ’ 15.56Hz
(with fs=4096Hz), corresponds to the rotation fre-
quency of the pinion. The second cyclic frequency,
a1=0.02*fs ’ 83.5Hz, presents a significant ampli-
tude and corresponds to the rotation frequency of the

wheel. The modulations of these two cyclic frequencies
indicate generalized wear on the teeth of both wheels.

The application of IDIM makes it possible to clearly
and visibly highlight these two cyclic frequencies and
their modulations, as shown in Figure 17(b).

B. Output bearing. The application of DIM to the signal
from stage 6 of the gearbox (see Figure 18), measured
in the frequency range [0–1600Hz] and illustrated in
Figure 19(a), reveals the presence of two cyclic frequen-
cies. The first, a2=3.798 3 1023*fs ’ 15.56Hz (with
fs=4096Hz), corresponds to the rotation frequency of
the pinion, while the second, a1=0.02 *fs ’ 83.5Hz,
has significant amplitude and corresponds to the rota-
tion frequency of the wheel. The modulations of these
two cyclic frequencies indicate generalized wear on the
teeth of both wheels.

The application of IDIM further enhances the visibi-
lity of these two cyclic frequencies and their modula-
tions, as depicted in Figure 19(b).

High-frequency analysis of the reducer

A. Input bearing. The application of DIM to the signal
from stage 3 of the gearbox (see Figure 20), measured
in the frequency range [0–12,800Hz] and illustrated in
Figure 21(a), reveals the presence of two cyclic frequen-
cies. The first, a2=1.83 3 1024Hz * fs ’ 6Hz (with
fs=32,768Hz), corresponds to 0.38 3 Fr2, indicating
the presence of an oil swirl defect in the pinion.
Additionally, there is a carrier frequency at 1044Hz
and its harmonics (2088, 3132, and 4176Hz), which
may correspond to frequencies generated by the tur-
bine. Furthermore, there is a significant peak corre-
sponding to the second harmonic of the wheel rotation
frequency (Fr1), suggesting a misalignment fault.

The application of IDIM enhances the visibility of
the cyclic frequency and its modulations, and reveals a
peak corresponding to 0.5 3 Fr1, indicating an oil swirl
fault on the reducer wheel, as shown in Figure 21(b).

Table 10. Calculated cyclostationarity indicators.

Bearing Psychoacoustic
roughness

Cyclic
roughness

P3 [0–1600 Hz] 1.530 1.434
P3 [0–12,800 Hz] 1.709 2.224
P6 [0–1600 Hz] 1.730 1.975
P6 [0–12,800 Hz] 1.809 2.524

Figure 16. Acceleration signal measured on stage 3 in the
band [0–1600 Hz].

Figure 17. (a) Spectral correlation (DIM), (b) its integration
(IDIM) of the signal in Figure 16.

Figure 18. Acceleration signal measured on stage 6 in the
band [0–1600 Hz].
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B. Output bearing. The application of DIM to the signal
from stage 6 of the gearbox, measured in the frequency
range [0–12,800 Hz] and illustrated in Figure 22,
reveals the presence of the cyclic frequency
a2=4.74 3 1024*fs ’ 15.56Hz (with fs=32768Hz),
corresponding to the rotation frequency of the wheel
(Fr2) and its harmonics. The modulations of this cyclic
frequency clearly indicate the generalized wear of the
pinion teeth. Additionally, there is a carrier frequency
at 2088Hz, corresponding to the second harmonic of
the turbine fault frequency, along with its fourth and
sixth harmonics (4055 and 6122Hz), as illustrated in
Figure 23(a). The application of IDIM enhances the
visibility of the cyclic frequency and its modulations, as
shown in Figure 23(b).

� Observation for Analysis

In conclusion, the results obtained from applying
cyclostationarity analysis based on DIM and IDIM
convincingly demonstrate the effectiveness of this
method in detecting gear faults. This approach proves
superior to spectral, cepstral, and envelope analysis,
especially in the presence of noise, exhibiting enhanced
detection capabilities as the noise level increases.

The simulation study highlights the inadequacy of
scalar indicators K and FC in effectively detecting char-
acteristic signal changes under significant noise condi-
tions. Conversely, cyclic roughness and psychoacoustic
roughness indicators prove more effective in identifying
anomalies, offering more accurate detection.

� Our simulation and in-depth study have enabled
us to establish intervals for cyclostationary indi-
cators used as thresholds for gear fault

Figure 19. (a) Spectral correlation (DIM), (b) its integration
(IDIM) of the signal in Figure 18.

Figure 20. Acceleration signal measured on stage 3 in the
band [0–12800 Hz].

Figure 22. Acceleration signal measured on stage 6 in the
band [0–12800 Hz].

Figure 21. (a) Spectral correlation (DIM), (b) its integration
(IDIM) of the signal in Figure 20.
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detection. The observed values of psychoacous-
tic roughness and cyclic roughness indicators
during the simulation range between 0.18 and
1.39Hz, and between 0.18 and1.62Hz, respec-
tively, clearly indicating the presence of faults in
the gearing system. Furthermore, the calculation
of these indicators on real signals from the gear-
box reveals additional ranges for psychoacoustic
roughness between 1.53 and 1.81Hz, and cyclic
roughness between 1.43 and 2.52Hz, definitively
indicating anomalies in the system.

� This analysis clearly demonstrates the superior-
ity of cyclostationary analysis and its indicators
compared to classical analyses such as spectral
and cepstral analysis, as well as scalar indicators.
These results reinforce the effectiveness of this
method in the accurate detection of gear faults,
even in the presence of noise.

Conclusion

This paper constitutes a substantial contribution to the
domain of vibration analysis in rotating machines and
condition-based preventive maintenance. It highlights
the superior efficiency of the cyclostationary method
when compared to other vibration analysis techniques,
thereby paving the way for enhanced accuracy and
reliability in defect detection and severity assessment.

� The conducted research delved into diagnostic
enhancement through the analysis of both

simulated signals and raw time signals measured
on the gearbox bearings in the radial direction.
Various techniques were employed, including
fast Fourier transform (FFT) for signal spec-
trum, band-pass filtering utilizing a butterworth
filter, envelope analysis to extract defect fea-
tures, and the integration of cyclostationary
analysis with the Hilbert transform for enhanced
fault detection. These advancements present
promising avenues for elevating condition-based
preventive maintenance and ensuring the heigh-
tened reliability of rotating machines.

� This research establishes a digital simulation
model for double faults, providing a robust tool
for generating essential signals to optimize
threshold determinations for defect detection
indicators. Moreover, it aids in comprehending
the vibration dynamics of geared power trans-
mission systems. The simulated signals accu-
rately replicate double faults, allowing for a
detailed exploration of their impact on the sys-
tem’s vibration characteristics. Consequently,
these signals serve as a valuable resource for
advancing defect detection techniques. They
facilitate the precise definition of detection
thresholds and the study of specific vibration
behaviors associated with various combined
defects. The findings of this study illuminate the
significance of this approach in improving gear
fault detection and analysis.

� Classical and cyclostationary scalar indicators,
such as kurtosis, crest factor, psychoacoustic
roughness, and cyclic roughness, have tradition-
ally proven effective in detecting shock-type
defects due to their sensitivity to periodic pulses.
However, these indicators face limitations in the
presence of combined faults, largely attributed
to operational noise and parasitic components.

� This study delves into the application of cyclos-
tationary analysis, coupled with the Hilbert
transform, unveiling promising outcomes. This
innovative approach boasts several advantages,
such as representing signal distribution intensity
modulation (DIM), employing a cascade decom-
position technique to segregate higher and
lower-frequency components, and utilizing both
conventional scalar and cyclostationary indica-
tors for detecting shock-type faults. The research
demonstrates the potential for enhanced
machinery fault detection through the amalga-
mation of classical and cyclostationary analysis
with advanced signal processing techniques.

� This research makes a substantial contribution
by enhancing our understanding and providing
more precise diagnoses of defects in rotating
machines. Through the application of advanced

Figure 23. (a) Spectral correlation (DIM), (b) its integration
(IDIM) of the signal in Figure 22.
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vibration analysis techniques, these findings
play a crucial role in improving the effectiveness
of condition-based preventive maintenance.
Ultimately, this contributes to prolonging the
operational life of machinery and reducing
operating costs in the rotating machinery sector.
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Appendix

Notation

Abbreviations Designation

Ra
x (a) Cyclic autocorrelation function

SCa
x (f ) Spectral correlation density

DIMPSC
Df (f ,a) Distribution intensity modulation function

DIMPSCoh
Df (f ,a) Spectral coherence distribution intensity modulation

xDf (t, f ) Filtered signal in a side frequency band ½f � Df
2 ; f + Df

2 �
f Carrier frequency

Fm Meshing frequency
Fs Sampling frequency
VC Peak value
Fr1 Reducer input shaft rotation frequency
Fr2 Reducer output shaft rotation frequency
F1, F2 The lower and upper limits of the domain of integration
fs Sampling frequency
I The number of summed frequencies
g2

x al, fkð Þ Fast Estimator of Order-Frequency Spectral Coherence
FC Crest Factor
Ne Number of spectrum lines
Fmax Maximum frequency
xDf (t,f) Indicates the filtered version
Df The step frequency
Ai, Bi Amplitudes
RMS Root Mean Square
K Kurtosis
DSCa Spectral correlation
Np Nombre the blades
NL Number of Lines
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