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Foreward

Mathematics education at the beginning university level is closely tied to the traditional publishers. In my
opinion, it gives them too much control of both cost and content. The main goal of most publishers is
profit, and the result has been a sales-driven business model as opposed to a pedagogical one. This results
in frequent new “editions” of textbooks motivated largely to reduce the sale of used books rather than to
update content quality. It also introduces copyright restrictions which stifle the creation and use of new
pedagogical methods and materials. The overall result is high cost textbooks which may not meet the
evolving educational needs of instructors and students.

To be fair, publishers do try to produce material that reflects new trends. But their goal is to sell books
and not necessarily to create tools for student success in mathematics education. Sadly, this has led to
a model where the primary choice for adapting to (or initiating) curriculum change is to find a different
commercial textbook. My editor once said that the text that is adopted is often everyone’s third choice.

Of course instructors can produce their own lecture notes, and have done so for years, but this remains
an onerous task. The publishing industry arose from the need to provide authors with copy-editing, edi-
torial, and marketing services, as well as extensive reviews of prospective customers to ascertain market
trends and content updates. These are necessary skills and services that the industry continues to offer.

Authors of open educational resources (OER) including (but not limited to) textbooks and lecture
notes, cannot afford this on their own. But they do have two great advantages: The cost to students is
significantly lower, and open licenses return content control to instructors. Through editable file formats
and open licenses, OER can be developed, maintained, reviewed, edited, and improved by a variety of
contributors. Instructors can now respond to curriculum change by revising and reordering material to
create content that meets the needs of their students. While editorial and quality control remain daunting
tasks, great strides have been made in addressing the issues of accessibility, affordability and adaptability
of the material.

For the above reasons I have decided to release my text under an open license, even though it was
published for many years through a traditional publisher.

Supporting students and instructors in a typical classroom requires much more than a textbook. Thus,
while anyone is welcome to use and adapt my text at no cost, I also decided to work closely with Lyryx
Learning. With colleagues at the University of Calgary, I helped create Lyryx almost 20 years ago. The
original idea was to develop quality online assessment (with feedback) well beyond the multiple-choice
style then available. Now Lyryx also works to provide and sustain open textbooks; working with authors,
contributors, and reviewers to ensure instructors need not sacrifice quality and rigour when switching to
an open text.

I believe this is the right direction for mathematical publishing going forward, and look forward to
being a part of how this new approach develops.

W. Keith Nicholson, Author
University of Calgary
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Preface

This textbook is an introduction to the ideas and techniques of linear algebra for first- or second-year
students with a working knowledge of high school algebra. The contents have enough flexibility to present
a traditional introduction to the subject, or to allow for a more applied course. Chapters 1–4 contain a one-
semester course for beginners whereas Chapters 5–9 contain a second semester course (see the Suggested
Course Outlines below). The text is primarily about real linear algebra with complex numbers being
mentioned when appropriate (reviewed in Appendix A). Overall, the aim of the text is to achieve a balance
among computational skills, theory, and applications of linear algebra. Calculus is not a prerequisite;
places where it is mentioned may be omitted.

As a rule, students of linear algebra learn by studying examples and solving problems. Accordingly,
the book contains a variety of exercises (over 1200, many with multiple parts), ordered as to their difficulty.
In addition, more than 375 solved examples are included in the text, many of which are computational in
nature. The examples are also used to motivate (and illustrate) concepts and theorems, carrying the student
from concrete to abstract. While the treatment is rigorous, proofs are presented at a level appropriate to
the student and may be omitted with no loss of continuity. As a result, the book can be used to give a
course that emphasizes computation and examples, or to give a more theoretical treatment (some longer
proofs are deferred to the end of the Section).

Linear Algebra has application to the natural sciences, engineering, management, and the social sci-
ences as well as mathematics. Consequently, 18 optional “applications” sections are included in the text
introducing topics as diverse as electrical networks, economic models, Markov chains, linear recurrences,
systems of differential equations, and linear codes over finite fields. Additionally some applications (for
example linear dynamical systems, and directed graphs) are introduced in context. The applications sec-
tions appear at the end of the relevant chapters to encourage students to browse.

SUGGESTED COURSE OUTLINES

This text includes the basis for a two-semester course in linear algebra.

• Chapters 1–4 provide a standard one-semester course of 35 lectures, including linear equations, ma-
trix algebra, determinants, diagonalization, and geometric vectors, with applications as time permits.
At Calgary, we cover Sections 1.1–1.3, 2.1–2.6, 3.1–3.3, and 4.1–4.4 and the course is taken by all
science and engineering students in their first semester. Prerequisites include a working knowledge
of high school algebra (algebraic manipulations and some familiarity with polynomials); calculus is
not required.

• Chapters 5–9 contain a second semester course including Rn, abstract vector spaces, linear trans-
formations (and their matrices), orthogonality, complex matrices (up to the spectral theorem) and
applications. There is more material here than can be covered in one semester, and at Calgary we

ix
www.dbooks.org

https://www.dbooks.org/


x CONTENTS

cover Sections 5.1–5.5, 6.1–6.4, 7.1–7.3, 8.1–8.7, and 9.1–9.3 with a couple of applications as time
permits.

• Chapter 5 is a “bridging” chapter that introduces concepts like spanning, independence, and basis
in the concrete setting of Rn, before venturing into the abstract in Chapter 6. The duplication is
balanced by the value of reviewing these notions, and it enables the student to focus in Chapter 6
on the new idea of an abstract system. Moreover, Chapter 5 completes the discussion of rank and
diagonalization from earlier chapters, and includes a brief introduction to orthogonality in Rn, which
creates the possibility of a one-semester, matrix-oriented course covering Chapter 1–5 for students
not wanting to study the abstract theory.

CHAPTER DEPENDENCIES

The following chart suggests how the material introduced in each chapter draws on concepts covered in
certain earlier chapters. A solid arrow means that ready assimilation of ideas and techniques presented
in the later chapter depends on familiarity with the earlier chapter. A broken arrow indicates that some
reference to the earlier chapter is made but the chapter need not be covered.

Chapter 1: Systems of Linear Equations

Chapter 2: Matrix Algebra

Chapter 3: Determinants and Diagonalization Chapter 4: Vector Geometry

Chapter 5: The Vector Space Rn

Chapter 6: Vector Spaces

Chapter 7: Linear Transformations Chapter 8: Orthogonality

Chapter 9: Change of Basis

Chapter 10: Inner Product Spaces Chapter 11: Canonical Forms

HIGHLIGHTS OF THE TEXT

• Two-stage definition of matrix multiplication. First, in Section 2.2 matrix-vector products are
introduced naturally by viewing the left side of a system of linear equations as a product. Second,
matrix-matrix products are defined in Section 2.3 by taking the columns of a product AB to be A

times the corresponding columns of B. This is motivated by viewing the matrix product as compo-
sition of maps (see next item). This works well pedagogically and the usual dot-product definition
follows easily. As a bonus, the proof of associativity of matrix multiplication now takes four lines.



CONTENTS xi

• Matrices as transformations. Matrix-column multiplications are viewed (in Section 2.2) as trans-
formations Rn→ Rm. These maps are then used to describe simple geometric reflections and rota-
tions in R2 as well as systems of linear equations.

• Early linear transformations. It has been said that vector spaces exist so that linear transformations
can act on them—consequently these maps are a recurring theme in the text. Motivated by the matrix
transformations introduced earlier, linear transformations Rn→ Rm are defined in Section 2.6, their
standard matrices are derived, and they are then used to describe rotations, reflections, projections,
and other operators on R2.

• Early diagonalization. As requested by engineers and scientists, this important technique is pre-
sented in the first term using only determinants and matrix inverses (before defining independence
and dimension). Applications to population growth and linear recurrences are given.

• Early dynamical systems. These are introduced in Chapter 3, and lead (via diagonalization) to
applications like the possible extinction of species. Beginning students in science and engineering
can relate to this because they can see (often for the first time) the relevance of the subject to the real
world.

• Bridging chapter. Chapter 5 lets students deal with tough concepts (like independence, spanning,
and basis) in the concrete setting of Rn before having to cope with abstract vector spaces in Chap-
ter 6.

• Examples. The text contains over 375 worked examples, which present the main techniques of the
subject, illustrate the central ideas, and are keyed to the exercises in each section.

• Exercises. The text contains a variety of exercises (nearly 1175, many with multiple parts), starting
with computational problems and gradually progressing to more theoretical exercises. Select solu-
tions are available at the end of the book or in the Student Solution Manual. There is a complete
Solution Manual is available for instructors.

• Applications. There are optional applications at the end of most chapters (see the list below).
While some are presented in the course of the text, most appear at the end of the relevant chapter to
encourage students to browse.

• Appendices. Because complex numbers are needed in the text, they are described in Appendix A,
which includes the polar form and roots of unity. Methods of proofs are discussed in Appendix B,
followed by mathematical induction in Appendix C. A brief discussion of polynomials is included
in Appendix D. All these topics are presented at the high-school level.

• Self-Study. This text is self-contained and therefore is suitable for self-study.

• Rigour. Proofs are presented as clearly as possible (some at the end of the section), but they are
optional and the instructor can choose how much he or she wants to prove. However the proofs are
there, so this text is more rigorous than most. Linear algebra provides one of the better venues where
students begin to think logically and argue concisely. To this end, there are exercises that ask the
student to “show” some simple implication, and others that ask her or him to either prove a given
statement or give a counterexample. I personally present a few proofs in the first semester course
and more in the second (see the Suggested Course Outlines).
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• Major Theorems. Several major results are presented in the book. Examples: Uniqueness of the
reduced row-echelon form; the cofactor expansion for determinants; the Cayley-Hamilton theorem;
the Jordan canonical form; Schur’s theorem on block triangular form; the principal axes and spectral
theorems; and others. Proofs are included because the stronger students should at least be aware of
what is involved.

CHAPTER SUMMARIES

Chapter 1: Systems of Linear Equations.

A standard treatment of gaussian elimination is given. The rank of a matrix is introduced via the row-
echelon form, and solutions to a homogeneous system are presented as linear combinations of basic solu-
tions. Applications to network flows, electrical networks, and chemical reactions are provided.

Chapter 2: Matrix Algebra.

After a traditional look at matrix addition, scalar multiplication, and transposition in Section 2.1, matrix-
vector multiplication is introduced in Section 2.2 by viewing the left side of a system of linear equations
as the product Ax of the coefficient matrix A with the column x of variables. The usual dot-product
definition of a matrix-vector multiplication follows. Section 2.2 ends by viewing an m×n matrix A as a
transformation Rn→Rm. This is illustrated for R2→R2 by describing reflection in the x axis, rotation of
R2 through π

2 , shears, and so on.

In Section 2.3, the product of matrices A and B is defined by AB =
[

Ab1 Ab2 · · · Abn

]
, where

the bi are the columns of B. A routine computation shows that this is the matrix of the transformation B

followed by A. This observation is used frequently throughout the book, and leads to simple, conceptual
proofs of the basic axioms of matrix algebra. Note that linearity is not required—all that is needed is some
basic properties of matrix-vector multiplication developed in Section 2.2. Thus the usual arcane definition
of matrix multiplication is split into two well motivated parts, each an important aspect of matrix algebra.
Of course, this has the pedagogical advantage that the conceptual power of geometry can be invoked to
illuminate and clarify algebraic techniques and definitions.

In Section 2.4 and 2.5 matrix inverses are characterized, their geometrical meaning is explored, and
block multiplication is introduced, emphasizing those cases needed later in the book. Elementary ma-
trices are discussed, and the Smith normal form is derived. Then in Section 2.6, linear transformations
Rn→ Rm are defined and shown to be matrix transformations. The matrices of reflections, rotations, and
projections in the plane are determined. Finally, matrix multiplication is related to directed graphs, matrix
LU-factorization is introduced, and applications to economic models and Markov chains are presented.
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Chapter 3: Determinants and Diagonalization.

The cofactor expansion is stated (proved by induction later) and used to define determinants inductively
and to deduce the basic rules. The product and adjugate theorems are proved. Then the diagonalization
algorithm is presented (motivated by an example about the possible extinction of a species of birds). As
requested by our Engineering Faculty, this is done earlier than in most texts because it requires only deter-
minants and matrix inverses, avoiding any need for subspaces, independence and dimension. Eigenvectors
of a 2× 2 matrix A are described geometrically (using the A-invariance of lines through the origin). Di-
agonalization is then used to study discrete linear dynamical systems and to discuss applications to linear
recurrences and systems of differential equations. A brief discussion of Google PageRank is included.

Chapter 4: Vector Geometry.

Vectors are presented intrinsically in terms of length and direction, and are related to matrices via coordi-
nates. Then vector operations are defined using matrices and shown to be the same as the corresponding
intrinsic definitions. Next, dot products and projections are introduced to solve problems about lines and
planes. This leads to the cross product. Then matrix transformations are introduced in R3, matrices of pro-
jections and reflections are derived, and areas and volumes are computed using determinants. The chapter
closes with an application to computer graphics.

Chapter 5: The Vector Space Rn.

Subspaces, spanning, independence, and dimensions are introduced in the context of Rn in the first two
sections. Orthogonal bases are introduced and used to derive the expansion theorem. The basic properties
of rank are presented and used to justify the definition given in Section 1.2. Then, after a rigorous study of
diagonalization, best approximation and least squares are discussed. The chapter closes with an application
to correlation and variance.

This is a “bridging” chapter, easing the transition to abstract spaces. Concern about duplication with
Chapter 6 is mitigated by the fact that this is the most difficult part of the course and many students
welcome a repeat discussion of concepts like independence and spanning, albeit in the abstract setting.
In a different direction, Chapter 1–5 could serve as a solid introduction to linear algebra for students not
requiring abstract theory.

Chapter 6: Vector Spaces.

Building on the work on Rn in Chapter 5, the basic theory of abstract finite dimensional vector spaces is
developed emphasizing new examples like matrices, polynomials and functions. This is the first acquain-
tance most students have had with an abstract system, so not having to deal with spanning, independence
and dimension in the general context eases the transition to abstract thinking. Applications to polynomials
and to differential equations are included.
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Chapter 7: Linear Transformations.

General linear transformations are introduced, motivated by many examples from geometry, matrix theory,
and calculus. Then kernels and images are defined, the dimension theorem is proved, and isomorphisms
are discussed. The chapter ends with an application to linear recurrences. A proof is included that the
order of a differential equation (with constant coefficients) equals the dimension of the space of solutions.

Chapter 8: Orthogonality.

The study of orthogonality in Rn, begun in Chapter 5, is continued. Orthogonal complements and pro-
jections are defined and used to study orthogonal diagonalization. This leads to the principal axes theo-
rem, the Cholesky factorization of a positive definite matrix, QR-factorization, and to a discussion of the
singular value decomposition, the polar form, and the pseudoinverse. The theory is extended to Cn in
Section 8.7 where hermitian and unitary matrices are discussed, culminating in Schur’s theorem and the
spectral theorem. A short proof of the Cayley-Hamilton theorem is also presented. In Section 8.8 the field
Zp of integers modulo p is constructed informally for any prime p, and codes are discussed over any finite
field. The chapter concludes with applications to quadratic forms, constrained optimization, and statistical
principal component analysis.

Chapter 9: Change of Basis.

The matrix of general linear transformation is defined and studied. In the case of an operator, the rela-
tionship between basis changes and similarity is revealed. This is illustrated by computing the matrix of a
rotation about a line through the origin in R3. Finally, invariant subspaces and direct sums are introduced,
related to similarity, and (as an example) used to show that every involution is similar to a diagonal matrix
with diagonal entries ±1.

Chapter 10: Inner Product Spaces.

General inner products are introduced and distance, norms, and the Cauchy-Schwarz inequality are dis-
cussed. The Gram-Schmidt algorithm is presented, projections are defined and the approximation theorem
is proved (with an application to Fourier approximation). Finally, isometries are characterized, and dis-
tance preserving operators are shown to be composites of a translations and isometries.

Chapter 11: Canonical Forms.

The work in Chapter 9 is continued. Invariant subspaces and direct sums are used to derive the block
triangular form. That, in turn, is used to give a compact proof of the Jordan canonical form. Of course the
level is higher.
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Appendices

In Appendix A, complex arithmetic is developed far enough to find nth roots. In Appendix B, methods of
proof are discussed, while Appendix C presents mathematical induction. Finally, Appendix D describes
the properties of polynomials in elementary terms.
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1. Systems of Linear Equations

1.1 Solutions and Elementary Operations

Practical problems in many fields of study—such as biology, business, chemistry, computer science, eco-
nomics, electronics, engineering, physics and the social sciences—can often be reduced to solving a sys-
tem of linear equations. Linear algebra arose from attempts to find systematic methods for solving these
systems, so it is natural to begin this book by studying linear equations.

If a, b, and c are real numbers, the graph of an equation of the form

ax+by = c

is a straight line (if a and b are not both zero), so such an equation is called a linear equation in the
variables x and y. However, it is often convenient to write the variables as x1, x2, . . . , xn, particularly
when more than two variables are involved. An equation of the form

a1x1 +a2x2 + · · ·+anxn = b

is called a linear equation in the n variables x1, x2, . . . , xn. Here a1, a2, . . . , an denote real numbers
(called the coefficients of x1, x2, . . . , xn, respectively) and b is also a number (called the constant term

of the equation). A finite collection of linear equations in the variables x1, x2, . . . , xn is called a system of

linear equations in these variables. Hence,

2x1−3x2 +5x3 = 7

is a linear equation; the coefficients of x1, x2, and x3 are 2,−3, and 5, and the constant term is 7. Note that
each variable in a linear equation occurs to the first power only.

Given a linear equation a1x1 +a2x2 + · · ·+anxn = b, a sequence s1, s2, . . . , sn of n numbers is called
a solution to the equation if

a1s1 +a2s2 + · · ·+ansn = b

that is, if the equation is satisfied when the substitutions x1 = s1, x2 = s2, . . . , xn = sn are made. A
sequence of numbers is called a solution to a system of equations if it is a solution to every equation in
the system.

For example, x =−2, y = 5, z = 0 and x = 0, y = 4, z =−1 are both solutions to the system

x+ y+ z= 3
2x+ y+ 3z= 1

A system may have no solution at all, or it may have a unique solution, or it may have an infinite family of
solutions. For instance, the system x+ y = 2, x+ y = 3 has no solution because the sum of two numbers
cannot be 2 and 3 simultaneously. A system that has no solution is called inconsistent; a system with at
least one solution is called consistent. The system in the following example has infinitely many solutions.
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2 Systems of Linear Equations

Example 1.1.1

Show that, for arbitrary values of s and t,

x1 = t− s+1

x2 = t + s+2

x3 = s

x4 = t

is a solution to the system
x1− 2x2 +3x3 +x4 =−3

2x1− x2 +3x3−x4 = 0

Solution. Simply substitute these values of x1, x2, x3, and x4 in each equation.

x1−2x2 +3x3 + x4 = (t− s+1)−2(t + s+2)+3s+ t =−3

2x1− x2 +3x3− x4 = 2(t− s+1)− (t + s+2)+3s− t = 0

Because both equations are satisfied, it is a solution for all choices of s and t.

The quantities s and t in Example 1.1.1 are called parameters, and the set of solutions, described in
this way, is said to be given in parametric form and is called the general solution to the system. It turns
out that the solutions to every system of equations (if there are solutions) can be given in parametric form
(that is, the variables x1, x2, . . . are given in terms of new independent variables s, t, etc.). The following
example shows how this happens in the simplest systems where only one equation is present.

Example 1.1.2

Describe all solutions to 3x− y+2z = 6 in parametric form.

Solution. Solving the equation for y in terms of x and z, we get y = 3x+2z−6. If s and t are
arbitrary then, setting x = s, z = t, we get solutions

x = s

y = 3s+2t−6 s and t arbitrary

z = t

Of course we could have solved for x: x = 1
3(y−2z+6). Then, if we take y = p, z = q, the

solutions are represented as follows:

x = 1
3(p−2q+6)

y = p p and q arbitrary
z = q

The same family of solutions can “look” quite different!
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x

y

P(2, 1)

x− y = 1

x+ y = 3

(a) Unique Solution
(x = 2, y = 1)

x

y

x+ y = 2

x+ y = 4

(b) No Solution

x

y

3x− y = 4

−6x+ 2y=−8

(c) Infinitely many solutions
(x = t, y = 3t− 4)

Figure 1.1.1

When only two variables are involved, the solutions to systems of lin-
ear equations can be described geometrically because the graph of a lin-
ear equation ax+ by = c is a straight line if a and b are not both zero.
Moreover, a point P(s, t) with coordinates s and t lies on the line if and
only if as+ bt = c—that is when x = s, y = t is a solution to the equa-
tion. Hence the solutions to a system of linear equations correspond to the
points P(s, t) that lie on all the lines in question.

In particular, if the system consists of just one equation, there must
be infinitely many solutions because there are infinitely many points on a
line. If the system has two equations, there are three possibilities for the
corresponding straight lines:

1. The lines intersect at a single point. Then the system has a unique
solution corresponding to that point.

2. The lines are parallel (and distinct) and so do not intersect. Then

the system has no solution.

3. The lines are identical. Then the system has infinitely many
solutions—one for each point on the (common) line.

These three situations are illustrated in Figure 1.1.1. In each case the
graphs of two specific lines are plotted and the corresponding equations are
indicated. In the last case, the equations are 3x−y= 4 and−6x+2y =−8,
which have identical graphs.

With three variables, the graph of an equation ax+by+ cz = d can be
shown to be a plane (see Section 4.2) and so again provides a “picture”
of the set of solutions. However, this graphical method has its limitations:
When more than three variables are involved, no physical image of the
graphs (called hyperplanes) is possible. It is necessary to turn to a more
“algebraic” method of solution.

Before describing the method, we introduce a concept that simplifies
the computations involved. Consider the following system

3x1 + 2x2− x3 + x4 =−1
2x1 − x3 + 2x4 = 0
3x1 + x2 + 2x3 + 5x4 = 2

of three equations in four variables. The array of numbers1




3 2 −1 1 −1
2 0 −1 2 0
3 1 2 5 2




occurring in the system is called the augmented matrix of the system. Each row of the matrix consists
of the coefficients of the variables (in order) from the corresponding equation, together with the constant

1A rectangular array of numbers is called a matrix. Matrices will be discussed in more detail in Chapter 2.
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4 Systems of Linear Equations

term. For clarity, the constants are separated by a vertical line. The augmented matrix is just a different
way of describing the system of equations. The array of coefficients of the variables




3 2 −1 1
2 0 −1 2
3 1 2 5




is called the coefficient matrix of the system and



−1

0
2


 is called the constant matrix of the system.

Elementary Operations

The algebraic method for solving systems of linear equations is described as follows. Two such systems
are said to be equivalent if they have the same set of solutions. A system is solved by writing a series of
systems, one after the other, each equivalent to the previous system. Each of these systems has the same
set of solutions as the original one; the aim is to end up with a system that is easy to solve. Each system
in the series is obtained from the preceding system by a simple manipulation chosen so that it does not
change the set of solutions.

As an illustration, we solve the system x+ 2y = −2, 2x+ y = 7 in this manner. At each stage, the
corresponding augmented matrix is displayed. The original system is

x+ 2y=−2
2x+ y= 7

[
1 2 −2
2 1 7

]

First, subtract twice the first equation from the second. The resulting system is

x+ 2y=−2
− 3y= 11

[
1 2 −2
0 −3 11

]

which is equivalent to the original (see Theorem 1.1.1). At this stage we obtain y = −11
3 by multiplying

the second equation by −1
3 . The result is the equivalent system

x+2y= −2
y=−11

3

[
1 2 −2
0 1 −11

3

]

Finally, we subtract twice the second equation from the first to get another equivalent system.

x= 16
3

y=−11
3


 1 0 16

3

0 1 −11
3




Now this system is easy to solve! And because it is equivalent to the original system, it provides the
solution to that system.

Observe that, at each stage, a certain operation is performed on the system (and thus on the augmented
matrix) to produce an equivalent system.
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Definition 1.1 Elementary Operations

The following operations, called elementary operations, can routinely be performed on systems
of linear equations to produce equivalent systems.

I. Interchange two equations.

II. Multiply one equation by a nonzero number.

III. Add a multiple of one equation to a different equation.

Theorem 1.1.1

Suppose that a sequence of elementary operations is performed on a system of linear equations.
Then the resulting system has the same set of solutions as the original, so the two systems are
equivalent.

The proof is given at the end of this section.

Elementary operations performed on a system of equations produce corresponding manipulations of
the rows of the augmented matrix. Thus, multiplying a row of a matrix by a number k means multiplying
every entry of the row by k. Adding one row to another row means adding each entry of that row to the
corresponding entry of the other row. Subtracting two rows is done similarly. Note that we regard two
rows as equal when corresponding entries are the same.

In hand calculations (and in computer programs) we manipulate the rows of the augmented matrix
rather than the equations. For this reason we restate these elementary operations for matrices.

Definition 1.2 Elementary Row Operations

The following are called elementary row operations on a matrix.

I. Interchange two rows.

II. Multiply one row by a nonzero number.

III. Add a multiple of one row to a different row.

In the illustration above, a series of such operations led to a matrix of the form
[

1 0 ∗
0 1 ∗

]

where the asterisks represent arbitrary numbers. In the case of three equations in three variables, the goal
is to produce a matrix of the form 


1 0 0 ∗
0 1 0 ∗
0 0 1 ∗




www.dbooks.org

https://www.dbooks.org/


6 Systems of Linear Equations

This does not always happen, as we will see in the next section. Here is an example in which it does
happen.

Example 1.1.3

Find all solutions to the following system of equations.

3x+ 4y+ z= 1
2x+ 3y = 0
4x+ 3y− z=−2

Solution. The augmented matrix of the original system is



3 4 1 1
2 3 0 0
4 3 −1 −2




To create a 1 in the upper left corner we could multiply row 1 through by 1
3 . However, the 1 can be

obtained without introducing fractions by subtracting row 2 from row 1. The result is



1 1 1 1
2 3 0 0
4 3 −1 −2




The upper left 1 is now used to “clean up” the first column, that is create zeros in the other
positions in that column. First subtract 2 times row 1 from row 2 to obtain




1 1 1 1
0 1 −2 −2
4 3 −1 −2




Next subtract 4 times row 1 from row 3. The result is



1 1 1 1
0 1 −2 −2
0 −1 −5 −6




This completes the work on column 1. We now use the 1 in the second position of the second row
to clean up the second column by subtracting row 2 from row 1 and then adding row 2 to row 3.
For convenience, both row operations are done in one step. The result is




1 0 3 3
0 1 −2 −2
0 0 −7 −8




Note that the last two manipulations did not affect the first column (the second row has a zero
there), so our previous effort there has not been undermined. Finally we clean up the third column.
Begin by multiplying row 3 by −1

7 to obtain



1 0 3 3
0 1 −2 −2
0 0 1 8

7
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Now subtract 3 times row 3 from row 1, and then add 2 times row 3 to row 2 to get



1 0 0 −3
7

0 1 0 2
7

0 0 1 8
7




The corresponding equations are x =−3
7 , y = 2

7 , and z = 8
7 , which give the (unique) solution.

Every elementary row operation can be reversed by another elementary row operation of the same
type (called its inverse). To see how, we look at types I, II, and III separately:

Type I Interchanging two rows is reversed by interchanging them again.

Type II Multiplying a row by a nonzero number k is reversed by multiplying by 1/k.

Type III Adding k times row p to a different row q is reversed by adding −k times row p to row q

(in the new matrix). Note that p 6= q is essential here.

To illustrate the Type III situation, suppose there are four rows in the original matrix, denoted R1, R2,
R3, and R4, and that k times R2 is added to R3. Then the reverse operation adds −k times R2, to R3. The
following diagram illustrates the effect of doing the operation first and then the reverse:




R1

R2

R3

R4


→




R1

R2

R3 + kR2

R4


→




R1

R2

(R3+ kR2)− kR2

R4


=




R1

R2

R3

R4




The existence of inverses for elementary row operations and hence for elementary operations on a system
of equations, gives:

Proof of Theorem 1.1.1. Suppose that a system of linear equations is transformed into a new system
by a sequence of elementary operations. Then every solution of the original system is automatically a
solution of the new system because adding equations, or multiplying an equation by a nonzero number,
always results in a valid equation. In the same way, each solution of the new system must be a solution
to the original system because the original system can be obtained from the new one by another series of
elementary operations (the inverses of the originals). It follows that the original and new systems have the
same solutions. This proves Theorem 1.1.1.
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8 Systems of Linear Equations

Exercises for 1.1

Exercise 1.1.1 In each case verify that the following are
solutions for all values of s and t.

a. x= 19t−35
y= 25−13t

z= t

is a solution of

2x + 3y + z= 5
5x + 7y− 4z= 0

b. x1 = 2s+12t +13
x2 = s

x3 =−s−3t−3
x4 = t

is a solution of

2x1 + 5x2 + 9x3 + 3x4 =−1
x1 + 2x2 + 4x3 = 1

Exercise 1.1.2 Find all solutions to the following in
parametric form in two ways.

3x+ y = 2a. 2x+3y = 1b.

3x− y+2z = 5c. x−2y+5z = 1d.

Exercise 1.1.3 Regarding 2x = 5 as the equation
2x+ 0y = 5 in two variables, find all solutions in para-
metric form.

Exercise 1.1.4 Regarding 4x− 2y = 3 as the equation
4x− 2y+ 0z = 3 in three variables, find all solutions in
parametric form.

Exercise 1.1.5 Find all solutions to the general system
ax = b of one equation in one variable (a) when a = 0
and (b) when a 6= 0.

Exercise 1.1.6 Show that a system consisting of exactly
one linear equation can have no solution, one solution, or
infinitely many solutions. Give examples.

Exercise 1.1.7 Write the augmented matrix for each of
the following systems of linear equations.

x− 3y= 5
2x + y= 1

a. x + 2y= 0
y= 1

b.

x− y+ z= 2
x− z= 1
y+ 2x = 0

c. x + y= 1
y+ z= 0
z− x= 2

d.

Exercise 1.1.8 Write a system of linear equations that
has each of the following augmented matrices.




1 −1 6 0
0 1 0 3
2 −1 0 1


a.




2 −1 0 −1
−3 2 1 0

0 1 1 3


b.

Exercise 1.1.9 Find the solution of each of the following
systems of linear equations using augmented matrices.

x− 3y= 1
2x− 7y= 3

a. x+ 2y = 1
3x + 4y =−1

b.

2x + 3y=−1
3x + 4y= 2

c. 3x + 4y = 1
4x + 5y =−3

d.

Exercise 1.1.10 Find the solution of each of the follow-
ing systems of linear equations using augmented matri-
ces.

x+ y+ 2z=−1
2x + y+ 3z= 0
− 2y+ z= 2

a. 2x + y+ z=−1
x+ 2y + z= 0

3x − 2z= 5

b.

Exercise 1.1.11 Find all solutions (if any) of the follow-
ing systems of linear equations.

3x−2y = 5
−12x+8y =−20

a. 3x−2y = 5
−12x+8y = 16

b.

Exercise 1.1.12 Show that the system




x + 2y − z = a

2x + y + 3z = b

x − 4y + 9z = c

is inconsistent unless c = 2b−3a.

Exercise 1.1.13 By examining the possible positions of
lines in the plane, show that two equations in two vari-
ables can have zero, one, or infinitely many solutions.
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Exercise 1.1.14 In each case either show that the state-
ment is true, or give an example2 showing it is false.

a. If a linear system has n variables and m equations,
then the augmented matrix has n rows.

b. A consistent linear system must have infinitely
many solutions.

c. If a row operation is done to a consistent linear
system, the resulting system must be consistent.

d. If a series of row operations on a linear system re-
sults in an inconsistent system, the original system
is inconsistent.

Exercise 1.1.15 Find a quadratic a+bx+ cx2 such that
the graph of y = a+bx+ cx2 contains each of the points
(−1, 6), (2, 0), and (3, 2).

Exercise 1.1.16 Solve the system

{
3x + 2y= 5
7x + 5y= 1

by

changing variables

{
x = 5x′ − 2y′

y=−7x′ + 3y′
and solving the re-

sulting equations for x′ and y′.

Exercise 1.1.17 Find a, b, and c such that

x2−x+3
(x2+2)(2x−1) =

ax+b
x2+2 +

c
2x−1

[Hint: Multiply through by (x2 + 2)(2x− 1) and equate
coefficients of powers of x.]

Exercise 1.1.18 A zookeeper wants to give an animal 42
mg of vitamin A and 65 mg of vitamin D per day. He has
two supplements: the first contains 10% vitamin A and
25% vitamin D; the second contains 20% vitamin A and
25% vitamin D. How much of each supplement should
he give the animal each day?

Exercise 1.1.19 Workmen John and Joe earn a total of
$24.60 when John works 2 hours and Joe works 3 hours.
If John works 3 hours and Joe works 2 hours, they get
$23.90. Find their hourly rates.

Exercise 1.1.20 A biologist wants to create a diet from
fish and meal containing 183 grams of protein and 93
grams of carbohydrate per day. If fish contains 70% pro-
tein and 10% carbohydrate, and meal contains 30% pro-
tein and 60% carbohydrate, how much of each food is
required each day?

1.2 Gaussian Elimination

The algebraic method introduced in the preceding section can be summarized as follows: Given a system
of linear equations, use a sequence of elementary row operations to carry the augmented matrix to a “nice”
matrix (meaning that the corresponding equations are easy to solve). In Example 1.1.3, this nice matrix
took the form 


1 0 0 ∗
0 1 0 ∗
0 0 1 ∗




The following definitions identify the nice matrices that arise in this process.

2Such an example is called a counterexample. For example, if the statement is that “all philosophers have beards”, the
existence of a non-bearded philosopher would be a counterexample proving that the statement is false. This is discussed again
in Appendix B.
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10 Systems of Linear Equations

Definition 1.3 Row-Echelon Form (Reduced)

A matrix is said to be in row-echelon form (and will be called a row-echelon matrix) if it
satisfies the following three conditions:

1. All zero rows (consisting entirely of zeros) are at the bottom.

2. The first nonzero entry from the left in each nonzero row is a 1, called the leading 1 for that
row.

3. Each leading 1 is to the right of all leading 1s in the rows above it.

A row-echelon matrix is said to be in reduced row-echelon form (and will be called a reduced

row-echelon matrix) if, in addition, it satisfies the following condition:

4. Each leading 1 is the only nonzero entry in its column.

The row-echelon matrices have a “staircase” form, as indicated by the following example (the asterisks
indicate arbitrary numbers). 



0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗
0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 1
0 0 0 0 0 0 0




The leading 1s proceed “down and to the right” through the matrix. Entries above and to the right of the
leading 1s are arbitrary, but all entries below and to the left of them are zero. Hence, a matrix in row-
echelon form is in reduced form if, in addition, the entries directly above each leading 1 are all zero. Note
that a matrix in row-echelon form can, with a few more row operations, be carried to reduced form (use
row operations to create zeros above each leading one in succession, beginning from the right).

Example 1.2.1

The following matrices are in row-echelon form (for any choice of numbers in ∗-positions).

[
1 ∗ ∗
0 0 1

]


0 1 ∗ ∗
0 0 1 ∗
0 0 0 0






1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 1






1 ∗ ∗
0 1 ∗
0 0 1




The following, on the other hand, are in reduced row-echelon form.

[
1 ∗ 0
0 0 1

]


0 1 0 ∗
0 0 1 ∗
0 0 0 0






1 0 ∗ 0
0 1 ∗ 0
0 0 0 1






1 0 0
0 1 0
0 0 1




The choice of the positions for the leading 1s determines the (reduced) row-echelon form (apart
from the numbers in ∗-positions).

The importance of row-echelon matrices comes from the following theorem.
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Theorem 1.2.1

Every matrix can be brought to (reduced) row-echelon form by a sequence of elementary row
operations.

In fact we can give a step-by-step procedure for actually finding a row-echelon matrix. Observe that
while there are many sequences of row operations that will bring a matrix to row-echelon form, the one
we use is systematic and is easy to program on a computer. Note that the algorithm deals with matrices in
general, possibly with columns of zeros.

Gaussian3Algorithm4

Step 1. If the matrix consists entirely of zeros, stop—it is already in row-echelon form.

Step 2. Otherwise, find the first column from the left containing a nonzero entry (call it a),
and move the row containing that entry to the top position.

Step 3. Now multiply the new top row by 1/a to create a leading 1.

Step 4. By subtracting multiples of that row from rows below it, make each entry below the
leading 1 zero.

This completes the first row, and all further row operations are carried out on the remaining rows.

Step 5. Repeat steps 1–4 on the matrix consisting of the remaining rows.

The process stops when either no rows remain at step 5 or the remaining rows consist entirely of
zeros.

Observe that the gaussian algorithm is recursive: When the first leading 1 has been obtained, the
procedure is repeated on the remaining rows of the matrix. This makes the algorithm easy to use on a
computer. Note that the solution to Example 1.1.3 did not use the gaussian algorithm as written because
the first leading 1 was not created by dividing row 1 by 3. The reason for this is that it avoids fractions.
However, the general pattern is clear: Create the leading 1s from left to right, using each of them in turn
to create zeros below it. Here are two more examples.

3Carl Friedrich Gauss (1777–1855) ranks with Archimedes and Newton as one of the three greatest mathematicians of all
time. He was a child prodigy and, at the age of 21, he gave the first proof that every polynomial has a complex root. In
1801 he published a timeless masterpiece, Disquisitiones Arithmeticae, in which he founded modern number theory. He went
on to make ground-breaking contributions to nearly every branch of mathematics, often well before others rediscovered and
published the results.

4The algorithm was known to the ancient Chinese.
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12 Systems of Linear Equations

Example 1.2.2

Solve the following system of equations.

3x+ y− 4z=−1
x + 10z= 5

4x+ y+ 6z= 1

Solution. The corresponding augmented matrix is



3 1 −4 −1
1 0 10 5
4 1 6 1




Create the first leading one by interchanging rows 1 and 2



1 0 10 5
3 1 −4 −1
4 1 6 1




Now subtract 3 times row 1 from row 2, and subtract 4 times row 1 from row 3. The result is



1 0 10 5
0 1 −34 −16
0 1 −34 −19




Now subtract row 2 from row 3 to obtain



1 0 10 5
0 1 −34 −16
0 0 0 −3




This means that the following reduced system of equations

x + 10z= 5
y− 34z=−16

0= −3

is equivalent to the original system. In other words, the two have the same solutions. But this last
system clearly has no solution (the last equation requires that x, y and z satisfy 0x+0y+0z =−3,
and no such numbers exist). Hence the original system has no solution.
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Example 1.2.3

Solve the following system of equations.

x1− 2x2− x3 + 3x4 = 1
2x1− 4x2 + x3 = 5

x1− 2x2 + 2x3− 3x4 = 4

Solution. The augmented matrix is



1 −2 −1 3 1
2 −4 1 0 5
1 −2 2 −3 4




Subtracting twice row 1 from row 2 and subtracting row 1 from row 3 gives



1 −2 −1 3 1
0 0 3 −6 3
0 0 3 −6 3




Now subtract row 2 from row 3 and multiply row 2 by 1
3 to get




1 −2 −1 3 1
0 0 1 −2 1
0 0 0 0 0




This is in row-echelon form, and we take it to reduced form by adding row 2 to row 1:



1 −2 0 1 2
0 0 1 −2 1
0 0 0 0 0




The corresponding reduced system of equations is

x1− 2x2 + x4 = 2
x3− 2x4 = 1

0= 0

The leading ones are in columns 1 and 3 here, so the corresponding variables x1 and x3 are called
leading variables. Because the matrix is in reduced row-echelon form, these equations can be used
to solve for the leading variables in terms of the nonleading variables x2 and x4. More precisely, in
the present example we set x2 = s and x4 = t where s and t are arbitrary, so these equations become

x1−2s+ t = 2 and x3−2t = 1

Finally the solutions are given by

x1 = 2+2s− t

x2 = s

x3 = 1+2t

x4 = t

where s and t are arbitrary.
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14 Systems of Linear Equations

The solution of Example 1.2.3 is typical of the general case. To solve a linear system, the augmented
matrix is carried to reduced row-echelon form, and the variables corresponding to the leading ones are
called leading variables. Because the matrix is in reduced form, each leading variable occurs in exactly
one equation, so that equation can be solved to give a formula for the leading variable in terms of the
nonleading variables. It is customary to call the nonleading variables “free” variables, and to label them
by new variables s, t, . . . , called parameters. Hence, as in Example 1.2.3, every variable xi is given by a
formula in terms of the parameters s and t. Moreover, every choice of these parameters leads to a solution
to the system, and every solution arises in this way. This procedure works in general, and has come to be
called

Gaussian Elimination

To solve a system of linear equations proceed as follows:

1. Carry the augmented matrix to a reduced row-echelon matrix using elementary row
operations.

2. If a row
[

0 0 0 · · · 0 1
]

occurs, the system is inconsistent.

3. Otherwise, assign the nonleading variables (if any) as parameters, and use the equations
corresponding to the reduced row-echelon matrix to solve for the leading variables in terms
of the parameters.

There is a variant of this procedure, wherein the augmented matrix is carried only to row-echelon form.
The nonleading variables are assigned as parameters as before. Then the last equation (corresponding to
the row-echelon form) is used to solve for the last leading variable in terms of the parameters. This last
leading variable is then substituted into all the preceding equations. Then, the second last equation yields
the second last leading variable, which is also substituted back. The process continues to give the general
solution. This procedure is called back-substitution. This procedure can be shown to be numerically
more efficient and so is important when solving very large systems.5

Example 1.2.4

Find a condition on the numbers a, b, and c such that the following system of equations is
consistent. When that condition is satisfied, find all solutions (in terms of a, b, and c).

x1 + 3x2 + x3 = a

−x1− 2x2 + x3 = b

3x1 + 7x2− x3 = c

Solution. We use gaussian elimination except that now the augmented matrix



1 3 1 a

−1 −2 1 b

3 7 −1 c




5With n equations where n is large, gaussian elimination requires roughly n3/2 multiplications and divisions, whereas this
number is roughly n3/3 if back substitution is used.
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has entries a, b, and c as well as known numbers. The first leading one is in place, so we create
zeros below it in column 1: 


1 3 1 a

0 1 2 a+b

0 −2 −4 c−3a




The second leading 1 has appeared, so use it to create zeros in the rest of column 2:



1 0 −5 −2a−3b

0 1 2 a+b

0 0 0 c−a+2b




Now the whole solution depends on the number c−a+2b = c− (a−2b). The last row
corresponds to an equation 0 = c− (a−2b). If c 6= a−2b, there is no solution (just as in Example
1.2.2). Hence:

The system is consistent if and only if c = a−2b.

In this case the last matrix becomes



1 0 −5 −2a−3b

0 1 2 a+b

0 0 0 0




Thus, if c = a−2b, taking x3 = t where t is a parameter gives the solutions

x1 = 5t− (2a+3b) x2 = (a+b)−2t x3 = t.

Rank

It can be proven that the reduced row-echelon form of a matrix A is uniquely determined by A. That is,
no matter which series of row operations is used to carry A to a reduced row-echelon matrix, the result
will always be the same matrix. (A proof is given at the end of Section 2.5.) By contrast, this is not
true for row-echelon matrices: Different series of row operations can carry the same matrix A to different

row-echelon matrices. Indeed, the matrix A =

[
1 −1 4
2 −1 2

]
can be carried (by one row operation) to

the row-echelon matrix

[
1 −1 4
0 1 −6

]
, and then by another row operation to the (reduced) row-echelon

matrix

[
1 0 −2
0 1 −6

]
. However, it is true that the number r of leading 1s must be the same in each of

these row-echelon matrices (this will be proved in Chapter 5). Hence, the number r depends only on A

and not on the way in which A is carried to row-echelon form.
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16 Systems of Linear Equations

Definition 1.4 Rank of a Matrix

The rank of matrix A is the number of leading 1s in any row-echelon matrix to which A can be
carried by row operations.

Example 1.2.5

Compute the rank of A =




1 1 −1 4
2 1 3 0
0 1 −5 8


.

Solution. The reduction of A to row-echelon form is

A =




1 1 −1 4
2 1 3 0
0 1 −5 8


→




1 1 −1 4
0 −1 5 −8
0 1 −5 8


→




1 1 −1 4
0 1 −5 8
0 0 0 0




Because this row-echelon matrix has two leading 1s, rank A = 2.

Suppose that rank A = r, where A is a matrix with m rows and n columns. Then r ≤ m because the
leading 1s lie in different rows, and r ≤ n because the leading 1s lie in different columns. Moreover, the
rank has a useful application to equations. Recall that a system of linear equations is called consistent if it
has at least one solution.

Theorem 1.2.2

Suppose a system of m equations in n variables is consistent, and that the rank of the augmented
matrix is r.

1. The set of solutions involves exactly n− r parameters.

2. If r < n, the system has infinitely many solutions.

3. If r = n, the system has a unique solution.

Proof. The fact that the rank of the augmented matrix is r means there are exactly r leading variables, and
hence exactly n− r nonleading variables. These nonleading variables are all assigned as parameters in the
gaussian algorithm, so the set of solutions involves exactly n− r parameters. Hence if r < n, there is at
least one parameter, and so infinitely many solutions. If r = n, there are no parameters and so a unique
solution.

Theorem 1.2.2 shows that, for any system of linear equations, exactly three possibilities exist:

1. No solution. This occurs when a row
[

0 0 · · · 0 1
]

occurs in the row-echelon form. This is

the case where the system is inconsistent.

2. Unique solution. This occurs when every variable is a leading variable.
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3. Infinitely many solutions. This occurs when the system is consistent and there is at least one

nonleading variable, so at least one parameter is involved.

Example 1.2.6

Suppose the matrix A in Example 1.2.5 is the augmented matrix of a system of m = 3 linear
equations in n = 3 variables. As rank A = r = 2, the set of solutions will have n− r = 1 parameter.
The reader can verify this fact directly.

Many important problems involve linear inequalities rather than linear equations. For example, a
condition on the variables x and y might take the form of an inequality 2x−5y≤ 4 rather than an equality
2x−5y = 4. There is a technique (called the simplex algorithm) for finding solutions to a system of such
inequalities that maximizes a function of the form p = ax+by where a and b are fixed constants.

Exercises for 1.2

Exercise 1.2.1 Which of the following matrices are in
reduced row-echelon form? Which are in row-echelon
form?




1 −1 2
0 0 0
0 0 1


a.

[
2 1 −1 3
0 0 0 0

]
b.

[
1 −2 3 5
0 0 0 1

]
c.




1 0 0 3 1
0 0 0 1 1
0 0 0 0 1


d.

[
1 1
0 1

]
e.




0 0 1
0 0 1
0 0 1


f.

Exercise 1.2.2 Carry each of the following matrices to
reduced row-echelon form.

a.




0 −1 2 1 2 1 −1
0 1 −2 2 7 2 4
0 −2 4 3 7 1 0
0 3 −6 1 6 4 1




b.




0 −1 3 1 3 2 1
0 −2 6 1 −5 0 −1
0 3 −9 2 4 1 −1
0 1 −3 −1 3 0 1




Exercise 1.2.3 The augmented matrix of a system of
linear equations has been carried to the following by row
operations. In each case solve the system.

a.




1 2 0 3 1 0 −1
0 0 1 −1 1 0 2
0 0 0 0 0 1 3
0 0 0 0 0 0 0




b.




1 −2 0 2 0 1 1
0 0 1 5 0 −3 −1
0 0 0 0 1 6 1
0 0 0 0 0 0 0




c.




1 2 1 3 1 1
0 1 −1 0 1 1
0 0 0 1 −1 0
0 0 0 0 0 0




d.




1 −1 2 4 6 2
0 1 2 1 −1 −1
0 0 0 1 0 1
0 0 0 0 0 0




Exercise 1.2.4 Find all solutions (if any) to each of the
following systems of linear equations.

x− 2y= 1
4y− x=−2

a. 3x− y= 0
2x− 3y = 1

b.
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2x + y= 5
3x + 2y= 6

c. 3x− y= 2
2y− 6x=−4

d.

3x− y= 4
2y− 6x= 1

e. 2x− 3y= 5
3y− 2x= 2

f.

Exercise 1.2.5 Find all solutions (if any) to each of the
following systems of linear equations.

x+ y+ 2z = 8
3x− y+ z= 0
−x+ 3y+ 4z =−4

a. −2x+ 3y + 3z= −9
3x− 4y + z= 5
−5x+ 7y + 2z=−14

b.

x+ y− z= 10
−x+ 4y+ 5z =−5

x+ 6y+ 3z = 15

c. x + 2y− z= 2
2x + 5y− 3z = 1
x + 4y− 3z = 3

d.

5x + y = 2
3x− y+ 2z= 1

x+ y− z= 5

e. 3x− 2y+ z=−2
x− y+ 3z= 5
−x+ y+ z=−1

f.

x+ y+ z= 2
x + z= 1

2x + 5y+ 2z = 7

g. x + 2y− 4z = 10
2x− y+ 2z = 5
x + y− 2z = 7

h.

Exercise 1.2.6 Express the last equation of each system
as a sum of multiples of the first two equations. [Hint:
Label the equations, use the gaussian algorithm.]

x1 + x2 + x3 = 1
2x1 − x2 + 3x3 = 3

x1− 2x2 + 2x3 = 2

a. x1 + 2x2 − 3x3 = −3
x1 + 3x2 − 5x3 = 5
x1− 2x2 + 5x3 =−35

b.

Exercise 1.2.7 Find all solutions to the following sys-
tems.

a. 3x1 + 8x2 − 3x3 − 14x4 = 2
2x1 + 3x2 − x3− 2x4 = 1

x1− 2x2 + x3 + 10x4 = 0
x1 + 5x2 − 2x3 − 12x4 = 1

b. x1− x2 + x3− x4 = 0
−x1 + x2 + x3 + x4 = 0

x1 + x2 − x3 + x4 = 0
x1 + x2 + x3 + x4 = 0

c. x1− x2 + x3− 2x4 = 1
−x1 + x2 + x3 + x4 =−1
−x1 + 2x2 + 3x3 − x4 = 2

x1− x2 + 2x3 + x4 = 1

d. x1 + x2 + 2x3 − x4 = 4
3x2 − x3 + 4x4 = 2

x1 + 2x2 − 3x3 + 5x4 = 0
x1 + x2− 5x3 + 6x4 =−3

Exercise 1.2.8 In each of the following, find (if possi-
ble) conditions on a and b such that the system has no
solution, one solution, and infinitely many solutions.

x− 2y= 1
ax + by= 5

a. x+ by =−1
ax + 2y = 5

b.

x− by=−1
x+ ay= 3

c. ax + y= 1
2x + y= b

d.

Exercise 1.2.9 In each of the following, find (if possi-
ble) conditions on a, b, and c such that the system has no
solution, one solution, or infinitely many solutions.

3x + y− z= a

x− y+ 2z= b

5x + 3y− 4z= c

a. 2x + y− z= a

2y + 3z= b

x − z= c

b.

−x+ 3y + 2z=−8
x + z= 2

3x + 3y + az= b

c. x+ay= 0
y+bz= 0
z+ cx= 0

d.

3x− y+ 2z= 3
x+ y− z= 2

2x− 2y+ 3z= b

e.

x+ ay− z= 1
−x+ (a−2)y + z=−1
2x + 2y + (a−2)z= 1

f.

Exercise 1.2.10 Find the rank of each of the matrices in
Exercise 1.2.1.

Exercise 1.2.11 Find the rank of each of the following
matrices.




1 1 2
3 −1 1
−1 3 4


a.



−2 3 3

3 −4 1
−5 7 2


b.




1 1 −1 3
−1 4 5 −2

1 6 3 4


c.




3 −2 1 −2
1 −1 3 5
−1 1 1 −1


d.




1 2 −1 0
0 a 1−a a2 +1
1 2−a −1 −2a2


e.




1 1 2 a2

1 1−a 2 0
2 2−a 6−a 4


f.
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Exercise 1.2.12 Consider a system of linear equations
with augmented matrix A and coefficient matrix C. In
each case either prove the statement or give an example
showing that it is false.

a. If there is more than one solution, A has a row of
zeros.

b. If A has a row of zeros, there is more than one
solution.

c. If there is no solution, the reduced row-echelon
form of C has a row of zeros.

d. If the row-echelon form of C has a row of zeros,
there is no solution.

e. There is no system that is inconsistent for every
choice of constants.

f. If the system is consistent for some choice of con-
stants, it is consistent for every choice of con-
stants.

Now assume that the augmented matrix A has 3 rows and
5 columns.

g. If the system is consistent, there is more than one
solution.

h. The rank of A is at most 3.

i. If rank A = 3, the system is consistent.

j. If rank C = 3, the system is consistent.

Exercise 1.2.13 Find a sequence of row operations car-
rying



b1 + c1 b2 + c2 b3 + c3

c1 +a1 c2 +a2 c3 +a3

a1 +b1 a2 +b2 a3 +b3


 to




a1 a2 a3

b1 b2 b3

c1 c2 c3




Exercise 1.2.14 In each case, show that the reduced
row-echelon form is as given.

a.




p 0 a

b 0 0
q c r


 with abc 6= 0;




1 0 0
0 1 0
0 0 1




b.




1 a b+ c

1 b c+a

1 c a+b


 where c 6= a or b 6= a;




1 0 ∗
0 1 ∗
0 0 0




Exercise 1.2.15 Show that

{
az+ by+ cz= 0

a1x+ b1y+ c1z= 0
al-

ways has a solution other than x = 0, y = 0, z = 0.

Exercise 1.2.16 Find the circle x2+y2+ax+by+c = 0
passing through the following points.

a. (−2, 1), (5, 0), and (4, 1)

b. (1, 1), (5, −3), and (−3, −3)

Exercise 1.2.17 Three Nissans, two Fords, and four
Chevrolets can be rented for $106 per day. At the same
rates two Nissans, four Fords, and three Chevrolets cost
$107 per day, whereas four Nissans, three Fords, and two
Chevrolets cost $102 per day. Find the rental rates for all
three kinds of cars.

Exercise 1.2.18 A school has three clubs and each stu-
dent is required to belong to exactly one club. One year
the students switched club membership as follows:

Club A. 4
10 remain in A, 1

10 switch to B, 5
10 switch to C.

Club B. 7
10 remain in B, 2

10 switch to A, 1
10 switch to C.

Club C. 6
10 remain in C, 2

10 switch to A, 2
10 switch to B.

If the fraction of the student population in each club
is unchanged, find each of these fractions.

Exercise 1.2.19 Given points (p1, q1), (p2, q2), and
(p3, q3) in the plane with p1, p2, and p3 distinct, show
that they lie on some curve with equation y = a+ bx+
cx2. [Hint: Solve for a, b, and c.]

Exercise 1.2.20 The scores of three players in a tour-
nament have been lost. The only information available
is the total of the scores for players 1 and 2, the total for
players 2 and 3, and the total for players 3 and 1.

a. Show that the individual scores can be rediscov-
ered.

b. Is this possible with four players (knowing the to-
tals for players 1 and 2, 2 and 3, 3 and 4, and 4 and
1)?

Exercise 1.2.21 A boy finds $1.05 in dimes, nickels,
and pennies. If there are 17 coins in all, how many coins
of each type can he have?

Exercise 1.2.22 If a consistent system has more vari-
ables than equations, show that it has infinitely many so-
lutions. [Hint: Use Theorem 1.2.2.]
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1.3 Homogeneous Equations

A system of equations in the variables x1, x2, . . . , xn is called homogeneous if all the constant terms are
zero—that is, if each equation of the system has the form

a1x1 +a2x2 + · · ·+anxn = 0

Clearly x1 = 0, x2 = 0, . . . , xn = 0 is a solution to such a system; it is called the trivial solution. Any
solution in which at least one variable has a nonzero value is called a nontrivial solution. Our chief goal
in this section is to give a useful condition for a homogeneous system to have nontrivial solutions. The
following example is instructive.

Example 1.3.1

Show that the following homogeneous system has nontrivial solutions.

x1− x2 + 2x3− x4 = 0
2x1 + 2x2 + x4 = 0
3x1 + x2 + 2x3− x4 = 0

Solution. The reduction of the augmented matrix to reduced row-echelon form is outlined below.



1 −1 2 −1 0
2 2 0 1 0
3 1 2 −1 0


→




1 −1 2 −1 0
0 4 −4 3 0
0 4 −4 2 0


→




1 0 1 0 0
0 1 −1 0 0
0 0 0 1 0




The leading variables are x1, x2, and x4, so x3 is assigned as a parameter—say x3 = t. Then the
general solution is x1 =−t, x2 = t, x3 = t, x4 = 0. Hence, taking t = 1 (say), we get a nontrivial
solution: x1 =−1, x2 = 1, x3 = 1, x4 = 0.

The existence of a nontrivial solution in Example 1.3.1 is ensured by the presence of a parameter in the
solution. This is due to the fact that there is a nonleading variable (x3 in this case). But there must be
a nonleading variable here because there are four variables and only three equations (and hence at most

three leading variables). This discussion generalizes to a proof of the following fundamental theorem.

Theorem 1.3.1

If a homogeneous system of linear equations has more variables than equations, then it has a
nontrivial solution (in fact, infinitely many).

Proof. Suppose there are m equations in n variables where n>m, and let R denote the reduced row-echelon
form of the augmented matrix. If there are r leading variables, there are n−r nonleading variables, and so
n− r parameters. Hence, it suffices to show that r < n. But r ≤ m because R has r leading 1s and m rows,
and m < n by hypothesis. So r ≤ m < n, which gives r < n.
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Note that the converse of Theorem 1.3.1 is not true: if a homogeneous system has nontrivial solutions,
it need not have more variables than equations (the system x1 + x2 = 0, 2x1 + 2x2 = 0 has nontrivial
solutions but m = 2 = n.)

Theorem 1.3.1 is very useful in applications. The next example provides an illustration from geometry.

Example 1.3.2

We call the graph of an equation ax2 +bxy+ cy2 +dx+ ey+ f = 0 a conic if the numbers a, b, and
c are not all zero. Show that there is at least one conic through any five points in the plane that are
not all on a line.

Solution. Let the coordinates of the five points be (p1, q1), (p2, q2), (p3, q3), (p4, q4), and
(p5, q5). The graph of ax2 +bxy+ cy2 +dx+ ey+ f = 0 passes through (pi, qi) if

ap2
i +bpiqi + cq2

i +dpi + eqi + f = 0

This gives five equations, one for each i, linear in the six variables a, b, c, d, e, and f . Hence, there
is a nontrivial solution by Theorem 1.3.1. If a = b = c = 0, the five points all lie on the line with
equation dx+ ey+ f = 0, contrary to assumption. Hence, one of a, b, c is nonzero.

Linear Combinations and Basic Solutions

As for rows, two columns are regarded as equal if they have the same number of entries and corresponding
entries are the same. Let x and y be columns with the same number of entries. As for elementary row
operations, their sum x+y is obtained by adding corresponding entries and, if k is a number, the scalar

product kx is defined by multiplying each entry of x by k. More precisely:

If x =




x1

x2
...

xn


and y =




y1

y2
...

yn


 then x+y =




x1 + y1

x2 + y2
...

xn + yn


and kx =




kx1

kx2
...

kxn


 .

A sum of scalar multiples of several columns is called a linear combination of these columns. For
example, sx+ ty is a linear combination of x and y for any choice of numbers s and t.

Example 1.3.3

If x =

[
3
−2

]
and

[
−1

1

]
then 2x+5y =

[
6
−4

]
+

[
−5

5

]
=

[
1
1

]
.
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Example 1.3.4

Let x =




1
0
1


 , y =




2
1
0


 and z =




3
1
1


. If v =




0
−1

2


 and w =




1
1
1


, determine whether v

and w are linear combinations of x, y and z.

Solution. For v, we must determine whether numbers r, s, and t exist such that v = rx+ sy+ tz,
that is, whether




0
−1

2


= r




1
0
1


+ s




2
1
0


+ t




3
1
1


=




r+2s+3t

s+ t

r+ t




Equating corresponding entries gives a system of linear equations r+2s+3t = 0, s+ t =−1, and
r+ t = 2 for r, s, and t. By gaussian elimination, the solution is r = 2− k, s =−1− k, and t = k

where k is a parameter. Taking k = 0, we see that v = 2x−y is a linear combination of x, y, and z.
Turning to w, we again look for r, s, and t such that w = rx+ sy+ tz; that is,




1
1
1


= r




1
0
1


+ s




2
1
0


+ t




3
1
1


=




r+2s+3t

s+ t

r+ t




leading to equations r+2s+3t = 1, s+ t = 1, and r+ t = 1 for real numbers r, s, and t. But this
time there is no solution as the reader can verify, so w is not a linear combination of x, y, and z.

Our interest in linear combinations comes from the fact that they provide one of the best ways to
describe the general solution of a homogeneous system of linear equations. When solving such a system

with n variables x1, x2, . . . , xn, write the variables as a column6 matrix: x =




x1

x2
...

xn


. The trivial solution

is denoted 0 =




0
0
...
0


. As an illustration, the general solution in Example 1.3.1 is x1 =−t, x2 = t, x3 = t,

and x4 = 0, where t is a parameter, and we would now express this by saying that the general solution is

x =




−t

t

t

0


, where t is arbitrary.

Now let x and y be two solutions to a homogeneous system with n variables. Then any linear combi-
nation sx+ ty of these solutions turns out to be again a solution to the system. More generally:

Any linear combination of solutions to a homogeneous system is again a solution. (1.1)

6The reason for using columns will be apparent later.
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In fact, suppose that a typical equation in the system is a1x1 +a2x2 + · · ·+anxn = 0, and suppose that

x =




x1

x2
...

xn


, y =




y1

y2
...

yn


 are solutions. Then a1x1+a2x2+ · · ·+anxn = 0 and a1y1+a2y2+ · · ·+anyn = 0.

Hence sx+ ty =




sx1 + ty1

sx2 + ty2
...

sxn + tyn


 is also a solution because

a1(sx1 + ty1)+a2(sx2 + ty2)+ · · ·+an(sxn + tyn)

= [a1(sx1)+a2(sx2)+ · · ·+an(sxn)]+ [a1(ty1)+a2(ty2)+ · · ·+an(tyn)]

= s(a1x1 +a2x2 + · · ·+anxn)+ t(a1y1 +a2y2 + · · ·+anyn)

= s(0)+ t(0)

= 0

A similar argument shows that Statement 1.1 is true for linear combinations of more than two solutions.

The remarkable thing is that every solution to a homogeneous system is a linear combination of certain
particular solutions and, in fact, these solutions are easily computed using the gaussian algorithm. Here is
an example.

Example 1.3.5

Solve the homogeneous system with coefficient matrix

A =




1 −2 3 −2
−3 6 1 0
−2 4 4 −2




Solution. The reduction of the augmented matrix to reduced form is




1 −2 3 −2 0
−3 6 1 0 0
−2 4 4 −2 0


→




1 −2 0 −1
5 0

0 0 1 −3
5 0

0 0 0 0 0




so the solutions are x1 = 2s+ 1
5 t, x2 = s, x3 =

3
5 , and x4 = t by gaussian elimination. Hence we can

write the general solution x in the matrix form

x =




x1

x2

x3

x4


=




2s+ 1
5t

s
3
5t

t


= s




2
1
0
0


+ t




1
5
0
3
5
1


= sx1 + tx2.
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Here x1 =




2
1
0
0


 and x2 =




1
5
0
3
5
1


 are particular solutions determined by the gaussian algorithm.

The solutions x1 and x2 in Example 1.3.5 are denoted as follows:

Definition 1.5 Basic Solutions

The gaussian algorithm systematically produces solutions to any homogeneous linear system,
called basic solutions, one for every parameter.

Moreover, the algorithm gives a routine way to express every solution as a linear combination of basic
solutions as in Example 1.3.5, where the general solution x becomes

x = s




2
1
0
0


+ t




1
5
0
3
5
1


= s




2
1
0
0


+

1
5t




1
0
3
5




Hence by introducing a new parameter r = t/5 we can multiply the original basic solution x2 by 5 and so
eliminate fractions. For this reason:

Convention:

Any nonzero scalar multiple of a basic solution will still be called a basic solution.

In the same way, the gaussian algorithm produces basic solutions to every homogeneous system, one
for each parameter (there are no basic solutions if the system has only the trivial solution). Moreover every
solution is given by the algorithm as a linear combination of these basic solutions (as in Example 1.3.5).
If A has rank r, Theorem 1.2.2 shows that there are exactly n− r parameters, and so n− r basic solutions.
This proves:

Theorem 1.3.2

Let A be an m×n matrix of rank r, and consider the homogeneous system in n variables with A as
coefficient matrix. Then:

1. The system has exactly n− r basic solutions, one for each parameter.

2. Every solution is a linear combination of these basic solutions.
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Example 1.3.6

Find basic solutions of the homogeneous system with coefficient matrix A, and express every
solution as a linear combination of the basic solutions, where

A =




1 −3 0 2 2
−2 6 1 2 −5

3 −9 −1 0 7
−3 9 2 6 −8




Solution. The reduction of the augmented matrix to reduced row-echelon form is



1 −3 0 2 2 0
−2 6 1 2 −5 0

3 −9 −1 0 7 0
−3 9 2 6 −8 0


→




1 −3 0 2 2 0
0 0 1 6 −1 0
0 0 0 0 0 0
0 0 0 0 0 0




so the general solution is x1 = 3r−2s−2t, x2 = r, x3 =−6s+ t, x4 = s, and x5 = t where r, s, and
t are parameters. In matrix form this is

x =




x1

x2

x3

x4

x5



=




3r−2s−2t

r

−6s+ t

s

t



= r




3
1
0
0
0



+ s




−2
0
−6

1
0



+ t




−2
0
1
0
1




Hence basic solutions are

x1 =




3
1
0
0
0




, x2 =




−2
0
−6

1
0




, x3 =




−2
0
1
0
1
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Exercises for 1.3

Exercise 1.3.1 Consider the following statements about
a system of linear equations with augmented matrix A. In
each case either prove the statement or give an example
for which it is false.

a. If the system is homogeneous, every solution is
trivial.

b. If the system has a nontrivial solution, it cannot be
homogeneous.

c. If there exists a trivial solution, the system is ho-
mogeneous.

d. If the system is consistent, it must be homoge-
neous.

Now assume that the system is homogeneous.

e. If there exists a nontrivial solution, there is no triv-
ial solution.

f. If there exists a solution, there are infinitely many
solutions.

g. If there exist nontrivial solutions, the row-echelon
form of A has a row of zeros.

h. If the row-echelon form of A has a row of zeros,
there exist nontrivial solutions.

i. If a row operation is applied to the system, the new
system is also homogeneous.

Exercise 1.3.2 In each of the following, find all values
of a for which the system has nontrivial solutions, and
determine all solutions in each case.

x− 2y+ z= 0
x+ ay− 3z = 0
−x+ 6y− 5z = 0

a. x + 2y+ z= 0
x + 3y+ 6z = 0

2x + 3y+ az = 0

b.

x + y− z= 0
ay− z= 0

x + y+ az= 0

c. ax + y+ z= 0
x + y− z= 0
x + y+ az= 0

d.

Exercise 1.3.3 Let x =




2
1
−1


, y =




1
0
1


, and

z=




1
1
−2


. In each case, either write v as a linear com-

bination of x, y, and z, or show that it is not such a linear
combination.

v =




0
1
−3


a. v =




4
3
−4


b.

v =




3
1
0


c. v =




3
0
3


d.

Exercise 1.3.4 In each case, either express y as a linear
combination of a1, a2, and a3, or show that it is not such
a linear combination. Here:

a1 =




−1
3
0
1


 , a2 =




3
1
2
0


 , and a3 =




1
1
1
1




y =




1
2
4
0


a. y =




−1
9
2
6


b.

Exercise 1.3.5 For each of the following homogeneous
systems, find a set of basic solutions and express the gen-
eral solution as a linear combination of these basic solu-
tions.

a. x1 + 2x2− x3 + 2x4 + x5 = 0
x1 + 2x2 + 2x3 + x5 = 0

2x1 + 4x2− 2x3 + 3x4 + x5 = 0

b. x1 + 2x2 − x3 + x4 + x5 = 0
−x1− 2x2 + 2x3 + x5 = 0
−x1− 2x2 + 3x3 + x4 + 3x5 = 0

c. x1 + x2− x3 + 2x4 + x5 = 0
x1 + 2x2− x3 + x4 + x5 = 0

2x1 + 3x2− x3 + 2x4 + x5 = 0
4x1 + 5x2− 2x3 + 5x4 + 2x5 = 0
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d. x1 + x2 − 2x3 − 2x4 + 2x5 = 0
2x1 + 2x2 − 4x3 − 4x4 + x5 = 0
x1 − x2 + 2x3 + 4x4 + x5 = 0

−2x1 − 4x2 + 8x3 + 10x4 + x5 = 0

Exercise 1.3.6

a. Does Theorem 1.3.1 imply that the system{
−z+3y= 0
2x−6y = 0

has nontrivial solutions? Explain.

b. Show that the converse to Theorem 1.3.1 is not
true. That is, show that the existence of nontrivial
solutions does not imply that there are more vari-
ables than equations.

Exercise 1.3.7 In each case determine how many solu-
tions (and how many parameters) are possible for a ho-
mogeneous system of four linear equations in six vari-
ables with augmented matrix A. Assume that A has
nonzero entries. Give all possibilities.

Rank A = 2.a. Rank A = 1.b.

A has a row of zeros.c.

The row-echelon form of A has a row of zeros.d.

Exercise 1.3.8 The graph of an equation ax+by+cz= 0
is a plane through the origin (provided that not all of a,
b, and c are zero). Use Theorem 1.3.1 to show that two
planes through the origin have a point in common other
than the origin (0, 0, 0).

Exercise 1.3.9

a. Show that there is a line through any pair of points
in the plane. [Hint: Every line has equation
ax+by+c = 0, where a, b, and c are not all zero.]

b. Generalize and show that there is a plane ax+by+
cz+d = 0 through any three points in space.

Exercise 1.3.10 The graph of

a(x2 + y2)+bx+ cy+d = 0

is a circle if a 6= 0. Show that there is a circle through any
three points in the plane that are not all on a line.

Exercise 1.3.11 Consider a homogeneous system of lin-
ear equations in n variables, and suppose that the aug-
mented matrix has rank r. Show that the system has non-
trivial solutions if and only if n > r.

Exercise 1.3.12 If a consistent (possibly nonhomoge-
neous) system of linear equations has more variables than
equations, prove that it has more than one solution.

1.4 An Application to Network Flow

There are many types of problems that concern a network of conductors along which some sort of flow
is observed. Examples of these include an irrigation network and a network of streets or freeways. There
are often points in the system at which a net flow either enters or leaves the system. The basic principle
behind the analysis of such systems is that the total flow into the system must equal the total flow out. In
fact, we apply this principle at every junction in the system.

Junction Rule

At each of the junctions in the network, the total flow into that junction must equal the total flow
out.

This requirement gives a linear equation relating the flows in conductors emanating from the junction.
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Example 1.4.1

A network of one-way streets is shown in the accompanying diagram. The rate of flow of cars into
intersection A is 500 cars per hour, and 400 and 100 cars per hour emerge from B and C,
respectively. Find the possible flows along each street.

A B

D

C

500 400

100

f1

f2

f3

f4

f5

f6

Solution. Suppose the flows along the streets are f1, f2, f3, f4,
f5, and f6 cars per hour in the directions shown.
Then, equating the flow in with the flow out at each intersection,
we get

Intersection A 500= f1 + f2 + f3

Intersection B f1 + f4 + f6 = 400
Intersection C f3 + f5 = f6 +100
Intersection D f2 = f4 + f5

These give four equations in the six variables f1, f2, . . . , f6.

f1 + f2 + f3 = 500
f1 + f4 + f6 = 400

f3 + f5− f6 = 100
f2 − f4− f5 = 0

The reduction of the augmented matrix is



1 1 1 0 0 0 500
1 0 0 1 0 1 400
0 0 1 0 1 −1 100
0 1 0 −1 −1 0 0


→




1 0 0 1 0 1 400
0 1 0 −1 −1 0 0
0 0 1 0 1 −1 100
0 0 0 0 0 0 0




Hence, when we use f4, f5, and f6 as parameters, the general solution is

f1 = 400− f4− f6 f2 = f4 + f5 f3 = 100− f5 + f6

This gives all solutions to the system of equations and hence all the possible flows.
Of course, not all these solutions may be acceptable in the real situation. For example, the flows
f1, f2, . . . , f6 are all positive in the present context (if one came out negative, it would mean traffic
flowed in the opposite direction). This imposes constraints on the flows: f1 ≥ 0 and f3 ≥ 0 become

f4 + f6 ≤ 400 f5− f6 ≤ 100

Further constraints might be imposed by insisting on maximum values on the flow in each street.
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Exercises for 1.4

Exercise 1.4.1 Find the possible flows in each of the fol-
lowing networks of pipes.

a.

50

40

60

50

f1 f2

f3

f4 f5

b.

25

50

75 60

40

f1 f2

f3 f4

f5
f6

f7

Exercise 1.4.2 A proposed network of irrigation canals
is described in the accompanying diagram. At peak de-
mand, the flows at interchanges A, B, C, and D are as
shown.

A

B

C

D

f1

f2

f3

f4 f5

55

20

15

20

a. Find the possible flows.

b. If canal BC is closed, what range of flow on AD

must be maintained so that no canal carries a flow
of more than 30?

Exercise 1.4.3 A traffic circle has five one-way streets,
and vehicles enter and leave as shown in the accompany-
ing diagram.

f1 f2

f3

f4
f5

50

30

40

2535

A

B

C

DE

a. Compute the possible flows.

b. Which road has the heaviest flow?

1.5 An Application to Electrical Networks7

In an electrical network it is often necessary to find the current in amperes (A) flowing in various parts of
the network. These networks usually contain resistors that retard the current. The resistors are indicated
by a symbol ( ), and the resistance is measured in ohms (Ω). Also, the current is increased at various
points by voltage sources (for example, a battery). The voltage of these sources is measured in volts (V),

7This section is independent of Section 1.4
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and they are represented by the symbol ( ). We assume these voltage sources have no resistance. The
flow of current is governed by the following principles.

Ohm’s Law

The current I and the voltage drop V across a resistance R are related by the equation V = RI.

Kirchhoff’s Laws

1. (Junction Rule) The current flow into a junction equals the current flow out of that junction.

2. (Circuit Rule) The algebraic sum of the voltage drops (due to resistances) around any closed
circuit of the network must equal the sum of the voltage increases around the circuit.

When applying rule 2, select a direction (clockwise or counterclockwise) around the closed circuit and
then consider all voltages and currents positive when in this direction and negative when in the opposite
direction. This is why the term algebraic sum is used in rule 2. Here is an example.

Example 1.5.1

Find the various currents in the circuit shown.

Solution.

10 V

20Ω

I1 I6

5 V

I2 5Ω

I4

20 V

10Ω

I3

10 V

I5

5Ω

D

A

B

C

First apply the junction rule at junctions A, B, C, and D to obtain

Junction A I1 = I2 + I3

Junction B I6 = I1 + I5

Junction C I2 + I4 = I6

Junction D I3 + I5 = I4

Note that these equations are not independent
(in fact, the third is an easy consequence of the other three).
Next, the circuit rule insists that the sum of the voltage increases
(due to the sources) around a closed circuit must equal the sum of
the voltage drops (due to resistances). By Ohm’s law, the voltage

loss across a resistance R (in the direction of the current I) is RI. Going counterclockwise around
three closed circuits yields

Upper left 10+ 5= 20I1

Upper right −5+ 20= 10I3+5I4

Lower −10=−20I5−5I4

Hence, disregarding the redundant equation obtained at junction C, we have six equations in the
six unknowns I1, . . . , I6. The solution is



1.5. An Application to Electrical Networks 31

I1 =
15
20 I4 =

28
20

I2 =
−1
20 I5 =

12
20

I3 =
16
20 I6 =

27
20

The fact that I2 is negative means, of course, that this current is in the opposite direction, with a
magnitude of 1

20 amperes.

Exercises for 1.5

In Exercises 1 to 4, find the currents in the circuits.

Exercise 1.5.1

20 V

6Ω
I1

4Ω

I2

10 V

2Ω
I3

Exercise 1.5.2

5 V
I1

5Ω

10Ω

I2

5Ω I3 10 V

Exercise 1.5.3

10Ω

10 V

5 V

I2

5 V

I1

10Ω
I4

5 V

I520Ω

I3

20Ω

I6

20 V

Exercise 1.5.4 All resistances are 10Ω.

20 V

I1

I4I6

I2

I5

I3

10 V

Exercise 1.5.5

Find the voltage x such that the current I1 = 0.

x V

I3

5 V

2Ω

1Ω

2 V
I2

I1

1Ω
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1.6 An Application to Chemical Reactions

When a chemical reaction takes place a number of molecules combine to produce new molecules. Hence,
when hydrogen H2 and oxygen O2 molecules combine, the result is water H2O. We express this as

H2 +O2→ H2O

Individual atoms are neither created nor destroyed, so the number of hydrogen and oxygen atoms going
into the reaction must equal the number coming out (in the form of water). In this case the reaction is
said to be balanced. Note that each hydrogen molecule H2 consists of two atoms as does each oxygen
molecule O2, while a water molecule H2O consists of two hydrogen atoms and one oxygen atom. In the
above reaction, this requires that twice as many hydrogen molecules enter the reaction; we express this as
follows:

2H2 +O2→ 2H2O

This is now balanced because there are 4 hydrogen atoms and 2 oxygen atoms on each side of the reaction.

Example 1.6.1

Balance the following reaction for burning octane C8H18 in oxygen O2:

C8H18 +O2→ CO2 +H2O

where CO2 represents carbon dioxide. We must find positive integers x, y, z, and w such that

xC8H18 + yO2→ zCO2 +wH2O

Equating the number of carbon, hydrogen, and oxygen atoms on each side gives 8x = z, 18x = 2w

and 2y = 2z+w, respectively. These can be written as a homogeneous linear system

8x − z = 0
18x − 2w= 0

2y− 2z− w= 0

which can be solved by gaussian elimination. In larger systems this is necessary but, in such a
simple situation, it is easier to solve directly. Set w = t, so that x = 1

9 t, z = 8
9t, 2y = 16

9 t + t = 25
9 t.

But x, y, z, and w must be positive integers, so the smallest value of t that eliminates fractions is 18.
Hence, x = 2, y = 25, z = 16, and w = 18, and the balanced reaction is

2C8H18 +25O2→ 16CO2 +18H2O

The reader can verify that this is indeed balanced.

It is worth noting that this problem introduces a new element into the theory of linear equations: the
insistence that the solution must consist of positive integers.
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Exercises for 1.6

In each case balance the chemical reaction.

Exercise 1.6.1 CH4 +O2 → CO2 +H2O. This is the
burning of methane CH4.

Exercise 1.6.2 NH3 +CuO→ N2 +Cu+H2O. Here
NH3 is ammonia, CuO is copper oxide, Cu is copper,
and N2 is nitrogen.

Exercise 1.6.3 CO2 + H2O → C6H12O6 + O2. This
is called the photosynthesis reaction—C6H12O6 is glu-
cose.

Exercise 1.6.4 Pb(N3)2 + Cr(MnO4)2 → Cr2O3 +
MnO2 +Pb3O4 +NO.

Supplementary Exercises for Chapter 1

Exercise 1.1 We show in Chapter 4 that the graph of an
equation ax+by+cz = d is a plane in space when not all
of a, b, and c are zero.

a. By examining the possible positions of planes in
space, show that three equations in three variables
can have zero, one, or infinitely many solutions.

b. Can two equations in three variables have a unique
solution? Give reasons for your answer.

Exercise 1.2 Find all solutions to the following systems
of linear equations.

a. x1 + x2 + x3 − x4 = 3
3x1 + 5x2 − 2x3 + x4 = 1
−3x1 − 7x2 + 7x3 − 5x4 = 7

x1 + 3x2 − 4x3 + 3x4 =−5

b. x1 + 4x2− x3 + x4 = 2
3x1 + 2x2 + x3 + 2x4 = 5

x1− 6x2 + 3x3 = 1
x1 + 14x2 − 5x3 + 2x4 = 3

Exercise 1.3 In each case find (if possible) conditions
on a, b, and c such that the system has zero, one, or in-
finitely many solutions.

x+ 2y− 4z= 4
3x− y+ 13z = 2
4x + y+ a2z= a+3

a. x + y+ 3z = a

ax + y+ 5z = 4
x + ay+ 4z = a

b.

Exercise 1.4 Show that any two rows of a matrix can be
interchanged by elementary row transformations of the
other two types.

Exercise 1.5 If ad 6= bc, show that

[
a b

c d

]
has re-

duced row-echelon form

[
1 0
0 1

]
.

Exercise 1.6 Find a, b, and c so that the system

x + ay+ cz= 0
bx + cy− 3z = 1
ax + 2y+ bz = 5

has the solution x = 3, y =−1, z = 2.

Exercise 1.7 Solve the system

x+ 2y+ 2z =−3
2x+ y+ z=−4
x− y+ iz = i

where i2 =−1. [See Appendix A.]

Exercise 1.8 Show that the real system




x+ y+ z= 5
2x− y− z= 1
−3x+ 2y+ 2z = 0

has a complex solution: x = 2, y = i, z = 3− i where
i2 = −1. Explain. What happens when such a real sys-
tem has a unique solution?
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Exercise 1.9 A man is ordered by his doctor to take 5
units of vitamin A, 13 units of vitamin B, and 23 units
of vitamin C each day. Three brands of vitamin pills are
available, and the number of units of each vitamin per
pill are shown in the accompanying table.

Vitamin

Brand A B C

1 1 2 4
2 1 1 3
3 0 1 1

a. Find all combinations of pills that provide exactly
the required amount of vitamins (no partial pills
allowed).

b. If brands 1, 2, and 3 cost 3¢, 2¢, and 5¢ per pill,
respectively, find the least expensive treatment.

Exercise 1.10 A restaurant owner plans to use x tables
seating 4, y tables seating 6, and z tables seating 8, for a
total of 20 tables. When fully occupied, the tables seat
108 customers. If only half of the x tables, half of the y

tables, and one-fourth of the z tables are used, each fully
occupied, then 46 customers will be seated. Find x, y,
and z.

Exercise 1.11

a. Show that a matrix with two rows and two
columns that is in reduced row-echelon form must
have one of the following forms:

[
1 0
0 1

][
0 1
0 0

][
0 0
0 0

][
1 ∗
0 0

]

[Hint: The leading 1 in the first row must be in
column 1 or 2 or not exist.]

b. List the seven reduced row-echelon forms for ma-
trices with two rows and three columns.

c. List the four reduced row-echelon forms for ma-
trices with three rows and two columns.

Exercise 1.12 An amusement park charges $7 for
adults, $2 for youths, and $0.50 for children. If 150 peo-
ple enter and pay a total of $100, find the numbers of
adults, youths, and children. [Hint: These numbers are
nonnegative integers.]

Exercise 1.13 Solve the following system of equations
for x and y.

x2 + xy− y2 = 1
2x2 − xy+ 3y2 = 13
x2 + 3xy + 2y2 = 0

[Hint: These equations are linear in the new variables
x1 = x2, x2 = xy, and x3 = y2.]



2. Matrix Algebra

In the study of systems of linear equations in Chapter 1, we found it convenient to manipulate the aug-
mented matrix of the system. Our aim was to reduce it to row-echelon form (using elementary row oper-
ations) and hence to write down all solutions to the system. In the present chapter we consider matrices
for their own sake. While some of the motivation comes from linear equations, it turns out that matrices
can be multiplied and added and so form an algebraic system somewhat analogous to the real numbers.
This “matrix algebra” is useful in ways that are quite different from the study of linear equations. For
example, the geometrical transformations obtained by rotating the euclidean plane about the origin can be
viewed as multiplications by certain 2×2 matrices. These “matrix transformations” are an important tool
in geometry and, in turn, the geometry provides a “picture” of the matrices. Furthermore, matrix algebra
has many other applications, some of which will be explored in this chapter. This subject is quite old and
was first studied systematically in 1858 by Arthur Cayley.1

2.1 Matrix Addition, Scalar Multiplication, and

Transposition

A rectangular array of numbers is called a matrix (the plural is matrices), and the numbers are called the
entries of the matrix. Matrices are usually denoted by uppercase letters: A, B, C, and so on. Hence,

A =

[
1 2 −1
0 5 6

]
B =

[
1 −1
0 2

]
C =




1
3
2




are matrices. Clearly matrices come in various shapes depending on the number of rows and columns.
For example, the matrix A shown has 2 rows and 3 columns. In general, a matrix with m rows and n

columns is referred to as an mmm×nnn matrix or as having size mmm×nnn. Thus matrices A, B, and C above have
sizes 2×3, 2×2, and 3×1, respectively. A matrix of size 1×n is called a row matrix, whereas one of
size m×1 is called a column matrix. Matrices of size n×n for some n are called square matrices.

Each entry of a matrix is identified by the row and column in which it lies. The rows are numbered
from the top down, and the columns are numbered from left to right. Then the (((iii,,, jjj)))-entry of a matrix is

1Arthur Cayley (1821-1895) showed his mathematical talent early and graduated from Cambridge in 1842 as senior wran-
gler. With no employment in mathematics in view, he took legal training and worked as a lawyer while continuing to do
mathematics, publishing nearly 300 papers in fourteen years. Finally, in 1863, he accepted the Sadlerian professorship in Cam-
bridge and remained there for the rest of his life, valued for his administrative and teaching skills as well as for his scholarship.
His mathematical achievements were of the first rank. In addition to originating matrix theory and the theory of determinants,
he did fundamental work in group theory, in higher-dimensional geometry, and in the theory of invariants. He was one of the
most prolific mathematicians of all time and produced 966 papers.
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the number lying simultaneously in row i and column j. For example,

The (1, 2)-entry of

[
1 −1
0 1

]
is −1.

The (2, 3)-entry of

[
1 2 −1
0 5 6

]
is 6.

A special notation is commonly used for the entries of a matrix. If A is an m× n matrix, and if the
(i, j)-entry of A is denoted as ai j, then A is displayed as follows:

A =




a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
...

...
am1 am2 am3 · · · amn




This is usually denoted simply as A =
[
ai j

]
. Thus ai j is the entry in row i and column j of A. For example,

a 3×4 matrix in this notation is written

A =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34




It is worth pointing out a convention regarding rows and columns: Rows are mentioned before columns.
For example:

• If a matrix has size m×n, it has m rows and n columns.

• If we speak of the (i, j)-entry of a matrix, it lies in row i and column j.

• If an entry is denoted ai j, the first subscript i refers to the row and the second subscript j to the

column in which ai j lies.

Two points (x1, y1) and (x2, y2) in the plane are equal if and only if2 they have the same coordinates,
that is x1 = x2 and y1 = y2. Similarly, two matrices A and B are called equal (written A = B) if and only if:

1. They have the same size.

2. Corresponding entries are equal.

If the entries of A and B are written in the form A =
[
ai j

]
, B =

[
bi j

]
, described earlier, then the second

condition takes the following form:

A =
[
ai j

]
=
[
bi j

]
means ai j = bi j for all i and j

2If p and q are statements, we say that p implies q if q is true whenever p is true. Then “p if and only if q” means that both
p implies q and q implies p. See Appendix B for more on this.
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Example 2.1.1

Given A =

[
a b

c d

]
, B =

[
1 2 −1
3 0 1

]
and C =

[
1 0
−1 2

]
discuss the possibility that A = B,

B =C, A =C.

Solution. A = B is impossible because A and B are of different sizes: A is 2×2 whereas B is 2×3.
Similarly, B =C is impossible. But A =C is possible provided that corresponding entries are

equal:

[
a b

c d

]
=

[
1 0
−1 2

]
means a = 1, b = 0, c =−1, and d = 2.

Matrix Addition

Definition 2.1 Matrix Addition

If A and B are matrices of the same size, their sum A+B is the matrix formed by adding
corresponding entries.

If A =
[
ai j

]
and B =

[
bi j

]
, this takes the form

A+B =
[
ai j +bi j

]

Note that addition is not defined for matrices of different sizes.

Example 2.1.2

If A =

[
2 1 3
−1 2 0

]
and B =

[
1 1 −1
2 0 6

]
, compute A+B.

Solution.

A+B =

[
2+1 1+1 3−1
−1+2 2+0 0+6

]
=

[
3 2 2
1 2 6

]

Example 2.1.3

Find a, b, and c if
[

a b c
]
+
[

c a b
]
=
[

3 2 −1
]
.

Solution. Add the matrices on the left side to obtain

[
a+ c b+a c+b

]
=
[

3 2 −1
]

Because corresponding entries must be equal, this gives three equations: a+ c = 3, b+a = 2, and
c+b =−1. Solving these yields a = 3, b =−1, c = 0.
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If A, B, and C are any matrices of the same size, then

A+B = B+A (commutative law)

A+(B+C) = (A+B)+C (associative law)

In fact, if A =
[
ai j

]
and B =

[
bi j

]
, then the (i, j)-entries of A+B and B+A are, respectively, ai j +bi j and

bi j +ai j. Since these are equal for all i and j, we get

A+B =
[

ai j +bi j

]
=
[

bi j +ai j

]
= B+A

The associative law is verified similarly.

The m×n matrix in which every entry is zero is called the m×n zero matrix and is denoted as 0 (or
0mn if it is important to emphasize the size). Hence,

0+X = X

holds for all m×n matrices X . The negative of an m×n matrix A (written −A) is defined to be the m×n

matrix obtained by multiplying each entry of A by −1. If A =
[
ai j

]
, this becomes −A =

[
−ai j

]
. Hence,

A+(−A) = 0

holds for all matrices A where, of course, 0 is the zero matrix of the same size as A.

A closely related notion is that of subtracting matrices. If A and B are two m× n matrices, their
difference A−B is defined by

A−B = A+(−B)

Note that if A =
[
ai j

]
and B =

[
bi j

]
, then

A−B =
[
ai j

]
+
[
−bi j

]
=
[
ai j−bi j

]

is the m×n matrix formed by subtracting corresponding entries.

Example 2.1.4

Let A =

[
3 −1 0
1 2 −4

]
, B =

[
1 −1 1
−2 0 6

]
, C =

[
1 0 −2
3 1 1

]
. Compute −A, A−B, and

A+B−C.

Solution.

−A =

[
−3 1 0
−1 −2 4

]

A−B =

[
3−1 −1− (−1) 0−1
1− (−2) 2−0 −4−6

]
=

[
2 0 −1
3 2 −10

]

A+B−C =

[
3+1−1 −1−1−0 0+1− (−2)
1−2−3 2+0−1 −4+6−1

]
=

[
3 −2 3
−4 1 1

]
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Example 2.1.5

Solve

[
3 2
−1 1

]
+X =

[
1 0
−1 2

]
where X is a matrix.

Solution. We solve a numerical equation a+ x = b by subtracting the number a from both sides to

obtain x = b−a. This also works for matrices. To solve

[
3 2
−1 1

]
+X =

[
1 0
−1 2

]
simply

subtract the matrix

[
3 2
−1 1

]
from both sides to get

X =

[
1 0
−1 2

]
−
[

3 2
−1 1

]
=

[
1−3 0−2

−1− (−1) 2−1

]
=

[
−2 −2

0 1

]

The reader should verify that this matrix X does indeed satisfy the original equation.

The solution in Example 2.1.5 solves the single matrix equation A+X = B directly via matrix subtrac-
tion: X = B−A. This ability to work with matrices as entities lies at the heart of matrix algebra.

It is important to note that the sizes of matrices involved in some calculations are often determined by
the context. For example, if

A+C =

[
1 3 −1
2 0 1

]

then A and C must be the same size (so that A+C makes sense), and that size must be 2×3 (so that the
sum is 2× 3). For simplicity we shall often omit reference to such facts when they are clear from the
context.

Scalar Multiplication

In gaussian elimination, multiplying a row of a matrix by a number k means multiplying every entry of
that row by k.

Definition 2.2 Matrix Scalar Multiplication

More generally, if A is any matrix and k is any number, the scalar multiple kA is the matrix
obtained from A by multiplying each entry of A by k.

If A =
[
ai j

]
, this is

kA =
[
kai j

]

Thus 1A = A and (−1)A =−A for any matrix A.

The term scalar arises here because the set of numbers from which the entries are drawn is usually
referred to as the set of scalars. We have been using real numbers as scalars, but we could equally well
have been using complex numbers.
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Example 2.1.6

If A =

[
3 −1 4
2 0 1

]
and B =

[
1 2 −1
0 3 2

]
compute 5A, 1

2B, and 3A−2B.

Solution.

5A =

[
15 −5 20
10 0 30

]
, 1

2B =

[ 1
2 1 −1

2
0 3

2 1

]

3A−2B =

[
9 −3 12
6 0 18

]
−
[

2 4 −2
0 6 4

]
=

[
7 −7 14
6 −6 14

]

If A is any matrix, note that kA is the same size as A for all scalars k. We also have

0A = 0 and k0 = 0

because the zero matrix has every entry zero. In other words, kA = 0 if either k = 0 or A = 0. The converse
of this statement is also true, as Example 2.1.7 shows.

Example 2.1.7

If kA = 0, show that either k = 0 or A = 0.

Solution. Write A =
[
ai j

]
so that kA = 0 means kai j = 0 for all i and j. If k = 0, there is nothing to

do. If k 6= 0, then kai j = 0 implies that ai j = 0 for all i and j; that is, A = 0.

For future reference, the basic properties of matrix addition and scalar multiplication are listed in
Theorem 2.1.1.

Theorem 2.1.1

Let A, B, and C denote arbitrary m×n matrices where m and n are fixed. Let k and p denote
arbitrary real numbers. Then

1. A+B = B+A.

2. A+(B+C) = (A+B)+C.

3. There is an m×n matrix 0, such that 0+A = A for each A.

4. For each A there is an m×n matrix, −A, such that A+(−A) = 0.

5. k(A+B) = kA+ kB.

6. (k+ p)A = kA+ pA.

7. (kp)A = k(pA).

8. 1A = A.
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Proof. Properties 1–4 were given previously. To check Property 5, let A =
[
ai j

]
and B =

[
bi j

]
denote

matrices of the same size. Then A+B =
[
ai j +bi j

]
, as before, so the (i, j)-entry of k(A+B) is

k(ai j +bi j) = kai j + kbi j

But this is just the (i, j)-entry of kA+ kB, and it follows that k(A+B) = kA+ kB. The other Properties
can be similarly verified; the details are left to the reader.

The Properties in Theorem 2.1.1 enable us to do calculations with matrices in much the same way that
numerical calculations are carried out. To begin, Property 2 implies that the sum

(A+B)+C = A+(B+C)

is the same no matter how it is formed and so is written as A+B+C. Similarly, the sum

A+B+C+D

is independent of how it is formed; for example, it equals both (A+B)+ (C+D) and A+[B+(C+D)].
Furthermore, property 1 ensures that, for example,

B+D+A+C = A+B+C+D

In other words, the order in which the matrices are added does not matter. A similar remark applies to
sums of five (or more) matrices.

Properties 5 and 6 in Theorem 2.1.1 are called distributive laws for scalar multiplication, and they
extend to sums of more than two terms. For example,

k(A+B−C) = kA+ kB− kC

(k+ p−m)A = kA+ pA−mA

Similar observations hold for more than three summands. These facts, together with properties 7 and
8, enable us to simplify expressions by collecting like terms, expanding, and taking common factors in
exactly the same way that algebraic expressions involving variables and real numbers are manipulated.
The following example illustrates these techniques.

Example 2.1.8

Simplify 2(A+3C)−3(2C−B)−3 [2(2A+B−4C)−4(A−2C)] where A, B, and C are all
matrices of the same size.

Solution. The reduction proceeds as though A, B, and C were variables.

2(A+3C)−3(2C−B)−3 [2(2A+B−4C)−4(A−2C)]

= 2A+6C−6C+3B−3 [4A+2B−8C−4A+8C]

= 2A+3B−3 [2B]

= 2A−3B
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Transpose of a Matrix

Many results about a matrix A involve the rows of A, and the corresponding result for columns is derived
in an analogous way, essentially by replacing the word row by the word column throughout. The following
definition is made with such applications in mind.

Definition 2.3 Transpose of a Matrix

If A is an m×n matrix, the transpose of A, written AT , is the n×m matrix whose rows are just the
columns of A in the same order.

In other words, the first row of AT is the first column of A (that is it consists of the entries of column 1 in
order). Similarly the second row of AT is the second column of A, and so on.

Example 2.1.9

Write down the transpose of each of the following matrices.

A =




1
3
2


 B =

[
5 2 6

]
C =




1 2
3 4
5 6


 D =




3 1 −1
1 3 2
−1 2 1




Solution.

AT =
[

1 3 2
]

, BT =




5
2
6


 , CT =

[
1 3 5
2 4 6

]
, and DT = D.

If A =
[
ai j

]
is a matrix, write AT =

[
bi j

]
. Then bi j is the jth element of the ith row of AT and so is the

jth element of the ith column of A. This means bi j = a ji, so the definition of AT can be stated as follows:

If A =
[
ai j

]
, then AT =

[
a ji

]
. (2.1)

This is useful in verifying the following properties of transposition.

Theorem 2.1.2

Let A and B denote matrices of the same size, and let k denote a scalar.

1. If A is an m×n matrix, then AT is an n×m matrix.

2. (AT )T = A.

3. (kA)T = kAT .

4. (A+B)T = AT +BT .
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Proof. Property 1 is part of the definition of AT , and Property 2 follows from (2.1). As to Property 3: If
A =

[
ai j

]
, then kA =

[
kai j

]
, so (2.1) gives

(kA)T =
[
ka ji

]
= k
[
a ji

]
= kAT

Finally, if B =
[
bi j

]
, then A+B =

[
ci j

]
where ci j = ai j +bi j Then (2.1) gives Property 4:

(A+B)T =
[
ci j

]T
=
[
c ji

]
=
[
a ji +b ji

]
=
[
a ji

]
+
[
b ji

]
= AT +BT

There is another useful way to think of transposition. If A =
[
ai j

]
is an m× n matrix, the elements

a11, a22, a33, . . . are called the main diagonal of A. Hence the main diagonal extends down and to the
right from the upper left corner of the matrix A; it is shaded in the following examples:




a11 a12

a21 a22

a31 a32



[

a11 a12 a13

a21 a22 a23

]


a11 a12 a13

a21 a22 a23

a31 a32 a33



[

a11

a21

]

Thus forming the transpose of a matrix A can be viewed as “flipping” A about its main diagonal, or
as “rotating” A through 180◦ about the line containing the main diagonal. This makes Property 2 in
Theorem 2.1.2 transparent.

Example 2.1.10

Solve for A if

(
2AT −3

[
1 2
−1 1

])T

=

[
2 3
−1 2

]
.

Solution. Using Theorem 2.1.2, the left side of the equation is

(
2AT −3

[
1 2
−1 1

])T

= 2
(
AT
)T −3

[
1 2
−1 1

]T

= 2A−3

[
1 −1
2 1

]

Hence the equation becomes

2A−3

[
1 −1
2 1

]
=

[
2 3
−1 2

]

Thus 2A =

[
2 3
−1 2

]
+3

[
1 −1
2 1

]
=

[
5 0
5 5

]
, so finally A = 1

2

[
5 0
5 5

]
= 5

2

[
1 0
1 1

]
.

Note that Example 2.1.10 can also be solved by first transposing both sides, then solving for AT , and so
obtaining A = (AT )T . The reader should do this.

The matrix D=

[
1 2
2 5

]
in Example 2.1.9 has the property that D=DT . Such matrices are important;

a matrix A is called symmetric if A = AT . A symmetric matrix A is necessarily square (if A is m×n, then
AT is n×m, so A=AT forces n=m). The name comes from the fact that these matrices exhibit a symmetry

www.dbooks.org

https://www.dbooks.org/


44 Matrix Algebra

about the main diagonal. That is, entries that are directly across the main diagonal from each other are
equal.

For example,




a b c

b′ d e

c′ e′ f


 is symmetric when b = b′, c = c′, and e = e′.

Example 2.1.11

If A and B are symmetric n×n matrices, show that A+B is symmetric.

Solution. We have AT = A and BT = B, so, by Theorem 2.1.2, we have
(A+B)T = AT +BT = A+B. Hence A+B is symmetric.

Example 2.1.12

Suppose a square matrix A satisfies A = 2AT . Show that necessarily A = 0.

Solution. If we iterate the given equation, Theorem 2.1.2 gives

A = 2AT = 2
[
2AT

]T
= 2

[
2(AT )T

]
= 4A

Subtracting A from both sides gives 3A = 0, so A = 1
3(0) = 0.

Exercises for 2.1

Exercise 2.1.1 Find a, b, c, and d if

a.

[
a b

c d

]
=

[
c−3d −d

2a+d a+b

]

b.

[
a−b b− c

c−d d−a

]
= 2

[
1 1
−3 1

]

c. 3

[
a

b

]
+2

[
b

a

]
=

[
1
2

]

d.

[
a b

c d

]
=

[
b c

d a

]

Exercise 2.1.2 Compute the following:

[
3 2 1
5 1 0

]
−5

[
3 0 −2
1 −1 2

]
a.

3

[
3
−1

]
−5

[
6
2

]
+7

[
1
−1

]
b.

[
−2 1

3 2

]
−4

[
1 −2
0 −1

]
+3

[
2 −3
−1 −2

]
c.

[
3 −1 2

]
−2
[

9 3 4
]
+
[

3 11 −6
]

d.

[
1 −5 4 0
2 1 0 6

]T

e.




0 −1 2
1 0 −4
−2 4 0




T

f.

[
3 −1
2 1

]
−2

[
1 −2
1 1

]T

g.
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3

[
2 1
−1 0

]T

−2

[
1 −1
2 3

]
h.

Exercise 2.1.3 Let A =

[
2 1
0 −1

]
,

B =

[
3 −1 2
0 1 4

]
, C =

[
3 −1
2 0

]
,

D =




1 3
−1 0

1 4


, and E =

[
1 0 1
0 1 0

]
.

Compute the following (where possible).

3A−2Ba. 5Cb.

3ETc. B+Dd.

4AT −3Ce. (A+C)Tf.

2B−3Eg. A−Dh.

(B−2E)Ti.

Exercise 2.1.4 Find A if:

a. 5A−
[

1 0
2 3

]
= 3A−

[
5 2
6 1

]

b. 3A−
[

2
1

]
= 5A−2

[
3
0

]

Exercise 2.1.5 Find A in terms of B if:

A+B = 3A+2Ba. 2A−B = 5(A+2B)b.

Exercise 2.1.6 If X , Y , A, and B are matrices of the same
size, solve the following systems of equations to obtain
X and Y in terms of A and B.

5X +3Y = A

2X +Y = B

a. 4X +3Y = A

5X +4Y = B

b.

Exercise 2.1.7 Find all matrices X and Y such that:

3X−2Y =
[

3 −1
]

a. 2X −5Y =
[

1 2
]

b.

Exercise 2.1.8 Simplify the following expressions
where A, B, and C are matrices.

a. 2 [9(A−B)+7(2B−A)]
−2 [3(2B+A)−2(A+3B)−5(A+B)]

b. 5 [3(A−B+2C)−2(3C−B)−A]
+2 [3(3A−B+C)+2(B−2A)−2C]

Exercise 2.1.9 If A is any 2×2 matrix, show that:

a. A = a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+

d

[
0 0
0 1

]
for some numbers a, b, c, and d.

b. A = p

[
1 0
0 1

]
+ q

[
1 1
0 0

]
+ r

[
1 0
1 0

]
+

s

[
0 1
1 0

]
for some numbers p, q, r, and s.

Exercise 2.1.10 Let A =
[

1 1 −1
]
,

B =
[

0 1 2
]
, and C =

[
3 0 1

]
. If

rA+ sB+ tC = 0 for some scalars r, s, and t, show that
necessarily r = s = t = 0.

Exercise 2.1.11

a. If Q+A = A holds for every m×n matrix A, show
that Q = 0mn.

b. If A is an m×n matrix and A+A′= 0mn, show that
A′ =−A.

Exercise 2.1.12 If A denotes an m×n matrix, show that
A =−A if and only if A = 0.

Exercise 2.1.13 A square matrix is called a diagonal

matrix if all the entries off the main diagonal are zero. If
A and B are diagonal matrices, show that the following
matrices are also diagonal.

A+Ba. A−Bb.

kA for any number kc.

Exercise 2.1.14 In each case determine all s and t such
that the given matrix is symmetric:

[
1 s

−2 t

]
a.

[
s t

st 1

]
b.




s 2s st

t −1 s

t s2 s


c.




2 s t

2s 0 s+ t

3 3 t


d.

Exercise 2.1.15 In each case find the matrix A.

a.

(
A+3

[
1 −1 0
1 2 4

])T

=




2 1
0 5
3 8
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b.

(
3AT +2

[
1 0
0 2

])T

=

[
8 0
3 1

]

c.
(
2A−3

[
1 2 0

])T
= 3AT +

[
2 1 −1

]T

d.

(
2AT −5

[
1 0
−1 2

])T

= 4A−9

[
1 1
−1 0

]

Exercise 2.1.16 Let A and B be symmetric (of the same
size). Show that each of the following is symmetric.

(A−B)a. kA for any scalar kb.

Exercise 2.1.17 Show that A+AT and AAT are symmet-
ric for any square matrix A.

Exercise 2.1.18 If A is a square matrix and A = kAT

where k 6=±1, show that A = 0.

Exercise 2.1.19 In each case either show that the state-
ment is true or give an example showing it is false.

a. If A+B= A+C, then B and C have the same size.

b. If A+B = 0, then B = 0.

c. If the (3, 1)-entry of A is 5, then the (1, 3)-entry
of AT is −5.

d. A and AT have the same main diagonal for every
matrix A.

e. If B is symmetric and AT = 3B, then A = 3B.

f. If A and B are symmetric, then kA+mB is sym-
metric for any scalars k and m.

Exercise 2.1.20 A square matrix W is called skew-

symmetric if W T =−W . Let A be any square matrix.

a. Show that A−AT is skew-symmetric.

b. Find a symmetric matrix S and a skew-symmetric
matrix W such that A = S+W .

c. Show that S and W in part (b) are uniquely deter-
mined by A.

Exercise 2.1.21 If W is skew-symmetric (Exer-
cise 2.1.20), show that the entries on the main diagonal
are zero.

Exercise 2.1.22 Prove the following parts of Theo-
rem 2.1.1.

(k+ p)A = kA+ pAa. (kp)A = k(pA)b.

Exercise 2.1.23 Let A, A1, A2, . . . , An denote matrices
of the same size. Use induction on n to verify the follow-
ing extensions of properties 5 and 6 of Theorem 2.1.1.

a. k(A1 +A2 + · · ·+An) = kA1 + kA2 + · · ·+ kAn for
any number k

b. (k1 + k2 + · · ·+ kn)A = k1A+ k2A+ · · ·+ knA for
any numbers k1, k2, . . . , kn

Exercise 2.1.24 Let A be a square matrix. If A = pBT

and B = qAT for some matrix B and numbers p and q,
show that either A = 0 = B or pq = 1.
[Hint: Example 2.1.7.]
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2.2 Matrix-Vector Multiplication

Up to now we have used matrices to solve systems of linear equations by manipulating the rows of the
augmented matrix. In this section we introduce a different way of describing linear systems that makes
more use of the coefficient matrix of the system and leads to a useful way of “multiplying” matrices.

Vectors

It is a well-known fact in analytic geometry that two points in the plane with coordinates (a1, a2) and
(b1, b2) are equal if and only if a1 = b1 and a2 = b2. Moreover, a similar condition applies to points
(a1, a2, a3) in space. We extend this idea as follows.

An ordered sequence (a1, a2, . . . , an) of real numbers is called an ordered nnn-tuple. The word “or-
dered” here reflects our insistence that two ordered n-tuples are equal if and only if corresponding entries
are the same. In other words,

(a1, a2, . . . , an) = (b1, b2, . . . , bn) if and only if a1 = b1, a2 = b2, . . . , and an = bn.

Thus the ordered 2-tuples and 3-tuples are just the ordered pairs and triples familiar from geometry.

Definition 2.4 The set Rn of ordered n-tuples of real numbers

Let R denote the set of all real numbers. The set of all ordered n-tuples from R has a special
notation:

Rn denotes the set of all ordered n-tuples of real numbers.

There are two commonly used ways to denote the n-tuples in Rn: As rows (r1, r2, . . . , rn) or columns


r1

r2
...

rn


; the notation we use depends on the context. In any event they are called vectors or n-vectors and

will be denoted using bold type such as x or v. For example, an m×n matrix A will be written as a row of
columns:

A =
[

a1 a2 · · · an

]
where a j denotes column j of A for each j.

If x and y are two n-vectors in Rn, it is clear that their matrix sum x+ y is also in Rn as is the scalar
multiple kx for any real number k. We express this observation by saying that Rn is closed under addition
and scalar multiplication. In particular, all the basic properties in Theorem 2.1.1 are true of these n-vectors.
These properties are fundamental and will be used frequently below without comment. As for matrices in
general, the n×1 zero matrix is called the zero nnn-vector in Rn and, if x is an n-vector, the n-vector −x is
called the negative x.

Of course, we have already encountered these n-vectors in Section 1.3 as the solutions to systems of
linear equations with n variables. In particular we defined the notion of a linear combination of vectors
and showed that a linear combination of solutions to a homogeneous system is again a solution. Clearly, a
linear combination of n-vectors in Rn is again in Rn, a fact that we will be using.
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Matrix-Vector Multiplication

Given a system of linear equations, the left sides of the equations depend only on the coefficient matrix A

and the column x of variables, and not on the constants. This observation leads to a fundamental idea in
linear algebra: We view the left sides of the equations as the “product” Ax of the matrix A and the vector
x. This simple change of perspective leads to a completely new way of viewing linear systems—one that
is very useful and will occupy our attention throughout this book.

To motivate the definition of the “product” Ax, consider first the following system of two equations in
three variables:

ax1 + bx2 + cx3 = b1

a′x1 + b′x2 + c′x3 = b1
(2.2)

and let A =

[
a b c

a′ b′ c′

]
, x =




x1

x2

x3


, b =

[
b1

b2

]
denote the coefficient matrix, the variable matrix, and

the constant matrix, respectively. The system (2.2) can be expressed as a single vector equation
[

ax1 + bx2 + cx3

a′x1 + b′x2 + c′x3

]
=

[
b1

b2

]

which in turn can be written as follows:

x1

[
a

a′

]
+ x2

[
b

b′

]
+ x3

[
c

c′

]
=

[
b1

b2

]

Now observe that the vectors appearing on the left side are just the columns

a1 =

[
a

a′

]
, a2 =

[
b

b′

]
, and a3 =

[
c

c′

]

of the coefficient matrix A. Hence the system (2.2) takes the form

x1a1 + x2a2 + x3a3 = b (2.3)

This shows that the system (2.2) has a solution if and only if the constant matrix b is a linear combination3

of the columns of A, and that in this case the entries of the solution are the coefficients x1, x2, and x3 in
this linear combination.

Moreover, this holds in general. If A is any m×n matrix, it is often convenient to view A as a row of
columns. That is, if a1, a2, . . . , an are the columns of A, we write

A =
[

a1 a2 · · · an

]

and say that A =
[

a1 a2 · · · an

]
is given in terms of its columns.

Now consider any system of linear equations with m× n coefficient matrix A. If b is the constant

matrix of the system, and if x =




x1

x2
...

xn


 is the matrix of variables then, exactly as above, the system can

3Linear combinations were introduced in Section 1.3 to describe the solutions of homogeneous systems of linear equations.
They will be used extensively in what follows.
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be written as a single vector equation

x1a1 + x2a2 + · · ·+ xnan = b (2.4)

Example 2.2.1

Write the system





3x1 + 2x2− 4x3 = 0
x1− 3x2 + x3 = 3

x2− 5x3 =−1
in the form given in (2.4).

Solution.

x1




3
1
0


+ x2




2
−3

1


+ x3



−4

1
−5


=




0
3
−1




As mentioned above, we view the left side of (2.4) as the product of the matrix A and the vector x.
This basic idea is formalized in the following definition:

Definition 2.5 Matrix-Vector Multiplication

Let A =
[

a1 a2 · · · an

]
be an m×n matrix, written in terms of its columns a1, a2, . . . , an. If

x =




x1

x2
...

xn


 is any n-vector, the product Ax is defined to be the m-vector given by:

Ax = x1a1 + x2a2 + · · ·+ xnan

In other words, if A is m×n and x is an n-vector, the product Ax is the linear combination of the columns
of A where the coefficients are the entries of x (in order).

Note that if A is an m×n matrix, the product Ax is only defined if x is an n-vector and then the vector
Ax is an m-vector because this is true of each column a j of A. But in this case the system of linear equations
with coefficient matrix A and constant vector b takes the form of a single matrix equation

Ax = b

The following theorem combines Definition 2.5 and equation (2.4) and summarizes the above discussion.
Recall that a system of linear equations is said to be consistent if it has at least one solution.

Theorem 2.2.1

1. Every system of linear equations has the form Ax = b where A is the coefficient matrix, b is
the constant matrix, and x is the matrix of variables.

2. The system Ax = b is consistent if and only if b is a linear combination of the columns of A.
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3. If a1, a2, . . . , an are the columns of A and if x =




x1

x2
...

xn


, then x is a solution to the linear

system Ax = b if and only if x1, x2, . . . , xn are a solution of the vector equation

x1a1 + x2a2 + · · ·+ xnan = b

A system of linear equations in the form Ax = b as in (1) of Theorem 2.2.1 is said to be written in matrix

form. This is a useful way to view linear systems as we shall see.

Theorem 2.2.1 transforms the problem of solving the linear system Ax = b into the problem of ex-
pressing the constant matrix B as a linear combination of the columns of the coefficient matrix A. Such
a change in perspective is very useful because one approach or the other may be better in a particular
situation; the importance of the theorem is that there is a choice.

Example 2.2.2

If A =




2 −1 3 5
0 2 −3 1
−3 4 1 2


 and x =




2
1
0
−2


, compute Ax.

Solution. By Definition 2.5: Ax = 2




2
0
−3


+1



−1

2
4


+0




3
−3

1


−2




5
1
2


=



−7

0
−6


.

Example 2.2.3

Given columns a1, a2, a3, and a4 in R3, write 2a1−3a2 +5a3 +a4 in the form Ax where A is a
matrix and x is a vector.

Solution. Here the column of coefficients is x =




2
−3

5
1


 . Hence Definition 2.5 gives

Ax = 2a1−3a2 +5a3 +a4

where A =
[

a1 a2 a3 a4
]

is the matrix with a1, a2, a3, and a4 as its columns.
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Example 2.2.4

Let A =
[

a1 a2 a3 a4
]

be the 3×4 matrix given in terms of its columns a1 =




2
0
−1


,

a2 =




1
1
1


, a3 =




3
−1
−3


, and a4 =




3
1
0


. In each case below, either express b as a linear

combination of a1, a2, a3, and a4, or show that it is not such a linear combination. Explain what
your answer means for the corresponding system Ax = b of linear equations.

a. b =




1
2
3


 b. b =




4
2
1




Solution. By Theorem 2.2.1, b is a linear combination of a1, a2, a3, and a4 if and only if the
system Ax = b is consistent (that is, it has a solution). So in each case we carry the augmented
matrix [A|b] of the system Ax = b to reduced form.

a. Here




2 1 3 3 1
0 1 −1 1 2
−1 1 −3 0 3


→




1 0 2 1 0
0 1 −1 1 0
0 0 0 0 1


, so the system Ax = b has no

solution in this case. Hence b is not a linear combination of a1, a2, a3, and a4.

b. Now




2 1 3 3 4
0 1 −1 1 2
−1 1 −3 0 1


→




1 0 2 1 1
0 1 −1 1 2
0 0 0 0 0


, so the system Ax = b is consistent.

Thus b is a linear combination of a1, a2, a3, and a4 in this case. In fact the general solution is
x1 = 1−2s− t, x2 = 2+ s− t, x3 = s, and x4 = t where s and t are arbitrary parameters. Hence

x1a1 + x2a2 + x3a3 + x4a4 = b =




4
2
1


 for any choice of s and t. If we take s = 0 and t = 0, this

becomes a1 +2a2 = b, whereas taking s = 1 = t gives −2a1 +2a2 +a3 +a4 = b.

Example 2.2.5

Taking A to be the zero matrix, we have 0x = 0 for all vectors x by Definition 2.5 because every
column of the zero matrix is zero. Similarly, A0 = 0 for all matrices A because every entry of the
zero vector is zero.
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Example 2.2.6

If I =




1 0 0
0 1 0
0 0 1


, show that Ix = x for any vector x in R3.

Solution. If x =




x1

x2

x3


 then Definition 2.5 gives

Ix = x1




1
0
0


+ x2




0
1
0


+ x3




0
0
1


=




x1

0
0


+




0
x2

0


+




0
0

x3


=




x1

x2

x3


= x

The matrix I in Example 2.2.6 is called the 3×3 identity matrix, and we will encounter such matrices
again in Example 2.2.11 below. Before proceeding, we develop some algebraic properties of matrix-vector
multiplication that are used extensively throughout linear algebra.

Theorem 2.2.2

Let A and B be m×n matrices, and let x and y be n-vectors in Rn. Then:

1. A(x+y) = Ax+Ay.

2. A(ax) = a(Ax) = (aA)x for all scalars a.

3. (A+B)x = Ax+Bx.

Proof. We prove (3); the other verifications are similar and are left as exercises. Let A=
[

a1 a2 · · · an

]

and B =
[

b1 b2 · · · bn

]
be given in terms of their columns. Since adding two matrices is the same

as adding their columns, we have

A+B =
[

a1 +b1 a2 +b2 · · · an +bn

]

If we write x =




x1

x2
...

xn


 Definition 2.5 gives

(A+B)x = x1(a1 +b1)+ x2(a2 +b2)+ · · ·+ xn(an +bn)

= (x1a1 + x2a2 + · · ·+ xnan)+(x1b1 + x2b2 + · · ·+ xnbn)

= Ax+Bx

Theorem 2.2.2 allows matrix-vector computations to be carried out much as in ordinary arithmetic. For
example, for any m×n matrices A and B and any n-vectors x and y, we have:

A(2x−5y) = 2Ax−5Ay and (3A−7B)x = 3Ax−7Bx
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We will use such manipulations throughout the book, often without mention.

Linear Equations

Theorem 2.2.2 also gives a useful way to describe the solutions to a system

Ax = b

of linear equations. There is a related system

Ax = 0

called the associated homogeneous system, obtained from the original system Ax = b by replacing all
the constants by zeros. Suppose x1 is a solution to Ax = b and x0 is a solution to Ax = 0 (that is Ax1 = b

and Ax0 = 0). Then x1 +x0 is another solution to Ax = b. Indeed, Theorem 2.2.2 gives

A(x1 +x0) = Ax1 +Ax0 = b+0 = b

This observation has a useful converse.

Theorem 2.2.3

Suppose x1 is any particular solution to the system Ax = b of linear equations. Then every solution
x2 to Ax = b has the form

x2 = x0 +x1

for some solution x0 of the associated homogeneous system Ax = 0.

Proof. Suppose x2 is also a solution to Ax = b, so that Ax2 = b. Write x0 = x2−x1. Then x2 = x0 +x1

and, using Theorem 2.2.2, we compute

Ax0 = A(x2−x1) = Ax2−Ax1 = b−b = 0

Hence x0 is a solution to the associated homogeneous system Ax = 0.

Note that gaussian elimination provides one such representation.

Example 2.2.7

Express every solution to the following system as the sum of a specific solution plus a solution to
the associated homogeneous system.

x1− x2− x3 + 3x4 = 2
2x1− x2− 3x3 + 4x4 = 6

x1 − 2x3 + x4 = 4
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Solution. Gaussian elimination gives x1 = 4+2s− t, x2 = 2+ s+2t, x3 = s, and x4 = t where s

and t are arbitrary parameters. Hence the general solution can be written

x =




x1

x2

x3

x4


=




4+2s− t

2+ s+2t

s

t


=




4
2
0
0


+


s




2
1
1
0


+ t




−1
2
0
1







Thus x1 =




4
2
0
0


 is a particular solution (where s = 0 = t), and x0 = s




2
1
1
0


+ t




−1
2
0
1


 gives all

solutions to the associated homogeneous system. (To see why this is so, carry out the gaussian
elimination again but with all the constants set equal to zero.)

The following useful result is included with no proof.

Theorem 2.2.4

Let Ax = b be a system of equations with augmented matrix
[

A b
]
. Write rank A = r.

1. rank
[

A b
]

is either r or r+1.

2. The system is consistent if and only if rank
[

A b
]
= r.

3. The system is inconsistent if and only if rank
[

A b
]
= r+1.

The Dot Product

Definition 2.5 is not always the easiest way to compute a matrix-vector product Ax because it requires
that the columns of A be explicitly identified. There is another way to find such a product which uses the
matrix A as a whole with no reference to its columns, and hence is useful in practice. The method depends
on the following notion.

Definition 2.6 Dot Product in Rn

If (a1, a2, . . . , an) and (b1, b2, . . . , bn) are two ordered n-tuples, their dot product is defined to
be the number

a1b1 +a2b2 + · · ·+anbn

obtained by multiplying corresponding entries and adding the results.
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To see how this relates to matrix products, let A denote a 3×4 matrix and let x be a 4-vector. Writing

x =




x1

x2

x3

x4


 and A =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34




in the notation of Section 2.1, we compute

Ax =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34







x1

x2

x3

x4


= x1




a11

a21

a31


+ x2




a12

a22

a32


+ x3




a13

a23

a33


+ x4




a14

a24

a34




=




a11x1 +a12x2 +a13x3 +a14x4

a21x1 +a22x2 +a23x3 +a24x4

a31x1 +a32x2 +a33x3 +a34x4




From this we see that each entry of Ax is the dot product of the corresponding row of A with x. This
computation goes through in general, and we record the result in Theorem 2.2.5.

Theorem 2.2.5: Dot Product Rule

Let A be an m×n matrix and let x be an n-vector. Then each entry of the vector Ax is the dot
product of the corresponding row of A with x.

This result is used extensively throughout linear algebra.

If A is m× n and x is an n-vector, the computation of Ax by the dot product rule is simpler than
using Definition 2.5 because the computation can be carried out directly with no explicit reference to the
columns of A (as in Definition 2.5). The first entry of Ax is the dot product of row 1 of A with x. In
hand calculations this is computed by going across row one of A, going down the column x, multiplying
corresponding entries, and adding the results. The other entries of Ax are computed in the same way using
the other rows of A with the column x.









=







row i entry i

A x Ax

In general, compute entry i of Ax as follows (see the diagram):

Go across row i of A and down column x, multiply corre-
sponding entries, and add the results.

As an illustration, we rework Example 2.2.2 using the dot product rule
instead of Definition 2.5.

Example 2.2.8

If A =




2 −1 3 5
0 2 −3 1
−3 4 1 2


 and x =




2
1
0
−2


, compute Ax.
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Solution. The entries of Ax are the dot products of the rows of A with x:

Ax=




2 −1 3 5
0 2 −3 1
−3 4 1 2







2
1
0
−2


=




2 ·2 + (−1)1 + 3 ·0 + 5(−2)
0 ·2 + 2 ·1 + (−3)0 + 1(−2)

(−3)2 + 4 ·1 + 1 ·0 + 2(−2)


=



−7

0
−6




Of course, this agrees with the outcome in Example 2.2.2.

Example 2.2.9

Write the following system of linear equations in the form Ax = b.

5x1− x2 + 2x3 + x4− 3x5 = 8
x1 + x2 + 3x3− 5x4 + 2x5 =−2
−x1 + x2− 2x3 + − 3x5 = 0

Solution. Write A =




5 −1 2 1 −3
1 1 3 −5 2
−1 1 −2 0 −3


, b =




8
−2

0


, and x =




x1

x2

x3

x4

x5




. Then the dot

product rule gives Ax =




5x1− x2 + 2x3 + x4− 3x5

x1 + x2 + 3x3− 5x4 + 2x5
−x1 + x2− 2x3 − 3x5


, so the entries of Ax are the left sides of

the equations in the linear system. Hence the system becomes Ax = b because matrices are equal if
and only corresponding entries are equal.

Example 2.2.10

If A is the zero m×n matrix, then Ax = 0 for each n-vector x.

Solution. For each k, entry k of Ax is the dot product of row k of A with x, and this is zero because
row k of A consists of zeros.

Definition 2.7 The Identity Matrix

For each n > 2, the identity matrix In is the n×n matrix with 1s on the main diagonal (upper left
to lower right), and zeros elsewhere.
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The first few identity matrices are

I2 =

[
1 0
0 1

]
, I3 =




1 0 0
0 1 0
0 0 1


 , I4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , . . .

In Example 2.2.6 we showed that I3x = x for each 3-vector x using Definition 2.5. The following result
shows that this holds in general, and is the reason for the name.

Example 2.2.11

For each n≥ 2 we have Inx = x for each n-vector x in Rn.

Solution. We verify the case n = 4. Given the 4-vector x =




x1

x2

x3

x4


 the dot product rule gives

I4x =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







x1

x2

x3

x4


=




x1 +0+0+0
0+ x2 +0+0
0+0+ x3 +0
0+0+0+ x4


=




x1

x2

x3

x4


= x

In general, Inx = x because entry k of Inx is the dot product of row k of In with x, and row k of In

has 1 in position k and zeros elsewhere.

Example 2.2.12

Let A =
[

a1 a2 · · · an

]
be any m×n matrix with columns a1, a2, . . . , an. If e j denotes

column j of the n×n identity matrix In, then Ae j = a j for each j = 1, 2, . . . , n.

Solution. Write e j =




t1
t2
...
tn


 where t j = 1, but ti = 0 for all i 6= j. Then Theorem 2.2.5 gives

Ae j = t1a1 + · · ·+ t ja j + · · ·+ tnan = 0+ · · ·+a j + · · ·+0 = a j

Example 2.2.12 will be referred to later; for now we use it to prove:

Theorem 2.2.6

Let A and B be m×n matrices. If Ax = Bx for all x in Rn, then A = B.

Proof. Write A =
[

a1 a2 · · · an

]
and B =

[
b1 b2 · · · bn

]
and in terms of their columns. It is

enough to show that ak = bk holds for all k. But we are assuming that Aek = Bek, which gives ak = bk by
Example 2.2.12.
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We have introduced matrix-vector multiplication as a new way to think about systems of linear equa-
tions. But it has several other uses as well. It turns out that many geometric operations can be described
using matrix multiplication, and we now investigate how this happens. As a bonus, this description pro-
vides a geometric “picture” of a matrix by revealing the effect on a vector when it is multiplied by A. This
“geometric view” of matrices is a fundamental tool in understanding them.

Transformations

0 =

[
0
0

]

[
a1

a2

]

a1

a2

x1

x2

Figure 2.2.1




a1

a2

a3




a1

a2

a3

0

x1

x2

x3

Figure 2.2.2

The set R2 has a geometrical interpretation as the euclidean plane where

a vector

[
a1

a2

]
in R2 represents the point (a1, a2) in the plane (see Fig-

ure 2.2.1). In this way we regard R2 as the set of all points in the plane.
Accordingly, we will refer to vectors in R2 as points, and denote their
coordinates as a column rather than a row. To enhance this geometrical

interpretation of the vector

[
a1

a2

]
, it is denoted graphically by an arrow

from the origin

[
0
0

]
to the vector as in Figure 2.2.1.

Similarly we identify R3 with 3-dimensional space by writing a point

(a1, a2, a3) as the vector




a1

a2

a3


 in R3, again represented by an arrow4

from the origin to the point as in Figure 2.2.2. In this way the terms “point”
and “vector” mean the same thing in the plane or in space.

We begin by describing a particular geometrical transformation of the
plane R2.

Example 2.2.13

[
a1

a2

]

[
a1

−a2

]

0
x

y

Figure 2.2.3

Consider the transformation of R2 given by reflection in the

x axis. This operation carries the vector

[
a1

a2

]
to its reflection

[
a1

−a2

]
as in Figure 2.2.3. Now observe that

[
a1

−a2

]
=

[
1 0
0 −1

][
a1

a2

]

so reflecting

[
a1

a2

]
in the x axis can be achieved by multiplying

by the matrix

[
1 0
0 −1

]
.

4This “arrow” representation of vectors in R2 and R3 will be used extensively in Chapter 4.
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If we write A =

[
1 0
0 −1

]
, Example 2.2.13 shows that reflection in the x axis carries each vector x in

R2 to the vector Ax in R2. It is thus an example of a function

T : R2→R2 where T (x) = Ax for all x in R2

As such it is a generalization of the familiar functions f : R→ R that carry a number x to another real
number f (x).

x T (x)

T

Rn Rm

Figure 2.2.4

More generally, functions T : Rn → Rm are called transformations

from Rn to Rm. Such a transformation T is a rule that assigns to every
vector x in Rn a uniquely determined vector T (x) in Rm called the image

of x under T . We denote this state of affairs by writing

T : Rn→ Rm or Rn T−→ Rm

The transformation T can be visualized as in Figure 2.2.4.

To describe a transformation T : Rn→ Rm we must specify the vector
T (x) in Rm for every x in Rn. This is referred to as defining T , or as specifying the action of T . Saying
that the action defines the transformation means that we regard two transformations S : Rn → Rm and
T : Rn→Rm as equal if they have the same action; more formally

S = T if and only if S(x) = T (x) for all x in Rn.

Again, this what we mean by f = g where f , g : R→ R are ordinary functions.

Functions f : R→R are often described by a formula, examples being f (x) = x2 +1 and f (x) = sinx.
The same is true of transformations; here is an example.

Example 2.2.14

The formula T




x1

x2

x3

x4


=




x1 + x2

x2 + x3

x3 + x4


 defines a transformation R4→ R3.

Example 2.2.13 suggests that matrix multiplication is an important way of defining transformations
Rn→Rm. If A is any m×n matrix, multiplication by A gives a transformation

TA : Rn→ Rm defined by TA(x) = Ax for every x in Rn

Definition 2.8 Matrix Transformation TA

TA is called the matrix transformation induced by A.

Thus Example 2.2.13 shows that reflection in the x axis is the matrix transformation R2 → R2 in-

duced by the matrix

[
1 0
0 −1

]
. Also, the transformation R : R4→ R3 in Example 2.2.13 is the matrix
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transformation induced by the matrix

A =




1 1 0 0
0 1 1 0
0 0 1 1


 because




1 1 0 0
0 1 1 0
0 0 1 1







x1

x2

x3

x4


=




x1 + x2

x2 + x3

x3 + x4




Example 2.2.15

Let Rπ
2

: R2→ R2 denote counterclockwise rotation about the origin through π
2 radians (that is,

90◦)5. Show that Rπ
2

is induced by the matrix

[
0 −1
1 0

]
.

Solution.

a

b

a
b

q

0 p
x

y

R π
2
(x) =

[
−b

a

]

x =

[
a

b

]

Figure 2.2.5

The effect of Rπ
2

is to rotate the vector x =

[
a

b

]

counterclockwise through π
2 to produce the vector Rπ

2
(x) shown

in Figure 2.2.5. Since triangles 0px and 0qRπ
2
(x) are identical,

we obtain Rπ
2
(x) =

[
−b

a

]
. But

[
−b

a

]
=

[
0 −1
1 0

][
a

b

]
,

so we obtain Rπ
2
(x) = Ax for all x in R2 where A =

[
0 −1
1 0

]
.

In other words, Rπ
2

is the matrix transformation induced by A.

If A is the m×n zero matrix, then A induces the transformation

T : Rn→ Rm given by T (x) = Ax = 0 for all x in Rn

This is called the zero transformation, and is denoted T = 0.

Another important example is the identity transformation

1Rn : Rn→ Rn given by 1Rn(x) = x for all x in Rn

That is, the action of 1Rn on x is to do nothing to it. If In denotes the n×n identity matrix, we showed in
Example 2.2.11 that Inx = x for all x in Rn. Hence 1Rn(x) = Inx for all x in Rn; that is, the identity matrix
In induces the identity transformation.

Here are two more examples of matrix transformations with a clear geometric description.

5Radian measure for angles is based on the fact that 360◦ equals 2π radians. Hence π radians = 180◦ and π
2 radians = 90◦.



2.2. Matrix-Vector Multiplication 61

Example 2.2.16

If a > 0, the matrix transformation T

[
x

y

]
=

[
ax

y

]
induced by the matrix A =

[
a 0
0 1

]
is called

an xxx-expansion of R2 if a > 1, and an xxx-compression if 0 < a < 1. The reason for the names is

clear in the diagram below. Similarly, if b > 0 the matrix A =

[
1 0
0 b

]
gives rise to yyy-expansions

and yyy-compressions.

0
x

y

[
x

y

]

0
x

y

[
1
2 x

y

]

x-compression

a = 1
2

0
x

y

[
3
2 x

y

]

x-expansion

a = 3
2

Example 2.2.17

If a is a number, the matrix transformation T

[
x

y

]
=

[
x+ay

y

]
induced by the matrix

A =

[
1 a

0 1

]
is called an xxx-shear of R2 (positive if a > 0 and negative if a < 0). Its effect is

illustrated below when a = 1
4 and a =−1

4 .

0
x

y

[
x

y

]

0
x

y

[
x+ 1

4 y

y

]
Positive x-shear

a = 1
4

0
x

y

[
x− 1

4 y

y

]
Negative x-shear

a =− 1
4

0

x =

[
x

y

]

x

y

Tw(x) =

[
x+2
y+1

]

Figure 2.2.6

We hasten to note that there are important geometric transformations
that are not matrix transformations. For example, if w is a fixed column in
Rn, define the transformation Tw : Rn→Rn by

Tw(x) = x+w for all x in Rn

Then Tw is called translation by w. In particular, if w =

[
2
1

]
in R2, the
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effect of Tw on

[
x

y

]
is to translate it two units to the right and one unit

up (see Figure 2.2.6).

The translation Tw is not a matrix transformation unless w = 0. Indeed, if Tw were induced by a matrix
A, then Ax = Tw(x) = x+w would hold for every x in Rn. In particular, taking x = 0 gives w = A0 = 0.

Exercises for 2.2

Exercise 2.2.1 In each case find a system of equations
that is equivalent to the given vector equation. (Do not
solve the system.)

a. x1




2
−3

0


+ x2




1
1
4


+ x3




2
0
−1


=




5
6
−3




b. x1




1
0
1
0


+ x2




−3
8
2
1


+ x3




−3
0
2
2


+ x4




3
2
0
−2


=




5
1
2
0




Exercise 2.2.2 In each case find a vector equation that
is equivalent to the given system of equations. (Do not
solve the equation.)

a. x1 − x2 + 3x3 = 5
−3x1 + x2 + x3 =−6

5x1 − 8x2 = 9

b. x1− 2x2 − x3 + x4 = 5
−x1 + x3− 2x4 =−3
2x1 − 2x2 + 7x3 = 8
3x1 − 4x2 + 9x3 − 2x4 = 12

Exercise 2.2.3 In each case compute Ax using: (i) Def-
inition 2.5. (ii) Theorem 2.2.5.

a. A =

[
3 −2 0
5 −4 1

]
and x =




x1

x2

x3


.

b. A =

[
1 2 3
0 −4 5

]
and x =




x1

x2

x3


.

c. A =



−2 0 5 4

1 2 0 3
−5 6 −7 8


 and x =




x1

x2

x3

x4


.

d. A =




3 −4 1 6
0 2 1 5
−8 7 −3 0


 and x =




x1

x2

x3

x4


.

Exercise 2.2.4 Let A=
[

a1 a2 a3 a4
]

be the 3×4

matrix given in terms of its columns a1 =




1
1
−1


,

a2 =




3
0
2


, a3 =




2
−1

3


, and a4 =




0
−3

5


. In each

case either express b as a linear combination of a1, a2, a3,
and a4, or show that it is not such a linear combination.
Explain what your answer means for the corresponding
system Ax = b of linear equations.

b =




0
3
5


a. b =




4
1
1


b.

Exercise 2.2.5 In each case, express every solution of
the system as a sum of a specific solution plus a solution
of the associated homogeneous system.

x+ y+ z= 2
2x + y = 3

x− y− 3z = 0

a. x− y− 4z =−4
x + 2y+ 5z = 2
x + y+ 2z = 0

b.

x1 + x2− x3 − 5x5 = 2
x2 + x3 − 4x5 =−1
x2 + x3 + x4− x5 =−1

2x1 − 4x3 + x4 + x5 = 6

c.

2x1 + x2− x3− x4 =−1
3x1 + x2 + x3− 2x4 =−2
−x1− x2 + 2x3 + x4 = 2
−2x1 − x2 + 2x4 = 3

d.
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Exercise 2.2.6 If x0 and x1 are solutions to the homo-
geneous system of equations Ax = 0, use Theorem 2.2.2
to show that sx0 + tx1 is also a solution for any scalars s

and t (called a linear combination of x0 and x1).

Exercise 2.2.7 Assume that A




1
−1

2


= 0 = A




2
0
3


.

Show that x0 =




2
−1

3


 is a solution to Ax = b. Find a

two-parameter family of solutions to Ax = b.

Exercise 2.2.8 In each case write the system in the form
Ax = b, use the gaussian algorithm to solve the system,
and express the solution as a particular solution plus a
linear combination of basic solutions to the associated
homogeneous system Ax = 0.

a. x1 − 2x2 + x3 + 4x4 − x5 = 8
−2x1 + 4x2 + x3− 2x4 − 4x5 =−1

3x1 − 6x2 + 8x3 + 4x4 − 13x5 = 1
8x1 − 16x2 + 7x3 + 12x4 − 6x5 = 11

b. x1 − 2x2 + x3 + 2x4 + 3x5 =−4
−3x1 + 6x2 − 2x3 − 3x4 − 11x5 = 11
−2x1 + 4x2 − x3 + x4 − 8x5 = 7
−x1 + 2x2 + 3x4 − 5x5 = 3

Exercise 2.2.9 Given vectors a1 =




1
0
1


,

a2 =




1
1
0


, and a3 =




0
−1

1


, find a vector b that is

not a linear combination of a1, a2, and a3. Justify your
answer. [Hint: Part (2) of Theorem 2.2.1.]

Exercise 2.2.10 In each case either show that the state-
ment is true, or give an example showing that it is false.

a.

[
3
2

]
is a linear combination of

[
1
0

]
and

[
0
1

]
.

b. If Ax has a zero entry, then A has a row of zeros.

c. If Ax = 0 where x 6= 0, then A = 0.

d. Every linear combination of vectors in Rn can be
written in the form Ax.

e. If A=
[

a1 a2 a3
]

in terms of its columns, and
if b = 3a1−2a2, then the system Ax = b has a so-
lution.

f. If A =
[

a1 a2 a3
]

in terms of its columns,
and if the system Ax = b has a solution, then
b = sa1 + ta2 for some s, t.

g. If A is m×n and m < n, then Ax = b has a solution
for every column b.

h. If Ax = b has a solution for some column b, then
it has a solution for every column b.

i. If x1 and x2 are solutions to Ax = b, then x1− x2

is a solution to Ax = 0.

j. Let A=
[

a1 a2 a3
]

in terms of its columns. If

a3 = sa1 + ta2, then Ax = 0, where x =




s

t

−1


.

Exercise 2.2.11 Let T : R2→ R2 be a transformation.
In each case show that T is induced by a matrix and find
the matrix.

a. T is a reflection in the y axis.

b. T is a reflection in the line y = x.

c. T is a reflection in the line y =−x.

d. T is a clockwise rotation through π
2 .

Exercise 2.2.12 The projection P : R3→ R2 is defined

by P




x

y

z


=

[
x

y

]
for all




x

y

z


 in R3. Show that P is

induced by a matrix and find the matrix.

Exercise 2.2.13 Let T : R3→ R3 be a transformation.
In each case show that T is induced by a matrix and find
the matrix.

a. T is a reflection in the x− y plane.

b. T is a reflection in the y− z plane.

Exercise 2.2.14 Fix a > 0 in R, and define Ta : R4→R4

by Ta(x) = ax for all x in R4. Show that T is induced by
a matrix and find the matrix. [T is called a dilation if
a > 1 and a contraction if a < 1.]

Exercise 2.2.15 Let A be m×n and let x be in Rn. If A

has a row of zeros, show that Ax has a zero entry.
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Exercise 2.2.16 If a vector b is a linear combination of
the columns of A, show that the system Ax = b is consis-
tent (that is, it has at least one solution.)

Exercise 2.2.17 If a system Ax = b is inconsistent (no
solution), show that b is not a linear combination of the
columns of A.

Exercise 2.2.18 Let x1 and x2 be solutions to the homo-
geneous system Ax = 0.

a. Show that x1 +x2 is a solution to Ax = 0.

b. Show that tx1 is a solution to Ax= 0 for any scalar
t.

Exercise 2.2.19 Suppose x1 is a solution to the system
Ax = b. If x0 is any nontrivial solution to the associ-
ated homogeneous system Ax = 0, show that x1+ tx0, t a
scalar, is an infinite one parameter family of solutions to
Ax = b. [Hint: Example 2.1.7 Section 2.1.]

Exercise 2.2.20 Let A and B be matrices of the same
size. If x is a solution to both the system Ax = 0 and the
system Bx = 0, show that x is a solution to the system
(A+B)x = 0.

Exercise 2.2.21 If A is m×n and Ax = 0 for every x in
Rn, show that A = 0 is the zero matrix. [Hint: Consider
Ae j where e j is the jth column of In; that is, e j is the
vector in Rn with 1 as entry j and every other entry 0.]

Exercise 2.2.22 Prove part (1) of Theorem 2.2.2.

Exercise 2.2.23 Prove part (2) of Theorem 2.2.2.

2.3 Matrix Multiplication

In Section 2.2 matrix-vector products were introduced. If A is an m×n matrix, the product Ax was defined
for any n-column x in Rn as follows: If A =

[
a1 a2 · · · an

]
where the a j are the columns of A, and if

x =




x1

x2
...

xn


, Definition 2.5 reads

Ax = x1a1 + x2a2 + · · ·+ xnan (2.5)

This was motivated as a way of describing systems of linear equations with coefficient matrix A. Indeed
every such system has the form Ax = b where b is the column of constants.

In this section we extend this matrix-vector multiplication to a way of multiplying matrices in gen-
eral, and then investigate matrix algebra for its own sake. While it shares several properties of ordinary
arithmetic, it will soon become clear that matrix arithmetic is different in a number of ways.

Matrix multiplication is closely related to composition of transformations.
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Composition and Matrix Multiplication

Sometimes two transformations “link” together as follows:

Rk T−→Rn S−→ Rm

In this case we can apply T first and then apply S, and the result is a new transformation

S ◦T : Rk→ Rm

called the composite of S and T , defined by

(S ◦T )(x) = S [T (x)] for all x in Rk

T S

S◦T

Rk Rn Rm

The action of S◦T can be described as “first T then S ” (note the order!)6.
This new transformation is described in the diagram. The reader will have
encountered composition of ordinary functions: For example, consider

R
g−→ R

f−→ R where f (x) = x2 and g(x) = x+1 for all x in R. Then

( f ◦g)(x) = f [g(x)] = f (x+1) = (x+1)2

(g◦ f )(x) = g [ f (x)] = g(x2) = x2 +1

for all x in R.

Our concern here is with matrix transformations. Suppose that A is an m×n matrix and B is an n× k

matrix, and let Rk TB−→ Rn TA−→ Rm be the matrix transformations induced by B and A respectively, that is:

TB(x) = Bx for all x in Rk and TA(y) = Ay for all y in Rn

Write B =
[

b1 b2 · · · bk

]
where b j denotes column j of B for each j. Hence each b j is an n-vector

(B is n× k) so we can form the matrix-vector product Ab j. In particular, we obtain an m× k matrix
[

Ab1 Ab2 · · · Abk

]

with columns Ab1, Ab2, · · · , Abk. Now compute (TA ◦TB)(x) for any x =




x1

x2
...

xk


 in Rk:

(TA ◦TB)(x) = TA [TB(x)] Definition of TA ◦TB

= A(Bx) A and B induce TA and TB

= A(x1b1 + x2b2 + · · ·+ xkbk) Equation 2.5 above
= A(x1b1)+A(x2b2)+ · · ·+A(xkbk) Theorem 2.2.2
= x1(Ab1)+ x2(Ab2)+ · · ·+ xk(Abk) Theorem 2.2.2
=

[
Ab1 Ab2 · · · Abk

]
x Equation 2.5 above

Because x was an arbitrary vector in Rn, this shows that TA ◦TB is the matrix transformation induced by
the matrix

[
Ab1 Ab2 · · · Abn

]
. This motivates the following definition.

6When reading the notation S ◦T , we read S first and then T even though the action is “first T then S ”. This annoying state
of affairs results because we write T (x) for the effect of the transformation T on x, with T on the left. If we wrote this instead
as (x)T , the confusion would not occur. However the notation T (x) is well established.
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Definition 2.9 Matrix Multiplication

Let A be an m×n matrix, let B be an n× k matrix, and write B =
[

b1 b2 · · · bk

]
where b j is

column j of B for each j. The product matrix AB is the m× k matrix defined as follows:

AB = A
[

b1 b2 · · · bk

]
=
[

Ab1 Ab2 · · · Abk

]

Thus the product matrix AB is given in terms of its columns Ab1, Ab2, . . . , Abn: Column j of AB is the
matrix-vector product Ab j of A and the corresponding column b j of B. Note that each such product Ab j

makes sense by Definition 2.5 because A is m×n and each b j is in Rn (since B has n rows). Note also that
if B is a column matrix, this definition reduces to Definition 2.5 for matrix-vector multiplication.

Given matrices A and B, Definition 2.9 and the above computation give

A(Bx) =
[

Ab1 Ab2 · · · Abn

]
x = (AB)x

for all x in Rk. We record this for reference.

Theorem 2.3.1

Let A be an m×n matrix and let B be an n× k matrix. Then the product matrix AB is m× k and
satisfies

A(Bx) = (AB)x for all x in Rk

Here is an example of how to compute the product AB of two matrices using Definition 2.9.

Example 2.3.1

Compute AB if A =




2 3 5
1 4 7
0 1 8


 and B =




8 9
7 2
6 1


.

Solution. The columns of B are b1 =




8
7
6


 and b2 =




9
2
1


, so Definition 2.5 gives

Ab1 =




2 3 5
1 4 7
0 1 8






8
7
6


=




67
78
55


 and Ab2 =




2 3 5
1 4 7
0 1 8






9
2
1


=




29
24
10




Hence Definition 2.9 above gives AB =
[

Ab1 Ab2
]
=




67 29
78 24
55 10


.
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Example 2.3.2

If A is m×n and B is n× k, Theorem 2.3.1 gives a simple formula for the composite of the matrix
transformations TA and TB:

TA ◦TB = TAB

Solution. Given any x in Rk,

(TA ◦TB)(x) = TA[TB(x)]

= A[Bx]

= (AB)x

= TAB(x)

While Definition 2.9 is important, there is another way to compute the matrix product AB that gives
a way to calculate each individual entry. In Section 2.2 we defined the dot product of two n-tuples to be
the sum of the products of corresponding entries. We went on to show (Theorem 2.2.5) that if A is an
m×n matrix and x is an n-vector, then entry j of the product Ax is the dot product of row j of A with x.
This observation was called the “dot product rule” for matrix-vector multiplication, and the next theorem
shows that it extends to matrix multiplication in general.

Theorem 2.3.2: Dot Product Rule

Let A and B be matrices of sizes m×n and n× k, respectively. Then the (i, j)-entry of AB is the
dot product of row i of A with column j of B.

Proof. Write B =
[

b1 b2 · · · bn

]
in terms of its columns. Then Ab j is column j of AB for each j.

Hence the (i, j)-entry of AB is entry i of Ab j, which is the dot product of row i of A with b j. This proves
the theorem.

Thus to compute the (i, j)-entry of AB, proceed as follows (see the diagram):

Go across row i of A, and down column j of B, multiply corresponding entries, and add the results.










=







row i column j (i, j)-entry

A B AB

Note that this requires that the rows of A must be the same length as the columns of B. The following rule
is useful for remembering this and for deciding the size of the product matrix AB.
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Compatibility Rule

A B

m× n n′ × k

Let A and B denote matrices. If A is m×n and B is n′× k, the product AB

can be formed if and only if n = n′. In this case the size of the product
matrix AB is m× k, and we say that AB is defined, or that A and B are
compatible for multiplication.

The diagram provides a useful mnemonic for remembering this. We adopt the following convention:

Convention

Whenever a product of matrices is written, it is tacitly assumed that the sizes of the factors are such that
the product is defined.

To illustrate the dot product rule, we recompute the matrix product in Example 2.3.1.

Example 2.3.3

Compute AB if A =




2 3 5
1 4 7
0 1 8


 and B =




8 9
7 2
6 1


.

Solution. Here A is 3×3 and B is 3×2, so the product matrix AB is defined and will be of size
3×2. Theorem 2.3.2 gives each entry of AB as the dot product of the corresponding row of A with
the corresponding column of B j that is,

AB =




2 3 5
1 4 7
0 1 8






8 9
7 2
6 1


=




2 ·8+3 ·7+5 ·6 2 ·9+3 ·2+5 ·1
1 ·8+4 ·7+7 ·6 1 ·9+4 ·2+7 ·1
0 ·8+1 ·7+8 ·6 0 ·9+1 ·2+8 ·1


=




67 29
78 24
55 10




Of course, this agrees with Example 2.3.1.

Example 2.3.4

Compute the (1, 3)- and (2, 4)-entries of AB where

A =

[
3 −1 2
0 1 4

]
and B =




2 1 6 0
0 2 3 4
−1 0 5 8


 .

Then compute AB.

Solution. The (1, 3)-entry of AB is the dot product of row 1 of A and column 3 of B (highlighted
in the following display), computed by multiplying corresponding entries and adding the results.

[
3 −1 2
0 1 4

]


2 1 6 0
0 2 3 4
−1 0 5 8


 (1, 3)-entry = 3 ·6+(−1) ·3+2 ·5= 25
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Similarly, the (2, 4)-entry of AB involves row 2 of A and column 4 of B.

[
3 −1 2
0 1 4

]


2 1 6 0
0 2 3 4
−1 0 5 8


 (2, 4)-entry = 0 ·0+1 ·4+4 ·8 = 36

Since A is 2×3 and B is 3×4, the product is 2×4.

AB =

[
3 −1 2
0 1 4

]


2 1 6 0
0 2 3 4
−1 0 5 8


=

[
4 1 25 12
−4 2 23 36

]

Example 2.3.5

If A =
[

1 3 2
]

and B =




5
6
4


, compute A2, AB, BA, and B2 when they are defined.7

Solution. Here, A is a 1×3 matrix and B is a 3×1 matrix, so A2 and B2 are not defined. However,
the compatibility rule reads

A B

1×3 3×1
and

B A

3×1 1×3

so both AB and BA can be formed and these are 1×1 and 3×3 matrices, respectively.

AB =
[

1 3 2
]



5
6
4


=

[
1 ·5+3 ·6+2 ·4

]
=
[

31
]

BA =




5
6
4


[ 1 3 2

]
=




5 ·1 5 ·3 5 ·2
6 ·1 6 ·3 6 ·2
4 ·1 4 ·3 4 ·2


=




5 15 10
6 18 12
4 12 8




Unlike numerical multiplication, matrix products AB and BA need not be equal. In fact they need not
even be the same size, as Example 2.3.5 shows. It turns out to be rare that AB = BA (although it is by no
means impossible), and A and B are said to commute when this happens.

Example 2.3.6

Let A =

[
6 9
−4 −6

]
and B =

[
1 2
−1 0

]
. Compute A2, AB, BA.

7As for numbers, we write A2 = A ·A, A3 = A ·A ·A, etc. Note that A2 is defined if and only if A is of size n× n for some n.
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Solution. A2 =

[
6 9
−4 −6

][
6 9
−4 −6

]
=

[
0 0
0 0

]
, so A2 = 0 can occur even if A 6= 0. Next,

AB =

[
6 9
−4 −6

][
1 2
−1 0

]
=

[
−3 12

2 −8

]

BA =

[
1 2
−1 0

][
6 9
−4 −6

]
=

[
−2 −3
−6 −9

]

Hence AB 6= BA, even though AB and BA are the same size.

Example 2.3.7

If A is any matrix, then IA = A and AI = A, and where I denotes an identity matrix of a size so that
the multiplications are defined.

Solution. These both follow from the dot product rule as the reader should verify. For a more
formal proof, write A =

[
a1 a2 · · · an

]
where a j is column j of A. Then Definition 2.9 and

Example 2.2.11 give

IA =
[

Ia1 Ia2 · · · Ian

]
=
[

a1 a2 · · · an

]
= A

If e j denotes column j of I, then Ae j = a j for each j by Example 2.2.12. Hence Definition 2.9
gives:

AI = A
[

e1 e2 · · · en

]
=
[

Ae1 Ae2 · · · Aen

]
=
[

a1 a2 · · · an

]
= A

The following theorem collects several results about matrix multiplication that are used everywhere in
linear algebra.

Theorem 2.3.3

Assume that a is any scalar, and that A, B, and C are matrices of sizes such that the indicated
matrix products are defined. Then:

1. IA = A and AI = A where I denotes an
identity matrix.

2. A(BC) = (AB)C.

3. A(B+C) = AB+AC.

4. (B+C)A = BA+CA.

5. a(AB) = (aA)B = A(aB).

6. (AB)T = BT AT .

Proof. Condition (1) is Example 2.3.7; we prove (2), (4), and (6) and leave (3) and (5) as exercises.

1. If C =
[

c1 c2 · · · ck

]
in terms of its columns, then BC =

[
Bc1 Bc2 · · · Bck

]
by Defini-
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tion 2.9, so

A(BC) =
[

A(Bc1) A(Bc2) · · · A(Bck)
]

Definition 2.9

=
[
(AB)c1 (AB)c2 · · · (AB)ck)

]
Theorem 2.3.1

= (AB)C Definition 2.9

4. We know (Theorem 2.2.2) that (B+C)x = Bx+Cx holds for every column x. If we write
A =

[
a1 a2 · · · an

]
in terms of its columns, we get

(B+C)A =
[
(B+C)a1 (B+C)a2 · · · (B+C)an

]
Definition 2.9

=
[

Ba1 +Ca1 Ba2 +Ca2 · · · Ban +Can

]
Theorem 2.2.2

=
[

Ba1 Ba2 · · · Ban

]
+
[

Ca1 Ca2 · · · Can

]
Adding Columns

= BA+CA Definition 2.9

6. As in Section 2.1, write A = [ai j] and B = [bi j], so that AT = [a′i j] and BT = [b′i j] where a′i j = a ji and
b′ji = bi j for all i and j. If ci j denotes the (i, j)-entry of BT AT , then ci j is the dot product of row i of
BT with column j of AT . Hence

ci j = b′i1a′1 j +b′i2a′2 j + · · ·+b′ima′m j = b1ia j1 +b2ia j2 + · · ·+bmia jm

= a j1b1i +a j2b2i + · · ·+a jmbmi

But this is the dot product of row j of A with column i of B; that is, the ( j, i)-entry of AB; that is,
the (i, j)-entry of (AB)T . This proves (6).

Property 2 in Theorem 2.3.3 is called the associative law of matrix multiplication. It asserts that the
equation A(BC) = (AB)C holds for all matrices (if the products are defined). Hence this product is the
same no matter how it is formed, and so is written simply as ABC. This extends: The product ABCD of
four matrices can be formed several ways—for example, (AB)(CD), [A(BC)]D, and A[B(CD)]—but the
associative law implies that they are all equal and so are written as ABCD. A similar remark applies in
general: Matrix products can be written unambiguously with no parentheses.

However, a note of caution about matrix multiplication must be taken: The fact that AB and BA need
not be equal means that the order of the factors is important in a product of matrices. For example ABCD

and ADCB may not be equal.

Warning

If the order of the factors in a product of matrices is changed, the product matrix may change
(or may not be defined). Ignoring this warning is a source of many errors by students of linear
algebra!

Properties 3 and 4 in Theorem 2.3.3 are called distributive laws. They assert that A(B+C)= AB+AC

and (B+C)A = BA+CA hold whenever the sums and products are defined. These rules extend to more
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than two terms and, together with Property 5, ensure that many manipulations familiar from ordinary
algebra extend to matrices. For example

A(2B−3C+D−5E) = 2AB−3AC+AD−5AE

(A+3C−2D)B = AB+3CB−2DB

Note again that the warning is in effect: For example A(B−C) need not equal AB−CA. These rules make
possible a lot of simplification of matrix expressions.

Example 2.3.8

Simplify the expression A(BC−CD)+A(C−B)D−AB(C−D).

Solution.

A(BC−CD)+A(C−B)D−AB(C−D) = A(BC)−A(CD)+(AC−AB)D− (AB)C+(AB)D

= ABC−ACD+ACD−ABD−ABC+ABD

= 0

Example 2.3.9 and Example 2.3.10 below show how we can use the properties in Theorem 2.3.2 to
deduce other facts about matrix multiplication. Matrices A and B are said to commute if AB = BA.

Example 2.3.9

Suppose that A, B, and C are n×n matrices and that both A and B commute with C; that is,
AC =CA and BC =CB. Show that AB commutes with C.

Solution. Showing that AB commutes with C means verifying that (AB)C =C(AB). The
computation uses the associative law several times, as well as the given facts that AC =CA and
BC =CB.

(AB)C = A(BC) = A(CB) = (AC)B = (CA)B =C(AB)

Example 2.3.10

Show that AB = BA if and only if (A−B)(A+B) = A2−B2.

Solution. The following always holds:

(A−B)(A+B) = A(A+B)−B(A+B) = A2 +AB−BA−B2 (2.6)

Hence if AB = BA, then (A−B)(A+B) = A2−B2 follows. Conversely, if this last equation holds,
then equation (2.6) becomes

A2−B2 = A2 +AB−BA−B2

This gives 0 = AB−BA, and AB = BA follows.
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In Section 2.2 we saw (in Theorem 2.2.1) that every system of linear equations has the form

Ax = b

where A is the coefficient matrix, x is the column of variables, and b is the constant matrix. Thus the
system of linear equations becomes a single matrix equation. Matrix multiplication can yield information
about such a system.

Example 2.3.11

Consider a system Ax = b of linear equations where A is an m×n matrix. Assume that a matrix C

exists such that CA = In. If the system Ax = b has a solution, show that this solution must be Cb.
Give a condition guaranteeing that Cb is in fact a solution.

Solution. Suppose that x is any solution to the system, so that Ax = b. Multiply both sides of this
matrix equation by C to obtain, successively,

C(Ax) =Cb, (CA)x =Cb, Inx =Cb, x =Cb

This shows that if the system has a solution x, then that solution must be x =Cb, as required. But
it does not guarantee that the system has a solution. However, if we write x1 =Cb, then

Ax1 = A(Cb) = (AC)b

Thus x1 =Cb will be a solution if the condition AC = Im is satisfied.

The ideas in Example 2.3.11 lead to important information about matrices; this will be pursued in the
next section.

Block Multiplication

Definition 2.10 Block Partition of a Matrix

It is often useful to consider matrices whose entries are themselves matrices (called blocks). A
matrix viewed in this way is said to be partitioned into blocks.

For example, writing a matrix B in the form

B =
[

b1 b2 · · · bk

]
where the b j are the columns of B

is such a block partition of B. Here is another example.

Consider the matrices

A =




1 0 0 0 0
0 1 0 0 0
2 −1 4 2 1
3 1 −1 7 5


=

[
I2 023

P Q

]
and B =




4 −2
5 6
7 3
−1 0

1 6



=

[
X

Y

]
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where the blocks have been labelled as indicated. This is a natural way to partition A into blocks in view of
the blocks I2 and 023 that occur. This notation is particularly useful when we are multiplying the matrices
A and B because the product AB can be computed in block form as follows:

AB =

[
I 0
P Q

][
X

Y

]
=

[
IX +0Y

PX +QY

]
=

[
X

PX +QY

]
=




4 −2
5 6

30 8
8 27




This is easily checked to be the product AB, computed in the conventional manner.

In other words, we can compute the product AB by ordinary matrix multiplication, using blocks as

entries. The only requirement is that the blocks be compatible. That is, the sizes of the blocks must be

such that all (matrix) products of blocks that occur make sense. This means that the number of columns
in each block of A must equal the number of rows in the corresponding block of B.

Theorem 2.3.4: Block Multiplication

If matrices A and B are partitioned compatibly into blocks, the product AB can be computed by
matrix multiplication using blocks as entries.

We omit the proof.

We have been using two cases of block multiplication. If B =
[

b1 b2 · · · bk

]
is a matrix where

the b j are the columns of B, and if the matrix product AB is defined, then we have

AB = A
[

b1 b2 · · · bk

]
=
[

Ab1 Ab2 · · · Abk

]

This is Definition 2.9 and is a block multiplication where A = [A] has only one block. As another illustra-
tion,

Bx =
[

b1 b2 · · · bk

]




x1

x2
...

xk


= x1b1 + x2b2 + · · ·+ xkbk

where x is any k×1 column matrix (this is Definition 2.5).

It is not our intention to pursue block multiplication in detail here. However, we give one more example
because it will be used below.

Theorem 2.3.5

Suppose matrices A =

[
B X

0 C

]
and A1 =

[
B1 X1

0 C1

]
are partitioned as shown where B and B1

are square matrices of the same size, and C and C1 are also square of the same size. These are
compatible partitionings and block multiplication gives

AA1 =

[
B X

0 C

][
B1 X1

0 C1

]
=

[
BB1 BX1+XC1

0 CC1

]
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Example 2.3.12

Obtain a formula for Ak where A =

[
I X

0 0

]
is square and I is an identity matrix.

Solution. We have A2 =

[
I X

0 0

][
I X

0 0

]
=

[
I2 IX +X0
0 02

]
=

[
I X

0 0

]
= A. Hence

A3 = AA2 = AA = A2 = A. Continuing in this way, we see that Ak = A for every k ≥ 1.

Block multiplication has theoretical uses as we shall see. However, it is also useful in computing
products of matrices in a computer with limited memory capacity. The matrices are partitioned into blocks
in such a way that each product of blocks can be handled. Then the blocks are stored in auxiliary memory
and their products are computed one by one.

Directed Graphs

The study of directed graphs illustrates how matrix multiplication arises in ways other than the study of
linear equations or matrix transformations.

A directed graph consists of a set of points (called vertices) connected by arrows (called edges). For
example, the vertices could represent cities and the edges available flights. If the graph has n vertices
v1, v2, . . . , vn, the adjacency matrix A =

[
ai j

]
is the n×n matrix whose (i, j)-entry ai j is 1 if there is an

edge from v j to vi (note the order), and zero otherwise. For example, the adjacency matrix of the directed

graph shown is A =




1 1 0
1 0 1
1 0 0


.

v1 v2

v3

A path of length r (or an r-path) from vertex j to vertex i is a sequence
of r edges leading from v j to vi. Thus v1→ v2→ v1→ v1→ v3 is a 4-path
from v1 to v3 in the given graph. The edges are just the paths of length 1,
so the (i, j)-entry ai j of the adjacency matrix A is the number of 1-paths
from v j to vi. This observation has an important extension:

Theorem 2.3.6

If A is the adjacency matrix of a directed graph with n vertices, then the (i, j)-entry of Ar is the
number of r-paths v j→ vi.

As an illustration, consider the adjacency matrix A in the graph shown. Then

A =




1 1 0
1 0 1
1 0 0


 , A2 =




2 1 1
2 1 0
1 1 0


 , and A3 =




4 2 1
3 2 1
2 1 1




Hence, since the (2, 1)-entry of A2 is 2, there are two 2-paths v1→ v2 (in fact they are v1→ v1→ v2 and
v1 → v3 → v2). Similarly, the (2, 3)-entry of A2 is zero, so there are no 2-paths v3 → v2, as the reader
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can verify. The fact that no entry of A3 is zero shows that it is possible to go from any vertex to any other
vertex in exactly three steps.

To see why Theorem 2.3.6 is true, observe that it asserts that

the (i, j)-entry of Ar equals the number of r-paths v j→ vi (2.7)

holds for each r ≥ 1. We proceed by induction on r (see Appendix C). The case r = 1 is the definition of
the adjacency matrix. So assume inductively that (2.7) is true for some r ≥ 1; we must prove that (2.7)
also holds for r+1. But every (r+1)-path v j→ vi is the result of an r-path v j→ vk for some k, followed
by a 1-path vk→ vi. Writing A =

[
ai j

]
and Ar =

[
bi j

]
, there are bk j paths of the former type (by induction)

and aik of the latter type, and so there are aikbk j such paths in all. Summing over k, this shows that there
are

ai1b1 j +ai2b2 j + · · ·+ainbn j (r+1)-paths v j→ vi

But this sum is the dot product of the ith row
[

ai1 ai2 · · · ain

]
of A with the jth column

[
b1 j b2 j · · · bn j

]T
of Ar. As such, it is the (i, j)-entry of the matrix product ArA = Ar+1. This shows that (2.7) holds for
r+1, as required.

Exercises for 2.3

Exercise 2.3.1 Compute the following matrix products.

[
1 3
0 −2

][
2 −1
0 1

]
a.

[
1 −1 2
2 0 4

]


2 3 1
1 9 7
−1 0 2


b.

[
5 0 −7
1 5 9

]


3
1
−1


c.

[
1 3 −3

]



3 0
−2 1

0 6


d.




1 0 0
0 1 0
0 0 1






3 −2
5 −7
9 7


e.

[
1 −1 3

]



2
1
−8


f.




2
1
−7


[ 1 −1 3

]
g.

[
3 1
5 2

][
2 −1
−5 3

]
h.

[
2 3 1
5 7 4

]


a 0 0
0 b 0
0 0 c


i.




a 0 0
0 b 0
0 0 c






a′ 0 0
0 b′ 0
0 0 c′


j.

Exercise 2.3.2 In each of the following cases, find all
possible products A2, AB, AC, and so on.

a. A =

[
1 2 3
−1 0 0

]
, B =

[
1 −2
1
2 3

]
,

C =



−1 0

2 5
0 5




b. A =

[
1 2 4
0 1 −1

]
, B =

[
−1 6

1 0

]
,

C =




2 0
−1 1

1 2






2.3. Matrix Multiplication 77

Exercise 2.3.3 Find a, b, a1, and b1 if:

a.

[
a b

a1 b1

][
3 −5
−1 2

]
=

[
1 −1
2 0

]

b.

[
2 1
−1 2

][
a b

a1 b1

]
=

[
7 2
−1 4

]

Exercise 2.3.4 Verify that A2−A−6I = 0 if:

[
3 −1
0 −2

]
a.

[
2 2
2 −1

]
b.

Exercise 2.3.5

Given A =

[
1 −1
0 1

]
, B =

[
1 0 −2
3 1 0

]
,

C =




1 0
2 1
5 8


, and D =

[
3 −1 2
1 0 5

]
, verify the

following facts from Theorem 2.3.1.

A(B−D) = AB−ADa. A(BC) = (AB)Cb.

(CD)T = DTCTc.

Exercise 2.3.6 Let A be a 2×2 matrix.

a. If A commutes with

[
0 1
0 0

]
, show that

A =

[
a b

0 a

]
for some a and b.

b. If A commutes with

[
0 0
1 0

]
, show that

A =

[
a 0
c a

]
for some a and c.

c. Show that A commutes with every 2×2 matrix

if and only if A =

[
a 0
0 a

]
for some a.

Exercise 2.3.7

a. If A2 can be formed, what can be said about the
size of A?

b. If AB and BA can both be formed, describe the
sizes of A and B.

c. If ABC can be formed, A is 3× 3, and C is 5× 5,
what size is B?

Exercise 2.3.8

a. Find two 2×2 matrices A such that A2 = 0.

b. Find three 2× 2 matrices A such that (i) A2 = I;
(ii) A2 = A.

c. Find 2×2 matrices A and B such that AB = 0 but
BA 6= 0.

Exercise 2.3.9 Write P =




1 0 0
0 0 1
0 1 0


, and let A be

3×n and B be m×3.

a. Describe PA in terms of the rows of A.

b. Describe BP in terms of the columns of B.

Exercise 2.3.10 Let A, B, and C be as in Exercise 2.3.5.
Find the (3, 1)-entry of CAB using exactly six numerical
multiplications.

Exercise 2.3.11 Compute AB, using the indicated block
partitioning.

A =




2 −1 3 1
1 0 1 2
0 0 1 0
0 0 0 1


 B =




1 2 0
−1 0 0

0 5 1
1 −1 0




Exercise 2.3.12 In each case give formulas for all pow-
ers A, A2, A3, . . . of A using the block decomposition
indicated.

a. A =




1 0 0
1 1 −1
1 −1 1




b. A =




1 −1 2 −1
0 1 0 0
0 0 −1 1
0 0 0 1




Exercise 2.3.13 Compute the following using block
multiplication (all blocks are k× k).

[
I X

−Y I

][
I 0

Y I

]
a.

[
I X

0 I

][
I −X

0 I

]
b.

[
I X

][
I X

]T
c.

[
I XT

][
−X I

]T
d.

[
I X

0 −I

]n

any n≥ 1e.

[
0 X

I 0

]n

any n≥ 1f.
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Exercise 2.3.14 Let A denote an m×n matrix.

a. If AX = 0 for every n× 1 matrix X , show that
A = 0.

b. If YA = 0 for every 1×m matrix Y , show that
A = 0.

Exercise 2.3.15

a. If U =

[
1 2
0 −1

]
, and AU = 0, show that A = 0.

b. Let U be such that AU = 0 implies that A = 0. If
PU = QU , show that P = Q.

Exercise 2.3.16 Simplify the following expressions
where A, B, and C represent matrices.

a. A(3B−C)+ (A−2B)C+2B(C+2A)

b. A(B+C−D)+B(C−A+D)− (A+B)C
+(A−B)D

c. AB(BC−CB)+ (CA−AB)BC+CA(A−B)C

d. (A−B)(C−A)+ (C−B)(A−C)+ (C−A)2

Exercise 2.3.17 If A =

[
a b

c d

]
where a 6= 0, show

that A factors in the form A =

[
1 0
x 1

][
y z

0 w

]
.

Exercise 2.3.18 If A and B commute with C, show that
the same is true of:

A+Ba. kA, k any scalarb.

Exercise 2.3.19 If A is any matrix, show that both AAT

and AT A are symmetric.

Exercise 2.3.20 If A and B are symmetric, show that AB

is symmetric if and only if AB = BA.

Exercise 2.3.21 If A is a 2×2 matrix, show that
AT A = AAT if and only if A is symmetric or

A =

[
a b

−b a

]
for some a and b.

Exercise 2.3.22

a. Find all symmetric 2× 2 matrices A such that
A2 = 0.

b. Repeat (a) if A is 3×3.

c. Repeat (a) if A is n×n.

Exercise 2.3.23 Show that there exist no 2× 2 matri-
ces A and B such that AB−BA = I. [Hint: Examine the
(1, 1)- and (2, 2)-entries.]

Exercise 2.3.24 Let B be an n× n matrix. Suppose
AB = 0 for some nonzero m× n matrix A. Show that
no n×n matrix C exists such that BC = I.

Exercise 2.3.25 An autoparts manufacturer makes fend-
ers, doors, and hoods. Each requires assembly and pack-
aging carried out at factories: Plant 1, Plant 2, and Plant
3. Matrix A below gives the number of hours for assem-
bly and packaging, and matrix B gives the hourly rates at
the three plants. Explain the meaning of the (3, 2)-entry
in the matrix AB. Which plant is the most economical to
operate? Give reasons.

Assembly Packaging
Fenders
Doors
Hoods




12 2
21 3
10 2


 = A

Plant 1 Plant 2 Plant 3
Assembly
Packaging

[
21 18 20
14 10 13

]
= B

Exercise 2.3.26 For the directed graph below, find the
adjacency matrix A, compute A3, and determine the num-
ber of paths of length 3 from v1 to v4 and from v2 to v3.

v1 v2

v3v4

Exercise 2.3.27 In each case either show the statement
is true, or give an example showing that it is false.

a. If A2 = I, then A = I.

b. If AJ = A, then J = I.

c. If A is square, then (AT )3 = (A3)T .

d. If A is symmetric, then I+A is symmetric.

e. If AB = AC and A 6= 0, then B =C.
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f. If A 6= 0, then A2 6= 0.

g. If A has a row of zeros, so also does BA for all B.

h. If A commutes with A+B, then A commutes with
B.

i. If B has a column of zeros, so also does AB.

j. If AB has a column of zeros, so also does B.

k. If A has a row of zeros, so also does AB.

l. If AB has a row of zeros, so also does A.

Exercise 2.3.28

a. If A and B are 2× 2 matrices whose rows sum to
1, show that the rows of AB also sum to 1.

b. Repeat part (a) for the case where A and B are
n×n.

Exercise 2.3.29 Let A and B be n×n matrices for which
the systems of equations Ax = 0 and Bx = 0 each have
only the trivial solution x = 0. Show that the system
(AB)x = 0 has only the trivial solution.

Exercise 2.3.30 The trace of a square matrix A, denoted
tr A, is the sum of the elements on the main diagonal of
A. Show that, if A and B are n×n matrices:

tr (A+B) = tr A+ tr B.a.

tr (kA) = k tr (A) for any number k.b.

tr (AT ) = tr (A).c. tr (AB) = tr (BA).d.

tr (AAT ) is the sum of the squares of all entries of
A.

e.

Exercise 2.3.31 Show that AB−BA = I is impossible.

[Hint: See the preceding exercise.]

Exercise 2.3.32 A square matrix P is called an
idempotent if P2 = P. Show that:

a. 0 and I are idempotents.

b.

[
1 1
0 0

]
,

[
1 0
1 0

]
, and 1

2

[
1 1
1 1

]
, are idem-

potents.

c. If P is an idempotent, so is I−P. Show further
that P(I−P) = 0.

d. If P is an idempotent, so is PT .

e. If P is an idempotent, so is Q = P+AP−PAP for
any square matrix A (of the same size as P).

f. If A is n×m and B is m× n, and if AB = In, then
BA is an idempotent.

Exercise 2.3.33 Let A and B be n×n diagonal matrices

(all entries off the main diagonal are zero).

a. Show that AB is diagonal and AB = BA.

b. Formulate a rule for calculating XA if X is m×n.

c. Formulate a rule for calculating AY if Y is n× k.

Exercise 2.3.34 If A and B are n×n matrices, show that:

a. AB = BA if and only if

(A+B)2 = A2 +2AB+B2

b. AB = BA if and only if

(A+B)(A−B) = (A−B)(A+B)

Exercise 2.3.35 In Theorem 2.3.3, prove

part 3;a. part 5.b.
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2.4 Matrix Inverses

Three basic operations on matrices, addition, multiplication, and subtraction, are analogs for matrices of
the same operations for numbers. In this section we introduce the matrix analog of numerical division.

To begin, consider how a numerical equation ax = b is solved when a and b are known numbers. If
a = 0, there is no solution (unless b = 0). But if a 6= 0, we can multiply both sides by the inverse a−1 = 1

a

to obtain the solution x = a−1b. Of course multiplying by a−1 is just dividing by a, and the property of
a−1 that makes this work is that a−1a = 1. Moreover, we saw in Section 2.2 that the role that 1 plays in
arithmetic is played in matrix algebra by the identity matrix I. This suggests the following definition.

Definition 2.11 Matrix Inverses

If A is a square matrix, a matrix B is called an inverse of A if and only if

AB = I and BA = I

A matrix A that has an inverse is called an invertible matrix.8

Example 2.4.1

Show that B =

[
−1 1

1 0

]
is an inverse of A =

[
0 1
1 1

]
.

Solution. Compute AB and BA.

AB =

[
0 1
1 1

][
−1 1

1 0

]
=

[
1 0
0 1

]
BA =

[
−1 1

1 0

][
0 1
1 1

]
=

[
1 0
0 1

]

Hence AB = I = BA, so B is indeed an inverse of A.

Example 2.4.2

Show that A =

[
0 0
1 3

]
has no inverse.

Solution. Let B =

[
a b

c d

]
denote an arbitrary 2×2 matrix. Then

AB =

[
0 0
1 3

][
a b

c d

]
=

[
0 0

a+3c b+3d

]

so AB has a row of zeros. Hence AB cannot equal I for any B.

8Only square matrices have inverses. Even though it is plausible that nonsquare matrices A and B could exist such that
AB = Im and BA = In, where A is m×n and B is n×m, we claim that this forces n = m. Indeed, if m < n there exists a nonzero
column x such that Ax = 0 (by Theorem 1.3.1), so x = Inx = (BA)x = B(Ax) = B(0) = 0, a contradiction. Hence m ≥ n.
Similarly, the condition AB = Im implies that n≥ m. Hence m = n so A is square.
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The argument in Example 2.4.2 shows that no zero matrix has an inverse. But Example 2.4.2 also
shows that, unlike arithmetic, it is possible for a nonzero matrix to have no inverse. However, if a matrix
does have an inverse, it has only one.

Theorem 2.4.1

If B and C are both inverses of A, then B =C.

Proof. Since B and C are both inverses of A, we have CA = I = AB. Hence

B = IB = (CA)B =C(AB) =CI =C

If A is an invertible matrix, the (unique) inverse of A is denoted A−1. Hence A−1 (when it exists) is a
square matrix of the same size as A with the property that

AA−1 = I and A−1A = I

These equations characterize A−1 in the following sense:

Inverse Criterion: If somehow a matrix B can be found such that AB = I and BA = I, then A

is invertible and B is the inverse of A; in symbols, B = A−1.

This is a way to verify that the inverse of a matrix exists. Example 2.4.3 and Example 2.4.4 offer illustra-
tions.

Example 2.4.3

If A =

[
0 −1
1 −1

]
, show that A3 = I and so find A−1.

Solution. We have A2 =

[
0 −1
1 −1

][
0 −1
1 −1

]
=

[
−1 1
−1 0

]
, and so

A3 = A2A =

[
−1 1
−1 0

][
0 −1
1 −1

]
=

[
1 0
0 1

]
= I

Hence A3 = I, as asserted. This can be written as A2A = I = AA2, so it shows that A2 is the inverse

of A. That is, A−1 = A2 =

[
−1 1
−1 0

]
.

The next example presents a useful formula for the inverse of a 2× 2 matrix A =

[
a b

c d

]
when it

exists. To state it, we define the determinant det A and the adjugate adj A of the matrix A as follows:

det

[
a b

c d

]
= ad−bc, and adj

[
a b

c d

]
=

[
d −b

−c a

]
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Example 2.4.4

If A =

[
a b

c d

]
, show that A has an inverse if and only if det A 6= 0, and in this case

A−1 = 1
det A

adj A

Solution. For convenience, write e = det A = ad−bc and B = adj A =

[
d −b

−c a

]
. Then

AB = eI = BA as the reader can verify. So if e 6= 0, scalar multiplication by 1
e

gives

A(1
e
B) = I = (1

e
B)A

Hence A is invertible and A−1 = 1
e
B. Thus it remains only to show that if A−1 exists, then e 6= 0.

We prove this by showing that assuming e = 0 leads to a contradiction. In fact, if e = 0, then
AB = eI = 0, so left multiplication by A−1 gives A−1AB = A−10; that is, IB = 0, so B = 0. But this
implies that a, b, c, and d are all zero, so A = 0, contrary to the assumption that A−1 exists.

As an illustration, if A =

[
2 4
−3 8

]
then det A = 2 · 8− 4 · (−3) = 28 6= 0. Hence A is invertible and

A−1 = 1
det A

adj A = 1
28

[
8 −4
3 2

]
, as the reader is invited to verify.

The determinant and adjugate will be defined in Chapter 3 for any square matrix, and the conclusions
in Example 2.4.4 will be proved in full generality.

Inverses and Linear Systems

Matrix inverses can be used to solve certain systems of linear equations. Recall that a system of linear
equations can be written as a single matrix equation

Ax = b

where A and b are known and x is to be determined. If A is invertible, we multiply each side of the equation
on the left by A−1 to get

A−1Ax = A−1b

Ix = A−1b

x = A−1b

This gives the solution to the system of equations (the reader should verify that x = A−1b really does
satisfy Ax = b). Furthermore, the argument shows that if x is any solution, then necessarily x = A−1b, so
the solution is unique. Of course the technique works only when the coefficient matrix A has an inverse.
This proves Theorem 2.4.2.
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Theorem 2.4.2

Suppose a system of n equations in n variables is written in matrix form as

Ax = b

If the n×n coefficient matrix A is invertible, the system has the unique solution

x = A−1b

Example 2.4.5

Use Example 2.4.4 to solve the system

{
5x1− 3x2 =−4
7x1 + 4x2 = 8

.

Solution. In matrix form this is Ax = b where A =

[
5 −3
7 4

]
, x =

[
x1

x2

]
, and b =

[
−4

8

]
. Then

det A = 5 ·4− (−3) ·7 = 41, so A is invertible and A−1 = 1
41

[
4 3
−7 5

]
by Example 2.4.4. Thus

Theorem 2.4.2 gives

x = A−1b = 1
41

[
4 3
−7 5

][
−4

8

]
= 1

41

[
8

68

]

so the solution is x1 =
8

41 and x2 =
68
41 .

An Inversion Method

If a matrix A is n× n and invertible, it is desirable to have an efficient technique for finding the inverse.
The following procedure will be justified in Section 2.5.

Matrix Inversion Algorithm

If A is an invertible (square) matrix, there exists a sequence of elementary row operations that carry
A to the identity matrix I of the same size, written A→ I. This same series of row operations
carries I to A−1; that is, I→ A−1. The algorithm can be summarized as follows:

[
A I

]
→
[

I A−1
]

where the row operations on A and I are carried out simultaneously.
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Example 2.4.6

Use the inversion algorithm to find the inverse of the matrix

A =




2 7 1
1 4 −1
1 3 0




Solution. Apply elementary row operations to the double matrix

[
A I

]
=




2 7 1 1 0 0
1 4 −1 0 1 0
1 3 0 0 0 1




so as to carry A to I. First interchange rows 1 and 2.



1 4 −1 0 1 0
2 7 1 1 0 0
1 3 0 0 0 1




Next subtract 2 times row 1 from row 2, and subtract row 1 from row 3.



1 4 −1 0 1 0
0 −1 3 1 −2 0
0 −1 1 0 −1 1




Continue to reduced row-echelon form.



1 0 11 4 −7 0
0 1 −3 −1 2 0
0 0 −2 −1 1 1







1 0 0 −3
2

−3
2

11
2

0 1 0 1
2

1
2
−3
2

0 0 1 1
2
−1
2

−1
2




Hence A−1 = 1
2



−3 −3 11

1 1 −3
1 −1 −1


, as is readily verified.

Given any n×n matrix A, Theorem 1.2.1 shows that A can be carried by elementary row operations to
a matrix R in reduced row-echelon form. If R = I, the matrix A is invertible (this will be proved in the next
section), so the algorithm produces A−1. If R 6= I, then R has a row of zeros (it is square), so no system of
linear equations Ax = b can have a unique solution. But then A is not invertible by Theorem 2.4.2. Hence,
the algorithm is effective in the sense conveyed in Theorem 2.4.3.
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Theorem 2.4.3

If A is an n×n matrix, either A can be reduced to I by elementary row operations or it cannot. In
the first case, the algorithm produces A−1; in the second case, A−1 does not exist.

Properties of Inverses

The following properties of an invertible matrix are used everywhere.

Example 2.4.7: Cancellation Laws

Let A be an invertible matrix. Show that:

1. If AB = AC, then B =C.

2. If BA =CA, then B =C.

Solution. Given the equation AB = AC, left multiply both sides by A−1 to obtain A−1AB = A−1AC.
Thus IB = IC, that is B =C. This proves (1) and the proof of (2) is left to the reader.

Properties (1) and (2) in Example 2.4.7 are described by saying that an invertible matrix can be “left
cancelled” and “right cancelled”, respectively. Note however that “mixed” cancellation does not hold in
general: If A is invertible and AB =CA, then B and C may not be equal, even if both are 2×2. Here is a
specific example:

A =

[
1 1
0 1

]
, B =

[
0 0
1 2

]
, C =

[
1 1
1 1

]

Sometimes the inverse of a matrix is given by a formula. Example 2.4.4 is one illustration; Example 2.4.8
and Example 2.4.9 provide two more. The idea is the Inverse Criterion: If a matrix B can be found such
that AB = I = BA, then A is invertible and A−1 = B.

Example 2.4.8

If A is an invertible matrix, show that the transpose AT is also invertible. Show further that the
inverse of AT is just the transpose of A−1; in symbols, (AT )−1 = (A−1)T .

Solution. A−1 exists (by assumption). Its transpose (A−1)T is the candidate proposed for the
inverse of AT . Using the inverse criterion, we test it as follows:

AT (A−1)T =(A−1A)T = IT = I

(A−1)T AT =(AA−1)T = IT = I

Hence (A−1)T is indeed the inverse of AT ; that is, (AT )−1 = (A−1)T .
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Example 2.4.9

If A and B are invertible n×n matrices, show that their product AB is also invertible and
(AB)−1 = B−1A−1.

Solution. We are given a candidate for the inverse of AB, namely B−1A−1. We test it as follows:

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

Hence B−1A−1 is the inverse of AB; in symbols, (AB)−1 = B−1A−1.

We now collect several basic properties of matrix inverses for reference.

Theorem 2.4.4

All the following matrices are square matrices of the same size.

1. I is invertible and I−1 = I.

2. If A is invertible, so is A−1, and (A−1)−1 = A.

3. If A and B are invertible, so is AB, and (AB)−1 = B−1A−1.

4. If A1, A2, . . . , Ak are all invertible, so is their product A1A2 · · ·Ak, and

(A1A2 · · ·Ak)
−1 = A−1

k · · ·A−1
2 A−1

1 .

5. If A is invertible, so is Ak for any k ≥ 1, and (Ak)−1 = (A−1)k.

6. If A is invertible and a 6= 0 is a number, then aA is invertible and (aA)−1 = 1
a
A−1.

7. If A is invertible, so is its transpose AT , and (AT )−1 = (A−1)T .

Proof.

1. This is an immediate consequence of the fact that I2 = I.

2. The equations AA−1 = I = A−1A show that A is the inverse of A−1; in symbols, (A−1)−1 = A.

3. This is Example 2.4.9.

4. Use induction on k. If k = 1, there is nothing to prove, and if k = 2, the result is property 3. If
k > 2, assume inductively that (A1A2 · · ·Ak−1)

−1 = A−1
k−1 · · ·A−1

2 A−1
1 . We apply this fact together

with property 3 as follows:

[A1A2 · · ·Ak−1Ak]
−1 = [(A1A2 · · ·Ak−1)Ak]

−1

= A−1
k (A1A2 · · ·Ak−1)

−1

= A−1
k

(
A−1

k−1 · · ·A−1
2 A−1

1

)
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So the proof by induction is complete.

5. This is property 4 with A1 = A2 = · · ·= Ak = A.

6. This is left as Exercise 2.4.29.

7. This is Example 2.4.8.

The reversal of the order of the inverses in properties 3 and 4 of Theorem 2.4.4 is a consequence of
the fact that matrix multiplication is not commutative. Another manifestation of this comes when matrix
equations are dealt with. If a matrix equation B =C is given, it can be left-multiplied by a matrix A to yield
AB = AC. Similarly, right-multiplication gives BA =CA. However, we cannot mix the two: If B = C, it

need not be the case that AB =CA even if A is invertible, for example, A =

[
1 1
0 1

]
, B =

[
0 0
1 0

]
=C.

Part 7 of Theorem 2.4.4 together with the fact that (AT )T = A gives

Corollary 2.4.1

A square matrix A is invertible if and only if AT is invertible.

Example 2.4.10

Find A if (AT −2I)−1 =

[
2 1
−1 0

]
.

Solution. By Theorem 2.4.4(2) and Example 2.4.4, we have

(AT −2I) =
[(

AT −2I
)−1
]−1

=

[
2 1
−1 0

]−1

=

[
0 −1
1 2

]

Hence AT = 2I +

[
0 −1
1 2

]
=

[
2 −1
1 4

]
, so A =

[
2 1
−1 4

]
by Theorem 2.4.4(7).

The following important theorem collects a number of conditions all equivalent9 to invertibility. It will
be referred to frequently below.

Theorem 2.4.5: Inverse Theorem

The following conditions are equivalent for an n×n matrix A:

1. A is invertible.

2. The homogeneous system Ax = 0 has only the trivial solution x = 0.

3. A can be carried to the identity matrix In by elementary row operations.

9If p and q are statements, we say that p implies q (written p⇒ q) if q is true whenever p is true. The statements are called
equivalent if both p⇒ q and q⇒ p (written p⇔ q, spoken “p if and only if q”). See Appendix B.
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4. The system Ax = b has at least one solution x for every choice of column b.

5. There exists an n×n matrix C such that AC = In.

Proof. We show that each of these conditions implies the next, and that (5) implies (1).

(1)⇒ (2). If A−1 exists, then Ax = 0 gives x = Inx = A−1Ax = A−10 = 0.

(2) ⇒ (3). Assume that (2) is true. Certainly A→ R by row operations where R is a reduced, row-
echelon matrix. It suffices to show that R = In. Suppose that this is not the case. Then R has a row
of zeros (being square). Now consider the augmented matrix

[
A 0

]
of the system Ax = 0. Then[

A 0
]
→
[

R 0
]

is the reduced form, and
[

R 0
]

also has a row of zeros. Since R is square there
must be at least one nonleading variable, and hence at least one parameter. Hence the system Ax = 0 has
infinitely many solutions, contrary to (2). So R = In after all.

(3)⇒ (4). Consider the augmented matrix
[

A b
]

of the system Ax = b. Using (3), let A→ In by a
sequence of row operations. Then these same operations carry

[
A b

]
→
[

In c
]

for some column c.
Hence the system Ax = b has a solution (in fact unique) by gaussian elimination. This proves (4).

(4)⇒ (5). Write In =
[

e1 e2 · · · en

]
where e1, e2, . . . , en are the columns of In. For each

j = 1, 2, . . . , n, the system Ax = e j has a solution c j by (4), so Ac j = e j. Now let C =
[

c1 c2 · · · cn

]

be the n×n matrix with these matrices c j as its columns. Then Definition 2.9 gives (5):

AC = A
[

c1 c2 · · · cn

]
=
[

Ac1 Ac2 · · · Acn

]
=
[

e1 e2 · · · en

]
= In

(5)⇒ (1). Assume that (5) is true so that AC = In for some matrix C. Then Cx = 0 implies x = 0 (because
x = Inx = ACx = A0 = 0). Thus condition (2) holds for the matrix C rather than A. Hence the argument
above that (2)⇒ (3)⇒ (4)⇒ (5) (with A replaced by C) shows that a matrix C′ exists such that CC′ = In.
But then

A = AIn = A(CC′) = (AC)C′ = InC′ =C′

Thus CA =CC′ = In which, together with AC = In, shows that C is the inverse of A. This proves (1).

The proof of (5) ⇒ (1) in Theorem 2.4.5 shows that if AC = I for square matrices, then necessarily
CA = I, and hence that C and A are inverses of each other. We record this important fact for reference.

Corollary 2.4.1

If A and C are square matrices such that AC = I, then also CA = I. In particular, both A and C are
invertible, C = A−1, and A =C−1.

Here is a quick way to remember Corollary 2.4.1. If A is a square matrix, then

1. If AC = I then C = A−1.

2. If CA = I then C = A−1.

Observe that Corollary 2.4.1 is false if A and C are not square matrices. For example, we have

[
1 2 1
1 1 1

]

−1 1

1 −1
0 1


= I2 but



−1 1

1 −1
0 1



[

1 2 1
1 1 1

]
6= I3
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In fact, it is verified in the footnote on page 80 that if AB = Im and BA = In, where A is m× n and B is
n×m, then m = n and A and B are (square) inverses of each other.

An n×n matrix A has rank n if and only if (3) of Theorem 2.4.5 holds. Hence

Corollary 2.4.2

An n×n matrix A is invertible if and only if rank A = n.

Here is a useful fact about inverses of block matrices.

Example 2.4.11

Let P =

[
A X

0 B

]
and Q =

[
A 0
Y B

]
be block matrices where A is m×m and B is n×n (possibly

m 6= n).

a. Show that P is invertible if and only if A and B are both invertible. In this case, show that

P−1 =

[
A−1 −A−1XB−1

0 B−1

]

b. Show that Q is invertible if and only if A and B are both invertible. In this case, show that

Q−1 =

[
A−1 0

−B−1YA−1 B−1

]

Solution. We do (a.) and leave (b.) for the reader.

a. If A−1 and B−1 both exist, write R =

[
A−1 −A−1XB−1

0 B−1

]
. Using block multiplication, one

verifies that PR = Im+n = RP, so P is invertible, and P−1 = R. Conversely, suppose that P is

invertible, and write P−1 =

[
C V

W D

]
in block form, where C is m×m and D is n×n.

Then the equation PP−1 = In+m becomes
[

A X

0 B

][
C V

W D

]
=

[
AC+XW AV +XD

BW BD

]
= Im+n =

[
Im 0
0 In

]

using block notation. Equating corresponding blocks, we find

AC+XW = Im, BW = 0, and BD = In

Hence B is invertible because BD = In (by Corollary 2.4.1), then W = 0 because BW = 0,
and finally, AC = Im (so A is invertible, again by Corollary 2.4.1).

www.dbooks.org

https://www.dbooks.org/


90 Matrix Algebra

Inverses of Matrix Transformations

Let T = TA : Rn→ Rn denote the matrix transformation induced by the n×n matrix A. Since A is square,
it may very well be invertible, and this leads to the question:

What does it mean geometrically for T that A is invertible?

To answer this, let T ′ = TA−1 : Rn→ Rn denote the transformation induced by A−1. Then

T ′ [T (x)] = A−1 [Ax] = Ix = x

for all x in Rn

T [T ′(x)] = A
[
A−1x

]
= Ix = x

(2.8)

The first of these equations asserts that, if T carries x to a vector T (x), then T ′ carries T (x) right back to
x; that is T ′ “reverses” the action of T . Similarly T “reverses” the action of T ′. Conditions (2.8) can be
stated compactly in terms of composition:

T ′ ◦T = 1Rn and T ◦T ′ = 1Rn (2.9)

When these conditions hold, we say that the matrix transformation T ′ is an inverse of T , and we have
shown that if the matrix A of T is invertible, then T has an inverse (induced by A−1).

The converse is also true: If T has an inverse, then its matrix A must be invertible. Indeed, suppose
S : Rn→Rn is any inverse of T , so that S◦T = 1Rn

and T ◦S = 1Rn
. It can be shown that S is also a matrix

transformation. If B is the matrix of S, we have

BAx = S [T (x)] = (S ◦T )(x) = 1Rn(x) = x = Inx for all x in Rn

It follows by Theorem 2.2.6 that BA = In, and a similar argument shows that AB = In. Hence A is invertible
with A−1 = B. Furthermore, the inverse transformation S has matrix A−1, so S = T ′ using the earlier
notation. This proves the following important theorem.

Theorem 2.4.6

Let T : Rn→ Rn denote the matrix transformation induced by an n×n matrix A. Then

A is invertible if and only if T has an inverse.

In this case, T has exactly one inverse (which we denote as T−1), and T−1 : Rn→ Rn is the
transformation induced by the matrix A−1. In other words

(TA)
−1 = TA−1

The geometrical relationship between T and T−1 is embodied in equations (2.8) above:

T−1 [T (x)] = x and T
[
T−1(x)

]
= x for all x in Rn

These equations are called the fundamental identities relating T and T−1. Loosely speaking, they assert
that each of T and T−1 “reverses” or “undoes” the action of the other.

This geometric view of the inverse of a linear transformation provides a new way to find the inverse of
a matrix A. More precisely, if A is an invertible matrix, we proceed as follows:
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1. Let T be the linear transformation induced by A.

2. Obtain the linear transformation T−1 which “reverses” the action of T .

3. Then A−1 is the matrix of T−1.

Here is an example.

Example 2.4.12

0

y = x

Q1

[
x

y

]
=

[
y

x

]

[
x

y

]

x

y

Find the inverse of A =

[
0 1
1 0

]
by viewing it as a linear

transformation R2→ R2.

Solution. If x =

[
x

y

]
the vector Ax =

[
0 1
1 0

][
x

y

]
=

[
y

x

]

is the result of reflecting x in the line y = x (see the diagram).
Hence, if Q1 : R2→ R2 denotes reflection in the line y = x, then
A is the matrix of Q1. Now observe that Q1 reverses itself because
reflecting a vector x twice results in x. Consequently Q−1

1 = Q1.
Since A−1 is the matrix of Q−1

1 and A is the matrix of Q, it follows that A−1 = A. Of course this
conclusion is clear by simply observing directly that A2 = I, but the geometric method can often
work where these other methods may be less straightforward.

Exercises for 2.4

Exercise 2.4.1 In each case, show that the matrices are
inverses of each other.

a.

[
3 5
1 2

]
,

[
2 −5
−1 3

]

b.

[
3 0
1 −4

]
, 1

2

[
4 0
1 −3

]

c.




1 2 0
0 2 3
1 3 1


,




7 2 −6
−3 −1 3

2 1 −2




d.

[
3 0
0 5

]
,

[ 1
3 0
0 1

5

]

Exercise 2.4.2 Find the inverse of each of the following
matrices.

[
1 −1
−1 3

]
a.

[
4 1
3 2

]
b.




1 0 −1
3 2 0
−1 −1 0


c.




1 −1 2
−5 7 −11
−2 3 −5


d.




3 5 0
3 7 1
1 2 1


e.




3 1 −1
2 1 0
1 5 −1


f.




2 4 1
3 3 2
4 1 4


g.




3 1 −1
5 2 0
1 1 −1


h.




3 1 2
1 −1 3
1 2 4


i.




−1 4 5 2
0 0 0 −1
1 −2 −2 0
0 −1 −1 0


j.
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1 0 7 5
0 1 3 6
1 −1 5 2
1 −1 5 1


k.




1 2 0 0 0
0 1 3 0 0
0 0 1 5 0
0 0 0 1 7
0 0 0 0 1




l.

Exercise 2.4.3 In each case, solve the systems of equa-
tions by finding the inverse of the coefficient matrix.

3x− y= 5
2x + 2y= 1

a. 2x− 3y= 0
x− 4y= 1

b.

x + y+ 2z= 5
x + y+ z= 0
x + 2y+ 4z=−2

c. x + 4y+ 2z = 1
2x + 3y+ 3z =−1
4x + y+ 4z = 0

d.

Exercise 2.4.4 Given A−1 =




1 −1 3
2 0 5
−1 1 0


:

a. Solve the system of equations Ax =




1
−1

3


.

b. Find a matrix B such that

AB =




1 −1 2
0 1 1
1 0 0


.

c. Find a matrix C such that

CA =

[
1 2 −1
3 1 1

]
.

Exercise 2.4.5 Find A when

(3A)−1 =

[
1 −1
0 1

]
a. (2A)T =

[
1 −1
2 3

]−1

b.

(I +3A)−1 =

[
2 0
1 −1

]
c.

(I−2AT )−1 =

[
2 1
1 1

]
d.

(
A

[
1 −1
0 1

])−1

=

[
2 3
1 1

]
e.

([
1 0
2 1

]
A

)−1

=

[
1 0
2 2

]
f.

(
AT −2I

)−1
= 2

[
1 1
2 3

]
g.

(
A−1−2I

)T
=−2

[
1 1
1 0

]
h.

Exercise 2.4.6 Find A when:

A−1 =




1 −1 3
2 1 1
0 2 −2


a. A−1 =




0 1 −1
1 2 1
1 0 1


b.

Exercise 2.4.7 Given




x1

x2

x3


=




3 −1 2
1 0 4
2 1 0






y1

y2

y3




and




z1

z2

z3


 =




1 −1 1
2 −3 0
−1 1 −2






y1

y2

y3


, express the

variables x1, x2, and x3 in terms of z1, z2, and z3.

Exercise 2.4.8

a. In the system
3x+ 4y= 7
4x+ 5y= 1

, substitute the new vari-

ables x′ and y′ given by
x=−5x′ + 4y′

y= 4x′ − 3y′
. Then find

x and y.

b. Explain part (a) by writing the equations as

A

[
x

y

]
=

[
7
1

]
and

[
x

y

]
= B

[
x′

y′

]
. What is

the relationship between A and B?

Exercise 2.4.9 In each case either prove the assertion or
give an example showing that it is false.

a. If A 6= 0 is a square matrix, then A is invertible.

b. If A and B are both invertible, then A+B is invert-
ible.

c. If A and B are both invertible, then (A−1B)T is in-
vertible.

d. If A4 = 3I, then A is invertible.

e. If A2 = A and A 6= 0, then A is invertible.

f. If AB = B for some B 6= 0, then A is invertible.

g. If A is invertible and skew symmetric (AT = −A),
the same is true of A−1.

h. If A2 is invertible, then A is invertible.

i. If AB = I, then A and B commute.
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Exercise 2.4.10

a. If A, B, and C are square matrices and AB = I,
I =CA, show that A is invertible and B=C =A−1.

b. If C−1 = A, find the inverse of CT in terms of A.

Exercise 2.4.11 Suppose CA = Im, where C is m×n and
A is n×m. Consider the system Ax = b of n equations in
m variables.

a. Show that this system has a unique solution CB if
it is consistent.

b. If C =

[
0 −5 1
3 0 −1

]
and A =




2 −3
1 −2
6 −10


,

find x (if it exists) when

(i) b =




1
0
3


; and (ii) b =




7
4

22


.

Exercise 2.4.12 Verify that A =

[
1 −1
0 2

]
satisfies

A2−3A+2I = 0, and use this fact to show that
A−1 = 1

2(3I−A).

Exercise 2.4.13 Let Q=




a −b −c −d

b a −d c

c d a −b

d −c b a


. Com-

pute QQT and so find Q−1 if Q 6= 0.

Exercise 2.4.14 Let U =

[
0 1
1 0

]
. Show that each of

U ,−U , and −I2 is its own inverse and that the product of
any two of these is the third.

Exercise 2.4.15 Consider A =

[
1 1
−1 0

]
,

B =

[
0 −1
1 0

]
, C =




0 1 0
0 0 1
5 0 0


. Find the inverses

by computing (a) A6; (b) B4; and (c) C3.

Exercise 2.4.16 Find the inverse of




1 0 1
c 1 c

3 c 2


 in

terms of c.

Exercise 2.4.17 If c 6= 0, find the inverse of


1 −1 1
2 −1 2
0 2 c


 in terms of c.

Exercise 2.4.18 Show that A has no inverse when:

a. A has a row of zeros.

b. A has a column of zeros.

c. each row of A sums to 0.
[Hint: Theorem 2.4.5(2).]

d. each column of A sums to 0.

[Hint: Corollary 2.4.1, Theorem 2.4.4.]

Exercise 2.4.19 Let A denote a square matrix.

a. Let YA = 0 for some matrix Y 6= 0. Show that
A has no inverse. [Hint: Corollary 2.4.1, Theo-
rem 2.4.4.]

b. Use part (a) to show that (i)




1 −1 1
0 1 1
1 0 2


; and

(ii)




2 1 −1
1 1 0
1 0 −1


 have no inverse.

[Hint: For part (ii) compare row 3 with the differ-
ence between row 1 and row 2.]

Exercise 2.4.20 If A is invertible, show that

A2 6= 0.a. Ak 6= 0 for all
k = 1, 2, . . . .

b.

Exercise 2.4.21 Suppose AB = 0, where A and B are
square matrices. Show that:

a. If one of A and B has an inverse, the other is zero.

b. It is impossible for both A and B to have inverses.

c. (BA)2 = 0.

Exercise 2.4.22 Find the inverse of the x-expansion in
Example 2.2.16 and describe it geometrically.

Exercise 2.4.23 Find the inverse of the shear transfor-
mation in Example 2.2.17 and describe it geometrically.
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Exercise 2.4.24 In each case assume that A is a square
matrix that satisfies the given condition. Show that A is
invertible and find a formula for A−1 in terms of A.

a. A3−3A+2I = 0.

b. A4 +2A3−A−4I = 0.

Exercise 2.4.25 Let A and B denote n×n matrices.

a. If A and AB are invertible, show that B is invertible
using only (2) and (3) of Theorem 2.4.4.

b. If AB is invertible, show that both A and B are in-
vertible using Theorem 2.4.5.

Exercise 2.4.26 In each case find the inverse of the ma-
trix A using Example 2.4.11.

A=



−1 1 2

0 2 −1
0 1 −1


a. A =




3 1 0
5 2 0
1 3 −1


b.

A =




3 4 0 0
2 3 0 0
1 −1 1 3
3 1 1 4


c.

A =




2 1 5 2
1 1 −1 0
0 0 1 −1
0 0 1 −2


d.

Exercise 2.4.27 If A and B are invertible symmetric ma-
trices such that AB = BA, show that A−1, AB, AB−1, and
A−1B−1 are also invertible and symmetric.

Exercise 2.4.28 Let A be an n×n matrix and let I be the
n×n identity matrix.

a. If A2 = 0, verify that (I−A)−1 = I +A.

b. If A3 = 0, verify that (I−A)−1 = I +A+A2.

c. Find the inverse of




1 2 −1
0 1 3
0 0 1


.

d. If An = 0, find the formula for (I−A)−1.

Exercise 2.4.29 Prove property 6 of Theorem 2.4.4:
If A is invertible and a 6= 0, then aA is invertible and
(aA)−1 = 1

a
A−1

Exercise 2.4.30 Let A, B, and C denote n× n matrices.
Using only Theorem 2.4.4, show that:

a. If A, C, and ABC are all invertible, B is invertible.

b. If AB and BA are both invertible, A and B are both
invertible.

Exercise 2.4.31 Let A and B denote invertible n×n ma-
trices.

a. If A−1 = B−1, does it mean that A = B? Explain.

b. Show that A = B if and only if A−1B = I.

Exercise 2.4.32 Let A, B, and C be n×n matrices, with
A and B invertible. Show that

a. If A commutes with C, then A−1 commutes with
C.

b. If A commutes with B, then A−1 commutes with
B−1.

Exercise 2.4.33 Let A and B be square matrices of the
same size.

a. Show that (AB)2 = A2B2 if AB = BA.

b. If A and B are invertible and (AB)2 = A2B2, show
that AB = BA.

c. If A =

[
1 0
0 0

]
and B =

[
1 1
0 0

]
, show that

(AB)2 = A2B2 but AB 6= BA.

Exercise 2.4.34 Let A and B be n×n matrices for which
AB is invertible. Show that A and B are both invertible.

Exercise 2.4.35 Consider A =




1 3 −1
2 1 5
1 −7 13


,

B =




1 1 2
3 0 −3
−2 5 17


.

a. Show that A is not invertible by finding a nonzero
1×3 matrix Y such that YA = 0.

[Hint: Row 3 of A equals 2(row 2) −3(row 1).]
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b. Show that B is not invertible.

[Hint: Column 3 = 3(column 2) − column 1.]

Exercise 2.4.36 Show that a square matrix A is invert-
ible if and only if it can be left-cancelled: AB = AC im-
plies B =C.

Exercise 2.4.37 If U2 = I, show that I+U is not invert-
ible unless U = I.

Exercise 2.4.38

a. If J is the 4× 4 matrix with every entry 1, show
that I− 1

2J is self-inverse and symmetric.

b. If X is n×m and satisfies XT X = Im, show that
In−2XXT is self-inverse and symmetric.

Exercise 2.4.39 An n×n matrix P is called an idempo-
tent if P2 = P. Show that:

a. I is the only invertible idempotent.

b. P is an idempotent if and only if I− 2P is self-
inverse.

c. U is self-inverse if and only if U = I−2P for some
idempotent P.

d. I−aP is invertible for any a 6= 1, and that
(I−aP)−1 = I+

(
a

1−a

)P
.

Exercise 2.4.40 If A2 = kA, where k 6= 0, show that A is
invertible if and only if A = kI.

Exercise 2.4.41 Let A and B denote n×n invertible ma-
trices.

a. Show that A−1 +B−1 = A−1(A+B)B−1.

b. If A+B is also invertible, show that A−1 +B−1 is
invertible and find a formula for (A−1 +B−1)−1.

Exercise 2.4.42 Let A and B be n×n matrices, and let I

be the n×n identity matrix.

a. Verify that A(I +BA) = (I +AB)A and that
(I +BA)B = B(I+AB).

b. If I+AB is invertible, verify that I+BA is also in-
vertible and that (I+BA)−1 = I−B(I+AB)−1A.

2.5 Elementary Matrices

It is now clear that elementary row operations are important in linear algebra: They are essential in solving
linear systems (using the gaussian algorithm) and in inverting a matrix (using the matrix inversion algo-
rithm). It turns out that they can be performed by left multiplying by certain invertible matrices. These
matrices are the subject of this section.

Definition 2.12 Elementary Matrices

An n×n matrix E is called an elementary matrix if it can be obtained from the identity matrix In

by a single elementary row operation (called the operation corresponding to E). We say that E is
of type I, II, or III if the operation is of that type (see Definition 1.2).

Hence

E1 =

[
0 1
1 0

]
, E2 =

[
1 0
0 9

]
, and E3 =

[
1 5
0 1

]

are elementary of types I, II, and III, respectively, obtained from the 2×2 identity matrix by interchanging
rows 1 and 2, multiplying row 2 by 9, and adding 5 times row 2 to row 1.
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Suppose now that the matrix A =

[
a b c

p q r

]
is left multiplied by the above elementary matrices E1,

E2, and E3. The results are:

E1A =

[
0 1
1 0

][
a b c

p q r

]
=

[
p q r

a b c

]

E2A =

[
1 0
0 9

][
a b c

p q r

]
=

[
a b c

9p 9q 9r

]

E3A =

[
1 5
0 1

][
a b c

p q r

]
=

[
a+5p b+5q c+5r

p q r

]

In each case, left multiplying A by the elementary matrix has the same effect as doing the corresponding
row operation to A. This works in general.

Lemma 2.5.1: 10

If an elementary row operation is performed on an m×n matrix A, the result is EA where E is the
elementary matrix obtained by performing the same operation on the m×m identity matrix.

Proof. We prove it for operations of type III; the proofs for types I and II are left as exercises. Let E be the
elementary matrix corresponding to the operation that adds k times row p to row q 6= p. The proof depends
on the fact that each row of EA is equal to the corresponding row of E times A. Let K1, K2, . . . , Km denote
the rows of Im. Then row i of E is Ki if i 6= q, while row q of E is Kq + kKp. Hence:

If i 6= q then row i of EA = KiA = (row i of A).

Row q of EA = (Kq + kKp)A = KqA+ k(KpA)

= (row q of A) plus k (row p of A).

Thus EA is the result of adding k times row p of A to row q, as required.

The effect of an elementary row operation can be reversed by another such operation (called its inverse)
which is also elementary of the same type (see the discussion following (Example 1.1.3). It follows that
each elementary matrix E is invertible. In fact, if a row operation on I produces E, then the inverse
operation carries E back to I. If F is the elementary matrix corresponding to the inverse operation, this
means FE = I (by Lemma 2.5.1). Thus F = E−1 and we have proved

Lemma 2.5.2

Every elementary matrix E is invertible, and E−1 is also a elementary matrix (of the same type).
Moreover, E−1 corresponds to the inverse of the row operation that produces E.

The following table gives the inverse of each type of elementary row operation:

Type Operation Inverse Operation

I Interchange rows p and q Interchange rows p and q

II Multiply row p by k 6= 0 Multiply row p by 1/k, k 6= 0
III Add k times row p to row q 6= p Subtract k times row p from row q, q 6= p

10A lemma is an auxiliary theorem used in the proof of other theorems.
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Note that elementary matrices of type I are self-inverse.

Example 2.5.1

Find the inverse of each of the elementary matrices

E1 =




0 1 0
1 0 0
0 0 1


 , E2 =




1 0 0
0 1 0
0 0 9


 , and E3 =




1 0 5
0 1 0
0 0 1


 .

Solution. E1, E2, and E3 are of type I, II, and III respectively, so the table gives

E−1
1 =




0 1 0
1 0 0
0 0 1


= E1, E−1

2 =




1 0 0
0 1 0
0 0 1

9


 , and E−1

3 =




1 0 −5
0 1 0
0 0 1


 .

Inverses and Elementary Matrices

Suppose that an m×n matrix A is carried to a matrix B (written A→ B) by a series of k elementary row
operations. Let E1, E2, . . . , Ek denote the corresponding elementary matrices. By Lemma 2.5.1, the
reduction becomes

A→ E1A→ E2E1A→ E3E2E1A→ ·· · → EkEk−1 · · ·E2E1A = B

In other words,
A→UA = B where U = EkEk−1 · · ·E2E1

The matrix U = EkEk−1 · · ·E2E1 is invertible, being a product of invertible matrices by Lemma 2.5.2.
Moreover, U can be computed without finding the Ei as follows: If the above series of operations carrying
A→ B is performed on Im in place of A, the result is Im→UIm =U . Hence this series of operations carries
the block matrix

[
A Im

]
→
[

B U
]
. This, together with the above discussion, proves

Theorem 2.5.1

Suppose A is m×n and A→ B by elementary row operations.

1. B =UA where U is an m×m invertible matrix.

2. U can be computed by
[

A Im

]
→
[

B U
]

using the operations carrying A→ B.

3. U = EkEk−1 · · ·E2E1 where E1, E2, . . . , Ek are the elementary matrices corresponding (in
order) to the elementary row operations carrying A to B.
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Example 2.5.2

If A =

[
2 3 1
1 2 1

]
, express the reduced row-echelon form R of A as R =UA where U is invertible.

Solution. Reduce the double matrix
[

A I
]
→
[

R U
]

as follows:

[
A I

]
=

[
2 3 1 1 0
1 2 1 0 1

]
→
[

1 2 1 0 1
2 3 1 1 0

]
→
[

1 2 1 0 1
0 −1 −1 1 −2

]

→
[

1 0 −1 2 −3
0 1 1 −1 2

]

Hence R =

[
1 0 −1
0 1 1

]
and U =

[
2 −3
−1 2

]
.

Now suppose that A is invertible. We know that A→ I by Theorem 2.4.5, so taking B = I in Theo-
rem 2.5.1 gives

[
A I

]
→
[

I U
]

where I =UA. Thus U = A−1, so we have
[

A I
]
→
[

I A−1
]
.

This is the matrix inversion algorithm in Section 2.4. However, more is true: Theorem 2.5.1 gives
A−1 =U = EkEk−1 · · ·E2E1 where E1, E2, . . . , Ek are the elementary matrices corresponding (in order) to
the row operations carrying A→ I. Hence

A =
(
A−1)−1

= (EkEk−1 · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E−1

k−1E−1
k (2.10)

By Lemma 2.5.2, this shows that every invertible matrix A is a product of elementary matrices. Since
elementary matrices are invertible (again by Lemma 2.5.2), this proves the following important character-
ization of invertible matrices.

Theorem 2.5.2

A square matrix is invertible if and only if it is a product of elementary matrices.

It follows from Theorem 2.5.1 that A→ B by row operations if and only if B =UA for some invertible
matrix B. In this case we say that A and B are row-equivalent. (See Exercise 2.5.17.)

Example 2.5.3

Express A =

[
−2 3

1 0

]
as a product of elementary matrices.

Solution. Using Lemma 2.5.1, the reduction of A→ I is as follows:

A =

[
−2 3

1 0

]
→ E1A =

[
1 0
−2 3

]
→ E2E1A =

[
1 0
0 3

]
→ E3E2E1A =

[
1 0
0 1

]

where the corresponding elementary matrices are

E1 =

[
0 1
1 0

]
, E2 =

[
1 0
2 1

]
, E3 =

[
1 0
0 1

3

]
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Hence (E3 E2 E1)A = I, so:

A = (E3E2E1)
−1 = E−1

1 E−1
2 E−1

3 =

[
0 1
1 0

][
1 0
−2 1

][
1 0
0 3

]

Smith Normal Form

Let A be an m×n matrix of rank r, and let R be the reduced row-echelon form of A. Theorem 2.5.1 shows
that R =UA where U is invertible, and that U can be found from

[
A Im

]
→
[

R U
]
.

The matrix R has r leading ones (since rank A = r) so, as R is reduced, the n×m matrix RT con-

tains each row of Ir in the first r columns. Thus row operations will carry RT →
[

Ir 0
0 0

]

n×m

. Hence

Theorem 2.5.1 (again) shows that

[
Ir 0
0 0

]

n×m

= U1RT where U1 is an n×n invertible matrix. Writing

V =UT
1 , we obtain

UAV = RV = RUT
1 =

(
U1RT

)T
=

([
Ir 0
0 0

]

n×m

)T

=

[
Ir 0
0 0

]

m×n

Moreover, the matrix U1 =V T can be computed by
[

RT In

]
→
[[

Ir 0
0 0

]

n×m

V T

]
. This proves

Theorem 2.5.3

Let A be an m×n matrix of rank r. There exist invertible matrices U and V of size m×m and
n×n, respectively, such that

UAV =

[
Ir 0
0 0

]

m×n

Moreover, if R is the reduced row-echelon form of A, then:

1. U can be computed by
[

A Im

]
→
[

R U
]
;

2. V can be computed by
[

RT In

]
→
[[

Ir 0
0 0

]

n×m

V T

]
.

If A is an m× n matrix of rank r, the matrix

[
Ir 0
0 0

]
is called the Smith normal form11 of A.

Whereas the reduced row-echelon form of A is the “nicest” matrix to which A can be carried by row
operations, the Smith canonical form is the “nicest” matrix to which A can be carried by row and column

operations. This is because doing row operations to RT amounts to doing column operations to R and then
transposing.

11Named after Henry John Stephen Smith (1826–83).
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Example 2.5.4

Given A =




1 −1 1 2
2 −2 1 −1
−1 1 0 3


, find invertible matrices U and V such that UAV =

[
Ir 0
0 0

]
,

where r = rank A.

Solution. The matrix U and the reduced row-echelon form R of A are computed by the row
reduction

[
A I3

]
→
[

R U
]
:




1 −1 1 2 1 0 0
2 −2 1 −1 0 1 0
−1 1 0 3 0 0 1


→




1 −1 0 −3 −1 1 0
0 0 1 5 2 −1 0
0 0 0 0 −1 1 1




Hence

R =




1 −1 0 −3
0 0 1 5
0 0 0 0


 and U =



−1 1 0

2 −1 0
−1 1 1




In particular, r = rank R = 2. Now row-reduce
[

RT I4
]
→
[ [

Ir 0
0 0

]
V T

]
:




1 0 0 1 0 0 0
−1 0 0 0 1 0 0

0 1 0 0 0 1 0
−3 5 0 0 0 0 1


→




1 0 0 1 0 0 0
0 1 0 0 0 1 0
0 0 0 1 1 0 0
0 0 0 3 0 −5 1




whence

V T =




1 0 0 0
0 0 1 0
1 1 0 0
3 0 −5 −1


 so V =




1 0 1 3
0 0 1 0
0 1 0 −5
0 0 0 1




Then UAV =

[
I2 0
0 0

]
as is easily verified.

Uniqueness of the Reduced Row-echelon Form

In this short subsection, Theorem 2.5.1 is used to prove the following important theorem.

Theorem 2.5.4

If a matrix A is carried to reduced row-echelon matrices R and S by row operations, then R = S.

Proof. Observe first that UR = S for some invertible matrix U (by Theorem 2.5.1 there exist invertible
matrices P and Q such that R = PA and S = QA; take U = QP−1). We show that R = S by induction on
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the number m of rows of R and S. The case m = 1 is left to the reader. If R j and S j denote column j in R

and S respectively, the fact that UR = S gives

UR j = S j for each j (2.11)

Since U is invertible, this shows that R and S have the same zero columns. Hence, by passing to the
matrices obtained by deleting the zero columns from R and S, we may assume that R and S have no zero
columns.

But then the first column of R and S is the first column of Im because R and S are row-echelon, so
(2.11) shows that the first column of U is column 1 of Im. Now write U , R, and S in block form as follows.

U =

[
1 X

0 V

]
, R =

[
1 X

0 R′

]
, and S =

[
1 Z

0 S′

]

Since UR = S, block multiplication gives V R′ = S′ so, since V is invertible (U is invertible) and both R′

and S′ are reduced row-echelon, we obtain R′ = S′ by induction. Hence R and S have the same number
(say r) of leading 1s, and so both have m–r zero rows.

In fact, R and S have leading ones in the same columns, say r of them. Applying (2.11) to these
columns shows that the first r columns of U are the first r columns of Im. Hence we can write U , R, and S

in block form as follows:

U =

[
Ir M

0 W

]
, R =

[
R1 R2

0 0

]
, and S =

[
S1 S2

0 0

]

where R1 and S1 are r× r. Then block multiplication gives UR = R; that is, S = R. This completes the
proof.

Exercises for 2.5

Exercise 2.5.1 For each of the following elementary
matrices, describe the corresponding elementary row op-
eration and write the inverse.

E =




1 0 3
0 1 0
0 0 1


a. E =




0 0 1
0 1 0
1 0 0


b.

E =




1 0 0
0 1

2 0
0 0 1


c. E =




1 0 0
−2 1 0

0 0 1


d.

E =




0 1 0
1 0 0
0 0 1


e. E =




1 0 0
0 1 0
0 0 5


f.

Exercise 2.5.2 In each case find an elementary matrix
E such that B = EA.

a. A =

[
2 1
3 −1

]
, B =

[
2 1
1 −2

]

b. A =

[
−1 2

0 1

]
, B =

[
1 −2
0 1

]

c. A =

[
1 1
−1 2

]
, B =

[
−1 2

1 1

]

d. A =

[
4 1
3 2

]
, B =

[
1 −1
3 2

]

e. A =

[
−1 1

1 −1

]
, B =

[
−1 1
−1 1

]
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f. A =

[
2 1
−1 3

]
, B =

[
−1 3

2 1

]

Exercise 2.5.3 Let A =

[
1 2
−1 1

]
and

C =

[
−1 1

2 1

]
.

a. Find elementary matrices E1 and E2 such that
C = E2E1A.

b. Show that there is no elementary matrix E such
that C = EA.

Exercise 2.5.4 If E is elementary, show that A and EA

differ in at most two rows.

Exercise 2.5.5

a. Is I an elementary matrix? Explain.

b. Is 0 an elementary matrix? Explain.

Exercise 2.5.6 In each case find an invertible matrix U

such that UA = R is in reduced row-echelon form, and
express U as a product of elementary matrices.

A =

[
1 −1 2
−2 1 0

]
a. A =

[
1 2 1
5 12 −1

]
b.

A =




1 2 −1 0
3 1 1 2
1 −3 3 2


c.

A =




2 1 −1 0
3 −1 2 1
1 −2 3 1


d.

Exercise 2.5.7 In each case find an invertible matrix U

such that UA = B, and express U as a product of elemen-
tary matrices.

a. A =

[
2 1 3
−1 1 2

]
, B =

[
1 −1 −2
3 0 1

]

b. A =

[
2 −1 0
1 1 1

]
, B =

[
3 0 1
2 −1 0

]

Exercise 2.5.8 In each case factor A as a product of el-
ementary matrices.

A =

[
1 1
2 1

]
a. A =

[
2 3
1 2

]
b.

A =




1 0 2
0 1 1
2 1 6


c. A=




1 0 −3
0 1 4
−2 2 15


d.

Exercise 2.5.9 Let E be an elementary matrix.

a. Show that ET is also elementary of the same type.

b. Show that ET = E if E is of type I or II.

Exercise 2.5.10 Show that every matrix A can be fac-
tored as A=UR where U is invertible and R is in reduced
row-echelon form.

Exercise 2.5.11 If A =

[
1 2
1 −3

]
and

B =

[
5 2
−5 −3

]
find an elementary matrix F such that

AF = B.

[Hint: See Exercise 2.5.9.]

Exercise 2.5.12 In each case find invertible U and V

such that UAV =

[
Ir 0
0 0

]
, where r = rank A.

A=

[
1 1 −1
−2 −2 4

]
a. A =

[
3 2
2 1

]
b.

A =




1 −1 2 1
2 −1 0 3
0 1 −4 1


c.

A =




1 1 0 −1
3 2 1 1
1 0 1 3


d.

Exercise 2.5.13 Prove Lemma 2.5.1 for elementary ma-
trices of:

type I;a. type II.b.

Exercise 2.5.14 While trying to invert A,
[

A I
]

is carried to
[

P Q
]

by row operations. Show that
P = QA.

Exercise 2.5.15 If A and B are n×n matrices and AB is
a product of elementary matrices, show that the same is
true of A.
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Exercise 2.5.16 If U is invertible, show that the reduced
row-echelon form of a matrix

[
U A

]
is
[

I U−1A
]
.

Exercise 2.5.17 Two matrices A and B are called row-

equivalent (written A
r∼ B) if there is a sequence of ele-

mentary row operations carrying A to B.

a. Show that A
r∼ B if and only if A = UB for some

invertible matrix U .

b. Show that:

i. A
r∼ A for all matrices A.

ii. If A
r∼ B, then B

r∼ A

iii. If A
r∼ B and B

r∼C, then A
r∼C.

c. Show that, if A and B are both row-equivalent to
some third matrix, then A

r∼ B.

d. Show that




1 −1 3 2
0 1 4 1
1 0 8 6


 and




1 −1 4 5
−2 1 −11 −8
−1 2 2 2


 are row-equivalent.

[Hint: Consider (c) and Theorem 1.2.1.]

Exercise 2.5.18 If U and V are invertible n×n matrices,
show that U

r∼V . (See Exercise 2.5.17.)

Exercise 2.5.19 (See Exercise 2.5.17.) Find all matrices
that are row-equivalent to:

[
0 0 0
0 0 0

]
a.

[
0 0 0
0 0 1

]
b.

[
1 0 0
0 1 0

]
c.

[
1 2 0
0 0 1

]
d.

Exercise 2.5.20 Let A and B be m×n and n×m matri-
ces, respectively. If m > n, show that AB is not invertible.
[Hint: Use Theorem 1.3.1 to find x 6= 0 with Bx = 0.]

Exercise 2.5.21 Define an elementary column operation

on a matrix to be one of the following: (I) Interchange
two columns. (II) Multiply a column by a nonzero scalar.
(III) Add a multiple of a column to another column.
Show that:

a. If an elementary column operation is done to an
m× n matrix A, the result is AF , where F is an
n×n elementary matrix.

b. Given any m× n matrix A, there exist m×m ele-
mentary matrices E1, . . . , Ek and n×n elementary
matrices F1, . . . , Fp such that, in block form,

Ek · · ·E1AF1 · · ·Fp =

[
Ir 0
0 0

]

Exercise 2.5.22 Suppose B is obtained from A by:

a. interchanging rows i and j;

b. multiplying row i by k 6= 0;

c. adding k times row i to row j (i 6= j).

In each case describe how to obtain B−1 from A−1.
[Hint: See part (a) of the preceding exercise.]

Exercise 2.5.23 Two m×n matrices A and B are called
equivalent (written A

e∼ B) if there exist invertible matri-
ces U and V (sizes m×m and n×n) such that A =UBV .

a. Prove the following the properties of equivalence.

i. A
e∼ A for all m×n matrices A.

ii. If A
e∼ B, then B

e∼ A.

iii. If A
e∼ B and B

e∼C, then A
e∼C.

b. Prove that two m× n matrices are equivalent if
they have the same rank . [Hint: Use part (a) and
Theorem 2.5.3.]
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2.6 Linear Transformations

If A is an m×n matrix, recall that the transformation TA : Rn→ Rm defined by

TA(x) = Ax for all x in Rn

is called the matrix transformation induced by A. In Section 2.2, we saw that many important geometric
transformations were in fact matrix transformations. These transformations can be characterized in a
different way. The new idea is that of a linear transformation, one of the basic notions in linear algebra. We
define these transformations in this section, and show that they are really just the matrix transformations
looked at in another way. Having these two ways to view them turns out to be useful because, in a given
situation, one perspective or the other may be preferable.

Linear Transformations

Definition 2.13 Linear Transformations Rn→ Rm

A transformation T : Rn→ Rm is called a linear transformation if it satisfies the following two
conditions for all vectors x and y in Rn and all scalars a:

T1 T (x+y) = T (x)+T (y)

T2 T (ax) = aT (x)

Of course, x+y and ax here are computed in Rn, while T (x)+T (y) and aT (x) are in Rm. We say that T

preserves addition if T1 holds, and that T preserves scalar multiplication if T2 holds. Moreover, taking
a = 0 and a =−1 in T2 gives

T (0) = 0 and T (−x) =−T (x) for all x

Hence T preserves the zero vector and the negative of a vector. Even more is true.

Recall that a vector y in Rn is called a linear combination of vectors x1, x2, . . . , xk if y has the form

y = a1x1 +a2x2 + · · ·+akxk

for some scalars a1, a2, . . . , ak. Conditions T1 and T2 combine to show that every linear transformation
T preserves linear combinations in the sense of the following theorem. This result is used repeatedly in
linear algebra.

Theorem 2.6.1: Linearity Theorem

If T : Rn→ Rm is a linear transformation, then for each k = 1, 2, . . .

T (a1x1 +a2x2 + · · ·+akxk) = a1T (x1)+a2T (x2)+ · · ·+akT (xk)

for all scalars ai and all vectors xi in Rn.
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Proof. If k = 1, it reads T (a1x1) = a1T (x1) which is Condition T1. If k = 2, we have

T (a1x1 +a2x2) = T (a1x1)+T (a2x2) by Condition T1
= a1T (x1)+a2T (x2) by Condition T2

If k = 3, we use the case k = 2 to obtain

T (a1x1 +a2x2 +a3x3) = T [(a1x1 +a2x2)+a3x3] collect terms
= T (a1x1 +a2x2)+T (a3x3) by Condition T1
= [a1T (x1)+a2T (x2)]+T (a3x3) by the case k = 2
= [a1T (x1)+a2T (x2)]+a3T (x3) by Condition T2

The proof for any k is similar, using the previous case k−1 and Conditions T1 and T2.

The method of proof in Theorem 2.6.1 is called mathematical induction (Appendix C).

Theorem 2.6.1 shows that if T is a linear transformation and T (x1), T (x2), . . . , T (xk) are all known,
then T (y) can be easily computed for any linear combination y of x1, x2, . . . , xk. This is a very useful
property of linear transformations, and is illustrated in the next example.

Example 2.6.1

If T : R2→R2 is a linear transformation, T

[
1
1

]
=

[
2
−3

]
and T

[
1
−2

]
=

[
5
1

]
, find T

[
4
3

]
.

Solution. Write z =

[
4
3

]
, x =

[
1
1

]
, and y =

[
1
−2

]
for convenience. Then we know T (x) and

T (y) and we want T (z), so it is enough by Theorem 2.6.1 to express z as a linear combination of x

and y. That is, we want to find numbers a and b such that z = ax+by. Equating entries gives two
equations 4 = a+b and 3 = a−2b. The solution is, a = 11

3 and b = 1
3 , so z = 11

3 x+ 1
3y. Thus

Theorem 2.6.1 gives

T (z) = 11
3 T (x)+ 1

3T (y) = 11
3

[
2
−3

]
+ 1

3

[
5
1

]
= 1

3

[
27
−32

]

This is what we wanted.

Example 2.6.2

If A is m×n, the matrix transformation TA : Rn→Rm, is a linear transformation.

Solution. We have TA(x) = Ax for all x in Rn, so Theorem 2.2.2 gives

TA(x+y) = A(x+y) = Ax+Ay = TA(x)+TA(y)

and
TA(ax) = A(ax) = a(Ax) = aTA(x)

hold for all x and y in Rn and all scalars a. Hence TA satisfies T1 and T2, and so is linear.
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The remarkable thing is that the converse of Example 2.6.2 is true: Every linear transformation
T : Rn→ Rm is actually a matrix transformation. To see why, we define the standard basis of Rn to be
the set of columns

{e1, e2, . . . , en}

of the identity matrix In. Then each ei is in Rn and every vector x =




x1

x2
...

xn


 in Rn is a linear combination

of the ei. In fact:
x = x1e1 + x2e2 + · · ·+ xnen

as the reader can verify. Hence Theorem 2.6.1 shows that

T (x) = T (x1e1 + x2e2 + · · ·+ xnen) = x1T (e1)+ x2T (e2)+ · · ·+ xnT (en)

Now observe that each T (ei) is a column in Rm, so

A =
[

T (e1) T (e2) · · · T (en)
]

is an m×n matrix. Hence we can apply Definition 2.5 to get

T (x) = x1T (e1)+ x2T (e2)+ · · ·+ xnT (en) =
[

T (e1) T (e2) · · · T (en)
]




x1

x2
...

xn


= Ax

Since this holds for every x in Rn, it shows that T is the matrix transformation induced by A, and so proves
most of the following theorem.

Theorem 2.6.2

Let T : Rn→ Rm be a transformation.

1. T is linear if and only if it is a matrix transformation.

2. In this case T = TA is the matrix transformation induced by a unique m×n matrix A, given
in terms of its columns by

A =
[

T (e1) T (e2) · · · T (en)
]

where {e1, e2, . . . , en} is the standard basis of Rn.

Proof. It remains to verify that the matrix A is unique. Suppose that T is induced by another matrix B.
Then T (x) = Bx for all x in Rn. But T (x) = Ax for each x, so Bx = Ax for every x. Hence A = B by
Theorem 2.2.6.

Hence we can speak of the matrix of a linear transformation. Because of Theorem 2.6.2 we may (and
shall) use the phrases “linear transformation” and “matrix transformation” interchangeably.
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Example 2.6.3

Define T : R3→ R2 by T




x1

x2

x3


=

[
x1

x2

]
for all




x1

x2

x3


 in R3. Show that T is a linear

transformation and use Theorem 2.6.2 to find its matrix.

Solution. Write x =




x1

x2

x3


 and y =




y1

y2

y3


, so that x+y =




x1 + y1

x2 + y2

x3 + y3


. Hence

T (x+y) =

[
x1 + y1

x2 + y2

]
=

[
x1

x2

]
+

[
y1

y2

]
= T (x)+T (y)

Similarly, the reader can verify that T (ax) = aT (x) for all a in R, so T is a linear transformation.
Now the standard basis of R3 is

e1 =




1
0
0


 , e2 =




0
1
0


 , and e3 =




0
0
1




so, by Theorem 2.6.2, the matrix of T is

A =
[

T (e1) T (e2) T (e3)
]
=

[
1 0 0
0 1 0

]

Of course, the fact that T




x1

x2

x3


=

[
x1

x2

]
=

[
1 0 0
0 1 0

]


x1

x2

x3


 shows directly that T is a

matrix transformation (hence linear) and reveals the matrix.

To illustrate how Theorem 2.6.2 is used, we rederive the matrices of the transformations in Exam-
ples 2.2.13 and 2.2.15.

Example 2.6.4

Let Q0 : R2→R2 denote reflection in the x axis (as in Example 2.2.13) and let Rπ
2

: R2→ R2

denote counterclockwise rotation through π
2 about the origin (as in Example 2.2.15). Use

Theorem 2.6.2 to find the matrices of Q0 and Rπ
2

.

0 e1

e2

[
0
1

]

[
1
0

]

x

y

Figure 2.6.1

Solution. Observe that Q0 and Rπ
2

are linear by Example 2.6.2

(they are matrix transformations), so Theorem 2.6.2 applies

to them. The standard basis of R2 is {e1, e2} where e1 =

[
1
0

]

points along the positive x axis, and e2 =

[
0
1

]
points along

the positive y axis (see Figure 2.6.1).
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The reflection of e1 in the x axis is e1 itself because e1 points along the x axis, and the reflection
of e2 in the x axis is −e2 because e2 is perpendicular to the x axis. In other words, Q0(e1) = e1 and
Q0(e2) =−e2. Hence Theorem 2.6.2 shows that the matrix of Q0 is

[
Q0(e1) Q0(e2)

]
=
[

e1 −e2
]
=

[
1 0
0 −1

]

which agrees with Example 2.2.13.
Similarly, rotating e1 through π

2 counterclockwise about the origin produces e2, and rotating e2

through π
2 counterclockwise about the origin gives −e1. That is, Rπ

2
(e1) = e2 and Rπ

2
(e2) =−e2.

Hence, again by Theorem 2.6.2, the matrix of Rπ
2

is

[
Rπ

2
(e1) Rπ

2
(e2)

]
=
[

e2 −e1
]
=

[
0 −1
1 0

]

agreeing with Example 2.2.15.

Example 2.6.5

e1

e2

0

y = x

T

[
x

y

]
=

[
y

x

]

[
x

y

]

x

y

Figure 2.6.2

Let Q1 : R2→ R2 denote reflection in the line y = x. Show that
Q1 is a matrix transformation, find its matrix, and use it to illustrate
Theorem 2.6.2.

Solution. Figure 2.6.2 shows that Q1

[
x

y

]
=

[
y

x

]
. Hence

Q1

[
x

y

]
=

[
0 1
1 0

][
y

x

]
, so Q1 is the matrix transformation

induced by the matrix A =

[
0 1
1 0

]
. Hence Q1 is linear (by

Example 2.6.2) and so Theorem 2.6.2 applies. If e1 =

[
1
0

]
and e2 =

[
0
1

]
are the standard basis

of R2, then it is clear geometrically that Q1(e1) = e2 and Q1(e2) = e1. Thus (by Theorem 2.6.2)
the matrix of Q1 is

[
Q1(e1) Q1(e2)

]
=
[

e2 e1
]
= A as before.

Recall that, given two “linked” transformations

Rk T−→Rn S−→ Rm

we can apply T first and then apply S, and so obtain a new transformation

S ◦T : Rk→ Rm

called the composite of S and T , defined by

(S ◦T )(x) = S [T (x)] for all x in Rk

If S and T are linear, the action of S ◦T can be computed by multiplying their matrices.
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Theorem 2.6.3

Let Rk T−→ Rn S−→ Rm be linear transformations, and let A and B be the matrices of S and T

respectively. Then S ◦T is linear with matrix AB.

Proof. (S ◦T )(x) = S [T (x)] = A [Bx] = (AB)x for all x in Rk.

Theorem 2.6.3 shows that the action of the composite S ◦ T is determined by the matrices of S and
T . But it also provides a very useful interpretation of matrix multiplication. If A and B are matrices, the
product matrix AB induces the transformation resulting from first applying B and then applying A. Thus
the study of matrices can cast light on geometrical transformations and vice-versa. Here is an example.

Example 2.6.6

Show that reflection in the x axis followed by rotation through π
2 is reflection in the line y = x.

Solution. The composite in question is Rπ
2
◦Q0 where Q0 is reflection in the x axis and Rπ

2
is

rotation through π
2 . By Example 2.6.4, Rπ

2
has matrix A =

[
0 −1
1 0

]
and Q0 has matrix

B =

[
1 0
0 −1

]
. Hence Theorem 2.6.3 shows that the matrix of Rπ

2
◦Q0 is

AB =

[
0 −1
1 0

][
1 0
0 −1

]
=

[
0 1
1 0

]
, which is the matrix of reflection in the line y = x by

Example 2.6.3.

This conclusion can also be seen geometrically. Let x be a typical point in R2, and assume that x

makes an angle α with the positive x axis. The effect of first applying Q0 and then applying Rπ
2

is shown

in Figure 2.6.3. The fact that Rπ
2
[Q0(x)] makes the angle α with the positive y axis shows that Rπ

2
[Q0(x)]

is the reflection of x in the line y = x.

α

x

0 x

y

α

Q0(x)

x

0 x

y

α

α

y = xR π
2
[Q0(x)]

Q0(x)

x

0 x

y

Figure 2.6.3

In Theorem 2.6.3, we saw that the matrix of the composite of two linear transformations is the product
of their matrices (in fact, matrix products were defined so that this is the case). We are going to apply
this fact to rotations, reflections, and projections in the plane. Before proceeding, we pause to present
useful geometrical descriptions of vector addition and scalar multiplication in the plane, and to give a
short review of angles and the trigonometric functions.
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− 1
2 x =

[
− 1

2
−1

]0

1
2 x =

[
1
2
1

]
x =

[
1
2

]

2x =

[
2
4

]

x1

x2

Figure 2.6.4

Some Geometry

As we have seen, it is convenient to view a vector x in R2 as an arrow
from the origin to the point x (see Section 2.2). This enables us to visualize
what sums and scalar multiples mean geometrically. For example consider

x =

[
1
2

]
in R2. Then 2x =

[
2
4

]
, 1

2x =

[
1
2
1

]
and −1

2x =

[
−1

2
−1

]
, and

these are shown as arrows in Figure 2.6.4.

Observe that the arrow for 2x is twice as long as the arrow for x and in
the same direction, and that the arrows for 1

2x is also in the same direction
as the arrow for x, but only half as long. On the other hand, the arrow
for −1

2x is half as long as the arrow for x, but in the opposite direction.
More generally, we have the following geometrical description of scalar
multiplication in R2:

0

x =
[

2
1

]

y =
[

1
3

] x+ y =
[

3
4

]

x1

x2

Figure 2.6.5

Scalar Multiple Law

Let x be a vector in R2. The arrow for kx is |k| times12as long as
the arrow for x, and is in the same direction as the arrow for x if
k > 0, and in the opposite direction if k < 0.

0

x

y

x+ y

x1

x2

Figure 2.6.6

Now consider two vectors x =

[
2
1

]
and y =

[
1
3

]
in R2. They are

plotted in Figure 2.6.5 along with their sum x+y =

[
3
4

]
. It is a routine

matter to verify that the four points 0, x, y, and x+y form the vertices of a
parallelogram–that is opposite sides are parallel and of the same length.
(The reader should verify that the side from 0 to x has slope of 1

2 , as does
the side from y to x + y, so these sides are parallel.) We state this as
follows:

θ1

0

Radian
measure

of θp

x

y

Figure 2.6.7

Parallelogram Law

Consider vectors x and y in R2. If the arrows for x and y are drawn
(see Figure 2.6.6), the arrow for x+y corresponds to the fourth
vertex of the parallelogram determined by the points x, y, and 0.

We will have more to say about this in Chapter 4.

Before proceeding we turn to a brief review of angles and the trigono-
metric functions. Recall that an angle θ is said to be in standard position if it is measured counterclock-
wise from the positive x axis (as in Figure 2.6.7). Then θ uniquely determines a point p on the unit circle

12If k is a real number, |k| denotes the absolute value of k; that is, |k|= k if k ≥ 0 and |k|=−k if k < 0.
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(radius 1, centre at the origin). The radian measure of θ is the length of the arc on the unit circle from the
positive x axis to p. Thus 360◦ = 2π radians, 180◦ = π , 90◦ = π

2 , and so on.

The point p in Figure 2.6.7 is also closely linked to the trigonometric functions cosine and sine, written
cosθ and sinθ respectively. In fact these functions are defined to be the x and y coordinates of p; that is

p =

[
cosθ
sinθ

]
. This defines cosθ and sinθ for the arbitrary angle θ (possibly negative), and agrees with

the usual values when θ is an acute angle
(
0≤ θ ≤ π

2

)
as the reader should verify. For more discussion

of this, see Appendix A.

Rotations

θ

Rθ (x)

x

0
x

y

Figure 2.6.8

We can now describe rotations in the plane. Given an angle θ , let

Rθ : R2→R2

denote counterclockwise rotation of R2 about the origin through the angle
θ . The action of Rθ is depicted in Figure 2.6.8. We have already looked
at Rπ

2
(in Example 2.2.15) and found it to be a matrix transformation.

It turns out that Rθ is a matrix transformation for every angle θ (with a
simple formula for the matrix), but it is not clear how to find the matrix.
Our approach is to first establish the (somewhat surprising) fact that Rθ is
linear, and then obtain the matrix from Theorem 2.6.2.

θ x

y

x+ yRθ (x)

Rθ (y)

Rθ (x+ y)

0
x

y

Figure 2.6.9

Let x and y be two vectors in R2. Then x+ y is the diagonal of the
parallelogram determined by x and y as in Figure 2.6.9.

The effect of Rθ is to rotate the entire parallelogram to obtain the new
parallelogram determined by Rθ (x) and Rθ (y), with diagonal Rθ (x+ y).
But this diagonal is Rθ (x)+Rθ (y) by the parallelogram law (applied to
the new parallelogram). It follows that

Rθ (x+y) = Rθ (x)+Rθ (y)

A similar argument shows that Rθ (ax) = aRθ (x) for any scalar a, so
Rθ : R2→ R2 is indeed a linear transformation.

θ

θ

0 e1

e2

Rθ (e1)
Rθ (e2)

cos θ

sin θ

cos θ
sin θ

11
x

y

Figure 2.6.10

With linearity established we can find the matrix of Rθ . Let e1 =

[
1
0

]

and e2 =

[
0
1

]
denote the standard basis of R2. By Figure 2.6.10 we see

that

Rθ (e1) =

[
cosθ
sinθ

]
and Rθ (e2) =

[
−sinθ

cosθ

]

Hence Theorem 2.6.2 shows that Rθ is induced by the matrix

[
Rθ (e1) Rθ (e2)

]
=

[
cosθ −sinθ
sinθ cosθ

]
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We record this as

Theorem 2.6.4

The rotation Rθ : R2→ R2 is the linear transformation with matrix

[
cosθ −sinθ
sinθ cosθ

]
.

For example, Rπ
2

and Rπ have matrices

[
0 −1
1 0

]
and

[
−1 0

0 −1

]
, respectively, by Theorem 2.6.4.

The first of these confirms the result in Example 2.2.15. The second shows that rotating a vector x =

[
x

y

]

through the angle π results in Rπ(x) =

[
−1 0

0 −1

][
x

y

]
=

[
−x

−y

]
=−x. Thus applying Rπ is the same

as negating x, a fact that is evident without Theorem 2.6.4.

Example 2.6.7

φ
θ

Rθ

[
Rφ (x)

]

Rφ (x)

x

0
x

y

Figure 2.6.11

Let θ and φ be angles. By finding the matrix of the composite
Rθ ◦Rφ , obtain expressions for cos(θ +φ) and sin(θ +φ).

Solution. Consider the transformations R2 Rφ−→ R2 Rθ−→ R2. Their
composite Rθ ◦Rφ is the transformation that first rotates the
plane through φ and then rotates it through θ , and so is the rotation
through the angle θ +φ (see Figure 2.6.11).
In other words

Rθ+φ = Rθ ◦Rφ

Theorem 2.6.3 shows that the corresponding equation holds
for the matrices of these transformations, so Theorem 2.6.4 gives:

[
cos(θ +φ) −sin(θ +φ)
sin(θ +φ) cos(θ +φ)

]
=

[
cosθ −sinθ
sinθ cosθ

][
cosφ −sinφ
sinφ cosφ

]

If we perform the matrix multiplication on the right, and then compare first column entries, we
obtain

cos(θ +φ) = cosθ cosφ − sinθ sinφ

sin(θ +φ) = sinθ cosφ − cosθ sinφ

These are the two basic identities from which most of trigonometry can be derived.
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Reflections

Qm(x)

x

0

y = mx

x

y

Figure 2.6.12

The line through the origin with slope m has equation y = mx, and we let
Qm : R2→R2 denote reflection in the line y = mx.

This transformation is described geometrically in Figure 2.6.12. In
words, Qm(x) is the “mirror image” of x in the line y = mx. If m = 0 then
Q0 is reflection in the x axis, so we already know Q0 is linear. While we
could show directly that Qm is linear (with an argument like that for Rθ ),
we prefer to do it another way that is instructive and derives the matrix of
Qm directly without using Theorem 2.6.2.

Let θ denote the angle between the positive x axis and the line y = mx.
The key observation is that the transformation Qm can be accomplished in

three steps: First rotate through −θ (so our line coincides with the x axis), then reflect in the x axis, and
finally rotate back through θ . In other words:

Qm = Rθ ◦Q0 ◦R−θ

Since R−θ , Q0, and Rθ are all linear, this (with Theorem 2.6.3) shows that Qm is linear and that its matrix
is the product of the matrices of Rθ , Q0, and R−θ . If we write c = cosθ and s = sinθ for simplicity, then
the matrices of Rθ , R−θ , and Q0 are

[
c −s

s c

]
,

[
c s

−s c

]
, and

[
1 0
0 −1

]
respectively.13

Hence, by Theorem 2.6.3, the matrix of Qm = Rθ ◦Q0 ◦R−θ is

[
c −s

s c

][
1 0
0 −1

][
c s

−s c

]
=

[
c2− s2 2sc

2sc s2− c2

]

θ
m

1

[
1
m

]

0

√
1+m2 y = mx

x

y

Figure 2.6.13

We can obtain this matrix in terms of m alone. Figure 2.6.13 shows
that

cosθ = 1√
1+m2 and sinθ = m√

1+m2

so the matrix

[
c2− s2 2sc

2sc s2− c2

]
of Qm becomes 1

1+m2

[
1−m2 2m

2m m2−1

]
.

Theorem 2.6.5

Let Qm denote reflection in the line y = mx. Then Qm is a linear

transformation with matrix 1
1+m2

[
1−m2 2m

2m m2−1

]
.

13The matrix of R−θ comes from the matrix of Rθ using the fact that, for all angles θ , cos(−θ ) = cosθ and
sin(−θ ) =−sin(θ ).
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Note that if m = 0, the matrix in Theorem 2.6.5 becomes

[
1 0
0 −1

]
, as expected. Of course this

analysis fails for reflection in the y axis because vertical lines have no slope. However it is an easy

exercise to verify directly that reflection in the y axis is indeed linear with matrix

[
−1 0

0 1

]
.14

Example 2.6.8

Let T : R2→ R2 be rotation through −π
2 followed by reflection in the y axis. Show that T is a

reflection in a line through the origin and find the line.

Solution. The matrix of R−π
2

is


 cos(−π

2 ) −sin(−π
2 )

sin(−π
2 ) cos(−π

2 )


=

[
0 1
−1 0

]
and the matrix of

reflection in the y axis is

[
−1 0

0 1

]
. Hence the matrix of T is

[
−1 0

0 1

][
0 1
−1 0

]
=

[
0 −1
−1 0

]
and this is reflection in the line y =−x (take m =−1 in

Theorem 2.6.5).

Projections

Pm(x)

x

y = mx

0
x

y

Figure 2.6.14

The method in the proof of Theorem 2.6.5 works more generally. Let
Pm : R2→R2 denote projection on the line y = mx. This transformation is
described geometrically in Figure 2.6.14.

If m = 0, then P0

[
x

y

]
=

[
x

0

]
for all

[
x

y

]
in R2, so P0 is linear with

matrix

[
1 0
0 0

]
. Hence the argument above for Qm goes through for Pm.

First observe that
Pm = Rθ ◦P0 ◦R−θ

as before. So, Pm is linear with matrix
[

c −s

s c

][
1 0
0 0

][
c s

−s c

]
=

[
c2 sc

sc s2

]

where c = cosθ = 1√
1+m2 and s = sinθ = m√

1+m2 .

14Note that

[
−1 0

0 1

]
= lim

m→∞

1
1+m2

[
1−m2 2m

2m m2− 1

]
.
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This gives:

Theorem 2.6.6

Let Pm : R2→ R2 be projection on the line y = mx. Then Pm is a linear transformation with matrix
1

1+m2

[
1 m

m m2

]
.

Again, if m = 0, then the matrix in Theorem 2.6.6 reduces to

[
1 0
0 0

]
as expected. As the y axis has

no slope, the analysis fails for projection on the y axis, but this transformation is indeed linear with matrix[
0 0
0 1

]
as is easily verified directly.

Note that the formula for the matrix of Qm in Theorem 2.6.5 can be derived from the above formula
for the matrix of Pm. Using Figure 2.6.12, observe that Qm(x) = x+2[Pm(x)−x] so Qm(x) = 2Pm(x)−x.
Substituting the matrices for Pm(x) and 1R2(x) gives the desired formula.

Example 2.6.9

Given x in R2, write y = Pm(x). The fact that y lies on the line y = mx means that Pm(y) = y. But
then

(Pm ◦Pm)(x) = Pm(y) = y = Pm(x) for all x in R2, that is, Pm ◦Pm = Pm.

In particular, if we write the matrix of Pm as A = 1
1+m2

[
1 m

m m2

]
, then A2 = A. The reader should

verify this directly.

Exercises for 2.6

Exercise 2.6.1 Let T : R3→ R2 be a linear transforma-
tion.

a. Find T




8
3
7


 if T




1
0
−1


=

[
2
3

]

and T




2
1
3


=

[
−1

0

]
.

b. Find T




5
6

−13


 if T




3
2
−1


=

[
3
5

]

and T




2
0
5


=

[
−1

2

]
.

Exercise 2.6.2 Let T : R4→ R3 be a linear transforma-
tion.

a. Find T




1
3
−2
−3


 if T




1
1
0
−1


=




2
3
−1




and T




0
−1

1
1


=




5
0
1


.

b. Find T




5
−1

2
−4


 if T




1
1
1
1


=




5
1
−3
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and T




−1
1
0
2


=




2
0
1


.

Exercise 2.6.3 In each case assume that the transfor-
mation T is linear, and use Theorem 2.6.2 to obtain the
matrix A of T .

a. T : R2→ R2 is reflection in the line y =−x.

b. T : R2→ R2 is given by T (x) =−x for each x in R2.

c. T : R2→ R2 is clockwise rotation through π
4 .

d. T : R2→ R2 is counterclockwise rotation through π
4 .

Exercise 2.6.4 In each case use Theorem 2.6.2 to obtain
the matrix A of the transformation T . You may assume
that T is linear in each case.

a. T : R3→ R3 is reflection in the x− z plane.

b. T : R3→ R3 is reflection in the y− z plane.

Exercise 2.6.5 Let T : Rn→Rm be a linear transforma-
tion.

a. If x is in Rn, we say that x is in the kernel of T if
T (x) = 0. If x1 and x2 are both in the kernel of T ,
show that ax1 + bx2 is also in the kernel of T for
all scalars a and b.

b. If y is in Rn, we say that y is in the image of T if
y = T (x) for some x in Rn. If y1 and y2 are both
in the image of T , show that ay1 + by2 is also in
the image of T for all scalars a and b.

Exercise 2.6.6 Use Theorem 2.6.2 to find the matrix of
the identity transformation 1Rn : Rn → Rn defined by
1Rn(x) = x for each x in Rn.

Exercise 2.6.7 In each case show that T : R2 → R2 is
not a linear transformation.

T

[
x

y

]
=

[
xy

0

]
a. T

[
x

y

]
=

[
0
y2

]
b.

Exercise 2.6.8 In each case show that T is either reflec-
tion in a line or rotation through an angle, and find the
line or angle.

a. T

[
x

y

]
= 1

5

[
−3x+4y

4x+3y

]

b. T

[
x

y

]
= 1√

2

[
x+ y

−x+ y

]

c. T

[
x

y

]
= 1√

3

[
x−
√

3y√
3x+ y

]

d. T

[
x

y

]
=− 1

10

[
8x+6y

6x−8y

]

Exercise 2.6.9 Express reflection in the line y = −x as
the composition of a rotation followed by reflection in
the line y = x.

Exercise 2.6.10 Find the matrix of T : R3→R3 in each
case:

a. T is rotation through θ about the x axis (from the
y axis to the z axis).

b. T is rotation through θ about the y axis (from the
x axis to the z axis).

Exercise 2.6.11 Let Tθ : R2→ R2 denote reflection in
the line making an angle θ with the positive x axis.

a. Show that the matrix of Tθ is

[
cos2θ sin2θ

sin2θ −cos2θ

]

for all θ .

b. Show that Tθ ◦R2φ = Tθ−φ for all θ and φ .

Exercise 2.6.12 In each case find a rotation or reflection
that equals the given transformation.

a. Reflection in the y axis followed by rotation
through π

2 .

b. Rotation through π followed by reflection in the x

axis.

c. Rotation through π
2 followed by reflection in the

line y = x.

d. Reflection in the x axis followed by rotation
through π

2 .

e. Reflection in the line y = x followed by reflection
in the x axis.

f. Reflection in the x axis followed by reflection in
the line y = x.
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Exercise 2.6.13 Let R and S be matrix transformations
Rn→ Rm induced by matrices A and B respectively. In
each case, show that T is a matrix transformation and
describe its matrix in terms of A and B.

a. T (x) = R(x)+S(x) for all x in Rn.

b. T (x) = aR(x) for all x in Rn (where a is a fixed
real number).

Exercise 2.6.14 Show that the following hold for all lin-
ear transformations T : Rn→ Rm:

T (0) = 0a. T (−x) = −T(x) for all x in
Rn

b.

Exercise 2.6.15 The transformation T : Rn → Rm de-
fined by T (x) = 0 for all x in Rn is called the zero trans-

formation.

a. Show that the zero transformation is linear and
find its matrix.

b. Let e1, e2, . . . , en denote the columns of the n×n

identity matrix. If T : Rn → Rm is linear and
T (ei) = 0 for each i, show that T is the zero trans-
formation. [Hint: Theorem 2.6.1.]

Exercise 2.6.16 Write the elements of Rn and Rm as
rows. If A is an m× n matrix, define T : Rm → Rn by
T (y) = yA for all rows y in Rm. Show that:

a. T is a linear transformation.

b. the rows of A are T (f1), T (f2), . . . , T (fm) where
fi denotes row i of Im. [Hint: Show that fiA is row
i of A.]

Exercise 2.6.17 Let S :Rn→Rn and T :Rn→Rn be lin-
ear transformations with matrices A and B respectively.

a. Show that B2 = B if and only if T 2 = T (where T 2

means T ◦T ).

b. Show that B2 = I if and only if T 2 = 1Rn .

c. Show that AB = BA if and only if S◦T = T ◦S.

[Hint: Theorem 2.6.3.]

Exercise 2.6.18 Let Q0 : R2→ R2 be reflection in the x

axis, let Q1 : R2→ R2 be reflection in the line y = x, let
Q−1 : R2→ R2 be reflection in the line y = −x, and let
R π

2
: R2→ R2 be counterclockwise rotation through π

2 .

a. Show that Q1 ◦R π
2
= Q0.

b. Show that Q1 ◦Q0 = R π
2

.

c. Show that R π
2
◦Q0 = Q1.

d. Show that Q0 ◦R π
2
= Q−1.

Exercise 2.6.19 For any slope m, show that:

Qm ◦Pm = Pma. Pm ◦Qm = Pmb.

Exercise 2.6.20 Define T : Rn → R by
T (x1, x2, . . . , xn) = x1 + x2 + · · ·+ xn. Show that T

is a linear transformation and find its matrix.

Exercise 2.6.21 Given c in R, define Tc : Rn → R by
Tc(x) = cx for all x in Rn. Show that Tc is a linear trans-
formation and find its matrix.

Exercise 2.6.22 Given vectors w and x in Rn, denote
their dot product by w ·x.

a. Given w in Rn, define Tw : Rn → R by Tw(x) =
w ·x for all x in Rn. Show that Tw is a linear trans-
formation.

b. Show that every linear transformation T : Rn→R
is given as in (a); that is T = Tw for some w in Rn.

Exercise 2.6.23 If x 6= 0 and y are vectors in Rn, show
that there is a linear transformation T :Rn→Rn such that
T (x) = y. [Hint: By Definition 2.5, find a matrix A such
that Ax = y.]

Exercise 2.6.24 Let Rn T−→Rm S−→Rk be two linear trans-
formations. Show directly that S◦T is linear. That is:

a. Show that (S◦T )(x+y) = (S◦T )x+(S◦T )y for
all x, y in Rn.

b. Show that (S◦T )(ax) = a[(S◦T )x] for all x in Rn

and all a in R.

Exercise 2.6.25 Let Rn T−→ Rm S−→ Rk R−→ Rk be linear.
Show that R ◦ (S ◦ T ) = (R ◦ S) ◦ T by showing directly
that [R◦(S◦T )](x) = [(R◦S)◦T )](x) holds for each vec-
tor x in Rn.
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2.7 LU-Factorization15

The solution to a system Ax = b of linear equations can be solved quickly if A can be factored as A = LU

where L and U are of a particularly nice form. In this section we show that gaussian elimination can be
used to find such factorizations.

Triangular Matrices

As for square matrices, if A =
[
ai j

]
is an m× n matrix, the elements a11, a22, a33, . . . form the main

diagonal of A. Then A is called upper triangular if every entry below and to the left of the main diagonal
is zero. Every row-echelon matrix is upper triangular, as are the matrices




1 −1 0 3
0 2 1 1
0 0 −3 0







0 2 1 0 5
0 0 0 3 1
0 0 1 0 1







1 1 1
0 −1 1
0 0 0
0 0 0




By analogy, a matrix A is called lower triangular if its transpose is upper triangular, that is if each entry
above and to the right of the main diagonal is zero. A matrix is called triangular if it is upper or lower
triangular.

Example 2.7.1

Solve the system
x1 + 2x2− 3x3− x4 + 5x5 = 3

5x3 + x4 + x5 = 8
2x5 = 6

where the coefficient matrix is upper triangular.

Solution. As in gaussian elimination, let the “non-leading” variables be parameters: x2 = s and
x4 = t. Then solve for x5, x3, and x1 in that order as follows. The last equation gives

x5 =
6
2 = 3

Substitution into the second last equation gives

x3 = 1− 1
5t

Finally, substitution of both x5 and x3 into the first equation gives

x1 =−9−2s+ 2
5t

The method used in Example 2.7.1 is called back substitution because later variables are substituted
into earlier equations. It works because the coefficient matrix is upper triangular. Similarly, if the coeffi-

15This section is not used later and so may be omitted with no loss of continuity.
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cient matrix is lower triangular the system can be solved by forward substitution where earlier variables
are substituted into later equations. As observed in Section 1.2, these procedures are more numerically
efficient than gaussian elimination.

Now consider a system Ax = b where A can be factored as A = LU where L is lower triangular and U

is upper triangular. Then the system Ax = b can be solved in two stages as follows:

1. First solve Ly = b for y by forward substitution.

2. Then solve Ux = y for x by back substitution.

Then x is a solution to Ax = b because Ax = LUx = Ly = b. Moreover, every solution x arises this way
(take y =Ux). Furthermore the method adapts easily for use in a computer.

This focuses attention on efficiently obtaining such factorizations A = LU . The following result will
be needed; the proof is straightforward and is left as Exercises 2.7.7 and 2.7.8.

Lemma 2.7.1

Let A and B denote matrices.

1. If A and B are both lower (upper) triangular, the same is true of AB.

2. If A is n×n and lower (upper) triangular, then A is invertible if and only if every main
diagonal entry is nonzero. In this case A−1 is also lower (upper) triangular.

LU-Factorization

Let A be an m×n matrix. Then A can be carried to a row-echelon matrix U (that is, upper triangular). As
in Section 2.5, the reduction is

A→ E1A→ E2E1A→ E3E2E1A→ ·· · → EkEk−1 · · ·E2E1A =U

where E1, E2, . . . , Ek are elementary matrices corresponding to the row operations used. Hence

A = LU

where L = (EkEk−1 · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E−1

k−1E−1
k . If we do not insist that U is reduced then, except

for row interchanges, none of these row operations involve adding a row to a row above it. Thus, if no
row interchanges are used, all the Ei are lower triangular, and so L is lower triangular (and invertible) by
Lemma 2.7.1. This proves the following theorem. For convenience, let us say that A can be lower reduced

if it can be carried to row-echelon form using no row interchanges.

www.dbooks.org

https://www.dbooks.org/


120 Matrix Algebra

Theorem 2.7.1

If A can be lower reduced to a row-echelon matrix U , then

A = LU

where L is lower triangular and invertible and U is upper triangular and row-echelon.

Definition 2.14 LU-factorization

A factorization A = LU as in Theorem 2.7.1 is called an LU-factorization of A.

Such a factorization may not exist (Exercise 2.7.4) because A cannot be carried to row-echelon form
using no row interchange. A procedure for dealing with this situation will be outlined later. However, if
an LU-factorization A = LU does exist, then the gaussian algorithm gives U and also leads to a procedure
for finding L. Example 2.7.2 provides an illustration. For convenience, the first nonzero column from the
left in a matrix A is called the leading column of A.

Example 2.7.2

Find an LU-factorization of A =




0 2 −6 −2 4
0 −1 3 3 2
0 −1 3 7 10


.

Solution. We lower reduce A to row-echelon form as follows:

A =




0 2 −6 −2 4
0 −1 3 3 2
0 −1 3 7 10


→




0 1 −3 −1 2
0 0 0 2 4
0 0 0 6 12


→




0 1 −3 −1 2
0 0 0 1 2
0 0 0 0 0


=U

The circled columns are determined as follows: The first is the leading column of A, and is used
(by lower reduction) to create the first leading 1 and create zeros below it. This completes the work
on row 1, and we repeat the procedure on the matrix consisting of the remaining rows. Thus the
second circled column is the leading column of this smaller matrix, which we use to create the
second leading 1 and the zeros below it. As the remaining row is zero here, we are finished. Then
A = LU where

L =




2 0 0
−1 2 0
−1 6 1




This matrix L is obtained from I3 by replacing the bottom of the first two columns by the circled
columns in the reduction. Note that the rank of A is 2 here, and this is the number of circled
columns.

The calculation in Example 2.7.2 works in general. There is no need to calculate the elementary
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matrices Ei, and the method is suitable for use in a computer because the circled columns can be stored in
memory as they are created. The procedure can be formally stated as follows:

LU-Algorithm

Let A be an m×n matrix of rank r, and suppose that A can be lower reduced to a row-echelon
matrix U . Then A = LU where the lower triangular, invertible matrix L is constructed as follows:

1. If A = 0, take L = Im and U = 0.

2. If A 6= 0, write A1 = A and let c1 be the leading column of A1. Use c1 to create the first
leading 1 and create zeros below it (using lower reduction). When this is completed, let A2

denote the matrix consisting of rows 2 to m of the matrix just created.

3. If A2 6= 0, let c2 be the leading column of A2 and repeat Step 2 on A2 to create A3.

4. Continue in this way until U is reached, where all rows below the last leading 1 consist of
zeros. This will happen after r steps.

5. Create L by placing c1, c2, . . . , cr at the bottom of the first r columns of Im.

A proof of the LU-algorithm is given at the end of this section.

LU-factorization is particularly important if, as often happens in business and industry, a series of
equations Ax = B1, Ax = B2, . . . , Ax = Bk, must be solved, each with the same coefficient matrix A. It is
very efficient to solve the first system by gaussian elimination, simultaneously creating an LU-factorization
of A, and then using the factorization to solve the remaining systems by forward and back substitution.

Example 2.7.3

Find an LU-factorization for A =




5 −5 10 0 5
−3 3 2 2 1
−2 2 0 −1 0

1 −1 10 2 5


.

Solution. The reduction to row-echelon form is
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5 −5 10 0 5
−3 3 2 2 1
−2 2 0 −1 0

1 −1 10 2 5


→




1 −1 2 0 1
0 0 8 2 4
0 0 4 −1 2
0 0 8 2 4




→




1 −1 2 0 1

0 0 1 1
4

1
2

0 0 0 −2 0

0 0 0 0 0




→




1 −1 2 0 1

0 0 1 1
4

1
2

0 0 0 1 0

0 0 0 0 0



=U

If U denotes this row-echelon matrix, then A = LU , where

L =




5 0 0 0
−3 8 0 0
−2 4 −2 0

1 8 0 1




The next example deals with a case where no row of zeros is present in U (in fact, A is invertible).

Example 2.7.4

Find an LU-factorization for A =




2 4 2
1 1 2
−1 0 2


.

Solution. The reduction to row-echelon form is




2 4 2
1 1 2
−1 0 2


→




1 2 1
0 −1 1
0 2 3


→




1 2 1
0 1 −1
0 0 5


→




1 2 1
0 1 −1
0 0 1


=U

Hence A = LU where L =




2 0 0
1 −1 0
−1 2 5


.
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There are matrices (for example

[
0 1
1 0

]
) that have no LU-factorization and so require at least one

row interchange when being carried to row-echelon form via the gaussian algorithm. However, it turns
out that, if all the row interchanges encountered in the algorithm are carried out first, the resulting matrix
requires no interchanges and so has an LU-factorization. Here is the precise result.

Theorem 2.7.2

Suppose an m×n matrix A is carried to a row-echelon matrix U via the gaussian algorithm. Let
P1, P2, . . . , Ps be the elementary matrices corresponding (in order) to the row interchanges used,
and write P = Ps · · ·P2P1. (If no interchanges are used take P = Im.) Then:

1. PA is the matrix obtained from A by doing these interchanges (in order) to A.

2. PA has an LU-factorization.

The proof is given at the end of this section.

A matrix P that is the product of elementary matrices corresponding to row interchanges is called
a permutation matrix. Such a matrix is obtained from the identity matrix by arranging the rows in a
different order, so it has exactly one 1 in each row and each column, and has zeros elsewhere. We regard
the identity matrix as a permutation matrix. The elementary permutation matrices are those obtained from
I by a single row interchange, and every permutation matrix is a product of elementary ones.

Example 2.7.5

If A =




0 0 −1 2
−1 −1 1 2

2 1 −3 6
0 1 −1 4


, find a permutation matrix P such that PA has an LU-factorization,

and then find the factorization.

Solution. Apply the gaussian algorithm to A:

A
∗−→




−1 −1 1 2
0 0 −1 2
2 1 −3 6
0 1 −1 4


→




1 1 −1 −2
0 0 −1 2
0 −1 −1 10
0 1 −1 4



∗−→




1 1 −1 −2
0 −1 −1 10
0 0 −1 2
0 1 −1 4




→




1 1 −1 −2
0 1 1 −10
0 0 −1 2
0 0 −2 14


→




1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 10




Two row interchanges were needed (marked with ∗), first rows 1 and 2 and then rows 2 and 3.
Hence, as in Theorem 2.7.2,

P =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1







0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


=




0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1
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If we do these interchanges (in order) to A, the result is PA. Now apply the LU-algorithm to PA:

PA =




−1 −1 1 2
2 1 −3 6
0 0 −1 2
0 1 −1 4


→




1 1 −1 −2
0 −1 −1 10
0 0 −1 2
0 1 −1 4


→




1 1 −1 −2
0 1 1 −10
0 0 −1 2
0 0 −2 14




→




1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 10


→




1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 1


=U

Hence, PA = LU , where L =




−1 0 0 0
2 −1 0 0
0 0 −1 0
0 1 −2 10


 and U =




1 1 −1 −2
0 1 1 −10
0 0 1 −2
0 0 0 1


.

Theorem 2.7.2 provides an important general factorization theorem for matrices. If A is any m× n

matrix, it asserts that there exists a permutation matrix P and an LU-factorization PA = LU . Moreover,
it shows that either P = I or P = Ps · · ·P2P1, where P1, P2, . . . , Ps are the elementary permutation matri-
ces arising in the reduction of A to row-echelon form. Now observe that P−1

i = Pi for each i (they are
elementary row interchanges). Thus, P−1 = P1P2 · · ·Ps, so the matrix A can be factored as

A = P−1LU

where P−1 is a permutation matrix, L is lower triangular and invertible, and U is a row-echelon matrix.
This is called a PLU-factorization of A.

The LU-factorization in Theorem 2.7.1 is not unique. For example,
[

1 0
3 2

][
1 −2 3
0 0 0

]
=

[
1 0
3 1

][
1 −2 3
0 0 0

]

However, it is necessary here that the row-echelon matrix has a row of zeros. Recall that the rank of a
matrix A is the number of nonzero rows in any row-echelon matrix U to which A can be carried by row
operations. Thus, if A is m×n, the matrix U has no row of zeros if and only if A has rank m.

Theorem 2.7.3

Let A be an m×n matrix that has an LU-factorization

A = LU

If A has rank m (that is, U has no row of zeros), then L and U are uniquely determined by A.

Proof. Suppose A = MV is another LU-factorization of A, so M is lower triangular and invertible and V is
row-echelon. Hence LU = MV , and we must show that L = M and U =V . We write N = M−1L. Then N
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is lower triangular and invertible (Lemma 2.7.1) and NU = V , so it suffices to prove that N = I. If N is
m×m, we use induction on m. The case m = 1 is left to the reader. If m > 1, observe first that column 1
of V is N times column 1 of U . Thus if either column is zero, so is the other (N is invertible). Hence, we
can assume (by deleting zero columns) that the (1, 1)-entry is 1 in both U and V .

Now we write N =

[
a 0
X N1

]
, U =

[
1 Y

0 U1

]
, and V =

[
1 Z

0 V1

]
in block form. Then NU = V

becomes

[
a aY

X XY +N1U1

]
=

[
1 Z

0 V1

]
. Hence a = 1, Y = Z, X = 0, and N1U1 = V1. But N1U1 = V1

implies N1 = I by induction, whence N = I.

If A is an m×m invertible matrix, then A has rank m by Theorem 2.4.5. Hence, we get the following
important special case of Theorem 2.7.3.

Corollary 2.7.1

If an invertible matrix A has an LU-factorization A = LU , then L and U are uniquely determined by
A.

Of course, in this case U is an upper triangular matrix with 1s along the main diagonal.

Proofs of Theorems

Proof of the LU-Algorithm. If c1, c2, . . . , cr are columns of lengths m, m−1, . . . , m−r+1, respectively,

write L(m)(c1, c2, . . . , cr) for the lower triangular m×m matrix obtained from Im by placing c1, c2, . . . , cr

at the bottom of the first r columns of Im.

Proceed by induction on n. If A = 0 or n = 1, it is left to the reader. If n > 1, let c1 denote the leading
column of A and let k1 denote the first column of the m×m identity matrix. There exist elementary
matrices E1, . . . , Ek such that, in block form,

(Ek · · ·E2E1)A =

[
0 k1

X1

A1

]
where (Ek · · ·E2E1)c1 = k1

Moreover, each E j can be taken to be lower triangular (by assumption). Write

G = (Ek · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E−1

k

Then G is lower triangular, and Gk1 = c1. Also, each E j (and so each E−1
j ) is the result of either multiply-

ing row 1 of Im by a constant or adding a multiple of row 1 to another row. Hence,

G = (E−1
1 E−1

2 · · ·E−1
k )Im =

[
c1

0
Im−1

]

in block form. Now, by induction, let A1 =L1U1 be an LU-factorization of A1, where L1 =L(m−1) [c2, . . . , cr]
and U1 is row-echelon. Then block multiplication gives

G−1A =

[
0 k1

X1

L1U1

]
=

[
1 0
0 L1

][
0 1 X1

0 0 U1

]
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Hence A = LU , where U =

[
0 1 X1

0 0 U1

]
is row-echelon and

L =

[
c1

0
Im−1

][
1 0
0 L1

]
=

[
c1

0
L

]
= L(m) [c1, c2, . . . , cr]

This completes the proof.

Proof of Theorem 2.7.2. Let A be a nonzero m× n matrix and let k j denote column j of Im. There is a
permutation matrix P1 (where either P1 is elementary or P1 = Im) such that the first nonzero column c1 of
P1A has a nonzero entry on top. Hence, as in the LU-algorithm,

L(m) [c1]
−1 ·P1 ·A =

[
0 1 X1

0 0 A1

]

in block form. Then let P2 be a permutation matrix (either elementary or Im) such that

P2 ·L(m) [c1]
−1 ·P1 ·A =

[
0 1 X1

0 0 A′1

]

and the first nonzero column c2 of A′1 has a nonzero entry on top. Thus,

L(m) [k1, c2]
−1 ·P2 ·L(m) [c1]

−1 ·P1 ·A =




0 1 X1

0 0
0 1 X2

0 0 A2




in block form. Continue to obtain elementary permutation matrices P1, P2, . . . , Pr and columns c1, c2, . . . , cr

of lengths m, m−1, . . . , such that

(LrPrLr−1Pr−1 · · ·L2P2L1P1)A =U

where U is a row-echelon matrix and L j = L(m)
[
k1, . . . , k j−1, c j

]−1
for each j, where the notation

means the first j− 1 columns are those of Im. It is not hard to verify that each L j has the form L j =

L(m)
[
k1, . . . , k j−1, c′j

]
where c′j is a column of length m− j+ 1. We now claim that each permutation

matrix Pk can be “moved past” each matrix L j to the right of it, in the sense that

PkL j = L′jPk

where L′j = L(m)
[
k1, . . . , k j−1, c′′j

]
for some column c′′j of length m− j+ 1. Given that this is true, we

obtain a factorization of the form

(LrL
′
r−1 · · ·L′2L′1)(PrPr−1 · · ·P2P1)A =U

If we write P= PrPr−1 · · ·P2P1, this shows that PA has an LU-factorization because LrL
′
r−1 · · ·L′2L′1 is lower

triangular and invertible. All that remains is to prove the following rather technical result.
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Lemma 2.7.2

Let Pk result from interchanging row k of Im with a row below it. If j < k, let c j be a column of
length m− j+1. Then there is another column c′j of length m− j+1 such that

Pk ·L(m)
[
k1, . . . , k j−1, c j

]
= L(m)

[
k1, . . . , k j−1, c′j

]
·Pk

The proof is left as Exercise 2.7.11.

Exercises for 2.7

Exercise 2.7.1 Find an LU-factorization of the follow-
ing matrices.

a.




2 6 −2 0 2
3 9 −3 3 1
−1 −3 1 −3 1




b.




2 4 2
1 −1 3
−1 7 −7




c.




2 6 −2 0 2
1 5 −1 2 5
3 7 −3 −2 5
−1 −1 1 2 3




d.




−1 −3 1 0 −1
1 4 1 1 1
1 2 −3 −1 1
0 −2 −4 −2 0




e.




2 2 4 6 0 2
1 −1 2 1 3 1
−2 2 −4 −1 1 6

0 2 0 3 4 8
−2 4 −4 1 −2 6




f.




2 2 −2 4 2
1 −1 0 2 1
3 1 −2 6 3
1 3 −2 2 1




Exercise 2.7.2 Find a permutation matrix P and an LU-
factorization of PA if A is:




0 0 2
0 −1 4
3 5 1


a.




0 −1 2
0 0 4
−1 2 1


b.




0 −1 2 1 3
−1 1 3 1 4

1 −1 −3 6 2
2 −2 −4 1 0


c.




−1 −2 3 0
2 4 −6 5
1 1 −1 3
2 5 −10 1


d.

Exercise 2.7.3 In each case use the given LU-
decomposition of A to solve the system Ax= b by finding
y such that Ly = b, and then x such that Ux = y:

a. A =




2 0 0
0 −1 0
1 1 3






1 0 0 1
0 0 1 2
0 0 0 1


;

b =




1
−1

2




b. A =




2 0 0
1 3 0
−1 2 1






1 1 0 −1
0 1 0 1
0 0 0 0


;

b =



−2
−1

1




www.dbooks.org

https://www.dbooks.org/


128 Matrix Algebra

c. A =




−2 0 0 0
1 −1 0 0
−1 0 2 0

0 1 0 2







1 −1 2 1

0 1 1 −4

0 0 1 − 1
2

0 0 0 1




;

b =




1
−1

2
0




d. A =




2 0 0 0
1 −1 0 0
−1 1 2 0

3 0 1 −1







1 −1 0 1
0 1 −2 −1
0 0 1 1
0 0 0 0


;

b =




4
−6

4
5




Exercise 2.7.4 Show that

[
0 1
1 0

]
= LU is impossible

where L is lower triangular and U is upper triangular.

Exercise 2.7.5 Show that we can accomplish any row
interchange by using only row operations of other types.

Exercise 2.7.6

a. Let L and L1 be invertible lower triangular matri-
ces, and let U and U1 be invertible upper triangu-
lar matrices. Show that LU = L1U1 if and only if
there exists an invertible diagonal matrix D such
that L1 = LD and U1 = D−1U . [Hint: Scrutinize
L−1L1 =UU−1

1 .]

b. Use part (a) to prove Theorem 2.7.3 in the case
that A is invertible.

Exercise 2.7.7 Prove Lemma 2.7.1(1). [Hint: Use block
multiplication and induction.]

Exercise 2.7.8 Prove Lemma 2.7.1(2). [Hint: Use block
multiplication and induction.]

Exercise 2.7.9 A triangular matrix is called unit trian-

gular if it is square and every main diagonal element is a
1.

a. If A can be carried by the gaussian algorithm
to row-echelon form using no row interchanges,
show that A = LU where L is unit lower triangular
and U is upper triangular.

b. Show that the factorization in (a.) is unique.

Exercise 2.7.10 Let c1, c2, . . . , cr be columns
of lengths m, m − 1, . . . , m − r + 1. If k j de-
notes column j of Im, show that L(m) [c1, c2, . . . , cr] =
L(m) [c1]L

(m) [k1, c2]L
(m) [k1, k2, c3] · · ·

L(m) [k1, k2, . . . , kr−1, cr]. The notation is as in the
proof of Theorem 2.7.2. [Hint: Use induction on m and
block multiplication.]

Exercise 2.7.11 Prove Lemma 2.7.2. [Hint: P−1
k = Pk.

Write Pk =

[
Ik 0
0 P0

]
in block form where P0 is an

(m− k)× (m− k) permutation matrix.]

2.8 An Application to Input-Output Economic Models16

In 1973 Wassily Leontief was awarded the Nobel prize in economics for his work on mathematical mod-
els.17 Roughly speaking, an economic system in this model consists of several industries, each of which
produces a product and each of which uses some of the production of the other industries. The following
example is typical.

16The applications in this section and the next are independent and may be taken in any order.
17See W. W. Leontief, “The world economy of the year 2000,” Scientific American, Sept. 1980.
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Example 2.8.1

A primitive society has three basic needs: food, shelter, and clothing. There are thus three
industries in the society—the farming, housing, and garment industries—that produce these
commodities. Each of these industries consumes a certain proportion of the total output of each
commodity according to the following table.

OUTPUT

Farming Housing Garment

Farming 0.4 0.2 0.3
CONSUMPTION Housing 0.2 0.6 0.4

Garment 0.4 0.2 0.3

Find the annual prices that each industry must charge for its income to equal its expenditures.

Solution. Let p1, p2, and p3 be the prices charged per year by the farming, housing, and garment
industries, respectively, for their total output. To see how these prices are determined, consider the
farming industry. It receives p1 for its production in any year. But it consumes products from all
these industries in the following amounts (from row 1 of the table): 40% of the food, 20% of the
housing, and 30% of the clothing. Hence, the expenditures of the farming industry are
0.4p1 +0.2p2 +0.3p3, so

0.4p1 +0.2p2 +0.3p3 = p1

A similar analysis of the other two industries leads to the following system of equations.

0.4p1 +0.2p2 +0.3p3 = p1

0.2p1 +0.6p2 +0.4p3 = p2

0.4p1 +0.2p2 +0.3p3 = p3

This has the matrix form Ep = p, where

E =




0.4 0.2 0.3
0.2 0.6 0.4
0.4 0.2 0.3


 and p =




p1

p2

p3




The equations can be written as the homogeneous system

(I−E)p = 0

where I is the 3×3 identity matrix, and the solutions are

p =




2t

3t

2t




where t is a parameter. Thus, the pricing must be such that the total output of the farming industry
has the same value as the total output of the garment industry, whereas the total value of the
housing industry must be 3

2 as much.
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In general, suppose an economy has n industries, each of which uses some (possibly none) of the
production of every industry. We assume first that the economy is closed (that is, no product is exported
or imported) and that all product is used. Given two industries i and j, let ei j denote the proportion of the
total annual output of industry j that is consumed by industry i. Then E =

[
ei j

]
is called the input-output

matrix for the economy. Clearly,
0≤ ei j ≤ 1 for all i and j (2.12)

Moreover, all the output from industry j is used by some industry (the model is closed), so

e1 j + e2 j + · · ·+ ei j = 1 for each j (2.13)

This condition asserts that each column of E sums to 1. Matrices satisfying conditions (2.12) and (2.13)
are called stochastic matrices.

As in Example 2.8.1, let pi denote the price of the total annual production of industry i. Then pi is the
annual revenue of industry i. On the other hand, industry i spends ei1p1 + ei2 p2 + · · ·+ ein pn annually for
the product it uses (ei j p j is the cost for product from industry j). The closed economic system is said to
be in equilibrium if the annual expenditure equals the annual revenue for each industry—that is, if

e1 j p1 + e2 j p2 + · · ·+ ei j pn = pi for each i = 1, 2, . . . , n

If we write p =




p1

p2
...

pn


, these equations can be written as the matrix equation

Ep = p

This is called the equilibrium condition, and the solutions p are called equilibrium price structures.
The equilibrium condition can be written as

(I−E)p = 0

which is a system of homogeneous equations for p. Moreover, there is always a nontrivial solution p.
Indeed, the column sums of I−E are all 0 (because E is stochastic), so the row-echelon form of I−E has
a row of zeros. In fact, more is true:

Theorem 2.8.1

Let E be any n×n stochastic matrix. Then there is a nonzero n×1 vector p with nonnegative
entries such that Ep = p. If all the entries of E are positive, the matrix p can be chosen with all
entries positive.

Theorem 2.8.1 guarantees the existence of an equilibrium price structure for any closed input-output
system of the type discussed here. The proof is beyond the scope of this book.18

18The interested reader is referred to P. Lancaster’s Theory of Matrices (New York: Academic Press, 1969) or to E. Seneta’s
Non-negative Matrices (New York: Wiley, 1973).
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Example 2.8.2

Find the equilibrium price structures for four industries if the input-output matrix is

E =




0.6 0.2 0.1 0.1
0.3 0.4 0.2 0
0.1 0.3 0.5 0.2

0 0.1 0.2 0.7




Find the prices if the total value of business is $1000.

Solution. If p =




p1

p2

p3

p4


 is the equilibrium price structure, then the equilibrium condition reads

Ep = p. When we write this as (I−E)p = 0, the methods of Chapter 1 yield the following family
of solutions:

p =




44t

39t

51t

47t




where t is a parameter. If we insist that p1 + p2 + p3 + p4 = 1000, then t = 5.525. Hence

p =




243.09
215.47
281.76
259.67




to five figures.

The Open Model

We now assume that there is a demand for products in the open sector of the economy, which is the part of
the economy other than the producing industries (for example, consumers). Let di denote the total value of
the demand for product i in the open sector. If pi and ei j are as before, the value of the annual demand for
product i by the producing industries themselves is ei1 p1 + ei2 p2 + · · ·+ ein pn, so the total annual revenue
pi of industry i breaks down as follows:

pi = (ei1p1 + ei2 p2 + · · ·+ ein pn)+di for each i = 1, 2, . . . , n

The column d =




d1
...

dn


 is called the demand matrix, and this gives a matrix equation

p = Ep+d
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or
(I−E)p = d (2.14)

This is a system of linear equations for p, and we ask for a solution p with every entry nonnegative. Note
that every entry of E is between 0 and 1, but the column sums of E need not equal 1 as in the closed model.

Before proceeding, it is convenient to introduce a useful notation. If A =
[
ai j

]
and B =

[
bi j

]
are

matrices of the same size, we write A > B if ai j > bi j for all i and j, and we write A≥ B if ai j ≥ bi j for all
i and j. Thus P ≥ 0 means that every entry of P is nonnegative. Note that A ≥ 0 and B ≥ 0 implies that
AB≥ 0.

Now, given a demand matrix d≥ 0, we look for a production matrix p≥ 0 satisfying equation (2.14).
This certainly exists if I−E is invertible and (I−E)−1 ≥ 0. On the other hand, the fact that d≥ 0 means
any solution p to equation (2.14) satisfies p≥ Ep. Hence, the following theorem is not too surprising.

Theorem 2.8.2

Let E ≥ 0 be a square matrix. Then I−E is invertible and (I−E)−1 ≥ 0 if and only if there exists
a column p > 0 such that p > Ep.

Heuristic Proof.

If (I−E)−1 ≥ 0, the existence of p > 0 with p > Ep is left as Exercise 2.8.11. Conversely, suppose such
a column p exists. Observe that

(I−E)(I +E +E2 + · · ·+Ek−1) = I−Ek

holds for all k≥ 2. If we can show that every entry of Ek approaches 0 as k becomes large then, intuitively,
the infinite matrix sum

U = I +E +E2 + · · ·
exists and (I−E)U = I. Since U ≥ 0, this does it. To show that Ek approaches 0, it suffices to show that
EP < µP for some number µ with 0 < µ < 1 (then EkP < µkP for all k ≥ 1 by induction). The existence
of µ is left as Exercise 2.8.12.

The condition p > Ep in Theorem 2.8.2 has a simple economic interpretation. If p is a production
matrix, entry i of Ep is the total value of all product used by industry i in a year. Hence, the condition
p > Ep means that, for each i, the value of product produced by industry i exceeds the value of the product
it uses. In other words, each industry runs at a profit.

Example 2.8.3

If E =




0.6 0.2 0.3
0.1 0.4 0.2
0.2 0.5 0.1


, show that I−E is invertible and (I−E)−1 ≥ 0.

Solution. Use p = (3, 2, 2)T in Theorem 2.8.2.

If p0 = (1, 1, 1)T , the entries of Ep0 are the row sums of E. Hence p0 > Ep0 holds if the row sums of
E are all less than 1. This proves the first of the following useful facts (the second is Exercise 2.8.10).
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Corollary 2.8.1

Let E ≥ 0 be a square matrix. In each case, I−E is invertible and (I−E)−1 ≥ 0:

1. All row sums of E are less than 1.

2. All column sums of E are less than 1.

Exercises for 2.8

Exercise 2.8.1 Find the possible equilibrium price struc-
tures when the input-output matrices are:




0.1 0.2 0.3
0.6 0.2 0.3
0.3 0.6 0.4


a.




0.5 0 0.5
0.1 0.9 0.2
0.4 0.1 0.3


b.




0.3 0.1 0.1 0.2
0.2 0.3 0.1 0
0.3 0.3 0.2 0.3
0.2 0.3 0.6 0.7


c.




0.5 0 0.1 0.1
0.2 0.7 0 0.1
0.1 0.2 0.8 0.2
0.2 0.1 0.1 0.6


d.

Exercise 2.8.2 Three industries A, B, and C are such
that all the output of A is used by B, all the output of B is
used by C, and all the output of C is used by A. Find the
possible equilibrium price structures.

Exercise 2.8.3 Find the possible equilibrium price struc-
tures for three industries where the input-output matrix

is




1 0 0
0 0 1
0 1 0


. Discuss why there are two parameters

here.

Exercise 2.8.4 Prove Theorem 2.8.1 for a 2 × 2
stochastic matrix E by first writing it in the form E =[

a b

1−a 1−b

]
, where 0≤ a≤ 1 and 0≤ b≤ 1.

Exercise 2.8.5 If E is an n× n stochastic matrix and c

is an n× 1 matrix, show that the sum of the entries of c

equals the sum of the entries of the n×1 matrix Ec.

Exercise 2.8.6 Let W =
[

1 1 1 · · · 1
]
. Let E

and F denote n×n matrices with nonnegative entries.

a. Show that E is a stochastic matrix if and only if
WE =W .

b. Use part (a.) to deduce that, if E and F are both
stochastic matrices, then EF is also stochastic.

Exercise 2.8.7 Find a 2× 2 matrix E with entries be-
tween 0 and 1 such that:

a. I−E has no inverse.

b. I−E has an inverse but not all entries of (I−E)−1

are nonnegative.

Exercise 2.8.8 If E is a 2 × 2 matrix with entries
between 0 and 1, show that I − E is invertible and
(I−E)−1 ≥ 0 if and only if tr E < 1+ det E . Here, if

E =

[
a b

c d

]
, then tr E = a+d and det E = ad−bc.

Exercise 2.8.9 In each case show that I−E is invertible
and (I−E)−1 ≥ 0.




0.6 0.5 0.1
0.1 0.3 0.3
0.2 0.1 0.4


a.




0.7 0.1 0.3
0.2 0.5 0.2
0.1 0.1 0.4


b.




0.6 0.2 0.1
0.3 0.4 0.2
0.2 0.5 0.1


c.




0.8 0.1 0.1
0.3 0.1 0.2
0.3 0.3 0.2


d.

Exercise 2.8.10 Prove that (1) implies (2) in the Corol-
lary to Theorem 2.8.2.

Exercise 2.8.11 If (I−E)−1 ≥ 0, find p > 0 such that
p > Ep.

Exercise 2.8.12 If Ep < p where E ≥ 0 and p > 0, find
a number µ such that Ep < µp and 0 < µ < 1.

[Hint: If Ep = (q1, . . . , qn)
T and p = (p1, . . . , pn)

T ,

take any number µ where max
{

q1
p1

, . . . , qn

pn

}
< µ < 1.]
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2.9 An Application to Markov Chains

Many natural phenomena progress through various stages and can be in a variety of states at each stage.
For example, the weather in a given city progresses day by day and, on any given day, may be sunny or
rainy. Here the states are “sun” and “rain,” and the weather progresses from one state to another in daily
stages. Another example might be a football team: The stages of its evolution are the games it plays, and
the possible states are “win,” “draw,” and “loss.”

The general setup is as follows: A real conceptual “system” is run generating a sequence of outcomes.
The system evolves through a series of “stages,” and at any stage it can be in any one of a finite number of
“states.” At any given stage, the state to which it will go at the next stage depends on the past and present
history of the system—that is, on the sequence of states it has occupied to date.

Definition 2.15 Markov Chain

A Markov chain is such an evolving system wherein the state to which it will go next depends
only on its present state and does not depend on the earlier history of the system.19

Even in the case of a Markov chain, the state the system will occupy at any stage is determined only
in terms of probabilities. In other words, chance plays a role. For example, if a football team wins a
particular game, we do not know whether it will win, draw, or lose the next game. On the other hand, we
may know that the team tends to persist in winning streaks; for example, if it wins one game it may win
the next game 1

2 of the time, lose 4
10 of the time, and draw 1

10 of the time. These fractions are called the
probabilities of these various possibilities. Similarly, if the team loses, it may lose the next game with
probability 1

2 (that is, half the time), win with probability 1
4 , and draw with probability 1

4 . The probabilities
of the various outcomes after a drawn game will also be known.

We shall treat probabilities informally here: The probability that a given event will occur is the long-

run proportion of the time that the event does indeed occur. Hence, all probabilities are numbers between
0 and 1. A probability of 0 means the event is impossible and never occurs; events with probability 1 are
certain to occur.

If a Markov chain is in a particular state, the probabilities that it goes to the various states at the next
stage of its evolution are called the transition probabilities for the chain, and they are assumed to be
known quantities. To motivate the general conditions that follow, consider the following simple example.
Here the system is a man, the stages are his successive lunches, and the states are the two restaurants he
chooses.

Example 2.9.1

A man always eats lunch at one of two restaurants, A and B. He never eats at A twice in a row.
However, if he eats at B, he is three times as likely to eat at B next time as at A. Initially, he is
equally likely to eat at either restaurant.

a. What is the probability that he eats at A on the third day after the initial one?

19The name honours Andrei Andreyevich Markov (1856–1922) who was a professor at the university in St. Petersburg,
Russia.
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b. What proportion of his lunches does he eat at A?

Solution. The table of transition probabilities follows. The A column indicates that if he eats at A

on one day, he never eats there again on the next day and so is certain to go to B.

Present Lunch

A B
Next A 0 0.25

Lunch B 1 0.75

The B column shows that, if he eats at B on one day, he will eat there on the next day 3
4 of the time

and switches to A only 1
4 of the time.

The restaurant he visits on a given day is not determined. The most that we can expect is to know
the probability that he will visit A or B on that day.

Let sm =


 s

(m)
1

s
(m)
2


 denote the state vector for day m. Here s

(m)
1 denotes the probability that he

eats at A on day m, and s
(m)
2 is the probability that he eats at B on day m. It is convenient to let s0

correspond to the initial day. Because he is equally likely to eat at A or B on that initial day,

s
(0)
1 = 0.5 and s

(0)
2 = 0.5, so s0 =

[
0.5
0.5

]
. Now let

P =

[
0 0.25
1 0.75

]

denote the transition matrix. We claim that the relationship

sm+1 = Psm

holds for all integers m≥ 0. This will be derived later; for now, we use it as follows to successively
compute s1, s2, s3, . . . .

s1 = Ps0 =

[
0 0.25
1 0.75

][
0.5
0.5

]
=

[
0.125
0.875

]

s2 = Ps1 =

[
0 0.25
1 0.75

][
0.125
0.875

]
=

[
0.21875
0.78125

]

s3 = Ps2 =

[
0 0.25
1 0.75

][
0.21875
0.78125

]
=

[
0.1953125
0.8046875

]

Hence, the probability that his third lunch (after the initial one) is at A is approximately 0.195,
whereas the probability that it is at B is 0.805. If we carry these calculations on, the next state
vectors are (to five figures):

s4 =

[
0.20117
0.79883

]
s5 =

[
0.19971
0.80029

]

s6 =

[
0.20007
0.79993

]
s7 =

[
0.19998
0.80002

]

Moreover, as m increases the entries of sm get closer and closer to the corresponding entries of[
0.2
0.8

]
. Hence, in the long run, he eats 20% of his lunches at A and 80% at B.
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p1 j

p2 j

pn j

state
j

state
1

state
2

state
n

Present
State

Next
State

Example 2.9.1 incorporates most of the essential features of all Markov
chains. The general model is as follows: The system evolves through
various stages and at each stage can be in exactly one of n distinct states. It
progresses through a sequence of states as time goes on. If a Markov chain
is in state j at a particular stage of its development, the probability pi j that
it goes to state i at the next stage is called the transition probability. The
n× n matrix P =

[
pi j

]
is called the transition matrix for the Markov

chain. The situation is depicted graphically in the diagram.

We make one important assumption about the transition matrix P =[
pi j

]
: It does not depend on which stage the process is in. This assumption

means that the transition probabilities are independent of time—that is,
they do not change as time goes on. It is this assumption that distinguishes
Markov chains in the literature of this subject.

Example 2.9.2

Suppose the transition matrix of a three-state Markov chain is

Present state
1 2 3

P =




p11 p12 p13

p21 p22 p23

p31 p32 p33


 =




0.3 0.1 0.6
0.5 0.9 0.2
0.2 0.0 0.2




1
2
3

Next state

If, for example, the system is in state 2, then column 2 lists the probabilities of where it goes next.
Thus, the probability is p12 = 0.1 that it goes from state 2 to state 1, and the probability is
p22 = 0.9 that it goes from state 2 to state 2. The fact that p32 = 0 means that it is impossible for it
to go from state 2 to state 3 at the next stage.

Consider the jth column of the transition matrix P.



p1 j

p2 j
...

pn j




If the system is in state j at some stage of its evolution, the transition probabilities p1 j, p2 j, . . . , pn j

represent the fraction of the time that the system will move to state 1, state 2, . . . , state n, respectively, at
the next stage. We assume that it has to go to some state at each transition, so the sum of these probabilities
is 1:

p1 j + p2 j + · · ·+ pn j = 1 for each j

Thus, the columns of P all sum to 1 and the entries of P lie between 0 and 1. Hence P is called a stochastic

matrix.

As in Example 2.9.1, we introduce the following notation: Let s
(m)
i denote the probability that the
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system is in state i after m transitions. The n×1 matrices

sm =




s
(m)
1

s
(m)
2
...

s
(m)
n




m = 0, 1, 2, . . .

are called the state vectors for the Markov chain. Note that the sum of the entries of sm must equal 1
because the system must be in some state after m transitions. The matrix s0 is called the initial state

vector for the Markov chain and is given as part of the data of the particular chain. For example, if the

chain has only two states, then an initial vector s0 =

[
1
0

]
means that it started in state 1. If it started in

state 2, the initial vector would be s0 =

[
0
1

]
. If s0 =

[
0.5
0.5

]
, it is equally likely that the system started

in state 1 or in state 2.

Theorem 2.9.1

Let P be the transition matrix for an n-state Markov chain. If sm is the state vector at stage m, then

sm+1 = Psm

for each m = 0, 1, 2, . . . .

Heuristic Proof. Suppose that the Markov chain has been run N times, each time starting with the same
initial state vector. Recall that pi j is the proportion of the time the system goes from state j at some stage

to state i at the next stage, whereas s
(m)
i is the proportion of the time it is in state i at stage m. Hence

sm+1
i N

is (approximately) the number of times the system is in state i at stage m+1. We are going to calculate
this number another way. The system got to state i at stage m+ 1 through some other state (say state j)

at stage m. The number of times it was in state j at that stage is (approximately) s
(m)
j N, so the number of

times it got to state i via state j is pi j(s
(m)
j N). Summing over j gives the number of times the system is in

state i (at stage m+1). This is the number we calculated before, so

s
(m+1)
i N = pi1s

(m)
1 N + pi2s

(m)
2 N + · · ·+ pins

(m)
n N

Dividing by N gives s
(m+1)
i = pi1s

(m)
1 + pi2s

(m)
2 + · · ·+ pins

(m)
n for each i, and this can be expressed as the

matrix equation sm+1 = Psm.

If the initial probability vector s0 and the transition matrix P are given, Theorem 2.9.1 gives s1, s2, s3, . . . ,
one after the other, as follows:

s1 = Ps0

s2 = Ps1

s3 = Ps2
...

www.dbooks.org

https://www.dbooks.org/


138 Matrix Algebra

Hence, the state vector sm is completely determined for each m = 0, 1, 2, . . . by P and s0.

Example 2.9.3

A wolf pack always hunts in one of three regions R1, R2, and R3. Its hunting habits are as follows:

1. If it hunts in some region one day, it is as likely as not to hunt there again the next day.

2. If it hunts in R1, it never hunts in R2 the next day.

3. If it hunts in R2 or R3, it is equally likely to hunt in each of the other regions the next day.

If the pack hunts in R1 on Monday, find the probability that it hunts there on Thursday.

Solution. The stages of this process are the successive days; the states are the three regions. The
transition matrix P is determined as follows (see the table): The first habit asserts that
p11 = p22 = p33 =

1
2 . Now column 1 displays what happens when the pack starts in R1: It never

goes to state 2, so p21 = 0 and, because the column must sum to 1, p31 =
1
2 . Column 2 describes

what happens if it starts in R2: p22 =
1
2 and p12 and p32 are equal (by habit 3), so p12 = p32 =

1
2

because the column sum must equal 1. Column 3 is filled in a similar way.

R1 R2 R3

R1
1
2

1
4

1
4

R2 0 1
2

1
4

R3
1
2

1
4

1
2

Now let Monday be the initial stage. Then s0 =




1
0
0


 because the pack hunts in R1 on that day.

Then s1, s2, and s3 describe Tuesday, Wednesday, and Thursday, respectively, and we compute
them using Theorem 2.9.1.

s1 = Ps0 =




1
2

0

1
2


 s2 = Ps1 =




3
8

1
8

4
8


 s3 = Ps2 =




11
32

6
32

15
32




Hence, the probability that the pack hunts in Region R1 on Thursday is 11
32 .



2.9. An Application to Markov Chains 139

Steady State Vector

Another phenomenon that was observed in Example 2.9.1 can be expressed in general terms. The state

vectors s0, s1, s2, . . . were calculated in that example and were found to “approach” s =

[
0.2
0.8

]
. This

means that the first component of sm becomes and remains very close to 0.2 as m becomes large, whereas
the second component gets close to 0.8 as m increases. When this is the case, we say that sm converges to
s. For large m, then, there is very little error in taking sm = s, so the long-term probability that the system
is in state 1 is 0.2, whereas the probability that it is in state 2 is 0.8. In Example 2.9.1, enough state vectors
were computed for the limiting vector s to be apparent. However, there is a better way to do this that works
in most cases.

Suppose P is the transition matrix of a Markov chain, and assume that the state vectors sm converge to
a limiting vector s. Then sm is very close to s for sufficiently large m, so sm+1 is also very close to s. Thus,
the equation sm+1 = Psm from Theorem 2.9.1 is closely approximated by

s = Ps

so it is not surprising that s should be a solution to this matrix equation. Moreover, it is easily solved
because it can be written as a system of homogeneous linear equations

(I−P)s = 0

with the entries of s as variables.

In Example 2.9.1, where P =

[
0 0.25
1 0.75

]
, the general solution to (I−P)s = 0 is s =

[
t

4t

]
, where t

is a parameter. But if we insist that the entries of S sum to 1 (as must be true of all state vectors), we find

t = 0.2 and so s =

[
0.2
0.8

]
as before.

All this is predicated on the existence of a limiting vector for the sequence of state vectors of the
Markov chain, and such a vector may not always exist. However, it does exist in one commonly occurring
situation. A stochastic matrix P is called regular if some power Pm of P has every entry greater than zero.

The matrix P =

[
0 0.25
1 0.75

]
of Example 2.9.1 is regular (in this case, each entry of P2 is positive), and

the general theorem is as follows:

Theorem 2.9.2

Let P be the transition matrix of a Markov chain and assume that P is regular. Then there is a
unique column matrix s satisfying the following conditions:

1. Ps = s.

2. The entries of s are positive and sum to 1.

Moreover, condition 1 can be written as

(I−P)s = 0
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and so gives a homogeneous system of linear equations for s. Finally, the sequence of state vectors
s0, s1, s2, . . . converges to s in the sense that if m is large enough, each entry of sm is closely
approximated by the corresponding entry of s.

This theorem will not be proved here.20

If P is the regular transition matrix of a Markov chain, the column s satisfying conditions 1 and 2 of
Theorem 2.9.2 is called the steady-state vector for the Markov chain. The entries of s are the long-term
probabilities that the chain will be in each of the various states.

Example 2.9.4

A man eats one of three soups—beef, chicken, and vegetable—each day. He never eats the same
soup two days in a row. If he eats beef soup on a certain day, he is equally likely to eat each of the
others the next day; if he does not eat beef soup, he is twice as likely to eat it the next day as the
alternative.

a. If he has beef soup one day, what is the probability that he has it again two days later?

b. What are the long-run probabilities that he eats each of the three soups?

Solution. The states here are B, C, and V , the three soups. The transition matrix P is given in the
table. (Recall that, for each state, the corresponding column lists the probabilities for the next
state.)

B C V

B 0 2
3

2
3

C 1
2 0 1

3

V 1
2

1
3 0

If he has beef soup initially, then the initial state vector is

s0 =




1
0
0




Then two days later the state vector is s2. If P is the transition matrix, then

s1 = Ps0 =
1
2




0
1
1


 , s2 = Ps1 =

1
6




4
1
1




so he eats beef soup two days later with probability 2
3 . This answers (a.) and also shows that he

eats chicken and vegetable soup each with probability 1
6 .

20The interested reader can find an elementary proof in J. Kemeny, H. Mirkil, J. Snell, and G. Thompson, Finite Mathematical

Structures (Englewood Cliffs, N.J.: Prentice-Hall, 1958).
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To find the long-run probabilities, we must find the steady-state vector s. Theorem 2.9.2 applies
because P is regular (P2 has positive entries), so s satisfies Ps = s. That is, (I−P)s = 0 where

I−P = 1
6




6 −4 −4
−3 6 −2
−3 −2 6




The solution is s =




4t

3t

3t


, where t is a parameter, and we use s =




0.4
0.3
0.3


 because the entries of

s must sum to 1. Hence, in the long run, he eats beef soup 40% of the time and eats chicken soup
and vegetable soup each 30% of the time.

Exercises for 2.9

Exercise 2.9.1 Which of the following stochastic matri-
ces is regular?




0 0 1
2

1 0 1
2

0 1 0


a.




1
2 0 1

3

1
4 1 1

3

1
4 0 1

3


b.

Exercise 2.9.2 In each case find the steady-state vector
and, assuming that it starts in state 1, find the probability
that it is in state 2 after 3 transitions.

[
0.5 0.3
0.5 0.7

]
a.




1
2 1

1
2 0


b.




0 1
2

1
4

1 0 1
4

0 1
2

1
2


c.




0.4 0.1 0.5
0.2 0.6 0.2
0.4 0.3 0.3


d.




0.8 0.0 0.2
0.1 0.6 0.1
0.1 0.4 0.7


e.




0.1 0.3 0.3
0.3 0.1 0.6
0.6 0.6 0.1


f.

Exercise 2.9.3 A fox hunts in three territories A, B, and
C. He never hunts in the same territory on two successive
days. If he hunts in A, then he hunts in C the next day. If
he hunts in B or C, he is twice as likely to hunt in A the
next day as in the other territory.

a. What proportion of his time does he spend in A, in
B, and in C?

b. If he hunts in A on Monday (C on Monday), what
is the probability that he will hunt in B on Thurs-
day?

Exercise 2.9.4 Assume that there are three social
classes—upper, middle, and lower—and that social mo-
bility behaves as follows:

1. Of the children of upper-class parents, 70% re-
main upper-class, whereas 10% become middle-
class and 20% become lower-class.

2. Of the children of middle-class parents, 80% re-
main middle-class, whereas the others are evenly
split between the upper class and the lower class.

3. For the children of lower-class parents, 60% re-
main lower-class, whereas 30% become middle-
class and 10% upper-class.

a. Find the probability that the grandchild of
lower-class parents becomes upper-class.

b. Find the long-term breakdown of society
into classes.
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Exercise 2.9.5 The prime minister says she will call
an election. This gossip is passed from person to person
with a probability p 6= 0 that the information is passed in-
correctly at any stage. Assume that when a person hears
the gossip he or she passes it to one person who does not
know. Find the long-term probability that a person will
hear that there is going to be an election.

Exercise 2.9.6 John makes it to work on time one Mon-
day out of four. On other work days his behaviour is as
follows: If he is late one day, he is twice as likely to come
to work on time the next day as to be late. If he is on time
one day, he is as likely to be late as not the next day. Find
the probability of his being late and that of his being on
time Wednesdays.

Exercise 2.9.7 Suppose you have 1¢ and match coins
with a friend. At each match you either win or lose 1¢
with equal probability. If you go broke or ever get 4¢,
you quit. Assume your friend never quits. If the states
are 0, 1, 2, 3, and 4 representing your wealth, show that
the corresponding transition matrix P is not regular. Find
the probability that you will go broke after 3 matches.

Exercise 2.9.8 A mouse is put into a maze of compart-
ments, as in the diagram. Assume that he always leaves
any compartment he enters and that he is equally likely
to take any tunnel entry.

1

2

3

4

5

a. If he starts in compartment 1, find the probability
that he is in compartment 1 again after 3 moves.

b. Find the compartment in which he spends most of
his time if he is left for a long time.

Exercise 2.9.9 If a stochastic matrix has a 1 on its main
diagonal, show that it cannot be regular. Assume it is not
1×1.

Exercise 2.9.10 If sm is the stage-m state vector for a
Markov chain, show that sm+k = Pksm holds for all m≥ 1
and k ≥ 1 (where P is the transition matrix).

Exercise 2.9.11 A stochastic matrix is doubly stochas-

tic if all the row sums also equal 1. Find the steady-state
vector for a doubly stochastic matrix.

Exercise 2.9.12 Consider the 2×2 stochastic matrix

P =

[
1− p q

p 1−q

]
,

where 0 < p < 1 and 0 < q < 1.

a. Show that 1
p+q

[
q

p

]
is the steady-state vector for

P.

b. Show that Pm converges to the matrix

1
p+q

[
q q

p p

]
by first verifying inductively that

Pm = 1
p+q

[
q q

p p

]
+ (1−p−q)m

p+q

[
p −q

−p q

]
for

m = 1, 2, . . . . (It can be shown that the sequence
of powers P, P2, P3, . . . of any regular transi-
tion matrix converges to the matrix each of whose
columns equals the steady-state vector for P.)
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Supplementary Exercises for Chapter 2

Exercise 2.1 Solve for the matrix X if:

PXQ = R;a. XP = S;b.

where P =




1 0
2 −1
0 3


, Q =

[
1 1 −1
2 0 3

]
,

R =



−1 1 −4
−4 0 −6

6 6 −6


, S =

[
1 6
3 1

]

Exercise 2.2 Consider

p(X) = X3−5X2 +11X −4I.

a. If p(U) =

[
1 3
−1 0

]
compute p(UT ).

b. If p(U) = 0 where U is n×n, find U−1 in terms of
U .

Exercise 2.3 Show that, if a (possibly nonhomoge-
neous) system of equations is consistent and has more
variables than equations, then it must have infinitely
many solutions. [Hint: Use Theorem 2.2.2 and Theo-
rem 1.3.1.]

Exercise 2.4 Assume that a system Ax = b of linear
equations has at least two distinct solutions y and z.

a. Show that xk = y+ k(y− z) is a solution for every
k.

b. Show that xk = xm implies k = m. [Hint: See Ex-
ample 2.1.7.]

c. Deduce that Ax = b has infinitely many solutions.

Exercise 2.5

a. Let A be a 3×3 matrix with all entries on and be-
low the main diagonal zero. Show that A3 = 0.

b. Generalize to the n× n case and prove your an-
swer.

Exercise 2.6 Let Ipq denote the n×n matrix with (p, q)-
entry equal to 1 and all other entries 0. Show that:

a. In = I11 + I22 + · · ·+ Inn.

b. IpqIrs =

{
Ips if q = r

0 if q 6= r
.

c. If A = [ai j] is n×n, then A = ∑n
i=1 ∑n

j=1 ai jIi j.

d. If A= [ai j], then IpqAIrs = aqrIps for all p, q, r, and
s.

Exercise 2.7 A matrix of the form aIn, where a is a
number, is called an n×n scalar matrix.

a. Show that each n×n scalar matrix commutes with
every n×n matrix.

b. Show that A is a scalar matrix if it commutes with
every n× n matrix. [Hint: See part (d.) of Exer-
cise 2.6.]

Exercise 2.8 Let M =

[
A B

C D

]
, where A, B, C, and

D are all n×n and each commutes with all the others. If
M2 = 0, show that (A+D)3 = 0. [Hint: First show that
A2 =−BC = D2 and that

B(A+D) = 0 =C(A+D).]

Exercise 2.9 If A is 2× 2, show that A−1 = AT if and

only if A =

[
cosθ sinθ

−sinθ cosθ

]
for some θ or

A =

[
cosθ sin θ

sinθ −cosθ

]
for some θ .

[Hint: If a2 + b2 = 1, then a = cos θ , b = sinθ for
some θ . Use

cos(θ −φ) = cosθ cosφ + sinθ sinφ .]

Exercise 2.10

a. If A =

[
0 1
1 0

]
, show that A2 = I.

b. What is wrong with the following argument? If
A2 = I, then A2− I = 0, so (A− I)(A + I) = 0,
whence A = I or A =−I.
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Exercise 2.11 Let E and F be elementary matrices ob-
tained from the identity matrix by adding multiples of
row k to rows p and q. If k 6= p and k 6= q, show that
EF = FE .

Exercise 2.12 If A is a 2× 2 real matrix, A2 = A and

AT = A, show that either A is one of

[
0 0
0 0

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
1 0
0 1

]
, or A =

[
a b

b 1−a

]

where a2 +b2 = a, − 1
2 ≤ b≤ 1

2 and b 6= 0.

Exercise 2.13 Show that the following are equivalent
for matrices P, Q:

1. P, Q, and P+Q are all invertible and

(P+Q)−1 = P−1 +Q−1

2. P is invertible and Q = PG where G2 +G+ I = 0.



3. Determinants and Diagonalization

With each square matrix we can calculate a number, called the determinant of the matrix, which tells us
whether or not the matrix is invertible. In fact, determinants can be used to give a formula for the inverse
of a matrix. They also arise in calculating certain numbers (called eigenvalues) associated with the matrix.
These eigenvalues are essential to a technique called diagonalization that is used in many applications
where it is desired to predict the future behaviour of a system. For example, we use it to predict whether a
species will become extinct.

Determinants were first studied by Leibnitz in 1696, and the term “determinant” was first used in
1801 by Gauss is his Disquisitiones Arithmeticae. Determinants are much older than matrices (which
were introduced by Cayley in 1878) and were used extensively in the eighteenth and nineteenth centuries,
primarily because of their significance in geometry (see Section 4.4). Although they are somewhat less
important today, determinants still play a role in the theory and application of matrix algebra.

3.1 The Cofactor Expansion

In Section 2.4 we defined the determinant of a 2×2 matrix A =

[
a b

c d

]
as follows:1

det A =

∣∣∣∣
a b

c d

∣∣∣∣= ad−bc

and showed (in Example 2.4.4) that A has an inverse if and only if det A 6= 0. One objective of this chapter
is to do this for any square matrix A. There is no difficulty for 1× 1 matrices: If A = [a], we define
det A = det [a] = a and note that A is invertible if and only if a 6= 0.

If A is 3×3 and invertible, we look for a suitable definition of det A by trying to carry A to the identity
matrix by row operations. The first column is not zero (A is invertible); suppose the (1, 1)-entry a is not
zero. Then row operations give

A =




a b c

d e f

g h i


→




a b c

ad ae a f

ag ah ai


→




a b c

0 ae−bd a f − cd

0 ah−bg ai− cg


=




a b c

0 u a f − cd

0 v ai− cg




where u = ae−bd and v = ah−bg. Since A is invertible, one of u and v is nonzero (by Example 2.4.11);
suppose that u 6= 0. Then the reduction proceeds

A→




a b c

0 u a f − cd

0 v ai− cg


→




a b c

0 u a f − cd

0 uv u(ai− cg)


→




a b c

0 u a f − cd

0 0 w




1Determinants are commonly written |A|= det A using vertical bars. We will use both notations.
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where w = u(ai− cg)− v(a f − cd) = a(aei+b f g+ cdh− ceg−a f h−bdi). We define

det A = aei+b f g+ cdh− ceg−a f h−bdi (3.1)

and observe that det A 6= 0 because a det A = w 6= 0 (is invertible).

To motivate the definition below, collect the terms in Equation 3.1 involving the entries a, b, and c in
row 1 of A:

det A =

∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣
= aei+b f g+ cdh− ceg−a f h−bdi

= a(ei− f h)−b(di− f g)+ c(dh− eg)

= a

∣∣∣∣
e f

h i

∣∣∣∣−b

∣∣∣∣
d f

g i

∣∣∣∣+ c

∣∣∣∣
d e

g h

∣∣∣∣

This last expression can be described as follows: To compute the determinant of a 3×3 matrix A, multiply
each entry in row 1 by a sign times the determinant of the 2×2 matrix obtained by deleting the row and
column of that entry, and add the results. The signs alternate down row 1, starting with +. It is this
observation that we generalize below.

Example 3.1.1

det




2 3 7
−4 0 6

1 5 0


= 2

∣∣∣∣
0 6
5 0

∣∣∣∣−3

∣∣∣∣
−4 6

1 0

∣∣∣∣+7

∣∣∣∣
−4 0

1 5

∣∣∣∣

= 2(−30)−3(−6)+7(−20)

=−182

This suggests an inductive method of defining the determinant of any square matrix in terms of de-
terminants of matrices one size smaller. The idea is to define determinants of 3×3 matrices in terms of
determinants of 2×2 matrices, then we do 4×4 matrices in terms of 3×3 matrices, and so on.

To describe this, we need some terminology.

Definition 3.1 Cofactors of a Matrix

Assume that determinants of (n−1)× (n−1) matrices have been defined. Given the n×n matrix
A, let

Ai j denote the (n−1)× (n−1) matrix obtained from A by deleting row i and column j.

Then the (i, j)-cofactor ci j(A) is the scalar defined by

ci j(A) = (−1)i+ j det (Ai j)

Here (−1)i+ j is called the sign of the (i, j)-position.
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The sign of a position is clearly 1 or −1, and the following diagram is useful for remembering it:



+ − + − ·· ·
− + − + · · ·
+ − + − ·· ·
− + − + · · ·
...

...
...

...




Note that the signs alternate along each row and column with + in the upper left corner.

Example 3.1.2

Find the cofactors of positions (1, 2), (3, 1), and (2, 3) in the following matrix.

A =




3 −1 6
5 2 7
8 9 4




Solution. Here A12 is the matrix

[
5 7
8 4

]
that remains when row 1 and column 2 are deleted. The

sign of position (1, 2) is (−1)1+2 =−1 (this is also the (1, 2)-entry in the sign diagram), so the
(1, 2)-cofactor is

c12(A) = (−1)1+2
∣∣∣∣

5 7
8 4

∣∣∣∣= (−1)(5 ·4−7 ·8) = (−1)(−36) = 36

Turning to position (3, 1), we find

c31(A) = (−1)3+1A31 = (−1)3+1

∣∣∣∣
−1 6

2 7

∣∣∣∣= (+1)(−7−12) =−19

Finally, the (2, 3)-cofactor is

c23(A) = (−1)2+3A23 = (−1)2+3

∣∣∣∣
3 −1
8 9

∣∣∣∣= (−1)(27+8) =−35

Clearly other cofactors can be found—there are nine in all, one for each position in the matrix.

We can now define det A for any square matrix A

Definition 3.2 Cofactor expansion of a Matrix

Assume that determinants of (n−1)× (n−1) matrices have been defined. If A =
[
ai j

]
is n×n

define
det A = a11c11(A)+a12c12(A)+ · · ·+a1nc1n(A)

This is called the cofactor expansion of det A along row 1.
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It asserts that det A can be computed by multiplying the entries of row 1 by the corresponding cofac-
tors, and adding the results. The astonishing thing is that det A can be computed by taking the cofactor
expansion along any row or column: Simply multiply each entry of that row or column by the correspond-
ing cofactor and add.

Theorem 3.1.1: Cofactor Expansion Theorem2

The determinant of an n×n matrix A can be computed by using the cofactor expansion along any
row or column of A. That is det A can be computed by multiplying each entry of the row or
column by the corresponding cofactor and adding the results.

The proof will be given in Section 3.6.

Example 3.1.3

Compute the determinant of A =




3 4 5
1 7 2
9 8 −6


.

Solution. The cofactor expansion along the first row is as follows:

det A = 3c11(A)+4c12(A)+5c13(A)

= 3

∣∣∣∣
7 2
8 −6

∣∣∣∣−4

∣∣∣∣
1 2
9 −6

∣∣∣∣+3

∣∣∣∣
1 7
9 8

∣∣∣∣
= 3(−58)−4(−24)+5(−55)

=−353

Note that the signs alternate along the row (indeed along any row or column). Now we compute
det A by expanding along the first column.

det A = 3c11(A)+1c21(A)+9c31(A)

= 3

∣∣∣∣
7 2
8 −6

∣∣∣∣−
∣∣∣∣

4 5
8 −6

∣∣∣∣+9

∣∣∣∣
4 5
7 2

∣∣∣∣
= 3(−58)− (−64)+9(−27)

=−353

The reader is invited to verify that det A can be computed by expanding along any other row or
column.

The fact that the cofactor expansion along any row or column of a matrix A always gives the same
result (the determinant of A) is remarkable, to say the least. The choice of a particular row or column can
simplify the calculation.

2The cofactor expansion is due to Pierre Simon de Laplace (1749–1827), who discovered it in 1772 as part of a study of
linear differential equations. Laplace is primarily remembered for his work in astronomy and applied mathematics.
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Example 3.1.4

Compute det A where A =




3 0 0 0
5 1 2 0
2 6 0 −1
−6 3 1 0


.

Solution. The first choice we must make is which row or column to use in the cofactor expansion.
The expansion involves multiplying entries by cofactors, so the work is minimized when the row
or column contains as many zero entries as possible. Row 1 is a best choice in this matrix (column
4 would do as well), and the expansion is

det A = 3c11(A)+0c12(A)+0c13(A)+0c14(A)

= 3

∣∣∣∣∣∣

1 2 0
6 0 −1
3 1 0

∣∣∣∣∣∣

This is the first stage of the calculation, and we have succeeded in expressing the determinant of
the 4×4 matrix A in terms of the determinant of a 3×3 matrix. The next stage involves this 3×3
matrix. Again, we can use any row or column for the cofactor expansion. The third column is
preferred (with two zeros), so

det A = 3

(
0

∣∣∣∣
6 0
3 1

∣∣∣∣− (−1)

∣∣∣∣
1 2
3 1

∣∣∣∣+0

∣∣∣∣
1 2
6 0

∣∣∣∣
)

= 3[0+1(−5)+0]

=−15

This completes the calculation.

Computing the determinant of a matrix A can be tedious. For example, if A is a 4× 4 matrix, the
cofactor expansion along any row or column involves calculating four cofactors, each of which involves
the determinant of a 3× 3 matrix. And if A is 5× 5, the expansion involves five determinants of 4× 4
matrices! There is a clear need for some techniques to cut down the work.3

The motivation for the method is the observation (see Example 3.1.4) that calculating a determinant
is simplified a great deal when a row or column consists mostly of zeros. (In fact, when a row or column
consists entirely of zeros, the determinant is zero—simply expand along that row or column.)

Recall next that one method of creating zeros in a matrix is to apply elementary row operations to it.
Hence, a natural question to ask is what effect such a row operation has on the determinant of the matrix.
It turns out that the effect is easy to determine and that elementary column operations can be used in the
same way. These observations lead to a technique for evaluating determinants that greatly reduces the

3If A =




a b c

d e f

g h i


 we can calculate det A by considering




a b c a b

d e f d e

g h i g h


 obtained from A by adjoining columns

1 and 2 on the right. Then det A = aei+ b f g+ cdh− ceg− a f h− bdi, where the positive terms aei, b f g, and cdh are the
products down and to the right starting at a, b, and c, and the negative terms ceg, a f h, and bdi are the products down and to the
left starting at c, a, and b. Warning: This rule does not apply to n× n matrices where n > 3 or n = 2.
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labour involved. The necessary information is given in Theorem 3.1.2.

Theorem 3.1.2

Let A denote an n×n matrix.

1. If A has a row or column of zeros, det A = 0.

2. If two distinct rows (or columns) of A are interchanged, the determinant of the resulting
matrix is − det A.

3. If a row (or column) of A is multiplied by a constant u, the determinant of the resulting
matrix is u(det A).

4. If two distinct rows (or columns) of A are identical, det A = 0.

5. If a multiple of one row of A is added to a different row (or if a multiple of a column is added
to a different column), the determinant of the resulting matrix is det A.

Proof. We prove properties 2, 4, and 5 and leave the rest as exercises.

Property 2. If A is n×n, this follows by induction on n. If n = 2, the verification is left to the reader.
If n > 2 and two rows are interchanged, let B denote the resulting matrix. Expand det A and det B along a
row other than the two that were interchanged. The entries in this row are the same for both A and B, but
the cofactors in B are the negatives of those in A (by induction) because the corresponding (n−1)×(n−1)
matrices have two rows interchanged. Hence, det B = − det A, as required. A similar argument works if
two columns are interchanged.

Property 4. If two rows of A are equal, let B be the matrix obtained by interchanging them. Then
B = A, so det B = detA. But det B = − det A by property 2, so det A = det B = 0. Again, the same
argument works for columns.

Property 5. Let B be obtained from A =
[
ai j

]
by adding u times row p to row q. Then row q of B is

(aq1 +uap1, aq2 +uap2, . . . , aqn +uapn)

The cofactors of these elements in B are the same as in A (they do not involve row q): in symbols,
cq j(B) = cq j(A) for each j. Hence, expanding B along row q gives

det A = (aq1 +uap1)cq1(A)+(aq2 +uap2)cq2(A)+ · · ·+(aqn +uapn)cqn(A)

= [aq1cq1(A)+aq2cq2(A)+ · · ·+aqncqn(A)]+u[ap1cq1(A)+ap2cq2(A)+ · · ·+apncqn(A)]

= det A+u det C

where C is the matrix obtained from A by replacing row q by row p (and both expansions are along row
q). Because rows p and q of C are equal, det C = 0 by property 4. Hence, det B = detA, as required. As
before, a similar proof holds for columns.

To illustrate Theorem 3.1.2, consider the following determinants.
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∣∣∣∣∣∣

3 −1 2
2 5 1
0 0 0

∣∣∣∣∣∣
= 0 (because the last row consists of zeros)

∣∣∣∣∣∣

3 −1 5
2 8 7
1 2 −1

∣∣∣∣∣∣
=−

∣∣∣∣∣∣

5 −1 3
7 8 2
−1 2 1

∣∣∣∣∣∣
(because two columns are interchanged)

∣∣∣∣∣∣

8 1 2
3 0 9
1 2 −1

∣∣∣∣∣∣
= 3

∣∣∣∣∣∣

8 1 2
1 0 3
1 2 −1

∣∣∣∣∣∣
(because the second row of the matrix on the left is 3 times
the second row of the matrix on the right)

∣∣∣∣∣∣

2 1 2
4 0 4
1 3 1

∣∣∣∣∣∣
= 0 (because two columns are identical)

∣∣∣∣∣∣

2 5 2
−1 2 9

3 1 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

0 9 20
−1 2 9

3 1 1

∣∣∣∣∣∣
(because twice the second row of the matrix on the left was
added to the first row)

The following four examples illustrate how Theorem 3.1.2 is used to evaluate determinants.

Example 3.1.5

Evaluate det A when A =




1 −1 3
1 0 −1
2 1 6


.

Solution. The matrix does have zero entries, so expansion along (say) the second row would
involve somewhat less work. However, a column operation can be used to get a zero in position
(2, 3)—namely, add column 1 to column 3. Because this does not change the value of the
determinant, we obtain

det A =

∣∣∣∣∣∣

1 −1 3
1 0 −1
2 1 6

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 −1 4
1 0 0
2 1 8

∣∣∣∣∣∣
=−

∣∣∣∣
−1 4

1 8

∣∣∣∣= 12

where we expanded the second 3×3 matrix along row 2.

Example 3.1.6

If det




a b c

p q r

x y z


= 6, evaluate det A where A =




a+ x b+ y c+ z

3x 3y 3z

−p −q −r


.
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Solution. First take common factors out of rows 2 and 3.

det A = 3(−1) det




a+ x b+ y c+ z

x y z

p q r




Now subtract the second row from the first and interchange the last two rows.

det A =−3 det




a b c

x y z

p q r


= 3 det




a b c

p q r

x y z


= 3 ·6 = 18

The determinant of a matrix is a sum of products of its entries. In particular, if these entries are
polynomials in x, then the determinant itself is a polynomial in x. It is often of interest to determine which
values of x make the determinant zero, so it is very useful if the determinant is given in factored form.
Theorem 3.1.2 can help.

Example 3.1.7

Find the values of x for which det A = 0, where A =




1 x x

x 1 x

x x 1


.

Solution. To evaluate det A, first subtract x times row 1 from rows 2 and 3.

det A =

∣∣∣∣∣∣

1 x x

x 1 x

x x 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 x x

0 1− x2 x− x2

0 x− x2 1− x2

∣∣∣∣∣∣
=

∣∣∣∣
1− x2 x− x2

x− x2 1− x2

∣∣∣∣

At this stage we could simply evaluate the determinant (the result is 2x3−3x2 +1). But then we
would have to factor this polynomial to find the values of x that make it zero. However, this
factorization can be obtained directly by first factoring each entry in the determinant and taking a
common factor of (1− x) from each row.

det A =

∣∣∣∣
(1− x)(1+ x) x(1− x)

x(1− x) (1− x)(1+ x)

∣∣∣∣= (1− x)2
∣∣∣∣

1+ x x

x 1+ x

∣∣∣∣
= (1− x)2(2x+1)

Hence, det A = 0 means (1− x)2(2x+1) = 0, that is x = 1 or x =−1
2 .
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Example 3.1.8

If a1, a2, and a3 are given show that

det




1 a1 a2
1

1 a2 a2
2

1 a3 a2
3


= (a3−a1)(a3−a2)(a2−a1)

Solution. Begin by subtracting row 1 from rows 2 and 3, and then expand along column 1:

det




1 a1 a2
1

1 a2 a2
2

1 a3 a2
3


= det




1 a1 a2
1

0 a2−a1 a2
2−a2

1
0 a3−a1 a2

3−a2
1


=

[
a2−a1 a2

2−a2
1

a3−a1 a2
3−a2

1

]

Now (a2−a1) and (a3−a1) are common factors in rows 1 and 2, respectively, so

det




1 a1 a2
1

1 a2 a2
2

1 a3 a2
3


= (a2−a1)(a3−a1) det

[
1 a2 +a1

1 a3 +a1

]

= (a2−a1)(a3−a1)(a3−a2)

The matrix in Example 3.1.8 is called a Vandermonde matrix, and the formula for its determinant can be
generalized to the n×n case (see Theorem 3.2.7).

If A is an n× n matrix, forming uA means multiplying every row of A by u. Applying property 3 of
Theorem 3.1.2, we can take the common factor u out of each row and so obtain the following useful result.

Theorem 3.1.3

If A is an n×n matrix, then det (uA) = un det A for any number u.

The next example displays a type of matrix whose determinant is easy to compute.

Example 3.1.9

Evaluate det A if A =




a 0 0 0
u b 0 0
v w c 0
x y z d


.

Solution. Expand along row 1 to get det A = a

∣∣∣∣∣∣

b 0 0
w c 0
y z d

∣∣∣∣∣∣
. Now expand this along the top row to

get det A = ab

∣∣∣∣
c 0
z d

∣∣∣∣= abcd, the product of the main diagonal entries.
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A square matrix is called a lower triangular matrix if all entries above the main diagonal are zero
(as in Example 3.1.9). Similarly, an upper triangular matrix is one for which all entries below the main
diagonal are zero. A triangular matrix is one that is either upper or lower triangular. Theorem 3.1.4
gives an easy rule for calculating the determinant of any triangular matrix. The proof is like the solution
to Example 3.1.9.

Theorem 3.1.4

If A is a square triangular matrix, then det A is the product of the entries on the main diagonal.

Theorem 3.1.4 is useful in computer calculations because it is a routine matter to carry a matrix to trian-
gular form using row operations.

Block matrices such as those in the next theorem arise frequently in practice, and the theorem gives an
easy method for computing their determinants. This dovetails with Example 2.4.11.

Theorem 3.1.5

Consider matrices

[
A X

0 B

]
and

[
A 0
Y B

]
in block form, where A and B are square matrices.

Then

det

[
A X

0 B

]
= det A det B and det

[
A 0
Y B

]
= det A det B

Proof. Write T = det

[
A X

0 B

]
and proceed by induction on k where A is k×k. If k = 1, it is the cofactor

expansion along column 1. In general let Si(T ) denote the matrix obtained from T by deleting row i and
column 1. Then the cofactor expansion of det T along the first column is

det T = a11 det (S1(T ))−a21 det (S2(T ))+ · · ·±ak1 det (Sk(T )) (3.2)

where a11, a21, · · · , ak1 are the entries in the first column of A. But Si(T ) =

[
Si(A) Xi

0 B

]
for each

i = 1, 2, · · · , k, so det (Si(T )) = det (Si(A)) · det B by induction. Hence, Equation 3.2 becomes

det T = {a11 det (S1(T ))−a21 det (S2(T ))+ · · ·±ak1 det (Sk(T ))} det B

= {det A} det B

as required. The lower triangular case is similar.

Example 3.1.10

det




2 3 1 3
1 −2 −1 1
0 1 0 1
0 4 0 1


=−

∣∣∣∣∣∣∣∣

2 1 3 3
1 −1 −2 1
0 0 1 1
0 0 4 1

∣∣∣∣∣∣∣∣
=−

∣∣∣∣
2 1
1 −1

∣∣∣∣
∣∣∣∣

1 1
4 1

∣∣∣∣=−(−3)(−3) =−9
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The next result shows that det A is a linear transformation when regarded as a function of a fixed
column of A. The proof is Exercise 3.1.21.

Theorem 3.1.6

Given columns c1, · · · , c j−1, c j+1, · · · , cn in Rn, define T : Rn→ R by

T (x) = det
[

c1 · · · c j−1 x c j+1 · · · cn

]
for all x in Rn

Then, for all x and y in Rn and all a in R,

T (x+y) = T (x)+T (y) and T (ax) = aT (x)

Exercises for 3.1

Exercise 3.1.1 Compute the determinants of the follow-
ing matrices.

[
2 −1
3 2

]
a.

[
6 9
8 12

]
b.

[
a2 ab

ab b2

]
c.

[
a+1 a

a a−1

]
d.

[
cosθ −sinθ

sinθ cos θ

]
e.




2 0 −3
1 2 5
0 3 0


f.




1 2 3
4 5 6
7 8 9


g.




0 a 0
b c d

0 e 0


h.




1 b c

b c 1
c 1 b


i.




0 a b

a 0 c

b c 0


j.




0 1 −1 0
3 0 0 2
0 1 2 1
5 0 0 7


k.




1 0 3 1
2 2 6 0
−1 0 −3 1

4 1 12 0


l.




3 1 −5 2
1 3 0 1
1 0 5 2
1 1 2 −1


m.




4 −1 3 −1
3 1 0 2
0 1 2 2
1 2 −1 1


n.




1 −1 5 5
3 1 2 4
−1 −3 8 0

1 1 2 −1


o.




0 0 0 a

0 0 b p

0 c q k

d s t u


p.

Exercise 3.1.2 Show that det A = 0 if A has a row or
column consisting of zeros.

Exercise 3.1.3 Show that the sign of the position in the
last row and the last column of A is always +1.

Exercise 3.1.4 Show that det I = 1 for any identity ma-
trix I.

Exercise 3.1.5 Evaluate the determinant of each matrix
by reducing it to upper triangular form.




1 −1 2
3 1 1
2 −1 3


a.



−1 3 1

2 5 3
1 −2 1


b.




−1 −1 1 0
2 1 1 3
0 1 1 2
1 3 −1 2


c.




2 3 1 1
0 2 −1 3
0 5 1 1
1 1 2 5


d.

Exercise 3.1.6 Evaluate by cursory inspection:

a. det




a b c

a+1 b+1 c+1
a−1 b−1 c−1
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b. det




a b c

a+b 2b c+b

2 2 2




Exercise 3.1.7 If det




a b c

p q r

x y z


=−1 compute:

a. det



−x −y −z

3p+a 3q+b 3r+ c

2p 2q 2r




b. det



−2a −2b −2c

2p+ x 2q+ y 2r+ z

3x 3y 3z




Exercise 3.1.8 Show that:

a. det




p+ x q+ y r+ z

a+ x b+ y c+ z

a+ p b+q c+ r


= 2 det




a b c

p q r

x y z




b. det




2a+ p 2b+q 2c+ r

2p+ x 2q+ y 2r+ z

2x+a 2y+b 2z+ c


= 9 det




a b c

p q r

x y z




Exercise 3.1.9 In each case either prove the statement
or give an example showing that it is false:

a. det (A+B) = det A+ det B.

b. If det A = 0, then A has two equal rows.

c. If A is 2×2, then det (AT ) = det A.

d. If R is the reduced row-echelon form of A, then
det A = det R.

e. If A is 2×2, then det (7A) = 49 det A.

f. det (AT ) =− det A.

g. det (−A) =− det A.

h. If det A = det B where A and B are the same size,
then A = B.

Exercise 3.1.10 Compute the determinant of each ma-
trix, using Theorem 3.1.5.

a.




1 −1 2 0 −2
0 1 0 4 1
1 1 5 0 0
0 0 0 3 −1
0 0 0 1 1




b.




1 2 0 3 0
−1 3 1 4 0

0 0 2 1 1
0 0 −1 0 2
0 0 3 0 1




Exercise 3.1.11 If det A = 2, det B =−1, and det C =
3, find:

det




A X Y

0 B Z

0 0 C


a. det




A 0 0
X B 0
Y Z C


b.

det




A X Y

0 B 0
0 Z C


c. det




A X 0
0 B 0
Y Z C


d.

Exercise 3.1.12 If A has three columns with only the
top two entries nonzero, show that det A = 0.

Exercise 3.1.13

a. Find det A if A is 3×3 and det (2A) = 6.

b. Under what conditions is det (−A) = det A?

Exercise 3.1.14 Evaluate by first adding all other rows
to the first row.

a. det




x−1 2 3
2 −3 x−2
−2 x −2




b. det




x−1 −3 1
2 −1 x−1
−3 x+2 −2




Exercise 3.1.15

a. Find b if det




5 −1 x

2 6 y

−5 4 z


= ax+by+ cz.



3.1. The Cofactor Expansion 157

b. Find c if det




2 x −1
1 y 3
−3 z 4


= ax+by+ cz.

Exercise 3.1.16 Find the real numbers x and y such that
det A = 0 if:

A =




0 x y

y 0 x

x y 0


a. A=




1 x x

−x −2 x

−x −x −3


b.

A =




1 x x2 x3

x x2 x3 1
x2 x3 1 x

x3 1 x x2


c.

A =




x y 0 0
0 x y 0
0 0 x y

y 0 0 x


d.

Exercise 3.1.17 Show that

det




0 1 1 1
1 0 x x

1 x 0 x

1 x x 0


=−3x2

Exercise 3.1.18 Show that

det




1 x x2 x3

a 1 x x2

p b 1 x

q r c 1


= (1−ax)(1−bx)(1− cx).

Exercise 3.1.19

Given the polynomial p(x) = a+bx+cx2 +dx3 +x4, the

matrix C =




0 1 0 0
0 0 1 0
0 0 0 1
−a −b −c −d


 is called the com-

panion matrix of p(x). Show that det (xI−C) = p(x).

Exercise 3.1.20 Show that

det




a+ x b+ x c+ x

b+ x c+ x a+ x

c+ x a+ x b+ x




= (a+b+ c+3x)[(ab+ac+bc)− (a2 +b2 + c2)]

Exercise 3.1.21 . Prove Theorem 3.1.6. [Hint: Expand
the determinant along column j.]

Exercise 3.1.22 Show that

det




0 0 · · · 0 a1

0 0 · · · a2 ∗
...

...
...

...
0 an−1 · · · ∗ ∗
an ∗ · · · ∗ ∗



= (−1)ka1a2 · · ·an

where either n = 2k or n = 2k+1, and ∗-entries are arbi-
trary.

Exercise 3.1.23 By expanding along the first column,
show that:

det




1 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 1 1
1 0 0 0 · · · 0 1




= 1+(−1)n+1

if the matrix is n×n, n≥ 2.

Exercise 3.1.24 Form matrix B from a matrix A by writ-
ing the columns of A in reverse order. Express det B in
terms of det A.

Exercise 3.1.25 Prove property 3 of Theorem 3.1.2 by
expanding along the row (or column) in question.

Exercise 3.1.26 Show that the line through two distinct
points (x1, y1) and (x2, y2) in the plane has equation

det




x y 1
x1 y1 1
x2 y2 1


= 0

Exercise 3.1.27 Let A be an n×n matrix. Given a poly-
nomial p(x) = a0 +a1x+ · · ·+amxm, we write
p(A) = a0I+a1A+ · · ·+amAm.

For example, if p(x) = 2−3x+5x2, then
p(A) = 2I−3A+5A2. The characteristic polynomial of
A is defined to be cA(x) = det [xI−A], and the Cayley-
Hamilton theorem asserts that cA(A) = 0 for any matrix
A.

a. Verify the theorem for

i. A =

[
3 2
1 −1

]

ii. A=




1 −1 1
0 1 0
8 2 2




b. Prove the theorem for A =

[
a b

c d

]
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3.2 Determinants and Matrix Inverses

In this section, several theorems about determinants are derived. One consequence of these theorems is
that a square matrix A is invertible if and only if det A 6= 0. Moreover, determinants are used to give a
formula for A−1 which, in turn, yields a formula (called Cramer’s rule) for the solution of any system of
linear equations with an invertible coefficient matrix.

We begin with a remarkable theorem (due to Cauchy in 1812) about the determinant of a product of
matrices. The proof is given at the end of this section.

Theorem 3.2.1: Product Theorem

If A and B are n×n matrices, then det (AB) = det A det B.

The complexity of matrix multiplication makes the product theorem quite unexpected. Here is an
example where it reveals an important numerical identity.

Example 3.2.1

If A =

[
a b

−b a

]
and B =

[
c d

−d c

]
then AB =

[
ac−bd ad +bc

−(ad +bc) ac−bd

]
.

Hence det A det B = det (AB) gives the identity

(a2 +b2)(c2 +d2) = (ac−bd)2 +(ad +bc)2

Theorem 3.2.1 extends easily to det (ABC) = det A det B det C. In fact, induction gives

det (A1A2 · · ·Ak−1Ak) = det A1 det A2 · · · det Ak−1 det Ak

for any square matrices A1, . . . , Ak of the same size. In particular, if each Ai = A, we obtain

det (Ak) = (detA)k, for any k ≥ 1

We can now give the invertibility condition.

Theorem 3.2.2

An n×n matrix A is invertible if and only if det A 6= 0. When this is the case, det (A−1) = 1
det A

Proof. If A is invertible, then AA−1 = I; so the product theorem gives

1 = det I = det (AA−1) = det A det A−1

Hence, det A 6= 0 and also det A−1 = 1
det A

.
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Conversely, if det A 6= 0, we show that A can be carried to I by elementary row operations (and invoke
Theorem 2.4.5). Certainly, A can be carried to its reduced row-echelon form R, so R = Ek · · ·E2E1A where
the Ei are elementary matrices (Theorem 2.5.1). Hence the product theorem gives

det R = det Ek · · · det E2 det E1 det A

Since det E 6= 0 for all elementary matrices E, this shows det R 6= 0. In particular, R has no row of zeros,
so R = I because R is square and reduced row-echelon. This is what we wanted.

Example 3.2.2

For which values of c does A =




1 0 −c

−1 3 1
0 2c −4


 have an inverse?

Solution. Compute det A by first adding c times column 1 to column 3 and then expanding along
row 1.

det A = det




1 0 −c

−1 3 1
0 2c −4


= det




1 0 0
−1 3 1− c

0 2c −4


= 2(c+2)(c−3)

Hence, det A = 0 if c =−2 or c = 3, and A has an inverse if c 6=−2 and c 6= 3.

Example 3.2.3

If a product A1A2 · · ·Ak of square matrices is invertible, show that each Ai is invertible.

Solution. We have det A1 det A2 · · · det Ak = det (A1A2 · · ·Ak) by the product theorem, and
det (A1A2 · · ·Ak) 6= 0 by Theorem 3.2.2 because A1A2 · · ·Ak is invertible. Hence

det A1 det A2 · · · det Ak 6= 0

so det Ai 6= 0 for each i. This shows that each Ai is invertible, again by Theorem 3.2.2.

Theorem 3.2.3

If A is any square matrix, det AT = det A.

Proof. Consider first the case of an elementary matrix E. If E is of type I or II, then ET = E; so certainly
det ET = det E. If E is of type III, then ET is also of type III; so det ET = 1 = det E by Theorem 3.1.2.
Hence, det ET = det E for every elementary matrix E.

Now let A be any square matrix. If A is not invertible, then neither is AT ; so det AT = 0 = det A by
Theorem 3.2.2. On the other hand, if A is invertible, then A = Ek · · ·E2E1, where the Ei are elementary
matrices (Theorem 2.5.2). Hence, AT = ET

1 ET
2 · · ·ET

k so the product theorem gives
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det AT = det ET
1 det ET

2 · · · det ET
k = det E1 det E2 · · · det Ek

= det Ek · · · det E2 det E1

= det A

This completes the proof.

Example 3.2.4

If det A = 2 and det B = 5, calculate det (A3B−1AT B2).

Solution. We use several of the facts just derived.

det (A3B−1AT B2) = det (A3) det (B−1) det (AT ) det (B2)

= (det A)3 1
det B

det A(det B)2

= 23 · 1
5 ·2 ·5

2

= 80

Example 3.2.5

A square matrix is called orthogonal if A−1 = AT . What are the possible values of det A if A is
orthogonal?

Solution. If A is orthogonal, we have I = AAT . Take determinants to obtain

1 = det I = det (AAT ) = det A det AT = (det A)2

Since det A is a number, this means det A =±1.

Hence Theorems 2.6.4 and 2.6.5 imply that rotation about the origin and reflection about a line through
the origin in R2 have orthogonal matrices with determinants 1 and −1 respectively. In fact they are the
only such transformations of R2. We have more to say about this in Section 8.2.

Adjugates

In Section 2.4 we defined the adjugate of a 2× 2 matrix A =

[
a b

c d

]
to be adj (A) =

[
d −b

−c a

]
. Then

we verified that A(adj A) = (det A)I = (adj A)A and hence that, if det A 6= 0, A−1 = 1
det A

adj A. We are
now able to define the adjugate of an arbitrary square matrix and to show that this formula for the inverse
remains valid (when the inverse exists).

Recall that the (i, j)-cofactor ci j(A) of a square matrix A is a number defined for each position (i, j)
in the matrix. If A is a square matrix, the cofactor matrix of A is defined to be the matrix

[
ci j(A)

]
whose

(i, j)-entry is the (i, j)-cofactor of A.
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Definition 3.3 Adjugate of a Matrix

The adjugate4of A, denoted adj (A), is the transpose of this cofactor matrix; in symbols,

adj (A) =
[
ci j(A)

]T

This agrees with the earlier definition for a 2×2 matrix A as the reader can verify.

Example 3.2.6

Compute the adjugate of A =




1 3 −2
0 1 5
−2 −6 7


 and calculate A(adj A) and (adj A)A.

Solution. We first find the cofactor matrix.




c11(A) c12(A) c13(A)
c21(A) c22(A) c23(A)
c31(A) c32(A) c33(A)


=




∣∣∣∣
1 5
−6 7

∣∣∣∣ −
∣∣∣∣

0 5
−2 7

∣∣∣∣
∣∣∣∣

0 1
−2 −6

∣∣∣∣

−
∣∣∣∣

3 −2
−6 7

∣∣∣∣
∣∣∣∣

1 −2
−2 7

∣∣∣∣ −
∣∣∣∣

1 3
−2 −6

∣∣∣∣
∣∣∣∣

3 −2
1 5

∣∣∣∣ −
∣∣∣∣

1 −2
0 5

∣∣∣∣
∣∣∣∣

1 3
0 1

∣∣∣∣




=




37 −10 2
−9 3 0
17 −5 1




Then the adjugate of A is the transpose of this cofactor matrix.

adj A =




37 −10 2
−9 3 0
17 −5 1




T

=




37 −9 17
−10 3 −5

2 0 1




The computation of A(adj A) gives

A(adj A) =




1 3 −2
0 1 5
−2 −6 7






37 −9 17
−10 3 −5

2 0 1


=




3 0 0
0 3 0
0 0 3


= 3I

and the reader can verify that also (adj A)A = 3I. Hence, analogy with the 2×2 case would
indicate that det A = 3; this is, in fact, the case.

The relationship A(adj A) = (det A)I holds for any square matrix A. To see why this is so, consider

4This is also called the classical adjoint of A, but the term “adjoint” has another meaning.
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the general 3×3 case. Writing ci j(A) = ci j for short, we have

adj A =




c11 c12 c13

c21 c22 c23

c31 c32 c33




T

=




c11 c21 c31

c12 c22 c32

c13 c23 c33




If A =
[
ai j

]
in the usual notation, we are to verify that A(adj A) = (det A)I. That is,

A(adj A) =




a11 a12 a13

a21 a22 a23

a31 a32 a33






c11 c21 c31

c12 c22 c32

c13 c23 c33


=




det A 0 0
0 det A 0
0 0 det A




Consider the (1, 1)-entry in the product. It is given by a11c11+a12c12+a13c13, and this is just the cofactor
expansion of det A along the first row of A. Similarly, the (2, 2)-entry and the (3, 3)-entry are the cofactor
expansions of det A along rows 2 and 3, respectively.

So it remains to be seen why the off-diagonal elements in the matrix product A(adj A) are all zero.
Consider the (1, 2)-entry of the product. It is given by a11c21 + a12c22 + a13c23. This looks like the
cofactor expansion of the determinant of some matrix. To see which, observe that c21, c22, and c23 are
all computed by deleting row 2 of A (and one of the columns), so they remain the same if row 2 of A is
changed. In particular, if row 2 of A is replaced by row 1, we obtain

a11c21 +a12c22 +a13c23 = det




a11 a12 a13

a11 a12 a13

a31 a32 a33


= 0

where the expansion is along row 2 and where the determinant is zero because two rows are identical. A
similar argument shows that the other off-diagonal entries are zero.

This argument works in general and yields the first part of Theorem 3.2.4. The second assertion follows
from the first by multiplying through by the scalar 1

det A
.

Theorem 3.2.4: Adjugate Formula

If A is any square matrix, then

A(adj A) = (det A)I = (adj A)A

In particular, if det A 6= 0, the inverse of A is given by

A−1 = 1
det A

adj A

It is important to note that this theorem is not an efficient way to find the inverse of the matrix A. For
example, if A were 10×10, the calculation of adj A would require computing 102 = 100 determinants of
9× 9 matrices! On the other hand, the matrix inversion algorithm would find A−1 with about the same
effort as finding det A. Clearly, Theorem 3.2.4 is not a practical result: its virtue is that it gives a formula
for A−1 that is useful for theoretical purposes.
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Example 3.2.7

Find the (2, 3)-entry of A−1 if A =




2 1 3
5 −7 1
3 0 −6


.

Solution. First compute

det A =

∣∣∣∣∣∣

2 1 3
5 −7 1
3 0 −6

∣∣∣∣∣∣
=

∣∣∣∣∣∣

2 1 7
5 −7 11
3 0 0

∣∣∣∣∣∣
= 3

∣∣∣∣
1 7
−7 11

∣∣∣∣= 180

Since A−1 = 1
det A

adj A = 1
180

[
ci j(A)

]T
, the (2, 3)-entry of A−1 is the (3, 2)-entry of the matrix

1
180

[
ci j(A)

]
; that is, it equals 1

180c32(A) =
1

180

(
−
∣∣∣∣

2 3
5 1

∣∣∣∣
)
= 13

180 .

Example 3.2.8

If A is n×n, n≥ 2, show that det (adj A) = (det A)n−1.

Solution. Write d = det A; we must show that det (adj A) = dn−1. We have A(adj A) = dI by
Theorem 3.2.4, so taking determinants gives d det (adj A) = dn. Hence we are done if d 6= 0.
Assume d = 0; we must show that det (adj A) = 0, that is, adj A is not invertible. If A 6= 0, this
follows from A(adj A) = dI = 0; if A = 0, it follows because then adj A = 0.

Cramer’s Rule

Theorem 3.2.4 has a nice application to linear equations. Suppose

Ax = b

is a system of n equations in n variables x1, x2, . . . , xn. Here A is the n×n coefficient matrix, and x and b

are the columns

x =




x1

x2
...

xn


 and b =




b1

b2
...

bn




of variables and constants, respectively. If det A 6= 0, we left multiply by A−1 to obtain the solution
x = A−1b. When we use the adjugate formula, this becomes




x1

x2
...

xn


= 1

det A
(adj A)b
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= 1
det A




c11(A) c21(A) · · · cn1(A)
c12(A) c22(A) · · · cn2(A)

...
...

...
c1n(A) c2n(A) · · · cnn(A)







b1

b2
...

bn




Hence, the variables x1, x2, . . . , xn are given by

x1 =
1

det A
[b1c11(A)+b2c21(A)+ · · ·+bncn1(A)]

x2 =
1

det A
[b1c12(A)+b2c22(A)+ · · ·+bncn2(A)]

...
...

xn =
1

det A
[b1c1n(A)+b2c2n(A)+ · · ·+bncnn(A)]

Now the quantity b1c11(A)+b2c21(A)+ · · ·+bncn1(A) occurring in the formula for x1 looks like the
cofactor expansion of the determinant of a matrix. The cofactors involved are c11(A), c21(A), . . . , cn1(A),
corresponding to the first column of A. If A1 is obtained from A by replacing the first column of A by b,
then ci1(A1) = ci1(A) for each i because column 1 is deleted when computing them. Hence, expanding
det (A1) by the first column gives

det A1 = b1c11(A1)+b2c21(A1)+ · · ·+bncn1(A1)

= b1c11(A)+b2c21(A)+ · · ·+bncn1(A)

= (det A)x1

Hence, x1 =
det A1
det A

and similar results hold for the other variables.

Theorem 3.2.5: Cramer’s Rule5

If A is an invertible n×n matrix, the solution to the system

Ax = b

of n equations in the variables x1, x2, . . . , xn is given by

x1 =
det A1
det A

, x2 =
det A2
det A

, · · · , xn =
det An

det A

where, for each k, Ak is the matrix obtained from A by replacing column k by b.

Example 3.2.9

Find x1, given the following system of equations.

5x1 + x2− x3 = 4
9x1 + x2− x3 = 1

x1− x2 + 5x3 = 2

5Gabriel Cramer (1704–1752) was a Swiss mathematician who wrote an introductory work on algebraic curves. He popu-
larized the rule that bears his name, but the idea was known earlier.
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Solution. Compute the determinants of the coefficient matrix A and the matrix A1 obtained from it
by replacing the first column by the column of constants.

det A = det




5 1 −1
9 1 −1
1 −1 5


=−16

det A1 = det




4 1 −1
1 1 −1
2 −1 5


= 12

Hence, x1 =
det A1
det A

=−3
4 by Cramer’s rule.

Cramer’s rule is not an efficient way to solve linear systems or invert matrices. True, it enabled us to
calculate x1 here without computing x2 or x3. Although this might seem an advantage, the truth of the
matter is that, for large systems of equations, the number of computations needed to find all the variables
by the gaussian algorithm is comparable to the number required to find one of the determinants involved in
Cramer’s rule. Furthermore, the algorithm works when the matrix of the system is not invertible and even
when the coefficient matrix is not square. Like the adjugate formula, then, Cramer’s rule is not a practical
numerical technique; its virtue is theoretical.

Polynomial Interpolation

Example 3.2.10

0 5 10 12 15

2

4

6

(5, 3)

(10, 5)
(15, 6)

Diameter

Age

A forester wants to estimate the age (in years) of a tree by measuring
the diameter of the trunk (in cm). She obtains the following data:

Tree 1 Tree 2 Tree 3
Trunk Diameter 5 10 15
Age 3 5 6

Estimate the age of a tree with a trunk diameter of 12 cm.

Solution.

The forester decides to “fit” a quadratic polynomial

p(x) = r0 + r1x+ r2x2

to the data, that is choose the coefficients r0, r1, and r2 so that p(5) = 3, p(10) = 5, and p(15) = 6,
and then use p(12) as the estimate. These conditions give three linear equations:

r0 + 5r1 + 25r2 = 3
r0 + 10r1 + 100r2 = 5
r0 + 15r1 + 225r2 = 6
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The (unique) solution is r0 = 0, r1 =
7

10 , and r2 =− 1
50 , so

p(x) = 7
10x− 1

50x2 = 1
50x(35− x)

Hence the estimate is p(12) = 5.52.

As in Example 3.2.10, it often happens that two variables x and y are related but the actual functional
form y = f (x) of the relationship is unknown. Suppose that for certain values x1, x2, . . . , xn of x the
corresponding values y1, y2, . . . , yn are known (say from experimental measurements). One way to
estimate the value of y corresponding to some other value a of x is to find a polynomial6

p(x) = r0 + r1x+ r2x2 + · · ·+ rn−1xn−1

that “fits” the data, that is p(xi) = yi holds for each i = 1, 2, . . . , n. Then the estimate for y is p(a). As we
will see, such a polynomial always exists if the xi are distinct.

The conditions that p(xi) = yi are

r0 + r1x1 + r2x2
1 + · · ·+ rn−1xn−1

1 = y1

r0 + r1x2 + r2x2
2 + · · ·+ rn−1xn−1

2 = y2
...

...
...

...
...

r0 + r1xn + r2x2
n + · · ·+ rn−1xn−1

n = yn

In matrix form, this is 


1 x1 x2
1 · · · xn−1

1
1 x2 x2

2 · · · xn−1
2

...
...

...
...

1 xn x2
n · · · xn−1

n







r0

r1
...

rn−1


=




y1

y2
...

yn


 (3.3)

It can be shown (see Theorem 3.2.7) that the determinant of the coefficient matrix equals the product of
all terms (xi− x j) with i > j and so is nonzero (because the xi are distinct). Hence the equations have a
unique solution r0, r1, . . . , rn−1. This proves

Theorem 3.2.6

Let n data pairs (x1, y1), (x2, y2), . . . , (xn, yn) be given, and assume that the xi are distinct. Then
there exists a unique polynomial

p(x) = r0 + r1x+ r2x2 + · · ·+ rn−1xn−1

such that p(xi) = yi for each i = 1, 2, . . . , n.

The polynomial in Theorem 3.2.6 is called the interpolating polynomial for the data.

6A polynomial is an expression of the form a0 + a1x+ a2x2 + · · ·+ anxn where the ai are numbers and x is a variable. If
an 6= 0, the integer n is called the degree of the polynomial, and an is called the leading coefficient. See Appendix D.
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We conclude by evaluating the determinant of the coefficient matrix in Equation 3.3. If a1, a2, . . . , an

are numbers, the determinant

det




1 a1 a2
1 · · · an−1

1
1 a2 a2

2 · · · an−1
2

1 a3 a2
3 · · · an−1

3
...

...
...

...
1 an a2

n · · · an−1
n




is called a Vandermonde determinant.7 There is a simple formula for this determinant. If n = 2, it equals
(a2−a1); if n = 3, it is (a3−a2)(a3−a1)(a2−a1) by Example 3.1.8. The general result is the product

∏
1≤ j<i≤n

(ai−a j)

of all factors (ai−a j) where 1≤ j < i≤ n. For example, if n = 4, it is

(a4−a3)(a4−a2)(a4−a1)(a3−a2)(a3−a1)(a2−a1)

Theorem 3.2.7

Let a1, a2, . . . , an be numbers where n≥ 2. Then the corresponding Vandermonde determinant is
given by

det




1 a1 a2
1 · · · an−1

1
1 a2 a2

2 · · · an−1
2

1 a3 a2
3 · · · an−1

3
...

...
...

...
1 an a2

n · · · an−1
n



= ∏

1≤ j<i≤n

(ai−a j)

Proof. We may assume that the ai are distinct; otherwise both sides are zero. We proceed by induction on
n≥ 2; we have it for n = 2, 3. So assume it holds for n−1. The trick is to replace an by a variable x, and
consider the determinant

p(x) = det




1 a1 a2
1 · · · an−1

1
1 a2 a2

2 · · · an−1
2

...
...

...
...

1 an−1 a2
n−1 · · · an−1

n−1
1 x x2 · · · xn−1




Then p(x) is a polynomial of degree at most n− 1 (expand along the last row), and p(ai) = 0 for each
i = 1, 2, . . . , n− 1 because in each case there are two identical rows in the determinant. In particular,
p(a1) = 0, so we have p(x) = (x−a1)p1(x) by the factor theorem (see Appendix D). Since a2 6= a1, we
obtain p1(a2) = 0, and so p1(x) = (x−a2)p2(x). Thus p(x) = (x−a1)(x−a2)p2(x). As the ai are distinct,
this process continues to obtain

p(x) = (x−a1)(x−a2) · · ·(x−an−1)d (3.4)

7Alexandre Théophile Vandermonde (1735–1796) was a French mathematician who made contributions to the theory of
equations.
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where d is the coefficient of xn−1 in p(x). By the cofactor expansion of p(x) along the last row we get

d = (−1)n+n det




1 a1 a2
1 · · · an−2

1
1 a2 a2

2 · · · an−2
2

...
...

...
...

1 an−1 a2
n−1 · · · an−2

n−1




Because (−1)n+n = 1 the induction hypothesis shows that d is the product of all factors (ai−a j) where
1≤ j < i≤ n−1. The result now follows from Equation 3.4 by substituting an for x in p(x).

Proof of Theorem 3.2.1. If A and B are n×n matrices we must show that

det (AB) = det A det B (3.5)

Recall that if E is an elementary matrix obtained by doing one row operation to In, then doing that operation
to a matrix C (Lemma 2.5.1) results in EC. By looking at the three types of elementary matrices separately,
Theorem 3.1.2 shows that

det (EC) = det E det C for any matrix C (3.6)

Thus if E1, E2, . . . , Ek are all elementary matrices, it follows by induction that

det (Ek · · ·E2E1C) = det Ek · · · det E2 det E1 det C for any matrix C (3.7)

Lemma. If A has no inverse, then det A = 0.

Proof. Let A→ R where R is reduced row-echelon, say En · · ·E2E1A = R. Then R has a row of zeros by
Part (4) of Theorem 2.4.5, and hence det R = 0. But then Equation 3.7 gives det A = 0 because det E 6= 0
for any elementary matrix E. This proves the Lemma.

Now we can prove Equation 3.5 by considering two cases.

Case 1. A has no inverse. Then AB also has no inverse (otherwise A[B(AB)−1] = I) so A is invertible by
Corollary 2.4.2 to Theorem 2.4.5. Hence the above Lemma (twice) gives

det (AB) = 0 = 0 det B = det A det B

proving Equation 3.5 in this case.

Case 2. A has an inverse. Then A is a product of elementary matrices by Theorem 2.5.2, say A =
E1E2 · · ·Ek. Then Equation 3.7 with C = I gives

det A = det (E1E2 · · ·Ek) = det E1 det E2 · · · det Ek

But then Equation 3.7 with C = B gives

det (AB) = det [(E1E2 · · ·Ek)B] = det E1 det E2 · · · det Ek det B = det A det B

and Equation 3.5 holds in this case too.
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Exercises for 3.2

Exercise 3.2.1 Find the adjugate of each of the follow-
ing matrices.




5 1 3
−1 2 3

1 4 8


a.




1 −1 2
3 1 0
0 −1 1


b.




1 0 −1
−1 1 0

0 −1 1


c. 1

3



−1 2 2

2 −1 2
2 2 −1


d.

Exercise 3.2.2 Use determinants to find which real val-
ues of c make each of the following matrices invertible.




1 0 3
3 −4 c

2 5 8


a.




0 c −c

−1 2 1
c −c c


b.




c 1 0
0 2 c

−1 c 5


c.




4 c 3
c 2 c

5 c 4


d.




1 2 −1
0 −1 c

2 c 1


e.




1 c −1
c 1 1
0 1 c


f.

Exercise 3.2.3 Let A, B, and C denote n× n matrices
and assume that det A = −1, det B = 2, and det C = 3.
Evaluate:

det (A3BCT B−1)a. det (B2C−1AB−1CT )b.

Exercise 3.2.4 Let A and B be invertible n×n matrices.
Evaluate:

det (B−1AB)a. det (A−1B−1AB)b.

Exercise 3.2.5 If A is 3× 3 and det (2A−1) = −4 and
det (A3(B−1)T ) =−4, find det A and det B.

Exercise 3.2.6 Let A =




a b c

p q r

u v w


 and assume that

det A = 3. Compute:

a. det (2B−1) where B =




4u 2a −p

4v 2b −q

4w 2c −r




b. det (2C−1) where C =




2p −a+u 3u

2q −b+ v 3v

2r −c+w 3w




Exercise 3.2.7 If det

[
a b

c d

]
=−2 calculate:

a. det




2 −2 0
c+1 −1 2a

d−2 2 2b




b. det




2b 0 4d

1 2 −2
a+1 2 2(c−1)




c. det (3A−1) where A =

[
3c a+ c

3d b+d

]

Exercise 3.2.8 Solve each of the following by Cramer’s
rule:

2x + y= 1
3x + 7y=−2

a.
3x + 4y = 9
2x− y=−1

b.

5x + y− z=−7
2x− y− 2z = 6
3x + 2z =−7

c.
4x− y+ 3z= 1
6x + 2y− z= 0
3x + 3y + 2z=−1

d.

Exercise 3.2.9 Use Theorem 3.2.4 to find the (2, 3)-
entry of A−1 if:

A =




3 2 1
1 1 2
−1 2 1


a. A =




1 2 −1
3 1 1
0 4 7


b.

Exercise 3.2.10 Explain what can be said about det A

if:

A2 = Aa. A2 = Ib.

A3 = Ac. PA = P and P is
invertible

d.

A2 = uA and A is n×ne. A =−AT and A is n×
n

f.

A2 + I = 0 and A is
n×n

g.
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Exercise 3.2.11 Let A be n×n. Show that uA = (uI)A,
and use this with Theorem 3.2.1 to deduce the result in
Theorem 3.1.3: det (uA) = un det A.

Exercise 3.2.12 If A and B are n× n matrices, if AB =
−BA, and if n is odd, show that either A or B has no in-
verse.

Exercise 3.2.13 Show that det AB = det BA holds for
any two n×n matrices A and B.

Exercise 3.2.14 If Ak = 0 for some k ≥ 1, show that A

is not invertible.

Exercise 3.2.15 If A−1 = AT , describe the cofactor ma-
trix of A in terms of A.

Exercise 3.2.16 Show that no 3×3 matrix A exists such
that A2+ I = 0. Find a 2×2 matrix A with this property.

Exercise 3.2.17 Show that det (A+BT ) = det (AT +B)
for any n×n matrices A and B.

Exercise 3.2.18 Let A and B be invertible n×n matrices.
Show that det A = det B if and only if A =UB where U

is a matrix with det U = 1.

Exercise 3.2.19 For each of the matrices in Exercise 2,
find the inverse for those values of c for which it exists.

Exercise 3.2.20 In each case either prove the statement
or give an example showing that it is false:

a. If adj A exists, then A is invertible.

b. If A is invertible and adj A = A−1, then det A = 1.

c. det (AB) = det (BT A).

d. If det A 6= 0 and AB = AC, then B =C.

e. If AT =−A, then det A =−1.

f. If adj A = 0, then A = 0.

g. If A is invertible, then adj A is invertible.

h. If A has a row of zeros, so also does adj A.

i. det (AT A)> 0 for all square matrices A.

j. det (I+A) = 1+ det A.

k. If AB is invertible, then A and B are invertible.

l. If det A = 1, then adj A = A.

m. If A is invertible and det A = d, then adj A =
dA−1.

Exercise 3.2.21 If A is 2× 2 and det A = 0, show that
one column of A is a scalar multiple of the other. [Hint:
Definition 2.5 and Part (2) of Theorem 2.4.5.]

Exercise 3.2.22 Find a polynomial p(x) of degree 2
such that:

a. p(0) = 2, p(1) = 3, p(3) = 8

b. p(0) = 5, p(1) = 3, p(2) = 5

Exercise 3.2.23 Find a polynomial p(x) of degree 3
such that:

a. p(0) = p(1) = 1, p(−1) = 4, p(2) =−5

b. p(0) = p(1) = 1, p(−1) = 2, p(−2) =−3

Exercise 3.2.24 Given the following data pairs, find
the interpolating polynomial of degree 3 and estimate the
value of y corresponding to x = 1.5.

a. (0, 1), (1, 2), (2, 5), (3, 10)

b. (0, 1), (1, 1.49), (2, −0.42), (3, −11.33)

c. (0, 2), (1, 2.03), (2, −0.40), (−1, 0.89)

Exercise 3.2.25 If A =




1 a b

−a 1 c

−b −c 1


 show that

det A = 1+ a2 + b2 + c2. Hence, find A−1 for any a, b,
and c.

Exercise 3.2.26

a. Show that A =




a p q

0 b r

0 0 c


 has an inverse if and

only if abc 6= 0, and find A−1 in that case.

b. Show that if an upper triangular matrix is invert-
ible, the inverse is also upper triangular.

Exercise 3.2.27 Let A be a matrix each of whose entries
are integers. Show that each of the following conditions
implies the other.

1. A is invertible and A−1 has integer entries.

2. det A = 1 or −1.
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Exercise 3.2.28 If A−1 =




3 0 1
0 2 3
3 1 −1


 find adj A.

Exercise 3.2.29 If A is 3 × 3 and det A = 2, find
det (A−1 +4 adj A).

Exercise 3.2.30 Show that det

[
0 A

B X

]
= det A det B

when A and B are 2×2. What if A and B are 3×3?

[Hint: Block multiply by

[
0 I

I 0

]
.]

Exercise 3.2.31 Let A be n×n, n ≥ 2, and assume one
column of A consists of zeros. Find the possible values
of rank (adj A).

Exercise 3.2.32 If A is 3× 3 and invertible, compute
det (−A2(adj A)−1).

Exercise 3.2.33 Show that adj (uA) = un−1 adj A for all
n×n matrices A.

Exercise 3.2.34 Let A and B denote invertible n×n ma-
trices. Show that:

a. adj (adj A) = (det A)n−2A (here n≥ 2) [Hint: See
Example 3.2.8.]

b. adj (A−1) = (adj A)−1

c. adj (AT ) = (adj A)T

d. adj (AB) = (adj B)(adj A) [Hint: Show that
AB adj (AB) = AB adj B adj A.]

3.3 Diagonalization and Eigenvalues

The world is filled with examples of systems that evolve in time—the weather in a region, the economy
of a nation, the diversity of an ecosystem, etc. Describing such systems is difficult in general and various
methods have been developed in special cases. In this section we describe one such method, called diag-

onalization, which is one of the most important techniques in linear algebra. A very fertile example of
this procedure is in modelling the growth of the population of an animal species. This has attracted more
attention in recent years with the ever increasing awareness that many species are endangered. To motivate
the technique, we begin by setting up a simple model of a bird population in which we make assumptions
about survival and reproduction rates.

Example 3.3.1

Consider the evolution of the population of a species of birds. Because the number of males and
females are nearly equal, we count only females. We assume that each female remains a juvenile
for one year and then becomes an adult, and that only adults have offspring. We make three
assumptions about reproduction and survival rates:

1. The number of juvenile females hatched in any year is twice the number of adult females
alive the year before (we say the reproduction rate is 2).

2. Half of the adult females in any year survive to the next year (the adult survival rate is 1
2).

3. One quarter of the juvenile females in any year survive into adulthood (the juvenile survival

rate is 1
4).

If there were 100 adult females and 40 juvenile females alive initially, compute the population of
females k years later.
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Solution. Let ak and jk denote, respectively, the number of adult and juvenile females after k years,
so that the total female population is the sum ak + jk. Assumption 1 shows that jk+1 = 2ak, while
assumptions 2 and 3 show that ak+1 =

1
2ak +

1
4 jk. Hence the numbers ak and jk in successive years

are related by the following equations:

ak+1 =
1
2ak +

1
4 jk

jk+1 = 2ak

If we write vk =

[
ak

jk

]
and A =

[
1
2

1
4

2 0

]
these equations take the matrix form

vk+1 = Avk, for each k = 0, 1, 2, . . .

Taking k = 0 gives v1 = Av0, then taking k = 1 gives v2 = Av1 = A2v0, and taking k = 2 gives
v3 = Av2 = A3v0. Continuing in this way, we get

vk = Akv0, for each k = 0, 1, 2, . . .

Since v0 =

[
a0

j0

]
=

[
100
40

]
is known, finding the population profile vk amounts to computing Ak

for all k ≥ 0. We will complete this calculation in Example 3.3.12 after some new techniques have
been developed.

Let A be a fixed n× n matrix. A sequence v0, v1, v2, . . . of column vectors in Rn is called a linear

dynamical system8 if v0 is known and the other vk are determined (as in Example 3.3.1) by the conditions

vk+1 = Avk for each k = 0, 1, 2, . . .

These conditions are called a matrix recurrence for the vectors vk. As in Example 3.3.1, they imply that

vk = Akv0 for all k ≥ 0

so finding the columns vk amounts to calculating Ak for k ≥ 0.

Direct computation of the powers Ak of a square matrix A can be time-consuming, so we adopt an
indirect method that is commonly used. The idea is to first diagonalize the matrix A, that is, to find an
invertible matrix P such that

P−1AP = D is a diagonal matrix (3.8)

This works because the powers Dk of the diagonal matrix D are easy to compute, and Equation 3.8 enables
us to compute powers Ak of the matrix A in terms of powers Dk of D. Indeed, we can solve Equation 3.8
for A to get A = PDP−1. Squaring this gives

A2 = (PDP−1)(PDP−1) = PD2P−1

Using this we can compute A3 as follows:

A3 = AA2 = (PDP−1)(PD2P−1) = PD3P−1

8More precisely, this is a linear discrete dynamical system. Many models regard vt as a continuous function of the time t,
and replace our condition between bk+1 and Avk with a differential relationship viewed as functions of time.
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Continuing in this way we obtain Theorem 3.3.1 (even if D is not diagonal).

Theorem 3.3.1

If A = PDP−1 then Ak = PDkP−1 for each k = 1, 2, . . . .

Hence computing Ak comes down to finding an invertible matrix P as in equation Equation 3.8. To do
this it is necessary to first compute certain numbers (called eigenvalues) associated with the matrix A.

Eigenvalues and Eigenvectors

Definition 3.4 Eigenvalues and Eigenvectors of a Matrix

If A is an n×n matrix, a number λ is called an eigenvalue of A if

Ax = λx for some column x 6= 0 in Rn

In this case, x is called an eigenvector of A corresponding to the eigenvalue λ , or a λ -eigenvector

for short.

Example 3.3.2

If A =

[
3 5
1 −1

]
and x =

[
5
1

]
then Ax = 4x so λ = 4 is an eigenvalue of A with corresponding

eigenvector x.

The matrix A in Example 3.3.2 has another eigenvalue in addition to λ = 4. To find it, we develop a
general procedure for any n×n matrix A.

By definition a number λ is an eigenvalue of the n×n matrix A if and only if Ax= λx for some column
x 6= 0. This is equivalent to asking that the homogeneous system

(λ I−A)x = 0

of linear equations has a nontrivial solution x 6= 0. By Theorem 2.4.5 this happens if and only if the matrix
λ I−A is not invertible and this, in turn, holds if and only if the determinant of the coefficient matrix is
zero:

det (λ I−A) = 0

This last condition prompts the following definition:

Definition 3.5 Characteristic Polynomial of a Matrix

If A is an n×n matrix, the characteristic polynomial cA(x) of A is defined by

cA(x) = det (xI−A)
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Note that cA(x) is indeed a polynomial in the variable x, and it has degree n when A is an n×n matrix (this
is illustrated in the examples below). The above discussion shows that a number λ is an eigenvalue of A if
and only if cA(λ ) = 0, that is if and only if λ is a root of the characteristic polynomial cA(x). We record
these observations in

Theorem 3.3.2

Let A be an n×n matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial cA(x) of A.

2. The λ -eigenvectors x are the nonzero solutions to the homogeneous system

(λ I−A)x = 0

of linear equations with λ I−A as coefficient matrix.

In practice, solving the equations in part 2 of Theorem 3.3.2 is a routine application of gaussian elimina-
tion, but finding the eigenvalues can be difficult, often requiring computers (see Section 8.5). For now,
the examples and exercises will be constructed so that the roots of the characteristic polynomials are rela-
tively easy to find (usually integers). However, the reader should not be misled by this into thinking that
eigenvalues are so easily obtained for the matrices that occur in practical applications!

Example 3.3.3

Find the characteristic polynomial of the matrix A =

[
3 5
1 −1

]
discussed in Example 3.3.2, and

then find all the eigenvalues and their eigenvectors.

Solution. Since xI−A =

[
x 0
0 x

]
−
[

3 5
1 −1

]
=

[
x−3 −5
−1 x+1

]
we get

cA(x) = det

[
x−3 −5
−1 x+1

]
= x2−2x−8 = (x−4)(x+2)

Hence, the roots of cA(x) are λ1 = 4 and λ2 =−2, so these are the eigenvalues of A. Note that
λ1 = 4 was the eigenvalue mentioned in Example 3.3.2, but we have found a new one: λ2 =−2.
To find the eigenvectors corresponding to λ2 =−2, observe that in this case

(λ2I−A)x =

[
λ2−3 −5
−1 λ2 +1

]
=

[
−5 −5
−1 −1

]

so the general solution to (λ2I−A)x = 0 is x = t

[
−1

1

]
where t is an arbitrary real number.

Hence, the eigenvectors x corresponding to λ 2 are x = t

[
−1

1

]
where t 6= 0 is arbitrary. Similarly,

λ1 = 4 gives rise to the eigenvectors x = t

[
5
1

]
, t 6= 0 which includes the observation in

Example 3.3.2.
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Note that a square matrix A has many eigenvectors associated with any given eigenvalue λ . In fact
every nonzero solution x of (λ I−A)x = 0 is an eigenvector. Recall that these solutions are all linear com-
binations of certain basic solutions determined by the gaussian algorithm (see Theorem 1.3.2). Observe
that any nonzero multiple of an eigenvector is again an eigenvector,9 and such multiples are often more
convenient.10 Any set of nonzero multiples of the basic solutions of (λ I−A)x = 0 will be called a set of
basic eigenvectors corresponding to λ .

Example 3.3.4

Find the characteristic polynomial, eigenvalues, and basic eigenvectors for

A =




2 0 0
1 2 −1
1 3 −2




Solution. Here the characteristic polynomial is given by

cA(x) = det




x−2 0 0
−1 x−2 1
−1 −3 x+2


= (x−2)(x−1)(x+1)

so the eigenvalues are λ1 = 2, λ2 = 1, and λ3 =−1. To find all eigenvectors for λ1 = 2, compute

λ1I−A =




λ1−2 0 0
−1 λ1−2 1
−1 −3 λ1 +2


=




0 0 0
−1 0 1
−1 −3 4




We want the (nonzero) solutions to (λ1I−A)x = 0. The augmented matrix becomes



0 0 0 0
−1 0 1 0
−1 −3 4 0


→




1 0 −1 0
0 1 −1 0
0 0 0 0




using row operations. Hence, the general solution x to (λ1I−A)x = 0 is x = t




1
1
1


 where t is

arbitrary, so we can use x1 =




1
1
1


 as the basic eigenvector corresponding to λ1 = 2. As the

reader can verify, the gaussian algorithm gives basic eigenvectors x2 =




0
1
1


 and x3 =




0
1
3
1




corresponding to λ2 = 1 and λ3 =−1, respectively. Note that to eliminate fractions, we could

instead use 3x3 =




0
1
3


 as the basic λ3-eigenvector.

9In fact, any nonzero linear combination of λ -eigenvectors is again a λ -eigenvector.
10Allowing nonzero multiples helps eliminate round-off error when the eigenvectors involve fractions.
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Example 3.3.5

If A is a square matrix, show that A and AT have the same characteristic polynomial, and hence the
same eigenvalues.

Solution. We use the fact that xI−AT = (xI−A)T . Then

cAT (x) = det
(
xI−AT

)
= det

[
(xI−A)T

]
= det (xI−A) = cA(x)

by Theorem 3.2.3. Hence cAT (x) and cA(x) have the same roots, and so AT and A have the same
eigenvalues (by Theorem 3.3.2).

The eigenvalues of a matrix need not be distinct. For example, if A =

[
1 1
0 1

]
the characteristic poly-

nomial is (x− 1)2 so the eigenvalue 1 occurs twice. Furthermore, eigenvalues are usually not computed
as the roots of the characteristic polynomial. There are iterative, numerical methods (for example the
QR-algorithm in Section 8.5) that are much more efficient for large matrices.

A-Invariance

If A is a 2×2 matrix, we can describe the eigenvectors of A geometrically using the following concept. A
line L through the origin in R2 is called A-invariant if Ax is in L whenever x is in L. If we think of A as a
linear transformation R2→ R2, this asks that A carries L into itself, that is the image Ax of each vector x

in L is again in L.

Example 3.3.6

The x axis L =

{[
x

0

]
| x in R

}
is A-invariant for any matrix of the form

A =

[
a b

0 c

]
because

[
a b

0 c

][
x

0

]
=

[
ax

0

]
is L for all x =

[
x

0

]
in L

Lx

x

0 x

y

To see the connection with eigenvectors, let x 6= 0 be any nonzero vec-
tor in R2 and let Lx denote the unique line through the origin containing x

(see the diagram). By the definition of scalar multiplication in Section 2.6,
we see that Lx consists of all scalar multiples of x, that is

Lx = Rx = {tx | t in R}
Now suppose that x is an eigenvector of A, say Ax = λx for some λ in R.
Then if tx is in Lx then

A(tx) = t (Ax) = t(λx) = (tλ )x is again in Lx

That is, Lx is A-invariant. On the other hand, if Lx is A-invariant then Ax is in Lx (since x is in Lx). Hence
Ax = tx for some t in R, so x is an eigenvector for A (with eigenvalue t). This proves:
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Theorem 3.3.3

Let A be a 2×2 matrix, let x 6= 0 be a vector in R2, and let Lx be the line through the origin in R2

containing x. Then

x is an eigenvector of A if and only if Lx is A-invariant

Example 3.3.7

1. If θ is not a multiple of π , show that A =

[
cosθ −sinθ
sinθ cosθ

]
has no real eigenvalue.

2. If m is real show that B = 1
1+m2

[
1−m2 2m

2m m2−1

]
has a 1 as an eigenvalue.

Solution.

1. A induces rotation about the origin through the angle θ (Theorem 2.6.4). Since θ is not a
multiple of π , this shows that no line through the origin is A-invariant. Hence A has no
eigenvector by Theorem 3.3.3, and so has no eigenvalue.

2. B induces reflection Qm in the line through the origin with slope m by Theorem 2.6.5. If x is
any nonzero point on this line then it is clear that Qmx = x, that is Qmx = 1x. Hence 1 is an
eigenvalue (with eigenvector x).

If θ = π
2 in Example 3.3.7, then A =

[
0 −1
1 0

]
so cA(x) = x2 + 1. This polynomial has no root

in R, so A has no (real) eigenvalue, and hence no eigenvector. In fact its eigenvalues are the complex

numbers i and −i, with corresponding eigenvectors

[
1
−i

]
and

[
1
i

]
In other words, A has eigenvalues

and eigenvectors, just not real ones.

Note that every polynomial has complex roots,11 so every matrix has complex eigenvalues. While
these eigenvalues may very well be real, this suggests that we really should be doing linear algebra over the
complex numbers. Indeed, everything we have done (gaussian elimination, matrix algebra, determinants,
etc.) works if all the scalars are complex.

11This is called the Fundamental Theorem of Algebra and was first proved by Gauss in his doctoral dissertation.
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Diagonalization

An n×n matrix D is called a diagonal matrix if all its entries off the main diagonal are zero, that is if D

has the form

D =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


= diag (λ1, λ2, · · · , λn)

where λ1, λ2, . . . , λn are numbers. Calculations with diagonal matrices are very easy. Indeed, if
D = diag (λ1, λ2, . . . , λn) and E = diag (µ1, µ2, . . . , µn) are two diagonal matrices, their product DE and
sum D+E are again diagonal, and are obtained by doing the same operations to corresponding diagonal
elements:

DE = diag (λ1µ1, λ2µ2, . . . , λnµn)

D+E = diag (λ1+µ1, λ2 +µ2, . . . , λn +µn)

Because of the simplicity of these formulas, and with an eye on Theorem 3.3.1 and the discussion preced-
ing it, we make another definition:

Definition 3.6 Diagonalizable Matrices

An n×n matrix A is called diagonalizable if

P−1AP is diagonal for some invertible n×n matrix P

Here the invertible matrix P is called a diagonalizing matrix for A.

To discover when such a matrix P exists, we let x1, x2, . . . , xn denote the columns of P and look
for ways to determine when such xi exist and how to compute them. To this end, write P in terms of its
columns as follows:

P = [x1, x2, · · · , xn]

Observe that P−1AP = D for some diagonal matrix D holds if and only if

AP = PD

If we write D = diag (λ1, λ2, . . . , λn), where the λi are numbers to be determined, the equation AP = PD

becomes

A [x1, x2, · · · , xn] = [x1, x2, · · · , xn]




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn




By the definition of matrix multiplication, each side simplifies as follows

[
Ax1 Ax2 · · · Axn

]
=
[

λ1x1 λ2x2 · · · λnxn

]
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Comparing columns shows that Axi = λixi for each i, so

P−1AP = D if and only if Axi = λixi for each i

In other words, P−1AP = D holds if and only if the diagonal entries of D are eigenvalues of A and the
columns of P are corresponding eigenvectors. This proves the following fundamental result.

Theorem 3.3.4

Let A be an n×n matrix.

1. A is diagonalizable if and only if it has eigenvectors x1, x2, . . . , xn such that the matrix
P =

[
x1 x2 . . . xn

]
is invertible.

2. When this is the case, P−1AP = diag (λ1, λ2, . . . , λn) where, for each i, λi is the eigenvalue
of A corresponding to xi.

Example 3.3.8

Diagonalize the matrix A =




2 0 0
1 2 −1
1 3 −2


 in Example 3.3.4.

Solution. By Example 3.3.4, the eigenvalues of A are λ1 = 2, λ2 = 1, and λ3 =−1, with

corresponding basic eigenvectors x1 =




1
1
1


 , x2 =




0
1
1


, and x3 =




0
1
3


 respectively. Since

the matrix P =
[

x1 x2 x3
]
=




1 0 0
1 1 1
1 1 3


 is invertible, Theorem 3.3.4 guarantees that

P−1AP =




λ1 0 0
0 λ2 0
0 0 λ3


=




2 0 0
0 1 0
0 0 −1


= D

The reader can verify this directly—easier to check AP = PD.

In Example 3.3.8, suppose we let Q =
[

x2 x1 x3
]

be the matrix formed from the eigenvectors x1,
x2, and x3 of A, but in a different order than that used to form P. Then Q−1AQ = diag (λ2, λ1, λ3) is diag-
onal by Theorem 3.3.4, but the eigenvalues are in the new order. Hence we can choose the diagonalizing
matrix P so that the eigenvalues λi appear in any order we want along the main diagonal of D.

In every example above each eigenvalue has had only one basic eigenvector. Here is a diagonalizable
matrix where this is not the case.
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Example 3.3.9

Diagonalize the matrix A =




0 1 1
1 0 1
1 1 0




Solution. To compute the characteristic polynomial of A first add rows 2 and 3 of xI−A to row 1:

cA(x) = det




x −1 −1
−1 x −1
−1 −1 x


= det




x−2 x−2 x−2
−1 x −1
−1 −1 x




= det




x−2 0 0
−1 x+1 0
−1 0 x+1


= (x−2)(x+1)2

Hence the eigenvalues are λ1 = 2 and λ2 =−1, with λ2 repeated twice (we say that λ2 has
multiplicity two). However, A is diagonalizable. For λ1 = 2, the system of equations

(λ1I−A)x = 0 has general solution x = t




1
1
1


 as the reader can verify, so a basic λ1-eigenvector

is x1 =




1
1
1


.

Turning to the repeated eigenvalue λ2 =−1, we must solve (λ2I−A)x = 0. By gaussian

elimination, the general solution is x = s



−1

1
0


+ t



−1

0
1


 where s and t are arbitrary. Hence

the gaussian algorithm produces two basic λ2-eigenvectors x2 =



−1

1
0


 and y2 =



−1

0
1


 If we

take P =
[

x1 x2 y2

]
=




1 −1 −1
1 1 0
1 0 1


 we find that P is invertible. Hence

P−1AP = diag (2, −1, −1) by Theorem 3.3.4.

Example 3.3.9 typifies every diagonalizable matrix. To describe the general case, we need some ter-
minology.

Definition 3.7 Multiplicity of an Eigenvalue

An eigenvalue λ of a square matrix A is said to have multiplicity m if it occurs m times as a root of
the characteristic polynomial cA(x).

For example, the eigenvalue λ2 = −1 in Example 3.3.9 has multiplicity 2. In that example the gaussian
algorithm yields two basic λ2-eigenvectors, the same number as the multiplicity. This works in general.
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Theorem 3.3.5

A square matrix A is diagonalizable if and only if every eigenvalue λ of multiplicity m yields
exactly m basic eigenvectors; that is, if and only if the general solution of the system (λ I−A)x = 0

has exactly m parameters.

One case of Theorem 3.3.5 deserves mention.

Theorem 3.3.6

An n×n matrix with n distinct eigenvalues is diagonalizable.

The proofs of Theorem 3.3.5 and Theorem 3.3.6 require more advanced techniques and are given in Chap-
ter 5. The following procedure summarizes the method.

Diagonalization Algorithm

To diagonalize an n×n matrix A:

Step 1. Find the distinct eigenvalues λ of A.

Step 2. Compute a set of basic eigenvectors corresponding to each of these eigenvalues λ as
basic solutions of the homogeneous system (λ I−A)x = 0.

Step 3. The matrix A is diagonalizable if and only if there are n basic eigenvectors in all.

Step 4. If A is diagonalizable, the n×n matrix P with these basic eigenvectors as its columns is
a diagonalizing matrix for A, that is, P is invertible and P−1AP is diagonal.

The diagonalization algorithm is valid even if the eigenvalues are nonreal complex numbers. In this case
the eigenvectors will also have complex entries, but we will not pursue this here.

Example 3.3.10

Show that A =

[
1 1
0 1

]
is not diagonalizable.

Solution 1. The characteristic polynomial is cA(x) = (x−1)2, so A has only one eigenvalue λ1 = 1

of multiplicity 2. But the system of equations (λ1I−A)x = 0 has general solution t

[
1
0

]
, so there

is only one parameter, and so only one basic eigenvector

[
1
2

]
. Hence A is not diagonalizable.

Solution 2. We have cA(x) = (x−1)2 so the only eigenvalue of A is λ = 1. Hence, if A were

diagonalizable, Theorem 3.3.4 would give P−1AP =

[
1 0
0 1

]
= I for some invertible matrix P.

But then A = PIP−1 = I, which is not the case. So A cannot be diagonalizable.
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Diagonalizable matrices share many properties of their eigenvalues. The following example illustrates
why.

Example 3.3.11

If λ 3 = 5λ for every eigenvalue of the diagonalizable matrix A, show that A3 = 5A.

Solution. Let P−1AP = D = diag (λ1, . . . , λn). Because λ 3
i = 5λi for each i, we obtain

D3 = diag (λ 3
1 , . . . , λ 3

n ) = diag (5λ1, . . . , 5λn) = 5D

Hence A3 = (PDP−1)3 = PD3P−1 = P(5D)P−1 = 5(PDP−1) = 5A using Theorem 3.3.1. This is
what we wanted.

If p(x) is any polynomial and p(λ ) = 0 for every eigenvalue of the diagonalizable matrix A, an argu-
ment similar to that in Example 3.3.11 shows that p(A) = 0. Thus Example 3.3.11 deals with the case
p(x) = x3− 5x. In general, p(A) is called the evaluation of the polynomial p(x) at the matrix A. For
example, if p(x) = 2x3−3x+5, then p(A) = 2A3−3A+5I—note the use of the identity matrix.

In particular, if cA(x) denotes the characteristic polynomial of A, we certainly have cA(λ ) = 0 for each
eigenvalue λ of A (Theorem 3.3.2). Hence cA(A) = 0 for every diagonalizable matrix A. This is, in fact,
true for any square matrix, diagonalizable or not, and the general result is called the Cayley-Hamilton
theorem. It is proved in Section 8.7 and again in Section 11.1.

Linear Dynamical Systems

We began Section 3.3 with an example from ecology which models the evolution of the population of a
species of birds as time goes on. As promised, we now complete the example—Example 3.3.12 below.

The bird population was described by computing the female population profile vk =

[
ak

jk

]
of the

species, where ak and jk represent the number of adult and juvenile females present k years after the initial
values a0 and j0 were observed. The model assumes that these numbers are related by the following
equations:

ak+1 =
1
2ak +

1
4 jk

jk+1 = 2ak

If we write A =

[
1
2

1
4

2 0

]
the columns vk satisfy vk+1 = Avk for each k = 0, 1, 2, . . . .

Hence vk = Akv0 for each k = 1, 2, . . . . We can now use our diagonalization techniques to determine the
population profile vk for all values of k in terms of the initial values.

Example 3.3.12

Assuming that the initial values were a0 = 100 adult females and j0 = 40 juvenile females,
compute ak and jk for k = 1, 2, . . . .
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Solution. The characteristic polynomial of the matrix A =

[
1
2

1
4

2 0

]
is

cA(x) = x2− 1
2x− 1

2 = (x−1)(x+ 1
2), so the eigenvalues are λ1 = 1 and λ2 =−1

2 and gaussian

elimination gives corresponding basic eigenvectors

[
1
2
1

]
and

[
−1

4
1

]
. For convenience, we can

use multiples x1 =

[
1
2

]
and x2 =

[
−1

4

]
respectively. Hence a diagonalizing matrix is

P =

[
1 −1
2 4

]
and we obtain

P−1AP = D where D =

[
1 0
0 −1

2

]

This gives A = PDP−1 so, for each k ≥ 0, we can compute Ak explicitly:

Ak = PDkP−1 =

[
1 −1
2 4

][
1 0
0 (−1

2)
k

]
1
6

[
4 1
−2 4

]

= 1
6

[
4+2(−1

2)
k 1− (−1

2)
k

8−8(−1
2)

k 2+4(−1
2)

k

]

Hence we obtain

[
ak

jk

]
= vk = Akv0 =

1
6

[
4+2(−1

2)
k 1− (−1

2)
k

8−8(−1
2)

k 2+4(−1
2)

k

][
100

40

]

= 1
6

[
440+160(−1

2)
k

880−640(−1
2)

k

]

Equating top and bottom entries, we obtain exact formulas for ak and jk:

ak =
220
3 + 80

3

(
−1

2

)k
and jk =

440
3 + 320

3

(
−1

2

)k
for k = 1, 2, · · ·

In practice, the exact values of ak and jk are not usually required. What is needed is a measure of
how these numbers behave for large values of k. This is easy to obtain here. Since (−1

2)
k is nearly

zero for large k, we have the following approximate values

ak ≈ 220
3 and jk ≈ 440

3 if k is large

Hence, in the long term, the female population stabilizes with approximately twice as many
juveniles as adults.
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Definition 3.8 Linear Dynamical System

If A is an n×n matrix, a sequence v0, v1, v2, . . . of columns in Rn is called a linear dynamical

system if v0 is specified and v1, v2, . . . are given by the matrix recurrence vk+1 = Avk for each
k ≥ 0. We call A the migration matrix of the system.

We have v1 = Av0, then v2 = Av1 = A2v0, and continuing we find

vk = Akv0 for each k = 1, 2, · · · (3.9)

Hence the columns vk are determined by the powers Ak of the matrix A and, as we have seen, these powers
can be efficiently computed if A is diagonalizable. In fact Equation 3.9 can be used to give a nice “formula”
for the columns vk in this case.

Assume that A is diagonalizable with eigenvalues λ1, λ2, . . . , λn and corresponding basic eigenvectors
x1, x2, . . . , xn. If P =

[
x1 x2 . . . xn

]
is a diagonalizing matrix with the xi as columns, then P is

invertible and
P−1AP = D = diag (λ1, λ2, · · · , λn)

by Theorem 3.3.4. Hence A = PDP−1 so Equation 3.9 and Theorem 3.3.1 give

vk = Akv0 = (PDP−1)kv0 = (PDkP−1)v0 = PDk(P−1v0)

for each k = 1, 2, . . . . For convenience, we denote the column P−1v0 arising here as follows:

b = P−1v0 =




b1

b2
...

bn




Then matrix multiplication gives

vk = PDk(P−1v0)

=
[

x1 x2 · · · xn

]




λ k
1 0 · · · 0

0 λ k
2 · · · 0

...
...

. . .
...

0 0 · · · λ k
n







b1

b2
...

bn




=
[

x1 x2 · · · xn

]




b1λ k
1

b2λ k
2

...
b3λ k

n




= b1λ k
1 x1 +b2λ k

2 x2 + · · ·+bnλ k
n xn (3.10)

for each k ≥ 0. This is a useful exact formula for the columns vk. Note that, in particular,

v0 = b1x1 +b2x2 + · · ·+bnxn
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However, such an exact formula for vk is often not required in practice; all that is needed is to estimate

vk for large values of k (as was done in Example 3.3.12). This can be easily done if A has a largest
eigenvalue. An eigenvalue λ of a matrix A is called a dominant eigenvalue of A if it has multiplicity 1
and

|λ |> |µ| for all eigenvalues µ 6= λ

where |λ | denotes the absolute value of the number λ . For example, λ1 = 1 is dominant in Example 3.3.12.

Returning to the above discussion, suppose that A has a dominant eigenvalue. By choosing the order
in which the columns xi are placed in P, we may assume that λ1 is dominant among the eigenvalues
λ1, λ2, . . . , λn of A (see the discussion following Example 3.3.8). Now recall the exact expression for vk

in Equation 3.10 above:
vk = b1λ k

1 x1 +b2λ k
2 x2 + · · ·+bnλ k

n xn

Take λ k
1 out as a common factor in this equation to get

vk = λ k
1

[
b1x1 +b2

(
λ2
λ1

)k

x2 + · · ·+bn

(
λn

λ1

)k

xn

]

for each k ≥ 0. Since λ1 is dominant, we have |λi|< |λ1| for each i≥ 2, so each of the numbers (λi/λ1)
k

become small in absolute value as k increases. Hence vk is approximately equal to the first term λ k
1 b1x1,

and we write this as vk ≈ λ k
1 b1x1. These observations are summarized in the following theorem (together

with the above exact formula for vk).

Theorem 3.3.7

Consider the dynamical system v0, v1, v2, . . . with matrix recurrence

vk+1 = Avk for k ≥ 0

where A and v0 are given. Assume that A is a diagonalizable n×n matrix with eigenvalues
λ1, λ2, . . . , λn and corresponding basic eigenvectors x1, x2, . . . , xn, and let
P =

[
x1 x2 . . . xn

]
be the diagonalizing matrix. Then an exact formula for vk is

vk = b1λ k
1 x1 +b2λ k

2 x2 + · · ·+bnλ k
n xn for each k ≥ 0

where the coefficients bi come from

b = P−1v0 =




b1

b2
...

bn




Moreover, if A has dominant12eigenvalue λ1, then vk is approximated by

vk = b1λ k
1 x1 for sufficiently large k.

12Similar results can be found in other situations. If for example, eigenvalues λ1 and λ2 (possibly equal) satisfy |λ1|= |λ2|>
|λi| for all i > 2, then we obtain vk ≈ b1λ k

1 x1 + b2λ k
2 x2 for large k.
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Example 3.3.13

Returning to Example 3.3.12, we see that λ1 = 1 is the dominant eigenvalue, with eigenvector

x1 =

[
1
2

]
. Here P =

[
1 −1
2 4

]
and v0 =

[
100
40

]
so P−1v0 =

1
3

[
220
−80

]
. Hence b1 =

220
3 in

the notation of Theorem 3.3.7, so
[

ak

jk

]
= vk ≈ b1λ k

1 x1 =
220

3 1k

[
1
2

]

where k is large. Hence ak ≈ 220
3 and jk ≈ 440

3 as in Example 3.3.12.

This next example uses Theorem 3.3.7 to solve a “linear recurrence.” See also Section 3.4.

Example 3.3.14

Suppose a sequence x0, x1, x2, . . . is determined by insisting that

x0 = 1, x1 =−1, and xk+2 = 2xk− xk+1 for every k ≥ 0

Find a formula for xk in terms of k.

Solution. Using the linear recurrence xk+2 = 2xk− xk+1 repeatedly gives

x2 = 2x0− x1 = 3, x3 = 2x1− x2 =−5, x4 = 11, x5 =−21, . . .

so the xi are determined but no pattern is apparent. The idea is to find vk =

[
xk

xk+1

]
for each k

instead, and then retrieve xk as the top component of vk. The reason this works is that the linear
recurrence guarantees that these vk are a dynamical system:

vk+1 =

[
xk+1
xk+2

]
=

[
xk+1

2xk− xk+1

]
= Avk where A =

[
0 1
2 −1

]

The eigenvalues of A are λ1 =−2 and λ2 = 1 with eigenvectors x1 =

[
1
−2

]
and x2 =

[
1
1

]
, so

the diagonalizing matrix is P =

[
1 1
−2 1

]
.

Moreover, b = P−1
0 v0 =

1
3

[
2
1

]
so the exact formula for vk is

[
xk

xk+1

]
= vk = b1λ k

1 x1 +b2λ k
2 x2 =

2
3(−2)k

[
1
−2

]
+ 1

31k

[
1
1

]

Equating top entries gives the desired formula for xk:

xk =
1
3

[
2(−2)k +1

]
for all k = 0, 1, 2, . . .

The reader should check this for the first few values of k.
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Graphical Description of Dynamical Systems

If a dynamical system vk+1 = Avk is given, the sequence v0, v1, v2, . . . is called the trajectory of the

system starting at v0. It is instructive to obtain a graphical plot of the system by writing vk =

[
xk

yk

]
and

plotting the successive values as points in the plane, identifying vk with the point (xk, yk) in the plane. We
give several examples which illustrate properties of dynamical systems. For ease of calculation we assume
that the matrix A is simple, usually diagonal.

Example 3.3.15

O
x

y

Let A =

[ 1
2 0
0 1

3

]
Then the eigenvalues are 1

2 and 1
3 , with

corresponding eigenvectors x1 =

[
1
0

]
and x2 =

[
0
1

]
.

The exact formula is

vk = b1
(1

2

)k
[

1
0

]
+b2

(1
3

)k
[

0
1

]

for k = 0, 1, 2, . . . by Theorem 3.3.7, where the coefficients
b1 and b2 depend on the initial point v0. Several trajectories are
plotted in the diagram and, for each choice of v0, the trajectories
converge toward the origin because both eigenvalues are less
than 1 in absolute value. For this reason, the origin is called
an attractor for the system.

Example 3.3.16

O
x

y

Let A =

[ 3
2 0
0 4

3

]
. Here the eigenvalues are 3

2 and 4
3 , with

corresponding eigenvectors x1 =

[
1
0

]
and x2 =

[
0
1

]
as before.

The exact formula is

vk = b1
(3

2

)k
[

1
0

]
+b2

(4
3

)k
[

0
1

]

for k = 0, 1, 2, . . . . Since both eigenvalues are greater than
1 in absolute value, the trajectories diverge away from the origin
for every choice of initial point V0. For this reason, the origin
is called a repellor for the system.
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Example 3.3.17

O
x

y

Let A =

[
1 −1

2
−1

2 1

]
. Now the eigenvalues are 3

2 and 1
2 , with

corresponding eigenvectors x1 =

[
−1

1

]
and x2 =

[
1
1

]
The

exact formula is

vk = b1
(3

2

)k
[
−1

1

]
+b2

(1
2

)k
[

1
1

]

for k = 0, 1, 2, . . . . In this case 3
2 is the dominant eigenvalue

so, if b1 6= 0, we have vk ≈ b1
(

3
2

)k
[
−1

1

]
for large k and vk

is approaching the line y =−x.

However, if b1 = 0, then vk = b2
(1

2

)k
[

1
1

]
and so approaches

the origin along the line y = x. In general the trajectories appear
as in the diagram, and the origin is called a saddle point for the

dynamical system in this case.

Example 3.3.18

Let A =

[
0 1

2
−1

2 0

]
. Now the characteristic polynomial is cA(x) = x2 + 1

4 , so the eigenvalues are

the complex numbers i
2 and − i

2 where i2 =−1. Hence A is not diagonalizable as a real matrix.

However, the trajectories are not difficult to describe. If we start with v0 =

[
1
1

]
then the

trajectory begins as

v1 =

[
1
2

−1
2

]
, v2 =

[
−1

4

−1
4

]
, v3 =

[
−1

8
1
8

]
, v4 =

[
1

16
1

16

]
, v5 =

[
1

32

− 1
32

]
, v6 =

[
− 1

64

− 1
64

]
, . . .

1

1 v0

v1

v2

v3

O
x

y

The first five of these points are plotted in the diagram. Here
each trajectory spirals in toward the origin, so the origin is an
attractor. Note that the two (complex) eigenvalues have absolute
value less than 1 here. If they had absolute value greater than
1, the trajectories would spiral out from the origin.
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Google PageRank

Dominant eigenvalues are useful to the Google search engine for finding information on the Web. If an
information query comes in from a client, Google has a sophisticated method of establishing the “rele-
vance” of each site to that query. When the relevant sites have been determined, they are placed in order of
importance using a ranking of all sites called the PageRank. The relevant sites with the highest PageRank
are the ones presented to the client. It is the construction of the PageRank that is our interest here.

The Web contains many links from one site to another. Google interprets a link from site j to site
i as a “vote” for the importance of site i. Hence if site i has more links to it than does site j, then i is
regarded as more “important” and assigned a higher PageRank. One way to look at this is to view the sites
as vertices in a huge directed graph (see Section 2.2). Then if site j links to site i there is an edge from j

to i, and hence the (i, j)-entry is a 1 in the associated adjacency matrix (called the connectivity matrix in
this context). Thus a large number of 1s in row i of this matrix is a measure of the PageRank of site i.13

However this does not take into account the PageRank of the sites that link to i. Intuitively, the higher
the rank of these sites, the higher the rank of site i. One approach is to compute a dominant eigenvector x

for the connectivity matrix. In most cases the entries of x can be chosen to be positive with sum 1. Each
site corresponds to an entry of x, so the sum of the entries of sites linking to a given site i is a measure of
the rank of site i. In fact, Google chooses the PageRank of a site so that it is proportional to this sum.14

Exercises for 3.3

Exercise 3.3.1 In each case find the characteristic poly-
nomial, eigenvalues, eigenvectors, and (if possible) an in-
vertible matrix P such that P−1AP is diagonal.

A =

[
1 2
3 2

]
a. A =

[
2 −4
−1 −1

]
b.

A =




7 0 −4
0 5 0
5 0 −2


c. A=




1 1 −3
2 0 6
1 −1 5


d.

A=




1 −2 3
2 6 −6
1 2 −1


e. A =




0 1 0
3 0 1
2 0 0


f.

A=




3 1 1
−4 −2 −5

2 2 5


g. A =




2 1 1
0 1 0
1 −1 2


h.

A =




λ 0 0
0 λ 0
0 0 µ


, λ 6= µi.

Exercise 3.3.2 Consider a linear dynamical system
vk+1 = Avk for k ≥ 0. In each case approximate vk us-
ing Theorem 3.3.7.

a. A =

[
2 1
4 −1

]
, v0 =

[
1
2

]

b. A =

[
3 −2
2 −2

]
, v0 =

[
3
−1

]

c. A =




1 0 0
1 2 3
1 4 1


 , v0 =




1
1
1




13For more on PageRank, visit https://en.wikipedia.org/wiki/PageRank.
14See the articles “Searching the web with eigenvectors” by Herbert S. Wilf, UMAP Journal 23(2), 2002, pages 101–103,

and “The worlds largest matrix computation: Google’s PageRank is an eigenvector of a matrix of order 2.7 billion” by Cleve
Moler, Matlab News and Notes, October 2002, pages 12–13.
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d. A =




1 3 2
−1 2 1

4 −1 −1


 , v0 =




2
0
1




Exercise 3.3.3 Show that A has λ = 0 as an eigenvalue
if and only if A is not invertible.

Exercise 3.3.4 Let A denote an n× n matrix and put
A1 = A−αI, α in R. Show that λ is an eigenvalue of
A if and only if λ −α is an eigenvalue of A1. (Hence,
the eigenvalues of A1 are just those of A “shifted” by α .)
How do the eigenvectors compare?

Exercise 3.3.5 Show that the eigenvalues of[
cos θ −sinθ

sinθ cos θ

]
are eiθ and e−iθ .

(See Appendix A)

Exercise 3.3.6 Find the characteristic polynomial of the
n×n identity matrix I. Show that I has exactly one eigen-
value and find the eigenvectors.

Exercise 3.3.7 Given A =

[
a b

c d

]
show that:

a. cA(x) = x2− tr Ax+ det A, where tr A = a+ d is
called the trace of A.

b. The eigenvalues are 1
2

[
(a+d)±

√
(a−b)2 +4bc

]
.

Exercise 3.3.8 In each case, find P−1AP and then com-
pute An.

a. A =

[
6 −5
2 −1

]
, P =

[
1 5
1 2

]

b. A =

[
−7 −12

6 −10

]
, P =

[
−3 4

2 −3

]

[Hint: (PDP−1)n = PDnP−1 for each n =
1, 2, . . . .]

Exercise 3.3.9

a. If A =

[
1 3
0 2

]
and B =

[
2 0
0 1

]
verify that A

and B are diagonalizable, but AB is not.

b. If D =

[
1 0
0 −1

]
find a diagonalizable matrix A

such that D+A is not diagonalizable.

Exercise 3.3.10 If A is an n× n matrix, show that A is
diagonalizable if and only if AT is diagonalizable.

Exercise 3.3.11 If A is diagonalizable, show that each
of the following is also diagonalizable.

a. An, n≥ 1

b. kA, k any scalar.

c. p(A), p(x) any polynomial (Theorem 3.3.1)

d. U−1AU for any invertible matrix U .

e. kI +A for any scalar k.

Exercise 3.3.12 Give an example of two diagonalizable
matrices A and B whose sum A+B is not diagonalizable.

Exercise 3.3.13 If A is diagonalizable and 1 and −1 are
the only eigenvalues, show that A−1 = A.

Exercise 3.3.14 If A is diagonalizable and 0 and 1 are
the only eigenvalues, show that A2 = A.

Exercise 3.3.15 If A is diagonalizable and λ ≥ 0 for
each eigenvalue of A, show that A = B2 for some matrix
B.

Exercise 3.3.16 If P−1AP and P−1BP are both diago-
nal, show that AB = BA. [Hint: Diagonal matrices com-
mute.]

Exercise 3.3.17 A square matrix A is called nilpotent if
An = 0 for some n≥ 1. Find all nilpotent diagonalizable
matrices. [Hint: Theorem 3.3.1.]

Exercise 3.3.18 Let A be any n× n matrix and r 6= 0 a
real number.

a. Show that the eigenvalues of rA are precisely the
numbers rλ , where λ is an eigenvalue of A.

b. Show that crA(x) = rncA

(
x
r

)
.

Exercise 3.3.19

a. If all rows of A have the same sum s, show that s

is an eigenvalue.

b. If all columns of A have the same sum s, show that
s is an eigenvalue.

Exercise 3.3.20 Let A be an invertible n×n matrix.

a. Show that the eigenvalues of A are nonzero.
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b. Show that the eigenvalues of A−1 are precisely the
numbers 1/λ , where λ is an eigenvalue of A.

c. Show that cA−1(x) =
(−x)n

det A
cA

(
1
x

)
.

Exercise 3.3.21 Suppose λ is an eigenvalue of a square
matrix A with eigenvector x 6= 0.

a. Show that λ 2 is an eigenvalue of A2 (with the same
x).

b. Show that λ 3−2λ +3 is an eigenvalue of
A3−2A+3I.

c. Show that p(λ ) is an eigenvalue of p(A) for any
nonzero polynomial p(x).

Exercise 3.3.22 If A is an n× n matrix, show that
cA2(x2) = (−1)ncA(x)cA(−x).

Exercise 3.3.23 An n×n matrix A is called nilpotent if
Am = 0 for some m≥ 1.

a. Show that every triangular matrix with zeros on
the main diagonal is nilpotent.

b. If A is nilpotent, show that λ = 0 is the only eigen-
value (even complex) of A.

c. Deduce that cA(x) = xn, if A is n×n and nilpotent.

Exercise 3.3.24 Let A be diagonalizable with real eigen-
values and assume that Am = I for some m≥ 1.

a. Show that A2 = I.

b. If m is odd, show that A = I.

[Hint: Theorem A.3]

Exercise 3.3.25 Let A2 = I, and assume that A 6= I and
A 6=−I.

a. Show that the only eigenvalues of A are λ = 1 and
λ =−1.

b. Show that A is diagonalizable. [Hint: Verify that
A(A+I)=A+I and A(A−I)=−(A−I), and then
look at nonzero columns of A+ I and of A− I.]

c. If Qm : R2 → R2 is reflection in the line y = mx

where m 6= 0, use (b) to show that the matrix of
Qm is diagonalizable for each m.

d. Now prove (c) geometrically using Theorem 3.3.3.

Exercise 3.3.26 Let A =




2 3 −3
1 0 −1
1 1 −2


 and B =




0 1 0
3 0 1
2 0 0


. Show that cA(x) = cB(x) = (x+ 1)2(x−

2), but A is diagonalizable and B is not.

Exercise 3.3.27

a. Show that the only diagonalizable matrix A that
has only one eigenvalue λ is the scalar matrix
A = λ I.

b. Is

[
3 −2
2 −1

]
diagonalizable?

Exercise 3.3.28 Characterize the diagonalizable n× n

matrices A such that A2− 3A+ 2I = 0 in terms of their
eigenvalues. [Hint: Theorem 3.3.1.]

Exercise 3.3.29 Let A =

[
B 0
0 C

]
where B and C are

square matrices.

a. If B and C are diagonalizable via Q and R (that is,
Q−1BQ and R−1CR are diagonal), show that A is

diagonalizable via

[
Q 0
0 R

]

b. Use (a) to diagonalize A if B =

[
5 3
3 5

]
and

C =

[
7 −1
−1 7

]
.
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Exercise 3.3.30 Let A =

[
B 0
0 C

]
where B and C are

square matrices.

a. Show that cA(x) = cB(x)cC(x).

b. If x and y are eigenvectors of B and C, respec-

tively, show that

[
x

0

]
and

[
0
y

]
are eigenvec-

tors of A, and show how every eigenvector of A

arises from such eigenvectors.

Exercise 3.3.31 Referring to the model in Exam-
ple 3.3.1, determine if the population stabilizes, becomes
extinct, or becomes large in each case. Denote the adult
and juvenile survival rates as A and J, and the reproduc-
tion rate as R.

R A J

a. 2 1
2

1
2

b. 3 1
4

1
4

c. 2 1
4

1
3

d. 3 3
5

1
5

Exercise 3.3.32 In the model of Example 3.3.1, does the
final outcome depend on the initial population of adult
and juvenile females? Support your answer.

Exercise 3.3.33 In Example 3.3.1, keep the same repro-
duction rate of 2 and the same adult survival rate of 1

2 ,
but suppose that the juvenile survival rate is ρ . Deter-
mine which values of ρ cause the population to become
extinct or to become large.

Exercise 3.3.34 In Example 3.3.1, let the juvenile sur-
vival rate be 2

5 and let the reproduction rate be 2. What
values of the adult survival rate α will ensure that the
population stabilizes?

3.4 An Application to Linear Recurrences

It often happens that a problem can be solved by finding a sequence of numbers x0, x1, x2, . . . where the
first few are known, and subsequent numbers are given in terms of earlier ones. Here is a combinatorial
example where the object is to count the number of ways to do something.

Example 3.4.1

An urban planner wants to determine the number xk of ways that a row of k parking spaces can be
filled with cars and trucks if trucks take up two spaces each. Find the first few values of xk.

Solution. Clearly, x0 = 1 and x1 = 1, while x2 = 2 since there can be two cars or one truck. We
have x3 = 3 (the 3 configurations are ccc, cT, and Tc) and x4 = 5 (cccc, ccT, cTc, Tcc, and TT). The
key to this method is to find a way to express each subsequent xk in terms of earlier values. In this
case we claim that

xk+2 = xk + xk+1 for every k ≥ 0 (3.11)

Indeed, every way to fill k+2 spaces falls into one of two categories: Either a car is parked in the
first space (and the remaining k+1 spaces are filled in xk+1 ways), or a truck is parked in the first
two spaces (with the other k spaces filled in xk ways). Hence, there are xk+1 + xk ways to fill the
k+2 spaces. This is Equation 3.11.
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The recurrence in Equation 3.11 determines xk for every k ≥ 2 since x0 and x1 are given. In fact,
the first few values are

x0 = 1
x1 = 1
x2 = x0 + x1 = 2
x3 = x1 + x2 = 3
x4 = x2 + x3 = 5
x5 = x3 + x4 = 8
...

...
...

Clearly, we can find xk for any value of k, but one wishes for a “formula” for xk as a function of k.
It turns out that such a formula can be found using diagonalization. We will return to this example
later.

A sequence x0, x1, x2, . . . of numbers is said to be given recursively if each number in the sequence is
completely determined by those that come before it. Such sequences arise frequently in mathematics and
computer science, and also occur in other parts of science. The formula xk+2 = xk+1+xk in Example 3.4.1
is an example of a linear recurrence relation of length 2 because xk+2 is the sum of the two preceding
terms xk+1 and xk; in general, the length is m if xk+m is a sum of multiples of xk, xk+1, . . . , xk+m−1.

The simplest linear recursive sequences are of length 1, that is xk+1 is a fixed multiple of xk for each k,
say xk+1 = axk. If x0 is specified, then x1 = ax0, x2 = ax1 = a2x0, and x3 = ax2 = a3x0, . . . . Continuing,
we obtain xk = akx0 for each k≥ 0, which is an explicit formula for xk as a function of k (when x0 is given).

Such formulas are not always so easy to find for all choices of the initial values. Here is an example
where diagonalization helps.

Example 3.4.2

Suppose the numbers x0, x1, x2, . . . are given by the linear recurrence relation

xk+2 = xk+1 +6xk for k ≥ 0

where x0 and x1 are specified. Find a formula for xk when x0 = 1 and x1 = 3, and also when x0 = 1
and x1 = 1.

Solution. If x0 = 1 and x1 = 3, then

x2 = x1 +6x0 = 9, x3 = x2 +6x1 = 27, x4 = x3 +6x2 = 81

and it is apparent that
xk = 3k for k = 0, 1, 2, 3, and 4

This formula holds for all k because it is true for k = 0 and k = 1, and it satisfies the recurrence
xk+2 = xk+1 +6xk for each k as is readily checked.
However, if we begin instead with x0 = 1 and x1 = 1, the sequence continues

x2 = 7, x3 = 13, x4 = 55, x5 = 133, . . .

In this case, the sequence is uniquely determined but no formula is apparent. Nonetheless, a simple
device transforms the recurrence into a matrix recurrence to which our diagonalization techniques
apply.
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The idea is to compute the sequence v0, v1, v2, . . . of columns instead of the numbers
x0, x1, x2, . . . , where

vk =

[
xk

xk+1

]
for each k ≥ 0

Then v0 =

[
x0

x1

]
=

[
1
1

]
is specified, and the numerical recurrence xk+2 = xk+1 +6xk transforms

into a matrix recurrence as follows:

vk+1 =

[
xk+1
xk+2

]
=

[
xk+1

6xk + xk+1

]
=

[
0 1
6 1

][
xk

xk+1

]
= Avk

where A =

[
0 1
6 1

]
. Thus these columns vk are a linear dynamical system, so Theorem 3.3.7

applies provided the matrix A is diagonalizable.
We have cA(x) = (x−3)(x+2) so the eigenvalues are λ1 = 3 and λ2 =−2 with corresponding

eigenvectors x1 =

[
1
3

]
and x2 =

[
−1

2

]
as the reader can check. Since

P =
[

x1 x2
]
=

[
1 −1
3 2

]
is invertible, it is a diagonalizing matrix for A. The coefficients bi in

Theorem 3.3.7 are given by

[
b1

b2

]
= P−1v0 =

[
3
5
−2
5

]
, so that the theorem gives

[
xk

xk+1

]
= vk = b1λ k

1 x1 +b2λ k
2 x2 =

3
53k

[
1
3

]
+ −2

5 (−2)k

[
−1

2

]

Equating top entries yields

xk =
1
5

[
3k+1− (−2)k+1

]
for k ≥ 0

This gives x0 = 1 = x1, and it satisfies the recurrence xk+2 = xk+1 +6xk as is easily verified.
Hence, it is the desired formula for the xk.

Returning to Example 3.4.1, these methods give an exact formula and a good approximation for the num-
bers xk in that problem.

Example 3.4.3

In Example 3.4.1, an urban planner wants to determine xk, the number of ways that a row of k

parking spaces can be filled with cars and trucks if trucks take up two spaces each. Find a formula
for xk and estimate it for large k.

Solution. We saw in Example 3.4.1 that the numbers xk satisfy a linear recurrence

xk+2 = xk + xk+1 for every k ≥ 0
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If we write vk =

[
xk

xk+1

]
as before, this recurrence becomes a matrix recurrence for the vk:

vk+1 =

[
xk+1
xk+2

]
=

[
xk+1

xk + xk+1

]
=

[
0 1
1 1

][
xk

xk+1

]
= Avk

for all k ≥ 0 where A =

[
0 1
1 1

]
. Moreover, A is diagonalizable here. The characteristic

polynomial is cA(x) = x2− x−1 with roots 1
2

[
1±
√

5
]

by the quadratic formula, so A has

eigenvalues

λ1 =
1
2

(
1+
√

5
)

and λ2 =
1
2

(
1−
√

5
)

Corresponding eigenvectors are x1 =

[
1
λ1

]
and x2 =

[
1
λ2

]
respectively as the reader can verify.

As the matrix P =
[

x1 x2
]
=

[
1 1
λ1 λ2

]
is invertible, it is a diagonalizing matrix for A. We

compute the coefficients b1 and b2 (in Theorem 3.3.7) as follows:
[

b1

b2

]
= P−1v0 =

1
−
√

5

[
λ2 −1
−λ1 1

][
1
1

]
= 1√

5

[
λ1

−λ2

]

where we used the fact that λ1 +λ2 = 1. Thus Theorem 3.3.7 gives
[

xk

xk+1

]
= vk = b1λ k

1 x1 +b2λ k
2 x2 =

λ1√
5
λ k

1

[
1
λ1

]
− λ2√

5
λ k

2

[
1
λ2

]

Comparing top entries gives an exact formula for the numbers xk:

xk =
1√
5

[
λ k+1

1 −λ k+1
2

]
for k ≥ 0

Finally, observe that λ1 is dominant here (in fact, λ1 = 1.618 and λ2 =−0.618 to three decimal
places) so λ k+1

2 is negligible compared with λ k+1
1 is large. Thus,

xk ≈ 1√
5
λ k+1

1 for each k ≥ 0.

This is a good approximation, even for as small a value as k = 12. Indeed, repeated use of the
recurrence xk+2 = xk + xk+1 gives the exact value x12 = 233, while the approximation is

x12 ≈ (1.618)13
√

5
= 232.94.

The sequence x0, x1, x2, . . . in Example 3.4.3 was first discussed in 1202 by Leonardo Pisano of Pisa,
also known as Fibonacci,15 and is now called the Fibonacci sequence. It is completely determined by
the conditions x0 = 1, x1 = 1 and the recurrence xk+2 = xk + xk+1 for each k ≥ 0. These numbers have

15Fibonacci was born in Italy. As a young man he travelled to India where he encountered the “Fibonacci” sequence. He
returned to Italy and published this in his book Liber Abaci in 1202. In the book he is the first to bring the Hindu decimal
system for representing numbers to Europe.
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been studied for centuries and have many interesting properties (there is even a journal, the Fibonacci

Quarterly, devoted exclusively to them). For example, biologists have discovered that the arrangement of

leaves around the stems of some plants follow a Fibonacci pattern. The formula xk =
1√
5

[
λ k+1

1 −λ k+1
2

]

in Example 3.4.3 is called the Binet formula. It is remarkable in that the xk are integers but λ1 and λ2 are
not. This phenomenon can occur even if the eigenvalues λi are nonreal complex numbers.

We conclude with an example showing that nonlinear recurrences can be very complicated.

Example 3.4.4

Suppose a sequence x0, x1, x2, . . . satisfies the following recurrence:

xk+1 =

{
1
2xk if xk is even
3xk +1 if xk is odd

If x0 = 1, the sequence is 1, 4, 2, 1, 4, 2, 1, . . . and so continues to cycle indefinitely. The same
thing happens if x0 = 7. Then the sequence is

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, . . .

and it again cycles. However, it is not known whether every choice of x0 will lead eventually to 1.
It is quite possible that, for some x0, the sequence will continue to produce different values
indefinitely, or will repeat a value and cycle without reaching 1. No one knows for sure.

Exercises for 3.4

Exercise 3.4.1 Solve the following linear recurrences.

a. xk+2 = 3xk +2xk+1, where x0 = 1 and x1 = 1.

b. xk+2 = 2xk− xk+1, where x0 = 1 and x1 = 2.

c. xk+2 = 2xk + xk+1, where x0 = 0 and x1 = 1.

d. xk+2 = 6xk− xk+1, where x0 = 1 and x1 = 1.

Exercise 3.4.2 Solve the following linear recurrences.

a. xk+3 = 6xk+2−11xk+1+6xk, where x0 = 1, x1 = 0,
and x2 = 1.

b. xk+3 =−2xk+2 +xk+1+2xk, where x0 = 1, x1 = 0,
and x2 = 1.

[Hint: Use vk =




xk

xk+1

xk+2


.]

Exercise 3.4.3 In Example 3.4.1 suppose buses are also
allowed to park, and let xk denote the number of ways a
row of k parking spaces can be filled with cars, trucks,
and buses.

a. If trucks and buses take up 2 and 3 spaces respec-
tively, show that xk+3 = xk + xk+1 + xk+2 for each
k, and use this recurrence to compute x10. [Hint:
The eigenvalues are of little use.]

b. If buses take up 4 spaces, find a recurrence for the
xk and compute x10.
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Exercise 3.4.4 A man must climb a flight of k steps.
He always takes one or two steps at a time. Thus he can
climb 3 steps in the following ways: 1, 1, 1; 1, 2; or 2, 1.
Find sk, the number of ways he can climb the flight of k

steps. [Hint: Fibonacci.]

Exercise 3.4.5 How many “words” of k letters can be
made from the letters {a, b} if there are no adjacent a’s?

Exercise 3.4.6 How many sequences of k flips of a coin
are there with no HH?

Exercise 3.4.7 Find xk, the number of ways to make
a stack of k poker chips if only red, blue, and gold chips
are used and no two gold chips are adjacent. [Hint: Show
that xk+2 = 2xk+1 +2xk by considering how many stacks
have a red, blue, or gold chip on top.]

Exercise 3.4.8 A nuclear reactor contains α- and β -
particles. In every second each α-particle splits into three
β -particles, and each β -particle splits into an α-particle
and two β -particles. If there is a single α-particle in the
reactor at time t = 0, how many α-particles are there at
t = 20 seconds? [Hint: Let xk and yk denote the number
of α- and β -particles at time t = k seconds. Find xk+1

and yk+1 in terms of xk and yk.]

Exercise 3.4.9 The annual yield of wheat in a certain
country has been found to equal the average of the yield
in the previous two years. If the yields in 1990 and 1991
were 10 and 12 million tons respectively, find a formula
for the yield k years after 1990. What is the long-term
average yield?

Exercise 3.4.10 Find the general solution to the recur-
rence xk+1 = rxk + c where r and c are constants. [Hint:
Consider the cases r = 1 and r 6= 1 separately. If r 6= 1,
you will need the identity 1+ r+ r2 + · · ·+ rn−1 = 1−rn

1−r

for n≥ 1.]

Exercise 3.4.11 Consider the length 3 recurrence
xk+3 = axk +bxk+1 + cxk+2.

a. If vk =




xk

xk+1

xk+2


 and A=




0 1 0
0 0 1
a b c


 show that

vk+1 = Avk.

b. If λ is any eigenvalue of A, show that x =




1
λ

λ 2




is a λ -eigenvector.

[Hint: Show directly that Ax = λx.]

c. Generalize (a) and (b) to a recurrence

xk+4 = axk +bxk+1 + cxk+2 +dxk+3

of length 4.

Exercise 3.4.12 Consider the recurrence

xk+2 = axk+1 +bxk + c

where c may not be zero.

a. If a+ b 6= 1 show that p can be found such that,
if we set yk = xk + p, then yk+2 = ayk+1 + byk.
[Hence, the sequence xk can be found provided yk

can be found by the methods of this section (or
otherwise).]

b. Use (a) to solve xk+2 = xk+1+6xk+5 where x0 = 1
and x1 = 1.

Exercise 3.4.13 Consider the recurrence

xk+2 = axk+1 +bxk + c(k) (3.12)

where c(k) is a function of k, and consider the related
recurrence

xk+2 = axk+1 +bxk (3.13)

Suppose that xk = pk is a particular solution of Equation
3.12.

a. If qk is any solution of Equation 3.13, show that
qk + pk is a solution of Equation 3.12.

b. Show that every solution of Equation 3.12 arises
as in (a) as the sum of a solution of Equation 3.13
plus the particular solution pk of Equation 3.12.
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3.5 An Application to Systems of Differential Equations

A function f of a real variable is said to be differentiable if its derivative exists and, in this case, we let f ′

denote the derivative. If f and g are differentiable functions, a system

f ′ = 3 f +5g

g′ =− f +2g

is called a system of first order differential equations, or a differential system for short. Solving many
practical problems often comes down to finding sets of functions that satisfy such a system (often in-
volving more than two functions). In this section we show how diagonalization can help. Of course an
acquaintance with calculus is required.

The Exponential Function

The simplest differential system is the following single equation:

f ′ = a f where a is constant (3.14)

It is easily verified that f (x) = eax is one solution; in fact, Equation 3.14 is simple enough for us to find
all solutions. Suppose that f is any solution, so that f ′(x) = a f (x) for all x. Consider the new function g

given by g(x) = f (x)e−ax. Then the product rule of differentiation gives

g′(x) = f (x)
[
−ae−ax

]
+ f ′(x)e−ax

=−a f (x)e−ax +[a f (x)]e−ax

= 0

for all x. Hence the function g(x) has zero derivative and so must be a constant, say g(x) = c. Thus
c = g(x) = f (x)e−ax, that is

f (x) = ceax

In other words, every solution f (x) of Equation 3.14 is just a scalar multiple of eax. Since every such
scalar multiple is easily seen to be a solution of Equation 3.14, we have proved

Theorem 3.5.1

The set of solutions to f ′ = a f is {ceax | c any constant}= Reax.

Remarkably, this result together with diagonalization enables us to solve a wide variety of differential
systems.
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Example 3.5.1

Assume that the number n(t) of bacteria in a culture at time t has the property that the rate of
change of n is proportional to n itself. If there are n0 bacteria present when t = 0, find the number
at time t.

Solution. Let k denote the proportionality constant. The rate of change of n(t) is its time-derivative
n′(t), so the given relationship is n′(t) = kn(t). Thus Theorem 3.5.1 shows that all solutions n are
given by n(t) = cekt , where c is a constant. In this case, the constant c is determined by the
requirement that there be n0 bacteria present when t = 0. Hence n0 = n(0) = cek0 = c, so

n(t) = n0ekt

gives the number at time t. Of course the constant k depends on the strain of bacteria.

The condition that n(0) = n0 in Example 3.5.1 is called an initial condition or a boundary condition

and serves to select one solution from the available solutions.

General Differential Systems

Solving a variety of problems, particularly in science and engineering, comes down to solving a system
of linear differential equations. Diagonalization enters into this as follows. The general problem is to find
differentiable functions f1, f2, . . . , fn that satisfy a system of equations of the form

f ′1 = a11 f1 + a12 f2 + · · ·+ a1n fn

f ′2 = a21 f1 + a22 f2 + · · ·+ a2n fn
...

...
...

...
f ′n = an1 f1 + an2 f2 + · · ·+ ann fn

where the ai j are constants. This is called a linear system of differential equations or simply a differen-

tial system. The first step is to put it in matrix form. Write

f =




f1

f2
...
fn


 f′ =




f ′1
f ′2
...
f ′n


 A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann




Then the system can be written compactly using matrix multiplication:

f′ = Af

Hence, given the matrix A, the problem is to find a column f of differentiable functions that satisfies this
condition. This can be done if A is diagonalizable. Here is an example.
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Example 3.5.2

Find a solution to the system
f ′1 = f1 +3 f2

f ′2 = 2 f1 +2 f2

that satisfies f1(0) = 0, f2(0) = 5.

Solution. This is f′ = Af, where f =

[
f1

f2

]
and A =

[
1 3
2 2

]
. The reader can verify that

cA(x) = (x−4)(x+1), and that x1 =

[
1
1

]
and x2 =

[
3
−2

]
are eigenvectors corresponding to

the eigenvalues 4 and −1, respectively. Hence the diagonalization algorithm gives

P−1AP =

[
4 0
0 −1

]
, where P =

[
x1 x2

]
=

[
1 3
1 −2

]
. Now consider new functions g1 and g2

given by f = Pg (equivalently, g = P−1f ), where g =

[
g1

g2

]
Then

[
f1

f2

]
=

[
1 3
1 −2

][
g1

g2

]
that is,

f1 = g1 +3g2

f2 = g1−2g2

Hence f ′1 = g′1 +3g′2 and f ′2 = g′1−2g′2 so that

f′ =

[
f ′1
f ′2

]
=

[
1 3
1 −2

][
g′1
g′2

]
= Pg′

If this is substituted in f′ = Af, the result is Pg′ = APg, whence

g′ = P−1APg

But this means that [
g′1
g′2

]
=

[
4 0
0 −1

][
g1

g2

]
, so

g′1 = 4g1

g′2 =−g2

Hence Theorem 3.5.1 gives g1(x) = ce4x, g2(x) = de−x, where c and d are constants. Finally, then,
[

f1(x)
f2(x)

]
= P

[
g1(x)
g2(x)

]
=

[
1 3
1 −2

][
ce4x

de−x

]
=

[
ce4x +3de−x

ce4x−2de−x

]

so the general solution is

f1(x) = ce4x +3de−x

f2(x) = ce4x−2de−x c and d constants

It is worth observing that this can be written in matrix form as
[

f1(x)
f2(x)

]
= c

[
1
1

]
e4x +d

[
3
−2

]
e−x

That is,
f(x) = cx1e4x +dx2e−x
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This form of the solution works more generally, as will be shown.
Finally, the requirement that f1(0) = 0 and f2(0) = 5 in this example determines the constants c

and d:

0 = f1(0) = ce0 +3de0 = c+3d

5 = f2(0) = ce0−2de0 = c−2d

These equations give c = 3 and d =−1, so

f1(x) = 3e4x−3e−x

f2(x) = 3e4x +2e−x

satisfy all the requirements.

The technique in this example works in general.

Theorem 3.5.2

Consider a linear system
f′ = Af

of differential equations, where A is an n×n diagonalizable matrix. Let P−1AP be diagonal, where
P is given in terms of its columns

P = [x1, x2, · · · , xn]

and {x1, x2, . . . , xn} are eigenvectors of A. If xi corresponds to the eigenvalue λi for each i, then
every solution f of f′ = Af has the form

f(x) = c1x1eλ1x + c2x2eλ2x + · · ·+ cnxneλnx

where c1, c2, . . . , cn are arbitrary constants.

Proof. By Theorem 3.3.4, the matrix P =
[

x1 x2 . . . xn

]
is invertible and

P−1AP =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn




As in Example 3.5.2, write f =




f1

f2
...
fn


 and define g =




g1

g2
...

gn


 by g = P−1f; equivalently, f = Pg. If

P =
[
pi j

]
, this gives

fi = pi1g1 + pi2g2 + · · ·+ pingn
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Since the pi j are constants, differentiation preserves this relationship:

f ′i = pi1g′1 + pi2g′2 + · · ·+ ping′n

so f′ = Pg′. Substituting this into f′ = Af gives Pg′ = APg. But then left multiplication by P−1 gives
g′ = P−1APg, so the original system of equations f′ = Af for f becomes much simpler in terms of g:




g′1
g′2
...

g′n


=




λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn







g1

g2
...

gn




Hence g′i = λigi holds for each i, and Theorem 3.5.1 implies that the only solutions are

gi(x) = cie
λix ci some constant

Then the relationship f = Pg gives the functions f1, f2, . . . , fn as follows:

f(x) = [x1, x2, · · · , xn]




c1eλ1x

c2eλ2x

...
cneλnx


= c1x1eλ1x + c2x2eλ2x + · · ·+ cnxneλnx

This is what we wanted.

The theorem shows that every solution to f′ = Af is a linear combination

f(x) = c1x1eλ1x + c2x2eλ2x + · · ·+ cnxneλnx

where the coefficients ci are arbitrary. Hence this is called the general solution to the system of differential
equations. In most cases the solution functions fi(x) are required to satisfy boundary conditions, often of
the form fi(a)= bi, where a, b1, . . . , bn are prescribed numbers. These conditions determine the constants
ci. The following example illustrates this and displays a situation where one eigenvalue has multiplicity
greater than 1.

Example 3.5.3

Find the general solution to the system

f ′1 = 5 f1 + 8 f2 + 16 f3

f ′2 = 4 f1 + f2 + 8 f3

f ′3 =−4 f1− 4 f2− 11 f3

Then find a solution satisfying the boundary conditions f1(0) = f2(0) = f3(0) = 1.

Solution. The system has the form f′ = Af, where A =




5 8 16
4 1 8
−4 −4 −11


. In this case

cA(x) = (x+3)2(x−1) and eigenvectors corresponding to the eigenvalues −3, −3, and 1 are,
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respectively,

x1 =



−1

1
0


 x2 =



−2

0
1


 x3 =




2
1
−1




Hence, by Theorem 3.5.2, the general solution is

f(x) = c1



−1

1
0


e−3x + c2



−2

0
1


e−3x + c3




2
1
−1


ex, ci constants.

The boundary conditions f1(0) = f2(0) = f3(0) = 1 determine the constants ci.




1
1
1


= f(0) = c1



−1

1
0


+ c2



−2

0
1


+ c3




2
1
−1




=



−1 −2 2

1 0 1
0 1 −1






c1

c2

c3




The solution is c1 =−3, c2 = 5, c3 = 4, so the required specific solution is

f1(x) =−7e−3x + 8ex

f2(x) =−3e−3x + 4ex

f3(x) = 5e−3x− 4ex

Exercises for 3.5

Exercise 3.5.1 Use Theorem 3.5.1 to find the general
solution to each of the following systems. Then find a
specific solution satisfying the given boundary condition.

a. f ′1 = 2 f1 +4 f2, f1(0) = 0
f ′2 = 3 f1 +3 f2, f2(0) = 1

b. f ′1 =− f1 +5 f2, f1(0) = 1
f ′2 = f1 +3 f2, f2(0) =−1

c. f ′1 = 4 f2 +4 f3

f ′2 = f1 + f2−2 f3

f ′3 =− f1 + f2 +4 f3

f1(0) = f2(0) = f3(0) = 1

d. f ′1 = 2 f1+ f2+ 2 f3

f ′2 = 2 f1+ 2 f2− 2 f3

f ′3 = 3 f1+ f2+ f3

f1(0) = f2(0) = f3(0) = 1

Exercise 3.5.2 Show that the solution to f ′ = a f satis-
fying f (x0) = k is f (x) = kea(x−x0).

Exercise 3.5.3 A radioactive element decays at a rate
proportional to the amount present. Suppose an initial
mass of 10 g decays to 8 g in 3 hours.

a. Find the mass t hours later.

b. Find the half-life of the element—the time taken
to decay to half its mass.
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Exercise 3.5.4 The population N(t) of a region at time
t increases at a rate proportional to the population. If
the population doubles every 5 years and is 3 million ini-
tially, find N(t).

Exercise 3.5.5 Let A be an invertible diagonalizable
n× n matrix and let b be an n-column of constant func-
tions. We can solve the system f′ = Af+b as follows:

a. If g satisfies g′ = Ag (using Theorem 3.5.2), show
that f = g−A−1b is a solution to f′ = Af+b.

b. Show that every solution to f′ = Af+b arises as in
(a) for some solution g to g′ = Ag.

Exercise 3.5.6 Denote the second derivative of f by
f ′′ = ( f ′)′. Consider the second order differential equa-
tion

f ′′−a1 f ′−a2 f = 0, a1 and a2 real numbers (3.15)

a. If f is a solution to Equation 3.15 let f1 = f and
f2 = f ′−a1 f . Show that
{

f ′1 = a1 f1 + f2

f ′2 = a2 f1
,

that is

[
f ′1
f ′2

]
=

[
a1 1
a2 0

][
f1

f2

]

b. Conversely, if

[
f1

f2

]
is a solution to the system in

(a), show that f1 is a solution to Equation 3.15.

Exercise 3.5.7 Writing f ′′′ = ( f ′′)′, consider the third
order differential equation

f ′′′−a1 f ′′−a2 f ′−a3 f = 0

where a1, a2, and a3 are real numbers. Let
f1 = f , f2 = f ′−a1 f and f3 = f ′′−a1 f ′−a2 f ′′.

a. Show that




f1

f2

f3


 is a solution to the system





f ′1 = a1 f1 + f2

f ′2 = a2 f1 + f3

f ′3 = a3 f1

,

that is




f ′1
f ′2
f ′3


=




a1 1 0
a2 0 1
a3 0 0






f1

f2

f3




b. Show further that if




f1

f2

f3


 is any solution to this

system, then f = f1 is a solution to Equation 3.15.

Remark. A similar construction casts every linear differ-
ential equation of order n (with constant coefficients) as
an n×n linear system of first order equations. However,
the matrix need not be diagonalizable, so other methods
have been developed.

3.6 Proof of the Cofactor Expansion Theorem

Recall that our definition of the term determinant is inductive: The determinant of any 1× 1 matrix is
defined first; then it is used to define the determinants of 2× 2 matrices. Then that is used for the 3× 3
case, and so on. The case of a 1×1 matrix [a] poses no problem. We simply define

det [a] = a

as in Section 3.1. Given an n×n matrix A, define Ai j to be the (n−1)×(n−1) matrix obtained from A by
deleting row i and column j. Now assume that the determinant of any (n−1)× (n−1) matrix has been
defined. Then the determinant of A is defined to be

det A = a11 det A11−a21 det A21 + · · ·+(−1)n+1an1 det An1

=
n

∑
i=1

(−1)i+1ai1 det Ai1
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where summation notation has been introduced for convenience.16 Observe that, in the terminology of
Section 3.1, this is just the cofactor expansion of det A along the first column, and that (−1)i+ j det Ai j is
the (i, j)-cofactor (previously denoted as ci j(A)).17 To illustrate the definition, consider the 2×2 matrix

A =

[
a11 a12

a21 a22

]
. Then the definition gives

det

[
a11 a12

a21 a22

]
= a11 det [a22]−a21 det [a12] = a11a22−a21a12

and this is the same as the definition in Section 3.1.

Of course, the task now is to use this definition to prove that the cofactor expansion along any row
or column yields det A (this is Theorem 3.1.1). The proof proceeds by first establishing the properties of
determinants stated in Theorem 3.1.2 but for rows only (see Lemma 3.6.2). This being done, the full proof
of Theorem 3.1.1 is not difficult. The proof of Lemma 3.6.2 requires the following preliminary result.

Lemma 3.6.1

Let A, B, and C be n×n matrices that are identical except that the pth row of A is the sum of the
pth rows of B and C. Then

det A = det B+ det C

Proof. We proceed by induction on n, the cases n = 1 and n = 2 being easily checked. Consider ai1 and
Ai1:

Case 1: If i 6= p,
ai1 = bi1 = ci1 and det Ai1 = det Bi1 = det Ci1

by induction because Ai1, Bi1, Ci1 are identical except that one row of Ai1 is the sum of the corresponding
rows of Bi1 and Ci1.

Case 2: If i = p,
ap1 = bp1 + cp1 and Ap1 = Bp1 =Cp1

Now write out the defining sum for det A, splitting off the pth term for special attention.

det A = ∑
i 6=p

ai1(−1)i+1 det Ai1 +ap1(−1)p+1 det Ap1

= ∑
i 6=p

ai1(−1)i+1 [det Bi1 + det Bi1]+(bp1 + cp1)(−1)p+1 det Ap1

where det Ai1 = det Bi1 + det Ci1 by induction. But the terms here involving Bi1 and bp1 add up to det B

because ai1 = bi1 if i 6= p and Ap1 = Bp1. Similarly, the terms involving Ci1 and cp1 add up to det C. Hence
det A = det B+ det C, as required.

16Summation notation is a convenient shorthand way to write sums of similar expressions. For example a1 + a2 + a3 + a4 =

∑4
i=1 ai, a5b5 + a6b6 + a7b7 + a8b8 = ∑8

k=5 akbk, and 12 + 22 + 32 + 42 + 52 = ∑5
j=1 j2.

17Note that we used the expansion along row 1 at the beginning of Section 3.1. The column 1 expansion definition is more
convenient here.
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Lemma 3.6.2

Let A =
[
ai j

]
denote an n×n matrix.

1. If B =
[
bi j

]
is formed from A by multiplying a row of A by a number u, then det B = u det A.

2. If A contains a row of zeros, then det A = 0.

3. If B =
[
bi j

]
is formed by interchanging two rows of A, then det B =− det A.

4. If A contains two identical rows, then det A = 0.

5. If B =
[
bi j

]
is formed by adding a multiple of one row of A to a different row, then

det B = det A.

Proof. For later reference the defining sums for det A and det B are as follows:

det A =
n

∑
i=1

ai1(−1)i+1 det Ai1 (3.16)

det B =
n

∑
i=1

bi1(−1)i+1 det Bi1 (3.17)

Property 1. The proof is by induction on n, the cases n = 1 and n = 2 being easily verified. Consider
the ith term in the sum 3.17 for det B where B is the result of multiplying row p of A by u.

a. If i 6= p, then bi1 = ai1 and det Bi1 = u det Ai1 by induction because Bi1 comes from Ai1 by multi-
plying a row by u.

b. If i = p, then bp1 = uap1 and Bp1 = Ap1.

In either case, each term in Equation 3.17 is u times the corresponding term in Equation 3.16, so it is clear
that det B = u det A.

Property 2. This is clear by property 1 because the row of zeros has a common factor u = 0.

Property 3. Observe first that it suffices to prove property 3 for interchanges of adjacent rows. (Rows
p and q (q > p) can be interchanged by carrying out 2(q− p)− 1 adjacent changes, which results in an
odd number of sign changes in the determinant.) So suppose that rows p and p+1 of A are interchanged
to obtain B. Again consider the ith term in Equation 3.17.

a. If i 6= p and i 6= p+1, then bi1 = ai1 and det Bi1 =− det Ai1 by induction because Bi1 results from
interchanging adjacent rows in Ai1. Hence the ith term in Equation 3.17 is the negative of the ith
term in Equation 3.16. Hence det B =− det A in this case.

b. If i = p or i = p+1, then bp1 = ap+1, 1 and Bp1 = Ap+1, 1, whereas bp+1, 1 = ap1 and Bp+1, 1 = Ap1.
Hence terms p and p+1 in Equation 3.17 are

bp1(−1)p+1 det Bp1 =−ap+1, 1(−1)(p+1)+1 det (Ap+1, 1)

bp+1, 1(−1)(p+1)+1 det Bp+1, 1 =−ap1(−1)p+1 det (Ap1)
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This means that terms p and p+ 1 in Equation 3.17 are the same as these terms in Equation 3.16,
except that the order is reversed and the signs are changed. Thus the sum 3.17 is the negative of the sum
3.16; that is, det B =− det A.

Property 4. If rows p and q in A are identical, let B be obtained from A by interchanging these rows.
Then B = A so det A = det B. But det B = − det A by property 3 so det A = − det A. This implies that
det A = 0.

Property 5. Suppose B results from adding u times row q of A to row p. Then Lemma 3.6.1 applies to
B to show that det B = det A+ det C, where C is obtained from A by replacing row p by u times row q. It
now follows from properties 1 and 4 that det C = 0 so det B = det A, as asserted.

These facts are enough to enable us to prove Theorem 3.1.1. For convenience, it is restated here in the
notation of the foregoing lemmas. The only difference between the notations is that the (i, j)-cofactor of
an n×n matrix A was denoted earlier by

ci j(A) = (−1)i+ j det Ai j

Theorem 3.6.1

If A =
[
ai j

]
is an n×n matrix, then

1. det A = ∑n
i=1 ai j(−1)i+ j det Ai j (cofactor expansion along column j).

2. det A = ∑n
j=1 ai j(−1)i+ j det Ai j (cofactor expansion along row i).

Here Ai j denotes the matrix obtained from A by deleting row i and column j.

Proof. Lemma 3.6.2 establishes the truth of Theorem 3.1.2 for rows. With this information, the arguments
in Section 3.2 proceed exactly as written to establish that det A = det AT holds for any n× n matrix A.
Now suppose B is obtained from A by interchanging two columns. Then BT is obtained from AT by
interchanging two rows so, by property 3 of Lemma 3.6.2,

det B = det BT =− det AT =− det A

Hence property 3 of Lemma 3.6.2 holds for columns too.

This enables us to prove the cofactor expansion for columns. Given an n× n matrix A =
[
ai j

]
, let

B =
[
bi j

]
be obtained by moving column j to the left side, using j−1 interchanges of adjacent columns.

Then det B = (−1) j−1 det A and, because Bi1 = Ai j and bi1 = ai j for all i, we obtain

det A = (−1) j−1 det B = (−1) j−1
n

∑
i=1

bi1(−1)i+1 det Bi1

=
n

∑
i=1

ai j(−1)i+ j det Ai j

This is the cofactor expansion of det A along column j.
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Finally, to prove the row expansion, write B = AT . Then Bi j = (AT
i j) and bi j = a ji for all i and j.

Expanding det B along column j gives

det A = det AT = det B =
n

∑
i=1

bi j(−1)i+ j det Bi j

=
n

∑
i=1

a ji(−1) j+i det
[
(AT

ji)
]
=

n

∑
i=1

a ji(−1) j+i det A ji

This is the required expansion of det A along row j.

Exercises for 3.6

Exercise 3.6.1 Prove Lemma 3.6.1 for columns.

Exercise 3.6.2 Verify that interchanging rows p and q

(q > p) can be accomplished using 2(q− p)−1 adjacent
interchanges.

Exercise 3.6.3 If u is a number and A is an n×n matrix,
prove that det (uA) = un det A by induction on n, using
only the definition of det A.

Supplementary Exercises for Chapter 3

Exercise 3.1 Show that

det




a+ px b+ qx c+ rx

p+ ux q+ vx r+wx

u+ ax v+ bx w+ cx


=(1+x3) det




a b c

p q r

u v w




Exercise 3.2

a. Show that (Ai j)
T = (AT ) ji for all i, j, and all

square matrices A.

b. Use (a) to prove that det AT = det A. [Hint: In-
duction on n where A is n×n.]

Exercise 3.3 Show that det

[
0 In

Im 0

]
= (−1)nm for all

n≥ 1 and m≥ 1.

Exercise 3.4 Show that

det




1 a a3

1 b b3

1 c c3


= (b−a)(c−a)(c−b)(a+b+ c)

Exercise 3.5 Let A =

[
R1

R2

]
be a 2 × 2 matrix with

rows R1 and R2. If det A = 5, find det B where

B =

[
3R1 +2R3

2R1 +5R2

]

Exercise 3.6 Let A =

[
3 −4
2 −3

]
and let vk = Akv0 for

each k ≥ 0.

a. Show that A has no dominant eigenvalue.

b. Find vk if v0 equals:

i.

[
1
1

]

ii.

[
2
1

]

iii.

[
x

y

]
6=
[

1
1

]
or

[
2
1

]



4. Vector Geometry

4.1 Vectors and Lines

In this chapter we study the geometry of 3-dimensional space. We view a point in 3-space as an arrow from
the origin to that point. Doing so provides a “picture” of the point that is truly worth a thousand words.
We used this idea earlier, in Section 2.6, to describe rotations, reflections, and projections of the plane R2.
We now apply the same techniques to 3-space to examine similar transformations of R3. Moreover, the
method enables us to completely describe all lines and planes in space.

Vectors in R3

Introduce a coordinate system in 3-dimensional space in the usual way. First choose a point O called the
origin, then choose three mutually perpendicular lines through O, called the x, y, and z axes, and establish
a number scale on each axis with zero at the origin. Given a point P in 3-space we associate three numbers
x, y, and z with P, as described in Figure 4.1.1. These numbers are called the coordinates of P, and we
denote the point as (x, y, z), or P(x, y, z) to emphasize the label P. The result is called a cartesian1

coordinate system for 3-space, and the resulting description of 3-space is called cartesian geometry.

O

P(x, y, z)

P0(x, y, 0)

v =




x

y

z




x

y

z

Figure 4.1.1

As in the plane, we introduce vectors by identifying each point

P(x, y, z) with the vector v =




x

y

z


 in R3, represented by the arrow

from the origin to P as in Figure 4.1.1. Informally, we say that the point P

has vector v, and that vector v has point P. In this way 3-space is identi-
fied with R3, and this identification will be made throughout this chapter,
often without comment. In particular, the terms “vector” and “point” are
interchangeable.2 The resulting description of 3-space is called vector

geometry. Note that the origin is 0 =




0
0
0


.

1Named after René Descartes who introduced the idea in 1637.
2Recall that we defined Rn as the set of all ordered n-tuples of real numbers, and reserved the right to denote them as rows

or as columns.
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Length and Direction

We are going to discuss two fundamental geometric properties of vectors in R3: length and direction. First,
if v is a vector with point P, the length ‖v‖ of vector v is defined to be the distance from the origin to P,
that is the length of the arrow representing v. The following properties of length will be used frequently.

Theorem 4.1.1

Let v =




x

y

z


 be a vector.

1. ‖v‖=
√

x2 + y2 + z2. 3

2. v = 0 if and only if ‖v‖= 0

3. ‖av‖= |a|‖v‖ for all scalars a. 4

v

z

y

h

O

P

Q

R

i

x

x

y

z

Figure 4.1.2

Proof. Let v have point P(x, y, z).

1. In Figure 4.1.2, ‖v‖ is the hypotenuse of the right triangle OQP, and
so ‖v‖2 = h2+z2 by Pythagoras’ theorem.5 But h is the hypotenuse
of the right triangle ORQ, so h2 = x2 + y2. Now (1) follows by
eliminating h2 and taking positive square roots.

2. If ‖v‖ = 0, then x2 + y2 + z2 = 0 by (1). Because squares of real
numbers are nonnegative, it follows that x = y = z = 0, and hence
that v = 0. The converse is because ‖0‖= 0.

3. We have av =
[

ax ay az
]T

so (1) gives

‖av‖2 = (ax)2 +(ay)2 +(az)2 = a2‖v‖2

Hence ‖av‖=
√

a2‖v‖, and we are done because
√

a2 = |a| for any real number a.

Of course the R2-version of Theorem 4.1.1 also holds.

3When we write
√

p we mean the positive square root of p.

4Recall that the absolute value |a| of a real number is defined by |a|=
{

a if a≥ 0
−a if a < 0

.

5Pythagoras’ theorem states that if a and b are sides of right triangle with hypotenuse c, then a2 +b2 = c2. A proof is given
at the end of this section.
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Example 4.1.1

If v =




2
−1

3


 then ‖v‖=

√
4+1+9 =

√
14. Similarly if v =

[
3
−4

]
in 2-space then

‖v‖=
√

9+16 = 5.

When we view two nonzero vectors as arrows emanating from the origin, it is clear geometrically
what we mean by saying that they have the same or opposite direction. This leads to a fundamental new
description of vectors.

Theorem 4.1.2

Let v 6= 0 and w 6= 0 be vectors in R3. Then v = w as matrices if and only if v and w have the same
direction and the same length.6

v

w
O

P

Q

x

y

z

Figure 4.1.3

Proof. If v = w, they clearly have the same direction and length. Conversely,
let v and w be vectors with points P(x, y, z) and Q(x1, y1, z1) respectively. If
v and w have the same length and direction then, geometrically, P and Q must
be the same point (see Figure 4.1.3). Hence x = x1, y = y1, and z = z1, that is

v =




x

y

z


=




x1

y1

z1


= w.

A characterization of a vector in terms of its length and direction only is called an intrinsic description
of the vector. The point to note is that such a description does not depend on the choice of coordinate
system in R3. Such descriptions are important in applications because physical laws are often stated in
terms of vectors, and these laws cannot depend on the particular coordinate system used to describe the
situation.

Geometric Vectors

If A and B are distinct points in space, the arrow from A to B has length and direction.

−→
AB

O

A

B

x

y

z

Figure 4.1.4

6It is Theorem 4.1.2 that gives vectors their power in science and engineering because many physical quantities are deter-
mined by their length and magnitude (and are called vector quantities). For example, saying that an airplane is flying at 200
km/h does not describe where it is going; the direction must also be specified. The speed and direction comprise the velocity

of the airplane, a vector quantity.
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Hence:

Definition 4.1 Geometric Vectors

Suppose that A and B are any two points in R3. In Figure 4.1.4 the line segment from A to B is
denoted

−→
AB and is called the geometric vector from A to B. Point A is called the tail of

−→
AB, B is

called the tip of
−→
AB, and the length of

−→
AB is denoted ‖−→AB‖.

O

A(3, 1)

B(2, 3)

P(1, 0)

Q(0, 2)

x

y

Figure 4.1.5

Note that if v is any vector in R3 with point P then v =
−→
OP is itself

a geometric vector where O is the origin. Referring to
−→
AB as a “vector”

seems justified by Theorem 4.1.2 because it has a direction (from A to B)
and a length ‖−→AB‖. However there appears to be a problem because two
geometric vectors can have the same length and direction even if the tips
and tails are different. For example

−→
AB and

−→
PQ in Figure 4.1.5 have the

same length
√

5 and the same direction (1 unit left and 2 units up) so, by
Theorem 4.1.2, they are the same vector! The best way to understand this
apparent paradox is to see

−→
AB and

−→
PQ as different representations of the

same7 underlying vector

[
−1

2

]
. Once it is clarified, this phenomenon is

a great benefit because, thanks to Theorem 4.1.2, it means that the same
geometric vector can be positioned anywhere in space; what is important is the length and direction, not
the location of the tip and tail. This ability to move geometric vectors about is very useful as we shall soon
see.

The Parallelogram Law

v
v+w

w
A

P

Q

P

Figure 4.1.6

We now give an intrinsic description of the sum of two vectors v and w in R3,
that is a description that depends only on the lengths and directions of v and w

and not on the choice of coordinate system. Using Theorem 4.1.2 we can think
of these vectors as having a common tail A. If their tips are P and Q respectively,
then they both lie in a plane P containing A, P, and Q, as shown in Figure 4.1.6.
The vectors v and w create a parallelogram8 in P , shaded in Figure 4.1.6, called
the parallelogram determined by v and w.

If we now choose a coordinate system in the plane P with A as origin, then the parallelogram law in
the plane (Section 2.6) shows that their sum v+w is the diagonal of the parallelogram they determine with
tail A. This is an intrinsic description of the sum v+w because it makes no reference to coordinates. This
discussion proves:

7Fractions provide another example of quantities that can be the same but look different. For example 6
9 and 14

21 certainly
appear different, but they are equal fractions—both equal 2

3 in “lowest terms”.
8Recall that a parallelogram is a four-sided figure whose opposite sides are parallel and of equal length.
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The Parallelogram Law

In the parallelogram determined by two vectors v and w, the vector v+w is the diagonal with the
same tail as v and w.

v

w

v+w
P

(a) w

v
v+w

(b)

v

w

w+v

(c)

Figure 4.1.7

Because a vector can be positioned with its tail at any point, the parallelo-
gram law leads to another way to view vector addition. In Figure 4.1.7(a) the
sum v+w of two vectors v and w is shown as given by the parallelogram law. If
w is moved so its tail coincides with the tip of v (Figure 4.1.7(b)) then the sum
v+w is seen as “first v and then w. Similarly, moving the tail of v to the tip of w

shows in Figure 4.1.7(c) that v+w is “first w and then v.” This will be referred
to as the tip-to-tail rule, and it gives a graphic illustration of why v+w =w+v.

Since
−→
AB denotes the vector from a point A to a point B, the tip-to-tail rule

takes the easily remembered form

−→
AB+

−→
BC =

−→
AC

for any points A, B, and C. The next example uses this to derive a theorem in
geometry without using coordinates.

Example 4.1.2

Show that the diagonals of a parallelogram bisect each other.

A

B

C

D

EM

Solution. Let the parallelogram have vertices A, B, C, and D,
as shown; let E denote the intersection of the two diagonals;
and let M denote the midpoint of diagonal AC. We must show
that M = E and that this is the midpoint of diagonal BD. This
is accomplished by showing that

−→
BM =

−−→
MD. (Then the fact

that these vectors have the same direction means that M = E,
and the fact that they have the same length means that M = E

is the midpoint of BD.) Now
−→
AM =

−→
MC because M is the midpoint

of AC, and
−→
BA =

−→
CD because the figure is a parallelogram. Hence

−→
BM =

−→
BA+

−→
AM =

−→
CD+

−→
MC =

−→
MC+

−→
CD =

−−→
MD

where the first and last equalities use the tip-to-tail rule of vector addition.

u
v

w

u

v

w

u+v+w

Figure 4.1.8

One reason for the importance of the tip-to-tail rule is that it means two
or more vectors can be added by placing them tip-to-tail in sequence. This
gives a useful “picture” of the sum of several vectors, and is illustrated for
three vectors in Figure 4.1.8 where u+v+w is viewed as first u, then v,
then w.

There is a simple geometrical way to visualize the (matrix) difference

v−w of two vectors. If v and w are positioned so that they have a common
tail A (see Figure 4.1.9), and if B and C are their respective tips, then the
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tip-to-tail rule gives w+
−→
CB = v. Hence v−w =

−→
CB is the vector from the tip of w to the tip of v. Thus

both v−w and v+w appear as diagonals in the parallelogram determined by v and w (see Figure 4.1.9).
We record this for reference.

w

v
−→
CB

A

B

C

w

v

v−w v+w

Figure 4.1.9

Theorem 4.1.3

If v and w have a common tail, then v−w is the vector from the tip
of w to the tip of v.

One of the most useful applications of vector subtraction is that it gives
a simple formula for the vector from one point to another, and for the
distance between the points.

Theorem 4.1.4

Let P1(x1, y1, z1) and P2(x2, y2, z2) be two points. Then:

1.
−→
P1P2 =




x2− x1

y2− y1

z2− z1


.

2. The distance between P1 and P2 is
√
(x2− x1)2 +(y2− y1)2 +(z2− z1)2.

v1

−−→
P1P2

v2

P1

P2

O

Figure 4.1.10

Proof. If O is the origin, write

v1 =
−→
OP1 =




x1

y1

z1


 and v2 =

−→
OP2 =




x2

y2

z2




as in Figure 4.1.10.

Then Theorem 4.1.3 gives
−→
P1P2 = v2− v1, and (1) follows. But the

distance between P1 and P2 is ‖−→P1P2‖, so (2) follows from (1) and Theo-
rem 4.1.1.

Of course the R2-version of Theorem 4.1.4 is also valid: If P1(x1, y1) and P2(x2, y2) are points in R2,

then
−→
P1P2 =

[
x2− x1

y2− y1

]
, and the distance between P1 and P2 is

√
(x2− x1)2 +(y2− y1)2.

Example 4.1.3

The distance between P1(2, −1, 3) and P2(1, 1, 4) is
√

(−1)2 +(2)2 +(1)2 =
√

6, and the vector

from P1 to P2 is
−→
P1P2 =



−1

2
1


.
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As for the parallelogram law, the intrinsic rule for finding the length and direction of a scalar multiple
of a vector in R3 follows easily from the same situation in R2.

Scalar Multiple Law

If a is a real number and v 6= 0 is a vector then:

1. The length of av is ‖av‖= |a|‖v‖.

2. If9av 6= 0, the direction of av is

{
the same as v if a > 0,
opposite to v if a < 0.

Proof.

1. This is part of Theorem 4.1.1.

2. Let O denote the origin in R3, let v have point P, and choose any plane containing O and P. If we
set up a coordinate system in this plane with O as origin, then v =

−→
OP so the result in (2) follows

from the scalar multiple law in the plane (Section 2.6).

Figure 4.1.11 gives several examples of scalar multiples of a vector v.

v
2v

1
2 v

(−2)v

(− 1
2 )v

Figure 4.1.11

O

P

L

− 1
2p

1
2p

p
3
2p

Figure 4.1.12

Consider a line L through the origin, let P be any point on L other than
the origin O, and let p =

−→
OP. If t 6= 0, then tp is a point on L because it

has direction the same or opposite as that of p. Moreover t > 0 or t < 0
according as the point tp lies on the same or opposite side of the origin as
P. This is illustrated in Figure 4.1.12.

A vector u is called a unit vector if ‖u‖= 1. Then i =




1
0
0


,

j =




0
1
0


, and k =




0
0
1


 are unit vectors, called the coordinate vectors.

We discuss them in more detail in Section 4.2.

Example 4.1.4

If v 6= 0 show that 1
‖v‖v is the unique unit vector in the same direction as v.

Solution. The vectors in the same direction as v are the scalar multiples av where a > 0. But
‖av‖= |a|‖v‖= a‖v‖ when a > 0, so av is a unit vector if and only if a = 1

‖v‖ .

The next example shows how to find the coordinates of a point on the line segment between two given
points. The technique is important and will be used again below.

9Since the zero vector has no direction, we deal only with the case av 6= 0.
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Example 4.1.5

Let p1 and p2 be the vectors of two points P1 and P2. If M is the point one third the way from P1 to
P2, show that the vector m of M is given by

m = 2
3p1 +

1
3p2

Conclude that if P1 = P1(x1, y1, z1) and P2 = P2(x2, y2, z2), then M has coordinates

M = M
(2

3x1 +
1
3x2, 2

3y1 +
1
3y2, 2

3z1 +
1
3z2
)

p1

m

p2

O

P1

M

P2

Solution. The vectors p1, p2, and m are shown in the diagram. We
have

−−→
P1M = 1

3
−→
P1P2 because

−−→
P1M is in the same direction as

−→
P1P2 and

1
3 as long. By Theorem 4.1.3 we have

−→
P1P2 = p2−p1, so tip-to-tail

addition gives

m = p1 +
−−→
P1M = p1 +

1
3(p2−p1) =

2
3p1 +

1
3p2

as required. For the coordinates, we have p1 =




x1

y1

z1


 and p2 =




x2

y2

z2


,

so

m = 2
3




x1

y1

z1


+ 1

3




x2

y2

z2


=




2
3x1 +

1
3x2

2
3y1 +

1
3y2

2
3z1 +

1
3z2




by matrix addition. The last statement follows.

Note that in Example 4.1.5 m = 2
3p1 +

1
3p2 is a “weighted average” of p1 and p2 with more weight on p1

because m is closer to p1.

The point M halfway between points P1 and P2 is called the midpoint between these points. In the
same way, the vector m of M is

m = 1
2p1 +

1
2p2 =

1
2(p1 +p2)

as the reader can verify, so m is the “average” of p1 and p2 in this case.

Example 4.1.6

Show that the midpoints of the four sides of any quadrilateral are the vertices of a parallelogram.
Here a quadrilateral is any figure with four vertices and straight sides.

Solution. Suppose that the vertices of the quadrilateral are A, B, C, and D (in that order) and that
E, F , G, and H are the midpoints of the sides as shown in the diagram. It suffices to show−→
EF =

−→
HG (because then sides EF and HG are parallel and of equal length).
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A

B

C

D

E

F

G

H

Now the fact that E is the midpoint of AB means that
−→
EB = 1

2
−→
AB.

Similarly,
−→
BF = 1

2
−→
BC, so

−→
EF =

−→
EB+

−→
BF = 1

2
−→
AB+ 1

2
−→
BC = 1

2(
−→
AB+

−→
BC) = 1

2
−→
AC

A similar argument shows that
−→
HG = 1

2
−→
AC too, so

−→
EF =

−→
HG

as required.

Definition 4.2 Parallel Vectors in R3

Two nonzero vectors are called parallel if they have the same or opposite direction.

Many geometrical propositions involve this notion, so the following theorem will be referred to repeat-
edly.

Theorem 4.1.5

Two nonzero vectors v and w are parallel if and only if one is a scalar multiple of the other.

Proof. If one of them is a scalar multiple of the other, they are parallel by the scalar multiple law.

Conversely, assume that v and w are parallel and write d =
‖v‖
‖w‖ for convenience. Then v and w have

the same or opposite direction. If they have the same direction we show that v = dw by showing that v

and dw have the same length and direction. In fact, ‖dw‖ = |d|‖w‖ = ‖v‖ by Theorem 4.1.1; as to the
direction, dw and w have the same direction because d > 0, and this is the direction of v by assumption.
Hence v = dw in this case by Theorem 4.1.2. In the other case, v and w have opposite direction and a
similar argument shows that v =−dw. We leave the details to the reader.

Example 4.1.7

Given points P(2, −1, 4), Q(3, −1, 3), A(0, 2, 1), and B(1, 3, 0), determine if
−→
PQ and

−→
AB are

parallel.

Solution. By Theorem 4.1.3,
−→
PQ = (1, 0, −1) and

−→
AB = (1, 1, −1). If

−→
PQ = t

−→
AB then

(1, 0, −1) = (t, t, −t), so 1 = t and 0 = t, which is impossible. Hence
−→
PQ is not a scalar multiple

of
−→
AB, so these vectors are not parallel by Theorem 4.1.5.
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Lines in Space

These vector techniques can be used to give a very simple way of describing straight lines in space. In
order to do this, we first need a way to specify the orientation of such a line, much as the slope does in the
plane.

Definition 4.3 Direction Vector of a Line

With this in mind, we call a nonzero vector d 6= 0 a direction vector for the line if it is parallel to−→
AB for some pair of distinct points A and B on the line.

p0

P0P

p

d

Origin

P0
P

Figure 4.1.13

Of course it is then parallel to
−→
CD for any distinct points C and D on the line.

In particular, any nonzero scalar multiple of d will also serve as a direction
vector of the line.

We use the fact that there is exactly one line that passes through a par-

ticular point P0(x0, y0, z0) and has a given direction vector d =




a

b

c


. We

want to describe this line by giving a condition on x, y, and z that the point

P(x, y, z) lies on this line. Let p0 =




x0

y0

z0


 and p=




x

y

z


 denote the vectors

of P0 and P, respectively (see Figure 4.1.13). Then

p = p0 +
−→
P0P

Hence P lies on the line if and only if
−→
P0P is parallel to d—that is, if and only if

−→
P0P = td for some scalar

t by Theorem 4.1.5. Thus p is the vector of a point on the line if and only if p = p0 + td for some scalar t.
This discussion is summed up as follows.

Vector Equation of a Line

The line parallel to d 6= 0 through the point with vector p0 is given by

p = p0 + td t any scalar

In other words, the point P with vector p is on this line if and only if a real number t exists such
that p = p0 + td.

In component form the vector equation becomes



x

y

z


=




x0

y0

z0


+ t




a

b

c




Equating components gives a different description of the line.
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Parametric Equations of a Line

The line through P0(x0, y0, z0) with direction vector d =




a

b

c


 6= 0 is given by

x = x0 + ta

y = y0 + tb t any scalar
z = z0 + tc

In other words, the point P(x, y, z) is on this line if and only if a real number t exists such that
x = x0 + ta, y = y0 + tb, and z = z0 + tc.

Example 4.1.8

Find the equations of the line through the points P0(2, 0, 1) and P1(4, −1, 1).

Solution. Let d =
−→
P0P1 =




2
1
0


 denote the vector from P0 to P1. Then d is parallel to the line (P0

and P1 are on the line), so d serves as a direction vector for the line. Using P0 as the point on the
line leads to the parametric equations

x = 2+2t

y =−t t a parameter
z = 1

Note that if P1 is used (rather than P0), the equations are

x = 4+2s

y =−1− s s a parameter
z = 1

These are different from the preceding equations, but this is merely the result of a change of
parameter. In fact, s = t−1.

Example 4.1.9

Find the equations of the line through P0(3, −1, 2) parallel to the line with equations

x =−1+2t

y = 1+ t

z =−3+4t
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Solution. The coefficients of t give a direction vector d =




2
1
4


 of the given line. Because the

line we seek is parallel to this line, d also serves as a direction vector for the new line. It passes
through P0, so the parametric equations are

x = 3+2t

y =−1+ t

z = 2+4t

Example 4.1.10

Determine whether the following lines intersect and, if so, find the point of intersection.

x = 1−3t x =−1+ s

y = 2+5t y = 3−4s

z = 1+ t z = 1− s

Solution. Suppose P(x, y, z) with vector p lies on both lines. Then




1−3t

2+5t

1+ t


=




x

y

z


=



−1+ s

3−4s

1− s


 for some t and s,

where the first (second) equation is because P lies on the first (second) line. Hence the lines
intersect if and only if the three equations

1−3t =−1+ s

2+5t = 3−4s

1+ t = 1− s

have a solution. In this case, t = 1 and s =−1 satisfy all three equations, so the lines do intersect
and the point of intersection is

p =




1−3t

2+5t

1+ t


=



−2

7
2




using t = 1. Of course, this point can also be found from p =



−1+ s

3−4s

1− s


 using s =−1.
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Example 4.1.11

Show that the line through P0(x0, y0) with slope m has direction vector d =

[
1
m

]
and equation

y− y0 = m(x− x0). This equation is called the point-slope formula.

P0(x0, y0)

P1(x1, y1)

x0 x1 = x0 +1O
x

y

Solution. Let P1(x1, y1) be the point on the line one unit
to the right of P0 (see the diagram). Hence x1 = x0 +1.
Then d =

−→
P0P1 serves as direction vector of the line, and

d =

[
x1− x0

y1− y0

]
=

[
1

y1− y0

]
. But the slope m can be computed

as follows:
m = y1−y0

x1−x0
= y1−y0

1 = y1− y0

Hence d =

[
1
m

]
and the parametric equations are x = x0 + t,

y = y0 +mt. Eliminating t gives y− y0 = mt = m(x− x0), as asserted.

Note that the vertical line through P0(x0, y0) has a direction vector d =

[
0
1

]
that is not of the form

[
1
m

]
for any m. This result confirms that the notion of slope makes no sense in this case. However, the

vector method gives parametric equations for the line:

x = x0

y = y0 + t

Because y is arbitrary here (t is arbitrary), this is usually written simply as x = x0.

Pythagoras’ Theorem

c

b

a

A

B

C

D
p

q

Figure 4.1.14

The Pythagorean theorem was known earlier, but Pythagoras (c. 550 B.C.)
is credited with giving the first rigorous, logical, deductive proof of the
result. The proof we give depends on a basic property of similar triangles:
ratios of corresponding sides are equal.

Theorem 4.1.6: Pythagoras’ Theorem

Given a right-angled triangle with hypotenuse c and sides a and b, then a2 +b2 = c2.

Proof. Let A, B, and C be the vertices of the triangle as in Figure 4.1.14. Draw a perpendicular line from
C to the point D on the hypotenuse, and let p and q be the lengths of BD and DA respectively. Then DBC
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and CBA are similar triangles so p
a
= a

c
. This means a2 = pc. In the same way, the similarity of DCA and

CBA gives q
b
= b

c
, whence b2 = qc. But then

a2 +b2 = pc+qc = (p+q)c = c2

because p+q = c. This proves Pythagoras’ theorem10.

Exercises for 4.1

Exercise 4.1.1 Compute ‖v‖ if v equals:




2
−1

2


a.




1
−1

2


b.




1
0
−1


c.



−1

0
2


d.

2




1
−1

2


e. −3




1
1
2


f.

Exercise 4.1.2 Find a unit vector in the direction of:



7
−1

5


a.



−2
−1

2


b.

Exercise 4.1.3

a. Find a unit vector in the direction from


3
−1

4


 to




1
3
5


.

b. If u 6= 0, for which values of a is au a unit vector?

Exercise 4.1.4 Find the distance between the following
pairs of points.




3
−1

0


 and




2
−1

1


a.




2
−1

2


 and




2
0
1


b.



−3

5
2


 and




1
3
3


c.




4
0
−2


 and




3
2
0


d.

Exercise 4.1.5 Use vectors to show that the line joining
the midpoints of two sides of a triangle is parallel to the
third side and half as long.

Exercise 4.1.6 Let A, B, and C denote the three vertices
of a triangle.

a. If E is the midpoint of side BC, show that

−→
AE = 1

2(
−→
AB+

−→
AC)

b. If F is the midpoint of side AC, show that

−→
FE = 1

2

−→
AB

Exercise 4.1.7 Determine whether u and v are parallel
in each of the following cases.

a. u =



−3
−6

3


; v =




5
10
−5




b. u =




3
−6

3


; v =



−1

2
−1




c. u =




1
0
1


; v =



−1

0
1




d. u =




2
0
−1


; v =



−8

0
4




10There is an intuitive geometrical proof of Pythagoras’ theorem in Example B.3.
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Exercise 4.1.8 Let p and q be the vectors of points P

and Q, respectively, and let R be the point whose vector
is p+q. Express the following in terms of p and q.

−→
QPa.

−→
QRb.

−→
RPc.

−→
RO where O is the origind.

Exercise 4.1.9 In each case, find
−→
PQ and ‖−→PQ‖.

a. P(1, −1, 3), Q(3, 1, 0)

b. P(2, 0, 1), Q(1, −1, 6)

c. P(1, 0, 1), Q(1, 0, −3)

d. P(1, −1, 2), Q(1, −1, 2)

e. P(1, 0, −3), Q(−1, 0, 3)

f. P(3, −1, 6), Q(1, 1, 4)

Exercise 4.1.10 In each case, find a point Q such that−→
PQ has (i) the same direction as v; (ii) the opposite direc-
tion to v.

a. P(−1, 2, 2), v =




1
3
1




b. P(3, 0, −1), v =




2
−1

3




Exercise 4.1.11 Let u =




3
−1

0


, v =




4
0
1


, and

w =



−1

1
5


. In each case, find x such that:

a. 3(2u+x)+w = 2x−v

b. 2(3v−x) = 5w+u−3x

Exercise 4.1.12 Let u =




1
1
2


, v =




0
1
2


, and

w=




1
0
−1


. In each case, find numbers a, b, and c such

that x = au+bv+ cw.

x =




2
−1

6


a. x =




1
3
0


b.

Exercise 4.1.13 Let u =




3
−1

0


, v =




4
0
1


, and

z =




1
1
1


. In each case, show that there are no num-

bers a, b, and c such that:

a. au+bv+ cz =




1
2
1




b. au+bv+ cz =




5
6
−1




Exercise 4.1.14 Given P1(2, 1, −2) and P2(1, −2, 0).
Find the coordinates of the point P:

a. 1
5 the way from P1 to P2

b. 1
4 the way from P2 to P1

Exercise 4.1.15 Find the two points trisecting the seg-
ment between P(2, 3, 5) and Q(8, −6, 2).

Exercise 4.1.16 Let P1(x1, y1, z1) and P2(x2, y2, z2) be
two points with vectors p1 and p2, respectively. If r and s

are positive integers, show that the point P lying r
r+s

the
way from P1 to P2 has vector

p =
(

s
r+s

)
p1 +

(
r

r+s

)
p2

Exercise 4.1.17 In each case, find the point Q:

a.
−→
PQ =




2
0
−3


 and P = P(2, −3, 1)

b.
−→
PQ =



−1

4
7


 and P = P(1, 3, −4)
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Exercise 4.1.18 Let u =




2
0
−4


 and v =




2
1
−2


. In

each case find x:

a. 2u−‖v‖v = 3
2(u−2x)

b. 3u+7v = ‖u‖2(2x+v)

Exercise 4.1.19 Find all vectors u that are parallel to

v =




3
−2

1


 and satisfy ‖u‖= 3‖v‖.

Exercise 4.1.20 Let P, Q, and R be the vertices of a par-
allelogram with adjacent sides PQ and PR. In each case,
find the other vertex S.

a. P(3, −1, −1), Q(1, −2, 0), R(1, −1, 2)

b. P(2, 0, −1), Q(−2, 4, 1), R(3, −1, 0)

Exercise 4.1.21 In each case either prove the statement
or give an example showing that it is false.

a. The zero vector 0 is the only vector of length 0.

b. If ‖v−w‖= 0, then v = w.

c. If v =−v, then v = 0.

d. If ‖v‖= ‖w‖, then v = w.

e. If ‖v‖= ‖w‖, then v =±w.

f. If v = tw for some scalar t, then v and w have the
same direction.

g. If v, w, and v+w are nonzero, and v and v+w

parallel, then v and w are parallel.

h. ‖−5v‖=−5‖v‖, for all v.

i. If ‖v‖= ‖2v‖, then v = 0.

j. ‖v+w‖= ‖v‖+‖w‖, for all v and w.

Exercise 4.1.22 Find the vector and parametric equa-
tions of the following lines.

a. The line parallel to




2
−1

0


 and passing through

P(1, −1, 3).

b. The line passing through P(3, −1, 4) and
Q(1, 0, −1).

c. The line passing through P(3, −1, 4) and
Q(3, −1, 5).

d. The line parallel to




1
1
1


 and passing through

P(1, 1, 1).

e. The line passing through P(1, 0, −3) and parallel
to the line with parametric equations x =−1+2t,
y = 2− t, and z = 3+3t.

f. The line passing through P(2, −1, 1) and paral-
lel to the line with parametric equations x = 2− t,
y = 1, and z = t.

g. The lines through P(1, 0, 1) that meet the line

with vector equation p =




1
2
0


+ t




2
−1

2


 at

points at distance 3 from P0(1, 2, 0).

Exercise 4.1.23 In each case, verify that the points P

and Q lie on the line.

a. x = 3−4t P(−1, 3, 0), Q(11, 0, 3)
y = 2+ t

z = 1− t

b. x = 4− t P(2, 3, −3), Q(−1, 3, −9)
y = 3
z = 1−2t

Exercise 4.1.24 Find the point of intersection (if any)
of the following pairs of lines.

a. x = 3+ t x = 4+2s

y = 1−2t y = 6+3s

z = 3+3t z = 1+ s

b.
x = 1− t x = 2s

y = 2+2t y = 1+ s

z =−1+3t z = 3

c.




x

y

z


=




3
−1

2


+ t




1
1
−1







x

y

z


=




1
1
−2


+ s




2
0
3
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d.




x

y

z


=




4
−1

5


+ t




1
0
1







x

y

z


=




2
−7
12


+ s




0
−2

3




Exercise 4.1.25 Show that if a line passes through the
origin, the vectors of points on the line are all scalar mul-
tiples of some fixed nonzero vector.

Exercise 4.1.26 Show that every line parallel to the z

axis has parametric equations x = x0, y = y0, z = t for
some fixed numbers x0 and y0.

Exercise 4.1.27 Let d =




a

b

c


 be a vector where a,

b, and c are all nonzero. Show that the equations of the
line through P0(x0, y0, z0) with direction vector d can be
written in the form

x−x0
a

= y−y0
b

= z−z0
c

This is called the symmetric form of the equations.

Exercise 4.1.28 A parallelogram has sides AB, BC, CD,
and DA. Given A(1, −1, 2), C(2, 1, 0), and the midpoint
M(1, 0, −3) of AB, find

−→
BD.

Exercise 4.1.29 Find all points C on the line through
A(1, −1, 2) and B = (2, 0, 1) such that ‖−→AC‖= 2‖−→BC‖.
Exercise 4.1.30 Let A, B, C, D, E , and F be the ver-
tices of a regular hexagon, taken in order. Show that−→
AB+

−→
AC+

−→
AD+

−→
AE +

−→
AF = 3

−→
AD.

Exercise 4.1.31

a. Let P1, P2, P3, P4, P5, and P6 be six points equally
spaced on a circle with centre C. Show that

−→
CP1 +

−→
CP2 +

−→
CP3 +

−→
CP4 +

−→
CP5 +

−→
CP6 = 0

b. Show that the conclusion in part (a) holds for any
even set of points evenly spaced on the circle.

c. Show that the conclusion in part (a) holds for three

points.

d. Do you think it works for any finite set of points
evenly spaced around the circle?

Exercise 4.1.32 Consider a quadrilateral with vertices
A, B, C, and D in order (as shown in the diagram).

A
B

CD

If the diagonals AC and BD bisect each other, show
that the quadrilateral is a parallelogram. (This is the con-
verse of Example 4.1.2.) [Hint: Let E be the intersec-
tion of the diagonals. Show that

−→
AB =

−→
DC by writing−→

AB =
−→
AE +

−→
EB.]

Exercise 4.1.33 Consider the parallelogram ABCD (see
diagram), and let E be the midpoint of side AD.

A

B

C

D

E

F

Show that BE and AC trisect each other; that is, show
that the intersection point is one-third of the way from E

to B and from A to C. [Hint: If F is one-third of the
way from A to C, show that 2

−→
EF =

−→
FB and argue as in

Example 4.1.2.]

Exercise 4.1.34 The line from a vertex of a triangle to
the midpoint of the opposite side is called a median of
the triangle. If the vertices of a triangle have vectors
u, v, and w, show that the point on each median that
is 1

3 the way from the midpoint to the vertex has vec-
tor 1

3(u+ v+w). Conclude that the point C with vector
1
3(u+ v+w) lies on all three medians. This point C is
called the centroid of the triangle.

Exercise 4.1.35 Given four noncoplanar points in space,
the figure with these points as vertices is called a tetra-

hedron. The line from a vertex through the centroid (see
previous exercise) of the triangle formed by the remain-
ing vertices is called a median of the tetrahedron. If u, v,
w, and x are the vectors of the four vertices, show that the
point on a median one-fourth the way from the centroid
to the vertex has vector 1

4(u+v+w+x). Conclude that
the four medians are concurrent.
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4.2 Projections and Planes

P

Q

Figure 4.2.1

Any student of geometry soon realizes that the notion of perpendicular
lines is fundamental. As an illustration, suppose a point P and a plane
are given and it is desired to find the point Q that lies in the plane and is
closest to P, as shown in Figure 4.2.1. Clearly, what is required is to find
the line through P that is perpendicular to the plane and then to obtain Q

as the point of intersection of this line with the plane. Finding the line
perpendicular to the plane requires a way to determine when two vectors
are perpendicular. This can be done using the idea of the dot product of
two vectors.

The Dot Product and Angles

Definition 4.4 Dot Product in R3

Given vectors v =




x1

y1

z1


 and w =




x2

y2

z2


, their dot product v ·w is a number defined

v ·w = x1x2 + y1y2 + z1z2 = vT w

Because v ·w is a number, it is sometimes called the scalar product of v and w.11

Example 4.2.1

If v =




2
−1

3


 and w =




1
4
−1


, then v ·w = 2 ·1+(−1) ·4+3 · (−1) =−5.

The next theorem lists several basic properties of the dot product.

Theorem 4.2.1

Let u, v, and w denote vectors in R3 (or R2).

1. v ·w is a real number.

2. v ·w = w ·v.

3. v ·0 = 0 = 0 ·v.

4. v ·v = ‖v‖2.

11Similarly, if v =

[
x1

y1

]
and w =

[
x2

y2

]
in R2, then v ·w = x1x2 + y1y2.
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5. (kv) ·w = k(w ·v) = v · (kw) for all scalars k.

6. u · (v±w) = u ·v±u ·w

Proof. (1), (2), and (3) are easily verified, and (4) comes from Theorem 4.1.1. The rest are properties of
matrix arithmetic (because w ·v = vT w), and are left to the reader.

The properties in Theorem 4.2.1 enable us to do calculations like

3u · (2v−3w+4z) = 6(u ·v)−9(u ·w)+12(u · z)

and such computations will be used without comment below. Here is an example.

Example 4.2.2

Verify that ‖v−3w‖2 = 1 when ‖v‖= 2, ‖w‖= 1, and v ·w = 2.

Solution. We apply Theorem 4.2.1 several times:

‖v−3w‖2 = (v−3w) · (v−3w)

= v · (v−3w)−3w · (v−3w)

= v ·v−3(v ·w)−3(w ·v)+9(w ·w)

= ‖v‖2−6(v ·w)+9‖w‖2

= 4−12+9 = 1

There is an intrinsic description of the dot product of two nonzero vectors in R3. To understand it we
require the following result from trigonometry.

Law of Cosines

If a triangle has sides a, b, and c, and if θ is the interior angle opposite c then

c2 = a2 +b2−2abcosθ

a
c

b

p

θ q b−q

Figure 4.2.2

Proof. We prove it when is θ acute, that is 0 ≤ θ < π
2 ; the obtuse case

is similar. In Figure 4.2.2 we have p = asinθ and q = acosθ . Hence
Pythagoras’ theorem gives

c2 = p2 +(b−q)2 = a2 sin2 θ +(b−acosθ)2

= a2(sin2 θ + cos2 θ)+b2−2abcosθ

The law of cosines follows because sin2 θ + cos2 θ = 1 for any angle θ .
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v

w

θ

θ obtuse

v

w

θ

θ acute

Figure 4.2.3

Note that the law of cosines reduces to Pythagoras’ theorem if θ is a right
angle (because cos π

2 = 0).

Now let v and w be nonzero vectors positioned with a common tail as
in Figure 4.2.3. Then they determine a unique angle θ in the range

0≤ θ ≤ π

This angle θ will be called the angle between v and w. Figure 4.2.3 il-
lustrates when θ is acute (less than π

2 ) and obtuse (greater than π
2 ). Clearly

v and w are parallel if θ is either 0 or π . Note that we do not define the
angle between v and w if one of these vectors is 0.

The next result gives an easy way to compute the angle between two
nonzero vectors using the dot product.

Theorem 4.2.2

Let v and w be nonzero vectors. If θ is the angle between v and w, then

v ·w = ‖v‖‖w‖cosθ

v

w

v−w

θ

Figure 4.2.4

Proof. We calculate ‖v−w‖2 in two ways. First apply the law of cosines
to the triangle in Figure 4.2.4 to obtain:

‖v−w‖2 = ‖v‖2 +‖w‖2−2‖v‖‖w‖cosθ

On the other hand, we use Theorem 4.2.1:

‖v−w‖2 = (v−w) · (v−w)

= v ·v−v ·w−w ·v+w ·w
= ‖v‖2−2(v ·w)+‖w‖2

Comparing these we see that −2‖v‖‖w‖cosθ =−2(v ·w), and the result follows.

If v and w are nonzero vectors, Theorem 4.2.2 gives an intrinsic description of v ·w because ‖v‖, ‖w‖,
and the angle θ between v and w do not depend on the choice of coordinate system. Moreover, since ‖v‖
and ‖w‖ are nonzero (v and w are nonzero vectors), it gives a formula for the cosine of the angle θ :

cosθ = v·w
‖v‖‖w‖ (4.1)

Since 0≤ θ ≤ π , this can be used to find θ .

Example 4.2.3

Compute the angle between u =



−1

1
2


 and v =




2
1
−1


.
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2π
3

(
−1
2 ,

√
3

2

)

−1
2

O
x

y
Solution. Compute cosθ = v·w

‖v‖‖w‖ =
−2+1−2√

6
√

6
=−1

2 . Now recall
that cosθ and sinθ are defined so that (cosθ , sinθ ) is the point on
the unit circle determined by the angle θ (drawn counterclockwise,
starting from the positive x axis). In the present case, we know
that cosθ =−1

2 and that 0≤ θ ≤ π . Because cos π
3 = 1

2 , it follows
that θ = 2π

3 (see the diagram).

If v and w are nonzero, equation (4.1) shows that cosθ has the same sign as v ·w, so

v ·w > 0 if and only if θ is acute (0≤ θ < π
2 )

v ·w < 0 if and only if θ is obtuse (π
2 < θ ≤ 0)

v ·w = 0 if and only if θ = π
2

In this last case, the (nonzero) vectors are perpendicular. The following terminology is used in linear
algebra:

Definition 4.5 Orthogonal Vectors in R3

Two vectors v and w are said to be orthogonal if v = 0 or w = 0 or the angle between them is π
2 .

Since v ·w = 0 if either v = 0 or w = 0, we have the following theorem:

Theorem 4.2.3

Two vectors v and w are orthogonal if and only if v ·w = 0.

Example 4.2.4

Show that the points P(3, −1, 1), Q(4, 1, 4), and R(6, 0, 4) are the vertices of a right triangle.

Solution. The vectors along the sides of the triangle are

−→
PQ =




1
2
3


 ,
−→
PR =




3
1
3


 , and

−→
QR =




2
−1

0




Evidently
−→
PQ ·−→QR = 2−2+0 = 0, so

−→
PQ and

−→
QR are orthogonal vectors. This means sides PQ

and QR are perpendicular—that is, the angle at Q is a right angle.

Example 4.2.5 demonstrates how the dot product can be used to verify geometrical theorems involving
perpendicular lines.
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Example 4.2.5

A parallelogram with sides of equal length is called a rhombus. Show that the diagonals of a
rhombus are perpendicular.

v

u

u−v

u+v

Solution. Let u and v denote vectors along two adjacent sides
of a rhombus, as shown in the diagram. Then the diagonals are
u−v and u+v, and we compute

(u−v) · (u+v) = u · (u+v)−v · (u+v)

= u ·u+u ·v−v ·u−v ·v
= ‖u‖2−‖v‖2

= 0

because ‖u‖= ‖v‖ (it is a rhombus). Hence u−v and u+v are orthogonal.

Projections

In applications of vectors, it is frequently useful to write a vector as the sum of two orthogonal vectors.
Here is an example.

Example 4.2.6

Suppose a ten-kilogram block is placed on a flat surface inclined 30◦ to the horizontal as in the
diagram. Neglecting friction, how much force is required to keep the block from sliding down the
surface?

30◦

30◦

w

w1

w2

Solution. Let w denote the weight (force due to gravity) exerted
on the block. Then ‖w‖= 10 kilograms and the direction of w is
vertically down as in the diagram. The idea is to write w as a sum
w = w1 +w2 where w1 is parallel to the inclined surface and w2

is perpendicular to the surface. Since there is no friction, the force
required is −w1 because the force w2 has no effect parallel to the

surface. As the angle between w and w2 is 30◦ in the diagram, we have ‖w1‖
‖w‖ = sin30◦ = 1

2 . Hence

‖w1‖= 1
2‖w‖= 1

210 = 5. Thus the required force has a magnitude of 5 kilograms weight directed
up the surface.
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u

u1
Q

P

P1

d
u−u1

(a)

u

u1
Q

P

P1

d

u−u1

(b)

Figure 4.2.5

If a nonzero vector d is specified, the key idea in Example 4.2.6 is to
be able to write an arbitrary vector u as a sum of two vectors,

u = u1 +u2

where u1 is parallel to d and u2 = u−u1 is orthogonal to d. Suppose that
u and d 6= 0 emanate from a common tail Q (see Figure 4.2.5). Let P be
the tip of u, and let P1 denote the foot of the perpendicular from P to the
line through Q parallel to d.

Then u1 =
−→
QP1 has the required properties:

1. u1 is parallel to d.

2. u2 = u−u1 is orthogonal to d.

3. u = u1 +u2.

Definition 4.6 Projection in R3

The vector u1 =
−→
QP1 in Figure 4.2.5 is called the projection of u on d. It is denoted

u1 = projd u

In Figure 4.2.5(a) the vector u1 = projd u has the same direction as d; however, u1 and d have opposite
directions if the angle between u and d is greater than π

2 (Figure 4.2.5(b)). Note that the projection
u1 = projd u is zero if and only if u and d are orthogonal.

Calculating the projection of u on d 6= 0 is remarkably easy.

Theorem 4.2.4

Let u and d 6= 0 be vectors.

1. The projection of u on d is given by projd u = u·d
‖d‖2 d.

2. The vector u− projd u is orthogonal to d.

Proof. The vector u1 = projd u is parallel to d and so has the form u1 = td for some scalar t. The
requirement that u− u1 and d are orthogonal determines t. In fact, it means that (u− u1) · d = 0 by
Theorem 4.2.3. If u1 = td is substituted here, the condition is

0 = (u− td) ·d = u ·d− t(d ·d) = u ·d− t‖d‖2

It follows that t = u·d
‖d‖2 , where the assumption that d 6= 0 guarantees that ‖d‖2 6= 0.
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Example 4.2.7

Find the projection of u =




2
−3

1


 on d =




1
−1

3


 and express u = u1 +u2 where u1 is parallel

to d and u2 is orthogonal to d.

Solution. The projection u1 of u on d is

u1 = projd u = u·d
‖d‖2 d = 2+3+3

12+(−1)2+32




1
−1

3


= 8

11




1
−1

3




Hence u2 = u−u1 =
1

11




14
−25
−13


, and this is orthogonal to d by Theorem 4.2.4 (alternatively,

observe that d ·u2 = 0). Since u = u1 +u2, we are done.

Example 4.2.8

u
u1

u−u1

Q

P(1, 3, −2)

P0(2, 0, −1)

d

Find the shortest distance (see diagram) from the point P(1, 3, −2)

to the line through P0(2, 0, −1) with direction vector d =




1
−1

0


.

Also find the point Q that lies on the line and is closest to P.

Solution. Let u =




1
3
−2


−




2
0
−1


=



−1

3
−1


 denote the vector from P0 to P, and let u1 denote

the projection of u on d. Thus

u1 =
u·d
‖d‖2 d = −1−3+0

12+(−1)2+02 d =−2d =



−2

2
0




by Theorem 4.2.4. We see geometrically that the point Q on the line is closest to P, so the distance
is

‖−→QP‖= ‖u−u1‖=

∥∥∥∥∥∥




1
1
−1



∥∥∥∥∥∥
=
√

3

To find the coordinates of Q, let p0 and q denote the vectors of P0 and Q, respectively. Then

p0 =




2
0
−1


 and q = p0 +u1 =




0
2
−1


. Hence Q(0, 2, −1) is the required point. It can be

checked that the distance from Q to P is
√

3, as expected.
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Planes

It is evident geometrically that among all planes that are perpendicular to a given straight line there is
exactly one containing any given point. This fact can be used to give a very simple description of a plane.
To do this, it is necessary to introduce the following notion:

Definition 4.7 Normal Vector in a Plane

A nonzero vector n is called a normal for a plane if it is orthogonal to every vector in the plane.

n

P0

P

Figure 4.2.6

For example, the coordinate vector k is a normal for the x-y plane.

Given a point P0 = P0(x0, y0, z0) and a nonzero vector n, there is a
unique plane through P0 with normal n, shaded in Figure 4.2.6. A point
P = P(x, y, z) lies on this plane if and only if the vector

−→
P0P is orthogonal

to n—that is, if and only if n · −→P0P = 0. Because
−→
P0P =




x− x0

y− y0

z− z0


 this

gives the following result:

Scalar Equation of a Plane

The plane through P0(x0, y0, z0) with normal n =




a

b

c


 6= 0 as a normal vector is given by

a(x− x0)+b(y− y0)+ c(z− z0) = 0

In other words, a point P(x, y, z) is on this plane if and only if x, y, and z satisfy this equation.

Example 4.2.9

Find an equation of the plane through P0(1, −1, 3) with n =




3
−1

2


 as normal.

Solution. Here the general scalar equation becomes

3(x−1)− (y+1)+2(z−3) = 0

This simplifies to 3x− y+2z = 10.

If we write d = ax0+by0+cz0, the scalar equation shows that every plane with normal n =




a

b

c


 has
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a linear equation of the form
ax+by+ cz = d (4.2)

for some constant d. Conversely, the graph of this equation is a plane with n =




a

b

c


 as a normal vector

(assuming that a, b, and c are not all zero).

Example 4.2.10

Find an equation of the plane through P0(3, −1, 2) that is parallel to the plane with equation
2x−3y = 6.

Solution. The plane with equation 2x−3y = 6 has normal n =




2
−3

0


. Because the two planes

are parallel, n serves as a normal for the plane we seek, so the equation is 2x−3y = d for some d

by Equation 4.2. Insisting that P0(3, −1, 2) lies on the plane determines d; that is,
d = 2 ·3−3(−1) = 9. Hence, the equation is 2x−3y = 9.

Consider points P0(x0, y0, z0) and P(x, y, z) with vectors p0 =




x0

y0

z0


 and p =




x

y

z


. Given a nonzero

vector n, the scalar equation of the plane through P0(x0, y0, z0) with normal n =




a

b

c


 takes the vector

form:

Vector Equation of a Plane

The plane with normal n 6= 0 through the point with vector p0 is given by

n · (p−p0) = 0

In other words, the point with vector p is on the plane if and only if p satisfies this condition.

Moreover, Equation 4.2 translates as follows:

Every plane with normal n has vector equation n ·p = d for some number d.

This is useful in the second solution of Example 4.2.11.

Example 4.2.11

Find the shortest distance from the point P(2, 1, −3) to the plane with equation 3x− y+4z = 1.
Also find the point Q on this plane closest to P.
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u

P0(0, −1, 0)
Q(x, y, z)

P(2, 1, −3)u1

n

Solution 1. The plane in question has normal n =




3
−1

4


.

Choose any point P0 on the plane—say P0(0, −1, 0)—and let
Q(x, y, z) be the point on the plane closest to P (see the diagram).

The vector from P0 to P is u =




2
2
−3


. Now erect n with its

tail at P0. Then
−→
QP = u1 and u1 is the projection of u on n:

u1 =
n·u
‖n‖2 n = −8

26




3
−1

4


= −4

13




3
−1

4




Hence the distance is ‖−→QP‖ = ‖u1‖ = 4
√

26
13 . To calculate the point Q, let q =




x

y

z


 and

p0 =




0
−1

0


 be the vectors of Q and P0. Then

q = p0 +u−u1 =




0
−1

0


+




2
2
−3


+ 4

13




3
−1

4


=




38
13

9
13

−23
13




This gives the coordinates of Q(38
13 , 9

13 , −23
13 ).

Solution 2. Let q =




x

y

z


 and p =




2
1
−3


 be the vectors of Q and P. Then Q is on the line

through P with direction vector n, so q = p+ tn for some scalar t. In addition, Q lies on the plane,
so n ·q = 1. This determines t:

1 = n ·q = n · (p+ tn) = n ·p+ t‖n‖2 =−7+ t(26)

This gives t = 8
26 = 4

13 , so




x

y

z


= q = p+ tn =




2
1
−3


+ 4

13




3
−1

4


+ 1

13




38
9

−23




as before. This determines Q (in the diagram), and the reader can verify that the required distance
is ‖−→QP‖= 4

13

√
26, as before.
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The Cross Product

If P, Q, and R are three distinct points in R3 that are not all on some line, it is clear geometrically that
there is a unique plane containing all three. The vectors

−→
PQ and

−→
PR both lie in this plane, so finding a

normal amounts to finding a nonzero vector orthogonal to both
−→
PQ and

−→
PR. The cross product provides a

systematic way to do this.

Definition 4.8 Cross Product

Given vectors v1 =




x1

y1

z1


 and v2 =




x2

y2

z2


, define the cross product v1×v2 by

v1×v2 =




y1z2− z1y2

−(x1z2− z1x2)
x1y2− y1x2




x

y

z

i
j

k

O

Figure 4.2.7

(Because it is a vector, v1×v2 is often called the vector product.) There
is an easy way to remember this definition using the coordinate vectors:

i =




1
0
0


 , j =




0
1
0


 , and k =




0
0
1




They are vectors of length 1 pointing along the positive x, y, and z axes,
respectively, as in Figure 4.2.7. The reason for the name is that any vector
can be written as




x

y

z


= xi+ yj+ zk

With this, the cross product can be described as follows:

Determinant Form of the Cross Product

If v1 =




x1

y1

z1


 and v2 =




x2

y2

z2


 are two vectors, then

v1×v2 = det




i x1 x2

j y1 y2

k z1 z2


=

∣∣∣∣
y1 y2

z1 z2

∣∣∣∣ i−
∣∣∣∣

x1 x2

z1 z2

∣∣∣∣ j+
∣∣∣∣

x1 x2

y1 y2

∣∣∣∣k

where the determinant is expanded along the first column.
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Example 4.2.12

If v =




2
−1

4


 and w =




1
3
7


, then

v1×v2 = det




i 2 1
j −1 3
k 4 7


=

∣∣∣∣
−1 3

4 7

∣∣∣∣ i−
∣∣∣∣

2 1
4 7

∣∣∣∣ j+
∣∣∣∣

2 1
−1 3

∣∣∣∣k

=−19i−10j+7k

=



−19
−10

7




Observe that v×w is orthogonal to both v and w in Example 4.2.12. This holds in general as can be
verified directly by computing v · (v×w) and w · (v×w), and is recorded as the first part of the following
theorem. It will follow from a more general result which, together with the second part, will be proved in
Section 4.3 where a more detailed study of the cross product will be undertaken.

Theorem 4.2.5

Let v and w be vectors in R3.

1. v×w is a vector orthogonal to both v and w.

2. If v and w are nonzero, then v×w = 0 if and only if v and w are parallel.

It is interesting to contrast Theorem 4.2.5(2) with the assertion (in Theorem 4.2.3) that

v ·w = 0 if and only if v and w are orthogonal.

Example 4.2.13

Find the equation of the plane through P(1, 3, −2), Q(1, 1, 5), and R(2, −2, 3).

Solution. The vectors
−→
PQ =




0
−2

7


 and

−→
PR =




1
−5

5


 lie in the plane, so

−→
PQ×−→PR = det




i 0 1
j −2 −5
k 7 5


= 25i+7j+2k =




25
7
2




is a normal for the plane (being orthogonal to both
−→
PQ and

−→
PR). Hence the plane has equation

25x+7y+2z = d for some number d.
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Since P(1, 3, −2) lies in the plane we have 25 ·1+7 ·3+2(−2) = d. Hence d = 42 and the
equation is 25x+7y+2z = 42. Incidentally, the same equation is obtained (verify) if

−→
QP and

−→
QR,

or
−→
RP and

−→
RQ, are used as the vectors in the plane.

Example 4.2.14

Find the shortest distance between the nonparallel lines



x

y

z


=




1
0
−1


+ t




2
0
1


 and




x

y

z


=




3
1
0


+ s




1
1
−1




Then find the points A and B on the lines that are closest together.

Solution. Direction vectors for the two lines are d1 =




2
0
1


 and d2 =




1
1
−1


, so

n = d1×d2 = det




i 2 1
j 0 1
k 1 −1


=



−1

3
2




u

P2
n

B

A

P1

is perpendicular to both lines. Consider the plane shaded in
the diagram containing the first line with n as normal. This plane
contains P1(1, 0, −1) and is parallel to the second line. Because
P2(3, 1, 0) is on the second line, the distance in question is just the
shortest distance between P2(3, 1, 0) and this plane. The vector

u from P1 to P2 is u =
−→
P1P2 =




2
1
1


 and so, as in Example 4.2.11,

the distance is the length of the projection of u on n.

distance =
∥∥∥ u·n
‖n‖2 n

∥∥∥= |u·n|
‖n‖ = 3√

14
= 3
√

14
14

Note that it is necessary that n = d1×d2 be nonzero for this calculation to be possible. As is
shown later (Theorem 4.3.4), this is guaranteed by the fact that d1 and d2 are not parallel.
The points A and B have coordinates A(1+2t, 0, t−1) and B(3+ s, 1+ s, −s) for some s

and t, so
−→
AB =




2+ s−2t

1+ s

1− s− t


. This vector is orthogonal to both d1 and d2, and the conditions

−→
AB ·d1 = 0 and

−→
AB ·d2 = 0 give equations 5t− s = 5 and t−3s = 2. The solution is s = −5

14 and

t = 13
14 , so the points are A(40

14 , 0, −1
14 ) and B(37

14 , 9
14 , 5

14). We have ‖−→AB‖= 3
√

14
14 , as before.
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Exercises for 4.2

Exercise 4.2.1 Compute u ·v where:

a. u =




2
−1

3


, v =



−1

1
1




b. u =




1
2
−1


, v = u

c. u =




1
1
−3


, v =




2
−1

1




d. u =




3
−1

5


, v =




6
−7
−5




e. u =




x

y

z


, v =




a

b

c




f. u =




a

b

c


, v = 0

Exercise 4.2.2 Find the angle between the following
pairs of vectors.

a. u =




1
0
3


, v =




2
0
1




b. u =




3
−1

0


, v =



−6

2
0




c. u =




7
−1

3


, v =




1
4
−1




d. u =




2
1
−1


, v =




3
6
3




e. u =




1
−1

0


, v =




0
1
1




f. u =




0
3
4


, v =




5
√

2
−7
−1




Exercise 4.2.3 Find all real numbers x such that:

a.




2
−1

3


 and




x

−2
1


 are orthogonal.

b.




2
−1

1


 and




1
x

2


 are at an angle of π

3 .

Exercise 4.2.4 Find all vectors v =




x

y

z


 orthogonal

to both:

a. u1 =



−1
−3

2


, u2 =




0
1
1




b. u1 =




3
−1

2


, u2 =




2
0
1




c. u1 =




2
0
−1


, u2 =



−4

0
2




d. u1 =




2
−1

3


, u2 =




0
0
0




Exercise 4.2.5 Find two orthogonal vectors that are both

orthogonal to v =




1
2
0


.

Exercise 4.2.6 Consider the triangle with vertices
P(2, 0, −3), Q(5, −2, 1), and R(7, 5, 3).

a. Show that it is a right-angled triangle.

b. Find the lengths of the three sides and verify the
Pythagorean theorem.
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Exercise 4.2.7 Show that the triangle with vertices
A(4, −7, 9), B(6, 4, 4), and C(7, 10, −6) is not a right-
angled triangle.

Exercise 4.2.8 Find the three internal angles of the tri-
angle with vertices:

a. A(3, 1, −2), B(3, 0, −1), and C(5, 2, −1)

b. A(3, 1, −2), B(5, 2, −1), and C(4, 3, −3)

Exercise 4.2.9 Show that the line through P0(3, 1, 4)
and P1(2, 1, 3) is perpendicular to the line through
P2(1, −1, 2) and P3(0, 5, 3).

Exercise 4.2.10 In each case, compute the projection of
u on v.

a. u =




5
7
1


, v =




2
−1

3




b. u =




3
−2

1


, v =




4
1
1




c. u =




1
−1

2


, v =




3
−1

1




d. u =




3
−2
−1


, v =



−6

4
2




Exercise 4.2.11 In each case, write u = u1 +u2, where
u1 is parallel to v and u2 is orthogonal to v.

a. u =




2
−1

1


, v =




1
−1

3




b. u =




3
1
0


, v =



−2

1
4




c. u =




2
−1

0


, v =




3
1
−1




d. u =




3
−2

1


, v =



−6

4
−1




Exercise 4.2.12 Calculate the distance from the point P

to the line in each case and find the point Q on the line
closest to P.

a. P(3, 2−1)

line:




x

y

z


=




2
1
3


+ t




3
−1
−2




b. P(1, −1, 3)

line:




x

y

z


=




1
0
−1


+ t




3
1
4




Exercise 4.2.13 Compute u×v where:

a. u =




1
2
3


, v =




1
1
2




b. u =




3
−1

0


, v =



−6

2
0




c. u =




3
−2

1


, v =




1
1
−1




d. u =




2
0
−1


, v =




1
4
7




Exercise 4.2.14 Find an equation of each of the follow-
ing planes.

a. Passing through A(2, 1, 3), B(3, −1, 5), and
C(1, 2, −3).

b. Passing through A(1, −1, 6), B(0, 0, 1), and
C(4, 7, −11).

c. Passing through P(2, −3, 5) and parallel to the
plane with equation 3x−2y− z = 0.

d. Passing through P(3, 0, −1) and parallel to the
plane with equation 2x− y+ z = 3.

e. Containing P(3, 0, −1) and the line


x

y

z


=




0
0
2


+ t




1
0
1


 .
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f. Containing P(2, 1, 0) and the line



x

y

z


=




3
−1

2


+ t




1
0
−1


 .

g. Containing the lines



x

y

z


=




1
−1

2


+ t




1
1
1


 and




x

y

z


=




0
0
2


+ t




1
−1

0


.

h. Containing the lines




x

y

z


=




3
1
0


+ t




1
−1

3




and




x

y

z


=




0
−2

5


+ t




2
1
−1


.

i. Each point of which is equidistant from
P(2, −1, 3) and Q(1, 1, −1).

j. Each point of which is equidistant from
P(0, 1, −1) and Q(2, −1, −3).

Exercise 4.2.15 In each case, find a vector equation of
the line.

a. Passing through P(3, −1, 4) and perpendicular to
the plane 3x−2y− z = 0.

b. Passing through P(2, −1, 3) and perpendicular to
the plane 2x+ y = 1.

c. Passing through P(0, 0, 0) and perpendicular

to the lines




x

y

z


 =




1
1
0


 + t




2
0
−1


 and




x

y

z


=




2
1
−3


+ t




1
−1

5


.

d. Passing through P(1, 1, −1), and perpendicular to
the lines


x

y

z


=




2
0
1


+ t




1
1
−2


 and




x

y

z


=




5
5
−2


+ t




1
2
−3


.

e. Passing through P(2, 1, −1), intersecting the line


x

y

z


 =




1
2
−1


+ t




3
0
1


, and perpendicular

to that line.

f. Passing through P(1, 1, 2), intersecting the line


x

y

z


 =




2
1
0


+ t




1
1
1


, and perpendicular to

that line.

Exercise 4.2.16 In each case, find the shortest distance
from the point P to the plane and find the point Q on the
plane closest to P.

a. P(2, 3, 0); plane with equation 5x+ y+ z = 1.

b. P(3, 1, −1); plane with equation 2x+ y− z = 6.

Exercise 4.2.17

a. Does the line through P(1, 2, −3) with direction

vector d =




1
2
−3


 lie in the plane 2x−y−z = 3?

Explain.

b. Does the plane through P(4, 0, 5), Q(2, 2, 1), and
R(1, −1, 2) pass through the origin? Explain.

Exercise 4.2.18 Show that every plane contain-
ing P(1, 2, −1) and Q(2, 0, 1) must also contain
R(−1, 6, −5).

Exercise 4.2.19 Find the equations of the line of inter-
section of the following planes.

a. 2x−3y+2z = 5 and x+2y− z = 4.

b. 3x+ y−2z = 1 and x+ y+ z = 5.

Exercise 4.2.20 In each case, find all points of intersec-
tion of the given plane and the line


x

y

z


=




1
−2

3


+ t




2
5
−1


.

x−3y+2z = 4a. 2x− y− z = 5b.

3x− y+ z = 8c. −x−4y−3z = 6d.
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Exercise 4.2.21 Find the equation of all planes:

a. Perpendicular to the line


x

y

z


=




2
−1

3


+ t




2
1
3


.

b. Perpendicular to the line


x

y

z


=




1
0
−1


+ t




3
0
2


.

c. Containing the origin.

d. Containing P(3, 2, −4).

e. Containing P(1, 1, −1) and Q(0, 1, 1).

f. Containing P(2, −1, 1) and Q(1, 0, 0).

g. Containing the line


x

y

z


=




2
1
0


+ t




1
−1

0


.

h. Containing the line


x

y

z


=




3
0
2


+ t




1
−2
−1


.

Exercise 4.2.22 If a plane contains two distinct points
P1 and P2, show that it contains every point on the line
through P1 and P2.

Exercise 4.2.23 Find the shortest distance between the
following pairs of parallel lines.

a.




x

y

z


=




2
−1

3


+ t




1
−1

4


 ;




x

y

z


=




1
0
1


+ t




1
−1

4




b.




x

y

z


=




3
0
2


+ t




3
1
0


 ;




x

y

z


=



−1

2
2


+ t




3
1
0




Exercise 4.2.24 Find the shortest distance between the
following pairs of nonparallel lines and find the points on
the lines that are closest together.

a.




x

y

z


=




3
0
1


+ s




2
1
−3


 ;




x

y

z


=




1
1
−1


+ t




1
0
1




b.




x

y

z


=




1
−1

0


+ s




1
1
1


 ;




x

y

z


=




2
−1

3


+ t




3
1
0




c.




x

y

z


=




3
1
−1


+ s




1
1
−1


 ;




x

y

z


=




1
2
0


+ t




1
0
2




d.




x

y

z


=




1
2
3


+ s




2
0
−1


 ;




x

y

z


=




3
−1

0


+ t




1
1
0




Exercise 4.2.25 Show that two lines in the plane with
slopes m1 and m2 are perpendicular if and only if
m1m2 =−1. [Hint: Example 4.1.11.]

Exercise 4.2.26

a. Show that, of the four diagonals of a cube, no pair
is perpendicular.

b. Show that each diagonal is perpendicular to the
face diagonals it does not meet.

Exercise 4.2.27 Given a rectangular solid with sides of
lengths 1, 1, and

√
2, find the angle between a diagonal

and one of the longest sides.

Exercise 4.2.28 Consider a rectangular solid with sides
of lengths a, b, and c. Show that it has two orthogonal
diagonals if and only if the sum of two of a2, b2, and c2

equals the third.

Exercise 4.2.29 Let A, B, and C(2, −1, 1) be the ver-

tices of a triangle where
−→
AB is parallel to




1
−1

1


,
−→
AC is
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parallel to




2
0
−1


, and angle C = 90◦ . Find the equa-

tion of the line through B and C.

Exercise 4.2.30 If the diagonals of a parallelogram have
equal length, show that the parallelogram is a rectangle.

Exercise 4.2.31 Given v =




x

y

z


 in component form,

show that the projections of v on i, j, and k are xi, yj, and
zk, respectively.

Exercise 4.2.32

a. Can u · v = −7 if ‖u‖ = 3 and ‖v‖ = 2? Defend
your answer.

b. Find u · v if u =




2
−1

2


, ‖v‖ = 6, and the angle

between u and v is 2π
3 .

Exercise 4.2.33 Show (u+ v) · (u− v) = ‖u‖2−‖v‖2

for any vectors u and v.

Exercise 4.2.34

a. Show ‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2) for
any vectors u and v.

b. What does this say about parallelograms?

Exercise 4.2.35 Show that if the diagonals of a paral-
lelogram are perpendicular, it is necessarily a rhombus.
[Hint: Example 4.2.5.]

Exercise 4.2.36 Let A and B be the end points of a di-
ameter of a circle (see the diagram). If C is any point on
the circle, show that AC and BC are perpendicular. [Hint:
Express

−→
AB · (−→AB×−→AC) = 0 and

−→
BC in terms of u =

−→
OA

and v =
−→
OC, where O is the centre.]

O
A B

C

Exercise 4.2.37 Show that u and v are orthogonal, if
and only if ‖u+v‖2 = ‖u‖2 +‖v‖2.

Exercise 4.2.38 Let u, v, and w be pairwise orthogonal
vectors.

a. Show that ‖u+v+w‖2 = ‖u‖2 +‖v‖2 +‖w‖2.

b. If u, v, and w are all the same length, show that
they all make the same angle with u+v+w.

Exercise 4.2.39

a. Show that n =

[
a

b

]
is orthogonal to every vector

along the line ax+by+ c = 0.

b. Show that the shortest distance from P0(x0, y0) to
the line is |ax0+by0+c|√

a2+b2 .

[Hint: If P1 is on the line, project u =
−→
P1P0 on n.]

Exercise 4.2.40 Assume u and v are nonzero vectors
that are not parallel. Show that w = ‖u‖v + ‖v‖u is a
nonzero vector that bisects the angle between u and v.

Exercise 4.2.41 Let α , β , and γ be the angles a vector
v 6= 0 makes with the positive x, y, and z axes, respec-
tively. Then cosα , cos β , and cosγ are called the direc-

tion cosines of the vector v.

a. If v =




a

b

c


, show that cos α = a

‖v‖ , cosβ = b
‖v‖ ,

and cos γ = c
‖v‖ .

b. Show that cos2 α + cos2 β + cos2 γ = 1.

Exercise 4.2.42 Let v 6= 0 be any nonzero vector and
suppose that a vector u can be written as u= p+q, where
p is parallel to v and q is orthogonal to v. Show that p

must equal the projection of u on v. [Hint: Argue as in
the proof of Theorem 4.2.4.]

Exercise 4.2.43 Let v 6= 0 be a nonzero vector and let
a 6= 0 be a scalar. If u is any vector, show that the projec-
tion of u on v equals the projection of u on av.

Exercise 4.2.44

a. Show that the Cauchy-Schwarz inequality |u ·
v| ≤ ‖u‖‖v‖ holds for all vectors u and v. [Hint:
|cos θ | ≤ 1 for all angles θ .]
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b. Show that |u · v| = ‖u‖‖v‖ if and only if u and v

are parallel.

[Hint: When is cosθ =±1?]

c. Show that |x1x2 + y1y2 + z1z2|
≤
√

x2
1 + y2

1 + z2
1

√
x2

2 + y2
2 + z2

2

holds for all numbers x1, x2, y1, y2, z1, and z2.

d. Show that |xy+ yz+ zx| ≤ x2 + y2 + z2 for all x, y,
and z.

e. Show that (x+ y+ z)2 ≤ 3(x2 + y2 + z2) holds for
all x, y, and z.

Exercise 4.2.45 Prove that the triangle inequality

‖u+v‖ ≤ ‖u‖+‖v‖ holds for all vectors u and v. [Hint:
Consider the triangle with u and v as two sides.]

4.3 More on the Cross Product

The cross product v×w of two R3-vectors v =




x1

y1

z1


 and w =




x2

y2

z2


 was defined in Section 4.2 where

we observed that it can be best remembered using a determinant:

v×w = det




i x1 x2

j y1 y2

k z1 z2


=

∣∣∣∣
y1 y2

z1 z2

∣∣∣∣ i−
∣∣∣∣

x1 x2

z1 z2

∣∣∣∣ j+
∣∣∣∣

x1 x2

y1 y2

∣∣∣∣k (4.3)

Here i =




1
0
0


, j =




0
1
0


, and k =




1
0
0


 are the coordinate vectors, and the determinant is expanded

along the first column. We observed (but did not prove) in Theorem 4.2.5 that v×w is orthogonal to both
v and w. This follows easily from the next result.

Theorem 4.3.1

If u =




x0

y0

z0


, v =




x1

y1

z1


, and w =




x2

y2

z2


, then u · (v×w) = det




x0 x1 x2

y0 y1 y2

z0 z1 z2


.

Proof. Recall that u · (v×w) is computed by multiplying corresponding components of u and v×w and
then adding. Using equation (4.3), the result is:

u · (v×w) = x0

(∣∣∣∣
y1 y2

z1 z2

∣∣∣∣
)
+ y0

(
−
∣∣∣∣

x1 x2

z1 z2

∣∣∣∣
)
+ z0

(∣∣∣∣
x1 x2

y1 y2

∣∣∣∣
)
= det




x0 x1 x2

y0 y1 y2

z0 z1 z2




where the last determinant is expanded along column 1.

The result in Theorem 4.3.1 can be succinctly stated as follows: If u, v, and w are three vectors in R3,
then

u · (v×w) = det
[

u v w
]
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where
[

u v w
]

denotes the matrix with u, v, and w as its columns. Now it is clear that v×w is
orthogonal to both v and w because the determinant of a matrix is zero if two columns are identical.

Because of (4.3) and Theorem 4.3.1, several of the following properties of the cross product follow
from properties of determinants (they can also be verified directly).

Theorem 4.3.2

Let u, v, and w denote arbitrary vectors in R3.

1. u×v is a vector.

2. u×v is orthogonal to both u and v.

3. u×0 = 0 = 0×u.

4. u×u = 0.

5. u×v =−(v×u).

6. (ku)×v = k(u×v) = u× (kv) for any
scalar k.

7. u× (v+w) = (u×v)+(u×w).

8. (v+w)×u = (v×u)+(w×u).

Proof. (1) is clear; (2) follows from Theorem 4.3.1; and (3) and (4) follow because the determinant of a
matrix is zero if one column is zero or if two columns are identical. If two columns are interchanged, the
determinant changes sign, and this proves (5). The proofs of (6), (7), and (8) are left as Exercise 4.3.15.

We now come to a fundamental relationship between the dot and cross products.

Theorem 4.3.3: Lagrange Identity12

If u and v are any two vectors in R3, then

‖u×v‖2 = ‖u‖2‖v‖2− (u ·v)2

Proof. Given u and v, introduce a coordinate system and write u =




x1

y1

z1


 and v =




x2

y2

z2


 in component

form. Then all the terms in the identity can be computed in terms of the components. The detailed proof
is left as Exercise 4.3.14.

An expression for the magnitude of the vector u×v can be easily obtained from the Lagrange identity.
If θ is the angle between u and v, substituting u ·v = ‖u‖‖v‖cosθ into the Lagrange identity gives

‖u×v‖2 = ‖u‖2‖v‖2−‖u‖2‖v‖2 cos2 θ = ‖u‖2‖v‖2 sin2 θ

12Joseph Louis Lagrange (1736–1813) was born in Italy and spent his early years in Turin. At the age of 19 he solved a
famous problem by inventing an entirely new method, known today as the calculus of variations, and went on to become one
of the greatest mathematicians of all time. His work brought a new level of rigour to analysis and his Mécanique Analytique

is a masterpiece in which he introduced methods still in use. In 1766 he was appointed to the Berlin Academy by Frederik the
Great who asserted that the “greatest mathematician in Europe” should be at the court of the “greatest king in Europe.” After
the death of Frederick, Lagrange went to Paris at the invitation of Louis XVI. He remained there throughout the revolution and
was made a count by Napoleon.
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using the fact that 1− cos2 θ = sin2 θ . But sinθ is nonnegative on the range 0 ≤ θ ≤ π , so taking the
positive square root of both sides gives

‖u×v‖= ‖u‖‖v‖sinθ

u

v

‖u‖sinθ

θ

Figure 4.3.1

This expression for ‖u×v‖ makes no reference to a coordinate
system and, moreover, it has a nice geometrical interpretation. The
parallelogram determined by the vectors u and v has base length
‖v‖ and altitude ‖u‖sinθ (see Figure 4.3.1). Hence the area of the
parallelogram formed by u and v is

(‖u‖sinθ)‖v‖= ‖u×v‖

This proves the first part of Theorem 4.3.4.

Theorem 4.3.4

If u and v are two nonzero vectors and θ is the angle between u and v, then

1. ‖u×v‖= ‖u‖‖v‖sinθ = the area of the parallelogram determined by u and v.

2. u and v are parallel if and only if u×v = 0.

Proof of (2). By (1), u×v = 0 if and only if the area of the parallelogram is zero. By Figure 4.3.1 the area
vanishes if and only if u and v have the same or opposite direction—that is, if and only if they are parallel.

Example 4.3.1

P

Q

R

Find the area of the triangle with vertices P(2, 1, 0), Q(3, −1, 1),
and R(1, 0, 1).

Solution. We have
−→
RP =




1
1
−1


 and

−→
RQ =




2
−1

0


. The area of

the triangle is half the area of the parallelogram (see the diagram),
and so equals 1

2‖
−→
RP×−→RQ‖. We have

−→
RP×−→RQ = det




i 1 2
j 1 −1
k −1 0


=



−1
−2
−3




so the area of the triangle is 1
2‖
−→
RP×−→RQ‖= 1

2

√
1+4+9 = 1

2

√
14.
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v

u×v

h
w

u

Figure 4.3.2

If three vectors u, v, and w are given, they determine a “squashed”
rectangular solid called a parallelepiped (Figure 4.3.2), and it is often
useful to be able to find the volume of such a solid. The base of the solid
is the parallelogram determined by u and v, so it has area A = ‖u×v‖ by
Theorem 4.3.4. The height of the solid is the length h of the projection of
w on u×v. Hence

h =
∣∣∣w·(u×v)
‖u×v‖2

∣∣∣‖u×v‖= |w·(u×v)|
‖u×v‖ = |w·(u×v)|

A

Thus the volume of the parallelepiped is hA = |w · (u×v)|. This proves

Theorem 4.3.5

The volume of the parallelepiped determined by three vectors w, u, and v (Figure 4.3.2) is given
by |w · (u×v)|.

Example 4.3.2

Find the volume of the parallelepiped determined by the vectors

w =




1
2
−1


 , u =




1
1
0


 , v =



−2

0
1




Solution. By Theorem 4.3.1, w · (u×v) = det




1 1 −2
2 1 0
−1 0 1


=−3. Hence the volume is

|w · (u×v)|= |−3|= 3 by Theorem 4.3.5.

y

z

x

O

Left-hand system

y

z

x

O

Right-hand system

Figure 4.3.3

We can now give an intrinsic description of the cross product u× v.
Its magnitude ‖u×v‖= ‖u‖‖v‖sinθ is coordinate-free. If u×v 6= 0, its
direction is very nearly determined by the fact that it is orthogonal to both
u and v and so points along the line normal to the plane determined by u

and v. It remains only to decide which of the two possible directions is
correct.

Before this can be done, the basic issue of how coordinates are as-
signed must be clarified. When coordinate axes are chosen in space, the
procedure is as follows: An origin is selected, two perpendicular lines (the
x and y axes) are chosen through the origin, and a positive direction on
each of these axes is selected quite arbitrarily. Then the line through the
origin normal to this x-y plane is called the z axis, but there is a choice of
which direction on this axis is the positive one. The two possibilities are
shown in Figure 4.3.3, and it is a standard convention that cartesian coor-
dinates are always right-hand coordinate systems. The reason for this
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terminology is that, in such a system, if the z axis is grasped in the right hand with the thumb pointing in
the positive z direction, then the fingers curl around from the positive x axis to the positive y axis (through
a right angle).

Suppose now that u and v are given and that θ is the angle between them (so 0 ≤ θ ≤ π). Then the
direction of ‖u×v‖ is given by the right-hand rule.

Right-hand Rule

If the vector u×v is grasped in the right hand and the fingers curl around from u to v through the
angle θ , the thumb points in the direction for u×v.

vθ
c

O

a
b

u

x

y

z

Figure 4.3.4

To indicate why this is true, introduce coordinates in R3 as follows: Let
u and v have a common tail O, choose the origin at O, choose the x axis
so that u points in the positive x direction, and then choose the y axis
so that v is in the x-y plane and the positive y axis is on the same side
of the x axis as v. Then, in this system, u and v have component form

u=




a

0
0


 and v=




b

c

0


where a> 0 and c> 0. The situation is depicted

in Figure 4.3.4. The right-hand rule asserts that u×v should point in the
positive z direction. But our definition of u×v gives

u×v = det




i a b

j 0 c

k 0 0


=




0
0
ac


= (ac)k

and (ac)k has the positive z direction because ac > 0.

Exercises for 4.3

Exercise 4.3.1 If i, j, and k are the coordinate vectors,
verify that i× j = k, j×k = i, and k× i = j.

Exercise 4.3.2 Show that u× (v×w) need not equal
(u×v)×w by calculating both when

u =




1
1
1


 , v =




1
1
0


 , and w =




0
0
1




Exercise 4.3.3 Find two unit vectors orthogonal to both
u and v if:

a. u =




1
2
2


, v =




2
−1

2




b. u =




1
2
−1


, v =




3
1
2




Exercise 4.3.4 Find the area of the triangle with the fol-
lowing vertices.

a. A(3, −1, 2), B(1, 1, 0), and C(1, 2, −1)

b. A(3, 0, 1), B(5, 1, 0), and C(7, 2, −1)

c. A(1, 1, −1), B(2, 0, 1), and C(1, −1, 3)

d. A(3, −1, 1), B(4, 1, 0), and C(2, −3, 0)
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Exercise 4.3.5 Find the volume of the parallelepiped
determined by w, u, and v when:

a. w =




2
1
1


, v =




1
0
2


, and u =




2
1
−1




b. w =




1
0
3


, v =




2
1
−3


, and u =




1
1
1




Exercise 4.3.6 Let P0 be a point with vector p0, and let
ax+ by+ cz = d be the equation of a plane with normal

n =




a

b

c


.

a. Show that the point on the plane closest to P0 has
vector p given by

p = p0 +
d−(p0·n)
‖n‖2 n.

[Hint: p = p0 + tn for some t, and p ·n = d.]

b. Show that the shortest distance from P0 to the
plane is |d−(p0·n)|

‖n‖ .

c. Let P′0 denote the reflection of P0 in the plane—
that is, the point on the opposite side of the plane
such that the line through P0 and P′0 is perpendicu-
lar to the plane.

Show that p0 +2d−(p0·n)
‖n‖2 n is the vector of P′0.

Exercise 4.3.7 Simplify (au+bv)× (cu+dv).

Exercise 4.3.8 Show that the shortest distance from a
point P to the line through P0 with direction vector d is
‖−→P0P×d‖
‖d‖ .

Exercise 4.3.9 Let u and v be nonzero, nonorthogo-
nal vectors. If θ is the angle between them, show that
tanθ = ‖u×v‖

u·v .

Exercise 4.3.10 Show that points A, B, and C are all on
one line if and only if

−→
AB×−→AC = 0

Exercise 4.3.11 Show that points A, B, C, and D are all
on one plane if and only if

−→
AB · (−→AB×−→AC) = 0

Exercise 4.3.12 Use Theorem 4.3.5 to confirm that, if
u, v, and w are mutually perpendicular, the (rectangular)
parallelepiped they determine has volume ‖u‖‖v‖‖w‖.
Exercise 4.3.13 Show that the volume of the paral-
lelepiped determined by u, v, and u×v is ‖u×v‖2.

Exercise 4.3.14 Complete the proof of Theorem 4.3.3.

Exercise 4.3.15 Prove the following properties in The-
orem 4.3.2.

Property 6a. Property 7b.

Property 8c.

Exercise 4.3.16

a. Show that w · (u× v) = u · (v×w) = v× (w×u)
holds for all vectors w, u, and v.

b. Show that v−w and (u× v)+ (v×w)+ (w×u)
are orthogonal.

Exercise 4.3.17 Show u×(v×w)= (u ·w)v−(u×v)w.
[Hint: First do it for u = i, j, and k; then write u =
xi+ yj+ zk and use Theorem 4.3.2.]

Exercise 4.3.18 Prove the Jacobi identity:

u× (v×w)+v× (w×u)+w× (u×v) = 0

[Hint: The preceding exercise.]

Exercise 4.3.19 Show that

(u×v) · (w× z) = det

[
u ·w u · z
v ·w v · z

]

[Hint: Exercises 4.3.16 and 4.3.17.]

Exercise 4.3.20 Let P, Q, R, and S be four points, not
all on one plane, as in the diagram. Show that the volume
of the pyramid they determine is

1
6 |
−→
PQ · (−→PR×−→PS)|.

[Hint: The volume of a cone with base area A and height
h as in the diagram below right is 1

3 Ah.]

P

Q

R

S

h
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Exercise 4.3.21 Consider a triangle with vertices A, B,
and C, as in the diagram below. Let α , β , and γ denote
the angles at A, B, and C, respectively, and let a, b, and
c denote the lengths of the sides opposite A, B, and C,
respectively. Write u =

−→
AB, v =

−→
BC, and w =

−→
CA.

c a

bα

β

γ
A

B

C

a. Deduce that u+v+w = 0.

b. Show that u×v= w×u= v×w. [Hint: Compute
u× (u+v+w) and v× (u+v+w).]

c. Deduce the law of sines:

sinα
a

= sinβ
b

= sinγ
c

Exercise 4.3.22 Show that the (shortest) distance be-
tween two planes n ·p = d1 and n ·p = d2 with n as nor-
mal is |d2−d1|

‖n‖ .

Exercise 4.3.23 Let A and B be points other than the
origin, and let a and b be their vectors. If a and b are not
parallel, show that the plane through A, B, and the origin
is given by

{P(x, y, z) |




x

y

z


= sa+ tb for some s and t}

Exercise 4.3.24 Let A be a 2× 3 matrix of rank 2 with
rows r1 and r2. Show that

P = {XA | X = [xy];x, y arbitrary}

is the plane through the origin with normal r1× r2.

Exercise 4.3.25 Given the cube with vertices P(x, y, z),
where each of x, y, and z is either 0 or 2, consider the
plane perpendicular to the diagonal through P(0, 0, 0)
and P(2, 2, 2) and bisecting it.

a. Show that the plane meets six of the edges of the
cube and bisects them.

b. Show that the six points in (a) are the vertices of a
regular hexagon.

4.4 Linear Operators on R3

Recall that a transformation T : Rn→ Rm is called linear if T (x+y) = T (x)+T (y) and T (ax) = aT (x)
holds for all x and y in Rn and all scalars a. In this case we showed (in Theorem 2.6.2) that there exists
an m×n matrix A such that T (x) = Ax for all x in Rn, and we say that T is the matrix transformation

induced by A.

Definition 4.9 Linear Operator on Rn

A linear transformation
T : Rn→ Rn

is called a linear operator on Rn.

In Section 2.6 we investigated three important linear operators on R2: rotations about the origin, reflections
in a line through the origin, and projections on this line.

In this section we investigate the analogous operators on R3: Rotations about a line through the origin,
reflections in a plane through the origin, and projections onto a plane or line through the origin in R3. In
every case we show that the operator is linear, and we find the matrices of all the reflections and projections.
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To do this we must prove that these reflections, projections, and rotations are actually linear operators
on R3. In the case of reflections and rotations, it is convenient to examine a more general situation. A
transformation T : R3→ R3 is said to be distance preserving if the distance between T (v) and T (w) is
the same as the distance between v and w for all v and w in R3; that is,

‖T (v)−T (w)‖= ‖v−w‖ for all v and w in R3 (4.4)

Clearly reflections and rotations are distance preserving, and both carry 0 to 0, so the following theorem
shows that they are both linear.

Theorem 4.4.1

If T : R3→ R3 is distance preserving, and if T (0) = 0, then T is linear.

w

v+wv

T (w)

T (v+w)

T (v)

x

y

z

Figure 4.4.1

Proof. Since T (0) = 0, taking w = 0 in (4.4) shows that ‖T (v)‖= ‖v‖ for
all v in R3, that is T preserves length. Also, ‖T (v)−T (w)‖2 = ‖v−w‖2

by (4.4). Since ‖v−w‖2 = ‖v‖2−2v ·w+‖w‖2 always holds, it follows
that T (v) · T (w) = v ·w for all v and w. Hence (by Theorem 4.2.2) the
angle between T (v) and T (w) is the same as the angle between v and w

for all (nonzero) vectors v and w in R3.

With this we can show that T is linear. Given nonzero vectors v and w

in R3, the vector v+w is the diagonal of the parallelogram determined by
v and w. By the preceding paragraph, the effect of T is to carry this entire

parallelogram to the parallelogram determined by T (v) and T (w), with
diagonal T (v+w). But this diagonal is T (v)+T (w) by the parallelogram
law (see Figure 4.4.1).

In other words, T (v+w) = T (v)+T (w). A similar argument shows that T (av) = aT (v) for all scalars
a, proving that T is indeed linear.

Distance-preserving linear operators are called isometries, and we return to them in Section 10.4.

Reflections and Projections

In Section 2.6 we studied the reflection Qm : R2→ R2 in the line y = mx and projection Pm : R2→ R2 on
the same line. We found (in Theorems 2.6.5 and 2.6.6) that they are both linear and

Qm has matrix 1
1+m2

[
1−m2 2m

2m m2−1

]
and Pm has matrix 1

1+m2

[
1 m

m m2

]
.

L

PL(v)

0

v

QL(v)

Figure 4.4.2

We now look at the analogues in R3.

Let L denote a line through the origin in R3. Given a vector v in R3,
the reflection QL(v) of v in L and the projection PL(v) of v on L are defined
in Figure 4.4.2. In the same figure, we see that

PL(v) = v+ 1
2 [QL(v)−v] = 1

2 [QL(v)+v] (4.5)
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so the fact that QL is linear (by Theorem 4.4.1) shows that PL is also linear.13

However, Theorem 4.2.4 gives us the matrix of PL directly. In fact, if d =




a

b

c


 6= 0 is a direction

vector for L, and we write v =




x

y

z


, then

PL(v) =
v·d
‖d‖2 d = ax+by+cz

a2+b2+c2




a

b

c


= 1

a2+b2+c2




a2 ab ac

ab b2 bc

ac bc c2






x

y

z




as the reader can verify. Note that this shows directly that PL is a matrix transformation and so gives
another proof that it is linear.

Theorem 4.4.2

Let L denote the line through the origin in R3 with direction vector d =




a

b

c


 6= 0. Then PL and

QL are both linear and

PL has matrix 1
a2+b2+c2




a2 ab ac

ab b2 bc

ac bc c2




QL has matrix 1
a2+b2+c2




a2−b2− c2 2ab 2ac

2ab b2−a2− c2 2bc

2ac 2bc c2−a2−b2




Proof. It remains to find the matrix of QL. But (4.5) implies that QL(v) = 2PL(v)−v for each v in R3, so

if v =




x

y

z


 we obtain (with some matrix arithmetic):

QL(v) =





2
a2+b2+c2




a2 ab ac

ab b2 bc

ac bc c2


−




1 0 0
0 1 0
0 0 1










x

y

z




= 1
a2+b2+c2




a2−b2− c2 2ab 2ac

2ab b2−a2− c2 2bc

2ac 2bc c2−a2−b2






x

y

z




as required.

13Note that Theorem 4.4.1 does not apply to PL since it does not preserve distance.
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M

v

O PM(v)

QM(v)

Figure 4.4.3

In R3 we can reflect in planes as well as lines. Let M denote a plane
through the origin in R3. Given a vector v in R3, the reflection QM(v) of
v in M and the projection PM(v) of v on M are defined in Figure 4.4.3. As
above, we have

PM(v) = v+ 1
2 [QM(v)−v] = 1

2 [QM(v)+v]

so the fact that QM is linear (again by Theorem 4.4.1) shows that PM is
also linear.

Again we can obtain the matrix directly. If n is a normal for the plane M, then Figure 4.4.3 shows that

PM(v) = v− projn v = v− v·n
‖n‖2 n for all vectors v.

If n =




a

b

c


 6= 0 and v =




x

y

z


, a computation like the above gives

PM(v) =




1 0 0
0 1 0
0 0 1






x

y

z


− ax+by+cz

a2+b2+c2




a

b

c




= 1
a2+b2+c2




b2 + c2 −ab −ac

−ab a2 + c2 −bc

−ac −bc b2 + c2






x

y

z




This proves the first part of

Theorem 4.4.3

Let M denote the plane through the origin in R3 with normal n =




a

b

c


 6= 0. Then PM and QM are

both linear and

PM has matrix 1
a2+b2+c2




b2 + c2 −ab −ac

−ab a2 + c2 −bc

−ac −bc a2 +b2




QM has matrix 1
a2+b2+c2




b2 + c2−a2 −2ab −2ac

−2ab a2 + c2−b2 −2bc

−2ac −2bc a2 +b2− c2




Proof. It remains to compute the matrix of QM . Since QM(v) = 2PM(v)−v for each v in R3, the compu-
tation is similar to the above and is left as an exercise for the reader.
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Rotations

In Section 2.6 we studied the rotation Rθ : R2→ R2 counterclockwise about the origin through the angle

θ . Moreover, we showed in Theorem 2.6.4 that Rθ is linear and has matrix

[
cosθ −sinθ
sinθ cosθ

]
. One

extension of this is given in the following example.

Example 4.4.1

Let Rz, θ : R3→ R3 denote rotation of R3 about the z axis through an angle θ from the positive x

axis toward the positive y axis. Show that Rz, θ is linear and find its matrix.

θ

θ
i

j

k

Rz(i)

Rz(j)

x

y

z

Figure 4.4.4

Solution. First R is distance preserving and so is linear by
Theorem 4.4.1. Hence we apply Theorem 2.6.2 to obtain the
matrix of Rz, θ .

Let i =




1
0
0


, j =




0
1
0


, and k =




0
0
1


 denote the standard

basis of R3; we must find Rz, θ (i), Rz, θ (j), and Rz, θ (k). Clearly
Rz, θ (k) = k. The effect of Rz, θ on the x-y plane is to rotate
it counterclockwise through the angle θ . Hence Figure 4.4.4 gives

Rz, θ (i) =




cosθ
sinθ

0


 , Rz, θ (j) =



−sinθ
cosθ

0




so, by Theorem 2.6.2, Rz, θ has matrix

[
Rz, θ (i) Rz, θ (j) Rz, θ (k)

]
=




cosθ −sinθ 0
sinθ cosθ 0

0 0 1




Example 4.4.1 begs to be generalized. Given a line L through the origin in R3, every rotation about L

through a fixed angle is clearly distance preserving, and so is a linear operator by Theorem 4.4.1. However,
giving a precise description of the matrix of this rotation is not easy and will have to wait until more
techniques are available.
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Transformations of Areas and Volumes

Origin

sv

v

Figure 4.4.5

Let v be a nonzero vector in R3. Each vector in the same direction as v

whose length is a fraction s of the length of v has the form sv (see Fig-
ure 4.4.5).

With this, scrutiny of Figure 4.4.6 shows that a vector u is in the paral-
lelogram determined by v and w if and only if it has the form u = sv+ tw

where 0≤ s≤ 1 and 0≤ t ≤ 1. But then, if T : R3→ R3 is a linear trans-
formation, we have

T (sv+ tw) = T (sv)+T (tw) = sT (v)+ tT (w)

O

sv
v

sv
+ tw

tw w

Figure 4.4.6

Hence T (sv+ tw) is in the parallelogram determined by T (v) and T (w).
Conversely, every vector in this parallelogram has the form T (sv+ tw)
where sv+ tw is in the parallelogram determined by v and w. For this rea-
son, the parallelogram determined by T (v) and T (w) is called the image

of the parallelogram determined by v and w. We record this discussion as:

v

w

u

O

T (v)

T (w)

T (u)

O

Figure 4.4.7

Theorem 4.4.4

If T : R3→ R3 (or R2→ R2) is a linear operator, the image of the
parallelogram determined by vectors v and w is the parallelogram
determined by T (v) and T (w).

This result is illustrated in Figure 4.4.7, and was used in Examples 2.2.15
and 2.2.16 to reveal the effect of expansion and shear transformations.

We now describe the effect of a linear transformation T : R3→ R3 on
the parallelepiped determined by three vectors u, v, and w in R3 (see the
discussion preceding Theorem 4.3.5). If T has matrix A, Theorem 4.4.4
shows that this parallelepiped is carried to the parallelepiped determined
by T (u) = Au, T (v) = Av, and T (w) = Aw. In particular, we want to
discover how the volume changes, and it turns out to be closely related to
the determinant of the matrix A.

Theorem 4.4.5

Let vol (u, v, w) denote the volume of the parallelepiped determined by three vectors u, v, and w

in R3, and let area (p, q) denote the area of the parallelogram determined by two vectors p and q

in R2. Then:

1. If A is a 3×3 matrix, then vol (Au, Av, Aw) = | det (A)| · vol (u, v, w).

2. If A is a 2×2 matrix, then area (Ap, Aq) = | det (A)| · area (p, q).
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Proof.

1. Let
[

u v w
]

denote the 3×3 matrix with columns u, v, and w. Then

vol (Au, Av, Aw) = |Au · (Av×Aw)|

by Theorem 4.3.5. Now apply Theorem 4.3.1 twice to get

Au · (Av×Aw) = det
[

Au Av Aw
]
= det (A

[
u v w

]
)

= det (A) det
[

u v w
]

= det (A)(u · (v×w))

where we used Definition 2.9 and the product theorem for determinants. Finally (1) follows from
Theorem 4.3.5 by taking absolute values.

k

p1

q1 2. Given p =

[
x

y

]
in R2, p1 =




x

y

0


 in R3. By the diagram,

area (p, q) = vol (p1, q1, k) where k is the (length 1) coordinate

vector along the z axis. If A is a 2×2 matrix, write A1 =

[
A 0
0 1

]

in block form, and observe that (Av)1 = (A1v1) for all v in R2 and
A1k = k. Hence part (1) of this theorem shows

area (Ap, Aq) = vol (A1p1, A1q1, A1k)

= | det (A1)| vol (p1, q1, k)

= | det (A)| area (p, q)

as required.

Define the unit square and unit cube to be the square and cube corresponding to the coordinate
vectors in R2 and R3, respectively. Then Theorem 4.4.5 gives a geometrical meaning to the determinant
of a matrix A:

• If A is a 2×2 matrix, then | det (A)| is the area of the image of the unit square under multiplication
by A;

• If A is a 3×3 matrix, then | det (A)| is the volume of the image of the unit cube under multiplication
by A.

These results, together with the importance of areas and volumes in geometry, were among the reasons for
the initial development of determinants.
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Exercises for 4.4

Exercise 4.4.1 In each case show that that T is ei-
ther projection on a line, reflection in a line, or rotation
through an angle, and find the line or angle.

a. T

[
x

y

]
= 1

5

[
x+2y

2x+4y

]

b. T

[
x

y

]
= 1

2

[
x− y

y− x

]

c. T

[
x

y

]
= 1√

2

[
−x− y

x− y

]

d. T

[
x

y

]
= 1

5

[
−3x+4y

4x+3y

]

e. T

[
x

y

]
=

[
−y

−x

]

f. T

[
x

y

]
= 1

2

[
x−
√

3y√
3x+ y

]

Exercise 4.4.2 Determine the effect of the following
transformations.

a. Rotation through π
2 , followed by projection on the

y axis, followed by reflection in the line y = x.

b. Projection on the line y= x followed by projection
on the line y =−x.

c. Projection on the x axis followed by reflection in
the line y = x.

Exercise 4.4.3 In each case solve the problem by find-
ing the matrix of the operator.

a. Find the projection of v =




1
−2

3


 on the plane

with equation 3x−5y+2z = 0.

b. Find the projection of v =




0
1
−3


 on the plane

with equation 2x− y+4z = 0.

c. Find the reflection of v =




1
−2

3


 in the plane

with equation x− y+3z = 0.

d. Find the reflection of v =




0
1
−3


 in the plane

with equation 2x+ y−5z = 0.

e. Find the reflection of v =




2
5
−1


 in the line with

equation




x

y

z


= t




1
1
−2


.

f. Find the projection of v =




1
−1

7


 on the line

with equation




x

y

z


= t




3
0
4


.

g. Find the projection of v =




1
1
−3


 on the line

with equation




x

y

z


= t




2
0
−3


.

h. Find the reflection of v =




2
−5

0


 in the line with

equation




x

y

z


= t




1
1
−3


.

Exercise 4.4.4

a. Find the rotation of v =




2
3
−1


 about the z axis

through θ = π
4 .
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b. Find the rotation of v =




1
0
3


 about the z axis

through θ = π
6 .

Exercise 4.4.5 Find the matrix of the rotation in R3

about the x axis through the angle θ (from the positive
y axis to the positive z axis).

Exercise 4.4.6 Find the matrix of the rotation about the
y axis through the angle θ (from the positive x axis to the
positive z axis).

Exercise 4.4.7 If A is 3× 3, show that the image of
the line in R3 through p0 with direction vector d is the
line through Ap0 with direction vector Ad, assuming that
Ad 6= 0. What happens if Ad = 0?

Exercise 4.4.8 If A is 3×3 and invertible, show that the
image of the plane through the origin with normal n is
the plane through the origin with normal n1 = Bn where
B = (A−1)T . [Hint: Use the fact that v ·w = vT w to show
that n1 · (Ap) = n ·p for each p in R3.]

Exercise 4.4.9 Let L be the line through the origin in R2

with direction vector d =

[
a

b

]
6= 0.

a. If PL denotes projection on L, show that PL has

matrix 1
a2+b2

[
a2 ab

ab b2

]
.

b. If QL denotes reflection in L, show that QL has ma-

trix 1
a2+b2

[
a2−b2 2ab

2ab b2−a2

]
.

Exercise 4.4.10 Let n be a nonzero vector in R3, let L be
the line through the origin with direction vector n, and let
M be the plane through the origin with normal n. Show
that PL(v) = QL(v)+PM(v) for all v in R3. [In this case,
we say that PL = QL +PM.]

Exercise 4.4.11 If M is the plane through the origin in

R3 with normal n =




a

b

c


, show that QM has matrix

1
a2+b2+c2




b2 + c2− a2 −2ab −2ac

−2ab a2 + c2− b2 −2bc

−2ac −2bc a2 + b2− c2




4.5 An Application to Computer Graphics

Computer graphics deals with images displayed on a computer screen, and so arises in a variety of appli-
cations, ranging from word processors, to Star Wars animations, to video games, to wire-frame images of
an airplane. These images consist of a number of points on the screen, together with instructions on how
to fill in areas bounded by lines and curves. Often curves are approximated by a set of short straight-line
segments, so that the curve is specified by a series of points on the screen at the end of these segments.
Matrix transformations are important here because matrix images of straight line segments are again line
segments.14 Note that a colour image requires that three images are sent, one to each of the red, green,
and blue phosphorus dots on the screen, in varying intensities.

Consider displaying the letter A. In reality, it is depicted on the screen, as in Figure 4.5.1, by specifying
the coordinates of the 11 corners and filling in the interior.

For simplicity, we will disregard the thickness of the letter, so we require only five coordinates as in
Figure 4.5.2.

14If v0 and v1 are vectors, the vector from v0 to v1 is d = v1− v0. So a vector v lies on the line segment between v0 and
v1 if and only if v = v0 + td for some number t in the range 0 ≤ t ≤ 1. Thus the image of this segment is the set of vectors
Av = Av0 + tAd with 0≤ t ≤ 1, that is the image is the segment between Av0 and Av1.
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Figure 4.5.1

Origin
1

4

5

3

2

Figure 4.5.2

Figure 4.5.3

Figure 4.5.4

Figure 4.5.5

This simplified letter can then be stored as a data matrix

Vertex 1 2 3 4 5

D =

[
0 6 5 1 3
0 0 3 3 9

]

where the columns are the coordinates of the vertices in order. Then if we want
to transform the letter by a 2×2 matrix A, we left-multiply this data matrix by
A (the effect is to multiply each column by A and so transform each vertex).

For example, we can slant the letter to the right by multiplying by an x-shear

matrix A=

[
1 0.2
0 1

]
—see Section 2.2. The result is the letter with data matrix

A =

[
1 0.2
0 1

][
0 6 5 1 3
0 0 3 3 9

]
=

[
0 6 5.6 1.6 4.8
0 0 3 3 9

]

which is shown in Figure 4.5.3.

If we want to make this slanted matrix narrower, we can now apply an x-

scale matrix B =

[
0.8 0
0 1

]
that shrinks the x-coordinate by 0.8. The result is

the composite transformation

BAD =

[
0.8 0
0 1

][
1 0.2
0 1

][
0 6 5 1 3
0 0 3 3 9

]

=

[
0 4.8 4.48 1.28 3.84
0 0 3 3 9

]

which is drawn in Figure 4.5.4.

On the other hand, we can rotate the letter about the origin through π
6 (or 30◦)

by multiplying by the matrix Rπ
2
=


 cos(π

6 ) −sin(π
6 )

sin(π
6 ) cos(π

6 )


=

[
0.866 −0.5
0.5 0.866

]
.

This gives

Rπ
2
=

[
0.866 −0.5
0.5 0.866

][
0 6 5 1 3
0 0 3 3 9

]

=

[
0 5.196 2.83 −0.634 −1.902
0 3 5.098 3.098 9.294

]

and is plotted in Figure 4.5.5.

This poses a problem: How do we rotate at a point other than the origin? It
turns out that we can do this when we have solved another more basic problem.
It is clearly important to be able to translate a screen image by a fixed vector
w, that is apply the transformation Tw : R2→R2 given by Tw(v) = v+w for all
v in R2. The problem is that these translations are not matrix transformations
R2→ R2 because they do not carry 0 to 0 (unless w = 0). However, there is a
clever way around this.
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The idea is to represent a point v =

[
x

y

]
as a 3×1 column




x

y

1


, called the homogeneous coordi-

nates of v. Then translation by w =

[
p

q

]
can be achieved by multiplying by a 3×3 matrix:




1 0 p

0 1 q

0 0 1






x

y

1


=




x+ p

y+q

1


=

[
Tw(v)

1

]

Thus, by using homogeneous coordinates we can implement the translation Tw in the top two coordinates.

On the other hand, the matrix transformation induced by A =

[
a b

c d

]
is also given by a 3×3 matrix:




a b 0
c d 0
0 0 1






x

y

1


=




ax+by

cx+dy

1


=

[
Av

1

]

So everything can be accomplished at the expense of using 3×3 matrices and homogeneous coordinates.

Example 4.5.1

Rotate the letter A in Figure 4.5.2 through π
6 about the point

[
4
5

]
.

Solution. Using homogeneous coordinates for the vertices of the letter results in a data matrix with
three rows:

Kd =




0 6 5 1 3
0 0 3 3 9
1 1 1 1 1




Origin

Figure 4.5.6

If we write w =

[
4
5

]
, the idea is to use a composite of

transformations: First translate the letter by −w so that the point
w moves to the origin, then rotate this translated letter, and then
translate it by w back to its original position. The matrix arithmetic
is as follows (remember the order of composition!):




1 0 4
0 1 5
0 0 1






0.866 −0.5 0
0.5 0.866 0
0 0 1






1 0 −4
0 1 −5
0 0 1






0 6 5 1 3
0 0 3 3 9
1 1 1 1 1




=




3.036 8.232 5.866 2.402 1.134
−1.33 1.67 3.768 1.768 7.964
1 1 1 1 1




This is plotted in Figure 4.5.6.

This discussion merely touches the surface of computer graphics, and the reader is referred to special-
ized books on the subject. Realistic graphic rendering requires an enormous number of matrix calcula-
tions. In fact, matrix multiplication algorithms are now embedded in microchip circuits, and can perform
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over 100 million matrix multiplications per second. This is particularly important in the field of three-
dimensional graphics where the homogeneous coordinates have four components and 4× 4 matrices are
required.

Exercises for 4.5

Exercise 4.5.1 Consider the letter A described in Fig-
ure 4.5.2. Find the data matrix for the letter obtained by:

a. Rotating the letter through π
4 about the origin.

b. Rotating the letter through π
4 about the point[

1
2

]
.

Exercise 4.5.2 Find the matrix for turning the letter A

in Figure 4.5.2 upside-down in place.

Exercise 4.5.3 Find the 3× 3 matrix for reflecting in

the line y = mx+ b. Use

[
1
m

]
as direction vector for

the line.

Exercise 4.5.4 Find the 3×3 matrix for rotating through
the angle θ about the point P(a, b).

Exercise 4.5.5 Find the reflection of the point P in the
line y = 1+2x in R2 if:

a. P = P(1, 1)

b. P = P(1, 4)

c. What about P = P(1, 3)? Explain. [Hint: Exam-
ple 4.5.1 and Section 4.4.]

Supplementary Exercises for Chapter 4

Exercise 4.1 Suppose that u and v are nonzero vectors.
If u and v are not parallel, and au+bv = a1u+b1v, show
that a = a1 and b = b1.

Exercise 4.2 Consider a triangle with vertices A, B,
and C. Let E and F be the midpoints of sides AB and
AC, respectively, and let the medians EC and FB meet at
O. Write

−→
EO = s

−→
EC and

−→
FO = t

−→
FB, where s and t are

scalars. Show that s = t = 1
3 by expressing

−→
AO two ways

in the form a
−→
EO+b

−→
AC, and applying Exercise 4.1. Con-

clude that the medians of a triangle meet at the point on
each that is one-third of the way from the midpoint to the
vertex (and so are concurrent).

Exercise 4.3 A river flows at 1 km/h and a swimmer
moves at 2 km/h (relative to the water). At what angle
must he swim to go straight across? What is his resulting
speed?

Exercise 4.4 A wind is blowing from the south at 75

knots, and an airplane flies heading east at 100 knots.
Find the resulting velocity of the airplane.

Exercise 4.5 An airplane pilot flies at 300 km/h in a di-
rection 30◦ south of east. The wind is blowing from the
south at 150 km/h.

a. Find the resulting direction and speed of the air-
plane.

b. Find the speed of the airplane if the wind is from
the west (at 150 km/h).

Exercise 4.6 A rescue boat has a top speed of 13 knots.
The captain wants to go due east as fast as possible in wa-
ter with a current of 5 knots due south. Find the velocity
vector v = (x, y) that she must achieve, assuming the x

and y axes point east and north, respectively, and find her
resulting speed.
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Exercise 4.7 A boat goes 12 knots heading north. The
current is 5 knots from the west. In what direction does
the boat actually move and at what speed?

Exercise 4.8 Show that the distance from a point A (with
vector a) to the plane with vector equation n · p = d is

1
‖n‖ |n ·a−d|.
Exercise 4.9 If two distinct points lie in a plane, show
that the line through these points is contained in the
plane.

Exercise 4.10 The line through a vertex of a triangle,
perpendicular to the opposite side, is called an altitude

of the triangle. Show that the three altitudes of any tri-
angle are concurrent. (The intersection of the altitudes
is called the orthocentre of the triangle.) [Hint: If P is
the intersection of two of the altitudes, show that the line
through P and the remaining vertex is perpendicular to
the remaining side.]



5. Vector Space Rn

5.1 Subspaces and Spanning

In Section 2.2 we introduced the set Rn of all n-tuples (called vectors), and began our investigation of the
matrix transformations Rn→ Rm given by matrix multiplication by an m×n matrix. Particular attention
was paid to the euclidean plane R2 where certain simple geometric transformations were seen to be ma-
trix transformations. Then in Section 2.6 we introduced linear transformations, showed that they are all
matrix transformations, and found the matrices of rotations and reflections in R2. We returned to this in
Section 4.4 where we showed that projections, reflections, and rotations of R2 and R3 were all linear, and
where we related areas and volumes to determinants.

In this chapter we investigate Rn in full generality, and introduce some of the most important concepts
and methods in linear algebra. The n-tuples in Rn will continue to be denoted x, y, and so on, and will be
written as rows or columns depending on the context.

Subspaces of Rn

Definition 5.1 Subspace of Rn

A set1U of vectors in Rn is called a subspace of Rn if it satisfies the following properties:

S1. The zero vector 0 ∈U .

S2. If x ∈U and y ∈U , then x+y ∈U .

S3. If x ∈U , then ax ∈U for every real number a.

We say that the subset U is closed under addition if S2 holds, and that U is closed under scalar multi-

plication if S3 holds.

Clearly Rn is a subspace of itself, and this chapter is about these subspaces and their properties. The
set U = {0}, consisting of only the zero vector, is also a subspace because 0+0 = 0 and a0 = 0 for each a

in R; it is called the zero subspace. Any subspace of Rn other than {0} or Rn is called a proper subspace.

1We use the language of sets. Informally, a set X is a collection of objects, called the elements of the set. The fact that x is
an element of X is denoted x ∈ X . Two sets X and Y are called equal (written X = Y ) if they have the same elements. If every
element of X is in the set Y , we say that X is a subset of Y , and write X ⊆ Y . Hence X ⊆ Y and Y ⊆ X both hold if and only if
X = Y .
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y

z

x

n

M

We saw in Section 4.2 that every plane M through the origin in R3

has equation ax+ by+ cz = 0 where a, b, and c are not all zero. Here

n =




a

b

c


 is a normal for the plane and

M = {v in R3 | n ·v = 0}

where v =




x

y

z


 and n · v denotes the dot product introduced in Sec-

tion 2.2 (see the diagram).2 Then M is a subspace of R3. Indeed we show
that M satisfies S1, S2, and S3 as follows:

S1. 0 ∈M because n ·0 = 0;

S2. If v ∈M and v1 ∈M , then n · (v+v1) = n ·v+n ·v1 = 0+0 = 0 , so v+v1 ∈M;

S3. If v ∈M , then n · (av) = a(n ·v) = a(0) = 0 , so av ∈M.

This proves the first part of

Example 5.1.1

y

z

x

d

L

Planes and lines through the origin in R3 are all subspaces of R3.

Solution. We dealt with planes above. If L is a line through
the origin with direction vector d, then L = {td | t ∈ R} (see
the diagram). We leave it as an exercise to verify that L satisfies
S1, S2, and S3.

Example 5.1.1 shows that lines through the origin in R2 are subspaces; in fact, they are the only proper
subspaces of R2 (Exercise 5.1.24). Indeed, we shall see in Example 5.2.14 that lines and planes through
the origin in R3 are the only proper subspaces of R3. Thus the geometry of lines and planes through the
origin is captured by the subspace concept. (Note that every line or plane is just a translation of one of
these.)

Subspaces can also be used to describe important features of an m×n matrix A. The null space of A,
denoted null A, and the image space of A, denoted im A, are defined by

null A = {x ∈ Rn | Ax = 0} and im A = {Ax | x ∈ Rn}

In the language of Chapter 2, null A consists of all solutions x in Rn of the homogeneous system Ax = 0,
and im A is the set of all vectors y in Rm such that Ax = y has a solution x. Note that x is in null A if it

2We are using set notation here. In general {q | p} means the set of all objects q with property p.
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satisfies the condition Ax = 0, while im A consists of vectors of the form Ax for some x in Rn. These two
ways to describe subsets occur frequently.

Example 5.1.2

If A is an m×n matrix, then:

1. null A is a subspace of Rn.

2. im A is a subspace of Rm.

Solution.

1. The zero vector 0 ∈ Rn lies in null A because A0 = 0.3If x and x1 are in null A, then x+x1

and ax are in null A because they satisfy the required condition:

A(x+x1) = Ax+Ax1 = 0+0 = 0 and A(ax) = a(Ax) = a0 = 0

Hence null A satisfies S1, S2, and S3, and so is a subspace of Rn.

2. The zero vector 0 ∈ Rm lies in im A because 0 = A0. Suppose that y and y1 are in im A, say
y = Ax and y1 = Ax1 where x and x1 are in Rn. Then

y+y1 = Ax+Ax1 = A(x+x1) and ay = a(Ax) = A(ax)

show that y+y1 and ay are both in im A (they have the required form). Hence im A is a
subspace of Rm.

There are other important subspaces associated with a matrix A that clarify basic properties of A. If A

is an n×n matrix and λ is any number, let

Eλ (A) = {x ∈ Rn | Ax = λx}
A vector x is in Eλ (A) if and only if (λ I−A)x = 0, so Example 5.1.2 gives:

Example 5.1.3

Eλ (A) = null (λ I−A) is a subspace of Rn for each n×n matrix A and number λ .

Eλ (A) is called the eigenspace of A corresponding to λ . The reason for the name is that, in the terminology
of Section 3.3, λ is an eigenvalue of A if Eλ (A) 6= {0}. In this case the nonzero vectors in Eλ (A) are called
the eigenvectors of A corresponding to λ .

The reader should not get the impression that every subset of Rn is a subspace. For example:

U1 =

{[
x

y

]∣∣∣∣x≥ 0

}
satisfies S1 and S2, but not S3;

3We are using 0 to represent the zero vector in both Rm and Rn. This abuse of notation is common and causes no confusion
once everybody knows what is going on.
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U2 =

{[
x

y

]∣∣∣∣x
2 = y2

}
satisfies S1 and S3, but not S2;

Hence neither U1 nor U2 is a subspace of R2. (However, see Exercise 5.1.20.)

Spanning Sets

Let v and w be two nonzero, nonparallel vectors in R3 with their tails at the origin. The plane M through
the origin containing these vectors is described in Section 4.2 by saying that n = v×w is a normal for M,
and that M consists of all vectors p such that n ·p = 0.4 While this is a very useful way to look at planes,
there is another approach that is at least as useful in R3 and, more importantly, works for all subspaces of
Rn for any n≥ 1.

0

v

av

w bw

p

M

The idea is as follows: Observe that, by the diagram, a vector p is in
M if and only if it has the form

p = av+bw

for certain real numbers a and b (we say that p is a linear combination of
v and w). Hence we can describe M as

M = {ax+bw | a, b ∈ R}.5

and we say that {v, w} is a spanning set for M. It is this notion of a spanning set that provides a way to
describe all subspaces of Rn.

As in Section 1.3, given vectors x1, x2, . . . , xk in Rn, a vector of the form

t1x1 + t2x2 + · · ·+ tkxk where the ti are scalars

is called a linear combination of the xi, and ti is called the coefficient of xi in the linear combination.

Definition 5.2 Linear Combinations and Span in Rn

The set of all such linear combinations is called the span of the xi and is denoted

span{x1, x2, . . . , xk}= {t1x1 + t2x2 + · · ·+ tkxk | ti in R}

If V = span{x1, x2, . . . , xk}, we say that V is spanned by the vectors x1, x2, . . . , xk, and that the
vectors x1, x2, . . . , xk span the space V .

Here are two examples:
span{x}= {tx | t ∈ R}

which we write as span{x}= Rx for simplicity.

span{x, y}= {rx+ sy | r, s ∈ R}
4The vector n = v×w is nonzero because v and w are not parallel.
5In particular, this implies that any vector p orthogonal to v×w must be a linear combination p = av+ bw of v and w for

some a and b. Can you prove this directly?
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In particular, the above discussion shows that, if v and w are two nonzero, nonparallel vectors in R3, then

M = span{v, w}
is the plane in R3 containing v and w. Moreover, if d is any nonzero vector in R3 (or R2), then

L = span{v}= {td | t ∈ R}= Rd

is the line with direction vector d. Hence lines and planes can both be described in terms of spanning sets.

Example 5.1.4

Let x = (2, −1, 2, 1) and y = (3, 4, −1, 1) in R4. Determine whether p = (0, −11, 8, 1) or
q = (2, 3, 1, 2) are in U = span{x, y}.

Solution. The vector p is in U if and only if p = sx+ ty for scalars s and t. Equating components
gives equations

2s+3t = 0, −s+4t =−11, 2s− t = 8, and s+ t = 1

This linear system has solution s = 3 and t =−2, so p is in U . On the other hand, asking that
q = sx+ ty leads to equations

2s+3t = 2, −s+4t = 3, 2s− t = 1, and s+ t = 2

and this system has no solution. So q does not lie in U .

Theorem 5.1.1: Span Theorem

Let U = span{x1, x2, . . . , xk} in Rn. Then:

1. U is a subspace of Rn containing each xi.

2. If W is a subspace of Rn and each xi ∈W , then U ⊆W .

Proof.

1. The zero vector 0 is in U because 0 = 0x1 + 0x2 + · · ·+ 0xk is a linear combination of the xi. If
x = t1x1 + t2x2 + · · ·+ tkxk and y = s1x1 + s2x2 + · · ·+ skxk are in U , then x+ y and ax are in U

because
x+y = (t1 + s1)x1 +(t2+ s2)x2 + · · ·+(tk + sk)xk, and

ax = (at1)x1 +(at2)x2 + · · ·+(atk)xk

Finally each xi is in U (for example, x2 = 0x1 +1x2 + · · ·+0xk) so S1, S2, and S3 are satisfied for
U , proving (1).

2. Let x = t1x1+ t2x2+ · · ·+ tkxk where the ti are scalars and each xi ∈W . Then each tixi ∈W because
W satisfies S3. But then x ∈W because W satisfies S2 (verify). This proves (2).

Condition (2) in Theorem 5.1.1 can be expressed by saying that span{x1, x2, . . . , xk} is the smallest

subspace of Rn that contains each xi. This is useful for showing that two subspaces U and W are equal,
since this amounts to showing that both U ⊆W and W ⊆U . Here is an example of how it is used.
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Example 5.1.5

If x and y are in Rn, show that span{x, y}= span{x+y, x−y}.

Solution. Since both x+y and x−y are in span{x, y}, Theorem 5.1.1 gives

span{x+y, x−y} ⊆ span{x, y}

But x = 1
2(x+y)+ 1

2(x−y) and y = 1
2(x+y)− 1

2(x−y) are both in span{x+y, x−y}, so

span{x, y} ⊆ span{x+y, x−y}

again by Theorem 5.1.1. Thus span{x, y}= span{x+y, x−y}, as desired.

It turns out that many important subspaces are best described by giving a spanning set. Here are three
examples, beginning with an important spanning set for Rn itself. Column j of the n×n identity matrix
In is denoted e j and called the jth coordinate vector in Rn, and the set {e1, e2, . . . , en} is called the

standard basis of Rn. If x =




x1

x2
...

xn


 is any vector in Rn, then x = x1e1 + x2e2 + · · ·+ xnen, as the reader

can verify. This proves:

Example 5.1.6

Rn = span{e1, e2, . . . , en} where e1, e2, . . . , en are the columns of In.

If A is an m×n matrix A, the next two examples show that it is a routine matter to find spanning sets
for null A and im A.

Example 5.1.7

Given an m×n matrix A, let x1, x2, . . . , xk denote the basic solutions to the system Ax = 0 given
by the gaussian algorithm. Then

null A = span{x1, x2, . . . , xk}

Solution. If x ∈ null A, then Ax = 0 so Theorem 1.3.2 shows that x is a linear combination of the
basic solutions; that is, null A⊆ span{x1, x2, . . . , xk}. On the other hand, if x is in
span{x1, x2, . . . , xk}, then x = t1x1 + t2x2 + · · ·+ tkxk for scalars ti, so

Ax = t1Ax1 + t2Ax2 + · · ·+ tkAxk = t10+ t20+ · · ·+ tk0 = 0

This shows that x ∈ null A, and hence that span{x1, x2, . . . , xk} ⊆ null A. Thus we have equality.
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Example 5.1.8

Let c1, c2, . . . , cn denote the columns of the m×n matrix A. Then

im A = span{c1, c2, . . . , cn}

Solution. If {e1, e2, . . . , en} is the standard basis of Rn, observe that

[
Ae1 Ae2 · · · Aen

]
= A

[
e1 e2 · · · en

]
= AIn = A =

[
c1 c2 · · ·cn

]
.

Hence ci = Aei is in im A for each i, so span{c1, c2, . . . , cn} ⊆ im A.

Conversely, let y be in im A, say y = Ax for some x in Rn. If x =




x1

x2
...

xn


, then Definition 2.5 gives

y = Ax = x1c1 + x2c2 + · · ·+ xncn is in span{c1, c2, . . . , cn}

This shows that im A⊆ span{c1, c2, . . . , cn}, and the result follows.

Exercises for 5.1

We often write vectors in Rn as rows.

Exercise 5.1.1 In each case determine whether U is a
subspace of R3. Support your answer.

a. U = {(1, s, t) | s and t in R}.

b. U = {(0, s, t) | s and t in R}.

c. U = {(r, s, t) | r, s, and t in R,
− r+3s+2t = 0}.

d. U = {(r, 3s, r−2) | r and s in R}.

e. U = {(r, 0, s) | r2 + s2 = 0, r and s in R}.

f. U = {(2r, −s2, t) | r, s, and t in R}.

Exercise 5.1.2 In each case determine if x lies in U =
span{y, z}. If x is in U , write it as a linear combination
of y and z; if x is not in U , show why not.

a. x = (2, −1, 0, 1), y = (1, 0, 0, 1), and
z = (0, 1, 0, 1).

b. x = (1, 2, 15, 11), y = (2, −1, 0, 2), and
z = (1, −1, −3, 1).

c. x = (8, 3, −13, 20), y = (2, 1, −3, 5), and
z = (−1, 0, 2, −3).

d. x = (2, 5, 8, 3), y = (2, −1, 0, 5), and
z = (−1, 2, 2, −3).

Exercise 5.1.3 In each case determine if the given vec-
tors span R4. Support your answer.

a. {(1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)}.

b. {(1, 3, −5, 0), (−2, 1, 0, 0), (0, 2, 1, −1),
(1, −4, 5, 0)}.
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Exercise 5.1.4 Is it possible that {(1, 2, 0), (2, 0, 3)}
can span the subspace U = {(r, s, 0) | r and s in R}? De-
fend your answer.

Exercise 5.1.5 Give a spanning set for the zero subspace
{0} of Rn.

Exercise 5.1.6 Is R2 a subspace of R3? Defend your
answer.

Exercise 5.1.7 If U = span{x, y, z} in Rn, show that
U = span{x+ tz, y, z} for every t in R.

Exercise 5.1.8 If U = span{x, y, z} in Rn, show that
U = span{x+y, y+ z, z+x}.
Exercise 5.1.9 If a 6= 0 is a scalar, show that
span{ax}= span{x} for every vector x in Rn.

Exercise 5.1.10 If a1, a2, . . . , ak are nonzero
scalars, show that span{a1x1, a2x2, . . . , akxk} =
span{x1, x2, . . . , xk} for any vectors xi in Rn.

Exercise 5.1.11 If x 6= 0 in Rn, determine all subspaces
of span{x}.
Exercise 5.1.12 Suppose that U = span{x1, x2, . . . , xk}
where each xi is in Rn. If A is an m×n matrix and Axi = 0

for each i, show that Ay = 0 for every vector y in U .

Exercise 5.1.13 If A is an m× n matrix, show that, for
each invertible m×m matrix U , null (A) = null (UA).

Exercise 5.1.14 If A is an m× n matrix, show that, for
each invertible n×n matrix V , im (A) = im (AV ).

Exercise 5.1.15 Let U be a subspace of Rn, and let x be
a vector in Rn.

a. If ax is in U where a 6= 0 is a number, show that x

is in U .

b. If y and x+ y are in U where y is a vector in Rn,
show that x is in U .

Exercise 5.1.16 In each case either show that the state-
ment is true or give an example showing that it is false.

a. If U 6= Rn is a subspace of Rn and x+ y is in U ,
then x and y are both in U .

b. If U is a subspace of Rn and rx is in U for all r in
R, then x is in U .

c. If U is a subspace of Rn and x is in U , then −x is
also in U .

d. If x is in U and U = span {y, z}, then U =
span {x, y, z}.

e. The empty set of vectors in Rn is a subspace of
Rn.

f.

[
0
1

]
is in span

{[
1
0

]
,

[
2
0

]}
.

Exercise 5.1.17

a. If A and B are m×n matrices, show that
U = {x in Rn | Ax = Bx} is a subspace of Rn.

b. What if A is m×n, B is k×n, and m 6= k?

Exercise 5.1.18 Suppose that x1, x2, . . . , xk are vectors
in Rn. If y= a1x1+a2x2+ · · ·+akxk where a1 6= 0, show
that span{x1 x2, . . . , xk}= span{y1, x2, . . . , xk}.
Exercise 5.1.19 If U 6= {0} is a subspace of R, show
that U = R.

Exercise 5.1.20 Let U be a nonempty subset of Rn.
Show that U is a subspace if and only if S2 and S3 hold.

Exercise 5.1.21 If S and T are nonempty sets of vectors
in Rn, and if S⊆ T , show that span{S} ⊆ span{T}.
Exercise 5.1.22 Let U and W be subspaces of Rn. De-
fine their intersection U ∩W and their sum U +W as
follows:

U ∩W = {x ∈Rn | x belongs to both U and W}.
U +W = {x ∈ Rn | x is a sum of a vector in U

and a vector in W}.

a. Show that U ∩W is a subspace of Rn.

b. Show that U +W is a subspace of Rn.

Exercise 5.1.23 Let P denote an invertible n×n matrix.
If λ is a number, show that

Eλ (PAP−1) = {Px | x is in Eλ (A)}

for each n×n matrix A.

Exercise 5.1.24 Show that every proper subspace U of
R2 is a line through the origin. [Hint: If d is a nonzero
vector in U , let L = Rd = {rd | r in R} denote the line
with direction vector d. If u is in U but not in L, argue
geometrically that every vector v in R2 is a linear combi-
nation of u and d.]
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5.2 Independence and Dimension

Some spanning sets are better than others. If U = span{x1, x2, . . . , xk} is a subspace of Rn, then every
vector in U can be written as a linear combination of the xi in at least one way. Our interest here is in
spanning sets where each vector in U has a exactly one representation as a linear combination of these
vectors.

Linear Independence

Given x1, x2, . . . , xk in Rn, suppose that two linear combinations are equal:

r1x1 + r2x2 + · · ·+ rkxk = s1x1 + s2x2 + · · ·+ skxk

We are looking for a condition on the set {x1, x2, . . . , xk} of vectors that guarantees that this representation
is unique; that is, ri = si for each i. Taking all terms to the left side gives

(r1− s1)x1 +(r2− s2)x2 + · · ·+(rk− sk)xk = 0

so the required condition is that this equation forces all the coefficients ri− si to be zero.

Definition 5.3 Linear Independence in Rn

With this in mind, we call a set {x1, x2, . . . , xk} of vectors linearly independent (or simply
independent) if it satisfies the following condition:

If t1x1 + t2x2 + · · ·+ tkxk = 0 then t1 = t2 = · · ·= tk = 0

We record the result of the above discussion for reference.

Theorem 5.2.1

If {x1, x2, . . . , xk} is an independent set of vectors in Rn, then every vector in
span{x1, x2, . . . , xk} has a unique representation as a linear combination of the xi.

It is useful to state the definition of independence in different language. Let us say that a linear
combination vanishes if it equals the zero vector, and call a linear combination trivial if every coefficient
is zero. Then the definition of independence can be compactly stated as follows:

A set of vectors is independent if and only if the only linear combination that vanishes is the
trivial one.

Hence we have a procedure for checking that a set of vectors is independent:
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Independence Test

To verify that a set {x1, x2, . . . , xk} of vectors in Rn is independent, proceed as follows:

1. Set a linear combination equal to zero: t1x1 + t2x2 + · · ·+ tkxk = 0.

2. Show that ti = 0 for each i (that is, the linear combination is trivial).

Of course, if some nontrivial linear combination vanishes, the vectors are not independent.

Example 5.2.1

Determine whether {(1, 0, −2, 5), (2, 1, 0, −1), (1, 1, 2, 1)} is independent in R4.

Solution. Suppose a linear combination vanishes:

r(1, 0, −2, 5)+ s(2, 1, 0, −1)+ t(1, 1, 2, 1) = (0, 0, 0, 0)

Equating corresponding entries gives a system of four equations:

r+2s+ t = 0, s+ t = 0, −2r+2t = 0, and 5r− s+ t = 0

The only solution is the trivial one r = s = t = 0 (verify), so these vectors are independent by the
independence test.

Example 5.2.2

Show that the standard basis {e1, e2, . . . , en} of Rn is independent.

Solution. The components of t1e1 + t2e2 + · · ·+ tnen are t1, t2, . . . , tn (see the discussion preceding
Example 5.1.6) So the linear combination vanishes if and only if each ti = 0. Hence the
independence test applies.

Example 5.2.3

If {x, y} is independent, show that {2x+3y, x−5y} is also independent.

Solution. If s(2x+3y)+ t(x−5y) = 0, collect terms to get (2s+ t)x+(3s−5t)y = 0. Since
{x, y} is independent this combination must be trivial; that is, 2s+ t = 0 and 3s−5t = 0. These
equations have only the trivial solution s = t = 0, as required.
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Example 5.2.4

Show that the zero vector in Rn does not belong to any independent set.

Solution. No set {0, x1, x2, . . . , xk} of vectors is independent because we have a vanishing,
nontrivial linear combination 1 ·0+0x1 +0x2 + · · ·+0xk = 0.

Example 5.2.5

Given x in Rn, show that {x} is independent if and only if x 6= 0.

Solution. A vanishing linear combination from {x} takes the form tx = 0, t in R. This implies that
t = 0 because x 6= 0.

The next example will be needed later.

Example 5.2.6

Show that the nonzero rows of a row-echelon matrix R are independent.

Solution. We illustrate the case with 3 leading 1s; the general case is analogous. Suppose R has the

form R =




0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 0


 where ∗ indicates a nonspecified number. Let R1, R2, and R3

denote the nonzero rows of R. If t1R1 + t2R2 + t3R3 = 0 we show that t1 = 0, then t2 = 0, and
finally t3 = 0. The condition t1R1 + t2R2 + t3R3 = 0 becomes

(0, t1, ∗, ∗, ∗, ∗)+(0, 0, 0, t2, ∗, ∗)+(0, 0, 0, 0, t3, ∗) = (0, 0, 0, 0, 0, 0)

Equating second entries show that t1 = 0, so the condition becomes t2R2 + t3R3 = 0. Now the same
argument shows that t2 = 0. Finally, this gives t3R3 = 0 and we obtain t3 = 0.

A set of vectors in Rn is called linearly dependent (or simply dependent) if it is not linearly indepen-
dent, equivalently if some nontrivial linear combination vanishes.

Example 5.2.7

If v and w are nonzero vectors in R3, show that {v, w} is dependent if and only if v and w are
parallel.

Solution. If v and w are parallel, then one is a scalar multiple of the other (Theorem 4.1.4), say
v = aw for some scalar a. Then the nontrivial linear combination v−aw = 0 vanishes, so {v, w}
is dependent.
Conversely, if {v, w} is dependent, let sv+ tw = 0 be nontrivial, say s 6= 0. Then v =− t

s
w so v

and w are parallel (by Theorem 4.1.4). A similar argument works if t 6= 0.
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With this we can give a geometric description of what it means for a set {u, v, w} in R3 to be in-
dependent. Note that this requirement means that {v, w} is also independent (av+ bw = 0 means that
0u+av+bw = 0), so M = span{v, w} is the plane containing v, w, and 0 (see the discussion preceding
Example 5.1.4). So we assume that {v, w} is independent in the following example.

Example 5.2.8

u

v

w

M

{u, v, w} independent

u
v

w

M

{u, v, w} not independent

Let u, v, and w be nonzero vectors in R3 where {v, w}
independent. Show that {u, v, w} is independent if and only
if u is not in the plane M = span{v, w}. This is illustrated in
the diagrams.

Solution. If {u, v, w} is independent, suppose u is in the plane
M = span{v, w}, say u = av+bw, where a and b are in R. Then
1u−av−bw = 0, contradicting the independence of {u, v, w}.
On the other hand, suppose that u is not in M; we must show
that {u, v, w} is independent. If ru+ sv+ tw = 0 where r, s,
and t are in R3, then r = 0 since otherwise u = − s

r
v+ −t

r
w is

in M. But then sv+ tw = 0, so s = t = 0 by our assumption.
This shows that {u, v, w} is independent, as required.

By the inverse theorem, the following conditions are equivalent for an n×n matrix A:

1. A is invertible.

2. If Ax = 0 where x is in Rn, then x = 0.

3. Ax = b has a solution x for every vector b in Rn.

While condition 1 makes no sense if A is not square, conditions 2 and 3 are meaningful for any matrix A

and, in fact, are related to independence and spanning. Indeed, if c1, c2, . . . , cn are the columns of A, and

if we write x =




x1

x2
...

xn


, then

Ax = x1c1 + x2c2 + · · ·+ xncn

by Definition 2.5. Hence the definitions of independence and spanning show, respectively, that condition
2 is equivalent to the independence of {c1, c2, . . . , cn} and condition 3 is equivalent to the requirement
that span{c1, c2, . . . , cn}= Rm. This discussion is summarized in the following theorem:

Theorem 5.2.2

If A is an m×n matrix, let {c1, c2, . . . , cn} denote the columns of A.

1. {c1, c2, . . . , cn} is independent in Rm if and only if Ax = 0, x in Rn, implies x = 0.

2. Rm = span{c1, c2, . . . , cn} if and only if Ax = b has a solution x for every vector b in Rm.
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For a square matrix A, Theorem 5.2.2 characterizes the invertibility of A in terms of the spanning and
independence of its columns (see the discussion preceding Theorem 5.2.2). It is important to be able to
discuss these notions for rows. If x1, x2, . . . , xk are 1× n rows, we define span{x1, x2, . . . , xk} to be
the set of all linear combinations of the xi (as matrices), and we say that {x1, x2, . . . , xk} is linearly
independent if the only vanishing linear combination is the trivial one (that is, if {xT

1 , xT
2 , . . . , xT

k } is
independent in Rn, as the reader can verify).6

Theorem 5.2.3

The following are equivalent for an n×n matrix A:

1. A is invertible.

2. The columns of A are linearly independent.

3. The columns of A span Rn.

4. The rows of A are linearly independent.

5. The rows of A span the set of all 1×n rows.

Proof. Let c1, c2, . . . , cn denote the columns of A.

(1)⇔ (2). By Theorem 2.4.5, A is invertible if and only if Ax = 0 implies x = 0; this holds if and only
if {c1, c2, . . . , cn} is independent by Theorem 5.2.2.

(1) ⇔ (3). Again by Theorem 2.4.5, A is invertible if and only if Ax = b has a solution for every
column B in Rn; this holds if and only if span{c1, c2, . . . , cn}= Rn by Theorem 5.2.2.

(1) ⇔ (4). The matrix A is invertible if and only if AT is invertible (by Corollary 2.4.1 to Theorem
2.4.4); this in turn holds if and only if AT has independent columns (by (1) ⇔ (2)); finally, this last
statement holds if and only if A has independent rows (because the rows of A are the transposes of the
columns of AT ).

(1)⇔ (5). The proof is similar to (1)⇔ (4).

Example 5.2.9

Show that S = {(2, −2, 5), (−3, 1, 1), (2, 7, −4)} is independent in R3.

Solution. Consider the matrix A =




2 −2 5
−3 1 1

2 7 −4


 with the vectors in S as its rows. A routine

computation shows that det A =−117 6= 0, so A is invertible. Hence S is independent by
Theorem 5.2.3. Note that Theorem 5.2.3 also shows that R3 = span S.

6It is best to view columns and rows as just two different notations for ordered n-tuples. This discussion will become
redundant in Chapter 6 where we define the general notion of a vector space.
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Dimension

It is common geometrical language to say that R3 is 3-dimensional, that planes are 2-dimensional and
that lines are 1-dimensional. The next theorem is a basic tool for clarifying this idea of “dimension”. Its
importance is difficult to exaggerate.

Theorem 5.2.4: Fundamental Theorem

Let U be a subspace of Rn. If U is spanned by m vectors, and if U contains k linearly independent
vectors, then k ≤ m.

This proof is given in Theorem 6.3.2 in much greater generality.

Definition 5.4 Basis of Rn

If U is a subspace of Rn, a set {x1, x2, . . . , xm} of vectors in U is called a basis of U if it satisfies
the following two conditions:

1. {x1, x2, . . . , xm} is linearly independent.

2. U = span{x1, x2, . . . , xm}.

The most remarkable result about bases7 is:

Theorem 5.2.5: Invariance Theorem

If {x1, x2, . . . , xm} and {y1, y2, . . . , yk} are bases of a subspace U of Rn, then m = k.

Proof. We have k≤m by the fundamental theorem because {x1, x2, . . . , xm} spans U , and {y1, y2, . . . , yk}
is independent. Similarly, by interchanging x’s and y’s we get m≤ k. Hence m = k.

The invariance theorem guarantees that there is no ambiguity in the following definition:

Definition 5.5 Dimension of a Subspace of Rn

If U is a subspace of Rn and {x1, x2, . . . , xm} is any basis of U , the number, m, of vectors in the
basis is called the dimension of U , denoted

dim U = m

The importance of the invariance theorem is that the dimension of U can be determined by counting the
number of vectors in any basis.8

7The plural of “basis” is “bases”.
8We will show in Theorem 5.2.6 that every subspace of Rn does indeed have a basis.



5.2. Independence and Dimension 277

Let {e1, e2, . . . , en} denote the standard basis of Rn, that is the set of columns of the identity matrix.
Then Rn = span{e1, e2, . . . , en} by Example 5.1.6, and {e1, e2, . . . , en} is independent by Example 5.2.2.
Hence it is indeed a basis of Rn in the present terminology, and we have

Example 5.2.10

dim (Rn) = n and {e1, e2, . . . , en} is a basis.

This agrees with our geometric sense that R2 is two-dimensional and R3 is three-dimensional. It also
says that R1 = R is one-dimensional, and {1} is a basis. Returning to subspaces of Rn, we define

dim{0}= 0

This amounts to saying {0} has a basis containing no vectors. This makes sense because 0 cannot belong
to any independent set (Example 5.2.4).

Example 5.2.11

Let U =








r

s

r


 | r, s in R



. Show that U is a subspace of R3, find a basis, and calculate dim U .

Solution. Clearly,




r

s

r


= ru+ sv where u =




1
0
1


 and v =




0
1
0


. It follows that

U = span{u, v}, and hence that U is a subspace of R3. Moreover, if ru+ sv = 0, then


r

s

r


=




0
0
0


 so r = s = 0. Hence {u, v} is independent, and so a basis of U . This means

dim U = 2.

Example 5.2.12

Let B = {x1, x2, . . . , xn} be a basis of Rn. If A is an invertible n×n matrix, then
D = {Ax1, Ax2, . . . , Axn} is also a basis of Rn.

Solution. Let x be a vector in Rn. Then A−1x is in Rn so, since B is a basis, we have
A−1x = t1x1 + t2x2 + · · ·+ tnxn for ti in R. Left multiplication by A gives
x = t1(Ax1)+ t2(Ax2)+ · · ·+ tn(Axn), and it follows that D spans Rn. To show independence, let
s1(Ax1)+ s2(Ax2)+ · · ·+ sn(Axn) = 0, where the si are in R. Then A(s1x1 + s2x2 + · · ·+ snxn) = 0

so left multiplication by A−1 gives s1x1 + s2x2 + · · ·+ snxn = 0. Now the independence of B shows
that each si = 0, and so proves the independence of D. Hence D is a basis of Rn.

While we have found bases in many subspaces of Rn, we have not yet shown that every subspace has

a basis. This is part of the next theorem, the proof of which is deferred to Section 6.4 (Theorem 6.4.1)
where it will be proved in more generality.
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Theorem 5.2.6

Let U 6= {0} be a subspace of Rn. Then:

1. U has a basis and dim U ≤ n.

2. Any independent set in U can be enlarged (by adding vectors from the standard basis) to a
basis of U .

3. Any spanning set for U can be cut down (by deleting vectors) to a basis of U .

Example 5.2.13

Find a basis of R4 containing S = {u, v} where u = (0, 1, 2, 3) and v = (2, −1, 0, 1).

Solution. By Theorem 5.2.6 we can find such a basis by adding vectors from the standard basis of
R4 to S. If we try e1 = (1, 0, 0, 0), we find easily that {e1, u, v} is independent. Now add another
vector from the standard basis, say e2.
Again we find that B = {e1, e2, u, v} is independent. Since B has 4 = dim R4 vectors, then B

must span R4 by Theorem 5.2.7 below (or simply verify it directly). Hence B is a basis of R4.

Theorem 5.2.6 has a number of useful consequences. Here is the first.

Theorem 5.2.7

Let U be a subspace of Rn where dim U = m and let B = {x1, x2, . . . , xm} be a set of m vectors in
U . Then B is independent if and only if B spans U .

Proof. Suppose B is independent. If B does not span U then, by Theorem 5.2.6, B can be enlarged to a
basis of U containing more than m vectors. This contradicts the invariance theorem because dim U = m,
so B spans U . Conversely, if B spans U but is not independent, then B can be cut down to a basis of U

containing fewer than m vectors, again a contradiction. So B is independent, as required.

As we saw in Example 5.2.13, Theorem 5.2.7 is a “labour-saving” result. It asserts that, given a
subspace U of dimension m and a set B of exactly m vectors in U , to prove that B is a basis of U it suffices
to show either that B spans U or that B is independent. It is not necessary to verify both properties.

Theorem 5.2.8

Let U ⊆W be subspaces of Rn. Then:

1. dim U ≤ dim W .

2. If dim U = dim W , then U =W .
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Proof. Write dim W = k, and let B be a basis of U .

1. If dim U > k, then B is an independent set in W containing more than k vectors, contradicting the
fundamental theorem. So dim U ≤ k = dim W .

2. If dim U = k, then B is an independent set in W containing k = dim W vectors, so B spans W by
Theorem 5.2.7. Hence W = span B =U , proving (2).

It follows from Theorem 5.2.8 that if U is a subspace of Rn, then dim U is one of the integers 0, 1, 2, . . . , n,
and that:

dim U = 0 if and only if U = {0},
dim U = n if and only if U = Rn

The other subspaces of Rn are called proper. The following example uses Theorem 5.2.8 to show that the
proper subspaces of R2 are the lines through the origin, while the proper subspaces of R3 are the lines and
planes through the origin.

Example 5.2.14

1. If U is a subspace of R2 or R3, then dim U = 1 if and only if U is a line through the origin.

2. If U is a subspace of R3, then dim U = 2 if and only if U is a plane through the origin.

Proof.

1. Since dim U = 1, let {u} be a basis of U . Then U = span{u} = {tu | t in R}, so U is the line
through the origin with direction vector u. Conversely each line L with direction vector d 6= 0 has
the form L = {td | t in R}. Hence {d} is a basis of U , so U has dimension 1.

2. If U ⊆ R3 has dimension 2, let {v, w} be a basis of U . Then v and w are not parallel (by Exam-
ple 5.2.7) so n = v×w 6= 0. Let P = {x in R3 | n · x = 0} denote the plane through the origin with
normal n. Then P is a subspace of R3 (Example 5.1.1) and both v and w lie in P (they are orthogonal
to n), so U = span{v, w} ⊆ P by Theorem 5.1.1. Hence

U ⊆ P⊆ R3

Since dim U = 2 and dim (R3) = 3, it follows from Theorem 5.2.8 that dim P = 2 or 3, whence
P =U or R3. But P 6= R3 (for example, n is not in P) and so U = P is a plane through the origin.

Conversely, if U is a plane through the origin, then dim U = 0, 1, 2, or 3 by Theorem 5.2.8. But
dim U 6= 0 or 3 because U 6= {0} and U 6= R3, and dim U 6= 1 by (1). So dim U = 2.

Note that this proof shows that if v and w are nonzero, nonparallel vectors in R3, then span{v, w} is the
plane with normal n = v×w. We gave a geometrical verification of this fact in Section 5.1.
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Exercises for 5.2

In Exercises 5.2.1-5.2.6 we write vectors Rn as
rows.

Exercise 5.2.1 Which of the following subsets are inde-
pendent? Support your answer.

a. {(1, −1, 0), (3, 2, −1), (3, 5, −2)} in R3

b. {(1, 1, 1), (1, −1, 1), (0, 0, 1)} in R3

c. {(1, −1, 1, −1), (2, 0, 1, 0), (0, −2, 1, −2)} in
R4

d. {(1, 1, 0, 0), (1, 0, 1, 0), (0, 0, 1, 1),
(0, 1, 0, 1)} in R4

Exercise 5.2.2 Let {x, y, z, w} be an independent set in
Rn. Which of the following sets is independent? Support
your answer.

a. {x−y, y− z, z−x}

b. {x+y, y+ z, z+x}

c. {x−y, y− z, z−w, w−x}

d. {x+y, y+ z, z+w, w+x}

Exercise 5.2.3 Find a basis and calculate the dimension
of the following subspaces of R4.

a. span{(1, −1, 2, 0), (2, 3, 0, 3), (1, 9, −6, 6)}

b. span{(2, 1, 0, −1), (−1, 1, 1, 1), (2, 7, 4, 1)}

c. span{(−1, 2, 1, 0), (2, 0, 3, −1), (4, 4, 11, −3),
(3, −2, 2, −1)}

d. span{(−2, 0, 3, 1), (1, 2, −1, 0), (−2, 8, 5, 3),
(−1, 2, 2, 1)}

Exercise 5.2.4 Find a basis and calculate the dimension
of the following subspaces of R4.

a. U =








a

a+b

a−b

b




∣∣∣∣∣∣∣∣
a and b in R





b. U =








a+b

a−b

b

a




∣∣∣∣∣∣∣∣
a and b in R





c. U =








a

b

c+a

c




∣∣∣∣∣∣∣∣
a, b, and c in R





d. U =








a−b

b+ c

a

b+ c




∣∣∣∣∣∣∣∣
a, b, and c in R





e. U =








a

b

c

d




∣∣∣∣∣∣∣∣
a+b− c+d = 0 in R





f. U =








a

b

c

d




∣∣∣∣∣∣∣∣
a+b = c+d in R





Exercise 5.2.5 Suppose that {x, y, z, w} is a basis of
R4. Show that:

a. {x + aw, y, z, w} is also a basis of R4 for any
choice of the scalar a.

b. {x+w, y+w, z+w, w} is also a basis of R4.

c. {x, x+y, x+y+ z, x+y+ z+w} is also a basis
of R4.

Exercise 5.2.6 Use Theorem 5.2.3 to determine if the
following sets of vectors are a basis of the indicated
space.

a. {(3, −1), (2, 2)} in R2

b. {(1, 1, −1), (1, −1, 1), (0, 0, 1)} in R3

c. {(−1, 1, −1), (1, −1, 2), (0, 0, 1)} in R3

d. {(5, 2, −1), (1, 0, 1), (3, −1, 0)} in R3
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e. {(2, 1, −1, 3), (1, 1, 0, 2), (0, 1, 0, −3),
(−1, 2, 3, 1)} in R4

f. {(1, 0, −2, 5), (4, 4, −3, 2), (0, 1, 0, −3),
(1, 3, 3, −10)} in R4

Exercise 5.2.7 In each case show that the statement is
true or give an example showing that it is false.

a. If {x, y} is independent, then {x, y, x+ y} is in-
dependent.

b. If {x, y, z} is independent, then {y, z} is indepen-
dent.

c. If {y, z} is dependent, then {x, y, z} is dependent
for any x.

d. If all of x1, x2, . . . , xk are nonzero, then
{x1, x2, . . . , xk} is independent.

e. If one of x1, x2, . . . , xk is zero, then
{x1, x2, . . . , xk} is dependent.

f. If ax+by+ cz = 0, then {x, y, z} is independent.

g. If {x, y, z} is independent, then ax+by+ cz = 0

for some a, b, and c in R.

h. If {x1, x2, . . . , xk} is dependent, then t1x1+t2x2+
· · ·+tkxk = 0 for some numbers ti in R not all zero.

i. If {x1, x2, . . . , xk} is independent, then t1x1 +
t2x2 + · · ·+ tkxk = 0 for some ti in R.

j. Every non-empty subset of a linearly independent
set is again linearly independent.

k. Every set containing a spanning set is again a
spanning set.

Exercise 5.2.8 If A is an n×n matrix, show that det A =
0 if and only if some column of A is a linear combination
of the other columns.

Exercise 5.2.9 Let {x, y, z} be a linearly independent
set in R4. Show that {x, y, z, ek} is a basis of R4 for
some ek in the standard basis {e1, e2, e3, e4}.
Exercise 5.2.10 If {x1, x2, x3, x4, x5, x6} is an inde-
pendent set of vectors, show that the subset {x2, x3, x5}
is also independent.

Exercise 5.2.11 Let A be any m × n matrix, and
let b1, b2, b3, . . . , bk be columns in Rm such that
the system Ax = bi has a solution xi for each i. If
{b1, b2, b3, . . . , bk} is independent in Rm, show that
{x1, x2, x3, . . . , xk} is independent in Rn.

Exercise 5.2.12 If {x1, x2, x3, . . . , xk} is independent,
show {x1, x1 +x2, x1 +x2 +x3, . . . , x1 +x2 + · · ·+xk}
is also independent.

Exercise 5.2.13 If {y, x1, x2, x3, . . . , xk} is indepen-
dent, show that {y+ x1, y+ x2, y+ x3, . . . , y+ xk} is
also independent.

Exercise 5.2.14 If {x1, x2, . . . , xk} is independent in
Rn, and if y is not in span{x1, x2, . . . , xk}, show that
{x1, x2, . . . , xk, y} is independent.

Exercise 5.2.15 If A and B are matrices and the columns
of AB are independent, show that the columns of B are in-
dependent.

Exercise 5.2.16 Suppose that {x, y} is a basis of R2,

and let A =

[
a b

c d

]
.

a. If A is invertible, show that {ax+ by, cx+ dy} is
a basis of R2.

b. If {ax+by, cx+dy} is a basis of R2, show that A

is invertible.

Exercise 5.2.17 Let A denote an m×n matrix.

a. Show that null A = null (UA) for every invertible
m×m matrix U .

b. Show that dim (null A) = dim (null (AV )) for
every invertible n × n matrix V . [Hint: If
{x1, x2, . . . , xk} is a basis of null A, show
that {V−1x1, V−1x2, . . . , V−1xk} is a basis of
null (AV ).]

Exercise 5.2.18 Let A denote an m×n matrix.

a. Show that im A = im (AV ) for every invertible
n×n matrix V .

b. Show that dim ( im A) = dim ( im (UA)) for ev-
ery invertible m × m matrix U . [Hint: If
{y1, y2, . . . , yk} is a basis of im (UA), show that
{U−1y1, U−1y2, . . . , U−1yk} is a basis of im A.]

Exercise 5.2.19 Let U and W denote subspaces of Rn,
and assume that U ⊆W . If dim U = n− 1, show that
either W =U or W = Rn.

Exercise 5.2.20 Let U and W denote subspaces of Rn,
and assume that U ⊆W . If dim W = 1, show that either
U = {0} or U =W .
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5.3 Orthogonality

Length and orthogonality are basic concepts in geometry and, in R2 and R3, they both can be defined
using the dot product. In this section we extend the dot product to vectors in Rn, and so endow Rn with
euclidean geometry. We then introduce the idea of an orthogonal basis—one of the most useful concepts
in linear algebra, and begin exploring some of its applications.

Dot Product, Length, and Distance

If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two n-tuples in Rn, recall that their dot product was
defined in Section 2.2 as follows:

x ·y = x1y1 + x2y2 + · · ·+ xnyn

Observe that if x and y are written as columns then x ·y = xT y is a matrix product (and x ·y = xyT if they
are written as rows). Here x ·y is a 1×1 matrix, which we take to be a number.

Definition 5.6 Length in Rn

As in R3, the length ‖x‖ of the vector is defined by

‖x‖=
√

x ·x =
√

x2
1 + x2

2 + · · ·+ x2
n

Where
√

( ) indicates the positive square root.

A vector x of length 1 is called a unit vector. If x 6= 0, then ‖x‖ 6= 0 and it follows easily that 1
‖x‖x is a

unit vector (see Theorem 5.3.6 below), a fact that we shall use later.

Example 5.3.1

If x = (1, −1, −3, 1) and y = (2, 1, 1, 0) in R4, then x ·y = 2−1−3+0 =−2 and
‖x‖=

√
1+1+9+1 =

√
12 = 2

√
3. Hence 1

2
√

3
x is a unit vector; similarly 1√

6
y is a unit vector.

These definitions agree with those in R2 and R3, and many properties carry over to Rn:

Theorem 5.3.1

Let x, y, and z denote vectors in Rn. Then:

1. x ·y = y ·x.

2. x · (y+ z) = x ·y+x · z.

3. (ax) ·y = a(x ·y) = x · (ay) for all scalars a.
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4. ‖x‖2 = x ·x.

5. ‖x‖ ≥ 0, and ‖x‖= 0 if and only if x = 0.

6. ‖ax‖= |a|‖x‖ for all scalars a.

Proof. (1), (2), and (3) follow from matrix arithmetic because x ·y = xT y; (4) is clear from the definition;

and (6) is a routine verification since |a| =
√

a2. If x = (x1, x2, . . . , xn), then ‖x‖ =
√

x2
1 + x2

2 + · · ·+ x2
n

so ‖x‖= 0 if and only if x2
1 + x2

2 + · · ·+ x2
n = 0. Since each xi is a real number this happens if and only if

xi = 0 for each i; that is, if and only if x = 0. This proves (5).

Because of Theorem 5.3.1, computations with dot products in Rn are similar to those in R3. In partic-
ular, the dot product

(x1 +x2 + · · ·+xm) · (y1 +y2 + · · ·+yk)

equals the sum of mk terms, xi ·y j, one for each choice of i and j. For example:

(3x−4y) · (7x+2y) = 21(x ·x)+6(x ·y)−28(y ·x)−8(y ·y)
= 21‖x‖2−22(x ·y)−8‖y‖2

holds for all vectors x and y.

Example 5.3.2

Show that ‖x+y‖2 = ‖x‖2 +2(x ·y)+‖y‖2 for any x and y in Rn.

Solution. Using Theorem 5.3.1 several times:

‖x+y‖2 = (x+y) · (x+y) = x ·x+x ·y+y ·x+y ·y
= ‖x‖2 +2(x ·y)+‖y‖2

Example 5.3.3

Suppose that Rn = span{f1, f2, . . . , fk} for some vectors fi. If x · fi = 0 for each i where x is in Rn,
show that x = 0.

Solution. We show x = 0 by showing that ‖x‖= 0 and using (5) of Theorem 5.3.1. Since the fi

span Rn, write x = t1f1 + t2f2 + · · ·+ tkfk where the ti are in R. Then

‖x‖2 = x ·x = x · (t1f1 + t2f2 + · · ·+ tkfk)

= t1(x · f1)+ t2(x · f2)+ · · ·+ tk(x · fk)

= t1(0)+ t2(0)+ · · ·+ tk(0)

= 0
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We saw in Section 4.2 that if u and v are nonzero vectors in R3, then u·v
‖u‖‖v‖ = cosθ where θ is the angle

between u and v. Since |cosθ | ≤ 1 for any angle θ , this shows that |u ·v| ≤ ‖u‖‖v‖. In this form the result
holds in Rn.

Theorem 5.3.2: Cauchy Inequality9

If x and y are vectors in Rn, then
|x ·y| ≤ ‖x‖‖y‖

Moreover |x ·y|= ‖x‖‖y‖ if and only if one of x and y is a multiple of the other.

Proof. The inequality holds if x = 0 or y = 0 (in fact it is equality). Otherwise, write ‖x‖ = a > 0 and
‖y‖= b > 0 for convenience. A computation like that preceding Example 5.3.2 gives

‖bx−ay‖2 = 2ab(ab−x ·y) and ‖bx+ay‖2 = 2ab(ab+x ·y) (5.1)

It follows that ab−x ·y≥ 0 and ab+x ·y≥ 0, and hence that−ab≤ x ·y≤ ab. Hence |x·y| ≤ ab= ‖x‖‖y‖,
proving the Cauchy inequality.

If equality holds, then |x · y| = ab, so x · y = ab or x · y = −ab. Hence Equation 5.1 shows that
bx−ay = 0 or bx+ay = 0, so one of x and y is a multiple of the other (even if a = 0 or b = 0).

The Cauchy inequality is equivalent to (x ·y)2 ≤ ‖x‖2‖y‖2. In R5 this becomes

(x1y1 + x2y2 + x3y3 + x4y4 + x5y5)
2 ≤ (x2

1 + x2
2 + x2

3 + x2
4 + x2

5)(y
2
1 + y2

2 + y2
3 + y2

4 + y2
5)

for all xi and yi in R.

There is an important consequence of the Cauchy inequality. Given x and y in Rn, use Example 5.3.2
and the fact that x ·y≤ ‖x‖‖y‖ to compute

‖x+y‖2 = ‖x‖2 +2(x ·y)+‖y‖2 ≤ ‖x‖2 +2‖x‖‖y‖+‖y‖2 = (‖x+y‖)2

Taking positive square roots gives:

Corollary 5.3.1: Triangle Inequality

If x and y are vectors in Rn, then ‖x+y‖ ≤ ‖x‖+‖y‖.

v w

v+w

The reason for the name comes from the observation that in R3 the
inequality asserts that the sum of the lengths of two sides of a triangle is
not less than the length of the third side. This is illustrated in the diagram.

9Augustin Louis Cauchy (1789–1857) was born in Paris and became a professor at the École Polytechnique at the age of
26. He was one of the great mathematicians, producing more than 700 papers, and is best remembered for his work in analysis
in which he established new standards of rigour and founded the theory of functions of a complex variable. He was a devout
Catholic with a long-term interest in charitable work, and he was a royalist, following King Charles X into exile in Prague after
he was deposed in 1830. Theorem 5.3.2 first appeared in his 1812 memoir on determinants.
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Definition 5.7 Distance in Rn

If x and y are two vectors in Rn, we define the distance d(x, y) between x and y by

d(x, y) = ‖x−y‖

w
v−w

v

The motivation again comes from R3 as is clear in the diagram. This
distance function has all the intuitive properties of distance in R3, includ-
ing another version of the triangle inequality.

Theorem 5.3.3

If x, y, and z are three vectors in Rn we have:

1. d(x, y)≥ 0 for all x and y.

2. d(x, y) = 0 if and only if x = y.

3. d(x, y) = d(y, x) for all x and y .

4. d(x, z)≤ d(x, y)+d(y, z)for all x, y, and z. Triangle inequality.

Proof. (1) and (2) restate part (5) of Theorem 5.3.1 because d(x, y) = ‖x− y‖, and (3) follows because
‖u‖= ‖−u‖ for every vector u in Rn. To prove (4) use the Corollary to Theorem 5.3.2:

d(x, z) = ‖x− z‖= ‖(x−y)+(y− z)‖
≤ ‖(x−y)‖+‖(y− z)‖= d(x, y)+d(y, z)

Orthogonal Sets and the Expansion Theorem

Definition 5.8 Orthogonal and Orthonormal Sets

We say that two vectors x and y in Rn are orthogonal if x ·y = 0, extending the terminology in R3

(See Theorem 4.2.3). More generally, a set {x1, x2, . . . , xk} of vectors in Rn is called an
orthogonal set if

xi ·x j = 0 for all i 6= j and xi 6= 0 for all i10

Note that {x} is an orthogonal set if x 6= 0. A set {x1, x2, . . . , xk} of vectors in Rn is called
orthonormal if it is orthogonal and, in addition, each xi is a unit vector:

‖xi‖= 1 for each i.

10The reason for insisting that orthogonal sets consist of nonzero vectors is that we will be primarily concerned with orthog-
onal bases.
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Example 5.3.4

The standard basis {e1, e2, . . . , en} is an orthonormal set in Rn.

The routine verification is left to the reader, as is the proof of:

Example 5.3.5

If {x1, x2, . . . , xk} is orthogonal, so also is {a1x1, a2x2, . . . , akxk} for any nonzero scalars ai.

If x 6= 0, it follows from item (6) of Theorem 5.3.1 that 1
‖x‖x is a unit vector, that is it has length 1.

Definition 5.9 Normalizing an Orthogonal Set

Hence if {x1, x2, . . . , xk} is an orthogonal set, then { 1
‖x1‖x1, 1

‖x2‖x2, · · · , 1
‖xk‖xk} is an

orthonormal set, and we say that it is the result of normalizing the orthogonal set {x1, x2, · · · , xk}.

Example 5.3.6

If f1 =




1
1
1
−1


, f2 =




1
0
1
2


, f3 =




−1
0
1
0


, and f4 =




−1
3
−1

1


 then {f1, f2, f3, f4} is an orthogonal

set in R4 as is easily verified. After normalizing, the corresponding orthonormal set is
{1

2f1, 1√
6
f2, 1√

2
f3, 1

2
√

3
f4}

v+w

v

w
The most important result about orthogonality is Pythagoras’ theorem.

Given orthogonal vectors v and w in R3, it asserts that

‖v+w‖2 = ‖v‖2 +‖w‖2

as in the diagram. In this form the result holds for any orthogonal set in Rn.

Theorem 5.3.4: Pythagoras’ Theorem

If {x1, x2, . . . , xk} is an orthogonal set in Rn, then

‖x1 +x2 + · · ·+xk‖2 = ‖x1‖2 +‖x2‖2 + · · ·+‖xk‖2.

Proof. The fact that xi ·x j = 0 whenever i 6= j gives
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‖x1 +x2 + · · ·+xk‖2 = (x1 +x2 + · · ·+xk) · (x1 +x2 + · · ·+xk)

= (x1 ·x1 +x2 ·x2 + · · ·+xk ·xk)+∑
i 6= j

xi ·x j

= ‖x1‖2 +‖x2‖2 + · · ·+‖xk‖2 +0

This is what we wanted.

If v and w are orthogonal, nonzero vectors in R3, then they are certainly not parallel, and so are linearly
independent Example 5.2.7. The next theorem gives a far-reaching extension of this observation.

Theorem 5.3.5

Every orthogonal set in Rn is linearly independent.

Proof. Let {x1, x2, . . . , xk} be an orthogonal set in Rn and suppose a linear combination vanishes, say:
t1x1 + t2x2 + · · ·+ tkxk = 0. Then

0 = x1 ·0 = x1 · (t1x1 + t2x2 + · · ·+ tkxk)

= t1(x1 ·x1)+ t2(x1 ·x2)+ · · ·+ tk(x1 ·xk)

= t1‖x1‖2 + t2(0)+ · · ·+ tk(0)

= t1‖x1‖2

Since ‖x1‖2 6= 0, this implies that t1 = 0. Similarly ti = 0 for each i.

Theorem 5.3.5 suggests considering orthogonal bases for Rn, that is orthogonal sets that span Rn.
These turn out to be the best bases in the sense that, when expanding a vector as a linear combination of
the basis vectors, there are explicit formulas for the coefficients.

Theorem 5.3.6: Expansion Theorem

Let {f1, f2, . . . , fm} be an orthogonal basis of a subspace U of Rn. If x is any vector in U , we have

x =
(

x·f1
‖f1‖2

)
f1 +

(
x·f2
‖f2‖2

)
f1 + · · ·+

(
x·fm

‖fm‖2

)
fm

Proof. Since {f1, f2, . . . , fm} spans U , we have x = t1f1+ t2f2+ · · ·+ tmfm where the ti are scalars. To find
t1 we take the dot product of both sides with f1:

x · f1 = (t1f1 + t2f2 + · · ·+ tmfm) · f1

= t1(f1 · f1)+ t2(f2 · f1)+ · · ·+ tm(fm · f1)

= t1‖f1‖2 + t2(0)+ · · ·+ tm(0)

= t1‖f1‖2
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Since f1 6= 0, this gives t1 =
x·f1
‖f1‖2 . Similarly, ti =

x·fi

‖fi‖2 for each i.

The expansion in Theorem 5.3.6 of x as a linear combination of the orthogonal basis {f1, f2, . . . , fm} is
called the Fourier expansion of x, and the coefficients t1 =

x·fi

‖fi‖2 are called the Fourier coefficients. Note

that if {f1, f2, . . . , fm} is actually orthonormal, then ti = x · fi for each i. We will have a great deal more to
say about this in Section 10.5.

Example 5.3.7

Expand x = (a, b, c, d) as a linear combination of the orthogonal basis {f1, f2, f3, f4} of R4 given
in Example 5.3.6.

Solution. We have f1 = (1, 1, 1, −1), f2 = (1, 0, 1, 2), f3 = (−1, 0, 1, 0), and
f4 = (−1, 3, −1, 1) so the Fourier coefficients are

t1 =
x·f1
‖f1‖2 = 1

4(a+b+ c+d) t3 =
x·f3
‖f3‖2 =

1
2(−a+ c)

t2 =
x·f2
‖f2‖2 = 1

6(a+ c+2d) t4 =
x·f4
‖f4‖2 =

1
12(−a+3b− c+d)

The reader can verify that indeed x = t1f1 + t2f2 + t3f3 + t4f4.

A natural question arises here: Does every subspace U of Rn have an orthogonal basis? The answer is
“yes”; in fact, there is a systematic procedure, called the Gram-Schmidt algorithm, for turning any basis
of U into an orthogonal one. This leads to a definition of the projection onto a subspace U that generalizes
the projection along a vector used in R2 and R3. All this is discussed in Section 8.1.

Exercises for 5.3

We often write vectors in Rn as row n-tuples.

Exercise 5.3.1 Obtain orthonormal bases of R3 by nor-
malizing the following.

a. {(1, −1, 2), (0, 2, 1), (5, 1, −2)}

b. {(1, 1, 1), (4, 1, −5), (2, −3, 1)}

Exercise 5.3.2 In each case, show that the set of vectors
is orthogonal in R4.

a. {(1, −1, 2, 5), (4, 1, 1, −1), (−7, 28, 5, 5)}

b. {(2, −1, 4, 5), (0, −1, 1, −1), (0, 3, 2, −1)}

Exercise 5.3.3 In each case, show that B is an or-
thogonal basis of R3 and use Theorem 5.3.6 to expand
x = (a, b, c) as a linear combination of the basis vectors.

a. B = {(1, −1, 3), (−2, 1, 1), (4, 7, 1)}

b. B = {(1, 0, −1), (1, 4, 1), (2, −1, 2)}

c. B = {(1, 2, 3), (−1, −1, 1), (5, −4, 1)}

d. B = {(1, 1, 1), (1, −1, 0), (1, 1, −2)}

Exercise 5.3.4 In each case, write x as a linear combi-
nation of the orthogonal basis of the subspace U .

a. x=(13, −20, 15); U = span{(1, −2, 3), (−1, 1, 1)}
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b. x = (14, 1, −8, 5);
U = span{(2, −1, 0, 3), (2, 1, −2, −1)}

Exercise 5.3.5 In each case, find all (a, b, c, d) in R4

such that the given set is orthogonal.

a. {(1, 2, 1, 0), (1, −1, 1, 3), (2, −1, 0, −1),
(a, b, c, d)}

b. {(1, 0, −1, 1), (2, 1, 1, −1), (1, −3, 1, 0),
(a, b, c, d)}

Exercise 5.3.6 If ‖x‖= 3, ‖y‖= 1, and x ·y =−2, com-
pute:

‖3x−5y‖a. ‖2x+7y‖b.

(3x−y) · (2y−x)c. (x−2y) · (3x+5y)d.

Exercise 5.3.7 In each case either show that the state-
ment is true or give an example showing that it is false.

a. Every independent set in Rn is orthogonal.

b. If {x, y} is an orthogonal set in Rn, then {x, x+y}
is also orthogonal.

c. If {x, y} and {z, w} are both orthogonal in Rn,
then {x, y, z, w} is also orthogonal.

d. If {x1, x2} and {y1, y2, y3} are both or-
thogonal and xi · y j = 0 for all i and j, then
{x1, x2, y1, y2, y3} is orthogonal.

e. If {x1, x2, . . . , xn} is orthogonal in Rn, then
Rn = span{x1, x2, . . . , xn}.

f. If x 6= 0 in Rn, then {x} is an orthogonal set.

Exercise 5.3.8 Let v denote a nonzero vector in Rn.

a. Show that P = {x in Rn | x · v = 0} is a subspace
of Rn.

b. Show that Rv = {tv | t in R} is a subspace of Rn.

c. Describe P and Rv geometrically when n = 3.

Exercise 5.3.9 If A is an m×n matrix with orthonormal
columns, show that AT A = In. [Hint: If c1, c2, . . . , cn are
the columns of A, show that column j of AT A has entries
c1 · c j, c2 · c j, . . . , cn · c j].

Exercise 5.3.10 Use the Cauchy inequality to show that√
xy ≤ 1

2(x+ y) for all x ≥ 0 and y ≥ 0. Here
√

xy and

1
2 (x+ y) are called, respectively, the geometric mean and
arithmetic mean of x and y.

[Hint: Use x =

[ √
x√
y

]
and y =

[ √
y√
x

]
.]

Exercise 5.3.11 Use the Cauchy inequality to prove
that:

a. r1 + r2+ · · ·+ rn ≤ n(r2
1 + r2

2 + · · ·+ r2
n) for all ri in

R and all n≥ 1.

b. r1r2 + r1r3 + r2r3 ≤ r2
1 + r2

2 + r2
3 for all r1, r2, and

r3 in R. [Hint: See part (a).]

Exercise 5.3.12

a. Show that x and y are orthogonal in Rn if and only
if ‖x+y‖= ‖x−y‖.

b. Show that x+ y and x− y are orthogonal in Rn if
and only if ‖x‖= ‖y‖.

Exercise 5.3.13

a. Show that ‖x+y‖2 = ‖x‖2 +‖y‖2 if and only if x

is orthogonal to y.

b. If x =

[
1
1

]
, y =

[
1
0

]
and z =

[
−2

3

]
, show

that ‖x+y+ z‖2 = ‖x‖2 +‖y‖2 +‖z‖2 but
x ·y 6= 0, x · z 6= 0, and y · z 6= 0.

Exercise 5.3.14

a. Show that x ·y = 1
4 [‖x+y‖2−‖x−y‖2] for all x,

y in Rn.

b. Show that ‖x‖2 +‖y‖2 = 1
2

[
‖x+y‖2 +‖x−y‖2

]

for all x, y in Rn.

Exercise 5.3.15 If A is n×n, show that every eigenvalue
of AT A is nonnegative. [Hint: Compute ‖Ax‖2 where x

is an eigenvector.]

Exercise 5.3.16 If Rn = span{x1, . . . , xm} and
x·xi = 0 for all i, show that x= 0. [Hint: Show ‖x‖= 0.]

Exercise 5.3.17 If Rn = span {x1, . . . , xm} and x ·xi =
y ·xi for all i, show that x = y. [Hint: Exercise 5.3.16]

Exercise 5.3.18 Let {e1, . . . , en} be an orthogonal basis
of Rn. Given x and y in Rn, show that

x ·y = (x·e1)(y·e1)
‖e1‖2 + · · ·+ (x·en)(y·en)

‖en‖2
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5.4 Rank of a Matrix

In this section we use the concept of dimension to clarify the definition of the rank of a matrix given in
Section 1.2, and to study its properties. This requires that we deal with rows and columns in the same way.
While it has been our custom to write the n-tuples in Rn as columns, in this section we will frequently
write them as rows. Subspaces, independence, spanning, and dimension are defined for rows using matrix
operations, just as for columns. If A is an m×n matrix, we define:

Definition 5.10 Column and Row Space of a Matrix

The column space, col A, of A is the subspace of Rm spanned by the columns of A.
The row space, row A, of A is the subspace of Rn spanned by the rows of A.

Much of what we do in this section involves these subspaces. We begin with:

Lemma 5.4.1

Let A and B denote m×n matrices.

1. If A→ B by elementary row operations, then row A = row B.

2. If A→ B by elementary column operations, then col A = col B.

Proof. We prove (1); the proof of (2) is analogous. It is enough to do it in the case when A→ B by a single
row operation. Let R1, R2, . . . , Rm denote the rows of A. The row operation A→ B either interchanges
two rows, multiplies a row by a nonzero constant, or adds a multiple of a row to a different row. We leave
the first two cases to the reader. In the last case, suppose that a times row p is added to row q where p < q.
Then the rows of B are R1, . . . , Rp, . . . , Rq +aRp, . . . , Rm, and Theorem 5.1.1 shows that

span{R1, . . . , Rp, . . . , Rq, . . . , Rm}= span{R1, . . . , Rp, . . . , Rq +aRp, . . . , Rm}

That is, row A = row B.

If A is any matrix, we can carry A→ R by elementary row operations where R is a row-echelon matrix.
Hence row A = row R by Lemma 5.4.1; so the first part of the following result is of interest.

Lemma 5.4.2

If R is a row-echelon matrix, then

1. The nonzero rows of R are a basis of row R.

2. The columns of R containing leading ones are a basis of col R.

Proof. The rows of R are independent by Example 5.2.6, and they span row R by definition. This proves
(1).
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Let c j1 , c j2 , . . . , c jr denote the columns of R containing leading 1s. Then {c j1 , c j2 , . . . , c jr} is
independent because the leading 1s are in different rows (and have zeros below and to the left of them).
Let U denote the subspace of all columns in Rm in which the last m−r entries are zero. Then dim U = r (it
is just Rr with extra zeros). Hence the independent set {c j1 , c j2 , . . . , c jr} is a basis of U by Theorem 5.2.7.
Since each c ji is in col R, it follows that col R =U , proving (2).

With Lemma 5.4.2 we can fill a gap in the definition of the rank of a matrix given in Chapter 1. Let A

be any matrix and suppose A is carried to some row-echelon matrix R by row operations. Note that R is
not unique. In Section 1.2 we defined the rank of A, denoted rank A, to be the number of leading 1s in R,
that is the number of nonzero rows of R. The fact that this number does not depend on the choice of R was
not proved in Section 1.2. However part 1 of Lemma 5.4.2 shows that

rank A = dim ( row A)

and hence that rank A is independent of R.

Lemma 5.4.2 can be used to find bases of subspaces of Rn (written as rows). Here is an example.

Example 5.4.1

Find a basis of U = span{(1, 1, 2, 3), (2, 4, 1, 0), (1, 5, −4, −9)}.

Solution. U is the row space of




1 1 2 3
2 4 1 0
1 5 −4 −9


. This matrix has row-echelon form




1 1 2 3
0 1 −3

2 −3
0 0 0 0


, so {(1, 1, 2, 3), (0, 1, −3

2 , −3)} is basis of U by Lemma 5.4.2.

Note that {(1, 1, 2, 3), (0, 2, −3, −6)} is another basis that avoids fractions.

Lemmas 5.4.1 and 5.4.2 are enough to prove the following fundamental theorem.

Theorem 5.4.1: Rank Theorem

Let A denote any m×n matrix of rank r. Then

dim (col A) = dim ( row A) = r

Moreover, if A is carried to a row-echelon matrix R by row operations, then

1. The r nonzero rows of R are a basis of row A.

2. If the leading 1s lie in columns j1, j2, . . . , jr of R, then columns j1, j2, . . . , jr of A are a
basis of col A.

Proof. We have row A = row R by Lemma 5.4.1, so (1) follows from Lemma 5.4.2. Moreover, R = UA

for some invertible matrix U by Theorem 2.5.1. Now write A =
[

c1 c2 . . . cn

]
where c1, c2, . . . , cn

are the columns of A. Then

R =UA =U
[

c1 c2 · · · cn

]
=
[

Uc1 Uc2 · · · Ucn

]
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Thus, in the notation of (2), the set B = {Uc j1 , Uc j2 , . . . , Uc jr} is a basis of col R by Lemma 5.4.2. So, to
prove (2) and the fact that dim (col A) = r, it is enough to show that D = {c j1 , c j2 , . . . , c jr} is a basis of
col A. First, D is linearly independent because U is invertible (verify), so we show that, for each j, column
c j is a linear combination of the c ji . But Uc j is column j of R, and so is a linear combination of the Uc ji ,
say Uc j = a1Uc j1 +a2Uc j2 + · · ·+arUc jr where each ai is a real number.

Since U is invertible, it follows that c j = a1c j1 +a2c j2 + · · ·+arc jr and the proof is complete.

Example 5.4.2

Compute the rank of A =




1 2 2 −1
3 6 5 0
1 2 1 2


 and find bases for row A and col A.

Solution. The reduction of A to row-echelon form is as follows:



1 2 2 −1
3 6 5 0
1 2 1 2


→




1 2 2 −1
0 0 −1 3
0 0 −1 3


→




1 2 2 −1
0 0 −1 3
0 0 0 0




Hence rank A = 2, and {
[

1 2 2 −1
]

,
[

0 0 1 −3
]
} is a basis of row A by Lemma 5.4.2.

Since the leading 1s are in columns 1 and 3 of the row-echelon matrix, Theorem 5.4.1 shows that

columns 1 and 3 of A are a basis








1
3
1


 ,




2
5
1





 of col A.

Theorem 5.4.1 has several important consequences. The first, Corollary 5.4.1 below, follows because
the rows of A are independent (respectively span row A) if and only if their transposes are independent
(respectively span col A).

Corollary 5.4.1

If A is any matrix, then rank A = rank (AT ).

If A is an m× n matrix, we have col A ⊆ Rm and row A ⊆ Rn. Hence Theorem 5.2.8 shows that
dim (col A)≤ dim (Rm) = m and dim ( row A)≤ dim (Rn) = n. Thus Theorem 5.4.1 gives:

Corollary 5.4.2

If A is an m×n matrix, then rank A≤ m and rank A≤ n.

Corollary 5.4.3

rank A = rank (UA) = rank (AV) whenever U and V are invertible.
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Proof. Lemma 5.4.1 gives rank A = rank (UA). Using this and Corollary 5.4.1 we get

rank (AV) = rank (AV)T = rank (V T AT ) = rank (AT ) = rank A

The next corollary requires a preliminary lemma.

Lemma 5.4.3

Let A, U , and V be matrices of sizes m×n, p×m, and n×q respectively.

1. col (AV)⊆ col A, with equality if VV ′ = In for some V ′.

2. row (UA)⊆ row A, with equality if U ′U = Im for some U ′.

Proof. For (1), write V =
[
v1, v2, . . . , vq

]
where v j is column j of V . Then we have

AV =
[
Av1, Av2, . . . , Avq

]
, and each Av j is in col A by Definition 2.4. It follows that col (AV) ⊆ col A.

If VV ′ = In, we obtain col A = col [(AV )V ′]⊆ col (AV) in the same way. This proves (1).

As to (2), we have col
[
(UA)T

]
= col (ATUT ) ⊆ col (AT ) by (1), from which row (UA)⊆ row A. If

U ′U = Im, this is equality as in the proof of (1).

Corollary 5.4.4

If A is m×n and B is n×m, then rank AB≤ rank A and rank AB≤ rank B.

Proof. By Lemma 5.4.3, col (AB)⊆ col A and row (BA)⊆ row A, so Theorem 5.4.1 applies.

In Section 5.1 we discussed two other subspaces associated with an m× n matrix A: the null space
null (A) and the image space im (A)

null (A) = {x in Rn | Ax = 0} and im (A) = {Ax | x in Rn}

Using rank, there are simple ways to find bases of these spaces. If A has rank r, we have im (A) = col (A)
by Example 5.1.8, so dim [ im (A)]= dim [col (A)]= r. Hence Theorem 5.4.1 provides a method of finding
a basis of im (A). This is recorded as part (2) of the following theorem.

Theorem 5.4.2

Let A denote an m×n matrix of rank r. Then

1. The n− r basic solutions to the system Ax = 0 provided by the gaussian algorithm are a
basis of null (A), so dim [null (A)] = n− r.

2. Theorem 5.4.1 provides a basis of im (A) = col (A), and dim [ im (A)] = r.

Proof. It remains to prove (1). We already know (Theorem 2.2.1) that null (A) is spanned by the n− r

basic solutions of Ax = 0. Hence using Theorem 5.2.7, it suffices to show that dim [null (A)] = n− r. So
let {x1, . . . , xk} be a basis of null (A), and extend it to a basis {x1, . . . , xk, xk+1, . . . , xn} of Rn (by
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Theorem 5.2.6). It is enough to show that {Axk+1, . . . , Axn} is a basis of im (A); then n− k = r by the
above and so k = n− r as required.

Spanning. Choose Ax in im (A), x in Rn, and write x = a1x1+ · · ·+akxk+ak+1xk+1+ · · ·+anxn where
the ai are in R. Then Ax = ak+1Axk+1 + · · ·+anAxn because {x1, . . . , xk} ⊆ null (A).

Independence. Let tk+1Axk+1 + · · ·+ tnAxn = 0, ti in R. Then tk+1xk+1 + · · ·+ tnxn is in null A, so
tk+1xk+1 + · · ·+ tnxn = t1x1 + · · ·+ tkxk for some t1, . . . , tk in R. But then the independence of the xi

shows that ti = 0 for every i.

Example 5.4.3

If A =




1 −2 1 1
−1 2 0 1

2 −4 1 0


, find bases of null (A) and im (A), and so find their dimensions.

Solution. If x is in null (A), then Ax = 0, so x is given by solving the system Ax = 0. The
reduction of the augmented matrix to reduced form is




1 −2 1 1 0
−1 2 0 1 0

2 −4 1 0 0


→




1 −2 0 −1 0
0 0 1 2 0
0 0 0 0 0




Hence r = rank (A) = 2. Here, im (A) = col (A) has basis








1
−1

2


 ,




1
0
1





 by Theorem 5.4.1

because the leading 1s are in columns 1 and 3. In particular, dim [ im (A)] = 2 = r as in
Theorem 5.4.2.
Turning to null (A), we use gaussian elimination. The leading variables are x1 and x3, so the
nonleading variables become parameters: x2 = s and x4 = t. It follows from the reduced matrix
that x1 = 2s+ t and x3 =−2t, so the general solution is

x =




x1

x2

x3

x4


=




2s+ t

s

−2t

t


= sx1 + tx2 where x1 =




2
1
0
0


 , and x2 =




1
0
−2

1


 .

Hence null (A). But x1 and x2 are solutions (basic), so

null (A) = span{x1, x2}

However Theorem 5.4.2 asserts that {x1, x2} is a basis of null (A). (In fact it is easy to verify
directly that {x1, x2} is independent in this case.) In particular, dim [null (A)] = 2 = n− r, as
Theorem 5.4.2 asserts.

Let A be an m×n matrix. Corollary 5.4.2 of Theorem 5.4.1 asserts that rank A≤m and rank A≤ n, and
it is natural to ask when these extreme cases arise. If c1, c2, . . . , cn are the columns of A, Theorem 5.2.2
shows that {c1, c2, . . . , cn} spans Rm if and only if the system Ax = b is consistent for every b in Rm, and
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that {c1, c2, . . . , cn} is independent if and only if Ax = 0, x in Rn, implies x = 0. The next two useful
theorems improve on both these results, and relate them to when the rank of A is n or m.

Theorem 5.4.3

The following are equivalent for an m×n matrix A:

1. rank A = n.

2. The rows of A span Rn.

3. The columns of A are linearly independent in Rm.

4. The n×n matrix AT A is invertible.

5. CA = In for some n×m matrix C.

6. If Ax = 0, x in Rn, then x = 0.

Proof. (1)⇒ (2). We have row A ⊆ Rn, and dim ( row A) = n by (1), so row A = Rn by Theorem 5.2.8.
This is (2).

(2)⇒ (3). By (2), row A = Rn, so rank A = n. This means dim (col A) = n. Since the n columns of
A span col A, they are independent by Theorem 5.2.7.

(3)⇒ (4). If (AT A)x = 0, x in Rn, we show that x = 0 (Theorem 2.4.5). We have

‖Ax‖2 = (Ax)T Ax = xT AT Ax = xT 0 = 0

Hence Ax = 0, so x = 0 by (3) and Theorem 5.2.2.

(4)⇒ (5). Given (4), take C = (AT A)−1AT .

(5)⇒ (6). If Ax = 0, then left multiplication by C (from (5)) gives x = 0.

(6) ⇒ (1). Given (6), the columns of A are independent by Theorem 5.2.2. Hence dim (col A) = n,
and (1) follows.

Theorem 5.4.4

The following are equivalent for an m×n matrix A:

1. rank A = m.

2. The columns of A span Rm.

3. The rows of A are linearly independent in Rn.

4. The m×m matrix AAT is invertible.

5. AC = Im for some n×m matrix C.

6. The system Ax = b is consistent for every b in Rm.
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Proof. (1)⇒ (2). By (1), dim (col A = m, so col A = Rm by Theorem 5.2.8.

(2)⇒ (3). By (2), col A = Rm, so rank A = m. This means dim ( row A) = m. Since the m rows of A

span row A, they are independent by Theorem 5.2.7.

(3) ⇒ (4). We have rank A = m by (3), so the n×m matrix AT has rank m. Hence applying Theo-
rem 5.4.3 to AT in place of A shows that (AT )T AT is invertible, proving (4).

(4)⇒ (5). Given (4), take C = AT (AAT )
−1 in (5).

(5)⇒ (6). Comparing columns in AC = Im gives Ac j = e j for each j, where c j and e j denote column j

of C and Im respectively. Given b inRm, write b=∑m
j=1 r je j, r j in R. Then Ax=b holds with x=∑m

j=1 r jc j

as the reader can verify.

(6)⇒ (1). Given (6), the columns of A span Rm by Theorem 5.2.2. Thus col A = Rm and (1) follows.

Example 5.4.4

Show that

[
3 x+ y+ z

x+ y+ z x2 + y2 + z2

]
is invertible if x, y, and z are not all equal.

Solution. The given matrix has the form AT A where A =




1 x

1 y

1 z


 has independent columns

because x, y, and z are not all equal (verify). Hence Theorem 5.4.3 applies.

Theorem 5.4.3 and Theorem 5.4.4 relate several important properties of an m× n matrix A to the
invertibility of the square, symmetric matrices AT A and AAT . In fact, even if the columns of A are not
independent or do not span Rm, the matrices AT A and AAT are both symmetric and, as such, have real
eigenvalues as we shall see. We return to this in Chapter 7.

Exercises for 5.4

Exercise 5.4.1 In each case find bases for the row and
column spaces of A and determine the rank of A.




2 −4 6 8
2 −1 3 2
4 −5 9 10
0 −1 1 2


a.




2 −1 1
−2 1 1

4 −2 3
−6 3 0


b.




1 −1 5 −2 2
2 −2 −2 5 1
0 0 −12 9 −3
−1 1 7 −7 1


c.

[
1 2 −1 3
−3 −6 3 −2

]
d.

Exercise 5.4.2 In each case find a basis of the subspace
U .

a. U = span{(1, −1, 0, 3), (2, 1, 5, 1), (4, −2, 5, 7)}

b. U = span{(1, −1, 2, 5, 1), (3, 1, 4, 2, 7),
(1, 1, 0, 0, 0), (5, 1, 6, 7, 8)}

c. U = span








1
1
0
0


 ,




0
0
1
1


 ,




1
0
1
0


 ,




0
1
0
1
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d.

U = span








1
5
−6


 ,




2
6
−8


 ,




3
7

−10


 ,




4
8

12







Exercise 5.4.3

a. Can a 3×4 matrix have independent columns?
Independent rows? Explain.

b. If A is 4×3 and rank A = 2, can A have indepen-
dent columns? Independent rows? Explain.

c. If A is an m×n matrix and rank A = m, show that
m≤ n.

d. Can a nonsquare matrix have its rows independent
and its columns independent? Explain.

e. Can the null space of a 3× 6 matrix have dimen-
sion 2? Explain.

f. Suppose that A is 5×4 and null (A)=Rx for some
column x 6= 0. Can dim ( im A) = 2?

Exercise 5.4.4 If A is m×n show that

col (A) = {Ax | x in Rn}

Exercise 5.4.5 If A is m× n and B is n×m, show that
AB = 0 if and only if col B⊆ null A.

Exercise 5.4.6 Show that the rank does not change when
an elementary row or column operation is performed on
a matrix.

Exercise 5.4.7 In each case find a basis of the null
space of A. Then compute rank A and verify (1) of The-
orem 5.4.2.

a. A =




3 1 1
2 0 1
4 2 1
1 −1 1




b. A =




3 5 5 2 0
1 0 2 2 1
1 1 1 −2 −2
−2 0 −4 −4 −2




Exercise 5.4.8 Let A = cr where c 6= 0 is a column in
Rm and r 6= 0 is a row in Rn.

a. Show that col A = span{c} and
row A = span{r}.

b. Find dim (null A).

c. Show that null A = null r.

Exercise 5.4.9 Let A be m × n with columns
c1, c2, . . . , cn.

a. If {c1, . . . , cn} is independent, show null A= {0}.

b. If null A = {0}, show that {c1, . . . , cn} is inde-
pendent.

Exercise 5.4.10 Let A be an n×n matrix.

a. Show that A2 = 0 if and only if col A⊆ null A.

b. Conclude that if A2 = 0, then rank A≤ n
2 .

c. Find a matrix A for which col A = null A.

Exercise 5.4.11 Let B be m× n and let AB be k× n. If
rank B= rank (AB), show that null B= null (AB). [Hint:
Theorem 5.4.1.]

Exercise 5.4.12 Give a careful argument why
rank (AT ) = rank A.

Exercise 5.4.13 Let A be an m × n matrix with
columns c1, c2, . . . , cn. If rank A = n, show that
{AT c1, AT c2, . . . , AT cn} is a basis of Rn.

Exercise 5.4.14 If A is m×n and b is m×1, show that
b lies in the column space of A if and only if
rank [A b] = rank A.

Exercise 5.4.15

a. Show that Ax = b has a solution if and only if
rank A = rank [A b]. [Hint: Exercises 5.4.12 and
5.4.14.]

b. If Ax = b has no solution, show that
rank [A b] = 1+ rank A.

Exercise 5.4.16 Let X be a k×m matrix. If I is the
m×m identity matrix, show that I +XT X is invertible.

[Hint: I +XT X = AT A where A =

[
I

X

]
in block

form.]
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Exercise 5.4.17 If A is m× n of rank r, show that A

can be factored as A = PQ where P is m× r with r in-
dependent columns, and Q is r× n with r independent

rows. [Hint: Let UAV =

[
Ir 0
0 0

]
by Theorem 2.5.3,

and write U−1 =

[
U1 U2

U3 U4

]
and V−1 =

[
V1 V2

V3 V4

]
in

block form, where U1 and V1 are r× r.]

Exercise 5.4.18

a. Show that if A and B have independent columns,
so does AB.

b. Show that if A and B have independent rows, so
does AB.

Exercise 5.4.19 A matrix obtained from A by deleting
rows and columns is called a submatrix of A. If A has an
invertible k× k submatrix, show that rank A ≥ k. [Hint:
Show that row and column operations carry

A→
[

Ik P

0 Q

]
in block form.] Remark: It can be shown

that rank A is the largest integer r such that A has an in-
vertible r× r submatrix.

5.5 Similarity and Diagonalization

In Section 3.3 we studied diagonalization of a square matrix A, and found important applications (for
example to linear dynamical systems). We can now utilize the concepts of subspace, basis, and dimension
to clarify the diagonalization process, reveal some new results, and prove some theorems which could not
be demonstrated in Section 3.3.

Before proceeding, we introduce a notion that simplifies the discussion of diagonalization, and is used
throughout the book.

Similar Matrices

Definition 5.11 Similar Matrices

If A and B are n×n matrices, we say that A and B are similar, and write A∼ B, if B = P−1AP for
some invertible matrix P.

Note that A ∼ B if and only if B = QAQ−1 where Q is invertible (write P−1 = Q). The language of
similarity is used throughout linear algebra. For example, a matrix A is diagonalizable if and only if it is
similar to a diagonal matrix.

If A∼ B, then necessarily B∼ A. To see why, suppose that B = P−1AP. Then A = PBP−1 = Q−1BQ

where Q = P−1 is invertible. This proves the second of the following properties of similarity (the others
are left as an exercise):

1. A∼ A for all square matrices A.

2. If A∼ B, then B∼ A. (5.2)

3. If A∼ B and B∼ A, then A∼C.

These properties are often expressed by saying that the similarity relation∼ is an equivalence relation on
the set of n×n matrices. Here is an example showing how these properties are used.
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Example 5.5.1

If A is similar to B and either A or B is diagonalizable, show that the other is also diagonalizable.

Solution. We have A∼ B. Suppose that A is diagonalizable, say A∼ D where D is diagonal. Since
B∼ A by (2) of (5.2), we have B∼ A and A∼ D. Hence B∼ D by (3) of (5.2), so B is
diagonalizable too. An analogous argument works if we assume instead that B is diagonalizable.

Similarity is compatible with inverses, transposes, and powers:

If A∼ B then A−1 ∼ B−1, AT ∼ BT , and Ak ∼ Bk for all integers k ≥ 1.

The proofs are routine matrix computations using Theorem 3.3.1. Thus, for example, if A is diagonaliz-
able, so also are AT , A−1 (if it exists), and Ak (for each k ≥ 1). Indeed, if A ∼ D where D is a diagonal
matrix, we obtain AT ∼ DT , A−1 ∼ D−1, and Ak ∼ Dk, and each of the matrices DT , D−1, and Dk is
diagonal.

We pause to introduce a simple matrix function that will be referred to later.

Definition 5.12 Trace of a Matrix

The trace tr A of an n×n matrix A is defined to be the sum of the main diagonal elements of A.

In other words:
If A =

[
ai j

]
, then tr A = a11 +a22 + · · ·+ann.

It is evident that tr (A+B) = tr A+ tr B and that tr (cA) = c tr A holds for all n×n matrices A and B and
all scalars c. The following fact is more surprising.

Lemma 5.5.1

Let A and B be n×n matrices. Then tr (AB) = tr (BA).

Proof. Write A =
[
ai j

]
and B =

[
bi j

]
. For each i, the (i, i)-entry di of the matrix AB is given as follows:

di = ai1b1i +ai2b2i + · · ·+ainbni = ∑ j ai jb ji. Hence

tr (AB) = d1 +d2 + · · ·+dn = ∑
i

di = ∑
i

(

∑
j

ai jb ji

)

Similarly we have tr (BA) = ∑i(∑ j bi ja ji). Since these two double sums are the same, Lemma 5.5.1 is
proved.

As the name indicates, similar matrices share many properties, some of which are collected in the next
theorem for reference.
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Theorem 5.5.1

If A and B are similar n×n matrices, then A and B have the same determinant, rank, trace,
characteristic polynomial, and eigenvalues.

Proof. Let B = P−1AP for some invertible matrix P. Then we have

det B = det (P−1) det A det P = det A because det (P−1) = 1/ det P

Similarly, rank B = rank (P−1AP) = rank A by Corollary 5.4.3. Next Lemma 5.5.1 gives

tr (P−1AP) = tr
[
P−1(AP)

]
= tr

[
(AP)P−1]= tr A

As to the characteristic polynomial,

cB(x) = det (xI−B) = det{x(P−1IP)−P−1AP}
= det{P−1(xI−A)P}
= det (xI−A)

= cA(x)

Finally, this shows that A and B have the same eigenvalues because the eigenvalues of a matrix are the
roots of its characteristic polynomial.

Example 5.5.2

Sharing the five properties in Theorem 5.5.1 does not guarantee that two matrices are similar. The

matrices A =

[
1 1
0 1

]
and I =

[
1 0
0 1

]
have the same determinant, rank, trace, characteristic

polynomial, and eigenvalues, but they are not similar because P−1IP = I for any invertible matrix
P.

Diagonalization Revisited

Recall that a square matrix A is diagonalizable if there exists an invertible matrix P such that P−1AP = D

is a diagonal matrix, that is if A is similar to a diagonal matrix D. Unfortunately, not all matrices are

diagonalizable, for example

[
1 1
0 1

]
(see Example 3.3.10). Determining whether A is diagonalizable is

closely related to the eigenvalues and eigenvectors of A. Recall that a number λ is called an eigenvalue of
A if Ax = λx for some nonzero column x in Rn, and any such nonzero vector x is called an eigenvector of
A corresponding to λ (or simply a λ -eigenvector of A). The eigenvalues and eigenvectors of A are closely
related to the characteristic polynomial cA(x) of A, defined by

cA(x) = det (xI−A)

If A is n×n this is a polynomial of degree n, and its relationship to the eigenvalues is given in the following
theorem (a repeat of Theorem 3.3.2).
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Theorem 5.5.2

Let A be an n×n matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial cA(x) of A.

2. The λ -eigenvectors x are the nonzero solutions to the homogeneous system

(λ I−A)x = 0

of linear equations with λ I−A as coefficient matrix.

Example 5.5.3

Show that the eigenvalues of a triangular matrix are the main diagonal entries.

Solution. Assume that A is triangular. Then the matrix xI−A is also triangular and has diagonal
entries (x−a11), (x−a22), . . . , (x−ann) where A =

[
ai j

]
. Hence Theorem 3.1.4 gives

cA(x) = (x−a11)(x−a22) · · ·(x−ann)

and the result follows because the eigenvalues are the roots of cA(x).

Theorem 3.3.4 asserts (in part) that an n× n matrix A is diagonalizable if and only if it has n eigen-
vectors x1, . . . , xn such that the matrix P =

[
x1 · · · xn

]
with the xi as columns is invertible. This is

equivalent to requiring that {x1, . . . , xn} is a basis of Rn consisting of eigenvectors of A. Hence we can
restate Theorem 3.3.4 as follows:

Theorem 5.5.3

Let A be an n×n matrix.

1. A is diagonalizable if and only if Rn has a basis {x1, x2, . . . , xn} consisting of eigenvectors
of A.

2. When this is the case, the matrix P =
[

x1 x2 · · · xn

]
is invertible and

P−1AP = diag (λ1, λ2, . . . , λn) where, for each i, λi is the eigenvalue of A corresponding to
xi.

The next result is a basic tool for determining when a matrix is diagonalizable. It reveals an important
connection between eigenvalues and linear independence: Eigenvectors corresponding to distinct eigen-
values are necessarily linearly independent.

Theorem 5.5.4

Let x1, x2, . . . , xk be eigenvectors corresponding to distinct eigenvalues λ1, λ2, . . . , λk of an n×n

matrix A. Then {x1, x2, . . . , xk} is a linearly independent set.
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Proof. We use induction on k. If k = 1, then {x1} is independent because x1 6= 0. In general, suppose
the theorem is true for some k ≥ 1. Given eigenvectors {x1, x2, . . . , xk+1}, suppose a linear combination
vanishes:

t1x1 + t2x2 + · · ·+ tk+1xk+1 = 0 (5.3)

We must show that each ti = 0. Left multiply (5.3) by A and use the fact that Axi = λixi to get

t1λ1x1 + t2λ2x2 + · · ·+ tk+1λk+1xk+1 = 0 (5.4)

If we multiply (5.3) by λ1 and subtract the result from (5.4), the first terms cancel and we obtain

t2(λ2−λ1)x2 + t3(λ3−λ1)x3 + · · ·+ tk+1(λk+1−λ1)xk+1 = 0

Since x2, x3, . . . , xk+1 correspond to distinct eigenvalues λ2, λ3, . . . , λk+1, the set {x2, x3, . . . , xk+1} is
independent by the induction hypothesis. Hence,

t2(λ2−λ1) = 0, t3(λ3−λ1) = 0, . . . , tk+1(λk+1−λ1) = 0

and so t2 = t3 = · · ·= tk+1 = 0 because the λi are distinct. Hence (5.3) becomes t1x1 = 0, which implies
that t1 = 0 because x1 6= 0. This is what we wanted.

Theorem 5.5.4 will be applied several times; we begin by using it to give a useful condition for when
a matrix is diagonalizable.

Theorem 5.5.5

If A is an n×n matrix with n distinct eigenvalues, then A is diagonalizable.

Proof. Choose one eigenvector for each of the n distinct eigenvalues. Then these eigenvectors are inde-
pendent by Theorem 5.5.4, and so are a basis of Rn by Theorem 5.2.7. Now use Theorem 5.5.3.

Example 5.5.4

Show that A =




1 0 0
1 2 3
−1 1 0


 is diagonalizable.

Solution. A routine computation shows that cA(x) = (x−1)(x−3)(x+1) and so has distinct
eigenvalues 1, 3, and −1. Hence Theorem 5.5.5 applies.

However, a matrix can have multiple eigenvalues as we saw in Section 3.3. To deal with this situation,
we prove an important lemma which formalizes a technique that is basic to diagonalization, and which
will be used three times below.
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Lemma 5.5.2

Let {x1, x2, . . . , xk} be a linearly independent set of eigenvectors of an n×n matrix A, extend it to
a basis {x1, x2, . . . , xk, . . . , xn} of Rn, and let

P =
[

x1 x2 · · · xn

]

be the (invertible) n×n matrix with the xi as its columns. If λ1, λ2, . . . , λk are the (not necessarily
distinct) eigenvalues of A corresponding to x1, x2, . . . , xk respectively, then P−1AP has block form

P−1AP =

[
diag (λ1, λ2, . . . , λk) B

0 A1

]

where B has size k× (n− k) and A1 has size (n− k)× (n− k).

Proof. If {e1, e2, . . . , en} is the standard basis of Rn, then

[
e1 e2 . . . en

]
= In = P−1P = P−1 [ x1 x2 · · · xn

]

=
[

P−1x1 P−1x2 · · · P−1xn

]

Comparing columns, we have P−1xi = ei for each 1≤ i≤ n. On the other hand, observe that

P−1AP = P−1A
[

x1 x2 · · · xn

]
=
[
(P−1A)x1 (P−1A)x2 · · · (P−1A)xn

]

Hence, if 1≤ i≤ k, column i of P−1AP is

(P−1A)xi = P−1(λixi) = λi(P
−1xi) = λiei

This describes the first k columns of P−1AP, and Lemma 5.5.2 follows.

Note that Lemma 5.5.2 (with k = n) shows that an n× n matrix A is diagonalizable if Rn has a basis of
eigenvectors of A, as in (1) of Theorem 5.5.3.

Definition 5.13 Eigenspace of a Matrix

If λ is an eigenvalue of an n×n matrix A, define the eigenspace of A corresponding to λ by

Eλ (A) = {x in Rn | Ax = λx}

This is a subspace of Rn and the eigenvectors corresponding to λ are just the nonzero vectors in Eλ (A). In
fact Eλ (A) is the null space of the matrix (λ I−A):

Eλ (A) = {x | (λ I−A)x = 0}= null (λ I−A)

Hence, by Theorem 5.4.2, the basic solutions of the homogeneous system (λ I−A)x = 0 given by the
gaussian algorithm form a basis for Eλ (A). In particular

dim Eλ (A) is the number of basic solutions x of (λ I−A)x = 0 (5.5)
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Now recall (Definition 3.7) that the multiplicity11 of an eigenvalue λ of A is the number of times λ occurs
as a root of the characteristic polynomial cA(x) of A. In other words, the multiplicity of λ is the largest
integer m≥ 1 such that

cA(x) = (x−λ )mg(x)

for some polynomial g(x). Because of (5.5), the assertion (without proof) in Theorem 3.3.5 can be stated
as follows: A square matrix is diagonalizable if and only if the multiplicity of each eigenvalue λ equals
dim [Eλ (A)]. We are going to prove this, and the proof requires the following result which is valid for any

square matrix, diagonalizable or not.

Lemma 5.5.3

Let λ be an eigenvalue of multiplicity m of a square matrix A. Then dim [Eλ (A)]≤ m.

Proof. Write dim [Eλ (A)] = d. It suffices to show that cA(x) = (x−λ )dg(x) for some polynomial g(x),
because m is the highest power of (x−λ ) that divides cA(x). To this end, let {x1, x2, . . . , xd} be a basis
of Eλ (A). Then Lemma 5.5.2 shows that an invertible n×n matrix P exists such that

P−1AP =

[
λ Id B

0 A1

]

in block form, where Id denotes the d × d identity matrix. Now write A′ = P−1AP and observe that
cA′(x) = cA(x) by Theorem 5.5.1. But Theorem 3.1.5 gives

cA(x) = cA′(x) = det (xIn−A′) = det

[
(x−λ )Id −B

0 xIn−d−A1

]

= det [(x−λ )Id] det [(xIn−d−A1)]

= (x−λ )dg(x)

where g(x) = cA1(x). This is what we wanted.

It is impossible to ignore the question when equality holds in Lemma 5.5.3 for each eigenvalue λ . It
turns out that this characterizes the diagonalizable n× n matrices A for which cA(x) factors completely

over R. By this we mean that cA(x) = (x− λ1)(x− λ2) · · ·(x− λn), where the λi are real numbers (not
necessarily distinct); in other words, every eigenvalue of A is real. This need not happen (consider A =[

0 −1
1 0

]
), and we investigate the general case below.

Theorem 5.5.6

The following are equivalent for a square matrix A for which cA(x) factors completely.

1. A is diagonalizable.

2. dim [Eλ (A)] equals the multiplicity of λ for every eigenvalue λ of the matrix A.

11This is often called the algebraic multiplicity of λ .
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Proof. Let A be n×n and let λ1, λ2, . . . , λk be the distinct eigenvalues of A. For each i, let mi denote the
multiplicity of λi and write di = dim

[
Eλi

(A)
]
. Then

cA(x) = (x−λ1)
m1(x−λ2)

m2 . . .(x−λk)
mk

so m1 + · · ·+mk = n because cA(x) has degree n. Moreover, di ≤ mi for each i by Lemma 5.5.3.

(1)⇒ (2). By (1), Rn has a basis of n eigenvectors of A, so let ti of them lie in Eλi
(A) for each i. Since

the subspace spanned by these ti eigenvectors has dimension ti, we have ti≤ di for each i by Theorem 5.2.4.
Hence

n = t1+ · · ·+ tk ≤ d1 + · · ·+dk ≤ m1 + · · ·+mk = n

It follows that d1+ · · ·+dk = m1+ · · ·+mk so, since di ≤ mi for each i, we must have di = mi. This is (2).

(2)⇒ (1). Let Bi denote a basis of Eλi
(A) for each i, and let B = B1∪· · ·∪Bk. Since each Bi contains

mi vectors by (2), and since the Bi are pairwise disjoint (the λi are distinct), it follows that B contains n

vectors. So it suffices to show that B is linearly independent (then B is a basis of Rn). Suppose a linear
combination of the vectors in B vanishes, and let yi denote the sum of all terms that come from Bi. Then yi

lies in Eλi
(A), so the nonzero yi are independent by Theorem 5.5.4 (as the λi are distinct). Since the sum

of the yi is zero, it follows that yi = 0 for each i. Hence all coefficients of terms in yi are zero (because Bi

is independent). Since this holds for each i, it shows that B is independent.

Example 5.5.5

If A =




5 8 16
4 1 8
−4 −4 −11


 and B =




2 1 1
2 1 −2
−1 0 −2


 show that A is diagonalizable but B is not.

Solution. We have cA(x) = (x+3)2(x−1) so the eigenvalues are λ1 =−3 and λ2 = 1. The
corresponding eigenspaces are Eλ1

(A) = span{x1, x2} and Eλ2
(A) = span{x3} where

x1 =



−1

1
0


 , x2 =



−2

0
1


 , x3 =




2
1
−1




as the reader can verify. Since {x1, x2} is independent, we have dim (Eλ1
(A)) = 2 which is the

multiplicity of λ1. Similarly, dim (Eλ2
(A)) = 1 equals the multiplicity of λ2. Hence A is

diagonalizable by Theorem 5.5.6, and a diagonalizing matrix is P =
[

x1 x2 x3
]
.

Turning to B, cB(x) = (x+1)2(x−3) so the eigenvalues are λ1 =−1 and λ2 = 3. The
corresponding eigenspaces are Eλ1

(B) = span{y1} and Eλ2
(B) = span{y2} where

y1 =



−1

2
1


 , y2 =




5
6
−1




Here dim (Eλ1
(B)) = 1 is smaller than the multiplicity of λ1, so the matrix B is not diagonalizable,

again by Theorem 5.5.6. The fact that dim (Eλ1
(B)) = 1 means that there is no possibility of

finding three linearly independent eigenvectors.
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Complex Eigenvalues

All the matrices we have considered have had real eigenvalues. But this need not be the case: The matrix

A =

[
0 −1
1 0

]
has characteristic polynomial cA(x) = x2 + 1 which has no real roots. Nonetheless, this

matrix is diagonalizable; the only difference is that we must use a larger set of scalars, the complex
numbers. The basic properties of these numbers are outlined in Appendix A.

Indeed, nearly everything we have done for real matrices can be done for complex matrices. The
methods are the same; the only difference is that the arithmetic is carried out with complex numbers rather
than real ones. For example, the gaussian algorithm works in exactly the same way to solve systems of
linear equations with complex coefficients, matrix multiplication is defined the same way, and the matrix
inversion algorithm works in the same way.

But the complex numbers are better than the real numbers in one respect: While there are polynomials
like x2 + 1 with real coefficients that have no real root, this problem does not arise with the complex
numbers: Every nonconstant polynomial with complex coefficients has a complex root, and hence factors
completely as a product of linear factors. This fact is known as the fundamental theorem of algebra.12

Example 5.5.6

Diagonalize the matrix A =

[
0 −1
1 0

]
.

Solution. The characteristic polynomial of A is

cA(x) = det (xI−A) = x2 +1 = (x− i)(x+ i)

where i2 =−1. Hence the eigenvalues are λ1 = i and λ2 =−i, with corresponding eigenvectors

x1 =

[
1
−i

]
and x2 =

[
1
i

]
. Hence A is diagonalizable by the complex version of Theorem 5.5.5,

and the complex version of Theorem 5.5.3 shows that P =
[

x1 x2
]
=

[
1 1
−i i

]
is invertible

and P−1AP =

[
λ1 0
0 λ2

]
=

[
i 0
0 −i

]
. Of course, this can be checked directly.

We shall return to complex linear algebra in Section 8.7.

12This was a famous open problem in 1799 when Gauss solved it at the age of 22 in his Ph.D. dissertation.
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Symmetric Matrices13

On the other hand, many of the applications of linear algebra involve a real matrix A and, while A will
have complex eigenvalues by the fundamental theorem of algebra, it is always of interest to know when
the eigenvalues are, in fact, real. While this can happen in a variety of ways, it turns out to hold whenever
A is symmetric. This important theorem will be used extensively later. Surprisingly, the theory of complex

eigenvalues can be used to prove this useful result about real eigenvalues.

Let z denote the conjugate of a complex number z. If A is a complex matrix, the conjugate matrix A

is defined to be the matrix obtained from A by conjugating every entry. Thus, if A =
[
zi j

]
, then A =

[
zi j

]
.

For example,

If A =

[
−i+2 5

i 3+4i

]
then A =

[
i+2 5
−i 3−4i

]

Recall that z+w = z+w and zw = z w hold for all complex numbers z and w. It follows that if A and B

are two complex matrices, then

A+B = A+B, AB = A B and λA = λ A

hold for all complex scalars λ . These facts are used in the proof of the following theorem.

Theorem 5.5.7

Let A be a symmetric real matrix. If λ is any complex eigenvalue of A, then λ is real.14

Proof. Observe that A = A because A is real. If λ is an eigenvalue of A, we show that λ is real by showing
that λ = λ . Let x be a (possibly complex) eigenvector corresponding to λ , so that x 6= 0 and Ax = λx.
Define c = xT x.

If we write x =




z1

z2
...

zn


 where the zi are complex numbers, we have

c = xT x = z1z1 + z2z2 + · · ·+ znzn = |z1|2 + |z2|2 + · · ·+ |zn|2

Thus c is a real number, and c > 0 because at least one of the zi 6= 0 (as x 6= 0). We show that λ = λ by
verifying that λc = λc. We have

λc = λ (xT x) = (λx)T x = (Ax)T x = xT AT x

At this point we use the hypothesis that A is symmetric and real. This means AT = A = A so we continue
the calculation:

13This discussion uses complex conjugation and absolute value. These topics are discussed in Appendix A.
14This theorem was first proved in 1829 by the great French mathematician Augustin Louis Cauchy (1789–1857).
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λc = xT AT x = xT (A x) = xT (Ax) = xT (λx)

= xT (λ x)

= λxT x

= λc

as required.

The technique in the proof of Theorem 5.5.7 will be used again when we return to complex linear algebra
in Section 8.7.

Example 5.5.7

Verify Theorem 5.5.7 for every real, symmetric 2×2 matrix A.

Solution. If A =

[
a b

b c

]
we have cA(x) = x2− (a+ c)x+(ac−b2), so the eigenvalues are given

by λ = 1
2 [(a+ c)±

√
(a+ c)2−4(ac−b2)]. But here

(a+ c)2−4(ac−b2) = (a− c)2 +4b2 ≥ 0

for any choice of a, b, and c. Hence, the eigenvalues are real numbers.

Exercises for 5.5

Exercise 5.5.1 By computing the trace, determinant,
and rank, show that A and B are not similar in each case.

a. A =

[
1 2
2 1

]
, B =

[
1 1
−1 1

]

b. A =

[
3 1
2 −1

]
, B =

[
1 1
2 1

]

c. A =

[
2 1
1 −1

]
, B =

[
3 0
1 −1

]

d. A =

[
3 1
−1 2

]
, B =

[
2 −1
3 2

]

e. A =




2 1 1
1 0 1
1 1 0


, B =




1 −2 1
−2 4 −2
−3 6 −3




f. A =




1 2 −3
1 −1 2
0 3 −5


, B =



−2 1 3

6 −3 −9
0 0 0




Exercise 5.5.2 Show that




1 2 −1 0
2 0 1 1
1 1 0 −1
4 3 0 0


 and




1 −1 3 0
−1 0 1 1

0 −1 4 1
5 −1 −1 −4


 are not similar.

Exercise 5.5.3 If A∼ B, show that:

AT ∼ BTa. A−1 ∼ B−1b.

rA∼ rB for r in Rc. An ∼ Bn for n≥ 1d.
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Exercise 5.5.4 In each case, decide whether the matrix
A is diagonalizable. If so, find P such that P−1AP is di-
agonal.




1 0 0
1 2 1
0 0 1


a.




3 0 6
0 −3 0
5 0 2


b.




3 1 6
2 1 0
−1 0 −3


c.




4 0 0
0 2 2
2 3 1


d.

Exercise 5.5.5 If A is invertible, show that AB is similar
to BA for all B.

Exercise 5.5.6 Show that the only matrix similar to a
scalar matrix A = rI, r in R, is A itself.

Exercise 5.5.7 Let λ be an eigenvalue of A with cor-
responding eigenvector x. If B = P−1AP is similar to A,
show that P−1x is an eigenvector of B corresponding to
λ .

Exercise 5.5.8 If A∼ B and A has any of the following
properties, show that B has the same property.

a. Idempotent, that is A2 = A.

b. Nilpotent, that is Ak = 0 for some k ≥ 1.

c. Invertible.

Exercise 5.5.9 Let A denote an n× n upper triangular
matrix.

a. If all the main diagonal entries of A are distinct,
show that A is diagonalizable.

b. If all the main diagonal entries of A are equal,
show that A is diagonalizable only if it is already

diagonal.

c. Show that




1 0 1
0 1 0
0 0 2


 is diagonalizable but that




1 1 0
0 1 0
0 0 2


 is not diagonalizable.

Exercise 5.5.10 Let A be a diagonalizable n×n matrix
with eigenvalues λ1, λ2, . . . , λn (including multiplici-
ties). Show that:

a. det A = λ1λ2 · · ·λn

b. tr A = λ1 +λ2 + · · ·+λn

Exercise 5.5.11 Given a polynomial p(x) = r0 + r1x+
· · ·+ rnxn and a square matrix A, the matrix p(A) =
r0I + r1A + · · ·+ rnAn is called the evaluation of p(x)
at A. Let B = P−1AP. Show that p(B) = P−1 p(A)P for
all polynomials p(x).

Exercise 5.5.12 Let P be an invertible n× n matrix. If
A is any n×n matrix, write TP(A) = P−1AP. Verify that:

TP(I) = Ia. TP(AB)= TP(A)TP(B)b.

TP(A + B) = TP(A) +
TP(B)

c. TP(rA) = rTP(A)d.

TP(A
k) = [TP(A)]

k for k ≥ 1e.

If A is invertible, TP(A
−1) = [TP(A)]

−1.f.

If Q is invertible, TQ[TP(A)] = TPQ(A).g.

Exercise 5.5.13

a. Show that two diagonalizable matrices are similar
if and only if they have the same eigenvalues with
the same multiplicities.

b. If A is diagonalizable, show that A∼ AT .

c. Show that A∼ AT if A =

[
1 1
0 1

]

Exercise 5.5.14 If A is 2× 2 and diagonalizable, show
that C(A) = {X | XA = AX} has dimension 2 or 4. [Hint:
If P−1AP = D, show that X is in C(A) if and only if
P−1XP is in C(D).]

Exercise 5.5.15 If A is diagonalizable and p(x) is a
polynomial such that p(λ ) = 0 for all eigenvalues λ of
A, show that p(A) = 0 (see Example 3.3.9). In particular,
show cA(A) = 0. [Remark: cA(A) = 0 for all square ma-
trices A—this is the Cayley-Hamilton theorem, see The-
orem 11.1.2.]

Exercise 5.5.16 Let A be n×n with n distinct real eigen-
values. If AC =CA, show that C is diagonalizable.
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Exercise 5.5.17 Let A =




0 a b

a 0 c

b c 0


 and

B =




c a b

a b c

b c a


.

a. Show that x3 − (a2 + b2 + c2)x− 2abc has real
roots by considering A.

b. Show that a2 + b2 + c2 ≥ ab+ ac+ bc by consid-
ering B.

Exercise 5.5.18 Assume the 2×2 matrix A is similar to
an upper triangular matrix. If tr A = 0 = tr A2, show that
A2 = 0.

Exercise 5.5.19 Show that A is similar to AT for all 2×2

matrices A. [Hint: Let A =

[
a b

c d

]
. If c = 0 treat the

cases b = 0 and b 6= 0 separately. If c 6= 0, reduce to the
case c = 1 using Exercise 5.5.12(d).]

Exercise 5.5.20 Refer to Section 3.4 on linear recur-
rences. Assume that the sequence x0, x1, x2, . . . satisfies

xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1

for all n≥ 0. Define

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
r0 r1 r2 · · · rk−1


 , Vn =




xn

xn+1

...
xn+k−1


 .

Then show that:

a. Vn = AnV0 for all n.

b. cA(x) = xk− rk−1xk−1−·· ·− r1x− r0

c. If λ is an eigenvalue of A, the eigenspace Eλ has
dimension 1, and x = (1, λ , λ 2, . . . , λ k−1)T is an
eigenvector. [Hint: Use cA(λ ) = 0 to show that
Eλ = Rx.]

d. A is diagonalizable if and only if the eigenvalues
of A are distinct. [Hint: See part (c) and Theo-
rem 5.5.4.]

e. If λ1, λ2, . . . , λk are distinct real eigenvalues,
there exist constants t1, t2, . . . , tk such that xn =
t1λ n

1 + · · ·+ tkλ n
k holds for all n. [Hint: If D is di-

agonal with λ1, λ2, . . . , λk as the main diagonal
entries, show that An = PDnP−1 has entries that are
linear combinations of λ n

1 , λ n
2 , . . . , λ n

k .]

Exercise 5.5.21 Suppose A is 2× 2 and A2 = 0. If
tr A 6= 0 show that A = 0.

5.6 Best Approximation and Least Squares

Often an exact solution to a problem in applied mathematics is difficult to obtain. However, it is usually
just as useful to find arbitrarily close approximations to a solution. In particular, finding “linear approx-
imations” is a potent technique in applied mathematics. One basic case is the situation where a system
of linear equations has no solution, and it is desirable to find a “best approximation” to a solution to the
system. In this section best approximations are defined and a method for finding them is described. The
result is then applied to “least squares” approximation of data.

Suppose A is an m×n matrix and b is a column in Rm, and consider the system

Ax = b

of m linear equations in n variables. This need not have a solution. However, given any column z ∈ Rn,
the distance ‖b−Az‖ is a measure of how far Az is from b. Hence it is natural to ask whether there is a
column z in Rn that is as close as possible to a solution in the sense that

‖b−Az‖
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is the minimum value of ‖b−Ax‖ as x ranges over all columns in Rn.

The answer is “yes”, and to describe it define

U = {Ax | x lies in Rn}

Az

b b−Az

0
U

This is a subspace of Rn (verify) and we want a vector Az in U as close as
possible to b. That there is such a vector is clear geometrically if n = 3 by
the diagram. In general such a vector Az exists by a general result called
the projection theorem that will be proved in Chapter 8 (Theorem 8.1.3).
Moreover, the projection theorem gives a simple way to compute z because
it also shows that the vector b−Az is orthogonal to every vector Ax in U .
Thus, for all x in Rn,

0 = (Ax) · (b−Az) = (Ax)T (b−Az) = xT AT (b−Az)

= x · [AT (b−Az)]

In other words, the vector AT (b−Az) in Rn is orthogonal to every vector in Rn and so must be zero (being
orthogonal to itself). Hence z satisfies

(AT A)z = AT b

Definition 5.14 Normal Equations

This is a system of linear equations called the normal equations for z.

Note that this system can have more than one solution (see Exercise 5.6.5). However, the n×n matrix AT A

is invertible if (and only if) the columns of A are linearly independent (Theorem 5.4.3); so, in this case,
z is uniquely determined and is given explicitly by z = (AT A)−1AT b. However, the most efficient way to
find z is to apply gaussian elimination to the normal equations.

This discussion is summarized in the following theorem.

Theorem 5.6.1: Best Approximation Theorem

Let A be an m×n matrix, let b be any column in Rm, and consider the system

Ax = b

of m equations in n variables.

1. Any solution z to the normal equations

(AT A)z = AT b

is a best approximation to a solution to Ax = b in the sense that ‖b−Az‖ is the minimum
value of ‖b−Ax‖ as x ranges over all columns in Rn.

2. If the columns of A are linearly independent, then AT A is invertible and z is given uniquely
by z = (AT A)−1AT b.
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We note in passing that if A is n×n and invertible, then

z = (AT A)−1AT b = A−1b

is the solution to the system of equations, and ‖b−Az‖ = 0. Hence if A has independent columns, then
(AT A)−1AT is playing the role of the inverse of the nonsquare matrix A. The matrix AT (AAT )−1 plays a
similar role when the rows of A are linearly independent. These are both special cases of the generalized

inverse of a matrix A (see Exercise 5.6.14). However, we shall not pursue this topic here.

Example 5.6.1

The system of linear equations
3x− y= 4

x+ 2y= 0
2x+ y= 1

has no solution. Find the vector z =

[
x0

y0

]
that best approximates a solution.

Solution. In this case,

A =




3 −1
1 2
2 1


 , so AT A =

[
3 1 2
−1 2 1

]


3 −1
1 2
2 1


=

[
14 1

1 6

]

is invertible. The normal equations (AT A)z = AT b are
[

14 1
1 6

]
z =

[
14
−3

]
, so z = 1

83

[
87
−56

]

Thus x0 =
87
83 and y0 =

−56
83 . With these values of x and y, the left sides of the equations are,

approximately,

3x0− y0 =
317
83 = 3.82

x0 + 2y0 =
−25
83 =−0.30

2x0 + y0 =
118
83 = 1.42

This is as close as possible to a solution.

Example 5.6.2

The average number g of goals per game scored by a hockey player seems to be related linearly to
two factors: the number x1 of years of experience and the number x2 of goals in the preceding 10
games. The data on the following page were collected on four players. Find the linear function
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g = a0 +a1x1 +a2x2 that best fits these data.

g x1 x2

0.8 5 3
0.8 3 4
0.6 1 5
0.4 2 1

Solution. If the relationship is given by g = r0 + r1x1 + r2x2, then the data can be described as
follows: 



1 5 3
1 3 4
1 1 5
1 2 1







r0

r1

r2


=




0.8
0.8
0.6
0.4




Using the notation in Theorem 5.6.1, we get

z = (AT A)−1AT b

= 1
42




119 −17 −19
−17 5 1
−19 1 5






1 1 1 1
5 3 1 2
3 4 5 1







0.8
0.8
0.6
0.4


=




0.14
0.09
0.08




Hence the best-fitting function is g = 0.14+0.09x1 +0.08x2. The amount of computation would
have been reduced if the normal equations had been constructed and then solved by gaussian
elimination.

Least Squares Approximation

In many scientific investigations, data are collected that relate two variables. For example, if x is the
number of dollars spent on advertising by a manufacturer and y is the value of sales in the region in
question, the manufacturer could generate data by spending x1, x2, . . . , xn dollars at different times and
measuring the corresponding sales values y1, y2, . . . , yn.

(x1, y1)
(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

Line 1Line 2

0
x

y

Suppose it is known that a linear relationship exists between the vari-
ables x and y—in other words, that y = a+ bx for some constants a and
b. If the data are plotted, the points (x1, y1), (x2, y2), . . . , (xn, yn) may
appear to lie on a straight line and estimating a and b requires finding
the “best-fitting” line through these data points. For example, if five data
points occur as shown in the diagram, line 1 is clearly a better fit than line
2. In general, the problem is to find the values of the constants a and b

such that the line y = a+bx best approximates the data in question. Note
that an exact fit would be obtained if a and b were such that yi = a+ bxi

were true for each data point (xi, yi). But this is too much to expect. Ex-
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perimental errors in measurement are bound to occur, so the choice of a and b should be made in such a
way that the errors between the observed values yi and the corresponding fitted values a+bxi are in some
sense minimized. Least squares approximation is a way to do this.

The first thing we must do is explain exactly what we mean by the best fit of a line y = a+ bx to an
observed set of data points (x1, y1), (x2, y2), . . . , (xn, yn). For convenience, write the linear function
r0 + r1x as

f (x) = r0 + r1x

so that the fitted points (on the line) have coordinates (x1, f (x1)), . . . , (xn, f (xn)).

(x1, f (x1))

(x1, y1)

(xi, f (xi))

(xi, yi) (xn, f (xn))

(xn, yn)

d1

di

dn

y
=

f (
x)

0 x1 xi xn

x

y

The second diagram is a sketch of what the line y = f (x) might look
like. For each i the observed data point (xi, yi) and the fitted point
(xi, f (xi)) need not be the same, and the distance di between them mea-
sures how far the line misses the observed point. For this reason di is often
called the error at xi, and a natural measure of how close the line y = f (x)
is to the observed data points is the sum d1 + d2 + · · ·+ dn of all these
errors. However, it turns out to be better to use the sum of squares

S = d2
1 +d2

2 + · · ·+d2
n

as the measure of error, and the line y = f (x) is to be chosen so as to make this sum as small
as possible. This line is said to be the least squares approximating line for the data points
(x1, y1), (x2, y2), . . . , (xn, yn).

The square of the error di is given by d2
i = [yi− f (xi)]

2 for each i, so the quantity S to be minimized is
the sum:

S = [y1− f (x1)]
2 +[y2− f (x2)]

2 + · · ·+[yn− f (xn)]
2

Note that all the numbers xi and yi are given here; what is required is that the function f be chosen in such
a way as to minimize S. Because f (x) = r0 + r1x, this amounts to choosing r0 and r1 to minimize S. This
problem can be solved using Theorem 5.6.1. The following notation is convenient.

x =




x1

x2
...

xn


 y =




y1

y2
...

yn


 and f (x) =




f (x1)
f (x2)

...
f (xn)


=




r0 + r1x1

r0 + r1x2
...

r0 + r1xn




Then the problem takes the following form: Choose r0 and r1 such that

S = [y1− f (x1)]
2 +[y2− f (x2)]

2 + · · ·+[yn− f (xn)]
2 = ‖y− f (x)‖2

is as small as possible. Now write

M =




1 x1

1 x2
...

...
1 xn


 and r =

[
r0

r1

]

Then Mr = f (x), so we are looking for a column r =

[
r0

r1

]
such that ‖y−Mr‖2 is as small as possible.

In other words, we are looking for a best approximation z to the system Mr = y. Hence Theorem 5.6.1
applies directly, and we have
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Theorem 5.6.2

Suppose that n data points (x1, y1), (x2, y2), . . . , (xn, yn) are given, where at least two of
x1, x2, . . . , xn are distinct. Put

y =




y1

y2
...

yn


 M =




1 x1

1 x2
...

...
1 xn




Then the least squares approximating line for these data points has equation

y = z0 + z1x

where z =

[
z0

z1

]
is found by gaussian elimination from the normal equations

(MT M)z = MT y

The condition that at least two of x1, x2, . . . , xn are distinct ensures that MT M is an invertible
matrix, so z is unique:

z = (MT M)−1MT y

Example 5.6.3

Let data points (x1, y1), (x2, y2), . . . , (x5, y5) be given as in the accompanying table. Find the
least squares approximating line for these data.

x y

1 1
3 2
4 3
6 4
7 5

Solution. In this case we have

MT M =

[
1 1 · · · 1
x1 x2 · · · x5

]



1 x1

1 x2
...

...
1 x5




=

[
5 x1 + · · ·+ x5

x1 + · · ·+ x5 x2
1 + · · ·+ x2

5

]
=

[
5 21

21 111

]
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and MT y =

[
1 1 · · · 1
x1 x2 · · · x5

]



y1

y2
...

y5




=

[
y1 + y2 + · · ·+ y5

x1y1 + x2y2 + · · ·+ x5y5

]
=

[
15
78

]

so the normal equations (MT M)z = MT y for z =

[
z0

z1

]
become

[
5 21

21 111

]
=

[
z0

z1

]
=

[
15
78

]

The solution (using gaussian elimination) is z =

[
z0

z1

]
=

[
0.24
0.66

]
to two decimal places, so the

least squares approximating line for these data is y = 0.24+0.66x. Note that MT M is indeed
invertible here (the determinant is 114), and the exact solution is

z = (MT M)−1MT y = 1
114

[
111 −21
−21 5

][
15
78

]
= 1

114

[
27
75

]
= 1

38

[
9

25

]

Least Squares Approximating Polynomials

Suppose now that, rather than a straight line, we want to find a polynomial

y = f (x) = r0 + r1x+ r2x2 + · · ·+ rmxm

of degree m that best approximates the data pairs (x1, y1), (x2, y2), . . . , (xn, yn). As before, write

x =




x1

x2
...

xn


 y =




y1

y2
...

yn


 and f (x) =




f (x1)
f (x2)

...
f (xn)




For each xi we have two values of the variable y, the observed value yi, and the computed value f (xi). The
problem is to choose f (x)—that is, choose r0, r1, . . . , rm —such that the f (xi) are as close as possible to
the yi. Again we define “as close as possible” by the least squares condition: We choose the ri such that

‖y− f (x)‖2 = [y1− f (x1)]
2 +[y2− f (x2)]

2 + · · ·+[yn− f (xn)]
2

is as small as possible.
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Definition 5.15 Least Squares Approximation

A polynomial f (x) satisfying this condition is called a least squares approximating polynomial

of degree m for the given data pairs.

If we write

M =




1 x1 x2
1 · · · xm

1

1 x2 x2
2 · · · xm

2
...

...
...

...

1 xn x2
n · · · xm

n




and r =




r0

r1
...

rm




we see that f (x) = Mr. Hence we want to find r such that ‖y−Mr‖2 is as small as possible; that is, we
want a best approximation z to the system Mr = y. Theorem 5.6.1 gives the first part of Theorem 5.6.3.

Theorem 5.6.3

Let n data pairs (x1, y1), (x2, y2), . . . , (xn, yn) be given, and write

y =




y1

y2
...

yn


 M =




1 x1 x2
1 · · · xm

1

1 x2 x2
2 · · · xm

2
...

...
...

...

1 xn x2
n · · · xm

n




z =




z0

z1
...

zm




1. If z is any solution to the normal equations

(MT M)z = MT y

then the polynomial
z0 + z1x+ z2x2 + · · ·+ zmxm

is a least squares approximating polynomial of degree m for the given data pairs.

2. If at least m+1 of the numbers x1, x2, . . . , xn are distinct (so n≥ m+1), the matrix MT M is
invertible and z is uniquely determined by

z = (MT M)−1MT y

Proof. It remains to prove (2), and for that we show that the columns of M are linearly independent
(Theorem 5.4.3). Suppose a linear combination of the columns vanishes:

r0




1
1
...
1


+ r1




x1

x2
...

xn


+ · · ·+ rm




xm
1

xm
2
...

xm
n


=




0
0
...
0
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If we write q(x) = r0 + r1x+ · · ·+ rmxm, equating coefficients shows that

q(x1) = q(x2) = · · ·= q(xn) = 0

Hence q(x) is a polynomial of degree m with at least m+1 distinct roots, so q(x) must be the zero poly-
nomial (see Appendix D or Theorem 6.5.4). Thus r0 = r1 = · · ·= rm = 0 as required.

Example 5.6.4

Find the least squares approximating quadratic y = z0 + z1x+ z2x2 for the following data points.

(−3, 3), (−1, 1), (0, 1), (1, 2), (3, 4)

Solution. This is an instance of Theorem 5.6.3 with m = 2. Here

y =




3
1
1
2
4




M =




1 −3 9
1 −1 1
1 0 0
1 1 1
1 3 9




Hence,

MT M =




1 1 1 1 1
−3 −1 0 1 3

9 1 0 1 9







1 −3 9
1 −1 1
1 0 0
1 1 1
1 3 9



=




5 0 20
0 20 0

20 0 164




MT y =




1 1 1 1 1
−3 −1 0 1 3

9 1 0 1 9







3
1
1
2
4



=




11
4

66




The normal equations for z are



5 0 20
0 20 0

20 0 164


z =




11
4

66


 whence z =




1.15
0.20
0.26




This means that the least squares approximating quadratic for these data is
y = 1.15+0.20x+0.26x2.
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Other Functions

There is an extension of Theorem 5.6.3 that should be mentioned. Given data pairs (x1, y1), (x2, y2),
. . . , (xn, yn), that theorem shows how to find a polynomial

f (x) = r0 + r1x+ · · ·+ rmxm

such that ‖y− f (x)‖2 is as small as possible, where x and f (x) are as before. Choosing the appropriate
polynomial f (x) amounts to choosing the coefficients r0, r1, . . . , rm, and Theorem 5.6.3 gives a formula
for the optimal choices. Here f (x) is a linear combination of the functions 1, x, x2, . . . , xm where the ri

are the coefficients, and this suggests applying the method to other functions. If f0(x), f1(x), . . . , fm(x)
are given functions, write

f (x) = r0 f0(x)+ r1 f1(x)+ · · ·+ rm fm(x)

where the ri are real numbers. Then the more general question is whether r0, r1, . . . , rm can be found such
that ‖y− f (x)‖2 is as small as possible where

f (x) =




f (x1)
f (x2)

...
f (xm)




Such a function f (x) is called a least squares best approximation for these data pairs of the form
r0 f0(x)+ r1 f1(x)+ · · ·+ rm fm(x), ri in R. The proof of Theorem 5.6.3 goes through to prove

Theorem 5.6.4

Let n data pairs (x1, y1), (x2, y2), . . . , (xn, yn) be given, and suppose that m+1 functions
f0(x), f1(x), . . . , fm(x) are specified. Write

y =




y1

y2
...

yn


 M =




f0(x1) f1(x1) · · · fm(x1)
f0(x2) f1(x2) · · · fm(x2)

...
...

...
f0(xn) f1(xn) · · · fm(xn)


 z =




z1

z2
...

zm




1. If z is any solution to the normal equations

(MT M)z = MT y

then the function
z0 f0(x)+ z1 f1(x)+ · · ·+ zm fm(x)

is the best approximation for these data among all functions of the form
r0 f0(x)+ r1 f1(x)+ · · ·+ rm fm(x) where the ri are in R.

2. If MT M is invertible (that is, if rank (M) = m+1), then z is uniquely determined; in fact,
z = (MT M)−1(MT y).
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Clearly Theorem 5.6.4 contains Theorem 5.6.3 as a special case, but there is no simple test in gen-
eral for whether MT M is invertible. Conditions for this to hold depend on the choice of the functions
f0(x), f1(x), . . . , fm(x).

Example 5.6.5

Given the data pairs (−1, 0), (0, 1), and (1, 4), find the least squares approximating function of
the form r0x+ r12x.

Solution. The functions are f0(x) = x and f1(x) = 2x, so the matrix M is

M =




f0(x1) f1(x1)
f0(x2) f1(x2)
f0(x3) f1(x3)


=



−1 2−1

0 20

1 21


= 1

2



−2 1

0 2
2 4




In this case MT M = 1
4

[
8 6
6 21

]
is invertible, so the normal equations

1
4

[
8 6
6 21

]
z =

[
4
9

]

have a unique solution z = 1
11

[
10
16

]
. Hence the best-fitting function of the form r0x+ r12x is

f (x) = 10
11x+ 16

112x. Note that f (x) =




f (−1)
f (0)
f (1)


=




−2
11

16
11

42
11


, compared with y =




0
1
4




Exercises for 5.6

Exercise 5.6.1 Find the best approximation to a solution
of each of the following systems of equations.

x+ y− z= 5
2x− y+ 6z = 1
3x+ 2y− z= 6
−x+ 4y+ z= 0

a. 3x + y+ z= 6
2x + 3y− z= 1
2x− y+ z= 0
3x− 3y+ 3z = 8

b.

Exercise 5.6.2 Find the least squares approximating line
y = z0 + z1x for each of the following sets of data points.

a. (1, 1), (3, 2), (4, 3), (6, 4)

b. (2, 4), (4, 3), (7, 2), (8, 1)

c. (−1, −1), (0, 1), (1, 2), (2, 4), (3, 6)

d. (−2, 3), (−1, 1), (0, 0), (1, −2), (2, −4)

Exercise 5.6.3 Find the least squares approximating
quadratic y = z0 + z1x+ z2x2 for each of the following
sets of data points.

a. (0, 1), (2, 2), (3, 3), (4, 5)

b. (−2, 1), (0, 0), (3, 2), (4, 3)
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Exercise 5.6.4 Find a least squares approximating func-
tion of the form r0x+ r1x2 + r22x for each of the follow-
ing sets of data pairs.

a. (−1, 1), (0, 3), (1, 1), (2, 0)

b. (0, 1), (1, 1), (2, 5), (3, 10)

Exercise 5.6.5 Find the least squares approximating
function of the form r0 + r1x2 + r2 sin πx

2 for each of the
following sets of data pairs.

a. (0, 3), (1, 0), (1, −1), (−1, 2)

b. (−1, 1
2), (0, 1), (2, 5), (3, 9)

Exercise 5.6.6 If M is a square invertible matrix, show
that z = M−1y (in the notation of Theorem 5.6.3).

Exercise 5.6.7 Newton’s laws of motion imply that an
object dropped from rest at a height of 100 metres will
be at a height s = 100− 1

2gt2 metres t seconds later,
where g is a constant called the acceleration due to grav-
ity. The values of s and t given in the table are observed.
Write x = t2, find the least squares approximating line
s = a+bx for these data, and use b to estimate g.

Then find the least squares approximating quadratic
s = a0 +a1t +a2t2 and use the value of a2 to estimate g.

t 1 2 3
s 95 80 56

Exercise 5.6.8 A naturalist measured the heights yi (in
metres) of several spruce trees with trunk diameters xi (in
centimetres). The data are as given in the table. Find the
least squares approximating line for these data and use
it to estimate the height of a spruce tree with a trunk of
diameter 10 cm.

xi 5 7 8 12 13 16
yi 2 3.3 4 7.3 7.9 10.1

Exercise 5.6.9 The yield y of wheat in bushels per acre
appears to be a linear function of the number of days x1 of
sunshine, the number of inches x2 of rain, and the num-
ber of pounds x3 of fertilizer applied per acre. Find the
best fit to the data in the table by an equation of the form
y = r0 + r1x1 + r2x2 + r3x3. [Hint: If a calculator for in-
verting AT A is not available, the inverse is given in the
answer.]

y x1 x2 x3

28 50 18 10
30 40 20 16
21 35 14 10
23 40 12 12
23 30 16 14

Exercise 5.6.10

a. Use m = 0 in Theorem 5.6.3 to show that the
best-fitting horizontal line y = a0 through the data
points (x1, y1), . . . , (xn, yn) is

y = 1
n
(y1 + y2 + · · ·+ yn)

the average of the y coordinates.

b. Deduce the conclusion in (a) without using Theo-
rem 5.6.3.

Exercise 5.6.11 Assume n=m+1 in Theorem 5.6.3 (so
M is square). If the xi are distinct, use Theorem 3.2.6 to
show that M is invertible. Deduce that z = M−1y and that
the least squares polynomial is the interpolating polyno-
mial (Theorem 3.2.6) and actually passes through all the
data points.

Exercise 5.6.12 Let A be any m× n matrix and write
K = {x | AT Ax = 0}. Let b be an m-column. Show that,
if z is an n-column such that ‖b−Az‖ is minimal, then all

such vectors have the form z+ x for some x ∈ K. [Hint:
‖b−Ay‖ is minimal if and only if AT Ay = AT b.]

Exercise 5.6.13 Given the situation in Theorem 5.6.4,
write

f (x) = r0 p0(x)+ r1 p1(x)+ · · ·+ rm pm(x)

Suppose that f (x) has at most k roots for any choice of
the coefficients r0, r1, . . . , rm, not all zero.

a. Show that MT M is invertible if at least k+1 of the
xi are distinct.

b. If at least two of the xi are distinct, show that
there is always a best approximation of the form
r0 + r1ex.

c. If at least three of the xi are distinct, show that
there is always a best approximation of the form
r0 + r1x+ r2ex. [Calculus is needed.]
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Exercise 5.6.14 If A is an m×n matrix, it can be proved
that there exists a unique n×m matrix A# satisfying the
following four conditions: AA#A = A; A#AA# = A#; AA#

and A#A are symmetric. The matrix A# is called the gen-

eralized inverse of A, or the Moore-Penrose inverse.

a. If A is square and invertible, show that A# = A−1.

b. If rank A = m, show that A# = AT (AAT )−1.

c. If rank A = n, show that A# = (AT A)−1AT .

5.7 An Application to Correlation and Variance

Suppose the heights h1, h2, . . . , hn of n men are measured. Such a data set is called a sample of the heights
of all the men in the population under study, and various questions are often asked about such a sample:
What is the average height in the sample? How much variation is there in the sample heights, and how can
it be measured? What can be inferred from the sample about the heights of all men in the population? How
do these heights compare to heights of men in neighbouring countries? Does the prevalence of smoking
affect the height of a man?

The analysis of samples, and of inferences that can be drawn from them, is a subject called mathemat-

ical statistics, and an extensive body of information has been developed to answer many such questions.
In this section we will describe a few ways that linear algebra can be used.

It is convenient to represent a sample {x1, x2, . . . , xn} as a sample vector15 x =
[

x1 x2 · · · xn

]

in Rn. This being done, the dot product in Rn provides a convenient tool to study the sample and describe
some of the statistical concepts related to it. The most widely known statistic for describing a data set is
the sample mean x defined by16

x = 1
n
(x1 + x2 + · · ·+ xn) =

1
n

n

∑
i=1

xi

The mean x is “typical” of the sample values xi, but may not itself be one of them. The number xi− x is
called the deviation of xi from the mean x. The deviation is positive if xi > x and it is negative if xi < x.
Moreover, the sum of these deviations is zero:

n

∑
i=1

(xi− x) =

(
n

∑
i=1

xi

)
−nx = nx−nx = 0 (5.6)

−1 0 1

Sample x

x

−3 −2 −1

Centred
Sample xc

xc

This is described by saying that the sample mean x is central to the
sample values xi.

If the mean x is subtracted from each data value xi, the resulting data
xi− x are said to be centred. The corresponding data vector is

xc =
[

x1− x x2− x · · · xn− x
]

and (5.6) shows that the mean xc = 0. For example, we have plotted the
sample x =

[
−1 0 1 4 6

]
in the first diagram. The mean is x = 2,

15We write vectors in Rn as row matrices, for convenience.
16The mean is often called the “average” of the sample values xi, but statisticians use the term “mean”.
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and the centred sample xc =
[
−3 −2 −1 2 4

]
is also plotted. Thus, the effect of centring is to shift

the data by an amount x (to the left if x is positive) so that the mean moves to 0.

Another question that arises about samples is how much variability there is in the sample

x =
[

x1 x2 · · · xn

]

that is, how widely are the data “spread out” around the sample mean x. A natural measure of variability
would be the sum of the deviations of the xi about the mean, but this sum is zero by (5.6); these deviations
cancel out. To avoid this cancellation, statisticians use the squares (xi−x)2 of the deviations as a measure
of variability. More precisely, they compute a statistic called the sample variance s2

x defined17 as follows:

s2
x =

1
n−1 [(x1− x)2 +(x2− x)2 + · · ·+(xn− x)2] = 1

n−1

n

∑
i=1

(xi− x)2

The sample variance will be large if there are many xi at a large distance from the mean x, and it will
be small if all the xi are tightly clustered about the mean. The variance is clearly nonnegative (hence the
notation s2

x), and the square root sx of the variance is called the sample standard deviation.

The sample mean and variance can be conveniently described using the dot product. Let

1 =
[

1 1 · · · 1
]

denote the row with every entry equal to 1. If x =
[

x1 x2 · · · xn

]
, then x · 1 = x1 + x2 + · · ·+ xn, so

the sample mean is given by the formula
x = 1

n
(x ·1)

Moreover, remembering that x is a scalar, we have x1 =
[

x x · · · x
]
, so the centred sample vector xc

is given by
xc = x− x1 =

[
x1− x x2− x · · · xn− x

]

Thus we obtain a formula for the sample variance:

s2
x =

1
n−1‖xc‖2 = 1

n−1‖x− x1‖2

Linear algebra is also useful for comparing two different samples. To illustrate how, consider two exam-
ples.

Doctor Visits

Days
Sick

The following table represents the number of sick days at work per
year and the yearly number of visits to a physician for 10 individuals.

Individual 1 2 3 4 5 6 7 8 9 10
Doctor visits 2 6 8 1 5 10 3 9 7 4

Sick days 2 4 8 3 5 9 4 7 7 2

The data are plotted in the scatter diagram where it is evident that,
roughly speaking, the more visits to the doctor the more sick days. This is
an example of a positive correlation between sick days and doctor visits.

17Since there are n sample values, it seems more natural to divide by n here, rather than by n−1. The reason for using n−1
is that then the sample variance s2x provides a better estimate of the variance of the entire population from which the sample
was drawn.
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Vitamin C Doses

Days
Sick

Now consider the following table representing the daily doses of vita-
min C and the number of sick days.

Individual 1 2 3 4 5 6 7 8 9 10
Vitamin C 1 5 7 0 4 9 2 8 6 3
Sick days 5 2 2 6 2 1 4 3 2 5

The scatter diagram is plotted as shown and it appears that the more vita-
min C taken, the fewer sick days. In this case there is a negative correla-

tion between daily vitamin C and sick days.

In both these situations, we have paired samples, that is observations of two variables are made for ten
individuals: doctor visits and sick days in the first case; daily vitamin C and sick days in the second case.
The scatter diagrams point to a relationship between these variables, and there is a way to use the sample
to compute a number, called the correlation coefficient, that measures the degree to which the variables
are associated.

To motivate the definition of the correlation coefficient, suppose two paired samples
x =

[
x1 x2 · · · xn

]
, and y =

[
y1 y2 · · · yn

]
are given and consider the centred samples

xc =
[

x1− x x2− x · · · xn− x
]

and yc =
[

y1− y y2− y · · · yn− y
]

If xk is large among the xi’s, then the deviation xk− x will be positive; and xk− x will be negative if xk

is small among the xi’s. The situation is similar for y, and the following table displays the sign of the
quantity (xi− x)(yk− y) in all four cases:

Sign of (xi− x)(yk− y) :

xi large xi small
yi large positive negative
yi small negative positive

Intuitively, if x and y are positively correlated, then two things happen:

1. Large values of the xi tend to be associated with large values of the yi, and

2. Small values of the xi tend to be associated with small values of the yi.

It follows from the table that, if x and y are positively correlated, then the dot product

xc ·yc =
n

∑
i=1

(xi− x)(yi− y)

is positive. Similarly xc ·yc is negative if x and y are negatively correlated. With this in mind, the sample

correlation coefficient18 r is defined by

r = r(x, y) =
xc·yc

‖xc‖ ‖yc‖

18The idea of using a single number to measure the degree of relationship between different variables was pioneered by
Francis Galton (1822–1911). He was studying the degree to which characteristics of an offspring relate to those of its parents.
The idea was refined by Karl Pearson (1857–1936) and r is often referred to as the Pearson correlation coefficient.
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Bearing the situation in R3 in mind, r is the cosine of the “angle” between the vectors xc and yc, and so
we would expect it to lie between −1 and 1. Moreover, we would expect r to be near 1 (or −1) if these
vectors were pointing in the same (opposite) direction, that is the “angle” is near zero (or π).

This is confirmed by Theorem 5.7.1 below, and it is also borne out in the examples above. If we
compute the correlation between sick days and visits to the physician (in the first scatter diagram above)
the result is r = 0.90 as expected. On the other hand, the correlation between daily vitamin C doses and
sick days (second scatter diagram) is r =−0.84.

However, a word of caution is in order here. We cannot conclude from the second example that taking
more vitamin C will reduce the number of sick days at work. The (negative) correlation may arise because
of some third factor that is related to both variables. For example, case it may be that less healthy people
are inclined to take more vitamin C. Correlation does not imply causation. Similarly, the correlation
between sick days and visits to the doctor does not mean that having many sick days causes more visits to
the doctor. A correlation between two variables may point to the existence of other underlying factors, but
it does not necessarily mean that there is a causality relationship between the variables.

Our discussion of the dot product in Rn provides the basic properties of the correlation coefficient:

Theorem 5.7.1

Let x =
[

x1 x2 · · · xn

]
and y =

[
y1 y2 · · · yn

]
be (nonzero) paired samples, and let

r = r(x, y) denote the correlation coefficient. Then:

1. −1≤ r ≤ 1.

2. r = 1 if and only if there exist a and b > 0 such that yi = a+bxi for each i.

3. r =−1 if and only if there exist a and b < 0 such that yi = a+bxi for each i.

Proof. The Cauchy inequality (Theorem 5.3.2) proves (1), and also shows that r = ±1 if and only if one
of xc and yc is a scalar multiple of the other. This in turn holds if and only if yc = bxc for some b 6= 0, and
it is easy to verify that r = 1 when b > 0 and r =−1 when b < 0.

Finally, yc = bxc means yi−y = b(xi−x) for each i; that is, yi = a+bxi where a = y−bx. Conversely,
if yi = a+ bxi, then y = a+ bx (verify), so y1− y = (a+ bxi)− (a+ bx) = b(x1− x) for each i. In other
words, yc = bxc. This completes the proof.

Properties (2) and (3) in Theorem 5.7.1 show that r(x, y) = 1 means that there is a linear relation
with positive slope between the paired data (so large x values are paired with large y values). Similarly,
r(x, y) =−1 means that there is a linear relation with negative slope between the paired data (so small x

values are paired with small y values). This is borne out in the two scatter diagrams above.

We conclude by using the dot product to derive some useful formulas for computing variances and
correlation coefficients. Given samples x =

[
x1 x2 · · · xn

]
and y =

[
y1 y2 · · · yn

]
, the key ob-

servation is the following formula:
xc ·yc = x ·y−nx y (5.7)

Indeed, remembering that x and y are scalars:
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xc ·yc = (x− x1) · (y− y1)

= x ·y−x · (y1)− (x1) ·y+(x1)(y1)

= x ·y− y(x ·1)− x(1 ·y)+ xy(1 ·1)
= x ·y− y(nx)− x(ny)+ x y(n)

= x ·y−nx y

Taking y = x in (5.7) gives a formula for the variance s2
x =

1
n−1‖xc‖2 of x.

Variance Formula

If x is a sample vector, then s2
x =

1
n−1

(
‖xc‖2−nx2

)
.

We also get a convenient formula for the correlation coefficient, r = r(x, y) =
xc·yc

‖xc‖ ‖yc‖ . Moreover, (5.7)

and the fact that s2
x =

1
n−1‖xc‖2 give:

Correlation Formula

If x and y are sample vectors, then

r = r(x, y) =
x ·y−nx y

(n−1)sxsy

Finally, we give a method that simplifies the computations of variances and correlations.

Data Scaling

Let x =
[

x1 x2 · · · xn

]
and y =

[
y1 y2 · · · yn

]
be sample vectors. Given constants a, b,

c, and d, consider new samples z =
[

z1 z2 · · · zn

]
and w =

[
w1 w2 · · · wn

]
where

zi = a+bxi, for each i and wi = c+dyi for each i. Then:

a. z = a+bx

b. s2
z = b2s2

x , so sz = |b|sx

c. If b and d have the same sign, then r(x, y) = r(z, w).

The verification is left as an exercise. For example, if x =
[

101 98 103 99 100 97
]
, subtracting

100 yields z =
[

1 −2 3 −1 0 −3
]
. A routine calculation shows that z = −1

3 and s2
z = 14

3 , so
x = 100− 1

3 = 99.67, and s2
z =

14
3 = 4.67.
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Exercises for 5.7

Exercise 5.7.1 The following table gives IQ scores for 10 fathers and their eldest sons. Calculate the means, the
variances, and the correlation coefficient r. (The data scaling formula is useful.)

1 2 3 4 5 6 7 8 9 10
Father’s IQ 140 131 120 115 110 106 100 95 91 86
Son’s IQ 130 138 110 99 109 120 105 99 100 94

Exercise 5.7.2 The following table gives the number of years of education and the annual income (in thousands)
of 10 individuals. Find the means, the variances, and the correlation coefficient. (Again the data scaling formula is
useful.)

Individual 1 2 3 4 5 6 7 8 9 10
Years of education 12 16 13 18 19 12 18 19 12 14
Yearly income 31 48 35 28 55 40 39 60 32 35
(1000’s)

Exercise 5.7.3 If x is a sample vector, and xc is the centred sample, show that xc = 0 and the standard deviation of
xc is sx.

Exercise 5.7.4 Prove the data scaling formulas found on page 326: (a), (b), and (c).

Supplementary Exercises for Chapter 5

Exercise 5.1 In each case either show that the state-
ment is true or give an example showing that it is false.
Throughout, x, y, z, x1, x2, . . . , xn denote vectors in Rn.

a. If U is a subspace of Rn and x+ y is in U , then x

and y are both in U .

b. If U is a subspace of Rn and rx is in U , then x is
in U .

c. If U is a nonempty set and sx+ ty is in U for any
s and t whenever x and y are in U , then U is a
subspace.

d. If U is a subspace of Rn and x is in U , then −x is
in U .

e. If {x, y} is independent, then {x, y, x+ y} is in-
dependent.

f. If {x, y, z} is independent, then {x, y} is inde-
pendent.

g. If {x, y} is not independent, then {x, y, z} is not
independent.

h. If all of x1, x2, . . . , xn are nonzero, then
{x1, x2, . . . , xn} is independent.

i. If one of x1, x2, . . . , xn is zero, then
{x1, x2, . . . , xn} is not independent.

j. If ax+by+cz = 0 where a, b, and c are in R, then
{x, y, z} is independent.

k. If {x, y, z} is independent, then ax+by+ cz = 0

for some a, b, and c in R.

l. If {x1, x2, . . . , xn} is not independent, then
t1x1 + t2x2 + · · ·+ tnxn = 0 for ti in R not all zero.

m. If {x1, x2, . . . , xn} is independent, then
t1x1 + t2x2 + · · ·+ tnxn = 0 for some ti in R.

n. Every set of four non-zero vectors in R4 is a basis.
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o. No basis of R3 can contain a vector with a compo-
nent 0.

p. R3 has a basis of the form {x, x+ y, y} where x

and y are vectors.

q. Every basis of R5 contains one column of I5.

r. Every nonempty subset of a basis of R3 is again a
basis of R3.

s. If {x1, x2, x3, x4} and {y1, y2, y3, y4} are bases
of R4, then {x1 +y1, x2 +y2, x3 +y3, x4 +y4} is
also a basis of R4.



6. Vector Spaces

In this chapter we introduce vector spaces in full generality. The reader will notice some similarity with
the discussion of the space Rn in Chapter 5. In fact much of the present material has been developed in
that context, and there is some repetition. However, Chapter 6 deals with the notion of an abstract vector
space, a concept that will be new to most readers. It turns out that there are many systems in which a
natural addition and scalar multiplication are defined and satisfy the usual rules familiar from Rn. The
study of abstract vector spaces is a way to deal with all these examples simultaneously. The new aspect is
that we are dealing with an abstract system in which all we know about the vectors is that they are objects
that can be added and multiplied by a scalar and satisfy rules familiar from Rn.

The novel thing is the abstraction. Getting used to this new conceptual level is facilitated by the work
done in Chapter 5: First, the vector manipulations are familiar, giving the reader more time to become
accustomed to the abstract setting; and, second, the mental images developed in the concrete setting of Rn

serve as an aid to doing many of the exercises in Chapter 6.

The concept of a vector space was first introduced in 1844 by the German mathematician Hermann
Grassmann (1809-1877), but his work did not receive the attention it deserved. It was not until 1888 that
the Italian mathematician Guiseppe Peano (1858-1932) clarified Grassmann’s work in his book Calcolo

Geometrico and gave the vector space axioms in their present form. Vector spaces became established with
the work of the Polish mathematician Stephan Banach (1892-1945), and the idea was finally accepted in
1918 when Hermann Weyl (1885-1955) used it in his widely read book Raum-Zeit-Materie (“Space-Time-
Matter”), an introduction to the general theory of relativity.

6.1 Examples and Basic Properties

Many mathematical entities have the property that they can be added and multiplied by a number. Numbers
themselves have this property, as do m×n matrices: The sum of two such matrices is again m×n as is any
scalar multiple of such a matrix. Polynomials are another familiar example, as are the geometric vectors
in Chapter 4. It turns out that there are many other types of mathematical objects that can be added and
multiplied by a scalar, and the general study of such systems is introduced in this chapter. Remarkably,
much of what we could say in Chapter 5 about the dimension of subspaces in Rn can be formulated in this
generality.
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Definition 6.1 Vector Spaces

A vector space consists of a nonempty set V of objects (called vectors) that can be added, that can
be multiplied by a real number (called a scalar in this context), and for which certain axioms
hold.1If v and w are two vectors in V , their sum is expressed as v+w, and the scalar product of v

by a real number a is denoted as av. These operations are called vector addition and scalar

multiplication, respectively, and the following axioms are assumed to hold.

Axioms for vector addition

A1. If u and v are in V , then u+v is in V .

A2. u+v = v+u for all u and v in V .

A3. u+(v+w) = (u+v)+w for all u, v, and w in V .

A4. An element 0 in V exists such that v+0 = v = 0+v for every v in V .

A5. For each v in V , an element −v in V exists such that −v+v = 0 and v+(−v) = 0.

Axioms for scalar multiplication

S1. If v is in V , then av is in V for all a in R.

S2. a(v+w) = av+aw for all v and w in V and all a in R.

S3. (a+b)v = av+bv for all v in V and all a and b in R.

S4. a(bv) = (ab)v for all v in V and all a and b in R.

S5. 1v = v for all v in V .

The content of axioms A1 and S1 is described by saying that V is closed under vector addition and scalar
multiplication. The element 0 in axiom A4 is called the zero vector, and the vector −v in axiom A5 is
called the negative of v.

The rules of matrix arithmetic, when applied to Rn, give

Example 6.1.1

Rn is a vector space using matrix addition and scalar multiplication.2

It is important to realize that, in a general vector space, the vectors need not be n-tuples as in Rn. They
can be any kind of objects at all as long as the addition and scalar multiplication are defined and the axioms
are satisfied. The following examples illustrate the diversity of the concept.

The space Rn consists of special types of matrices. More generally, let Mmn denote the set of all m×n

matrices with real entries. Then Theorem 2.1.1 gives:

1The scalars will usually be real numbers, but they could be complex numbers, or elements of an algebraic system called a
field. Another example is the field Q of rational numbers. We will look briefly at finite fields in Section 8.8.

2We will usually write the vectors in Rn as n-tuples. However, if it is convenient, we will sometimes denote them as rows
or columns.
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Example 6.1.2

The set Mmn of all m×n matrices is a vector space using matrix addition and scalar multiplication.
The zero element in this vector space is the zero matrix of size m×n, and the vector space negative
of a matrix (required by axiom A5) is the usual matrix negative discussed in Section 2.1. Note that
Mmn is just Rmn in different notation.

In Chapter 5 we identified many important subspaces of Rn such as im A and null A for a matrix A. These
are all vector spaces.

Example 6.1.3

Show that every subspace of Rn is a vector space in its own right using the addition and scalar
multiplication of Rn.

Solution. Axioms A1 and S1 are two of the defining conditions for a subspace U of Rn (see
Section 5.1). The other eight axioms for a vector space are inherited from Rn. For example, if x

and y are in U and a is a scalar, then a(x+y) = ax+ay because x and y are in Rn. This shows that
axiom S2 holds for U ; similarly, the other axioms also hold for U .

Example 6.1.4

Let V denote the set of all ordered pairs (x, y) and define addition in V as in R2. However, define a
new scalar multiplication in V by

a(x, y) = (ay, ax)

Determine if V is a vector space with these operations.

Solution. Axioms A1 to A5 are valid for V because they hold for matrices. Also a(x, y) = (ay, ax)
is again in V , so axiom S1 holds. To verify axiom S2, let v = (x, y) and w = (x1, y1) be typical
elements in V and compute

a(v+w) = a(x+ x1, y+ y1) = (a(y+ y1), a(x+ x1))

av+aw = (ay, ax)+(ay1, ax1) = (ay+ay1, ax+ax1)

Because these are equal, axiom S2 holds. Similarly, the reader can verify that axiom S3 holds.
However, axiom S4 fails because

a(b(x, y)) = a(by, bx) = (abx, aby)

need not equal ab(x, y) = (aby, abx). Hence, V is not a vector space. (In fact, axiom S5 also fails.)

Sets of polynomials provide another important source of examples of vector spaces, so we review some
basic facts. A polynomial in an indeterminate x is an expression

p(x) = a0 +a1x+a2x2 + · · ·+anxn

www.dbooks.org

https://www.dbooks.org/


332 Vector Spaces

where a0, a1, a2, . . . , an are real numbers called the coefficients of the polynomial. If all the coefficients
are zero, the polynomial is called the zero polynomial and is denoted simply as 0. If p(x) 6= 0, the
highest power of x with a nonzero coefficient is called the degree of p(x) denoted as deg p(x). The
coefficient itself is called the leading coefficient of p(x). Hence deg (3+5x) = 1, deg (1+ x+ x2) = 2,
and deg (4) = 0. (The degree of the zero polynomial is not defined.)

Let P denote the set of all polynomials and suppose that

p(x) = a0 +a1x+a2x2 + · · ·
q(x) = b0 +b1x+b2x2 + · · ·

are two polynomials in P (possibly of different degrees). Then p(x) and q(x) are called equal [written
p(x) = q(x)] if and only if all the corresponding coefficients are equal—that is, a0 = b0, a1 = b1, a2 = b2,
and so on. In particular, a0 +a1x+a2x2 + · · · = 0 means that a0 = 0, a1 = 0, a2 = 0, . . . , and this is the
reason for calling x an indeterminate. The set P has an addition and scalar multiplication defined on it as
follows: if p(x) and q(x) are as before and a is a real number,

p(x)+q(x) = (a0 +b0)+(a1 +b1)x+(a2 +b2)x
2 + · · ·

ap(x) = aa0 +(aa1)x+(aa2)x
2 + · · ·

Evidently, these are again polynomials, so P is closed under these operations, called pointwise addition
and scalar multiplication. The other vector space axioms are easily verified, and we have

Example 6.1.5

The set P of all polynomials is a vector space with the foregoing addition and scalar multiplication.
The zero vector is the zero polynomial, and the negative of a polynomial
p(x) = a0 +a1x+a2x2 + . . . is the polynomial−p(x) =−a0−a1x−a2x2− . . . obtained by
negating all the coefficients.

There is another vector space of polynomials that will be referred to later.

Example 6.1.6

Given n≥ 1, let Pn denote the set of all polynomials of degree at most n, together with the zero
polynomial. That is

Pn = {a0 +a1x+a2x2 + · · ·+anxn | a0, a1, a2, . . . , an in R}.

Then Pn is a vector space. Indeed, sums and scalar multiples of polynomials in Pn are again in Pn,
and the other vector space axioms are inherited from P. In particular, the zero vector and the
negative of a polynomial in Pn are the same as those in P.

If a and b are real numbers and a < b, the interval [a, b] is defined to be the set of all real numbers
x such that a ≤ x ≤ b. A (real-valued) function f on [a, b] is a rule that associates to every number x in
[a, b] a real number denoted f (x). The rule is frequently specified by giving a formula for f (x) in terms of
x. For example, f (x) = 2x, f (x) = sinx, and f (x) = x2+1 are familiar functions. In fact, every polynomial
p(x) can be regarded as the formula for a function p.
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1

1

O

y =−x = g(x)

y = f (x)+g(x)
= x2− x

y = x2 = f (x)

x

y The set of all functions on [a, b] is denoted F[a, b]. Two functions
f and g in F[a, b] are equal if f (x) = g(x) for every x in [a, b], and we
describe this by saying that f and g have the same action. Note that two
polynomials are equal in P (defined prior to Example 6.1.5) if and only if
they are equal as functions.

If f and g are two functions in F[a, b], and if r is a real number, define
the sum f +g and the scalar product r f by

( f +g)(x) = f (x)+g(x) for each x in [a, b]

(r f )(x) = r f (x) for each x in [a, b]

In other words, the action of f + g upon x is to associate x with the number f (x) + g(x), and r f

associates x with r f (x). The sum of f (x) = x2 and g(x) = −x is shown in the diagram. These operations
on F[a, b] are called pointwise addition and scalar multiplication of functions and they are the usual
operations familiar from elementary algebra and calculus.

Example 6.1.7

The set F[a, b] of all functions on the interval [a, b] is a vector space using pointwise addition and
scalar multiplication. The zero function (in axiom A4), denoted 0, is the constant function defined
by

0(x) = 0 for each x in [a, b]

The negative of a function f is denoted − f and has action defined by

(− f )(x) =− f (x) for each x in [a, b]

Axioms A1 and S1 are clearly satisfied because, if f and g are functions on [a, b], then f +g and
r f are again such functions. The verification of the remaining axioms is left as Exercise 6.1.14.

Other examples of vector spaces will appear later, but these are sufficiently varied to indicate the scope
of the concept and to illustrate the properties of vector spaces to be discussed. With such a variety of
examples, it may come as a surprise that a well-developed theory of vector spaces exists. That is, many
properties can be shown to hold for all vector spaces and hence hold in every example. Such properties
are called theorems and can be deduced from the axioms. Here is an important example.

Theorem 6.1.1: Cancellation

Let u, v, and w be vectors in a vector space V . If v+u = v+w, then u = w.

Proof. We are given v+u = v+w. If these were numbers instead of vectors, we would simply subtract v

from both sides of the equation to obtain u = w. This can be accomplished with vectors by adding −v to
both sides of the equation. The steps (using only the axioms) are as follows:

v+u = v+w

−v+(v+u) =−v+(v+w) (axiom A5)

(−v+v)+u = (−v+v)+w (axiom A3)
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0+u = 0+w (axiom A5)

u = w (axiom A4)

This is the desired conclusion.3

As with many good mathematical theorems, the technique of the proof of Theorem 6.1.1 is at least as
important as the theorem itself. The idea was to mimic the well-known process of numerical subtraction
in a vector space V as follows: To subtract a vector v from both sides of a vector equation, we added −v

to both sides. With this in mind, we define difference u−v of two vectors in V as

u−v = u+(−v)

We shall say that this vector is the result of having subtracted v from u and, as in arithmetic, this operation
has the property given in Theorem 6.1.2.

Theorem 6.1.2

If u and v are vectors in a vector space V , the equation

x+v = u

has one and only one solution x in V given by

x = u−v

Proof. The difference x = u−v is indeed a solution to the equation because (using several axioms)

x+v = (u−v)+v = [u+(−v)]+v = u+(−v+v) = u+0 = u

To see that this is the only solution, suppose x1 is another solution so that x1 +v = u. Then x+v = x1+v

(they both equal u), so x = x1 by cancellation.

Similarly, cancellation shows that there is only one zero vector in any vector space and only one
negative of each vector (Exercises 6.1.10 and 6.1.11). Hence we speak of the zero vector and the negative
of a vector.

The next theorem derives some basic properties of scalar multiplication that hold in every vector space,
and will be used extensively.

Theorem 6.1.3

Let v denote a vector in a vector space V and let a denote a real number.

1. 0v = 0.

2. a0 = 0.

3. If av = 0, then either a = 0 or v = 0.

3Observe that none of the scalar multiplication axioms are needed here.
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4. (−1)v =−v.

5. (−a)v =−(av) = a(−v).

Proof.

1. Observe that 0v+0v = (0+0)v = 0v = 0v+0 where the first equality is by axiom S3. It follows
that 0v = 0 by cancellation.

2. The proof is similar to that of (1), and is left as Exercise 6.1.12(a).

3. Assume that av = 0. If a = 0, there is nothing to prove; if a 6= 0, we must show that v = 0. But
a 6= 0 means we can scalar-multiply the equation av = 0 by the scalar 1

a
. The result (using (2) and

Axioms S5 and S4) is
v = 1v =

(1
a
a
)

v = 1
a
(av) = 1

a
0 = 0

4. We have −v+v = 0 by axiom A5. On the other hand,

(−1)v+v = (−1)v+1v = (−1+1)v = 0v = 0

using (1) and axioms S5 and S3. Hence (−1)v+ v = −v + v (because both are equal to 0), so
(−1)v =−v by cancellation.

5. The proof is left as Exercise 6.1.12.4

The properties in Theorem 6.1.3 are familiar for matrices; the point here is that they hold in every vector
space. It is hard to exaggerate the importance of this observation.

Axiom A3 ensures that the sum u+(v+w) = (u+v)+w is the same however it is formed, and we
write it simply as u+ v+w. Similarly, there are different ways to form any sum v1 + v2 + · · ·+ vn, and
Axiom A3 guarantees that they are all equal. Moreover, Axiom A2 shows that the order in which the
vectors are written does not matter (for example: u+v+w+ z = z+u+w+v).

Similarly, Axioms S2 and S3 extend. For example

a(u+v+w) = a [u+(v+w)] = au+a(v+w) = au+av+aw

for all a, u, v, and w. Similarly (a+b+ c)v = av+bv+ cv hold for all values of a, b, c, and v (verify).
More generally,

a(v1 +v2 + · · ·+vn) = av1 +av2 + · · ·+avn

(a1 +a2 + · · ·+an)v = a1v+a2v+ · · ·+anv

hold for all n≥ 1, all numbers a, a1, . . . , an, and all vectors, v, v1, . . . , vn. The verifications are by induc-
tion and are left to the reader (Exercise 6.1.13). These facts—together with the axioms, Theorem 6.1.3,
and the definition of subtraction—enable us to simplify expressions involving sums of scalar multiples of
vectors by collecting like terms, expanding, and taking out common factors. This has been discussed for
the vector space of matrices in Section 2.1 (and for geometric vectors in Section 4.1); the manipulations
in an arbitrary vector space are carried out in the same way. Here is an illustration.
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Example 6.1.8

If u, v, and w are vectors in a vector space V , simplify the expression

2(u+3w)−3(2w−v)−3[2(2u+v−4w)−4(u−2w)]

Solution. The reduction proceeds as though u, v, and w were matrices or variables.

2(u+3w)−3(2w−v)−3[2(2u+v−4w)−4(u−2w)]

= 2u+6w−6w+3v−3[4u+2v−8w−4u+8w]

= 2u+3v−3[2v]

= 2u+3v−6v

= 2u−3v

Condition (2) in Theorem 6.1.3 points to another example of a vector space.

Example 6.1.9

A set {0} with one element becomes a vector space if we define

0+0 = 0 and a0 = 0 for all scalars a.

The resulting space is called the zero vector space and is denoted {0}.

The vector space axioms are easily verified for {0}. In any vector space V , Theorem 6.1.3 shows that the
zero subspace (consisting of the zero vector of V alone) is a copy of the zero vector space.

Exercises for 6.1

Exercise 6.1.1 Let V denote the set of ordered triples
(x, y, z) and define addition in V as in R3. For each of
the following definitions of scalar multiplication, decide
whether V is a vector space.

a. a(x, y, z) = (ax, y, az)

b. a(x, y, z) = (ax, 0, az)

c. a(x, y, z) = (0, 0, 0)

d. a(x, y, z) = (2ax, 2ay, 2az)

Exercise 6.1.2 Are the following sets vector spaces with
the indicated operations? If not, why not?

a. The set V of nonnegative real numbers; ordinary
addition and scalar multiplication.

b. The set V of all polynomials of degree ≥ 3,
together with 0; operations of P.

c. The set of all polynomials of degree ≤ 3; opera-
tions of P.

d. The set {1, x, x2, . . .}; operations of P.
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e. The set V of all 2 × 2 matrices of the form[
a b

0 c

]
; operations of M22.

f. The set V of 2× 2 matrices with equal column
sums; operations of M22.

g. The set V of 2×2 matrices with zero determinant;
usual matrix operations.

h. The set V of real numbers; usual operations.

i. The set V of complex numbers; usual addition and
multiplication by a real number.

j. The set V of all ordered pairs (x, y) with the
addition of R2, but using scalar multiplication
a(x, y) = (ax, −ay).

k. The set V of all ordered pairs (x, y) with the
addition of R2, but using scalar multiplication
a(x, y) = (x, y) for all a in R.

l. The set V of all functions f : R→ R with point-
wise addition, but scalar multiplication defined by
(a f )(x) = f (ax).

m. The set V of all 2×2 matrices whose entries sum
to 0; operations of M22.

n. The set V of all 2× 2 matrices with the addi-
tion of M22 but scalar multiplication ∗ defined by
a∗X = aXT .

Exercise 6.1.3 Let V be the set of positive real numbers
with vector addition being ordinary multiplication, and
scalar multiplication being a · v = va. Show that V is a
vector space.

Exercise 6.1.4 If V is the set of ordered pairs (x, y) of
real numbers, show that it is a vector space with addition
(x, y)+ (x1, y1) = (x+ x1, y+ y1 + 1) and scalar mul-
tiplication a(x, y) = (ax, ay+ a− 1). What is the zero
vector in V ?

Exercise 6.1.5 Find x and y (in terms of u and v) such
that:

2x + y= u

5x + 3y = v

a. 3x− 2y= u

4x− 5y= v

b.

Exercise 6.1.6 In each case show that the condition
au+bv+ cw = 0 in V implies that a = b = c = 0.

a. V = R4; u = (2, 1, 0, 2), v = (1, 1, −1, 0),
w = (0, 1, 2, 1)

b. V = M22; u =

[
1 0
0 1

]
, v =

[
0 1
1 0

]
,

w =

[
1 1
1 −1

]

c. V = P; u = x3 + x, v = x2 +1, w = x3− x2 + x+1

d. V = F[0, π]; u = sinx, v = cosx, w = 1—the con-
stant function

Exercise 6.1.7 Simplify each of the following.

a. 3[2(u−2v−w)+3(w−v)]−7(u−3v−w)

b. 4(3u−v+w)−2[(3u−2v)−3(v−w)]
+6(w−u−v)

Exercise 6.1.8 Show that x = v is the only solution to
the equation x+x = 2v in a vector space V . Cite all ax-
ioms used.

Exercise 6.1.9 Show that −0 = 0 in any vector space.
Cite all axioms used.

Exercise 6.1.10 Show that the zero vector 0 is uniquely
determined by the property in axiom A4.

Exercise 6.1.11 Given a vector v, show that its negative
−v is uniquely determined by the property in axiom A5.

Exercise 6.1.12

a. Prove (2) of Theorem 6.1.3. [Hint: Axiom S2.]

b. Prove that (−a)v = −(av) in Theorem 6.1.3 by
first computing (−a)v+ av. Then do it using (4)
of Theorem 6.1.3 and axiom S4.

c. Prove that a(−v) = −(av) in Theorem 6.1.3 in
two ways, as in part (b).

Exercise 6.1.13 Let v, v1, . . . , vn denote vectors in a
vector space V and let a, a1, . . . , an denote numbers.
Use induction on n to prove each of the following.

a. a(v1 +v2 + · · ·+vn) = av1 +av2 + · · ·+avn

b. (a1 +a2 + · · ·+an)v = a1v+a2v+ · · ·+anv
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Exercise 6.1.14 Verify axioms A2—A5 and S2—S5 for
the space F[a, b] of functions on [a, b] (Example 6.1.7).

Exercise 6.1.15 Prove each of the following for vectors
u and v and scalars a and b.

a. If av = 0, then a = 0 or v = 0.

b. If av = bv and v 6= 0, then a = b.

c. If av = aw and a 6= 0, then v = w.

Exercise 6.1.16 By calculating (1+ 1)(v+w) in two
ways (using axioms S2 and S3), show that axiom A2 fol-
lows from the other axioms.

Exercise 6.1.17 Let V be a vector space, and define V n

to be the set of all n-tuples (v1, v2, . . . , vn) of n vec-
tors vi, each belonging to V . Define addition and scalar
multiplication in V n as follows:

(u1, u2, . . . , un)+ (v1, v2, . . . , vn)

= (u1 +v1, u2 +v2, . . . , un +vn)

a(v1, v2, . . . , vn) = (av1, av2, . . . , avn)

Show that V n is a vector space.

Exercise 6.1.18 Let V n be the vector space of n-tuples
from the preceding exercise, written as columns. If A

is an m× n matrix, and X is in V n, define AX in V m by
matrix multiplication. More precisely, if

A = [ai j] and X =




v1
...

vn


 , let AX =




u1
...

un




where ui = ai1v1 +ai2v2 + · · ·+ainvn for each i.
Prove that:

a. B(AX) = (BA)X

b. (A+A1)X = AX +A1X

c. A(X +X1) = AX +AX1

d. (kA)X = k(AX) = A(kX) if k is any number

e. IX = X if I is the n×n identity matrix

f. Let E be an elementary matrix obtained by per-
forming a row operation on the rows of In (see
Section 2.5). Show that EX is the column re-
sulting from performing that same row operation
on the vectors (call them rows) of X . [Hint:
Lemma 2.5.1.]

6.2 Subspaces and Spanning Sets

Chapter 5 is essentially about the subspaces of Rn. We now extend this notion.

Definition 6.2 Subspaces of a Vector Space

If V is a vector space, a nonempty subset U ⊆V is called a subspace of V if U is itself a vector
space using the addition and scalar multiplication of V .

Subspaces of Rn (as defined in Section 5.1) are subspaces in the present sense by Example 6.1.3. Moreover,
the defining properties for a subspace of Rn actually characterize subspaces in general.
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Theorem 6.2.1: Subspace Test

A subset U of a vector space is a subspace of V if and only if it satisfies the following three
conditions:

1. 0 lies in U where 0 is the zero vector of V .

2. If u1 and u2 are in U , then u1 +u2 is also in U .

3. If u is in U , then au is also in U for each scalar a.

Proof. If U is a subspace of V , then (2) and (3) hold by axioms A1 and S1 respectively, applied to the
vector space U . Since U is nonempty (it is a vector space), choose u in U . Then (1) holds because 0 = 0u

is in U by (3) and Theorem 6.1.3.

Conversely, if (1), (2), and (3) hold, then axioms A1 and S1 hold because of (2) and (3), and axioms
A2, A3, S2, S3, S4, and S5 hold in U because they hold in V . Axiom A4 holds because the zero vector 0

of V is actually in U by (1), and so serves as the zero of U . Finally, given u in U , then its negative−u in V

is again in U by (3) because −u = (−1)u (again using Theorem 6.1.3). Hence −u serves as the negative
of u in U .

Note that the proof of Theorem 6.2.1 shows that if U is a subspace of V , then U and V share the same zero
vector, and that the negative of a vector in the space U is the same as its negative in V .

Example 6.2.1

If V is any vector space, show that {0} and V are subspaces of V .

Solution. U =V clearly satisfies the conditions of the subspace test. As to U = {0}, it satisfies the
conditions because 0+0 = 0 and a0 = 0 for all a in R.

The vector space {0} is called the zero subspace of V .

Example 6.2.2

Let v be a vector in a vector space V . Show that the set

Rv = {av | a in R}

of all scalar multiples of v is a subspace of V .

Solution. Because 0 = 0v, it is clear that 0 lies in Rv. Given two vectors av and a1v in Rv, their
sum av+a1v = (a+a1)v is also a scalar multiple of v and so lies in Rv. Hence Rv is closed under
addition. Finally, given av, r(av) = (ra)v lies in Rv for all r ∈ R, so Rv is closed under scalar
multiplication. Hence the subspace test applies.

In particular, given d 6= 0 in R3, Rd is the line through the origin with direction vector d.
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The space Rv in Example 6.2.2 is described by giving the form of each vector in Rv. The next example
describes a subset U of the space Mnn by giving a condition that each matrix of U must satisfy.

Example 6.2.3

Let A be a fixed matrix in Mnn. Show that U = {X in Mnn | AX = XA} is a subspace of Mnn.

Solution. If 0 is the n×n zero matrix, then A0 = 0A, so 0 satisfies the condition for membership in
U . Next suppose that X and X1 lie in U so that AX = XA and AX1 = X1A. Then

A(X +X1) = AX +AX1 = XA+X1A+(X +X1)A

A(aX) = a(AX) = a(XA) = (aX)A

for all a in R, so both X +X1 and aX lie in U . Hence U is a subspace of Mnn.

Suppose p(x) is a polynomial and a is a number. Then the number p(a) obtained by replacing x by a

in the expression for p(x) is called the evaluation of p(x) at a. For example, if p(x) = 5−6x+2x2, then
the evaluation of p(x) at a = 2 is p(2) = 5−12+8 = 1. If p(a) = 0, the number a is called a root of p(x).

Example 6.2.4

Consider the set U of all polynomials in P that have 3 as a root:

U = {p(x) ∈ P | p(3) = 0}

Show that U is a subspace of P.

Solution. Clearly, the zero polynomial lies in U . Now let p(x) and q(x) lie in U so p(3) = 0 and
q(3) = 0. We have (p+q)(x) = p(x)+q(x) for all x, so (p+q)(3) = p(3)+q(3) = 0+0 = 0, and
U is closed under addition. The verification that U is closed under scalar multiplication is similar.

Recall that the space Pn consists of all polynomials of the form

a0 +a1x+a2x2 + · · ·+anxn

where a0, a1, a2, . . . , an are real numbers, and so is closed under the addition and scalar multiplication in
P. Moreover, the zero polynomial is included in Pn. Thus the subspace test gives Example 6.2.5.

Example 6.2.5

Pn is a subspace of P for each n≥ 0.

The next example involves the notion of the derivative f ′ of a function f . (If the reader is not fa-
miliar with calculus, this example may be omitted.) A function f defined on the interval [a, b] is called
differentiable if the derivative f ′(r) exists at every r in [a, b].
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Example 6.2.6

Show that the subset D[a, b] of all differentiable functions on [a, b] is a subspace of the vector
space F[a, b] of all functions on [a, b].

Solution. The derivative of any constant function is the constant function 0; in particular, 0 itself is
differentiable and so lies in D[a, b]. If f and g both lie in D[a, b] (so that f ′ and g′ exist), then it is
a theorem of calculus that f +g and r f are both differentiable for any r ∈ R. In fact,
( f +g)′ = f ′+g′ and (r f )′ = r f ′, so both lie in D[a, b]. This shows that D[a, b] is a subspace of
F[a, b].

Linear Combinations and Spanning Sets

Definition 6.3 Linear Combinations and Spanning

Let {v1, v2, . . . , vn} be a set of vectors in a vector space V . As in Rn, a vector v is called a linear

combination of the vectors v1, v2, . . . , vn if it can be expressed in the form

v = a1v1 +a2v2 + · · ·+anvn

where a1, a2, . . . , an are scalars, called the coefficients of v1, v2, . . . , vn. The set of all linear
combinations of these vectors is called their span, and is denoted by

span{v1, v2, . . . , vn}= {a1v1 +a2v2 + · · ·+anvn | ai in R}

If it happens that V = span{v1, v2, . . . , vn}, these vectors are called a spanning set for V . For example,
the span of two vectors v and w is the set

span{v, w}= {sv+ tw | s and t in R}

of all sums of scalar multiples of these vectors.

Example 6.2.7

Consider the vectors p1 = 1+x+4x2 and p2 = 1+5x+x2 in P2. Determine whether p1 and p2 lie
in span{1+2x− x2, 3+5x+2x2}.

Solution. For p1, we want to determine if s and t exist such that

p1 = s(1+2x− x2)+ t(3+5x+2x2)

Equating coefficients of powers of x (where x0 = 1) gives

1 = s+3t, 1 = 2s+5t, and 4 =−s+2t

These equations have the solution s =−2 and t = 1, so p1 is indeed in
span{1+2x− x2, 3+5x+2x2}.
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Turning to p2 = 1+5x+ x2, we are looking for s and t such that

p2 = s(1+2x− x2)+ t(3+5x+2x2)

Again equating coefficients of powers of x gives equations 1 = s+3t, 5 = 2s+5t, and 1 =−s+2t.
But in this case there is no solution, so p2 is not in span{1+2x− x2, 3+5x+2x2}.

We saw in Example 5.1.6 that Rm = span{e1, e2, . . . , em} where the vectors e1, e2, . . . , em are the
columns of the m×m identity matrix. Of course Rm = Mm1 is the set of all m×1 matrices, and there is
an analogous spanning set for each space Mmn. For example, each 2×2 matrix has the form

[
a b

c d

]
= a

[
1 0
0 0

]
+b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+d

[
0 0
0 1

]

so

M22 = span

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

Similarly, we obtain

Example 6.2.8

Mmn is the span of the set of all m×n matrices with exactly one entry equal to 1, and all other
entries zero.

The fact that every polynomial in Pn has the form a0 +a1x+a2x2 + · · ·+anxn where each ai is in R
shows that

Example 6.2.9

Pn = span{1, x, x2, . . . , xn}.

In Example 6.2.2 we saw that span{v} = {av | a in R} = Rv is a subspace for any vector v in a vector
space V . More generally, the span of any set of vectors is a subspace. In fact, the proof of Theorem 5.1.1
goes through to prove:

Theorem 6.2.2

Let U = span{v1, v2, . . . , vn} in a vector space V . Then:

1. U is a subspace of V containing each of v1, v2, . . . , vn.

2. U is the “smallest” subspace containing these vectors in the sense that any subspace that
contains each of v1, v2, . . . , vn must contain U .

Here is how condition 2 in Theorem 6.2.2 is used. Given vectors v1, . . . , vk in a vector space V and a
subspace U ⊆V , then:

span{v1, . . . , vn} ⊆U ⇔ each vi ∈U
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The following examples illustrate this.

Example 6.2.10

Show that P3 = span{x2 + x3, x, 2x2 +1, 3}.

Solution. Write U = span{x2 + x3, x, 2x2 +1, 3}. Then U ⊆ P3, and we use the fact that
P3 = span{1, x, x2, x3} to show that P3 ⊆U . In fact, x and 1 = 1

3 ·3 clearly lie in U . But then
successively,

x2 = 1
2 [(2x2 +1)−1] and x3 = (x2 + x3)− x2

also lie in U . Hence P3 ⊆U by Theorem 6.2.2.

Example 6.2.11

Let u and v be two vectors in a vector space V . Show that

span{u, v}= span{u+2v, u−v}

Solution. We have span{u+2v, u−v} ⊆ span{u, v} by Theorem 6.2.2 because both u+2v and
u−v lie in span{u, v}. On the other hand,

u = 1
3(u+2v)+ 2

3(u−v) and v = 1
3(u+2v)− 1

3(u−v)

so span{u, v} ⊆ span{u+2v, u−v}, again by Theorem 6.2.2.

Exercises for 6.2

Exercise 6.2.1 Which of the following are subspaces of
P3? Support your answer.

a. U = { f (x) | f (x) ∈ P3, f (2) = 1}

b. U = {xg(x) | g(x) ∈ P2}

c. U = {xg(x) | g(x) ∈ P3}

d. U = {xg(x)+ (1− x)h(x) | g(x) and h(x) ∈ P2}

e. U = The set of all polynomials in P3 with constant
term 0

f. U = { f (x) | f (x) ∈ P3, deg f (x) = 3}

Exercise 6.2.2 Which of the following are subspaces of
M22? Support your answer.

a. U =

{[
a b

0 c

]∣∣∣∣ a, b, and c in R

}

b. U =

{[
a b

c d

]∣∣∣∣ a+b = c+d; a, b, c, d in R

}

c. U = {A | A ∈M22, A = AT}

d. U = {A | A∈M22, AB= 0}, B a fixed 2×2 matrix

e. U = {A | A ∈M22, A2 = A}

f. U = {A | A ∈M22, A is not invertible}
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g. U = {A | A ∈M22, BAC = CAB}, B and C fixed
2×2 matrices

Exercise 6.2.3 Which of the following are subspaces of
F[0, 1]? Support your answer.

a. U = { f | f (0) = 0}

b. U = { f | f (0) = 1}

c. U = { f | f (0) = f (1)}

d. U = { f | f (x)≥ 0 for all x in [0, 1]}

e. U = { f | f (x) = f (y) for all x and y in [0, 1]}

f. U = { f | f (x+ y) = f (x)+ f (y) for all
x and y in [0, 1]}

g. U = { f | f is integrable and
∫ 1

0 f (x)dx = 0}

Exercise 6.2.4 Let A be an m× n matrix. For which
columns b in Rm is U = {x | x ∈Rn, Ax = b} a subspace
of Rn? Support your answer.

Exercise 6.2.5 Let x be a vector in Rn (written as a col-
umn), and define U = {Ax | A ∈Mmn}.

a. Show that U is a subspace of Rm.

b. Show that U = Rm if x 6= 0.

Exercise 6.2.6 Write each of the following as a linear
combination of x+1, x2 + x, and x2 +2.

x2 +3x+2a. 2x2−3x+1b.

x2 +1c. xd.

Exercise 6.2.7 Determine whether v lies in span {u, w}
in each case.

a. v = 3x2−2x−1; u = x2 +1, w = x+2

b. v = x; u = x2 +1, w = x+2

c. v =

[
1 3
−1 1

]
; u =

[
1 −1
2 1

]
, w =

[
2 1
1 0

]

d. v =

[
1 −4
5 3

]
; u =

[
1 −1
2 1

]
, w =

[
2 1
1 0

]

Exercise 6.2.8 Which of the following functions lie in
span{cos2 x, sin2 x}? (Work in F[0, π].)

cos2xa. 1b.

x2c. 1+ x2d.

Exercise 6.2.9

a. Show that R3 is spanned by
{(1, 0, 1), (1, 1, 0), (0, 1, 1)}.

b. Show that P2 is spanned by {1+2x2, 3x, 1+ x}.

c. Show that M22 is spanned by{[
1 0
0 0

]
,

[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 1
0 1

]}
.

Exercise 6.2.10 If X and Y are two sets of vectors in a
vector space V , and if X ⊆ Y , show that
span X ⊆ span Y .

Exercise 6.2.11 Let u, v, and w denote vectors in a vec-
tor space V . Show that:

a. span {u, v, w}= span{u+v, u+w, v+w}

b. span {u, v, w}= span{u−v, u+w, w}

Exercise 6.2.12 Show that

span{v1, v2, . . . , vn, 0}= span{v1, v2, . . . , vn}

holds for any set of vectors {v1, v2, . . . , vn}.
Exercise 6.2.13 If X and Y are nonempty subsets of
a vector space V such that span X = span Y = V , must
there be a vector common to both X and Y ? Justify your
answer.

Exercise 6.2.14 Is it possible that {(1, 2, 0), (1, 1, 1)}
can span the subspace U = {(a, b, 0) | a and b in R}?
Exercise 6.2.15 Describe span{0}.
Exercise 6.2.16 Let v denote any vector in a vector
space V . Show that span {v}= span{av} for any a 6= 0.

Exercise 6.2.17 Determine all subspaces of Rv where
v 6= 0 in some vector space V .

Exercise 6.2.18 Suppose V = span{v1, v2, . . . , vn}. If
u = a1v1 + a2v2 + · · ·+ anvn where the ai are in R and
a1 6= 0, show that V = span {u, v2, . . . , vn}.
Exercise 6.2.19 If Mnn = span {A1, A2, . . . , Ak}, show
that Mnn = span{AT

1 , AT
2 , . . . , AT

k }.
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Exercise 6.2.20 If Pn = span{p1(x), p2(x), . . . , pk(x)}
and a is in R, show that pi(a) 6= 0 for some i.

Exercise 6.2.21 Let U be a subspace of a vector space
V .

a. If au is in U where a 6= 0, show that u is in U .

b. If u and u+v are in U , show that v is in U .

Exercise 6.2.22 Let U be a nonempty subset of a vector
space V . Show that U is a subspace of V if and only if
u1 +au2 lies in U for all u1 and u2 in U and all a in R.

Exercise 6.2.23 Let U = {p(x) in P | p(3) = 0} be the
set in Example 6.2.4. Use the factor theorem (see Sec-
tion 6.5) to show that U consists of multiples of x− 3;
that is, show that U = {(x−3)q(x) | q(x) ∈ P}. Use this
to show that U is a subspace of P.

Exercise 6.2.24 Let A1, A2, . . . , Am denote n×n matri-
ces. If 0 6= y ∈Rn and A1y = A2y = · · ·= Amy = 0, show
that {A1, A2, . . . , Am} cannot span Mnn.

Exercise 6.2.25 Let {v1, v2, . . . , vn} and
{u1, u2, . . . , un} be sets of vectors in a vector space,
and let

X =




v1
...

vn


 Y =




u1
...

un




as in Exercise 6.1.18.

a. Show that span {v1, . . . , vn} ⊆ span{u1, . . . , un}
if and only if AY = X for some n×n matrix A.

b. If X = AY where A is invertible, show that
span {v1, . . . , vn}= span {u1, . . . , un}.

Exercise 6.2.26 If U and W are subspaces of a vector
space V , let U ∪W = {v | v is in U or v is in W}. Show
that U ∪W is a subspace if and only if U ⊆W or W ⊆U .

Exercise 6.2.27 Show that P cannot be spanned by a
finite set of polynomials.

6.3 Linear Independence and Dimension

Definition 6.4 Linear Independence and Dependence

As in Rn, a set of vectors {v1, v2, . . . , vn} in a vector space V is called linearly independent (or
simply independent) if it satisfies the following condition:

If s1v1 + s2v2 + · · ·+ snvn = 0, then s1 = s2 = · · ·= sn = 0.

A set of vectors that is not linearly independent is said to be linearly dependent (or simply
dependent).

The trivial linear combination of the vectors v1, v2, . . . , vn is the one with every coefficient zero:

0v1 +0v2 + · · ·+0vn

This is obviously one way of expressing 0 as a linear combination of the vectors v1, v2, . . . , vn, and they
are linearly independent when it is the only way.
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Example 6.3.1

Show that {1+ x, 3x+ x2, 2+ x− x2} is independent in P2.

Solution. Suppose a linear combination of these polynomials vanishes.

s1(1+ x)+ s2(3x+ x2)+ s3(2+ x− x2) = 0

Equating the coefficients of 1, x, and x2 gives a set of linear equations.

s1 + + 2s3 = 0
s1 + 3s2 + s3 = 0

s2− s3 = 0

The only solution is s1 = s2 = s3 = 0.

Example 6.3.2

Show that {sinx, cosx} is independent in the vector space F[0, 2π ] of functions defined on the
interval [0, 2π ].

Solution. Suppose that a linear combination of these functions vanishes.

s1(sinx)+ s2(cosx) = 0

This must hold for all values of x in [0, 2π ] (by the definition of equality in F[0, 2π ]). Taking
x = 0 yields s2 = 0 (because sin0 = 0 and cos0 = 1). Similarly, s1 = 0 follows from taking x = π

2
(because sin π

2 = 1 and cos π
2 = 0).

Example 6.3.3

Suppose that {u, v} is an independent set in a vector space V . Show that {u+2v, u−3v} is also
independent.

Solution. Suppose a linear combination of u+2v and u−3v vanishes:

s(u+2v)+ t(u−3v) = 0

We must deduce that s = t = 0. Collecting terms involving u and v gives

(s+ t)u+(2s−3t)v = 0

Because {u, v} is independent, this yields linear equations s+ t = 0 and 2s−3t = 0. The only
solution is s = t = 0.
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Example 6.3.4

Show that any set of polynomials of distinct degrees is independent.

Solution. Let p1, p2, . . . , pm be polynomials where deg (pi) = di. By relabelling if necessary, we
may assume that d1 > d2 > · · ·> dm. Suppose that a linear combination vanishes:

t1p1 + t2p2 + · · ·+ tm pm = 0

where each ti is in R. As deg (p1) = d1, let axd1 be the term in p1 of highest degree, where a 6= 0.
Since d1 > d2 > · · ·> dm, it follows that t1axd1 is the only term of degree d1 in the linear
combination t1p1 + t2p2 + · · ·+ tm pm = 0. This means that t1axd1 = 0, whence t1a = 0, hence
t1 = 0 (because a 6= 0). But then t2p2 + · · ·+ tm pm = 0 so we can repeat the argument to show that
t2 = 0. Continuing, we obtain ti = 0 for each i, as desired.

Example 6.3.5

Suppose that A is an n×n matrix such that Ak = 0 but Ak−1 6= 0. Show that
B = {I, A, A2, . . . , Ak−1} is independent in Mnn.

Solution. Suppose r0I + r1A+ r2A2 + · · ·+ rk−1Ak−1 = 0. Multiply by Ak−1:

r0Ak−1 + r1Ak + r2Ak+1 + · · ·+ rk−1A2k−2 = 0

Since Ak = 0, all the higher powers are zero, so this becomes r0Ak−1 = 0. But Ak−1 6= 0, so r0 = 0,
and we have r1A1 + r2A2 + · · ·+ rk−1Ak−1 = 0. Now multiply by Ak−2 to conclude that r1 = 0.
Continuing, we obtain ri = 0 for each i, so B is independent.

The next example collects several useful properties of independence for reference.

Example 6.3.6

Let V denote a vector space.

1. If v 6= 0 in V , then {v} is an independent set.

2. No independent set of vectors in V can contain the zero vector.

Solution.

1. Let tv = 0, t in R. If t 6= 0, then v = 1v = 1
t
(tv) = 1

t
0 = 0, contrary to assumption. So t = 0.

2. If {v1, v2, . . . , vk} is independent and (say) v2 = 0, then 0v1 +1v2 + · · ·+0vk = 0 is a
nontrivial linear combination that vanishes, contrary to the independence of
{v1, v2, . . . , vk}.
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A set of vectors is independent if 0 is a linear combination in a unique way. The following theorem
shows that every linear combination of these vectors has uniquely determined coefficients, and so extends
Theorem 5.2.1.

Theorem 6.3.1

Let {v1, v2, . . . , vn} be a linearly independent set of vectors in a vector space V . If a vector v has
two (ostensibly different) representations

v = s1v1 + s2v2 + · · · + snvn

v = t1v1 + t2v2 + · · · + tnvn

as linear combinations of these vectors, then s1 = t1, s2 = t2, . . . , sn = tn. In other words, every
vector in V can be written in a unique way as a linear combination of the vi.

Proof. Subtracting the equations given in the theorem gives

(s1− t1)v1 +(s2− t2)v2 + · · ·+(sn− tn)vn = 0

The independence of {v1, v2, . . . , vn} gives si− ti = 0 for each i, as required.

The following theorem extends (and proves) Theorem 5.2.4, and is one of the most useful results in
linear algebra.

Theorem 6.3.2: Fundamental Theorem

Suppose a vector space V can be spanned by n vectors. If any set of m vectors in V is linearly
independent, then m≤ n.

Proof. Let V = span{v1, v2, . . . , vn}, and suppose that {u1, u2, . . . , um} is an independent set in V .
Then u1 = a1v1 +a2v2 + · · ·+anvn where each ai is in R. As u1 6= 0 (Example 6.3.6), not all of the ai are
zero, say a1 6= 0 (after relabelling the vi). Then V = span{u1, v2, v3, . . . , vn} as the reader can verify.
Hence, write u2 = b1u1 + c2v2 + c3v3 + · · ·+ cnvn. Then some ci 6= 0 because {u1, u2} is independent;
so, as before, V = span{u1, u2, v3, . . . , vn}, again after possible relabelling of the vi. If m > n, this
procedure continues until all the vectors vi are replaced by the vectors u1, u2, . . . , un. In particular,
V = span{u1, u2, . . . , un}. But then un+1 is a linear combination of u1, u2, . . . , un contrary to the
independence of the ui. Hence, the assumption m > n cannot be valid, so m≤ n and the theorem is proved.

If V = span{v1, v2, . . . , vn}, and if {u1, u2, . . . , um} is an independent set in V , the above proof
shows not only that m ≤ n but also that m of the (spanning) vectors v1, v2, . . . , vn can be replaced by
the (independent) vectors u1, u2, . . . , um and the resulting set will still span V . In this form the result is
called the Steinitz Exchange Lemma.
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Definition 6.5 Basis of a Vector Space

As in Rn, a set {e1, e2, . . . , en} of vectors in a vector space V is called a basis of V if it satisfies
the following two conditions:

1. {e1, e2, . . . , en} is linearly independent

2. V = span{e1, e2, . . . , en}

Thus if a set of vectors {e1, e2, . . . , en} is a basis, then every vector in V can be written as a linear
combination of these vectors in a unique way (Theorem 6.3.1). But even more is true: Any two (finite)
bases of V contain the same number of vectors.

Theorem 6.3.3: Invariance Theorem

Let {e1, e2, . . . , en} and {f1, f2, . . . , fm} be two bases of a vector space V . Then n = m.

Proof. Because V = span{e1, e2, . . . , en} and {f1, f2, . . . , fm} is independent, it follows from Theo-
rem 6.3.2 that m≤ n. Similarly n≤ m, so n = m, as asserted.

Theorem 6.3.3 guarantees that no matter which basis of V is chosen it contains the same number of
vectors as any other basis. Hence there is no ambiguity about the following definition.

Definition 6.6 Dimension of a Vector Space

If {e1, e2, . . . , en} is a basis of the nonzero vector space V , the number n of vectors in the basis is
called the dimension of V , and we write

dim V = n

The zero vector space {0} is defined to have dimension 0:

dim{0}= 0

In our discussion to this point we have always assumed that a basis is nonempty and hence that the di-
mension of the space is at least 1. However, the zero space {0} has no basis (by Example 6.3.6) so our
insistence that dim{0} = 0 amounts to saying that the empty set of vectors is a basis of {0}. Thus the
statement that “the dimension of a vector space is the number of vectors in any basis” holds even for the
zero space.

We saw in Example 5.2.9 that dim (Rn) = n and, if e j denotes column j of In, that {e1, e2, . . . , en} is
a basis (called the standard basis). In Example 6.3.7 below, similar considerations apply to the space Mmn

of all m×n matrices; the verifications are left to the reader.

Example 6.3.7

The space Mmn has dimension mn, and one basis consists of all m×n matrices with exactly one
entry equal to 1 and all other entries equal to 0. We call this the standard basis of Mmn.
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Example 6.3.8

Show that dim Pn = n+1 and that {1, x, x2, . . . , xn} is a basis, called the standard basis of Pn.

Solution. Each polynomial p(x) = a0 +a1x+ · · ·+anxn in Pn is clearly a linear combination of
1, x, . . . , xn, so Pn = span{1, x, . . . , xn}. However, if a linear combination of these vectors
vanishes, a01+a1x+ · · ·+anxn = 0, then a0 = a1 = · · ·= an = 0 because x is an indeterminate. So
{1, x, . . . , xn} is linearly independent and hence is a basis containing n+1 vectors. Thus,
dim (Pn) = n+1.

Example 6.3.9

If v 6= 0 is any nonzero vector in a vector space V , show that span{v}= Rv has dimension 1.

Solution. {v} clearly spans Rv, and it is linearly independent by Example 6.3.6. Hence {v} is a
basis of Rv, and so dim Rv = 1.

Example 6.3.10

Let A =

[
1 1
0 0

]
and consider the subspace

U = {X in M22 | AX = XA}

of M22. Show that dim U = 2 and find a basis of U .

Solution. It was shown in Example 6.2.3 that U is a subspace for any choice of the matrix A. In the

present case, if X =

[
x y

z w

]
is in U , the condition AX = XA gives z = 0 and x = y+w. Hence

each matrix X in U can be written

X =

[
y+w y

0 w

]
= y

[
1 1
0 0

]
+w

[
1 0
0 1

]

so U = span B where B =

{[
1 1
0 0

]
,

[
1 0
0 1

]}
. Moreover, the set B is linearly independent

(verify this), so it is a basis of U and dim U = 2.

Example 6.3.11

Show that the set V of all symmetric 2×2 matrices is a vector space, and find the dimension of V .

Solution. A matrix A is symmetric if AT = A. If A and B lie in V , then

(A+B)T = AT +BT = A+B and (kA)T = kAT = kA

using Theorem 2.1.2. Hence A+B and kA are also symmetric. As the 2×2 zero matrix is also in
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V , this shows that V is a vector space (being a subspace of M22). Now a matrix A is symmetric
when entries directly across the main diagonal are equal, so each 2×2 symmetric matrix has the
form [

a c

c b

]
= a

[
1 0
0 0

]
+b

[
0 0
0 1

]
+ c

[
0 1
1 0

]

Hence the set B =

{[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 1
1 0

]}
spans V , and the reader can verify that B is

linearly independent. Thus B is a basis of V , so dim V = 3.

It is frequently convenient to alter a basis by multiplying each basis vector by a nonzero scalar. The
next example shows that this always produces another basis. The proof is left as Exercise 6.3.22.

Example 6.3.12

Let B = {v1, v2, . . . , vn} be nonzero vectors in a vector space V . Given nonzero scalars
a1, a2, . . . , an, write D = {a1v1, a2v2, . . . , anvn}. If B is independent or spans V , the same is true
of D. In particular, if B is a basis of V , so also is D.

Exercises for 6.3

Exercise 6.3.1 Show that each of the following sets of
vectors is independent.

a. {1+ x, 1− x, x+ x2} in P2

b. {x2, x+1, 1− x− x2} in P2

c.{[
1 1
0 0

]
,

[
1 0
1 0

]
,

[
0 0
1 −1

]
,

[
0 1
0 1

]}

in M22

d.{[
1 1
1 0

]
,

[
0 1
1 1

]
,

[
1 0
1 1

]
,

[
1 1
0 1

]}

in M22

Exercise 6.3.2 Which of the following subsets of V are
independent?

a. V = P2; {x2 +1, x+1, x}

b. V = P2; {x2− x+3, 2x2 + x+5, x2 +5x+1}

c. V = M22;

{[
1 1
0 1

]
,

[
1 0
1 1

]
,

[
1 0
0 1

]}

d. V = M22;{[
−1 0

0 −1

]
,

[
1 −1
−1 1

]
,

[
1 1
1 1

]
,

[
0 −1
−1 0

]}

e. V = F[1, 2];
{

1
x
, 1

x2 , 1
x3

}

f. V = F[0, 1];
{

1
x2+x−6 , 1

x2−5x+6 , 1
x2−9

}

Exercise 6.3.3 Which of the following are independent
in F[0, 2π]?

a. {sin2 x, cos2 x}

b. {1, sin2 x, cos2 x}

c. {x, sin2 x, cos2 x}

Exercise 6.3.4 Find all values of a such that the follow-
ing are independent in R3.

a. {(1, −1, 0), (a, 1, 0), (0, 2, 3)}
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b. {(2, a, 1), (1, 0, 1), (0, 1, 3)}

Exercise 6.3.5 Show that the following are bases of the
space V indicated.

a. {(1, 1, 0), (1, 0, 1), (0, 1, 1)}; V = R3

b. {(−1, 1, 1), (1, −1, 1), (1, 1, −1)}; V =R3

c.

{[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 1
0 1

]
,

[
1 0
0 0

]}
;

V = M22

d. {1+ x, x+ x2, x2 + x3, x3}; V = P3

Exercise 6.3.6 Exhibit a basis and calculate the dimen-
sion of each of the following subspaces of P2.

a. {a(1+ x)+b(x+ x2) | a and b in R}

b. {a+b(x+ x2) | a and b in R}

c. {p(x) | p(1) = 0}

d. {p(x) | p(x) = p(−x)}

Exercise 6.3.7 Exhibit a basis and calculate the dimen-
sion of each of the following subspaces of M22.

a. {A | AT =−A}

b.

{
A

∣∣∣∣ A

[
1 1
−1 0

]
=

[
1 1
−1 0

]
A

}

c.

{
A

∣∣∣∣ A

[
1 0
−1 0

]
=

[
0 0
0 0

]}

d.

{
A

∣∣∣∣ A

[
1 1
−1 0

]
=

[
0 1
−1 1

]
A

}

Exercise 6.3.8 Let A =

[
1 1
0 0

]
and define

U = {X | X ∈M22 and AX = X}.

a. Find a basis of U containing A.

b. Find a basis of U not containing A.

Exercise 6.3.9 Show that the set C of all complex num-
bers is a vector space with the usual operations, and find
its dimension.

Exercise 6.3.10

a. Let V denote the set of all 2× 2 matrices with
equal column sums. Show that V is a subspace
of M22, and compute dim V .

b. Repeat part (a) for 3×3 matrices.

c. Repeat part (a) for n×n matrices.

Exercise 6.3.11

a. Let V = {(x2+x+1)p(x) | p(x) in P2}. Show that
V is a subspace of P4 and find dim V . [Hint: If
f (x)g(x) = 0 in P, then f (x) = 0 or g(x) = 0.]

b. Repeat with V = {(x2 − x)p(x) | p(x) in P3}, a
subset of P5.

c. Generalize.

Exercise 6.3.12 In each case, either prove the assertion
or give an example showing that it is false.

a. Every set of four nonzero polynomials in P3 is a
basis.

b. P2 has a basis of polynomials f (x) such that
f (0) = 0.

c. P2 has a basis of polynomials f (x) such that
f (0) = 1.

d. Every basis of M22 contains a noninvertible ma-
trix.

e. No independent subset of M22 contains a matrix A

with A2 = 0.

f. If {u, v, w} is independent then, au+bv+cw= 0

for some a, b, c.

g. {u, v, w} is independent if au+ bv+ cw = 0 for
some a, b, c.

h. If {u, v} is independent, so is {u, u+v}.

i. If {u, v} is independent, so is {u, v, u+v}.

j. If {u, v, w} is independent, so is {u, v}.

k. If {u, v, w} is independent, so is {u+w, v+w}.

l. If {u, v, w} is independent, so is {u+v+w}.
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m. If u 6= 0 and v 6= 0 then {u, v} is dependent if and
only if one is a scalar multiple of the other.

n. If dim V = n, then no set of more than n vectors
can be independent.

o. If dim V = n, then no set of fewer than n vectors
can span V .

Exercise 6.3.13 Let A 6= 0 and B 6= 0 be n×n matrices,
and assume that A is symmetric and B is skew-symmetric
(that is, BT =−B). Show that {A, B} is independent.

Exercise 6.3.14 Show that every set of vectors contain-
ing a dependent set is again dependent.

Exercise 6.3.15 Show that every nonempty subset of an
independent set of vectors is again independent.

Exercise 6.3.16 Let f and g be functions on [a, b], and
assume that f (a) = 1 = g(b) and f (b) = 0 = g(a). Show
that { f , g} is independent in F[a, b].

Exercise 6.3.17 Let {A1, A2, . . . , Ak} be independent
in Mmn, and suppose that U and V are invertible ma-
trices of size m×m and n× n, respectively. Show that
{UA1V , UA2V , . . . , UAkV} is independent.

Exercise 6.3.18 Show that {v, w} is independent if and
only if neither v nor w is a scalar multiple of the other.

Exercise 6.3.19 Assume that {u, v} is independent in
a vector space V . Write u′ = au+ bv and v′ = cu+ dv,
where a, b, c, and d are numbers. Show that {u′, v′} is

independent if and only if the matrix

[
a c

b d

]
is invert-

ible. [Hint: Theorem 2.4.5.]

Exercise 6.3.20 If {v1, v2, . . . , vk} is independent and
w is not in span{v1, v2, . . . , vk}, show that:

a. {w, v1, v2, . . . , vk} is independent.

b. {v1 +w, v2 +w, . . . , vk +w} is independent.

Exercise 6.3.21 If {v1, v2, . . . , vk} is independent,
show that {v1, v1 + v2, . . . , v1 + v2 + · · ·+ vk} is also
independent.

Exercise 6.3.22 Prove Example 6.3.12.

Exercise 6.3.23 Let {u, v, w, z} be independent.
Which of the following are dependent?

a. {u−v, v−w, w−u}

b. {u+v, v+w, w+u}

c. {u−v, v−w, w− z, z−u}

d. {u+v, v+w, w+ z, z+u}

Exercise 6.3.24 Let U and W be subspaces of V with
bases {u1, u2, u3} and {w1, w2} respectively. If U

and W have only the zero vector in common, show that
{u1, u2, u3, w1, w2} is independent.

Exercise 6.3.25 Let {p, q} be independent polynomi-
als. Show that {p, q, pq} is independent if and only if
deg p≥ 1 and deg q≥ 1.

Exercise 6.3.26 If z is a complex number, show that
{z, z2} is independent if and only if z is not real.

Exercise 6.3.27 Let B = {A1, A2, . . . , An} ⊆Mmn, and
write B′ = {AT

1 , AT
2 , . . . , AT

n } ⊆Mnm. Show that:

a. B is independent if and only if B′ is independent.

b. B spans Mmn if and only if B′ spans Mnm.

Exercise 6.3.28 If V = F[a, b] as in Example 6.1.7,
show that the set of constant functions is a subspace of
dimension 1 ( f is constant if there is a number c such
that f (x) = c for all x).

Exercise 6.3.29

a. If U is an invertible n × n matrix and
{A1, A2, . . . , Amn} is a basis of Mmn, show that
{A1U , A2U , . . . , AmnU} is also a basis.

b. Show that part (a) fails if U is not invertible. [Hint:
Theorem 2.4.5.]

Exercise 6.3.30 Show that {(a, b), (a1, b1)} is a basis
of R2 if and only if {a+bx, a1 +b1x} is a basis of P1.

Exercise 6.3.31 Find the dimension of the subspace
span{1, sin2 θ , cos2θ} of F[0, 2π].

Exercise 6.3.32 Show that F[0, 1] is not finite dimen-
sional.

Exercise 6.3.33 If U and W are subspaces of V , define
their intersection U ∩W as follows:

U ∩W = {v | v is in both U and W}

a. Show that U ∩W is a subspace contained in U and
W .
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b. Show that U ∩W = {0} if and only if {u, w} is
independent for any nonzero vectors u in U and w

in W .

c. If B and D are bases of U and W , and if U ∩W =
{0}, show that B∪D = {v | v is in B or D} is in-
dependent.

Exercise 6.3.34 If U and W are vector spaces, let
V = {(u, w) | u in U and w in W}.

a. Show that V is a vector space if (u, w) +
(u1, w1) = (u + u1, w + w1) and a(u, w) =
(au, aw).

b. If dim U = m and dim W = n, show that
dim V = m+n.

c. If V1, . . . , Vm are vector spaces, let

V =V1×·· ·×Vm

= {(v1, . . . , vm) | vi ∈Vi for each i}

denote the space of n-tuples from the Vi with com-
ponentwise operations (see Exercise 6.1.17). If
dim Vi = ni for each i, show that dim V = n1 +
· · ·+nm.

Exercise 6.3.35 Let Dn denote the set of all functions f

from the set {1, 2, . . . , n} to R.

a. Show that Dn is a vector space with pointwise ad-
dition and scalar multiplication.

b. Show that {S1, S2, . . . , Sn} is a basis of Dn where,
for each k = 1, 2, . . . , n, the function Sk is defined
by Sk(k) = 1, whereas Sk( j) = 0 if j 6= k.

Exercise 6.3.36 A polynomial p(x) is called even if
p(−x) = p(x) and odd if p(−x) = −p(x). Let En and
On denote the sets of even and odd polynomials in Pn.

a. Show that En is a subspace of Pn and find dim En.

b. Show that On is a subspace of Pn and find dim On.

Exercise 6.3.37 Let {v1, . . . , vn} be independent in a
vector space V , and let A be an n× n matrix. Define
u1, . . . , un by




u1
...

un


= A




v1
...

vn




(See Exercise 6.1.18.) Show that {u1, . . . , un} is inde-
pendent if and only if A is invertible.

6.4 Finite Dimensional Spaces

Up to this point, we have had no guarantee that an arbitrary vector space has a basis—and hence no
guarantee that one can speak at all of the dimension of V . However, Theorem 6.4.1 will show that any
space that is spanned by a finite set of vectors has a (finite) basis: The proof requires the following basic
lemma, of interest in itself, that gives a way to enlarge a given independent set of vectors.

Lemma 6.4.1: Independent Lemma

Let {v1, v2, . . . , vk} be an independent set of vectors in a vector space V . If u ∈V but5

u /∈ span{v1, v2, . . . , vk}, then {u, v1, v2, . . . , vk} is also independent.

Proof. Let tu+ t1v1 + t2v2 + · · ·+ tkvk = 0; we must show that all the coefficients are zero. First, t = 0
because, otherwise, u =− t1

t
v1− t2

t
v2−·· ·− tk

t
vk is in span{v1, v2, . . . , vk}, contrary to our assumption.

5If X is a set, we write a ∈ X to indicate that a is an element of the set X . If a is not an element of X , we write a /∈ X .



6.4. Finite Dimensional Spaces 355

Hence t = 0. But then t1v1 + t2v2 + · · ·+ tkvk = 0 so the rest of the ti are zero by the independence of
{v1, v2, . . . , vk}. This is what we wanted.

0

u

v1

v2

span{v1 , v2}
x

y

z
Note that the converse of Lemma 6.4.1 is also true: if
{u, v1, v2, . . . , vk} is independent, then u is not in
span{v1, v2, . . . , vk}.

As an illustration, suppose that {v1, v2} is inde-
pendent in R3. Then v1 and v2 are not parallel, so
span{v1, v2} is a plane through the origin (shaded in
the diagram). By Lemma 6.4.1, u is not in this plane if
and only if {u, v1, v2} is independent.

Definition 6.7 Finite Dimensional and Infinite Dimensional Vector Spaces

A vector space V is called finite dimensional if it is spanned by a finite set of vectors. Otherwise,
V is called infinite dimensional.

Thus the zero vector space {0} is finite dimensional because {0} is a spanning set.

Lemma 6.4.2

Let V be a finite dimensional vector space. If U is any subspace of V , then any independent subset
of U can be enlarged to a finite basis of U .

Proof. Suppose that I is an independent subset of U . If span I = U then I is already a basis of U . If
span I 6=U , choose u1 ∈U such that u1 /∈ span I. Hence the set I∪{u1} is independent by Lemma 6.4.1.
If span (I ∪ {u1}) = U we are done; otherwise choose u2 ∈ U such that u2 /∈ span (I ∪ {u1}). Hence
I ∪ {u1, u2} is independent, and the process continues. We claim that a basis of U will be reached
eventually. Indeed, if no basis of U is ever reached, the process creates arbitrarily large independent sets
in V . But this is impossible by the fundamental theorem because V is finite dimensional and so is spanned
by a finite set of vectors.

Theorem 6.4.1

Let V be a finite dimensional vector space spanned by m vectors.

1. V has a finite basis, and dim V ≤ m.

2. Every independent set of vectors in V can be enlarged to a basis of V by adding vectors from
any fixed basis of V .

3. If U is a subspace of V , then

a. U is finite dimensional and dim U ≤ dim V .

b. If dim U = dim V then U =V .
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Proof.

1. If V = {0}, then V has an empty basis and dim V = 0 ≤ m. Otherwise, let v 6= 0 be a vector in V .
Then {v} is independent, so (1) follows from Lemma 6.4.2 with U =V .

2. We refine the proof of Lemma 6.4.2. Fix a basis B of V and let I be an independent subset of V .
If span I = V then I is already a basis of V . If span I 6= V , then B is not contained in I (because
B spans V ). Hence choose b1 ∈ B such that b1 /∈ span I. Hence the set I∪{b1} is independent by
Lemma 6.4.1. If span (I ∪{b1}) = V we are done; otherwise a similar argument shows that (I ∪
{b1, b2}) is independent for some b2 ∈ B. Continue this process. As in the proof of Lemma 6.4.2,
a basis of V will be reached eventually.

3. a. This is clear if U = {0}. Otherwise, let u 6= 0 in U . Then {u} can be enlarged to a finite basis
B of U by Lemma 6.4.2, proving that U is finite dimensional. But B is independent in V , so
dim U ≤ dim V by the fundamental theorem.

b. This is clear if U = {0} because V has a basis; otherwise, it follows from (2).

Theorem 6.4.1 shows that a vector space V is finite dimensional if and only if it has a finite basis (possibly
empty), and that every subspace of a finite dimensional space is again finite dimensional.

Example 6.4.1

Enlarge the independent set D =

{[
1 1
1 0

]
,

[
0 1
1 1

]
,

[
1 0
1 1

]}
to a basis of M22.

Solution. The standard basis of M22 is

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
, so

including one of these in D will produce a basis by Theorem 6.4.1. In fact including any of these
matrices in D produces an independent set (verify), and hence a basis by Theorem 6.4.4. Of course

these vectors are not the only possibilities, for example, including

[
1 1
0 1

]
works as well.

Example 6.4.2

Find a basis of P3 containing the independent set {1+ x, 1+ x2}.

Solution. The standard basis of P3 is {1, x, x2, x3}, so including two of these vectors will do. If
we use 1 and x3, the result is {1, 1+ x, 1+ x2, x3}. This is independent because the polynomials
have distinct degrees (Example 6.3.4), and so is a basis by Theorem 6.4.1. Of course, including
{1, x} or {1, x2} would not work!

Example 6.4.3

Show that the space P of all polynomials is infinite dimensional.
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Solution. For each n≥ 1, P has a subspace Pn of dimension n+1. Suppose P is finite dimensional,
say dim P = m. Then dim Pn ≤ dim P by Theorem 6.4.1, that is n+1≤ m. This is impossible
since n is arbitrary, so P must be infinite dimensional.

The next example illustrates how (2) of Theorem 6.4.1 can be used.

Example 6.4.4

If c1, c2, . . . , ck are independent columns in Rn, show that they are the first k columns in some
invertible n×n matrix.

Solution. By Theorem 6.4.1, expand {c1, c2, . . . , ck} to a basis {c1, c2, . . . , ck, ck+1, . . . , cn} of
Rn. Then the matrix A =

[
c1 c2 . . . ck ck+1 . . . cn

]
with this basis as its columns is an

n×n matrix and it is invertible by Theorem 5.2.3.

Theorem 6.4.2

Let U and W be subspaces of the finite dimensional space V .

1. If U ⊆W , then dim U ≤ dim W .

2. If U ⊆W and dim U = dim W , then U =W .

Proof. Since W is finite dimensional, (1) follows by taking V = W in part (3) of Theorem 6.4.1. Now
assume dim U = dim W = n, and let B be a basis of U . Then B is an independent set in W . If U 6= W ,
then span B 6= W , so B can be extended to an independent set of n+ 1 vectors in W by Lemma 6.4.1.
This contradicts the fundamental theorem (Theorem 6.3.2) because W is spanned by dim W = n vectors.
Hence U =W , proving (2).

Theorem 6.4.2 is very useful. This was illustrated in Example 5.2.13 for R2 and R3; here is another
example.

Example 6.4.5

If a is a number, let W denote the subspace of all polynomials in Pn that have a as a root:

W = {p(x) | p(x) ∈ Pn and p(a) = 0}

Show that {(x−a), (x−a)2, . . . , (x−a)n} is a basis of W .

Solution. Observe first that (x−a), (x−a)2, . . . , (x−a)n are members of W , and that they are
independent because they have distinct degrees (Example 6.3.4). Write

U = span{(x−a), (x−a)2, . . . , (x−a)n}

Then we have U ⊆W ⊆ Pn, dim U = n, and dim Pn = n+1. Hence n≤ dim W ≤ n+1 by
Theorem 6.4.2. Since dim W is an integer, we must have dim W = n or dim W = n+1. But then
W =U or W = Pn, again by Theorem 6.4.2. Because W 6= Pn, it follows that W =U , as required.
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A set of vectors is called dependent if it is not independent, that is if some nontrivial linear combina-
tion vanishes. The next result is a convenient test for dependence.

Lemma 6.4.3: Dependent Lemma

A set D = {v1, v2, . . . , vk} of vectors in a vector space V is dependent if and only if some vector
in D is a linear combination of the others.

Proof. Let v2 (say) be a linear combination of the rest: v2 = s1v1 + s3v3 + · · ·+ skvk. Then

s1v1 +(−1)v2 + s3v3 + · · ·+ skvk = 0

is a nontrivial linear combination that vanishes, so D is dependent. Conversely, if D is dependent, let
t1v1 + t2v2 + · · ·+ tkvk = 0 where some coefficient is nonzero. If (say) t2 6= 0, then v2 = − t1

t2
v1− t3

t2
v3−

·· ·− tk
t2

vk is a linear combination of the others.

Lemma 6.4.1 gives a way to enlarge independent sets to a basis; by contrast, Lemma 6.4.3 shows that
spanning sets can be cut down to a basis.

Theorem 6.4.3

Let V be a finite dimensional vector space. Any spanning set for V can be cut down (by deleting
vectors) to a basis of V .

Proof. Since V is finite dimensional, it has a finite spanning set S. Among all spanning sets contained in S,
choose S0 containing the smallest number of vectors. It suffices to show that S0 is independent (then S0 is a
basis, proving the theorem). Suppose, on the contrary, that S0 is not independent. Then, by Lemma 6.4.3,
some vector u ∈ S0 is a linear combination of the set S1 = S0 \{u} of vectors in S0 other than u. It follows
that span S0 = span S1, that is, V = span S1. But S1 has fewer elements than S0 so this contradicts the
choice of S0. Hence S0 is independent after all.

Note that, with Theorem 6.4.1, Theorem 6.4.3 completes the promised proof of Theorem 5.2.6 for the case
V = Rn.

Example 6.4.6

Find a basis of P3 in the spanning set S = {1, x+ x2, 2x−3x2, 1+3x−2x2, x3}.

Solution. Since dim P3 = 4, we must eliminate one polynomial from S. It cannot be x3 because
the span of the rest of S is contained in P2. But eliminating 1+3x−2x2 does leave a basis (verify).
Note that 1+3x−2x2 is the sum of the first three polynomials in S.

Theorems 6.4.1 and 6.4.3 have other useful consequences.
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Theorem 6.4.4

Let V be a vector space with dim V = n, and suppose S is a set of exactly n vectors in V . Then S is
independent if and only if S spans V .

Proof. Assume first that S is independent. By Theorem 6.4.1, S is contained in a basis B of V . Hence
|S|= n = |B| so, since S⊆ B, it follows that S = B. In particular S spans V .

Conversely, assume that S spans V , so S contains a basis B by Theorem 6.4.3. Again |S|= n = |B| so,
since S⊇ B, it follows that S = B. Hence S is independent.

One of independence or spanning is often easier to establish than the other when showing that a set of
vectors is a basis. For example if V = Rn it is easy to check whether a subset S of Rn is orthogonal (hence
independent) but checking spanning can be tedious. Here are three more examples.

Example 6.4.7

Consider the set S = {p0(x), p1(x), . . . , pn(x)} of polynomials in Pn. If deg pk(x) = k for each k,
show that S is a basis of Pn.

Solution. The set S is independent—the degrees are distinct—see Example 6.3.4. Hence S is a
basis of Pn by Theorem 6.4.4 because dim Pn = n+1.

Example 6.4.8

Let V denote the space of all symmetric 2×2 matrices. Find a basis of V consisting of invertible
matrices.

Solution. We know that dim V = 3 (Example 6.3.11), so what is needed is a set of three invertible,
symmetric matrices that (using Theorem 6.4.4) is either independent or spans V . The set{[

1 0
0 1

]
,

[
1 0
0 −1

]
,

[
0 1
1 0

]}
is independent (verify) and so is a basis of the required type.

Example 6.4.9

Let A be any n×n matrix. Show that there exist n2 +1 scalars a0, a1, a2, . . . , an2 not all zero,
such that

a0I +a1A+a2A2 + · · ·+an2An2
= 0

where I denotes the n×n identity matrix.

Solution. The space Mnn of all n×n matrices has dimension n2 by Example 6.3.7. Hence the
n2 +1 matrices I, A, A2, . . . , An2

cannot be independent by Theorem 6.4.4, so a nontrivial linear
combination vanishes. This is the desired conclusion.

The result in Example 6.4.9 can be written as f (A) = 0 where f (x) = a0 + a1x+ a2x2 + · · ·+ an2xn2
. In

other words, A satisfies a nonzero polynomial f (x) of degree at most n2. In fact we know that A satisfies
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a nonzero polynomial of degree n (this is the Cayley-Hamilton theorem—see Theorem 8.7.10), but the
brevity of the solution in Example 6.4.6 is an indication of the power of these methods.

If U and W are subspaces of a vector space V , there are two related subspaces that are of interest, their
sum U +W and their intersection U ∩W , defined by

U +W = {u+w | u ∈U and w ∈W}
U ∩W = {v ∈V | v ∈U and v ∈W}

It is routine to verify that these are indeed subspaces of V , that U ∩W is contained in both U and W , and
that U +W contains both U and W . We conclude this section with a useful fact about the dimensions of
these spaces. The proof is a good illustration of how the theorems in this section are used.

Theorem 6.4.5

Suppose that U and W are finite dimensional subspaces of a vector space V . Then U +W is finite
dimensional and

dim (U +W ) = dim U + dim W − dim (U ∩W ).

Proof. Since U∩W ⊆U , it has a finite basis, say {x1, . . . , xd}. Extend it to a basis {x1, . . . , xd , u1, . . . , um}
of U by Theorem 6.4.1. Similarly extend {x1, . . . , xd} to a basis {x1, . . . , xd , w1, . . . , wp} of W . Then

U +W = span{x1, . . . , xd , u1, . . . , um, w1, . . . , wp}

as the reader can verify, so U +W is finite dimensional. For the rest, it suffices to show that
{x1, . . . , xd , u1, . . . , um, w1, . . . , wp} is independent (verify). Suppose that

r1x1 + · · ·+ rdxd + s1u1 + · · ·+ smum + t1w1 + · · ·+ tpwp = 0 (6.1)

where the ri, s j, and tk are scalars. Then

r1x1 + · · ·+ rdxd + s1u1 + · · ·+ smum =−(t1w1 + · · ·+ tpwp)

is in U (left side) and also in W (right side), and so is in U ∩W . Hence (t1w1 + · · ·+ tpwp) is a linear
combination of {x1, . . . , xd}, so t1 = · · · = tp = 0, because {x1, . . . , xd , w1, . . . , wp} is independent.
Similarly, s1 = · · ·= sm = 0, so (6.1) becomes r1x1 + · · ·+ rdxd = 0. It follows that r1 = · · ·= rd = 0, as
required.

Theorem 6.4.5 is particularly interesting if U ∩W = {0}. Then there are no vectors xi in the above
proof, and the argument shows that if {u1, . . . , um} and {w1, . . . , wp} are bases of U and W respectively,
then {u1, . . . , um, w1, . . . , wp} is a basis of U + W . In this case U +W is said to be a direct sum (written
U⊕W ); we return to this in Chapter 9.
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Exercises for 6.4

Exercise 6.4.1 In each case, find a basis for V that in-
cludes the vector v.

a. V =R3, v = (1, −1, 1)

b. V =R3, v = (0, 1, 1)

c. V = M22, v =

[
1 1
1 1

]

d. V = P2, v = x2− x+1

Exercise 6.4.2 In each case, find a basis for V among
the given vectors.

a. V =R3,
{(1, 1, −1), (2, 0, 1), (−1, 1, −2), (1, 2, 1)}

b. V = P2, {x2 +3, x+2, x2−2x−1, x2 + x}

Exercise 6.4.3 In each case, find a basis of V containing
v and w.

a. V =R4, v = (1, −1, 1, −1), w = (0, 1, 0, 1)

b. V =R4, v = (0, 0, 1, 1), w = (1, 1, 1, 1)

c. V = M22, v =

[
1 0
0 1

]
, w =

[
0 1
1 0

]

d. V = P3, v = x2 +1, w = x2 + x

Exercise 6.4.4

a. If z is not a real number, show that {z, z2} is a basis
of the real vector space C of all complex numbers.

b. If z is neither real nor pure imaginary, show that
{z, z} is a basis of C.

Exercise 6.4.5 In each case use Theorem 6.4.4 to decide
if S is a basis of V .

a. V = M22;

S =

{[
1 1
1 1

]
,

[
0 1
1 1

]
,

[
0 0
1 1

]
,

[
0 0
0 1

]}

b. V = P3; S = {2x2, 1+ x, 3, 1+ x+ x2 + x3}

Exercise 6.4.6

a. Find a basis of M22 consisting of matrices with the
property that A2 = A.

b. Find a basis of P3 consisting of polynomials
whose coefficients sum to 4. What if they sum
to 0?

Exercise 6.4.7 If {u, v, w} is a basis of V , determine
which of the following are bases.

a. {u+v, u+w, v+w}

b. {2u+v+3w, 3u+v−w, u−4w}

c. {u, u+v+w}

d. {u, u+w, u−w, v+w}

Exercise 6.4.8

a. Can two vectors span R3? Can they be linearly
independent? Explain.

b. Can four vectors span R3? Can they be linearly
independent? Explain.

Exercise 6.4.9 Show that any nonzero vector in a finite
dimensional vector space is part of a basis.

Exercise 6.4.10 If A is a square matrix, show that
det A = 0 if and only if some row is a linear combina-
tion of the others.

Exercise 6.4.11 Let D, I, and X denote finite, nonempty
sets of vectors in a vector space V . Assume that D is de-
pendent and I is independent. In each case answer yes or
no, and defend your answer.

a. If X ⊇ D, must X be dependent?

b. If X ⊆ D, must X be dependent?

c. If X ⊇ I, must X be independent?

d. If X ⊆ I, must X be independent?
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Exercise 6.4.12 If U and W are subspaces of V and
dim U = 2, show that either U ⊆W or dim (U ∩W )≤ 1.

Exercise 6.4.13 Let A be a nonzero 2× 2 matrix and
write U = {X in M22 | XA= AX}. Show that dim U ≥ 2.
[Hint: I and A are in U .]

Exercise 6.4.14 If U ⊆ R2 is a subspace, show that
U = {0}, U = R2, or U is a line through the origin.

Exercise 6.4.15 Given v1, v2, v3, . . . , vk, and v, let U =
span{v1, v2, . . . , vk} and W = span{v1, v2, . . . , vk, v}.
Show that either dim W = dim U or dim W = 1 +
dim U .

Exercise 6.4.16 Suppose U is a subspace of P1,
U 6= {0}, and U 6= P1. Show that either U = R or
U = R(a+ x) for some a in R.

Exercise 6.4.17 Let U be a subspace of V and assume
dim V = 4 and dim U = 2. Does every basis of V result
from adding (two) vectors to some basis of U? Defend
your answer.

Exercise 6.4.18 Let U and W be subspaces of a vector
space V .

a. If dim V = 3, dim U = dim W = 2, and U 6= W ,
show that dim (U ∩W) = 1.

b. Interpret (a.) geometrically if V = R3.

Exercise 6.4.19 Let U ⊆ W be subspaces of V with
dim U = k and dim W = m, where k < m. If k < l < m,
show that a subspace X exists where U ⊆ X ⊆W and
dim X = l.

Exercise 6.4.20 Let B = {v1, . . . , vn} be a maximal in-
dependent set in a vector space V . That is, no set of more
than n vectors S is independent. Show that B is a basis of
V .

Exercise 6.4.21 Let B = {v1, . . . , vn} be a minimal

spanning set for a vector space V . That is, V cannot be
spanned by fewer than n vectors. Show that B is a basis
of V .

Exercise 6.4.22

a. Let p(x) and q(x) lie in P1 and suppose that
p(1) 6= 0, q(2) 6= 0, and p(2) = 0 = q(1). Show
that {p(x), q(x)} is a basis of P1. [Hint: If
rp(x)+ sq(x) = 0, evaluate at x = 1, x = 2.]

b. Let B = {p0(x), p1(x), . . . , pn(x)} be a set of
polynomials in Pn. Assume that there exist num-
bers a0, a1, . . . , an such that pi(ai) 6= 0 for each i

but pi(a j) = 0 if i is different from j. Show that B

is a basis of Pn.

Exercise 6.4.23 Let V be the set of all infinite sequences
(a0, a1, a2, . . . ) of real numbers. Define addition and
scalar multiplication by

(a0, a1, . . . )+ (b0, b1, . . . ) = (a0 +b0, a1 +b1, . . . )

and
r(a0, a1, . . . ) = (ra0, ra1, . . . )

a. Show that V is a vector space.

b. Show that V is not finite dimensional.

c. [For those with some calculus.] Show that the set
of convergent sequences (that is, lim

n→∞
an exists) is

a subspace, also of infinite dimension.

Exercise 6.4.24 Let A be an n× n matrix of rank r. If
U = {X in Mnn | AX = 0}, show that dim U = n(n− r).
[Hint: Exercise 6.3.34.]

Exercise 6.4.25 Let U and W be subspaces of V .

a. Show that U +W is a subspace of V containing
both U and W .

b. Show that span{u, w}=Ru+Rw for any vectors
u and w.

c. Show that

span{u1, . . . , um, w1, . . . , wn}
= span{u1, . . . , um}+ span{w1, . . . , wn}

for any vectors ui in U and w j in W .

Exercise 6.4.26 If A and B are m× n matrices, show
that rank (A+B) ≤ rank A+ rank B. [Hint: If U and V

are the column spaces of A and B, respectively, show that
the column space of A+B is contained in U +V and that
dim (U +V )≤ dim U + dim V . (See Theorem 6.4.5.)]
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6.5 An Application to Polynomials

The vector space of all polynomials of degree at most n is denoted Pn, and it was established in Section 6.3
that Pn has dimension n+1; in fact, {1, x, x2, . . . , xn} is a basis. More generally, any n+1 polynomials
of distinct degrees form a basis, by Theorem 6.4.4 (they are independent by Example 6.3.4). This proves

Theorem 6.5.1

Let p0(x), p1(x), p2(x), . . . , pn(x) be polynomials in Pn of degrees 0, 1, 2, . . . , n, respectively.
Then {p0(x), . . . , pn(x)} is a basis of Pn.

An immediate consequence is that {1, (x−a), (x−a)2, . . . , (x−a)n} is a basis of Pn for any number
a. Hence we have the following:

Corollary 6.5.1

If a is any number, every polynomial f (x) of degree at most n has an expansion in powers of
(x−a):

f (x) = a0 +a1(x−a)+a2(x−a)2 + · · ·+an(x−a)n (6.2)

If f (x) is evaluated at x = a, then equation (6.2) becomes

f (x) = a0 +a1(a−a)+ · · ·+an(a−a)n = a0

Hence a0 = f (a), and equation (6.2) can be written f (x) = f (a)+(x−a)g(x), where g(x) is a polynomial
of degree n−1 (this assumes that n≥ 1). If it happens that f (a) = 0, then it is clear that f (x) has the form
f (x) = (x−a)g(x). Conversely, every such polynomial certainly satisfies f (a) = 0, and we obtain:

Corollary 6.5.2

Let f (x) be a polynomial of degree n≥ 1 and let a be any number. Then:
Remainder Theorem

1. f (x) = f (a)+(x−a)g(x) for some polynomial g(x) of degree n−1.

Factor Theorem

2. f (a) = 0 if and only if f (x) = (x−a)g(x) for some polynomial g(x).

The polynomial g(x) can be computed easily by using “long division” to divide f (x) by (x− a)—see
Appendix D.

All the coefficients in the expansion (6.2) of f (x) in powers of (x−a) can be determined in terms of the
derivatives of f (x).6 These will be familiar to students of calculus. Let f (n)(x) denote the nth derivative

6The discussion of Taylor’s theorem can be omitted with no loss of continuity.
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of the polynomial f (x), and write f (0)(x) = f (x). Then, if

f (x) = a0 +a1(x−a)+a2(x−a)2 + · · ·+an(x−a)n

it is clear that a0 = f (a) = f (0)(a). Differentiation gives

f (1)(x) = a1 +2a2(x−a)+3a3(x−a)2 + · · ·+nan(x−a)n−1

and substituting x = a yields a1 = f (1)(a). This continues to give a2 =
f (2)(a)

2! , a3 =
f (3)(a)

3! , . . . , ak =
f (k)(a)

k! ,
where k! is defined as k! = k(k−1) · · ·2 ·1. Hence we obtain the following:

Corollary 6.5.3: Taylor’s Theorem

If f (x) is a polynomial of degree n, then

f (x) = f (a)+
f (1)(a)

1! (x−a)+
f (2)(a)

2! (x−a)2 + · · ·+ f (n)(a)
n! (x−a)n

Example 6.5.1

Expand f (x) = 5x3 +10x+2 as a polynomial in powers of x−1.

Solution. The derivatives are f (1)(x) = 15x2 +10, f (2)(x) = 30x, and f (3)(x) = 30. Hence the
Taylor expansion is

f (x) = f (1)+ f (1)(1)
1! (x−1)+ f (2)(1)

2! (x−1)2 +
f (3)(1)

3! (x−1)3

= 17+25(x−1)+15(x−1)2+5(x−1)3

Taylor’s theorem is useful in that it provides a formula for the coefficients in the expansion. It is dealt
with in calculus texts and will not be pursued here.

Theorem 6.5.1 produces bases of Pn consisting of polynomials of distinct degrees. A different criterion
is involved in the next theorem.

Theorem 6.5.2

Let f0(x), f1(x), . . . , fn(x) be nonzero polynomials in Pn. Assume that numbers a0, a1, . . . , an

exist such that
fi(ai) 6= 0 for each i

fi(a j) = 0 if i 6= j

Then

1. { f0(x), . . . , fn(x)} is a basis of Pn.

2. If f (x) is any polynomial in Pn, its expansion as a linear combination of these basis vectors is

f (x) = f (a0)
f0(a0)

f0(x)+
f (a1)
f1(a1)

f1(x)+ · · ·+ f (an)
fn(an)

fn(x)
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Proof.

1. It suffices (by Theorem 6.4.4) to show that { f0(x), . . . , fn(x)} is linearly independent (because
dim Pn = n+1). Suppose that

r0 f0(x)+ r1 f1(x)+ · · ·+ rn fn(x) = 0, ri ∈ R

Because fi(a0)= 0 for all i> 0, taking x= a0 gives r0 f0(a0)= 0. But then r0 = 0 because f0(a0) 6= 0.
The proof that ri = 0 for i > 0 is analogous.

2. By (1), f (x) = r0 f0(x) + · · ·+ rn fn(x) for some numbers ri. Once again, evaluating at a0 gives
f (a0) = r0 f0(a0), so r0 = f (a0)/ f0(a0). Similarly, ri = f (ai)/ fi(ai) for each i.

Example 6.5.2

Show that {x2− x, x2−2x, x2−3x+2} is a basis of P2.

Solution. Write f0(x) = x2− x = x(x−1), f1(x) = x2−2x = x(x−2), and
f2(x) = x2−3x+2 = (x−1)(x−2). Then the conditions of Theorem 6.5.2 are satisfied with
a0 = 2, a1 = 1, and a2 = 0.

We investigate one natural choice of the polynomials fi(x) in Theorem 6.5.2. To illustrate, let a0, a1,
and a2 be distinct numbers and write

f0(x) =
(x−a1)(x−a2)
(a0−a1)(a0−a2)

f1(x) =
(x−a0)(x−a2)
(a1−a0)(a1−a2)

f2(x) =
(x−a0)(x−a1)
(a2−a0)(a2−a1)

Then f0(a0) = f1(a1) = f2(a2) = 1, and fi(a j) = 0 for i 6= j. Hence Theorem 6.5.2 applies, and because
fi(ai) = 1 for each i, the formula for expanding any polynomial is simplified.

In fact, this can be generalized with no extra effort. If a0, a1, . . . , an are distinct numbers, define the
Lagrange polynomials δ0(x), δ1(x), . . . , δn(x) relative to these numbers as follows:

δk(x) =
∏i6=k(x−ai)

∏i6=k(ak−ai)
k = 0, 1, 2, . . . , n

Here the numerator is the product of all the terms (x−a0), (x−a1), . . . , (x−an) with (x−ak) omitted,
and a similar remark applies to the denominator. If n = 2, these are just the polynomials in the preceding
paragraph. For another example, if n = 3, the polynomial δ1(x) takes the form

δ1(x) =
(x−a0)(x−a2)(x−a3)

(a1−a0)(a1−a2)(a1−a3)

In the general case, it is clear that δi(ai) = 1 for each i and that δi(a j) = 0 if i 6= j. Hence Theorem 6.5.2
specializes as Theorem 6.5.3.
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Theorem 6.5.3: Lagrange Interpolation Expansion

Let a0, a1, . . . , an be distinct numbers. The corresponding set

{δ0(x), δ1(x), . . . , δn(x)}

of Lagrange polynomials is a basis of Pn, and any polynomial f (x) in Pn has the following unique
expansion as a linear combination of these polynomials.

f (x) = f (a0)δ0(x)+ f (a1)δ1(x)+ · · ·+ f (an)δn(x)

Example 6.5.3

Find the Lagrange interpolation expansion for f (x) = x2−2x+1 relative to a0 =−1, a1 = 0, and
a2 = 1.

Solution. The Lagrange polynomials are

δ0 =
(x−0)(x−1)

(−1−0)(−1−1) =
1
2(x

2− x)

δ1 =
(x+1)(x−1)
(0+1)(0−1) =−(x

2−1)

δ2 =
(x+1)(x−0)
(1+1)(1−0) =

1
2(x

2 + x)

Because f (−1) = 4, f (0) = 1, and f (1) = 0, the expansion is

f (x) = 2(x2− x)− (x2−1)

The Lagrange interpolation expansion gives an easy proof of the following important fact.

Theorem 6.5.4

Let f (x) be a polynomial in Pn, and let a0, a1, . . . , an denote distinct numbers. If f (ai) = 0 for all
i, then f (x) is the zero polynomial (that is, all coefficients are zero).

Proof. All the coefficients in the Lagrange expansion of f (x) are zero.
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Exercises for 6.5

Exercise 6.5.1 If polynomials f (x) and g(x) satisfy
f (a) = g(a), show that f (x)− g(x) = (x− a)h(x) for
some polynomial h(x).

Exercises 6.5.2, 6.5.3, 6.5.4, and 6.5.5 require poly-
nomial differentiation.

Exercise 6.5.2 Expand each of the following as a poly-
nomial in powers of x−1.

a. f (x) = x3−2x2 + x−1

b. f (x) = x3 + x+1

c. f (x) = x4

d. f (x) = x3−3x2 +3x

Exercise 6.5.3 Prove Taylor’s theorem for polynomi-
als.

Exercise 6.5.4 Use Taylor’s theorem to derive the bino-

mial theorem:

(1+ x)n =

(
n

0

)
+

(
n

1

)
x+

(
n

2

)
x2 + · · ·+

(
n

n

)
xn

Here the binomial coefficients
(

n
r

)
are defined by

(
n

r

)
= n!

r!(n−r)!

where n! = n(n−1) · · ·2 ·1 if n≥ 1 and 0! = 1.

Exercise 6.5.5 Let f (x) be a polynomial of degree n.
Show that, given any polynomial g(x) in Pn, there exist
numbers b0, b1, . . . , bn such that

g(x) = b0 f (x)+b1 f (1)(x)+ · · ·+bn f (n)(x)

where f (k)(x) denotes the kth derivative of f (x).

Exercise 6.5.6 Use Theorem 6.5.2 to show that the fol-
lowing are bases of P2.

a. {x2−2x, x2 +2x, x2−4}

b. {x2−3x+2, x2−4x+3, x2−5x+6}

Exercise 6.5.7 Find the Lagrange interpolation expan-
sion of f (x) relative to a0 = 1, a1 = 2, and a2 = 3 if:

f (x) = x2 +1a. f (x) = x2 + x+1b.

Exercise 6.5.8 Let a0, a1, . . . , an be distinct numbers.
If f (x) and g(x) in Pn satisfy f (ai) = g(ai) for all i, show
that f (x) = g(x). [Hint: See Theorem 6.5.4.]

Exercise 6.5.9 Let a0, a1, . . . , an be distinct numbers.
If f (x)∈Pn+1 satisfies f (ai) = 0 for each i= 0, 1, . . . , n,
show that f (x) = r(x−a0)(x−a1) · · · (x−an) for some r

in R. [Hint: r is the coefficient of xn+1 in f (x). Consider
f (x)− r(x−a0) · · · (x−an) and use Theorem 6.5.4.]

Exercise 6.5.10 Let a and b denote distinct numbers.

a. Show that {(x−a), (x−b)} is a basis of P1.

b. Show that {(x−a)2, (x−a)(x−b), (x−b)2} is a
basis of P2.

c. Show that {(x−a)n, (x−a)n−1(x−b),
. . . , (x− a)(x− b)n−1, (x− b)n} is a basis of Pn.
[Hint: If a linear combination vanishes, evaluate
at x = a and x = b. Then reduce to the case n− 2
by using the fact that if p(x)q(x) = 0 in P, then
either p(x) = 0 or q(x) = 0.]

Exercise 6.5.11 Let a and b be two distinct numbers.
Assume that n≥ 2 and let

Un = { f (x) in Pn | f (a) = 0 = f (b)}.

a. Show that

Un = {(x−a)(x−b)p(x) | p(x) in Pn−2}

b. Show that dim Un = n−1.

[Hint: If p(x)q(x) = 0 in P, then either p(x) = 0,
or q(x) = 0.]

c. Show {(x−a)n−1(x−b), (x−a)n−2(x−b)2,
. . . , (x−a)2(x−b)n−2, (x−a)(x−b)n−1} is a ba-
sis of Un. [Hint: Exercise 6.5.10.]
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6.6 An Application to Differential Equations

Call a function f : R→ R differentiable if it can be differentiated as many times as we want. If f

is a differentiable function, the nth derivative f (n) of f is the result of differentiating n times. Thus
f (0) = f , f (1) = f ′, f (2) = f (1)′, . . . and, in general, f (n+1) = f (n)′ for each n≥ 0. For small values of n

these are often written as f , f ′, f ′′, f ′′′, . . . .

If a, b, and c are numbers, the differential equations

f ′′+a f ′+b f = 0 or f ′′′+a f ′′+b f ′+ c f = 0

are said to be of second-order and third-order, respectively. In general, an equation

f (n)+an−1 f (n−1)+an−2 f (n−2)+ · · ·+a2 f (2)+a1 f (1)+a0 f (0) = 0, ai in R (6.3)

is called a differential equation of order n. In this section we investigate the set of solutions to (6.3) and,
if n is 1 or 2, find explicit solutions. Of course an acquaintance with calculus is required.

Let f and g be solutions to (6.3). Then f +g is also a solution because ( f +g)(k) = f (k)+g(k) for all
k, and a f is a solution for any a in R because (a f )(k) = a f (k). It follows that the set of solutions to (6.3) is
a vector space, and we ask for the dimension of this space.

We have already dealt with the simplest case (see Theorem 3.5.1):

Theorem 6.6.1

The set of solutions of the first-order differential equation f ′+a f = 0 is a one-dimensional vector
space and {e−ax} is a basis.

There is a far-reaching generalization of Theorem 6.6.1 that will be proved in Theorem 7.4.1.

Theorem 6.6.2

The set of solutions to the nth order equation (6.3) has dimension n.

Remark

Every differential equation of order n can be converted into a system of n linear first-order equations (see
Exercises 3.5.6 and 3.5.7). In the case that the matrix of this system is diagonalizable, this approach
provides a proof of Theorem 6.6.2. But if the matrix is not diagonalizable, Theorem 7.4.1 is required.

Theorem 6.6.1 suggests that we look for solutions to (6.3) of the form eλx for some number λ . This is
a good idea. If we write f (x) = eλx, it is easy to verify that f (k)(x) = λ keλx for each k≥ 0, so substituting
f in (6.3) gives

(λ n +an−1λ n−1 +an−2λ n−2 + · · ·+a2λ 2 +a1λ 1 +a0)e
λx = 0

Since eλx 6= 0 for all x, this shows that eλx is a solution of (6.3) if and only if λ is a root of the characteristic

polynomial c(x), defined to be

c(x) = xn +an−1xn−1 +an−2xn−2 + · · ·+a2x2 +a1x+a0
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This proves Theorem 6.6.3.

Theorem 6.6.3

If λ is real, the function eλx is a solution of (6.3) if and only if λ is a root of the characteristic
polynomial c(x).

Example 6.6.1

Find a basis of the space U of solutions of f ′′′−2 f ′′− f ′−2 f = 0.

Solution. The characteristic polynomial is x3−2x2− x−1 = (x−1)(x+1)(x−2), with roots
λ1 = 1, λ2 =−1, and λ3 = 2. Hence ex, e−x, and e2x are all in U . Moreover they are independent
(by Lemma 6.6.1 below) so, since dim (U) = 3 by Theorem 6.6.2, {ex, e−x, e2x} is a basis of U .

Lemma 6.6.1

If λ1, λ2, . . . , λk are distinct, then {eλ1x, eλ2x, . . . , eλkx} is linearly independent.

Proof. If r1eλ1x + r2eλ2x + · · ·+ rkeλkx = 0 for all x, then r1 + r2e(λ2−λ1)x + · · ·+ rke(λk−λ1)x = 0; that is,
r2e(λ2−λ1)x + · · ·+ rke(λk−λ1)x is a constant. Since the λi are distinct, this forces r2 = · · ·= rk = 0, whence
r1 = 0 also. This is what we wanted.

Theorem 6.6.4

Let U denote the space of solutions to the second-order equation

f ′′+a f ′+b f = 0

where a and b are real constants. Assume that the characteristic polynomial x2 +ax+b has two
real roots λ and µ . Then

1. If λ 6= µ , then {eλx, eµx} is a basis of U .

2. If λ = µ , then {eλx, xeλx} is a basis of U .

Proof. Since dim (U) = 2 by Theorem 6.6.2, (1) follows by Lemma 6.6.1, and (2) follows because the set
{eλx, xeλx} is independent (Exercise 6.6.3).

Example 6.6.2

Find the solution of f ′′+4 f ′+4 f = 0 that satisfies the boundary conditions f (0) = 1,
f (1) =−1.
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Solution. The characteristic polynomial is x2 +4x+4 = (x+2)2, so −2 is a double root. Hence
{e−2x, xe−2x} is a basis for the space of solutions, and the general solution takes the form
f (x) = ce−2x +dxe−2x. Applying the boundary conditions gives 1 = f (0) = c and
−1 = f (1) = (c+d)e−2. Hence c = 1 and d =−(1+ e2), so the required solution is

f (x) = e−2x− (1+ e2)xe−2x

One other question remains: What happens if the roots of the characteristic polynomial are not real?
To answer this, we must first state precisely what eλx means when λ is not real. If q is a real number,
define

eiq = cosq+ isinq

where i2 = −1. Then the relationship eiqeiq1 = ei(q+q1) holds for all real q and q1, as is easily verified. If
λ = p+ iq, where p and q are real numbers, we define

eλ = epeiq = ep(cosq+ isinq)

Then it is a routine exercise to show that

1. eλ eµ = eλ+µ

2. eλ = 1 if and only if λ = 0

3. (eλx)′ = λeλx

These easily imply that f (x) = eλx is a solution to f ′′+a f ′+b f = 0 if λ is a (possibly complex) root of
the characteristic polynomial x2 +ax+b. Now write λ = p+ iq so that

f (x) = eλx = epx cos(qx)+ iepx sin(qx)

For convenience, denote the real and imaginary parts of f (x) as u(x) = epx cos(qx) and v(x) = epx sin(qx).
Then the fact that f (x) satisfies the differential equation gives

0 = f ′′+a f ′+b f = (u′′+au′+bu)+ i(v′′+av′+bv)

Equating real and imaginary parts shows that u(x) and v(x) are both solutions to the differential equation.
This proves part of Theorem 6.6.5.

Theorem 6.6.5

Let U denote the space of solutions of the second-order differential equation

f ′′+a f ′+b f = 0

where a and b are real. Suppose λ is a nonreal root of the characteristic polynomial x2 +ax+b. If
λ = p+ iq, where p and q are real, then

{epx cos(qx), epx sin(qx)}

is a basis of U .
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Proof. The foregoing discussion shows that these functions lie in U . Because dim U = 2 by Theo-
rem 6.6.2, it suffices to show that they are linearly independent. But if

repx cos(qx)+ sepx sin(qx) = 0

for all x, then r cos(qx)+ ssin(qx) = 0 for all x (because epx 6= 0). Taking x = 0 gives r = 0, and taking
x = π

2q
gives s = 0 (q 6= 0 because λ is not real). This is what we wanted.

Example 6.6.3

Find the solution f (x) to f ′′−2 f ′+2 f = 0 that satisfies f (0) = 2 and f (π
2 ) = 0.

Solution. The characteristic polynomial x2−2x+2 has roots 1+ i and 1− i. Taking λ = 1+ i

(quite arbitrarily) gives p = q = 1 in the notation of Theorem 6.6.5, so {ex cosx, ex sinx} is a basis
for the space of solutions. The general solution is thus f (x) = ex(r cosx+ ssinx). The boundary
conditions yield 2 = f (0) = r and 0 = f (π

2 ) = eπ/2s. Thus r = 2 and s = 0, and the required
solution is f (x) = 2ex cosx.

The following theorem is an important special case of Theorem 6.6.5.

Theorem 6.6.6

If q 6= 0 is a real number, the space of solutions to the differential equation f ′′+q2 f = 0 has basis
{cos(qx), sin(qx)}.

Proof. The characteristic polynomial x2 +q2 has roots qi and −qi, so Theorem 6.6.5 applies with p = 0.

In many situations, the displacement s(t) of some object at time t turns out to have an oscillating form
s(t) = csin(at)+d cos(at). These are called simple harmonic motions. An example follows.

Example 6.6.4

d(t)

A weight is attached to an extension spring (see diagram). If it is pulled
from the equilibrium position and released, it is observed to oscillate up
and down. Let d(t) denote the distance of the weight below the equilibrium
position t seconds later. It is known (Hooke’s law) that the acceleration
d′′(t) of the weight is proportional to the displacement d(t) and in the opposite
direction. That is,

d′′(t) =−kd(t)

where k > 0 is called the spring constant. Find d(t) if the maximum extension
is 10 cm below the equilibrium position and find the period of the oscillation

(time taken for the weight to make a full oscillation).

Solution. It follows from Theorem 6.6.6 (with q2 = k) that

d(t) = r sin(
√

k t)+ scos(
√

k t)
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where r and s are constants. The condition d(0) = 0 gives s = 0, so d(t) = r sin(
√

k t). Now the
maximum value of the function sinx is 1 (when x = π

2 ), so r = 10 (when t = π
2
√

k
). Hence

d(t) = 10sin(
√

k t)

Finally, the weight goes through a full oscillation as
√

k t increases from 0 to 2π . The time taken is
t = 2π√

k
, the period of the oscillation.

Exercises for 6.6

Exercise 6.6.1 Find a solution f to each of the follow-
ing differential equations satisfying the given boundary
conditions.

a. f ′−3 f = 0; f (1) = 2

b. f ′+ f = 0; f (1) = 1

c. f ′′+2 f ′−15 f = 0; f (1) = f (0) = 0

d. f ′′+ f ′−6 f = 0; f (0) = 0, f (1) = 1

e. f ′′−2 f ′+ f = 0; f (1) = f (0) = 1

f. f ′′−4 f ′+4 f = 0; f (0) = 2, f (−1) = 0

g. f ′′−3a f ′+2a2 f = 0; a 6= 0; f (0) = 0,
f (1) = 1− ea

h. f ′′−a2 f = 0, a 6= 0; f (0) = 1, f (1) = 0

i. f ′′−2 f ′+5 f = 0; f (0) = 1, f (π
4 ) = 0

j. f ′′+4 f ′+5 f = 0; f (0) = 0, f (π
2 ) = 1

Exercise 6.6.2 If the characteristic polynomial of
f ′′+ a f ′+ b f = 0 has real roots, show that f = 0 is the
only solution satisfying f (0) = 0 = f (1).

Exercise 6.6.3 Complete the proof of Theorem 6.6.2.
[Hint: If λ is a double root of x2 + ax + b, show that
a =−2λ and b = λ 2. Hence xeλx is a solution.]

Exercise 6.6.4

a. Given the equation f ′+a f = b, (a 6= 0), make the
substitution f (x) = g(x) + b/a and obtain a dif-
ferential equation for g. Then derive the general
solution for f ′+a f = b.

b. Find the general solution to f ′+ f = 2.

Exercise 6.6.5 Consider the differential equation
f ′+ a f ′+ b f = g, where g is some fixed function. As-
sume that f0 is one solution of this equation.

a. Show that the general solution is c f1 + d f2 + f0,
where c and d are constants and { f1, f2} is any
basis for the solutions to f ′′+a f ′+b f = 0.

b. Find a solution to f ′′+ f ′− 6 f = 2x3 − x2− 2x.
[Hint: Try f (x) = −1

3 x3.]

Exercise 6.6.6 A radioactive element decays at a rate
proportional to the amount present. Suppose an initial
mass of 10 grams decays to 8 grams in 3 hours.

a. Find the mass t hours later.

b. Find the half-life of the element—the time it takes
to decay to half its mass.

Exercise 6.6.7 The population N(t) of a region at time
t increases at a rate proportional to the population. If the
population doubles in 5 years and is 3 million initially,
find N(t).
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Exercise 6.6.8 Consider a spring, as in Example 6.6.4.
If the period of the oscillation is 30 seconds, find the
spring constant k.

Exercise 6.6.9 As a pendulum swings (see the diagram),
let t measure the time since it was vertical. The angle
θ = θ(t) from the vertical can be shown to satisfy the
equation θ ′′ + kθ = 0, provided that θ is small. If the
maximal angle is θ = 0.05 radians, find θ(t) in terms of

k. If the period is 0.5 seconds, find k. [Assume that θ = 0
when t = 0.]

θ

Supplementary Exercises for Chapter 6

Exercise 6.1 (Requires calculus) Let V denote the space
of all functions f :R→R for which the derivatives f ′ and
f ′′ exist. Show that f1, f2, and f3 in V are linearly inde-
pendent provided that their wronskian w(x) is nonzero
for some x, where

w(x) = det




f1(x) f2(x) f3(x)

f ′1(x) f ′2(x) f ′3(x)

f ′′1 (x) f ′′2 (x) f ′′3 (x)




Exercise 6.2 Let {v1, v2, . . . , vn} be a basis of Rn (writ-
ten as columns), and let A be an n×n matrix.

a. If A is invertible, show that {Av1, Av2, . . . , Avn}
is a basis of Rn.

b. If {Av1, Av2, . . . , Avn} is a basis of Rn, show that
A is invertible.

Exercise 6.3 If A is an m× n matrix, show that A has
rank m if and only if col A contains every column of Im.

Exercise 6.4 Show that null A = null (AT A) for any real
matrix A.

Exercise 6.5 Let A be an m×n matrix of rank r. Show
that dim (null A) = n− r (Theorem 5.4.3) as follows.
Choose a basis {x1, . . . , xk} of null A and extend it
to a basis {x1, . . . , xk, z1, . . . , zm} of Rn. Show that
{Az1, . . . , Azm} is a basis of col A.
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7. Linear Transformations

If V and W are vector spaces, a function T : V →W is a rule that assigns to each vector v in V a uniquely
determined vector T (v) in W . As mentioned in Section 2.2, two functions S : V →W and T : V →W

are equal if S(v) = T (v) for every v in V . A function T : V →W is called a linear transformation if
T (v+ v1) = T (v)+T (v1) for all v, v1 in V and T (rv) = rT (v) for all v in V and all scalars r. T (v) is
called the image of v under T . We have already studied linear transformation T : Rn → Rm and shown
(in Section 2.6) that they are all given by multiplication by a uniquely determined m× n matrix A; that
is T (x) = Ax for all x in Rn. In the case of linear operators R2 → R2, this yields an important way to
describe geometric functions such as rotations about the origin and reflections in a line through the origin.

In the present chapter we will describe linear transformations in general, introduce the kernel and
image of a linear transformation, and prove a useful result (called the dimension theorem) that relates the
dimensions of the kernel and image, and unifies and extends several earlier results. Finally we study the
notion of isomorphic vector spaces, that is, spaces that are identical except for notation, and relate this to
composition of transformations that was introduced in Section 2.3.

7.1 Examples and Elementary Properties

Definition 7.1 Linear Transformations of Vector Spaces

V W

T

v T (v)

If V and W are two vector spaces, a function T : V →W is called
a linear transformation if it satisfies the following axioms.

T1. T (v+v1) = T (v)+T (v1) for all v and v1 in V .
T2. T (rv) = rT (v) for all v in V and r in R.

A linear transformation T : V → V is called a linear operator on V . The situation can be
visualized as in the diagram.

Axiom T1 is just the requirement that T preserves vector addition. It asserts that the result T (v+v1)
of adding v and v1 first and then applying T is the same as applying T first to get T (v) and T (v1) and
then adding. Similarly, axiom T2 means that T preserves scalar multiplication. Note that, even though the
additions in axiom T1 are both denoted by the same symbol +, the addition on the left forming v+v1 is
carried out in V , whereas the addition T (v)+T (v1) is done in W . Similarly, the scalar multiplications rv

and rT (v) in axiom T2 refer to the spaces V and W , respectively.

We have already seen many examples of linear transformations T : Rn→ Rm. In fact, writing vectors
in Rn as columns, Theorem 2.6.2 shows that, for each such T , there is an m× n matrix A such that
T (x) = Ax for every x in Rn. Moreover, the matrix A is given by A =

[
T (e1) T (e2) · · · T (en)

]

where {e1, e2, . . . , en} is the standard basis of Rn. We denote this transformation by TA : Rn → Rm,
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defined by
TA(x) = Ax for all x in Rn

Example 7.1.1 lists three important linear transformations that will be referred to later. The verification
of axioms T1 and T2 is left to the reader.

Example 7.1.1

If V and W are vector spaces, the following are linear transformations:

Identity operator V →V 1V : V →V where 1V (v) = v for all v in V

Zero transformation V →W 0 : V →W where 0(v) = 0 for all v in V

Scalar operator V →V a : V →V where a(v) = av for all v in V

(Here a is any real number.)

The symbol 0 will be used to denote the zero transformation from V to W for any spaces V and W . It
was also used earlier to denote the zero function [a, b]→ R.

The next example gives two important transformations of matrices. Recall that the trace tr A of an
n×n matrix A is the sum of the entries on the main diagonal.

Example 7.1.2

Show that the transposition and trace are linear transformations. More precisely,

R : Mmn→Mnm where R(A) = AT for all A in Mmn

S : Mmn→ R where S(A) = tr A for all A in Mnn

are both linear transformations.

Solution. Axioms T1 and T2 for transposition are (A+B)T = AT +BT and (rA)T = r(AT ),
respectively (using Theorem 2.1.2). The verifications for the trace are left to the reader.

Example 7.1.3

If a is a scalar, define Ea : Pn→ R by Ea(p) = p(a) for each polynomial p in Pn. Show that Ea is a
linear transformation (called evaluation at a).

Solution. If p and q are polynomials and r is in R, we use the fact that the sum p+q and scalar
product rp are defined as for functions:

(p+q)(x) = p(x)+q(x) and (rp)(x) = rp(x)

for all x. Hence, for all p and q in Pn and all r in R:

Ea(p+q) = (p+q)(a) = p(a)+q(a) = Ea(p)+Ea(q), and

Ea(rp) = (rp)(a) = rp(a) = rEa(p).

Hence Ea is a linear transformation.
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The next example involves some calculus.

Example 7.1.4

Show that the differentiation and integration operations on Pn are linear transformations. More
precisely,

D : Pn→ Pn−1 where D [p(x)] = p′(x) for all p(x) in Pn

I : Pn→ Pn+1 where I [p(x)] =

∫ x

0
p(t)dt for all p(x) in Pn

are linear transformations.

Solution. These restate the following fundamental properties of differentiation and integration.

[p(x)+q(x)]′ = p′(x)+q′(x) and [rp(x)]′ = (rp)′(x)

∫ x
0 [p(t)+q(t)]dt =

∫ x
0 p(t)dt+

∫ x
0 q(t)dt and

∫ x
0 rp(t)dt = r

∫ x
0 p(t)dt

The next theorem collects three useful properties of all linear transformations. They can be described
by saying that, in addition to preserving addition and scalar multiplication (these are the axioms), linear
transformations preserve the zero vector, negatives, and linear combinations.

Theorem 7.1.1

Let T : V →W be a linear transformation.

1. T (0) = 0.

2. T (−v) =−T (v) for all v in V .

3. T (r1v1+ r2v2+ · · ·+ rkvk) = r1T (v1)+ r2T (v2)+ · · ·+ rkT (vk) for all vi in V and all ri in R.

Proof.

1. T (0) = T (0v) = 0T (v) = 0 for any v in V .

2. T (−v) = T [(−1)v] = (−1)T (v) =−T (v) for any v in V .

3. The proof of Theorem 2.6.1 goes through.

The ability to use the last part of Theorem 7.1.1 effectively is vital to obtaining the benefits of linear
transformations. Example 7.1.5 and Theorem 7.1.2 provide illustrations.

Example 7.1.5

Let T : V →W be a linear transformation. If T (v−3v1) = w and T (2v−v1) = w1, find T (v) and
T (v1) in terms of w and w1.
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Solution. The given relations imply that

T (v)−3T (v1) = w

2T (v)−T (v1) = w1

by Theorem 7.1.1. Subtracting twice the first from the second gives T (v1) =
1
5(w1−2w). Then

substitution gives T (v) = 1
5(3w1−w).

The full effect of property (3) in Theorem 7.1.1 is this: If T : V →W is a linear transformation and
T (v1), T (v2), . . . , T (vn) are known, then T (v) can be computed for every vector v in span{v1, v2, . . . , vn}.
In particular, if {v1, v2, . . . , vn} spans V , then T (v) is determined for all v in V by the choice of
T (v1), T (v2), . . . , T (vn). The next theorem states this somewhat differently. As for functions in gen-
eral, two linear transformations T : V →W and S : V →W are called equal (written T = S) if they have
the same action; that is, if T (v) = S(v) for all v in V .

Theorem 7.1.2

Let T : V →W and S : V →W be two linear transformations. Suppose that
V = span{v1, v2, . . . , vn}. If T(vi) = S(vi) for each i, then T = S.

Proof. If v is any vector in V = span{v1, v2, . . . , vn}, write v = a1v1 +a2v2 + · · ·+anvn where each ai

is in R. Since T (vi) = S(vi) for each i, Theorem 7.1.1 gives

T (v) = T (a1v1 +a2v2 + · · ·+anvn)

= a1T (v1)+a2T (v2)+ · · ·+anT (vn)

= a1S(v1)+a2S(v2)+ · · ·+anS(vn)

= S(a1v1 +a2v2 + · · ·+anvn)

= S(v)

Since v was arbitrary in V , this shows that T = S.

Example 7.1.6

Let V = span{v1, . . . , vn}. Let T : V →W be a linear transformation. If T (v1) = · · ·= T (vn) = 0,
show that T = 0, the zero transformation from V to W .

Solution. The zero transformation 0 : V →W is defined by 0(v) = 0 for all v in V (Example 7.1.1),
so T (vi) = 0(vi) holds for each i. Hence T = 0 by Theorem 7.1.2.

Theorem 7.1.2 can be expressed as follows: If we know what a linear transformation T : V →W does
to each vector in a spanning set for V , then we know what T does to every vector in V . If the spanning set
is a basis, we can say much more.
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Theorem 7.1.3

Let V and W be vector spaces and let {b1, b2, . . . , bn} be a basis of V . Given any vectors
w1, w2, . . . , wn in W (they need not be distinct), there exists a unique linear transformation
T : V →W satisfying T (bi) = wi for each i = 1, 2, . . . , n. In fact, the action of T is as follows:
Given v = v1b1 + v2b2 + · · ·+ vnbn in V , vi in R, then

T (v) = T (v1b1 + v2b2 + · · ·+ vnbn) = v1w1 + v2w2 + · · ·+ vnwn.

Proof. If a transformation T does exist with T (bi)=wi for each i, and if S is any other such transformation,
then T (bi) = wi = S(bi) holds for each i, so S = T by Theorem 7.1.2. Hence T is unique if it exists, and
it remains to show that there really is such a linear transformation. Given v in V , we must specify T (v) in
W . Because {b1, . . . , bn} is a basis of V , we have v = v1b1 + · · ·+ vnbn, where v1, . . . , vn are uniquely

determined by v (this is Theorem 6.3.1). Hence we may define T : V →W by

T (v) = T (v1b1 + v2b2 + · · ·+ vnbn) = v1w1 + v2w2 + · · ·+ vnwn

for all v = v1b1 + · · ·+ vnbn in V . This satisfies T (bi) = wi for each i; the verification that T is linear is
left to the reader.

This theorem shows that linear transformations can be defined almost at will: Simply specify where
the basis vectors go, and the rest of the action is dictated by the linearity. Moreover, Theorem 7.1.2 shows
that deciding whether two linear transformations are equal comes down to determining whether they have
the same effect on the basis vectors. So, given a basis {b1, . . . , bn} of a vector space V , there is a different
linear transformation V →W for every ordered selection w1, w2, . . . , wn of vectors in W (not necessarily
distinct).

Example 7.1.7

Find a linear transformation T : P2→M22 such that

T (1+ x) =

[
1 0
0 0

]
, T (x+ x2) =

[
0 1
1 0

]
, and T (1+ x2) =

[
0 0
0 1

]
.

Solution. The set {1+x, x+x2, 1+x2} is a basis of P2, so every vector p = a+bx+cx2 in P2 is a
linear combination of these vectors. In fact

p(x) = 1
2(a+b− c)(1+ x)+ 1

2(−a+b+ c)(x+ x2)+ 1
2(a−b+ c)(1+ x2)

Hence Theorem 7.1.3 gives

T [p(x)] = 1
2(a+b− c)

[
1 0
0 0

]
+ 1

2(−a+b+ c)

[
0 1
1 0

]
+ 1

2(a−b+ c)

[
0 0
0 1

]

= 1
2

[
a+b− c −a+b+ c

−a+b+ c a−b+ c

]
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Exercises for 7.1

Exercise 7.1.1 Show that each of the following func-
tions is a linear transformation.

a. T : R2→ R2; T (x, y) = (x, −y) (reflection in the
x axis)

b. T : R3→R3; T (x, y, z) = (x, y, −z) (reflection in
the x-y plane)

c. T : C→ C; T (z) = z (conjugation)

d. T : Mmn →Mkl; T (A) = PAQ, P a k×m matrix,
Q an n× l matrix, both fixed

e. T : Mnn→Mnn; T (A) = AT +A

f. T : Pn→ R; T [p(x)] = p(0)

g. T : Pn→ R; T (r0 + r1x+ · · ·+ rnxn) = rn

h. T : Rn→ R; T (x) = x · z, z a fixed vector in Rn

i. T : Pn→ Pn; T [p(x)] = p(x+1)

j. T : Rn → V ; T (r1, · · · , rn) = r1e1 + · · ·+ rnen

where {e1, . . . , en} is a fixed basis of V

k. T : V → R; T (r1e1 + · · · + rnen) = r1, where
{e1, . . . , en} is a fixed basis of V

Exercise 7.1.2 In each case, show that T is not a linear
transformation.

a. T : Mnn→ R; T (A) = det A

b. T : Mnm→ R; T (A) = rank A

c. T : R→ R; T (x) = x2

d. T : V → V ; T (v) = v+ u where u 6= 0 is a fixed
vector in V (T is called the translation by u)

Exercise 7.1.3 In each case, assume that T is a linear
transformation.

a. If T : V → R and T (v1) = 1, T (v2) = −1, find
T (3v1−5v2).

b. If T : V → R and T (v1) = 2, T (v2) = −3, find
T (3v1 +2v2).

c. If T : R2→ R2 and T

[
1
3

]
=

[
1
1

]
,

T

[
1
1

]
=

[
0
1

]
, find T

[
−1

3

]
.

d. If T : R2→ R2 and T

[
1
−1

]
=

[
0
1

]
,

T

[
1
1

]
=

[
1
0

]
, find T

[
1
−7

]
.

e. If T : P2 → P2 and T (x+ 1) = x, T (x− 1) = 1,
T (x2) = 0, find T (2+3x− x2).

f. If T : P2→ R and T (x+2) = 1, T (1) = 5,
T (x2 + x) = 0, find T (2− x+3x2).

Exercise 7.1.4 In each case, find a linear transformation
with the given properties and compute T (v).

a. T : R2→ R3; T (1, 2) = (1, 0, 1),
T (−1, 0) = (0, 1, 1); v = (2, 1)

b. T : R2→ R3; T (2, −1) = (1, −1, 1),
T (1, 1) = (0, 1, 0); v = (−1, 2)

c. T : P2→ P3; T (x2) = x3, T (x+1) = 0,
T (x−1) = x; v = x2 + x+1

d. T : M22→R; T

[
1 0
0 0

]
= 3, T

[
0 1
1 0

]
=−1,

T

[
1 0
1 0

]
= 0 = T

[
0 0
0 1

]
; v =

[
a b

c d

]

Exercise 7.1.5 If T : V → V is a linear transformation,
find T (v) and T (w) if:

a. T (v+w) = v−2w and T (2v−w) = 2v

b. T (v+2w) = 3v−w and T (v−w) = 2v−4w

Exercise 7.1.6 If T : V →W is a linear transformation,
show that T (v− v1) = T (v)− T (v1) for all v and v1 in
V .

Exercise 7.1.7 Let {e1, e2} be the standard basis of R2.
Is it possible to have a linear transformation T such that
T (e1) lies in R while T (e2) lies in R2? Explain your an-
swer.
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Exercise 7.1.8 Let {v1, . . . , vn} be a basis of V and let
T : V →V be a linear transformation.

a. If T (vi) = vi for each i, show that T = 1V .

b. If T (vi) =−vi for each i, show that T =−1 is the
scalar operator (see Example 7.1.1).

Exercise 7.1.9 If A is an m×n matrix, let Ck(A) denote
column k of A. Show that Ck : Mmn → Rm is a linear
transformation for each k = 1, . . . , n.

Exercise 7.1.10 Let {e1, . . . , en} be a basis of Rn.
Given k, 1≤ k ≤ n, define Pk : Rn→ Rn by
Pk(r1e1 + · · ·+ rnen) = rkek. Show that Pk a linear trans-
formation for each k.

Exercise 7.1.11 Let S : V →W and T : V →W be linear
transformations. Given a in R, define functions
(S + T ) : V →W and (aT ) : V →W by (S + T )(v) =
S(v)+ T (v) and (aT )(v) = aT (v) for all v in V . Show
that S+T and aT are linear transformations.

Exercise 7.1.12 Describe all linear transformations
T : R→V .

Exercise 7.1.13 Let V and W be vector spaces, let V

be finite dimensional, and let v 6= 0 in V . Given any
w in W , show that there exists a linear transformation
T : V →W with T (v) = w. [Hint: Theorem 6.4.1 and
Theorem 7.1.3.]

Exercise 7.1.14 Given y in Rn, define Sy : Rn→ R by
Sy(x) = x · y for all x in Rn (where · is the dot product
introduced in Section 5.3).

a. Show that Sy : Rn→ R is a linear transformation
for any y in Rn.

b. Show that every linear transformation T : Rn→R
arises in this way; that is, T = Sy for some y in Rn.
[Hint: If {e1, . . . , en} is the standard basis of Rn,
write Sy(ei) = yi for each i. Use Theorem 7.1.1.]

Exercise 7.1.15 Let T : V →W be a linear transforma-
tion.

a. If U is a subspace of V , show that
T (U)= {T (u) | u in U} is a subspace of W (called
the image of U under T ).

b. If P is a subspace of W , show that
{v in V | T (v) in P} is a subspace of V (called the
preimage of P under T ).

Exercise 7.1.16 Show that differentiation is the only lin-
ear transformation Pn→ Pn that satisfies T (xk) = kxk−1

for each k = 0, 1, 2, . . . , n.

Exercise 7.1.17 Let T : V →W be a linear transforma-
tion and let v1, . . . , vn denote vectors in V .

a. If {T (v1), . . . , T (vn)} is linearly independent,
show that {v1, . . . , vn} is also independent.

b. Find T : R2→ R2 for which the converse of part
(a) is false.

Exercise 7.1.18 Suppose T : V →V is a linear operator
with the property that T [T (v)] = v for all v in V . (For
example, transposition in Mnn or conjugation in C.) If
v 6= 0 in V , show that {v, T (v)} is linearly independent
if and only if T (v) 6= v and T (v) 6=−v.

Exercise 7.1.19 If a and b are real numbers, define
Ta, b : C→C by Ta, b(r+ si) = ra+ sbi for all r+ si in C.

a. Show that Ta, b is linear and Ta, b(z) = Ta, b(z) for
all z in C. (Here z denotes the conjugate of z.)

b. If T : C→ C is linear and T (z) = T (z) for all z in
C, show that T = Ta, b for some real a and b.

Exercise 7.1.20 Show that the following conditions are
equivalent for a linear transformation T : M22→M22.

1. tr [T (A)] = tr A for all A in M22.

2. T

[
r11 r12

r21 r22

]
= r11B11 + r12B12 + r21B21 +

r22B22 for matrices Bi j such that
tr B11 = 1 = tr B22 and tr B12 = 0 = tr B21.

Exercise 7.1.21 Given a in R, consider the evaluation

map Ea : Pn→ R defined in Example 7.1.3.

a. Show that Ea is a linear transformation satisfy-
ing the additional condition that Ea(x

k) = [Ea(x)]
k

holds for all k = 0, 1, 2, . . . . [Note: x0 = 1.]

b. If T : Pn→ R is a linear transformation satisfying
T (xk) = [T (x)]k for all k = 0, 1, 2, . . . , show that
T = Ea for some a in R.
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Exercise 7.1.22 If T : Mnn → R is any linear transfor-
mation satisfying T (AB)= T (BA) for all A and B in Mnn,
show that there exists a number k such that T (A) = k tr A

for all A. (See Lemma 5.5.1.) [Hint: Let Ei j denote the
n× n matrix with 1 in the (i, j) position and zeros else-
where.

Show that EikEl j =

{
0 if k 6= l

Ei j if k = l
. Use this to

show that T (Ei j) = 0 if i 6= j and
T (E11) = T (E22) = · · · = T (Enn). Put k = T (E11) and
use the fact that {Ei j | 1≤ i, j ≤ n} is a basis of Mnn.]

Exercise 7.1.23 Let T : C→ C be a linear transforma-
tion of the real vector space C and assume that T (a) = a

for every real number a. Show that the following are
equivalent:

a. T (zw) = T (z)T (w) for all z and w in C.

b. Either T = 1C or T (z) = z for each z in C (where
z denotes the conjugate).

7.2 Kernel and Image of a Linear Transformation

This section is devoted to two important subspaces associated with a linear transformation T : V →W .

Definition 7.2 Kernel and Image of a Linear Transformation

The kernel of T (denoted ker T ) and the image of T (denoted im T or T (V )) are defined by

ker T = {v in V | T (v) = 0}
im T = {T (v) | v in V}= T (V )

ker T

T

V

W
0

im TV W
T

The kernel of T is often called the nullspace of T because it consists of all
vectors v in V satisfying the condition that T (v) = 0. The image of T is
often called the range of T and consists of all vectors w in W of the form

w = T (v) for some v in V . These subspaces are depicted in the diagrams.

Example 7.2.1

Let TA : Rn→ Rm be the linear transformation induced by the
m×n matrix A, that is TA(x) = Ax for all columns x in Rn. Then

ker TA = {x | Ax = 0}= null A and

im TA = {Ax | x in Rn}= im A

Hence the following theorem extends Example 5.1.2.
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Theorem 7.2.1

Let T : V →W be a linear transformation.

1. ker T is a subspace of V .

2. im T is a subspace of W .

Proof. The fact that T (0) = 0 shows that ker T and im T contain the zero vector of V and W respectively.

1. If v and v1 lie in ker T , then T (v) = 0 = T (v1), so

T (v+v1) = T (v)+T (v1) = 0+0 = 0

T (rv) = rT (v) = r0 = 0 for all r in R

Hence v+v1 and rv lie in ker T (they satisfy the required condition), so ker T is a subspace of V

by the subspace test (Theorem 6.2.1).

2. If w and w1 lie in im T , write w = T (v) and w1 = T (v1) where v, v1 ∈V . Then

w+w1 = T (v)+T (v1) = T (v+v1)

rw = rT (v) = T (rv) for all r in R

Hence w+w1 and rw both lie in im T (they have the required form), so im T is a subspace of W .

Given a linear transformation T : V →W :

dim (ker T ) is called the nullity of T and denoted as nullity (T )
dim ( im T ) is called the rank of T and denoted as rank (T )

The rank of a matrix A was defined earlier to be the dimension of col A, the column space of A. The two
usages of the word rank are consistent in the following sense. Recall the definition of TA in Example 7.2.1.

Example 7.2.2

Given an m×n matrix A, show that im TA = col A, so rank TA = rank A.

Solution. Write A =
[

c1 · · · cn

]
in terms of its columns. Then

im TA = {Ax | x in Rn}= {x1c1 + · · ·+ xncn | xi in R}

using Definition 2.5. Hence im TA is the column space of A; the rest follows.

Often, a useful way to study a subspace of a vector space is to exhibit it as the kernel or image of a
linear transformation. Here is an example.
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Example 7.2.3

Define a transformation P : Mnn→Mnn by P(A) = A−AT for all A in Mnn. Show that P is linear
and that:

a. ker P consists of all symmetric matrices.

b. im P consists of all skew-symmetric matrices.

Solution. The verification that P is linear is left to the reader. To prove part (a), note that a matrix
A lies in ker P just when 0 = P(A) = A−AT , and this occurs if and only if A = AT —that is, A is
symmetric. Turning to part (b), the space im P consists of all matrices P(A), A in Mnn. Every such
matrix is skew-symmetric because

P(A)T = (A−AT )T = AT −A =−P(A)

On the other hand, if S is skew-symmetric (that is, ST =−S), then S lies in im P. In fact,

P
[1

2S
]
= 1

2S−
[1

2S
]T

= 1
2(S−ST ) = 1

2(S+S) = S

One-to-One and Onto Transformations

Definition 7.3 One-to-one and Onto Linear Transformations

Let T : V →W be a linear transformation.

1. T is said to be onto if im T =W .

2. T is said to be one-to-one if T (v) = T (v1) implies v = v1.

A vector w in W is said to be hit by T if w = T (v) for some v in V . Then T is onto if every vector in W

is hit at least once, and T is one-to-one if no element of W gets hit twice. Clearly the onto transformations
T are those for which im T = W is as large a subspace of W as possible. By contrast, Theorem 7.2.2
shows that the one-to-one transformations T are the ones with ker T as small a subspace of V as possible.

Theorem 7.2.2

If T : V →W is a linear transformation, then T is one-to-one if and only if ker T = {0}.

Proof. If T is one-to-one, let v be any vector in ker T . Then T (v) = 0, so T (v) = T (0). Hence v = 0

because T is one-to-one. Hence ker T = {0}.
Conversely, assume that ker T = {0} and let T (v) = T (v1) with v and v1 in V . Then

T (v− v1) = T (v)− T (v1) = 0, so v− v1 lies in ker T = {0}. This means that v− v1 = 0, so v = v1,
proving that T is one-to-one.
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Example 7.2.4

The identity transformation 1V : V →V is both one-to-one and onto for any vector space V .

Example 7.2.5

Consider the linear transformations

S : R3→ R2 given by S(x, y, z) = (x+ y, x− y)

T : R2→ R3 given by T (x, y) = (x+ y, x− y, x)

Show that T is one-to-one but not onto, whereas S is onto but not one-to-one.

Solution. The verification that they are linear is omitted. T is one-to-one because

ker T = {(x, y) | x+ y = x− y = x = 0}= {(0, 0)}

However, it is not onto. For example (0, 0, 1) does not lie in im T because if
(0, 0, 1) = (x+ y, x− y, x) for some x and y, then x+ y = 0 = x− y and x = 1, an impossibility.
Turning to S, it is not one-to-one by Theorem 7.2.2 because (0, 0, 1) lies in ker S. But every
element (s, t) in R2 lies in im S because (s, t) = (x+ y, x− y) = S(x, y, z) for some x, y, and z (in
fact, x = 1

2(s+ t), y = 1
2(s− t), and z = 0). Hence S is onto.

Example 7.2.6

Let U be an invertible m×m matrix and define

T : Mmn→Mmn by T (X) =UX for all X in Mmn

Show that T is a linear transformation that is both one-to-one and onto.

Solution. The verification that T is linear is left to the reader. To see that T is one-to-one, let
T (X) = 0. Then UX = 0, so left-multiplication by U−1 gives X = 0. Hence ker T = {0}, so T is
one-to-one. Finally, if Y is any member of Mmn, then U−1Y lies in Mmn too, and
T (U−1Y ) =U(U−1Y ) = Y . This shows that T is onto.

The linear transformations Rn→ Rm all have the form TA for some m×n matrix A (Theorem 2.6.2).
The next theorem gives conditions under which they are onto or one-to-one. Note the connection with
Theorem 5.4.3 and Theorem 5.4.4.
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Theorem 7.2.3

Let A be an m×n matrix, and let TA : Rn→Rm be the linear transformation induced by A, that is
TA(x) = Ax for all columns x in Rn.

1. TA is onto if and only if rank A = m.

2. TA is one-to-one if and only if rank A = n.

Proof.

1. We have that im TA is the column space of A (see Example 7.2.2), so TA is onto if and only if the
column space of A is Rm. Because the rank of A is the dimension of the column space, this holds if
and only if rank A = m.

2. ker TA = {x in Rn | Ax = 0}, so (using Theorem 7.2.2) TA is one-to-one if and only if Ax = 0 implies
x = 0. This is equivalent to rank A = n by Theorem 5.4.3.

The Dimension Theorem

Let A denote an m× n matrix of rank r and let TA : Rn→ Rm denote the corresponding matrix transfor-
mation given by TA(x) = Ax for all columns x in Rn. It follows from Example 7.2.1 and Example 7.2.2
that im TA = col A, so dim ( im TA) = dim (col A) = r. On the other hand Theorem 5.4.2 shows that
dim (ker TA) = dim (null A) = n− r. Combining these we see that

dim ( im TA)+ dim (ker TA) = n for every m×n matrix A

The main result of this section is a deep generalization of this observation.

Theorem 7.2.4: Dimension Theorem

Let T : V →W be any linear transformation and assume that ker T and im T are both finite
dimensional. Then V is also finite dimensional and

dim V = dim (ker T )+ dim ( im T )

In other words, dim V = nullity (T )+ rank (T ).

Proof. Every vector in im T =T (V ) has the form T (v) for some v in V . Hence let {T (e1), T (e2), . . . , T (er)}
be a basis of im T , where the ei lie in V . Let {f1, f2, . . . , fk} be any basis of ker T . Then dim ( im T ) = r

and dim (ker T ) = k, so it suffices to show that B = {e1, . . . , er, f1, . . . , fk} is a basis of V .

1. B spans V . If v lies in V , then T (v) lies in im V , so

T (v) = t1T (e1)+ t2T (e2)+ · · ·+ trT (er) ti in R

This implies that v− t1e1− t2e2−·· ·− trer lies in ker T and so is a linear combination of f1, . . . , fk.
Hence v is a linear combination of the vectors in B.
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2. B is linearly independent. Suppose that ti and s j in R satisfy

t1e1 + · · ·+ trer + s1f1 + · · ·+ skfk = 0 (7.1)

Applying T gives t1T (e1)+ · · ·+trT (er) = 0 (because T (fi)= 0 for each i). Hence the independence
of {T (e1), . . . , T (er)} yields t1 = · · ·= tr = 0. But then (7.1) becomes

s1f1 + · · ·+ skfk = 0

so s1 = · · ·= sk = 0 by the independence of {f1, . . . , fk}. This proves that B is linearly independent.

Note that the vector space V is not assumed to be finite dimensional in Theorem 7.2.4. In fact, verify-
ing that ker T and im T are both finite dimensional is often an important way to prove that V is finite
dimensional.

Note further that r+ k = n in the proof so, after relabelling, we end up with a basis

B = {e1, e2, . . . , er, er+1, . . . , en}

of V with the property that {er+1, . . . , en} is a basis of ker T and {T (e1), . . . , T (er)} is a basis of im T .
In fact, if V is known in advance to be finite dimensional, then any basis {er+1, . . . , en} of ker T can be
extended to a basis {e1, e2, . . . , er, er+1, . . . , en} of V by Theorem 6.4.1. Moreover, it turns out that, no
matter how this is done, the vectors {T (e1), . . . , T (er)} will be a basis of im T . This result is useful, and
we record it for reference. The proof is much like that of Theorem 7.2.4 and is left as Exercise 7.2.26.

Theorem 7.2.5

Let T : V →W be a linear transformation, and let {e1, . . . , er, er+1, . . . , en} be a basis of V such
that {er+1, . . . , en} is a basis of ker T . Then {T (e1), . . . , T (er)} is a basis of im T , and hence
r = rank T .

The dimension theorem is one of the most useful results in all of linear algebra. It shows that if
either dim (ker T ) or dim ( im T ) can be found, then the other is automatically known. In many cases it is
easier to compute one than the other, so the theorem is a real asset. The rest of this section is devoted to
illustrations of this fact. The next example uses the dimension theorem to give a different proof of the first
part of Theorem 5.4.2.

Example 7.2.7

Let A be an m×n matrix of rank r. Show that the space null A of all solutions of the system
Ax = 0 of m homogeneous equations in n variables has dimension n− r.

Solution. The space in question is just ker TA, where TA : Rn→Rm is defined by TA(x) = Ax for
all columns x in Rn. But dim ( im TA) = rank TA = rank A = r by Example 7.2.2, so
dim (ker TA) = n− r by the dimension theorem.
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Example 7.2.8

If T : V →W is a linear transformation where V is finite dimensional, then

dim (ker T )≤ dim V and dim ( im T )≤ dim V

Indeed, dim V = dim (ker T )+ dim ( im T ) by Theorem 7.2.4. Of course, the first inequality also
follows because ker T is a subspace of V .

Example 7.2.9

Let D : Pn→ Pn−1 be the differentiation map defined by D [p(x)] = p′(x). Compute ker D and
hence conclude that D is onto.

Solution. Because p′(x) = 0 means p(x) is constant, we have dim (ker D) = 1. Since
dim Pn = n+1, the dimension theorem gives

dim ( im D) = (n+1)− dim (ker D) = n = dim (Pn−1)

This implies that im D = Pn−1, so D is onto.

Of course it is not difficult to verify directly that each polynomial q(x) in Pn−1 is the derivative of some
polynomial in Pn (simply integrate q(x)!), so the dimension theorem is not needed in this case. However,
in some situations it is difficult to see directly that a linear transformation is onto, and the method used in
Example 7.2.9 may be by far the easiest way to prove it. Here is another illustration.

Example 7.2.10

Given a in R, the evaluation map Ea : Pn→ R is given by Ea [p(x)] = p(a). Show that Ea is linear
and onto, and hence conclude that {(x−a), (x−a)2, . . . , (x−a)n} is a basis of ker Ea, the
subspace of all polynomials p(x) for which p(a) = 0.

Solution. Ea is linear by Example 7.1.3; the verification that it is onto is left to the reader. Hence
dim ( im Ea) = dim (R) = 1, so dim (ker Ea) = (n+1)−1 = n by the dimension theorem. Now
each of the n polynomials (x−a), (x−a)2, . . . , (x−a)n clearly lies in ker Ea, and they are
linearly independent (they have distinct degrees). Hence they are a basis because dim (ker Ea) = n.

We conclude by applying the dimension theorem to the rank of a matrix.

Example 7.2.11

If A is any m×n matrix, show that rank A = rank AT A = rank AAT .

Solution. It suffices to show that rank A = rank AT A (the rest follows by replacing A with AT ).
Write B = AT A, and consider the associated matrix transformations

TA : Rn→ Rm and TB : Rn→ Rn
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The dimension theorem and Example 7.2.2 give

rank A = rank TA = dim ( im TA) = n− dim (ker TA)

rank B = rank TB = dim ( im TB) = n− dim (ker TB)

so it suffices to show that ker TA = ker TB. Now Ax = 0 implies that Bx = AT Ax = 0, so ker TA is
contained in ker TB. On the other hand, if Bx = 0, then AT Ax = 0, so

‖Ax‖2 = (Ax)T (Ax) = xT AT Ax = xT 0 = 0

This implies that Ax = 0, so ker TB is contained in ker TA.

Exercises for 7.2

Exercise 7.2.1 For each matrix A, find a basis for the
kernel and image of TA, and find the rank and nullity of
TA.




1 2 −1 1
3 1 0 2
1 −3 2 0


a.




2 1 −1 3
1 0 3 1
1 1 −4 2


b.




1 2 −1
3 1 2
4 −1 5
0 2 −2


c.




2 1 0
1 −1 3
1 2 −3
0 3 −6


d.

Exercise 7.2.2 In each case, (i) find a basis of ker T ,
and (ii) find a basis of im T . You may assume that T is
linear.

a. T : P2→ R2; T (a+bx+ cx2) = (a, b)

b. T : P2→ R2; T (p(x)) = (p(0), p(1))

c. T : R3→ R3; T (x, y, z) = (x+ y, x+ y, 0)

d. T : R3→ R4; T (x, y, z) = (x, x, y, y)

e. T : M22→M22; T

[
a b

c d

]
=

[
a+b b+ c

c+d d+a

]

f. T : M22→ R; T

[
a b

c d

]
= a+d

g. T : Pn→ R; T (r0 + r1x+ · · ·+ rnxn) = rn

h. T : Rn→ R; T (r1, r2, . . . , rn) = r1 + r2 + · · ·+ rn

i. T : M22→M22; T (X) = XA−AX , where

A =

[
0 1
1 0

]

j. T : M22→M22; T (X)=XA, where A=

[
1 1
0 0

]

Exercise 7.2.3 Let P : V → R and Q : V → R be lin-
ear transformations, where V is a vector space. Define
T : V → R2 by T (v) = (P(v), Q(v)).

a. Show that T is a linear transformation.

b. Show that ker T = ker P∩ ker Q, the set of vec-
tors in both ker P and ker Q.

Exercise 7.2.4 In each case, find a basis
B = {e1, . . . , er, er+1, . . . , en} of V such that
{er+1, . . . , en} is a basis of ker T , and verify Theo-
rem 7.2.5.

a. T : R3 → R4; T (x, y, z) = (x− y+ 2z, x + y−
z, 2x+ z, 2y−3z)

b. T : R3 → R4; T (x, y, z) = (x + y+ z, 2x− y+
3z, z−3y, 3x+4z)
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Exercise 7.2.5 Show that every matrix X in Mnn has the
form X = AT −2A for some matrix A in Mnn. [Hint: The
dimension theorem.]

Exercise 7.2.6 In each case either prove the statement
or give an example in which it is false. Throughout, let
T : V →W be a linear transformation where V and W are
finite dimensional.

a. If V =W , then ker T ⊆ im T .

b. If dim V = 5, dim W = 3, and dim (ker T ) = 2,
then T is onto.

c. If dim V = 5 and dim W = 4, then ker T 6= {0}.

d. If ker T =V , then W = {0}.

e. If W = {0}, then ker T =V .

f. If W =V , and im T ⊆ ker T , then T = 0.

g. If {e1, e2, e3} is a basis of V and
T (e1) = 0 = T (e2), then dim ( im T )≤ 1.

h. If dim (ker T )≤ dim W , then dim W ≥ 1
2 dim V .

i. If T is one-to-one, then dim V ≤ dim W .

j. If dim V ≤ dim W , then T is one-to-one.

k. If T is onto, then dim V ≥ dim W .

l. If dim V ≥ dim W , then T is onto.

m. If {T (v1), . . . , T (vk)} is independent, then
{v1, . . . , vk} is independent.

n. If {v1, . . . , vk} spans V , then {T (v1), . . . , T (vk)}
spans W .

Exercise 7.2.7 Show that linear independence is pre-
served by one-to-one transformations and that spanning
sets are preserved by onto transformations. More pre-
cisely, if T : V →W is a linear transformation, show that:

a. If T is one-to-one and {v1, . . . , vn} is independent
in V , then {T (v1), . . . , T (vn)} is independent in
W .

b. If T is onto and V = span{v1, . . . , vn}, then
W = span {T (v1), . . . , T (vn)}.

Exercise 7.2.8 Given {v1, . . . , vn} in a vector space V ,
define T : Rn→ V by T (r1, . . . , rn) = r1v1 + · · ·+ rnvn.
Show that T is linear, and that:

a. T is one-to-one if and only if {v1, . . . , vn} is in-
dependent.

b. T is onto if and only if V = span{v1, . . . , vn}.

Exercise 7.2.9 Let T : V →V be a linear transformation
where V is finite dimensional. Show that exactly one of
(i) and (ii) holds: (i) T (v) = 0 for some v 6= 0 in V ; (ii)
T (x) = v has a solution x in V for every v in V .

Exercise 7.2.10 Let T : Mnn→R denote the trace map:
T (A) = tr A for all A in Mnn. Show that
dim (ker T ) = n2−1.

Exercise 7.2.11 Show that the following are equivalent
for a linear transformation T : V →W .

ker T =V1. im T = {0}2.

T = 03.

Exercise 7.2.12 Let A and B be m× n and k× n matri-
ces, respectively. Assume that Ax = 0 implies Bx = 0 for
every n-column x. Show that rank A≥ rank B.
[Hint: Theorem 7.2.4.]

Exercise 7.2.13 Let A be an m× n matrix of rank r.
Thinking of Rn as rows, define V = {x in Rm | xA = 0}.
Show that dim V = m− r.

Exercise 7.2.14 Consider

V =

{[
a b

c d

]∣∣∣∣a+ c = b+d

}

a. Consider S : M22→ R with S

[
a b

c d

]
= a+ c−

b−d. Show that S is linear and onto and that V is
a subspace of M22. Compute dim V .

b. Consider T : V → R with T

[
a b

c d

]
= a + c.

Show that T is linear and onto, and use this in-
formation to compute dim (ker T ).

Exercise 7.2.15 Define T : Pn → R by T [p(x)] = the
sum of all the coefficients of p(x).

a. Use the dimension theorem to show that
dim (ker T ) = n.
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b. Conclude that {x−1, x2−1, . . . , xn−1} is a basis
of ker T .

Exercise 7.2.16 Use the dimension theorem to prove
Theorem 1.3.1: If A is an m× n matrix with m < n, the
system Ax = 0 of m homogeneous equations in n vari-
ables always has a nontrivial solution.

Exercise 7.2.17 Let B be an n× n matrix, and con-
sider the subspaces U = {A | A in Mmn, AB = 0} and
V = {AB | A in Mmn}. Show that dim U + dim V = mn.

Exercise 7.2.18 Let U and V denote, respectively, the
spaces of even and odd polynomials in Pn. Show that
dim U + dim V = n+ 1. [Hint: Consider T : Pn → Pn

where T [p(x)] = p(x)− p(−x).]

Exercise 7.2.19 Show that every polynomial f (x) in
Pn−1 can be written as f (x) = p(x+ 1)− p(x) for some
polynomial p(x) in Pn. [Hint: Define T : Pn→ Pn−1 by
T [p(x)] = p(x+1)− p(x).]

Exercise 7.2.20 Let U and V denote the spaces of sym-
metric and skew-symmetric n× n matrices. Show that
dim U + dim V = n2.

Exercise 7.2.21 Assume that B in Mnn satisfies Bk = 0
for some k ≥ 1. Show that every matrix in Mnn has
the form BA−A for some A in Mnn. [Hint: Show that
T : Mnn→Mnn is linear and one-to-one where
T (A) = BA−A for each A.]

Exercise 7.2.22 Fix a column y 6= 0 in Rn and let
U = {A in Mnn | Ay = 0}. Show that dim U = n(n−1).

Exercise 7.2.23 If B in Mmn has rank r, let U = {A in
Mnn | BA = 0} and W = {BA | A in Mnn}. Show that
dim U = n(n− r) and dim W = nr. [Hint: Show that U

consists of all matrices A whose columns are in the null
space of B. Use Example 7.2.7.]

Exercise 7.2.24 Let T : V → V be a linear transforma-
tion where dim V = n. If ker T ∩ im T = {0}, show that
every vector v in V can be written v = u+w for some u

in ker T and w in im T . [Hint: Choose bases B ⊆ ker T

and D⊆ im T , and use Exercise 6.3.33.]

Exercise 7.2.25 Let T : Rn → Rn be a linear operator
of rank 1, where Rn is written as rows. Show that there
exist numbers a1, a2, . . . , an and b1, b2, . . . , bn such that
T (X) = XA for all rows X in Rn, where

A =




a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn

...
...

...
anb1 anb2 · · · anbn




[Hint: im T =Rw for w = (b1, . . . , bn) in Rn.]

Exercise 7.2.26 Prove Theorem 7.2.5.

Exercise 7.2.27 Let T :V →R be a nonzero linear trans-
formation, where dim V = n. Show that there is a basis
{e1, . . . , en} of V so that T (r1e1+r2e2+ · · ·+rnen)= r1.

Exercise 7.2.28 Let f 6= 0 be a fixed polynomial of de-
gree m≥ 1. If p is any polynomial, recall that
(p◦ f )(x) = p [ f (x)]. Define Tf : Pn→ Pn+m by
Tf (p) = p◦ f .

a. Show that Tf is linear.

b. Show that Tf is one-to-one.

Exercise 7.2.29 Let U be a subspace of a finite dimen-
sional vector space V .

a. Show that U = ker T for some linear operator
T : V →V .

b. Show that U = im S for some linear operator
S : V → V . [Hint: Theorem 6.4.1 and Theo-
rem 7.1.3.]

Exercise 7.2.30 Let V and W be finite dimensional vec-
tor spaces.

a. Show that dim W ≤ dim V if and only if there
exists an onto linear transformation T : V →W .
[Hint: Theorem 6.4.1 and Theorem 7.1.3.]

b. Show that dim W ≥ dim V if and only if there ex-
ists a one-to-one linear transformation T : V →W .
[Hint: Theorem 6.4.1 and Theorem 7.1.3.]

Exercise 7.2.31 Let A and B be n×n matrices, and as-
sume that AXB= 0, X ∈Mnn, implies X = 0. Show that A

and B are both invertible. [Hint: Dimension Theorem.]
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7.3 Isomorphisms and Composition

Often two vector spaces can consist of quite different types of vectors but, on closer examination, turn out
to be the same underlying space displayed in different symbols. For example, consider the spaces

R2 = {(a, b) | a, b ∈ R} and P1 = {a+bx | a, b ∈ R}

Compare the addition and scalar multiplication in these spaces:

(a, b)+(a1, b1) = (a+a1, b+b1) (a+bx)+(a1+b1x) = (a+a1)+(b+b1)x

r(a, b) = (ra, rb) r(a+bx) = (ra)+(rb)x

Clearly these are the same vector space expressed in different notation: if we change each (a, b) in R2 to
a+bx, then R2 becomes P1, complete with addition and scalar multiplication. This can be expressed by
noting that the map (a, b) 7→ a+bx is a linear transformation R2→ P1 that is both one-to-one and onto.
In this form, we can describe the general situation.

Definition 7.4 Isomorphic Vector Spaces

A linear transformation T : V →W is called an isomorphism if it is both onto and one-to-one. The
vector spaces V and W are said to be isomorphic if there exists an isomorphism T : V →W , and
we write V ∼=W when this is the case.

Example 7.3.1

The identity transformation 1V : V →V is an isomorphism for any vector space V .

Example 7.3.2

If T : Mmn→Mnm is defined by T (A) = AT for all A in Mmn, then T is an isomorphism (verify).
Hence Mmn

∼= Mnm.

Example 7.3.3

Isomorphic spaces can “look” quite different. For example, M22
∼= P3 because the map

T : M22→ P3 given by T

[
a b

c d

]
= a+bx+ cx2 +dx3 is an isomorphism (verify).

The word isomorphism comes from two Greek roots: iso, meaning “same,” and morphos, meaning
“form.” An isomorphism T : V →W induces a pairing

v↔ T (v)
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between vectors v in V and vectors T (v) in W that preserves vector addition and scalar multiplication.
Hence, as far as their vector space properties are concerned, the spaces V and W are identical except
for notation. Because addition and scalar multiplication in either space are completely determined by the
same operations in the other space, all vector space properties of either space are completely determined
by those of the other.

One of the most important examples of isomorphic spaces was considered in Chapter 4. Let A denote
the set of all “arrows” with tail at the origin in space, and make A into a vector space using the paral-
lelogram law and the scalar multiple law (see Section 4.1). Then define a transformation T : R3→ A by
taking

T




x

y

z


= the arrow v from the origin to the point P(x, y, z).

In Section 4.1 matrix addition and scalar multiplication were shown to correspond to the parallelogram
law and the scalar multiplication law for these arrows, so the map T is a linear transformation. Moreover T

is an isomorphism: it is one-to-one by Theorem 4.1.2, and it is onto because, given an arrow v in A with tip

P(x, y, z), we have T




x

y

z


= v. This justifies the identification v =




x

y

z


 in Chapter 4 of the geometric

arrows with the algebraic matrices. This identification is very useful. The arrows give a “picture” of the
matrices and so bring geometric intuition into R3; the matrices are useful for detailed calculations and so
bring analytic precision into geometry. This is one of the best examples of the power of an isomorphism
to shed light on both spaces being considered.

The following theorem gives a very useful characterization of isomorphisms: They are the linear
transformations that preserve bases.

Theorem 7.3.1

If V and W are finite dimensional spaces, the following conditions are equivalent for a linear
transformation T : V →W .

1. T is an isomorphism.

2. If {e1, e2, . . . , en} is any basis of V , then {T (e1), T (e2), . . . , T (en)} is a basis of W .

3. There exists a basis {e1, e2, . . . , en} of V such that {T (e1), T (e2), . . . , T (en)} is a basis of
W .

Proof. (1) ⇒ (2). Let {e1, . . . , en} be a basis of V . If t1T (e1)+ · · ·+ tnT (en) = 0 with ti in R, then
T (t1e1 + · · ·+ tnen) = 0, so t1e1 + · · ·+ tnen = 0 (because ker T = {0}). But then each ti = 0 by the
independence of the ei, so {T (e1), . . . , T (en)} is independent. To show that it spans W , choose w in
W . Because T is onto, w = T (v) for some v in V , so write v = t1e1 + · · ·+ tnen. Hence we obtain
w = T (v) = t1T (e1)+ · · ·+ tnT (en), proving that {T (e1), . . . , T (en)} spans W .

(2)⇒ (3). This is because V has a basis.

(3)⇒ (1). If T (v) = 0, write v = v1e1 + · · ·+ vnen where each vi is in R. Then

0 = T (v) = v1T (e1)+ · · ·+ vnT (en)
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so v1 = · · ·= vn = 0 by (3). Hence v = 0, so ker T = {0} and T is one-to-one. To show that T is onto, let
w be any vector in W . By (3) there exist w1, . . . , wn in R such that

w = w1T (e1)+ · · ·+wnT (en) = T (w1e1 + · · ·+wnen)

Thus T is onto.

Theorem 7.3.1 dovetails nicely with Theorem 7.1.3 as follows. Let V and W be vector spaces of
dimension n, and suppose that {e1, e2, . . . , en} and {f1, f2, . . . , fn} are bases of V and W , respectively.
Theorem 7.1.3 asserts that there exists a linear transformation T : V →W such that

T (ei) = fi for each i = 1, 2, . . . , n

Then {T (e1), . . . , T (en)} is evidently a basis of W , so T is an isomorphism by Theorem 7.3.1. Further-
more, the action of T is prescribed by

T (r1e1 + · · ·+ rnen) = r1f1 + · · ·+ rnfn

so isomorphisms between spaces of equal dimension can be easily defined as soon as bases are known. In
particular, this shows that if two vector spaces V and W have the same dimension then they are isomorphic,
that is V ∼=W . This is half of the following theorem.

Theorem 7.3.2

If V and W are finite dimensional vector spaces, then V ∼=W if and only if dim V = dim W .

Proof. It remains to show that if V ∼=W then dim V = dim W . But if V ∼=W , then there exists an isomor-
phism T :V →W . Since V is finite dimensional, let {e1, . . . , en} be a basis of V . Then {T (e1), . . . , T (en)}
is a basis of W by Theorem 7.3.1, so dim W = n = dim V .

Corollary 7.3.1

Let U , V , and W denote vector spaces. Then:

1. V ∼=V for every vector space V .

2. If V ∼=W then W ∼=V .

3. If U ∼=V and V ∼=W , then U ∼=W .

The proof is left to the reader. By virtue of these properties, the relation∼= is called an equivalence relation

on the class of finite dimensional vector spaces. Since dim (Rn) = n it follows that

Corollary 7.3.2

If V is a vector space and dim V = n, then V is isomorphic to Rn.
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If V is a vector space of dimension n, note that there are important explicit isomorphisms V → Rn.
Fix a basis B = {b1, b2, . . . , bn} of V and write {e1, e2, . . . , en} for the standard basis of Rn. By
Theorem 7.1.3 there is a unique linear transformation CB : V → Rn given by

CB(v1b1 + v2b2 + · · ·+ vnbn) = v1e1 + v2e2 + · · ·+ vnen =




v1

v2
...

vn




where each vi is in R. Moreover, CB(bi) = ei for each i so CB is an isomorphism by Theorem 7.3.1, called
the coordinate isomorphism corresponding to the basis B. These isomorphisms will play a central role
in Chapter 9.

The conclusion in the above corollary can be phrased as follows: As far as vector space properties
are concerned, every n-dimensional vector space V is essentially the same as Rn; they are the “same”
vector space except for a change of symbols. This appears to make the process of abstraction seem less
important—just study Rn and be done with it! But consider the different “feel” of the spaces P8 and M33

even though they are both the “same” as R9: For example, vectors in P8 can have roots, while vectors in
M33 can be multiplied. So the merit in the abstraction process lies in identifying common properties of
the vector spaces in the various examples. This is important even for finite dimensional spaces. However,
the payoff from abstraction is much greater in the infinite dimensional case, particularly for spaces of
functions.

Example 7.3.4

Let V denote the space of all 2×2 symmetric matrices. Find an isomorphism T : P2→V such that
T (1) = I, where I is the 2×2 identity matrix.

Solution. {1, x, x2} is a basis of P2, and we want a basis of V containing I. The set{[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
is independent in V , so it is a basis because dim V = 3 (by

Example 6.3.11). Hence define T : P2→V by taking T (1) =

[
1 0
0 1

]
, T (x) =

[
0 1
1 0

]
,

T (x2) =

[
0 0
0 1

]
, and extending linearly as in Theorem 7.1.3. Then T is an isomorphism by

Theorem 7.3.1, and its action is given by

T (a+bx+ cx2) = aT (1)+bT (x)+ cT (x2) =

[
a b

b a+ c

]

The dimension theorem (Theorem 7.2.4) gives the following useful fact about isomorphisms.

Theorem 7.3.3

If V and W have the same dimension n, a linear transformation T : V →W is an isomorphism if it
is either one-to-one or onto.
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Proof. The dimension theorem asserts that dim (ker T )+ dim ( im T ) = n, so dim (ker T ) = 0 if and only
if dim ( im T ) = n. Thus T is one-to-one if and only if T is onto, and the result follows.

Composition

Suppose that T : V →W and S : W →U are linear transformations. They link together as in the diagram
so, as in Section 2.3, it is possible to define a new function V →U by first applying T and then S.

Definition 7.5 Composition of Linear Transformations

T S

V W U

Given linear transformations V
T−→W

S−→U , the composite

ST : V →U of T and S is defined by

ST (v) = S [T (v)] for all v in V

The operation of forming the new function ST is called composition.1

The action of ST can be described compactly as follows: ST means first T then S.

Not all pairs of linear transformations can be composed. For example, if T : V →W and S : W →U

are linear transformations then ST : V →U is defined, but T S cannot be formed unless U = V because
S : W →U and T : V →W do not “link” in that order.2

Moreover, even if ST and T S can both be formed, they may not be equal. In fact, if S : Rm→ Rn and
T : Rn→ Rm are induced by matrices A and B respectively, then ST and T S can both be formed (they are
induced by AB and BA respectively), but the matrix products AB and BA may not be equal (they may not
even be the same size). Here is another example.

Example 7.3.5

Define: S : M22→M22 and T : M22→M22 by S

[
a b

c d

]
=

[
c d

a b

]
and T (A) = AT for

A ∈M22. Describe the action of ST and T S, and show that ST 6= T S.

Solution. ST

[
a b

c d

]
= S

[
a c

b d

]
=

[
b d

a c

]
, whereas

T S

[
a b

c d

]
= T

[
c d

a b

]
=

[
c a

d b

]
.

It is clear that T S

[
a b

c d

]
need not equal ST

[
a b

c d

]
, so T S 6= ST .

The next theorem collects some basic properties of the composition operation.

1In Section 2.3 we denoted the composite as S ◦T . However, it is more convenient to use the simpler notation ST .
2Actually, all that is required is U ⊆V .
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Theorem 7.3.4: 3

Let V
T−→W

S−→U
R−→ Z be linear transformations.

1. The composite ST is again a linear transformation.

2. T 1V = T and 1W T = T .

3. (RS)T = R(ST ).

Proof. The proofs of (1) and (2) are left as Exercise 7.3.25. To prove (3), observe that, for all v in V :

{(RS)T}(v) = (RS) [T (v)] = R{S [T (v)]}= R{(ST )(v)}= {R(ST )}(v)

Up to this point, composition seems to have no connection with isomorphisms. In fact, the two notions
are closely related.

Theorem 7.3.5

Let V and W be finite dimensional vector spaces. The following conditions are equivalent for a
linear transformation T : V →W .

1. T is an isomorphism.

2. There exists a linear transformation S : W →V such that ST = 1V and T S = 1W .

Moreover, in this case S is also an isomorphism and is uniquely determined by T :

If w in W is written as w = T (v), then S(w) = v.

Proof. (1)⇒ (2). If B = {e1, . . . , en} is a basis of V , then D = {T (e1), . . . , T (en)} is a basis of W by
Theorem 7.3.1. Hence (using Theorem 7.1.3), define a linear transformation S : W →V by

S[T (ei)] = ei for each i (7.2)

Since ei = 1V (ei), this gives ST = 1V by Theorem 7.1.2. But applying T gives T [S [T (ei)]] = T (ei) for
each i, so T S = 1W (again by Theorem 7.1.2, using the basis D of W ).

(2)⇒ (1). If T (v) = T (v1), then S [T (v)] = S [T (v1)]. Because ST = 1V by (2), this reads v = v1; that
is, T is one-to-one. Given w in W , the fact that T S = 1W means that w = T [S(w)], so T is onto.

3Theorem 7.3.4 can be expressed by saying that vector spaces and linear transformations are an example of a category. In
general a category consists of certain objects and, for any two objects X and Y , a set mor (X , Y ). The elements α of mor (X , Y )
are called morphisms from X to Y and are written α : X→Y . It is assumed that identity morphisms and composition are defined
in such a way that Theorem 7.3.4 holds. Hence, in the category of vector spaces the objects are the vector spaces themselves and
the morphisms are the linear transformations. Another example is the category of metric spaces, in which the objects are sets
equipped with a distance function (called a metric), and the morphisms are continuous functions (with respect to the metric).
The category of sets and functions is a very basic example.
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Finally, S is uniquely determined by the condition ST = 1V because this condition implies (7.2). S

is an isomorphism because it carries the basis D to B. As to the last assertion, given w in W , write
w = r1T (e1)+ · · ·+ rnT (en). Then w = T (v), where v = r1e1 + · · ·+ rnen. Then S(w) = v by (7.2).

Given an isomorphism T : V →W , the unique isomorphism S : W → V satisfying condition (2) of
Theorem 7.3.5 is called the inverse of T and is denoted by T−1. Hence T : V →W and T−1 : W →V are
related by the fundamental identities:

T−1 [T (v)] = v for all v in V and T
[
T−1(w)

]
= w for all w in W

In other words, each of T and T−1 reverses the action of the other. In particular, equation (7.2) in the proof
of Theorem 7.3.5 shows how to define T−1 using the image of a basis under the isomorphism T . Here is
an example.

Example 7.3.6

Define T : P1→ P1 by T (a+bx) = (a−b)+ax. Show that T has an inverse, and find the action of
T−1.

Solution. The transformation T is linear (verify). Because T (1) = 1+ x and T (x) =−1, T carries
the basis B = {1, x} to the basis D = {1+ x, −1}. Hence T is an isomorphism, and T−1 carries D

back to B, that is,
T−1(1+ x) = 1 and T−1(−1) = x

Because a+bx = b(1+ x)+(b−a)(−1), we obtain

T−1(a+bx) = bT−1(1+ x)+(b−a)T−1(−1) = b+(b−a)x

Sometimes the action of the inverse of a transformation is apparent.

Example 7.3.7

If B = {b1, b2, . . . , bn} is a basis of a vector space V , the coordinate transformation CB : V → Rn

is an isomorphism defined by

CB(v1b1 + v2b2 + · · ·+ vnbn) = (v1, v2, . . . , vn)
T

The way to reverse the action of CB is clear: C−1
B : Rn→V is given by

C−1
B (v1, v2, . . . , vn) = v1b1 + v2b2 + · · ·+ vnbn for all vi in V

Condition (2) in Theorem 7.3.5 characterizes the inverse of a linear transformation T : V →W as the
(unique) transformation S : W →V that satisfies ST = 1V and T S = 1W . This often determines the inverse.
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Example 7.3.8

Define T : R3→ R3 by T (x, y, z) = (z, x, y). Show that T 3 = 1R3 , and hence find T−1.

Solution. T 2(x, y, z) = T [T (x, y, z)] = T (z, x, y) = (y, z, x). Hence

T 3(x, y, z) = T
[
T 2(x, y, z)

]
= T (y, z, x) = (x, y, z)

Since this holds for all (x, y, z), it shows that T 3 = 1R3 , so T (T 2) = 1R3 = (T 2)T . Thus T−1 = T 2

by (2) of Theorem 7.3.5.

Example 7.3.9

Define T : Pn→ Rn+1 by T (p) = (p(0), p(1), . . . , p(n)) for all p in Pn. Show that T−1 exists.

Solution. The verification that T is linear is left to the reader. If T (p) = 0, then p(k) = 0 for
k = 0, 1, . . . , n, so p has n+1 distinct roots. Because p has degree at most n, this implies that
p = 0 is the zero polynomial (Theorem 6.5.4) and hence that T is one-to-one. But
dim Pn = n+1 = dim Rn+1, so this means that T is also onto and hence is an isomorphism. Thus
T−1 exists by Theorem 7.3.5. Note that we have not given a description of the action of T−1, we
have merely shown that such a description exists. To give it explicitly requires some ingenuity; one
method involves the Lagrange interpolation expansion (Theorem 6.5.3).

Exercises for 7.3

Exercise 7.3.1 Verify that each of the following is an
isomorphism (Theorem 7.3.3 is useful).

a. T : R3→ R3; T (x, y, z) = (x+ y, y+ z, z+ x)

b. T : R3→ R3; T (x, y, z) = (x, x+ y, x+ y+ z)

c. T : C→ C; T (z) = z

d. T : Mmn →Mmn; T (X) = UXV , U and V invert-
ible

e. T : P1→ R2; T [p(x)] = [p(0), p(1)]

f. T : V → V ; T (v) = kv, k 6= 0 a fixed number, V

any vector space

g. T : M22→ R4; T

[
a b

c d

]
= (a+b, d, c, a−b)

h. T : Mmn→Mnm; T (A) = AT

Exercise 7.3.2 Show that

{a+bx+ cx2, a1 +b1x+ c1x2, a2 +b2x+ c2x2}

is a basis of P2 if and only if
{(a, b, c), (a1, b1, c1), (a2, b2, c2)} is a basis of R3.

Exercise 7.3.3 If V is any vector space, let V n denote the
space of all n-tuples (v1, v2, . . . , vn), where each vi lies
in V . (This is a vector space with component-wise oper-
ations; see Exercise 6.1.17.) If C j(A) denotes the jth col-
umn of the m×n matrix A, show that T : Mmn→ (Rm)n

is an isomorphism if
T (A) =

[
C1(A) C2(A) · · · Cn(A)

]
. (Here Rm con-

sists of columns.)
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Exercise 7.3.4 In each case, compute the action of ST

and T S, and show that ST 6= T S.

a. S : R2 → R2 with S(x, y) = (y, x); T : R2 → R2

with T (x, y) = (x, 0)

b. S : R3→ R3 with S(x, y, z) = (x, 0, z);
T : R3→ R3 with T (x, y, z) = (x+ y, 0, y+ z)

c. S : P2 → P2 with S(p) = p(0) + p(1)x + p(2)x2;
T : P2→ P2 with T (a+bx+ cx2) = b+ cx+ax2

d. S : M22→M22 with S

[
a b

c d

]
=

[
a 0
0 d

]
;

T : M22→M22 with T

[
a b

c d

]
=

[
c a

d b

]

Exercise 7.3.5 In each case, show that the linear trans-
formation T satisfies T 2 = T .

a. T : R4→ R4; T (x, y, z, w) = (x, 0, z, 0)

b. T : R2→ R2; T (x, y) = (x+ y, 0)

c. T : P2→ P2;
T (a+bx+ cx2) = (a+b− c)+ cx+ cx2

d. T : M22→M22;

T

[
a b

c d

]
= 1

2

[
a+ c b+d

a+ c b+d

]

Exercise 7.3.6 Determine whether each of the following
transformations T has an inverse and, if so, determine the
action of T−1.

a. T : R3→ R3;
T (x, y, z) = (x+ y, y+ z, z+ x)

b. T : R4→ R4;
T (x, y, z, t) = (x+ y, y+ z, z+ t, t + x)

c. T : M22→M22;

T

[
a b

c d

]
=

[
a− c b−d

2a− c 2b−d

]

d. T : M22→M22;

T

[
a b

c d

]
=

[
a+2c b+2d

3c−a 3d−b

]

e. T : P2→ R3; T (a+bx+ cx2) = (a− c, 2b, a+ c)

f. T : P2→ R3; T (p) = [p(0), p(1), p(−1)]

Exercise 7.3.7 In each case, show that T is self-inverse,
that is: T−1 = T .

a. T : R4→ R4; T (x, y, z, w) = (x, −y, −z, w)

b. T : R2 → R2; T (x, y) = (ky− x, y), k any fixed
number

c. T : Pn→ Pn; T (p(x)) = p(3− x)

d. T : M22→M22; T (X) = AX where

A = 1
4

[
5 −3
3 −5

]

Exercise 7.3.8 In each case, show that T 6 = 1R4 and so
determine T−1.

a. T : R4→ R4; T (x, y, z, w) = (−x, z, w, y)

b. T : R4→ R4; T (x, y, z, w) = (−y, x− y, z, −w)

Exercise 7.3.9 In each case, show that T is an isomor-
phism by defining T−1 explicitly.

a. T : Pn→ Pn is given by T [p(x)] = p(x+1).

b. T : Mnn →Mnn is given by T (A) = UA where U

is invertible in Mnn.

Exercise 7.3.10 Given linear transformations
V

T−→W
S−→U :

a. If S and T are both one-to-one, show that ST is
one-to-one.

b. If S and T are both onto, show that ST is onto.

Exercise 7.3.11 Let T : V →W be a linear transforma-
tion.

a. If T is one-to-one and T R = T R1 for transforma-
tions R and R1 : U →V , show that R = R1.

b. If T is onto and ST = S1T for transformations S

and S1 : W →U , show that S = S1.

Exercise 7.3.12 Consider the linear transformations
V

T−→W
R−→U .

a. Show that ker T ⊆ ker RT .

b. Show that im RT ⊆ im R.
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Exercise 7.3.13 Let V
T−→U

S−→W be linear transforma-
tions.

a. If ST is one-to-one, show that T is one-to-one and
that dim V ≤ dim U .

b. If ST is onto, show that S is onto and that
dim W ≤ dim U .

Exercise 7.3.14 Let T : V → V be a linear transforma-
tion. Show that T 2 = 1V if and only if T is invertible and
T = T−1.

Exercise 7.3.15 Let N be a nilpotent n× n matrix (that
is, Nk = 0 for some k). Show that T : Mnm → Mnm is
an isomorphism if T (X) = X −NX . [Hint: If X is in
ker T , show that X = NX = N2X = · · · . Then use Theo-
rem 7.3.3.]

Exercise 7.3.16 Let T : V →W be a linear transforma-
tion, and let {e1, . . . , er, er+1, . . . , en} be any basis of V

such that {er+1, . . . , en} is a basis of ker T . Show that
im T ∼= span{e1, . . . , er}. [Hint: See Theorem 7.2.5.]

Exercise 7.3.17 Is every isomorphism T : M22 →M22

given by an invertible matrix U such that T (X) =UX for
all X in M22? Prove your answer.

Exercise 7.3.18 Let Dn denote the space of all func-
tions f from {1, 2, . . . , n} to R (see Exercise 6.3.35). If
T : Dn→ Rn is defined by

T ( f ) = ( f (1), f (2), . . . , f (n)),

show that T is an isomorphism.

Exercise 7.3.19

a. Let V be the vector space of Exercise 6.1.3. Find
an isomorphism T : V → R1.

b. Let V be the vector space of Exercise 6.1.4. Find
an isomorphism T : V → R2.

Exercise 7.3.20 Let V
T−→W

S−→V be linear transforma-
tions such that ST = 1V . If dim V = dim W = n, show
that S = T−1 and T = S−1. [Hint: Exercise 7.3.13 and
Theorem 7.3.3, Theorem 7.3.4, and Theorem 7.3.5.]

Exercise 7.3.21 Let V
T−→W

S−→V be functions such that
T S = 1W and ST = 1V . If T is linear, show that S is also
linear.

Exercise 7.3.22 Let A and B be matrices of size p×m

and n×q. Assume that mn = pq. Define R : Mmn→Mpq

by R(X) = AXB.

a. Show that Mmn
∼= Mpq by comparing dimensions.

b. Show that R is a linear transformation.

c. Show that if R is an isomorphism, then m = p

and n = q. [Hint: Show that T : Mmn → Mpn

given by T (X) = AX and S : Mmn →Mmq given
by S(X) = XB are both one-to-one, and use the
dimension theorem.]

Exercise 7.3.23 Let T : V → V be a linear transforma-
tion such that T 2 = 0 is the zero transformation.

a. If V 6= {0}, show that T cannot be invertible.

b. If R : V →V is defined by R(v) = v+T (v) for all
v in V , show that R is linear and invertible.

Exercise 7.3.24 Let V consist of all sequences
[x0, x1, x2, . . . ) of numbers, and define vector operations

[xo, x1, . . . )+ [y0, y1, . . . ) = [x0 + y0, x1 + y1, . . . )

r[x0, x1, . . . ) = [rx0, rx1, . . . )

a. Show that V is a vector space of infinite dimen-
sion.

b. Define T : V → V and S : V → V by
T [x0, x1, . . . ) = [x1, x2, . . . ) and
S[x0, x1, . . . ) = [0, x0, x1, . . . ). Show that
T S = 1V , so T S is one-to-one and onto, but that T

is not one-to-one and S is not onto.

Exercise 7.3.25 Prove (1) and (2) of Theorem 7.3.4.

Exercise 7.3.26 Define T : Pn→ Pn by
T (p) = p(x)+ xp′(x) for all p in Pn.

a. Show that T is linear.

b. Show that ker T = {0} and conclude that T is an
isomorphism. [Hint: Write p(x) = a0+a1x+ · · ·+
anxn and compare coefficients if p(x) =−xp′(x).]

c. Conclude that each q(x) in Pn has the form
q(x) = p(x)+ xp′(x) for some unique polynomial
p(x).

d. Does this remain valid if T is defined by
T [p(x)] = p(x)− xp′(x)? Explain.
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Exercise 7.3.27 Let T : V →W be a linear transforma-
tion, where V and W are finite dimensional.

a. Show that T is one-to-one if and only if there
exists a linear transformation S : W → V with
ST = 1V . [Hint: If {e1, . . . , en} is a basis of
V and T is one-to-one, show that W has a basis
{T (e1), . . . , T (en), fn+1, . . . , fn+k} and use The-
orem 7.1.2 and Theorem 7.1.3.]

b. Show that T is onto if and only if there exists a
linear transformation S : W → V with T S = 1W .
[Hint: Let {e1, . . . , er, . . . , en} be a basis of
V such that {er+1, . . . , en} is a basis of ker T .
Use Theorem 7.2.5, Theorem 7.1.2 and Theo-
rem 7.1.3.]

Exercise 7.3.28 Let S and T be linear transformations
V →W , where dim V = n and dim W = m.

a. Show that ker S = ker T if and only if T = RS

for some isomorphism R : W → W . [Hint: Let
{e1, . . . , er, . . . , en} be a basis of V such that
{er+1, . . . , en} is a basis of ker S = ker T . Use
Theorem 7.2.5 to extend {S(e1), . . . , S(er)} and
{T (e1), . . . , T (er)} to bases of W .]

b. Show that im S = im T if and only if T = SR

for some isomorphism R : V → V . [Hint: Show
that dim (ker S) = dim (ker T ) and choose bases
{e1, . . . , er, . . . , en} and {f1, . . . , fr, . . . , fn} of V

where {er+1, . . . , en} and {fr+1, . . . , fn} are bases
of ker S and ker T , respectively. If 1≤ i≤ r, show
that S(ei) = T (gi) for some gi in V , and prove that
{g1, . . . , gr, fr+1, . . . , fn} is a basis of V .]

Exercise 7.3.29 If T : V →V is a linear transformation
where dim V = n, show that T ST = T for some isomor-
phism S : V →V . [Hint: Let {e1, . . . , er, er+1, . . . , en}
be as in Theorem 7.2.5. Extend {T (e1), . . . , T (er)} to
a basis of V , and use Theorem 7.3.1, Theorem 7.1.2 and
Theorem 7.1.3.]

Exercise 7.3.30 Let A and B denote m×n matrices. In
each case show that (1) and (2) are equivalent.

a. (1) A and B have the same null space. (2) B = PA

for some invertible m×m matrix P.

b. (1) A and B have the same range. (2) B = AQ for
some invertible n×n matrix Q.

[Hint: Use Exercise 7.3.28.]

7.4 A Theorem about Differential Equations

Differential equations are instrumental in solving a variety of problems throughout science, social science,
and engineering. In this brief section, we will see that the set of solutions of a linear differential equation
(with constant coefficients) is a vector space and we will calculate its dimension. The proof is pure linear
algebra, although the applications are primarily in analysis. However, a key result (Lemma 7.4.3 below)
can be applied much more widely.

We denote the derivative of a function f : R→ R by f ′, and f will be called differentiable if it can
be differentiated any number of times. If f is a differentiable function, the nth derivative f (n) of f is the
result of differentiating n times. Thus f (0) = f , f (1) = f ′, f (2) = f (1)′, . . . , and in general f (n+1) = f (n)′

for each n≥ 0. For small values of n these are often written as f , f ′, f ′′, f ′′′, . . . .

If a, b, and c are numbers, the differential equations

f ′′−a f ′−b f = 0 or f ′′′−a f ′′−b f ′− c f = 0

are said to be of second order and third-order, respectively. In general, an equation

f (n)−an−1 f (n−1)−an−2 f (n−2)−·· ·−a2 f (2)−a1 f (1)−a0 f (0) = 0, ai in R (7.3)
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is called a differential equation of order n. We want to describe all solutions of this equation. Of course
a knowledge of calculus is required.

The set F of all functions R→R is a vector space with operations as described in Example 6.1.7. If f

and g are differentiable, we have ( f +g)′ = f ′+g′ and (a f )′ = a f ′ for all a in R. With this it is a routine
matter to verify that the following set is a subspace of F:

Dn = { f : R→ R | f is differentiable and is a solution to (7.3)}
Our sole objective in this section is to prove

Theorem 7.4.1

The space Dn has dimension n.

As will be clear later, the proof of Theorem 7.4.1 requires that we enlarge Dn somewhat and allow our
differentiable functions to take values in the set C of complex numbers. To do this, we must clarify what
it means for a function f : R→ C to be differentiable. For each real number x write f (x) in terms of its
real and imaginary parts fr(x) and fi(x):

f (x) = fr(x)+ i fi(x)

This produces new functions fr : R → R and fi : R → R, called the real and imaginary parts of f ,
respectively. We say that f is differentiable if both fr and fi are differentiable (as real functions), and we
define the derivative f ′ of f by

f ′ = f ′r + i f ′i (7.4)

We refer to this frequently in what follows.4

With this, write D∞ for the set of all differentiable complex valued functions f : R→ C . This is a
complex vector space using pointwise addition (see Example 6.1.7), and the following scalar multiplica-
tion: For any w in C and f in D∞, we define w f : R→ C by (w f )(x) = w f (x) for all x in R. We will be
working in D∞ for the rest of this section. In particular, consider the following complex subspace of D∞:

D∗n = { f : R→ C | f is a solution to (7.3)}
Clearly, Dn ⊆ D∗n, and our interest in D∗n comes from

Lemma 7.4.1

If dimC(D
∗
n) = n, then dimR(Dn) = n.

Proof. Observe first that if dimC(D
∗
n) = n, then dimR(D

∗
n) = 2n. [In fact, if {g1, . . . , gn} is a C-basis of

D∗n then {g1, . . . , gn, ig1, . . . , ign} is a R-basis of D∗n]. Now observe that the set Dn×Dn of all ordered
pairs ( f , g) with f and g in Dn is a real vector space with componentwise operations. Define

θ : D∗n→ Dn×Dn given by θ( f ) = ( fr, fi) for f in D∗n
4Write |w| for the absolute value of any complex number w. As for functions R→R, we say that limt→0 f (t) = w if, for all

ε > 0 there exists δ > 0 such that | f (t)−w| <∈ whenever |t| < δ . (Note that t represents a real number here.) In particular,
given a real number x, we define the derivative f ′ of a function f : R→ C by f ′(x) = limt→0

{
1
t
[ f (x+ t)− f (x)]

}
and we say

that f is differentiable if f ′(x) exists for all x in R. Then we can prove that f is differentiable if and only if both fr and fi are
differentiable, and that f ′ = f ′r + i f ′i in this case.
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One verifies that θ is onto and one-to-one, and it is R-linear because f → fr and f → fi are both R-linear.
Hence D∗n ∼= Dn×Dn as R-spaces. Since dimR(D

∗
n) is finite, it follows that dimR(Dn) is finite, and we

have
2 dimR(Dn) = dimR(Dn×Dn) = dimR(D

∗
n) = 2n

Hence dimR(Dn) = n, as required.

It follows that to prove Theorem 7.4.1 it suffices to show that dimC(D
∗
n) = n.

There is one function that arises frequently in any discussion of differential equations. Given a complex
number w = a+ ib (where a and b are real), we have ew = ea(cosb+ isinb). The law of exponents,
ewev = ew+v for all w, v in C is easily verified using the formulas for sin(b+b1) and cos(b+b1). If x is a
variable and w = a+ ib is a complex number, define the exponential function ewx by

ewx = eax(cosbx+ isinbx)

Hence ewx is differentiable because its real and imaginary parts are differentiable for all x. Moreover, the
following can be proved using (7.4):

(ewx)′ = wewx

In addition, (7.4) gives the product rule for differentiation:

If f and g are in D∞, then ( f g)′ = f ′g+ f g′

We omit the verifications.

To prove that dimC(D
∗
n) = n, two preliminary results are required. Here is the first.

Lemma 7.4.2

Given f in D∞ and w in C, there exists g in D∞ such that g′−wg = f .

Proof. Define p(x) = f (x)e−wx. Then p is differentiable, whence pr and pi are both differentiable, hence
continuous, and so both have antiderivatives, say pr = q′r and pi = q′i. Then the function q = qr + iqi is in
D∞, and q′ = p by (7.4). Finally define g(x) = q(x)ewx. Then

g′ = q′ewx +qwewx = pewx +w(qewx) = f +wg

by the product rule, as required.

The second preliminary result is important in its own right.

Lemma 7.4.3: Kernel Lemma

Let V be a vector space, and let S and T be linear operators V →V . If S is onto and both ker (S)
and ker (T ) are finite dimensional, then ker (T S) is also finite dimensional and
dim [ker (TS)] = dim [ker (T )]+ dim [ker (S)].

Proof. Let {u1, u2, . . . , um} be a basis of ker (T ) and let {v1, v2, . . . , vn} be a basis of ker (S). Since S

is onto, let ui = S(wi) for some wi in V . It suffices to show that

B = {w1, w2, . . . , wm, v1, v2, . . . , vn}
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is a basis of ker (T S). Note B⊆ ker (T S) because T S(wi) = T (ui) = 0 for each i and T S(v j) = T (0) = 0

for each j.

Spanning. If v is in ker (T S), then S(v) is in ker (T ), say S(v) = ∑riui = ∑riS (wi) = S (∑riwi). It follows
that v−∑riwi is in ker (S) = span{v1, v2, . . . , vn}, proving that v is in span (B).

Independence. Let ∑riwi +∑ t jv j = 0. Applying S, and noting that S(v j) = 0 for each j, yields
0 = ∑riS(wi) = ∑riui. Hence ri = 0 for each i, and so ∑ t jv j = 0. This implies that each t j = 0, and so
proves the independence of B.

Proof of Theorem 7.4.1. By Lemma 7.4.1, it suffices to prove that dimC(D
∗
n) = n. This holds for n = 1

because the proof of Theorem 3.5.1 goes through to show that D∗1 =Cea0x. Hence we proceed by induction
on n. With an eye on equation (7.3), consider the polynomial

p(t) = tn−an−1tn−1−an−2tn−2−·· ·−a2t2−a1t−a0

(called the characteristic polynomial of equation (7.3)). Now define a map D : D∞→ D∞ by D( f ) = f ′

for all f in D∞. Then D is a linear operator, whence p(D) : D∞→ D∞ is also a linear operator. Moreover,
since Dk( f ) = f (k) for each k ≥ 0, equation (7.3) takes the form p(D)( f ) = 0. In other words,

D∗n = ker [p(D)]

By the fundamental theorem of algebra,5 let w be a complex root of p(t), so that p(t)= q(t)(t−w) for some
complex polynomial q(t) of degree n−1. It follows that p(D) = q(D)(D−w1D∞

). Moreover D−w1D∞
is

onto by Lemma 7.4.2, dimC[ker (D−w1D∞)] = 1 by the case n = 1 above, and dimC(ker [q(D)]) = n−1
by induction. Hence Lemma 7.4.3 shows that ker [P(D)] is also finite dimensional and

dimC(ker [p(D)]) = dimC(ker [q(D)])+ dimC(ker [D−w1D∞]) = (n−1)+1 = n.

Since D∗n = ker [p(D)], this completes the induction, and so proves Theorem 7.4.1.

7.5 More on Linear Recurrences6

In Section 3.4 we used diagonalization to study linear recurrences, and gave several examples. We now
apply the theory of vector spaces and linear transformations to study the problem in more generality.

Consider the linear recurrence

xn+2 = 6xn− xn+1 for n≥ 0

If the initial values x0 and x1 are prescribed, this gives a sequence of numbers. For example, if x0 = 1 and
x1 = 1 the sequence continues

x2 = 5, x3 = 1, x4 = 29, x5 =−23, x6 = 197, . . .

5This is the reason for allowing our solutions to (7.3) to be complex valued.
6This section requires only Sections 7.1-7.3.
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as the reader can verify. Clearly, the entire sequence is uniquely determined by the recurrence and the two
initial values. In this section we define a vector space structure on the set of all sequences, and study the
subspace of those sequences that satisfy a particular recurrence.

Sequences will be considered entities in their own right, so it is useful to have a special notation for
them. Let

[xn) denote the sequence x0, x1, x2, . . . , xn, . . .

Example 7.5.1

[n) is the sequence 0, 1, 2, 3, . . .

[n+1) is the sequence 1, 2, 3, 4, . . .

[2n) is the sequence 1, 2, 22, 23, . . .

[(−1)n) is the sequence 1, −1, 1, −1, . . .

[5) is the sequence 5, 5, 5, 5, . . .

Sequences of the form [c) for a fixed number c will be referred to as constant sequences, and those of the
form [λ n), λ some number, are power sequences.

Two sequences are regarded as equal when they are identical:

[xn) = [yn) means xn = yn for all n = 0, 1, 2, . . .

Addition and scalar multiplication of sequences are defined by

[xn)+ [yn) = [xn + yn)

r[xn) = [rxn)

These operations are analogous to the addition and scalar multiplication in Rn, and it is easy to check that
the vector-space axioms are satisfied. The zero vector is the constant sequence [0), and the negative of a
sequence [xn) is given by −[xn) = [−xn).

Now suppose k real numbers r0, r1, . . . , rk−1 are given, and consider the linear recurrence relation

determined by these numbers.

xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 (7.5)

When r0 6= 0, we say this recurrence has length k.7 For example, the relation xn+2 = 2xn + xn+1 is of
length 2.

A sequence [xn) is said to satisfy the relation (7.5) if (7.5) holds for all n≥ 0. Let V denote the set of
all sequences that satisfy the relation. In symbols,

V = {[xn) | xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 hold for all n≥ 0}
It is easy to see that the constant sequence [0) lies in V and that V is closed under addition and scalar
multiplication of sequences. Hence V is vector space (being a subspace of the space of all sequences).
The following important observation about V is needed (it was used implicitly earlier): If the first k terms
of two sequences agree, then the sequences are identical. More formally,

7We shall usually assume that r0 6= 0; otherwise, we are essentially dealing with a recurrence of shorter length than k.
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Lemma 7.5.1

Let [xn) and [yn) denote two sequences in V . Then

[xn) = [yn) if and only if x0 = y0, x1 = y1, . . . , xk−1 = yk−1

Proof. If [xn) = [yn) then xn = yn for all n = 0, 1, 2, . . . . Conversely, if xi = yi for all i = 0, 1, . . . , k−1,
use the recurrence (7.5) for n = 0.

xk = r0x0 + r1x1 + · · ·+ rk−1xk−1 = r0y0 + r1y1 + · · ·+ rk−1yk−1 = yk

Next the recurrence for n = 1 establishes xk+1 = yk+1. The process continues to show that xn+k = yn+k

holds for all n≥ 0 by induction on n. Hence [xn) = [yn).

This shows that a sequence in V is completely determined by its first k terms. In particular, given a
k-tuple v = (v0, v1, . . . , vk−1) in Rk, define

T (v) to be the sequence in V whose first k terms are v0, v1, . . . , vk−1

The rest of the sequence T (v) is determined by the recurrence, so T : Rk→ V is a function. In fact, it is
an isomorphism.

Theorem 7.5.1

Given real numbers r0, r1, . . . , rk−1, let

V = {[xn) | xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1, for all n≥ 0}

denote the vector space of all sequences satisfying the linear recurrence relation (7.5) determined
by r0, r1, . . . , rk−1. Then the function

T : Rk→V

defined above is an isomorphism. In particular:

1. dim V = k.

2. If {v1, . . . , vk} is any basis of Rk, then {T (v1), . . . , T (vk)} is a basis of V .

Proof. (1) and (2) will follow from Theorem 7.3.1 and Theorem 7.3.2 as soon as we show that T is an
isomorphism. Given v and w in Rk, write v = (v0, v1, . . . , vk−1) and w = (w0, w1, . . . , wk−1). The first
k terms of T (v) and T (w) are v0, v1, . . . , vk−1 and w0, w1, . . . , wk−1, respectively, so the first k terms of
T (v)+T (w) are v0 +w0, v1 +w1, . . . , vk−1 +wk−1. Because these terms agree with the first k terms of
T (v+w), Lemma 7.5.1 implies that T (v+w) = T (v)+T (w). The proof that T (rv)+rT (v) is similar, so
T is linear.

Now let [xn) be any sequence in V , and let v = (x0, x1, . . . , xk−1). Then the first k terms of [xn) and
T (v) agree, so T (v) = [xn). Hence T is onto. Finally, if T (v) = [0) is the zero sequence, then the first k

terms of T (v) are all zero (all terms of T (v) are zero!) so v = 0. This means that ker T = {0}, so T is
one-to-one.
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Example 7.5.2

Show that the sequences [1), [n), and [(−1)n) are a basis of the space V of all solutions of the
recurrence

xn+3 =−xn + xn+1 + xn+2

Then find the solution satisfying x0 = 1, x1 = 2, x2 = 5.

Solution. The verifications that these sequences satisfy the recurrence (and hence lie in V ) are left
to the reader. They are a basis because [1) = T (1, 1, 1), [n) = T (0, 1, 2), and
[(−1)n) = T (1, −1, 1); and {(1, 1, 1), (0, 1, 2), (1, −1, 1)} is a basis of R3. Hence the
sequence [xn) in V satisfying x0 = 1, x1 = 2, x2 = 5 is a linear combination of this basis:

[xn) = t1[1)+ t2[n)+ t3[(−1)n)

The nth term is xn = t1 +nt2 +(−1)nt3, so taking n = 0, 1, 2 gives

1= x0 = t1 + 0 + t3
2= x1 = t1 + t2 − t3
5= x2 = t1 + 2t2 + t3

This has the solution t1 = t3 =
1
2 , t2 = 2, so xn =

1
2 +2n+ 1

2(−1)n.

This technique clearly works for any linear recurrence of length k: Simply take your favourite basis
{v1, . . . , vk} of Rk—perhaps the standard basis—and compute T (v1), . . . , T (vk). This is a basis of V all
right, but the nth term of T (vi) is not usually given as an explicit function of n. (The basis in Example 7.5.2
was carefully chosen so that the nth terms of the three sequences were 1, n, and (−1)n, respectively, each
a simple function of n.)

However, it turns out that an explicit basis of V can be given in the general situation. Given the
recurrence (7.5) again:

xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1

the idea is to look for numbers λ such that the power sequence [λ n) satisfies (7.5). This happens if and
only if

λ n+k = r0λ n + r1λ n+1 + · · ·+ rk−1λ n+k−1

holds for all n≥ 0. This is true just when the case n = 0 holds; that is,

λ k = r0 + r1λ + · · ·+ rk−1λ k−1

The polynomial
p(x) = xk− rk−1xk−1−·· ·− r1x− r0

is called the polynomial associated with the linear recurrence (7.5). Thus every root λ of p(x) provides a
sequence [λ n) satisfying (7.5). If there are k distinct roots, the power sequences provide a basis. Inciden-
tally, if λ = 0, the sequence [λ n) is 1, 0, 0, . . . ; that is, we accept the convention that 00 = 1.
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Theorem 7.5.2

Let r0, r1, . . . , rk−1 be real numbers; let

V = {[xn) | xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 for all n≥ 0}

denote the vector space of all sequences satisfying the linear recurrence relation determined by
r0, r1, . . . , rk−1; and let

p(x) = xk− rk−1xk−1−·· ·− r1x− r0

denote the polynomial associated with the recurrence relation. Then

1. [λ n) lies in V if and only if λ is a root of p(x).

2. If λ1, λ2, . . . , λk are distinct real roots of p(x), then {[λ n
1 ), [λ

n
2 ), . . . , [λ

n
k )} is a basis of V .

Proof. It remains to prove (2). But [λ n
i ) = T (vi) where vi = (1, λi, λ 2

i , . . . , λ k−1
i ), so (2) follows by

Theorem 7.5.1, provided that (v1, v2, . . . , vn) is a basis of Rk. This is true provided that the matrix with
the vi as its rows 



1 λ1 λ 2
1 · · · λ k−1

1
1 λ2 λ 2

2 · · · λ k−1
2

...
...

...
. . .

...
1 λk λ 2

k · · · λ k−1
k




is invertible. But this is a Vandermonde matrix and so is invertible if the λi are distinct (Theorem 3.2.7).
This proves (2).

Example 7.5.3

Find the solution of xn+2 = 2xn + xn+1 that satisfies x0 = a, x1 = b.

Solution. The associated polynomial is p(x) = x2− x−2 = (x−2)(x+1). The roots are λ1 = 2
and λ2 =−1, so the sequences [2n) and [(−1)n) are a basis for the space of solutions by
Theorem 7.5.2. Hence every solution [xn) is a linear combination

[xn) = t1[2
n)+ t2[(−1)n)

This means that xn = t12n + t2(−1)n holds for n = 0, 1, 2, . . . , so (taking n = 0, 1) x0 = a and
x1 = b give

t1 + t2 = a

2t1− t2 = b

These are easily solved: t1 =
1
3(a+b) and t2 =

1
3(2a−b), so

tn =
1
3 [(a+b)2n+(2a−b)(−1)n]
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The Shift Operator

If p(x) is the polynomial associated with a linear recurrence relation of length k, and if p(x) has k distinct
roots λ1, λ2, . . . , λk, then p(x) factors completely:

p(x) = (x−λ1)(x−λ2) · · ·(x−λk)

Each root λi provides a sequence [λ n
i ) satisfying the recurrence, and they are a basis of V by Theorem 7.5.2.

In this case, each λi has multiplicity 1 as a root of p(x). In general, a root λ has multiplicity m if
p(x) = (x− λ )mq(x), where q(λ ) 6= 0. In this case, there are fewer than k distinct roots and so fewer
than k sequences [λ n) satisfying the recurrence. However, we can still obtain a basis because, if λ has
multiplicity m (and λ 6= 0), it provides m linearly independent sequences that satisfy the recurrence. To
prove this, it is convenient to give another way to describe the space V of all sequences satisfying a given
linear recurrence relation.

Let S denote the vector space of all sequences and define a function

S : S→ S by S[xn) = [xn+1) = [x1, x2, x3, . . .)

S is clearly a linear transformation and is called the shift operator on S. Note that powers of S shift the
sequence further: S2[xn) = S[xn+1) = [xn+2). In general,

Sk[xn) = [xn+k) = [xk, xk+1, . . .) for all k = 0, 1, 2, . . .

But then a linear recurrence relation

xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 for all n = 0, 1, . . .

can be written
Sk[xn) = r0[xn)+ r1S[xn)+ · · ·+ rk−1Sk−1[xn) (7.6)

Now let p(x)= xk−rk−1xk−1−·· ·−r1x−r0 denote the polynomial associated with the recurrence relation.
The set L[S, S] of all linear transformations from S to itself is a vector space (verify8) that is closed under
composition. In particular,

p(S) = Sk− rk−1Sk−1−·· ·− r1S− r0

is a linear transformation called the evaluation of p at S. The point is that condition (7.6) can be written
as

p(S){[xn)}= 0

In other words, the space V of all sequences satisfying the recurrence relation is just ker [p(S)]. This is the
first assertion in the following theorem.

Theorem 7.5.3

Let r0, r1, . . . , rk−1 be real numbers, and let

V = {[xn) | xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 for all n≥ 0}

8See Exercises 9.1.19 and 9.1.20.
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denote the space of all sequences satisfying the linear recurrence relation determined by
r0, r1, . . . , rk−1. Let

p(x) = xk− rk−1xk−1−·· ·− r1x− r0

denote the corresponding polynomial. Then:

1. V = ker [p(S)], where S is the shift operator.

2. If p(x) = (x−λ )mq(x), where λ 6= 0 and m > 1, then the sequences

{[λ n), [nλ n), [n2λ n), . . . , [nm−1λ n)}

all lie in V and are linearly independent.

Proof (Sketch). It remains to prove (2). If
(

n
k

)
= n(n−1)···(n−k+1)

k! denotes the binomial coefficient, the idea
is to use (1) to show that the sequence sk =

[(
n
k

)
λ n
)

is a solution for each k = 0, 1, . . . , m− 1. Then
(2) of Theorem 7.5.1 can be applied to show that {s0, s1, . . . , sm−1} is linearly independent. Finally, the
sequences tk = [nkλ n), k = 0, 1, . . . , m−1, in the present theorem can be given by tk = ∑m−1

j=0 ak js j, where

A =
[
ai j

]
is an invertible matrix. Then (2) follows. We omit the details.

This theorem combines with Theorem 7.5.2 to give a basis for V when p(x) has k real roots (not neces-
sarily distinct) none of which is zero. This last requirement means r0 6= 0, a condition that is unimportant
in practice (see Remark 1 below).

Theorem 7.5.4

Let r0, r1, . . . , rk−1 be real numbers with r0 6= 0; let

V = {[xn) | xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1 for all n≥ 0}

denote the space of all sequences satisfying the linear recurrence relation of length k determined by
r0, . . . , rk−1; and assume that the polynomial

p(x) = xk− rk−1xk−1−·· ·− r1x− r0

factors completely as
p(x) = (x−λ1)

m1(x−λ2)
m2 · · ·(x−λp)

mp

where λ1, λ2, . . . , λp are distinct real numbers and each mi ≥ 1. Then λi 6= 0 for each i, and

[
λ n

1

)
,
[
nλ n

1

)
, . . . ,

[
nm1−1λ n

1

)
[
λ n

2

)
,
[
nλ n

2

)
, . . . ,

[
nm2−1λ n

2

)

...
[
λ n

p

)
,
[
nλ n

p

)
, . . . ,

[
nmp−1λ n

p

)

is a basis of V .
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Proof. There are m1 +m2 + · · ·+mp = k sequences in all so, because dim V = k, it suffices to show that
they are linearly independent. The assumption that r0 6= 0, implies that 0 is not a root of p(x). Hence each
λi 6= 0, so {[λ n

i ), [nλ n
i ), . . . , [nmi−1λ n

i )} is linearly independent by Theorem 7.5.3. The proof that the
whole set of sequences is linearly independent is omitted.

Example 7.5.4

Find a basis for the space V of all sequences [xn) satisfying

xn+3 =−9xn−3xn+1 +5xn+2

Solution. The associated polynomial is

p(x) = x3−5x2 +3x+9 = (x−3)2(x+1)

Hence 3 is a double root, so [3n) and [n3n) both lie in V by Theorem 7.5.3 (the reader should verify
this). Similarly, λ =−1 is a root of multiplicity 1, so [(−1)n) lies in V . Hence
{[3n), [n3n), [(−1)n)} is a basis by Theorem 7.5.4.

Remark 1

If r0 = 0 [so p(x) has 0 as a root], the recurrence reduces to one of shorter length. For example, consider

xn+4 = 0xn +0xn+1 +3xn+2 +2xn+3 (7.7)

If we set yn = xn+2, this recurrence becomes yn+2 = 3yn + 2yn+1, which has solutions [3n) and [(−1)n).
These give the following solution to (7.5):

[
0, 0, 1, 3, 32, . . .

)
[
0, 0, 1, −1, (−1)2, . . .

)

In addition, it is easy to verify that

[1, 0, 0, 0, 0, . . .)

[0, 1, 0, 0, 0, . . .)

are also solutions to (7.7). The space of all solutions of (7.5) has dimension 4 (Theorem 7.5.1), so these
sequences are a basis. This technique works whenever r0 = 0.

Remark 2

Theorem 7.5.4 completely describes the space V of sequences that satisfy a linear recurrence relation for
which the associated polynomial p(x) has all real roots. However, in many cases of interest, p(x) has
complex roots that are not real. If p(µ) = 0, µ complex, then p(µ) = 0 too (µ the conjugate), and the
main observation is that [µn +µn) and [i(µn+µn)) are real solutions. Analogs of the preceding theorems
can then be proved.
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Exercises for 7.5

Exercise 7.5.1 Find a basis for the space V of sequences
[xn) satisfying the following recurrences, and use it to
find the sequence satisfying x0 = 1, x1 = 2, x2 = 1.

a. xn+3 =−2xn + xn+1 +2xn+2

b. xn+3 =−6xn +7xn+1

c. xn+3 =−36xn +7xn+2

Exercise 7.5.2 In each case, find a basis for the space V

of all sequences [xn) satisfying the recurrence, and use it
to find xn if x0 = 1, x1 =−1, and x2 = 1.

a. xn+3 = xn + xn+1− xn+2

b. xn+3 =−2xn +3xn+1

c. xn+3 =−4xn +3xn+2

d. xn+3 = xn−3xn+1 +3xn+2

e. xn+3 = 8xn−12xn+1 +6xn+2

Exercise 7.5.3 Find a basis for the space V of sequences
[xn) satisfying each of the following recurrences.

a. xn+2 =−a2xn +2axn+1, a 6= 0

b. xn+2 =−abxn +(a+b)xn+1, (a 6= b)

Exercise 7.5.4 In each case, find a basis of V .

a. V = {[xn) | xn+4 = 2xn+2− xn+3, for n≥ 0}

b. V = {[xn) | xn+4 =−xn+2 +2xn+3, for n≥ 0}

Exercise 7.5.5 Suppose that [xn) satisfies a linear recur-
rence relation of length k. If {e0 = (1, 0, . . . , 0),
e1 = (0, 1, . . . , 0), . . . , ek−1 = (0, 0, . . . , 1)} is the stan-
dard basis of Rk, show that

xn = x0T (e0)+ x1T (e1)+ · · ·+ xk−1T (ek−1)

holds for all n≥ k. (Here T is as in Theorem 7.5.1.)

Exercise 7.5.6 Show that the shift operator S is onto but
not one-to-one. Find ker S.

Exercise 7.5.7 Find a basis for the space V of all se-
quences [xn) satisfying xn+2 =−xn.
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8. Orthogonality

In Section 5.3 we introduced the dot product in Rn and extended the basic geometric notions of length and
distance. A set {f1, f2, . . . , fm} of nonzero vectors in Rn was called an orthogonal set if fi · f j = 0 for
all i 6= j, and it was proved that every orthogonal set is independent. In particular, it was observed that
the expansion of a vector as a linear combination of orthogonal basis vectors is easy to obtain because
formulas exist for the coefficients. Hence the orthogonal bases are the “nice” bases, and much of this
chapter is devoted to extending results about bases to orthogonal bases. This leads to some very powerful
methods and theorems. Our first task is to show that every subspace of Rn has an orthogonal basis.

8.1 Orthogonal Complements and Projections

If {v1, . . . , vm} is linearly independent in a general vector space, and if vm+1 is not in span{v1, . . . , vm},
then {v1, . . . , vm, vm+1} is independent (Lemma 6.4.1). Here is the analog for orthogonal sets in Rn.

Lemma 8.1.1: Orthogonal Lemma

Let {f1, f2, . . . , fm} be an orthogonal set in Rn. Given x in Rn, write

fm+1 = x− x·f1
‖f1‖2 f1− x·f2

‖f2‖2 f2−·· ·− x·fm

‖fm‖2 fm

Then:

1. fm+1 · fk = 0 for k = 1, 2, . . . , m.

2. If x is not in span{f1, . . . , fm}, then fm+1 6= 0 and {f1, . . . , fm, fm+1} is an orthogonal set.

Proof. For convenience, write ti = (x · fi)/‖fi‖2 for each i. Given 1≤ k ≤ m:

fm+1 · fk = (x− t1f1−·· ·− tkfk−·· ·− tmfm) · fk

= x · fk− t1(f1 · fk)−·· ·− tk(fk · fk)−·· ·− tm(fm · fk)

= x · fk− tk‖fk‖2

= 0

This proves (1), and (2) follows because fm+1 6= 0 if x is not in span{f1, . . . , fm}.

The orthogonal lemma has three important consequences for Rn. The first is an extension for orthog-
onal sets of the fundamental fact that any independent set is part of a basis (Theorem 6.4.1).
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416 Orthogonality

Theorem 8.1.1

Let U be a subspace of Rn.

1. Every orthogonal subset {f1, . . . , fm} in U is a subset of an orthogonal basis of U .

2. U has an orthogonal basis.

Proof.

1. If span{f1, . . . , fm}=U , it is already a basis. Otherwise, there exists x in U outside span{f1, . . . , fm}.
If fm+1 is as given in the orthogonal lemma, then fm+1 is in U and {f1, . . . , fm, fm+1} is orthogonal.
If span{f1, . . . , fm, fm+1}=U , we are done. Otherwise, the process continues to create larger and
larger orthogonal subsets of U . They are all independent by Theorem 5.3.5, so we have a basis when
we reach a subset containing dim U vectors.

2. If U = {0}, the empty basis is orthogonal. Otherwise, if f 6= 0 is in U , then {f} is orthogonal, so (2)
follows from (1).

We can improve upon (2) of Theorem 8.1.1. In fact, the second consequence of the orthogonal lemma
is a procedure by which any basis {x1, . . . , xm} of a subspace U of Rn can be systematically modified to
yield an orthogonal basis {f1, . . . , fm} of U . The fi are constructed one at a time from the xi.

To start the process, take f1 = x1. Then x2 is not in span{f1} because {x1, x2} is independent, so take

f2 = x2− x2·f1
‖f1‖2 f1

Thus {f1, f2} is orthogonal by Lemma 8.1.1. Moreover, span{f1, f2} = span{x1, x2} (verify), so x3 is
not in span{f1, f2}. Hence {f1, f2, f3} is orthogonal where

f3 = x3− x3·f1
‖f1‖2 f1− x3·f2

‖f2‖2 f2

Again, span{f1, f2, f3} = span{x1, x2, x3}, so x4 is not in span{f1, f2, f3} and the process continues.
At the mth iteration we construct an orthogonal set {f1, . . . , fm} such that

span{f1, f2, . . . , fm}= span{x1, x2, . . . , xm}=U

Hence {f1, f2, . . . , fm} is the desired orthogonal basis of U . The procedure can be summarized as follows.
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0

x3

f2

f1
span{f1, f2}

Gram-Schmidt

0

f3

f2

f1
span{f1, f2}

Theorem 8.1.2: Gram-Schmidt Orthogonalization Algorithm1

If {x1, x2, . . . , xm} is any basis of a subspace U of Rn, construct
f1, f2, . . . , fm in U successively as follows:

f1 = x1

f2 = x2− x2·f1
‖f1‖2 f1

f3 = x3− x3·f1
‖f1‖2 f1− x3·f2

‖f2‖2 f2

...
fk = xk− xk·f1

‖f1‖2 f1− xk·f2
‖f2‖2 f2−·· ·− xk·fk−1

‖fk−1‖2 fk−1

for each k = 2, 3, . . . , m. Then

1. {f1, f2, . . . , fm} is an orthogonal basis of U .

2. span{f1, f2, . . . , fk}= span{x1, x2, . . . , xk} for each
k = 1, 2, . . . , m.

The process (for k = 3) is depicted in the diagrams. Of course, the algorithm converts any basis of Rn

itself into an orthogonal basis.

Example 8.1.1

Find an orthogonal basis of the row space of A =




1 1 −1 −1
3 2 0 1
1 0 1 0


.

Solution. Let x1, x2, x3 denote the rows of A and observe that {x1, x2, x3} is linearly independent.
Take f1 = x1. The algorithm gives

f2 = x2− x2·f1
‖f1‖2 f1 = (3, 2, 0, 1)− 4

4(1, 1, −1, −1) = (2, 1, 1, 2)

f3 = x3− x3·f1
‖f1‖2 f1− x3·f2

‖f2‖2 f2 = x3− 0
4 f1− 3

10f2 =
1
10(4, −3, 7, −6)

Hence {(1, 1, −1, −1), (2, 1, 1, 2), 1
10(4, −3, 7, −6)} is the orthogonal basis provided by the

algorithm. In hand calculations it may be convenient to eliminate fractions (see the Remark
below), so {(1, 1, −1, −1), (2, 1, 1, 2), (4, −3, 7, −6)} is also an orthogonal basis for row A.

1Erhardt Schmidt (1876–1959) was a German mathematician who studied under the great David Hilbert and later developed
the theory of Hilbert spaces. He first described the present algorithm in 1907. Jörgen Pederson Gram (1850–1916) was a Danish
actuary.
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Remark

Observe that the vector x·fi

‖fi‖2 fi is unchanged if a nonzero scalar multiple of fi is used in place of fi. Hence,
if a newly constructed fi is multiplied by a nonzero scalar at some stage of the Gram-Schmidt algorithm,
the subsequent fs will be unchanged. This is useful in actual calculations.

Projections

x

p

x−p

0

U

Suppose a point x and a plane U through the origin in R3 are given, and
we want to find the point p in the plane that is closest to x. Our geometric
intuition assures us that such a point p exists. In fact (see the diagram), p

must be chosen in such a way that x−p is perpendicular to the plane.

Now we make two observations: first, the plane U is a subspace of R3

(because U contains the origin); and second, that the condition that x−p

is perpendicular to the plane U means that x−p is orthogonal to every vector in U . In these terms the
whole discussion makes sense in Rn. Furthermore, the orthogonal lemma provides exactly what is needed
to find p in this more general setting.

Definition 8.1 Orthogonal Complement of a Subspace of Rn

If U is a subspace of Rn, define the orthogonal complement U⊥ of U (pronounced “U -perp”) by

U⊥ = {x in Rn | x ·y = 0 for all y in U}

The following lemma collects some useful properties of the orthogonal complement; the proof of (1)
and (2) is left as Exercise 8.1.6.

Lemma 8.1.2

Let U be a subspace of Rn.

1. U⊥ is a subspace of Rn.

2. {0}⊥ = Rn and (Rn)⊥ = {0}.

3. If U = span{x1, x2, . . . , xk}, then U⊥ = {x in Rn | x ·xi = 0 for i = 1, 2, . . . , k}.

Proof.
3. Let U = span{x1, x2, . . . , xk}; we must show that U⊥ = {x | x · xi = 0 for each i}. If x is in U⊥

then x ·xi = 0 for all i because each xi is in U . Conversely, suppose that x ·xi = 0 for all i; we must
show that x is in U⊥, that is, x ·y = 0 for each y in U . Write y = r1x1+r2x2+ · · ·+rkxk, where each
ri is in R. Then, using Theorem 5.3.1,

x ·y = r1(x ·x1)+ r2(x ·x2)+ · · ·+ rk(x ·xk) = r10+ r20+ · · ·+ rk0 = 0

as required.
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Example 8.1.2

Find U⊥ if U = span{(1, −1, 2, 0), (1, 0, −2, 3)} in R4.

Solution. By Lemma 8.1.2, x = (x, y, z, w) is in U⊥ if and only if it is orthogonal to both
(1, −1, 2, 0) and (1, 0, −2, 3); that is,

x − y + 2z = 0
x − 2z + 3w = 0

Gaussian elimination gives U⊥ = span{(2, 4, 1, 0), (3, 3, 0, −1)}.

x

0

p

d

U

Now consider vectors x and d 6= 0 in R3. The projection p = projd x

of x on d was defined in Section 4.2 as in the diagram.

The following formula for p was derived in Theorem 4.2.4

p = projd x =
(

x·d
‖d‖2

)
d

where it is shown that x−p is orthogonal to d. Now observe that the line
U =Rd = {td | t ∈R} is a subspace of R3, that {d} is an orthogonal basis

of U , and that p ∈U and x−p ∈U⊥ (by Theorem 4.2.4).

In this form, this makes sense for any vector x in Rn and any subspace U of Rn, so we generalize it
as follows. If {f1, f2, . . . , fm} is an orthogonal basis of U , we define the projection p of x on U by the
formula

p =
(

x·f1
‖f1‖2

)
f1 +

(
x·f2
‖f2‖2

)
f2 + · · ·+

(
x·fm

‖fm‖2

)
fm (8.1)

Then p ∈ U and (by the orthogonal lemma) x− p ∈ U⊥, so it looks like we have a generalization of
Theorem 4.2.4.

However there is a potential problem: the formula (8.1) for p must be shown to be independent of the
choice of the orthogonal basis {f1, f2, . . . , fm}. To verify this, suppose that {f′1, f′2, . . . , f′m} is another
orthogonal basis of U , and write

p′ =
(

x·f′1
‖f′1‖2

)
f′1 +

(
x·f′2
‖f′2‖2

)
f′2 + · · ·+

(
x·f′m
‖f′m‖2

)
f′m

As before, p′ ∈U and x−p′ ∈U⊥, and we must show that p′ = p. To see this, write the vector p−p′ as
follows:

p−p′ = (x−p′)− (x−p)

This vector is in U (because p and p′ are in U ) and it is in U⊥ (because x−p′ and x−p are in U⊥), and
so it must be zero (it is orthogonal to itself!). This means p′ = p as desired.

Hence, the vector p in equation (8.1) depends only on x and the subspace U , and not on the choice
of orthogonal basis {f1, . . . , fm} of U used to compute it. Thus, we are entitled to make the following
definition:
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Definition 8.2 Projection onto a Subspace of Rn

Let U be a subspace of Rn with orthogonal basis {f1, f2, . . . , fm}. If x is in Rn, the vector

projU x = x·f1
‖f1‖2 f1 +

x·f2
‖f2‖2 f2 + · · ·+ x·fm

‖fm‖2 fm

is called the orthogonal projection of x on U . For the zero subspace U = {0}, we define

proj{0} x = 0

The preceding discussion proves (1) of the following theorem.

Theorem 8.1.3: Projection Theorem

If U is a subspace of Rn and x is in Rn, write p = projU x. Then:

1. p is in U and x−p is in U⊥.

2. p is the vector in U closest to x in the sense that

‖x−p‖< ‖x−y‖ for all y ∈U , y 6= p

Proof.

1. This is proved in the preceding discussion (it is clear if U = {0}).

2. Write x−y = (x−p)+(p−y). Then p−y is in U and so is orthogonal to x−p by (1). Hence, the
Pythagorean theorem gives

‖x−y‖2 = ‖x−p‖2 +‖p−y‖2 > ‖x−p‖2

because p−y 6= 0. This gives (2).

Example 8.1.3

Let U = span{x1, x2} in R4 where x1 = (1, 1, 0, 1) and x2 = (0, 1, 1, 2). If x = (3, −1, 0, 2),
find the vector in U closest to x and express x as the sum of a vector in U and a vector orthogonal
to U .

Solution. {x1, x2} is independent but not orthogonal. The Gram-Schmidt process gives an
orthogonal basis {f1, f2} of U where f1 = x1 = (1, 1, 0, 1) and

f2 = x2− x2·f1
‖f1‖2 f1 = x2− 3

3f1 = (−1, 0, 1, 1)

Hence, we can compute the projection using {f1, f2}:

p = projU x = x·f1
‖f1‖2 f1 +

x·f2
‖f2‖2 f2 =

4
3 f1 +

−1
3 f2 =

1
3

[
5 4 −1 3

]
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Thus, p is the vector in U closest to x, and x−p = 1
3(4, −7, 1, 3) is orthogonal to every vector in

U . (This can be verified by checking that it is orthogonal to the generators x1 and x2 of U .) The
required decomposition of x is thus

x = p+(x−p) = 1
3(5, 4, −1, 3)+ 1

3(4, −7, 1, 3)

Example 8.1.4

Find the point in the plane with equation 2x+ y− z = 0 that is closest to the point (2, −1, −3).

Solution. We write R3 as rows. The plane is the subspace U whose points (x, y, z) satisfy
z = 2x+ y. Hence

U = {(s, t, 2s+ t) | s, t in R}= span{(0, 1, 1), (1, 0, 2)}

The Gram-Schmidt process produces an orthogonal basis {f1, f2} of U where f1 = (0, 1, 1) and
f2 = (1, −1, 1). Hence, the vector in U closest to x = (2, −1, −3) is

projU x = x·f1
‖f1‖2 f1 +

x·f2
‖f2‖2 f2 =−2f1 +0f2 = (0, −2, −2)

Thus, the point in U closest to (2, −1, −3) is (0, −2, −2).

The next theorem shows that projection on a subspace of Rn is actually a linear operator Rn→Rn.

Theorem 8.1.4

Let U be a fixed subspace of Rn. If we define T : Rn→Rn by

T (x) = projU x for all x in Rn

1. T is a linear operator.

2. im T =U and ker T =U⊥.

3. dim U + dim U⊥ = n.

Proof. If U = {0}, then U⊥ = Rn, and so T (x) = proj{0} x = 0 for all x. Thus T = 0 is the zero (linear)
operator, so (1), (2), and (3) hold. Hence assume that U 6= {0}.

1. If {f1, f2, . . . , fm} is an orthonormal basis of U , then

T (x) = (x · f1)f1 +(x · f2)f2 + · · ·+(x · fm)fm for all x in Rn (8.2)

by the definition of the projection. Thus T is linear because

(x+y) · fi = x · fi +y · fi and (rx) · fi = r(x · fi) for each i
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2. We have im T ⊆U by (8.2) because each fi is in U . But if x is in U , then x = T (x) by (8.2) and the
expansion theorem applied to the space U . This shows that U ⊆ im T , so im T =U .

Now suppose that x is in U⊥. Then x · fi = 0 for each i (again because each fi is in U ) so x is in
ker T by (8.2). Hence U⊥ ⊆ ker T . On the other hand, Theorem 8.1.3 shows that x−T (x) is in U⊥

for all x in Rn, and it follows that ker T ⊆U⊥. Hence ker T =U⊥, proving (2).

3. This follows from (1), (2), and the dimension theorem (Theorem 7.2.4).

Exercises for 8.1

Exercise 8.1.1 In each case, use the Gram-Schmidt al-
gorithm to convert the given basis B of V into an orthog-
onal basis.

a. V =R2, B = {(1, −1), (2, 1)}

b. V =R2, B = {(2, 1), (1, 2)}

c. V =R3, B = {(1, −1, 1), (1, 0, 1), (1, 1, 2)}

d. V =R3, B = {(0, 1, 1), (1, 1, 1), (1, −2, 2)}

Exercise 8.1.2 In each case, write x as the sum of a
vector in U and a vector in U⊥.

a. x = (1, 5, 7), U = span{(1, −2, 3), (−1, 1, 1)}

b. x = (2, 1, 6), U = span{(3, −1, 2), (2, 0, −3)}

c. x = (3, 1, 5, 9),
U = span{(1, 0, 1, 1), (0, 1, −1, 1), (−2, 0, 1, 1)}

d. x = (2, 0, 1, 6),
U = span{(1, 1, 1, 1), (1, 1, −1, −1), (1, −1, 1, −1)}

e. x = (a, b, c, d),
U = span{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)}

f. x = (a, b, c, d),
U = span{(1, −1, 2, 0), (−1, 1, 1, 1)}

Exercise 8.1.3 Let x = (1, −2, 1, 6) in R4, and let
U = span{(2, 1, 3, −4), (1, 2, 0, 1)}.

a. Compute projU x.

b. Show that {(1, 0, 2, −3), (4, 7, 1, 2)} is another
orthogonal basis of U .

c. Use the basis in part (b) to compute projU x.

Exercise 8.1.4 In each case, use the Gram-Schmidt al-
gorithm to find an orthogonal basis of the subspace U ,
and find the vector in U closest to x.

a. U = span{(1, 1, 1), (0, 1, 1)}, x = (−1, 2, 1)

b. U = span{(1, −1, 0), (−1, 0, 1)}, x = (2, 1, 0)

c. U = span{(1, 0, 1, 0), (1, 1, 1, 0), (1, 1, 0, 0)},
x = (2, 0, −1, 3)

d. U = span{(1, −1, 0, 1), (1, 1, 0, 0), (1, 1, 0, 1)},
x = (2, 0, 3, 1)

Exercise 8.1.5 Let U = span{v1, v2, . . . , vk}, vi in Rn,
and let A be the k×n matrix with the vi as rows.

a. Show that U⊥ = {x | x in Rn, AxT = 0}.

b. Use part (a) to find U⊥ if
U = span{(1, −1, 2, 1), (1, 0, −1, 1)}.

Exercise 8.1.6

a. Prove part 1 of Lemma 8.1.2.

b. Prove part 2 of Lemma 8.1.2.
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Exercise 8.1.7 Let U be a subspace of Rn. If x in Rn

can be written in any way at all as x = p+q with p in U

and q in U⊥, show that necessarily p = projU x.

Exercise 8.1.8 Let U be a subspace of Rn and let x be
a vector in Rn. Using Exercise 8.1.7, or otherwise, show
that x is in U if and only if x = projU x.

Exercise 8.1.9 Let U be a subspace of Rn.

a. Show that U⊥ = Rn if and only if U = {0}.

b. Show that U⊥ = {0} if and only if U =Rn.

Exercise 8.1.10 If U is a subspace of Rn, show that
projU x = x for all x in U .

Exercise 8.1.11 If U is a subspace of Rn, show that
x = projU x+ projU⊥ x for all x in Rn.

Exercise 8.1.12 If {f1, . . . , fn} is an orthogonal basis of
Rn and U = span {f1, . . . , fm}, show that
U⊥ = span {fm+1, . . . , fn}.
Exercise 8.1.13 If U is a subspace of Rn, show that
U⊥⊥ = U . [Hint: Show that U ⊆ U⊥⊥, then use The-
orem 8.1.4 (3) twice.]

Exercise 8.1.14 If U is a subspace of Rn, show how to
find an n×n matrix A such that U = {x | Ax = 0}. [Hint:
Exercise 8.1.13.]

Exercise 8.1.15 Write Rn as rows. If A is an n×n ma-
trix, write its null space as null A = {x in Rn | AxT = 0}.
Show that:

null A = ( row A)⊥;a. null AT = (col A)⊥.b.

Exercise 8.1.16 If U and W are subspaces, show that
(U +W )⊥ =U⊥∩W⊥. [See Exercise 5.1.22.]

Exercise 8.1.17 Think of Rn as consisting of rows.

a. Let E be an n×n matrix, and let
U = {xE | x in Rn}. Show that the following are
equivalent.

i. E2 = E = ET (E is a projection matrix).

ii. (x−xE) · (yE) = 0 for all x and y in Rn.

iii. projU x = xE for all x in Rn.

[Hint: For (ii) implies (iii): Write x = xE +
(x− xE) and use the uniqueness argument
preceding the definition of projU x. For (iii)
implies (ii): x−xE is in U⊥ for all x in Rn.]

b. If E is a projection matrix, show that I−E is also
a projection matrix.

c. If EF = 0 = FE and E and F are projection ma-
trices, show that E +F is also a projection matrix.

d. If A is m× n and AAT is invertible, show that
E = AT (AAT )−1A is a projection matrix.

Exercise 8.1.18 Let A be an n×n matrix of rank r. Show
that there is an invertible n×n matrix U such that UA is a
row-echelon matrix with the property that the first r rows
are orthogonal. [Hint: Let R be the row-echelon form
of A, and use the Gram-Schmidt process on the nonzero
rows of R from the bottom up. Use Lemma 2.4.1.]

Exercise 8.1.19 Let A be an (n−1)×n matrix with rows
x1, x2, . . . , xn−1 and let Ai denote the
(n−1)× (n−1) matrix obtained from A by deleting col-
umn i. Define the vector y in Rn by

y =
[

det A1 − det A2 det A3 · · · (−1)n+1 det An

]

Show that:

a. xi · y = 0 for all i = 1, 2, . . . , n− 1. [Hint: Write

Bi =

[
xi

A

]
and show that det Bi = 0.]

b. y 6= 0 if and only if {x1, x2, . . . , xn−1} is linearly
independent. [Hint: If some det Ai 6= 0, the rows
of Ai are linearly independent. Conversely, if the
xi are independent, consider A =UR where R is in
reduced row-echelon form.]

c. If {x1, x2, . . . , xn−1} is linearly independent, use
Theorem 8.1.3(3) to show that all solutions to the
system of n−1 homogeneous equations

AxT = 0

are given by ty, t a parameter.
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8.2 Orthogonal Diagonalization

Recall (Theorem 5.5.3) that an n×n matrix A is diagonalizable if and only if it has n linearly independent
eigenvectors. Moreover, the matrix P with these eigenvectors as columns is a diagonalizing matrix for A,
that is

P−1AP is diagonal.

As we have seen, the really nice bases of Rn are the orthogonal ones, so a natural question is: which n×n

matrices have an orthogonal basis of eigenvectors? These turn out to be precisely the symmetric matrices,
and this is the main result of this section.

Before proceeding, recall that an orthogonal set of vectors is called orthonormal if ‖v‖ = 1 for each
vector v in the set, and that any orthogonal set {v1, v2, . . . , vk} can be “normalized”, that is converted into
an orthonormal set { 1

‖v1‖v1, 1
‖v2‖v2, . . . , 1

‖vk‖vk}. In particular, if a matrix A has n orthogonal eigenvectors,
they can (by normalizing) be taken to be orthonormal. The corresponding diagonalizing matrix P has
orthonormal columns, and such matrices are very easy to invert.

Theorem 8.2.1

The following conditions are equivalent for an n×n matrix P.

1. P is invertible and P−1 = PT .

2. The rows of P are orthonormal.

3. The columns of P are orthonormal.

Proof. First recall that condition (1) is equivalent to PPT = I by Corollary 2.4.1 of Theorem 2.4.5. Let
x1, x2, . . . , xn denote the rows of P. Then xT

j is the jth column of PT , so the (i, j)-entry of PPT is xi ·x j.
Thus PPT = I means that xi · x j = 0 if i 6= j and xi · x j = 1 if i = j. Hence condition (1) is equivalent to
(2). The proof of the equivalence of (1) and (3) is similar.

Definition 8.3 Orthogonal Matrices

An n×n matrix P is called an orthogonal matrix2if it satisfies one (and hence all) of the
conditions in Theorem 8.2.1.

Example 8.2.1

The rotation matrix

[
cosθ −sinθ
sinθ cosθ

]
is orthogonal for any angle θ .

These orthogonal matrices have the virtue that they are easy to invert—simply take the transpose. But
they have many other important properties as well. If T : Rn → Rn is a linear operator, we will prove

2In view of (2) and (3) of Theorem 8.2.1, orthonormal matrix might be a better name. But orthogonal matrix is standard.
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(Theorem 10.4.3) that T is distance preserving if and only if its matrix is orthogonal. In particular, the
matrices of rotations and reflections about the origin in R2 and R3 are all orthogonal (see Example 8.2.1).

It is not enough that the rows of a matrix A are merely orthogonal for A to be an orthogonal matrix.
Here is an example.

Example 8.2.2

The matrix




2 1 1
−1 1 1

0 −1 1


 has orthogonal rows but the columns are not orthogonal. However, if

the rows are normalized, the resulting matrix




2√
6

1√
6

1√
6

−1√
3

1√
3

1√
3

0 −1√
2

1√
2


 is orthogonal (so the columns are

now orthonormal as the reader can verify).

Example 8.2.3

If P and Q are orthogonal matrices, then PQ is also orthogonal, as is P−1 = PT .

Solution. P and Q are invertible, so PQ is also invertible and

(PQ)−1 = Q−1P−1 = QT PT = (PQ)T

Hence PQ is orthogonal. Similarly,

(P−1)−1 = P = (PT )T = (P−1)T

shows that P−1 is orthogonal.

Definition 8.4 Orthogonally Diagonalizable Matrices

An n×n matrix A is said to be orthogonally diagonalizable when an orthogonal matrix P can be
found such that P−1AP = PT AP is diagonal.

This condition turns out to characterize the symmetric matrices.

Theorem 8.2.2: Principal Axes Theorem

The following conditions are equivalent for an n×n matrix A.

1. A has an orthonormal set of n eigenvectors.

2. A is orthogonally diagonalizable.

3. A is symmetric.
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Proof. (1)⇔ (2). Given (1), let x1, x2, . . . , xn be orthonormal eigenvectors of A. Then P=
[

x1 x2 . . . xn

]

is orthogonal, and P−1AP is diagonal by Theorem 3.3.4. This proves (2). Conversely, given (2) let P−1AP

be diagonal where P is orthogonal. If x1, x2, . . . , xn are the columns of P then {x1, x2, . . . , xn} is an
orthonormal basis of Rn that consists of eigenvectors of A by Theorem 3.3.4. This proves (1).

(2) ⇒ (3). If PT AP = D is diagonal, where P−1 = PT , then A = PDPT . But DT = D, so this gives
AT = PT T DT PT = PDPT = A.

(3) ⇒ (2). If A is an n× n symmetric matrix, we proceed by induction on n. If n = 1, A is already
diagonal. If n > 1, assume that (3)⇒ (2) for (n−1)× (n−1) symmetric matrices. By Theorem 5.5.7 let
λ1 be a (real) eigenvalue of A, and let Ax1 = λ1x1, where ‖x1‖ = 1. Use the Gram-Schmidt algorithm to
find an orthonormal basis {x1, x2, . . . , xn} for Rn. Let P1 =

[
x1 x2 . . . xn

]
, so P1 is an orthogonal

matrix and PT
1 AP1 =

[
λ1 B

0 A1

]
in block form by Lemma 5.5.2. But PT

1 AP1 is symmetric (A is), so it

follows that B = 0 and A1 is symmetric. Then, by induction, there exists an (n−1)× (n−1) orthogonal

matrix Q such that QT A1Q = D1 is diagonal. Observe that P2 =

[
1 0
0 Q

]
is orthogonal, and compute:

(P1P2)
T A(P1P2) = PT

2 (PT
1 AP1)P2

=

[
1 0
0 QT

][
λ1 0
0 A1

][
1 0
0 Q

]

=

[
λ1 0
0 D1

]

is diagonal. Because P1P2 is orthogonal, this proves (2).

A set of orthonormal eigenvectors of a symmetric matrix A is called a set of principal axes for A. The
name comes from geometry, and this is discussed in Section 8.9. Because the eigenvalues of a (real)
symmetric matrix are real, Theorem 8.2.2 is also called the real spectral theorem, and the set of distinct
eigenvalues is called the spectrum of the matrix. In full generality, the spectral theorem is a similar result
for matrices with complex entries (Theorem 8.7.8).

Example 8.2.4

Find an orthogonal matrix P such that P−1AP is diagonal, where A =




1 0 −1
0 1 2
−1 2 5


.

Solution. The characteristic polynomial of A is (adding twice row 1 to row 2):

cA(x) = det




x−1 0 1
0 x−1 −2
1 −2 x−5


= x(x−1)(x−6)

Thus the eigenvalues are λ = 0, 1, and 6, and corresponding eigenvectors are

x1 =




1
−2

1


 x2 =




2
1
0


 x3 =



−1

2
5
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respectively. Moreover, by what appears to be remarkably good luck, these eigenvectors are
orthogonal. We have ‖x1‖2 = 6, ‖x2‖2 = 5, and ‖x3‖2 = 30, so

P =
[

1√
6
x1

1√
5
x2

1√
30

x3

]
= 1√

30




√
5 2

√
6 −1

−2
√

5
√

6 2√
5 0 5




is an orthogonal matrix. Thus P−1 = PT and

PT AP =




0 0 0
0 1 0
0 0 6




by the diagonalization algorithm.

Actually, the fact that the eigenvectors in Example 8.2.4 are orthogonal is no coincidence. Theo-
rem 5.5.4 guarantees they are linearly independent (they correspond to distinct eigenvalues); the fact that
the matrix is symmetric implies that they are orthogonal. To prove this we need the following useful fact
about symmetric matrices.

Theorem 8.2.3

If A is an n×n symmetric matrix, then

(Ax) ·y = x · (Ay)

for all columns x and y in Rn.3

Proof. Recall that x ·y = xT y for all columns x and y. Because AT = A, we get

(Ax) ·y = (Ax)T y = xT AT y = xT Ay = x · (Ay)

Theorem 8.2.4

If A is a symmetric matrix, then eigenvectors of A corresponding to distinct eigenvalues are
orthogonal.

Proof. Let Ax = λx and Ay = µy, where λ 6= µ . Using Theorem 8.2.3, we compute

λ (x ·y) = (λx) ·y = (Ax) ·y = x · (Ay) = x · (µy) = µ(x ·y)

Hence (λ −µ)(x ·y) = 0, and so x ·y = 0 because λ 6= µ .

3The converse also holds (Exercise 8.2.15).
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Now the procedure for diagonalizing a symmetric n×n matrix is clear. Find the distinct eigenvalues
(all real by Theorem 5.5.7) and find orthonormal bases for each eigenspace (the Gram-Schmidt algorithm
may be needed). Then the set of all these basis vectors is orthonormal (by Theorem 8.2.4) and contains n

vectors. Here is an example.

Example 8.2.5

Orthogonally diagonalize the symmetric matrix A =




8 −2 2
−2 5 4

2 4 5


.

Solution. The characteristic polynomial is

cA(x) = det




x−8 2 −2
2 x−5 −4
−2 −4 x−5


= x(x−9)2

Hence the distinct eigenvalues are 0 and 9 of multiplicities 1 and 2, respectively, so dim (E0) = 1
and dim (E9) = 2 by Theorem 5.5.6 (A is diagonalizable, being symmetric). Gaussian elimination
gives

E0(A) = span{x1}, x1 =




1
2
−2


 , and E9(A) = span







−2

1
0


 ,




2
0
1







The eigenvectors in E9 are both orthogonal to x1 as Theorem 8.2.4 guarantees, but not to each
other. However, the Gram-Schmidt process yields an orthogonal basis

{x2, x3} of E9(A) where x2 =



−2

1
0


 and x3 =




2
4
5




Normalizing gives orthonormal vectors {1
3x1, 1√

5
x2, 1

3
√

5
x3}, so

P =
[

1
3x1

1√
5
x2

1
3
√

5
x3

]
= 1

3
√

5




√
5 −6 2

2
√

5 3 4
−2
√

5 0 5




is an orthogonal matrix such that P−1AP is diagonal.
It is worth noting that other, more convenient, diagonalizing matrices P exist. For example,

y2 =




2
1
2


 and y3 =



−2

2
1


 lie in E9(A) and they are orthogonal. Moreover, they both have

norm 3 (as does x1), so

Q =
[

1
3x1

1
3y2

1
3y3

]
= 1

3




1 2 −2
2 1 2
−2 2 1




is a nicer orthogonal matrix with the property that Q−1AQ is diagonal.
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O
x1x2 = 1

x1

x2

O y2
1− y2

2 = 1

y1y2

If A is symmetric and a set of orthogonal eigenvectors of A is given,
the eigenvectors are called principal axes of A. The name comes from
geometry. An expression q= ax2

1+bx1x2+cx2
2 is called a quadratic form

in the variables x1 and x2, and the graph of the equation q = 1 is called a
conic in these variables. For example, if q = x1x2, the graph of q = 1 is
given in the first diagram.

But if we introduce new variables y1 and y2 by setting x1 = y1+y2 and
x2 = y1− y2, then q becomes q = y2

1− y2
2, a diagonal form with no cross

term y1y2 (see the second diagram). Because of this, the y1 and y2 axes
are called the principal axes for the conic (hence the name). Orthogonal
diagonalization provides a systematic method for finding principal axes.
Here is an illustration.

Example 8.2.6

Find principal axes for the quadratic form q = x2
1−4x1x2 + x2

2.

Solution. In order to utilize diagonalization, we first express q in matrix form. Observe that

q =
[

x1 x2
][ 1 −4

0 1

][
x1

x2

]

The matrix here is not symmetric, but we can remedy that by writing

q = x2
1−2x1x2−2x2x1 + x2

2

Then we have

q =
[

x1 x2
][ 1 −2
−2 1

][
x1

x2

]
= xT Ax

where x =

[
x1

x2

]
and A =

[
1 −2
−2 1

]
is symmetric. The eigenvalues of A are λ1 = 3 and

λ2 =−1, with corresponding (orthogonal) eigenvectors x1 =

[
1
−1

]
and x2 =

[
1
1

]
. Since

‖x1‖= ‖x2‖=
√

2, so

P = 1√
2

[
1 1
−1 1

]
is orthogonal and PT AP = D =

[
3 0
0 −1

]

Now define new variables

[
y1

y2

]
= y by y = PT x, equivalently x = Py (since P−1 = PT ). Hence

y1 =
1√
2
(x1− x2) and y2 =

1√
2
(x1 + x2)

In terms of y1 and y2, q takes the form

q = xT Ax = (Py)T A(Py) = yT (PT AP)y = yT Dy = 3y2
1− y2

2

Note that y = PT x is obtained from x by a counterclockwise rotation of π
4 (see Theorem 2.4.6).
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Observe that the quadratic form q in Example 8.2.6 can be diagonalized in other ways. For example

q = x2
1−4x1x2 + x2

2 = z2
1− 1

3z2
2

where z1 = x1−2x2 and z2 = 3x2. We examine this more carefully in Section 8.9.

If we are willing to replace “diagonal” by “upper triangular” in the principal axes theorem, we can
weaken the requirement that A is symmetric to insisting only that A has real eigenvalues.

Theorem 8.2.5: Triangulation Theorem

If A is an n×n matrix with n real eigenvalues, an orthogonal matrix P exists such that PT AP is
upper triangular.4

Proof. We modify the proof of Theorem 8.2.2. If Ax1 = λ1x1 where ‖x1‖= 1, let {x1, x2, . . . , xn} be an

orthonormal basis of Rn, and let P1 =
[

x1 x2 · · · xn

]
. Then P1 is orthogonal and PT

1 AP1 =

[
λ1 B

0 A1

]

in block form. By induction, let QT A1Q = T1 be upper triangular where Q is of size (n−1)× (n−1) and

orthogonal. Then P2 =

[
1 0
0 Q

]
is orthogonal, so P = P1P2 is also orthogonal and PT AP =

[
λ1 BQ

0 T1

]

is upper triangular.

The proof of Theorem 8.2.5 gives no way to construct the matrix P. However, an algorithm will be given in
Section 11.1 where an improved version of Theorem 8.2.5 is presented. In a different direction, a version
of Theorem 8.2.5 holds for an arbitrary matrix with complex entries (Schur’s theorem in Section 8.7).

As for a diagonal matrix, the eigenvalues of an upper triangular matrix are displayed along the main
diagonal. Because A and PT AP have the same determinant and trace whenever P is orthogonal, Theo-
rem 8.2.5 gives:

Corollary 8.2.1

If A is an n×n matrix with real eigenvalues λ1, λ2, . . . , λn (possibly not all distinct), then
det A = λ1λ2 . . .λn and tr A = λ1 +λ2 + · · ·+λn.

This corollary remains true even if the eigenvalues are not real (using Schur’s theorem).

Exercises for 8.2

Exercise 8.2.1 Normalize the rows to make each of the
following matrices orthogonal.

A =

[
1 1
−1 1

]
a. A =

[
3 −4
4 3

]
b.

A =

[
1 2
−4 2

]
c.

A =

[
a b

−b a

]
, (a, b) 6= (0, 0)d.

4There is also a lower triangular version.
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A =




cosθ −sinθ 0
sin θ cosθ 0

0 0 2


e.

A =




2 1 −1
1 −1 1
0 1 1


f.

A =



−1 2 2

2 −1 2
2 2 −1


g.

A =




2 6 −3
3 2 6
−6 3 2


h.

Exercise 8.2.2 If P is a triangular orthogonal matrix,
show that P is diagonal and that all diagonal entries are 1
or −1.

Exercise 8.2.3 If P is orthogonal, show that kP is or-
thogonal if and only if k = 1 or k =−1.

Exercise 8.2.4 If the first two rows of an orthogonal ma-
trix are (1

3 , 2
3 , 2

3) and (2
3 , 1

3 , −2
3 ), find all possible third

rows.

Exercise 8.2.5 For each matrix A, find an orthogonal
matrix P such that P−1AP is diagonal.

A =

[
0 1
1 0

]
a. A =

[
1 −1
−1 1

]
b.

A =




3 0 0
0 2 2
0 2 5


c. A =




3 0 7
0 5 0
7 0 3


d.

A =




1 1 0
1 1 0
0 0 2


e. A=




5 −2 −4
−2 8 −2
−4 −2 5


f.

A =




5 3 0 0
3 5 0 0
0 0 7 1
0 0 1 7


g.

A =




3 5 −1 1
5 3 1 −1
−1 1 3 5

1 −1 5 3


h.

Exercise 8.2.6 Consider A =




0 a 0
a 0 c

0 c 0


 where one

of a, c 6= 0. Show that cA(x) = x(x− k)(x+ k), where

k =
√

a2 + c2 and find an orthogonal matrix P such that
P−1AP is diagonal.

Exercise 8.2.7 Consider A =




0 0 a

0 b 0
a 0 0


. Show that

cA(x) = (x−b)(x−a)(x+a) and find an orthogonal ma-
trix P such that P−1AP is diagonal.

Exercise 8.2.8 Given A =

[
b a

a b

]
, show that

cA(x) = (x−a−b)(x+a−b) and find an orthogonal ma-
trix P such that P−1AP is diagonal.

Exercise 8.2.9 Consider A =




b 0 a

0 b 0
a 0 b


. Show that

cA(x) = (x−b)(x−b−a)(x−b+a) and find an orthog-
onal matrix P such that P−1AP is diagonal.

Exercise 8.2.10 In each case find new variables y1 and
y2 that diagonalize the quadratic form q.

q = x2
1 +6x1x2 + x2

2a. q = x2
1 +4x1x2−2x2

2b.

Exercise 8.2.11 Show that the following are equivalent
for a symmetric matrix A.

A is orthogonal.a. A2 = I.b.

All eigenvalues of A are ±1.c.

[Hint: For (b) if and only if (c), use Theorem 8.2.2.]

Exercise 8.2.12 We call matrices A and B orthogonally

similar (and write A
◦∼ B) if B = PT AP for an orthogonal

matrix P.

a. Show that A
◦∼ A for all A; A

◦∼ B⇒ B
◦∼ A; and

A
◦∼ B and B

◦∼C⇒ A
◦∼C.

b. Show that the following are equivalent for two
symmetric matrices A and B.

i. A and B are similar.

ii. A and B are orthogonally similar.

iii. A and B have the same eigenvalues.

Exercise 8.2.13 Assume that A and B are orthogonally
similar (Exercise 8.2.12).

a. If A and B are invertible, show that A−1 and B−1

are orthogonally similar.
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b. Show that A2 and B2 are orthogonally similar.

c. Show that, if A is symmetric, so is B.

Exercise 8.2.14 If A is symmetric, show that every
eigenvalue of A is nonnegative if and only if A = B2 for
some symmetric matrix B.

Exercise 8.2.15 Prove the converse of Theorem 8.2.3:

If (Ax) · y = x · (Ay) for all n-columns x and y, then
A is symmetric.

Exercise 8.2.16 Show that every eigenvalue of A is zero
if and only if A is nilpotent (Ak = 0 for some k ≥ 1).

Exercise 8.2.17 If A has real eigenvalues, show that
A = B+C where B is symmetric and C is nilpotent.
[Hint: Theorem 8.2.5.]

Exercise 8.2.18 Let P be an orthogonal matrix.

a. Show that det P = 1 or det P =−1.

b. Give 2×2 examples of P such that det P = 1 and
det P =−1.

c. If det P = −1, show that I + P has no inverse.
[Hint: PT (I +P) = (I +P)T .]

d. If P is n× n and det P 6= (−1)n, show that I−P

has no inverse.

[Hint: PT (I−P) =−(I−P)T .]

Exercise 8.2.19 We call a square matrix E a projection

matrix if E2 = E = ET . (See Exercise 8.1.17.)

a. If E is a projection matrix, show that P = I− 2E

is orthogonal and symmetric.

b. If P is orthogonal and symmetric, show that
E = 1

2(I−P) is a projection matrix.

c. If U is m× n and UTU = I (for example, a unit
column in Rn), show that E =UUT is a projection
matrix.

Exercise 8.2.20 A matrix that we obtain from the iden-
tity matrix by writing its rows in a different order is called
a permutation matrix. Show that every permutation
matrix is orthogonal.

Exercise 8.2.21 If the rows r1, . . . , rn of the n×n ma-
trix A = [ai j] are orthogonal, show that the (i, j)-entry of
A−1 is a ji

‖r j‖2 .

Exercise 8.2.22

a. Let A be an m×n matrix. Show that the following
are equivalent.

i. A has orthogonal rows.

ii. A can be factored as A = DP, where D is in-
vertible and diagonal and P has orthonormal
rows.

iii. AAT is an invertible, diagonal matrix.

b. Show that an n× n matrix A has orthogonal rows
if and only if A can be factored as A = DP, where
P is orthogonal and D is diagonal and invertible.

Exercise 8.2.23 Let A be a skew-symmetric matrix; that
is, AT =−A. Assume that A is an n×n matrix.

a. Show that I + A is invertible. [Hint: By Theo-
rem 2.4.5, it suffices to show that (I + A)x = 0,
x in Rn, implies x = 0. Compute x · x = xT x, and
use the fact that Ax =−x and A2x = x.]

b. Show that P = (I−A)(I+A)−1 is orthogonal.

c. Show that every orthogonal matrix P such that
I +P is invertible arises as in part (b) from some
skew-symmetric matrix A.
[Hint: Solve P = (I−A)(I+A)−1 for A.]

Exercise 8.2.24 Show that the following are equivalent
for an n×n matrix P.

a. P is orthogonal.

b. ‖Px‖= ‖x‖ for all columns x in Rn.

c. ‖Px−Py‖ = ‖x− y‖ for all columns x and y in
Rn.

d. (Px) · (Py) = x ·y for all columns x and y in Rn.

[Hints: For (c)⇒ (d), see Exercise 5.3.14(a). For
(d) ⇒ (a), show that column i of P equals Pei,
where ei is column i of the identity matrix.]
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Exercise 8.2.25 Show that every 2 × 2 orthog-

onal matrix has the form

[
cos θ −sinθ

sinθ cosθ

]
or

[
cos θ sin θ

sinθ −cosθ

]
for some angle θ .

[Hint: If a2 + b2 = 1, then a = cos θ and b = sinθ for
some angle θ .]

Exercise 8.2.26 Use Theorem 8.2.5 to show that every
symmetric matrix is orthogonally diagonalizable.

8.3 Positive Definite Matrices

All the eigenvalues of any symmetric matrix are real; this section is about the case in which the eigenvalues
are positive. These matrices, which arise whenever optimization (maximum and minimum) problems are
encountered, have countless applications throughout science and engineering. They also arise in statistics
(for example, in factor analysis used in the social sciences) and in geometry (see Section 8.9). We will
encounter them again in Chapter 10 when describing all inner products in Rn.

Definition 8.5 Positive Definite Matrices

A square matrix is called positive definite if it is symmetric and all its eigenvalues λ are positive,
that is λ > 0.

Because these matrices are symmetric, the principal axes theorem plays a central role in the theory.

Theorem 8.3.1

If A is positive definite, then it is invertible and det A > 0.

Proof. If A is n×n and the eigenvalues are λ1, λ2, . . . , λn, then det A = λ1λ2 · · ·λn > 0 by the principal
axes theorem (or the corollary to Theorem 8.2.5).

If x is a column in Rn and A is any real n×n matrix, we view the 1×1 matrix xT Ax as a real number.
With this convention, we have the following characterization of positive definite matrices.

Theorem 8.3.2

A symmetric matrix A is positive definite if and only if xT Ax > 0 for every column x 6= 0 in Rn.

Proof. A is symmetric so, by the principal axes theorem, let PT AP = D = diag (λ1, λ2, . . . , λn) where

P−1 =PT and the λi are the eigenvalues of A. Given a column x inRn, write y=PT x=
[

y1 y2 . . . yn

]T
.

Then
xT Ax = xT (PDPT )x = yT Dy = λ1y2

1 +λ2y2
2 + · · ·+λny2

n (8.3)

If A is positive definite and x 6= 0, then xT Ax > 0 by (8.3) because some y j 6= 0 and every λi > 0. Con-
versely, if xT Ax > 0 whenever x 6= 0, let x = Pe j 6= 0 where e j is column j of In. Then y = e j, so (8.3)
reads λ j = xT Ax > 0.
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Note that Theorem 8.3.2 shows that the positive definite matrices are exactly the symmetric matrices A for
which the quadratic form q = xT Ax takes only positive values.

Example 8.3.1

If U is any invertible n×n matrix, show that A =UTU is positive definite.

Solution. If x is in Rn and x 6= 0, then

xT Ax = xT (UTU)x = (Ux)T (Ux) = ‖Ux‖2 > 0

because Ux 6= 0 (U is invertible). Hence Theorem 8.3.2 applies.

It is remarkable that the converse to Example 8.3.1 is also true. In fact every positive definite matrix
A can be factored as A =UTU where U is an upper triangular matrix with positive elements on the main
diagonal. However, before verifying this, we introduce another concept that is central to any discussion of
positive definite matrices.

If A is any n×n matrix, let (r)A denote the r× r submatrix in the upper left corner of A; that is, (r)A is
the matrix obtained from A by deleting the last n−r rows and columns. The matrices (1)A, (2)A, (3)A, . . . ,
(n)A = A are called the principal submatrices of A.

Example 8.3.2

If A =




10 5 2
5 3 2
2 2 3


 then (1)A = [10], (2)A =

[
10 5

5 3

]
and (3)A = A.

Lemma 8.3.1

If A is positive definite, so is each principal submatrix (r)A for r = 1, 2, . . . , n.

Proof. Write A =

[
(r)A P

Q R

]
in block form. If y 6= 0 in Rr, write x =

[
y

0

]
in Rn.

Then x 6= 0, so the fact that A is positive definite gives

0 < xT Ax =
[

yT 0
][ (r)A P

Q R

][
y

0

]
= yT ((r)A)y

This shows that (r)A is positive definite by Theorem 8.3.2.5

If A is positive definite, Lemma 8.3.1 and Theorem 8.3.1 show that det ((r)A) > 0 for every r. This
proves part of the following theorem which contains the converse to Example 8.3.1, and characterizes the
positive definite matrices among the symmetric ones.

5A similar argument shows that, if B is any matrix obtained from a positive definite matrix A by deleting certain rows and
deleting the same columns, then B is also positive definite.
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Theorem 8.3.3

The following conditions are equivalent for a symmetric n×n matrix A:
1. A is positive definite.

2. det ((r)A)> 0 for each r = 1, 2, . . . , n.

3. A =UTU where U is an upper triangular matrix with positive entries on the main diagonal.

Furthermore, the factorization in (3) is unique (called the Cholesky factorization6of A).

Proof. First, (3)⇒ (1) by Example 8.3.1, and (1)⇒ (2) by Lemma 8.3.1 and Theorem 8.3.1.

(2)⇒ (3). Assume (2) and proceed by induction on n. If n = 1, then A = [a] where a > 0 by (2), so
take U = [

√
a]. If n > 1, write B =(n−1) A. Then B is symmetric and satisfies (2) so, by induction, we

have B =UTU as in (3) where U is of size (n−1)× (n−1). Then, as A is symmetric, it has block form

A =

[
B p

pT b

]
where p is a column in Rn−1 and b is in R. If we write x = (UT )−1p and c = b− xT x,

block multiplication gives

A =

[
UTU p

pT b

]
=

[
UT 0
xT 1

][
U x

0 c

]

as the reader can verify. Taking determinants and applying Theorem 3.1.5 gives det A = det (UT ) det U ·
c = c(det U)2. Hence c > 0 because det A > 0 by (2), so the above factorization can be written

A =

[
UT 0
xT

√
c

][
U x

0
√

c

]

Since U has positive diagonal entries, this proves (3).

As to the uniqueness, suppose that A = UTU = UT
1 U1 are two Cholesky factorizations. Now write

D =UU−1
1 = (UT )−1UT

1 . Then D is upper triangular, because D =UU−1
1 , and lower triangular, because

D = (UT )−1UT
1 , and so it is a diagonal matrix. Thus U = DU1 and U1 = DU , so it suffices to show that

D = I. But eliminating U1 gives U = D2U , so D2 = I because U is invertible. Since the diagonal entries
of D are positive (this is true of U and U1), it follows that D = I.

The remarkable thing is that the matrix U in the Cholesky factorization is easy to obtain from A using
row operations. The key is that Step 1 of the following algorithm is possible for any positive definite
matrix A. A proof of the algorithm is given following Example 8.3.3.

Algorithm for the Cholesky Factorization

If A is a positive definite matrix, the Cholesky factorization A =UTU can be obtained as follows:

Step 1. Carry A to an upper triangular matrix U1 with positive diagonal entries using row
operations each of which adds a multiple of a row to a lower row.

Step 2. Obtain U from U1 by dividing each row of U1 by the square root of the diagonal entry in
that row.

6Andre-Louis Cholesky (1875–1918), was a French mathematician who died in World War I. His factorization was published
in 1924 by a fellow officer.
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Example 8.3.3

Find the Cholesky factorization of A =




10 5 2
5 3 2
2 2 3


.

Solution. The matrix A is positive definite by Theorem 8.3.3 because det (1)A = 10 > 0,
det (2)A = 5 > 0, and det (3)A = det A = 3 > 0. Hence Step 1 of the algorithm is carried out as
follows:

A =




10 5 2
5 3 2
2 2 3


→




10 5 2
0 1

2 1
0 1 13

5


→




10 5 2
0 1

2 1
0 0 3

5


=U1

Now carry out Step 2 on U1 to obtain U =




√
10 5√

10
2√
10

0 1√
2

√
2

0 0
√

3√
5


.

The reader can verify that UTU = A.

Proof of the Cholesky Algorithm. If A is positive definite, let A = UTU be the Cholesky factorization,
and let D = diag (d1, . . . , dn) be the common diagonal of U and UT . Then UT D−1 is lower triangular
with ones on the diagonal (call such matrices LT-1). Hence L = (UT D−1)−1 is also LT-1, and so In→ L

by a sequence of row operations each of which adds a multiple of a row to a lower row (verify; modify
columns right to left). But then A→ LA by the same sequence of row operations (see the discussion
preceding Theorem 2.5.1). Since LA = [D(UT )−1][UTU ] = DU is upper triangular with positive entries
on the diagonal, this shows that Step 1 of the algorithm is possible.

Turning to Step 2, let A→U1 as in Step 1 so that U1 = L1A where L1 is LT-1. Since A is symmetric,
we get

L1UT
1 = L1(L1A)T = L1AT LT

1 = L1ALT
1 =U1LT

1 (8.4)

Let D1 = diag (e1, . . . , en) denote the diagonal of U1. Then (8.4) gives L1(U
T
1 D−1

1 ) =U1LT
1 D−1

1 . This is
both upper triangular (right side) and LT-1 (left side), and so must equal In. In particular, UT

1 D−1
1 = L−1

1 .
Now let D2 = diag (

√
e1, . . . ,

√
en), so that D2

2 = D1. If we write U = D−1
2 U1 we have

UTU = (UT
1 D−1

2 )(D−1
2 U1) =UT

1 (D
2
2)
−1U1 = (UT

1 D−1
1 )U1 = (L−1

1 )U1 = A

This proves Step 2 because U = D−1
2 U1 is formed by dividing each row of U1 by the square root of its

diagonal entry (verify).
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Exercises for 8.3

Exercise 8.3.1 Find the Cholesky decomposition of
each of the following matrices.

[
4 3
3 5

]
a.

[
2 −1
−1 1

]
b.




12 4 3
4 2 −1
3 −1 7


c.




20 4 5
4 2 3
5 3 5


d.

Exercise 8.3.2

a. If A is positive definite, show that Ak is positive
definite for all k ≥ 1.

b. Prove the converse to (a) when k is odd.

c. Find a symmetric matrix A such that A2 is positive
definite but A is not.

Exercise 8.3.3 Let A =

[
1 a

a b

]
. If a2 < b, show that

A is positive definite and find the Cholesky factorization.

Exercise 8.3.4 If A and B are positive definite and r > 0,
show that A+B and rA are both positive definite.

Exercise 8.3.5 If A and B are positive definite, show that[
A 0
0 B

]
is positive definite.

Exercise 8.3.6 If A is an n× n positive definite matrix
and U is an n×m matrix of rank m, show that UT AU is
positive definite.

Exercise 8.3.7 If A is positive definite, show that each
diagonal entry is positive.

Exercise 8.3.8 Let A0 be formed from A by deleting
rows 2 and 4 and deleting columns 2 and 4. If A is posi-
tive definite, show that A0 is positive definite.

Exercise 8.3.9 If A is positive definite, show that
A =CCT where C has orthogonal columns.

Exercise 8.3.10 If A is positive definite, show that
A =C2 where C is positive definite.

Exercise 8.3.11 Let A be a positive definite matrix. If a

is a real number, show that aA is positive definite if and
only if a > 0.

Exercise 8.3.12

a. Suppose an invertible matrix A can be factored in
Mnn as A = LDU where L is lower triangular with
1s on the diagonal, U is upper triangular with 1s
on the diagonal, and D is diagonal with positive
diagonal entries. Show that the factorization is
unique: If A = L1D1U1 is another such factoriza-
tion, show that L1 = L, D1 = D, and U1 =U .

b. Show that a matrix A is positive definite if and
only if A is symmetric and admits a factorization
A = LDU as in (a).

Exercise 8.3.13 Let A be positive definite and write
dr = det (r)A for each r = 1, 2, . . . , n. If U is the
upper triangular matrix obtained in step 1 of the algo-
rithm, show that the diagonal elements u11, u22, . . . , unn

of U are given by u11 = d1, u j j = d j/d j−1 if j > 1.
[Hint: If LA = U where L is lower triangular with 1s
on the diagonal, use block multiplication to show that
det (r)A = det (r)U for each r.]

8.4 QR-Factorization7

One of the main virtues of orthogonal matrices is that they can be easily inverted—the transpose is the
inverse. This fact, combined with the factorization theorem in this section, provides a useful way to
simplify many matrix calculations (for example, in least squares approximation).

7This section is not used elsewhere in the book
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Definition 8.6 QR-factorization

Let A be an m×n matrix with independent columns. A QR-factorization of A expresses it as
A = QR where Q is m×n with orthonormal columns and R is an invertible and upper triangular
matrix with positive diagonal entries.

The importance of the factorization lies in the fact that there are computer algorithms that accomplish it
with good control over round-off error, making it particularly useful in matrix calculations. The factoriza-
tion is a matrix version of the Gram-Schmidt process.

Suppose A =
[

c1 c2 · · · cn

]
is an m×n matrix with linearly independent columns c1, c2, . . . , cn.

The Gram-Schmidt algorithm can be applied to these columns to provide orthogonal columns f1, f2, . . . , fn

where f1 = c1 and
fk = ck− ck·f1

‖f1‖2 f1 +
ck·f2
‖f2‖2 f2−·· ·− ck·fk−1

‖fk−1‖2 fk−1

for each k = 2, 3, . . . , n. Now write qk =
1
‖fk‖fk for each k. Then q1, q2, . . . , qn are orthonormal columns,

and the above equation becomes

‖fk‖qk = ck− (ck ·q1)q1− (ck ·q2)q2−·· ·− (ck ·qk−1)qk−1

Using these equations, express each ck as a linear combination of the qi:

c1 = ‖f1‖q1
c2 = (c2 ·q1)q1 +‖f2‖q2
c3 = (c3 ·q1)q1 +(c3 ·q2)q2 +‖f3‖q3
...

...
cn = (cn ·q1)q1 +(cn ·q2)q2 +(cn ·q3)q3 + · · ·+‖fn‖qn

These equations have a matrix form that gives the required factorization:

A =
[

c1 c2 c3 · · · cn

]

=
[

q1 q2 q3 · · · qn

]




‖f1‖ c2 ·q1 c3 ·q1 · · · cn ·q1
0 ‖f2‖ c3 ·q2 · · · cn ·q2
0 0 ‖f3‖ · · · cn ·q3
...

...
...

. . .
...

0 0 0 · · · ‖fn‖




(8.5)

Here the first factor Q =
[

q1 q2 q3 · · · qn

]
has orthonormal columns, and the second factor is an

n×n upper triangular matrix R with positive diagonal entries (and so is invertible). We record this in the
following theorem.

Theorem 8.4.1: QR-Factorization

Every m×n matrix A with linearly independent columns has a QR-factorization A = QR where Q

has orthonormal columns and R is upper triangular with positive diagonal entries.

The matrices Q and R in Theorem 8.4.1 are uniquely determined by A; we return to this below.
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Example 8.4.1

Find the QR-factorization of A =




1 1 0
−1 0 1

0 1 1
0 0 1


.

Solution. Denote the columns of A as c1, c2, and c3, and observe that {c1, c2, c3} is independent.
If we apply the Gram-Schmidt algorithm to these columns, the result is:

f1 = c1 =




1
−1

0
0


 , f2 = c2− 1

2f1 =




1
2
1
2

1

0


 , and f3 = c3 +

1
2f1− f2 =




0
0
0
1


 .

Write q j =
1
‖f j‖2 f j for each j, so {q1, q2, q3} is orthonormal. Then equation (8.5) preceding

Theorem 8.4.1 gives A = QR where

Q =
[

q1 q2 q3
]
=




1√
2

1√
6

0
−1√

2
1√
6

0

0 2√
6

0

0 0 1



= 1√

6




√
3 1 0

−
√

3 1 0
0 2 0
0 0

√
6




R =



‖f1‖ c2 ·q1 c3 ·q1

0 ‖f2‖ c3 ·q2
0 0 ‖f3‖


=




√
2 1√

2
−1√

2

0
√

3√
2

√
3√
2

0 0 1


= 1√

2




2 1 −1
0
√

3
√

3
0 0

√
2




The reader can verify that indeed A = QR.

If a matrix A has independent rows and we apply QR-factorization to AT , the result is:

Corollary 8.4.1

If A has independent rows, then A factors uniquely as A = LP where P has orthonormal rows and L

is an invertible lower triangular matrix with positive main diagonal entries.

Since a square matrix with orthonormal columns is orthogonal, we have

Theorem 8.4.2

Every square, invertible matrix A has factorizations A = QR and A = LP where Q and P are
orthogonal, R is upper triangular with positive diagonal entries, and L is lower triangular with
positive diagonal entries.

www.dbooks.org

https://www.dbooks.org/


440 Orthogonality

Remark

In Section 5.6 we found how to find a best approximation z to a solution of a (possibly inconsistent) system
Ax = b of linear equations: take z to be any solution of the “normal” equations (AT A)z = AT b. If A has
independent columns this z is unique (AT A is invertible by Theorem 5.4.3), so it is often desirable to com-
pute (AT A)−1. This is particularly useful in least squares approximation (Section 5.6). This is simplified
if we have a QR-factorization of A (and is one of the main reasons for the importance of Theorem 8.4.1).
For if A = QR is such a factorization, then QT Q = In because Q has orthonormal columns (verify), so we
obtain

AT A = RT QT QR = RT R

Hence computing (AT A)−1 amounts to finding R−1, and this is a routine matter because R is upper trian-
gular. Thus the difficulty in computing (AT A)−1 lies in obtaining the QR-factorization of A.

We conclude by proving the uniqueness of the QR-factorization.

Theorem 8.4.3

Let A be an m×n matrix with independent columns. If A = QR and A = Q1R1 are
QR-factorizations of A, then Q1 = Q and R1 = R.

Proof. Write Q =
[

c1 c2 · · · cn

]
and Q1 =

[
d1 d2 · · · dn

]
in terms of their columns, and ob-

serve first that QT Q = In = QT
1 Q1 because Q and Q1 have orthonormal columns. Hence it suffices to show

that Q1 =Q (then R1 =QT
1 A=QT A=R). Since QT

1 Q1 = In, the equation QR=Q1R1 gives QT
1 Q=R1R−1;

for convenience we write this matrix as

QT
1 Q = R1R−1 =

[
ti j

]

This matrix is upper triangular with positive diagonal elements (since this is true for R and R1), so tii > 0
for each i and ti j = 0 if i > j. On the other hand, the (i, j)-entry of QT

1 Q is dT
i c j = di · c j, so we have

di · c j = ti j for all i and j. But each c j is in span{d1, d2, . . . , dn} because Q = Q1(R1R−1). Hence the
expansion theorem gives

c j = (d1 · c j)d1 +(d2 · c j)d2 + · · ·+(dn · c j)dn = t1 jd1 + t2 jd2 + · · ·+ t j jdi

because di · c j = ti j = 0 if i > j. The first few equations here are

c1 = t11d1

c2 = t12d1 + t22d2

c3 = t13d1 + t23d2 + t33d3

c4 = t14d1 + t24d2 + t34d3 + t44d4
...

...

The first of these equations gives 1 = ‖c1‖ = ‖t11d1‖ = |t11|‖d1‖ = t11, whence c1 = d1. But then we
have t12 = d1 · c2 = c1 · c2 = 0, so the second equation becomes c2 = t22d2. Now a similar argument gives
c2 = d2, and then t13 = 0 and t23 = 0 follows in the same way. Hence c3 = t33d3 and c3 = d3. Continue in
this way to get ci = di for all i. This means that Q1 = Q, which is what we wanted.
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Exercises for 8.4

Exercise 8.4.1 In each case find the QR-factorization of
A.

A =

[
1 −1
−1 0

]
a. A =

[
2 1
1 1

]
b.

A =




1 1 1
1 1 0
1 0 0
0 0 0


c. A =




1 1 0
−1 0 1

0 1 1
1 −1 0


d.

Exercise 8.4.2 Let A and B denote matrices.

a. If A and B have independent columns, show
that AB has independent columns. [Hint: Theo-
rem 5.4.3.]

b. Show that A has a QR-factorization if and only if
A has independent columns.

c. If AB has a QR-factorization, show that the same
is true of B but not necessarily A.

[Hint: Consider AAT where A =

[
1 0 0
1 1 1

]
.]

Exercise 8.4.3 If R is upper triangular and invertible,
show that there exists a diagonal matrix D with diagonal
entries ±1 such that R1 = DR is invertible, upper trian-
gular, and has positive diagonal entries.

Exercise 8.4.4 If A has independent columns, let
A = QR where Q has orthonormal columns and R is in-
vertible and upper triangular. [Some authors call this a
QR-factorization of A.] Show that there is a diagonal ma-
trix D with diagonal entries ±1 such that A = (QD)(DR)
is the QR-factorization of A. [Hint: Preceding exercise.]

8.5 Computing Eigenvalues

In practice, the problem of finding eigenvalues of a matrix is virtually never solved by finding the roots
of the characteristic polynomial. This is difficult for large matrices and iterative methods are much better.
Two such methods are described briefly in this section.

The Power Method

In Chapter 3 our initial rationale for diagonalizing matrices was to be able to compute the powers of a
square matrix, and the eigenvalues were needed to do this. In this section, we are interested in efficiently
computing eigenvalues, and it may come as no surprise that the first method we discuss uses the powers
of a matrix.

Recall that an eigenvalue λ of an n×n matrix A is called a dominant eigenvalue if λ has multiplicity
1, and

|λ |> |µ| for all eigenvalues µ 6= λ

Any corresponding eigenvector is called a dominant eigenvector of A. When such an eigenvalue exists,
one technique for finding it is as follows: Let x0 in Rn be a first approximation to a dominant eigenvector
λ , and compute successive approximations x1, x2, . . . as follows:

x1 = Ax0 x2 = Ax1 x3 = Ax2 · · ·
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In general, we define
xk+1 = Axk for each k ≥ 0

If the first estimate x0 is good enough, these vectors xn will approximate the dominant eigenvector λ (see
below). This technique is called the power method (because xk = Akx0 for each k ≥ 1). Observe that if z

is any eigenvector corresponding to λ , then

z·(Az)
‖z‖2 = z·(λz)

‖z‖2 = λ

Because the vectors x1, x2, . . . , xn, . . . approximate dominant eigenvectors, this suggests that we define
the Rayleigh quotients as follows:

rk =
xk·xk+1
‖xk‖2 for k ≥ 1

Then the numbers rk approximate the dominant eigenvalue λ .

Example 8.5.1

Use the power method to approximate a dominant eigenvector and eigenvalue of A =

[
1 1
2 0

]
.

Solution. The eigenvalues of A are 2 and −1, with eigenvectors

[
1
1

]
and

[
1
−2

]
. Take

x0 =

[
1
0

]
as the first approximation and compute x1, x2, . . . , successively, from

x1 = Ax0, x2 = Ax1, . . . . The result is

x1 =

[
1
2

]
, x2 =

[
3
2

]
, x3 =

[
5
6

]
, x4 =

[
11
10

]
, x3 =

[
21
22

]
, . . .

These vectors are approaching scalar multiples of the dominant eigenvector

[
1
1

]
. Moreover, the

Rayleigh quotients are
r1 =

7
5 , r2 =

27
13 , r3 =

115
61 , r4 =

451
221 , . . .

and these are approaching the dominant eigenvalue 2.

To see why the power method works, let λ1, λ2, . . . , λm be eigenvalues of A with λ1 dominant and
let y1, y2, . . . , ym be corresponding eigenvectors. What is required is that the first approximation x0 be a
linear combination of these eigenvectors:

x0 = a1y1 +a2y2 + · · ·+amym with a1 6= 0

If k ≥ 1, the fact that xk = Akx0 and Akyi = λ k
i yi for each i gives

xk = a1λ k
1 y1 +a2λ k

2 y2 + · · ·+amλ k
mym for k ≥ 1

Hence
1

λ k
1

xk = a1y1 +a2

(
λ2
λ1

)k

y2 + · · ·+am

(
λm

λ1

)k

ym
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The right side approaches a1y1 as k increases because λ1 is dominant
(∣∣∣ λi

λ1

∣∣∣< 1 for each i > 1
)

. Because

a1 6= 0, this means that xk approximates the dominant eigenvector a1λ k
1 y1.

The power method requires that the first approximation x0 be a linear combination of eigenvectors.
(In Example 8.5.1 the eigenvectors form a basis of R2.) But even in this case the method fails if a1 = 0,

where a1 is the coefficient of the dominant eigenvector (try x0 =

[
−1

2

]
in Example 8.5.1). In general,

the rate of convergence is quite slow if any of the ratios
∣∣∣ λi

λ1

∣∣∣ is near 1. Also, because the method requires

repeated multiplications by A, it is not recommended unless these multiplications are easy to carry out (for
example, if most of the entries of A are zero).

QR-Algorithm

A much better method for approximating the eigenvalues of an invertible matrix A depends on the factor-
ization (using the Gram-Schmidt algorithm) of A in the form

A = QR

where Q is orthogonal and R is invertible and upper triangular (see Theorem 8.4.2). The QR-algorithm

uses this repeatedly to create a sequence of matrices A1 = A, A2, A3, . . . , as follows:

1. Define A1 = A and factor it as A1 = Q1R1.

2. Define A2 = R1Q1 and factor it as A2 = Q2R2.

3. Define A3 = R2Q2 and factor it as A3 = Q3R3.
...

In general, Ak is factored as Ak = QkRk and we define Ak+1 = RkQk. Then Ak+1 is similar to Ak [in fact,
Ak+1 = RkQk = (Q−1

k
Ak)Qk], and hence each Ak has the same eigenvalues as A. If the eigenvalues of A are

real and have distinct absolute values, the remarkable thing is that the sequence of matrices A1, A2, A3, . . .
converges to an upper triangular matrix with these eigenvalues on the main diagonal. [See below for the
case of complex eigenvalues.]

Example 8.5.2

If A =

[
1 1
2 0

]
as in Example 8.5.1, use the QR-algorithm to approximate the eigenvalues.

Solution. The matrices A1, A2, and A3 are as follows:

A1 =

[
1 1
2 0

]
= Q1R1 where Q1 =

1√
5

[
1 2
2 −1

]
and R1 =

1√
5

[
5 1
0 2

]

A2 =
1
5

[
7 9
4 −2

]
=

[
1.4 −1.8
−0.8 −0.4

]
= Q2R2
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where Q2 =
1√
65

[
7 4
4 −7

]
and R2 =

1√
65

[
13 11

0 10

]

A3 =
1

13

[
27 −5

8 −14

]
=

[
2.08 −0.38
0.62 −1.08

]

This is converging to

[
2 ∗
0 −1

]
and so is approximating the eigenvalues 2 and −1 on the main

diagonal.

It is beyond the scope of this book to pursue a detailed discussion of these methods. The reader is
referred to J. M. Wilkinson, The Algebraic Eigenvalue Problem (Oxford, England: Oxford University
Press, 1965) or G. W. Stewart, Introduction to Matrix Computations (New York: Academic Press, 1973).
We conclude with some remarks on the QR-algorithm.

Shifting. Convergence is accelerated if, at stage k of the algorithm, a number sk is chosen and Ak− skI is
factored in the form QkRk rather than Ak itself. Then

Q−1
k AkQk = Q−1

k (QkRk + skI)Qk = RkQk + skI

so we take Ak+1 = RkQk + skI. If the shifts sk are carefully chosen, convergence can be greatly improved.

Preliminary Preparation. A matrix such as



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗




is said to be in upper Hessenberg form, and the QR-factorizations of such matrices are greatly simplified.
Given an n×n matrix A, a series of orthogonal matrices H1, H2, . . . , Hm (called Householder matrices)
can be easily constructed such that

B = HT
m · · ·HT

1 AH1 · · ·Hm

is in upper Hessenberg form. Then the QR-algorithm can be efficiently applied to B and, because B is
similar to A, it produces the eigenvalues of A.

Complex Eigenvalues. If some of the eigenvalues of a real matrix A are not real, the QR-algorithm con-
verges to a block upper triangular matrix where the diagonal blocks are either 1×1 (the real eigenvalues)
or 2×2 (each providing a pair of conjugate complex eigenvalues of A).
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Exercises for 8.5

Exercise 8.5.1 In each case, find the exact eigenvalues
and determine corresponding eigenvectors. Then start

with x0 =

[
1
1

]
and compute x4 and r3 using the power

method.

A =

[
2 −4
−3 3

]
a. A =

[
5 2
−3 −2

]
b.

A =

[
1 2
2 1

]
c. A =

[
3 1
1 0

]
d.

Exercise 8.5.2 In each case, find the exact eigenvalues
and then approximate them using the QR-algorithm.

A =

[
1 1
1 0

]
a. A =

[
3 1
1 0

]
b.

Exercise 8.5.3 Apply the power method to

A =

[
0 1
−1 0

]
, starting at x0 =

[
1
1

]
. Does it con-

verge? Explain.

Exercise 8.5.4 If A is symmetric, show that each matrix
Ak in the QR-algorithm is also symmetric. Deduce that
they converge to a diagonal matrix.

Exercise 8.5.5 Apply the QR-algorithm to

A =

[
2 −3
1 −2

]
. Explain.

Exercise 8.5.6 Given a matrix A, let Ak, Qk, and Rk,
k ≥ 1, be the matrices constructed in the QR-algorithm.
Show that Ak = (Q1Q2 · · ·Qk)(Rk · · ·R2R1) for each k≥ 1
and hence that this is a QR-factorization of Ak.
[Hint: Show that QkRk = Rk−1Qk−1 for each k ≥ 2, and
use this equality to compute (Q1Q2 · · ·Qk)(Rk · · ·R2R1)
“from the centre out.” Use the fact that (AB)n+1 =
A(BA)nB for any square matrices A and B.]

8.6 The Singular Value Decomposition

When working with a square matrix A it is clearly useful to be able to “diagonalize” A, that is to find
a factorization A = Q−1DQ where Q is invertible and D is diagonal. Unfortunately such a factorization
may not exist for A. However, even if A is not square gaussian elimination provides a factorization of
the form A = PDQ where P and Q are invertible and D is diagonal—the Smith Normal form (Theorem
2.5.3). However, if A is real we can choose P and Q to be orthogonal real matrices and D to be real. Such
a factorization is called a singular value decomposition (SVD) for A, one of the most useful tools in
applied linear algebra. In this Section we show how to explicitly compute an SVD for any real matrix A,
and illustrate some of its many applications.

We need a fact about two subspaces associated with an m×n matrix A:

im A = {Ax | x in Rn} and col A = span{a | a is a column of A}

Then im A is called the image of A (so named because of the linear transformationRn→Rm with x 7→Ax);
and col A is called the column space of A (Definition 5.10). Surprisingly, these spaces are equal:

Lemma 8.6.1

For any m×n matrix A, im A = col A.
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Proof. Let A =
[

a1 a2 · · · an

]
in terms of its columns. Let x ∈ im A, say x = Ay, y in Rn. If

y =
[

y1 y2 · · · yn

]T
, then Ay = y1a1 + y2a2 + · · ·+ ynan ∈ col A by Definition 2.5. This shows that

im A⊆ col A. For the other inclusion, each ak = Aek where ek is column k of In.

8.6.1. Singular Value Decompositions

We know a lot about any real symmetric matrix: Its eigenvalues are real (Theorem 5.5.7), and it is orthog-
onally diagonalizable by the Principal Axes Theorem (Theorem 8.2.2). So for any real matrix A (square
or not), the fact that both AT A and AAT are real and symmetric suggests that we can learn a lot about A by
studying them. This section shows just how true this is.

The following Lemma reveals some similarities between AT A and AAT which simplify the statement
and the proof of the SVD we are constructing.

Lemma 8.6.2

Let A be a real m×n matrix. Then:

1. The eigenvalues of AT A and AAT are real and non-negative.

2. AT A and AAT have the same set of positive eigenvalues.

Proof.

1. Let λ be an eigenvalue of AT A, with eigenvector 0 6= q ∈ Rn. Then:

‖Aq‖2 = (Aq)T (Aq) = qT (AT Aq) = qT (λq) = λ (qT q) = λ‖q‖2

Then (1.) follows for AT A, and the case AAT follows by replacing A by AT .

2. Write N(B) for the set of positive eigenvalues of a matrix B. We must show that N(AT A) = N(AAT ).
If λ ∈ N(AT A) with eigenvector 0 6= q ∈ Rn, then Aq ∈ Rm and

AAT (Aq) = A[(AT A)q] = A(λq) = λ (Aq)

Moreover, Aq 6= 0 since AT Aq = λq 6= 0 and both λ 6= 0 and q 6= 0. Hence λ is an eigenvalue of
AAT , proving N(AT A)⊆ N(AAT ). For the other inclusion replace A by AT .

To analyze an m×n matrix A we have two symmetric matrices to work with: AT A and AAT . In view
of Lemma 8.6.2, we choose AT A (sometimes called the Gram matrix of A), and derive a series of facts
which we will need. This narrative is a bit long, but trust that it will be worth the effort. We parse it out in
several steps:

1. The n×n matrix AT A is real and symmetric so, by the Principal Axes Theorem 8.2.2, let
{q1, q2, . . . , qn} ⊆ Rn be an orthonormal basis of eigenvectors of AT A, with corresponding eigenval-
ues λ1, λ2, . . . , λn. By Lemma 8.6.2(1), λi is real for each i and λi ≥ 0. By re-ordering the qi we may
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(and do) assume that
λ1 ≥ λ2 ≥ ·· · ≥ λr > 0 and 8 λi = 0 if i > r (i)

By Theorems 8.2.1 and 3.3.4, the matrix

Q =
[

q1 q2 · · · qn

]
is orthogonal and orthogonally diagonalizes AT A (ii)

2. Even though the λi are the eigenvalues of AT A, the number r in (i) turns out to be rank A. To understand
why, consider the vectors Aqi ∈ im A. For all i, j:

Aqi ·Aq j = (Aqi)
T Aq j = qT

i (A
T A)q j = qT

i (λ jq j) = λ j(q
T
i q j) = λ j(qi ·q j)

Because {q1, q2, . . . , qn} is an orthonormal set, this gives

Aqi ·Aq j = 0 if i 6= j and ‖Aqi‖2 = λi‖qi‖2 = λi for each i (iii)

We can extract two conclusions from (iii) and (i):

{Aq1, Aq2, . . . , Aqr} ⊆ im A is an orthogonal set and Aqi = 0 if i > r (iv)

With this write U = span{Aq1, Aq2, . . . , Aqr} ⊆ im A; we claim that U = im A, that is im A ⊆U .
For this we must show that Ax ∈U for each x ∈ Rn. Since {q1, . . . , qr, . . . , qn} is a basis of Rn (it is
orthonormal), we can write xk = t1q1 + · · ·+ trqr + · · ·+ tnqn where each t j ∈ R. Then, using (iv) we
obtain

Ax = t1Aq1 + · · ·+ trAqr + · · ·+ tnAqn = t1Aq1 + · · ·+ trAqr ∈U

This shows that U = im A, and so

{Aq1, Aq2, . . . , Aqr} is an orthogonal basis of im (A) (v)

But col A = im A by Lemma 8.6.1, and rank A = dim (col A) by Theorem 5.4.1, so

rank A = dim (col A) = dim ( im A)
(v)
= r (vi)

3. Before proceeding, some definitions are in order:

Definition 8.7

The real numbers σi =
√

λi
(iii)
= ‖Aq̄i‖ for i = 1, 2, . . . , n, are called the singular values of the

matrix A.

Clearly σ1, σ2, . . . , σr are the positive singular values of A. By (i) we have

σ1 ≥ σ2 ≥ ·· · ≥ σr > 0 and σi = 0 if i > r (vii)

With (vi) this makes the following definitions depend only upon A.

8Of course they could all be positive (r = n) or all zero (so AT A = 0, and hence A = 0 by Exercise 5.3.9).
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Definition 8.8

Let A be a real, m×n matrix of rank r, with positive singular values σ1 ≥ σ2 ≥ ·· · ≥ σr > 0 and
σi = 0 if i > r. Define:

DA = diag (σ1, . . . , σr) and ΣA =

[
DA 0
0 0

]

m×n

Here ΣA is in block form and is called the singular matrix of A.

The singular values σi and the matrices DA and ΣA will be referred to frequently below.

4. Returning to our narrative, normalize the vectors Aq1, Aq2, . . . , Aqr, by defining

pi =
1
‖Aqi‖Aqi ∈ Rm for each i = 1, 2, . . . , r (viii)

By (v) and Lemma 8.6.1, we conclude that

{p1, p2, . . . , pr} is an orthonormal basis of col A⊆ Rm (ix)

Employing the Gram-Schmidt algorithm (or otherwise), construct pr+1, . . . , pm so that

{p1, . . . , pr, . . . , pm} is an orthonormal basis of Rm (x)

5. By (x) and (ii) we have two orthogonal matrices

P =
[

p1 · · · pr · · · pm

]
of size m×m and Q =

[
q1 · · · qr · · · qn

]
of size n×n

These matrices are related. In fact we have:

σipi =
√

λipi

(iii)
= ‖Aqi‖pi

(viii)
= Aqi for each i = 1, 2, . . . , r (xi)

This yields the following expression for AQ in terms of its columns:

AQ =
[

Aq1 · · · Aqr Aqr+1 · · · Aqn

] (iv)
=
[

σ1p1 · · · σrpr 0 · · · 0
]

(xii)

Then we compute:

PΣA =
[

p1 · · · pr pr+1 · · · pm

]




σ1 · · · 0
...

. . .
...

0 · · · σr

0 · · · 0
...

...
0 · · · 0

0 · · · 0
...

...
0 · · · 0

0 · · · 0
...

...
0 · · · 0




=
[

σ1p1 · · · σrpr 0 · · · 0
]

(xii)
= AQ

Finally, as Q−1 = QT it follows that A = PΣAQT .

With this we can state the main theorem of this Section.
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Theorem 8.6.1

Let A be a real m×n matrix, and let σ1 ≥ σ2 ≥ ·· · ≥ σr > 0 be the positive singular values of A.
Then r is the rank of A and we have the factorization

A = PΣAQT where P and Q are orthogonal matrices

The factorization A = PΣAQT in Theorem 8.6.1, where P and Q are orthogonal matrices, is called a
Singular Value Decomposition (SVD) of A. This decomposition is not unique. For example if r < m then
the vectors pr+1, . . . , pm can be any extension of {p1, . . . , pr} to an orthonormal basis of Rm, and each
will lead to a different matrix P in the decomposition. For a more dramatic example, if A = In then ΣA = In,
and A = PΣAPT is a SVD of A for any orthogonal n×n matrix P.

Example 8.6.1

Find a singular value decomposition for A =

[
1 0 1
−1 1 0

]
.

Solution. We have AT A =




2 −1 1
−1 1 0

1 0 1


, so the characteristic polynomial is

cAT A(x) = det




x−2 1 −1
1 x−1 0
−1 0 x−1


= (x−3)(x−1)x

Hence the eigenvalues of AT A (in descending order) are λ1 = 3, λ2 = 1 and λ3 = 0 with,
respectively, unit eigenvectors

q1 =
1√
6




2
−1

1


 , q2 =

1√
2




0
1
1


 , and q3 =

1√
3



−1
−1

1




It follows that the orthogonal matrix Q in Theorem 8.6.1 is

Q =
[

q1 q2 q3

]
= 1√

6




2 0 −
√

2
−1

√
3 −

√
2

1
√

3
√

2




The singular values here are σ1 =
√

3, σ2 = 1 and σ3 = 0, so rank (A) = 2—clear in this
case—and the singular matrix is

ΣA =

[
σ1 0 0
0 σ2 0

]
=

[ √
3 0 0

0 1 0

]

So it remains to find the 2×2 orthogonal matrix P in Theorem 8.6.1. This involves the vectors

Aq1 =
√

6
2

[
1
−1

]
, Aq2 =

√
2

2

[
1
1

]
, and Aq3 =

[
0
0

]
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Normalize Aq1 and Aq2 to get

p1 =
1√
2

[
1
−1

]
and p2 =

1√
2

[
1
1

]

In this case, {p1, p2} is already a basis of R2 (so the Gram-Schmidt algorithm is not needed), and
we have the 2×2 orthogonal matrix

P =
[

p1 p2
]
= 1√

2

[
1 1
−1 1

]

Finally (by Theorem 8.6.1) the singular value decomposition for A is

A = PΣAQT = 1√
2

[
1 1
−1 1

][ √
3 0 0

0 1 0

]
1√
6




2 −1 1
0

√
3
√

3
−
√

2 −
√

2
√

2




Of course this can be confirmed by direct matrix multiplication.

Thus, computing an SVD for a real matrix A is a routine matter, and we now describe a systematic
procedure for doing so.

SVD Algorithm

Given a real m×n matrix A, find an SVD A = PΣAQT as follows:

1. Use the Diagonalization Algorithm (see page 181) to find the (real and non-negative)
eigenvalues λ1, λ2, . . . , λn of AT A with corresponding (orthonormal) eigenvectors
q1, q2, . . . , qn. Reorder the qi (if necessary) to ensure that the nonzero eigenvalues are
λ1 ≥ λ2 ≥ ·· · ≥ λr > 0 and λi = 0 if i > r.

2. The integer r is the rank of the matrix A.

3. The n×n orthogonal matrix Q in the SVD is Q =
[

q1 q2 · · · qn

]
.

4. Define pi =
1
‖Aqi‖Aqi for i = 1, 2, . . . , r (where r is as in step 1). Then {p1, p2, . . . , pr} is

orthonormal in Rm so (using Gram-Schmidt or otherwise) extend it to an orthonormal basis
{p1, . . . , pr, . . . , pm} in Rm.

5. The m×m orthogonal matrix P in the SVD is P =
[

p1 · · · pr · · · pm

]
.

6. The singular values for A are σ1, σ2, . . . , σn where σi =
√

λi for each i. Hence the nonzero
singular values are σ1 ≥ σ2 ≥ ·· · ≥ σr > 0, and so the singular matrix of A in the SVD is

ΣA =

[
diag (σ1, . . . , σr) 0

0 0

]

m×n

.

7. Thus A = PΣQT is a SVD for A.

In practise the singular values σi, the matrices P and Q, and even the rank of an m×n matrix are not
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calculated this way. There are sophisticated numerical algorithms for calculating them to a high degree of
accuracy. The reader is referred to books on numerical linear algebra.

So the main virtue of Theorem 8.6.1 is that it provides a way of constructing an SVD for every real
matrix A. In particular it shows that every real matrix A has a singular value decomposition9 in the
following, more general, sense:

Definition 8.9

A Singular Value Decomposition (SVD) of an m×n matrix A of rank r is a factorization

A =UΣV T where U and V are orthogonal and Σ =

[
D 0
0 0

]

m×n

in block form where

D = diag (d1, d2, . . . , dr) where each di > 0, and r ≤ m and r ≤ n.

Note that for any SVD A =UΣV T we immediately obtain some information about A:

Lemma 8.6.3

If A =UΣV T is any SVD for A as in Definition 8.9, then:

1. r = rank A.

2. The numbers d1, d2, . . . , dr are the singular values of AT A in some order.

Proof. Use the notation of Definition 8.9. We have

AT A = (VΣTUT )(UΣV T ) =V (ΣT Σ)V T

so ΣT Σ and AT A are similar n×n matrices (Definition 5.11). Hence r = rank A by Corollary 5.4.3, proving
(1.). Furthermore, ΣT Σ and AT A have the same eigenvalues by Theorem 5.5.1; that is (using (1.)):

{d2
1 , d2

2 , . . . , d2
r }= {λ1, λ2, . . . , λr} are equal as sets

where λ1, λ2, . . . , λr are the positive eigenvalues of AT A. Hence there is a permutation τ of {1, 2, · · · , r}
such that d2

i = λiτ for each i = 1, 2, . . . , r. Hence di =
√

λiτ = σiτ for each i by Definition 8.7. This
proves (2.).

We note in passing that more is true. Let A be m×n of rank r, and let A =UΣV T be any SVD for A.
Using the proof of Lemma 8.6.3 we have di = σiτ for some permutation τ of {1, 2, . . . , r}. In fact, it can
be shown that there exist orthogonal matrices U1 and V1 obtained from U and V by τ-permuting columns
and rows respectively, such that A =U1ΣAV T

1 is an SVD of A.

9In fact every complex matrix has an SVD [J.T. Scheick, Linear Algebra with Applications, McGraw-Hill, 1997]
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8.6.2. Fundamental Subspaces

It turns out that any singular value decomposition contains a great deal of information about an m×
n matrix A and the subspaces associated with A. For example, in addition to Lemma 8.6.3, the set
{p1, p2, . . . , pr} of vectors constructed in the proof of Theorem 8.6.1 is an orthonormal basis of col A

(by (v) and (viii) in the proof). There are more such examples, which is the thrust of this subsection.
In particular, there are four subspaces associated to a real m× n matrix A that have come to be called
fundamental:

Definition 8.10

The fundamental subspaces of an m×n matrix A are:

row A = span{x | x is a row of A}

col A = span{x | x is a column of A}

null A = {x ∈ Rn | Ax = 0}

null AT = {x ∈ Rn | AT x = 0}

If A =UΣV T is any SVD for the real m×n matrix A, any orthonormal bases of U and V provide orthonor-
mal bases for each of these fundamental subspaces. We are going to prove this, but first we need three
properties related to the orthogonal complement U⊥ of a subspace U of Rn, where (Definition 8.1):

U⊥ = {x ∈ Rn | u ·x = 0 for all u ∈U}

The orthogonal complement plays an important role in the Projection Theorem (Theorem 8.1.3), and we
return to it in Section 10.2. For now we need:

Lemma 8.6.4

If A is any matrix then:

1. ( row A)⊥ = null A and (col A)⊥ = null AT .

2. If U is any subspace of Rn then U⊥⊥ =U .

3. Let {f1, . . . , fm} be an orthonormal basis of Rm. If U = span{f1, . . . , fk}, then

U⊥ = span{fk+1, . . . , fm}

Proof.

1. Assume A is m×n, and let b1, . . . , bm be the rows of A. If x is a column in Rn, then entry i of Ax is
bi ·x, so Ax = 0 if and only if bi ·x = 0 for each i. Thus:

x ∈ null A ⇔ bi ·x = 0 for each i ⇔ x ∈ (span{b1, . . . , bm})⊥ = ( row A)⊥
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Hence null A = ( row A)⊥. Now replace A by AT to get null AT = ( row AT )⊥ = (col A)⊥, which is
the other identity in (1).

2. If x ∈U then y ·x = 0 for all y ∈U⊥, that is x ∈U⊥⊥. This proves that U ⊆U⊥⊥, so it is enough to
show that dim U = dim U⊥⊥. By Theorem 8.1.4 we see that dim V⊥ = n− dim V for any subspace
V ⊆ Rn. Hence

dim U⊥⊥ = n− dim U⊥ = n− (n− dim U) = dim U , as required

3. We have span{fk+1, . . . , fm} ⊆U⊥ because {f1, . . . , fm} is orthogonal. For the other inclusion, let
x ∈U⊥ so fi ·x = 0 for i = 1, 2, . . . , k. By the Expansion Theorem 5.3.6:

x = (f1 ·x)f1 + · · · + (fk ·x)fk + (fk+1 ·x)fk+1 + · · · + (fm ·x)fm

= 0 + · · · + 0 + (fk+1 ·x)fk+1 + · · · + (fm ·x)fm

Hence U⊥ ⊆ span{fk+1, . . . , fm}.

With this we can see how any SVD for a matrix A provides orthonormal bases for each of the four
fundamental subspaces of A.

Theorem 8.6.2

Let A be an m×n real matrix, let A =UΣV T be any SVD for A where U and V are orthogonal of
size m×m and n×n respectively, and let

Σ =

[
D 0
0 0

]

m×n

where D = diag (λ1, λ2, . . . , λr), with each λi > 0

Write U =
[

u1 · · · ur · · · um

]
and V =

[
v1 · · · vr · · · vn

]
, so {u1, . . . , ur, . . . , um}

and {v1, . . . , vr, . . . , vn} are orthonormal bases of Rm and Rn respectively. Then

1. r = rank A, and the singular values of A are
√

λ1,
√

λ2, . . . ,
√

λr.

2. The fundamental spaces are described as follows:

a. {u1, . . . , ur} is an orthonormal basis of col A.

b. {ur+1, . . . , um} is an orthonormal basis of null AT .

c. {vr+1, . . . , vn} is an orthonormal basis of null A.

d. {v1, . . . , vr} is an orthonormal basis of row A.

Proof.

1. This is Lemma 8.6.3.
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2. a. As col A = col (AV ) by Lemma 5.4.3 and AV =UΣ, (a.) follows from

UΣ=
[

u1 · · · ur · · · um

][ diag (λ1, λ2, . . . , λr) 0
0 0

]
=
[

λ1u1 · · · λrur 0 · · · 0
]

b. We have (col A)⊥
(a.)
= (span{u1, . . . , ur})⊥ = span{ur+1, . . . , um} by Lemma 8.6.4(3). This

proves (b.) because (col A)⊥ = null AT by Lemma 8.6.4(1).

c. We have dim (null A)+ dim ( im A) = n by the Dimension Theorem 7.2.4, applied to
T : Rn→ Rm where T (x) = Ax. Since also im A = col A by Lemma 8.6.1, we obtain

dim (null A) = n− dim (col A) = n− r = dim (span{vr+1, . . . , vn})

So to prove (c.) it is enough to show that v j ∈ null A whenever j > r. To this end write

λr+1 = · · ·= λn = 0, so ET E = diag (λ 2
1 , . . . , λ 2

r , λ 2
r+1, . . . , λ 2

n )

Observe that each λ j is an eigenvalue of ΣT Σ with eigenvector e j = column j of In. Thus
v j =V e j for each j. As AT A =V ΣT ΣV T (proof of Lemma 8.6.3), we obtain

(AT A)v j = (VΣT ΣV T )(Ve j) =V (ΣT Σe j) =V
(
λ 2

j e j

)
= λ 2

j V e j = λ 2
j v j

for 1≤ j ≤ n. Thus each v j is an eigenvector of AT A corresponding to λ 2
j . But then

‖Av j‖2 = (Av j)
T Av j = vT

j (A
T Av j) = vT

j (λ
2
j v j) = λ 2

j ‖v j‖2 = λ 2
j for i = 1, . . . , n

In particular, Av j = 0 whenever j > r, so v j ∈ null A if j > r, as desired. This proves (c).

d. Observe that span{vr+1, . . . , vn}
(c.)
= null A = ( row A)⊥ by Lemma 8.6.4(1). But then parts

(2) and (3) of Lemma 8.6.4 show

row A =
(
( row A)⊥

)⊥
= (span{vr+1, . . . , vn})⊥ = span{v1, . . . , vr}

This proves (d.), and hence Theorem 8.6.2.

Example 8.6.2

Consider the homogeneous linear system

Ax = 0 of m equations in n variables

Then the set of all solutions is null A. Hence if A =UΣV T is any SVD for A then (in the notation
of Theorem 8.6.2) {vr+1, . . . , vn} is an orthonormal basis of the set of solutions for the system. As
such they are a set of basic solutions for the system, the most basic notion in Chapter 1.
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8.6.3. The Polar Decomposition of a Real Square Matrix

If A is real and n×n the factorization in the title is related to the polar decomposition A. Unlike the SVD,
in this case the decomposition is uniquely determined by A.

Recall (Section 8.3) that a symmetric matrix A is called positive definite if and only if xT Ax > 0 for
every column x 6= 0 ∈ Rn. Before proceeding, we must explore the following weaker notion:

Definition 8.11

A real n×n matrix G is called positive10if it is symmetric and

xT Gx≥ 0 for all x ∈ Rn

Clearly every positive definite matrix is positive, but the converse fails. Indeed, A =

[
1 1
1 1

]
is positive

because, if x =
[

a b
]T

in R2, then xT Ax = (a+b)2 ≥ 0. But yT Ay = 0 if y =
[

1 −1
]T

, so A is not
positive definite.

Lemma 8.6.5

Let G denote an n×n positive matrix.

1. If A is any m×n matrix and G is positive, then AT GA is positive (and m×m).

2. If G = diag (d1, d2, · · · , dn) and each di ≥ 0 then G is positive.

Proof.

1. xT (AT GA)x = (Ax)T G(Ax)≥ 0 because G is positive.

2. If x =
[

x1 x2 · · · xn

]T
, then

xT Gx = d1x2
1 +d2x2

2 + · · ·+dnx2
n ≥ 0

because di ≥ 0 for each i.

Definition 8.12

If A is a real n×n matrix, a factorization

A = GQ where G is positive and Q is orthogonal

is called a polar decomposition for A.

10Also called positive semi-definite.
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Any SVD for a real square matrix A yields a polar form for A.

Theorem 8.6.3

Every square real matrix has a polar form.

Proof. Let A = UΣV T be a SVD for A with Σ as in Definition 8.9 and m = n. Since UTU = In here we
have

A =UΣV T = (UΣ)(UTU)V T = (UΣUT )(UV T )

So if we write G =UΣUT and Q =UV T , then Q is orthogonal, and it remains to show that G is positive.
But this follows from Lemma 8.6.5.

The SVD for a square matrix A is not unique (In = PInPT for any orthogonal matrix P). But given the
proof of Theorem 8.6.3 it is surprising that the polar decomposition is unique.11 We omit the proof.

The name “polar form” is reminiscent of the same form for complex numbers (see Appendix A). This
is no coincidence. To see why, we represent the complex numbers as real 2×2 matrices. Write M2(R) for
the set of all real 2×2 matrices, and define

σ : C→M2(R) by σ(a+bi) =

[
a −b

b a

]
for all a+bi in C

One verifies that σ preserves addition and multiplication in the sense that

σ(zw) = σ(z)σ(w) and σ(z+w) = σ(z)+σ(w)

for all complex numbers z and w. Since θ is one-to-one we may identify each complex number a+bi with
the matrix θ(a+bi), that is we write

a+bi =

[
a −b

b a

]
for all a+bi in C

Thus 0 =

[
0 0
0 0

]
, 1 =

[
1 0
0 1

]
= I2, i =

[
0 −1
1 0

]
, and r =

[
r 0
0 r

]
if r is real.

If z = a+bi is nonzero then the absolute value r = |z|=
√

a2 +b2 6= 0. If θ is the angle of z in standard
position, then cosθ = a/r and sinθ = b/r. Observe:

[
a −b

b a

]
=

[
r 0
0 r

][
a/r −b/r

b/r a/r

]
=

[
r 0
0 r

][
cosθ −sinθ
sinθ cosθ

]
= GQ (xiii)

where G =

[
r 0
0 r

]
is positive and Q =

[
cosθ −sinθ
sinθ cosθ

]
is orthogonal. But in C we have G = r and

Q = cosθ + isinθ so (xiii) reads z = r(cosθ + isinθ) = reiθ which is the classical polar form for the

complex number a+ bi. This is why (xiii) is called the polar form of the matrix

[
a −b

b a

]
; Definition

8.12 simply adopts the terminology for n×n matrices.

11See J.T. Scheick, Linear Algebra with Applications, McGraw-Hill, 1997, page 379.
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8.6.4. The Pseudoinverse of a Matrix

It is impossible for a non-square matrix A to have an inverse (see the footnote to Definition 2.11). Nonethe-
less, one candidate for an “inverse” of A is an m×n matrix B such that

ABA = A and BAB = B

Such a matrix B is called a middle inverse for A. If A is invertible then A−1 is the unique middle inverse for

A, but a middle inverse is not unique in general, even for square matrices. For example, if A =




1 0
0 0
0 0




then B =

[
1 0 0
b 0 0

]
is a middle inverse for A for any b.

If ABA = A and BAB = B it is easy to see that AB and BA are both idempotent matrices. In 1955 Roger
Penrose observed that the middle inverse is unique if both AB and BA are symmetric. We omit the proof.

Theorem 8.6.4: Penrose’ Theorem12

Given any real m×n matrix A, there is exactly one n×m matrix B such that A and B satisfy the
following conditions:

P1 ABA = A and BAB = B.

P2 Both AB and BA are symmetric.

Definition 8.13

Let A be a real m×n matrix. The pseudoinverse of A is the unique n×m matrix A+ such that A

and A+ satisfy P1 and P2, that is:

AA+A = A, A+AA+ = A+, and both AA+ and A+A are symmetric13

If A is invertible then A+ = A−1 as expected. In general, the symmetry in conditions P1 and P2 shows
that A is the pseudoinverse of A+, that is A++ = A.

12R. Penrose, A generalized inverse for matrices, Proceedings of the Cambridge Philosophical Society 5l (1955), 406-413.
In fact Penrose proved this for any complex matrix, where AB and BA are both required to be hermitian (see Definition 8.18 in
the following section).

13Penrose called the matrix A+ the generalized inverse of A, but the term pseudoinverse is now commonly used. The matrix
A+ is also called the Moore-Penrose inverse after E.H. Moore who had the idea in 1935 as part of a larger work on “General
Analysis”. Penrose independently re-discovered it 20 years later.

www.dbooks.org

https://www.dbooks.org/


458 Orthogonality

Theorem 8.6.5

Let A be an m×n matrix.

1. If rank A = m then AAT is invertible and A+ = AT (AAT )−1.

2. If rank A = n then AT A is invertible and A+ = (AT A)−1AT .

Proof. Here AAT (respectively AT A) is invertible by Theorem 5.4.4 (respectively Theorem 5.4.3). The rest
is a routine verification.

In general, given an m×n matrix A, the pseudoinverse A+ can be computed from any SVD for A. To
see how, we need some notation. Let A = UΣV T be an SVD for A (as in Definition 8.9) where U and V

are orthogonal and Σ =

[
D 0
0 0

]

m×n

in block form where D = diag (d1, d2, . . . , dr) where each di > 0.

Hence D is invertible, so we make:

Definition 8.14

Σ′ =

[
D−1 0

0 0

]

n×m

.

A routine calculation gives:

Lemma 8.6.6

• ΣΣ′Σ = Σ

• Σ′ΣΣ′ = Σ′

• ΣΣ′ =

[
Ir 0
0 0

]

m×m

• Σ′Σ =

[
Ir 0
0 0

]

n×n

That is, Σ′ is the pseudoinverse of Σ.

Now given A =UΣV T , define B =VΣ′UT . Then

ABA = (UΣV T )(VΣ′UT )(UΣV T ) =U(ΣΣ′Σ)V T =UΣV T = A

by Lemma 8.6.6. Similarly BAB= B. Moreover AB=U(ΣΣ′)UT and BA=V (Σ′Σ)V T are both symmetric
again by Lemma 8.6.6. This proves

Theorem 8.6.6

Let A be real and m×n, and let A =UΣV T is any SVD for A as in Definition 8.9. Then
A+ =VΣ′UT .
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Of course we can always use the SVD constructed in Theorem 8.6.1 to find the pseudoinverse. If

A =




1 0
0 0
0 0


, we observed above that B =

[
1 0 0
b 0 0

]
is a middle inverse for A for any b. Furthermore

AB is symmetric but BA is not, so B 6= A+.

Example 8.6.3

Find A+ if A =




1 0
0 0
0 0


.

Solution. AT A =

[
1 0
0 0

]
with eigenvalues λ1 = 1 and λ2 = 0 and corresponding eigenvectors

q1 =

[
1
0

]
and q2 =

[
0
1

]
. Hence Q =

[
q1 q2

]
= I2. Also A has rank 1 with singular values

σ1 = 1 and σ2 = 0, so ΣA =




1 0
0 0
0 0


= A and Σ′A =

[
1 0 0
0 0 0

]
= AT in this case.

Since Aq1 =




1
0
0


 and Aq2 =




0
0
0


, we have p1 =




1
0
0


 which extends to an orthonormal

basis {p1, p2, p3} of R3 where (say) p2 =




0
1
0


 and p3 =




0
0
1


. Hence

P =
[

p1 p2 p3

]
= I, so the SVD for A is A = PΣAQT . Finally, the pseudoinverse of A is

A+ = QΣ′APT = Σ′A =

[
1 0 0
0 0 0

]
. Note that A+ = AT in this case.

The following Lemma collects some properties of the pseudoinverse that mimic those of the inverse.
The verifications are left as exercises.

Lemma 8.6.7

Let A be an m×n matrix of rank r.

1. A++ = A.

2. If A is invertible then A+ = A−1.

3. (AT )+ = (A+)T .

4. (kA)+ = kA+ for any real k.

5. (UAV)+ =UT (A+)V T whenever U and V are orthogonal.
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Exercises for 8.6

Exercise 8.6.1 If ACA = A show that B =CAC is a mid-
dle inverse for A.

Exercise 8.6.2 For any matrix A show that

ΣAT = (ΣA)
T

Exercise 8.6.3 If A is m×n with all singular values pos-
itive, what is rank A?

Exercise 8.6.4 If A has singular values σ1, . . . , σr, what
are the singular values of:

ATa. tA where t > 0 is realb.

A−1 assuming A is invertible.c.

Exercise 8.6.5 If A is square show that det A is the prod-
uct of the singular values of A.

Exercise 8.6.6 If A is square and real, show that A = 0
if and only if every eigenvalue of A is 0.

Exercise 8.6.7 Given a SVD for an invertible matrix A,
find one for A−1. How are ΣA and ΣA−1 related?

Exercise 8.6.8 Let A−1 = A = AT where A is n× n.
Given any orthogonal n×n matrix U , find an orthogonal
matrix V such that A =UΣAV T is an SVD for A.

If A =

[
0 1
1 0

]
do this for:

U = 1
5

[
3 −4
4 3

]
a. U = 1√

2

[
1 −1
1 1

]
b.

Exercise 8.6.9 Find a SVD for the following matrices:

A =




1 −1
0 1
1 0


a.




1 1 1
−1 0 −2

1 2 0


b.

Exercise 8.6.10 Find an SVD for A =

[
0 1
−1 0

]
.

Exercise 8.6.11 If A =UΣV T is an SVD for A, find an
SVD for AT .

Exercise 8.6.12 Let A be a real, m×n matrix with pos-
itive singular values σ1, σ2, . . . , σr, and write

s(x) = (x−σ1)(x−σ2) · · · (x−σr)

a. Show that cAT A(x) = s(x)xn−r and
cAT A(c) = s(x)xm−r .

b. If m≤ n conclude that cAT A(x) = s(x)xn−m.

Exercise 8.6.13 If G is positive show that:

a. rG is positive if r ≥ 0

b. G+H is positive for any positive H .

Exercise 8.6.14 If G is positive and λ is an eigenvalue,
show that λ ≥ 0.

Exercise 8.6.15 If G is positive show that G = H2 for
some positive matrix H . [Hint: Preceding exercise and
Lemma 8.6.5]

Exercise 8.6.16 If A is n× n show that AAT and AT A

are similar. [Hint: Start with an SVD for A.]

Exercise 8.6.17 Find A+ if:

a. A =

[
1 2
−1 −2

]

b. A =




1 −1
0 0
1 −1




Exercise 8.6.18 Show that (A+)T = (AT )+.
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8.7 Complex Matrices

If A is an n×n matrix, the characteristic polynomial cA(x) is a polynomial of degree n and the eigenvalues
of A are just the roots of cA(x). In most of our examples these roots have been real numbers (in fact,
the examples have been carefully chosen so this will be the case!); but it need not happen, even when

the characteristic polynomial has real coefficients. For example, if A =

[
0 1
−1 0

]
then cA(x) = x2 + 1

has roots i and −i, where i is a complex number satisfying i2 = −1. Therefore, we have to deal with the
possibility that the eigenvalues of a (real) square matrix might be complex numbers.

In fact, nearly everything in this book would remain true if the phrase real number were replaced by
complex number wherever it occurs. Then we would deal with matrices with complex entries, systems
of linear equations with complex coefficients (and complex solutions), determinants of complex matrices,
and vector spaces with scalar multiplication by any complex number allowed. Moreover, the proofs of
most theorems about (the real version of) these concepts extend easily to the complex case. It is not our
intention here to give a full treatment of complex linear algebra. However, we will carry the theory far
enough to give another proof that the eigenvalues of a real symmetric matrix A are real (Theorem 5.5.7)
and to prove the spectral theorem, an extension of the principal axes theorem (Theorem 8.2.2).

The set of complex numbers is denoted C . We will use only the most basic properties of these numbers
(mainly conjugation and absolute values), and the reader can find this material in Appendix A.

If n≥ 1, we denote the set of all n-tuples of complex numbers by Cn. As with Rn, these n-tuples will
be written either as row or column matrices and will be referred to as vectors. We define vector operations
on Cn as follows:

(v1, v2, . . . , vn)+(w1, w2, . . . , wn) = (v1 +w1, v2 +w2, . . . , vn +wn)

u(v1, v2, . . . , vn) = (uv1, uv2, . . . , uvn) for u in C

With these definitions, Cn satisfies the axioms for a vector space (with complex scalars) given in Chapter 6.
Thus we can speak of spanning sets for Cn, of linearly independent subsets, and of bases. In all cases,
the definitions are identical to the real case, except that the scalars are allowed to be complex numbers. In
particular, the standard basis of Rn remains a basis of Cn, called the standard basis of Cn.

A matrix A =
[
ai j

]
is called a complex matrix if every entry ai j is a complex number. The notion of

conjugation for complex numbers extends to matrices as follows: Define the conjugate of A =
[
ai j

]
to be

the matrix
A =

[
ai j

]

obtained from A by conjugating every entry. Then (using Appendix A)

A+B = A+B and AB = A B

holds for all (complex) matrices of appropriate size.
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The Standard Inner Product

There is a natural generalization to Cn of the dot product in Rn.

Definition 8.15 Standard Inner Product in Rn

Given z = (z1, z2, . . . , zn) and w = (w1, w2, . . . , wn) in Cn, define their standard inner product

〈z, w〉 by
〈z, w〉= z1w1 + z2w2 + · · ·+ znwn = z ·w

where w is the conjugate of the complex number w.

Clearly, if z and w actually lie in Rn, then 〈z, w〉= z ·w is the usual dot product.

Example 8.7.1

If z = (2, 1− i, 2i, 3− i) and w = (1− i, −1, −i, 3+2i), then

〈z, w〉= 2(1+ i)+(1− i)(−1)+(2i)(i)+(3− i)(3−2i)= 6−6i

〈z, z〉= 2 ·2+(1− i)(1+ i)+(2i)(−2i)+(3− i)(3+ i)= 20

Note that 〈z, w〉 is a complex number in general. However, if w = z = (z1, z2, . . . , zn), the definition
gives 〈z, z〉 = |z1|2 + · · ·+ |zn|2 which is a nonnegative real number, equal to 0 if and only if z = 0. This
explains the conjugation in the definition of 〈z, w〉, and it gives (4) of the following theorem.

Theorem 8.7.1

Let z, z1, w, and w1 denote vectors in Cn, and let λ denote a complex number.

1. 〈z+ z1, w〉= 〈z, w〉+ 〈z1, w〉 and 〈z, w+w1〉= 〈z, w〉+ 〈z, w1〉.

2. 〈λz, w〉= λ 〈z, w〉 and 〈z, λw〉= λ 〈z, w〉.

3. 〈z, w〉= 〈w, z〉.

4. 〈z, z〉 ≥ 0, and 〈z, z〉= 0 if and only if z = 0.

Proof. We leave (1) and (2) to the reader (Exercise 8.7.10), and (4) has already been proved. To prove (3),
write z = (z1, z2, . . . , zn) and w = (w1, w2, . . . , wn). Then

〈w, z〉= (w1z1 + · · ·+wnzn) = w1z1 + · · ·+wnzn

= z1w1 + · · ·+ znwn = 〈z, w〉
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Definition 8.16 Norm and Length in Cn

As for the dot product on Rn, property (4) enables us to define the norm or length ‖z‖ of a vector
z = (z1, z2, . . . , zn) in Cn:

‖z‖=
√
〈z, z〉=

√
|z1|2 + |z2|2 + · · ·+ |zn|2

The only properties of the norm function we will need are the following (the proofs are left to the reader):

Theorem 8.7.2

If z is any vector in Cn, then

1. ‖z‖ ≥ 0 and ‖z‖= 0 if and only if z = 0.

2. ‖λz‖= |λ |‖z‖ for all complex numbers λ .

A vector u in Cn is called a unit vector if ‖u‖= 1. Property (2) in Theorem 8.7.2 then shows that if
z 6= 0 is any nonzero vector in Cn, then u = 1

‖z‖z is a unit vector.

Example 8.7.2

In C4, find a unit vector u that is a positive real multiple of z = (1− i, i, 2, 3+4i).

Solution. ‖z‖=
√

2+1+4+25 =
√

32 = 4
√

2, so take u = 1
4
√

2
z.

Transposition of complex matrices is defined just as in the real case, and the following notion is fun-
damental.

Definition 8.17 Conjugate Transpose in Cn

The conjugate transpose AH of a complex matrix A is defined by

AH = (A)T = (AT )

Observe that AH = AT when A is real.14

Example 8.7.3

[
3 1− i 2+ i

2i 5+2i −i

]H

=




3 −2i

1+ i 5−2i

2− i i




14Other notations for AH are A∗ and A†.
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The following properties of AH follow easily from the rules for transposition of real matrices and
extend these rules to complex matrices. Note the conjugate in property (3).

Theorem 8.7.3

Let A and B denote complex matrices, and let λ be a complex number.

1. (AH)H = A.

2. (A+B)H = AH +BH .

3. (λA)H = λAH .

4. (AB)H = BHAH .

Hermitian and Unitary Matrices

If A is a real symmetric matrix, it is clear that AH = A. The complex matrices that satisfy this condition
turn out to be the most natural generalization of the real symmetric matrices:

Definition 8.18 Hermitian Matrices

A square complex matrix A is called hermitian15if AH = A, equivalently if A = AT .

Hermitian matrices are easy to recognize because the entries on the main diagonal must be real, and the
“reflection” of each nondiagonal entry in the main diagonal must be the conjugate of that entry.

Example 8.7.4



3 i 2+ i

−i −2 −7
2− i −7 1


 is hermitian, whereas

[
1 i

i −2

]
and

[
1 i

−i i

]
are not.

The following Theorem extends Theorem 8.2.3, and gives a very useful characterization of hermitian
matrices in terms of the standard inner product in Cn.

Theorem 8.7.4

An n×n complex matrix A is hermitian if and only if

〈Az, w〉= 〈z, Aw〉
for all n-tuples z and w in Cn.

15The name hermitian honours Charles Hermite (1822–1901), a French mathematician who worked primarily in analysis and
is remembered as the first to show that the number e from calculus is transcendental—that is, e is not a root of any polynomial
with integer coefficients.
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Proof. If A is hermitian, we have AT = A. If z and w are columns in Cn, then 〈z, w〉= zT w, so

〈Az, w〉= (Az)T w = zT AT w = zT Aw = zT (Aw) = 〈z, Aw〉
To prove the converse, let e j denote column j of the identity matrix. If A =

[
ai j

]
, the condition gives

ai j = 〈ei, Ae j〉= 〈Aei, e j〉= ai j

Hence A = AT , so A is hermitian.

Let A be an n×n complex matrix. As in the real case, a complex number λ is called an eigenvalue of A

if Ax = λx holds for some column x 6= 0 in Cn. In this case x is called an eigenvector of A corresponding
to λ . The characteristic polynomial cA(x) is defined by

cA(x) = det (xI−A)

This polynomial has complex coefficients (possibly nonreal). However, the proof of Theorem 3.3.2 goes
through to show that the eigenvalues of A are the roots (possibly complex) of cA(x).

It is at this point that the advantage of working with complex numbers becomes apparent. The real
numbers are incomplete in the sense that the characteristic polynomial of a real matrix may fail to have
all its roots real. However, this difficulty does not occur for the complex numbers. The so-called funda-
mental theorem of algebra ensures that every polynomial of positive degree with complex coefficients has
a complex root. Hence every square complex matrix A has a (complex) eigenvalue. Indeed (Appendix A),
cA(x) factors completely as follows:

cA(x) = (x−λ1)(x−λ2) · · ·(x−λn)

where λ1, λ2, . . . , λn are the eigenvalues of A (with possible repetitions due to multiple roots).

The next result shows that, for hermitian matrices, the eigenvalues are actually real. Because symmet-
ric real matrices are hermitian, this re-proves Theorem 5.5.7. It also extends Theorem 8.2.4, which asserts
that eigenvectors of a symmetric real matrix corresponding to distinct eigenvalues are actually orthogonal.
In the complex context, two n-tuples z and w in Cn are said to be orthogonal if 〈z, w〉= 0.

Theorem 8.7.5

Let A denote a hermitian matrix.

1. The eigenvalues of A are real.

2. Eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

Proof. Let λ and µ be eigenvalues of A with (nonzero) eigenvectors z and w. Then Az= λz and Aw= µw,
so Theorem 8.7.4 gives

λ 〈z, w〉= 〈λz, w〉= 〈Az, w〉= 〈z, Aw〉= 〈z, µw〉= µ〈z, w〉 (8.6)

If µ = λ and w = z, this becomes λ 〈z, z〉 = λ 〈z, z〉. Because 〈z, z〉 = ‖z‖2 6= 0, this implies λ = λ .
Thus λ is real, proving (1). Similarly, µ is real, so equation (8.6) gives λ 〈z, w〉= µ〈z, w〉. If λ 6= µ , this
implies 〈z, w〉= 0, proving (2).

The principal axes theorem (Theorem 8.2.2) asserts that every real symmetric matrix A is orthogonally
diagonalizable—that is PT AP is diagonal where P is an orthogonal matrix (P−1 = PT ). The next theorem
identifies the complex analogs of these orthogonal real matrices.
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Definition 8.19 Orthogonal and Orthonormal Vectors in Cn

As in the real case, a set of nonzero vectors {z1, z2, . . . , zm} in Cn is called orthogonal if
〈zi, z j〉= 0 whenever i 6= j, and it is orthonormal if, in addition, ‖zi‖= 1 for each i.

Theorem 8.7.6

The following are equivalent for an n×n complex matrix A.

1. A is invertible and A−1 = AH .

2. The rows of A are an orthonormal set in Cn.

3. The columns of A are an orthonormal set in Cn.

Proof. If A =
[

c1 c2 · · · cn

]
is a complex matrix with jth column c j, then AT A =

[
〈ci, c j〉

]
, as in

Theorem 8.2.1. Now (1)⇔ (2) follows, and (1)⇔ (3) is proved in the same way.

Definition 8.20 Unitary Matrices

A square complex matrix U is called unitary if U−1 =UH .

Thus a real matrix is unitary if and only if it is orthogonal.

Example 8.7.5

The matrix A =

[
1+ i 1
1− i i

]
has orthogonal columns, but the rows are not orthogonal.

Normalizing the columns gives the unitary matrix 1
2

[
1+ i

√
2

1− i
√

2i

]
.

Given a real symmetric matrix A, the diagonalization algorithm in Section 3.3 leads to a procedure for
finding an orthogonal matrix P such that PT AP is diagonal (see Example 8.2.4). The following example
illustrates Theorem 8.7.5 and shows that the technique works for complex matrices.

Example 8.7.6

Consider the hermitian matrix A =

[
3 2+ i

2− i 7

]
. Find the eigenvalues of A, find two

orthonormal eigenvectors, and so find a unitary matrix U such that UHAU is diagonal.

Solution. The characteristic polynomial of A is

cA(x) = det (xI−A) = det

[
x−3 −2− i

−2+ i x−7

]
= (x−2)(x−8)
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Hence the eigenvalues are 2 and 8 (both real as expected), and corresponding eigenvectors are[
2+ i

−1

]
and

[
1

2− i

]
(orthogonal as expected). Each has length

√
6 so, as in the (real)

diagonalization algorithm, let U = 1√
6

[
2+ i 1
−1 2− i

]
be the unitary matrix with the normalized

eigenvectors as columns.

Then UHAU =

[
2 0
0 8

]
is diagonal.

Unitary Diagonalization

An n× n complex matrix A is called unitarily diagonalizable if UHAU is diagonal for some unitary
matrix U . As Example 8.7.6 suggests, we are going to prove that every hermitian matrix is unitarily
diagonalizable. However, with only a little extra effort, we can get a very important theorem that has this
result as an easy consequence.

A complex matrix is called upper triangular if every entry below the main diagonal is zero. We owe
the following theorem to Issai Schur.16

Theorem 8.7.7: Schur’s Theorem

If A is any n×n complex matrix, there exists a unitary matrix U such that

UHAU = T

is upper triangular. Moreover, the entries on the main diagonal of T are the eigenvalues
λ1, λ2, . . . , λn of A (including multiplicities).

Proof. We use induction on n. If n = 1, A is already upper triangular. If n > 1, assume the theorem is valid
for (n− 1)× (n− 1) complex matrices. Let λ1 be an eigenvalue of A, and let y1 be an eigenvector with
‖y1‖ = 1. Then y1 is part of a basis of Cn (by the analog of Theorem 6.4.1), so the (complex analog of
the) Gram-Schmidt process provides y2, . . . , yn such that {y1, y2, . . . , yn} is an orthonormal basis of Cn.
If U1 =

[
y1 y2 · · · yn

]
is the matrix with these vectors as its columns, then (see Lemma 5.4.3)

UH
1 AU1 =

[
λ1 X1

0 A1

]

in block form. Now apply induction to find a unitary (n−1)× (n−1) matrix W1 such that W H
1 A1W1 = T1

is upper triangular. Then U2 =

[
1 0
0 W1

]
is a unitary n× n matrix. Hence U = U1U2 is unitary (using

Theorem 8.7.6), and

UHAU =UH
2 (UH

1 AU1)U2

16Issai Schur (1875–1941) was a German mathematician who did fundamental work in the theory of representations of
groups as matrices.
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=

[
1 0
0 W H

1

][
λ1 X1

0 A1

][
1 0
0 W1

]
=

[
λ1 X1W1

0 T1

]

is upper triangular. Finally, A and UHAU = T have the same eigenvalues by (the complex version of)
Theorem 5.5.1, and they are the diagonal entries of T because T is upper triangular.

The fact that similar matrices have the same traces and determinants gives the following consequence
of Schur’s theorem.

Corollary 8.7.1

Let A be an n×n complex matrix, and let λ1, λ2, . . . , λn denote the eigenvalues of A, including
multiplicities. Then

det A = λ1λ2 · · ·λn and tr A = λ1 +λ2 + · · ·+λn

Schur’s theorem asserts that every complex matrix can be “unitarily triangularized.” However, we

cannot substitute “unitarily diagonalized” here. In fact, if A =

[
1 1
0 1

]
, there is no invertible complex

matrix U at all such that U−1AU is diagonal. However, the situation is much better for hermitian matrices.

Theorem 8.7.8: Spectral Theorem

If A is hermitian, there is a unitary matrix U such that UHAU is diagonal.

Proof. By Schur’s theorem, let UHAU = T be upper triangular where U is unitary. Since A is hermitian,
this gives

T H = (UHAU)H =UHAHUHH =UHAU = T

This means that T is both upper and lower triangular. Hence T is actually diagonal.

The principal axes theorem asserts that a real matrix A is symmetric if and only if it is orthogonally
diagonalizable (that is, PT AP is diagonal for some real orthogonal matrix P). Theorem 8.7.8 is the complex
analog of half of this result. However, the converse is false for complex matrices: There exist unitarily
diagonalizable matrices that are not hermitian.

Example 8.7.7

Show that the non-hermitian matrix A =

[
0 1
−1 0

]
is unitarily diagonalizable.

Solution. The characteristic polynomial is cA(x) = x2 +1. Hence the eigenvalues are i and −i, and

it is easy to verify that

[
i

−1

]
and

[
−1

i

]
are corresponding eigenvectors. Moreover, these

eigenvectors are orthogonal and both have length
√

2, so U = 1√
2

[
i −1
−1 i

]
is a unitary matrix
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such that UHAU =

[
i 0
0 −i

]
is diagonal.

There is a very simple way to characterize those complex matrices that are unitarily diagonalizable.
To this end, an n×n complex matrix N is called normal if NNH = NHN. It is clear that every hermitian

or unitary matrix is normal, as is the matrix

[
0 1
−1 0

]
in Example 8.7.7. In fact we have the following

result.

Theorem 8.7.9

An n×n complex matrix A is unitarily diagonalizable if and only if A is normal.

Proof. Assume first that UHAU = D, where U is unitary and D is diagonal. Then DDH = DHD as is
easily verified. Because DDH = UH(AAH)U and DHD = UH(AHA)U , it follows by cancellation that
AAH = AHA.

Conversely, assume A is normal—that is, AAH = AHA. By Schur’s theorem, let UHAU = T , where T

is upper triangular and U is unitary. Then T is normal too:

T T H =UH(AAH)U =UH(AHA)U = T HT

Hence it suffices to show that a normal n×n upper triangular matrix T must be diagonal. We induct on n;
it is clear if n = 1. If n > 1 and T =

[
ti j

]
, then equating (1, 1)-entries in T T H and T HT gives

|t11|2 + |t12|2 + · · ·+ |t1n|2 = |t11|2

This implies t12 = t13 = · · · = t1n = 0, so T =

[
t11 0
0 T1

]
in block form. Hence T =

[
t11 0
0 T H

1

]
so

T T H = T HT implies T1T H
1 = T1T H

1 . Thus T1 is diagonal by induction, and the proof is complete.

We conclude this section by using Schur’s theorem (Theorem 8.7.7) to prove a famous theorem about
matrices. Recall that the characteristic polynomial of a square matrix A is defined by cA(x) = det (xI−A),
and that the eigenvalues of A are just the roots of cA(x).

Theorem 8.7.10: Cayley-Hamilton Theorem17

If A is an n×n complex matrix, then cA(A) = 0; that is, A is a root of its characteristic polynomial.

Proof. If p(x) is any polynomial with complex coefficients, then p(P−1AP) = P−1p(A)P for any invertible
complex matrix P. Hence, by Schur’s theorem, we may assume that A is upper triangular. Then the
eigenvalues λ1, λ2, . . . , λn of A appear along the main diagonal, so

cA(x) = (x−λ1)(x−λ2)(x−λ3) · · ·(x−λn)

17Named after the English mathematician Arthur Cayley (1821–1895) and William Rowan Hamilton (1805–1865), an Irish
mathematician famous for his work on physical dynamics.
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Thus
cA(A) = (A−λ1I)(A−λ2I)(A−λ3I) · · ·(A−λnI)

Note that each matrix A−λiI is upper triangular. Now observe:

1. A−λ1I has zero first column because column 1 of A is (λ1, 0, 0, . . . , 0)T .

2. Then (A−λ1I)(A−λ2I) has the first two columns zero because the second column of (A−λ2I) is
(b, 0, 0, . . . , 0)T for some constant b.

3. Next (A−λ1I)(A−λ2I)(A−λ3I) has the first three columns zero because column 3 of (A−λ3I) is
(c, d, 0, . . . , 0)T for some constants c and d.

Continuing in this way we see that (A−λ1I)(A−λ2I)(A−λ3I) · · ·(A−λnI) has all n columns zero; that
is, cA(A) = 0.

Exercises for 8.7

Exercise 8.7.1 In each case, compute the norm of the
complex vector.

a. (1, 1− i, −2, i)

b. (1− i, 1+ i, 1, −1)

c. (2+ i, 1− i, 2, 0, −i)

d. (−2, −i, 1+ i, 1− i, 2i)

Exercise 8.7.2 In each case, determine whether the two
vectors are orthogonal.

a. (4, −3i, 2+ i), (i, 2, 2−4i)

b. (i, −i, 2+ i), (i, i, 2− i)

c. (1, 1, i, i), (1, i, −i, 1)

d. (4+4i, 2+ i, 2i), (−1+ i, 2, 3−2i)

Exercise 8.7.3 A subset U of Cn is called a complex

subspace of Cn if it contains 0 and if, given v and w in
U , both v+w and zv lie in U (z any complex number).
In each case, determine whether U is a complex subspace
of C3.

a. U = {(w, w, 0) | w in C}

b. U = {(w, 2w, a) | w in C, a in R}

c. U = R3

d. U = {(v+w, v−2w, v) | v, w in C}

Exercise 8.7.4 In each case, find a basis over C, and
determine the dimension of the complex subspace U of
C3 (see the previous exercise).

a. U = {(w, v+w, v− iw) | v, w in C}

b. U = {(iv+w, 0, 2v−w) | v, w in C}

c. U = {(u, v, w) | iu−3v+(1− i)w = 0;
u, v, w in C}

d. U = {(u, v, w) | 2u+(1+ i)v− iw = 0;
u, v, w in C}

Exercise 8.7.5 In each case, determine whether the
given matrix is hermitian, unitary, or normal.

[
1 −i

i i

]
a.

[
2 3
−3 2

]
b.

[
1 i

−i 2

]
c.

[
1 −i

i −1

]
d.

1√
2

[
1 −1
1 1

]
e.

[
1 1+ i

1+ i i

]
f.
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[
1+ i 1
−i −1+ i

]
g. 1√

2|z|

[
z z

z −z

]
, z 6= 0h.

Exercise 8.7.6 Show that a matrix N is normal if and
only if NNT = NT N.

Exercise 8.7.7 Let A =

[
z v

v w

]
where v, w, and z are

complex numbers. Characterize in terms of v, w, and z

when A is

hermitiana. unitaryb.

normal.c.

Exercise 8.7.8 In each case, find a unitary matrix U

such that UHAU is diagonal.

a. A =

[
1 i

−i 1

]

b. A =

[
4 3− i

3+ i 1

]

c. A =

[
a b

−b a

]
; a, b, real

d. A =

[
2 1+ i

1− i 3

]

e. A =




1 0 1+ i

0 2 0
1− i 0 0




f. A =




1 0 0
0 1 1+ i

0 1− i 2




Exercise 8.7.9 Show that 〈Ax, y〉= 〈x, AHy〉 holds for
all n×n matrices A and for all n-tuples x and y in Cn.

Exercise 8.7.10

a. Prove (1) and (2) of Theorem 8.7.1.

b. Prove Theorem 8.7.2.

c. Prove Theorem 8.7.3.

Exercise 8.7.11

a. Show that A is hermitian if and only if A = AT .

b. Show that the diagonal entries of any hermitian
matrix are real.

Exercise 8.7.12

a. Show that every complex matrix Z can be written
uniquely in the form Z = A+ iB, where A and B

are real matrices.

b. If Z = A + iB as in (a), show that Z is hermi-
tian if and only if A is symmetric, and B is skew-
symmetric (that is, BT =−B).

Exercise 8.7.13 If Z is any complex n×n matrix, show
that ZZH and Z +ZH are hermitian.

Exercise 8.7.14 A complex matrix B is called skew-

hermitian if BH =−B.

a. Show that Z−ZH is skew-hermitian for any square
complex matrix Z.

b. If B is skew-hermitian, show that B2 and iB are
hermitian.

c. If B is skew-hermitian, show that the eigenvalues
of B are pure imaginary (iλ for real λ ).

d. Show that every n× n complex matrix Z can be
written uniquely as Z = A+B, where A is hermi-
tian and B is skew-hermitian.

Exercise 8.7.15 Let U be a unitary matrix. Show that:

a. ‖Ux‖= ‖x‖ for all columns x in Cn.

b. |λ |= 1 for every eigenvalue λ of U .
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Exercise 8.7.16

a. If Z is an invertible complex matrix, show that ZH

is invertible and that (ZH)−1 = (Z−1)H .

b. Show that the inverse of a unitary matrix is again
unitary.

c. If U is unitary, show that UH is unitary.

Exercise 8.7.17 Let Z be an m× n matrix such that
ZHZ = In (for example, Z is a unit column in Cn).

a. Show that V = ZZH is hermitian and satisfies
V 2 =V .

b. Show that U = I− 2ZZH is both unitary and her-
mitian (so U−1 =UH =U ).

Exercise 8.7.18

a. If N is normal, show that zN is also normal for all
complex numbers z.

b. Show that (a) fails if normal is replaced by hermi-

tian.

Exercise 8.7.19 Show that a real 2×2 normal matrix is

either symmetric or has the form

[
a b

−b a

]
.

Exercise 8.7.20 If A is hermitian, show that all the co-
efficients of cA(x) are real numbers.

Exercise 8.7.21

a. If A=

[
1 1
0 1

]
, show that U−1AU is not diagonal

for any invertible complex matrix U .

b. If A =

[
0 1
−1 0

]
, show that U−1AU is not upper

triangular for any real invertible matrix U .

Exercise 8.7.22 If A is any n× n matrix, show that
UHAU is lower triangular for some unitary matrix U .

Exercise 8.7.23 If A is a 3 × 3 matrix, show that
A2 = 0 if and only if there exists a unitary matrix U

such that UHAU has the form




0 0 u

0 0 v

0 0 0


 or the form




0 u v

0 0 0
0 0 0


.

Exercise 8.7.24 If A2 = A, show that rank A = tr A.
[Hint: Use Schur’s theorem.]

Exercise 8.7.25 Let A be any n× n complex matrix
with eigenvalues λ1, . . . , λn. Show that A = P + N

where Nn = 0 and P = UDUT where U is unitary and
D = diag (λ1, . . . , λn). [Hint: Schur’s theorem]

8.8 An Application to Linear Codes over Finite Fields

For centuries mankind has been using codes to transmit messages. In many cases, for example transmit-
ting financial, medical, or military information, the message is disguised in such a way that it cannot be
understood by an intruder who intercepts it, but can be easily “decoded” by the intended receiver. This
subject is called cryptography and, while intriguing, is not our focus here. Instead, we investigate methods
for detecting and correcting errors in the transmission of the message.

The stunning photos of the planet Saturn sent by the space probe are a very good example of how
successful these methods can be. These messages are subject to “noise” such as solar interference which
causes errors in the message. The signal is received on Earth with errors that must be detected and cor-
rected before the high-quality pictures can be printed. This is done using error-correcting codes. To see
how, we first discuss a system of adding and multiplying integers while ignoring multiples of a fixed
integer.
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Modular Arithmetic

We work in the set Z= {0, ±1, ±2, ±3, . . .} of integers, that is the set of whole numbers. Everyone is
familiar with the process of “long division” from arithmetic. For example, we can divide an integer a by 5
and leave a remainder “modulo 5” in the set {0, 1, 2, 3, 4}. As an illustration

19 = 3 ·5+4

so the remainder of 19 modulo 5 is 4. Similarly, the remainder of 137 modulo 5 is 2 because we have
137 = 27 ·5+2. This works even for negative integers: For example,

−17 = (−4) ·5+3

so the remainder of −17 modulo 5 is 3.

This process is called the division algorithm. More formally, let n≥ 2 denote an integer. Then every
integer a can be written uniquely in the form

a = qn+ r where q and r are integers and 0≤ r ≤ n−1

Here q is called the quotient of a modulo n, and r is called the remainder of a modulo n. We refer to n

as the modulus. Thus, if n = 6, the fact that 134 = 22 ·6+2 means that 134 has quotient 22 and remainder
2 modulo 6.

Our interest here is in the set of all possible remainders modulo n. This set is denoted

Zn = {0, 1, 2, 3, . . . , n−1}

and is called the set of integers modulo n. Thus every integer is uniquely represented in Zn by its remain-
der modulo n.

We are going to show how to do arithmetic in Zn by adding and multiplying modulo n. That is, we
add or multiply two numbers in Zn by calculating the usual sum or product in Z and taking the remainder
modulo n. It is proved in books on abstract algebra that the usual laws of arithmetic hold in Zn for any
modulus n ≥ 2. This seems remarkable until we remember that these laws are true for ordinary addition
and multiplication and all we are doing is reducing modulo n.

To illustrate, consider the case n = 6, so that Z6 = {0, 1, 2, 3, 4, 5}. Then 2+5 = 1 in Z6 because 7
leaves a remainder of 1 when divided by 6. Similarly, 2 · 5 = 4 in Z6, while 3+5 = 2, and 3+3 = 0. In
this way we can fill in the addition and multiplication tables for Z6; the result is:

Tables for Z6

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1
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Calculations in Z6 are carried out much as in Z . As an illustration, consider the familiar “distributive law”
a(b+ c) = ab+ ac from ordinary arithmetic. This holds for all a, b, and c in Z6; we verify a particular
case:

3(5+4) = 3 ·5+3 ·4 in Z6

In fact, the left side is 3(5+ 4) = 3 · 3 = 3, and the right side is (3 · 5)+ (3 · 4) = 3+ 0 = 3 too. Hence
doing arithmetic in Z6 is familiar. However, there are differences. For example, 3 ·4 = 0 in Z6, in contrast
to the fact that a ·b = 0 in Z can only happen when either a = 0 or b = 0. Similarly, 32 = 3 in Z6, unlike
Z.

Note that we will make statements like −30 = 19 in Z7; it means that −30 and 19 leave the same
remainder 5 when divided by 7, and so are equal in Z7 because they both equal 5. In general, if n ≥ 2 is
any modulus, the operative fact is that

a = b in Zn if and only if a−b is a multiple of n

In this case we say that a and b are equal modulo n, and write a = b(mod n).

Arithmetic in Zn is, in a sense, simpler than that for the integers. For example, consider negatives.
Given the element 8 in Z17, what is −8? The answer lies in the observation that 8+ 9 = 0 in Z17, so
−8 = 9 (and −9 = 8). In the same way, finding negatives is not difficult in Zn for any modulus n.

Finite Fields

In our study of linear algebra so far the scalars have been real (possibly complex) numbers. The set R
of real numbers has the property that it is closed under addition and multiplication, that the usual laws of
arithmetic hold, and that every nonzero real number has an inverse in R. Such a system is called a field.
Hence the real numbers R form a field, as does the set C of complex numbers. Another example is the set
Q of all rational numbers (fractions); however the set Z of integers is not a field—for example, 2 has no
inverse in the set Z because 2 · x = 1 has no solution x in Z .

Our motivation for isolating the concept of a field is that nearly everything we have done remains valid
if the scalars are restricted to some field: The gaussian algorithm can be used to solve systems of linear
equations with coefficients in the field; a square matrix with entries from the field is invertible if and only
if its determinant is nonzero; the matrix inversion algorithm works in the same way; and so on. The reason
is that the field has all the properties used in the proofs of these results for the field R, so all the theorems
remain valid.

It turns out that there are finite fields—that is, finite sets that satisfy the usual laws of arithmetic and in
which every nonzero element a has an inverse, that is an element b in the field such that ab = 1. If n≥ 2 is
an integer, the modular system Zn certainly satisfies the basic laws of arithmetic, but it need not be a field.
For example we have 2 · 3 = 0 in Z6 so 3 has no inverse in Z6 (if 3a = 1 then 2 = 2 · 1 = 2(3a) = 0a = 0
in Z6, a contradiction). The problem is that 6 = 2 ·3 can be properly factored in Z.

An integer p≥ 2 is called a prime if p cannot be factored as p = ab where a and b are positive integers
and neither a nor b equals 1. Thus the first few primes are 2, 3, 5, 7, 11, 13, 17, . . . . If n ≥ 2 is not a
prime and n = ab where 2 ≤ a, b ≤ n− 1, then ab = 0 in Zn and it follows (as above in the case n = 6)
that b cannot have an inverse in Zn, and hence that Zn is not a field. In other words, if Zn is a field, then n

must be a prime. Surprisingly, the converse is true:
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Theorem 8.8.1

If p is a prime, then Zp is a field using addition and multiplication modulo p.

The proof can be found in books on abstract algebra.18 If p is a prime, the field Zp is called the field of

integers modulo p.

For example, consider the case n = 5. Then Z5 = {0, 1, 2, 3, 4} and the addition and multiplication
tables are:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Hence 1 and 4 are self-inverse in Z5, and 2 and 3 are inverses of each other, so Z5 is indeed a field. Here
is another important example.

Example 8.8.1

If p = 2, then Z2 = {0, 1} is a field with addition and multiplication modulo 2 given by the tables

+ 0 1
0 0 1
1 1 0

and
× 0 1
0 0 0
1 0 1

This is binary arithmetic, the basic algebra of computers.

While it is routine to find negatives of elements of Zp, it is a bit more difficult to find inverses in Zp.
For example, how does one find 14−1 in Z17? Since we want 14−1 · 14 = 1 in Z17, we are looking for an
integer a with the property that a ·14= 1 modulo 17. Of course we can try all possibilities in Z17 (there are
only 17 of them!), and the result is a = 11 (verify). However this method is of little use for large primes
p, and it is a comfort to know that there is a systematic procedure (called the euclidean algorithm) for
finding inverses in Zp for any prime p. Furthermore, this algorithm is easy to program for a computer. To
illustrate the method, let us once again find the inverse of 14 in Z17.

Example 8.8.2

Find the inverse of 14 in Z17.

Solution. The idea is to first divide p = 17 by 14:

17 = 1 ·14+3

Now divide (the previous divisor) 14 by the new remainder 3 to get

14 = 4 ·3+2

18See, for example, W. Keith Nicholson, Introduction to Abstract Algebra, 4th ed., (New York: Wiley, 2012).
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and then divide (the previous divisor) 3 by the new remainder 2 to get

3 = 1 ·2+1

It is a theorem of number theory that, because 17 is a prime, this procedure will always lead to a
remainder of 1. At this point we eliminate remainders in these equations from the bottom up:

1 = 3−1 ·2 since 3 = 1 ·2+1

= 3−1 · (14−4 ·3) = 5 ·3−1 ·14 since 2 = 14−4 ·3
= 5 · (17−1 ·14)−1 ·14= 5 ·17−6 ·14 since 3 = 17−1 ·14

Hence (−6) ·14 = 1 in Z17, that is, 11 ·14 = 1. So 14−1 = 11 in Z17.

As mentioned above, nearly everything we have done with matrices over the field of real numbers can
be done in the same way for matrices with entries from Zp. We illustrate this with one example. Again
the reader is referred to books on abstract algebra.

Example 8.8.3

Determine if the matrix A =

[
1 4
6 5

]
from Z7 is invertible and, if so, find its inverse.

Solution. Working in Z7 we have det A = 1 ·5−6 ·4 = 5−3 = 2 6= 0 in Z7, so A is invertible.

Hence Example 2.4.4 gives A−1 = 2−1

[
5 −4
−6 1

]
. Note that 2−1 = 4 in Z7 (because 2 ·4 = 1 in

Z7). Note also that −4 = 3 and −6 = 1 in Z7, so finally A−1 = 4

[
5 3
1 1

]
=

[
6 5
4 4

]
. The reader

can verify that indeed

[
1 4
6 5

][
6 5
4 4

]
=

[
1 0
0 1

]
in Z7.

While we shall not use them, there are finite fields other than Zp for the various primes p. Surprisingly,
for every prime p and every integer n ≥ 1, there exists a field with exactly pn elements, and this field is
unique.19 It is called the Galois field of order pn, and is denoted GF(pn).

19See, for example, W. K. Nicholson, Introduction to Abstract Algebra, 4th ed., (New York: Wiley, 2012).
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Error Correcting Codes

Coding theory is concerned with the transmission of information over a channel that is affected by noise.
The noise causes errors, so the aim of the theory is to find ways to detect such errors and correct at least
some of them. General coding theory originated with the work of Claude Shannon (1916–2001) who
showed that information can be transmitted at near optimal rates with arbitrarily small chance of error.

Let F denote a finite field and, if n≥ 1, let

Fn denote the F-vector space of 1×n row matrices over F

with the usual componentwise addition and scalar multiplication. In this context, the rows in Fn are
called words (or n-words) and, as the name implies, will be written as [a b c d] = abcd. The individual
components of a word are called its digits. A nonempty subset C of Fn is called a code (or an n-code),
and the elements in C are called code words. If F = Z2, these are called binary codes.

If a code word w is transmitted and an error occurs, the resulting word v is decoded as the code word
“closest” to v in Fn. To make sense of what “closest” means, we need a distance function on Fn analogous
to that in Rn (see Theorem 5.3.3). The usual definition in Rn does not work in this situation. For example,
if w = 1111 in (Z2)

4 then the square of the distance of w from 0 is

(1−0)2+(1−0)2 +(1−0)2+(1−0)2 = 0

even though w 6= 0.

However there is a satisfactory notion of distance in Fn due to Richard Hamming (1915–1998). Given
a word w = a1a2 · · ·an in Fn, we first define the Hamming weight wt(w) to be the number of nonzero
digits in w:

wt(w) = wt(a1a2 · · ·an) = |{i | ai 6= 0}|
Clearly, 0≤ wt(w) ≤ n for every word w in Fn. Given another word v = b1b2 · · ·bn in Fn, the Hamming

distance d(v, w) between v and w is defined by

d(v, w) = wt(v−w) = |{i | bi 6= ai}|

In other words, d(v, w) is the number of places at which the digits of v and w differ. The next result
justifies using the term distance for this function d.

Theorem 8.8.2

Let u, v, and w denote words in Fn. Then:

1. d(v, w)≥ 0.

2. d(v, w) = 0 if and only if v = w.

3. d(v, w) = d(w, v).

4. d(v, w)≤ d(v, u)+d(u, w)
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Proof. (1) and (3) are clear, and (2) follows because wt(v) = 0 if and only if v = 0. To prove (4), write
x = v−u and y = u−w. Then (4) reads wt(x+y)≤ wt(x)+wt(y). If x = a1a2 · · ·an and y = b1b2 · · ·bn,
this follows because ai +bi 6= 0 implies that either ai 6= 0 or bi 6= 0.

Given a word w in Fn and a real number r > 0, define the ball Br(w) of radius r (or simply the r-ball)
about w as follows:

Br(w) = {x ∈ Fn | d(w, x)≤ r}
Using this we can describe one of the most useful decoding methods.

Nearest Neighbour Decoding

Let C be an n-code, and suppose a word v is transmitted and w is received. Then w is decoded as
the code word in C closest to it. (If there is a tie, choose arbitrarily.)

Using this method, we can describe how to construct a code C that can detect (or correct) t errors.
Suppose a code word c is transmitted and a word w is received with s errors where 1 ≤ s ≤ t. Then s is
the number of places at which the c- and w-digits differ, that is, s = d(c, w). Hence Bt(c) consists of all
possible received words where at most t errors have occurred.

Assume first that C has the property that no code word lies in the t-ball of another code word. Because
w is in Bt(c) and w 6= c, this means that w is not a code word and the error has been detected. If we
strengthen the assumption on C to require that the t-balls about code words are pairwise disjoint, then w

belongs to a unique ball (the one about c), and so w will be correctly decoded as c.

To describe when this happens, let C be an n-code. The minimum distance d of C is defined to be the
smallest distance between two distinct code words in C; that is,

d = min{d(v, w) | v and w in C;v 6= w}

Theorem 8.8.3

Let C be an n-code with minimum distance d. Assume that nearest neighbour decoding is used.
Then:

1. If t < d, then C can detect t errors.20

2. If 2t < d, then C can correct t errors.

Proof.
1. Let c be a code word in C. If w ∈ Bt(c), then d(w, c) ≤ t < d by hypothesis. Thus the t-ball Bt(c)

contains no other code word, so C can detect t errors by the preceding discussion.

2. If 2t < d, it suffices (again by the preceding discussion) to show that the t-balls about distinct code
words are pairwise disjoint. But if c 6= c′ are code words in C and w is in Bt(c

′)∩ Bt(c), then
Theorem 8.8.2 gives

d(c, c′)≤ d(c, w)+d(w, c′)≤ t + t = 2t < d

by hypothesis, contradicting the minimality of d.

20We say that C detects (corrects) t errors if C can detect (or correct) t or fewer errors.
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Example 8.8.4

If F = Z3 = {0, 1, 2}, the 6-code {111111, 111222, 222111} has minimum distance 3 and so can
detect 2 errors and correct 1 error.

Let c be any word in Fn. A word w satisfies d(w, c) = r if and only if w and c differ in exactly r digits.
If |F| = q, there are exactly

(
n
r

)
(q−1)r such words where

(
n
r

)
is the binomial coefficient. Indeed, choose

the r places where they differ in
(

n
r

)
ways, and then fill those places in w in (q−1)r ways. It follows that

the number of words in the t-ball about c is

|Bt(c)|=
(

n
0

)
+
(

n
1

)
(q−1)+

(
n
2

)
(q−1)2 + · · ·+

(
n
t

)
(q−1)t = ∑t

i=0

(
n
i

)
(q−1)i

This leads to a useful bound on the size of error-correcting codes.

Theorem 8.8.4: Hamming Bound

Let C be an n-code over a field F that can correct t errors using nearest neighbour decoding. If
|F|= q, then

|C| ≤ qn

∑t
i=0 (

n
i)(q−1)i

Proof. Write k = ∑t
i=0

(
n
i

)
(q− 1)i. The t-balls centred at distinct code words each contain k words, and

there are |C| of them. Moreover they are pairwise disjoint because the code corrects t errors (see the
discussion preceding Theorem 8.8.3). Hence they contain k · |C| distinct words, and so k · |C| ≤ |Fn|= qn,
proving the theorem.

A code is called perfect if there is equality in the Hamming bound; equivalently, if every word in Fn

lies in exactly one t-ball about a code word. For example, if F = Z2, n = 3, and t = 1, then q = 2 and(3
0

)
+
(3

1

)
= 4, so the Hamming bound is 23

4 = 2. The 3-code C = {000, 111} has minimum distance 3 and
so can correct 1 error by Theorem 8.8.3. Hence C is perfect.

Linear Codes

Up to this point we have been regarding any nonempty subset of the F-vector space Fn as a code. However
many important codes are actually subspaces. A subspace C ⊆ Fn of dimension k ≥ 1 over F is called an
(n, k)-linear code, or simply an (n, k)-code. We do not regard the zero subspace (that is, k = 0) as a code.

Example 8.8.5

If F = Z2 and n≥ 2, the n-parity-check code is constructed as follows: An extra digit is added to
each word in Fn−1 to make the number of 1s in the resulting word even (we say such words have
even parity). The resulting (n, n−1)-code is linear because the sum of two words of even parity
again has even parity.

Many of the properties of general codes take a simpler form for linear codes. The following result gives
a much easier way to find the minimal distance of a linear code, and sharpens the results in Theorem 8.8.3.
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Theorem 8.8.5

Let C be an (n, k)-code with minimum distance d over a finite field F , and use nearest neighbour
decoding.

1. d = min{wt(w) | 0 6= w ∈C}.

2. C can detect t ≥ 1 errors if and only if t < d.

3. C can correct t ≥ 1 errors if and only if 2t < d.

4. If C can correct t ≥ 1 errors and |F|= q, then
(

n
0

)
+
(

n
1

)
(q−1)+

(
n
2

)
(q−1)2+ · · ·+

(
n
t

)
(q−1)t ≤ qn−k

Proof.

1. Write d′ = min{wt(w) | 0 6= w in C}. If v 6= w are words in C, then d(v, w) = wt(v−w) ≥ d′

because v−w is in the subspace C. Hence d ≥ d′. Conversely, given w 6= 0 in C then, since 0 is in
C, we have wt(w) = d(w, 0)≥ d by the definition of d. Hence d′ ≥ d and (1) is proved.

2. Assume that C can detect t errors. Given w 6= 0 in C, the t-ball Bt(w) about w contains no other
code word (see the discussion preceding Theorem 8.8.3). In particular, it does not contain the code
word 0, so t < d(w, 0) = wt(w). Hence t < d by (1). The converse is part of Theorem 8.8.3.

3. We require a result of interest in itself.

Claim. Suppose c in C has wt(c)≤ 2t. Then Bt(0)∩Bt(c) is nonempty.

Proof. If wt(c)≤ t, then c itself is in Bt(0)∩Bt(c). So assume t < wt(c)≤ 2t. Then c has more than
t nonzero digits, so we can form a new word w by changing exactly t of these nonzero digits to zero.
Then d(w, c) = t, so w is in Bt(c). But wt(w) = wt(c)− t ≤ t, so w is also in Bt(0). Hence w is in
Bt(0)∩Bt(c), proving the Claim.

If C corrects t errors, the t-balls about code words are pairwise disjoint (see the discussion preceding
Theorem 8.8.3). Hence the claim shows that wt(c)> 2t for all c 6= 0 in C, from which d > 2t by (1).
The other inequality comes from Theorem 8.8.3.

4. We have |C|= qk because dim F C = k, so this assertion restates Theorem 8.8.4.

Example 8.8.6

If F = Z2, then

C = {0000000, 0101010, 1010101, 1110000, 1011010, 0100101, 0001111, 1111111}

is a (7, 3)-code; in fact C = span{0101010, 1010101, 1110000}. The minimum distance for C is
3, the minimum weight of a nonzero word in C.
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Matrix Generators

Given a linear n-code C over a finite field F , the way encoding works in practice is as follows. A message
stream is blocked off into segments of length k≤ n called messages. Each message u in Fk is encoded as a
code word, the code word is transmitted, the receiver decodes the received word as the nearest code word,
and then re-creates the original message. A fast and convenient method is needed to encode the incoming
messages, to decode the received word after transmission (with or without error), and finally to retrieve
messages from code words. All this can be achieved for any linear code using matrix multiplication.

Let G denote a k×n matrix over a finite field F , and encode each message u in Fk as the word uG in
Fn using matrix multiplication (thinking of words as rows). This amounts to saying that the set of code
words is the subspace C = {uG | u in Fk} of Fn. This subspace need not have dimension k for every
k×n matrix G. But, if {e1, e2, . . . , ek} is the standard basis of Fk, then eiG is row i of G for each I and
{e1G, e2G, . . . , ekG} spans C. Hence dim C = k if and only if the rows of G are independent in Fn, and
these matrices turn out to be exactly the ones we need. For reference, we state their main properties in
Lemma 8.8.1 below (see Theorem 5.4.4).

Lemma 8.8.1

The following are equivalent for a k×n matrix G over a finite field F:

1. rank G = k.

2. The columns of G span Fk.

3. The rows of G are independent in Fn.

4. The system GX = B is consistent for every column B in Rk.

5. GK = Ik for some n× k matrix K.

Proof. (1)⇒ (2). This is because dim (col G) = k by (1).

(2)⇒ (4). G
[

x1 · · · xn

]T
= x1c1 + · · ·+ xncn where c j is column j of G.

(4)⇒ (5). G
[

k1 · · · kk

]
=
[

Gk1 · · · Gkk

]
for columns k j.

(5) ⇒ (3). If a1R1 + · · ·+ akRk = 0 where Ri is row i of G, then
[

a1 · · · ak

]
G = 0, so by (5),[

a1 · · · ak

]
= 0. Hence each ai = 0, proving (3).

(3)⇒ (1). rank G = dim ( row G) = k by (3).

Note that Theorem 5.4.4 asserts that, over the real field R, the properties in Lemma 8.8.1 hold if and only if

GGT is invertible. But this need not be true in general. For example, if F = Z2 and G =

[
1 0 1 0
0 1 0 1

]
,

then GGT = 0. The reason is that the dot product w ·w can be zero for w in Fn even if w 6= 0. However,
even though GGT is not invertible, we do have GK = I2 for some 4×2 matrix K over F as Lemma 8.8.1

asserts (in fact, K =

[
1 0 0 0
0 1 0 0

]T

is one such matrix).
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Let C ⊆ Fn be an (n, k)-code over a finite field F . If {w1, . . . , wk} is a basis of C, let G =




w1
...

wk




be the k×n matrix with the wi as its rows. Let {e1, . . . , ek} is the standard basis of Fk regarded as rows.
Then wi = eiG for each i, so C = span{w1, . . . , wk}= span{e1G, . . . , ekG}. It follows (verify) that

C = {uG | u in Fk}

Because of this, the k×n matrix G is called a generator of the code C, and G has rank k by Lemma 8.8.1
because its rows wi are independent.

In fact, every linear code C in Fn has a generator of a simple, convenient form. If G is a generator
matrix for C, let R be the reduced row-echelon form of G. We claim that C is also generated by R. Since
G→ R by row operations, Theorem 2.5.1 shows that these same row operations

[
G Ik

]
→
[

R W
]
,

performed on
[

G Ik

]
, produce an invertible k×k matrix W such that R=WG. Then C = {uR | u in Fk}.

[In fact, if u is in Fk, then uG = u1R where u1 = uW−1 is in Fk, and uR = u2G where u2 = uW is in Fk].
Thus R is a generator of C, so we may assume that G is in reduced row-echelon form.

In that case, G has no row of zeros (since rank G = k) and so contains all the columns of Ik. Hence a
series of column interchanges will carry G to the block form G′′ =

[
Ik A

]
for some k× (n− k) matrix

A. Hence the code C′′ = {uG′′ | u in Fk} is essentially the same as C; the code words in C′′ are obtained
from those in C by a series of column interchanges. Hence if C is a linear (n, k)-code, we may (and shall)
assume that the generator matrix G has the form

G =
[

Ik A
]

for some k× (n− k) matrix A

Such a matrix is called a standard generator, or a systematic generator, for the code C. In this case,
if u is a message word in Fk, the first k digits of the encoded word uG are just the first k digits of u, so
retrieval of u from uG is very simple indeed. The last n− k digits of uG are called parity digits.

Parity-Check Matrices

We begin with an important theorem about matrices over a finite field.

Theorem 8.8.6

Let F be a finite field, let G be a k×n matrix of rank k, let H be an (n−k)×n matrix of rank n−k,
and let C = {uG | u in Fk} and D = {vH | V in Fn−k} be the codes they generate. Then the
following conditions are equivalent:

1. GHT = 0.

2. HGT = 0.

3. C = {w in Fn | wHT = 0}.

4. D = {w in Fn | wGT = 0}.

Proof. First, (1)⇔ (2) holds because HGT and GHT are transposes of each other.
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(1)⇒ (3) Consider the linear transformation T : Fn→ Fn−k defined by T (w) = wHT for all w in Fn.
To prove (3) we must show that C = ker T . We have C⊆ ker T by (1) because T (uG) = uGHT = 0 for all
u in Fk. Since dim C = rank G = k, it is enough (by Theorem 6.4.2) to show dim (ker T ) = k. However
the dimension theorem (Theorem 7.2.4) shows that dim (ker T ) = n− dim ( im T ), so it is enough to show
that dim ( im T ) = n− k. But if R1, . . . , Rn are the rows of HT , then block multiplication gives

im T = {wHT | w in Rn}= span{R1, . . . , Rn}= row (HT )

Hence dim ( im T ) = rank (HT ) = rank H = n− k, as required. This proves (3).

(3)⇒ (1) If u is in Fk, then uG is in C so, by (3), u(GHT ) = (uG)HT = 0. Since u is arbitrary in Fk,
it follows that GHT = 0.

(2)⇔ (4) The proof is analogous to (1)⇔ (3).

The relationship between the codes C and D in Theorem 8.8.6 will be characterized in another way in the
next subsection.

If C is an (n, k)-code, an (n−k)×n matrix H is called a parity-check matrix for C if C = {w |wHT = 0}
as in Theorem 8.8.6. Such matrices are easy to find for a given code C. If G =

[
Ik A

]
is a standard

generator for C where A is k× (n− k), the (n− k)×n matrix

H =
[
−AT In−k

]

is a parity-check matrix for C. Indeed, rank H = n− k because the rows of H are independent (due to the
presence of In−k), and

GHT =
[

Ik A
][ −A

In−k

]
=−A+A = 0

by block multiplication. Hence H is a parity-check matrix for C and we have C = {w in Fn | wHT = 0}.
Since wHT and HwT are transposes of each other, this shows that C can be characterized as follows:

C = {w in Fn | HwT = 0}

by Theorem 8.8.6.

This is useful in decoding. The reason is that decoding is done as follows: If a code word c is trans-
mitted and v is received, then z = v− c is called the error. Since HcT = 0, we have HzT = HvT and this
word

s = HzT = HvT

is called the syndrome. The receiver knows v and s = HvT , and wants to recover c. Since c = v− z, it is
enough to find z. But the possibilities for z are the solutions of the linear system

HzT = s

where s is known. Now recall that Theorem 2.2.3 shows that these solutions have the form z = x+s where
x is any solution of the homogeneous system HxT = 0, that is, x is any word in C (by Lemma 8.8.1). In
other words, the errors z are the elements of the set

C+ s = {c+ s | c in C}

The set C+ s is called a coset of C. Let |F|= q. Since |C+ s|= |C|= qn−k the search for z is reduced
from qn possibilities in Fn to qn−k possibilities in C+ s. This is called syndrome decoding, and various
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methods for improving efficiency and accuracy have been devised. The reader is referred to books on
coding for more details.21

Orthogonal Codes

Let F be a finite field. Given two words v = a1a2 · · ·an and w = b1b2 · · ·bn in Fn, the dot product v ·w is
defined (as in Rn) by

v ·w = a1b1 +a2b2 + · · ·+anbn

Note that v ·w is an element of F , and it can be computed as a matrix product: v ·w = vwT .

If C ⊆ Fn is an (n, k)-code, the orthogonal complement C⊥ is defined as in Rn:

C⊥ = {v in Fn | v · c = 0 for all c in C}

This is easily seen to be a subspace of Fn, and it turns out to be an (n, n− k)-code. This follows when
F = R because we showed (in the projection theorem) that n = dim U⊥+ dim U for any subspace U of
Rn. However the proofs break down for a finite field F because the dot product in Fn has the property that
w ·w = 0 can happen even if w 6= 0. Nonetheless, the result remains valid.

Theorem 8.8.7

Let C be an (n, k)-code over a finite field F , let G =
[

Ik A
]

be a standard generator for C where
A is k× (n− k), and write H =

[
−AT In−k

]
for the parity-check matrix. Then:

1. H is a generator of C⊥.

2. dim (C⊥) = n− k = rank H.

3. C⊥⊥ =C and dim (C⊥)+ dim C = n.

Proof. As in Theorem 8.8.6, let D = {vH | v in Fn−k} denote the code generated by H. Observe first that,
for all w in Fn and all u in Fk, we have

w · (uG) = w(uG)T = w(GT uT ) = (wGT ) ·u

Since C = {uG | u in Fk}, this shows that w is in C⊥ if and only if (wGT ) ·u = 0 for all u in Fk; if and
only if22 wGT = 0; if and only if w is in D (by Theorem 8.8.6). Thus C⊥ = D and a similar argument
shows that D⊥ =C.

1. H generates C⊥ because C⊥ = D = {vH | v in Fn−k}.

2. This follows from (1) because, as we observed above, rank H = n− k.

3. Since C⊥ = D and D⊥ = C, we have C⊥⊥ = (C⊥)⊥ = D⊥ = C. Finally the second equation in (3)
restates (2) because dim C = k.

21For an elementary introduction, see V. Pless, Introduction to the Theory of Error-Correcting Codes, 3rd ed., (New York:
Wiley, 1998).

22If v ·u = 0 for every u in Fk, then v = 0—let u range over the standard basis of Fk.
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We note in passing that, if C is a subspace of Rk, we have C +C⊥ = Rk by the projection theorem
(Theorem 8.1.3), and C ∩C⊥ = {0} because any vector x in C ∩C⊥ satisfies ‖x‖2 = x · x = 0. How-
ever, this fails in general. For example, if F = Z2 and C = span{1010, 0101} in F4 then C⊥ = C, so
C+C⊥ =C =C∩C⊥.

We conclude with one more example. If F = Z2, consider the standard matrix G below, and the
corresponding parity-check matrix H:

G =




1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1


 and H =




1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1




The code C = {uG | u in F4} generated by G has dimension k = 4, and is called the Hamming (7, 4)-code.
The vectors in C are listed in the first table below. The dual code generated by H has dimension n− k = 3
and is listed in the second table.

u uG

0000 0000000
0001 0001011
0010 0010101
0011 0011110
0100 0100110
0101 0101101
0110 0110011

C : 0111 0111000
1000 1000111
1001 1001100
1010 1010010
1011 1011001
1100 1100001
1101 1101010
1110 1110100
1111 1111111

v vH

000 0000000
001 1011001
010 1101010

C⊥ : 011 0110011
100 1110100
101 0101101
110 0011110
111 1000111

Clearly each nonzero code word in C has weight at least 3, so C has minimum distance d = 3. Hence C

can detect two errors and correct one error by Theorem 8.8.5. The dual code has minimum distance 4 and
so can detect 3 errors and correct 1 error.
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Exercises for 8.8

Exercise 8.8.1 Find all a in Z10 such that:

a. a2 = a.

b. a has an inverse (and find the inverse).

c. ak = 0 for some k ≥ 1.

d. a = 2k for some k ≥ 1.

e. a = b2 for some b in Z10.

Exercise 8.8.2

a. Show that if 3a = 0 in Z10, then necessarily a = 0
in Z10.

b. Show that 2a = 0 in Z10 holds in Z10 if and only
if a = 0 or a = 5.

Exercise 8.8.3 Find the inverse of:

8 in Z13;a. 11 in Z19.b.

Exercise 8.8.4 If ab = 0 in a field F , show that either
a = 0 or b = 0.

Exercise 8.8.5 Show that the entries of the last column
of the multiplication table of Zn are

0, n−1, n−2, . . . , 2, 1

in that order.

Exercise 8.8.6 In each case show that the matrix A is
invertible over the given field, and find A−1.

a. A =

[
1 4
2 1

]
over Z5.

b. A =

[
5 6
4 3

]
over Z7.

Exercise 8.8.7 Consider the linear system
3x + y + 4z = 3
4x + 3y + z = 1

. In each case solve the system by

reducing the augmented matrix to reduced row-echelon
form over the given field:

Z5a. Z7b.

Exercise 8.8.8 Let K be a vector space over Z2 with ba-
sis {1, t}, so K = {a+bt | a, b, in Z2}. It is known that
K becomes a field of four elements if we define t2 = 1+t.
Write down the multiplication table of K.

Exercise 8.8.9 Let K be a vector space over Z3 with ba-
sis {1, t}, so K = {a+bt | a, b, in Z3}. It is known that
K becomes a field of nine elements if we define t2 = −1
in Z3. In each case find the inverse of the element x of K:

x = 1+2ta. x = 1+ tb.

Exercise 8.8.10 How many errors can be detected or
corrected by each of the following binary linear codes?

a. C = {0000000, 0011110, 0100111, 0111001,
1001011, 1010101, 1101100, 1110010}

b. C = {0000000000, 0010011111, 0101100111,
0111111000, 1001110001, 1011101110,
1100010110, 1110001001}

Exercise 8.8.11

a. If a binary linear (n, 2)-code corrects one error,
show that n≥ 5. [Hint: Hamming bound.]

b. Find a (5, 2)-code that corrects one error.

Exercise 8.8.12

a. If a binary linear (n, 3)-code corrects two errors,
show that n≥ 9. [Hint: Hamming bound.]

b. If G =




1 0 0 1 1 1 1 0 0 0
0 1 0 1 1 0 0 1 1 0
0 0 1 1 0 1 0 1 1 1


,

show that the binary (10, 3)-code generated by
G corrects two errors. [It can be shown that no
binary (9, 3)-code corrects two errors.]

Exercise 8.8.13

a. Show that no binary linear (4, 2)-code can correct
single errors.
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b. Find a binary linear (5, 2)-code that can correct
one error.

Exercise 8.8.14 Find the standard generator matrix G

and the parity-check matrix H for each of the following
systematic codes:

a. {00000, 11111} over Z2.

b. Any systematic (n, 1)-code where n≥ 2.

c. The code in Exercise 8.8.10(a).

d. The code in Exercise 8.8.10(b).

Exercise 8.8.15 Let c be a word in Fn. Show that
Bt(c) = c+Bt(0), where we write

c+Bt(0) = {c+v | v in Bt(0)}

Exercise 8.8.16 If a (n, k)-code has two standard gen-
erator matrices G and G1, show that G = G1.

Exercise 8.8.17 Let C be a binary linear n-code (over
Z2). Show that either each word in C has even weight, or
half the words in C have even weight and half have odd
weight. [Hint: The dimension theorem.]

8.9 An Application to Quadratic Forms

An expression like x2
1 + x2

2 + x2
3− 2x1x3 + x2x3 is called a quadratic form in the variables x1, x2, and x3.

In this section we show that new variables y1, y2, and y3 can always be found so that the quadratic form,
when expressed in terms of the new variables, has no cross terms y1y2, y1y3, or y2y3. Moreover, we do this
for forms involving any finite number of variables using orthogonal diagonalization. This has far-reaching
applications; quadratic forms arise in such diverse areas as statistics, physics, the theory of functions of
several variables, number theory, and geometry.

Definition 8.21 Quadratic Form

A quadratic form q in the n variables x1, x2, . . . , xn is a linear combination of terms
x2

1, x2
2, . . . , x2

n, and cross terms x1x2, x1x3, x2x3, . . . .

If n = 3, q has the form

q = a11x2
1 +a22x2

2 +a33x2
3 +a12x1x2 +a21x2x1 +a13x1x3 +a31x3x1 +a23x2x3 +a32x3x2

In general
q = a11x2

1 +a22x2
2 + · · ·+annx2

n +a12x1x2 +a13x1x3 + · · ·
This sum can be written compactly as a matrix product

q = q(x) = xT Ax

where x = (x1, x2, . . . , xn) is thought of as a column, and A =
[
ai j

]
is a real n× n matrix. Note that if

i 6= j, two separate terms ai jxix j and a jix jxi are listed, each of which involves xix j, and they can (rather
cleverly) be replaced by

1
2(ai j +a ji)xix j and 1

2(ai j +a ji)x jxi

respectively, without altering the quadratic form. Hence there is no loss of generality in assuming that xix j

and x jxi have the same coefficient in the sum for q. In other words, we may assume that A is symmetric.
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Example 8.9.1

Write q = x2
1 +3x2

3 +2x1x2− x1x3 in the form q(x) = xT Ax, where A is a symmetric 3×3 matrix.

Solution. The cross terms are 2x1x2 = x1x2 + x2x1 and −x1x3 =−1
2x1x3− 1

2x3x1.
Of course, x2x3 and x3x2 both have coefficient zero, as does x2

2. Hence

q(x) =
[

x1 x2 x3
]



1 1 −1
2

1 0 0
−1

2 0 3






x1

x2

x3




is the required form (verify).

We shall assume from now on that all quadratic forms are given by

q(x) = xT Ax

where A is symmetric. Given such a form, the problem is to find new variables y1, y2, . . . , yn, related to
x1, x2, . . . , xn, with the property that when q is expressed in terms of y1, y2, . . . , yn, there are no cross
terms. If we write

y = (y1, y2, . . . , yn)
T

this amounts to asking that q= yT Dy where D is diagonal. It turns out that this can always be accomplished
and, not surprisingly, that D is the matrix obtained when the symmetric matrix A is orthogonally diagonal-
ized. In fact, as Theorem 8.2.2 shows, a matrix P can be found that is orthogonal (that is, P−1 = PT ) and
diagonalizes A:

PT AP = D =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn




The diagonal entries λ1, λ2, . . . , λn are the (not necessarily distinct) eigenvalues of A, repeated according
to their multiplicities in cA(x), and the columns of P are corresponding (orthonormal) eigenvectors of A.
As A is symmetric, the λi are real by Theorem 5.5.7.

Now define new variables y by the equations

x = Py equivalently y = PT x

Then substitution in q(x) = xT Ax gives

q = (Py)T A(Py) = yT (PT AP)y = yT Dy = λ1y2
1 +λ2y2

2 + · · ·+λny2
n

Hence this change of variables produces the desired simplification in q.

Theorem 8.9.1: Diagonalization Theorem

Let q = xT Ax be a quadratic form in the variables x1, x2, . . . , xn, where x = (x1, x2, . . . , xn)
T and

A is a symmetric n×n matrix. Let P be an orthogonal matrix such that PT AP is diagonal, and
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define new variables y = (y1, y2, . . . , yn)
T by

x = Py equivalently y = PT x

If q is expressed in terms of these new variables y1, y2, . . . , yn, the result is

q = λ1y2
1 +λ2y2

2 + · · ·+λny2
n

where λ1, λ2, . . . , λn are the eigenvalues of A repeated according to their multiplicities.

Let q = xT Ax be a quadratic form where A is a symmetric matrix and let λ1, . . . , λn be the (real) eigen-
values of A repeated according to their multiplicities. A corresponding set {f1, . . . , fn} of orthonormal
eigenvectors for A is called a set of principal axes for the quadratic form q. (The reason for the name
will become clear later.) The orthogonal matrix P in Theorem 8.9.1 is given as P =

[
f1 · · · fn

]
, so the

variables X and Y are related by

x = Py =
[

f1 f2 · · · fn

]




y1

y2
...

yn


= y1f1 + y2f2 + · · ·+ ynfn

Thus the new variables yi are the coefficients when x is expanded in terms of the orthonormal basis
{f1, . . . , fn} of Rn. In particular, the coefficients yi are given by yi = x · fi by the expansion theorem
(Theorem 5.3.6). Hence q itself is easily computed from the eigenvalues λi and the principal axes fi:

q = q(x) = λ1(x · f1)
2 + · · ·+λn(x · fn)

2

Example 8.9.2

Find new variables y1, y2, y3, and y4 such that

q = 3(x2
1 + x2

2 + x2
3 + x2

4)+2x1x2−10x1x3 +10x1x4 +10x2x3−10x2x4 +2x3x4

has diagonal form, and find the corresponding principal axes.

Solution. The form can be written as q = xT Ax, where

x =




x1

x2

x3

x4


 and A =




3 1 −5 5
1 3 5 −5
−5 5 3 1

5 −5 1 3




A routine calculation yields

cA(x) = det (xI−A) = (x−12)(x+8)(x−4)2

so the eigenvalues are λ1 = 12, λ2 =−8, and λ3 = λ4 = 4. Corresponding orthonormal
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eigenvectors are the principal axes:

f1 =
1
2




1
−1
−1

1


 f2 =

1
2




1
−1

1
−1


 f3 =

1
2




1
1
1
1


 f4 =

1
2




1
1
−1
−1




The matrix

P =
[

f1 f2 f3 f4
]
= 1

2




1 1 1 1
−1 −1 1 1
−1 1 1 −1

1 −1 1 −1




is thus orthogonal, and P−1AP = PT AP is diagonal. Hence the new variables y and the old
variables x are related by y = PT x and x = Py. Explicitly,

y1 =
1
2(x1− x2− x3 + x4) x1 =

1
2(y1 + y2 + y3 + y4)

y2 =
1
2(x1− x2 + x3− x4) x2 =

1
2(−y1− y2 + y3 + y4)

y3 =
1
2(x1 + x2 + x3 + x4) x3 =

1
2(−y1 + y2 + y3− y4)

y4 =
1
2(x1 + x2− x3− x4) x4 =

1
2(y1− y2 + y3− y4)

If these xi are substituted in the original expression for q, the result is

q = 12y2
1−8y2

2 +4y2
3 +4y2

4

This is the required diagonal form.

It is instructive to look at the case of quadratic forms in two variables x1 and x2. Then the principal
axes can always be found by rotating the x1 and x2 axes counterclockwise about the origin through an
angle θ . This rotation is a linear transformation Rθ : R2→ R2, and it is shown in Theorem 2.6.4 that Rθ

has matrix P =

[
cosθ −sinθ
sinθ cosθ

]
. If {e1, e2} denotes the standard basis of R2, the rotation produces a

new basis {f1, f2} given by

f1 = Rθ (e1) =

[
cosθ
sinθ

]
and f2 = Rθ (e2) =

[
−sinθ

cosθ

]
(8.7)

y1

y2

θ

O x1

x2
p

y1
y2

x1

x2
Given a point p =

[
x1

x2

]
= x1e1 + x2e2 in the original system, let y1

and y2 be the coordinates of p in the new system (see the diagram). That
is, [

x1

x2

]
= p = y1f1 + y2f2 =

[
cosθ −sinθ
sinθ cosθ

][
y1

y2

]
(8.8)

Writing x =

[
x1

x2

]
and y =

[
y1

y2

]
, this reads x = Py so, since P is or-

thogonal, this is the change of variables formula for the rotation as in Theorem 8.9.1.
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If r 6= 0 6= s, the graph of the equation rx2
1 + sx2

2 = 1 is called an ellipse if rs > 0 and a hyperbola if
rs < 0. More generally, given a quadratic form

q = ax2
1 +bx1x2 + cx2

2 where not all of a, b, and c are zero

the graph of the equation q = 1 is called a conic. We can now completely describe this graph. There are
two special cases which we leave to the reader.

1. If exactly one of a and c is zero, then the graph of q = 1 is a parabola.

So we assume that a 6= 0 and c 6= 0. In this case, the description depends on the quantity b2−4ac, called
the discriminant of the quadratic form q.

2. If b2−4ac = 0, then either both a≥ 0 and c≥ 0, or both a≤ 0 and c≤ 0.
Hence q = (

√
ax1 +

√
cx2)

2 or q = (
√
−ax1 +

√
−cx2)

2, so the graph of q = 1 is a pair of straight

lines in either case.

So we also assume that b2− 4ac 6= 0. But then the next theorem asserts that there exists a rotation of
the plane about the origin which transforms the equation ax2

1 +bx1x2 + cx2
2 = 1 into either an ellipse or a

hyperbola, and the theorem also provides a simple way to decide which conic it is.

Theorem 8.9.2

Consider the quadratic form q = ax2
1 +bx1x2 + cx2

2 where a, c, and b2−4ac are all nonzero.

1. There is a counterclockwise rotation of the coordinate axes about the origin such that, in the
new coordinate system, q has no cross term.

2. The graph of the equation
ax2

1 +bx1x2 + cx2
2 = 1

is an ellipse if b2−4ac < 0 and an hyperbola if b2−4ac > 0.

Proof. If b = 0, q already has no cross term and (1) and (2) are clear. So assume b 6= 0. The matrix

A =

[
a 1

2b
1
2b c

]
of q has characteristic polynomial cA(x) = x2 − (a+ c)x− 1

4(b
2− 4ac). If we write

d =
√

b2 +(a− c)2 for convenience; then the quadratic formula gives the eigenvalues

λ1 =
1
2 [a+ c−d] and λ2 =

1
2 [a+ c+d]

with corresponding principal axes

f1 =
1√

b2+(a−c−d)2

[
a− c−d

b

]
and

f2 =
1√

b2+(a−c−d)2

[
−b

a− c−d

]
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as the reader can verify. These agree with equation (8.7) above if θ is an angle such that

cosθ = a−c−d√
b2+(a−c−d)2

and sinθ = b√
b2+(a−c−d)2

Then P =
[

f1 f2
]
=

[
cosθ −sinθ
sinθ cosθ

]
diagonalizes A and equation (8.8) becomes the formula x = Py

in Theorem 8.9.1. This proves (1).

Finally, A is similar to

[
λ1 0
0 λ2

]
so λ1λ2 = det A = 1

4(4ac−b2). Hence the graph of λ1y2
1+λ2y2

2 = 1

is an ellipse if b2 < 4ac and an hyperbola if b2 > 4ac. This proves (2).

Example 8.9.3

Consider the equation x2 + xy+ y2 = 1. Find a rotation so that the equation has no cross term.

Solution.

y1

y2

3π
4

x1

x2 Here a = b = c = 1 in the notation of Theorem 8.9.2, so
cosθ = −1√

2
and sinθ = 1√

2
. Hence θ = 3π

4 will do it. The new

variables are y1 =
1√
2
(x2− x1) and y2 =

−1√
2
(x2 + x1) by (8.8),

and the equation becomes y2
1 +3y2

2 = 2. The angle θ has been
chosen such that the new y1 and y2 axes are the axes of symmetry

of the ellipse (see the diagram). The eigenvectors f1 =
1√
2

[
−1

1

]

and f2 =
1√
2

[
−1
−1

]
point along these axes of symmetry, and

this is the reason for the name principal axes.

The determinant of any orthogonal matrix P is either 1 or −1 (because PPT = I). The orthogonal

matrices

[
cosθ −sinθ
sinθ cosθ

]
arising from rotations all have determinant 1. More generally, given any

quadratic form q = xT Ax, the orthogonal matrix P such that PT AP is diagonal can always be chosen so
that det P = 1 by interchanging two eigenvalues (and hence the corresponding columns of P). It is shown
in Theorem 10.4.4 that orthogonal 2× 2 matrices with determinant 1 correspond to rotations. Similarly,
it can be shown that orthogonal 3× 3 matrices with determinant 1 correspond to rotations about a line
through the origin. This extends Theorem 8.9.2: Every quadratic form in two or three variables can be
diagonalized by a rotation of the coordinate system.
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Congruence

We return to the study of quadratic forms in general.

Theorem 8.9.3

If q(x) = xT Ax is a quadratic form given by a symmetric matrix A, then A is uniquely determined
by q.

Proof. Let q(x) = xT Bx for all x where BT = B. If C = A−B, then CT =C and xTCx = 0 for all x. We
must show that C = 0. Given y in Rn,

0 = (x+y)TC(x+y) = xTCx+xTCy+yTCx+yTCy

= xTCy+yTCx

But yTCx = (xTCy)T = xTCy (it is 1×1). Hence xTCy = 0 for all x and y in Rn. If e j is column j of
In, then the (i, j)-entry of C is eT

i Ce j = 0. Thus C = 0.

Hence we can speak of the symmetric matrix of a quadratic form.

On the other hand, a quadratic form q in variables xi can be written in several ways as a linear combi-
nation of squares of new variables, even if the new variables are required to be linear combinations of the
xi. For example, if q = 2x2

1−4x1x2 + x2
2 then

q = 2(x1− x2)
2− x2

2 and q =−2x2
1 +(2x1− x2)

2

The question arises: How are these changes of variables related, and what properties do they share? To
investigate this, we need a new concept.

Let a quadratic form q = q(x) = xT Ax be given in terms of variables x = (x1, x2, . . . , xn)
T . If the new

variables y = (y1, y2, . . . , yn)
T are to be linear combinations of the xi, then y = Ax for some n×n matrix

A. Moreover, since we want to be able to solve for the xi in terms of the yi, we ask that the matrix A be
invertible. Hence suppose U is an invertible matrix and that the new variables y are given by

y =U−1x, equivalently x =Uy

In terms of these new variables, q takes the form

q = q(x) = (Uy)T A(Uy) = yT (UT AU)y

That is, q has matrix UT AU with respect to the new variables y. Hence, to study changes of variables
in quadratic forms, we study the following relationship on matrices: Two n× n matrices A and B are
called congruent, written A

c∼ B, if B =UT AU for some invertible matrix U . Here are some properties of
congruence:

1. A
c∼ A for all A.

2. If A
c∼ B, then B

c∼ A.
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3. If A
c∼ B and B

c∼C, then A
c∼C.

4. If A
c∼ B, then A is symmetric if and only if B is symmetric.

5. If A
c∼ B, then rank A = rank B.

The converse to (5) can fail even for symmetric matrices.

Example 8.9.4

The symmetric matrices A =

[
1 0
0 1

]
and B =

[
1 0
0 −1

]
have the same rank but are not

congruent. Indeed, if A
c∼ B, an invertible matrix U exists such that B =UT AU =UTU . But then

−1 = det B = (det U)2, a contradiction.

The key distinction between A and B in Example 8.9.4 is that A has two positive eigenvalues (counting
multiplicities) whereas B has only one.

Theorem 8.9.4: Sylvester’s Law of Inertia

If A
c∼ B, then A and B have the same number of positive eigenvalues, counting multiplicities.

The proof is given at the end of this section.

The index of a symmetric matrix A is the number of positive eigenvalues of A. If q = q(x) = xT Ax

is a quadratic form, the index and rank of q are defined to be, respectively, the index and rank of the
matrix A. As we saw before, if the variables expressing a quadratic form q are changed, the new matrix is
congruent to the old one. Hence the index and rank depend only on q and not on the way it is expressed.

Now let q = q(x) = xT Ax be any quadratic form in n variables, of index k and rank r, where A is
symmetric. We claim that new variables z can be found so that q is completely diagonalized—that is,

q(z) = z2
1 + · · ·+ z2

k− z2
k+1−·· ·− z2

r

If k≤ r≤ n, let Dn(k, r) denote the n×n diagonal matrix whose main diagonal consists of k ones, followed
by r− k minus ones, followed by n− r zeros. Then we seek new variables z such that

q(z) = zT Dn(k, r)z

To determine z, first diagonalize A as follows: Find an orthogonal matrix P0 such that

PT
0 AP0 = D = diag (λ1, λ2, . . . , λr, 0, . . . , 0)

is diagonal with the nonzero eigenvalues λ1, λ2, . . . , λr of A on the main diagonal (followed by n− r

zeros). By reordering the columns of P0, if necessary, we may assume that λ1, . . . , λk are positive and
λk+1, . . . , λr are negative. This being the case, let D0 be the n×n diagonal matrix

D0 = diag

(
1√
λ1

, . . . , 1√
λk

, 1√
−λk+1

, . . . , 1√
−λr

, 1, . . . , 1

)
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Then DT
0 DD0 = Dn(k, r), so if new variables z are given by x = (P0D0)z, we obtain

q(z) = zT Dn(k, r)z = z2
1 + · · ·+ z2

k− z2
k+1−·· ·− z2

r

as required. Note that the change-of-variables matrix P0D0 from z to x has orthogonal columns (in fact,
scalar multiples of the columns of P0).

Example 8.9.5

Completely diagonalize the quadratic form q in Example 8.9.2 and find the index and rank .

Solution. In the notation of Example 8.9.2, the eigenvalues of the matrix A of q are 12, −8, 4, 4; so
the index is 3 and the rank is 4. Moreover, the corresponding orthogonal eigenvectors are f1, f2, f3

(see Example 8.9.2), and f4. Hence P0 =
[

f1 f3 f4 f2
]

is orthogonal and

PT
0 AP0 = diag (12, 4, 4, −8)

As before, take D0 = diag ( 1√
12

, 1
2 , 1

2 , 1√
8
) and define the new variables z by x = (P0D0)z. Hence

the new variables are given by z = D−1
0 PT

0 x. The result is

z1 =
√

3(x1− x2− x3 + x4)

z2 = x1 + x2 + x3 + x4

z3 = x1 + x2− x3− x4

z4 =
√

2(x1− x2 + x3− x4)

This discussion gives the following information about symmetric matrices.

Theorem 8.9.5

Let A and B be symmetric n×n matrices, and let 0≤ k ≤ r ≤ n.

1. A has index k and rank r if and only if A
c∼ Dn(k, r).

2. A
c∼ B if and only if they have the same rank and index.

Proof.

1. If A has index k and rank r, take U = P0D0 where P0 and D0 are as described prior to Example 8.9.5.
Then UT AU = Dn(k, r). The converse is true because Dn(k, r) has index k and rank r (using
Theorem 8.9.4).

2. If A and B both have index k and rank r, then A
c∼ Dn(k, r)

c∼ B by (1). The converse was given
earlier.
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Proof of Theorem 8.9.4.

By Theorem 8.9.1, A
c∼ D1 and B

c∼ D2 where D1 and D2 are diagonal and have the same eigenvalues as A

and B, respectively. We have D1
c∼D2, (because A

c∼ B), so we may assume that A and B are both diagonal.
Consider the quadratic form q(x) = xT Ax. If A has k positive eigenvalues, q has the form

q(x) = a1x2
1 + · · ·+akx2

k−ak+1x2
k+1−·· ·−arx

2
r , ai > 0

where r = rank A = rank B. The subspace W1 = {x | xk+1 = · · ·= xr = 0} of Rn has dimension n− r+ k

and satisfies q(x)> 0 for all x 6= 0 in W1.

On the other hand, if B =UT AU , define new variables y by x =Uy. If B has k′ positive eigenvalues, q

has the form
q(x) = b1y2

1 + · · ·+bk′y
2
k′−bk′+1y2

k′+1−·· ·−bry
2
r , bi > 0

Let f1, . . . , fn denote the columns of U . They are a basis of Rn and

x =Uy =
[

f1 · · · fn

]



y1
...

yn


= y1f1 + · · ·+ ynfn

Hence the subspace W2 = span{fk′+1, . . . , fr} satisfies q(x)< 0 for all x 6= 0 in W2. Note dim W2 = r−k′.
It follows that W1 and W2 have only the zero vector in common. Hence, if B1 and B2 are bases of W1 and
W2, respectively, then (Exercise 6.3.33) B1∪B2 is an independent set of (n− r+ k)+(r− k′) = n+ k− k′

vectors in Rn. This implies that k ≤ k′, and a similar argument shows k′ ≤ k.

Exercises for 8.9

Exercise 8.9.1 In each case, find a symmetric matrix A

such that q = xT Bx takes the form q = xT Ax.

[
1 1
0 1

]
a.

[
1 1
−1 2

]
b.




1 0 1
1 1 0
0 1 1


c.




1 2 −1
4 1 0
5 −2 3


d.

Exercise 8.9.2 In each case, find a change of variables
that will diagonalize the quadratic form q. Determine the
index and rank of q.

a. q = x2
1 +2x1x2 + x2

2

b. q = x2
1 +4x1x2 + x2

2

c. q = x2
1 + x2

2 + x2
3−4(x1x2 + x1x3 + x2x3)

d. q = 7x2
1 + x2

2 + x2
3 +8x1x2 +8x1x3−16x2x3

e. q = 2(x2
1 + x2

2 + x2
3− x1x2 + x1x3− x2x3)

f. q = 5x2
1 +8x2

2 +5x2
3−4(x1x2 +2x1x3 + x2x3)

g. q = x2
1− x2

3−4x1x2 +4x2x3

h. q = x2
1 + x2

3−2x1x2 +2x2x3

Exercise 8.9.3 For each of the following, write the equa-
tion in terms of new variables so that it is in standard
position, and identify the curve.

xy = 1a. 3x2−4xy = 2b.

6x2 +6xy−2y2 = 5c. 2x2 +4xy+5y2 = 1d.
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Exercise 8.9.4 Consider the equation ax2 +bxy+ cy2 =
d, where b 6= 0. Introduce new variables x1 and y1 by
rotating the axes counterclockwise through an angle θ .
Show that the resulting equation has no x1y1-term if θ is
given by

cos 2θ = a−c√
b2+(a−c)2

sin2θ = b√
b2+(a−c)2

[Hint: Use equation (8.8) preceding Theorem 8.9.2
to get x and y in terms of x1 and y1, and substitute.]

Exercise 8.9.5 Prove properties (1)–(5) preceding Ex-
ample 8.9.4.

Exercise 8.9.6 If A
c∼ B show that A is invertible if and

only if B is invertible.

Exercise 8.9.7 If x = (x1, . . . , xn)
T is a column of vari-

ables, A = AT is n× n, B is 1× n, and c is a constant,
xT Ax+Bx= c is called a quadratic equation in the vari-
ables xi.

a. Show that new variables y1, . . . , yn can be found
such that the equation takes the form

λ1y2
1 + · · ·+λry

2
r + k1y1 + · · ·+ knyn = c

b. Put x2
1 +3x2

2 +3x2
3+4x1x2−4x1x3+5x1−6x3 = 7

in this form and find variables y1, y2, y3 as in (a).

Exercise 8.9.8 Given a symmetric matrix A, define
qA(x) = xT Ax. Show that B

c∼ A if and only if B is
symmetric and there is an invertible matrix U such that
qB(x) = qA(Ux) for all x. [Hint: Theorem 8.9.3.]

Exercise 8.9.9 Let q(x) = xT Ax be a quadratic form
where A = AT .

a. Show that q(x)> 0 for all x 6= 0, if and only if A is
positive definite (all eigenvalues are positive). In
this case, q is called positive definite.

b. Show that new variables y can be found such that
q = ‖y‖2 and y = Ux where U is upper triangu-
lar with positive diagonal entries. [Hint: Theo-
rem 8.3.3.]

Exercise 8.9.10 A bilinear form β on Rn is a function
that assigns to every pair x, y of columns in Rn a number
β (x, y) in such a way that

β (rx+ sy, z) = rβ (x, z)+ sβ (y, z)

β (x, ry+ sz) = rβ (x, z)+ sβ (x, z)

for all x, y, z in Rn and r, s in R. If β (x, y) = β (y, x) for
all x, y, β is called symmetric.

a. If β is a bilinear form, show that an n× n matrix
A exists such that β (x, y) = xT Ay for all x, y.

b. Show that A is uniquely determined by β .

c. Show that β is symmetric if and only if A = AT .

8.10 An Application to Constrained Optimization

It is a frequent occurrence in applications that a function q = q(x1, x2, . . . , xn) of n variables, called an
objective function, is to be made as large or as small as possible among all vectors x = (x1, x2, . . . , xn)
lying in a certain region of Rn called the feasible region. A wide variety of objective functions q arise in
practice; our primary concern here is to examine one important situation where q is a quadratic form. The
next example gives some indication of how such problems arise.
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Example 8.10.1

O √
3

c = 1

c = 2

5x2
1 +3x2

2 ≤ 15

1 2

1

2

√
5

x1

x2

A politician proposes to spend x1 dollars annually on health
care and x2 dollars annually on education. She is constrained
in her spending by various budget pressures, and one model of this
is that the expenditures x1 and x2 should satisfy a constraint like

5x2
1 +3x2

2 ≤ 15

Since xi ≥ 0 for each i, the feasible region is the shaded area
shown in the diagram. Any choice of feasible point (x1, x2) in this
region will satisfy the budget constraints. However, these choices
have different effects on voters, and the politician wants to choose

x = (x1, x2) to maximize some measure q = q(x1, x2) of voter satisfaction. Thus the assumption is
that, for any value of c, all points on the graph of q(x1, x2) = c have the same appeal to voters.
Hence the goal is to find the largest value of c for which the graph of q(x1, x2) = c contains a
feasible point.
The choice of the function q depends upon many factors; we will show how to solve the problem
for any quadratic form q (even with more than two variables). In the diagram the function q is
given by

q(x1, x2) = x1x2

and the graphs of q(x1, x2) = c are shown for c = 1 and c = 2. As c increases the graph of
q(x1, x2) = c moves up and to the right. From this it is clear that there will be a solution for some
value of c between 1 and 2 (in fact the largest value is c = 1

2

√
15 = 1.94 to two decimal places).

The constraint 5x2
1 +3x2

2 ≤ 15 in Example 8.10.1 can be put in a standard form. If we divide through

by 15, it becomes
(

x1√
3

)2
+
(

x2√
5

)2
≤ 1. This suggests that we introduce new variables y = (y1, y2) where

y1 =
x1√

3
and y2 =

x2√
5
. Then the constraint becomes ‖y‖2 ≤ 1, equivalently ‖y‖ ≤ 1. In terms of these new

variables, the objective function is q =
√

15y1y2, and we want to maximize this subject to ‖y‖ ≤ 1. When
this is done, the maximizing values of x1 and x2 are obtained from x1 =

√
3y1 and x2 =

√
5y2.

Hence, for constraints like that in Example 8.10.1, there is no real loss in generality in assuming that
the constraint takes the form ‖x‖ ≤ 1. In this case the principal axes theorem solves the problem. Recall
that a vector in Rn of length 1 is called a unit vector.

Theorem 8.10.1

Consider the quadratic form q = q(x) = xT Ax where A is an n×n symmetric matrix, and let λ1

and λn denote the largest and smallest eigenvalues of A, respectively. Then:

1. max{q(x) | ‖x‖ ≤ 1}= λ1, and q(f1) = λ1 where f1 is any unit λ1-eigenvector.

2. min{q(x) | ‖x‖ ≤ 1}= λn, and q(fn) = λn where fn is any unit λn-eigenvector.

Proof. Since A is symmetric, let the (real) eigenvalues λi of A be ordered as to size as follows:

λ1 ≥ λ2 ≥ ·· · ≥ λn
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By the principal axes theorem, let P be an orthogonal matrix such that PT AP = D = diag (λ1, λ2, . . . , λn).
Define y= PT x, equivalently x= Py, and note ‖y‖= ‖x‖ because ‖y‖2 = yT y = xT (PPT )x= xT x= ‖x‖2.
If we write y = (y1, y2, . . . , yn)

T , then

q(x) = q(Py) = (Py)T A(Py)

= yT (PT AP)y = yT Dy

= λ1y2
1 +λ2y2

2 + · · ·+λny2
n (8.9)

Now assume that ‖x‖ ≤ 1. Since λi ≤ λ1 for each i, (8.9) gives

q(x) = λ1y2
1 +λ2y2

2 + · · ·+λny2
n ≤ λ1y2

1 +λ1y2
2 + · · ·+λ1y2

n = λ1‖y‖2 ≤ λ1

because ‖y‖= ‖x‖ ≤ 1. This shows that q(x) cannot exceed λ1 when ‖x‖ ≤ 1. To see that this maximum
is actually achieved, let f1 be a unit eigenvector corresponding to λ1. Then

q(f1) = fT
1 Af1 = fT

1 (λ1f1) = λ1(f
T
1 f1) = λ1‖f1‖2 = λ1

Hence λ1 is the maximum value of q(x) when ‖x‖ ≤ 1, proving (1). The proof of (2) is analogous.

The set of all vectors x in Rn such that ‖x‖ ≤ 1 is called the unit ball. If n = 2, it is often called the
unit disk and consists of the unit circle and its interior; if n = 3, it is the unit sphere and its interior. It is
worth noting that the maximum value of a quadratic form q(x) as x ranges throughout the unit ball is (by
Theorem 8.10.1) actually attained for a unit vector x on the boundary of the unit ball.

Theorem 8.10.1 is important for applications involving vibrations in areas as diverse as aerodynamics
and particle physics, and the maximum and minimum values in the theorem are often found using advanced
calculus to minimize the quadratic form on the unit ball. The algebraic approach using the principal axes
theorem gives a geometrical interpretation of the optimal values because they are eigenvalues.

Example 8.10.2

Maximize and minimize the form q(x) = 3x2
1 +14x1x2 +3x2

2 subject to ‖x‖ ≤ 1.

Solution. The matrix of q is A =

[
3 7
7 3

]
, with eigenvalues λ1 = 10 and λ2 =−4, and

corresponding unit eigenvectors f1 =
1√
2
(1, 1) and f2 =

1√
2
(1, −1). Hence, among all unit vectors

x in R2, q(x) takes its maximal value 10 at x = f1, and the minimum value of q(x) is −4 when
x = f2.

As noted above, the objective function in a constrained optimization problem need not be a quadratic
form. We conclude with an example where the objective function is linear, and the feasible region is
determined by linear constraints.
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Example 8.10.3

p
=

430
p
=

500
p
=

570

O

(4, 3)

2000x1+ 1100x2 = 11300

1200x1+ 1300x2 = 8700

x1

x2

A manufacturer makes x1 units of product 1, and x2 units
of product 2, at a profit of $70 and $50 per unit respectively,
and wants to choose x1 and x2 to maximize the total profit
p(x1, x2) = 70x1 +50x2. However x1 and x2 are not arbitrary; for
example, x1 ≥ 0 and x2 ≥ 0. Other conditions also come into play.
Each unit of product 1 costs $1200 to produce and requires 2000
square feet of warehouse space; each unit of product 2 costs $1300
to produce and requires 1100 square feet of space. If the total
warehouse space is 11 300 square feet, and if the total production
budget is $8700, x1 and x2 must also satisfy the conditions

2000x1 +1100x2 ≤ 11300

1200x1 +1300x2 ≤ 8700

The feasible region in the plane satisfying these constraints (and x1 ≥ 0, x2 ≥ 0) is shaded in the
diagram. If the profit equation 70x1 +50x2 = p is plotted for various values of p, the resulting
lines are parallel, with p increasing with distance from the origin. Hence the best choice occurs for
the line 70x1 +50x2 = 430 that touches the shaded region at the point (4, 3). So the profit p has a
maximum of p = 430 for x1 = 4 units and x2 = 3 units.

Example 8.10.3 is a simple case of the general linear programming problem23 which arises in eco-
nomic, management, network, and scheduling applications. Here the objective function is a linear com-
bination q = a1x1 + a2x2 + · · ·+ anxn of the variables, and the feasible region consists of the vectors
x=(x1, x2, . . . , xn)

T in Rn which satisfy a set of linear inequalities of the form b1x1+b2x2+· · ·+bnxn≤ b.
There is a good method (an extension of the gaussian algorithm) called the simplex algorithm for finding
the maximum and minimum values of q when x ranges over such a feasible set. As Example 8.10.3 sug-
gests, the optimal values turn out to be vertices of the feasible set. In particular, they are on the boundary
of the feasible region, as is the case in Theorem 8.10.1.

8.11 An Application to Statistical Principal Component

Analysis

Linear algebra is important in multivariate analysis in statistics, and we conclude with a very short look
at one application of diagonalization in this area. A main feature of probability and statistics is the idea
of a random variable X , that is a real-valued function which takes its values according to a probability
law (called its distribution). Random variables occur in a wide variety of contexts; examples include the
number of meteors falling per square kilometre in a given region, the price of a share of a stock, or the
duration of a long distance telephone call from a certain city.

The values of a random variable X are distributed about a central number µ , called the mean of X .
The mean can be calculated from the distribution as the expectation E(X) = µ of the random variable X .

23More information is available in “Linear Programming and Extensions” by N. Wu and R. Coppins, McGraw-Hill, 1981.
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Functions of a random variable are again random variables. In particular, (X −µ)2 is a random variable,
and the variance of the random variable X , denoted var (X), is defined to be the number

var (X) = E{(X−µ)2} where µ = E(X)

It is not difficult to see that var (X)≥ 0 for every random variable X . The number σ =
√

var (X) is called
the standard deviation of X , and is a measure of how much the values of X are spread about the mean
µ of X . A main goal of statistical inference is finding reliable methods for estimating the mean and the
standard deviation of a random variable X by sampling the values of X .

If two random variables X and Y are given, and their joint distribution is known, then functions of X

and Y are also random variables. In particular, X +Y and aX are random variables for any real number a,
and we have

E(X +Y ) = E(X)+E(Y ) and E(aX) = aE(X).24

An important question is how much the random variables X and Y depend on each other. One measure of
this is the covariance of X and Y , denoted cov (X , Y ), defined by

cov (X , Y ) = E{(X−µ)(Y −υ)} where µ = E(X) and υ = E(Y )

Clearly, cov (X , X) = var (X). If cov (X , Y ) = 0 then X and Y have little relationship to each other and
are said to be uncorrelated.25

Multivariate statistical analysis deals with a family X1, X2, . . . , Xn of random variables with means
µi = E(Xi) and variances σ 2

i = var (Xi) for each i. Let σi j = cov (Xi, X j) denote the covariance of Xi and
X j. Then the covariance matrix of the random variables X1, X2, . . . , Xn is defined to be the n×n matrix

Σ = [σi j]

whose (i, j)-entry is σi j. The matrix Σ is clearly symmetric; in fact it can be shown that Σ is positive

semidefinite in the sense that λ ≥ 0 for every eigenvalue λ of Σ. (In reality, Σ is positive definite in most
cases of interest.) So suppose that the eigenvalues of Σ are λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0. The principal axes
theorem (Theorem 8.2.2) shows that an orthogonal matrix P exists such that

PT ΣP = diag (λ1, λ2, . . . , λn)

If we write X = (X1, X2, . . . , Xn), the procedure for diagonalizing a quadratic form gives new variables
Y = (Y1, Y2, . . . , Yn) defined by

Y = PT X

These new random variables Y1, Y2, . . . , Yn are called the principal components of the original random
variables Xi, and are linear combinations of the Xi. Furthermore, it can be shown that

cov (Yi, Yj) = 0 if i 6= j and var (Yi) = λi for each i

Of course the principal components Yi point along the principal axes of the quadratic form q = X
T

ΣX .

24Hence E( ) is a linear transformation from the vector space of all random variables to the space of real numbers.
25If X and Y are independent in the sense of probability theory, then they are uncorrelated; however, the converse is not true

in general.
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The sum of the variances of a set of random variables is called the total variance of the variables, and
determining the source of this total variance is one of the benefits of principal component analysis. The
fact that the matrices Σ and diag (λ1, λ2, . . . , λn) are similar means that they have the same trace, that is,

σ11 +σ22 + · · ·+σnn = λ1 +λ2 + · · ·+λn

This means that the principal components Yi have the same total variance as the original random variables
Xi. Moreover, the fact that λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0 means that most of this variance resides in the first few
Yi. In practice, statisticians find that studying these first few Yi (and ignoring the rest) gives an accurate
analysis of the total system variability. This results in substantial data reduction since often only a few Yi

suffice for all practical purposes. Furthermore, these Yi are easily obtained as linear combinations of the
Xi. Finally, the analysis of the principal components often reveals relationships among the Xi that were not
previously suspected, and so results in interpretations that would not otherwise have been made.



9. Change of Basis

If A is an m×n matrix, the corresponding matrix transformation TA : Rn→ Rm is defined by

TA(x) = Ax for all columns x in Rn

It was shown in Theorem 2.6.2 that every linear transformation T : Rn→ Rm is a matrix transformation;
that is, T = TA for some m×n matrix A. Furthermore, the matrix A is uniquely determined by T . In fact,
A is given in terms of its columns by

A =
[

T (e1) T (e2) · · · T (en)
]

where {e1, e2, . . . , en} is the standard basis of Rn.

In this chapter we show how to associate a matrix with any linear transformation T : V →W where V

and W are finite-dimensional vector spaces, and we describe how the matrix can be used to compute T (v)
for any v in V . The matrix depends on the choice of a basis B in V and a basis D in W , and is denoted
MDB(T ). The case when W =V is particularly important. If B and D are two bases of V , we show that the
matrices MBB(T ) and MDD(T ) are similar, that is MDD(T ) = P−1MBB(T )P for some invertible matrix P.
Moreover, we give an explicit method for constructing P depending only on the bases B and D. This leads
to some of the most important theorems in linear algebra, as we shall see in Chapter 11.

9.1 The Matrix of a Linear Transformation

Let T : V →W be a linear transformation where dim V = n and dim W = m. The aim in this section is to
describe the action of T as multiplication by an m×n matrix A. The idea is to convert a vector v in V into
a column in Rn, multiply that column by A to get a column in Rm, and convert this column back to get
T (v) in W .

Converting vectors to columns is a simple matter, but one small change is needed. Up to now the order

of the vectors in a basis has been of no importance. However, in this section, we shall speak of an ordered

basis {b1, b2, . . . , bn}, which is just a basis where the order in which the vectors are listed is taken into
account. Hence {b2, b1, b3} is a different ordered basis from {b1, b2, b3}.

If B = {b1, b2, . . . , bn} is an ordered basis in a vector space V , and if

v = v1b1 + v2b2 + · · ·+ vnbn, vi ∈ R

is a vector in V , then the (uniquely determined) numbers v1, v2, . . . , vn are called the coordinates of v

with respect to the basis B.
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504 Change of Basis

Definition 9.1 Coordinate Vector CB(v) of v for a basis B

The coordinate vector of v with respect to B is defined to be

CB(v) = (v1b1 + v2b2 + · · ·+ vnbn) =




v1

v2
...

vn




The reason for writing CB(v) as a column instead of a row will become clear later. Note that CB(bi) = ei

is column i of In.

Example 9.1.1

The coordinate vector for v = (2, 1, 3) with respect to the ordered basis

B = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} of R3 is CB(v) =




0
2
1


 because

v = (2, 1, 3) = 0(1, 1, 0)+2(1, 0, 1)+1(0, 1, 1)

Theorem 9.1.1

If V has dimension n and B = {b1, b2, . . . , bn} is any ordered basis of V , the coordinate
transformation CB : V → Rn is an isomorphism. In fact, C−1

B : Rn→V is given by

C−1
B




v1

v2
...

vn


= v1b1 + v2b2 + · · ·+ vnbn for all




v1

v2
...

vn


 in Rn.

Proof. The verification that CB is linear is Exercise 9.1.13. If T : Rn → V is the map denoted C−1
B in

the theorem, one verifies (Exercise 9.1.13) that TCB = 1V and CBT = 1Rn . Note that CB(b j) is column
j of the identity matrix, so CB carries the basis B to the standard basis of Rn, proving again that it is an
isomorphism (Theorem 7.3.1)

Rn Rm

V W

CB

T

CD

TA

Now let T : V →W be any linear transformation where dim V = n and
dim W =m, and let B = {b1, b2, . . . , bn} and D be ordered bases of V and
W , respectively. Then CB : V → Rn and CD : W → Rm are isomorphisms
and we have the situation shown in the diagram where A is an m×n matrix
(to be determined). In fact, the composite

CDTC−1
B : Rn→ Rm is a linear transformation

so Theorem 2.6.2 shows that a unique m×n matrix A exists such that

CDTC−1
B = TA, equivalently CDT = TACB
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TA acts by left multiplication by A, so this latter condition is

CD[T (v)] = ACB(v) for all v in V

This requirement completely determines A. Indeed, the fact that CB(b j) is column j of the identity matrix
gives

column j of A = ACB(b j) =CD[T (b j)]

for all j. Hence, in terms of its columns,

A =
[

CD[T (b1)] CD[T (b2)] · · · CD[T (bn)]
]

Definition 9.2 Matrix MDB(T ) of T : V →W for bases D and B

This is called the matrix of T corresponding to the ordered bases B and D, and we use the
following notation:

MDB(T ) =
[

CD[T (b1)] CD[T (b2)] · · · CD[T (bn)]
]

This discussion is summarized in the following important theorem.

Theorem 9.1.2

Let T : V →W be a linear transformation where dim V = n and dim W = m, and let
B = {b1, . . . , bn} and D be ordered bases of V and W , respectively. Then the matrix MDB(T ) just
given is the unique m×n matrix A that satisfies

CDT = TACB

Hence the defining property of MDB(T ) is

CD[T (v)] = MDB(T )CB(v) for all v in V

The matrix MDB(T ) is given in terms of its columns by

MDB(T ) =
[

CD[T (b1)] CD[T (b2)] · · · CD[T (bn)]
]

The fact that T =C−1
D TACB means that the action of T on a vector v in V can be performed by first taking

coordinates (that is, applying CB to v), then multiplying by A (applying TA), and finally converting the
resulting m-tuple back to a vector in W (applying C−1

D ).

Example 9.1.2

Define T : P2→ R2 by T (a+bx+ cx2) = (a+ c, b−a− c) for all polynomials a+bx+ cx2. If
B = {b1, b2, b3} and D = {d1, d2} where

b1 = 1, b2 = x, b3 = x2 and d1 = (1, 0), d2 = (0, 1)
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compute MDB(T ) and verify Theorem 9.1.2.

Solution. We have T (b1) = d1−d2, T (b2) = d2, and T (b3) = d1−d2. Hence

MDB(T ) =
[

CD[T (b1)] CD[T (b2)] CD[T (bn)]
]
=

[
1 0 1
−1 1 −1

]

If v = a+bx+ cx2 = ab1 +bb2 + cb3, then T (v) = (a+ c)d1 +(b−a− c)d2, so

CD[T (v)] =

[
a+ c

b−a− c

]
=

[
1 0 1
−1 1 −1

]


a

b

c


= MDB(T )CB(v)

as Theorem 9.1.2 asserts.

The next example shows how to determine the action of a transformation from its matrix.

Example 9.1.3

Suppose T : M22(R)→ R3 is linear with matrix MDB(T ) =




1 −1 0 0
0 1 −1 0
0 0 1 −1


 where

B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
and D = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

Compute T (v) where v =

[
a b

c d

]
.

Solution. The idea is to compute CD[T (v)] first, and then obtain T (v). We have

CD[T (v)] = MDB(T )CB(v) =




1 −1 0 0
0 1 −1 0
0 0 1 −1







a

b

c

d


=




a−b

b− c

c−d




Hence T (v) = (a−b)(1, 0, 0)+(b− c)(0, 1, 0)+(c−d)(0, 0, 1)

= (a−b, b− c, c−d)

The next two examples will be referred to later.

Example 9.1.4

Let A be an m×n matrix, and let TA : Rn→Rm be the matrix transformation induced by
A : TA(x) = Ax for all columns x in Rn. If B and D are the standard bases of Rn and Rm,
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respectively (ordered as usual), then
MDB(TA) = A

In other words, the matrix of TA corresponding to the standard bases is A itself.

Solution. Write B = {e1, . . . , en}. Because D is the standard basis of Rm, it is easy to verify that
CD(y) = y for all columns y in Rm. Hence

MDB(TA) =
[

TA(e1) TA(e2) · · · TA(en)
]
=
[

Ae1 Ae2 · · · Aen

]
= A

because Ae j is the jth column of A.

Example 9.1.5

Let V and W have ordered bases B and D, respectively. Let dim V = n.

1. The identity transformation 1V : V →V has matrix MBB(1V ) = In.

2. The zero transformation 0 : V →W has matrix MDB(0) = 0.

The first result in Example 9.1.5 is false if the two bases of V are not equal. In fact, if B is the standard
basis of Rn, then the basis D of Rn can be chosen so that MDB(1Rn) turns out to be any invertible matrix
we wish (Exercise 9.1.14).

The next two theorems show that composition of linear transformations is compatible with multiplica-
tion of the corresponding matrices.

Theorem 9.1.3

V W U
T S

ST

Let V
T→W

S→U be linear transformations and let B, D, and E be
finite ordered bases of V , W , and U , respectively. Then

MEB(ST ) = MED(S) ·MDB(T )

Proof. We use the property in Theorem 9.1.2 three times. If v is in V ,

MED(S)MDB(T )CB(v) = MED(S)CD[T (v)] =CE [ST (v)] = MEB(ST )CB(v)

If B = {e1, . . . , en}, then CB(e j) is column j of In. Hence taking v = e j shows that MED(S)MDB(T ) and
MEB(ST ) have equal jth columns. The theorem follows.
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Theorem 9.1.4

Let T : V →W be a linear transformation, where dim V = dim W = n. The following are
equivalent.

1. T is an isomorphism.

2. MDB(T ) is invertible for all ordered bases B and D of V and W .

3. MDB(T ) is invertible for some pair of ordered bases B and D of V and W .

When this is the case, [MDB(T )]
−1 = MBD(T

−1).

Proof. (1)⇒ (2). We have V
T→W

T−1

→ V , so Theorem 9.1.3 and Example 9.1.5 give

MBD(T
−1)MDB(T ) = MBB(T

−1T ) = MBB(1v) = In

Similarly, MDB(T )MBD(T
−1) = In, proving (2) (and the last statement in the theorem).

(2)⇒ (3). This is clear.

Rn Rn Rn
TA−1 TA

TATA−1

(3)⇒ (1). Suppose that TDB(T ) is invertible for some bases B and D and, for
convenience, write A = MDB(T ). Then we have CDT = TACB by Theorem 9.1.2,
so

T = (CD)
−1TACB

by Theorem 9.1.1 where (CD)
−1 and CB are isomorphisms. Hence (1) follows if

we can demonstrate that TA : Rn→ Rn is also an isomorphism. But A is invertible by (3) and one verifies
that TATA−1 = 1Rn = TA−1TA. So TA is indeed invertible (and (TA)

−1 = TA−1).

In Section 7.2 we defined the rank of a linear transformation T : V →W by rank T = dim ( im T ).
Moreover, if A is any m× n matrix and TA : Rn → Rm is the matrix transformation, we showed that
rank (TA) = rank A. So it may not be surprising that rank T equals the rank of any matrix of T .

Theorem 9.1.5

Let T : V →W be a linear transformation where dim V = n and dim W = m. If B and D are any
ordered bases of V and W , then rank T = rank [MDB(T )].

Proof. Write A = MDB(T ) for convenience. The column space of A is U = {Ax | x in Rn}. This means
rank A = dim U and so, because rank T = dim ( im T ), it suffices to find an isomorphism S : im T →U .
Now every vector in im T has the form T (v), v in V . By Theorem 9.1.2, CD[T (v)] = ACB(v) lies in U . So
define S : im T →U by

S[T (v)] =CD[T (v)] for all vectors T (v) ∈ im T

The fact that CD is linear and one-to-one implies immediately that S is linear and one-to-one. To see that
S is onto, let Ax be any member of U , x in Rn. Then x =CB(v) for some v in V because CB is onto. Hence
Ax = ACB(v) =CD[T (v)] = S[T (v)], so S is onto. This means that S is an isomorphism.
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Example 9.1.6

Define T : P2→ R3 by T (a+bx+ cx2) = (a−2b, 3c−2a, 3c−4b) for a, b, c ∈ R. Compute
rank T .

Solution. Since rank T = rank [MDB(T )] for any bases B⊆ P2 and D⊆ R3, we choose the most
convenient ones: B = {1, x, x2} and D = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Then
MDB(T ) =

[
CD[T (1)] CD[T (x)] CD[T (x

2)]
]
= A where

A =




1 −2 0
−2 0 3

0 −4 3


 . Since A→




1 −2 0
0 −4 3
0 −4 3


→




1 −2 0
0 1 −3

4
0 0 0




we have rank A = 2. Hence rank T = 2 as well.

We conclude with an example showing that the matrix of a linear transformation can be made very
simple by a careful choice of the two bases.

Example 9.1.7

Let T : V →W be a linear transformation where dim V = n and dim W = m. Choose an ordered
basis B = {b1, . . . , br, br+1, . . . , bn} of V in which {br+1, . . . , bn} is a basis of ker T , possibly
empty. Then {T (b1), . . . , T (br)} is a basis of im T by Theorem 7.2.5, so extend it to an ordered
basis D = {T (b1), . . . , T (br), fr+1, . . . , fm} of W . Because T (br+1) = · · ·= T (bn) = 0, we have

MDB(T ) =
[

CD[T (b1)] · · · CD[T (br)] CD[T (br+1)] · · · CD[T (bn)]
]
=

[
Ir 0
0 0

]

Incidentally, this shows that rank T = r by Theorem 9.1.5.

Exercises for 9.1

Exercise 9.1.1 In each case, find the coordinates of v

with respect to the basis B of the vector space V .

a. V = P2, v = 2x2 + x−1, B = {x+1, x2, 3}

b. V = P2, v = ax2 +bx+ c, B = {x2, x+1, x+2}

c. V =R3, v = (1, −1, 2),
B = {(1, −1, 0), (1, 1, 1), (0, 1, 1)}

d. V =R3, v = (a, b, c),
B = {(1, −1, 2), (1, 1, −1), (0, 0, 1)}

e. V = M22, v =

[
1 2
−1 0

]
,

B=

{[
1 1
0 0

]
,

[
1 0
1 0

]
,

[
0 0
1 1

]
,

[
1 0
0 1

]}

Exercise 9.1.2 Suppose T : P2 → R2 is a linear trans-
formation. If B = {1, x, x2} and D = {(1, 1), (0, 1)},
find the action of T given:

a. MDB(T ) =

[
1 2 −1
−1 0 1

]
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b. MDB(T ) =

[
2 1 3
−1 0 −2

]

Exercise 9.1.3 In each case, find the matrix of the linear
transformation T : V →W corresponding to the bases B

and D of V and W , respectively.

a. T : M22→ R, T (A) = tr A;

B=

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
,

D = {1}

b. T : M22→M22, T (A) = AT ;
B = D

=

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

c. T : P2→ P3, T [p(x)] = xp(x); B = {1, x, x2} and
D = {1, x, x2, x3}

d. T : P2→ P2, T [p(x)] = p(x+1);
B = D = {1, x, x2}

Exercise 9.1.4 In each case, find the matrix of
T : V →W corresponding to the bases B and D, respec-
tively, and use it to compute CD[T (v)], and hence T (v).

a. T :R3→R4, T (x, y, z)= (x+z, 2z, y−z, x+2y);
B and D standard; v = (1, −1, 3)

b. T : R2→ R4, T (x, y) = (2x− y, 3x+ 2y, 4y, x);
B = {(1, 1), (1, 0)}, D standard; v = (a, b)

c. T : P2→ R2, T (a+bx+ cx2) = (a+ c, 2b);
B = {1, x, x2}, D = {(1, 0), (1, −1)};
v = a+bx+ cx2

d. T : P2→ R2, T (a+bx+ cx2) = (a+b, c);
B = {1, x, x2}, D = {(1, −1), (1, 1)};
v = a+bx+ cx2

e. T : M22→ R, T

[
a b

c d

]
= a+b+ c+d;

B=

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
,

D = {1}; v =

[
a b

c d

]

f. T : M22→M22,

T

[
a b

c d

]
=

[
a b+ c

b+ c d

]
;

B = D =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
;

v =

[
a b

c d

]

Exercise 9.1.5 In each case, verify Theorem 9.1.3. Use
the standard basis in Rn and {1, x, x2} in P2.

a. R3 T→ R2 S→ R4; T (a, b, c) = (a + b, b− c),
S(a, b) = (a, b−2a, 3b, a+b)

b. R3 T→ R4 S→ R2;
T (a, b, c) = (a+b, c+b, a+ c, b−a),
S(a, b, c, d) = (a+b, c−d)

c. P2
T→R3 S→P2; T (a+bx+cx2)= (a, b−c, c−a),

S(a, b, c) = b+ cx+(a− c)x2

d. R3 T→ P2
S→ R2;

T (a, b, c) = (a−b)+ (c−a)x+bx2,
S(a+bx+ cx2) = (a−b, c)

Exercise 9.1.6 Verify Theorem 9.1.3 for

M22
T→M22

S→ P2 where T (A) = AT and

S

[
a b

c d

]
= b+(a+d)x+ cx2. Use the bases

B=D=

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

and E = {1, x, x2}.
Exercise 9.1.7 In each case, find T−1 and verify that
[MDB(T )]

−1 = MBD(T
−1).

a. T : R2→ R2, T (a, b) = (a+2b, 2a+5b);
B = D = standard

b. T : R3 → R3, T (a, b, c) = (b+ c, a+ c, a+ b);
B = D = standard

c. T : P2→R3, T (a+bx+cx2) = (a−c, b, 2a−c);
B = {1, x, x2}, D = standard

d. T : P2→ R3,
T (a+bx+ cx2) = (a+b+ c, b+ c, c);
B = {1, x, x2}, D = standard

Exercise 9.1.8 In each case, show that MDB(T ) is in-
vertible and use the fact that MBD(T

−1) = [MBD(T )]
−1 to

determine the action of T−1.

a. T : P2→ R3, T (a+bx+ cx2) = (a+ c, c, b− c);
B = {1, x, x2}, D = standard
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b. T : M22→ R4,

T

[
a b

c d

]
= (a+b+ c, b+ c, c, d);

B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
,

D = standard

Exercise 9.1.9 Let D : P3 → P2 be the differentiation
map given by D[p(x)] = p′(x). Find the matrix of D cor-
responding to the bases B = {1, x, x2, x3} and
E = {1, x, x2}, and use it to compute
D(a+bx+ cx2 +dx3).

Exercise 9.1.10 Use Theorem 9.1.4 to show that
T : V → V is not an isomorphism if ker T 6= 0 (assume
dim V = n). [Hint: Choose any ordered basis B contain-
ing a vector in ker T .]

Exercise 9.1.11 Let T : V → R be a linear transforma-
tion, and let D= {1} be the basis of R. Given any ordered
basis B = {e1, . . . , en} of V , show that
MDB(T ) = [T (e1) · · ·T (en)].

Exercise 9.1.12 Let T : V → W be an isomorphism,
let B = {e1, . . . , en} be an ordered basis of V , and let
D = {T (e1), . . . , T (en)}. Show that MDB(T ) = In—the
n×n identity matrix.

Exercise 9.1.13 Complete the proof of Theorem 9.1.1.

Exercise 9.1.14 Let U be any invertible n×n matrix, and
let D = {f1, f2, . . . , fn} where f j is column j of U . Show
that MBD(1Rn) =U when B is the standard basis of Rn.

Exercise 9.1.15 Let B be an ordered basis of the n-
dimensional space V and let CB : V → Rn be the coor-
dinate transformation. If D is the standard basis of Rn,
show that MDB(CB) = In.

Exercise 9.1.16 Let T : P2→ R3 be defined by
T (p) = (p(0), p(1), p(2)) for all p in P2. Let
B = {1, x, x2} and D = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

a. Show that MDB(T ) =




1 0 0
1 1 1
1 2 4


 and conclude

that T is an isomorphism.

b. Generalize to T : Pn→ Rn+1 where
T (p) = (p(a0), p(a1), . . . , p(an)) and
a0, a1, . . . , an are distinct real numbers.
[Hint: Theorem 3.2.7.]

Exercise 9.1.17 Let T : Pn → Pn be defined by
T [p(x)] = p(x)+ xp′(x), where p′(x) denotes the deriva-
tive. Show that T is an isomorphism by finding MBB(T )
when B = {1, x, x2, . . . , xn}.
Exercise 9.1.18 If k is any number, define
Tk : M22→M22 by Tk(A) = A+ kAT .

a. If B ={[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 1
1 0

]
,

[
0 1
−1 0

]}
find

MBB(Tk), and conclude that Tk is invertible if k 6= 1
and k 6=−1.

b. Repeat for Tk : M33→M33. Can you generalize?

The remaining exercises require the following
definitions. If V and W are vector spaces, the set
of all linear transformations from V to W will be
denoted by

L(V , W )= {T | T :V→W is a linear transformation }
Given S and T in L(V , W ) and a in R, define
S+T : V →W and aT : V →W by

(S+T )(v) = S(v)+T (v) for all v in V

(aT )(v) = aT (v) for all v in V

Exercise 9.1.19 Show that L(V , W ) is a vector space.

Exercise 9.1.20 Show that the following properties hold
provided that the transformations link together in such a
way that all the operations are defined.

a. R(ST ) = (RS)T

b. 1W T = T = T 1V

c. R(S+T ) = RS+RT

d. (S+T )R = SR+TR

e. (aS)T = a(ST ) = S(aT )

Exercise 9.1.21 Given S and T in L(V , W ), show that:

a. ker S∩ ker T ⊆ ker (S+T )

b. im (S+T )⊆ im S+ im T

Exercise 9.1.22 Let V and W be vector spaces. If X is a
subset of V , define

X0 = {T in L(V , W ) | T (v) = 0 for all v in X}
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a. Show that X0 is a subspace of L(V , W ).

b. If X ⊆ X1, show that X0
1 ⊆ X0.

c. If U and U1 are subspaces of V , show that
(U +U1)

0 =U0∩U0
1 .

Exercise 9.1.23 Define R : Mmn → L(Rn, Rm) by
R(A) = TA for each m×n matrix A, where TA : Rn→ Rm

is given by TA(x) = Ax for all x in Rn. Show that R is an
isomorphism.

Exercise 9.1.24 Let V be any vector space (we do not
assume it is finite dimensional). Given v in V , define
Sv : R→V by Sv(r) = rv for all r in R.

a. Show that Sv lies in L(R, V ) for each v in V .

b. Show that the map R : V → L(R, V ) given by
R(v) = Sv is an isomorphism. [Hint: To show that
R is onto, if T lies in L(R, V ), show that T = Sv

where v = T (1).]

Exercise 9.1.25 Let V be a vector space with ordered
basis B = {b1, b2, . . . , bn}. For each i = 1, 2, . . . , m,
define Si : R→V by Si(r) = rbi for all r in R.

a. Show that each Si lies in L(R, V ) and Si(1) = bi.

b. Given T in L(R, V ), let
T (1) = a1b1 + a2b2 + · · ·+ anbn, ai in R. Show
that T = a1S1 +a2S2 + · · ·+anSn.

c. Show that {S1, S2, . . . , Sn} is a basis of L(R, V ).

Exercise 9.1.26 Let dim V = n, dim W = m, and let
B and D be ordered bases of V and W , respectively.

Show that MDB : L(V , W ) → Mmn is an isomorphism
of vector spaces. [Hint: Let B = {b1, . . . , bn} and
D = {d1, . . . , dm}. Given A = [ai j] in Mmn, show that
A = MDB(T ) where T : V →W is defined by
T (b j) = a1 jd1 +a2 jd2 + · · ·+am jdm for each j.]

Exercise 9.1.27 If V is a vector space, the space
V ∗ = L(V , R) is called the dual of V . Given a basis
B = {b1, b2, . . . , bn} of V , let Ei : V → R for each
i = 1, 2, . . . , n be the linear transformation satisfying

Ei(b j) =

{
0 if i 6= j

1 if i = j

(each Ei exists by Theorem 7.1.3). Prove the following:

a. Ei(r1b1 + · · ·+ rnbn) = ri for each i = 1, 2, . . . , n

b. v = E1(v)b1 +E2(v)b2+ · · ·+En(v)bn for all v in
V

c. T = T (b1)E1 +T (b2)E2 + · · ·+T(bn)En for all T

in V ∗

d. {E1, E2, . . . , En} is a basis of V ∗ (called the dual

basis of B).

Given v in V , define v∗ : V → R by
v∗(w) = E1(v)E1(w) + E2(v)E2(w) + · · · +
En(v)En(w) for all w in V . Show that:

e. v∗ : V → R is linear, so v∗ lies in V ∗.

f. b∗i = Ei for each i = 1, 2, . . . , n.

g. The map R : V →V ∗ with R(v) = v∗ is an isomor-
phism. [Hint: Show that R is linear and one-to-
one and use Theorem 7.3.3. Alternatively, show
that R−1(T ) = T (b1)b1 + · · ·+T (bn)bn.]

9.2 Operators and Similarity

While the study of linear transformations from one vector space to another is important, the central prob-
lem of linear algebra is to understand the structure of a linear transformation T : V → V from a space
V to itself. Such transformations are called linear operators. If T : V → V is a linear operator where
dim (V ) = n, it is possible to choose bases B and D of V such that the matrix MDB(T ) has a very simple

form: MDB(T ) =

[
Ir 0
0 0

]
where r = rank T (see Example 9.1.7). Consequently, only the rank of T
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is revealed by determining the simplest matrices MDB(T ) of T where the bases B and D can be chosen
arbitrarily. But if we insist that B = D and look for bases B such that MBB(T ) is as simple as possible, we
learn a great deal about the operator T . We begin this task in this section.

The B-matrix of an Operator

Definition 9.3 Matrix MDB(T ) of T : V →W for basis B

If T : V →V is an operator on a vector space V , and if B is an ordered basis of V , define
MB(T ) = MBB(T ) and call this the BBB-matrix of T .

Recall that if T : Rn → Rn is a linear operator and E = {e1, e2, . . . , en} is the standard basis of
Rn, then CE(x) = x for every x ∈ Rn, so ME(T ) = [T (e1), T (e2), . . . , T (en)] is the matrix obtained in
Theorem 2.6.2. Hence ME(T ) will be called the standard matrix of the operator T .

For reference the following theorem collects some results from Theorem 9.1.2, Theorem 9.1.3, and
Theorem 9.1.4, specialized for operators. As before, CB(v) denoted the coordinate vector of v with respect
to the basis B.

Theorem 9.2.1

Let T : V →V be an operator where dim V = n, and let B be an ordered basis of V .

1. CB(T (v)) = MB(T )CB(v) for all v in V .

2. If S : V →V is another operator on V , then MB(ST ) = MB(S)MB(T ).

3. T is an isomorphism if and only if MB(T ) is invertible. In this case MD(T ) is invertible for
every ordered basis D of V .

4. If T is an isomorphism, then MB(T
−1) = [MB(T )]

−1.

5. If B = {b1, b2, . . . , bn}, then MB(T ) =
[

CB[T (b1)] CB[T (b2)] · · · CB[T (bn)]
]
.

For a fixed operator T on a vector space V , we are going to study how the matrix MB(T ) changes when
the basis B changes. This turns out to be closely related to how the coordinates CB(v) change for a vector
v in V . If B and D are two ordered bases of V , and if we take T = 1V in Theorem 9.1.2, we obtain

CD(v) = MDB(1V )CB(v) for all v in V

Definition 9.4 Change Matrix PD←B for bases B and D

With this in mind, define the change matrix PD←B by

PD←B = MDB(1V ) for any ordered bases B and D of V
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This proves equation 9.2 in the following theorem:

Theorem 9.2.2

Let B = {b1, b2, . . . , bn} and D denote ordered bases of a vector space V . Then the change matrix
PD←B is given in terms of its columns by

PD←B =
[

CD(b1) CD(b2) · · · CD(bn)
]

(9.1)

and has the property that
CD(v) = PD←BCB(v) for all v in V (9.2)

Moreover, if E is another ordered basis of V , we have

1. PB←B = In

2. PD←B is invertible and (PD←B)
−1 = PB←D

3. PE←DPD←B = PE←B

Proof. The formula 9.2 is derived above, and 9.1 is immediate from the definition of PD←B and the formula
for MDB(T ) in Theorem 9.1.2.

1. PB←B = MBB(1V ) = In as is easily verified.

2. This follows from (1) and (3).

3. Let V
T→W

S→U be operators, and let B, D, and E be ordered bases of V , W , and U respectively.
We have MEB(ST ) = MED(S)MDB(T ) by Theorem 9.1.3. Now (3) is the result of specializing
V =W =U and T = S = 1V .

Property (3) in Theorem 9.2.2 explains the notation PD←B.

Example 9.2.1

In P2 find PD←B if B = {1, x, x2} and D = {1, (1− x), (1− x)2}. Then use this to express
p = p(x) = a+bx+ cx2 as a polynomial in powers of (1− x).

Solution. To compute the change matrix PD←B, express 1, x, x2 in the basis D:

1 = 1+0(1− x)+0(1− x)2

x = 1−1(1− x)+0(1− x)2

x2 = 1−2(1− x)+1(1− x)2
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Hence PD←B =
[
CD(1), CD(x), CD(x)

2
]
=




1 1 1
0 −1 −2
0 0 1


. We have CB(p) =




a

b

c


, so

CD(p) = PD←BCB(p) =




1 1 1
0 −1 −2
0 0 1






a

b

c


=




a+b+ c

−b−2c

c




Hence p(x) = (a+b+ c)− (b+2c)(1− x)+ c(1− x)2 by Definition 9.1.1

Now let B= {b1, b2, . . . , bn} and B0 be two ordered bases of a vector space V . An operator T : V →V

has different matrices MB[T ] and MB0[T ] with respect to B and B0. We can now determine how these
matrices are related. Theorem 9.2.2 asserts that

CB0(v) = PB0←BCB(v) for all v in V

On the other hand, Theorem 9.2.1 gives

CB[T (v)] = MB(T )CB(v) for all v in V

Combining these (and writing P = PB0←B for convenience) gives

PMB(T )CB(v) = PCB[T (v)]

=CB0[T (v)]

= MB0(T )CB0(v)

= MB0(T )PCB(v)

This holds for all v in V . Because CB(b j) is the jth column of the identity matrix, it follows that

PMB(T ) = MB0(T )P

Moreover P is invertible (in fact, P−1 = PB←B0 by Theorem 9.2.2), so this gives

MB(T ) = P−1MB0(T )P

This asserts that MB0(T ) and MB(T ) are similar matrices, and proves Theorem 9.2.3.

Theorem 9.2.3: Similarity Theorem

Let B0 and B be two ordered bases of a finite dimensional vector space V . If T : V →V is any
linear operator, the matrices MB(T ) and MB0(T ) of T with respect to these bases are similar. More
precisely,

MB(T ) = P−1MB0(T )P

where P = PB0←B is the change matrix from B to B0.

1This also follows from Taylor’s theorem (Corollary 6.5.3 of Theorem 6.5.1 with a = 1).
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Example 9.2.2

Let T : R3→ R3 be defined by T (a, b, c) = (2a−b, b+ c, c−3a). If B0 denotes the standard
basis of R3 and B = {(1, 1, 0), (1, 0, 1), (0, 1, 0)}, find an invertible matrix P such that
P−1MB0(T )P = MB(T ).

Solution. We have

MB0(T ) =
[

CB0(2, 0, −3) CB0(−1, 1, 0) CB0(0, 1, 1)
]
=




2 −1 0
0 1 1
−3 0 1




MB(T ) =
[

CB(1, 1, −3) CB(2, 1, −2) CB(−1, 1, 0)
]
=




4 4 −1
−3 −2 0
−3 −3 2




P = PB0←B =
[

CB0(1, 1, 0) CB0(1, 0, 1) CB0(0, 1, 0)
]
=




1 1 0
1 0 1
0 1 0




The reader can verify that P−1MB0(T )P = MB(T ); equivalently that MB0(T )P = PMB(T ).

A square matrix is diagonalizable if and only if it is similar to a diagonal matrix. Theorem 9.2.3 comes
into this as follows: Suppose an n×n matrix A = MB0(T ) is the matrix of some operator T : V → V with
respect to an ordered basis B0. If another ordered basis B of V can be found such that MB(T ) = D is
diagonal, then Theorem 9.2.3 shows how to find an invertible P such that P−1AP = D. In other words, the
“algebraic” problem of finding P such that P−1AP is diagonal comes down to the “geometric” problem
of finding a basis B such that MB(T ) is diagonal. This shift of emphasis is one of the most important
techniques in linear algebra.

Each n×n matrix A can be easily realized as the matrix of an operator. In fact, (Example 9.1.4),

ME(TA) = A

where TA : Rn→ Rn is the matrix operator given by TA(x) = Ax, and E is the standard basis of Rn. The
first part of the next theorem gives the converse of Theorem 9.2.3: Any pair of similar matrices can be
realized as the matrices of the same linear operator with respect to different bases. This is part 1 of the
following theorem.

Theorem 9.2.4

Let A be an n×n matrix and let E be the standard basis of Rn.

1. Let A′ be similar to A, say A′ = P−1AP, and let B be the ordered basis of Rn consisting of the
columns of P in order. Then TA : Rn→ Rn is linear and

ME(TA) = A and MB(TA) = A′

2. If B is any ordered basis of Rn, let P be the (invertible) matrix whose columns are the vectors
in B in order. Then

MB(TA) = P−1AP
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Proof.

1. We have ME(TA) = A by Example 9.1.4. Write P =
[

b1 · · · bn

]
in terms of its columns so

B = {b1, . . . , bn} is a basis of Rn. Since E is the standard basis,

PE←B =
[

CE(b1) · · · CE(bn)
]
=
[

b1 · · · bn

]
= P

Hence Theorem 9.2.3 (with B0 = E) gives MB(TA) = P−1ME(TA)P = P−1AP = A′.

2. Here P and B are as above, so again PE←B = P and MB(TA) = P−1AP.

Example 9.2.3

Given A =

[
10 6
−18 −11

]
, P =

[
2 −1
−3 2

]
, and D =

[
1 0
0 −2

]
, verify that P−1AP = D and

use this fact to find a basis B of R2 such that MB(TA) = D.

Solution. P−1AP = D holds if AP = PD; this verification is left to the reader. Let B consist of the

columns of P in order, that is B =

{[
2
−3

]
,

[
−1

2

]}
. Then Theorem 9.2.4 gives

MB(TA) = P−1AP = D. More explicitly,

MB(TA)=

[
CB

(
TA

[
2
−3

])
CB

(
TA

[
−1

2

])]
=

[
CB

[
2
−3

]
CB

[
2
−4

]]
=

[
1 0
0 −2

]
=D

Let A be an n×n matrix. As in Example 9.2.3, Theorem 9.2.4 provides a new way to find an invertible
matrix P such that P−1AP is diagonal. The idea is to find a basis B = {b1, b2, . . . , bn} of Rn such that
MB(TA) = D is diagonal and take P =

[
b1 b2 · · · bn

]
to be the matrix with the b j as columns. Then,

by Theorem 9.2.4,
P−1AP = MB(TA) = D

As mentioned above, this converts the algebraic problem of diagonalizing A into the geometric problem of
finding the basis B. This new point of view is very powerful and will be explored in the next two sections.

Theorem 9.2.4 enables facts about matrices to be deduced from the corresponding properties of oper-
ators. Here is an example.

Example 9.2.4

1. If T : V →V is an operator where V is finite dimensional, show that T ST = T for some
invertible operator S : V →V .

2. If A is an n×n matrix, show that AUA = A for some invertible matrix U .

Solution.

1. Let B = {b1, . . . , br, br+1, . . . , bn} be a basis of V chosen so that
ker T = span{br+1, . . . , bn}. Then {T (b1), . . . , T (br)} is independent (Theorem 7.2.5), so
complete it to a basis {T (b1), . . . , T (br), fr+1, . . . , fn} of V .
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By Theorem 7.1.3, define S : V →V by

S[T (bi)] = bi for 1≤ i≤ r

S(f j) = b j for r < j ≤ n

Then S is an isomorphism by Theorem 7.3.1, and T ST = T because these operators agree on
the basis B. In fact,

(TST )(bi) = T [ST (bi)] = T (bi) if 1≤ i≤ r, and

(T ST )(b j) = T S[T (b j)] = T S(0) = 0 = T (b j) for r < j ≤ n

2. Given A, let T = TA : Rn→Rn. By (1) let T ST = T where S : Rn→ Rn is an isomorphism.
If E is the standard basis of Rn, then A = ME(T ) by Theorem 9.2.4. If U = ME(S) then, by
Theorem 9.2.1, U is invertible and

AUA = ME(T )ME(S)ME(T ) = ME(T ST ) = ME(T ) = A

as required.

The reader will appreciate the power of these methods if he/she tries to find U directly in part 2 of Exam-
ple 9.2.4, even if A is 2×2.

A property of n×n matrices is called a similarity invariant if, whenever a given n×n matrix A has
the property, every matrix similar to A also has the property. Theorem 5.5.1 shows that rank , determinant,
trace, and characteristic polynomial are all similarity invariants.

To illustrate how such similarity invariants are related to linear operators, consider the case of rank .
If T : V → V is a linear operator, the matrices of T with respect to various bases of V all have the same
rank (being similar), so it is natural to regard the common rank of all these matrices as a property of T

itself and not of the particular matrix used to describe T . Hence the rank of T could be defined to be the
rank of A, where A is any matrix of T . This would be unambiguous because rank is a similarity invariant.
Of course, this is unnecessary in the case of rank because rank T was defined earlier to be the dimension
of im T , and this was proved to equal the rank of every matrix representing T (Theorem 9.1.5). This
definition of rank T is said to be intrinsic because it makes no reference to the matrices representing T .
However, the technique serves to identify an intrinsic property of T with every similarity invariant, and
some of these properties are not so easily defined directly.

In particular, if T : V →V is a linear operator on a finite dimensional space V , define the determinant

of T (denoted det T ) by
det T = det MB(T ), B any basis of V

This is independent of the choice of basis B because, if D is any other basis of V , the matrices MB(T ) and
MD(T ) are similar and so have the same determinant. In the same way, the trace of T (denoted tr T ) can
be defined by

tr T = tr MB(T ), B any basis of V

This is unambiguous for the same reason.

Theorems about matrices can often be translated to theorems about linear operators. Here is an exam-
ple.
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Example 9.2.5

Let S and T denote linear operators on the finite dimensional space V . Show that

det (ST ) = det S det T

Solution. Choose a basis B of V and use Theorem 9.2.1.

det (ST ) = det MB(ST ) = det [MB(S)MB(T )]

= det [MB(S)] det [MB(T )] = det S det T

Recall next that the characteristic polynomial of a matrix is another similarity invariant: If A and A′ are
similar matrices, then cA(x) = cA′(x) (Theorem 5.5.1). As discussed above, the discovery of a similarity
invariant means the discovery of a property of linear operators. In this case, if T : V → V is a linear
operator on the finite dimensional space V , define the characteristic polynomial of T by

cT (x) = cA(x) where A = MB(T ), B any basis of V

In other words, the characteristic polynomial of an operator T is the characteristic polynomial of any

matrix representing T . This is unambiguous because any two such matrices are similar by Theorem 9.2.3.

Example 9.2.6

Compute the characteristic polynomial cT (x) of the operator T : P2→ P2 given by
T (a+bx+ cx2) = (b+ c)+(a+ c)x+(a+b)x2.

Solution. If B = {1, x, x2}, the corresponding matrix of T is

MB(T ) =
[

CB[T (1)] CB[T (x)] CB[T (x
2)]
]
=




0 1 1
1 0 1
1 1 0




Hence cT (x) = det [xI−MB(T )] = x3−3x−2 = (x+1)2(x−2).

In Section 4.4 we computed the matrix of various projections, reflections, and rotations in R3. How-
ever, the methods available then were not adequate to find the matrix of a rotation about a line through the
origin. We conclude this section with an example of how Theorem 9.2.3 can be used to compute such a
matrix.

Example 9.2.7

Let L be the line in R3 through the origin with (unit) direction vector d = 1
3

[
2 1 2

]T
.

Compute the matrix of the rotation about L through an angle θ measured counterclockwise when
viewed in the direction of d.
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θ

θ

0

d = R(d)

L

R(g)

g

R(f)

f

Solution. Let R : R3→ R3 be the rotation. The idea is to first find
a basis B0 for which the matrix of MB0(R) of R is easy to compute,
and then use Theorem 9.2.3 to compute the “standard” matrix
ME(R) with respect to the standard basis E = {e1, e2, e3} of R3.
To construct the basis B0, let K denote the plane through the
origin with d as normal, shaded in the diagram. Then the vectors
f = 1

3

[
−2 2 1

]T
and g = 1

3

[
1 2 −2

]T
are both in K

(they are orthogonal to d) and are independent (they are orthogonal
to each other).
Hence B0 = {d, f, g} is an orthonormal basis of R3, and the
effect of R on B0 is easy to determine. In fact R(d) = d and
(as in Theorem 2.6.4) the second diagram gives

R(f) = cosθ f+ sinθg and R(g) =−sinθ f+ cosθg

θ

θ

0
f

R(f)

g
R(g)

because ‖f‖= 1 = ‖g‖. Hence

MB0(R) =
[

CB0(d) CB0(f) CB0(g)
]
=




1 0 0
0 cosθ −sinθ
0 sinθ cosθ




Now Theorem 9.2.3 (with B = E) asserts that
ME(R) = P−1MB0(R)P where

P = PB0←E =
[

CB0(e1) CB0(e2) CB0(e3)
]
= 1

3




2 1 2
−2 2 1

1 2 −2




using the expansion theorem (Theorem 5.3.6). Since P−1 = PT (P is orthogonal), the matrix of R

with respect to E is

ME(R) = PT MB0(R)P

= 1
9




5cosθ +4 6sinθ −2cosθ +2 4−3sinθ −4cosθ
2−6sinθ −2cosθ 8cosθ +1 6sinθ −2cosθ +2
3sinθ −4cosθ +4 2−6sinθ −2cosθ 5cosθ +4




As a check one verifies that this is the identity matrix when θ = 0, as it should.

Note that in Example 9.2.7 not much motivation was given to the choices of the (orthonormal) vectors
f and g in the basis B0, which is the key to the solution. However, if we begin with any basis containing
d the Gram-Schmidt algorithm will produce an orthogonal basis containing d, and the other two vectors
will automatically be in L⊥ = K.
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Exercises for 9.2

Exercise 9.2.1 In each case find PD←B, where B and D

are ordered bases of V . Then verify that
CD(v) = PD←BCB(v).

a. V =R2, B = {(0, −1), (2, 1)},
D = {(0, 1), (1, 1)}, v = (3, −5)

b. V = P2, B = {x, 1+x, x2}, D= {2, x+3, x2−1},
v = 1+ x+ x2

c. V = M22,

B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 1

]
,

[
0 0
1 0

]}
,

D =

{[
1 1
0 0

]
,

[
1 0
1 0

]
,

[
1 0
0 1

]
,

[
0 1
1 0

]}
,

v =

[
3 −1
1 4

]

Exercise 9.2.2 In R3 find PD←B, where
B = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} and
D = {(1, 0, 1), (1, 0, −1), (0, 1, 0)}. If v = (a, b, c),

show that CD(v) =
1
2




a+ c

a− c

2b


 and CB(v) =




a−b

b− c

c


,

and verify that CD(v) = PD←BCB(v).

Exercise 9.2.3 In P3 find PD←B if B = {1, x, x2, x3}
and D = {1, (1− x), (1− x)2, (1− x)3}. Then express
p = a + bx + cx2 + dx3 as a polynomial in powers of
(1− x).

Exercise 9.2.4 In each case verify that PD←B is the in-
verse of PB←D and that PE←DPD←B = PE←B, where B, D,
and E are ordered bases of V .

a. V = R3, B = {(1, 1, 1), (1, −2, 1), (1, 0, −1)},
D = standard basis,
E = {(1, 1, 1), (1, −1, 0), (−1, 0, 1)}

b. V = P2, B = {1, x, x2}, D = {1+ x+ x2,
1− x, −1+ x2}, E = {x2, x, 1}

Exercise 9.2.5 Use property (2) of Theorem 9.2.2, with
D the standard basis of Rn, to find the inverse of:

A =




1 1 0
1 0 1
0 1 1


a. A =




1 2 1
2 3 0
−1 0 2


b.

Exercise 9.2.6 Find PD←B if B = {b1, b2, b3, b4} and
D = {b2, b3, b1, b4}. Change matrices arising when the
bases differ only in the order of the vectors are called
permutation matrices.

Exercise 9.2.7 In each case, find P = PB0←B and verify
that P−1MB0(T )P = MB(T ) for the given operator T .

a. T : R3→R3, T (a, b, c) = (2a−b, b+c, c−3a);
B0 = {(1, 1, 0), (1, 0, 1), (0, 1, 0)} and B is the
standard basis.

b. T : P2→ P2,
T (a+bx+ cx2) = (a+b)+ (b+ c)x+(c+a)x2;
B0 = {1, x, x2} and B = {1− x2, 1+ x, 2x+ x2}

c. T : M22→M22,

T

[
a b

c d

]
=

[
a+d b+ c

a+ c b+d

]
;

B0 =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
,

and

B =

{[
1 1
0 0

]
,

[
0 0
1 1

]
,

[
1 0
0 1

]
,

[
0 1
1 1

]}

Exercise 9.2.8 In each case, verify that P−1AP = D and
find a basis B of R2 such that MB(TA) = D.

a. A =

[
11 −6
12 −6

]
P =

[
2 3
3 4

]
D =

[
2 0
0 3

]

b. A=

[
29 −12
70 −29

]
P=

[
3 2
7 5

]
D=

[
1 0
0 −1

]

Exercise 9.2.9 In each case, compute the characteristic
polynomial cT (x).

a. T : R2→ R2, T (a, b) = (a−b, 2b−a)

b. T : R2→ R2, T (a, b) = (3a+5b, 2a+3b)

c. T : P2→ P2,
T (a+bx+ cx2)

= (a−2c)+ (2a+b+ c)x+(c−a)x2

d. T : P2→ P2,
T (a+bx+ cx2)

= (a+b−2c)+ (a−2b+ c)x+(b−2a)x2
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e. T : R3→ R3, T (a, b, c) = (b, c, a)

f. T : M22→M22, T

[
a b

c d

]
=

[
a− c b−d

a− c b−d

]

Exercise 9.2.10 If V is finite dimensional, show that
a linear operator T on V has an inverse if and only if
det T 6= 0.

Exercise 9.2.11 Let S and T be linear operators on V

where V is finite dimensional.

a. Show that tr (ST )= tr (T S). [Hint: Lemma 5.5.1.]

b. [See Exercise 9.1.19.] For a in R, show that
tr (S+T ) = tr S+ tr T , and tr (aT ) = a tr (T ).

Exercise 9.2.12 If A and B are n×n matrices, show that
they have the same null space if and only if A =UB for
some invertible matrix U . [Hint: Exercise 7.3.28.]

Exercise 9.2.13 If A and B are n×n matrices, show that
they have the same column space if and only if A = BU

for some invertible matrix U . [Hint: Exercise 7.3.28.]

Exercise 9.2.14 Let E = {e1, . . . , en} be the standard
ordered basis of Rn, written as columns. If
D = {d1, . . . , dn} is any ordered basis, show that
PE←D =

[
d1 · · · dn

]
.

Exercise 9.2.15 Let B = {b1, b2, . . . , bn} be
any ordered basis of Rn, written as columns. If
Q =

[
b1 b2 · · · bn

]
is the matrix with the bi as

columns, show that QCB(v) = v for all v in Rn.

Exercise 9.2.16 Given a complex number w, define
Tw : C→ C by Tw(z) = wz for all z in C.

a. Show that Tw is a linear operator for each w in C,
viewing C as a real vector space.

b. If B is any ordered basis of C, define S : C→M22

by S(w) = MB(Tw) for all w in C. Show that S

is a one-to-one linear transformation with the ad-
ditional property that S(wv) = S(w)S(v) holds for
all w and v in C.

c. Taking B = {1, i} show that

S(a+ bi) =

[
a −b

b a

]
for all complex numbers

a+ bi. This is called the regular representation

of the complex numbers as 2× 2 matrices. If θ

is any angle, describe S(eiθ ) geometrically. Show
that S(w) = S(w)T for all w in C; that is, that con-
jugation corresponds to transposition.

Exercise 9.2.17 Let B = {b1, b2, . . . , bn} and
D = {d1, d2, . . . , dn} be two ordered bases of a vec-
tor space V . Prove that CD(v) = PD←BCB(v) holds for
all v in V as follows: Express each b j in the form
b j = p1 jd1 + p2 jd2 + · · ·+ pn jdn and write P = [pi j].
Show that P =

[
CD(b1) CD(b1) · · · CD(b1)

]
and

that CD(v) = PCB(v) for all v in B.

Exercise 9.2.18 Find the standard matrix of the rotation
R about the line through the origin with direction vector
d =

[
2 3 6

]T
. [Hint: Consider f =

[
6 2 −3

]T

and g =
[

3 −6 2
]T

.]

9.3 Invariant Subspaces and Direct Sums

A fundamental question in linear algebra is the following: If T : V → V is a linear operator, how can a
basis B of V be chosen so the matrix MB(T ) is as simple as possible? A basic technique for answering
such questions will be explained in this section. If U is a subspace of V , write its image under T as

T (U) = {T (u) | u in U}
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V V

U U

T

T

Definition 9.5 T -invariant Subspace

Let T : V →V be an operator. A subspace U ⊆V is called
TTT -invariant if T (U)⊆U , that is, T (u) ∈U for every vector
u ∈U . Hence T is a linear operator on the vector space U .

This is illustrated in the diagram, and the fact that T : U →U is an op-
erator on U is the primary reason for our interest in T -invariant subspaces.

Example 9.3.1

Let T : V →V be any linear operator. Then:

1. {0} and V are T -invariant subspaces.

2. Both ker T and im T = T (V ) are T -invariant subspaces.

3. If U and W are T -invariant subspaces, so are T (U), U ∩W , and U +W .

Solution. Item 1 is clear, and the rest is left as Exercises 9.3.1 and 9.3.2.

Example 9.3.2

Define T : R3→ R3 by T (a, b, c) = (3a+2b, b− c, 4a+2b− c). Then
U = {(a, b, a) | a, b in R} is T -invariant because

T (a, b, a) = (3a+2b, b−a, 3a+2b)

is in U for all a and b (the first and last entries are equal).

If a spanning set for a subspace U is known, it is easy to check whether U is T -invariant.

Example 9.3.3

Let T : V →V be a linear operator, and suppose that U = span{u1, u2, . . . , uk} is a subspace of
V . Show that U is T -invariant if and only if T (ui) lies in U for each i = 1, 2, . . . , k.

Solution. Given u in U , write it as u = r1u1 + · · ·+ rkuk, ri in R. Then

T (u) = r1T (u1)+ · · ·+ rkT (uk)

and this lies in U if each T (ui) lies in U . This shows that U is T -invariant if each T (ui) lies in U ;
the converse is clear.
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Example 9.3.4

Define T : R2→ R2 by T (a, b) = (b, −a). Show that R2 contains no T -invariant subspace except
0 and R2.

Solution. Suppose, if possible, that U is T -invariant, but U 6= 0, U 6= R2. Then U has dimension 1
so U = Rx where x 6= 0. Now T (x) lies in U—say T (x) = rx, r in R. If we write x = (a, b), this is
(b, −a) = r(a, b), which gives b = ra and −a = rb. Eliminating b gives r2a = rb =−a, so
(r2 +1)a = 0. Hence a = 0. Then b = ra = 0 too, contrary to the assumption that x 6= 0. Hence no
one-dimensional T -invariant subspace exists.

Definition 9.6 Restriction of an Operator

Let T : V →V be a linear operator. If U is any T -invariant subspace of V , then

T : U →U

is a linear operator on the subspace U , called the restriction of T to U .

This is the reason for the importance of T -invariant subspaces and is the first step toward finding a basis
that simplifies the matrix of T .

Theorem 9.3.1

Let T : V →V be a linear operator where V has dimension n and suppose that U is any T -invariant
subspace of V . Let B1 = {b1, . . . , bk} be any basis of U and extend it to a basis
B = {b1, . . . , bk, bk+1, . . . , bn} of V in any way. Then MB(T ) has the block triangular form

MB(T ) =

[
MB1(T ) Y

0 Z

]

where Z is (n− k)× (n− k) and MB1(T ) is the matrix of the restriction of T to U .

Proof. The matrix of (the restriction) T : U →U with respect to the basis B1 is the k× k matrix

MB1(T ) =
[

CB1[T (b1)] CB1[T (b2)] · · · CB1[T (bk)]
]

Now compare the first column CB1[T (b1)] here with the first column CB[T (b1)] of MB(T ). The fact that
T (b1) lies in U (because U is T -invariant) means that T (b1) has the form

T (b1) = t1b1 + t2b2 + · · ·+ tkbk +0bk+1 + · · ·+0bn
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Consequently,

CB1[T (b1)] =




t1
t2
...
tk


 in Rk whereas CB[T (b1)] =




t1
t2
...
tk
0
...
0




in Rn

This shows that the matrices MB(T ) and

[
MB1(T ) Y

0 Z

]
have identical first columns.

Similar statements apply to columns 2, 3, . . . , k, and this proves the theorem.

The block upper triangular form for the matrix MB(T ) in Theorem 9.3.1 is very useful because the
determinant of such a matrix equals the product of the determinants of each of the diagonal blocks. This
is recorded in Theorem 9.3.2 for reference, together with an important application to characteristic poly-
nomials.

Theorem 9.3.2

Let A be a block upper triangular matrix, say

A =




A11 A12 A13 · · · A1n

0 A22 A23 · · · A2n

0 0 A33 · · · A3n
...

...
...

...
0 0 0 · · · Ann




where the diagonal blocks are square. Then:

1. det A = (det A11)(det A22)(det A33) · · ·(det Ann).

2. cA(x) = cA11(x)cA22(x)cA33(x)· · ·cAnn
(x).

Proof. If n = 2, (1) is Theorem 3.1.5; the general case (by induction on n) is left to the reader. Then (2)
follows from (1) because

xI−A =




xI−A11 −A12 −A13 · · · −A1n

0 xI−A22 −A23 · · · −A2n

0 0 xI−A33 · · · −A3n
...

...
...

...
0 0 0 · · · xI−Ann




where, in each diagonal block, the symbol I stands for the identity matrix of the appropriate size.
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Example 9.3.5

Consider the linear operator T : P2→ P2 given by

T (a+bx+ cx2) = (−2a−b+2c)+(a+b)x+(−6a−2b+5c)x2

Show that U = span{x, 1+2x2} is T -invariant, use it to find a block upper triangular matrix for T ,
and use that to compute cT (x).

Solution. U is T -invariant by Example 9.3.3 because U = span{x, 1+2x2} and both T (x) and
T (1+2x2) lie in U :

T (x) =−1+ x−2x2 = x− (1+2x2)

T (1+2x2) = 2+ x+4x2 = x+2(1+2x2)

Extend the basis B1 = {x, 1+2x2} of U to a basis B of P2 in any way at all—say,
B = {x, 1+2x2, x2}. Then

MB(T ) =
[

CB[T (x)] CB[T (1+2x2)] CB[T (x
2)]
]

=
[

CB(−1+ x−2x2) CB(2+ x+4x2) CB(2+5x2)
]

=




1 1 0
−1 2 2

0 0 1




is in block upper triangular form as expected. Finally,

cT (x) = det




x−1 −1 0
1 x−2 −2
0 0 x−1


= (x2−3x+3)(x−1)

Eigenvalues

Let T : V → V be a linear operator. A one-dimensional subspace Rv, v 6= 0, is T -invariant if and only if
T (rv) = rT (v) lies in Rv for all r in R. This holds if and only if T (v) lies in Rv; that is, T (v) = λv for
some λ in R. A real number λ is called an eigenvalue of an operator T : V →V if

T (v) = λv

holds for some nonzero vector v in V . In this case, v is called an eigenvector of T corresponding to λ .
The subspace

Eλ (T ) = {v in V | T (v) = λv}
is called the eigenspace of T corresponding to λ . These terms are consistent with those used in Section 5.5
for matrices. If A is an n×n matrix, a real number λ is an eigenvalue of the matrix operator TA : Rn→Rn

if and only if λ is an eigenvalue of the matrix A. Moreover, the eigenspaces agree:

Eλ (TA) = {x in Rn | Ax = λx}= Eλ (A)
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The following theorem reveals the connection between the eigenspaces of an operator T and those of the
matrices representing T .

Theorem 9.3.3

Let T : V →V be a linear operator where dim V = n, let B denote any ordered basis of V , and let
CB : V → Rn denote the coordinate isomorphism. Then:

1. The eigenvalues λ of T are precisely the eigenvalues of the matrix MB(T ) and thus are the
roots of the characteristic polynomial cT (x).

2. In this case the eigenspaces Eλ (T ) and Eλ [MB(T )] are isomorphic via the restriction
CB : Eλ (T )→ Eλ [MB(T )].

Proof. Write A = MB(T ) for convenience. If T (v) = λv, then λCB(v) =CB[T (v)] = ACB(v) because CB

is linear. Hence CB(v) lies in Eλ (A), so we do have a function CB : Eλ (T )→ Eλ (A). It is clearly linear
and one-to-one; we claim it is onto. If x is in Eλ (A), write x =CB(v) for some v in V (CB is onto). This v

actually lies in Eλ (T ). To see why, observe that

CB[T (v)] = ACB(v) = Ax = λx = λCB(v) =CB(λv)

Hence T (v) = λv because CB is one-to-one, and this proves (2). As to (1), we have already shown that
eigenvalues of T are eigenvalues of A. The converse follows, as in the foregoing proof that CB is onto.

Theorem 9.3.3 shows how to pass back and forth between the eigenvectors of an operator T and the
eigenvectors of any matrix MB(T ) of T :

v lies in Eλ (T ) if and only if CB(v) lies in Eλ [MB(T )]

Example 9.3.6

Find the eigenvalues and eigenspaces for T : P2→ P2 given by

T (a+bx+ cx2) = (2a+b+ c)+(2a+b−2c)x− (a+2c)x2

Solution. If B = {1, x, x2}, then

MB(T ) =
[

CB[T (1)] CB[T (x)] CB[T (x
2)]
]
=




2 1 1
2 1 −2
−1 0 −2




Hence cT (x) = det [xI−MB(T )] = (x+1)2(x−3) as the reader can verify.

Moreover, E−1[MB(T )] = R



−1

2
1


 and E3[MB(T )] = R




5
6
−1


, so Theorem 9.3.3 gives

E−1(T ) = R(−1+2x+ x2) and E3(T ) = R(5+6x− x2).
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Theorem 9.3.4

Each eigenspace of a linear operator T : V →V is a T -invariant subspace of V .

Proof. If v lies in the eigenspace Eλ (T ), then T (v) = λv, so T [T (v)] = T (λv) = λT (v). This shows that
T (v) lies in Eλ (T ) too.

Direct Sums

Sometimes vectors in a space V can be written naturally as a sum of vectors in two subspaces. For example,
in the space Mnn of all n×n matrices, we have subspaces

U = {P in Mnn | P is symmetric } and W = {Q in Mnn | Q is skew symmetric}

where a matrix Q is called skew-symmetric if QT = −Q. Then every matrix A in Mnn can be written as
the sum of a matrix in U and a matrix in W ; indeed,

A = 1
2(A+AT )+ 1

2(A−AT )

where 1
2(A+ AT ) is symmetric and 1

2(A−AT ) is skew symmetric. Remarkably, this representation is
unique: If A = P+Q where PT = P and QT =−Q, then AT = PT +QT = P−Q; adding this to A = P+Q

gives P = 1
2(A+AT ), and subtracting gives Q = 1

2(A−AT ). In addition, this uniqueness turns out to be
closely related to the fact that the only matrix in both U and W is 0. This is a useful way to view matrices,
and the idea generalizes to the important notion of a direct sum of subspaces.

If U and W are subspaces of V , their sum U +W and their intersection U ∩W were defined in Sec-
tion 6.4 as follows:

U +W = {u+w | u in U and w in W}
U ∩W = {v | v lies in both U and W}

These are subspaces of V , the sum containing both U and W and the intersection contained in both U and
W . It turns out that the most interesting pairs U and W are those for which U ∩W is as small as possible
and U +W is as large as possible.

Definition 9.7 Direct Sum of Subspaces

A vector space V is said to be the direct sum of subspaces U and W if

U ∩W = {0} and U +W =V

In this case we write V =U⊕W . Given a subspace U , any subspace W such that V =U⊕W is
called a complement of U in V .
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Example 9.3.7

In the space R5, consider the subspaces U = {(a, b, c, 0, 0) | a, b, and c in R} and
W = {(0, 0, 0, d, e) | d and e in R}. Show that R5 =U⊕W .

Solution. If x = (a, b, c, d, e) is any vector in R5, then x = (a, b, c, 0, 0)+(0, 0, 0, d, e), so x

lies in U +W . Hence R5 =U +W . To show that U ∩W = {0}, let x = (a, b, c, d, e) lie in U ∩W .
Then d = e = 0 because x lies in U , and a = b = c = 0 because x lies in W . Thus
x = (0, 0, 0, 0, 0) = 0, so 0 is the only vector in U ∩W . Hence U ∩W = {0}.

Example 9.3.8

If U is a subspace of Rn, show that Rn =U⊕U⊥.

Solution. The equation Rn =U +U⊥ holds because, given x in Rn, the vector projU x lies in U

and x− projU x lies in U⊥. To see that U ∩U⊥ = {0}, observe that any vector in U ∩U⊥ is
orthogonal to itself and hence must be zero.

Example 9.3.9

Let {e1, e2, . . . , en} be a basis of a vector space V , and partition it into two parts: {e1, . . . , ek} and
{ek+1, . . . , en}. If U = span{e1, . . . , ek} and W = span{ek+1, . . . , en}, show that V =U⊕W .

Solution. If v lies in U ∩W , then v = a1e1 + · · ·+akek and v = bk+1ek+1 + · · ·+bnen hold for
some ai and b j in R. The fact that the ei are linearly independent forces all ai = b j = 0, so v = 0.
Hence U ∩W = {0}. Now, given v in V , write v = v1e1 + · · ·+ vnen where the vi are in R. Then
v = u+w, where u = v1e1 + · · ·+ vkek lies in U and w = vk+1ek+1 + · · ·+ vnen lies in W . This
proves that V =U +W .

Example 9.3.9 is typical of all direct sum decompositions.

Theorem 9.3.5

Let U and W be subspaces of a finite dimensional vector space V . The following three conditions
are equivalent:

1. V =U⊕W .

2. Each vector v in V can be written uniquely in the form

v = u+w u in U , w in W

3. If {u1, . . . , uk} and {w1, . . . , wm} are bases of U and W , respectively, then
B = {u1, . . . , uk, w1, . . . , wm} is a basis of V .

(The uniqueness in (2) means that if v = u1 +w1 is another such representation, then u1 = u and
w1 = w.)
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Proof. Example 9.3.9 shows that (3)⇒ (1).

(1)⇒ (2). Given v in V , we have v = u+w, u in U , w in W , because V =U +W .

If also v = u1 +w1, then u−u1 = w1−w lies in U ∩W = {0}, so u = u1 and w = w1.

(2)⇒ (3). Given v in V , we have v= u+w, u in U , w in W . Hence v lies in span B; that is, V = span B.
To see that B is independent, let a1u1 + · · ·+akuk +b1w1 + · · ·+bmwm = 0. Write u = a1u1 + · · ·+akuk

and w = b1w1 + · · ·+bmwm. Then u+w = 0, and so u = 0 and w = 0 by the uniqueness in (2). Hence
ai = 0 for all i and b j = 0 for all j.

Condition (3) in Theorem 9.3.5 gives the following useful result.

Theorem 9.3.6

If a finite dimensional vector space V is the direct sum V =U⊕W of subspaces U and W , then

dim V = dim U + dim W

These direct sum decompositions of V play an important role in any discussion of invariant subspaces.
If T : V →V is a linear operator and if U1 is a T -invariant subspace, the block upper triangular matrix

MB(T ) =

[
MB1(T ) Y

0 Z

]
(9.3)

in Theorem 9.3.1 is achieved by choosing any basis B1 = {b1, . . . , bk} of U1 and completing it to a basis
B = {b1, . . . , bk, bk+1, . . . , bn} of V in any way at all. The fact that U1 is T -invariant ensures that the
first k columns of MB(T ) have the form in (9.3) (that is, the last n− k entries are zero), and the question
arises whether the additional basis vectors bk+1, . . . , bn can be chosen such that

U2 = span{bk+1, . . . , bn}
is also T -invariant. In other words, does each T -invariant subspace of V have a T -invariant complement?
Unfortunately the answer in general is no (see Example 9.3.11 below); but when it is possible, the matrix
MB(T ) simplifies further. The assumption that the complement U2 = span{bk+1, . . . , bn} is T -invariant
too means that Y = 0 in equation 9.3 above, and that Z = MB2(T ) is the matrix of the restriction of T to
U2 (where B2 = {bk+1, . . . , bn}). The verification is the same as in the proof of Theorem 9.3.1.

Theorem 9.3.7

Let T : V →V be a linear operator where V has dimension n. Suppose V =U1⊕U2 where both U1

and U2 are T -invariant. If B1 = {b1, . . . , bk} and B2 = {bk+1, . . . , bn} are bases of U1 and U2

respectively, then
B = {b1, . . . , bk, bk+1, . . . , bn}

is a basis of V , and MB(T ) has the block diagonal form

MB(T ) =

[
MB1(T ) 0

0 MB2(T )

]

where MB1(T ) and MB2(T ) are the matrices of the restrictions of T to U1 and to U2 respectively.
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Definition 9.8 Reducible Linear Operator

The linear operator T : V →V is said to be reducible if nonzero T -invariant subspaces U1 and U2

can be found such that V =U1⊕U2.

Then T has a matrix in block diagonal form as in Theorem 9.3.7, and the study of T is reduced to
studying its restrictions to the lower-dimensional spaces U1 and U2. If these can be determined, so can T .
Here is an example in which the action of T on the invariant subspaces U1 and U2 is very simple indeed.
The result for operators is used to derive the corresponding similarity theorem for matrices.

Example 9.3.10

Let T : V →V be a linear operator satisfying T 2 = 1V (such operators are called involutions).
Define

U1 = {v | T (v) = v} and U2 = {v | T (v) =−v}

a. Show that V =U1⊕U2.

b. If dim V = n, find a basis B of V such that MB(T ) =

[
Ik 0
0 −In−k

]
for some k.

c. Conclude that, if A is an n×n matrix such that A2 = I, then A is similar to

[
Ik 0
0 −In−k

]
for

some k.

Solution.

a. The verification that U1 and U2 are subspaces of V is left to the reader. If v lies in U1∩U2,
then v = T (v) =−v, and it follows that v = 0. Hence U1∩U2 = {0}. Given v in V , write

v = 1
2{[v+T (v)]+ [v−T (v)]}

Then v+T (v) lies in U1, because T [v+T (v)] = T (v)+T 2(v) = v+T (v). Similarly,
v−T (v) lies in U2, and it follows that V =U1 +U2. This proves part (a).

b. U1 and U2 are easily shown to be T -invariant, so the result follows from Theorem 9.3.7 if
bases B1 = {b1, . . . , bk} and B2 = {bk+1, . . . , bn} of U1 and U2 can be found such that
MB1(T ) = Ik and MB2(T ) =−In−k. But this is true for any choice of B1 and B2:

MB1(T ) =
[

CB1[T (b1)] CB1[T (b2)] · · · CB1[T (bk)]
]

=
[

CB1(b1) CB1(b2) · · · CB1(bk)
]

= Ik

A similar argument shows that MB2(T ) =−In−k, so part (b) follows with
B = {b1, b2, . . . , bn}.
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c. Given A such that A2 = I, consider TA : Rn→ Rn. Then (TA)
2(x) = A2x = x for all x in Rn,

so (TA)
2 = 1V . Hence, by part (b), there exists a basis B of Rn such that

MB(TA) =

[
Ir 0
0 −In−r

]

But Theorem 9.2.4 shows that MB(TA) = P−1AP for some invertible matrix P, and this
proves part (c).

Note that the passage from the result for operators to the analogous result for matrices is routine and can
be carried out in any situation, as in the verification of part (c) of Example 9.3.10. The key is the analysis
of the operators. In this case, the involutions are just the operators satisfying T 2 = 1V , and the simplicity
of this condition means that the invariant subspaces U1 and U2 are easy to find.

Unfortunately, not every linear operator T : V → V is reducible. In fact, the linear operator in Exam-
ple 9.3.4 has no invariant subspaces except 0 and V . On the other hand, one might expect that this is the
only type of nonreducible operator; that is, if the operator has an invariant subspace that is not 0 or V , then
some invariant complement must exist. The next example shows that even this is not valid.

Example 9.3.11

Consider the operator T : R2→ R2 given by T

[
a

b

]
=

[
a+b

b

]
. Show that U1 = R

[
1
0

]
is

T -invariant but that U1 has not T -invariant complement in R2.

Solution. Because U1 = span

{[
1
0

]}
and T

[
1
0

]
=

[
1
0

]
, it follows (by Example 9.3.3) that

U1 is T -invariant. Now assume, if possible, that U1 has a T -invariant complement U2 in R2. Then
U1⊕U2 = R2 and T (U2)⊆U2. Theorem 9.3.6 gives

2 = dim R2 = dim U1+ dim U2 = 1+ dim U2

so dim U2 = 1. Let U2 = Ru2, and write u2 =

[
p

q

]
. We claim that u2 is not in U1. For if u2 ∈U1,

then u2 ∈U1∩U2 = {0}, so u2 = 0. But then U2 = Ru2 = {0}, a contradiction, as dim U2 = 1. So
u2 /∈U1, from which q 6= 0. On the other hand, T (u2) ∈U2 = Ru2 (because U2 is T -invariant), say

T (u2) = λu2 = λ

[
p

q

]
.

Thus [
p+q

q

]
= T

[
p

q

]
= λ

[
p

q

]
where λ ∈ R

Hence p+q = λ p and q = λq. Because q 6= 0, the second of these equations implies that λ = 1, so
the first equation implies q = 0, a contradiction. So a T -invariant complement of U1 does not exist.

This is as far as we take the theory here, but in Chapter 11 the techniques introduced in this section will
be refined to show that every matrix is similar to a very nice matrix indeed—its Jordan canonical form.
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Exercises for 9.3

Exercise 9.3.1 If T : V →V is any linear operator, show
that ker T and im T are T -invariant subspaces.

Exercise 9.3.2 Let T be a linear operator on V . If U and
W are T -invariant, show that

a. U ∩W and U +W are also T -invariant.

b. T (U) is T -invariant.

Exercise 9.3.3 Let S and T be linear operators on V and
assume that ST = T S.

a. Show that im S and ker S are T -invariant.

b. If U is T -invariant, show that S(U) is T -invariant.

Exercise 9.3.4 Let T :V →V be a linear operator. Given
v in V , let U denote the set of vectors in V that lie in every
T -invariant subspace that contains v.

a. Show that U is a T -invariant subspace of V con-
taining v.

b. Show that U is contained in every T -invariant sub-
space of V that contains v.

Exercise 9.3.5

a. If T is a scalar operator (see Example 7.1.1) show
that every subspace is T -invariant.

b. Conversely, if every subspace is T -invariant, show
that T is scalar.

Exercise 9.3.6 Show that the only subspaces of V that
are T -invariant for every operator T : V → V are 0 and
V . Assume that V is finite dimensional. [Hint: Theo-
rem 7.1.3.]

Exercise 9.3.7 Suppose that T : V →V is a linear oper-
ator and that U is a T -invariant subspace of V . If S is an
invertible operator, put T ′ = ST S−1. Show that S(U) is a
T ′-invariant subspace.

Exercise 9.3.8 In each case, show that U is T -invariant,
use it to find a block upper triangular matrix for T , and
use that to compute cT (x).

a. T : P2→ P2,
T (a+bx+ cx2)

= (−a+2b+ c)+ (a+3b+ c)x+(a+4b)x2,
U = span{1, x+ x2}

b. T : P2→ P2,
T (a+bx+ cx2)

= (5a−2b+ c)+ (5a−b+ c)x+(a+2c)x2,
U = span{1−2x2, x+ x2}

Exercise 9.3.9 In each case, show that TA :R2→R2 has
no invariant subspaces except 0 and R2.

a. A =

[
1 2
−1 −1

]

b. A =

[
cos θ −sinθ

sin θ cosθ

]
, 0 < θ < π

Exercise 9.3.10 In each case, show that V =U ⊕W .

a. V = R4, U = span{(1, 1, 0, 0), (0, 1, 1, 0)},
W = span{(0, 1, 0, 1), (0, 0, 1, 1)}

b. V = R4, U = {(a, a, b, b) | a, b in R},
W = {(c, d, c, −d) | c, d in R}

c. V = P3, U = {a+bx | a, b in R},
W = {ax2 +bx3 | a, b in R}

d. V = M22, U =

{[
a a

b b

]∣∣∣∣a, b in R

}
,

W =

{[
a b

−a b

]∣∣∣∣a, b in R

}

Exercise 9.3.11 Let U = span{(1, 0, 0, 0), (0, 1, 0, 0)}
in R4. Show that R4 = U ⊕W1 and R4 = U ⊕W2,
where W1 = span{(0, 0, 1, 0), (0, 0, 0, 1)} and
W2 = span{(1, 1, 1, 1), (1, 1, 1, −1)}.
Exercise 9.3.12 Let U be a subspace of V , and suppose
that V =U ⊕W1 and V =U ⊕W2 hold for subspaces W1

and W2. Show that dim W1 = dim W2.

Exercise 9.3.13 If U and W denote the subspaces of
even and odd polynomials in Pn, respectively, show that
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Pn =U⊕W . (See Exercise 6.3.36.) [Hint: f (x)+ f (−x)
is even.]

Exercise 9.3.14 Let E be an n×n matrix with E2 = E .
Show that Mnn = U ⊕W , where U = {A | AE = A} and
W = {B | BE = 0}. [Hint: XE lies in U for every matrix
X .]

Exercise 9.3.15 Let U and W be subspaces of V . Show
that U ∩W = {0} if and only if {u, w} is independent
for all u 6= 0 in U and all w 6= 0 in W .

Exercise 9.3.16 Let V
T→W

S→V be linear transforma-
tions, and assume that dim V and dim W are finite.

a. If ST = 1V , show that W = im T ⊕ ker S.
[Hint: Given w in W , show that w−T S(w) lies in
ker S.]

b. Illustrate with R2 T→ R3 S→ R2 where
T (x, y) = (x, y, 0) and S(x, y, z) = (x, y).

Exercise 9.3.17 Let U and W be subspaces of V , let
dim V = n, and assume that dim U + dim W = n.

a. If U ∩W = {0}, show that V =U ⊕W .

b. If U +W =V , show that V =U ⊕W . [Hint: The-
orem 6.4.5.]

Exercise 9.3.18 Let A =

[
0 1
0 0

]
and consider

TA : R2→ R2.

a. Show that the only eigenvalue of TA is λ = 0.

b. Show that ker (TA) =R

[
1
0

]
is the unique

TA-invariant subspace of R2 (except for 0 and
R2).

Exercise 9.3.19 If A =




2 −5 0 0
1 −2 0 0
0 0 −1 −2
0 0 1 1


, show

that TA : R4→ R4 has two-dimensional T -invariant sub-
spaces U and W such that R4 =U⊕W , but A has no real
eigenvalue.

Exercise 9.3.20 Let T : V → V be a linear operator
where dim V = n. If U is a T -invariant subspace of V ,
let T1 : U →U denote the restriction of T to U

(so T1(u) = T (u) for all u in U ). Show that cT (x) =
cT1(x) · q(x) for some polynomial q(x). [Hint: Theo-
rem 9.3.1.]

Exercise 9.3.21 Let T : V → V be a linear operator
where dim V = n. Show that V has a basis of eigen-
vectors if and only if V has a basis B such that MB(T ) is
diagonal.

Exercise 9.3.22 In each case, show that T 2 = 1 and
find (as in Example 9.3.10) an ordered basis B such that
MB(T ) has the given block form.

a. T : M22→M22 where T (A) = AT ,

MB(T ) =

[
I3 0
0 −1

]

b. T : P3→ P3 where T [p(x)] = p(−x),

MB(T ) =

[
I2 0
0 −I2

]

c. T : C→ C where T (a+bi) = a−bi,

MB(T ) =

[
1 0
0 −1

]

d. T : R3→ R3 where
T (a, b, c) = (−a+2b+ c, b+ c, −c),

MB(T ) =

[
1 0
0 −I2

]

e. T : V → V where T (v) = −v, dim V = n,
MB(T ) =−In

Exercise 9.3.23 Let U and W denote subspaces of a vec-
tor space V .

a. If V = U ⊕W , define T : V → V by T (v) = w

where v is written (uniquely) as v = u+w with
u in U and w in W . Show that T is a linear trans-
formation, U = ker T , W = im T , and T 2 = T .

b. Conversely, if T : V →V is a linear transformation
such that T 2 = T , show that V = ker T ⊕ im T .
[Hint: v−T (v) lies in ker T for all v in V .]

Exercise 9.3.24 Let T : V →V be a linear operator sat-
isfying T 2 = T (such operators are called idempotents).
Define U1 = {v | T (v) = v},
U2 = ker T = {v | T (v) = 0}.

a. Show that V =U1⊕U2.
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b. If dim V = n, find a basis B of V such that

MB(T ) =

[
Ir 0
0 0

]
, where r = rank T .

c. If A is an n×n matrix such that A2 = A, show that

A is similar to

[
Ir 0
0 0

]
, where r = rank A.

[Hint: Example 9.3.10.]

Exercise 9.3.25 In each case, show that T 2 = T and find
(as in the preceding exercise) an ordered basis B such that
MB(T ) has the form given (0k is the k× k zero matrix).

a. T : P2→ P2 where
T (a+bx+ cx2) = (a−b+ c)(1+ x+ x2),

MB(T ) =

[
1 0
0 02

]

b. T : R3→ R3 where
T (a, b, c) = (a+2b, 0, 4b+ c),

MB(T ) =

[
I2 0
0 0

]

c. T : M22→M22 where

T

[
a b

c d

]
=

[
−5 −15

2 6

][
a b

c d

]
,

MB(T ) =

[
I2 0
0 02

]

Exercise 9.3.26 Let T : V →V be an operator satisfying
T 2 = cT , c 6= 0.

a. Show that V =U ⊕ ker T , where
U = {u | T (u) = cu}.
[Hint: Compute T (v− 1

c
T (v)).]

b. If dim V = n, show that V has a basis B such that

MB(T ) =

[
cIr 0

0 0

]
, where r = rank T .

c. If A is any n×n matrix of rank r such that
A2 = cA, c 6= 0, show that A is similar to[

cIr 0
0 0

]
.

Exercise 9.3.27 Let T : V →V be an operator such that
T 2 = c2, c 6= 0.

a. Show that V =U1⊕U2, where
U1 = {v | T (v) = cv} and U2 = {v | T (v) =−cv}.
[Hint: v = 1

2c
{[T (v)+ cv]− [T (v)− cv]}.]

b. If dim V = n, show that V has a basis B such that

MB(T ) =

[
cIk 0
0 −cIn−k

]
for some k.

c. If A is an n× n matrix such that A2 = c2I, c 6= 0,

show that A is similar to

[
cIk 0
0 −cIn−k

]
for

some k.

Exercise 9.3.28 If P is a fixed n× n matrix, define
T : Mnn →Mnn by T (A) = PA. Let U j denote the sub-
space of Mnn consisting of all matrices with all columns
zero except possibly column j.

a. Show that each U j is T -invariant.

b. Show that Mnn has a basis B such that MB(T ) is
block diagonal with each block on the diagonal
equal to P.

Exercise 9.3.29 Let V be a vector space. If f : V → R
is a linear transformation and z is a vector in V , define
Tf , z : V →V by Tf , z(v) = f (v)z for all v in V . Assume
that f 6= 0 and z 6= 0.

a. Show that Tf , z is a linear operator of rank 1.

b. If f 6= 0, show that Tf , z is an idempotent if and
only if f (z) = 1. (Recall that T : V →V is called
an idempotent if T 2 = T .)

c. Show that every idempotent T : V → V of rank 1
has the form T = Tf , z for some f : V → R and
some z in V with f (z) = 1. [Hint: Write
im T = Rz and show that T (z) = z. Then use Ex-
ercise 9.3.23.]

Exercise 9.3.30 Let U be a fixed n×n matrix, and con-
sider the operator T : Mnn→Mnn given by T (A) =UA.

a. Show that λ is an eigenvalue of T if and only if it
is an eigenvalue of U .

b. If λ is an eigenvalue of T , show that Eλ (T ) con-
sists of all matrices whose columns lie in Eλ (U):
Eλ (T )

= {
[

P1 P2 · · · Pn

]
|Pi in Eλ (U) for each i}

c. Show if dim [Eλ (U)] = d, then dim [Eλ (T )] = nd.
[Hint: If B = {x1, . . . , xd} is a basis of Eλ (U),
consider the set of all matrices with one column
from B and the other columns zero.]
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Exercise 9.3.31 Let T : V → V be a linear operator
where V is finite dimensional. If U ⊆V is a subspace, let
U = {u0 +T (u1)+T 2(u2)+ · · ·+T k(uk) | ui in U , k ≥
0}. Show that U is the smallest T -invariant subspace
containing U (that is, it is T -invariant, contains U , and
is contained in every such subspace).

Exercise 9.3.32 Let U1, . . . , Um be subspaces of V and
assume that V =U1+ · · ·+Um; that is, every v in V can be
written (in at least one way) in the form v= u1+ · · ·+um,
ui in Ui. Show that the following conditions are equiva-
lent.

i. If u1 + · · ·+um = 0, ui in Ui, then ui = 0 for each
i.

ii. If u1 + · · ·+ um = u′1 + · · ·+ u′m, ui and u′i in Ui,
then ui = u′i for each i.

iii. Ui∩ (U1 + · · ·+Ui−1+Ui+1 + · · ·+Um) = {0} for
each i = 1, 2, . . . , m.

iv. Ui∩ (Ui+1 + · · ·+Um) = {0} for each
i = 1, 2, . . . , m−1.

When these conditions are satisfied, we say that V is
the direct sum of the subspaces Ui, and write
V =U1⊕U2⊕·· ·⊕Um.

Exercise 9.3.33

a. Let B be a basis of V and let B = B1∪B2∪·· ·∪Bm

where the Bi are pairwise disjoint, nonempty sub-
sets of B. If Ui = span Bi for each i, show that
V =U1⊕U2⊕·· ·⊕Um (preceding exercise).

b. Conversely if V = U1⊕·· ·⊕Um and Bi is a basis
of Ui for each i, show that B = B1 ∪ ·· · ∪Bm is a
basis of V as in (a).

Exercise 9.3.34 Let T : V → V be an operator where
T 3 = 0. If u ∈V and U = span{u, T (u), T 2(u)}, show
that U is T -invariant and has dimension 3.



10. Inner Product Spaces

10.1 Inner Products and Norms

The dot product was introduced in Rn to provide a natural generalization of the geometrical notions of
length and orthogonality that were so important in Chapter 4. The plan in this chapter is to define an inner

product on an arbitrary real vector space V (of which the dot product is an example in Rn) and use it to
introduce these concepts in V . While this causes some repetition of arguments in Chapter 8, it is well
worth the effort because of the much wider scope of the results when stated in full generality.

Definition 10.1 Inner Product Spaces

An inner product on a real vector space V is a function that assigns a real number 〈v, w〉 to every
pair v, w of vectors in V in such a way that the following axioms are satisfied.

P1. 〈v, w〉 is a real number for all v and w in V .

P2. 〈v, w〉= 〈w, v〉 for all v and w in V .

P3. 〈v+w, u〉= 〈v, u〉+ 〈w, u〉 for all u, v, and w in V .

P4. 〈rv, w〉= r〈v, w〉 for all v and w in V and all r in R.

P5. 〈v, v〉> 0 for all v 6= 0 in V .

A real vector space V with an inner product 〈 , 〉 will be called an inner product space. Note that every
subspace of an inner product space is again an inner product space using the same inner product.1

Example 10.1.1

Rn is an inner product space with the dot product as inner product:

〈v, w〉= v ·w for all v, w ∈ Rn

See Theorem 5.3.1. This is also called the euclidean inner product, and Rn, equipped with the dot
product, is called euclidean n-space.

1If we regard Cn as a vector space over the field C of complex numbers, then the “standard inner product” on Cn defined in
Section 8.7 does not satisfy Axiom P4 (see Theorem 8.7.1(3)).
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Example 10.1.2

If A and B are m×n matrices, define 〈A, B〉= tr (ABT ) where tr (X) is the trace of the square
matrix X . Show that 〈 , 〉 is an inner product in Mmn.

Solution. P1 is clear. Since tr (P) = tr (PT ) for every square matrix P, we have P2:

〈A, B〉= tr (ABT ) = tr [(ABT )T ] = tr (BAT ) = 〈B, A〉

Next, P3 and P4 follow because trace is a linear transformation Mmn→R (Exercise 10.1.19).
Turning to P5, let r1, r2, . . . , rm denote the rows of the matrix A. Then the (i, j)-entry of AAT is
ri · r j, so

〈A, A〉= tr (AAT ) = r1 · r1 + r2 · r2 + · · ·+ rm · rm

But r j · r j is the sum of the squares of the entries of r j, so this shows that 〈A, A〉 is the sum of the
squares of all nm entries of A. Axiom P5 follows.

The importance of the next example in analysis is difficult to overstate.

Example 10.1.3: 2

Let C[a, b] denote the vector space of continuous functions from [a, b] to R, a subspace of
F[a, b]. Show that

〈 f , g〉=
∫ b

a
f (x)g(x)dx

defines an inner product on C[a, b].

Solution. Axioms P1 and P2 are clear. As to axiom P4,

〈r f , g〉=
∫ b

a
r f (x)g(x)dx = r

∫ b

a
f (x)g(x)dx = r〈 f , g〉

Axiom P3 is similar. Finally, theorems of calculus show that 〈 f , f 〉=
∫ b

a f (x)2dx≥ 0 and, if f is
continuous, that this is zero if and only if f is the zero function. This gives axiom P5.

If v is any vector, then, using axiom P3, we get

〈0, v〉= 〈0+0, v〉= 〈0, v〉+ 〈0, v〉

and it follows that the number 〈0, v〉 must be zero. This observation is recorded for reference in the
following theorem, along with several other properties of inner products. The other proofs are left as
Exercise 10.1.20.

2This example (and others later that refer to it) can be omitted with no loss of continuity by students with no calculus
background.
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Theorem 10.1.1

Let 〈 , 〉 be an inner product on a space V ; let v, u, and w denote vectors in V ; and let r denote a
real number.

1. 〈u, v+w〉= 〈u, v〉+ 〈u, w〉

2. 〈v, rw〉= r〈v, w〉= 〈rv, w〉

3. 〈v, 0〉= 0 = 〈0, v〉

4. 〈v, v〉= 0 if and only if v = 0

If 〈 , 〉 is an inner product on a space V , then, given u, v, and w in V ,

〈ru+ sv, w〉= 〈ru, w〉+ 〈sv, w〉= r〈u, w〉+ s〈v, w〉

for all r and s in R by axioms P3 and P4. Moreover, there is nothing special about the fact that there are
two terms in the linear combination or that it is in the first component:

〈r1v1 + r2v2 + · · ·+ rnvn, w〉 = r1〈v1, w〉+ r2〈v2, w〉+ · · ·+ rn〈vn, w〉, and

〈v, s1w1 + s2w2 + · · ·+ smwm〉 = s1〈v, w1〉+ s2〈v, w2〉+ · · ·+ sm〈v, wm〉

hold for all ri and si in R and all v, w, vi, and w j in V . These results are described by saying that inner
products “preserve” linear combinations. For example,

〈2u−v, 3u+2v〉= 〈2u, 3u〉+ 〈2u, 2v〉+ 〈−v, 3u〉+ 〈−v, 2v〉
= 6〈u, u〉+4〈u, v〉−3〈v, u〉−2〈v, v〉
= 6〈u, u〉+ 〈u, v〉−2〈v, v〉

If A is a symmetric n×n matrix and x and y are columns in Rn, we regard the 1×1 matrix xT Ay as a
number. If we write

〈x, y〉= xT Ay for all columns x, y in Rn

then axioms P1–P4 follow from matrix arithmetic (only P2 requires that A is symmetric). Axiom P5 reads

xT Ax > 0 for all columns x 6= 0 in Rn

and this condition characterizes the positive definite matrices (Theorem 8.3.2). This proves the first asser-
tion in the next theorem.

Theorem 10.1.2

If A is any n×n positive definite matrix, then

〈x, y〉= xT Ay for all columns x, y in Rn

defines an inner product on Rn, and every inner product on Rn arises in this way.
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Proof. Given an inner product 〈 , 〉 on Rn, let {e1, e2, . . . , en} be the standard basis of Rn. If x =
n

∑
i=1

xiei

and y =
n

∑
j=1

y je j are two vectors in Rn, compute 〈x, y〉 by adding the inner product of each term xiei to

each term y je j. The result is a double sum.

〈x, y〉=
n

∑
i=1

n

∑
j=1
〈xiei, y je j〉=

n

∑
i=1

n

∑
j=1

xi〈ei, e j〉y j

As the reader can verify, this is a matrix product:

〈x, y〉=
[

x1 x2 · · · xn

]




〈e1, e1〉 〈e1, e2〉 · · · 〈e1, en〉
〈e2, e1〉 〈e2, e2〉 · · · 〈e2, en〉

...
...

. . .
...

〈en, e1〉 〈en, e2〉 · · · 〈en, en〉







y1

y2
...

yn




Hence 〈x, y〉= xT Ay, where A is the n×n matrix whose (i, j)-entry is 〈ei, e j〉. The fact that

〈ei, e j〉= 〈e j, ei〉

shows that A is symmetric. Finally, A is positive definite by Theorem 8.3.2.

Thus, just as every linear operator Rn → Rn corresponds to an n× n matrix, every inner product on Rn

corresponds to a positive definite n× n matrix. In particular, the dot product corresponds to the identity
matrix In.

Remark

If we refer to the inner product space Rn without specifying the inner product, we mean that the dot
product is to be used.

Example 10.1.4

Let the inner product 〈 , 〉 be defined on R2 by
〈[

v1

v2

]
,

[
w1

w2

]〉
= 2v1w1− v1w2− v2w1 + v2w2

Find a symmetric 2×2 matrix A such that 〈x, y〉= xT Ay for all x, y in R2.

Solution. The (i, j)-entry of the matrix A is the coefficient of viw j in the expression, so

A =

[
2 −1
−1 1

]
. Incidentally, if x =

[
x

y

]
, then

〈x, x〉= 2x2−2xy+ y2 = x2 +(x− y)2 ≥ 0

for all x, so 〈x, x〉= 0 implies x = 0. Hence 〈 , 〉 is indeed an inner product, so A is positive
definite.
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Let 〈 , 〉 be an inner product on Rn given as in Theorem 10.1.2 by a positive definite matrix A. If

x =
[

x1 x2 · · · xn

]T
, then 〈x, x〉 = xT Ax is an expression in the variables x1, x2, . . . , xn called a

quadratic form. These are studied in detail in Section 8.9.

Norm and Distance

Definition 10.2 Norm and Distance

As in Rn, if 〈 , 〉 is an inner product on a space V , the norm3 ‖v‖ of a vector v in V is defined by

‖v‖=
√
〈v, v〉

We define the distance between vectors v and w in an inner product space V to be

d (v, w) = ‖v−w‖

Note that axiom P5 guarantees that 〈v, v〉 ≥ 0, so ‖v‖ is a real number.

Example 10.1.5

a bO

|| f ||2

y = f (x)2

x

y The norm of a continuous function f = f (x) in C[a, b]
(with the inner product from Example 10.1.3) is given by

‖ f‖=

√∫ b

a
f (x)2dx

Hence ‖ f‖2 is the area beneath the graph of y = f (x)2

between x = a and x = b (shaded in the diagram).

Example 10.1.6

Show that 〈u+v, u−v〉= ‖u‖2−‖v‖2 in any inner product space.

Solution. 〈u+v, u−v〉= 〈u, u〉−〈u, v〉+ 〈v, u〉−〈v, v〉
= ‖u‖2−〈u, v〉+ 〈u, v〉−‖v‖2

= ‖u‖2−‖v‖2

A vector v in an inner product space V is called a unit vector if ‖v‖= 1. The set of all unit vectors in
V is called the unit ball in V . For example, if V = R2 (with the dot product) and v = (x, y), then

‖v‖2 = 1 if and only if x2 + y2 = 1

3If the dot product is used in Rn, the norm ‖x‖ of a vector x is usually called the length of x.

www.dbooks.org

https://www.dbooks.org/


542 Inner Product Spaces

Hence the unit ball in R2 is the unit circle x2 +y2 = 1 with centre at the origin and radius 1. However, the
shape of the unit ball varies with the choice of inner product.

Example 10.1.7

(a, 0)

(0, b)

(−a, 0)

(0, −b)

O
x

y

Let a > 0 and b > 0. If v = (x, y) and w = (x1, y1), define an
inner product on R2 by

〈v, w〉= xx1
a2 + yy1

b2

The reader can verify (Exercise 10.1.5) that this is indeed an
inner product. In this case

‖v‖2 = 1 if and only if x2

a2 +
y2

b2 = 1

so the unit ball is the ellipse shown in the diagram.

Example 10.1.7 graphically illustrates the fact that norms and distances in an inner product space V vary
with the choice of inner product in V .

Theorem 10.1.3

If v 6= 0 is any vector in an inner product space V , then 1
‖v‖v is the unique unit vector that is a

positive multiple of v.

The next theorem reveals an important and useful fact about the relationship between norms and inner
products, extending the Cauchy inequality for Rn (Theorem 5.3.2).

Theorem 10.1.4: Cauchy-Schwarz Inequality4

If v and w are two vectors in an inner product space V , then

〈v, w〉2 ≤ ‖v‖2‖w‖2

Moreover, equality occurs if and only if one of v and w is a scalar multiple of the other.

Proof. Write ‖v‖= a and ‖w‖= b. Using Theorem 10.1.1 we compute:

‖bv−aw‖2 = b2‖v‖2−2ab〈v, w〉+a2‖w‖2 = 2ab(ab−〈v, w〉)
‖bv+aw‖2 = b2‖v‖2 +2ab〈v, w〉+a2‖w‖2 = 2ab(ab+ 〈v, w〉)

(10.1)

It follows that ab− 〈v, w〉 ≥ 0 and ab + 〈v, w〉 ≥ 0, and hence that −ab ≤ 〈v, w〉 ≤ ab. But then
|〈v, w〉| ≤ ab = ‖v‖‖w‖, as desired.

4Hermann Amandus Schwarz (1843–1921) was a German mathematician at the University of Berlin. He had strong geo-
metric intuition, which he applied with great ingenuity to particular problems. A version of the inequality appeared in 1885.
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Conversely, if |〈v, w〉| = ‖v‖‖w‖ = ab then 〈v, w〉 = ±ab. Hence (10.1) shows that bv−aw = 0 or
bv+aw = 0. It follows that one of v and w is a scalar multiple of the other, even if a = 0 or b = 0.

Example 10.1.8

If f and g are continuous functions on the interval [a, b], then (see Example 10.1.3)

(∫ b

a
f (x)g(x)dx

)2

≤
∫ b

a
f (x)2dx

∫ b

a
g(x)2dx

Another famous inequality, the so-called triangle inequality, also comes from the Cauchy-Schwarz
inequality. It is included in the following list of basic properties of the norm of a vector.

Theorem 10.1.5

If V is an inner product space, the norm ‖ · ‖ has the following properties.

1. ‖v‖ ≥ 0 for every vector v in V .

2. ‖v‖= 0 if and only if v = 0.

3. ‖rv‖= |r|‖v‖ for every v in V and every r in R.

4. ‖v+w‖ ≤ ‖v‖+‖w‖ for all v and w in V (triangle inequality).

Proof. Because ‖v‖ =
√
〈v, v〉, properties (1) and (2) follow immediately from (3) and (4) of Theo-

rem 10.1.1. As to (3), compute

‖rv‖2 = 〈rv, rv〉= r2〈v, v〉= r2‖v‖2

Hence (3) follows by taking positive square roots. Finally, the fact that 〈v, w〉 ≤ ‖v‖‖w‖ by the Cauchy-
Schwarz inequality gives

‖v+w‖2 = 〈v+w, v+w〉= ‖v‖2 +2〈v, w〉+‖w‖2

≤ ‖v‖2 +2‖v‖‖w‖+‖w‖2

= (‖v‖+‖w‖)2

Hence (4) follows by taking positive square roots.

It is worth noting that the usual triangle inequality for absolute values,

|r+ s| ≤ |r|+ |s| for all real numbers r and s

is a special case of (4) where V = R= R1 and the dot product 〈r, s〉= rs is used.

In many calculations in an inner product space, it is required to show that some vector v is zero. This
is often accomplished most easily by showing that its norm ‖v‖ is zero. Here is an example.
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Example 10.1.9

Let {v1, . . . , vn} be a spanning set for an inner product space V . If v in V satisfies 〈v, vi〉= 0 for
each i = 1, 2, . . . , n, show that v = 0.

Solution. Write v = r1v1 + · · ·+ rnvn, ri in R. To show that v = 0, we show that ‖v‖2 = 〈v, v〉= 0.
Compute:

〈v, v〉= 〈v, r1v1 + · · ·+ rnvn〉= r1〈v, v1〉+ · · ·+ rn〈v, vn〉= 0

by hypothesis, and the result follows.

The norm properties in Theorem 10.1.5 translate to the following properties of distance familiar from
geometry. The proof is Exercise 10.1.21.

Theorem 10.1.6

Let V be an inner product space.

1. d (v, w)≥ 0 for all v, w in V .

2. d (v, w) = 0 if and only if v = w.

3. d (v, w) = d (w, v) for all v and w in V .

4. d (v, w)≤ d (v, u)+ d (u, w) for all v, u, and w in V .

Exercises for 10.1

Exercise 10.1.1 In each case, determine which of ax-
ioms P1–P5 fail to hold.

a. V =R2, 〈(x1, y1), (x2, y2)〉= x1y1x2y2

b. V =R3,
〈(x1, x2, x3), (y1, y2, y3)〉= x1y1− x2y2 + x3y3

c. V =C, 〈z, w〉= zw, where w is complex conjuga-
tion

d. V = P3, 〈p(x), q(x)〉 = p(1)q(1)

e. V = M22, 〈A, B〉= det (AB)

f. V = F[0, 1], 〈 f , g〉= f (1)g(0)+ f (0)g(1)

Exercise 10.1.2 Let V be an inner product space. If
U ⊆ V is a subspace, show that U is an inner product
space using the same inner product.

Exercise 10.1.3 In each case, find a scalar multiple of v

that is a unit vector.

a. v = f in C[0, 1] where f (x) = x2

〈 f , g〉∫ 1
0 f (x)g(x)dx

b. v = f in C[−π , π] where f (x) = cosx

〈 f , g〉∫ π
−π f (x)g(x)dx

c. v =

[
1
3

]
in R2 where 〈v, w〉= vT

[
1 1
1 2

]
w

d. v =

[
3
−1

]
in R2, 〈v, w〉= vT

[
1 −1
−1 2

]
w
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Exercise 10.1.4 In each case, find the distance between
u and v.

a. u = (3, −1, 2, 0), v = (1, 1, 1, 3);〈u, v〉= u ·v

b. u = (1, 2, −1, 2), v = (2, 1, −1, 3);〈u, v〉= u ·v

c. u = f , v = g in C[0, 1] where f (x) = x2 and
g(x) = 1− x; 〈 f , g〉= ∫ 1

0 f (x)g(x)dx

d. u = f , v = g in C[−π , π] where f (x) = 1 and
g(x) = cosx; 〈 f , g〉= ∫ π

−π f (x)g(x)dx

Exercise 10.1.5 Let a1, a2, . . . , an be positive numbers.
Given v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn),
define 〈v, w〉= a1v1w1 + · · ·+anvnwn. Show that this is
an inner product on Rn.

Exercise 10.1.6 If {b1, . . . , bn} is a basis of V and if
v = v1b1+ · · ·+vnbn and w = w1b1+ · · ·+wnbn are vec-
tors in V , define

〈v, w〉= v1w1 + · · ·+ vnwn.

Show that this is an inner product on V .

Exercise 10.1.7 If p = p(x) and q = q(x) are polynomi-
als in Pn, define

〈p, q〉= p(0)q(0)+ p(1)q(1)+ · · ·+ p(n)q(n)

Show that this is an inner product on Pn.
[Hint for P5: Theorem 6.5.4 or Appendix D.]

Exercise 10.1.8 Let Dn denote the space of all func-
tions from the set {1, 2, 3, . . . , n} to R with pointwise
addition and scalar multiplication (see Exercise 6.3.35).
Show that 〈 , 〉 is an inner product on Dn if
〈f, g〉= f (1)g(1)+ f (2)g(2)+ · · ·+ f (n)g(n).

Exercise 10.1.9 Let re (z) denote the real part of the
complex number z. Show that 〈 , 〉 is an inner product on
C if 〈z, w〉= re (zw).

Exercise 10.1.10 If T : V →V is an isomorphism of the
inner product space V , show that

〈v, w〉1 = 〈T (v), T (w)〉

defines a new inner product 〈 , 〉1 on V .

Exercise 10.1.11 Show that every inner product 〈 , 〉
on Rn has the form 〈x, y〉= (Ux) · (Uy) for some upper
triangular matrix U with positive diagonal entries. [Hint:
Theorem 8.3.3.]

Exercise 10.1.12 In each case, show that 〈v, w〉= vT Aw

defines an inner product on R2 and hence show that A is
positive definite.

A =

[
2 1
1 1

]
a. A =

[
5 −3
−3 2

]
b.

A =

[
3 2
2 3

]
c. A =

[
3 4
4 6

]
d.

Exercise 10.1.13 In each case, find a symmetric matrix
A such that 〈v, w〉= vT Aw.

a.

〈[
v1

v2

]
,

[
w1

w2

]〉
= v1w1 +2v1w2 +2v2w1 +5v2w2

b.

〈[
v1

v2

]
,

[
w1

w2

]〉
= v1w1− v1w2− v2w1 + 2v2w2

c.

〈


v1

v2

v3


 ,




w1

w2

w3



〉

= 2v1w1 + v2w2 + v3w3− v1w2

− v2w1 + v2w3 + v3w2

d.

〈


v1

v2

v3


 ,




w1

w2

w3



〉

= v1w1 + 2v2w2 + 5v3w3

− 2v1w3− 2v3w1

Exercise 10.1.14 If A is symmetric and xT Ax = 0 for
all columns x in Rn, show that A = 0. [Hint: Consider
〈x+y, x+y〉 where 〈x, y〉= xT Ay.]

Exercise 10.1.15 Show that the sum of two inner prod-
ucts on V is again an inner product.

Exercise 10.1.16 Let ‖u‖ = 1, ‖v‖ = 2, ‖w‖ =
√

3,
〈u, v〉=−1, 〈u, w〉= 0 and 〈v, w〉= 3. Compute:

〈v+w, 2u−v〉a. 〈u−2v−w, 3w−v〉b.

Exercise 10.1.17 Given the data in Exercise 10.1.16,
show that u+v = w.

Exercise 10.1.18 Show that no vectors exist such that
‖u‖= 1, ‖v‖= 2, and 〈u, v〉=−3.

Exercise 10.1.19 Complete Example 10.1.2.

Exercise 10.1.20 Prove Theorem 10.1.1.

Exercise 10.1.21 Prove Theorem 10.1.6.

Exercise 10.1.22 Let u and v be vectors in an inner
product space V .

a. Expand 〈2u−7v, 3u+5v〉.
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b. Expand 〈3u−4v, 5u+v〉.

c. Show that ‖u+v‖2 = ‖u‖2 +2〈u, v〉+‖v‖2.

d. Show that ‖u−v‖2 = ‖u‖2−2〈u, v〉+‖v‖2.

Exercise 10.1.23 Show that

‖v‖2 +‖w‖2 = 1
2{‖v+w‖2 +‖v−w‖2}

for any v and w in an inner product space.

Exercise 10.1.24 Let 〈 , 〉 be an inner product on a vec-
tor space V . Show that the corresponding distance func-
tion is translation invariant. That is, show that
d (v, w) = d (v+u, w+u) for all v, w, and u in V .

Exercise 10.1.25

a. Show that 〈u, v〉= 1
4 [‖u+v‖2−‖u−v‖2] for all

u, v in an inner product space V .

b. If 〈 , 〉 and 〈 , 〉′ are two inner products on V that
have equal associated norm functions, show that
〈u, v〉= 〈u, v〉′ holds for all u and v.

Exercise 10.1.26 Let v denote a vector in an inner prod-
uct space V .

a. Show that W = {w | w in V , 〈v, w = 0} is a sub-
space of V .

b. Let W be as in (a). If V =R3 with the dot product,
and if v = (1, −1, 2), find a basis for W .

Exercise 10.1.27 Given vectors w1, w2, . . . , wn and v,
assume that 〈v, wi〉= 0 for each i. Show that 〈v, w〉= 0
for all w in span {w1, w2, . . . , wn}.

Exercise 10.1.28 If V = span{v1, v2, . . . , vn} and
〈v, vi〉= 〈w, vi〉 holds for each i. Show that v = w.

Exercise 10.1.29 Use the Cauchy-Schwarz inequality in
an inner product space to show that:

a. If ‖u‖ ≤ 1, then 〈u, v〉2 ≤ ‖v‖2 for all v in V .

b. (xcos θ + ysin θ)2 ≤ x2 + y2 for all real x, y, and
θ .

c. ‖r1v1+ · · ·+ rnvn‖2 ≤ [r1‖v1‖+ · · ·+ rn‖vn‖]2 for
all vectors vi, and all ri > 0 in R.

Exercise 10.1.30 If A is a 2× n matrix, let u and v de-
note the rows of A.

a. Show that AAT =

[
‖u‖2 u ·v
u ·v ‖v‖2

]
.

b. Show that det (AAT )≥ 0.

Exercise 10.1.31

a. If v and w are nonzero vectors in an inner product
space V , show that −1 ≤ 〈v, w〉

‖v‖‖w‖ ≤ 1, and hence
that a unique angle θ exists such that
〈v, w〉
‖v‖‖w‖ = cosθ and 0 ≤ θ ≤ π . This angle θ is
called the angle between v and w.

b. Find the angle between v = (1, 2, −1, 13) and
w = (2, 1, 0, 2, 0) in R5 with the dot product.

c. If θ is the angle between v and w, show that the
law of cosines is valid:

‖v−w‖= ‖v‖2 +‖w‖2−2‖v‖‖w‖cosθ .

Exercise 10.1.32 If V = R2, define ‖(x, y)‖= |x|+ |y|.

a. Show that ‖ · ‖ satisfies the conditions in Theo-
rem 10.1.5.

b. Show that ‖ · ‖ does not arise from an inner prod-
uct on R2 given by a matrix A. [Hint: If it did, use
Theorem 10.1.2 to find numbers a, b, and c such
that ‖(x, y)‖2 = ax2 +bxy+ cy2 for all x and y.]
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10.2 Orthogonal Sets of Vectors

The idea that two lines can be perpendicular is fundamental in geometry, and this section is devoted to
introducing this notion into a general inner product space V . To motivate the definition, recall that two
nonzero geometric vectors x and y in Rn are perpendicular (or orthogonal) if and only if x · y = 0. In
general, two vectors v and w in an inner product space V are said to be orthogonal if

〈v, w〉= 0

A set {f1, f2, . . . , fn} of vectors is called an orthogonal set of vectors if

1. Each fi 6= 0.

2. 〈fi, f j〉= 0 for all i 6= j.

If, in addition, ‖fi‖= 1 for each i, the set {f1, f2, . . . , fn} is called an orthonormal set.

Example 10.2.1

{sinx, cosx} is orthogonal in C[−π , π ] because

∫ π

−π
sin x cos x dx =

[
−1

4 cos 2x
]π
−π

= 0

The first result about orthogonal sets extends Pythagoras’ theorem in Rn (Theorem 5.3.4) and the same
proof works.

Theorem 10.2.1: Pythagoras’ Theorem

If {f1, f2, . . . , fn} is an orthogonal set of vectors, then

‖f1 + f2 + · · ·+ fn‖2 = ‖f1‖2 +‖f2‖2 + · · ·+‖fn‖2

The proof of the next result is left to the reader.

Theorem 10.2.2

Let {f1, f2, . . . , fn} be an orthogonal set of vectors.

1. {r1f1, r2f2, . . . , rnfn} is also orthogonal for any ri 6= 0 in R.

2.
{

1
‖f1‖f1, 1

‖f2‖f2, . . . , 1
‖fn‖fn

}
is an orthonormal set.

As before, the process of passing from an orthogonal set to an orthonormal one is called normalizing the
orthogonal set. The proof of Theorem 5.3.5 goes through to give
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Theorem 10.2.3

Every orthogonal set of vectors is linearly independent.

Example 10.2.2

Show that








2
−1

0


 ,




0
1
1


 ,




0
−1

2





 is an orthogonal basis of R3 with inner product

〈v, w〉= vT Aw, where A =




1 1 0
1 2 0
0 0 1




Solution. We have

〈


2
−1

0


 ,




0
1
1



〉

=
[

2 −1 0
]



1 1 0
1 2 0
0 0 1






0
1
1


=

[
1 0 0

]



0
1
1


= 0

and the reader can verify that the other pairs are orthogonal too. Hence the set is orthogonal, so it
is linearly independent by Theorem 10.2.3. Because dim R3 = 3, it is a basis.

The proof of Theorem 5.3.6 generalizes to give the following:

Theorem 10.2.4: Expansion Theorem

Let {f1, f2, . . . , fn} be an orthogonal basis of an inner product space V . If v is any vector in V , then

v =
〈v, f1〉
‖f1‖2 f1 +

〈v, f2〉
‖f2‖2 f2 + · · ·+ 〈v, fn〉

‖fn‖2 fn

is the expansion of v as a linear combination of the basis vectors.

The coefficients 〈v, f1〉
‖f1‖2 , 〈v, f2〉

‖f2‖2 , . . . , 〈v, fn〉
‖fn‖2 in the expansion theorem are sometimes called the Fourier

coefficients of v with respect to the orthogonal basis {f1, f2, . . . , fn}. This is in honour of the French
mathematician J.B.J. Fourier (1768–1830). His original work was with a particular orthogonal set in the
space C[a, b], about which there will be more to say in Section 10.5.

Example 10.2.3

If a0, a1, . . . , an are distinct numbers and p(x) and q(x) are in Pn, define

〈p(x), q(x)〉= p(a0)q(a0)+ p(a1)q(a1)+ · · ·+ p(an)q(an)

This is an inner product on Pn. (Axioms P1–P4 are routinely verified, and P5 holds because 0 is
the only polynomial of degree n with n+1 distinct roots. See Theorem 6.5.4 or Appendix D.)
Recall that the Lagrange polynomials δ0(x), δ1(x), . . . , δn(x) relative to the numbers
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a0, a1, . . . , an are defined as follows (see Section 6.5):

δk(x) =
∏i6=k(x−ai)

∏i6=k(ak−ai)
k = 0, 1, 2, . . . , n

where ∏i 6=k(x−ai) means the product of all the terms

(x−a0), (x−a1), (x−a2), . . . , (x−an)

except that the kth term is omitted. Then {δ0(x), δ1(x), . . . , δn(x)} is orthonormal with respect to
〈 , 〉 because δk(ai) = 0 if i 6= k and δk(ak) = 1. These facts also show that 〈p(x), δk(x)〉= p(ak)
so the expansion theorem gives

p(x) = p(a0)δ0(x)+ p(a1)δ1(x)+ · · ·+ p(an)δn(x)

for each p(x) in Pn. This is the Lagrange interpolation expansion of p(x), Theorem 6.5.3, which
is important in numerical integration.

Lemma 10.2.1: Orthogonal Lemma

Let {f1, f2, . . . , fm} be an orthogonal set of vectors in an inner product space V , and let v be any
vector not in span{f1, f2, . . . , fm}. Define

fm+1 = v− 〈v, f1〉
‖f1‖2 f1− 〈v, f2〉

‖f2‖2 f2−·· ·− 〈v, fm〉
‖fm‖2 fm

Then {f1, f2, . . . , fm, fm+1} is an orthogonal set of vectors.

The proof of this result (and the next) is the same as for the dot product in Rn (Lemma 8.1.1 and
Theorem 8.1.2).

Theorem 10.2.5: Gram-Schmidt Orthogonalization Algorithm

Let V be an inner product space and let {v1, v2, . . . , vn} be any basis of V . Define vectors
f1, f2, . . . , fn in V successively as follows:

f1 = v1

f2 = v2− 〈v2, f1〉
‖f1‖2 f1

f3 = v3− 〈v3, f1〉
‖f1‖2 f1− 〈v3, f2〉

‖f2‖2 f2

...
...

fk = vk − 〈vk, f1〉
‖f1‖2 f1− 〈vk, f2〉

‖f2‖2 f2−·· ·− 〈vk, fk−1〉
‖fk−1‖2 fk−1

for each k = 2, 3, . . . , n. Then

1. {f1, f2, . . . , fn} is an orthogonal basis of V .

2. span{f1, f2, . . . , fk}= span{v1, v2, . . . , vk} holds for each k = 1, 2, . . . , n.
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The purpose of the Gram-Schmidt algorithm is to convert a basis of an inner product space into an or-

thogonal basis. In particular, it shows that every finite dimensional inner product space has an orthogonal
basis.

Example 10.2.4

Consider V = P3 with the inner product 〈p, q〉= ∫ 1
−1 p(x)q(x)dx. If the Gram-Schmidt algorithm

is applied to the basis {1, x, x2, x3}, show that the result is the orthogonal basis

{1, x, 1
3(3x2−1), 1

5(5x3−3x)}

Solution. Take f1 = 1. Then the algorithm gives

f2 = x− 〈x, f1〉
‖f1‖2 f1 = x− 0

2 f1 = x

f3 = x2− 〈x
2, f1〉
‖f1‖2 f1− 〈x

2, f2〉
‖f2‖2 f2

= x2−
2
3
2 1− 0

2
3

x

= 1
3(3x2−1)

The verification that f4 =
1
5(5x3−3x) is omitted.

The polynomials in Example 10.2.4 are such that the leading coefficient is 1 in each case. In other contexts
(the study of differential equations, for example) it is customary to take multiples p(x) of these polynomials
such that p(1) = 1. The resulting orthogonal basis of P3 is

{1, x, 1
3(3x2−1), 1

5(5x3−3x)}

and these are the first four Legendre polynomials, so called to honour the French mathematician A. M.
Legendre (1752–1833). They are important in the study of differential equations.

If V is an inner product space of dimension n, let E = {f1, f2, . . . , fn} be an orthonormal basis of V

(by Theorem 10.2.5). If v = v1f1 + v2f2 + · · ·+ vnfn and w = w1f1 +w2f2 + · · ·+wnfn are two vectors in
V , we have CE(v) =

[
v1 v2 · · · vn

]T
and CE(w) =

[
w1 w2 · · · wn

]T
. Hence

〈v, w〉= 〈∑
i

vifi, ∑
j

w jf j〉= ∑
i, j

viw j〈fi, f j〉= ∑
i

viwi =CE(v) ·CE(w)

This shows that the coordinate isomorphism CE : V → Rn preserves inner products, and so proves

Corollary 10.2.1

If V is any n-dimensional inner product space, then V is isomorphic to Rn as inner product spaces.
More precisely, if E is any orthonormal basis of V , the coordinate isomorphism

CE : V → Rn satisfies 〈v, w〉=CE(v) ·CE(w)

for all v and w in V .
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The orthogonal complement of a subspace U of Rn was defined (in Chapter 8) to be the set of all vectors
in Rn that are orthogonal to every vector in U . This notion has a natural extension in an arbitrary inner
product space. Let U be a subspace of an inner product space V . As in Rn, the orthogonal complement

U⊥ of U in V is defined by

U⊥ = {v | v ∈V , 〈v, u〉= 0 for all u ∈U}

Theorem 10.2.6

Let U be a finite dimensional subspace of an inner product space V .

1. U⊥ is a subspace of V and V =U⊕U⊥.

2. If dim V = n, then dim U + dim U⊥ = n.

3. If dim V = n, then U⊥⊥ =U .

Proof.

1. U⊥ is a subspace by Theorem 10.1.1. If v is in U ∩U⊥, then 〈v, v〉 = 0, so v = 0 again by Theo-
rem 10.1.1. Hence U ∩U⊥ = {0}, and it remains to show that U +U⊥ =V . Given v in V , we must
show that v is in U +U⊥, and this is clear if v is in U . If v is not in U , let {f1, f2, . . . , fm} be an or-

thogonal basis of U . Then the orthogonal lemma shows that v−
(
〈v, f1〉
‖f1‖2 f1 +

〈v, f2〉
‖f2‖2 f2 + · · ·+ 〈v, fm〉

‖fm‖2 fm

)

is in U⊥, so v is in U +U⊥ as required.

2. This follows from Theorem 9.3.6.

3. We have dim U⊥⊥= n− dim U⊥= n−(n− dim U)= dim U , using (2) twice. As U ⊆U⊥⊥ always
holds (verify), (3) follows by Theorem 6.4.2.

We digress briefly and consider a subspace U of an arbitrary vector space V . As in Section 9.3, if W

is any complement of U in V , that is, V =U⊕W , then each vector v in V has a unique representation as a
sum v = u+w where u is in U and w is in W . Hence we may define a function T : V →V as follows:

T (v) = u where v = u+w, u in U , w in W

Thus, to compute T (v), express v in any way at all as the sum of a vector u in U and a vector in W ; then
T (v) = u.

This function T is a linear operator on V . Indeed, if v1 = u1 +w1 where u1 is in U and w1 is in W ,
then v+v1 = (u+u1)+(w+w1) where u+u1 is in U and w+w1 is in W , so

T (v+v1) = u+u1 = T (v)+T (v1)

Similarly, T (av) = aT (v) for all a in R, so T is a linear operator. Furthermore, im T =U and ker T =W

as the reader can verify, and T is called the projection on U with kernel W .

If U is a subspace of V , there are many projections on U , one for each complementary subspace W

with V =U⊕W . If V is an inner product space, we single out one for special attention. Let U be a finite
dimensional subspace of an inner product space V .
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Definition 10.3 Orthogonal Projection on a Subspace

The projection on U with kernel U⊥ is called the orthogonal projection on U (or simply the
projection on U ) and is denoted projU : V →V .

Theorem 10.2.7: Projection Theorem

Let U be a finite dimensional subspace of an inner product space V and let v be a vector in V .

1. projU : V →V is a linear operator with image U and kernel U⊥.

2. projU v is in U and v− projU v is in U⊥.

3. If {f1, f2, . . . , fm} is any orthogonal basis of U , then

projU v =
〈v, f1〉
‖f1‖2 f1 +

〈v, f2〉
‖f2‖2 f2 + · · ·+ 〈v, fm〉

‖fm‖2 fm

Proof. Only (3) remains to be proved. But since {f1, f2, . . . , fn} is an orthogonal basis of U and since
projU v is in U , the result follows from the expansion theorem (Theorem 10.2.4) applied to the finite
dimensional space U .

Note that there is no requirement in Theorem 10.2.7 that V is finite dimensional.

Example 10.2.5

Let U be a subspace of the finite dimensional inner product space V . Show that
projU⊥ v = v− projU v for all v ∈V .

Solution. We have V =U⊥⊕U⊥⊥ by Theorem 10.2.6. If we write p = projU v, then
v = (v−p)+p where v−p is in U⊥ and p is in U =U⊥⊥ by Theorem 10.2.7. Hence
projU⊥ v = v−p. See Exercise 8.1.7.

v

v− projU v

projU v
0

U

The vectors v, projU v, and v− projU v in Theorem 10.2.7 can be visu-
alized geometrically as in the diagram (where U is shaded and dim U = 2).
This suggests that projU v is the vector in U closest to v. This is, in fact,
the case.

Theorem 10.2.8: Approximation Theorem

Let U be a finite dimensional subspace of an inner product space V . If v is any vector in V , then
projU v is the vector in U that is closest to v. Here closest means that

‖v− projU v‖< ‖v−u‖

for all u in U , u 6= projU v.
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Proof. Write p = projU v, and consider v−u = (v−p)+(p−u). Because v−p is in U⊥ and p−u is in
U , Pythagoras’ theorem gives

‖v−u‖2 = ‖v−p‖2 +‖p−u‖2 > ‖v−p‖2

because p−u 6= 0. The result follows.

Example 10.2.6

Consider the space C[−1, 1] of real-valued continuous functions on the interval [−1, 1] with inner
product 〈 f , g〉=

∫ 1
−1 f (x)g(x)dx. Find the polynomial p = p(x) of degree at most 2 that best

approximates the absolute-value function f given by f (x) = |x|.

Solution. Here we want the vector p in the subspace U = P2 of C[−1, 1] that is closest to f . In
Example 10.2.4 the Gram-Schmidt algorithm was applied to give an orthogonal basis
{f1 = 1, f2 = x, f3 = 3x2−1} of P2 (where, for convenience, we have changed f3 by a numerical
factor). Hence the required polynomial is

-1 1O

y = f (x)

y = p(x)

x

y
p = projP2

f

= 〈 f , f1〉
‖f1‖2 f1 +

〈 f , f2〉
‖f2‖2 f2 +

〈 f , f3〉
‖f3‖2 f3

= 1
2f1 +0f2 +

1/2
8/5 f3

= 3
16(5x2 +1)

The graphs of p(x) and f (x) are given in the diagram.

If polynomials of degree at most n are allowed in Example 10.2.6, the polynomial in Pn is projPn
f ,

and it is calculated in the same way. Because the subspaces Pn get larger as n increases, it turns out that the
approximating polynomials projPn

f get closer and closer to f . In fact, solving many practical problems
comes down to approximating some interesting vector v (often a function) in an infinite dimensional inner
product space V by vectors in finite dimensional subspaces (which can be computed). If U1 ⊆U2 are finite
dimensional subspaces of V , then

‖v− projU2
v‖ ≤ ‖v− projU1

v‖

by Theorem 10.2.8 (because projU1
v lies in U1 and hence in U2). Thus projU2

v is a better approximation
to v than projU1

v. Hence a general method in approximation theory might be described as follows: Given
v, use it to construct a sequence of finite dimensional subspaces

U1 ⊆U2 ⊆U3 ⊆ ·· ·

of V in such a way that ‖v− projUk
v‖ approaches zero as k increases. Then projUk

v is a suitable ap-
proximation to v if k is large enough. For more information, the interested reader may wish to consult
Interpolation and Approximation by Philip J. Davis (New York: Blaisdell, 1963).
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Exercises for 10.2

Use the dot product in Rn unless otherwise in-
structed.

Exercise 10.2.1 In each case, verify that B is an orthog-
onal basis of V with the given inner product and use the
expansion theorem to express v as a linear combination
of the basis vectors.

a. v =

[
a

b

]
, B =

{[
1
−1

]
,

[
1
0

]}
, V = R2,

〈v, w〉= vT Aw where A =

[
2 2
2 5

]

b. v =




a

b

c


, B =








1
1
1


 ,



−1

0
1


 ,




1
−6

1





,

V =R3, 〈v, w〉= vT Aw where A =




2 0 1
0 1 0
1 0 2




c. v = a+bx+ cx2, B = {1x, 2−3x2}, V = P2,
〈p, q〉= p(0)q(0)+ p(1)q(1)+ p(−1)q(−1)

d. v =

[
a b

c d

]
,

B=

{[
1 0
0 1

]
,

[
1 0
0 −1

]
,

[
0 1
1 0

]
,

[
0 1
−1 0

]}
,

V = M22, 〈X , Y 〉= tr (XY T )

Exercise 10.2.2 Let R3 have the inner product
〈(x, y, z), (x′, y′, z′)〉 = 2xx′+ yy′+ 3zz′. In each case,
use the Gram-Schmidt algorithm to transform B into an
orthogonal basis.

a. B = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}

b. B = {(1, 1, 1), (1, −1, 1), (1, 1, 0)}

Exercise 10.2.3 Let M22 have the inner product
〈X , Y 〉= tr (XY T ). In each case, use the Gram-Schmidt
algorithm to transform B into an orthogonal basis.

a. B =

{[
1 1
0 0

]
,

[
1 0
1 0

]
,

[
0 1
0 1

]
,

[
1 0
0 1

]}

b. B =

{[
1 1
0 1

]
,

[
1 0
1 1

]
,

[
1 0
0 1

]
,

[
1 0
0 0

]}

Exercise 10.2.4 In each case, use the Gram-Schmidt
process to convert the basis B = {1, x, x2} into an or-
thogonal basis of P2.

a. 〈p, q〉= p(0)q(0)+ p(1)q(1)+ p(2)q(2)

b. 〈p, q〉= ∫ 2
0 p(x)q(x)dx

Exercise 10.2.5 Show that {1, x− 1
2 , x2− x+ 1

6}, is an
orthogonal basis of P2 with the inner product

〈p, q〉=
∫ 1

0
p(x)q(x)dx

and find the corresponding orthonormal basis.

Exercise 10.2.6 In each case find U⊥ and compute
dim U and dim U⊥.

a. U = span{(1, 1, 2, 0), (3, −1, 2, 1),
(1, −3, −2, 1)} in R4

b. U = span{(1, 1, 0, 0)} in R4

c. U = span{1, x} in P2 with
〈p, q〉= p(0)q(0)+ p(1)q(1)+ p(2)q(2)

d. U = span{x} in P2 with 〈p, q〉= ∫ 1
0 p(x)q(x)dx

e. U = span

{[
1 0
0 1

]
,

[
1 1
0 0

]}
in M22 with

〈X , Y 〉= tr (XY T )

f. U = span

{[
1 1
0 0

]
,

[
1 0
1 0

]
,

[
1 0
1 1

]}
in

M22 with 〈X , Y 〉= tr (XY T )

Exercise 10.2.7 Let 〈X , Y 〉= tr (XY T ) in M22. In each
case find the matrix in U closest to A.

a. U = span

{[
1 0
0 1

]
,

[
1 1
1 1

]}
,

A =

[
1 −1
2 3

]

b. U = span

{[
1 0
0 1

]
,

[
1 1
1 −1

]
,

[
1 1
0 0

]}
,

A =

[
2 1
3 2

]
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Exercise 10.2.8 In P2, let

〈p(x), q(x)〉 = p(0)q(0)+ p(1)q(1)+ p(2)q(2)

In each case find the polynomial in U closest to f (x).

a. U = span{1+ x, x2}, f (x) = 1+ x2

b. U = span{1, 1+ x2}; f (x) = x

Exercise 10.2.9 Using the inner product given by
〈p, q〉 = ∫ 1

0 p(x)q(x)dx on P2, write v as the sum of a
vector in U and a vector in U⊥.

a. v = x2, U = span{x+1, 9x−5}

b. v = x2 +1, U = span{1, 2x−1}

Exercise 10.2.10

a. Show that {u, v} is orthogonal if and only if
‖u+v‖2 = ‖u‖2 +‖v‖2.

b. If u = v = (1, 1) and w = (−1, 0), show that
‖u+v+w‖2 = ‖u‖2+‖v‖2+‖w‖2 but {u, v, w}
is not orthogonal. Hence the converse to Pythago-
ras’ theorem need not hold for more than two vec-
tors.

Exercise 10.2.11 Let v and w be vectors in an inner
product space V . Show that:

a. v is orthogonal to w if and only if
‖v+w‖= ‖v−w‖.

b. v + w and v− w are orthogonal if and only if
‖v‖= ‖w‖.

Exercise 10.2.12 Let U and W be subspaces of an n-
dimensional inner product space V . Suppose 〈u, v〉 = 0
for all u ∈U and w ∈W and dim U + dim W = n. Show
that U⊥ =W .

Exercise 10.2.13 If U and W are subspaces of an inner
product space, show that (U +W)⊥ =U⊥∩W⊥.

Exercise 10.2.14 If X is any set of vectors in an inner
product space V , define

X⊥ = {v | v in V , 〈v, x〉= 0 for all x in X}

a. Show that X⊥ is a subspace of V .

b. If U = span {u1, u2, . . . , um}, show that
U⊥ = {u1, . . . , um}⊥.

c. If X ⊆ Y , show that Y⊥ ⊆ X⊥.

d. Show that X⊥∩Y⊥ = (X ∪Y )⊥.

Exercise 10.2.15 If dim V = n and w 6= 0 in V , show
that dim{v | v in V , 〈v, w〉= 0}= n−1.

Exercise 10.2.16 If the Gram-Schmidt process is used
on an orthogonal basis {v1, . . . , vn} of V , show that
fk = vk holds for each k = 1, 2, . . . , n. That is, show
that the algorithm reproduces the same basis.

Exercise 10.2.17 If {f1, f2, . . . , fn−1} is orthonormal in
an inner product space of dimension n, prove that there
are exactly two vectors fn such that {f1, f2, . . . , fn−1, fn}
is an orthonormal basis.

Exercise 10.2.18 Let U be a finite dimensional subspace
of an inner product space V , and let v be a vector in V .

a. Show that v lies in U if and only if v = projU (v).

b. If V = R3, show that (−5, 4, −3) lies in
span {(3, −2, 5), (−1, 1, 1)} but that (−1, 0, 2)
does not.

Exercise 10.2.19 Let n 6= 0 and w 6= 0 be nonparallel
vectors in R3 (as in Chapter 4).

a. Show that
{

n, n×w, w− n·w
‖n‖2 n

}
is an orthogo-

nal basis of R3.

b. Show that span
{

n×w, w− n·w
‖n‖2 n

}
is the plane

through the origin with normal n.

Exercise 10.2.20 Let E = {f1, f2, . . . , fn} be an or-
thonormal basis of V .

a. Show that 〈v, w〉=CE(v) ·CE(w) for all 〈v, w〉 in
V .

b. If P = [pi j] is an n×n matrix, define
bi = pi1f1 + · · ·+ pinfn for each i. Show that
B = {b1, b2, . . . , bn} is an orthonormal basis if
and only if P is an orthogonal matrix.
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Exercise 10.2.21 Let {f1, . . . , fn} be an orthogonal ba-
sis of V . If v and w are in V , show that

〈v, w〉= 〈v, f1〉〈w, f1〉
‖f1‖2 + · · ·+ 〈v, fn〉〈w, fn〉

‖fn‖2

Exercise 10.2.22 Let {f1, . . . , fn} be an orthonormal
basis of V , and let v = v1f1 + · · ·+ vnfn and
w = w1f1 + · · ·+wnfn. Show that

〈v, w〉= v1w1 + · · ·+ vnwn

and

‖v‖2 = v2
1 + · · ·+ v2

n

(Parseval’s formula).

Exercise 10.2.23 Let v be a vector in an inner product
space V .

a. Show that ‖v‖ ≥ ‖ projU v‖ holds for all finite di-
mensional subspaces U . [Hint: Pythagoras’ theo-
rem.]

b. If {f1, f2, . . . , fm} is any orthogonal set in V , prove
Bessel’s inequality:

〈v, f1〉2
‖f1‖2 + · · ·+ 〈v, fm〉2

‖fm‖2 ≤ ‖v‖2

Exercise 10.2.24 Let B = {f1, f2, . . . , fn} be an orthog-
onal basis of an inner product space V . Given v ∈ V ,
let θi be the angle between v and fi for each i (see Exer-
cise 10.1.31). Show that

cos2 θ1 + cos2 θ2 + · · ·+ cos2 θn = 1

[The cosθi are called direction cosines for v correspond-
ing to B.]

Exercise 10.2.25

a. Let S denote a set of vectors in a finite dimen-
sional inner product space V , and suppose that
〈u, v〉 = 0 for all u in S implies v = 0. Show
that V = span S. [Hint: Write U = span S and
use Theorem 10.2.6.]

b. Let A1, A2, . . . , Ak be n× n matrices. Show that
the following are equivalent.

i. If Aib = 0 for all i (where b is a column in
Rn), then b = 0.

ii. The set of all rows of the matrices Ai spans
Rn.

Exercise 10.2.26 Let [xi) = (x1, x2, . . . ) denote a se-
quence of real numbers xi, and let

V = {[xi) | only finitely many xi 6= 0}

Define componentwise addition and scalar multiplication
on V as follows:

[xi)+ [yi) = [xi + yi), and a[xi) = [axi) for a in R.

Given [xi) and [yi) in V , define 〈[xi), [yi)〉 =
∞

∑
i=0

xiyi.

(Note that this makes sense since only finitely many xi

and yi are nonzero.) Finally define

U = {[xi) in V |
∞

∑
i=0

xi = 0}

a. Show that V is a vector space and that U is a sub-
space.

b. Show that 〈 , 〉 is an inner product on V .

c. Show that U⊥ = {0}.

d. Hence show that U ⊕U⊥ 6=V and U 6=U⊥⊥.
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10.3 Orthogonal Diagonalization

There is a natural way to define a symmetric linear operator T on a finite dimensional inner product
space V . If T is such an operator, it is shown in this section that V has an orthogonal basis consisting of
eigenvectors of T . This yields another proof of the principal axes theorem in the context of inner product
spaces.

Theorem 10.3.1

Let T : V →V be a linear operator on a finite dimensional space V . Then the following conditions
are equivalent.

1. V has a basis consisting of eigenvectors of T .

2. There exists a basis B of V such that MB(T ) is diagonal.

Proof. We have MB(T ) =
[

CB[T (b1)] CB[T (b2)] · · · CB[T (bn)]
]

where B = {b1, b2, . . . , bn} is any
basis of V . By comparing columns:

MB(T ) =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn


 if and only if T (bi) = λibi for each i

Theorem 10.3.1 follows.

Definition 10.4 Diagonalizable Linear Operators

A linear operator T on a finite dimensional space V is called diagonalizable if V has a basis
consisting of eigenvectors of T .

Example 10.3.1

Let T : P2→ P2 be given by

T (a+bx+ cx2) = (a+4c)−2bx+(3a+2c)x2

Find the eigenspaces of T and hence find a basis of eigenvectors.

Solution. If B0 = {1, x, x2}, then

MB0(T ) =




1 0 4
0 −2 0
3 0 2
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so cT (x) = (x+2)2(x−5), and the eigenvalues of T are λ =−2 and λ = 5. One sees that






0
1
0


 ,




4
0
−3


 ,




1
0
1





 is a basis of eigenvectors of MB0(T ), so B = {x, 4−3x2, 1+x2} is a

basis of P2 consisting of eigenvectors of T .

If V is an inner product space, the expansion theorem gives a simple formula for the matrix of a linear
operator with respect to an orthogonal basis.

Theorem 10.3.2

Let T : V →V be a linear operator on an inner product space V . If B = {b1, b2, . . . , bn} is an
orthogonal basis of V , then

MB(T ) =
[ 〈bi, T (b j)〉
‖bi‖2

]

Proof. Write MB(T ) =
[
ai j

]
. The jth column of MB(T ) is CB[T (e j)], so

T (b j) = a1 jb1 + · · ·+ai jbi + · · ·+an jbn

On the other hand, the expansion theorem (Theorem 10.2.4) gives

v =
〈b1, v〉
‖b1‖2 b1 + · · ·+ 〈bi, v〉

‖bi‖2 bi + · · ·+ 〈bn, v〉
‖bn‖2 bn

for any v in V . The result follows by taking v = T (b j).

Example 10.3.2

Let T : R3→ R3 be given by

T (a, b, c) = (a+2b− c, 2a+3c, −a+3b+2c)

If the dot product in R3 is used, find the matrix of T with respect to the standard basis
B = {e1, e2, e3} where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

Solution. The basis B is orthonormal, so Theorem 10.3.2 gives

MB(T ) =




e1 ·T (e1) e1 ·T (e2) e1 ·T (e3)
e2 ·T (e1) e2 ·T (e2) e2 ·T (e3)
e3 ·T (e1) e3 ·T (e2) e3 ·T (e3)


=




1 2 −1
2 0 3
−1 3 2




Of course, this can also be found in the usual way.

It is not difficult to verify that an n×n matrix A is symmetric if and only if x · (Ay) = (Ax) ·y holds for
all columns x and y in Rn. The analog for operators is as follows:
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Theorem 10.3.3

Let V be a finite dimensional inner product space. The following conditions are equivalent for a
linear operator T : V →V .

1. 〈v, T (w)〉= 〈T (v), w〉 for all v and w in V .

2. The matrix of T is symmetric with respect to every orthonormal basis of V .

3. The matrix of T is symmetric with respect to some orthonormal basis of V .

4. There is an orthonormal basis B = {f1, f2, . . . , fn} of V such that 〈fi, T (f j)〉= 〈T (fi), f j〉
holds for all i and j.

Proof. (1) ⇒ (2). Let B = {f1, . . . , fn} be an orthonormal basis of V , and write MB(T ) =
[
ai j

]
. Then

ai j = 〈fi, T (f j)〉 by Theorem 10.3.2. Hence (1) and axiom P2 give

ai j = 〈fi, T (f j)〉= 〈T (fi), f j〉= 〈f j, T (fi)〉= a ji

for all i and j. This shows that MB(T ) is symmetric.

(2)⇒ (3). This is clear.

(3)⇒ (4). Let B = {f1, . . . , fn} be an orthonormal basis of V such that MB(T ) is symmetric. By (3)
and Theorem 10.3.2, 〈fi, T (f j)〉= 〈f j, T (fi)〉 for all i and j, so (4) follows from axiom P2.

(4)⇒ (1). Let v and w be vectors in V and write them as v =
n

∑
i=1

vifi and w =
n

∑
j=1

w jf j. Then

〈v, T (w)〉=
〈

∑
i

vifi, ∑
j

w jT f j

〉
= ∑

i
∑

j

viw j〈fi, T (f j)〉

= ∑
i

∑
j

viw j〈T (fi), f j〉

=

〈

∑
i

viT (fi), ∑
j

w jf j

〉

= 〈T (v), w〉

where we used (4) at the third stage. This proves (1).

A linear operator T on an inner product space V is called symmetric if 〈v, T (w)〉= 〈T (v), w〉 holds for
all v and w in V .

Example 10.3.3

If A is an n×n matrix, let TA : Rn→Rn be the matrix operator given by TA(v) = Av for all
columns v. If the dot product is used in Rn, then TA is a symmetric operator if and only if A is a
symmetric matrix.
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Solution. If E is the standard basis of Rn, then E is orthonormal when the dot product is used. We
have ME(TA) = A (by Example 9.1.4), so the result follows immediately from part (3) of
Theorem 10.3.3.

It is important to note that whether an operator is symmetric depends on which inner product is being
used (see Exercise 10.3.2).

If V is a finite dimensional inner product space, the eigenvalues of an operator T : V → V are the
same as those of MB(T ) for any orthonormal basis B (see Theorem 9.3.3). If T is symmetric, MB(T ) is a
symmetric matrix and so has real eigenvalues by Theorem 5.5.7. Hence we have the following:

Theorem 10.3.4

A symmetric linear operator on a finite dimensional inner product space has real eigenvalues.

If U is a subspace of an inner product space V , recall that its orthogonal complement is the subspace
U⊥ of V defined by

U⊥ = {v in V | 〈v, u〉= 0 for all u in U}

Theorem 10.3.5

Let T : V →V be a symmetric linear operator on an inner product space V , and let U be a
T -invariant subspace of V . Then:

1. The restriction of T to U is a symmetric linear operator on U .

2. U⊥ is also T -invariant.

Proof.

1. U is itself an inner product space using the same inner product, and condition 1 in Theorem 10.3.3
that T is symmetric is clearly preserved.

2. If v is in U⊥, our task is to show that T (v) is also in U⊥; that is, 〈T (v), u〉= 0 for all u in U . But if
u is in U , then T (u) also lies in U because U is T -invariant, so

〈T (v), u〉= 〈v, T (u)〉

using the symmetry of T and the definition of U⊥.

The principal axes theorem (Theorem 8.2.2) asserts that an n×n matrix A is symmetric if and only if
Rn has an orthogonal basis of eigenvectors of A. The following result not only extends this theorem to an
arbitrary n-dimensional inner product space, but the proof is much more intuitive.
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Theorem 10.3.6: Principal Axes Theorem

The following conditions are equivalent for a linear operator T on a finite dimensional inner
product space V .

1. T is symmetric.

2. V has an orthogonal basis consisting of eigenvectors of T .

Proof. (1)⇒ (2). Assume that T is symmetric and proceed by induction on n = dim V . If n = 1, every

nonzero vector in V is an eigenvector of T , so there is nothing to prove. If n ≥ 2, assume inductively
that the theorem holds for spaces of dimension less than n. Let λ1 be a real eigenvalue of T (by Theo-
rem 10.3.4) and choose an eigenvector f1 corresponding to λ1. Then U = Rf1 is T -invariant, so U⊥ is
also T -invariant by Theorem 10.3.5 (T is symmetric). Because dim U⊥ = n− 1 (Theorem 10.2.6), and
because the restriction of T to U⊥ is a symmetric operator (Theorem 10.3.5), it follows by induction that
U⊥ has an orthogonal basis {f2, . . . , fn} of eigenvectors of T . Hence B = {f1, f2, . . . , fn} is an orthogonal
basis of V , which proves (2).

(2)⇒ (1). If B = {f1, . . . , fn} is a basis as in (2), then MB(T ) is symmetric (indeed diagonal), so T is
symmetric by Theorem 10.3.3.

The matrix version of the principal axes theorem is an immediate consequence of Theorem 10.3.6. If A

is an n×n symmetric matrix, then TA : Rn→Rn is a symmetric operator, so let B be an orthonormal basis
of Rn consisting of eigenvectors of TA (and hence of A). Then PT AP is diagonal where P is the orthogonal
matrix whose columns are the vectors in B (see Theorem 9.2.4).

Similarly, let T : V → V be a symmetric linear operator on the n-dimensional inner product space V

and let B0 be any convenient orthonormal basis of V . Then an orthonormal basis of eigenvectors of T can
be computed from MB0(T ). In fact, if PT MB0(T )P is diagonal where P is orthogonal, let B = {f1, . . . , fn}
be the vectors in V such that CB0(f j) is column j of P for each j. Then B consists of eigenvectors of T by
Theorem 9.3.3, and they are orthonormal because B0 is orthonormal. Indeed

〈fi, f j〉=CB0(fi) ·CB0(f j)

holds for all i and j, as the reader can verify. Here is an example.

Example 10.3.4

Let T : P2→ P2 be given by

T (a+bx+ cx2) = (8a−2b+2c)+(−2a+5b+4c)x+(2a+4b+5c)x2

Using the inner product 〈a+bx+ cx2, a′+b′x+ c′x2〉= aa′+bb′+ cc′, show that T is symmetric
and find an orthonormal basis of P2 consisting of eigenvectors.

Solution. If B0 = {1, x, x2}, then MB0(T ) =




8 −2 2
−2 5 4

2 4 5


 is symmetric, so T is symmetric.

This matrix was analyzed in Example 8.2.5, where it was found that an orthonormal basis of
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eigenvectors is
{

1
3

[
1 2 −2

]T
, 1

3

[
2 1 2

]T
, 1

3

[
−2 2 1

]T}
. Because B0 is

orthonormal, the corresponding orthonormal basis of P2 is

B =
{

1
3(1+2x−2x2), 1

3(2+ x+2x2), 1
3(−2+2x+ x2)

}

Exercises for 10.3

Exercise 10.3.1 In each case, show that T is symmetric
by calculating MB(T ) for some orthonormal basis B.

a. T : R3→ R3;
T (a, b, c) = (a−2b, −2a+2b+2c, 2b−c); dot prod-
uct

b. T : M22→M22;

T

[
a b

c d

]
=

[
c−a d−b

a+2c b+2d

]
;

inner product:〈[
x y

z w

]
,

[
x′ y′

z′ w′

]〉
= xx′+ yy′+ zz′+ww′

c. T : P2→ P2;
T (a+bx+ cx2) = (b+ c)+ (a+ c)x+(a+b)x2;
inner product:
〈a+bx+ cx2, a′+b′x+ c′x2〉= aa′+bb′+ cc′

Exercise 10.3.2 Let T : R2→ R2 be given by

T (a, b) = (2a+b, a−b).

a. Show that T is symmetric if the dot product is
used.

b. Show that T is not symmetric if 〈x, y〉 = xAyT ,

where A =

[
1 1
1 2

]
.

[Hint: Check that B = {(1, 0), (1, −1)} is an or-
thonormal basis.]

Exercise 10.3.3 Let T : R2→ R2 be given by

T (a, b) = (a−b, b−a)

Use the dot product in R2.

a. Show that T is symmetric.

b. Show that MB(T ) is not symmetric if the orthogo-
nal basis B = {(1, 0), (0, 2)} is used. Why does
this not contradict Theorem 10.3.3?

Exercise 10.3.4 Let V be an n-dimensional inner prod-
uct space, and let T and S denote symmetric linear oper-
ators on V . Show that:

a. The identity operator is symmetric.

b. rT is symmetric for all r in R.

c. S+T is symmetric.

d. If T is invertible, then T−1 is symmetric.

e. If ST = T S, then ST is symmetric.

Exercise 10.3.5 In each case, show that T is symmetric
and find an orthonormal basis of eigenvectors of T .

a. T : R3→ R3;
T (a, b, c) = (2a+2c, 3b, 2a+5c); use the dot
product

b. T : R3→ R3;
T (a, b, c) = (7a−b, −a+7b, 2c); use the dot
product

c. T : P2→ P2;
T (a+bx+ cx2) = 3b+(3a+4c)x+4bx2;
inner product
〈a+bx+ cx2, a′+b′x+ c′x2〉= aa′+bb′+ cc′

d. T : P2→ P2;
T (a+bx+ cx2) = (c−a)+3bx+(a− c)x2; inner
product as in part (c)
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Exercise 10.3.6 If A is any n×n matrix, let TA :Rn→Rn

be given by TA(x) = Ax. Suppose an inner product on Rn

is given by 〈x, y〉 = xT Py, where P is a positive definite
matrix.

a. Show that TA is symmetric if and only if
PA = AT P.

b. Use part (a) to deduce Example 10.3.3.

Exercise 10.3.7 Let T : M22→M22 be given by
T (X) = AX , where A is a fixed 2×2 matrix.

a. Compute MB(T ), where

B =

{[
1 0
0 0

]
,

[
0 0
1 0

]
,

[
0 1
0 0

]
,

[
0 0
0 1

]}
.

Note the order!

b. Show that cT (x) = [cA(x)]
2.

c. If the inner product on M22 is 〈X , Y 〉= tr (XY T ),
show that T is symmetric if and only if A is a sym-
metric matrix.

Exercise 10.3.8 Let T : R2→ R2 be given by

T (a, b) = (b−a, a+2b)

Show that T is symmetric if the dot product is used in R2

but that it is not symmetric if the following inner product
is used:

〈x, y〉= xAyT , A =

[
1 −1
−1 2

]

Exercise 10.3.9 If T : V → V is symmetric, write
T−1(W ) = {v | T (v) is in W}. Show that
T (U)⊥ = T−1(U⊥) holds for every subspace U of V .

Exercise 10.3.10 Let T : M22 → M22 be defined by
T (X) = PXQ, where P and Q are nonzero 2× 2 matri-
ces. Use the inner product 〈X , Y 〉= tr (XY T ). Show that
T is symmetric if and only if either P and Q are both sym-

metric or both are scalar multiples of

[
0 1
−1 0

]
. [Hint:

If B is as in part (a) of Exercise 10.3.7, then

MB(T ) =

[
aP cP

bP dP

]
in block form, where

Q =

[
a b

c d

]
.

If B0 =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
,

then MB(T ) =

[
pQT qQT

rQT sQT

]
, where P =

[
p q

r s

]
.

Use the fact that cP = bPT ⇒ (c2−b2)P = 0.]

Exercise 10.3.11 Let T : V →W be any linear transfor-
mation and let B = {b1, . . . , bn} and D = {d1, . . . , dm}
be bases of V and W , respectively. If W is an inner prod-
uct space and D is orthogonal, show that

MDB(T ) =
[
〈di, T (b j)〉
‖di‖2

]

This is a generalization of Theorem 10.3.2.

Exercise 10.3.12 Let T : V →V be a linear operator on
an inner product space V of finite dimension. Show that
the following are equivalent.

1. 〈v, T (w)〉=−〈T (v), w〉 for all v and w in V .

2. MB(T ) is skew-symmetric for every orthonormal
basis B.

3. MB(T ) is skew-symmetric for some orthonormal
basis B.

Such operators T are called skew-symmetric opera-
tors.

Exercise 10.3.13 Let T : V →V be a linear operator on
an n-dimensional inner product space V .

a. Show that T is symmetric if and only if it satisfies
the following two conditions.

i. cT (x) factors completely over R.

ii. If U is a T -invariant subspace of V , then U⊥

is also T -invariant.

b. Using the standard inner product on R2, show that
T : R2 → R2 with T (a, b) = (a, a+ b) satisfies
condition (i) and that S : R2→ R2 with
S(a, b) = (b, −a) satisfies condition (ii), but that
neither is symmetric. (Example 9.3.4 is useful for
S.)

[Hint for part (a): If conditions (i) and (ii) hold,
proceed by induction on n. By condition (i), let
e1 be an eigenvector of T . If U = Re1, then U⊥

is T -invariant by condition (ii), so show that the
restriction of T to U⊥ satisfies conditions (i) and
(ii). (Theorem 9.3.1 is helpful for part (i)). Then
apply induction to show that V has an orthogonal
basis of eigenvectors (as in Theorem 10.3.6)].
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Exercise 10.3.14 Let B = {f1, f2, . . . , fn} be an or-
thonormal basis of an inner product space V . Given
T : V →V , define T ′ : V →V by

T ′(v) = 〈v, T (f1)〉f1 + 〈v, T (f2)〉f2 + · · ·+ 〈v, T (fn)〉fn

=
n

∑
i=1

〈v, T (fi)〉fi

a. Show that (aT )′ = aT ′.

b. Show that (S+T )′ = S′+T ′.

c. Show that MB(T
′) is the transpose of MB(T ).

d. Show that (T ′)′ = T , using part (c). [Hint:
MB(S) = MB(T ) implies that S = T .]

e. Show that (ST )′ = T ′S′, using part (c).

f. Show that T is symmetric if and only if
T = T ′. [Hint: Use the expansion theorem and
Theorem 10.3.3.]

g. Show that T + T ′ and T T ′ are symmetric, using
parts (b) through (e).

h. Show that T ′(v) is independent of the choice of
orthonormal basis B. [Hint: If D = {g1, . . . , gn}
is also orthonormal, use the fact that

fi =
n

∑
j=1

〈fi, g j〉g j for each i.]

Exercise 10.3.15 Let V be a finite dimensional inner
product space. Show that the following conditions are
equivalent for a linear operator T : V →V .

1. T is symmetric and T 2 = T .

2. MB(T ) =

[
Ir 0
0 0

]
for some orthonormal basis B

of V .

An operator is called a projection if it satisfies
these conditions. [Hint: If T 2 = T and T (v) = λv,
apply T to get λv = λ 2v. Hence show that 0, 1 are
the only eigenvalues of T .]

Exercise 10.3.16 Let V denote a finite dimensional in-
ner product space. Given a subspace U , define
projU : V →V as in Theorem 10.2.7.

a. Show that projU is a projection in the sense of
Exercise 10.3.15.

b. If T is any projection, show that T = projU ,
where U = im T . [Hint: Use T 2 = T to show
that V = im T ⊕ ker T and T (u) = u for all u in
im T . Use the fact that T is symmetric to show that
ker T ⊆ ( im T )⊥ and hence that these are equal
because they have the same dimension.]

10.4 Isometries

We saw in Section 2.6 that rotations about the origin and reflections in a line through the origin are linear
operators on R2. Similar geometric arguments (in Section 4.4) establish that, in R3, rotations about a line
through the origin and reflections in a plane through the origin are linear. We are going to give an algebraic
proof of these results that is valid in any inner product space. The key observation is that reflections and
rotations are distance preserving in the following sense. If V is an inner product space, a transformation
S : V →V (not necessarily linear) is said to be distance preserving if the distance between S(v) and S(w)
is the same as the distance between v and w for all vectors v and w; more formally, if

‖S(v)−S(w)‖= ‖v−w‖ for all v and w in V (10.2)

Distance-preserving maps need not be linear. For example, if u is any vector in V , the transformation
Su : V →V defined by Su(v) = v+u for all v in V is called translation by u, and it is routine to verify that
Su is distance preserving for any u. However, Su is linear only if u= 0 (since then Su(0) = 0). Remarkably,
distance-preserving operators that do fix the origin are necessarily linear.
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Lemma 10.4.1

Let V be an inner product space of dimension n, and consider a distance-preserving transformation
S : V →V . If S(0) = 0, then S is linear.

Proof. We have ‖S(v)−S(w)‖2 = ‖v−w‖2 for all v and w in V by (10.2), which gives

〈S(v), S(w)〉= 〈v, w〉 for all v and w in V (10.3)

Now let {f1, f2, . . . , fn} be an orthonormal basis of V . Then {S(f1), S(f2), . . . , S(fn)} is orthonormal by
(10.3) and so is a basis because dim V = n. Now compute:

〈S(v+w)−S(v)−S(w), S(fi)〉= 〈S(v+w), S(fi)〉−〈S(v), S(fi)〉−〈S(w), S(fi)〉
= 〈v+w, fi〉−〈v, fi〉−〈w, fi〉
= 0

for each i. It follows from the expansion theorem (Theorem 10.2.4) that S(v+w)−S(v)−S(w) = 0; that
is, S(v+w) = S(v)+S(w). A similar argument shows that S(av) = aS(v) holds for all a in R and v in V ,
so S is linear after all.

Definition 10.5 Isometries

Distance-preserving linear operators are called isometries.

It is routine to verify that the composite of two distance-preserving transformations is again distance
preserving. In particular the composite of a translation and an isometry is distance preserving. Surpris-
ingly, the converse is true.

Theorem 10.4.1

If V is a finite dimensional inner product space, then every distance-preserving transformation
S : V →V is the composite of a translation and an isometry.

Proof. If S : V → V is distance preserving, write S(0) = u and define T : V → V by T (v) = S(v)−u for
all v in V . Then ‖T (v)−T (w)‖= ‖v−w‖ for all vectors v and w in V as the reader can verify; that is, T

is distance preserving. Clearly, T (0) = 0, so it is an isometry by Lemma 10.4.1. Since

S(v) = u+T (v) = (Su ◦T )(v) for all v in V

we have S = Su ◦T , and the theorem is proved.

In Theorem 10.4.1, S= Su◦T factors as the composite of an isometry T followed by a translation Su. More
is true: this factorization is unique in that u and T are uniquely determined by S; and w ∈ V exists such
that S = T ◦ Sw is uniquely the composite of translation by w followed by the same isometry T (Exercise
10.4.12).

Theorem 10.4.1 focuses our attention on the isometries, and the next theorem shows that, while they
preserve distance, they are characterized as those operators that preserve other properties.
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Theorem 10.4.2

Let T : V →V be a linear operator on a finite dimensional inner product space V .
The following conditions are equivalent:

1. T is an isometry. (T preserves distance)

2. ‖T (v)‖= ‖v‖ for all v in V . (T preserves norms)

3. 〈T (v), T (w)〉= 〈v, w〉 for all v and w in V . (T preserves inner products)

4. If {f1, f2, . . . , fn} is an orthonormal basis of V ,

then {T (f1), T (f2), . . . , T (fn)} is also an orthonormal basis. (T preserves orthonormal bases)

5. T carries some orthonormal basis to an orthonormal basis.

Proof. (1)⇒ (2). Take w = 0 in (10.2).

(2)⇒ (3). Since T is linear, (2) gives ‖T (v)−T (w)‖2 = ‖T (v−w)‖2 = ‖v−w‖2. Now (3) follows.

(3) ⇒ (4). By (3), {T (f1), T (f2), . . . , T (fn)} is orthogonal and ‖T (fi)‖2 = ‖fi‖2 = 1. Hence it is a
basis because dim V = n.

(4)⇒ (5). This needs no proof.

(5)⇒ (1). By (5), let {f1, . . . , fn} be an orthonormal basis of V such that{T (f1), . . . , T (fn)} is also
orthonormal. Given v = v1f1 + · · ·+ vnfn in V , we have T (v) = v1T (f1)+ · · ·+ vnT (fn) so Pythagoras’
theorem gives

‖T (v)‖2 = v2
1 + · · ·+ v2

n = ‖v‖2

Hence ‖T (v)‖= ‖v‖ for all v, and (1) follows by replacing v by v−w.

Before giving examples, we note some consequences of Theorem 10.4.2.

Corollary 10.4.1

Let V be a finite dimensional inner product space.

1. Every isometry of V is an isomorphism.5

2. a. 1V : V →V is an isometry.

b. The composite of two isometries of V is an isometry.

c. The inverse of an isometry of V is an isometry.

Proof. (1) is by (4) of Theorem 10.4.2 and Theorem 7.3.1. (2a) is clear, and (2b) is left to the reader. If
T : V → V is an isometry and {f1, . . . , fn} is an orthonormal basis of V , then (2c) follows because T−1

carries the orthonormal basis {T (f1), . . . , T (fn)} back to {f1, . . . , fn}.

The conditions in part (2) of the corollary assert that the set of isometries of a finite dimensional inner
product space forms an algebraic system called a group. The theory of groups is well developed, and
groups of operators are important in geometry. In fact, geometry itself can be fruitfully viewed as the
study of those properties of a vector space that are preserved by a group of invertible linear operators.

5V must be finite dimensional—see Exercise 10.4.13.
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Example 10.4.1

Rotations of R2 about the origin are isometries, as are reflections in lines through the origin: They
clearly preserve distance and so are linear by Lemma 10.4.1. Similarly, rotations about lines
through the origin and reflections in planes through the origin are isometries of R3.

Example 10.4.2

Let T : Mnn→Mnn be the transposition operator: T (A) = AT . Then T is an isometry if the inner
product is 〈A, B〉= tr (ABT ) = ∑

i, j

ai jbi j. In fact, T permutes the basis consisting of all matrices

with one entry 1 and the other entries 0.

The proof of the next result requires the fact (see Theorem 10.4.2) that, if B is an orthonormal basis,
then 〈v, w〉=CB(v) ·CB(w) for all vectors v and w.

Theorem 10.4.3

Let T : V →V be an operator where V is a finite dimensional inner product space. The following
conditions are equivalent.

1. T is an isometry.

2. MB(T ) is an orthogonal matrix for every orthonormal basis B.

3. MB(T ) is an orthogonal matrix for some orthonormal basis B.

Proof. (1) ⇒ (2). Let B = {e1, . . . , en} be an orthonormal basis. Then the jth column of MB(T ) is
CB[T (e j)], and we have

CB[T (e j)] ·CB[T (ek)] = 〈T (e j), T (ek)〉= 〈e j, ek〉

using (1). Hence the columns of MB(T ) are orthonormal in Rn, which proves (2).

(2)⇒ (3). This is clear.

(3)⇒ (1). Let B = {e1, . . . , en} be as in (3). Then, as before,

〈T (e j), T (ek)〉=CB[T (e j)] ·CB[T (ek)]

so {T (e1), . . . , T (en)} is orthonormal by (3). Hence Theorem 10.4.2 gives (1).

It is important that B is orthonormal in Theorem 10.4.3. For example, T : V → V given by T (v) = 2v

preserves orthogonal sets but is not an isometry, as is easily checked.

If P is an orthogonal square matrix, then P−1 = PT . Taking determinants yields (det P)2 = 1, so
det P =±1. Hence:
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Corollary 10.4.2

If T : V →V is an isometry where V is a finite dimensional inner product space, then det T =±1.

Example 10.4.3

If A is any n×n matrix, the matrix operator TA : Rn→ Rn is an isometry if and only if A is
orthogonal using the dot product in Rn. Indeed, if E is the standard basis of Rn, then ME(TA) = A

by Theorem 9.2.4.

Rotations and reflections that fix the origin are isometries in R2 and R3 (Example 10.4.1); we are going
to show that these isometries (and compositions of them in R3) are the only possibilities. In fact, this will
follow from a general structure theorem for isometries. Surprisingly enough, much of the work involves
the two–dimensional case.

Theorem 10.4.4

Let T : V →V be an isometry on the two-dimensional inner product space V . Then there are two
possibilities.
Either (1) There is an orthonormal basis B of V such that

MB(T ) =

[
cosθ −sinθ
sinθ cosθ

]
, 0≤ θ < 2π

or (2) There is an orthonormal basis B of V such that

MB(T ) =

[
1 0
0 −1

]

Furthermore, type (1) occurs if and only if det T = 1, and type (2) occurs if and only if
det T =−1.

Proof. The final statement follows from the rest because det T = det [MB(T )] for any basis B. Let
B0 = {e1, e2} be any ordered orthonormal basis of V and write

A = MB0(T ) =

[
a b

c d

]
; that is,

T (e1) = ae1 + ce2

T (e2) = be1 +de2

Then A is orthogonal by Theorem 10.4.3, so its columns (and rows) are orthonormal. Hence

a2 + c2 = 1 = b2 +d2

so (a, c) and (d, b) lie on the unit circle. Thus angles θ and ϕ exist such that

a = cosθ , c = sinθ 0≤ θ < 2π
d = cosϕ , b = sinϕ 0≤ ϕ < 2π
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Then sin(θ +ϕ) = cd+ab = 0 because the columns of A are orthogonal, so θ +ϕ = kπ for some integer
k. This gives d = cos(kπ−θ) = (−1)k cosθ and b = sin(kπ−θ) = (−1)k+1 sinθ . Finally

A =

[
cosθ (−1)k+1 sinθ

sinθ (−1)k cosθ

]

If k is even we are in type (1) with B = B0, so assume k is odd. Then A =

[
a c

c −a

]
. If a =−1 and c = 0,

we are in type (1) with B= {e2, e2}. Otherwise A has eigenvalues λ1 = 1 and λ2 =−1 with corresponding

eigenvectors x1 =

[
1+a

c

]
and x2 =

[
−c

1+a

]
as the reader can verify. Write

f1 = (1+a)e1 + ce2 and f2 =−ce2 +(1+a)e2

Then f1 and f2 are orthogonal (verify) and CB0(fi) =CB0(λifi) = xi for each i. Moreover

CB0[T (fi)] = ACB0(fi) = Axi = λixi = λiCB0(fi) =CB0(λifi)

so T (fi) = λifi for each i. Hence MB(T ) =

[
λ1 0
0 λ2

]
=

[
1 0
0 −1

]
and we are in type (2) with

B =
{

1
‖f1‖ f1, 1

‖f2‖f2

}
.

Corollary 10.4.3

An operator T : R2→ R2 is an isometry if and only if T is a rotation or a reflection.

In fact, if E is the standard basis of R2, then the clockwise rotation Rθ about the origin through an angle
θ has matrix

ME(Rθ ) =

[
cosθ −sinθ
sinθ cosθ

]

(see Theorem 2.6.4). On the other hand, if S : R2→R2 is the reflection in a line through the origin (called
the fixed line of the reflection), let f1 be a unit vector pointing along the fixed line and let f2 be a unit vector
perpendicular to the fixed line. Then B = {f1, f2} is an orthonormal basis, S(f1) = f1 and S(f2) =−f2, so

MB(S) =

[
1 0
0 −1

]

Thus S is of type 2. Note that, in this case, 1 is an eigenvalue of S, and any eigenvector corresponding to
1 is a direction vector for the fixed line.

Example 10.4.4

In each case, determine whether TA : R2→ R2 is a rotation or a reflection, and then find the angle
or fixed line:

(a) A = 1
2

[
1
√

3
−
√

3 1

]
(b) A = 1

5

[
−3 4

4 3

]
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Solution. Both matrices are orthogonal, so (because ME(TA) = A, where E is the standard basis)
TA is an isometry in both cases. In the first case, det A = 1, so TA is a counterclockwise rotation

through θ , where cosθ = 1
2 and sinθ =−

√
3

2 . Thus θ =−π
3 . In (b), det A =−1, so TA is a

reflection in this case. We verify that d =

[
1
2

]
is an eigenvector corresponding to the eigenvalue

1. Hence the fixed line Rd has equation y = 2x.

We now give a structure theorem for isometries. The proof requires three preliminary results, each of
interest in its own right.

Lemma 10.4.2

Let T : V →V be an isometry of a finite dimensional inner product space V . If U is a T -invariant
subspace of V , then U⊥ is also T -invariant.

Proof. Let w lie in U⊥. We are to prove that T (w) is also in U⊥; that is, 〈T (w), u〉 = 0 for all u in U . At
this point, observe that the restriction of T to U is an isometry U →U and so is an isomorphism by the
corollary to Theorem 10.4.2. In particular, each u in U can be written in the form u = T (u1) for some u1

in U , so
〈T (w), u〉= 〈T (w), T (u1)〉= 〈w, u1〉= 0

because w is in U⊥. This is what we wanted.

To employ Lemma 10.4.2 above to analyze an isometry T : V →V when dim V = n, it is necessary to
show that a T -invariant subspace U exists such that U 6= 0 and U 6= V . We will show, in fact, that such a
subspace U can always be found of dimension 1 or 2. If T has a real eigenvalue λ then Ru is T -invariant
where u is any λ -eigenvector. But, in case (1) of Theorem 10.4.4, the eigenvalues of T are eiθ and e−iθ

(the reader should check this), and these are nonreal if θ 6= 0 and θ 6= π . It turns out that every complex
eigenvalue λ of T has absolute value 1 (Lemma 10.4.3 below); and that U has a T -invariant subspace of
dimension 2 if λ is not real (Lemma 10.4.4).

Lemma 10.4.3

Let T : V →V be an isometry of the finite dimensional inner product space V . If λ is a complex
eigenvalue of T , then |λ |= 1.

Proof. Choose an orthonormal basis B of V , and let A = MB(T ). Then A is a real orthogonal matrix so,
using the standard inner product 〈x, y〉= xT y in C, we get

‖Ax‖2 = (Ax)T (Ax) = xT AT Ax = xT Ix = ‖x‖2

for all x in Cn. But Ax = λx for some x 6= 0, whence ‖x‖2 = ‖λx‖2 = |λ |2‖x‖2. This gives |λ | = 1, as
required.
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Lemma 10.4.4

Let T : V →V be an isometry of the n-dimensional inner product space V . If T has a nonreal
eigenvalue, then V has a two-dimensional T -invariant subspace.

Proof. Let B be an orthonormal basis of V , let A = MB(T ), and (using Lemma 10.4.3) let λ = eiα be a
nonreal eigenvalue of A, say Ax = λx where x 6= 0 in Cn. Because A is real, complex conjugation gives
Ax = λx, so λ is also an eigenvalue. Moreover λ 6= λ (λ is nonreal), so {x, x} is linearly independent in
Cn (the argument in the proof of Theorem 5.5.4 works). Now define

z1 = x+x and z2 = i(x−x)

Then z1 and z2 lie in Rn, and {z1, z2} is linearly independent over R because {x, x} is linearly independent
over C. Moreover

x = 1
2(z1− iz2) and x = 1

2(z1 + iz2)

Now λ +λ = 2cosα and λ −λ = 2isinα , and a routine computation gives

Az1 = z1 cosα + z2 sinα

Az2 =−z1 sinα + z2 cosα

Finally, let e1 and e2 in V be such that z1 =CB(e1) and z2 =CB(e2). Then

CB[T (e1)] = ACB(e1) = Az1 =CB(e1 cosα + e2 sinα)

using Theorem 9.1.2. Because CB is one-to-one, this gives the first of the following equations (the other is
similar):

T (e1) = e1 cosα + e2 sinα

T (e2) =−e1 sinα + e2 cosα

Thus U = span{e1, e2} is T -invariant and two-dimensional.

We can now prove the structure theorem for isometries.

Theorem 10.4.5

Let T : V →V be an isometry of the n-dimensional inner product space V . Given an angle θ , write

R(θ) =

[
cosθ −sinθ
sinθ cosθ

]
. Then there exists an orthonormal basis B of V such that MB(T ) has

one of the following block diagonal forms, classified for convenience by whether n is odd or even:

n = 2k+1




1 0 · · · 0
0 R(θ1) · · · 0
...

...
. . .

...
0 0 · · · R(θk)


 or




−1 0 · · · 0
0 R(θ1) · · · 0
...

...
. . .

...
0 0 · · · R(θk)
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n = 2k




R(θ1) 0 · · · 0
0 R(θ2) · · · 0
...

...
. . .

...
0 0 · · · R(θk)


 or




−1 0 0 · · · 0
0 1 0 · · · 0
0 0 R(θ1) · · · 0
...

...
...

. . .
...

0 0 0 · · · R(θk−1)




Proof. We show first, by induction on n, that an orthonormal basis B of V can be found such that MB(T )
is a block diagonal matrix of the following form:

MB(T ) =




Ir 0 0 · · · 0
0 −Is 0 · · · 0
0 0 R(θ1) · · · 0
...

...
...

. . .
...

0 0 0 · · · R(θt)




where the identity matrix Ir, the matrix −Is, or the matrices R(θi) may be missing. If n = 1 and V = Rv,
this holds because T (v)= λv and λ =±1 by Lemma 10.4.3. If n= 2, this follows from Theorem 10.4.4. If
n≥ 3, either T has a real eigenvalue and therefore has a one-dimensional T -invariant subspace U =Ru for
any eigenvector u, or T has no real eigenvalue and therefore has a two-dimensional T -invariant subspace
U by Lemma 10.4.4. In either case U⊥ is T -invariant (Lemma 10.4.2) and dim U⊥ = n− dim U < n.
Hence, by induction, let B1 and B2 be orthonormal bases of U and U⊥ such that MB1(T ) and MB2(T ) have
the form given. Then B = B1∪B2 is an orthonormal basis of V , and MB(T ) has the desired form with a
suitable ordering of the vectors in B.

Now observe that R(0) =

[
1 0
0 1

]
and R(π) =

[
−1 0

0 −1

]
. It follows that an even number of 1s or−1s

can be written as R(θ1)-blocks. Hence, with a suitable reordering of the basis B, the theorem follows.

As in the dimension 2 situation, these possibilities can be given a geometric interpretation when V =R3

is taken as euclidean space. As before, this entails looking carefully at reflections and rotations in R3. If
Q : R3→ R3 is any reflection in a plane through the origin (called the fixed plane of the reflection), take
{f2, f3} to be any orthonormal basis of the fixed plane and take f1 to be a unit vector perpendicular to
the fixed plane. Then Q(f1) = −f1, whereas Q(f2) = f2 and Q(f3) = f3. Hence B = {f1, f2, f3} is an
orthonormal basis such that

MB(Q) =



−1 0 0

0 1 0
0 0 1




Similarly, suppose that R : R3→ R3 is any rotation about a line through the origin (called the axis of the
rotation), and let f1 be a unit vector pointing along the axis, so R(f1) = f1. Now the plane through the
origin perpendicular to the axis is an R-invariant subspace of R2 of dimension 2, and the restriction of R

to this plane is a rotation. Hence, by Theorem 10.4.4, there is an orthonormal basis B1 = {f2, f3} of this

plane such that MB1(R) =

[
cosθ −sinθ
sinθ cosθ

]
. But then B = {f1, f2, f3} is an orthonormal basis of R3 such

that the matrix of R is

MB(R) =




1 0 0
0 cosθ −sinθ
0 sinθ cosθ
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However, Theorem 10.4.5 shows that there are isometries T in R3 of a third type: those with a matrix of
the form

MB(T ) =



−1 0 0
0 cosθ −sinθ
0 sinθ cosθ




If B = {f1, f2, f3}, let Q be the reflection in the plane spanned by f2 and f3, and let R be the ro-
tation corresponding to θ about the line spanned by f1. Then MB(Q) and MB(R) are as above, and
MB(Q)MB(R) = MB(T ) as the reader can verify. This means that MB(QR) = MB(T ) by Theorem 9.2.1,
and this in turn implies that QR = T because MB is one-to-one (see Exercise 9.1.26). A similar argument
shows that RQ = T , and we have Theorem 10.4.6.

Theorem 10.4.6

If T : R3→ R3 is an isometry, there are three possibilities.

a. T is a rotation, and MB(T ) =




1 0 0
0 cosθ −sinθ
0 sinθ cosθ


 for some orthonormal basis B.

b. T is a reflection, and MB(T ) =



−1 0 0

0 1 0
0 0 1


 for some orthonormal basis B.

c. T = QR = RQ where Q is a reflection, R is a rotation about an axis perpendicular to the fixed

plane of Q and MB(T ) =



−1 0 0
0 cosθ −sinθ
0 sinθ cosθ


 for some orthonormal basis B.

Hence T is a rotation if and only if det T = 1.

Proof. It remains only to verify the final observation that T is a rotation if and only if det T = 1. But
clearly det T =−1 in parts (b) and (c).

A useful way of analyzing a given isometry T : R3→R3 comes from computing the eigenvalues of T .
Because the characteristic polynomial of T has degree 3, it must have a real root. Hence, there must be at
least one real eigenvalue, and the only possible real eigenvalues are±1 by Lemma 10.4.3. Thus Table 10.1
includes all possibilities.
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Table 10.1

Eigenvalues of T Action of T

(1) 1, no other real eigenvalues Rotation about the line Rf where f is an eigenvector corresponding
to 1. [Case (a) of Theorem 10.4.6.]

(2) −1, no other real eigenvalues Rotation about the line Rf followed by reflection in the plane (Rf)⊥

where f is an eigenvector corresponding to −1. [Case (c) of Theo-
rem 10.4.6.]

(3) −1, 1, 1 Reflection in the plane (Rf)⊥ where f is an eigenvector correspond-
ing to −1. [Case (b) of Theorem 10.4.6.]

(4) 1, −1, −1 This is as in (1) with a rotation of π .

(5) −1, −1, −1 Here T (x) =−x for all x. This is (2) with a rotation of π .

(6) 1, 1, 1 Here T is the identity isometry.

Example 10.4.5

Analyze the isometry T : R3→R3 given by T




x

y

z


=




y

z

−x


.

Solution. If B0 is the standard basis of R3, then MB0(T ) =




0 1 0
0 0 1
−1 0 0


, so

cT (x) = x3 +1 = (x+1)(x2− x+1). This is (2) in Table 10.1. Write:

f1 =
1√
3




1
−1

1


 f2 =

1√
6




1
2
1


 f3 =

1√
2




1
0
−1




Here f1 is a unit eigenvector corresponding to λ1 =−1, so T is a rotation (through an angle θ )
about the line L = Rf1, followed by reflection in the plane U through the origin perpendicular to f1

(with equation x− y+ z = 0). Then, {f1, f2} is chosen as an orthonormal basis of U , so
B = {f1, f2, f3} is an orthonormal basis of R3 and

MB(T ) =




−1 0 0

0 1
2 −

√
3

2

0
√

3
2

1
2




Hence θ is given by cosθ = 1
2 , sinθ =

√
3

2 , so θ = π
3 .
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Let V be an n-dimensional inner product space. A subspace of V of dimension n− 1 is called a
hyperplane in V . Thus the hyperplanes in R3 and R2 are, respectively, the planes and lines through the
origin. Let Q : V →V be an isometry with matrix

MB(Q) =

[
−1 0

0 In−1

]

for some orthonormal basis B = {f1, f2, . . . , fn}. Then Q(f1) = −f1 whereas Q(u) = u for each u in
U = span{f2, . . . , fn}. Hence U is called the fixed hyperplane of Q, and Q is called reflection in U .
Note that each hyperplane in V is the fixed hyperplane of a (unique) reflection of V . Clearly, reflections in
R2 and R3 are reflections in this more general sense.

Continuing the analogy with R2 and R3, an isometry T : V → V is called a rotation if there exists an
orthonormal basis {f1, . . . , fn} such that

MB(T ) =




Ir 0 0
0 R(θ) 0
0 0 Is




in block form, where R(θ) =

[
cosθ −sinθ
sinθ cosθ

]
, and where either Ir or Is (or both) may be missing. If

R(θ) occupies columns i and i+ 1 of MB(T ), and if W = span{fi, fi+1}, then W is T -invariant and the
matrix of T : W →W with respect to {fi, fi+1} is R(θ). Clearly, if W is viewed as a copy of R2, then
T is a rotation in W . Moreover, T (u) = u holds for all vectors u in the (n− 2)-dimensional subspace
U = span{f1, . . . , fi−1, fi+1, . . . , fn}, and U is called the fixed axis of the rotation T . In R3, the axis of
any rotation is a line (one-dimensional), whereas in R2 the axis is U = {0}.

With these definitions, the following theorem is an immediate consequence of Theorem 10.4.5 (the
details are left to the reader).

Theorem 10.4.7

Let T : V →V be an isometry of a finite dimensional inner product space V . Then there exist
isometries T1, . . . , T such that

T = TkTk−1 · · ·T2T1

where each Ti is either a rotation or a reflection, at most one is a reflection, and TiTj = TjTi holds
for all i and j. Furthermore, T is a composite of rotations if and only if det T = 1.
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Exercises for 10.4

Throughout these exercises, V denotes a finite di-
mensional inner product space.

Exercise 10.4.1 Show that the following linear opera-
tors are isometries.

a. T : C→ C; T (z) = z; 〈z, w〉= re (zw)

b. T : Rn→ Rn; T (a1, a2, . . . , an)
= (an, an−1, . . . , a2, a1); dot product

c. T : M22 → M22; T

[
a b

c d

]
=

[
c d

b a

]
;

〈A, B〉= tr (ABT )

d. T : R3 → R3; T (a, b, c) = 1
9(2a+ 2b− c, 2a+

2c−b, 2b+2c−a); dot product

Exercise 10.4.2 In each case, show that T is an isometry
of R2, determine whether it is a rotation or a reflection,
and find the angle or the fixed line. Use the dot product.

T

[
a

b

]
=

[
−a

b

]
a. T

[
a

b

]
=

[
−a

−b

]
b.

T

[
a

b

]
=

[
b

−a

]
c. T

[
a

b

]
=

[
−b

−a

]
d.

T

[
a

b

]
= 1√

2

[
a+b

b−a

]
e.

T

[
a

b

]
= 1√

2

[
a−b

a+b

]
f.

Exercise 10.4.3 In each case, show that T is an isometry
of R3, determine the type (Theorem 10.4.6), and find the
axis of any rotations and the fixed plane of any reflections
involved.

T




a

b

c


=




a

−b

c


a.

T




a

b

c


= 1

2



√

3c−a√
3a+ c

2b


b.

T




a

b

c


=




b

c

a


c. T




a

b

c


=




a

−b

−c


d.

T




a

b

c


= 1

2




a+
√

3b

b−
√

3a

2c


e.

T




a

b

c


= 1√

2




a+ c

−
√

2b

c−a


f.

Exercise 10.4.4 Let T : R2→R2 be an isometry. A vec-
tor x in R2 is said to be fixed by T if T (x) = x. Let E1

denote the set of all vectors in R2 fixed by T . Show that:

a. E1 is a subspace of R2.

b. E1 = R2 if and only if T = 1 is the identity map.

c. dim E1 = 1 if and only if T is a reflection (about
the line E1).

d. E1 = {0} if and only if T is a rotation (T 6= 1).

Exercise 10.4.5 Let T :R3→R3 be an isometry, and let
E1 be the subspace of all fixed vectors in R3 (see Exercise
10.4.4). Show that:

a. E1 = R3 if and only if T = 1.

b. dim E1 = 2 if and only if T is a reflection (about
the plane E1).

c. dim E1 = 1 if and only if T is a rotation (T 6= 1)
(about the line E1).

d. dim E1 = 0 if and only if T is a reflection followed
by a (nonidentity) rotation.

Exercise 10.4.6 If T is an isometry, show that aT is an
isometry if and only if a =±1.

Exercise 10.4.7 Show that every isometry preserves the
angle between any pair of nonzero vectors (see Exercise
10.1.31). Must an angle-preserving isomorphism be an
isometry? Support your answer.

Exercise 10.4.8 If T : V → V is an isometry, show that
T 2 = 1V if and only if the only complex eigenvalues of T

are 1 and −1.
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Exercise 10.4.9 Let T : V → V be a linear operator.
Show that any two of the following conditions implies
the third:

1. T is symmetric.

2. T is an involution (T 2 = 1V ).

3. T is an isometry.

[Hint: In all cases, use the definition

〈v, T (w)〉= 〈T (v), w〉
of a symmetric operator. For (1) and (3) ⇒ (2),
use the fact that, if 〈T 2(v)− v, w〉 = 0 for all w,
then T 2(v) = v.]

Exercise 10.4.10 If B and D are any orthonormal bases
of V , show that there is an isometry T :V →V that carries
B to D.

Exercise 10.4.11 Show that the following are equivalent
for a linear transformation S : V →V where V is finite di-
mensional and S 6= 0:

1. 〈S(v), S(w)〉= 0 whenever 〈v, w〉= 0;

2. S = aT for some isometry T : V → V and some
a 6= 0 in R.

3. S is an isomorphism and preserves angles between
nonzero vectors.

[Hint: Given (1), show that ‖S(e)‖ = ‖S(f)‖ for
all unit vectors e and f in V .]

Exercise 10.4.12 Let S : V →V be a distance preserving
transformation where V is finite dimensional.

a. Show that the factorization in the proof of Theo-
rem 10.4.1 is unique. That is, if S = Su ◦ T and
S = Su′ ◦T ′ where u, u′ ∈V and T , T ′ : V →V are
isometries, show that u = u′ and T = T ′.

b. If S = Su ◦ T , u ∈ V , T an isometry, show that
w ∈V exists such that S = T ◦Sw.

Exercise 10.4.13 Define T : P→ P by T ( f ) = x f (x) for
all f ∈ P, and define an inner product on P as follows: If
f = a0 + a1x+ a2x2 + · · · and g = b0 + b1x+ b2x2 + · · ·
are in P, define 〈 f , g〉= a0b0 +a1b1 +a2b2 + · · · .

a. Show that 〈 , 〉 is an inner product on P.

b. Show that T is an isometry of P.

c. Show that T is one-to-one but not onto.

10.5 An Application to Fourier Approximation6

If U is an orthogonal basis of a vector space V , the expansion theorem (Theorem 10.2.4) presents a vector
v ∈ V as a linear combination of the vectors in U . Of course this requires that the set U is finite since
otherwise the linear combination is an infinite sum and makes no sense in V .

However, given an infinite orthogonal set U = {f1, f2, . . . , fn, . . .}, we can use the expansion theorem
for {f1, f2, . . . , fn} for each n to get a series of “approximations” vn for a given vector v. A natural
question is whether these vn are getting closer and closer to v as n increases. This turns out to be a very
fruitful idea.

In this section we shall investigate an important orthogonal set in the space C[−π , π ] of continuous

6The name honours the French mathematician J.B.J. Fourier (1768-1830) who used these techniques in 1822 to investigate
heat conduction in solids.

www.dbooks.org

https://www.dbooks.org/


578 Inner Product Spaces

functions on the interval [−π , π ], using the inner product.

〈 f , g〉=
∫ π

−π
f (x)g(x)dx

Of course, calculus will be needed. The orthogonal set in question is

{1, sinx, cosx, sin(2x), cos(2x), sin(3x), cos(3x), . . .}

Standard techniques of integration give

‖1‖2 =
∫ π

−π
12dx = 2π

‖sin kx‖2 =
∫ π

−π
sin2(kx)dx = π for any k = 1, 2, 3, . . .

‖cos kx‖2 =

∫ π

−π
cos2(kx)dx = π for any k = 1, 2, 3, . . .

We leave the verifications to the reader, together with the task of showing that these functions are orthog-
onal:

〈sin(kx), sin(mx)〉= 0 = 〈cos(kx), cos(mx)〉 if k 6= m

and
〈sin(kx), cos(mx)〉= 0 for all k ≥ 0 and m≥ 0

(Note that 1 = cos(0x), so the constant function 1 is included.)

Now define the following subspace of C[−π , π ]:

Fn = span{1, sinx, cosx, sin(2x), cos(2x), . . . , sin(nx), cos(nx)}

The aim is to use the approximation theorem (Theorem 10.2.8); so, given a function f in C[−π , π ], define
the Fourier coefficients of f by

a0 =
〈 f (x), 1〉
‖1‖2 = 1

2π

∫ π

−π
f (x)dx

ak =
〈 f (x), cos(kx)〉
‖cos(kx)‖2 = 1

π

∫ π

−π
f (x)cos(kx)dx k = 1, 2, . . .

bk =
〈 f (x), sin(kx)〉
‖sin(kx)‖2 = 1

π

∫ π

−π
f (x)sin(kx)dx k = 1, 2, . . .

Then the approximation theorem (Theorem 10.2.8) gives Theorem 10.5.1.

Theorem 10.5.1

Let f be any continuous real-valued function defined on the interval [−π , π ]. If a0, a1, . . . , and b0,
b1, . . . are the Fourier coefficients of f , then given n≥ 0,

fn(x) = a0 +a1 cosx+b1 sinx+a2 cos(2x)+b2 sin(2x)+ · · ·+an cos(nx)+bn sin(nx)
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is a function in Fn that is closest to f in the sense that

‖ f − fn‖ ≤ ‖ f −g‖

holds for all functions g in Fn.

The function fn is called the nth Fourier approximation to the function f .

Example 10.5.1

Find the fifth Fourier approximation to the function f (x) defined on [−π , π ] as follows:

f (x) =

{
π + x if −π ≤ x < 0
π− x if 0≤ x≤ π

−π 0 π

π

x

y

-4 -3 -2 -1 0 1 2 3 4

1

2

3

4

f5(x)

x

y

-4 -3 -2 -1 0 1 2 3 4

1

2

3

4

f13(x)

x

y

Solution. The graph of y = f (x) appears in the top diagram.
The Fourier coefficients are computed as follows. The details
of the integrations (usually by parts) are omitted.

a0 =
1

2π

∫ π

−π
f (x)dx = π

2

ak =
1
π

∫ π

−π
f (x)cos(kx)dx = 2

πk2 [1− cos(kπ)] =

{
0 if k is even

4
πk2 if k is odd

bk =
1
π

∫ π

−π
f (x)sin(kx)dx = 0 for all k = 1, 2, . . .

Hence the fifth Fourier approximation is

f5(x) =
π
2 +

4
π

{
cosx+ 1

32 cos(3x)+ 1
52 cos(5x)

}

This is plotted in the middle diagram and is already a reasonable
approximation to f (x). By comparison, f13(x) is also plotted
in the bottom diagram.

We say that a function f is an even function if f (x)= f (−x) holds for all x; f is called an odd function

if f (−x) =− f (x) holds for all x. Examples of even functions are constant functions, the even powers x2,
x4, . . . , and cos(kx); these functions are characterized by the fact that the graph of y = f (x) is symmetric
about the y axis. Examples of odd functions are the odd powers x, x3, . . . , and sin(kx) where k > 0, and
the graph of y = f (x) is symmetric about the origin if f is odd. The usefulness of these functions stems
from the fact that ∫ π

−π f (x)dx = 0 if f is odd∫ π
−π f (x)dx = 2

∫ π
0 f (x)dx if f is even

These facts often simplify the computations of the Fourier coefficients. For example:

1. The Fourier sine coefficients bk all vanish if f is even.
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2. The Fourier cosine coefficients ak all vanish if f is odd.

This is because f (x)sin(kx) is odd in the first case and f (x)cos(kx) is odd in the second case.

The functions 1, cos(kx), and sin(kx) that occur in the Fourier approximation for f (x) are all easy to
generate as an electrical voltage (when x is time). By summing these signals (with the amplitudes given
by the Fourier coefficients), it is possible to produce an electrical signal with (the approximation to) f (x)
as the voltage. Hence these Fourier approximations play a fundamental role in electronics.

Finally, the Fourier approximations f1, f2, . . . of a function f get better and better as n increases. The
reason is that the subspaces Fn increase:

F1 ⊆ F2 ⊆ F3 ⊆ ·· · ⊆ Fn ⊆ ·· ·

So, because fn = projFn
f , we get (see the discussion following Example 10.2.6)

‖ f − f1‖ ≥ ‖ f − f2‖ ≥ · · · ≥ ‖ f − fn‖ ≥ · · ·

These numbers ‖ f − fn‖ approach zero; in fact, we have the following fundamental theorem.

Theorem 10.5.2

Let f be any continuous function in C[−π , π ]. Then

fn(x) approaches f (x) for all x such that −π < x < π .7

It shows that f has a representation as an infinite series, called the Fourier series of f :

f (x) = a0 +a1 cosx+b1 sinx+a2 cos(2x)+b2 sin(2x)+ · · ·

whenever−π < x < π . A full discussion of Theorem 10.5.2 is beyond the scope of this book. This subject
had great historical impact on the development of mathematics, and has become one of the standard tools
in science and engineering.

Thus the Fourier series for the function f in Example 10.5.1 is

f (x) = π
2 +

4
π

{
cosx+ 1

32 cos(3x)+ 1
52 cos(5x)+ 1

72 cos(7x)+ · · ·
}

Since f (0) = π and cos(0) = 1, taking x = 0 leads to the series

π2

8 = 1+ 1
32 +

1
52 +

1
72 + · · ·

Example 10.5.2

Expand f (x) = x on the interval [−π , π ] in a Fourier series, and so obtain a series expansion of π
4 .

Solution. Here f is an odd function so all the Fourier cosine coefficients ak are zero. As to the sine

7We have to be careful at the end points x = π or x =−π because sin(kπ) = sin(−kπ) and cos(kπ) = cos(−kπ).
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coefficients:

bk =
1
π

∫ π

−π
xsin(kx)dx = 2

k
(−1)k+1 for k ≥ 1

where we omit the details of the integration by parts. Hence the Fourier series for x is

x = 2[sinx− 1
2 sin(2x)+ 1

3 sin(3x)− 1
4 sin(4x)+ . . . ]

for −π < x < π . In particular, taking x = π
2 gives an infinite series for π

4 .

π
4 = 1− 1

3 +
1
5 − 1

7 +
1
9 −·· ·

Many other such formulas can be proved using Theorem 10.5.2.

Exercises for 10.5

Exercise 10.5.1 In each case, find the Fourier approxi-
mation f5 of the given function in C[−π , π].

a. f (x) = π− x

b. f (x) = |x|=
{

x if 0≤ x≤ π

−x if −π ≤ x < 0

c. f (x) = x2

d. f (x) =

{
0 if −π ≤ x < 0
x if 0≤ x≤ π

Exercise 10.5.2

a. Find f5 for the even function f on [−π , π] satis-
fying f (x) = x for 0≤ x≤ π .

b. Find f6 for the even function f on [−π , π] satis-
fying f (x) = sinx for 0≤ x≤ π .

[Hint: If k > 1,
∫

sin xcos(kx)

= 1
2

[
cos[(k−1)x]

k−1 − cos[(k+1)x]
k+1

]
.]

Exercise 10.5.3

a. Prove that
∫ π
−π f (x)dx = 0 if f is odd and that∫ π

−π f (x)dx = 2
∫ π

0 f (x)dx if f is even.

b. Prove that 1
2 [ f (x) + f (−x)] is even and that

1
2 [ f (x)− f (−x)] is odd for any function f . Note
that they sum to f (x).

Exercise 10.5.4 Show that {1, cosx, cos(2x), cos(3x), . . .}
is an orthogonal set in C[0, π] with respect to the inner
product 〈 f , g〉= ∫ π

0 f (x)g(x)dx.

Exercise 10.5.5

a. Show that π2

8 = 1+ 1
32 +

1
52 + · · · using Exercise

10.5.1(b).

b. Show that π2

12 = 1− 1
22 +

1
32 − 1

42 + · · · using Exer-
cise 10.5.1(c).
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Given a matrix A, the effect of a sequence of row-operations on A is to produce UA where U is invertible.
Under this “row-equivalence” operation the best that can be achieved is the reduced row-echelon form for
A. If column operations are also allowed, the result is UAV where both U and V are invertible, and the
best outcome under this “equivalence” operation is called the Smith canonical form of A (Theorem 2.5.3).
There are other kinds of operations on a matrix and, in many cases, there is a “canonical” best possible
result.

If A is square, the most important operation of this sort is arguably “similarity” wherein A is carried
to U−1AU where U is invertible. In this case we say that matrices A and B are similar, and write A ∼ B,
when B = U−1AU for some invertible matrix U . Under similarity the canonical matrices, called Jordan

canonical matrices, are block triangular with upper triangular “Jordan” blocks on the main diagonal. In
this short chapter we are going to define these Jordan blocks and prove that every matrix is similar to a
Jordan canonical matrix.

Here is the key to the method. Let T : V →V be an operator on an n-dimensional vector space V , and
suppose that we can find an ordered basis B of B so that the matrix MB(T ) is as simple as possible. Then,
if B0 is any ordered basis of V , the matrices MB(T ) and MB0(T ) are similar; that is,

MB(T ) = P−1MB0(T )P for some invertible matrix P

Moreover, P = PB0←B is easily computed from the bases B and D (Theorem 9.2.3). This, combined with
the invariant subspaces and direct sums studied in Section 9.3, enables us to calculate the Jordan canonical
form of any square matrix A. Along the way we derive an explicit construction of an invertible matrix P

such that P−1AP is block triangular.

This technique is important in many ways. For example, if we want to diagonalize an n×n matrix A,
let TA : Rn→Rn be the operator given by TA(x) = Ax or all x in Rn, and look for a basis B of Rn such that
MB(TA) is diagonal. If B0 = E is the standard basis of Rn, then ME(TA) = A, so

P−1AP = P−1ME(TA)P = MB(TA)

and we have diagonalized A. Thus the “algebraic” problem of finding an invertible matrix P such that
P−1AP is diagonal is converted into the “geometric” problem of finding a basis B such that MB(TA) is
diagonal. This change of perspective is one of the most important techniques in linear algebra.

11.1 Block Triangular Form

We have shown (Theorem 8.2.5) that any n×n matrix A with every eigenvalue real is orthogonally similar
to an upper triangular matrix U . The following theorem shows that U can be chosen in a special way.
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Theorem 11.1.1: Block Triangulation Theorem

Let A be an n×n matrix with every eigenvalue real and let

cA(x) = (x−λ1)
m1(x−λ2)

m2 · · ·(x−λk)
mk

where λ1, λ2, . . . , λk are the distinct eigenvalues of A. Then an invertible matrix P exists such that

P−1AP =




U1 0 0 · · · 0
0 U2 0 · · · 0
0 0 U3 · · · 0
...

...
...

...
0 0 0 · · · Uk




where, for each i, Ui is an mi×mi upper triangular matrix with every entry on the main diagonal
equal to λi.

The proof is given at the end of this section. For now, we focus on a method for finding the matrix P. The
key concept is as follows.

Definition 11.1 Generalized Eigenspaces

If A is as in Theorem 11.1.1, the generalized eigenspace Gλi
(A) is defined by

Gλi
(A) = null [(λiI−A)mi]

where mi is the multiplicity of λi.

Observe that the eigenspace Eλi
(A) = null (λiI−A) is a subspace of Gλi

(A). We need three technical
results.

Lemma 11.1.1

Using the notation of Theorem 11.1.1, we have dim [Gλi
(A)] = mi.

Proof. Write Ai = (λiI−A)mi for convenience and let P be as in Theorem 11.1.1. The spaces
Gλi

(A)= null (Ai) and null (P−1AiP) are isomorphic via x↔P−1x, so we show dim [null (P−1AiP)] =mi.
Now P−1AiP = (λiI−P−1AP)mi . If we use the block form in Theorem 11.1.1, this becomes

P−1AiP =




λiI−U1 0 · · · 0
0 λiI−U2 · · · 0
...

...
...

0 0 · · · λiI−Uk




mi

=




(λiI−U1)
mi 0 · · · 0

0 (λiI−U2)
mi · · · 0

...
...

...
0 0 · · · (λiI−Uk)

mi
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The matrix (λiI−U j)
mi is invertible if j 6= i and zero if j = i (because then Ui is an mi×mi upper triangular

matrix with each entry on the main diagonal equal to λi). It follows that mi = dim [null (P−1AiP)], as
required.

Lemma 11.1.2

If P is as in Theorem 11.1.1, denote the columns of P as follows:

p11, p12, . . . , p1m1
; p21, p22, . . . , p2m2

; . . . ; pk1, pk2, . . . , pkmk

Then {pi1, pi2, . . . , pimi
} is a basis of Gλi

(A).

Proof. It suffices by Lemma 11.1.1 to show that each pi j is in Gλi
(A). Write the matrix in Theorem 11.1.1

as P−1AP = diag (U1, U2, . . . , Uk). Then

AP = P diag (U1, U2, . . . , Uk)

Comparing columns gives, successively:

Ap11 = λ1p11, so (λ1I−A)p11 = 0

Ap12 = up11 +λ1p12, so (λ1I−A)2p12 = 0

Ap13 = wp11 + vp12 +λ1p13 so (λ1I−A)3p13 = 0

...
...

where u, v, w are in R. In general, (λ1I−A) jp1 j = 0 for j = 1, 2, . . . , m1, so p1 j is in Gλi
(A). Similarly,

pi j is in Gλi
(A) for each i and j.

Lemma 11.1.3

If Bi is any basis of Gλi
(A), then B = B1∪B2∪· · ·∪Bk is a basis of Rn.

Proof. It suffices by Lemma 11.1.1 to show that B is independent. If a linear combination from B vanishes,
let xi be the sum of the terms from Bi. Then x1 + · · ·+ xk = 0. But xi = ∑ j ri jpi j by Lemma 11.1.2, so
∑i, j ri jpi j = 0. Hence each xi = 0, so each coefficient in xi is zero.

Lemma 11.1.2 suggests an algorithm for finding the matrix P in Theorem 11.1.1. Observe that there is
an ascending chain of subspaces leading from Eλi

(A) to Gλi
(A):

Eλi
(A) = null [(λiI−A)]⊆ null [(λiI−A)2]⊆ ·· · ⊆ null [(λiI−A)mi] = Gλi

(A)

We construct a basis for Gλi
(A) by climbing up this chain.
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Triangulation Algorithm

Suppose A has characteristic polynomial

cA(x) = (x−λ1)
m1(x−λ2)

m2 · · ·(x−λk)
mk

1. Choose a basis of null [(λ1I−A)]; enlarge it by adding vectors (possibly none) to a basis of
null [(λ1I−A)2]; enlarge that to a basis of null [(λ1I−A)3], and so on. Continue to obtain an
ordered basis {p11, p12, . . . , p1m1

} of Gλ1
(A).

2. As in (1) choose a basis {pi1, pi2, . . . , pimi
} of Gλi

(A) for each i.

3. Let P =
[

p11p12 · · ·p1m1
; p21p22 · · ·p2m2

; · · · ; pk1pk2 · · ·pkmk

]
be the matrix with these

basis vectors (in order) as columns.

Then P−1AP = diag (U1, U2, . . . , Uk) as in Theorem 11.1.1.

Proof. Lemma 11.1.3 guarantees that B = {p11, . . . , pkm1
} is a basis of Rn, and Theorem 9.2.4 shows that

P−1AP = MB(TA). Now Gλi
(A) is TA-invariant for each i because

(λiI−A)mix = 0 implies (λiI−A)mi(Ax) = A(λiI−A)mix = 0

By Theorem 9.3.7 (and induction), we have

P−1AP = MB(TA) = diag (U1, U2, . . . , Uk)

where Ui is the matrix of the restriction of TA to Gλi
(A), and it remains to show that Ui has the desired

upper triangular form. Given s, let pi j be a basis vector in null [(λiI−A)s+1]. Then (λiI−A)pi j is in
null [(λiI−A)s], and therefore is a linear combination of the basis vectors pit coming before pi j. Hence

TA(pi j) = Api j = λipi j− (λiI−A)pi j

shows that the column of Ui corresponding to pi j has λi on the main diagonal and zeros below the main
diagonal. This is what we wanted.

Example 11.1.1

If A =




2 0 0 1
0 2 0 −1
−1 1 2 0

0 0 0 2


, find P such that P−1AP is block triangular.

Solution. cA(x) = det [xI−A] = (x−2)4, so λ1 = 2 is the only eigenvalue and we are in the case
k = 1 of Theorem 11.1.1. Compute:

(2I−A) =




0 0 0 −1
0 0 0 1
1 −1 0 0
0 0 0 0


 (2I−A)2 =




0 0 0 0
0 0 0 0
0 0 0 −2
0 0 0 0


 (2I−A)3 = 0
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By gaussian elimination find a basis {p11, p12} of null (2I−A); then extend in any way to a basis
{p11, p12, p13} of null [(2I−A)2]; and finally get a basis {p11, p12, p13, p14} of
null [(2I−A)3] = R4. One choice is

p11 =




1
1
0
0


 p12 =




0
0
1
0


 p13 =




0
1
0
0


 p14 =




0
0
0
1




Hence P =
[

p11 p12 p13 p14

]
=




1 0 0 0
1 0 1 0
0 1 0 0
0 0 0 1


 gives P−1AP =




2 0 0 1
0 2 1 0
0 0 2 −2
0 0 0 2




Example 11.1.2

If A =




2 0 1 1
3 5 4 1
−4 −3 −3 −1

1 0 1 2


, find P such that P−1AP is block triangular.

Solution. The eigenvalues are λ1 = 1 and λ2 = 2 because

cA(x) =

∣∣∣∣∣∣∣∣

x−2 0 −1 −1
−3 x−5 −4 −1

4 3 x+3 1
−1 0 −1 x−2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

x−1 0 0 −x+1
−3 x−5 −4 −1

4 3 x+3 1
−1 0 −1 x−2

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

x−1 0 0 0
−3 x−5 −4 −4

4 3 x+3 5
−1 0 −1 x−3

∣∣∣∣∣∣∣∣
= (x−1)

∣∣∣∣∣∣

x−5 −4 −4
3 x+3 5
0 −1 x−3

∣∣∣∣∣∣

= (x−1)

∣∣∣∣∣∣

x−5 −4 0
3 x+3 −x+2
0 −1 x−2

∣∣∣∣∣∣
= (x−1)

∣∣∣∣∣∣

x−5 −4 0
3 x+2 0
0 −1 x−2

∣∣∣∣∣∣

= (x−1)(x−2)

∣∣∣∣
x−5 −4

3 x+2

∣∣∣∣= (x−1)2(x−2)2

By solving equations, we find null (I−A) = span{p11} and null (I−A)2 = span{p11, p12} where

p11 =




1
1
−2

1


 p12 =




0
3
−4

1




Since λ1 = 1 has multiplicity 2 as a root of cA(x), dim Gλ1
(A) = 2 by Lemma 11.1.1. Since p11

and p12 both lie in Gλ1
(A), we have Gλ1

(A) = span{p11, p12}. Turning to λ2 = 2, we find that
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null (2I−A) = span{p21} and null [(2I−A)2] = span{p21, p22} where

p21 =




1
0
−1

1


 and p22 =




0
−4

3
0




Again, dim Gλ2
(A) = 2 as λ2 has multiplicity 2, so Gλ2

(A) = span{p21, p22}. Hence

P =




1 0 1 0
1 3 0 −4
−2 −4 −1 3

1 1 1 0


 gives P−1AP =




1 −3 0 0
0 1 0 0
0 0 2 3
0 0 0 2


.

If p(x) is a polynomial and A is an n×n matrix, then p(A) is also an n×n matrix if we interpret A0 = In.
For example, if p(x) = x2− 2x+ 3, then p(A) = A2− 2A+ 3I. Theorem 11.1.1 provides another proof
of the Cayley-Hamilton theorem (see also Theorem 8.7.10). As before, let cA(x) denote the characteristic
polynomial of A.

Theorem 11.1.2: Cayley-Hamilton Theorem

If A is a square matrix with every eigenvalue real, then cA(A) = 0.

Proof. As in Theorem 11.1.1, write cA(x) = (x−λ1)
m1 · · ·(x−λk)

mk = Πk
i=1(x−λi)

mi , and write

P−1AP = D = diag (U1, . . . , Uk)

Hence
cA(Ui) = Πk

i=1(Ui−λiImi
)mi = 0 for each i

because the factor (Ui−λiImi
)mi = 0. In fact Ui−λiImi

is mi×mi and has zeros on the main diagonal. But
then

P−1cA(A)P = cA(D) = cA[diag (U1, . . . , Uk)]

= diag [cA(U1), . . . , cA(Uk)]

= 0

It follows that cA(A) = 0.

Example 11.1.3

If A =

[
1 3
−1 2

]
, then cA(x) = det

[
x−1 −3

1 x−2

]
= x2−3x+5. Then

cA(A) = A2−3A+5I2 =

[
−2 9
−3 1

]
−
[

3 9
−3 6

]
+

[
5 0
0 5

]
=

[
0 0
0 0

]
.

Theorem 11.1.1 will be refined even further in the next section.
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Proof of Theorem 11.1.1

The proof of Theorem 11.1.1 requires the following simple fact about bases, the proof of which we leave
to the reader.

Lemma 11.1.4

If {v1, v2, . . . , vn} is a basis of a vector space V , so also is {v1 + sv2, v2, . . . , vn} for any scalar s.

Proof of Theorem 11.1.1. Let A be as in Theorem 11.1.1, and let T = TA : Rn → Rn be the matrix
transformation induced by A. For convenience, call a matrix a λ -m-ut matrix if it is an m×m up-
per triangular matrix and every diagonal entry equals λ . Then we must find a basis B of Rn such that
MB(T ) = diag (U1, U2, . . . , Uk) where Ui is a λi-mi-ut matrix for each i. We proceed by induction on n.
If n = 1, take B = {v} where v is any eigenvector of T .

If n> 1, let v1 be a λ1-eigenvector of T , and let B0 = {v1, w1, . . . , wn−1} be any basis of Rn containing
v1. Then (see Lemma 5.5.2)

MB0(T ) =

[
λ1 X

0 A1

]

in block form where A1 is (n−1)× (n−1). Moreover, A and MB0(T ) are similar, so

cA(x) = cMB0(T )
(x) = (x−λ1)cA1(x)

Hence cA1(x) = (x−λ1)
m1−1(x−λ2)

m2 · · ·(x−λk)
mk so (by induction) let

Q−1A1Q = diag (Z1, U2, . . . , Uk)

where Z1 is a λ1-(m1−1)-ut matrix and Ui is a λi-mi-ut matrix for each i > 1.

If P =

[
1 0
0 Q

]
, then P−1MB0(T ) =

[
λ1 XQ

0 Q−1A1Q

]
= A′, say. Hence A′ ∼ MB0(T ) ∼ A so by

Theorem 9.2.4(2) there is a basis B of Rn such that MB1(TA) = A′, that is MB1(T ) = A′. Hence MB1(T )
takes the block form

MB1(T ) =

[
λ1 XQ

0 diag (Z1, U2, . . . , Uk)

]
=




λ1 X1 Y

0 Z1 0 0 0
U2 · · · 0

0
...

...
0 · · · Uk




(11.1)

If we write U1 =

[
λ1 X1

0 Z1

]
, the basis B1 fulfills our needs except that the row matrix Y may not be zero.

We remedy this defect as follows. Observe that the first vector in the basis B1 is a λ1 eigenvector of T ,
which we continue to denote as v1. The idea is to add suitable scalar multiples of v1 to the other vectors in
B1. This results in a new basis by Lemma 11.1.4, and the multiples can be chosen so that the new matrix
of T is the same as (11.1) except that Y = 0. Let {w1, . . . , wm2} be the vectors in B1 corresponding to λ2
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(giving rise to U2 in (11.1)). Write

U2 =




λ2 u12 u13 · · · u1m2

0 λ2 u23 · · · u2m2

0 0 λ2 · · · u3m2
...

...
...

...
0 0 0 · · · λ2




and Y =
[

y1 y2 · · · ym2

]

We first replace w1 by w′1 = w1 + sv1 where s is to be determined. Then (11.1) gives

T (w′1) = T (w1)+ sT (v1)

= (y1v1 +λ2w1)+ sλ1v1

= y1v1 +λ2(w
′
1− sv1)+ sλ1v1

= λ2w′1 +[(y1− s(λ2−λ1)]v1

Because λ2 6= λ1 we can choose s such that T (w′1) = λ2w′1. Similarly, let w′2 = w2 + tv1 where t is to be
chosen. Then, as before,

T (w′2) = T (w2)+ tT (v1)

= (y2v1 +u12w1 +λ2w2)+ tλ1v1

= u12w′1 +λ2w′2 +[(y2−u12s)− t(λ2−λ1)]v1

Again, t can be chosen so that T (w′2) = u12w′1 + λ2w′2. Continue in this way to eliminate y1, . . . , ym2 .
This procedure also works for λ3, λ4, . . . and so produces a new basis B such that MB(T ) is as in (11.1)
but with Y = 0.

Exercises for 11.1

Exercise 11.1.1 In each case, find a matrix P such that
P−1AP is in block triangular form as in Theorem 11.1.1.

A=




2 3 2
−1 −1 −1

1 2 2


a. A =



−5 3 1
−4 2 1
−4 3 0


b.

A=




0 1 1
2 3 6
−1 −1 −2


c. A=



−3 −1 0

4 −1 3
4 −2 4


d.

A =




−1 −1 −1 0
3 2 3 −1
2 1 3 −1
2 1 4 −2


e.

A =




−3 6 3 2
−2 3 2 2
−1 3 0 1
−1 1 2 0


f.

Exercise 11.1.2 Show that the following conditions are
equivalent for a linear operator T on a finite dimensional
space V .

1. MB(T ) is upper triangular for some ordered basis
B of E .

2. A basis {b1, . . . , bn} of V exists such that, for
each i, T (bi) is a linear combination of b1, . . . , bi.
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3. There exist T -invariant subspaces

V1 ⊆V2 ⊆ ·· · ⊆Vn =V

such that dim Vi = i for each i.

Exercise 11.1.3 If A is an n×n invertible matrix, show
that A−1 = r0I + r1A+ · · ·+ rn−1An−1 for some scalars
r0, r1, . . . , rn−1. [Hint: Cayley-Hamilton theorem.]

Exercise 11.1.4 If T : V →V is a linear operator where
V is finite dimensional, show that cT (T ) = 0.
[Hint: Exercise 9.1.26.]

Exercise 11.1.5 Define T : P→ P by T [p(x)] = xp(x).
Show that:

a. T is linear and f (T )[p(x)] = f (x)p(x) for all poly-
nomials f (x).

b. Conclude that f (T ) 6= 0 for all nonzero polynomi-
als f (x). [See Exercise 11.1.4.]

11.2 The Jordan Canonical Form

Two m× n matrices A and B are called row-equivalent if A can be carried to B using row operations
and, equivalently, if B = UA for some invertible matrix U . We know (Theorem 2.6.4) that each m× n

matrix is row-equivalent to a unique matrix in reduced row-echelon form, and we say that these reduced
row-echelon matrices are canonical forms for m× n matrices using row operations. If we allow column

operations as well, then A→UAV =

[
Ir 0
0 0

]
for invertible U and V , and the canonical forms are the

matrices

[
Ir 0
0 0

]
where r is the rank (this is the Smith normal form and is discussed in Theorem 2.6.3).

In this section, we discover the canonical forms for square matrices under similarity: A→ P−1AP.

If A is an n×n matrix with distinct real eigenvalues λ1, λ2, . . . , λk, we saw in Theorem 11.1.1 that A

is similar to a block triangular matrix; more precisely, an invertible matrix P exists such that

P−1AP =




U1 0 · · · 0
0 U2 · · · 0
...

...
. . .

...
0 0 0 Uk


= diag (U1, U2, . . . , Uk) (11.2)

where, for each i, Ui is upper triangular with λi repeated on the main diagonal. The Jordan canonical form
is a refinement of this theorem. The proof we gave of (11.2) is matrix theoretic because we wanted to give
an algorithm for actually finding the matrix P. However, we are going to employ abstract methods here.
Consequently, we reformulate Theorem 11.1.1 as follows:

Theorem 11.2.1

Let T : V →V be a linear operator where dim V = n. Assume that λ1, λ2, . . . , λk are the distinct
eigenvalues of T , and that the λi are all real. Then there exists a basis F of V such that
MF(T ) = diag (U1, U2, . . . , Uk) where, for each i, Ui is square, upper triangular, with λi repeated
on the main diagonal.
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Proof. Choose any basis B = {b1, b2, . . . , bn} of V and write A = MB(T ). Since A has the same eigenval-
ues as T , Theorem 11.1.1 shows that an invertible matrix P exists such that P−1AP= diag (U1, U2, . . . , Uk)
where the Ui are as in the statement of the Theorem. If p j denotes column j of P and CB : V → Rn is the

coordinate isomorphism, let f j = C−1
B (p j) for each j. Then F = {f1, f2, . . . , fn} is a basis of V and

CB(f j) = p j for each j. This means that PB←F =
[
CB(f j)

]
=
[
p j

]
= P, and hence (by Theorem 9.2.2) that

PF←B = P−1. With this, column j of MF(T ) is

CF(T (f j)) = PF←BCB(T (f j)) = P−1MB(T )CB(f j) = P−1Ap j

for all j. Hence

MF(T ) =
[
CF(T (f j))

]
=
[
P−1Ap j

]
= P−1A

[
p j

]
= P−1AP = diag (U1, U2, . . . , Uk)

as required.

Definition 11.2 Jordan Blocks

If n≥ 1, define the Jordan block Jn(λ ) to be the n×n matrix with λ s on the main diagonal, 1s on
the diagonal above, and 0s elsewhere. We take J1(λ ) = [λ ].

Hence

J1(λ ) = [λ ] , J2(λ ) =

[
λ 1
0 λ

]
, J3(λ ) =




λ 1 0
0 λ 1
0 0 λ


 , J4(λ ) =




λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ


 , . . .

We are going to show that Theorem 11.2.1 holds with each block Ui replaced by Jordan blocks corre-
sponding to eigenvalues. It turns out that the whole thing hinges on the case λ = 0. An operator T is
called nilpotent if T m = 0 for some m≥ 1, and in this case λ = 0 for every eigenvalue λ of T . Moreover,
the converse holds by Theorem 11.1.1. Hence the following lemma is crucial.

Lemma 11.2.1

Let T : V →V be a linear operator where dim V = n, and assume that T is nilpotent; that is,
T m = 0 for some m≥ 1. Then V has a basis B such that

MB(T ) = diag (J1, J2, . . . , Jk)

where each Ji is a Jordan block corresponding to λ = 0.1

A proof is given at the end of this section.

1The converse is true too: If MB(T ) has this form for some basis B of V , then T is nilpotent.
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Theorem 11.2.2: Real Jordan Canonical Form

Let T : V →V be a linear operator where dim V = n, and assume that λ1, λ2, . . . , λm are the
distinct eigenvalues of T and that the λi are all real. Then there exists a basis E of V such that

ME(T ) = diag (U1, U2, . . . , Uk)

in block form. Moreover, each U j is itself block diagonal:

U j = diag (J1, J2, . . . , Jk)

where each Ji is a Jordan block corresponding to some λi.

Proof. Let E = {e1, e2, . . . , en} be a basis of V as in Theorem 11.2.1, and assume that Ui is an ni× ni

matrix for each i. Let

E1 = {e1, . . . , en1}, E2 = {en1+1, . . . , en2}, . . . , Ek = {enk−1+1, . . . , enk
}

where nk = n, and define Vi = span{Ei} for each i. Because the matrix ME(T ) = diag (U1, U2, . . . , Um)
is block diagonal, it follows that each Vi is T -invariant and MEi

(T ) =Ui for each i. Let Ui have λi repeated
along the main diagonal, and consider the restriction T : Vi→Vi. Then MEi

(T−λiIni
) is a nilpotent matrix,

and hence (T −λiIni
) is a nilpotent operator on Vi. But then Lemma 11.2.1 shows that Vi has a basis Bi

such that MBi
(T −λiIni

) = diag (K1, K2, . . . , Kti) where each Ki is a Jordan block corresponding to λ = 0.
Hence

MBi
(T ) = MBi

(λiIni
)+MBi

(T −λiIni
)

= λiIni
+ diag (K1, K2, . . . , Kti) = diag (J1, J2, . . . , Jk)

where Ji = λiI fi
+Ki is a Jordan block corresponding to λi (where Ki is fi× fi). Finally,

B = B1∪B2∪· · ·∪Bk

is a basis of V with respect to which T has the desired matrix.

Corollary 11.2.1

If A is an n×n matrix with real eigenvalues, an invertible matrix P exists such that
P−1AP = diag (J1, J2, . . . , Jk) where each Ji is a Jordan block corresponding to an eigenvalue λi.

Proof. Apply Theorem 11.2.2 to the matrix transformation TA : Rn→ Rn to find a basis B of Rn such that
MB(TA) has the desired form. If P is the (invertible) n×n matrix with the vectors of B as its columns, then
P−1AP = MB(TA) by Theorem 9.2.4.

Of course if we work over the field C of complex numbers rather than R, the characteristic polynomial
of a (complex) matrix A splits completely as a product of linear factors. The proof of Theorem 11.2.2 goes
through to give
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Theorem 11.2.3: Jordan Canonical Form2

Let T : V →V be a linear operator where dim V = n, and assume that λ1, λ2, . . . , λm are the
distinct eigenvalues of T . Then there exists a basis F of V such that

MF(T ) = diag (U1, U2, . . . , Uk)

in block form. Moreover, each U j is itself block diagonal:

U j = diag (J1, J2, . . . , Jt j
)

where each Ji is a Jordan block corresponding to some λi.

Except for the order of the Jordan blocks Ji, the Jordan canonical form is uniquely determined by the
operator T . That is, for each eigenvalue λ the number and size of the Jordan blocks corresponding to λ
is uniquely determined. Thus, for example, two matrices (or two operators) are similar if and only if they
have the same Jordan canonical form. We omit the proof of uniqueness; it is best presented using modules
in a course on abstract algebra.

Proof of Lemma 1

Lemma 11.2.1

Let T : V →V be a linear operator where dim V = n, and assume that T is nilpotent; that is,
T m = 0 for some m≥ 1. Then V has a basis B such that

MB(T ) = diag (J1, J2, . . . , Jk)

where each Ji = Jni
(0) is a Jordan block corresponding to λ = 0.

Proof. The proof proceeds by induction on n. If n = 1, then T is a scalar operator, and so T = 0 and the
lemma holds. If n ≥ 1, we may assume that T 6= 0, so m ≥ 1 and we may assume that m is chosen such
that T m = 0, but T m−1 6= 0. Suppose T m−1u 6= 0 for some u in V .3

Claim. {u, T u, T 2u, . . . , T m−1u} is independent.

Proof. Suppose a0u+a1T u+a2T 2u+ · · ·+am−1T m−1u= 0 where each ai is in R. Since T m = 0, applying
T m−1 gives 0 = T m−10 = a0T m−1u, whence a0 = 0. Hence a1T u+ a2T 2u+ · · ·+ am−1T m−1u = 0 and
applying T m−2 gives a1 = 0 in the same way. Continue in this fashion to obtain ai = 0 for each i. This
proves the Claim.

Now define P = span{u, T u, T 2u, . . . , T m−1u}. Then P is a T -invariant subspace (because T m = 0),
and T : P→ P is nilpotent with matrix MB(T ) = Jm(0) where B = {u, T u, T 2u, . . . , T m−1u}. Hence we
are done, by induction, if V = P⊕Q where Q is T -invariant (then dim Q = n− dim P < n because P 6= 0,

2This was first proved in 1870 by the French mathematician Camille Jordan (1838–1922) in his monumental Traité des

substitutions et des équations algébriques.
3If S : V →V is an operator, we abbreviate S(u) by Su for simplicity.
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and T : Q→ Q is nilpotent). With this in mind, choose a T -invariant subspace Q of maximal dimension
such that P∩Q = {0}.4 We assume that V 6= P⊕Q and look for a contradiction.

Choose x ∈V such that x /∈ P⊕Q. Then T mx = 0 ∈ P⊕Q while T 0x = x /∈ P⊕Q. Hence there exists
k, 1≤ k ≤ m, such that T kx ∈ P⊕Q but T k−1x /∈ P⊕Q. Write v = T k−1x, so that

v /∈ P⊕Q and T v ∈ P⊕Q

Let T v = p+q with p in P and q in Q. Then 0 = T m−1(T v) = T m−1p+T m−1q so, since P and Q are
T -invariant, T m−1p =−T m−1q ∈ P∩Q = {0}. Hence

T m−1p = 0

Since p ∈ P we have p = a0u+ a1T u+ a2T 2u+ · · ·+ am−1T m−1u for ai ∈ R. Since T m = 0, applying
T m−1 gives 0 = T m−1p = a0T m−1u, whence a0 = 0. Thus p = T (p1) where

p1 = a1u+a2T u+ · · ·+am−1T m−2u ∈ P

If we write v1 = v−p1 we have

T (v1) = T (v−p1) = T v−p = q ∈ Q

Since T (Q)⊆ Q, it follows that T (Q+Rv1)⊆ Q⊆ Q+Rv1. Moreover v1 /∈ Q (otherwise v = v1 +p1 ∈
P⊕Q, a contradiction). Hence Q⊂ Q+Rv1 so, by the maximality of Q, we have (Q+Rv1)∩P 6= {0},
say

0 6= p2 = q1 +av1 where p2 ∈ P, q1 ∈ Q, and a ∈ R

Thus av1 = p2−q1 ∈ P⊕Q. But since v1 = v−p1 we have

av = av1 +ap1 ∈ (P⊕Q)+P = P⊕Q

Since v /∈ P⊕Q, this implies that a = 0. But then p2 = q1 ∈ P∩Q = {0}, a contradiction. This completes
the proof.

Exercises for 11.2

Exercise 11.2.1 By direct computation, show that there
is no invertible complex matrix C such that

C−1




1 1 0
0 1 1
0 0 1


C =




1 1 0
0 1 0
0 0 1




Exercise 11.2.2 Show that




a 1 0
0 a 0
0 0 b


 is similar to




b 0 0
0 a 1
0 0 a


.

Exercise 11.2.3

a. Show that every complex matrix is similar to its
transpose.

b. Show every real matrix is similar to its transpose.
[Hint: Show that Jk(0)Q = Q[Jk(0)]T where Q is
the k× k matrix with 1s down the “counter diago-
nal”, that is from the (1, k)-position to the (k, 1)-
position.]

4Observe that there is at least one such subspace: Q = {0}.
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A. Complex Numbers

The fact that the square of every real number is nonnegative shows that the equation x2+1 = 0 has no real
root; in other words, there is no real number u such that u2 =−1. So the set of real numbers is inadequate
for finding all roots of all polynomials. This kind of problem arises with other number systems as well.
The set of integers contains no solution of the equation 3x+ 2 = 0, and the rational numbers had to be
invented to solve such equations. But the set of rational numbers is also incomplete because, for example,
it contains no root of the polynomial x2−2. Hence the real numbers were invented. In the same way, the
set of complex numbers was invented, which contains all real numbers together with a root of the equation
x2+1 = 0. However, the process ends here: the complex numbers have the property that every polynomial
with complex coefficients has a (complex) root. This fact is known as the fundamental theorem of algebra.

One pleasant aspect of the complex numbers is that, whereas describing the real numbers in terms of
the rationals is a rather complicated business, the complex numbers are quite easy to describe in terms of
real numbers. Every complex number has the form

a+bi

where a and b are real numbers, and i is a root of the polynomial x2 +1. Here a and b are called the real

part and the imaginary part of the complex number, respectively. The real numbers are now regarded as
special complex numbers of the form a+0i = a, with zero imaginary part. The complex numbers of the
form 0+bi = bi with zero real part are called pure imaginary numbers. The complex number i itself is
called the imaginary unit and is distinguished by the fact that

i2 =−1

As the terms complex and imaginary suggest, these numbers met with some resistance when they were
first used. This has changed; now they are essential in science and engineering as well as mathematics,
and they are used extensively. The names persist, however, and continue to be a bit misleading: These
numbers are no more “complex” than the real numbers, and the number i is no more “imaginary” than−1.

Much as for polynomials, two complex numbers are declared to be equal if and only if they have the
same real parts and the same imaginary parts. In symbols,

a+bi = a′+b′i if and only if a = a′ and b = b′

The addition and subtraction of complex numbers is accomplished by adding and subtracting real and
imaginary parts:

(a+bi)+(a′+b′i) = (a+a′)+(b+b′)i

(a+bi)− (a′+b′i) = (a−a′)+(b−b′)i

This is analogous to these operations for linear polynomials a+bx and a′+b′x, and the multiplication of
complex numbers is also analogous with one difference: i2 =−1. The definition is

(a+bi)(a′+b′i) = (aa′−bb′)+(ab′+ba′)i
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With these definitions of equality, addition, and multiplication, the complex numbers satisfy all the basic

arithmetical axioms adhered to by the real numbers (the verifications are omitted). One consequence of
this is that they can be manipulated in the obvious fashion, except that i2 is replaced by −1 wherever it
occurs, and the rule for equality must be observed.

Example A.1

If z = 2−3i and w =−1+ i, write each of the following in the form a+bi: z+w, z−w, zw, 1
3z,

and z2.

Solution.

z+w = (2−3i)+(−1+ i) = (2−1)+(−3+1)i = 1−2i

z−w = (2−3i)− (−1+ i) = (2+1)+(−3−1)i = 3−4i

zw = (2−3i)(−1+ i) = (−2−3i2)+(2+3)i = 1+5i

1
3z = 1

3(2−3i) = 2
3 − i

z2 = (2−3i)(2−3i) = (4+9i2)+(−6−6)i =−5−12i

Example A.2

Find all complex numbers z such as that z2 = i.

Solution. Write z = a+bi; we must determine a and b. Now z2 = (a2−b2)+(2ab)i, so the
condition z2 = i becomes

(a2−b2)+(2ab)i = 0+ i

Equating real and imaginary parts, we find that a2 = b2 and 2ab = 1. The solution is a = b =± 1√
2
,

so the complex numbers required are z = 1√
2
+ 1√

2
i and z =− 1√

2
− 1√

2
i.

As for real numbers, it is possible to divide by every nonzero complex number z. That is, there exists
a complex number w such that wz = 1. As in the real case, this number w is called the inverse of z and
is denoted by z−1 or 1

z
. Moreover, if z = a+ bi, the fact that z 6= 0 means that a 6= 0 or b 6= 0. Hence

a2 +b2 6= 0, and an explicit formula for the inverse is

1
z
= a

a2+b2 − b
a2+b2 i

In actual calculations, the work is facilitated by two useful notions: the conjugate and the absolute value
of a complex number. The next example illustrates the technique.
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Example A.3

Write 3+2i
2+5i

in the form a+bi.

Solution. Multiply top and bottom by the complex number 2−5i (obtained from the denominator
by negating the imaginary part). The result is

3+2i
2+5i

=
(2−5i)(3+2i)
(2−5i)(2+5i) =

(6+10)+(4−15)i
22−(5i)2 = 16

29 − 11
29 i

Hence the simplified form is 16
29 − 11

29 i, as required.

The key to this technique is that the product (2−5i)(2+5i) = 29 in the denominator turned out to be
a real number. The situation in general leads to the following notation: If z = a+bi is a complex number,
the conjugate of z is the complex number, denoted z, given by

z = a−bi where z = a+bi

Hence z is obtained from z by negating the imaginary part. Thus (2+3i) = 2−3i and (1− i) = 1+ i. If
we multiply z = a+bi by z, we obtain

zz = a2 +b2 where z = a+bi

The real number a2+b2 is always nonnegative, so we can state the following definition: The absolute

value or modulus of a complex number z = a+ bi, denoted by |z|, is the positive square root
√

a2 +b2;
that is,

|z|=
√

a2 +b2 where z = a+bi

For example, |2−3i|=
√

22 +(−3)2 =
√

13 and |1+ i|=
√

12 +12 =
√

2.

Note that if a real number a is viewed as the complex number a+0i, its absolute value (as a complex
number) is |a|=

√
a2, which agrees with its absolute value as a real number.

With these notions in hand, we can describe the technique applied in Example A.3 as follows: When
converting a quotient z

w
of complex numbers to the form a+bi, multiply top and bottom by the conjugate

w of the denominator.

The following list contains the most important properties of conjugates and absolute values. Through-
out, z and w denote complex numbers.

C1. z±w = z±w C7. 1
z
= 1
|z|2 z

C2. zw = z w C8. |z| ≥ 0 for all complex numbers z

C3.
(

z
w

)
= z

w
C9. |z|= 0 if and only if z = 0

C4. (z) = z C10. |zw|= |z||w|
C5. z is real if and only if z = z C11. | z

w
|= |z|

|w|

C6. zz = |z|2 C12. |z+w| ≤ |z|+ |w| (triangle inequality)

All these properties (except property C12) can (and should) be verified by the reader for arbitrary complex
numbers z = a+ bi and w = c+ di. They are not independent; for example, property C10 follows from
properties C2 and C6.
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The triangle inequality, as its name suggests, comes from a geometric representation of the complex
numbers analogous to identification of the real numbers with the points of a line. The representation is
achieved as follows:

1

i

(a, −b) = a− bi

0

(0, b) = bi
(a, b) = a+ bi

(a, 0) = a
x

y

Figure A.1

Introduce a rectangular coordinate system in the plane (Figure A.1),
and identify the complex number a+bi with the point (a, b). When this
is done, the plane is called the complex plane. Note that the point (a, 0)
on the x axis now represents the real number a = a+0i, and for this rea-
son, the x axis is called the real axis. Similarly, the y axis is called the
imaginary axis. The identification (a, b) = a+bi of the geometric point
(a, b) and the complex number a+bi will be used in what follows without
comment. For example, the origin will be referred to as 0.

This representation of the complex numbers in the complex plane gives
a useful way of describing the absolute value and conjugate of a complex
number z = a+bi. The absolute value |z| =

√
a2 +b2 is just the distance

from z to the origin. This makes properties C8 and C9 quite obvious. The
conjugate z = a−bi of z is just the reflection of z in the real axis (x axis),

a fact that makes properties C4 and C5 clear.

Given two complex numbers z1 = a1 +b1i = (a1, b1) and z2 = a2 +b2i = (a2, b2), the absolute value
of their difference

|z1− z2|=
√

(a1−a2)2 +(b1−b2)2

is just the distance between them. This gives the complex distance formula:

0

|w|
w

|(z+w)−w|= |z|z+w

|z+w|

x

y

Figure A.2

|z1− z2| is the distance between z1 and z2

This useful fact yields a simple verification of the triangle inequality,
property C12. Suppose z and w are given complex numbers. Consider the
triangle in Figure A.2 whose vertices are 0, w, and z+w. The three sides
have lengths |z|, |w|, and |z+w| by the complex distance formula, so the
inequality

|z+w| ≤ |z|+ |w|
expresses the obvious geometric fact that the sum of the lengths of two
sides of a triangle is at least as great as the length of the third side.

The representation of complex numbers as points in the complex plane
has another very useful property: It enables us to give a geometric de-
scription of the sum and product of two complex numbers. To obtain the
description for the sum, let

z = a+bi = (a, b)

w = c+di = (c, d)

0 = (0, 0)

w = (c, d)

z+w = (a+ c, b+ d)

z = (a, b)

x

y

Figure A.3

denote two complex numbers. We claim that the four points 0, z, w, and
z+w form the vertices of a parallelogram. In fact, in Figure A.3 the lines
from 0 to z and from w to z+w have slopes

b−0
a−0 = b

a
and (b+d)−d

(a+c)−c
= b

a
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respectively, so these lines are parallel. (If it happens that a = 0, then both these lines are vertical.)
Similarly, the lines from z to z+w and from 0 to w are also parallel, so the figure with vertices 0, z, w, and
z+w is indeed a parallelogram. Hence, the complex number z+w can be obtained geometrically from
z and w by completing the parallelogram. This is sometimes called the parallelogram law of complex
addition. Readers who have studied mechanics will recall that velocities and accelerations add in the same
way; in fact, these are all special cases of vector addition.

Polar Form

θ

0 1

i

−1

−i

0

Radian
measure

of θ

Unit
circle

1
P

x

y

Figure A.4

The geometric description of what happens when two complex numbers
are multiplied is at least as elegant as the parallelogram law of addition, but
it requires that the complex numbers be represented in polar form. Before
discussing this, we pause to recall the general definition of the trigono-
metric functions sine and cosine. An angle θ in the complex plane is in
standard position if it is measured counterclockwise from the positive
real axis as indicated in Figure A.4. Rather than using degrees to measure
angles, it is more natural to use radian measure. This is defined as follows:
The circle with its centre at the origin and radius 1 (called the unit circle)
is drawn in Figure A.4. It has circumference 2π , and the radian measure

of θ is the length of the arc on the unit circle counterclockwise from 1 to
the point P on the unit circle determined by θ . Hence 90◦ = π

2 , 45◦ = π
4 ,

180◦ = π , and a full circle has the angle 360◦ = 2π . Angles measured clockwise from 1 are negative; for
example, −i corresponds to −π

2 (or to 3π
2 ).

Consider an angle θ in the range 0 ≤ θ ≤ π
2 . If θ is plotted in standard position as in Figure A.4,

it determines a unique point P on the unit circle, and P has coordinates (cosθ , sinθ ) by elementary
trigonometry. However, any angle θ (acute or not) determines a unique point on the unit circle, so we
define the cosine and sine of θ (written cosθ and sinθ ) to be the x and y coordinates of this point. For
example, the points

1 = (1, 0) i = (0, 1) −1 = (−1, 0) −i = (0, −1)

plotted in Figure A.4 are determined by the angles 0, π
2 , π , 3π

2 , respectively. Hence

cos0 = 1 cos π
2 = 0 cosπ =−1 cos 3π

2 = 0

sin0 = 0 sin π
2 = 1 sinπ = 0 sin 3π

2 =−1

Now we can describe the polar form of a complex number. Let z = a+bi be a complex number, and
write the absolute value of z as

r = |z|=
√

a2 +b2

θ

0 a

br

z = (a, b)

x

y

Figure A.5

If z 6= 0, the angle θ shown in Figure A.5 is called an argument of z and
is denoted

θ = arg z

This angle is not unique (θ +2πk would do as well for any
k = 0, ±1, ±2, . . . ). However, there is only one argument θ in the range
−π < θ ≤ π , and this is sometimes called the principal argument of z.
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Returning to Figure A.5, we find that the real and imaginary parts a and b of z are related to r and θ by

a = r cosθ

b = r sinθ

Hence the complex number z = a+bi has the form

z = r(cosθ + isinθ) r = |z|, θ = arg (z)

The combination cosθ + isinθ is so important that a special notation is used:

eiθ = cosθ + isinθ

is called Euler’s formula after the great Swiss mathematician Leonhard Euler (1707–1783). With this
notation, z is written

z = reiθ r = |z|, θ = arg (z)

This is a polar form of the complex number z. Of course it is not unique, because the argument can be
changed by adding a multiple of 2π .

Example A.4

Write z1 =−2+2i and z2 =−i in polar form.

Solution.

θ1

θ2
0

z1 =−2+ 2i

z2 =−i

x

y

Figure A.6

The two numbers are plotted in the complex plane in Figure A.6.
The absolute values are

r1 = |−2+2i|=
√

(−2)2 +22 = 2
√

2

r2 = |− i|=
√

02 +(−1)2 = 1

By inspection of Figure A.6, arguments of z1 and z2 are

θ1 = arg (−2+2i) = 3π
4

θ2 = arg (−i) = 3π
2

The corresponding polar forms are z1 =−2+2i = 2
√

2e3πi/4 and z2 =−i = e3πi/2. Of course, we
could have taken the argument −π

2 for z2 and obtained the polar form z2 = e−πi/2.

In Euler’s formula eiθ = cosθ + isinθ , the number e is the familiar constant e = 2.71828 . . . from
calculus. The reason for using e will not be given here; the reason why cosθ + isinθ is written as an
exponential function of θ is that the law of exponents holds:

eiθ · eiφ = ei(θ+φ)

where θ and φ are any two angles. In fact, this is an immediate consequence of the addition identities for
sin(θ +φ) and cos(θ +φ):
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eiθ eiφ = (cosθ + isinθ)(cosφ + isinφ)

= (cosθ cosφ − sinθ sinφ)+ i(cosθ sinφ + sinθ cosφ)

= cos(θ +φ)+ isin(θ +φ)

= ei(θ+φ)

This is analogous to the rule eaeb = ea+b, which holds for real numbers a and b, so it is not unnatural to
use the exponential notation eiθ for the expression cosθ + isinθ . In fact, a whole theory exists wherein
functions such as ez, sinz, and cosz are studied, where z is a complex variable. Many deep and beautiful
theorems can be proved in this theory, one of which is the so-called fundamental theorem of algebra
mentioned later (Theorem A.4). We shall not pursue this here.

The geometric description of the multiplication of two complex numbers follows from the law of
exponents.

Theorem A.1: Multiplication Rule

If z1 = r1eiθ1 and z2 = r2eiθ2 are complex numbers in polar form, then

z1z2 = r1r2ei(θ1+θ2)

In other words, to multiply two complex numbers, simply multiply the absolute values and add the ar-
guments. This simplifies calculations considerably, particularly when we observe that it is valid for any

arguments θ1 and θ2.

Example A.5

Multiply (1− i)(1+
√

3i) in two ways.

Solution.

π
3

− π
4

π
12

0

1+
√

3i

1− i

(1− i)(1+
√

3i)

x

y

Figure A.7

We have |1− i|=
√

2 and |1+
√

3i|= 2 so, from Figure A.7,

1− i =
√

2e−iπ/4

1+
√

3i = 2eiπ/3

Hence, by the multiplication rule,

(1− i)(1+
√

3i) = (
√

2e−iπ/4)(2eiπ/3)

= 2
√

2ei(−π/4+π/3)

= 2
√

2eiπ/12

This gives the required product in polar form. Of course, direct multiplication gives
(1− i)(1+

√
3i) = (

√
3+1)+ (

√
3−1)i. Hence, equating real and imaginary parts gives the

formulas cos( π
12) =

√
3+1

2
√

2
and sin( π

12) =
√

3−1
2
√

2
.
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Roots of Unity

If a complex number z = reiθ is given in polar form, the powers assume a particularly simple form. In
fact, z2 = (reiθ)(reiθ ) = r2e2iθ , z3 = z2 · z = (r2e2iθ )(reiθ) = r3e3iθ , and so on. Continuing in this way,
it follows by induction that the following theorem holds for any positive integer n. The name honours
Abraham De Moivre (1667–1754).

Theorem A.2: De Moivre’s Theorem

If θ is any angle, then (eiθ )n = einθ holds for all integers n.

Proof. The case n > 0 has been discussed, and the reader can verify the result for n = 0. To derive it for
n < 0, first observe that

if z = reiθ 6= 0 then z−1 = 1
r

e−iθ

In fact, (reiθ )(1
r
e−iθ ) = 1ei0 = 1 by the multiplication rule. Now assume that n is negative and write it as

n =−m, m > 0. Then

(reiθ)n = [(reiθ )−1]m = (1
r

e−iθ )m = r−mei(−mθ ) = rneinθ

If r = 1, this is De Moivre’s theorem for negative n.

Example A.6

2π
3

0

−1+
√

3i

2

x

y

Figure A.8

Verify that (−1+
√

3i)3 = 8.

Solution. We have |−1+
√

3i| = 2, so −1+
√

3i = 2e2πi/3

(see Figure A.8). Hence De Moivre’s theorem gives

(−1+
√

3i)3 = (2e2πi/3)3 = 8e3(2πi/3) = 8e2πi = 8

De Moivre’s theorem can be used to find nth roots of complex numbers where n is positive. The next
example illustrates this technique.

Example A.7

Find the cube roots of unity; that is, find all complex numbers z such that z3 = 1.

Solution. First write z = reiθ and 1 = 1ei0 in polar form. We must use the condition z3 = 1 to
determine r and θ . Because z3 = r3e3iθ by De Moivre’s theorem, this requirement becomes

r3e3iθ = 1e0i
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These two complex numbers are equal, so their absolute values must be equal and the arguments
must either be equal or differ by an integral multiple of 2π:

r3 = 1

3θ = 0+2kπ , k some integer

Because r is real and positive, the condition r3 = 1 implies that r = 1. However,

θ = 2kπ
3 , k some integer

2π
3

4π
3 0 1

− 1
2 +

√
3

2 i

− 1
2 −

√
3

2 i

x

y

Figure A.9

seems at first glance to yield infinitely many different angles for
z. However, choosing k = 0, 1, 2 gives three possible arguments
θ (where 0≤ θ < 2π), and the corresponding roots are

1e0i = 1

1e2πi/3 =−1
2 +

√
3

2 i

1e4πi/3 =−1
2 −

√
3

2 i

These are displayed in Figure A.9. All other values of k yield
values of θ that differ from one of these by a multiple of 2π—and

so do not give new roots. Hence we have found all the roots.

The same type of calculation gives all complex nth roots of unity; that is, all complex numbers z such
that zn = 1. As before, write 1 = 1e0i and

z = reiθ

in polar form. Then zn = 1 takes the form

rneniθ = 1e0i

using De Moivre’s theorem. Comparing absolute values and arguments yields

rn = 1

nθ = 0+2kπ , k some integer

Hence r = 1, and the n values
θ = 2kπ

n
, k = 0, 1, 2, . . . , n−1

of θ all lie in the range 0≤ θ < 2π . As in Example A.7, every choice of k yields a value of θ that differs
from one of these by a multiple of 2π , so these give the arguments of all the possible roots.

Theorem A.3: nth Roots of Unity

If n≥ 1 is an integer, the nth roots of unity (that is, the solutions to zn = 1) are given by

z = e2πki/n, k = 0, 1, 2, . . . , n−1
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0

1 = e0i

e2π i/5

e4π i/5

e6π i/5

e8π i/5

x

y

Figure A.10

The nth roots of unity can be found geometrically as the points on the unit
circle that cut the circle into n equal sectors, starting at 1. The case n = 5
is shown in Figure A.10, where the five fifth roots of unity are plotted.

The method just used to find the nth roots of unity works equally well
to find the nth roots of any complex number in polar form. We give one
example.

Example A.8

Find the fourth roots of
√

2+
√

2i.

Solution. First write
√

2+
√

2i = 2eπi/4 in polar form. If z = reiθ satisfies z4 =
√

2+
√

2i, then De
Moivre’s theorem gives

r4ei(4θ ) = 2eπi/4

Hence r4 = 2 and 4θ = π
4 +2kπ , k an integer. We obtain four distinct roots (and hence all) by

r =
4
√

2, θ = π
16 = 2kπ

16 , k = 0, 1, 2, 3

Thus the four roots are

4
√

2eπi/16 4
√

2e9πi/16 4
√

2e17πi/16 4
√

2e25πi/16

Of course, reducing these roots to the form a+bi would require the computation of 4
√

2 and the
sine and cosine of the various angles.

An expression of the form ax2 + bx+ c, where the coefficients a 6= 0, b, and c are real numbers, is
called a real quadratic. A complex number u is called a root of the quadratic if au2 +bu+ c = 0. The
roots are given by the famous quadratic formula:

u = −b±
√

b2−4ac
2a

The quantity d = b2− 4ac is called the discriminant of the quadratic ax2 + bx+ c, and there is no real
root if and only if d < 0. In this case the quadratic is said to be irreducible. Moreover, the fact that d < 0
means that

√
d = i

√
|d|, so the two (complex) roots are conjugates of each other:

u = 1
2a
(−b+ i

√
|d|) and u = 1

2a
(−b− i

√
|d|)

The converse of this is true too: Given any nonreal complex number u, then u and u are the roots of some
real irreducible quadratic. Indeed, the quadratic

x2− (u+u)x+uu = (x−u)(x−u)

has real coefficients (uu = |u|2 and u+u is twice the real part of u) and so is irreducible because its roots
u and u are not real.
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Example A.9

Find a real irreducible quadratic with u = 3−4i as a root.

Solution. We have u+u = 6 and |u|2 = 25, so x2−6x+25 is irreducible with u and u = 3+4i as
roots.

Fundamental Theorem of Algebra

As we mentioned earlier, the complex numbers are the culmination of a long search by mathematicians
to find a set of numbers large enough to contain a root of every polynomial. The fact that the complex
numbers have this property was first proved by Gauss in 1797 when he was 20 years old. The proof is
omitted.

Theorem A.4: Fundamental Theorem of Algebra

Every polynomial of positive degree with complex coefficients has a complex root.

If f (x) is a polynomial with complex coefficients, and if u1 is a root, then the factor theorem (Section 6.5)
asserts that

f (x) = (x−u1)g(x)

where g(x) is a polynomial with complex coefficients and with degree one less than the degree of f (x).
Suppose that u2 is a root of g(x), again by the fundamental theorem. Then g(x) = (x−u2)h(x), so

f (x) = (x−u1)(x−u2)h(x)

This process continues until the last polynomial to appear is linear. Thus f (x) has been expressed as a
product of linear factors. The last of these factors can be written in the form u(x−un), where u and un are
complex (verify this), so the fundamental theorem takes the following form.

Theorem A.5

Every complex polynomial f (x) of degree n≥ 1 has the form

f (x) = u(x−u1)(x−u2) · · ·(x−un)

where u, u1, . . . , un are complex numbers and u 6= 0. The numbers u1, u2, . . . , un are the roots of
f (x) (and need not all be distinct), and u is the coefficient of xn.

This form of the fundamental theorem, when applied to a polynomial f (x) with real coefficients, can be
used to deduce the following result.
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Theorem A.6

Every polynomial f (x) of positive degree with real coefficients can be factored as a product of
linear and irreducible quadratic factors.

In fact, suppose f (x) has the form

f (x) = anxn +an−1xn−1 + · · ·+a1x+a0

where the coefficients ai are real. If u is a complex root of f (x), then we claim first that u is also a root. In
fact, we have f (u) = 0, so

0 = 0 = f (u) = anun +an−1un−1 + · · ·+a1u+a0

= anun +an−1un−1 + · · ·+a1u+a0

= anun +an−1un−1 + · · ·+a1u+a0

= anun +an−1un−1 + · · ·+a1u+a0

= f (u)

where ai = ai for each i because the coefficients ai are real. Thus if u is a root of f (x), so is its conjugate
u. Of course some of the roots of f (x) may be real (and so equal their conjugates), but the nonreal roots
come in pairs, u and u. By Theorem A.6, we can thus write f (x) as a product:

f (x) = an(x− r1) · · ·(x− rk)(x−u1)(x−u1) · · ·(x−um)(x−um) (A.1)

where an is the coefficient of xn in f (x); r1, r2, . . . , rk are the real roots; and u1, u1, u2, u2, . . . , um, um

are the nonreal roots. But the product

(x−u j)(x−u j) = x2− (u j +u j)x+(u ju j)

is a real irreducible quadratic for each j (see the discussion preceding Example A.9). Hence (A.1) shows
that f (x) is a product of linear and irreducible quadratic factors, each with real coefficients. This is the
conclusion in Theorem A.6.

Exercises for A

Exercise A.1 Solve each of the following for the real
number x.

x−4i = (2− i)2a. (2+ xi)(3−2i)
= 12+5i

b.

(2+ xi)2 = 4c. (2+ xi)(2− xi) = 5d.

Exercise A.2 Convert each of the following to the form
a+bi.

(2−3i)−2(2−3i)+9a.

(3−2i)(1+ i)+ |3+4i|b.

1+i
2−3i

+ 1−i
−2+3i

c. 3−2i
1−i

+ 3−7i
2−3i

d.

i131e. (2− i)3f.
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(1+ i)4g. (1− i)2(2+ i)2h.

3
√

3−i√
3+i

+
√

3+7i√
3−i

i.

Exercise A.3 In each case, find the complex number z.

iz− (1+ i)2 = 3− ia. (i + z) − 3i(2 − z) =
iz+1

b.

z2 =−ic. z2 = 3−4id.

z(1+ i) = z+(3+2i)e. z(2− i) = (z+ 1)(1+
i)

f.

Exercise A.4 In each case, find the roots of the real
quadratic equation.

x2−2x+3 = 0a. x2− x+1 = 0b.

3x2−4x+2 = 0c. 2x2−5x+2 = 0d.

Exercise A.5 Find all numbers x in each case.

x3 = 8a. x3 =−8b.

x4 = 16c. x4 = 64d.

Exercise A.6 In each case, find a real quadratic with u

as a root, and find the other root.

u = 1+ ia. u = 2−3ib.

u =−ic. u = 3−4id.

Exercise A.7 Find the roots of x2−2cos θx+1 = 0, θ

any angle.

Exercise A.8 Find a real polynomial of degree 4 with
2− i and 3−2i as roots.

Exercise A.9 Let re z and im z denote, respectively, the
real and imaginary parts of z. Show that:

im (iz) = re za. re (iz) =− im zb.

z+ z = 2 re zc. z− z = 2i im zd.

re (z+w) = re z+ re w, and re (tz) = t · re z if t is
real

e.

im (z+w) = im z+ im w, and im (tz) = t · im z if
t is real

f.

Exercise A.10 In each case, show that u is a root of the
quadratic equation, and find the other root.

x2−3ix+(−3+ i) = 0; u = 1+ ia.

x2 + ix− (4−2i) = 0; u =−2b.

x2− (3−2i)x+(5− i) = 0; u = 2−3ic.

x2 +3(1− i)x−5i = 0; u =−2+ id.

Exercise A.11 Find the roots of each of the following
complex quadratic equations.

x2 +2x+(1+ i) = 0a. x2− x+(1− i) = 0b.

x2− (2− i)x+(3− i) = 0c.

x2−3(1− i)x−5i = 0d.

Exercise A.12 In each case, describe the graph of the
equation (where z denotes a complex number).

|z|= 1a. |z−1|= 2b.

z = izc. z =−zd.

z = |z|e. im z = m · re z, m a
real number

f.

Exercise A.13

a. Verify |zw| = |z||w| directly for z = a + bi and
w = c+di.

b. Deduce (a) from properties C2 and C6.

Exercise A.14 Prove that |z+w|= |z|2 + |w|2+wz+wz

for all complex numbers w and z.

Exercise A.15 If zw is real and z 6= 0, show that w = az

for some real number a.

Exercise A.16 If zw = zv and z 6= 0, show that w = uv

for some u in C with |u|= 1.

Exercise A.17 Show that (1+ i)n +(1− i)n is real for
all n, using property C5.

Exercise A.18 Express each of the following in polar
form (use the principal argument).

3−3ia. −4ib.

−
√

3+ ic. −4+4
√

3id.

−7ie. −6+6if.
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Exercise A.19 Express each of the following in the form
a+bi.

3eπia. e7πi/3b.

2e3πi/4c.
√

2e−πi/4d.

e5πi/4e. 2
√

3e−2πi/6f.

Exercise A.20 Express each of the following in the form
a+bi.

(−1+
√

3i)2a. (1+
√

3i)−4b.

(1+ i)8c. (1− i)10d.

(1− i)6(
√

3+ i)3e. (
√

3− i)9(2−2i)5f.

Exercise A.21 Use De Moivre’s theorem to show that:

a. cos2θ = cos2 θ − sin2 θ ; sin2θ = 2cos θ sin θ

b. cos3θ = cos3 θ −3cosθ sin2 θ ;
sin3θ = 3cos2 θ sin θ − sin3 θ

Exercise A.22

a. Find the fourth roots of unity.

b. Find the sixth roots of unity.

Exercise A.23 Find all complex numbers z such that:

z4 =−1a. z4 = 2(
√

3i−1)b.

z3 =−27ic. z6 =−64d.

Exercise A.24 If z = reiθ in polar form, show that:

z = re−iθa. z−1 = 1
r
e−iθ if z 6= 0b.

Exercise A.25 Show that the sum of the nth roots of
unity is zero.
[Hint: 1− zn = (1− z)(1+ z+ z2 + · · ·+ zn−1) for any
complex number z.]

Exercise A.26

a. Let z1, z2, z3, z4, and z5 be equally spaced around
the unit circle. Show that z1+z2+z3+z4+z5 = 0.
[Hint: (1−z)(1+z+z2 +z3+z4) = 1−z5 for any
complex number z.]

b. Repeat (a) for any n ≥ 2 points equally spaced
around the unit circle.

c. If |w|= 1, show that the sum of the roots of zn = w

is zero.

Exercise A.27 If zn is real, n≥ 1, show that (z)n is real.

Exercise A.28 If z2 = z2, show that z is real or pure
imaginary.

Exercise A.29 If a and b are rational numbers, let p and
q denote numbers of the form a+b

√
2. If p = a+b

√
2,

define p̃ = a− b
√

2 and [p] = a2− 2b2. Show that each
of the following holds.

a+b
√

2 = a1 +b1
√

2 only if a = a1 and b = b1a.

p̃±q = p̃± q̃b. p̃q = p̃q̃c.

[p] = pp̃d. [pq] = [p][q]e.

If f (x) is a polynomial with rational coefficients

and p = a+b
√

2 is a root of f (x), then p̃ is also a
root of f (x).

f.



B. Proofs

Logic plays a basic role in human affairs. Scientists use logic to draw conclusions from experiments,
judges use it to deduce consequences of the law, and mathematicians use it to prove theorems. Logic
arises in ordinary speech with assertions such as “If John studies hard, he will pass the course,” or “If an
integer n is divisible by 6, then n is divisible by 3.”1 In each case, the aim is to assert that if a certain
statement is true, then another statement must also be true. In fact, if p and q denote statements, most
theorems take the form of an implication: “If p is true, then q is true.” We write this in symbols as

p⇒ q

and read it as “p implies q.” Here p is the hypothesis and q the conclusion of the implication. The
verification that p⇒ q is valid is called the proof of the implication. In this section we examine the most
common methods of proof2 and illustrate each technique with some examples.

Method of Direct Proof

To prove that p⇒ q, demonstrate directly that q is true whenever p is true.

Example B.1

If n is an odd integer, show that n2 is odd.

Solution. If n is odd, it has the form n = 2k+1 for some integer k. Then
n2 = 4k2 +4k+1 = 2(2k2+2k)+1 also is odd because 2k2 +2k is an integer.

Note that the computation n2 = 4k2+4k+1 in Example B.1 involves some simple properties of arith-
metic that we did not prove. These properties, in turn, can be proved from certain more basic properties
of numbers (called axioms)—more about that later. Actually, a whole body of mathematical information
lies behind nearly every proof of any complexity, although this fact usually is not stated explicitly. Here is
a geometrical example.

1By an integer we mean a “whole number”; that is, a number in the set 0, ±1, ±2, ±3, . . .
2For a more detailed look at proof techniques see D. Solow, How to Read and Do Proofs, 2nd ed. (New York: Wiley, 1990);

or J. F. Lucas. Introduction to Abstract Mathematics, Chapter 2 (Belmont, CA: Wadsworth, 1986).
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Example B.2

In a right triangle, show that the sum of the two acute angles is 90 degrees.

Solution.

β

α

β

α
β

α

The right triangle is shown in the diagram. Construct a rectangle
with sides of the same length as the short sides of the original
triangle, and draw a diagonal as shown. The original triangle
appears on the bottom of the rectangle, and the top triangle is
identical to the original (but rotated). Now it is clear that α +β
is a right angle.

Geometry was one of the first subjects in which formal proofs were used—Euclid’s Elements was
published about 300 B.C. The Elements is the most successful textbook ever written, and contains many
of the basic geometrical theorems that are taught in school today. In particular, Euclid included a proof of
an earlier theorem (about 500 B.C.) due to Pythagoras. Recall that, in a right triangle, the side opposite
the right angle is called the hypotenuse of the triangle.

Example B.3: Pythagoras’ Theorem

a

b

β

α

c

a

a

a2

b

b

b2

c2

b a

b

a

ba

a

b

α β

α

β

αβ

α

β

In a right-angled triangle, show that the square of the length
of the hypotenuse equals the sum of the squares of the lengths
of the other two sides.

Solution. Let the sides of the right triangle have lengths a, b, and
c as shown. Consider two squares with sides of length a+b, and
place four copies of the triangle in these squares as in the diagram.
The central rectangle in the second square shown is itself a square
because the angles α and β add to 90 degrees (using Example B.2),
so its area is c2 as shown. Comparing areas shows that both
a2 +b2 and c2 each equal the area of the large square minus
four times the area of the original triangle, and hence are equal.

Sometimes it is convenient (or even necessary) to break a proof into parts, and deal with each case
separately. We formulate the general method as follows:
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Method of Reduction to Cases

To prove that p⇒ q, show that p implies at least one of a list p1, p2, . . . , pn of statements (the cases) and
then show that pi⇒ q for each i.

Example B.4

Show that n2 ≥ 0 for every integer n.

Solution. This statement can be expressed as an implication: If n is an integer, then n2 ≥ 0. To
prove it, consider the following three cases:

(1) n > 0; (2) n = 0; (3) n < 0.

Then n2 > 0 in Cases (1) and (3) because the product of two positive (or two negative) integers is
positive. In Case (2) n2 = 02 = 0, so n2 ≥ 0 in every case.

Example B.5

If n is an integer, show that n2−n is even.

Solution. We consider two cases:

(1) n is even; (2) n is odd.

We have n2−n = n(n−1), so this is even in Case (1) because any multiple of an even number is
again even. Similarly, n−1 is even in Case (2) so n(n−1) is again even for the same reason.
Hence n2−n is even in any case.

The statements used in mathematics are required to be either true or false. This leads to a proof
technique which causes consternation in many beginning students. The method is a formal version of a
debating strategy whereby the debater assumes the truth of an opponent’s position and shows that it leads
to an absurd conclusion.

Method of Proof by Contradiction

To prove that p⇒ q, show that the assumption that both p is true and q is false leads to a contradiction. In
other words, if p is true, then q must be true; that is, p⇒ q.

Example B.6

If r is a rational number (fraction), show that r2 6= 2.

Solution. To argue by contradiction, we assume that r is a rational number and that r2 = 2, and
show that this assumption leads to a contradiction. Let m and n be integers such that r = m

n
is in
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lowest terms (so, in particular, m and n are not both even). Then r2 = 2 gives m2 = 2n2, so m2 is
even. This means m is even (Example B.1), say m = 2k. But then 2n2 = m2 = 4k2, so n2 = 2k2 is
even, and hence n is even. This shows that n and m are both even, contrary to the choice of these
numbers.

Example B.7: Pigeonhole Principle

If n+1 pigeons are placed in n holes, then some hole contains at least 2 pigeons.

Solution. Assume the conclusion is false. Then each hole contains at most one pigeon and so,
since there are n holes, there must be at most n pigeons, contrary to assumption.

The next example involves the notion of a prime number, that is an integer that is greater than 1 which
cannot be factored as the product of two smaller positive integers both greater than 1. The first few primes
are 2, 3, 5, 7, 11, . . . .

Example B.8

If 2n−1 is a prime number, show that n is a prime number.

Solution. We must show that p⇒ q where p is the statement “2n−1 is a prime”, and q is the
statement “n is a prime.” Suppose that p is true but q is false so that n is not a prime, say n = ab

where a≥ 2 and b≥ 2 are integers. If we write 2a = x, then 2n = 2ab = (2a)b = xb. Hence 2n−1
factors:

2n−1 = xb−1 = (x−1)(xb−1 + xb−2 + · · ·+ x2 + x+1)

As x≥ 4, this expression is a factorization of 2n−1 into smaller positive integers, contradicting the
assumption that 2n−1 is prime.

The next example exhibits one way to show that an implication is not valid.

Example B.9

Show that the implication “n is a prime⇒ 2n−1 is a prime” is false.

Solution. The first four primes are 2, 3, 5, and 7, and the corresponding values for 2n−1 are 3, 7,
31, 127 (when n = 2, 3, 5, 7). These are all prime as the reader can verify. This result seems to be
evidence that the implication is true. However, the next prime is 11 and 211−1 = 2047 = 23 ·89,
which is clearly not a prime.

We say that n = 11 is a counterexample to the (proposed) implication in Example B.9. Note that, if you
can find even one example for which an implication is not valid, the implication is false. Thus disproving
implications is in a sense easier than proving them.

The implications in Example B.8 and Example B.9 are closely related: They have the form p⇒ q and
q⇒ p, where p and q are statements. Each is called the converse of the other and, as these examples
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show, an implication can be valid even though its converse is not valid. If both p⇒ q and q⇒ p are valid,
the statements p and q are called logically equivalent. This is written in symbols as

p⇔ q

and is read “p if and only if q”. Many of the most satisfying theorems make the assertion that two
statements, ostensibly quite different, are in fact logically equivalent.

Example B.10

If n is an integer, show that “n is odd⇔ n2 is odd.”

Solution. In Example B.1 we proved the implication “n is odd⇒ n2 is odd.” Here we prove the
converse by contradiction. If n2 is odd, we assume that n is not odd. Then n is even, say n = 2k, so
n2 = 4k2, which is also even, a contradiction.

Many more examples of proofs can be found in this book and, although they are often more complex,
most are based on one of these methods. In fact, linear algebra is one of the best topics on which the
reader can sharpen his or her skill at constructing proofs. Part of the reason for this is that much of linear
algebra is developed using the axiomatic method. That is, in the course of studying various examples
it is observed that they all have certain properties in common. Then a general, abstract system is studied
in which these basic properties are assumed to hold (and are called axioms). In this system, statements
(called theorems) are deduced from the axioms using the methods presented in this appendix. These
theorems will then be true in all the concrete examples, because the axioms hold in each case. But this
procedure is more than just an efficient method for finding theorems in the examples. By reducing the
proof to its essentials, we gain a better understanding of why the theorem is true and how it relates to
analogous theorems in other abstract systems.

The axiomatic method is not new. Euclid first used it in about 300 B.C. to derive all the propositions of
(euclidean) geometry from a list of 10 axioms. The method lends itself well to linear algebra. The axioms
are simple and easy to understand, and there are only a few of them. For example, the theory of vector
spaces contains a large number of theorems derived from only ten simple axioms.

Exercises for B

Exercise B.1 In each case prove the result and either
prove the converse or give a counterexample.

a. If n is an even integer, then n2 is a multiple of 4.

b. If m is an even integer and n is an odd integer, then
m+n is odd.

c. If x = 2 or x = 3, then x3−6x2 +11x−6 = 0.

d. If x2−5x+6 = 0, then x = 2 or x = 3.

Exercise B.2 In each case either prove the result by
splitting into cases, or give a counterexample.

a. If n is any integer, then n2 = 4k+1 for some inte-
ger k.

b. If n is any odd integer, then n2 = 8k+ 1 for some
integer k.

c. If n is any integer, n3−n = 3k for some integer k.
[Hint: Use the fact that each integer has one of the
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forms 3k, 3k+1, or 3k+2, where k is an integer.]

Exercise B.3 In each case prove the result by contradic-
tion and either prove the converse or give a counterexam-
ple.

a. If n > 2 is a prime integer, then n is odd.

b. If n+m = 25 where n and m are integers, then one
of n and m is greater than 12.

c. If a and b are positive numbers and a ≤ b, then√
a≤
√

b.

d. If m and n are integers and mn is even, then m is
even or n is even.

Exercise B.4 Prove each implication by contradiction.

a. If x and y are positive numbers, then√
x+ y 6=√x+

√
y.

b. If x is irrational and y is rational, then x+ y is irra-
tional.

c. If 13 people are selected, at least 2 have birthdays
in the same month.

Exercise B.5 Disprove each statement by giving a coun-
terexample.

a. n2 +n+11 is a prime for all positive integers n.

b. n3 ≥ 2n for all integers n≥ 2.

c. If n ≥ 2 points are arranged on a circle in such a
way that no three of the lines joining them have
a common point, then these lines divide the circle
into 2n−1 regions. [The cases n = 2, 3, and 4 are
shown in the diagram.]

n = 2 n = 3 n = 4

Exercise B.6 The number e from calculus has a series
expansion

e = 1+ 1
1! +

1
2! +

1
3! + · · ·

where n! = n(n− 1) · · ·3 · 2 · 1 for each integer n ≥ 1.
Prove that e is irrational by contradiction. [Hint: If
e = m/n, consider

k = n!
(
e−1− 1

1! − 1
2! − 1

3! −·· ·− 1
n!

)
.

Show that k is a positive integer and that

k = 1
n+1 +

1
(n+1)(n+2) + · · ·< 1

n
.]



C. Mathematical Induction

Suppose one is presented with the following sequence of equations:

1 = 1

1+3 = 4

1+3+5 = 9

1+3+5+7 = 16

1+3+5+7+9 = 25

It is clear that there is a pattern. The numbers on the right side of the equations are the squares 12, 22, 32,
42, and 52 and, in the equation with n2 on the right side, the left side is the sum of the first n odd numbers.
The odd numbers are

1 = 2 ·1−1

3 = 2 ·2−1

5 = 2 ·3−1

7 = 2 ·4−1

9 = 2 ·5−1

and from this it is clear that the nth odd number is 2n− 1. Hence, at least for n = 1, 2, 3, 4, or 5, the
following is true:

1+3+ · · ·+(2n−1) = n2 (Sn)

The question arises whether the statement Sn is true for every n. There is no hope of separately verifying
all these statements because there are infinitely many of them. A more subtle approach is required.

The idea is as follows: Suppose it is verified that the statement Sn+1 will be true whenever Sn is true.
That is, suppose we prove that, if Sn is true, then it necessarily follows that Sn+1 is also true. Then, if we
can show that S1 is true, it follows that S2 is true, and from this that S3 is true, hence that S4 is true, and
so on and on. This is the principle of induction. To express it more compactly, it is useful to have a short
way to express the assertion “If Sn is true, then Sn+1 is true.” As in Appendix B, we write this assertion as

Sn⇒ Sn+1

and read it as “ Sn implies Sn+1.” We can now state the principle of mathematical induction.
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The Principle of Mathematical Induction

Suppose Sn is a statement about the natural number n for each n = 1, 2, 3, . . . .
Suppose further that:

1. S1 is true.

2. Sn⇒ Sn+1 for every n≥ 1.

Then Sn is true for every n≥ 1.

This is one of the most useful techniques in all of mathematics. It applies in a wide variety of situations,
as the following examples illustrate.

Example C.1

Show that 1+2+ · · ·+n = 1
2n(n+1) for n≥ 1.

Solution. Let Sn be the statement: 1+2+ · · ·+n = 1
2n(n+1) for n≥ 1. We apply induction.

1. S1 is true. The statement S1 is 1 = 1
21(1+1), which is true.

2. Sn⇒ Sn+1. We assume that Sn is true for some n≥ 1—that is, that

1+2+ · · ·+n = 1
2n(n+1)

We must prove that the statement

Sn+1 : 1+2+ · · ·+(n+1) = 1
2(n+1)(n+2)

is also true, and we are entitled to use Sn to do so. Now the left side of Sn+1 is the sum of the first
n+1 positive integers. Hence the second-to-last term is n, so we can write

1+2+ · · ·+(n+1) = (1+2+ · · ·+n)+(n+1)

= 1
2n(n+1)+(n+1) using Sn

= 1
2(n+1)(n+2)

This shows that Sn+1 is true and so completes the induction.

In the verification that Sn⇒ Sn+1, we assume that Sn is true and use it to deduce that Sn+1 is true. The
assumption that Sn is true is sometimes called the induction hypothesis.

Example C.2

If x is any number such that x 6= 1, show that 1+ x+ x2 + · · ·+ xn = xn+1−1
x−1 for n≥ 1.

Solution. Let Sn be the statement: 1+ x+ x2 + · · ·+ xn = xn+1−1
x−1 .
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1. S1 is true. S1 reads 1+ x = x2−1
x−1 , which is true because x2−1 = (x−1)(x+1).

2. Sn⇒ Sn+1. Assume the truth of Sn : 1+ x+ x2 + · · ·+ xn = xn+1−1
x−1 .

We must deduce from this the truth of Sn+1: 1+ x+ x2 + ·+ xn+1 = xn+2−1
x−1 . Starting with the left

side of Sn+1 and using the induction hypothesis, we find

1+ x+ x2 + · · ·+ xn+1 = (1+ x+ x2 + · · ·+ xn)+ xn+1

= xn+1−1
x−1 + xn+1

=
xn+1−1+xn+1(x−1)

x−1

= xn+2−1
x−1

This shows that Sn+1 is true and so completes the induction.

Both of these examples involve formulas for a certain sum, and it is often convenient to use summation
notation. For example, ∑n

k=1(2k− 1) means that in the expression (2k− 1), k is to be given the values
k = 1, k = 2, k = 3, . . . , k = n, and then the resulting n numbers are to be added. The same thing applies
to other expressions involving k. For example,

n

∑
k=1

k3 = 13 +23 + · · ·+n3

5

∑
k=1

(3k−1) = (3 ·1−1)+(3 ·2−1)+(3 ·3−1)+(3 ·4−1)+(3 ·5−1)

The next example involves this notation.

Example C.3

Show that ∑n
k=1(3k2− k) = n2(n+1) for each n≥ 1.

Solution. Let Sn be the statement: ∑n
k=1(3k2− k) = n2(n+1).

1. S1 is true. S1 reads (3 ·12−1) = 12(1+1), which is true.

2. Sn⇒ Sn+1. Assume that Sn is true. We must prove Sn+1:

n+1

∑
k=1

(3k2− k) =
n

∑
k=1

(3k2− k)+ [3(n+1)2− (n+1)]

= n2(n+1)+(n+1)[3(n+1)−1] (using Sn)

= (n+1)[n2+3n+2]

= (n+1)[(n+1)(n+2)]

= (n+1)2(n+2)

This proves that Sn+1 is true.
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We now turn to examples wherein induction is used to prove propositions that do not involve sums.

Example C.4

Show that 7n +2 is a multiple of 3 for all n≥ 1.

Solution.

1. S1 is true: 71 +2 = 9 is a multiple of 3.

2. Sn⇒ Sn+1. Assume that 7n +2 is a multiple of 3 for some n≥ 1; say, 7n +2 = 3m for some
integer m. Then

7n+1 +2 = 7(7n)+2 = 7(3m−2)+2 = 21m−12 = 3(7m−4)

so 7n+1 +2 is also a multiple of 3. This proves that Sn+1 is true.

In all the foregoing examples, we have used the principle of induction starting at 1; that is, we have
verified that S1 is true and that Sn⇒ Sn+1 for each n ≥ 1, and then we have concluded that Sn is true for
every n≥ 1. But there is nothing special about 1 here. If m is some fixed integer and we verify that

1. Sm is true.

2. Sn⇒ Sn+1 for every n≥ m.

then it follows that Sn is true for every n ≥ m. This “extended” induction principle is just as plausible as
the induction principle and can, in fact, be proved by induction. The next example will illustrate it. Recall
that if n is a positive integer, the number n! (which is read “n-factorial”) is the product

n! = n(n−1)(n−2) · · ·3 ·2 ·1

of all the numbers from n to 1. Thus 2! = 2, 3! = 6, and so on.

Example C.5

Show that 2n < n! for all n≥ 4.

Solution. Observe that 2n < n! is actually false if n = 1, 2, 3.

1. S4 is true. 24 = 16 < 24 = 4!.

2. Sn⇒ Sn+1 if n≥ 4. Assume that Sn is true; that is, 2n < n!. Then

2n+1 = 2 ·2n

< 2 ·n! because 2n < n!
< (n+1)n! because 2 < n+1
= (n+1)!

Hence Sn+1 is true.
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Exercises for C

In Exercises 1–19, prove the given statement by in-
duction for all n≥ 1.

Exercise C.1 1+3+5+7+ · · ·+(2n−1) = n2

Exercise C.2 12 +22 + · · ·+n2 = 1
6n(n+1)(2n+1)

Exercise C.3 13 +23 + · · ·+n3 = (1+2+ · · ·+n)2

Exercise C.4 1 ·2+2 ·3+ · · ·+n(n+1)
= 1

3n(n+1)(n+2)

Exercise C.5 1 ·22 +2 ·32 + · · ·+n(n+1)2

= 1
12n(n+1)(n+2)(3n+5)

Exercise C.6 1
1·2 +

1
2·3 + · · ·+ 1

n(n+1) =
n

n+1

Exercise C.7 12 +32 + · · ·+(2n−1)2 = n
3 (4n2−1)

Exercise C.8 1
1·2·3 +

1
2·3·4 + · · ·+ 1

n(n+1)(n+2)

= n(n+3)
4(n+1)(n+2)

Exercise C.9 1+2+22 + · · ·+2n−1 = 2n−1

Exercise C.10 3+33 +35 + · · ·+32n−1 = 3
8(9

n−1)

Exercise C.11 1
12 +

1
22 + · · ·+ 1

n2 ≤ 2− 1
n

Exercise C.12 n < 2n

Exercise C.13 For any integer m > 0, m!n! < (m+n)!

Exercise C.14 1√
1
+ 1√

2
+ · · ·+ 1√

n
≤ 2
√

n−1

Exercise C.15 1√
1
+ 1√

2
+ · · ·+ 1√

n
≥√n

Exercise C.16 n3 +(n+ 1)3 +(n+ 2)3 is a multiple of
9.

Exercise C.17 5n+3 is a multiple of 4.

Exercise C.18 n3−n is a multiple of 3.

Exercise C.19 32n+1 +2n+2 is a multiple of 7.

Exercise C.20 Let Bn = 1 ·1!+2 ·2!+3 ·3!+ · · ·+n ·n!
Find a formula for Bn and prove it.

Exercise C.21 Let

An = (1− 1
2)(1− 1

3)(1− 1
4) · · · (1− 1

n
)

Find a formula for An and prove it.

Exercise C.22 Suppose Sn is a statement about n for
each n ≥ 1. Explain what must be done to prove that Sn

is true for all n≥ 1 if it is known that:

a. Sn⇒ Sn+2 for each n≥ 1.

b. Sn⇒ Sn+8 for each n≥ 1.

c. Sn⇒ Sn+1 for each n≥ 10.

d. Both Sn and Sn+1⇒ Sn+2 for each n≥ 1.

Exercise C.23 If Sn is a statement for each n≥ 1, argue
that Sn is true for all n≥ 1 if it is known that the following
two conditions hold:

1. Sn⇒ Sn−1 for each n≥ 2.

2. Sn is true for infinitely many values of n.

Exercise C.24 Suppose a sequence a1, a2, . . . of num-
bers is given that satisfies:

1. a1 = 2.

2. an+1 = 2an for each n≥ 1.

Formulate a theorem giving an in terms of n, and
prove your result by induction.

Exercise C.25 Suppose a sequence a1, a2, . . . of num-
bers is given that satisfies:

1. a1 = b.

2. an+1 = can +b for n = 1, 2, 3, . . . .

Formulate a theorem giving an in terms of n, and
prove your result by induction.

Exercise C.26

a. Show that n2 ≤ 2n for all n≥ 4.

b. Show that n3 ≤ 2n for all n≥ 10.
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D. Polynomials

Expressions like 3− 5x and 1+ 3x− 2x2 are examples of polynomials. In general, a polynomial is an
expression of the form

f (x) = a0 +a1x+a2x2 + · · ·+anxn

where the ai are numbers, called the coefficients of the polynomial, and x is a variable called an indeter-

minate. The number a0 is called the constant coefficient of the polynomial. The polynomial with every
coefficient zero is called the zero polynomial, and is denoted simply as 0.

If f (x) 6= 0, the coefficient of the highest power of x appearing in f (x) is called the leading coefficient
of f (x), and the highest power itself is called the degree of the polynomial and is denoted deg ( f (x)).
Hence

−1+5x+3x2 has constant coefficient −1, leading coefficient 3, and degree 2,
7 has constant coefficient 7, leading coefficient 7, and degree 0,
6x−3x3 + x4− x5 has constant coefficient 0, leading coefficient −1, and degree 5.

We do not define the degree of the zero polynomial.

Two polynomials f (x) and g(x) are called equal if every coefficient of f (x) is the same as the corre-
sponding coefficient of g(x). More precisely, if

f (x) = a0 +a1x+a2x2 + · · · and g(x) = b0 +b1x+b2x2 + · · ·

are polynomials, then

f (x) = g(x) if and only if a0 = b0, a1 = b1, a2 = b2, . . .

In particular, this means that

f (x) = 0 is the zero polynomial if and only if a0 = 0, a1 = 0, a2 = 0, . . .

This is the reason for calling x an indeterminate.

Let f (x) and g(x) denote nonzero polynomials of degrees n and m respectively, say

f (x) = a0 +a1x+a2x2 + · · ·+anxn and g(x) = b0 +b1x+b2x2 + · · ·+bmxm

where an 6= 0 and bm 6= 0. If these expressions are multiplied, the result is

f (x)g(x) = a0b0 +(a0b1 +a1b0)x+(a0b2 +a1b1 +a2b0)x
2 + · · ·+anbmxn+m

Since an and bm are nonzero numbers, their product anbm 6= 0 and we have
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624 Polynomials

Theorem D.1

If f (x) and g(x) are nonzero polynomials of degrees n and m respectively, their product f (x)g(x) is
also nonzero and

deg [ f (x)g(x)] = n+m

Example D.1

(2− x+3x2)(3+ x2−5x3) = 6−3x+11x2−11x3 +8x4−15x5.

If f (x) is any polynomial, the next theorem shows that f (x)− f (a) is a multiple of the polynomial
x−a. In fact we have

Theorem D.2: Remainder Theorem

If f (x) is a polynomial of degree n≥ 1 and a is any number, then there exists a polynomial q(x)
such that

f (x) = (x−a)q(x)+ f (a)

where deg (q(x)) = n−1.

Proof. Write f (x) = a0 +a1x+a2x2 + · · ·+anxn where the ai are numbers, so that

f (a) = a0 +a1a+a2a2 + · · ·+anan

If these expressions are subtracted, the constant terms cancel and we obtain

f (x)− f (a) = a1(x−a)+a2(x
2−a2)+ · · ·+an(x

n−an).

Hence it suffices to show that, for each k ≥ 1, xk−ak = (x−a)p(x) for some polynomial p(x) of degree
k−1. This is clear if k = 1. If it holds for some value k, the fact that

xk+1−ak+1 = (x−a)xk +a(xk−ak)

shows that it holds for k+1. Hence the proof is complete by induction.

There is a systematic procedure for finding the polynomial q(x) in the remainder theorem. It is illus-
trated below for f (x) = x3−3x2 + x−1 and a = 2. The polynomial q(x) is generated on the top line one
term at a time as follows: First x2 is chosen because x2(x− 2) has the same x3-term as f (x), and this is
subtracted from f (x) to leave a “remainder” of −x2 + x−1. Next, the second term on top is −x because
−x(x− 2) has the same x2-term, and this is subtracted to leave −x− 1. Finally, the third term on top is
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−1, and the process ends with a “remainder” of −3.

x2− x− 1

x−2
)

x3− 3x2 + x− 1

x3− 2x2

−x2 + x− 1

−x2 + 2x

−x− 1

−x+ 2

− 3

Hence x3−3x2+x−1 = (x−2)(x2−x−1)+(−3). The final remainder is−3 = f (2) as is easily verified.
This procedure is called the division algorithm.1

A real number a is called a root of the polynomial f (x) if

f (a) = 0

Hence for example, 1 is a root of f (x) = 2− x+3x2−4x3, but −1 is not a root because f (−1) = 10 6= 0.
If f (x) is a multiple of x−a, we say that x−a is a factor of f (x). Hence the remainder theorem shows
immediately that if a is root of f (x), then x−a is factor of f (x). But the converse is also true: If x−a is a
factor of f (x), say f (x) = (x−a)q(x), then f (a) = (a−a)q(a) = 0. This proves the

Theorem D.3: Factor Theorem

If f (x) is a polynomial and a is a number, then x−a is a factor of f (x) if and only if a is a root of
f (x).

Example D.2

If f (x) = x3−2x2−6x+4, then f (−2) = 0, so x− (−2) = x+2 is a factor of f (x). In fact, the
division algorithm gives f (x) = (x+2)(x2−4x+2).

Consider the polynomial f (x) = x3−3x+2. Then 1 is clearly a root of f (x), and the division algorithm
gives f (x) = (x− 1)(x2 + x− 2). But 1 is also a root of x2 + x− 2; in fact, x2 + x− 2 = (x− 1)(x+ 2).
Hence

f (x) = (x−1)2(x+2)

and we say that the root 1 has multiplicity 2.

Note that non-zero constant polynomials f (x) = b 6= 0 have no roots. However, there do exist non-
constant polynomials with no roots. For example, if g(x) = x2 +1, then g(a) = a2 +1≥ 1 for every real
number a, so a is not a root. However the complex number i is a root of g(x); we return to this below.

1This procedure can be used to divide f (x) by any nonzero polynomial d(x) in place of x− a; the remainder then is a
polynomial that is either zero or of degree less than the degree of d(x).
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626 Polynomials

Now suppose that f (x) is any nonzero polynomial. We claim that it can be factored in the following
form:

f (x) = (x−a1)(x−a2) · · ·(x−am)g(x)

where a1, a2, . . . , am are the roots of f (x) and g(x) has no root (where the ai may have repetitions, and
may not appear at all if f (x) has no real root).

By the above calculation f (x) = x3−3x+2 = (x−1)2(x+2) has roots 1 and−2, with 1 of multiplicity
two (and g(x) = 1). Counting the root −2 once, we say that f (x) has three roots counting multiplicities.
The next theorem shows that no polynomial can have more roots than its degree even if multiplicities are
counted.

Theorem D.4

If f (x) is a nonzero polynomial of degree n, then f (x) has at most n roots counting multiplicities.

Proof. If n = 0, then f (x) is a constant and has no roots. So the theorem is true if n = 0. (It also holds for
n = 1 because, if f (x) = a+ bx where b 6= 0, then the only root is −a

b
.) In general, suppose inductively

that the theorem holds for some value of n ≥ 0, and let f (x) have degree n+1. We must show that f (x)
has at most n+1 roots counting multiplicities. This is certainly true if f (x) has no root. On the other hand,
if a is a root of f (x), the factor theorem shows that f (x) = (x−a)q(x) for some polynomial q(x), and q(x)
has degree n by Theorem D.1. By induction, q(x) has at most n roots. But if b is any root of f (x), then

(b−a)q(b) = f (b) = 0

so either b = a or b is a root of q(x). It follows that f (x) has at most n roots. This completes the induction
and so proves Theorem D.4.

As we have seen, a polynomial may have no root, for example f (x) = x2 + 1. Of course f (x) has
complex roots i and −i, where i is the complex number such that i2 = −1. But Theorem D.4 even holds
for complex roots: the number of complex roots (counting multiplicities) cannot exceed the degree of the
polynomial. Moreover, the fundamental theorem of algebra asserts that the only nonzero polynomials with
no complex root are the non-zero constant polynomials. This is discussed more in Appendix A, Theorems
A.4 and A.5.



Selected Exercise Answers

Section 1.1

1.1.1 b.
2(2s+ 12t+ 13)+ 5s+ 9(−s−3t− 3)+ 3t =−1;
(2s+ 12t+ 13)+ 2s+ 4(−s−3t− 3) = 1

1.1.2 b. x = t, y = 1
3 (1− 2t) or x = 1

2 (1− 3s), y = s

d. x = 1+ 2s− 5t, y = s, z = t or x = s, y = t,
z = 1

5(1− s+ 2t)

1.1.4 x = 1
4 (3+ 2s), y = s, z = t

1.1.5 a. No solution if b 6= 0. If b = 0, any x is a
solution.

b. x = b
a

1.1.7 b.

[
1 2 0
0 1 1

]

d.




1 1 0 1
0 1 1 0
−1 0 1 2




1.1.8 b.
2x− y =−1
−3x+ 2y + z = 0

y + z = 3

or
2x1− x2 =−1
−3x1 + 2x2 + x3 = 0

x2 + x3 = 3

1.1.9 b. x =−3, y = 2

d. x =−17, y = 13

1.1.10 b. x = 1
9 , y = 10

9 , z =− 7
3

1.1.11 b. No solution

1.1.14 b. F. x+ y = 0, x− y = 0 has a unique solution.

d. T. Theorem 1.1.1.

1.1.16 x′ = 5, y′ = 1, so x = 23, y =−32

1.1.17 a =− 1
9 , b =− 5

9 , c = 11
9

1.1.19 $4.50, $5.20

Section 1.2

1.2.1 b. No, no

d. No, yes

f. No, no

1.2.2 b.




0 1 −3 0 0 0 0
0 0 0 1 0 0 −1
0 0 0 0 1 0 0
0 0 0 0 0 1 1




1.2.3 b. x1 = 2r− 2s− t+ 1, x2 = r, x3 =−5s+ 3t− 1,
x4 = s, x5 =−6t + 1, x6 = t

d. x1 =−4s− 5t− 4, x2 =−2s+ t− 2, x3 = s, x4 = 1,
x5 = t

1.2.4 b. x =− 1
7 , y =− 3

7

d. x = 1
3 (t + 2), y = t

f. No solution

1.2.5 b. x =−15t− 21, y =−11t− 17, z = t

d. No solution

f. x =−7, y =−9, z = 1

h. x = 4, y = 3+ 2t, z = t

1.2.6 b. Denote the equations as E1, E2, and E3. Apply
gaussian elimination to column 1 of the augmented
matrix, and observe that E3−E1 =−4(E2−E1).
Hence E3 = 5E1− 4E2.

1.2.7 b. x1 = 0, x2 =−t, x3 = 0, x4 = t

d. x1 = 1, x2 = 1− t, x3 = 1+ t, x4 = t

1.2.8 b. If ab 6= 2, unique solution x = −2−5b
2−ab

, y = a+5
2−ab

.
If ab = 2: no solution if a 6=−5; if a =−5, the
solutions are x =−1+ 2

5 t, y = t.

d. If a 6= 2, unique solution x = 1−b
a−2 , y = ab−2

a−2 . If a = 2,
no solution if b 6= 1; if b = 1, the solutions are
x = 1

2 (1− t), y = t.
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1.2.9 b. Unique solution x =−2a+ b+ 5c,
y = 3a− b− 6c, z =−2a+ b+ c, for any a, b, c.

d. If abc 6=−1, unique solution x = y = z = 0; if
abc =−1 the solutions are x = abt, y =−bt, z = t.

f. If a = 1, solutions x =−t, y = t, z =−1. If a = 0,
there is no solution. If a 6= 1 and a 6= 0, unique
solution x = a−1

a
, y = 0, z = −1

a
.

1.2.10 b. 1

d. 3

f. 1

1.2.11 b. 2

d. 3

f. 2 if a = 0 or a = 2; 3, otherwise.

1.2.12 b. False. A =




1 0 1
0 1 1
0 0 0




d. False. A =




1 0 1
0 1 0
0 0 0




f. False.
2x− y= 0

−4x+ 2y= 0
is consistent but

2x− y= 1
−4x+ 2y= 1

is

not.

h. True, A has 3 rows, so there are at most 3 leading 1s.

1.2.14 b. Since one of b− a and c− a is nonzero, then


1 a b+ c

1 b c+ a

1 b c+ a


→




1 a b+ c

0 b− a a− b

0 c− a a− c


→




1 a b+ c

0 1 −1
0 0 0


→




1 0 b+ c+ a

0 1 −1
0 0 0




1.2.16 b. x2 + y2− 2x+ 6y− 6= 0

1.2.18 5
20 in A, 7

20 in B, 8
20 in C.

Section 1.3

1.3.1 b. False. A =

[
1 0 1 0
0 1 1 0

]

d. False. A =

[
1 0 1 1
0 1 1 0

]

f. False. A =

[
1 0 0
0 1 0

]

h. False. A =




1 0 0
0 1 0
0 0 0




1.3.2 b. a =−3, x = 9t, y =−5t, z = t

d. a = 1, x =−t, y = t, z = 0; or a =−1, x = t, y = 0,
z = t

1.3.3 b. Not a linear combination.

d. v = x+ 2y− z

1.3.4 b. y = 2a1− a2 + 4a3.

1.3.5 b. r




−2
1
0
0
0



+ s




−2
0
−1

1
0



+ t




−3
0
−2

0
1




d. s




0
2
1
0
0



+ t




−1
3
0
1
0




1.3.6 b. The system in (a) has nontrivial solutions.

1.3.7 b. By Theorem 1.2.2, there are n− r = 6− 1 = 5
parameters and thus infinitely many solutions.

d. If R is the row-echelon form of A, then R has a row of
zeros and 4 rows in all. Hence R has r = rank A = 1,
2, or 3. Thus there are n− r = 6− r = 5, 4, or 3
parameters and thus infinitely many solutions.

1.3.9 b. That the graph of ax+ by+ cz= d contains
three points leads to 3 linear equations homogeneous
in variables a, b, c, and d. Apply Theorem 1.3.1.

1.3.11 There are n− r parameters (Theorem 1.2.2), so there
are nontrivial solutions if and only if n− r > 0.

Section 1.4

1.4.1 b. f1 = 85− f4 − f7

f2 = 60− f4 − f7

f3 =−75 + f4 + f6

f5 = 40− f6 − f7

f4, f6, f7 parameters

1.4.2 b. f5 = 15
25≤ f4 ≤ 30

1.4.3 b. CD

Section 1.5
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1.5.2 I1 =− 1
5 , I2 =

3
5 , I3 =

4
5

1.5.4 I1 = 2, I2 = 1, I3 =
1
2 , I4 =

3
2 , I5 =

3
2 , I6 =

1
2

Section 1.6

1.6.2 2NH3 + 3CuO→ N2 + 3Cu+ 3H2O

1.6.4 15Pb(N3)2 + 44Cr(MnO4)2→
22Cr2O3 + 88MnO2 + 5Pb3O4 + 90NO

Supplementary Exercises for Chapter 1

Supplementary Exercise 1.1. b. No. If the
corresponding planes are parallel and distinct, there is
no solution. Otherwise they either coincide or have a
whole common line of solutions, that is, at least one
parameter.

Supplementary Exercise 1.2. b.
x1 =

1
10(−6s− 6t+ 16), x2 =

1
10(4s− t + 1), x3 = s,

x4 = t

Supplementary Exercise b.. b. If a = 1, no solution. If
a = 2, x = 2−2t, y =−t, z = t. If a 6= 1 and a 6= 2, the
unique solution is x = 8−5a

3(a−1) , y = −2−a
3(a−1) , z = a+2

3

Supplementary Exercise 1.4.

[
R1

R2

]
→

[
R1 +R2

R2

]
→
[

R1 +R2

−R1

]
→
[

R2

−R1

]
→
[

R2

R1

]

Supplementary Exercise 1.6. a = 1, b = 2, c =−1

Supplementary Exercise 1.8. The (real) solution is x = 2,
y = 3− t, z = t where t is a parameter. The given complex
solution occurs when t = 3− i is complex. If the real system
has a unique solution, that solution is real because the
coefficients and constants are all real.

Supplementary Exercise 1.9. b. 5 of brand 1, 0 of
brand 2, 3 of brand 3

Section 2.1

2.1.1 b. (a b c d) = (−2, −4, −6, 0)+ t(1, 1, 1, 1),
t arbitrary

d. a = b = c = d = t, t arbitrary

2.1.2 b.

[
−14
−20

]

d. (−12, 4, −12)

f.




0 1 −2
−1 0 4

2 −4 0




h.

[
4 −1
−1 −6

]

2.1.3 b.

[
15 −5
10 0

]

d. Impossible

f.

[
5 2
0 −1

]

h. Impossible

2.1.4 b.

[
4
1
2

]

2.1.5 b. A =− 11
3 B

2.1.6 b. X = 4A− 3B, Y = 4B− 5A

2.1.7 b. Y = (s, t), X = 1
2 (1+ 5s, 2+ 5t); s and t

arbitrary

2.1.8 b. 20A− 7B+ 2C

2.1.9 b. If A =

[
a b

c d

]
, then (p, q, r, s) =

1
2 (2d, a+ b− c− d, a− b+ c− d, −a+ b+ c+ d).

2.1.11 b. If A+A′ = 0 then −A =−A+ 0=
−A+(A+A′) = (−A+A)+A′= 0+A′ = A′

2.1.13 b. Write A = diag (a1, . . . , an), where a1, . . . , an

are the main diagonal entries. If B = diag (b1, . . . , bn)
then kA = diag (ka1, . . . , kan).

2.1.14 b. s = 1 or t = 0

d. s = 0, and t = 3

2.1.15 b.

[
2 0
1 −1

]

d.

[
2 7
− 9

2 −5

]

2.1.16 b. A = AT , so using Theorem 2.1.2,
(kA)T = kAT = kA.

2.1.19 b. False. Take B =−A for any A 6= 0.

d. True. Transposing fixes the main diagonal.
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f. True.
(kA+mB)T =(kA)T +(mB)T = kAT +mBT = kA+mB

2.1.20 c. Suppose A = S+W , where S = ST and
W =−W T . Then AT = ST +W T = S−W , so
A+AT = 2S and A−AT = 2W . Hence S = 1

2(A+AT )

and W = 1
2 (A−AT ) are uniquely determined by A.

2.1.22 b. If A = [ai j] then
(kp)A = [(kp)ai j] = [k(pai j)] = k [pai j] = k(pA).

Section 2.2

2.2.1 b. x1 − 3x2 − 3x3 + 3x4 = 5
8x2 + 2x4 = 1

x1 + 2x2 + 2x3 = 2
x2 + 2x3 − 5x4 = 0

2.2.2 x1




1
−1

2
3


+ x2




−2
0
−2
−4


+ x3




−1
1
7
9


+

x4




1
−2

0
−2


=




5
−3

8
12




2.2.3 b. Ax =

[
1 2 3
0 −4 5

]


x1

x2

x3


=

x1

[
1
0

]
+ x2

[
2
−4

]
+ x3

[
3
5

]
=

[
x1 + 2x2 + 3x3

− 4x2 + 5x3

]

d. Ax =




3 −4 1 6
0 2 1 5
−8 7 −3 0







x1

x2

x3

x4




= x1




3
0
−8


+ x2



−4

2
7


+ x3




1
1
−3


+

x4




6
5
0


=




3x1 − 4x2 + x3 + 6x4

2x2 + x3 + 5x4

−8x1 + 7x2 − 3x3




2.2.4 b. To solve Ax = b the reduction is


1 3 2 0 4
1 0 −1 −3 1
−1 2 3 5 1


→




1 0 −1 −3 1
0 1 1 1 1
0 0 0 0 0


 so the general solution is




1+ s+ 3t

1− s− t

s

t


.

Hence (1+ s+ 3t)a1 +(1− s− t)a2 + sa3 + ta4 = b

for any choice of s and t. If s = t = 0, we get
a1 + a2 = b; if s = 1 and t = 0, we have 2a1 + a3 = b.

2.2.5 b.



−2

2
0


+ t




1
−3

1




d.




3
−9
−2

0


+ t




−1
4
1
1




2.2.6 We have Ax0 = 0 and Ax1 = 0 and so
A(sx0 + tx1) = s(Ax0)+ t(Ax1) = s ·0+ t ·0 = 0.

2.2.8 b. x =




−3
0
−1

0
0



+




s




2
1
0
0
0



+ t




−5
0
2
0
1







.

2.2.10 b. False.

[
1 2
2 4

][
2
−1

]
=

[
0
0

]
.

d. True. The linear combination x1a1 + · · ·+ xnan equals
Ax where A =

[
a1 · · · an

]
by Theorem 2.2.1.

f. False. If A =

[
1 1 −1
2 2 0

]
and x =




2
0
1


, then

Ax =

[
1
4

]
6= s

[
1
2

]
+ t

[
1
2

]
for any s and t.

h. False. If A =

[
1 −1 1
−1 1 −1

]
, there is a solution

for b =

[
0
0

]
but not for b =

[
1
0

]
.

2.2.11 b. Here T

[
x

y

]
=

[
y

x

]
=

[
0 1
1 0

][
x

y

]
.

d. Here T

[
x

y

]
=

[
y

−x

]
=

[
0 1
−1 0

][
x

y

]
.

2.2.13 b. Here

T




x

y

z


=



−x

y

z


=



−1 0 0

0 1 0
0 0 1






x

y

z


 ,

so the matrix is



−1 0 0

0 1 0
0 0 1


.
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2.2.16 Write A =
[

a1 a2 · · · an

]
in terms of its

columns. If b = x1a1 + x2a2 + · · ·+ xnan where the xi are
scalars, then Ax = b by Theorem 2.2.1 where
x =

[
x1 x2 · · · xn

]T
. That is, x is a solution to the

system Ax = b.

2.2.18 b. By Theorem 2.2.3, A(tx1) = t(Ax1) = t ·0 = 0;
that is, tx1 is a solution to Ax = 0.

2.2.22 If A is m× n and x and y are n-vectors, we must show
that A(x+ y) = Ax+Ay. Denote the columns of A by

a1, a2, . . . , an, and write x =
[

x1 x2 · · · xn

]T
and

y =
[

y1 y2 · · · yn

]T
. Then

x+ y =
[

x1 + y1 x2 + y2 · · · xn + yn

]T
, so

Definition 2.1 and Theorem 2.1.1 give
A(x+ y) = (x1 + y1)a1 +(x2 + y2)a2 + · · ·+(xn + yn)an =
(x1a1 + x2a2 + · · ·+ xnan)+ (y1a1 + y2a2 + · · ·+ ynan) =
Ax+Ay.

Section 2.3

2.3.1 b.

[
−1 −6 −2

0 6 10

]

d.
[
−3 −15

]

f. [−23]

h.

[
1 0
0 1

]

j.




aa′ 0 0
0 bb′ 0
0 0 cc′




2.3.2 b. BA =

[
−1 4 −10

1 2 4

]
, B2 =

[
7 −6
−1 6

]
,

CB =



−2 12

2 −6
1 6




AC =

[
4 10
−2 −1

]
, CA =




2 4 8
−1 −1 −5

1 4 2




2.3.3 b. (a, b, a1, b1) = (3, 0, 1, 2)

2.3.4 b. A2−A− 6I =[
8 2
2 5

]
−
[

2 2
2 −1

]
−
[

6 0
0 6

]
=

[
0 0
0 0

]

2.3.5 b. A(BC) =

[
1 −1
0 1

][
−9 −16

5 1

]
=

[
−14 −17

5 1

]
=

[
−2 −1 −2

3 1 0

]


1 0
2 1
5 8


=

(AB)C

2.3.6 b. If A =

[
a b

c d

]
and E =

[
0 0
1 0

]
, compare

entries an AE and EA.

2.3.7 b. m× n and n×m for some m and n

2.3.8 b. i.

[
1 0
0 1

]
,

[
1 0
0 −1

]
,

[
1 1
0 −1

]

ii.

[
1 0
0 0

]
,

[
1 0
0 1

]
,

[
1 1
0 0

]

2.3.12 b. A2k =




1 −2k 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 for

k = 0, 1, 2, . . . ,

A2k+1 = A2kA =




1 −(2k+ 1) 2 −1
0 1 0 0
0 0 −1 1
0 0 0 1


 for

k = 0, 1, 2, . . .

2.3.13 b.

[
I 0
0 I

]
= I2k

d. 0k

f.

[
Xm 0
0 Xm

]
if n = 2m;

[
0 Xm+1

Xm 0

]
if

n = 2m+ 1

2.3.14 b. If Y is row i of the identity matrix I, then YA is
row i of IA = A.

2.3.16 b. AB−BA

d. 0

2.3.18 b. (kA)C = k(AC) = k(CA) =C(kA)

2.3.20 We have AT = A and BT = B, so (AB)T = BT AT = BA.
Hence AB is symmetric if and only if AB = BA.

2.3.22 b. A = 0

2.3.24 If BC = I, then AB = 0 gives
0 = 0C = (AB)C = A(BC) = AI = A, contrary to the
assumption that A 6= 0.

2.3.26 3 paths v1→ v4, 0 paths v2→ v3

2.3.27 b. False. If A =

[
1 0
0 0

]
= J, then AJ = A but

J 6= I.
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d. True. Since AT = A, we have
(I+AT = IT +AT = I +A.

f. False. If A =

[
0 1
0 0

]
, then A 6= 0 but A2 = 0.

h. True. We have A(A+B) = (A+B)A; that is,
A2 +AB = A2 +BA. Subtracting A2 gives AB = BA.

j. False. A =

[
1 −2
2 4

]
, B =

[
2 4
1 2

]

l. False. See (j).

2.3.28 b. If A = [ai j] and B = [bi j] and
∑ j ai j = 1 = ∑ j bi j, then the (i, j)-entry of AB is
ci j = ∑k aikbk j, whence
∑ j ci j = ∑ j ∑k aikbk j = ∑k aik(∑ j bk j) = ∑k aik = 1.
Alternatively: If e = (1, 1, . . . , 1), then the rows of A

sum to 1 if and only if Ae = e. If also Be = e then
(AB)e = A(Be) = Ae = e.

2.3.30 b. If A = [ai j], then
tr (kA) = tr [kai j] = ∑n

i=1 kaii = k ∑n
i=1 aii = k tr (A).

e. Write AT =
[
a′i j

]
, where a′i j = a ji. Then

AAT =
(

∑n
k=1 aika′k j

)
, so

tr (AAT ) = ∑n
i=1

[
∑n

k=1 aika′ki

]
= ∑n

i=1 ∑n
k=1 a2

ik.

2.3.32 e. Observe that PQ = P2 +PAP−P2AP = P, so
Q2 = PQ+APQ−PAPQ= P+AP−PAP = Q.

2.3.34 b. (A+B)(A−B) = A2−AB+BA−B2, and
(A−B)(A+B) = A2 +AB−BA−B2. These are equal
if and only if −AB+BA= AB−BA; that is,
2BA = 2AB; that is, BA = AB.

2.3.35 b. (A+B)(A−B) = A2−AB+BA−B2 and
(A−B)(A+B) = A2−BA+AB−B2. These are equal
if and only if −AB+BA=−BA+AB, that is
2AB = 2BA, that is AB = BA.

Section 2.4

2.4.2 b. 1
5

[
2 −1
−3 4

]

d.




2 −1 3
3 1 −1
1 1 −2




f. 1
10




1 4 −1
−2 2 2
−9 14 −1




h. 1
4




2 0 −2
−5 2 5
−3 2 −1




j.




0 0 1 −2
−1 −2 −1 −3

1 2 1 2
0 −1 0 0




l.




1 −2 6 −30 210
0 1 −3 15 −105
0 0 1 −5 35
0 0 0 1 −7
0 0 0 0 1




2.4.3 b.

[
x

y

]
= 1

5

[
4 −3
1 −2

][
0
1

]
= 1

5

[
−3
−2

]

d.




x

y

z


= 1

5




9 −14 6
4 −4 1

−10 15 −5






1
−1

0


=

1
5




23
8

−25




2.4.4 b. B = A−1AB =




4 −2 1
7 −2 4
−1 2 −1




2.4.5 b. 1
10

[
3 −2
1 1

]

d. 1
2

[
0 1
1 −1

]

f. 1
2

[
2 0
−6 1

]

h. − 1
2

[
1 1
1 0

]

2.4.6 b. A = 1
2




2 −1 3
0 1 −1
−2 1 −1




2.4.8 b. A and B are inverses.

2.4.9 b. False.

[
1 0
0 1

]
+

[
1 0
0 −1

]

d. True. A−1 = 1
3 A3

f. False. A = B =

[
1 0
0 0

]

h. True. If (A2)B = I, then A(AB) = I; use
Theorem 2.4.5.

2.4.10 b. (CT )−1 = (C−1)T = AT because
C−1 = (A−1)−1 = A.
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2.4.11 b. (i) Inconsistent.

(ii)

[
x1

x2

]
=

[
2
−1

]

2.4.15 b. B4 = I, so B−1 = B3 =

[
0 1
−1 0

]

2.4.16




c2− 2 −c 1
−c 1 0

3− c2 c −1




2.4.18 b. If column j of A is zero, Ay = 0 where y is
column j of the identity matrix. Use Theorem 2.4.5.

d. If each column of A sums to 0, XA = 0 where X is the
row of 1s. Hence AT XT = 0 so A has no inverse by
Theorem 2.4.5 (XT 6= 0).

2.4.19 b. (ii) (−1, 1, 1)A = 0

2.4.20 b. Each power Ak is invertible by Theorem 2.4.4
(because A is invertible). Hence Ak cannot be 0.

2.4.21 b. By (a), if one has an inverse the other is zero
and so has no inverse.

2.4.22 If A =

[
a 0
0 1

]
, a > 1, then A−1 =

[
1
a

0
0 1

]
is an

x-compression because 1
a
< 1.

2.4.24 b. A−1 = 1
4(A

3 + 2A2− 1)

2.4.25 b. If Bx = 0, then (AB)x = (A)Bx = 0, so x = 0

because AB is invertible. Hence B is invertible by
Theorem 2.4.5. But then A = (AB)B−1 is invertible by
Theorem 2.4.4.

2.4.26 b.




2 −1 0
−5 3 0
−13 8 −1




d.




1 −1 −14 8
−1 2 16 −9

0 0 2 −1
0 0 1 −1




2.4.28 d. If An = 0, (I−A)−1 = I+A+ · · ·+An−1.

2.4.30 b. A[B(AB)−1] = I = [(BA)−1B]A, so A is
invertible by Exercise 2.4.10.

2.4.32 a. Have AC =CA. Left-multiply by A−1 to get
C = A−1CA. Then right-multiply by A−1 to get
CA−1 = A−1C.

2.4.33 b. Given ABAB = AABB. Left multiply by A−1,
then right multiply by B−1.

2.4.34 If Bx = 0 where x is n× 1, then ABx = 0 so x = 0 as
AB is invertible. Hence B is invertible by Theorem 2.4.5, so
A = (AB)B−1 is invertible.

2.4.35 b. B



−1

3
−1


= 0 so B is not invertible by

Theorem 2.4.5.

2.4.38 b. Write U = In− 2XXT . Then
UT = IT

n − 2XTT XT =U , and
U2 = I2

n − (2XXT )In− In(2XXT )+ 4(XXT )(XXT ) =
In− 4XXT + 4XXT = In.

2.4.39 b. (I− 2P)2 = I− 4P+ 4P2, and this equals I if
and only if P2 = P.

2.4.41 b. (A−1 +B−1)−1 = B(A+B)−1A

Section 2.5

2.5.1 b. Interchange rows 1 and 3 of I. E−1 = E .

d. Add (−2) times row 1 of I to row 2.

E−1 =




1 0 0
2 1 0
0 0 1




f. Multiply row 3 of I by 5. E−1 =




1 0 0
0 1 0
0 0 1

5




2.5.2 b.

[
−1 0

0 1

]

d.

[
1 −1
0 1

]

f.

[
0 1
1 0

]

2.5.3 b. The only possibilities for E are

[
0 1
1 0

]
,

[
k 0
0 1

]
,

[
1 0
0 k

]
,

[
1 k

0 1

]
, and

[
1 0
k 1

]
. In

each case, EA has a row different from C.

2.5.5 b. No, 0 is not invertible.
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2.5.6 b.

[
1 −2
0 1

][
1 0
0 1

2

][
1 0
−5 1

]

A =

[
1 0 7
0 1 −3

]
. Alternatively,

[
1 0
0 1

2

][
1 −1
0 1

][
1 0
−5 1

]

A =

[
1 0 7
0 1 −3

]
.

d.




1 2 0
0 1 0
0 0 1






1 0 0
0 1

5 0
0 0 1






1 0 0
0 1 0
0 −1 1







1 0 0
0 1 0
−2 0 1






1 0 0
−3 1 0

0 0 1







0 0 1
0 1 0
1 0 0


A =




1 0 1
5

1
5

0 1 − 7
5 − 2

5

0 0 0 0




2.5.7 b. U =

[
1 1
1 0

]
=

[
1 1
0 1

][
0 1
1 0

]

2.5.8 b. A =

[
0 1
1 0

][
1 0
2 1

][
1 0
0 −1

]

[
1 2
0 1

]

d. A =




1 0 0
0 1 0
−2 0 1






1 0 0
0 1 0
0 2 1







1 0 −3
0 1 0
0 0 1






1 0 0
0 1 4
0 0 1




2.5.10 UA = R by Theorem 2.5.1, so A =U−1R.

2.5.12 b. U = A−1, V = I2; rank A = 2

d. U =



−2 1 0

3 −1 0
2 −1 1


,

V =




1 0 −1 −3
0 1 1 4
0 0 1 0
0 0 0 1


; rank A = 2

2.5.16 Write U−1 = EkEk−1 · · ·E2E1, Ei elementary. Then[
I U−1A

]
=
[

U−1U U−1A
]

=U−1
[

U A
]
= EkEk−1 · · ·E2E1

[
U A

]
. So[

U A
]
→
[

I U−1A
]

by row operations
(Lemma 2.5.1).

2.5.17 b. (i) A
r∼ A because A = IA. (ii) If A

r∼ B, then
A =UB, U invertible, so B =U−1A. Thus B

r∼ A. (iii)
If A

r∼ B and B
r∼C, then A =UB and B =VC, U and

V invertible. Hence A =U(VC) = (UV )C, so A
r∼C.

2.5.19 b. If B
r∼ A, let B =UA, U invertible. If

U =

[
d b

−b d

]
, B =UA =

[
0 0 b

0 0 d

]
where b

and d are not both zero (as U is invertible). Every
such matrix B arises in this way: Use

U =

[
a b

−b a

]
–it is invertible by Example 2.3.5.

2.5.22 b. Multiply column i by 1/k.

Section 2.6

2.6.1 b.




5
6

−13


= 3




3
2
−1


− 2




2
0
5


, so

T




5
6

−13


= 3T




3
2
−1


− 2T




2
0
5


=

3

[
3
5

]
− 2

[
−1

2

]
=

[
11
11

]

2.6.2 b. As in 1(b), T




5
−1

2
−4


=




4
2
−9


.

2.6.3 b. T (e1) =−e2 and T (e2) =−e1. So
A
[

T (e1) T (e2)
]
=
[
−e2 −e1

]
=[

−1 0
0 −1

]
.

d. T (e1) =



√

2
2√
2

2


 and T (e2) =


 −

√
2

2√
2

2




So A =
[

T (e1) T (e2)
]
=
√

2
2

[
1 −1
1 1

]
.

2.6.4 b. T (e1) =−e1, T (e2) = e2 and T (e3) = e3.
Hence Theorem 2.6.2 gives
A
[

T (e1) T (e2) T (e3)
]
=
[
−e1 e2 e3

]
=


−1 0 0

0 1 0
0 0 1


.

2.6.5 b. We have y1 = T (x1) for some x1 in Rn, and
y2 = T (x2) for some x2 in Rn. So
ay1 + by2 = aT (x1)+ bT(x2) = T (ax1 + bx2). Hence
ay1 + by2 is also in the image of T .

2.6.7 b. T

(
2

[
0
1

])
6= 2

[
0
−1

]
.
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2.6.8 b. A = 1√
2

[
1 1
−1 1

]
, rotation through θ =− π

4 .

d. A = 1
10

[
−8 −6
−6 8

]
, reflection in the line y =−3x.

2.6.10 b.




cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ




2.6.12 b. Reflection in the y axis

d. Reflection in y = x

f. Rotation through π
2

2.6.13 b. T (x) = aR(x) = a(Ax) = (aA)x for all x in R.
Hence T is induced by aA.

2.6.14 b. If x is in Rn, then
T (−x) = T [(−1)x] = (−1)T (x) =−T (x).

2.6.17 b. If B2 = I then
T 2(x) = T [T (x)] = B(Bx) = B2x = Ix = x = 1R2(x)
for all x in Rn. Hence T 2 = 1R2 . If T 2 = 1R2 , then
B2x = T 2(x) = 1R2(x) = x = Ix for all x, so B2 = I by
Theorem 2.2.6.

2.6.18 b. The matrix of Q1 ◦Q0 is[
0 1
1 0

][
1 0
0 −1

]
=

[
0 −1
1 0

]
, which is the

matrix of R π
2

.

d. The matrix of Q0 ◦R π
2

is
[

1 0
0 −1

][
0 −1
1 0

]
=

[
0 −1
−1 0

]
, which is

the matrix of Q−1.

2.6.20 We have

T (x) = x1 + x2 + · · ·+ xn =
[

1 1 · · · 1
]




x1

x2
...

xn


, so T

is the matrix transformation induced by the matrix
A =

[
1 1 · · · 1

]
. In particular, T is linear. On the other

hand, we can use Theorem 2.6.2 to get A, but to do this we
must first show directly that T is linear. If we write

x =




x1

x2
...

xn


 and y =




y1

y2
...

yn


. Then

T (x+ y) = T




x1 + y1

x2 + y2
...

xn + yn




= (x1 + y1)+ (x2 + y2)+ · · ·+(xn + yn)

= (x1 + x2 + · · ·+ xn)+ (y1 + y2 + · · ·+ yn)

= T (x)+T (y)

Similarly, T (ax) = aT (x) for any scalar a, so T is linear. By
Theorem 2.6.2, T has matrix
A =

[
T (e1) T (e2) · · · T (en)

]
=
[

1 1 · · · 1
]
, as

before.

2.6.22 b. If T : Rn→ R is linear, write T (e j) = w j for
each j = 1, 2, . . . , n where {e1, e2, . . . , en} is the
standard basis of Rn. Since
x = x1e1 + x2e2 + · · ·+ xnen, Theorem 2.6.1 gives

T (x) = T (x1e1 + x2e2 + · · ·+ xnen)

= x1T (e1)+ x2T (e2)+ · · ·+ xnT (en)

= x1w1 + x2w2 + · · ·+ xnwn

= w ·x = Tw(x)

where w =




w1

w2
...

wn


. Since this holds for all x in Rn, it

shows that T = TW. This also follows from
Theorem 2.6.2, but we have first to verify that T is
linear. (This comes to showing that
w · (x+ y) = w · s+w ·y and w · (ax) = a(w ·x) for all
x and y in Rn and all a in R.) Then T has matrix
A =

[
T (e1) T (e2) · · · T (en)

]
=[

w1 w2 · · · wn

]
by Theorem 2.6.2. Hence if

x =




x1

x2
...

xn


 in R, then T (x) = Ax = w ·x, as required.

2.6.23 b. Given x in R and a in R, we have
(S ◦T)(ax) = S [T (ax)] Definition of S ◦T

= S [aT (x)] Because T is linear.
= a [S [T (x)]] Because S is linear.
= a [S ◦T (x)] Definition of S ◦T

Section 2.7

2.7.1 b.




2 0 0
1 −3 0
−1 9 1







1 2 1

0 1 − 2
3

0 0 0




d.




−1 0 0 0
1 1 0 0
1 −1 1 0
0 −2 0 1







1 3 −1 0 1
0 1 2 1 0
0 0 0 0 0
0 0 0 0 0
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f.




2 0 0 0
1 −2 0 0
3 −2 1 0
0 2 0 1







1 1 −1 2 1

0 1 − 1
2 0 0

0 0 0 0 0

0 0 0 0 0




2.7.2 b. P =




0 0 1
1 0 0
0 1 0




PA =



−1 2 1

0 −1 2
0 0 4




=



−1 0 0

0 −1 0
0 0 4






1 −2 −1
0 1 2
0 0 1




d. P =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0




PA =




−1 −2 3 0
1 1 −1 3
2 5 −10 1
2 4 −6 5




=




−1 0 0 0
1 −1 0 0
2 1 −2 0
2 0 0 5







1 2 −3 0
0 1 −2 −3
0 0 1 −2
0 0 0 1




2.7.3 b. y =



−1

0
0


x =




−1+ 2t

−t

s

t


 s and t arbitrary

d. y =




2
8
−1

0


x =




8− 2t

6− t

−1− t

t


 t arbitrary

2.7.5

[
R1

R2

]
→
[

R1 +R2

R2

]
→
[

R1 +R2

−R1

]
→

[
R2

−R1

]
→
[

R2

R1

]

2.7.6 b. Let A = LU = L1U1 be LU-factorizations of the
invertible matrix A. Then U and U1 have no row of
zeros and so (being row-echelon) are upper triangular
with 1’s on the main diagonal. Thus, using (a.), the
diagonal matrix D =UU−1

1 has 1’s on the main
diagonal. Thus D = I, U =U1, and L = L1.

2.7.7 If A =

[
a 0
X A1

]
and B =

[
b 0
Y B1

]
in block form,

then AB =

[
ab 0

Xb+A1Y A1B1

]
, and A1B1 is lower

triangular by induction.

2.7.9 b. Let A = LU = L1U1 be two such factorizations.
Then UU−1

1 = L−1L1; write this matrix as
D =UU−1

1 = L−1L1. Then D is lower triangular
(apply Lemma 2.7.1 to D = L−1L1); and D is also
upper triangular (consider UU−1

1 ). Hence D is
diagonal, and so D = I because L−1 and L1 are unit
triangular. Since A = LU ; this completes the proof.

Section 2.8

2.8.1 b.




t

3t

t




d.




14t

17t

47t

23t




2.8.2




t

t

t




2.8.4 P =

[
bt

(1− a)t

]
is nonzero (for some t) unless b = 0

and a = 1. In that case,

[
1
1

]
is a solution. If the entries of E

are positive, then P =

[
b

1− a

]
has positive entries.

2.8.7 b.

[
0.4 0.8
0.7 0.2

]

2.8.8 If E =

[
a b

c d

]
, then I−E =

[
1− a −b

−c 1− d

]
, so

det (I−E) = (1− a)(1− d)− bc= 1− tr E + det E . If

det (I−E) 6= 0, then (I−E)−1 = 1
det (I−E)

[
1− d b

c 1− a

]
,

so (I−E)−1 ≥ 0 if det (I−E)> 0, that is, tr E < 1+ det E .
The converse is now clear.

2.8.9 b. Use p =




3
2
1


 in Theorem 2.8.2.

d. p =




3
2
2


 in Theorem 2.8.2.

Section 2.9

2.9.1 b. Not regular
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2.9.2 b. 1
3

[
2
1

]
, 3

8

d. 1
3




1
1
1


, 0.312

f. 1
20




5
7
8


, 0.306

2.9.4 b. 50% middle, 25% upper, 25% lower

2.9.6 7
16 , 9

16

2.9.8 a. 7
75

b. He spends most of his time in compartment 3; steady

state 1
16




3
2
5
4
2




.

2.9.12 a. Direct verification.

b. Since 0 < p < 1 and 0 < q < 1 we get 0 < p+ q < 2
whence−1 < p+ q− 1< 1. Finally,
−1 < 1− p− q< 1, so (1− p− q)m converges to zero
as m increases.

Supplementary Exercises for Chapter 2

Supplementary Exercise 2.2. b.
U−1 = 1

4 (U
2− 5U + 11I).

Supplementary Exercise 2.4. b. If xk = xm, then
y+ k(y− z) = y+m(y− z). So (k−m)(y− z) = 0.
But y− z is not zero (because y and z are distinct), so
k−m = 0 by Example 2.1.7.

Supplementary Exercise 2.6. d. Using parts (c) and (b)

gives IpqAIrs = ∑n
i=1 ∑n

j=1 ai jIpqIi jIrs. The only
nonzero term occurs when i = q and j = r, so
IpqAIrs = aqrIps.

Supplementary Exercise 2.7. b. If
A = [ai j] = ∑i j ai jIi j, then IpqAIrs = aqrIps by 6(d).
But then aqrIps = AIpqIrs = 0 if q 6= r, so aqr = 0 if
q 6= r. If q = r, then aqqIps = AIpqIrs = AIps is
independent of q. Thus aqq = a11 for all q.

Section 3.1

3.1.1 b. 0

d. −1

f. −39

h. 0

j. 2abc

l. 0

n. −56

p. abcd

3.1.5 b. −17

d. 106

3.1.6 b. 0

3.1.7 b. 12

3.1.8 b. det




2a+ p 2b+ q 2c+ r

2p+ x 2q+ y 2r+ z

2x+ a 2y+ b 2z+ c




= 3 det




a+ p+ x b+ q+ y c+ r+ z

2p+ x 2q+ y 2r+ z

2x+ a 2y+ b 2z+ c




= 3 det




a+ p+ x b+ q+ y c+ r+ z

p− a q− b r− c

x− p y− q z− r




= 3 det




3x 3y 3z

p− a q− b r− c

x− p y− q z− r


 · · ·

3.1.9 b. False. A =

[
1 1
2 2

]

d. False. A =

[
2 0
0 1

]
→ R =

[
1 0
0 1

]

f. False. A =

[
1 1
0 1

]

h. False. A =

[
1 1
0 1

]
and B =

[
1 0
1 1

]

3.1.10 b. 35

3.1.11 b. −6

d. −6

3.1.14 b. −(x− 2)(x2 + 2x− 12)

3.1.15 b. −7

3.1.16 b. ±
√

6
2

d. x =±y
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3.1.21 Let x =




x1

x2
...

xn


, y =




y1

y2
...

yn


 and

A =
[

c1 · · · x+ y · · · cn

]
where x+ y is in column j.

Expanding det A along column j (the one containing x+ y):

T (x+ y) = det A =
n

∑
i=1

(xi + yi)ci j(A)

=
n

∑
i=1

xici j(A)+
n

∑
i=1

yici j(A)

= T (x)+T (y)

Similarly for T (ax) = aT (x).

3.1.24 If A is n× n, then det B = (−1)k det A where n = 2k

or n = 2k+ 1.

Section 3.2

3.2.1 b.




1 −1 −2
−3 1 6
−3 1 4




d. 1
3



−1 2 2

2 −1 2
2 2 −1


= A

3.2.2 b. c 6= 0

d. any c

f. c 6=−1

3.2.3 b. −2

3.2.4 b. 1

3.2.6 b. 4
9

3.2.7 b. 16

3.2.8 b. 1
11

[
5

21

]

d. 1
79




12
−37
−2




3.2.9 b. 4
51

3.2.10 b. det A = 1, −1

d. det A = 1

f. det A = 0 if n is odd; nothing can be said if n is even

3.2.15 dA where d = det A

3.2.19 b. 1
c




1 0 1
0 c 1
−1 c 1


 , c 6= 0

d. 1
2




8− c2 −c c2− 6
c 1 −c

c2− 10 c 8− c2




f. 1
c3+1




1− c c2 + 1 −c− 1
c2 −c c+ 1
−c 1 c2− 1


 , c 6=−1

3.2.20 b. T.
det AB = det A det B = det B det A = det BA.

d. T. det A 6= 0 means A−1 exists, so AB = AC implies
that B =C.

f. F. If A =




1 1 1
1 1 1
1 1 1


 then adj A = 0.

h. F. If A =

[
1 1
0 0

]
then adj A =

[
0 −1
0 1

]

j. F. If A =

[
−1 1

1 −1

]
then det (I+A) =−1 but

1+ det A = 1.

l. F. If A =

[
1 1
0 1

]
then det A = 1 but

adj A =

[
1 −1
0 1

]
6= A

3.2.22 b. 5− 4x+ 2x2.

3.2.23 b. 1− 5
3 x+ 1

2 x2 + 7
6 x3

3.2.24 b. 1− 0.51x+ 2.1x2− 1.1x3;1.25, so y = 1.25

3.2.26 b. Use induction on n where A is n× n. It is clear

if n = 1. If n > 1, write A =

[
a X

0 B

]
in block form

where B is (n− 1)× (n− 1). Then

A−1 =

[
a−1 −a−1XB−1

0 B−1

]
, and this is upper

triangular because B is upper triangular by induction.

3.2.28 − 1
21




3 0 1
0 2 3
3 1 −1






639

3.2.34 b. Have (adj A)A = (det A)I; so taking inverses,
A−1 · (adj A)−1 = 1

det A
I. On the other hand,

A−1 adj (A−1) = det (A−1)I = 1
det A

I. Comparison
yields A−1(adj A)−1 = A−1 adj (A−1), and part (b)

follows.

d. Write det A = d, det B = e. By the adjugate formula
AB adj (AB) = deI, and
AB adj B adj A = A[eI] adj A = (eI)(dI) = deI. Done
as AB is invertible.

Section 3.3

3.3.1 b. (x− 3)(x+ 2);3;−2;

[
4
−1

]
,

[
1
1

]
;

P =

[
4 1
−1 1

]
; P−1AP =

[
3 0
0 −2

]
.

d. (x− 2)3;2;




1
1
0


 ,



−3

0
1


; No such P; Not

diagonalizable.

f. (x+ 1)2(x− 2);−1, −2;



−1

1
2


 ,




1
2
1


; No such

P; Not diagonalizable. Note that this matrix and the
matrix in Example 3.3.9 have the same characteristic
polynomial, but that matrix is diagonalizable.

h. (x− 1)2(x− 3);1, 3;



−1

0
1


 ,




1
0
1


 No such P;

Not diagonalizable.

3.3.2 b. Vk =
7
3 2k

[
2
1

]

d. Vk =
3
2 3k




1
0
1




3.3.4 Ax = λ x if and only if (A−αI)x = (λ −α)x. Same
eigenvectors.

3.3.8 b. P−1AP =

[
1 0
0 2

]
, so

An = P

[
1 0
0 2n

]
P−1 =

[
9− 8 ·2n 12(1− 2n)
6(2n− 1) 9 ·2n− 8

]

3.3.9 b. A =

[
0 1
0 2

]

3.3.11 b. and d. PAP−1 = D is diagonal, then b.
P−1(kA)P = kD is diagonal, and d. Q(U−1AU)Q = D

where Q = PU .

3.3.12

[
1 1
0 1

]
is not diagonalizable by Example 3.3.8.

But

[
1 1
0 1

]
=

[
2 1
0 −1

]
+

[
−1 0

0 2

]
where

[
2 1
0 −1

]
has diagonalizing matrix P =

[
1 −1
0 3

]
and

[
−1 0

0 2

]
is already diagonal.

3.3.14 We have λ 2 = λ for every eigenvalue λ (as λ = 0, 1)
so D2 = D, and so A2 = A as in Example 3.3.9.

3.3.18 b. crA(x) = det [xI− rA]
= rn det

[
x
r
I−A

]
= rncA

[
x
r

]

3.3.20 b. If λ 6= 0, Ax = λ x if and only if A−1x = 1
λ x.

The result follows.

3.3.21 b. (A3− 2A− 3I)x= A3x− 2Ax+ 3x =
λ 3x− 2λ x+ 3x = (λ 3− 2λ − 3)x.

3.3.23 b. If Am = 0 and Ax = λ x, x 6= 0, then
A2x = A(λ x) = λ Ax = λ 2x. In general, Akx = λ kx for
all k ≥ 1. Hence, λ mx = Amx = 0x = 0, so λ = 0
(because x 6= 0).

3.3.24 a. If Ax = λ x, then Akx = λ kx for each k. Hence
λ mx = Amx = x, so λ m = 1. As λ is real, λ =±1 by
the Hint. So if P−1AP = D is diagonal, then D2 = I by
Theorem 3.3.4. Hence A2 = PD2P = I.

3.3.27 a. We have P−1AP = λ I by the diagonalization
algorithm, so A = P(λ I)P−1 = λ PP−1 = λ I.

b. No. λ = 1 is the only eigenvalue.

3.3.31 b. λ1 = 1, stabilizes.

d. λ1 =
1

24 (3+
√

69) = 1.13, diverges.

3.3.34 Extinct if α < 1
5 , stable if α = 1

5 , diverges if α > 1
5 .

Section 3.4

3.4.1 b. xk =
1
3

[
4− (−2)k

]

d. xk =
1
5

[
2k+2 +(−3)k

]

3.4.2 b. xk =
1
2

[
(−1)k + 1

]

3.4.3 b. xk+4 = xk + xk+2 + xk+3;x10 = 169

3.4.5 1
2
√

5

[
3+
√

5
]

λ k
1 +(−3+

√
5)λ k

2 where

λ1 =
1
2 (1+

√
5) and λ2 =

1
2 (1−

√
5).
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3.4.7 1
2
√

3

[
2+
√

3
]

λ k
1 +(−2+

√
3)λ k

2 where λ1 = 1+
√

3

and λ2 = 1−
√

3.

3.4.9 34
3 − 4

3

(
− 1

2

)k
. Long term 11 1

3 million tons.

3.4.11 b. A




1
λ
λ 2


=




λ
λ 2

a+ bλ + cλ 2


=




λ
λ 2

λ 3


=

λ




1
λ
λ 2




3.4.12 b. xk =
11
10 3k + 11

15(−2)k− 5
6

3.4.13 a.
pk+2 + qk+2 = [apk+1 + bpk + c(k)]+ [aqk+1 + bqk] =
a(pk+1 + qk+1)+ b(pk + qk)+ c(k)

Section 3.5

3.5.1 b. c1

[
1
1

]
e4x + c2

[
5
−1

]
e−2x;c1 =− 2

3 , c2 =
1
3

d. c1



−8
10
7


e−x + c2




1
−2

1


e2x + c3




1
0
1


e4x;

c1 = 0, c2 =− 1
2 , c3 =

3
2

3.5.3 b. The solution to (a) is m(t) = 10
(

4
5

)t/3
. Hence

we want t such that 10
(

4
5

)t/3
= 5. We solve for t by

taking natural logarithms:

t =
3 ln( 1

2 )

ln( 4
5 )

= 9.32 hours.

3.5.5 a. If g′ = Ag, put f = g−A−1b. Then f′ = g′ and
Af = Ag−b, so f′ = g′ = Ag = Af+b, as required.

3.5.6 b. Assume that f ′1 = a1 f1 + f2 and f ′2 = a2 f1.
Differentiating gives f ′′1 = a1 f ′1 + f2

′ = a1 f ′1 + a2 f1,
proving that f1 satisfies Equation 3.15.

Section 3.6

3.6.2 Consider the rows Rp, Rp+1, . . . , Rq−1, Rq. In q− p

adjacent interchanges they can be put in the order
Rp+1, . . . , Rq−1, Rq, Rp. Then in q− p− 1 adjacent
interchanges we can obtain the order Rq, Rp+1, . . . , Rq−1, Rp.
This uses 2(q− p)− 1 adjacent interchanges in all.

Supplementary Exercises for Chapter 3

Supplementary Exercise 3.2. b. If A is 1× 1, then
AT = A. In general,
det [Ai j] = det

[
(Ai j)

T
]
= det

[
(AT ) ji

]
by (a) and

induction. Write AT =
[
a′i j

]
where a′i j = a ji, and

expand det AT along column 1.

det AT =
n

∑
j=1

a′j1(−1) j+1 det [(AT ) j1]

=
n

∑
j=1

a1 j(−1)1+ j det [A1 j] = det A

where the last equality is the expansion of det A along
row 1.

Section 4.1

4.1.1 b.
√

6

d.
√

5

f. 3
√

6

4.1.2 b. 1
3



−2
−1

2




4.1.4 b.
√

2

d. 3

4.1.6 b.−→
FE =

−→
FC+

−→
CE = 1

2
−→
AC+ 1

2
−→
CB = 1

2 (
−→
AC+

−→
CB) = 1

2
−→
AB

4.1.7 b. Yes

d. Yes

4.1.8 b. p

d. −(p+q).

4.1.9 b.



−1
−1

5


,
√

27

d.




0
0
0


, 0

f.



−2

2
2


,
√

12

4.1.10 b. (i) Q(5, −1, 2) (ii) Q(1, 1, −4).

4.1.11 b. x = u− 6v+ 5w =



−26

4
19
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4.1.12 b.




a

b

c


=



−5

8
6




4.1.13 b. If it holds then




3a+ 4b+ c

−a+ c

b+ c


=




x1

x2

x3


.




3 4 1 x1

−1 0 1 x2

0 1 1 x3


→




0 4 4 x1 + 3x2

−1 0 1 x2

0 1 1 x3




If there is to be a solution then x1 + 3x2 = 4x3 must
hold. This is not satisfied.

4.1.14 b. 1
4




5
−5
−2




4.1.17 b. Q(0, 7, 3).

4.1.18 b. x = 1
40



−20
−13

14




4.1.20 b. S(−1, 3, 2).

4.1.21 b. T. ‖v−w‖= 0 implies that v−w = 0.

d. F. ‖v‖= ‖− v‖ for all v but v =−v only holds if
v = 0.

f. F. If t < 0 they have the opposite direction.

h. F. ‖− 5v‖= 5‖v‖ for all v, so it fails if v 6= 0.

j. F. Take w =−v where v 6= 0.

4.1.22 b.




3
−1

4


+ t




2
−1

5


; x = 3+ 2t, y =−1− t,

z = 4+ 5t

d.




1
1
1


+ t




1
1
1


; x = y = z = 1+ t

f.




2
−1

1


+ t



−1

0
1


; x = 2− t, y =−1, z = 1+ t

4.1.23 b. P corresponds to t = 2; Q corresponds to t = 5.

4.1.24 b. No intersection

d. P(2, −1, 3); t =−2, s =−3

4.1.29 P(3, 1, 0) or P( 5
3 , −1

3 , 4
3 )

4.1.31 b.
−→
CPk =−

−→
CPn+k if 1≤ k ≤ n, where there are

2n points.

4.1.33
−→
DA = 2

−→
EA and 2

−→
AF =

−→
FC, so

2
−→
EF = 2(

−→
EF+

−→
AF) =

−→
DA+

−→
FC =

−→
CB+

−→
FC =

−→
FC+

−→
CB=

−→
FB.

Hence
−→
EF = 1

2
−→
FB. So F is the trisection point of both AC and

EB.

Section 4.2

4.2.1 b. 6

d. 0

f. 0

4.2.2 b. π or 180◦

d. π
3 or 60◦

f. 2π
3 or 120◦

4.2.3 b. 1 or −17

4.2.4 b. t



−1

1
2




d. s




1
2
0


+ t




0
3
1




4.2.6 b. 29+ 57= 86

4.2.8 b. A = B =C = π
3 or 60◦

4.2.10 b. 11
18 v

d. − 1
2 v

4.2.11 b. 5
21




2
−1
−4


+ 1

21




53
26
20




d. 27
53




6
−4

1


+ 1

53



−3

2
26




4.2.12 b. 1
26

√
5642, Q( 71

26 , 15
26 , 34

26)

4.2.13 b.




0
0
0




b.




4
−15

8
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4.2.14 b. −23x+ 32y+ 11z= 11

d. 2x− y+ z= 5

f. 2x+ 3y+ 2z= 7

h. 2x− 7y− 3z=−1

j. x− y− z = 3

4.2.15 b.




x

y

z


=




2
−1

3


+ t




2
1
0




d.




x

y

z


=




1
1
−1


+ t




1
1
1




f.




x

y

z


=




1
1
2


+ t




4
1
−5




4.2.16 b.
√

6
3 , Q( 7

3 , 2
3 , −2

3 )

4.2.17 b. Yes. The equation is 5x− 3y− 4z= 0.

4.2.19 b. (−2, 7, 0)+ t(3, −5, 2)

4.2.20 b. None

d. P( 13
19 , −78

19 , 65
19)

4.2.21 b. 3x+ 2z = d, d arbitrary

d. a(x− 3)+ b(y− 2)+ c(z+4)= 0; a, b, and c not all
zero

f. ax+ by+(b− a)z= a; a and b not both zero

h. ax+ by+(a− 2b)z= 5a− 4b; a and b not both zero

4.2.23 b.
√

10

4.2.24 b.
√

14
2 , A(3, 1, 2), B( 7

2 , − 1
2 , 3)

d.
√

6
6 , A( 19

3 , 2, 1
3 ), B( 37

6 , 13
6 , 0)

4.2.26 b. Consider the diagonal d =




a

a

a


 The six face

diagonals in question are ±




a

0
−a


, ±




0
a

−a


,

±




a

−a

0


. All of these are orthogonal to d. The

result works for the other diagonals by symmetry.

4.2.28 The four diagonals are (a, b, c), (−a, b, c),
(a, −b, c) and (a, b, −c) or their negatives. The dot products
are ±(−a2 + b2 + c2), ±(a2− b2 + c2), and ±(a2 + b2− c2).

4.2.34 b. The sum of the squares of the lengths of the
diagonals equals the sum of the squares of the lengths
of the four sides.

4.2.38 b. The angle θ between u and (u+ v+w) is
given by
cosθ = u·(u+v+w)

‖u‖‖u+v+w‖ =
‖u‖√

‖u‖2+‖v‖2+‖w‖2
= 1√

3
because

‖u‖= ‖v‖= ‖w‖. Similar remarks apply to the other
angles.

4.2.39 b. Let p0, p1 be the vectors of P0, P1, so
u = p0−p1. Then u ·n = p0 ·n –
p1 ·n = (ax0 + by0)− (ax1 + by1) = ax0 + by0 + c.
Hence the distance is

∥∥∥
(

u·n
‖n‖2

)
n

∥∥∥= |u·n|
‖n‖

as required.

4.2.41 b. This follows from (a) because
‖v‖2 = a2 + b2 + c2.

4.2.44 d. Take




x1

y1

z1


=




x

y

z


 and




x2

y2

z2


=




y

z

x




in (c).

Section 4.3

4.3.3 b. ±
√

3
3




1
−1
−1


.

4.3.4 b. 0

d.
√

5

4.3.5 b. 7

4.3.6 b. The distance is ‖p−p0‖; use part (a.).

4.3.10 ‖−→AB×−→AC‖ is the area of the parallelogram
determined by A, B, and C.

4.3.12 Because u and v×w are parallel, the angle θ between
them is 0 or π . Hence cos(θ ) =±1, so the volume is
|u · (v×w)|= ‖u‖‖v×w‖cos(θ ) = ‖u‖‖(v×w)‖. But the
angle between v and w is π

2 so
‖v×w‖= ‖v‖‖w‖cos(π

2 ) = ‖v‖‖w‖. The result follows.
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4.3.15 b. If u =




u1

u2

u3


, v =




v1

v2

v3


 and w =




w1

w2

w3


,

then u× (v+w) = det




i u1 v1 +w1

j u2 v2 +w2

k u3 v3 +w3




= det




i u1 v1

j u2 v2

k u3 v3


+ det




i u1 w1

j u2 w2

k u3 w3




= (u× v)+ (u×w) where we used Exercise 4.3.21.

4.3.16 b. (v−w) · [(u× v)+ (v×w)+ (w×u)] =
(v−w)·(u×v)+(v−w)·(v×w)+(v−w)·(w×u) =
−w · (u× v)+ 0+ v · (w×u) = 0.

4.3.22 Let p1 and p2 be vectors of points in the planes, so
p1 ·n = d1 and p2 ·n = d2. The distance is the length of the

projection of p2−p1 along n; that is |(p2−p1)·n|
‖n‖ = |d1−d2|

‖n‖ .

Section 4.4

4.4.1 b. A =

[
1 −1
−1 1

]
, projection on y =−x.

d. A = 1
5

[
−3 4

4 3

]
, reflection in y = 2x.

f. A = 1
2

[
1 −

√
3√

3 1

]
, rotation through π

3 .

4.4.2 b. The zero transformation.

4.4.3 b. 1
21




17 2 −8
2 20 4
−8 4 5






0
1
−3




d. 1
30




22 −4 20
−4 28 10
20 10 −20






0
1
−3




f. 1
25




9 0 12
0 0 0

12 0 16






1
−1

7




h. 1
11



−9 2 −6

2 −9 −6
−6 −6 7






2
−5

0




4.4.4 b. 1
2



√

3 −1 0
1
√

3 0
0 0 1






1
0
3




4.4.6




cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ




4.4.9 a. Write v =

[
x

y

]
.

PL(v) =
(

v·d
‖d‖2

)
d = ax+by

a2+b2

[
a

b

]

= 1
a2+b2

[
a2x+ aby

abx+ b2y

]

= 1
a2+b2

[
a2 + ab

ab+ b2

][
x

y

]

Section 4.5

4.5.1 b.

1
2



√

2+ 2 7
√

2+ 2 3
√

2+ 2 −
√

2+ 2 −5
√

2+ 2
−3
√

2+ 4 3
√

2+ 4 5
√

2+ 4
√

2+ 4 9
√

2+ 4
2 2 2 2 2




4.5.5 b. P( 9
5 , 18

5 )

Supplementary Exercises for Chapter 4

Supplementary Exercise 4.4. 125 knots in a direction θ
degrees east of north, where cosθ = 0.6 (θ = 53◦ or 0.93
radians).

Supplementary Exercise 4.6. (12, 5). Actual speed 12
knots.

Section 5.1

5.1.1 b. Yes

d. No

f. No.

5.1.2 b. No

d. Yes, x = 3y+ 4z.

5.1.3 b. No

5.1.10 span{a1x1, a2x2, . . . , akxk} ⊆ span{x1, x2, . . . , xk}
by Theorem 5.1.1 because, for each i, aixi is in
span{x1, x2, . . . , xk}. Similarly, the fact that xi = a−1

i (aixi)
is in span{a1x1, a2x2, . . . , akxk} for each i shows that
span{x1, x2, . . . , xk} ⊆ span{a1x1, a2x2, . . . , akxk}, again
by Theorem 5.1.1.

5.1.12 If y = r1x1 + · · ·+ rkxk then
Ay = r1(Ax1)+ · · ·+ rk(Axk) = 0.

5.1.15 b. x = (x+ y)− y = (x+ y)+ (−y) is in U

because U is a subspace and both x+ y and
−y = (−1)y are in U .
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5.1.16 b. True. x = 1x is in U .

d. True. Always span{y, z} ⊆ span{x, y, z} by
Theorem 5.1.1. Since x is in span{x, y} we have
span{x, y, z} ⊆ span{y, z}, again by Theorem 5.1.1.

f. False. a

[
1
0

]
+ b

[
2
0

]
=

[
a+ 2b

0

]
cannot equal

[
0
1

]
.

5.1.20 If U is a subspace, then S2 and S3 certainly hold.
Conversely, assume that S2 and S3 hold for U . Since U is
nonempty, choose x in U . Then 0 = 0x is in U by S3, so S1
also holds. This means that U is a subspace.

5.1.22 b. The zero vector 0 is in U +W because
0 = 0+ 0. Let p and q be vectors in U +W , say
p = x1 + y1 and q = x2 + y2 where x1 and x2 are in U ,
and y1 and y2 are in W . Then
p+q = (x1 + x2)+ (y1 + y2) is in U +W because
x1 + x2 is in U and y1 + y2 is in W . Similarly,
a(p+q) = ap+ aq is in U +W for any scalar a

because ap is in U and aq is in W . Hence U +W is
indeed a subspace of Rn.

Section 5.2

5.2.1 b. Yes. If r




1
1
1


+ s




1
1
1


+ t




0
0
1


=




0
0
0


,

then r+ s = 0, r− s = 0, and r+ s+ t = 0. These
equations give r = s = t = 0.

d. No. Indeed:


1
1
0
0


−




1
0
1
0


+




0
0
1
1


−




0
1
0
1


=




0
0
0
0


.

5.2.2 b. Yes. If r(x+ y)+ s(y+ z)+ t(z+ x) = 0, then
(r+ t)x+(r+ s)y+(s+ t)z = 0. Since {x, y, z} is
independent, this implies that r+ t = 0, r+ s = 0, and
s+ t = 0. The only solution is r = s = t = 0.

d. No. In fact, (x+ y)− (y+ z)+ (z+w)− (w+ x) = 0.

5.2.3 b.








2
1
0
−1


 ,




−1
1
1
1








; dimension 2.

d.








−2
0
3
1


 ,




1
2
−1

0








; dimension 2.

5.2.4 b.








1
1
0
1


 ,




1
−1

1
0








; dimension 2.

d.








1
0
1
0


 ,




−1
1
0
1


 ,




0
1
0
1








; dimension 3.

f.








−1
1
0
0


 ,




1
0
1
0


 ,




1
0
0
1








; dimension 3.

5.2.5 b. If r(x+w)+ s(y+w)+ t(z+w)+ u(w) = 0,
then rx+ sy+ tz+(r+ s+ t+ u)w = 0, so r = 0,
s = 0, t = 0, and r+ s+ t +u = 0. The only solution is
r = s = t = u = 0, so the set is independent. Since
dim R4 = 4, the set is a basis by Theorem 5.2.7.

5.2.6 b. Yes

d. Yes

f. No.

5.2.7 b. T. If ry+ sz = 0, then 0x+ ry+ sz = 0 so
r = s = 0 because {x, y, z} is independent.

d. F. If x 6= 0, take k = 2, x1 = x and x2 =−x.

f. F. If y =−x and z = 0, then 1x+ 1y+ 1z = 0.

h. T. This is a nontrivial, vanishing linear combination,
so the xi cannot be independent.

5.2.10 If rx2 + sx3 + tx5 = 0 then
0x1 + rx2 + sx3 + 0x4 + tx5 + 0x6 = 0 so r = s = t = 0.

5.2.12 If t1x1 + t2(x1 + x2)+ · · ·+ tk(x1 + x2 + · · ·+ xk) = 0,
then (t1 + t2 + · · ·+ tk)x1 +(t2 + · · ·+ tk)x2 + · · ·+(tk−1 +
tk)xk−1 +(tk)xk = 0. Hence all these coefficients are zero, so
we obtain successively tk = 0, tk−1 = 0, . . . , t2 = 0, t1 = 0.

5.2.16 b. We show AT is invertible (then A is invertible).
Let AT x = 0 where x = [s t]T . This means as+ ct = 0
and bs+ dt = 0, so
s(ax+ by)+ t(cx+ dy) = (sa+ tc)x+(sb+ td)y = 0.
Hence s = t = 0 by hypothesis.

5.2.17 b. Each V−1xi is in null (AV ) because
AV (V−1xi) = Axi = 0. The set {V−1x1, . . . , V−1xk} is
independent as V−1 is invertible. If y is in null (AV ),
then Vy is in null (A) so let Vy = t1x1 + · · ·+ tkxk

where each tk is in R. Thus
y = t1V−1x1 + · · ·+ tkV

−1xk is in
span{V−1x1, . . . , V−1xk}.
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5.2.20 We have {0} ⊆U ⊆W where dim{0}= 0 and
dim W = 1. Hence dim U = 0 or dim U = 1 by
Theorem 5.2.8, that is U = 0 or U =W , again by
Theorem 5.2.8.

Section 5.3

5.3.1 b.



1√
3




1
1
1


 , 1√

42




4
1
−5


 , 1√

14




2
−3

1





.

5.3.3 b.




a

b

c


= 1

2 (a− c)




1
0
−1


+ 1

18 (a+ 4b+

c)




1
4
1


+ 1

9 (2a− b+ 2c)




2
−1

2


.

d.




a

b

c


= 1

3 (a+ b+ c)




1
1
1


+ 1

2 (a− b)




1
−1

0


+

1
6 (a+ b− 2c)




1
1
−2


.

5.3.4 b.




14
1
−8

5


= 3




2
−1

0
3


+ 4




2
1
−2
−1


.

5.3.5 b. t




−1
3

10
11


, in R

5.3.6 b.
√

29

d. 19

5.3.7 b. F. x =

[
1
0

]
and y =

[
0
1

]
.

d. T. Every xi ·y j = 0 by assumption, every xi ·x j = 0 if
i 6= j because the xi are orthogonal, and every
yi ·y j = 0 if i 6= j because the yi are orthogonal. As all
the vectors are nonzero, this does it.

f. T. Every pair of distinct vectors in the set {x} has dot
product zero (there are no such pairs).

5.3.9 Let c1, . . . , cn be the columns of A. Then row i of AT is
cT

i , so the (i, j)-entry of AT A is cT
i c j = ci · c j = 0, 1

according as i 6= j, i = j. So AT A = I.

5.3.11 b. Take n = 3 in (a), expand, and simplify.

5.3.12 b. We have (x+ y) · (x− y) = ‖x‖2−‖y‖2.
Hence (x+ y) · (x− y) = 0 if and only if ‖x‖2 = ‖y‖2;
if and only if ‖x‖= ‖y‖—where we used the fact that
‖x‖ ≥ 0 and ‖y‖ ≥ 0.

5.3.15 If AT Ax = λ x, then
‖Ax‖2 = (Ax) · (Ax) = xT AT Ax = xT (λ x) = λ‖x‖2.

Section 5.4

5.4.1 b.






2
−1

1


 ,




0
0
1





 ;








2
−2

4
−6


 ,




1
1
3
0








;2

d.








1
2
−1

3


 ,




0
0
0
1








;

{[
1
−3

]
,

[
3
−2

]}
;2

5.4.2 b.








1
1
0
0
0




,




0
−2

2
5
1




,




0
0
2
−3

6








d.








1
5
−6


 ,




0
1
−1






0
0
1







5.4.3 b. No; no

d. No

f. Otherwise, if A is m× n, we have
m = dim ( row A) = rank A = dim (col A) = n

5.4.4 Let A =
[

c1 . . . cn

]
. Then

col A = span{c1, . . . , cn}= {x1c1 + · · ·+ xncn | xi in R}=
{Ax | x in Rn}.

5.4.7 b. The basis is








6
0
−4

1
0




,




5
0
−3

0
1








so the

dimension is 2.

Have rank A = 3 and n− 3 = 2.

5.4.8 b. n− 1

5.4.9 b. If r1c1 + · · ·+ rncn = 0, let x = [r1, . . . , rn]
T .

Then Cx = r1c1 + · · ·+ rncn = 0, so x is in null A = 0.
Hence each ri = 0.
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5.4.10 b. Write r = rank A. Then (a) gives
r = dim (col A≤ dim (null A) = n− r.

5.4.12 We have rank (A) = dim [col (A)] and
rank (AT ) = dim [ row (AT )]. Let {c1, c2, . . . , ck} be a basis
of col (A); it suffices to show that {cT

1 , cT
2 , . . . , cT

k } is a basis
of row (AT ). But if t1cT

1 + t2cT
2 + · · ·+ tkcT

k = 0, t j in R, then
(taking transposes) t1c1 + t2c2 + · · ·+ tkck = 0 so each t j = 0.
Hence {cT

1 , cT
2 , . . . , cT

k } is independent. Given v in row (AT )
then vT is in col (A); say vT = s1c1 + s2c2 + · · ·+ skck, s j in
R: Hence v = s1cT

1 + s2cT
2 + · · ·+ skcT

k , so {cT
1 , cT

2 , . . . , cT
k }

spans row (AT ), as required.

5.4.15 b. Let {u1, . . . , ur} be a basis of col (A). Then b

is not in col (A), so {u1, . . . , ur, b} is linearly
independent. Show that
col [A b] = span{u1, . . . , ur, b}.

Section 5.5

5.5.1 b. traces = 2, ranks = 2, but det A =−5,
det B =−1

d. ranks = 2, determinants = 7, but tr A = 5, tr B = 4

f. traces =−5, determinants = 0, but rank A = 2,
rank B = 1

5.5.3 b. If B = P−1AP, then
B−1 = P−1A−1(P−1)−1 = P−1A−1P.

5.5.4 b. Yes, P =



−1 0 6

0 1 0
1 0 5


,

P−1AP =



−3 0 0

0 −3 0
0 0 8




d. No, cA(x) = (x+ 1)(x− 4)2 so λ = 4 has multiplicity
2. But dim (E4) = 1 so Theorem 5.5.6 applies.

5.5.8 b. If B = P−1AP and Ak = 0, then
Bk = (P−1AP)k = P−1AkP = P−10P = 0.

5.5.9 b. The eigenvalues of A are all equal (they are the
diagonal elements), so if P−1AP = D is diagonal, then
D = λ I. Hence A = P−1(λ I)P = λ I.

5.5.10 b. A is similar to D = diag (λ1, λ2, . . . , λn) so
(Theorem 5.5.1) tr A = tr D = λ1 +λ2 + · · ·+λn.

5.5.12 b. TP(A)TP(B) = (P−1AP)(P−1BP) =
P−1(AB)P = TP(AB).

5.5.13 b. If A is diagonalizable, so is AT , and they have
the same eigenvalues. Use (a).

5.5.17 b. cB(x) = [x− (a+ b+ c)][x2− k] where
k = a2 + b2 + c2− [ab+ ac+ bc]. Use Theorem 5.5.7.

Section 5.6

5.6.1 b. 1
12



−20

46
95


 , (AT A)−1

= 1
12




8 −10 −18
−10 14 24
−18 24 43




5.6.2 b. 64
13 − 6

13 x

d. − 4
10 − 17

10 x

5.6.3 b. y = 0.127− 0.024x+0.194x2, (MT M)−1 =

1
4248




3348 642 −426
642 571 −187
−426 −187 91




5.6.4 b. 1
92(−46x+ 66x2+ 60 ·2x), (MT M)−1 =

1
46




115 0 −46
0 17 −18

−46 −18 38




5.6.5 b. 1
20 [18+ 21x2+ 28sin(πx

2 )], (MT M)−1 =

1
40




24 −2 14
−2 1 3
14 3 49




5.6.7 s = 99.71− 4.87x; the estimate of g is 9.74. [The true
value of g is 9.81]. If a quadratic in s is fit, the result is
s = 101− 3

2 t− 9
2 t2 giving g = 9;

(MT M)−1 = 1
2




38 −42 10
−42 49 −12

10 −12 3


.

5.6.9 y =−5.19+ 0.34x1+ 0.51x2+ 0.71x3, (AT A)−1

= 1
25080




517860 −8016 5040 −22650
−8016 208 −316 400

5040 −316 1300 −1090
−22650 400 −1090 1975




5.6.10 b. f (x) = a0 here, so the sum of squares is
S = ∑(yi− a0)

2 = na2
0− 2a0 ∑yi +∑y2

i . Completing
the square gives S = n[a0− 1

n ∑yi]
2 +[∑y2

i − 1
n
(∑yi)

2]

This is minimal when a0 =
1
n ∑yi.

5.6.13 b. Here f (x) = r0 + r1ex. If f (x1) = 0 = f (x2)
where x1 6= x2, then r0 + r1 · ex1 = 0 = r0 + r1 · ex2 so
r1(e

x1 − ex2) = 0. Hence r1 = 0 = r0.
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Section 5.7

5.7.2 Let X denote the number of years of education, and let
Y denote the yearly income (in 1000’s). Then x = 15.3,
s2

x = 9.12 and sx = 3.02, while y = 40.3, s2
y = 114.23 and

sy = 10.69. The correlation is r(X , Y ) = 0.599.

5.7.4 b. Given the sample vector x =




x1

x2
...

xn


, let

z =




z1

z2
...

zn


 where zi = a+ bxi for each i. By (a) we

have z = a+ bx, so

s2
z =

1
n−1 ∑

i

(zi− z)2

= 1
n−1 ∑

i

[(a+ bxi)− (a+ bx)]2

= 1
n−1 ∑

i

b2(xi− x)2

= b2s2
x .

Now (b) follows because
√

b2 = |b|.

Supplementary Exercises for Chapter 5

Supplementary Exercise 5.1. b. F

d. T

f. T

h. F

j. F

l. T

n. F

p. F

r. F

Section 6.1

6.1.1 b. No; S5 fails.

d. No; S4 and S5 fail.

6.1.2 b. No; only A1 fails.

d. No.

f. Yes.

h. Yes.

j. No.

l. No; only S3 fails.

n. No; only S4 and S5 fail.

6.1.4 The zero vector is (0, −1); the negative of (x, y) is
(−x, −2− y).

6.1.5 b. x = 1
7 (5u− 2v), y = 1

7(4u− 3v)

6.1.6 b. Equating entries gives a+ c = 0, b+ c = 0,
b+ c = 0, a− c = 0. The solution is a = b = c = 0.

d. If asinx+ bcosy+ c = 0 in F[0, π ], then this must
hold for every x in [0, π ]. Taking x = 0, π

2 , and π ,
respectively, gives b+ c = 0, a+ c = 0, −b+ c = 0
whence, a = b = c = 0.

6.1.7 b. 4w

6.1.10 If z+ v = v for all v, then z+ v = 0+ v, so z = 0 by
cancellation.

6.1.12 b. (−a)v+ av = (−a+ a)v = 0v = 0 by
Theorem 6.1.3. Because also −(av)+ av = 0 (by the
definition of −(av) in axiom A5), this means that
(−a)v =−(av) by cancellation. Alternatively, use
Theorem 6.1.3(4) to give
(−a)v = [(−1)a]v = (−1)(av) =−(av).

6.1.13 b. The case n = 1 is clear, and n = 2 is axiom S3.
If n > 2, then
(a1 + a2+ · · ·+ an)v = [a1 +(a2 + · · ·+ an)]v =
a1v+(a2 + · · ·+ an)v = a1v+(a2v+ · · ·+ anv) using
the induction hypothesis; so it holds for all n.

6.1.15 c. If av = aw, then v = 1v = (a−1a)v =
a−1(av) = a−1(aw) = (a−1a)w = 1w = w.

Section 6.2

6.2.1 b. Yes

d. Yes

f. No; not closed under addition or scalar multiplication,
and 0 is not in the set.

6.2.2 b. Yes.

d. Yes.

f. No; not closed under addition.

6.2.3 b. No; not closed under addition.

d. No; not closed under scalar multiplication.
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f. Yes.

6.2.5 b. If entry k of x is xk 6= 0, and if y is in Rn, then
y = Ax where the column of A is x−1

k y, and the other
columns are zero.

6.2.6 b. −3(x+ 1)+ 0(x2+ x)+ 2(x2+ 2)

d. 2
3 (x+ 1)+ 1

3(x
2 + x)− 1

3 (x
2 + 2)

6.2.7 b. No.

d. Yes; v = 3u−w.

6.2.8 b. Yes; 1 = cos2 x+ sin2 x

d. No. If 1+ x2 = acos2 x+ bsin2 x, then taking x = 0
and x = π gives a = 1 and a = 1+π2.

6.2.9 b. Because P2 = span{1, x, x2}, it suffices to
show that {1, x, x2} ⊆ span{1+ 2x2, 3x, 1+ x}. But
x = 1

3 (3x);1 = (1+ x)− x and x2 = 1
2 [(1+ 2x2)− 1].

6.2.11 b. u = (u+w)−w, v =−(u− v)+ (u+w)−w,
and w = w

6.2.14 No.

6.2.17 b. Yes.

6.2.18 v1 =
1
a1

u− a2
a1

v2−·· ·− an

a1
vn, so

V ⊆ span{u, v2, . . . , vn}

6.2.21 b. v = (u+ v)−u is in U .

6.2.22 Given the condition and u ∈U , 0 = u+(−1)u ∈U .
The converse holds by the subspace test.

Section 6.3

6.3.1 b. If ax2 + b(x+ 1)+ c(1− x− x2) = 0, then
a+ c = 0, b− c = 0, b+ c = 0, so a = b = c = 0.

d. If a

[
1 1
1 0

]
+ b

[
0 1
1 1

]
+ c

[
1 0
1 1

]
+

d

[
1 1
0 1

]
=

[
0 0
0 0

]
, then a+ c+ d = 0,

a+ b+ d = 0, a+ b+ c= 0, and b+ c+ d = 0, so
a = b = c = d = 0.

6.3.2 b.
3(x2− x+ 3)− 2(2x2+ x+ 5)+ (x2+ 5x+ 1) = 0

d. 2

[
−1 0

0 −1

]
+

[
1 −1
−1 1

]
+

[
1 1
1 1

]
=

[
0 0
0 0

]

f. 5
x2+x−6

+ 1
x2−5x+6

− 6
x2−9

= 0

6.3.3 b. Dependent: 1− sin2 x− cos2 x = 0

6.3.4 b. x 6=− 1
3

6.3.5 b. If
r(−1, 1, 1)+ s(1, −1, 1)+ t(1, 1, −1) = (0, 0, 0),
then −r+ s+ t = 0, r− s+ t = 0, and r− s− t = 0,
and this implies that r = s = t = 0. This proves
independence. To prove that they span R3, observe
that (0, 0, 1) = 1

2 [(−1, 1, 1)+(1, −1, 1)] so (0, 0, 1)
lies in span{(−1, 1, 1), (1, −1, 1), (1, 1, −1)}. The
proof is similar for (0, 1, 0) and (1, 0, 0).

d. If r(1+ x)+ s(x+ x2)+ t(x2 + x3)+ ux3 = 0, then
r = 0, r+ s = 0, s+ t = 0, and t + u = 0, so
r = s = t = u = 0. This proves independence. To show
that they span P3, observe that x2 = (x2 + x3)− x3,
x = (x+ x2)− x2, and 1 = (1+ x)− x, so
{1, x, x2, x3} ⊆ span{1+ x, x+ x2, x2 + x3, x3}.

6.3.6 b. {1, x+ x2}; dimension = 2

d. {1, x2}; dimension = 2

6.3.7 b.

{[
1 1
−1 0

]
,

[
1 0
0 1

]}
; dimension = 2

d.

{[
1 0
1 1

]
,

[
0 1
−1 0

]}
; dimension = 2

6.3.8 b.

{[
1 0
0 0

]
,

[
0 1
0 0

]}

6.3.10 b. dim V = 7

6.3.11 b. {x2− x, x(x2− x), x2(x2− x), x3(x2− x)};
dim V = 4

6.3.12 b. No. Any linear combination f of such
polynomials has f (0) = 0.

d. No.{[
1 0
0 1

]
,

[
1 1
0 1

]
,

[
1 0
1 1

]
,

[
0 1
1 1

]}
;

consists of invertible matrices.

f. Yes. 0u+ 0v+ 0w = 0 for every set {u, v, w}.
h. Yes. su+ t(u+ v) = 0 gives (s+ t)u+ tv = 0, whence

s+ t = 0 = t.

j. Yes. If ru+ sv = 0, then ru+ sv+ 0w = 0, so
r = 0 = s.



649

l. Yes. u+ v+w 6= 0 because {u, v, w} is independent.

n. Yes. If I is independent, then |I| ≤ n by the
fundamental theorem because any basis spans V .

6.3.15 If a linear combination of the subset vanishes, it is a
linear combination of the vectors in the larger set (coefficients
outside the subset are zero) so it is trivial.

6.3.19 Because {u, v} is linearly independent, su′+ tv′ = 0

is equivalent to

[
a c

b d

][
s

t

]
=

[
0
0

]
. Now apply

Theorem 2.4.5.

6.3.23 b. Independent.

d. Dependent. For example,
(u+ v)− (v+w)+ (w+ z)− (z+u) = 0.

6.3.26 If z is not real and az+ bz2 = 0, then
a+ bz = 0(z 6= 0). Hence if b 6= 0, then z =−ab−1 is real. So
b = 0, and so a = 0. Conversely, if z is real, say z = a, then
(−a)z+ 1z2 = 0, contrary to the independence of {z, z2}.

6.3.29 b. If Ux = 0, x 6= 0 in Rn, then Rx = 0 where
R 6= 0 is row 1 of U . If B ∈Mmn has each row equal to
R, then Bx 6= 0. But if B = ∑riAiU , then
Bx = ∑riAiUx = 0. So {AiU} cannot span Mmn.

6.3.33 b. If U ∩W = 0 and ru+ sw = 0, then ru =−sw

is in U ∩W , so ru = 0 = sw. Hence r = 0 = s because
u 6= 0 6= w. Conversely, if v 6= 0 lies in U ∩W , then
1v+(−1)v = 0, contrary to hypothesis.

6.3.36 b. dim On =
n
2 if n is even and dim On =

n+1
2 if n

is odd.

Section 6.4

6.4.1 b. {(0, 1, 1), (1, 0, 0), (0, 1, 0)}
d. {x2− x+ 1, 1, x}

6.4.2 b. Any three except {x2 + 3, x+ 2, x2− 2x− 1}

6.4.3 b. Add (0, 1, 0, 0) and (0, 0, 1, 0).

d. Add 1 and x3.

6.4.4 b. If z = a+ bi, then a 6= 0 and b 6= 0. If
rz+ sz = 0, then (r+ s)a = 0 and (r− s)b = 0. This
means that r+ s = 0 = r− s, so r = s = 0. Thus {z, z}
is independent; it is a basis because dim C= 2.

6.4.5 b. The polynomials in S have distinct degrees.

6.4.6 b. {4, 4x, 4x2, 4x3} is one such basis of P3.
However, there is no basis of P3 consisting of
polynomials that have the property that their
coefficients sum to zero. For if such a basis exists,
then every polynomial in P3 would have this property
(because sums and scalar multiples of such
polynomials have the same property).

6.4.7 b. Not a basis.

d. Not a basis.

6.4.8 b. Yes; no.

6.4.10 det A = 0 if and only if A is not invertible; if and only
if the rows of A are dependent (Theorem 5.2.3); if and only if
some row is a linear combination of the others (Lemma 6.4.2).

6.4.11 b. No. {(0, 1), (1, 0)} ⊆ {(0, 1), (1, 0), (1, 1)}.
d. Yes. See Exercise 6.3.15.

6.4.15 If v ∈U then W =U ; if v /∈U then
{v1, v2, . . . , vk, v} is a basis of W by the independent lemma.

6.4.18 b. Two distinct planes through the origin (U and
W ) meet in a line through the origin (U ∩W ).

6.4.23 b. The set {(1, 0, 0, 0, . . . ), (0, 1, 0, 0, 0, . . . ),
(0, 0, 1, 0, 0, . . .), . . .} contains independent subsets
of arbitrary size.

6.4.25 b.
Ru+Rw = {ru+ sw | r, s in R}= span{u, w}

Section 6.5

6.5.2 b. 3+ 4(x− 1)+ 3(x−1)2+(x− 1)3

d. 1+(x− 1)3

6.5.6 b. The polynomials are (x− 1)(x− 2),
(x− 1)(x− 3), (x− 2)(x− 3). Use a0 = 3, a1 = 2, and
a2 = 1.

6.5.7 b. f (x) =
3
2 (x− 2)(x− 3)− 7(x− 1)(x−3)+ 13

2 (x− 1)(x− 2).

6.5.10 b. If r(x− a)2 + s(x− a)(x− b)+ t(x−b)2 = 0,
then evaluation at x = a(x = b) gives t = 0(r = 0).
Thus s(x− a)(x− b) = 0, so s = 0. Use
Theorem 6.4.4.
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6.5.11 b. Suppose {p0(x), p1(x), . . . , pn−2(x)} is a
basis of Pn−2. We show that
{(x− a)(x− b)p0(x), (x− a)(x− b)p1(x), . . . , (x−
a)(x− b)pn−2(x)} is a basis of Un. It is a spanning set
by part (a), so assume that a linear combination
vanishes with coefficients r0, r1, . . . , rn−2. Then
(x− a)(x− b)[r0p0(x)+ · · ·+ rn−2 pn−2(x)] = 0, so
r0 p0(x)+ · · ·+ rn−2pn−2(x) = 0 by the Hint. This
implies that r0 = · · ·= rn−2 = 0.

Section 6.6

6.6.1 b. e1−x

d. e2x−e−3x

e2−e−3

f. 2e2x(1+ x)

h. eax−ea(2−x)

1−e2a

j. eπ−2x sinx

6.6.4 b. ce−x + 2, c a constant

6.6.5 b. ce−3x + de2x− x3

3

6.6.6 b. t =
3 ln( 1

2 )

ln( 4
5 )

= 9.32 hours

6.6.8 k = ( π
15 )

2 = 0.044

Supplementary Exercises for Chapter 6

Supplementary Exercise 6.2. b. If YA = 0, Y a row, we
show that Y = 0; thus AT (and hence A) is invertible.
Given a column c in Rn write c = ∑

i

ri(Avi) where

each ri is in R. Then Y c = ∑
i

riYAvi, so

Y = YIn = Y
[

e1 e2 · · · en

]
=[

Ye1 Y e2 · · · Y en

]
=
[

0 0 · · · 0
]
= 0,

as required.

Supplementary Exercise 6.4. We have null A⊆ null (AT A)
because Ax = 0 implies (AT A)x = 0. Conversely, if
(AT A)x = 0, then ‖Ax‖2 = (Ax)T (Ax) = xT AT Ax = 0. Thus
Ax = 0.

Section 7.1

7.1.1 b. T (v) = vA where A =




1 0 0
0 1 0
0 0 −1




d. T (A+B) = P(A+B)Q = PAQ+PBQ=
T (A)+T(B);T (rA) = P(rA)Q = rPAQ = rT (A)

f. T [(p+ q)(x)] = (p+ q)(0) = p(0)+ q(0) =
T [p(x)]+T [q(x)];
T [(rp)(x)] = (rp)(0) = r(p(0)) = rT [p(x)]

h. T (X +Y ) = (X +Y ) ·Z = X ·Z +Y ·Z = T (X)+T (Y ),
and T (rX) = (rX) ·Z = r(X ·Z) = rT (X)

j. If v = (v1, . . . , vn) and w = (w1, . . . , wn), then
T (v+w) = (v1 +w1)e1 + · · ·+(vn +wn)en = (v1e1 +
· · ·+ vnen)+ (w1e1 + · · ·+wnen) = T (v)+T (w)
T (av) = (av1)e+ · · ·+(avn)en = a(ve+ · · ·+ vnen) =
aT (v)

7.1.2 b. rank (A+B) 6= rank A+ rank B in general. For

example, A =

[
1 0
0 1

]
and B =

[
1 0
0 −1

]
.

d. T (0) = 0+u = u 6= 0, so T is not linear by
Theorem 7.1.1.

7.1.3 b. T (3v1 + 2v2) = 0

d. T

[
1
−7

]
=

[
−3

4

]

f. T (2− x+ 3x2) = 46

7.1.4 b. T (x, y) = 1
3 (x− y, 3y, x− y);

T (−1, 2) = (−1, 2, −1)

d. T

[
a b

c d

]
= 3a− 3c+ 2b

7.1.5 b. T (v) = 1
3 (7v− 9w), T (w) = 1

3 (v+ 3w)

7.1.8 b. T (v) = (−1)v for all v in V , so T is the scalar
operator −1.

7.1.12 If T (1) = v, then T (r) = T (r ·1) = rT (1) = rv for all
r in R.

7.1.15 b. 0 is in U = {v ∈V | T (v) ∈ P} because
T (0) = 0 is in P. If v and w are in U , then T (v) and
T (w) are in P. Hence T (v+w) = T (v)+T (w) is in P

and T (rv) = rT (v) is in P, so v+w and rv are in U .

7.1.18 Suppose rv+ sT (v) = 0. If s = 0, then r = 0 (because
v 6= 0). If s 6= 0, then T (v) = av where a =−s−1r. Thus
v = T 2(v) = T (av) = a2v, so a2 = 1, again because v 6= 0.
Hence a =±1. Conversely, if T (v) =±v, then {v, T (v)} is
certainly not independent.

7.1.21 b. Given such a T , write T (x) = a. If
p = p(x) = ∑n

i=0 aix
i, then T (p) = ∑aiT (x

i) =

∑ai [T (x)]
i = ∑aia

i = p(a) = Ea(p). Hence T = Ea.

Section 7.2
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7.2.1 b.






−3
7
1
0


 ,




1
1
0
−1








;








1
0
1


 ,




0
1
−1





; 2, 2

d.







−1

2
1





;








1
0
1
1


 ,




0
1
−1
−2








; 2, 1

7.2.2 b. {x2− x}; {(1, 0), (0, 1)}
d. {(0, 0, 1)}; {(1, 1, 0, 0), (0, 0, 1, 1)}

f.

{[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
; {1}

h. {(1, 0, 0, . . . , 0, −1), (0, 1, 0, . . . , 0, −1),
. . . , (0, 0, 0, . . . , 1, −1)}; {1}

j.

{[
0 1
0 0

]
,

[
0 0
0 1

]}
;

{[
1 1
0 0

]
,

[
0 0
1 1

]}

7.2.3 b. T (v) = 0 = (0, 0) if and only if P(v) = 0 and
Q(v) = 0; that is, if and only if v is in ker P∩ ker Q.

7.2.4 b. ker T = span{(−4, 1, 3)};
B = {(1, 0, 0), (0, 1, 0), (−4, 1, 3)},
im T = span{(1, 2, 0, 3), (1, −1, −3, 0)}

7.2.6 b. Yes. dim ( im T ) = 5− dim (ker T ) = 3, so
im T =W as dim W = 3.

d. No. T = 0 : R2→R2

f. No. T : R2→R2, T (x, y) = (y, 0). Then
ker T = im T

h. Yes. dim V = dim (ker T )+ dim ( im T )≤
dim W + dim W = 2 dim W

j. No. Consider T : R2→ R2 with T (x, y) = (y, 0).

l. No. Same example as (j).

n. No. Define T : R2→R2 by T (x, y) = (x, 0). If
v1 = (1, 0) and v2 = (0, 1), then R2 = span{v1, v2}
but R2 6= span{T (v1), T (v2)}.

7.2.7 b. Given w in W , let w = T (v), v in V , and write
v = r1v1 + · · ·+ rnvn. Then
w = T (v) = r1T (v1)+ · · ·+ rnT (vn).

7.2.8 b. im T = {∑i rivi | ri in R}= span{vi}.

7.2.10 T is linear and onto. Hence 1 = dim R=
dim ( im T ) = dim (Mnn)− dim (ker T ) = n2− dim (ker T ).

7.2.12 The condition means ker (TA)⊆ ker (TB), so
dim [ker (TA)]≤ dim [ker (TB)]. Then Theorem 7.2.4 gives
dim [ im (TA)]≥ dim [ im (TB)]; that is, rank A≥ rank B.

7.2.15 b. B = {x− 1, . . . , xn− 1} is independent
(distinct degrees) and contained in ker T . Hence B is a
basis of ker T by (a).

7.2.20 Define T : Mnn→Mnn by T (A) = A−AT for all A in
Mnn. Then ker T =U and im T =V by Example 7.2.3, so
the dimension theorem gives
n2 = dim Mnn = dim (U)+ dim (V ).

7.2.22 Define T : Mnn→Rn by T (A) = Ay for all A in Mnn.
Then T is linear with ker T =U , so it is enough to show that
T is onto (then dim U = n2− dim ( im T ) = n2− n). We have

T (0) = 0. Let y =
[

y1 y2 · · · yn

]T 6= 0 in Rn. If yk 6= 0

let ck = y−1
k y, and let c j = 0 if j 6= k. If

A =
[

c1 c2 · · · cn

]
, then

T (A) = Ay = y1c1 + · · ·+ ykck + · · ·+ yncn = y. This shows
that T is onto, as required.

7.2.29 b. By Lemma 6.4.2, let {u1, . . . , um, . . . , un} be
a basis of V where {u1, . . . , um} is a basis of U . By
Theorem 7.1.3 there is a linear transformation
S : V →V such that S(ui) = ui for 1≤ i≤ m, and
S(ui) = 0 if i > m. Because each ui is in im S,
U ⊆ im S. But if S(v) is in im S, write
v = r1u1 + · · ·+ rmum + · · ·+ rnun. Then
S(v) = r1S(u1)+ · · ·+ rmS(um) = r1u1 + · · ·+ rmum is
in U . So im S⊆U .

Section 7.3

7.3.1 b. T is onto because T (1, −1, 0) = (1, 0, 0),
T (0, 1, −1) = (0, 1, 0), and T (0, 0, 1) = (0, 0, 1).
Use Theorem 7.3.3.

d. T is one-to-one because 0 = T (X) =UXV implies that
X = 0 (U and V are invertible). Use Theorem 7.3.3.

f. T is one-to-one because 0 = T (v) = kv implies that
v = 0 (because k 6= 0). T is onto because T

(
1
k
v
)
= v

for all v. [Here Theorem 7.3.3 does not apply if dim V

is not finite.]

h. T is one-to-one because T (A) = 0 implies AT = 0,
whence A = 0. Use Theorem 7.3.3.

7.3.4 b. ST (x, y, z) = (x+ y, 0, y+ z),
T S(x, y, z) = (x, 0, z)

d. ST

[
a b

c d

]
=

[
c 0
0 d

]
,

T S

[
a b

c d

]
=

[
0 a

d 0

]
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7.3.5 b. T 2(x, y) = T (x+ y, 0) = (x+ y, 0) = T (x, y).
Hence T 2 = T .

d. T 2

[
a b

c d

]
= 1

2 T

[
a+ c b+ d

a+ c b+ d

]
=

1
2

[
a+ c b+ d

a+ c b+ d

]

7.3.6 b. No inverse; (1, −1, 1, −1) is in ker T .

d. T−1

[
a b

c d

]
= 1

5

[
3a− 2c 3b− 2d

a+ c b+ d

]

f. T−1(a, b, c) = 1
2

[
2a+(b− c)x− (2a−b− c)x2

]

7.3.7 b.
T 2(x, y) = T (ky− x, y) = (ky− (ky− x), y) = (x, y)

d. T 2(X) = A2X = IX = X

7.3.8 b. T 3(x, y, z, w) = (x, y, z, −w) so
T 6(x, y, z, w) = T 3

[
T 3(x, y, z, w)

]
= (x, y, z, w).

Hence T−1 = T 5. So
T−1(x, y, z, w) = (y− x, −x, z, −w).

7.3.9 b. T−1(A) =U−1A.

7.3.10 b. Given u in U , write u = S(w), w in W

(because S is onto). Then write w = T (v), v in V (T is
onto). Hence u = ST (v), so ST is onto.

7.3.12 b. For all v in V , (RT )(v) = R [T (v)] is in im (R).

7.3.13 b. Given w in W , write w = ST (v), v in V (ST is
onto). Then w = S [T (v)], T (v) in U , so S is onto. But
then im S =W , so dim U =
dim (ker S)+ dim ( im S)≥ dim ( im S) = dim W .

7.3.16 {T (e1), T (e2), . . . , T (er)} is a basis of im T by
Theorem 7.2.5. So T : span{e1, . . . , er}→ im T is an
isomorphism by Theorem 7.3.1.

7.3.19 b. T (x, y) = (x, y+ 1)

7.3.24 b.
T S[x0, x1, . . .) = T [0, x0, x1, . . .) = [x0, x1, . . . ), so
T S = 1V . Hence T S is both onto and one-to-one, so T

is onto and S is one-to-one by Exercise 7.3.13. But
[1, 0, 0, . . .) is in ker T while [1, 0, 0, . . . ) is not in
im S.

7.3.26 b. If T (p) = 0, then p(x) =−xp′(x). We write
p(x) = a0 + a1x+ a2x2 + · · ·+ anxn, and this becomes
a0 + a1x+ a2x2 + · · ·+ anxn =
−a1x− 2a2x2−·· ·− nanxn. Equating coefficients
yields a0 = 0, 2a1 = 0, 3a2 = 0, . . . , (n+ 1)an = 0,
whence p(x) = 0. This means that ker T = 0, so T is
one-to-one. But then T is an isomorphism by
Theorem 7.3.3.

7.3.27 b. If ST = 1V for some S, then T is onto by
Exercise 7.3.13. If T is onto, let {e1, . . . , er, . . . , en}
be a basis of V such that {er+1, . . . , en} is a basis of
ker T . Since T is onto, {T (e1), . . . , T (er)} is a basis
of im T =W by Theorem 7.2.5. Thus S : W →V is an
isomorphism where by S{T (ei)] = ei for
i = 1, 2, . . . , r. Hence T S[T (ei)] = T (ei) for each i,
that is T S[T(ei)] = 1W [T (ei)]. This means that
T S = 1W because they agree on the basis
{T (e1), . . . , T (er)} of W .

7.3.28 b. If T = SR, then every vector T (v) in im T has
the form T (v) = S[R(v)], whence im T ⊆ im S. Since
R is invertible, S = TR−1 implies im S ⊆ im T .

Conversely, assume that im S = im T . Then
dim (ker S) = dim (ker T ) by the dimension theorem.
Let {e1, . . . , er, er+1, . . . , en} and
{f1, . . . , fr, fr+1, . . . , fn} be bases of V such that
{er+1, . . . , en} and {fr+1, . . . , fn} are bases of ker S

and ker T , respectively. By Theorem 7.2.5,
{S(e1), . . . , S(er)} and {T (f1), . . . , T (fr)} are both
bases of im S = im T . So let g1, . . . , gr in V be such
that S(ei) = T (gi) for each i = 1, 2, . . . , r. Show that

B = {g1, . . . , gr, fr+1, . . . , fn} is a basis of V .

Then define R : V →V by R(gi) = ei for
i = 1, 2, . . . , r, and R(f j) = e j for j = r+ 1, . . . , n.
Then R is an isomorphism by Theorem 7.3.1. Finally
SR = T since they have the same effect on the basis B.

7.3.29 Let B = {e1, . . . , er, er+1, . . . , en} be a basis of V

with {er+1, . . . , en} a basis of ker T . If
{T (e1), . . . , T (er), wr+1, . . . , wn} is a basis of V , define S by
S[T(ei)] = ei for 1≤ i≤ r, and S(w j) = e j for r+ 1≤ j ≤ n.
Then S is an isomorphism by Theorem 7.3.1, and
TST (ei) = T (ei) clearly holds for 1≤ i≤ r. But if i≥ r+ 1,
then T (ei) = 0 = TST (ei), so T = T ST by Theorem 7.1.2.

Section 7.5

7.5.1 b. {[1), [2n), [(−3)n)};
xn =

1
20 (15+ 2n+3+(−3)n+1)

7.5.2 b. {[1), [n), [(−2)n)}; xn =
1
9 (5− 6n+(−2)n+2)

d. {[1), [n), [n2)}; xn = 2(n− 1)2− 1

7.5.3 b. {[an), [bn)}
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7.5.4 b. [1, 0, 0, 0, 0, . . .), [0, 1, 0, 0, 0, . . . ),
[0, 0, 1, 1, 1, . . . ), [0, 0, 1, 2, 3, . . .)

7.5.7 By Remark 2,

[in +(−i)n) = [2, 0, −2, 0, 2, 0, −2, 0, . . .)

[i(in− (−i)n)) = [0, −2, 0, 2, 0, −2, 0, 2, . . . )

are solutions. They are linearly independent and so are a
basis.

Section 8.1

8.1.1 b. {(2, 1), 3
5(−1, 2)}

d. {(0, 1, 1), (1, 0, 0), (0, −2, 2)}

8.1.2 b. x = 1
182(271, −221, 1030)+ 1

182 (93, 403, 62)

d. x = 1
4(1, 7, 11, 17)+ 1

4(7, −7, −7, 7)

f. x =
1
12(5a−5b+c−3d, −5a+5b−c+3d, a−b+11c+

3d, −3a+ 3b+ 3c+3d)+ 1
12(7a+ 5b− c+ 3d, 5a+

7b+ c− 3d, −a+ b+ c− 3d, 3a− 3b− 3c+9d)

8.1.3 a. 1
10 (−9, 3, −21, 33) = 3

10(−3, 1, −7, 11)

c. 1
70(−63, 21, −147, 231) = 3

10 (−3, 1, −7, 11)

8.1.4 b. {(1, −1, 0), 1
2(−1, −1, 2)};

projU x = (1, 0, −1)

d. {(1, −1, 0, 1), (1, 1, 0, 0), 1
3(−1, 1, 0, 2)};

projU x = (2, 0, 0, 1)

8.1.5 b. U⊥ = span{(1, 3, 1, 0), (−1, 0, 0, 1)}

8.1.8 Write p = projU x. Then p is in U by definition. If x is
U , then x−p is in U . But x−p is also in U⊥ by
Theorem 8.1.3, so x−p is in U ∩U⊥ = {0}. Thus x = p.

8.1.10 Let {f1, f2, . . . , fm} be an orthonormal basis of U . If x

is in U the expansion theorem gives
x = (x · f1)f1 +(x · f2)f2 + · · ·+(x · fm)fm = projU x.

8.1.14 Let {y1, y2, . . . , ym} be a basis of U⊥, and let A be
the n× n matrix with rows yT

1 , yT
2 , . . . , yT

m, 0, . . . , 0. Then
Ax = 0 if and only if yi ·x = 0 for each i = 1, 2, . . . , m; if and
only if x is in U⊥⊥ =U .

8.1.17 d. ET = AT [(AAT )−1]T (AT )T =
AT [(AAT )T ]−1A = AT [AAT ]−1A = E

E2 = AT (AAT )−1AAT (AAT )−1A = AT (AAT )−1A = E

Section 8.2

8.2.1 b. 1
5

[
3 −4
4 3

]

d. 1√
a2+b2

[
a b

−b a

]

f.




2√
6

1√
6
− 1√

6
1√
3
− 1√

3
1√
3

0 1√
2

1√
2




h. 1
7




2 6 −3
3 2 6
−6 3 2




8.2.2 We have PT = P−1; this matrix is lower triangular (left
side) and also upper triangular (right side–see Lemma 2.7.1),
and so is diagonal. But then P = PT = P−1, so P2 = I. This
implies that the diagonal entries of P are all ±1.

8.2.5 b. 1√
2

[
1 −1
1 1

]

d. 1√
2




0 1 1√
2 0 0
0 1 −1




f. 1
3
√

2




2
√

2 3 1√
2 0 −4

2
√

2 −3 1


 or 1

3




2 −2 1
1 2 2
2 1 −2




h. 1
2




1 −1
√

2 0
−1 1

√
2 0

−1 −1 0
√

2
1 1 0

√
2




8.2.6 P = 1√
2k




c
√

2 a a

0 k −k

−a
√

2 c c




8.2.10 b. y1 =
1√
5
(−x1 + 2x2) and y2 =

1√
5
(2x1 + x2);

q =−3y2
1 + 2y2

2.

8.2.11 c. ⇒ a. By Theorem 8.2.1 let
P−1AP = D = diag (λ1, . . . , λn) where the λi are the
eigenvalues of A. By c. we have λi =±1 for each i,
whence D2 = I. But then
A2 = (PDP−1)2 = PD2P−1 = I. Since A is symmetric
this is AAT = I, proving a.

8.2.13 b. If B = PT AP = P−1, then
B2 = PT APPT AP = PT A2P.
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8.2.15 If x and y are respectively columns i and j of In, then
xT AT y = xT Ay shows that the (i, j)-entries of AT and A are
equal.

8.2.18 b. det

[
cosθ −sinθ
sin θ cosθ

]
= 1

and det

[
cosθ sin θ
sinθ −cosθ

]
=−1

[Remark: These are the only 2× 2 examples.]

d. Use the fact that P−1 = PT to show that
PT (I−P) =−(I−P)T . Now take determinants and
use the hypothesis that det P 6= (−1)n.

8.2.21 We have AAT = D, where D is diagonal with main
diagonal entries ‖R1‖2, . . . , ‖Rn‖2. Hence A−1 = AT D−1,
and the result follows because D−1 has diagonal entries
1/‖R1‖2, . . . , 1/‖Rn‖2.

8.2.23 b. Because I−A and I+A commute,
PPT = (I−A)(I+A)−1[(I+A)−1]T (I−A)T =
(I−A)(I+A)−1(I−A)−1(I+A) = I.

Section 8.3

8.3.1 b. U =
√

2
2

[
2 −1
0 1

]

d. U = 1
30




60
√

5 12
√

5 15
√

5
0 6

√
30 10

√
30

0 0 5
√

15




8.3.2 b. If λ k > 0, k odd, then λ > 0.

8.3.4 If x 6= 0, then xT Ax > 0 and xT Bx > 0. Hence
xT (A+B)x = xT Ax+ xT Bx > 0 and xT (rA)x = r(xT Ax)> 0,
as r > 0.

8.3.6 Let x 6= 0 in Rn. Then xT (UT AU)x = (Ux)T A(Ux)> 0
provided Ux 6= 0. But if U =

[
c1 c2 . . . cn

]
and

x = (x1, x2, . . . , xn), then Ux = x1c1 + x2c2 + · · ·+ xncn 6= 0

because x 6= 0 and the ci are independent.

8.3.10 Let PT AP = D = diag (λ1, . . . , λn) where PT = P.
Since A is positive definite, each eigenvalue λi > 0. If
B = diag (

√
λ1, . . . ,

√
λn) then B2 = D, so

A = PB2PT = (PBPT )2. Take C = PBPT . Since C has
eigenvalues

√
λi > 0, it is positive definite.

8.3.12 b. If A is positive definite, use Theorem 8.3.1 to
write A =UTU where U is upper triangular with
positive diagonal D. Then A = (D−1U)T D2(D−1U) so
A = L1D1U1 is such a factorization if U1 = D−1U ,
D1 = D2, and L1 =UT

1 . Conversely, let

AT = A = LDU be such a factorization. Then
UT DT LT = AT = A = LDU , so L =UT by (a). Hence
A = LDLT =V TV where V = LD0 and D0 is diagonal
with D2

0 = D (the matrix D0 exists because D has
positive diagonal entries). Hence A is symmetric, and
it is positive definite by Example 8.3.1.

Section 8.4

8.4.1 b. Q = 1√
5

[
2 −1
1 2

]
, R = 1√

5

[
5 3
0 1

]

d. Q = 1√
3




1 1 0
−1 0 1

0 1 1
1 −1 1


,

R = 1√
3




3 0 −1
0 3 1
0 0 2




8.4.2 If A has a QR-factorization, use (a). For the converse
use Theorem 8.4.1.

Section 8.5

8.5.1 b. Eigenvalues 4, −1; eigenvectors

[
2
−1

]
,

[
1
−3

]
; x4 =

[
409
−203

]
; r3 = 3.94

d. Eigenvalues λ1 =
1
2 (3+

√
13), λ2 =

1
2 (3−

√
13);

eigenvectors

[
λ1

1

]
,

[
λ2

1

]
; x4 =

[
142
43

]
;

r3 = 3.3027750 (The true value is λ1 = 3.3027756, to
seven decimal places.)

8.5.2 b. Eigenvalues λ1 =
1
2 (3+

√
13) = 3.302776,

λ2 =
1
2 (3−

√
13) =−0.302776

A1 =

[
3 1
1 0

]
, Q1 =

1√
10

[
3 −1
1 3

]
,

R1 =
1√
10

[
10 3

0 −1

]

A2 =
1

10

[
33 −1
−1 −3

]
,

Q2 =
1√

1090

[
33 1
−1 33

]
,

R2 =
1√

1090

[
109 −3

0 −10

]

A3 =
1

109

[
360 1

1 −33

]

=

[
3.302775 0.009174
0.009174 −0.302775

]
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8.5.4 Use induction on k. If k = 1, A1 = A. In general
Ak+1 = Q−1

k AkQk = QT
k AkQk, so the fact that AT

k = Ak implies
AT

k+1 = Ak+1. The eigenvalues of A are all real (Theorem
5.5.5), so the Ak converge to an upper triangular matrix T .
But T must also be symmetric (it is the limit of symmetric
matrices), so it is diagonal.

Section 8.6

8.6.4 b. tσ1, . . . , tσr.

8.6.7 If A =UΣV T then Σ is invertible, so A−1 =VΣ−1UT is
a SVD.

8.6.8 b. First AT A = In so ΣA = In.

A = 1√
2

[
1 1
1 −1

][
1 0
0 1

]
1√
2

[
1 1
−1 1

]

= 1√
2

[
1 −1
1 1

]
1√
2

[
−1 1

1 1

]

=

[
−1 0

0 1

]

8.6.9 b.
A = F

= 1
5

[
3 4
4 −3

][
20 0 0 0
0 10 0 0

]
1
2




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 1 −1




8.6.13 b. If x ∈ Rn then
xT (G+H)x = xT Gx+ xT Hx≥ 0+ 0 = 0.

8.6.17 b.

[ 1
4 0 1

4
− 1

4 0 − 1
4

]

Section 8.7

8.7.1 b.
√

6

d.
√

13

8.7.2 b. Not orthogonal

d. Orthogonal

8.7.3 b. Not a subspace. For example,
i(0, 0, 1) = (0, 0, i) is not in U .

d. This is a subspace.

8.7.4 b. Basis {(i, 0, 2), (1, 0, −1)}; dimension 2

d. Basis {(1, 0, −2i), (0, 1, 1− i)}; dimension 2

8.7.5 b. Normal only

d. Hermitian (and normal), not unitary

f. None

h. Unitary (and normal); hermitian if and only if z is real

8.7.8 b. U = 1√
14

[
−2 3− i

3+ i 2

]
,

UHAU =

[
−1 0

0 6

]

d. U = 1√
3

[
1+ i 1
−1 1− i

]
, UHAU =

[
1 0
0 4

]

f. U = 1√
3



√

3 0 0
0 1+ i 1
0 −1 1− i


,

UHAU =




1 0 0
0 0 0
0 0 3




8.7.10 b. ‖λ Z‖2 = 〈λ Z, λ Z〉= λ λ〈Z, Z〉= |λ |2‖Z‖2

8.7.11 b. If the (k, k)-entry of A is akk, then the
(k, k)-entry of A is akk so the (k, k)-entry of
(A)T = AH is akk. This equals a, so akk is real.

8.7.14 b. Show that (B2)H = BHBH = (−B)(−B) = B2;
(iB)H = iBH = (−i)(−B) = iB.

d. If Z = A+B, as given, first show that ZH = A−B, and
hence that A = 1

2 (Z +ZH) and B = 1
2(Z−ZH).

8.7.16 b. If U is unitary, (U−1)−1 = (UH)−1 = (U−1)H ,
so U−1 is unitary.

8.7.18 b. H =

[
1 i

−i 0

]
is hermitian but

iH =

[
i −1
1 0

]
is not.

8.7.21 b. Let U =

[
a b

c d

]
be real and invertible, and

assume that U−1AU =

[
λ µ
0 v

]
. Then

AU =U

[
λ µ
0 v

]
, and first column entries are

c = aλ and −a = cλ . Hence λ is real (c and a are
both real and are not both 0), and (1+λ 2)a = 0. Thus
a = 0, c = aλ = 0, a contradiction.

Section 8.8

8.8.1 b. 1−1 = 1, 9−1 = 9, 3−1 = 7, 7−1 = 3.
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d. 21 = 2, 22 = 4, 23 = 8, 24 = 16 = 6, 25 = 12 = 2,
26 = 22 . . . so a = 2k if and only if a = 2, 4, 6, 8.

8.8.2 b. If 2a = 0 in Z10, then 2a = 10k for some integer
k. Thus a = 5k.

8.8.3 b. 11−1 = 7 in Z19.

8.8.6 b. det A = 15− 24= 1+ 4 = 5 6= 0 in Z7, so A−1

exists. Since 5−1 = 3 in Z7, we have

A−1 = 3

[
3 −6
3 5

]
= 3

[
3 1
3 5

]
=

[
2 3
2 1

]
.

8.8.7 b. We have 5 ·3 = 1 in Z7 so the reduction of the
augmented matrix is:

[
3 1 4 3
4 3 1 1

]
→
[

1 5 6 1
4 3 1 1

]

→
[

1 5 6 1
0 4 5 4

]

→
[

1 5 6 1
0 1 3 1

]

→
[

1 0 5 3
0 1 3 1

]
.

Hence x = 3+ 2t, y = 1+ 4t, z = t; t in Z7.

8.8.9 b. (1+ t)−1 = 2+ t.

8.8.10 b. The minimum weight of C is 5, so it detects 4
errors and corrects 2 errors.

8.8.11 b. {00000, 01110, 10011, 11101}.

8.8.12 b. The code is
{0000000000, 1001111000, 0101100110,
0011010111, 1100011110, 1010101111,
0110110001, 1111001001}. This has minimum
distance 5 and so corrects 2 errors.

8.8.13 b. {00000, 10110, 01101, 11011} is a
(5, 2)-code of minimal weight 3, so it corrects single
errors.

8.8.14 b. G =
[

1 u
]

where u is any nonzero vector

in the code. H =

[
u

In−1

]
.

Section 8.9

8.9.1 b. A =

[
1 0
0 2

]

d. A =




1 3 2
3 1 −1
2 −1 3




8.9.2 b. P = 1√
2

[
1 1
1 −1

]
;

y = 1√
2

[
x1 + x2

x1− x2

]
;

q = 3y2
1− y2

2; 1, 2

d. P = 1
3




2 2 −1
2 −1 2
−1 2 2


;

y = 1
3




2x1 + 2x2 − x3

2x1 − x2 + 2x3

−x1 + 2x2 + 2x3


;

q = 9y2
1 + 9y2

2− 9y2
3; 2, 3

f. P = 1
3



−2 1 2

2 2 1
1 −2 2


;

y = 1
3



−2x1 + 2x2 + x3

x1 + 2x2 − 2x3

2x1 + x2 + 2x3


;

q = 9y2
1 + 9y2

2; 2, 2

h. P = 1√
6



−
√

2
√

3 1√
2 0 2√
2
√

3 −1


;

y = 1√
6



−
√

2x1 +
√

2x2 +
√

2x3√
3x1 +

√
3x3

x1 + 2x2 − x3


;

q = 2y2
1 + y2

2− y2
3; 2, 3

8.9.3 b. x1 =
1√
5
(2x− y), y1 =

1√
5
(x+2y); 4x2

1− y2
1 = 2;

hyperbola

d. x1 =
1√
5
(x+ 2y), y1 =

1√
5
(2x− y); 6x2

1 + y2
1 = 1;

ellipse

8.9.4 b. Basis {(i, 0, i), (1, 0, −1)}, dimension 2

d. Basis {(1, 0, −2i), (0, 1, 1− i)}, dimension 2

8.9.7 b. 3y2
1 + 5y2

2− y2
3− 3
√

2y1 +
11
3

√
3y2 +

2
3

√
6y3 = 7

y1 =
1√
2
(x2 + x3), y2 =

1√
3
(x1 + x2− x3),

y3 =
1√
6
(2x1− x2 + x3)

8.9.9 b. By Theorem 8.3.3 let A =UTU where U is
upper triangular with positive diagonal entries. Then
q = xT (UTU)x = (Ux)TUx = ‖Ux‖2.

Section 9.1

9.1.1 b.




a

2b− c

c− b
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d. 1
2




a− b

a+ b

−a+ 3b+ 2c




9.1.2 b. Let v = a+ bx+ cx2. Then
CD[T (v)] = MDB(T )CB(v) =
[

2 1 3
−1 0 −2

]


a

b

c


=

[
2a+ b+ 3c

−a− 2c

]

Hence

T (v) = (2a+ b+ 3c)(1, 1)+ (−a− 2c)(0, 1)

= (2a+ b+ 3c, a+ b+ c).

9.1.3 b.




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




d.




1 1 1
0 1 2
0 0 1




9.1.4 b.




1 2
5 3
4 0
1 1


;

CD[T (a, b)] =




1 2
5 3
4 0
1 1



[

b

a− b

]
=




2a− b

3a+ 2b

4b

a




d. 1
2

[
1 1 −1
1 1 1

]
; CD[T (a+ bx+ cx2)] =

1
2

[
1 1 −1
1 1 1

]


a

b

c


= 1

2

[
a+ b− c

a+ b+ c

]

f.




1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1


; CD

(
T

[
a b

c d

])
=




1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1







a

b

c

d


=




a

b+ c

b+ c

d




9.1.5 b. MED(S)MDB(T ) =

[
1 1 0 0
0 0 1 −1

]



1 1 0
0 1 1
1 0 1
−1 1 0


=

[
1 2 1
2 −1 1

]
= MEB(ST )

d. MED(S)MDB(T ) =
[

1 −1 0
0 0 1

]


1 −1 0
−1 0 1

0 1 0


=

[
2 −1 −1
0 1 0

]
= MEB(ST )

9.1.7 b.
T−1(a, b, c) = 1

2(b+ c− a, a+ c− b, a+ b− c);

MDB(T ) =




0 1 1
1 0 1
1 1 0


;

MBD(T
−1) = 1

2



−1 1 1

1 −1 1
1 1 −1




d. T−1(a, b, c) = (a− b)+ (b− c)x+ cx2;

MDB(T ) =




1 1 1
0 1 1
0 0 1


;

MBD(T
−1) =




1 −1 0
0 1 −1
0 0 1




9.1.8 b. MDB(T
−1) = [MBD(T )]

−1 =


1 1 1 0
0 1 1 0
0 0 1 0
0 0 0 1




−1

=




1 −1 0 0
0 1 −1 0
0 0 1 0
0 0 0 1


.

Hence CB[T
−1(a, b, c, d)] =

MBD(T
−1)CD(a, b, c, d) =



1 −1 0 0
0 1 −1 0
0 0 1 0
0 0 0 1







a

b

c

d


=




a− b

b− c

c

d


, so

T−1(a, b, c, d) =

[
a− b b− c

c d

]
.

9.1.12 Have CD[T (e j)] = column j of In. Hence
MDB(T ) =

[
CD[T (e1)] CD[T (e2)] · · · CD[T (en)]

]
= In.

9.1.16 b. If D is the standard basis of Rn+1 and
B = {1, x, x2, . . . , xn}, then MDB(T ) =[

CD[T (1)] CD[T (x)] · · · CD[T (x
n)]

]
=



1 a0 a2
0 · · · an

0
1 a1 a2

1 · · · an
1

1 a2 a2
2 · · · an

2
...

...
...

...
1 an a2

n · · · an
n




.

This matrix has nonzero determinant by
Theorem 3.2.7 (since the ai are distinct), so T is an
isomorphism.
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9.1.20 d. [(S+T )R](v) = (S+T )(R(v)) = S[(R(v))]+
T [(R(v))] = SR(v)+TR(v) = [SR+TR](v) holds for
all v in V . Hence (S+T)R = SR+TR.

9.1.21 b. If w lies in im (S+T), then w = (S+T )(v)
for some v in V . But then w = S(v)+T (v), so w lies
in im S+ im T .

9.1.22 b. If X ⊆ X1, let T lie in X0
1 . Then T (v) = 0 for

all v in X1, whence T (v) = 0 for all v in X . Thus T is
in X0 and we have shown that X0

1 ⊆ X0.

9.1.24 b. R is linear means Sv+w = Sv + Sw and
Sav = aSv. These are proved as follows: Sv+w(r) =
r(v+w) = rv+ rw = Sv(r)+ Sw(r) = (Sv+ Sw)(r),
and Sav(r) = r(av) = a(rv) = (aSv)(r) for all r in R.
To show R is one-to-one, let R(v) = 0. This means
Sv = 0 so 0 = Sv(r) = rv for all r. Hence v = 0 (take
r = 1). Finally, to show R is onto, let T lie in L(R, V ).
We must find v such that R(v) = T , that is Sv = T . In
fact, v = T (1) works since then
T (r) = T (r ·1) = rT (1) = rv = Sv(r) holds for all r,
so T = Sv.

9.1.25 b. Given T : R→V , let T (1) = a1b1 + · · ·+anbn,
ai in R. For all r in R, we have
(a1S1 + · · ·+ anSn)(r) = a1S1(r)+ · · ·+ anSn(r) =
(a1rb1 + · · ·+ anrbn) = rT (1) = T (r). This shows
that a1S1 + · · ·+ anSn = T .

9.1.27 b. Write v = v1b1 + · · ·+ vnbn, v j in R. Apply Ei

to get Ei(v) = v1Ei(b1)+ · · ·+ vnEi(bn) = vi by the
definition of the Ei.

Section 9.2

9.2.1 b. 1
2



−3 −2 1

2 2 0
0 0 2




9.2.4 b. PB←D =




1 1 −1
1 −1 0
1 0 1


,

PD←B = 1
3




1 1 1
1 −2 1
−1 −1 2


,

PE←D =




1 0 1
1 −1 0
1 1 −1


, PE←B =




0 0 1
0 1 0
1 0 0




9.2.5 b. A = PD←B, where
B = {(1, 2, −1), (2, 3, 0), (1, 0, 2)}. Hence

A−1 = PB←D =




6 −4 −3
−4 3 2

3 −2 −1




9.2.7 b. P =




1 1 0
0 1 2
−1 0 1




9.2.8 b. B =

{[
3
7

]
,

[
2
5

]}

9.2.9 b. cT (x) = x2− 6x− 1

d. cT (x) = x3 + x2− 8x− 3

f. cT (x) = x4

9.2.12 Define TA : Rn→Rn by TA(x) = Ax for all x in Rn. If
null A = null B, then ker (TA) = null A = null B = ker (TB)
so, by Exercise 7.3.28, TA = STB for some isomorphism
S : Rn→Rn. If B0 is the standard basis of Rn, we have
A = MB0(TA) = MB0(STB) = MB0(S)MB0(TB) =UB where
U = MB0(S) is invertible by Theorem 9.2.1. Conversely, if
A =UB with U invertible, then Ax = 0 if and only Bx = 0, so
null A = null B.

9.2.16 b. Showing S(w+ v) = S(w)+ S(v) means
MB(Tw+v) = MB(Tw)+MB(Tv). If B = {b1, b2}, then
column j of MB(Tw+v) is
CB[(w+ v)b j] =CB(wb j + vb j) =CB(wb j)+CB(vb j)
because CB is linear. This is column j of
MB(Tw)+MB(Tv). Similarly MB(Taw) = aMB(Tw); so
S(aw) = aS(w). Finally TwTv = Twv so
S(wv) = MB(TwTv) = MB(Tw)MB(Tv) = S(w)S(v) by
Theorem 9.2.1.

Section 9.3

9.3.2 b. T (U)⊆U , so T [T (U)]⊆ T (U).

9.3.3 b. If v is in S(U), write v = S(u), u in U . Then
T (v) = T [S(u)] = (T S)(u) = (ST )(u) = S[T (u)] and
this lies in S(U) because T (u) lies in U (U is
T -invariant).

9.3.6 Suppose U is T -invariant for every T . If U 6= 0, choose
u 6= 0 in U . Choose a basis B = {u, u2, . . . , un} of V

containing u. Given any v in V , there is (by Theorem 7.1.3) a
linear transformation T : V →V such that T (u) = v,
T (u2) = · · ·= T (un) = 0. Then v = T (u) lies in U because U

is T -invariant. This shows that V =U .



659

9.3.8 b.
T (1− 2x2) = 3+ 3x− 3x2 = 3(1− 2x2)+ 3(x+ x2)
and T (x+ x2) =−(1− 2x2), so both are in U . Hence
U is T -invariant by Example 9.3.3. If
B = {1− 2x2, x+ x2, x2} then

MB(T ) =




3 −1 1
3 0 1
0 0 3


, so

cT (x) = det




x− 3 1 −1
−3 x −1
0 0 x− 3


=

(x− 3) det

[
x− 3 1
−3 x

]
= (x− 3)(x2− 3x+ 3)

9.3.9 b. Suppose Ru is TA-invariant where u 6= 0. Then
TA(u) = ru for some r in R, so (rI−A)u = 0. But
det (rI−A) = (r− cosθ )2 + sin2θ 6= 0 because
0 < θ < π . Hence u = 0, a contradiction.

9.3.10 b. U = span{(1, 1, 0, 0), (0, 0, 1, 1)} and
W = span{(1, 0, 1, 0), (0, 1, 0, −1)}, and these
four vectors form a basis of R4. Use Example 9.3.9.

d. U = span

{[
1 1
0 0

]
,

[
0 0
1 1

]}
and

W = span

{[
1 0
−1 0

]
,

[
0 1
0 1

]}
and these

vectors are a basis of M22. Use Example 9.3.9.

9.3.14 The fact that U and W are subspaces is easily verified
using the subspace test. If A lies in U ∩V , then A = AE = 0;
that is, U ∩V = 0. To show that M22 =U +V , choose any A

in M22. Then A = AE +(A−AE), and AE lies in U [because
(AE)E = AE2 = AE], and A−AE lies in W [because
(A−AE)E = AE−AE2 = 0].

9.3.17 b. By (a) it remains to show U +W =V ; we
show that dim (U +W ) = n and invoke
Theorem 6.4.2. But U +W =U⊕W because
U ∩W = 0, so dim (U +W) = dim U + dim W = n.

9.3.18 b. First, ker (TA) is TA-invariant. Let U = Rp be
TA-invariant. Then TA(p) is in U , say TA(p) = λ p.
Hence Ap = λ p so λ is an eigenvalue of A. This
means that λ = 0 by (a), so p is in ker (TA). Thus
U ⊆ ker (TA). But dim [ker (TA)] 6= 2 because TA 6= 0,
so dim [ker (TA)] = 1 = dim (U). Hence U = ker (TA).

9.3.20 Let B1 be a basis of U and extend it to a basis B of V .

Then MB(T ) =

[
MB1(T ) Y

0 Z

]
, so

cT (x) = det [xI−MB(T )] = det [xI−MB1(T )] det [xI−Z] =
cT 1(x)q(x).

9.3.22 b. T 2[p(x)] = p[−(−x)] = p(x), so T 2 = 1;
B = {1, x2; x, x3}

d. T 2(a, b, c) = T (−a+ 2b+ c, b+ c, −c) = (a, b, c),
so T 2 = 1; B = {(1, 1, 0); (1, 0, 0), (0, −1, 2)}

9.3.23 b. Use the Hint and Exercise 9.3.2.

9.3.25 b. T 2(a, b, c) = T (a+ 2b, 0, 4b+ c) =
(a+ 2b, 0, 4b+ c) = T (a, b, c), so T 2 = T ;
B = {(1, 0, 0), (0, 0, 1); (2, −1, 4)}

9.3.29 b. Tf , z[Tf , z(v)] = Tf , z[ f (v)z] = f [ f (v)z]z =
f (v){ f [z]z}= f (v) f (z)z. This equals
Tf , z(v) = f (v)z for all v if and only if
f (v) f (z) = f (v) for all v. Since f 6= 0, this holds if
and only if f (z) = 1.

9.3.30 b. If A =
[

p1 p2 · · · pn

]
where Upi = λ pi

for each i, then UA = λ A. Conversely, UA = λ A

means that Up = λ p for every column p of A.

Section 10.1

10.1.1 b. P5 fails.

d. P5 fails.

f. P5 fails.

10.1.2 Axioms P1–P5 hold in U because they hold in V .

10.1.3 b. 1√
π

f

d. 1√
17

[
3
−1

]

10.1.4 b.
√

3

d.
√

3π

10.1.8 P1 and P2 are clear since f (i) and g(i) are real
numbers.

P3: 〈 f + g, h〉= ∑
i

( f + g)(i) ·h(i)

= ∑
i

( f (i)+ g(i)) ·h(i)

= ∑
i

[ f (i)h(i)+ g(i)h(i)]

= ∑
i

f (i)h(i)+∑
i

g(i)h(i)

= 〈 f , h〉+ 〈g, h〉.
P4: 〈r f , g〉= ∑

i

(r f )(i) ·g(i)
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= ∑
i

r f (i) ·g(i)

= r∑
i

f (i) ·g(i)

= r〈 f , g〉

P5: If f 6= 0, then 〈 f , f 〉= ∑
i

f (i)2 > 0 because some

f (i) 6= 0.

10.1.12 b.
〈v, v〉= 5v2

1− 6v1v2 + 2v2
2 =

1
5 [(5v1− 3v2)

2 + v2
2]

d. 〈v, v〉= 3v2
1 + 8v1v2 + 6v2

2 =
1
3 [(3v1 + 4v2)

2 + 2v2
2]

10.1.13 b.

[
1 −2
−2 1

]

d.




1 0 −2
0 2 0
−2 0 5




10.1.14 By the condition, 〈x, y〉= 1
2 〈x+ y, x+ y〉= 0 for all

x, y. Let ei denote column i of I. If A = [ai j], then
ai j = eT

i Ae j = {ei, e j}= 0 for all i and j.

10.1.16 b. −15

10.1.20 1. Using P2:
〈u, v+w〉= 〈v+w, u〉= 〈v, u〉+ 〈w, u〉= 〈u, v〉+ 〈u, w〉.
2. Using P2 and P4: 〈v, rw〉= 〈rw, v〉= r〈w, v〉= r〈v, w〉.
3. Using P3: 〈0, v〉= 〈0+ 0, v〉= 〈0, v〉+ 〈0, v〉, so
〈0, v〉= 0. The rest is P2.

4. Assume that 〈v, v〉= 0. If v 6= 0 this contradicts P5, so
v = 0. Conversely, if v = 0, then 〈v, v〉= 0 by Part 3 of this
theorem.

10.1.22 b. 15‖u‖2− 17〈u, v〉− 4‖v‖2

d. ‖u+ v‖2 = 〈u+ v, u+ v〉= ‖u‖2 + 2〈u, v〉+ ‖v‖2

10.1.26 b. {(1, 1, 0), (0, 2, 1)}

10.1.28 〈v−w, vi〉= 〈v, vi〉− 〈w, vi〉= 0 for each i, so
v = w by Exercise 10.1.27.

10.1.29 b. If u = (cosθ , sinθ ) in R2 (with the dot
product) then ‖u‖= 1. Use (a) with v = (x, y).

Section 10.2

10.2.1 b.

1
14



(6a+ 2b+ 6c)




1
1
1


+(7c− 7a)



−1

0
1




+(a− 2b+ c)




1
−6

1







d.
(

a+d
2

)[ 1 0
0 1

]
+
(

a−d
2

)[ 1 0
0 −1

]
+

(
b+c

2

)[ 0 1
1 0

]
+
(

b−c
2

)[ 0 1
−1 0

]

10.2.2 b. {(1, 1, 1), (1, −5, 1), (3, 0, −2)}

10.2.3 b.{[
1 1
0 1

]
,

[
1 −2
3 1

]
,

[
1 −2
−2 1

]
,

[
1 0
0 −1

]}

10.2.4 b. {1, x− 1, x2− 2x+ 2
3}

10.2.6 b. U⊥ =
span{

[
1 −1 0 0

]
,
[

0 0 1 0
]

,
[

0 0 0 1
]
},

dim U⊥ = 3, dim U = 1

d. U⊥ = span{2− 3x, 1− 2x2}, dim U⊥ = 2,
dim U = 1

f. U⊥ = span

{[
1 −1
−1 0

]}
, dim U⊥ = 1,

dim U = 3

10.2.7 b.

U = span

{[
1 0
0 1

]
,

[
1 1
1 −1

]
,

[
0 1
−1 0

]}
;

projU A =

[
3 0
2 1

]

10.2.8 b. U = span{1, 5− 3x2}; projU x = 3
13(1+ 2x2)

10.2.9 b. B = {1, 2x− 1} is an orthogonal basis of U

because
∫ 1

0 (2x− 1)dx = 0. Using it, we get
projU (x2 + 1) = x+ 5

6 , so
x2 + 1 = (x+ 5

6)+ (x2− x+ 1
6).

10.2.11 b. This follows from
〈v+w, v−w〉= ‖v‖2−‖w‖2.

10.2.14 b. U⊥ ⊆ {u1, . . . , um}⊥ because each ui is in
U . Conversely, if 〈v, ui〉= 0 for each i, and
u = r1u1 + · · ·+ rmum is any vector in U , then
〈v, u〉= r1〈v, u1〉+ · · ·+ rm〈v, um〉= 0.

10.2.18 b. projU (−5, 4, −3) = (−5, 4, −3);
projU (−1, 0, 2) = 1

38(−17, 24, 73)
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10.2.19 b. The plane is U = {x | x ·n = 0} so

span
{

n×w, w− n·w
‖n‖2 n

}
⊆U . This is equality

because both spaces have dimension 2 (using (a)).

10.2.20 b. CE(bi) is column i of P. Since
CE(bi) ·CE(b j) = 〈bi, b j〉 by (a), the result follows.

10.2.23 b. If U = span{f1, f2, . . . , fm}, then

projU v =
m

∑
i=1

〈v1, fi〉
‖fi‖2 fi by Theorem 10.2.7. Hence

‖ projU v‖2 =
m

∑
i=1

〈v1 , fi〉
‖fi‖2 fi by Pythagoras’ theorem.

Now use (a).

Section 10.3

10.3.1 b.

B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
;

MB(T ) =




−1 0 1 0
0 −1 0 1
1 0 2 0
0 1 0 2




10.3.4 b. 〈v, (rT )w〉= 〈v, rT (w)〉= r〈v, T (w)〉=
r〈T (v), w〉= 〈rT (v), w〉= 〈(rT )(v), w〉

d. Given v and w, write T−1(v) = v1 and T−1(w) = w1.
Then 〈T−1(v), w〉= 〈v1, T (w1)〉= 〈T (v1), w1〉=
〈v, T−1(w)〉.

10.3.5 b. If B0 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, then

MB0(T ) =




7 −1 0
−1 7 0

0 0 2


 has an orthonormal basis

of eigenvectors





1√
2




1
1
0


 , 1√

2




1
−1

0


 ,




0
0
1





.

Hence an orthonormal basis of eigenvectors of T is{
1√
2
(1, 1, 0), 1√

2
(1, −1, 0), (0, 0, 1)

}
.

d. If B0 = {1, x, x2}, then MB0(T ) =



−1 0 1

0 3 0
1 0 −1




has an orthonormal basis of eigenvectors






0
1
0


 , 1√

2




1
0
1


 , 1√

2




1
0
−1





.

Hence an orthonormal basis of eigenvectors of T is{
x, 1√

2
(1+ x2), 1√

2
(1− x2)

}
.

10.3.7 b. MB(T ) =

[
A 0
0 A

]
, so

cT (x) = det

[
xI2−A 0

0 xI2−A

]
= [cA(x)]

2.

10.3.12 (1)⇒ (2). If B = {f1, . . . , fn} is an orthonormal
basis of V , then MB(T ) = [ai j] where ai j = 〈fi, T (f j)〉 by
Theorem 10.3.2. If (1) holds, then
a ji = 〈f j, T (fi)〉=−〈T (f j), fi〉=−〈fi, T (f j)〉=−ai j.
Hence [MV (T )]

T =−MV (T ), proving (2).

10.3.14 c. The coefficients in the definition of

T ′(f j) =
n

∑
i=1
〈f j, T (fi)〉fi are the entries in the jth

column CB[T
′(f j)] of MB(T

′). Hence
MB(T

′) = [〈f j, T (f j)〉], and this is the transpose of
MB(T ) by Theorem 10.3.2.

Section 10.4

10.4.2 b. Rotation through π

d. Reflection in the line y =−x

f. Rotation through π
4

10.4.3 b. cT (x) = (x− 1)(x2 + 3
2 x+ 1). If

e =
[

1
√

3
√

3
]T

, then T is a rotation about Re.

d. cT (x) = (x+ 1)(x+ 1)2. Rotation (of π) about the x

axis.

f. cT (x) = (x+ 1)(x2−
√

2x+ 1). Rotation (of − π
4 )

about the y axis followed by a reflection in the x− z

plane.

10.4.6 If ‖v‖= ‖(aT)(v)‖ = |a|‖T(v)‖= |a|‖v‖ for some
v 6= 0, then |a|= 1 so a =±1.

10.4.12 b. Assume that S = Su ◦T , u ∈V , T an isometry
of V . Since T is onto (by Theorem 10.4.2), let
u = T (w) where w ∈V . Then for any v ∈V , we have
(T ◦Sw) = T (w+v) = T (w)+T (w) = ST (w)(T (v)) =
(ST (w) ◦T )(v), and it follows that T ◦ Sw = ST (w) ◦T .

Section 10.5

10.5.1 b. π
2 − 4

π

[
cosx+ cos3x

32 + cos5x
52

]

d. π
4 +

[
sinx− sin2x

2 + sin3x
3 − sin4x

4 + sin5x
5

]

− 2
π

[
cosx+ cos3x

32 + cos5x
52

]

10.5.2 b. 2
π − 8

π

[
cos2x
22−1

+ cos4x
42−1

+ cos6x
62−1

]

10.5.4
∫

cos kx cos lx dx

= 1
2

[
sin[(k+l)x]

k+l
− sin[(k−l)x]

k−l

]π

0
= 0 provided that k 6= l.

www.dbooks.org

https://www.dbooks.org/


662 Polynomials

Section 11.1

11.1.1 b. cA(x) = (x+ 1)3;

P =




1 0 0
1 1 0
1 −3 1


;

P−1AP =



−1 0 1

0 −1 0
0 0 −1




d. cA(x) = (x− 1)2(x+ 2);

P =



−1 0 −1

4 1 1
4 2 1


;

P−1AP =




1 1 0
0 1 0
0 0 −2




f. cA(x) = (x+ 1)2(x− 1)2;

P =




1 1 5 1
0 0 2 −1
0 1 2 0
1 0 1 1


;

P−1AP =




−1 1 0 0
0 −1 1 0
0 0 1 −2
0 0 0 1




11.1.4 If B is any ordered basis of V , write A = MB(T ). Then
cT (x) = cA(x) = a0 + a1x+ · · ·+ anxn for scalars ai in R.
Since MB is linear and MB(T

k) = MB(T )
k, we have

MB[cT (T )] = MV [a0 + a1T + · · ·+ anT n] =
a0I + a1A+ · · ·+ anAn = cA(A) = 0 by the Cayley-Hamilton
theorem. Hence cT (T ) = 0 because MB is one-to-one.

Section 11.2

11.2.2




a 1 0
0 a 0
0 0 b






0 1 0
0 0 1
1 0 0




=




0 1 0
0 0 1
1 0 0






a 1 0
0 a 1
0 0 a




Appendix A

A.1 b. x = 3

d. x =±1

A.2 b. 10+ i

d. 11
26 +

23
26 i

f. 2− 11i

h. 8− 6i

A.3 b. 11
5 + 3

5 i

d. ±(2− i)

f. 1+ i

A.4 b. 1
2 ±

√
3

2 i

d. 2, 1
2

A.5 b. −2, 1±
√

3i

d. ±2
√

2, ±2
√

i

A.6 b. x2− 4x+ 13; 2+ 3i

d. x2− 6x+ 25; 3+ 4i

A.8 x4− 10x3+ 42x2− 82x+ 65

A.10 b. (−2)2 + 2i− (4− 2i)= 0; 2− i

d. (−2+ i)2 + 3(1− i)(−1+ 2i)−5i= 0; −1+ 2i

A.11 b. −i, 1+ i

d. 2− i, 1− 2i

A.12 b. Circle, centre at 1, radius 2

d. Imaginary axis

f. Line y = mx

A.18 b. 4e−π i/2

d. 8e2π i/3

f. 6
√

2e3π i/4

A.19 b. 1
2 +

√
3

2 i

d. 1− i

f.
√

3− 3i

A.20 b. − 1
32 +

√
3

32 i

d. −32i

f. −216(1+ i)

A.23 b. ±
√

2
2 (
√

3+ i), ±
√

2
2 (−1+

√
3i)

d. ±2i, ±(
√

3+ i), ±(
√

3− i)

A.26 b. The argument in (a) applies using β = 2π
n

. Then
1+ z+ · · ·+ zn−1 = 1−zn

1−z
= 0.

Appendix B
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B.1 b. If m = 2p and n = 2q+ 1 where p and q are
integers, then m+ n = 2(p+ q)+ 1 is odd. The
converse is false: m = 1 and n = 2 is a
counterexample.

d. x2− 5x+ 6 = (x− 2)(x− 3) so, if this is zero, then
x = 2 or x = 3. The converse is true: each of 2 and 3
satisfies x2− 5x+ 6= 0.

B.2 b. This implication is true. If n = 2t + 1 where t is
an integer, then n2 = 4t2 +4t +1 = 4t(t +1)+1. Now
t is either even or odd, say t = 2m or t = 2m+ 1. If
t = 2m, then n2 = 8m(2m+ 1)+ 1; if t = 2m+ 1, then
n2 = 8(2m+ 1)(m+ 1)+ 1. Either way, n2 has the
form n2 = 8k+ 1 for some integer k.

B.3 b. Assume that the statement “one of m and n is
greater than 12” is false. Then both n≤ 12 and
m≤ 12, so n+m≤ 24, contradicting the hypothesis
that n+m = 25. This proves the implication. The
converse is false: n = 13 and m = 13 is a
counterexample.

d. Assume that the statement “m is even or n is even” is
false. Then both m and n are odd, so mn is odd,
contradicting the hypothesis. The converse is true: If
m or n is even, then mn is even.

B.4 b. If x is irrational and y is rational, assume that
x+ y is rational. Then x = (x+ y)− y is the difference
of two rationals, and so is rational, contrary to the
hypothesis.

B.5 b. n = 10 is a counterexample because 103 = 1000
while 210 = 1024, so the statement n3 ≥ 2n is false if
n = 10. Note that n3 ≥ 2n does hold for 2≤ n≤ 9.

Appendix C

C.6 n
n+1 +

1
(n+1)(n+2) =

n(n+2)+1
(n+1)(n+2) =

(n+1)2

(n+1)(n+2) =
n+1
n+2

C.14

2
√

n−1+ 1√
n+1

= 2
√

n2+n+1√
n+1

−1 < 2(n+1)√
n+1
−1 = 2

√
n+ 1−1

C.18 If n3− n = 3k, then
(n+ 1)3− (n+ 1) = 3k+ 3n2+ 3n = 3(k+ n2+ n)

C.20 Bn = (n+ 1)!− 1

C.22 b. Verify each of S1, S2, . . . , S8.
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(i, j)-entry, 35
3-dimensional space, 58
A-invariance, 176
B-matrix, 513
T -invariant, 523
m× n matrix

canonical forms, 591
defined, 35
difference, 38
elementary row operation,

96
main diagonal, 43
matrix transformation,

503
negative, 38
subspaces, 265
transpose, 42
zero matrix, 38

n-parity-check code, 479
n-tuples, 263, 290, 330
n-vectors, 47
n-words, 477
nth roots of unity, 605
r-ball, 478
x-axis, 209
x-compression, 61
x-expansion, 61
x-shear, 61
y-axis, 209
y-compression, 61
y-expansion, 61
z-axis, 209
Disquisitiones Arithmeticae

(Gauss), 11
How to Read and Do Proofs

(Solow), 611
Introduction to Abstract Al-

gebra (Nicholson), 475
Introduction to Abstract

Mathematics (Lucas),
611

Introduction to the Theory

of Error-Correcting

Codes (Pless), 484
Mécanique Analytique (La-

grange), 245
Calcolo Geometrico

(Peano), 329
Elements (Euclid), 612

Interpolation and Approxi-

mation (Davis), 553
Introduction to Matrix Com-

putations (Stewart),
444

Raum-Zeit-Materie (“Space-
Time-Matter”)(Weyl),
329

The Algebraic Eigenvalue

Problem (Wilkinson),
444

“Linear Programming and
Extensions” (Wu and
Coppins), 500

“if and only if”, 36
“mixed” cancellation, 85
3-dimensional space, 209

absolute value
complex number, 598,

599
notation, 110
real number, 210
symmetric matrices, 307
triangle inequality, 543

abstract vector space, 329
action

same action, 59, 333, 378
transformations, 59, 503,

505
addition

closed under, 330
closed under addition, 47,

263
complex number, 597
matrix addition, 37
pointwise addition, 332
transformations

preserving addition, 104
vector addition, 330, 601

adjacency matrix, 75
adjugate, 81, 160
adjugate formula, 162
adult survival rate, 171
aerodynamics, 499
algebraic method, 4, 9
algebraic multiplicity, 304
algebraic sum, 30
altitude, 262

analytic geometry, 47
angles

angle between two vec-
tors, 228, 546

radian measure, 60, 111,
601

standard position, 110,
601

unit circle, 110, 601
approximation theorem, 552,

578
Archimedes, 11
area

linear transformations of,
255

parallelogram
equal to zero, 246

argument, 601
arrows, 209
associated homogeneous

system, 53
associative law, 38, 71
attractor, 187
augmented matrix, 3, 4, 14
auxiliary theorem, 96
axiomatic method, 615
axioms, 611
axis, 209, 572

back substitution, 14, 118
balanced reaction, 32
ball, 478
Banach, Stephan, 329
bases, 276
basic eigenvectors, 175
basic solutions, 24, 454
basis

choice of basis, 503, 508
dual basis, 512
enlarging subset to, 278
geometric problem of

finding, 516, 517, 583
independent set, 415
isomorphisms, 393
linear operators

and choice of basis, 518
matrix of T corresponding

to the ordered bases B

and D, 505

of subspace, 276
ordered basis, 503, 505
orthogonal basis, 287,

416, 549
orthonormal basis, 550,

559
standard basis, 106, 272,

277, 278, 349, 461
vector spaces, 349

Bessel’s inequality, 556
best approximation, 310
best approximation theorem,

311
bilinear form, 497
binary codes, 477
Binet formula, 196
binomial coefficients, 367
binomial theorem, 367
block matrix, 154
block multiplication, 74
block triangular form, 583
block triangular matrix, 524
block triangulation theorem,

584
blocks, 73
boundary condition, 199,

369

cancellation, 333, 334
cancellation laws, 85
canonical forms

m× n matrix, 591
block triangular form, 583
Jordan canonical form,

591
Cartesian coordinates, 209
cartesian geometry, 209
category, 397
Cauchy inequality, 284, 325
Cauchy, Augustin Louis,

158, 307
Cauchy-Schwarz inequality,

243
Cayley, Arthur, 35, 145
Cayley-Hamilton theorem,

588
centred, 322
centroid, 225
change matrix, 513
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channel, 477
characteristic polynomial

block triangular matrix,
525

complex matrix, 465
diagonalizable matrix,

300
eigenvalues, 174
root of, 174, 368, 369
similarity invariant, 518,

519
square matrix, 173, 469

chemical reaction, 32
choice of basis, 503, 508
Cholesky factorization, 435
Cholesky, Andre-Louis, 435
circuit rule, 30
classical adjoint, 161
closed economy, 130
closed under addition, 47,

263, 330
closed under scalar multipli-

cation, 47, 263, 330
code
(n, k)-code, 479
n-code, 477
binary codes, 477
decoding, 483
defined, 477
error-correcting codes,

472, 477
Hamming (7,4)-code, 485
linear codes, 479
matrix generators, 481
minimum distance, 478
nearest neighbour decod-

ing, 478
orthogonal codes, 484
parity-check code, 479
parity-check matrices,

482
perfect, 479
syndrome decoding, 483
use of, 472

code words, 477, 478, 481,
485

coding theory, 477
coefficient matrix, 4, 166
coefficients

binomial coefficients, 367
constant coefficient, 623
Fourier coefficients, 288,

548, 578, 579
in linear equation, 1
leading coefficient, 166,

332, 623
linear combination, 266,

271, 341
of the polynomial, 319,

332, 623
of vectors, 341
sample correlation coeffi-

cient, 324
cofactor, 146
cofactor expansion, 147, 204
cofactor expansion theorem,

148, 204
cofactor matrix, 160
column matrix, 35, 47
column space, 290, 445
column vectors, 172
columns
(i, j)-entry, 35
as notations for ordered n-

tuples, 275
convention, 36
elementary column opera-

tions, 149
equal, 21
leading column, 120
shape of matrix, 35
Smith normal form, 99
transpose, 42

commutative law, 38
commute, 69, 72
companion matrix, 157
compatibility rule, 68
compatible

blocks, 74
for multiplication, 68

complement, 528
completely diagonalized,

494
complex conjugation, 307
complex distance formula,

600
complex eigenvalues, 306,

444
complex matrix

Cayley-Hamilton theo-
rem, 469

characteristic polynomial,
465

conjugate, 461
conjugate transpose, 463
defined, 461
eigenvalues, 465
eigenvector, 465
hermitian matrix, 464
normal, 469

Schur’s theorem, 467, 468
skew-hermitian, 471
spectral theorem, 468
standard inner product,

462
unitarily diagonalizable,

467
unitary diagonalization,

467
unitary matrix, 466
upper triangular matrix,

467
complex number

absolute value, 403, 598,
599

addition, 597
advantage of working

with, 465
conjugate, 599
equal, 597
extension of concepts to,

461
form, 597
fundamental theorem of

algebra, 597
imaginary axis, 600
imaginary part, 597
imaginary unit, 597
in complex plane, 600
inverse, 598
modulus, 599
multiplication, 597
parallelogram law, 601
polar form, 601
product, 600
pure imaginary numbers,

597
real axis, 600
real part, 597
regular representation,

600
root of the quadratic, 609
roots of unity, 604
scalars, 474
subtraction, 597
sum, 601
triangle inequality, 599

complex plane, 600
complex subspace, 470
composite, 65, 108, 396
composition, 65, 396, 507
computer graphics, 258
conclusion, 611
congruence, 493
congruent matrices, 493

conic graph, 21, 491
conjugate, 461, 599
conjugate matrix, 307
conjugate transpose, 463
consistent system, 1, 17
constant, 353, 623
constant matrix, 4
constant sequences, 406
constant term, 1
constrained optimization,

497
continuous functions, 538
contraction, 63
contradiction, proof by, 613
convergence, 443
converges, 139
converse, 614
coordinate isomorphism,

395
coordinate transformation,

504
coordinate vectors, 215, 236,

256, 268, 504
coordinates, 209, 503
correlation, 322
correlation coefficient

computation
with dot product, 324

Pearson correlation coeffi-
cient, 324

sample correlation coeffi-
cient, 324

correlation formula, 326
coset, 483
cosine, 111, 227, 556, 601
counterexample, 9, 614
covariance, 501
covariance matrix, 501
Cramer’s Rule, 158
Cramer, Gabriel, 164
cross product

and dot product, 236, 245
coordinate vectors, 236
coordinate-free descrip-

tion, 247
defined, 236, 244
determinant form, 236,

244
Lagrange Identity, 245
properties of, 245
right-hand rule, 248
shortest distance between

nonparallel lines, 238
cryptography, 472

data scaling, 326
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Davis, Philip J., 553
De Moivre’s Theorem, 604
De Moivre, Abraham, 604
decoding, 483
defined, 68
defining transformation, 59
degree of the polynomial,

332, 623
demand matrix, 131
dependent, 273, 345, 358
dependent lemma, 358
derivative, 403
Descartes, René, 209
determinants

3× 3, 146
n× n, 147
adjugate, 81, 160
and eigenvalues, 145
and inverses, 81, 145
block matrix, 154
coefficient matrix, 166
cofactor expansion, 146,

147, 204
Cramer’s Rule, 158
cross product, 236, 244
defined, 81, 145, 152, 204,

518
inductive method of deter-

mination, 146
initial development of,

256
notation, 145
polynomial interpolation,

165
product of matrices (prod-

uct theorem), 158, 168
similarity invariant, 518
square matrices, 145, 159
theory of determinants, 35
triangular matrix, 154
Vandermonde determi-

nant, 167
Vandermonde matrix, 153

deviation, 322
diagonal matrices, 45, 79,

172, 178, 300, 516
diagonalizable linear opera-

tor, 557
diagonalizable matrix, 178,

300, 516
diagonalization

completely diagonalized,
494

described, 178, 300
eigenvalues, 145, 173, 300

example, 171
general differential sys-

tems, 199
linear dynamical systems,

182
matrix, 173
multivariate analysis, 501
orthogonal diagonaliza-

tion, 424, 557
quadratic form, 487
test, 302
unitary diagonalization,

467
diagonalization algorithm,

181
diagonalization theorem,

489
diagonalizing matrix, 178
difference

m× n matrices, 38
of two vectors, 213, 334

differentiable function, 198,
340, 368, 402, 403

differential equation of order
n, 368, 403

differential equations, 198,
368, 402

differential system, 199
defined, 198
exponential function, 198
general differential sys-

tems, 199
general solution, 200
simplest differential sys-

tem, 198
differentiation, 377
digits, 477
dilation, 63
dimension, 276, 349, 403
dimension theorem, 375,

386, 395
direct proof, 611
direct sum, 360, 528, 536
directed graphs, 75
direction, 211
direction cosines, 243, 556
direction vector, 218
discriminant, 491, 606
distance, 285, 541
distance function, 397
distance preserving, 251,

564
distance preserving isome-

tries, 564
distribution, 500

distributive laws, 41, 71
division algorithm, 473, 625
dominant eigenvalue, 185,

441
dominant eigenvector, 441
dot product

and cross product, 236,
245

and matrix multiplication,
67

as inner product, 537
basic properties, 226
correlation coefficients

computation of, 324
defined, 226
dot product rule, 55, 67
in set of all ordered n-

tuples (Rn), 282, 462
inner product space, 540
length, 541
of two ordered n-tuples,

54
of two vectors, 226
variances

computation of, 326
doubly stochastic matrix,

142
dual, 512
dual basis, 512

economic models
input-output, 128

economic system, 128
edges, 75
eigenspace, 265, 303, 526,

584
eigenvalues

and determinants, 145
and diagonalizable matri-

ces, 179
and eigenspace, 265, 303
and Google PageRank,

189
complex eigenvalues, 177,

306, 444
complex matrix, 465
computation of, 441
defined, 173, 300
dominant eigenvalue, 185,

441
iterative methods, 441
linear operator, 526
multiple eigenvalues, 302
multiplicity, 180, 304
power method, 441
real eigenvalues, 307

root of the characteristic
polynomial, 174

solving for, 174
spectrum of the matrix,

426
symmetric linear operator

on finite dimensional
inner product space,
560

eigenvector
basic eigenvectors, 175
complex matrix, 465
defined, 173, 300
dominant eigenvector, 441
fractions, 175
linear combination, 442
linear operator, 526
nonzero linear combina-

tion, 175
nonzero multiple, 175
nonzero vectors, 265, 303
orthogonal basis, 424
orthogonal eigenvectors,

427, 465
orthonormal basis, 561
principal axes, 429

electrical networks, 29
elementary matrix

and inverses, 96
defined, 95
LU-factorization, 119
operating corresponding

to, 95
permutation matrix, 123
self-inverse, 97
Smith normal form, 99
uniqueness of reduced

row-echelon form, 100
elementary operations, 5
elementary row operations

corresponding, 95
inverses, 7, 96
matrices, 5
reversed, 7
scalar product, 21
sum, 21

elements of the set, 263
ellipse, 491
entries of the matrix, 35
equal

columns, 21
complex number, 597
fractions, 212
functions, 333
linear transformations,
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378
matrices, 36
polynomials, 332, 623
sequences, 406
sets, 263
transformation, 59, 378

equal modulo, 474
equilibrium, 130
equilibrium condition, 130
equilibrium price structures,

130
equivalence relation, 298
equivalent

matrices, 103
statements, 87
systems of linear equa-

tions, 4
error, 314, 483
error-correcting codes, 472
Euclid, 612, 615
euclidean n-space, 537
euclidean algorithm, 475
euclidean geometry, 282
euclidean inner product, 537
Euler’s formula, 602
Euler, Leonhard, 602
evaluation, 182, 309, 340,

376, 381, 410
even function, 579
even parity, 479
even polynomial, 354
exact formula, 184
expansion theorem, 287,

548, 558
expectation, 500
exponential function, 198,

404

factor, 304, 625
factor theorem, 363, 625
feasible region, 497
Fibonacci sequence, 195
field, 330, 474
field of integers modulo, 475
finite dimensional spaces,

355
finite fields, 474
finite sets, 474
fixed axis, 575
fixed hyperplane, 575
fixed line, 569
fixed plane, 572
fixed vectors, 576
formal proofs, 612
forward substitution, 119
Fourier approximation, 579

Fourier coefficients, 288,
548, 578, 579

Fourier expansion, 288
Fourier series, 580
Fourier, J.B.J., 548
fractions

eigenvectors, 175
equal fractions, 212
field, 474
probabilities, 134

free variables, 14
function

composition, 396
continuous functions, 538
defined, 332
derivative, 403
differentiable function,

198, 340, 368, 402, 403
equal, 333
even function, 579
exponential function, 198,

404
objective function, 497,

499
odd function, 579
of a complex variable, 284
pointwise addition, 333
real-valued, 332
scalar multiplication, 333

fundamental identities, 90,
398

fundamental subspaces, 452
fundamental theorem, 276,

348
fundamental theorem of al-

gebra, 177, 306, 597

Galois field, 476
Galton, Francis, 324
Gauss, Carl Friedrich, 11,

177
gaussian algorithm, 11, 303,

474
gaussian elimination

defined, 14
example, 14
LU-factorization, 118
normal equations, 311
scalar multiple, 39
systems of linear equa-

tions and, 9
general differential systems,

199
general solution, 2, 14, 200
general theory of relativity,

329

generalized eigenspace, 584
generalized inverse, 312,

322
generator, 482
geometric vectors

defined, 212
described, 212
difference, 214
intrinsic descriptions, 212
midpoint, 216
parallelogram law, 213
Pythagoras’ theorem, 221
scalar multiple law, 215,

217
scalar multiplication, 215
scalar product, 215
sum, 213
tip-to-tail rule, 213
unit vector, 215
vector subtraction, 214

geometry, 35
Google PageRank, 189
Gram matrix, 446
Gram, Jörgen Pederson, 417
Gram-Schmidt orthogonal-

ization algorithm, 288,
417, 426, 428, 438,
520, 549

graphs
attractor, 187
conic, 21
directed graphs, 75
ellipse, 491
hyperbola, 491
linear dynamical system,

187
saddle point, 188
trajectory, 187

Grassmann, Hermann, 329
group theory, 35
groups, 566

Hamming (7,4)-code, 485
Hamming bound, 479
Hamming distance, 477
Hamming weight, 477
Hamming, Richard, 477
heat conduction in solids,

577
Hermite, Charles, 464
hermitian matrix, 464
higher-dimensional geome-

try, 35
Hilbert spaces, 417
Hilbert, David, 417
hit, 384

homogeneous coordinates,
260

homogeneous equations
associated homogeneous

system, 53
basic solutions, 24
defined, 20
general solution, 22
linear combinations, 21
nontrivial solution, 20,

173
trivial solution, 20

homogeneous system, 24
Hooke’s law, 371
Householder matrices, 444
hyperbola, 491
hyperplanes, 3, 575
hypotenuse, 612
hypothesis, 611

idempotents, 79, 534
identity matrix, 52, 56, 123
identity operator, 376
identity transformation, 60,

116
image

of linear transformations,
59, 381, 382

of the parallelogram, 255
image space, 264, 445
imaginary axis, 600
imaginary parts, 403, 597
imaginary unit, 597
implication, 611
implies, 87
inconsistent system, 1
independence, 271, 345
independence test, 272
independent, 271, 345, 354
independent lemma, 354
indeterminate, 332, 623
index, 494
induction

cofactor expansion theo-
rem, 205

determinant
determination of, 146

mathematical induction,
105, 618

on path of length r, 76
induction hypothesis, 618
infinite dimensional, 355
initial condition, 199
initial state vector, 137
inner product

and norms, 541
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coordinate isomorphism,
395

defined, 537
euclidean inner product,

537
positive definite n× n ma-

trix, 539
properties of, 539

inner product space
defined, 537
distance, 541
dot product

use of, 540
Fourier approximation,

577
isometries, 564
norms, 541
orthogonal diagonaliza-

tion, 557
orthogonal sets of vectors,

547
unit vector, 541

input-output economic mod-
els, 128

input-output matrix, 130
integers, 473, 611
integers modulo, 473
integration, 377
interpolating polynomial,

166
intersection, 270, 360
interval, 332
intrinsic descriptions, 211
invariance theorem, 276
invariant subspaces, 522
invariants, 176
inverse theorem, 87
inverses

adjugate, 160
and elementary matrices,

96
and linear systems, 82
and zero matrices, 81
cancellation laws, 85
complex number, 598
Cramer’s Rule, 158, 164
defined, 80
determinants, 145, 158
elementary row opera-

tions, 7, 96
finite fields, 474
generalized inverse, 312,

322
inverse theorem, 87
inversion algorithm, 83

linear transformation, 90,
398

matrix transformations,
90

Moore-Penrose inverse,
322

nonzero matrix, 81
properties of inverses, 85
square matrices

application to, 83, 158
inversion algorithm, 83
invertibility condition, 158
invertible matrix

“mixed” cancellation, 85
defined, 80
determinants, 145
left cancelled, 85
LU-factorization, 125
orthogonal matrices, 439
product of elementary ma-

trix, 97
right cancelled, 85

involutions, 531
irreducible, 606
isometries, 251, 564, 565
isomorphic, 392
isomorphism, 392, 508, 566

Jacobi identity, 249
Jordan blocks, 592
Jordan canonical form, 591
Jordan canonical matrices,

583
Jordan, Camille, 594
junction rule, 27, 30
juvenile survival rate, 171

kernel, 382
kernel lemma, 404
Kirchhoff’s Laws, 30

Lagrange identity, 245
Lagrange interpolation ex-

pansion, 366, 549
Lagrange polynomials, 365,

548
Lagrange, Joseph Louis, 245
Lancaster, P., 130
Laplace, Pierre Simon de,

148
law of cosines, 227, 546
law of exponents, 602
law of sines, 250
leading 1, 10
leading coefficient, 332, 623
leading column, 120

leading variables, 14
least squares approximating

line, 314
least squares approximating

polynomial, 317
least squares approximation,

313
least squares best approxi-

mation, 319
left cancelled invertible ma-

trix, 85
Legendre polynomials, 550
Legendre, A.M., 550
Leibnitz, 145
lemma, 96
length

geometric vector, 212
linear recurrence, 406
linear recurrence relation,

193
norm, where dot product

is used, 463
norm, where dot product

used, 541
path of length, 75
recurrence, 406
vector, 210, 282, 463

Leontief, Wassily, 128
line

fixed line, 569
in space, 218
least squares approximat-

ing line, 314
parametric equations of a

line, 219
perpendicular lines, 226
point-slope formula, 221
shortest distance between

nonparallel lines, 238
straight, pair of, 491
through the origin, 264
vector equation of a line,

218
linear codes, 479
linear combinations

and linear transforma-
tions, 104

defined, 21, 104
eigenvectors, 442
homogeneous equations,

21, 63
of columns of coefficient

matrix, 49
of orthogonal basis, 288
of solutions to homoge-

neous system, 24
spanning sets, 266, 341
trivial, 271, 345
unique, 271
vanishes, 271
vectors, 341

linear discrete dynamical
system, 172

linear dynamical system,
172, 182

linear equation
conic graph, 21
constant term, 1
Cramer’s Rule, 163
defined, 1
vs. linear inequalities, 17

linear independence
dependent, 273, 345, 358
geometric description,

274
independent, 271, 345,

354
orthogonal sets, 287, 548
properties, 347
set of vectors, 271, 345
vector spaces, 345

linear inequalities, 17
linear operator

B-matrix, 513
change matrix, 513
choice of basis, 518
defined, 250, 375, 512
diagonalizable, 557
distance preserving, 251
distance preserving

isometries, 564
eigenvalues, 526
eigenvector, 526
idempotents, 534
involutions, 531
isometries, 251, 565
on finite dimensional in-

ner product space, 557
projection, 251, 421, 564
properties of matrices,

516
reducible, 531
reflections, 251
restriction, 524
rotations, 254
standard matrix, 513
symmetric, 559
transformations of areas

and volumes, 255
linear programming, 500
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linear recurrence relation,
193, 406

linear recurrences
diagonalization, 194
length, 193, 406
linear transformations,

405
polynomials associated

with the linear recur-
rence, 408

shift operator, 410
vector spaces, 405

linear system of differential
equations, 199

linear transformations
m× n matrix, 503
action of a transformation,

503
as category, 397
as matrix transformation,

503
association with matrix,

503
composite, 65, 108, 396
composition, 396, 507
coordinate transforma-

tion, 504
defined, 59, 104, 375, 379
described, 35, 104
differentiation, 377
dimension theorem, 386
distance preserving, 251
equal, 59, 378
evaluation, 376, 410
examples, 375
fundamental identities,

398
hit, 384
identity operator, 376
image, 59, 382
in computer graphics, 258
integration, 377
inverses, 90, 398
isomorphism, 392
kernel, 382
linear recurrences, 405
matrix of T corresponding

to the ordered bases B

and D, 505
matrix of a linear transfor-

mation, 376, 503
matrix transformation in-

duced, 59, 250
matrix transformations

another perspective on,

104
nullity, 383
nullspace, 382
of areas, 255
of volume, 255
one-to-one transforma-

tions, 384
onto transformations, 384
projections, 114, 251
properties, 377
range, 382
rank, 383
reflections, 113, 251
rotations, 111, 254
scalar multiple law, 110
scalar operator, 376
zero transformation, 60,

376
linearly dependent, 273, 345,

358
linearly independent, 271,

345, 354
logically equivalent, 615
lower reduced, 119
lower triangular matrix, 118,

154
LU-algorithm, 121, 125
LU-factorization, 120

magnitude, 211
main diagonal, 43, 118
Markov chains, 134
Markov, Andrei Andreye-

vich, 134
mathematical induction,

105, 618
mathematical statistics, 322
matrices, 35
matrix, 35
(i, j)-entry, 35
adjacency matrix, 75
augmented matrix, 3, 4,

14
block matrix, 73
change matrix, 513
coefficient matrix, 4, 163
column matrix, 35
companion matrix, 157
congruent matrices, 493
conjugate matrix, 307
constant matrix, 4
covariance matrix, 501
defined, 3, 35
demand matrix, 131
diagonal matrices, 45, 79,

172, 178, 516

diagonalizable matrix,
178

diagonalizing matrix, 178
doubly stochastic matrix,

142
elementary matrix, 95
elementary row opera-

tions, 5
entries of the matrix, 35,

36
equal matrices, 36
equivalent matrices, 103
Gram, 446
hermitian matrix, 464
Householder matrices,

444
identity matrix, 52, 56
input-output matrix, 130
invertible matrix, 80
linear transformation

association with, 503
lower triangular matrix,

118, 154
migration, 184
Moore-Penrose inverse,

457
nilpotent matrix, 190
orthogonal matrix, 160,

424
orthonormal matrix, 424
over finite field, 482
parity-check matrices,

482
partitioned into blocks, 73
permutation matrix, 123,

432, 521
polar decomposition, 455
positive, 455
positive semi-definite, 455
projection matrix, 63, 432
pseudoinverse, 457
rank, 16, 291
reduced row-echelon ma-

trix, 10, 100
regular stochastic matrix,

139
row matrix, 35
row-echelon matrix, 10,

290
row-equivalent, 103
shapes, 35
similar matrices, 298
singular matrix, 448
spectrum, 426
standard generator, 482

standard matrix, 513
stochastic matrices, 130,

136
submatrix, 298
subtracting, 38
systemic generator, 482
transition matrix, 135
transpose, 42
triangular matrices, 118,

154
unitary matrix, 466
upper triangular matrix,

118, 154, 467
Vandermonde matrix, 153
zero matrix, 38
zeros, creating in matrix,

149
matrix addition, 37
matrix algebra

dot product, 54
elementary matrix, 95
input-output economic

models
application to, 128

inverses, 80
LU-factorization, 121
Markov chains

application to, 134
matrices as entities, 39
matrix addition, 37
matrix multiplication, 64
matrix subtraction, 38
matrix-vector multiplica-

tion, 49, 64
numerical division, 80
scalar multiplication, 39
size of matrices, 35
transformations, 58
transpose of a matrix, 42
usefulness of, 35

matrix form
defined, 50
reduced row-echelon

form, 10, 11, 100
row-echelon form, 10, 11
upper Hessenberg form,

444
matrix generators, 481
matrix inversion algorithm,

83, 98
matrix multiplication

and composition of trans-
formations, 65

associative law, 71
block, 73
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commute, 69, 72
compatibility rule, 68
definition, 66
directed graphs, 75
distributive laws, 71
dot product rule, 67
left-multiplication, 87
matrix of composite of

two linear transforma-
tions, 108

matrix products, 66
non-commutative, 87
order of the factors, 71
results of, 67
right-multiplication, 87

matrix of T corresponding to
the ordered bases B and
D, 505

matrix of a linear transfor-
mation, 503

matrix recurrence, 172
matrix theory, 35
matrix transformation in-

duced, 59, 104, 250
matrix transformations, 90
matrix-vector products, 49
mean

”average” of the sample
values, 322

calculation, 500
sample mean, 322

median
tetrahedron, 225
triangle, 225

messages, 481
metric, 397
midpoint, 216
migration matrix, 184
minimum distance, 478
modular arithmetic, 473
modulo, 473
modulus, 473, 599
Moore-Penrose inverse, 322,

457
morphisms, 397
multiplication

block multiplication, 73
compatible, 68, 74
matrix multiplication, 64
matrix-vector multiplica-

tion, 48
matrix-vector products, 49
scalar multiplication, 39,

330, 332
multiplication rule, 603

multiplicity, 180, 304, 410,
625

multivariate analysis, 501

nearest neighbour decoding,
478

negative
correlation, 324
of m× n matrix, 38
vector, 47, 330

negative x, 47
negative x-shear, 61
network flow, 27
Newton, Sir Isaac, 11
Nicholson, W. Keith, 475
nilpotent, 190, 592
noise, 472
nonleading variable, 20
nonlinear recurrences, 196
nontrivial solution, 20, 173
nonzero scalar multiple of a

basic solution, 24
nonzero vectors, 217, 284
norm, 463, 541
normal, 233, 469
normal equations, 311
normalizing the orthogonal

set, 286, 547
null space, 264
nullity, 383
nullspace, 382

objective function, 497, 499
objects, 397
odd function, 579
odd polynomial, 354
Ohm’s Law, 30
one-to-one transformations,

384
onto transformations, 384
open model of the economy,

131
open sector, 131
ordered n-tuple, 47, 275
ordered basis, 503, 505
origin, 209
orthocentre, 262
orthogonal basis, 416, 549
orthogonal codes, 484
orthogonal complement,

418, 484, 551
orthogonal diagonalization,

424, 557
orthogonal hermitian matrix,

465
orthogonal lemma, 415, 549

orthogonal matrix, 160, 424
orthogonal projection, 420,

552
orthogonal set of vectors,

466, 547
orthogonal sets, 285, 415
orthogonal vectors, 229,

285, 466, 547
orthogonality

complex matrices, 461
constrained optimization,

497
dot product, 282
eigenvalues, computation

of, 441
expansion theorem, 548
finite fields, 474
Fourier expansion, 288
Gram-Schmidt orthogo-

nalization algorithm,
417, 426, 428, 438,
520, 549

normalizing the orthogo-
nal set, 286

orthogonal codes, 484
orthogonal complement,

418, 484
orthogonal diagonaliza-

tion, 424
orthogonal projection,

420
orthogonal sets, 285, 415
orthogonally similar, 431
positive definite matrix,

433
principal axes theorem,

425
projection theorem, 311
Pythagoras’ theorem, 286
QR-algorithm, 443
QR-factorization, 437
quadratic forms, 429, 487
real spectral theorem, 426
statistical principal com-

ponent analysis, 500
triangulation theorem,

430
orthogonally diagonalizable,

425
orthogonally similar, 431
orthonormal basis, 550, 559
orthonormal matrix, 424
orthonormal set, 466, 547
orthonormal vector, 285

PageRank, 189

paired samples, 324
parabola, 491
parallel, 217
parallelepiped, 247, 255
parallelogram

area equal to zero, 246
defined, 110, 212
determined by geometric

vectors, 212
image, 255
law, 110, 212, 601
rhombus, 230

parameters, 2, 14
parametric equations of a

line, 219
parametric form, 2
parity digits, 482
parity-check code, 479
parity-check matrices, 482
Parseval’s formula, 556
particle physics, 499
partitioned into blocks, 73
path of length, 75
Peano, Guiseppe, 329
Pearson correlation coeffi-

cient, 324
perfect code, 479
period, 371
permutation matrix, 123,

432, 521
perpendicular lines, 226
physical dynamics, 469
pigeonhole principle, 614
Pisano, Leonardo, 195
planes, 233, 264
Pless, V., 484
PLU-factorization, 124
point-slope formula, 221
pointwise addition, 332, 333
polar decomposition, 455
polar form, 601
polynomials

as matrix entries and de-
terminants, 152

associated with the linear
recurrence, 408

coefficients, 319, 332, 623
companion matrix, 157
complex roots, 177, 465,

626
constant, 623
defined, 331, 623
degree of the polynomial,

332, 623
distinct degrees, 347
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division algorithm, 625
equal, 332, 623
evaluation, 182, 340
even, 354
factor theorem, 625
form, 623
indeterminate, 623
interpolating the polyno-

mial, 165
Lagrange polynomials,

365, 548
leading coefficient, 332,

623
least squares approximat-

ing polynomial, 317
Legendre polynomials,

550
nonconstant polynomial

with complex coeffi-
cients, 306

odd, 354
remainder theorem, 624
root, 174, 441, 597
root of characteristic poly-

nomial, 174, 368
Taylor’s theorem, 364
vector spaces, 331, 363
with no root, 625, 626
zero polynomial, 623

position vector, 213
positive x-shear, 61
positive correlation, 323
positive definite, 433, 497
positive definite matrix, 433,

539
positive matrix, 455
positive semi-definite ma-

trix, 455
positive semidefinite, 501
power method, 441, 442
power sequences, 406
practical problems, 1
preimage, 381
prime, 474, 614
principal argument, 601
principal axes, 426, 489
principal axes theorem, 425,

465, 468, 498, 561
principal components, 501
principal submatrices, 434
probabilities, 134
probability law, 500
probability theory, 501
product

complex number, 600

determinant of product of
matrices, 158

dot product, 226
matrix products, 66
matrix-vector products, 49
scalar product, 226
standard inner product,

462
theorem, 158, 168

product rule, 404
projection

linear operator, 564
linear operators, 251
orthogonal projection,

420, 552
projection matrix, 63, 423,

432
projection on U with kernel

W , 551
projection theorem, 311,

420, 552
projections, 114, 230, 418
proof

by contradiction, 613
defined, 611
direct proof, 611
formal proofs, 612
reduction to cases, 613

proper subspace, 263, 279
pseudoinverse, 457
pure imaginary numbers,

597
Pythagoras, 221, 612
Pythagoras’ theorem, 221,

228, 286, 547, 612

QR-algorithm, 443
QR-factorization, 438
quadratic equation, 497
quadratic form, 429, 487,

541
quadratic formula, 606
quotient, 473

radian measure, 111, 601
random variable, 500
range, 382
rank

linear transformation,
383, 508

matrix, 16, 291, 383
quadratic form, 494
similarity invariant, 518
symmetric matrix, 494
theorem, 291

rational numbers, 330

Rayleigh quotients, 442
real axis, 600
real Jordan canonical form,

593
real numbers, 1, 47, 330,

332, 461, 465, 474
real parts, 403, 597
real quadratic, 606
real spectral theorem, 426
recurrence, 193
recursive algorithm, 11
recursive sequence, 193
reduced row-echelon form,

10, 11, 100
reduced row-echelon matrix,

10, 11
reducible, 531
reduction to cases, 613
reflections

about a line through the
origin, 160

fixed hyperplane, 575
fixed line, 569
fixed plane, 572
isometries, 568
linear operators, 251
linear transformations,

113
regular representation, 522
regular stochastic matrix,

139
remainder, 473
remainder theorem, 363, 624
repellor, 187
reproduction rate, 171
restriction, 524
reversed, 7
rhombus, 230
right cancelled invertible

matrix, 85
right-hand coordinate sys-

tems, 247
right-hand rule, 248
root

of characteristic polyno-
mial, 174, 368, 369

of polynomials, 340, 441,
597

of the quadratic, 606
roots of unity, 604
rotation, 575
rotations

about a line through the
origin, 519

about the origin

and orthogonal matrices,
160

axis, 572
describing rotations, 111
fixed axis, 575
isometries, 568
linear operators, 254
linear transformations,

111
round-off error, 175
row matrix, 35
row space, 290
row-echelon form, 10, 11
row-echelon matrix, 10, 11
row-equivalent matrices, 103
rows
(i, j)-entry, 35
as notations for ordered n-

tuples, 275
convention, 36
elementary row opera-

tions, 5
leading 1, 10
shape of matrix, 35
Smith normal form, 99
zero rows, 10

saddle point, 188
same action, 59, 333, 378
sample

analysis of, 322
comparison of two sam-

ples, 323
defined, 322
paired samples, 324

sample correlation coeffi-
cient, 324

sample mean, 322
sample standard deviation,

323
sample variance, 323
sample vector, 322
satisfy the relation, 406
scalar, 39, 330, 474
scalar equation of a plane,

233
scalar matrix, 143
scalar multiple law, 110,

215, 217
scalar multiples, 21, 39, 110
scalar multiplication

axioms, 330
basic properties, 334
closed under, 47, 330
closed under scalar multi-

plication, 263
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described, 39
distributive laws, 41
geometric vectors, 215
geometrical description,

110
of functions, 333
transformations

preserving scalar multi-
plication, 104

vectors, 330
scalar operator, 376
scalar product

defined, 226
elementary row opera-

tions, 21
geometric vectors, 215

scatter diagram, 323
Schmidt, Erhardt, 417
Schur’s theorem, 467
Schur, Issai, 467
second-order differential

equation, 368, 402
Seneta, E., 130
sequence

Fibonacci, 195
sequences

constant sequences, 406
equal, 406
Fibonacci, 195
linear recurrences, 192
notation, 406
of column vectors, 172
ordered sequence of real

numbers, 47
power sequences, 406
recursive sequence, 193
satisfy the relation, 406

set, 263
set notation, 264
set of all ordered n-tuples

(Rn)
n-tuples, 290
as inner product space,

537
closed under addition and

scalar multiplication,
47

complex eigenvalues, 306
dimension, 276
dot product, 282, 462
expansion theorem, 287
linear independence, 271
linear operators, 250
notation, 47
orthogonal sets, 285

projection on, 421
rank of a matrix, 291
rules of matrix arithmetic,

330
similar matrices, 298
spanning sets, 266
special types of matrices,

330
standard basis, 106
subspaces, 263, 331
symmetric matrix, 307

Shannon, Claude, 477
shift operator, 410
shifting, 444
sign, 146
similar matrices, 298
similarity invariant, 518
simple harmonic motions,

371
simplex algorithm, 17, 500
sine, 111, 601
single vector equation, 48
singular matrix, 448
singular value decomposi-

tion, 445, 451
singular values, 447
size m× n matrix, 35
skew-hermitian, 471
skew-symmetric, 46, 528,

563
Smith normal form, 99
solution

algebraic method, 4, 9
basic solutions, 24, 454
best approximation to,

310
consistent system, 1, 16
general solution, 2, 14
geometric description, 3
in parametric form, 2
inconsistent system, 1
nontrivial solution, 20,

173
solution to a system, 1, 14
to linear equation, 1
trivial solution, 20

solution to a system, 1
span, 266, 341
spanning sets, 266, 341
spectral theorem, 468
spectrum, 426
sphere, 499
spring constant, 371
square matrix (n× n matrix)

characteristic polynomial,

173, 469
cofactor matrix, 160
defined, 35
determinants, 81, 145, 159
diagonal matrices, 79, 172
diagonalizable matrix,

178, 516
diagonalizing matrix, 178
elementary matrix, 95
hermitian matrix, 464
idempotent, 79
identity matrix, 52, 56
invariants, 176
lower triangular matrix,

154
matrix of an operator, 516
nilpotent matrix, 190
orthogonal matrix, 160
positive definite matrix,

433, 539
regular representation of

complex numbers, 522
scalar matrix, 143
similarity invariant, 518
skew-symmetric, 46
square, 79
trace, 299
triangular matrix, 154
unitary matrix, 466
upper triangular matrix,

154
staircase form, 10
standard basis, 106, 268,

272, 277, 278, 349, 461
standard deviation, 501
standard generator, 482
standard inner product, 462
standard matrix, 513
standard position, 110, 601
state vectors, 137
statistical principal compo-

nent analysis, 500
steady-state vector, 140
stochastic matrices, 130, 136
structure theorem, 570
submatrix, 298
subset, 263
subspace test, 339
subspaces

m× n matrix, 264
basis, 276
closed under addition, 263
closed under scalar multi-

plication, 263
column space, 445

complex subspace, 470
defined, 263, 338
dimension, 276
eigenspace, 303
fundamental, 452
fundamental theorem, 276
image, 381, 382, 445
intersection, 270, 360
invariance theorem, 276
invariant subspaces, 523
kernel, 382
planes and lines through

the origin, 264
projection, 420
proper subspace, 263
spanning sets, 266
subspace test, 339
sum, 270, 360
vector spaces, 338
zero subspace, 263, 339

subtraction
complex number, 597
matrix, 38
vector, 214

sum
algebraic sum, 30
complex number, 601
direct sum, 360, 528
elementary row opera-

tions, 21
geometric vectors, 213
geometrical description,

110
matrices of the same size,

37
matrix addition, 37
of product of matrix en-

tries, 152
of scalar multiples, 21
of two vectors, 330
of vectors in two sub-

spaces, 528
subspaces, 270, 360
subspaces of a vector

space, 360
variances of set of random

variables, 502
summation notation, 205
Sylvester’s Law of Inertia,

494
symmetric bilinear form,

497
symmetric form, 225, 487
symmetric linear operator,

559
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symmetric matrix
absolute value, 307
congruence, 493
defined, 43
index, 494
orthogonal eigenvectors,

425
positive definite, 433
rank and index, 494
real eigenvalues, 307

syndrome, 483
syndrome decoding, 483
system of linear equations

algebraic method, 4
associated homogeneous

system, 53
augmented matrix, 3
chemical reactions

application to, 32
coefficient matrix, 4
consistent system, 1, 16
constant matrix, 4
defined, 1
electrical networks

application to, 29
elementary operations, 5
equivalent systems, 4
gaussian elimination, 9,

14
general solution, 2
homogeneous equations,

20
inconsistent system, 1
infinitely many solutions,

3
inverses and, 82
matrix multiplication, 70
network flow application,

27
no solution, 3
nontrivial solution, 20
normal equations, 311
positive integers, 32
rank of a matrix, 16
solutions, 1
trivial solution, 20
unique solution, 3
with m×n coefficient ma-

trix, 49
systematic generator, 482

tail, 212
Taylor’s theorem, 364, 515
tetrahedron, 225
theorems, 615
theory of Hilbert spaces, 417

third-order differential equa-
tion, 368, 402

time, functions of, 172
tip, 212
tip-to-tail rule, 213
total variance, 502
trace, 79, 299, 376, 518
trajectory, 187
transformations

action, 59, 503
composite, 65
defining, 59
described, 59
equal, 59
identity transformation,

60
matrix transformation, 59
zero transformation, 60

transition matrix, 135, 136
transition probabilities, 134,

136
translation, 61, 380, 564
transpose of a matrix, 42
transposition, 42, 376
triangle

altitude, 262
centroid, 225
hypotenuse, 612
inequality, 244, 284, 599
median, 225
orthocentre, 262

triangle inequality, 244, 543,
599

triangular matrices, 118, 154
triangulation algorithm, 586
triangulation theorem, 430
trigonometric functions, 111
trivial linear combinations,

271, 345
trivial solution, 20

uncorrelated, 501
unit ball, 499, 541
unit circle, 110, 542, 601
unit cube, 256
unit square, 256
unit triangular, 128
unit vector, 215, 282, 463,

541
unitarily diagonalizable, 467
unitary diagonalization, 467
unitary matrix, 466
upper Hessenberg form, 444
upper triangular matrix, 118,

154, 467

Vandermonde determinant,
167

Vandermonde matrix, 153
variance, 322, 501
variance formula, 326
vector addition, 330, 601
vector equation of a line, 218
vector equation of a plane,

234
vector geometry

angle between two vec-
tors, 228

computer graphics, 258
cross product, 236
defined, 209
direction vector, 218
line perpendicular to

plane, 226
linear operators, 250
lines in space, 218
planes, 233
projections, 231
symmetric form, 225
vector equation of a line,

218
vector product, 236
vector quantities, 211
vector spaces

3-dimensional space, 209
abstract, 329
as category, 397
axioms, 330, 333, 335
basic properties, 329
basis, 349
cancellation, 333
continuous functions, 538
defined, 330
differential equations, 368
dimension, 349
direct sum, 528
examples, 329
finite dimensional spaces,

354
infinite dimensional, 355
introduction of concept,

329
isomorphic, 392
linear independence, 345
linear recurrences, 405
linear transformations,

375
polynomials, 331, 363
scalar multiplication

basic properties of, 334
spanning sets, 341

subspaces, 338, 360
theory of vector spaces,

333
zero vector space, 336

vectors
addition, 330
arrow representation, 58
column vectors, 172
complex matrices, 461
coordinate vectors, 215,

236, 256, 268, 504
defined, 47, 330, 461
difference of, 334
direction of, 211
direction vector, 218
fixed vectors, 576
initial state vector, 137
intrinsic descriptions, 211
length, 212, 282, 463, 541
matrix recurrence, 172
matrix-vector multiplica-

tion, 48
matrix-vector products, 49
negative, 47
nonzero, 217
orthogonal vectors, 229,

285, 466, 547
orthonormal vector, 285,

466
position vector, 213
sample vector, 322
scalar multiplication, 330
single vector equation, 48
state vector, 135
steady-state vector, 140
subtracted, 334
sum of two vectors, 330
unit vector, 215, 282, 463
zero n-vector, 47
zero vector, 263, 330

velocity, 211
vertices, 75
vibrations, 499
volume

linear transformations of,
255

of parallelepiped, 247,
255

Weyl, Hermann, 329
whole number, 611
Wilf, Herbert S., 189
words, 477
wronskian, 373

zero n-vector, 47
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zero matrix
described, 38
no inverse, 81

scalar multiplication, 40
zero polynomial, 332
zero rows, 10

zero subspace, 263, 339
zero transformation, 60, 117,

376

zero vector, 263, 330
zero vector space, 336
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