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Preface

This is an introduction to probability theory, designed for self-study. It covers
the same topics as the one-semester introductory courses which I taught at
the University of Minnesota, with some extra discussion for reading on your
own. The reasons which underlie the rules of probability are emphasized.

Probability theory is certainly useful. But how does it feel to study it?
Well, like other areas of mathematics, probability theory contains elegant
concepts, and it gives you a chance to exercise your ingenuity, which is often
fun. But in addition, randomness and probability are part of our experience
in the real world, present everywhere and yet still somewhat mysterious. This
gives the subject of probability a special interest.

With self-study in mind, detailed solutions are given for all the exercises
here. The exercises are mixed in with the exposition, and you are encouraged
to solve them (on paper) as you read the theory. To get the benefit of
an exercise, please work it out, or attempt it seriously, before reading the
solution. Tackling at least some of the exercises is essential for learning.

Many facts are stated as numbered lemmas or remarks, often with de-
scriptive names. This adds some noise, but should help in following the train
of thought on your own. If a proof is given, the purpose is to clarify con-
cepts, and all details are explained. Proofs are always optional in this book,
but readers are encouraged to work at them, since proofs are one of the
ways in which we internalize mathematical ideas. Internalizing ideas means
making them part of our thinking, rather than leaving them as recipes from
an outside source. Solving problems, working through examples, and think-
ing about the physical meaning of concepts are other ways of internalizing
mathematics.

When reading this book on a computer (which is the intended way) you
can use links to hop back and forth between exercises and solutions, as well
as to follow references to equations and theorems. There is a large table
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of contents and a large index with links to topics and definitions. (Most
pdf viewers can return from following a link, coming back to the previous
spot. This saves time. There may be a button to return, or a keystroke like
“ctrl-left-arrow” or “alt-left-arrow”.)

The order of the chapters is fairly logical, but a different order might be
just as natural. Later chapters assume knowledge of calculus. Depending on
your interests, some chapters can be omitted, or read quickly.

Learning mathematics always requires some “intense solitary thought”,
but it is also a human activity. If you have an opportunity to discuss your
work and share ideas with others, try to do that. There are many good
textbooks on probability theory, and dipping into another book can be very
stimulating, especially if you find a different approach to a topic.

It is just possible that there are a few misprints. Corrections and sugges-
tions will be gratefully received at probabilitybook@gmail.com. I particularly
wish to thank Larry Susanka, who contributed many insightful comments on
probability.

This book is dedicated to all the participants in my probability classes.
Thanks for listening!

John Baxter

September 2023
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Chapter 1

Probability and Events

In this chapter we try to explain the real-world background for probability.
The discussion does not make much use of mathematics, and can be read
quite rapidly. After working through later chapters, readers may find it
worthwhile to look over this introduction again, and compare it with the
precise statements of mathematical probability.

1.1 Common sense probability

Events in the real world are often unpredictable, and happen without clear
causes. Such events are said to be random. To deal with randomness we
all use “common sense probability”, and we do so with little or no use of
mathematics. For example, no one needs to study probability theory to
decide whether it is safe to cross the road. But the concepts in probability
are of interest, and mathematical probability theory is used widely in science
and industry. In this book we are studying mathematical probability theory.
We will build upon our understanding of common sense probability.

Can we give a simple definition of the concept of probability? A simple
definition of a concept would be one that is expressed in terms of other
concepts. But some concepts seem to be so basic that they cannot be given
this sort of definition. For example: we all have some understanding of the
geometrical concept of three-dimensional space, but if someone asked you to
give a simple definition of space, what would you say? We seem to build
up our intellectual understanding of space gradually, not through a simple
definition, but through the use of this concept as we experience the world

15



Chapter 1. Probability and Events

around us.
Is probability like that, or not? Certainly probability is a very different
property from space or time. But let’s try an experiment.

®
Q2% @70
QQ @Q@

Box 1 Box 2

Figure 1.1: Box 1 and Box 2

Example 1.1 (The two boxes). Imagine that someone presents you with
a choice of two boxes, Box 1 and Box 2. You cannot see inside either box,
but you are allowed to choose one of the two boxes, and then reach into that
box and take out one object. You must select an object in the box without
looking, so you have no control over which object you obtain from the box.

You know that Box 1 contains six objects. One is a valuable diamond,
and the other five objects are merely stones from the road. And you also
know that Box 2 contains six objects. Five of these objects are valuable
diamonds, and the remaining one is a stone without value. See Figure [I.1]

Remember, you must choose either Box 1 or Box 2 before you make your
selection from the box. After you make your selection, you will be holding
one object in your hand, either a valuable diamond or a worthless stone.
Assuming that you wish to get rich, which box should you choose?

The unanimous answer is surely “Box 2”7. That is an example of common
sense probability. But now comes the challenge: explain why you would
choose Box 2, without using the word “probability”, and without using any
synonym, such as “chance” or “odds” or “likelihood”.

16



1.2. Probability as belief?

An answer to this challenge might help in formulating a definition of
probability. However, in Example[I.1|we didn’t state exactly what constitutes
an explanation, so someone might respond by simply saying “Box 2 gives
you more ways to win”. Such an answer certainly identifies a difference, but
doesn’t explain why this difference matters. So one could debate whether
this is a sufficient explanation. But it doesn’t give us a definition.

At any rate, as far as your author knows, no one has ever given a simple
definition of probability. And that’s ok! In this book we will build up our
understanding of probability through examples and mathematical properties,
drawing on our experience with probability in the real world.

Exercise 1.1. Consider a more complicated version of Example [I.1 Keep
Box 2 the same, but change Box 1 to have 10 diamonds and 90 stones. In
that case Box 1 certainly gives you “more ways to win”. Is Box 2 still a
better choice?

[Solution|

1.2 Probability as belief?

One can regard probability as a way of measuring what might be called
“degree of belief”. To a possible future event, we assign a number between 0
and 1, called the probability, which expresses our confidence that the event
will happen.

Probability 1 for any event means we are certain the event will happen,
probability 0 means we think it is impossible. Probability values which are
between 0 and 1 mean we are not sure.

Our common sense probability judgments are based on knowledge. Your
knowledge might be different from mine, and as a result we might assign
very different likelihood to the same possible event. So it is natural to try to
describe probability as a belief inside your head, i.e. something subjective.
Is this a sensible definition?

Defining probability as “degree of belief” turns out to be an elegant way
to think about the formulas of probability theory. And it is not wrong, just
insufficient. We must still try to connect those probabilities inside our heads
with the external world, and explain the brutal fact that correct assessments
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Chapter 1. Probability and Events

of probability tend to keep you alive, and incorrect assessments of probability
tend to kill you. A practical connection between probability and the real
world will be stated as Probability Fact [I.1] after some discussion of concepts.

1.3 Experiments

We will use the phrase “experimental situation” as a convenient general term
to describe a situation in which you know the setting but may have incom-
plete information. For brevity we might also just say “experiment” to de-
scribe this situation.

For example, perhaps someone will take an action, or has taken an action,
and the result of this action is unknown to you, although you may learn the
result later. We are calling the situation and the action an experimental
situation, even though it need not arise from something you do in a scientific
laboratory. It might just be tossing a coin, and indeed a coin toss is one of
our standard examples.

The result of the experiment will often be called the outcome.

A real experiment takes place at a definite place and time, is carried out
by particular people, and so on. Most of those details are irrelevant when
calculating a probability.

When we talk about the outcome of the experiment, we usually only mean
the features which are essential for our purposes. So for a coin toss we tersely
say that the outcome is either a head or a tail.

1.4 Repeated coin tosses

Think more about tossing a coin.

We are not surprised that the result of tossing a coin is unpredictable. It
seems that small changes, even ones that are too small to notice, can have
an effect on the result of the toss. The coin is usually spinning in the air,
and if it spins just a little faster, or we toss it just a little higher, that can
change the result. Even if we try to toss the coin the same way each time,
for most people there seems to be some kind of “shakiness” in the motions
of their arms and hands. Perhaps that leads to unpredictability.

Suppose someone asserts, in everyday language, that a particular coin
has probability .55 of coming up heads when tossed. This number .55 does
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not help very much in predicting what will happen the next time we toss the
coin! What is such a probability value good for?

It is perhaps surprising that probability does tell us something useful
in this situation, provided that we are willing to toss the coin many times.
Given that the probability of a head is .55, we expect that if we toss the
coin 10000 times, it is likely that approximately 5500 of the results will be
heads, although it is unlikely that exzactly 5500 heads will be obtained. Please
note that there are two vague words in the previous sentence: “likely” and
“approximately”. And yet, despite the vagueness, this is a key insight about
the world.

The concept of the frequency gives us a convenient way to express what
probability tells us. Here’s the definition of frequency. We'll state it for the
coin-tossing situation, but it applies to any experimental situation.

Definition 1.2 (Frequencies). When the coin is tossed N times, and heads
occur on M of the tosses, we say that the frequency f of heads is given by

M
f=5 (1.1)

Thus the frequency of heads is the fraction of times that a head is obtained.

Our interpretation of the probability .55 is: if we toss the coin many
times, we are confident that the frequency of heads will be approximately
.55. This is an example of the “Frequency Interpretation of Probability”.
The general statement is given below in Probability Fact [1.1]

Readers will be familiar with this way of thinking about probability. We
expect that a baseball player with a high batting average is more likely to
get a hit than someone with a low average, and so on.

But perhaps we should try to be surprised, just for a moment! Suppose
we toss a coin 10,000 times, and get 5439 heads. If we toss the coin another
10,000 times, we certainly don’t know what will happen on any particular
toss. And yet, even if no one told us the probability of a head with this coin,
we feel confident that the total number of heads the next time will not be
too different from what was obtained the first time! So in this limited sense
we can predict the future, and that is still enormously helpful.

Try to imagine a world in which the frequency in one series of tosses
told us nothing about the frequency in the next series of tosses. That world
would be far more chaotic than the one we live in. Planning and decision-
making might be so difficult that we could not survive. And the concept of
probability would not exist.
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1.5 Selecting from the box

Return to the experiment described in Example [I.I] Tmagine that you are
able to repeat this experiment many times.

Suppose that on each repetition you choose Box 2, and then remove one
object from Box 2, which must be either a diamond or a stone. What do you
think will happen?

Each repetition of this experiment is supposed to be a fresh start, with
no connection to the results of the previous repetitions. Box 2 contains five
diamonds and one stone, each time. We can picture the box as being shaken
vigorously each time before the object is selected, so we have no idea of the
positions of objects inside. And we should assume that the diamonds and
the stone are indistinguishable by touch, so we have no control at all over
which object is selected.

In a long series of repetitions of this experiment, very likely you will
obtain a diamond from the box in approximately 5/6 of the repetitions.

Of course, if Box 1 were chosen for each repetition of the experiment,
we would expect that approximately 1/6 of the time a diamond would be
obtained. If we define “success” to mean that a diamond is obtained, we
can say that Box 2 is a better choice than Box 1 because it gives a larger
frequency of success.

To express our thoughts more concisely, we can use probability language
instead of frequency language.

Thus we would say that when selecting an object from Box 2, the probabil-
ity of success is 5/6, and when selecting an object from Box 1, the probability
of success is only 1/6.

In conversations about practical situations, most people people seem well
aware of the connection between probability and frequency. In theoretical
discussions this connection is often called the “frequency interpretation of
probability”.

1.6 The frequency interpretation
We will be talking about an interpretation for the probability of an event.

The word “event” is used in ordinary speech, but let’s define a slightly more
precise usage here.
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Definition 1.3 (Events). We will use the term “event” to describe the
occurrence or non-occurrence of a property of the outcome of an experiment.
We often denote such an event by a letter, so for example we might speak of
the event A.

Remember that the concept of probability has not been given a precise
definition, although we’ve talked about common sense probability, and we’ve
talked about probability as a degree of belief. In a particular situation, one
may estimate the probability of an event by means of careful observation,
or, less precisely, from general experience. Once we have decided on the
probability of an event, the general laws of probability will then determine the
probabilities of other events. We don’t have a neat definition of probability,
but thinking about frequencies will help us to use probability correctly.

Here’s a convenient standard notation: for any event A, let us write
P(A) to denote the probability that we assign to an event A.

If the event is defined for a particular experiment, imagine carrying out
the experiment repeatedly, for a total of N repetitions. Sometimes each
experiment in the sequence of repetitions is called a “trial”. The repeated
experiments are distinct actions, but are supposed to take place in similar
settings.

What does it mean to say that settings are “similar”? Settings which look
similar may have subtle differences that influence the outcomes which we
observe. This means that we must think hard when applying probability to
real-world settings, and use our practical experience as well as mathematical
theory. But we won’t worry about that right now.

In Section [1.4{we talked about the frequency with which a head is obtained
in coin-tossing. In the general, the frequency with which an event occurs is
defined in the same way: it is the fraction of the trials for which the event
actually occurs.

Any physically meaningful probability value must be consistent with the
following.

Probability Fact 1.1 (The frequency interpretation of probability).
For an event A, the observed frequency of occurrence of A, in any sufficiently
long sequence of repetitions of similar experimental situations, will likely be
close to P(A).
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In applications, we can use the frequency interpretation to find a proba-
bility that we don’t know, and to predict a frequency from a probability that
we do know.

If the frequency of an event in repeated experiments does not match the
probability that we have assigned to the event, that indicates an error.

Remark 1.4 (Do we have a definition of probability here?). The
answer to this question depends on your standards for definitions. However,
it must be noted that the frequency interpretation of probability cannot
provide a precise definition of probability. Since the word “likely” is used,
a definition based on the frequency interpretation would be circular, since
you would have to already know at least something about the meaning of
probability, in order to understand its definition! Furthermore, the statement
is vague. Look at those weasel-words “sufficiently long” and “close”, in the
statement. If you want the observed frequency to be, say, within 1% of the
probability, how long is “sufficiently long”?

And yet, despite its theoretical deficiencies, the frequency interpretation
is the most important practical statement we can make about the connec-
tion between mathematical probability statements and physical probability
statements. Whatever assumptions we make later about mathematical prob-
abilities must be consistent with the frequency interpretation.

As in our discussion of choices from Box 1 and Box 2, in general we can
use probability language as a convenient way to express frequencies of events.
In some practical situations frequency language may seem more informative,
and either formulation is correct.

Example 1.5 (Events that are certain and events that are impos-
sible). For some experiment, let A be an event which is certain to occur,
and let C' be an event which is impossible. Then we say that P(A) = 1, and
P(C) =0.

Let’s take a moment to think about a question: are these definitions
forced upon us by the frequency interpretation?

The frequency interpretation says that if we repeat the experiment many
times, the measured frequency of A is likely to be close to P(A).
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1.7. Adding up probabilities

Consider N repetitions of the experiment. Since A is certain, it will occur
N times, giving an experimental frequency f = N/N = 1. The frequency
tells us the probability, so the frequency interpretation of probability does
seem to require that P(A) = 1.

Of course, if we want to be fussy about our logic, we might remember that
the frequency interpretation of probability does not say that the frequency is
equal to the probability, it says that when an experiment is repeated many
times, the frequency is likely to be close to the probability. So let’s take a
further moment here to give a more careful argument.

The frequency interpretation of probability says that when N is suffi-
ciently large, the difference between the frequency f and P(A) is likely to be
small. So, for example, if the number of repetitions is sufficiently large then
we will likely have |f — P(A)| < .01, i.e. |1 —P(A)| < .01.

Using .01 to estimate the difference was just an example. If we perform an
even larger number of repetitions, then with enough repetitions the frequency
interpretation says that we will likely have |1 — P(A)| < .001. And so on!

In the real world, our research budget will not cover endless repetitions of
the experiment. But in our minds we can imagine longer and longer sequences
of repetitions, for which the likely difference between 1 and P(A) becomes
smaller and smaller, as small as we wish.

That can only be true if P(A) = 1, so yes, the frequency interpretation
of probability forces us to conclude that the value of P(A) must be equal to
1.

In the same way, the frequency interpretation requires that P(C') = 0.

1.7 Adding up probabilities

Suppose you are working in a big office in Chicago, it’s 2:30 pm, and the
phone rings.

You know that the phones where you work only receive calls from the
branch offices. There are branch offices in exactly five cities: New York City,
Baltimore, Miami, San Francisco and Los Angeles.

Like most people, you are familiar with the concept of probability as it
is used in practical situations. Based on the experience of people working in
your office, it is believed that at this time of day, the probability that the
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call is from New York is .20, the probability that the call is from Baltimore
is .17, the probability that the call is from Miami is .20, the probability that
the call is from San Francisco is .18, and the probability that the call is from
Los Angeles is .25.

Suppose you would like to know the probability that this particular call
is from the east coast. Is that an easy number to find?

It is easy. We simply add up the probabilities of calls from the cities on
the east coast: New York, Baltimore and Miami. So:

probability call is from the east coast = .20 + .17 + .20 = .57 (1.2)

But why do we add the probabilities for the separate cities? Can we justify
this calculation?

If we think of probabilities simply as degrees of belief, it’s not clear why
adding is ok. Feelings are not numbers. So let’s think about frequencies
instead.

Think of each incoming call as an experiment. Suppose that, typically,
your phones get a total of 100 calls per day, during the time period from 2:00
pm to 3:00 pm. The probabilities stated earlier suggest that you will likely
get around 20 calls from New York, 17 calls from Baltimore, and 20 calls
from Miami. So you will get approximately 57 calls from the east coast, out
of a total of 100 calls.

Since the frequency of east coast calls is 57/100, the probability of a call
being from the east coast should be around .57, and that is what you get by
adding the probabilities.

What do you think of this argument? It is a bit careless, because the
frequency interpretation applies to a large number of repetitions of the ex-
periment, and 100 calls is not a large number of repetitions. But the idea is
sound. To argue more carefully, think about a longer period, as long as you
like, say 30 days. Then the total number of calls to the office during that
time of day will be roughly 30 x 100 = 3000. Call that number N. Since N
is large, we feel reasonably confident that approximately N x .20 calls will
come from New York, N x .17 calls will come from Baltimore, and N x .20
calls will come from Miami. Thus approximately N x (.20 + .17 4 .20) calls
will come from the east coast. And so:

N x (.20 + .17 + .20)
N

where we write &~ to mean “approximately equal”’. By the frequency inter-

pretation, the sum .20 4 .17 + .20 is the correct probability.

frequency of calls from the east coast = = .204-.17+.20,
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The same argument could be carried out in general, of course! So we
have an important general rule, stated next. We will state this rule rather
formally. It has to be stated that way, because it is a general rule, which is
supposed to apply to many different situations. And we need to be careful
in what we say, because we want our theoretical arguments to be reliable.
Thinking theoretically is a lot less work that carrying out experiments, but
it has to be right!

Probability Fact 1.2 (Probabilities are additive over cases). Let Dy, ...

be events for a some experiment.

Suppose that events Dy, ..., D; are mutually exclusive, meaning that
at most one of the events D, can occur. Let A be the event that one of
Dy, ..., Dy occurs. This means that if any of the events Dy, ..., Dy occurs,
by definition A occurs. Then:

P(A)=P (D)) +...+P(Dy). (1.3)

In the situation with the office phone call, we could let D; denote the
event that that call came from New York, D, denote the event that the
call came from Baltimore, and D3 denote the event that the call came from
Miami. A would be the event that the call came from the east coast. Then
equation and equation (|1.2)) say the same thing.

An important special case of Probability Fact is the situation in which
Dy, ..., D, cover all possibilities, meaning that one of these events always
occurs. In that case we have:

P(Dy)+...+P(Dy) =1 (1.4)
Why does equation (1.4)) follow from equation ([1.3))7 Well, since Dy, ..., Dy

cover all possibilities, A always happens! (It’s a really boring event.) Just
as in Example [1.5| we then conclude immediately that P(A) = 1, so equa-
tion (1.3) turns into equation (1.4)).

1.8 Back to the boxes!

Return again to the problem of choosing from one of two boxes (Example[1.1)).
In Section we stated that the frequency of success using Box 2 was 5/6.

25



Chapter 1. Probability and Events

We didn’t really justify this statement, although it certainly seemed plausible.
Let’s give a more careful analysis now, to practice using Probability Fact [1.2]

Think about the six objects in Box 2. Our practical experience tells us
that each of these objects would be chosen approximately one-sixth of the
time. Since five of these objects are diamonds, the combined frequency of
obtaining a diamond is 5/6. In probability language, we would say that
each object has probability one-sixth of being chosen, and then say that by
Probability Fact

1 1 1 1 1 5
th bability that a di d is ch S T T T T
e probability that a diamond is chosen 6+6+6+6+6 G

That’s more or less the whole story. But we might say a bit more.

Why do we think that each object in the box has probability one-sixth to
be chosen? There are six objects, and we think that each one has the same
chance of being chosen, don’t we? That’s true, but we should realize that we
are building in our real-world experience when we assert that.

It is related to the comment made at the end of in Section [L4. We said
that if we toss a coin many times, and then perform a second sequence of
tosses with the same coin, we expect that the frequency of heads in the second
series of tosses will be roughly consistent with the frequency of heads in the
first series.

Now we are considering a situation involving the six different objects in
Box 2, rather than a single coin. However, the six objects are the same in any
way which affects the results of the experiment. For that reason, we expect
that in a long series of trials, each object will be selected with roughly the
same frequency. In the language of probability, we think that each of the six
objects has the same probability of being selected. If this assumption turns
out to be false, we will conclude that we did not understand the experiment.

If we accept that each of the six objects has the same probability of being
chosen, call this probability p. By equation ([1.4)),

p+tp+tptpt+pt+p=1,
so yep, p = 1/6.

1.9 Some simple examples

Example 1.6 (One coin toss). For a coin toss there seem to be only two
interesting events, the event H that the result is a head, and the event T'
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that the result is a tail.

A coin is said to be fair if the probability of obtaining a head is equal to
the probability of obtaining a tail. Gamblers are typically expected to use
fair coins in their games.

A real coin may be fair or unfair. For any coin,

P(H)+P(T) = 1. (1.5)

Exercise 1.2. How is equation (1.5 related to Probability Fact
[Solution]

Example 1.7 (Rolling Dice). Instead of thinking about tossing a coin,
let’s consider rolling a die. Most people have played games in which a die is
rolled, or perhaps two dice are rolled. The die is a cube, so it has six faces.
Rolling the die a single time is an experiment with six possible outcomes.
The outcome of the experiment is the number of dots on the uppermost face
of the die when it settles. The possible outcomes are 1,2,3,4,5,6.

A die is said to be fair if all the outcomes 1,2,3,4,5,6 have the same
probability.

One possible event when rolling a die is the event that the outcome is 5.
We might call this event A. The event A only occurs when the outcome is 5.

Another possible event is the event that the outcome is an odd number.
We might call this event B. B is described by a property that three of the
possible outcomes have. If the die gives a 1, a 3, or a 5, we say that the event
B occurred.

Exercise 1.3. When rolling a fair die many times, what fraction of the rolls
(approximately) will result in an odd number?

Bolution
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Remark 1.8 (Comparing experiments). Rolling a fair die is physically
different from the experiment of selecting an object from a box containing
six possible choices, as described in Section [1.5] However, in both cases there
are six basic events, everything can be described in terms of those events,
and the probabilities of the basic events are equal to 1/6 in both cases. Thus
one can translate any problem dealing with one of these experiments into
a similar problem dealing with the other, and the corresponding numerical
answers must agree.

This observation applies to the fair case. Unfair dice certainly exist,
perhaps due to variations in the density of the material. On the other hand,
there isn’t an obvious way to modify the experiment in Section (1.5, in order
to have different probabilities for the six basic events.

Exercise 1.4 (Lottery tickets). This book does not advocate buying lot-
tery tickets. But we can think about them without making a purchase. Sup-
pose that a company offers n lottery tickets for sale, where n may be a large
integer. Exactly one of these tickets is the winning ticket, and the purchaser
will receive a large sum of money. The remaining tickets are worthless, and
of course we don’t know which ticket is the winner. You have purchased one
ticket. Let W be the event that your ticket turns out to be the winner.

(i) Let P(W) be the probability of W. Find P(WV).

Note that the experiment of Section [1.5] using Box 1, essentially solves
this problem for n = 6.

Common sense probability likely gives you the answer as well.

(ii) A certain wealthy gambler buys k lottery tickets, where k£ may be any
number less than or equal to n Let G be the event that the gambler
wins the lottery with one of purchased tickets. Find P(G).

Bolution

Remark 1.9. Let W and G be the events described in the lottery of Exer-
cise [L.4 Suppose that n is equal to 10%. Is P(W) a physically meaningful
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probability value? Think about deciding whether the price of the ticket is
reasonable. P(W) is certainly relevant to that decision.

We found P(W) theoretically, using Probability Fact . Suppose that
you wish to use the frequency interpretation to test the validity of the value
calculated for P(W). In principle this can be done. However, the whole lot-
tery is part of the experiment, and a ridiculously large number of repetitions
of the lottery would be required to accurately measure the frequency with
which W occurs.

On the other hand, when k is comparable in size to n, the value of P(G)
could be tested experimentally with fewer repetitions. This is indirectly a
test of P(W).

Example 1.10 (Sampling from a population). One can think about
making a random selection from a population as an experiment. Pollsters do
this all the time, of course.

It’s easier to think about a population of jelly beans than about a popula-
tion of people, so suppose you have a large bowl containing many jelly beans,
some yellow and some red. In this experiment we assume that there are n
jelly beans altogether, k yellow ones and n — k red ones. In the experiment,
you randomly select exactly one bean, and record its color.

Specifying the experiment includes specifying the actual number of beans
of each color that are in the bowl.

We prepare for the experiment by stirring the jelly beans vigorously, so
that the beans in the bowl are thoroughly mixed. That is not the experiment,
just part of the setup.

Let C' be the event that the selected bean is yellow. We would like to
know P(C), that is the probability that the selected bean is yellow.

Calculations in the setting of this experiment will be similar to calcula-
tions for the lottery described in Exercise[1.4] The event that your own ticket
is the winner corresponds to the event that a particular jelly bean is selected.
The set of tickets bought by the wealthy gambler in part (ii) of Exercise
would correspond to a subset of the beans in the bowl, for example, to the
yellow jelly beans in the bowl.
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1.10 Probability distributions

One usually wants to know the probabilities for the possible outcomes of
an experiment, and perhaps for some of the possible events. Here’s some
standard terminology.

Definition 1.11 (Probability distributions). A rule which assigns prob-
abilities for some family of related events is called a probability distribution
for the events. The probability which the rule prescribes for an event A is

usually denoted by P(A).

A simple example of a probability distribution is a rule which gives the
probability of each possible outcome of an experiment. We might find such
a distribution experimentally, as in the next section.

The use of the word “distribution” in Definition [I.11] may reflect the fact
that the probability values for all the outcomes must add up to one. In that
respect, assigning probabilities to various possible events is a bit like splitting
up a unit quantity of material and distributing it to various locations.

The phrase “family of related events” in Definition [1.11]is not precise. It
might refer to all events, or to some limited collection of events which are
of interest at the moment. We will see examples of distributions in specific
settings later.

1.11 Collecting statistics

It’s more fun to talk about frequencies than to actually perform experiments
and measure them. But perhaps we should take a moment to look at some
examples.

Statistical data

We will refer to experimental data which is systematically recorded and tab-
ulated as statistical data (and see [8] for a discussion of correct grammatical
usage of the word “data’!).

General features of such data are referred to as statistical properties. If
our data is the result of a sequence of repeated experiments, one statistical
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property is the frequency of a particular event. Of course one can calculate
many other statistical properties in this setting, such as the frequency of
obtaining the same outcome twice in a row, or the degree of variation in the
data, etc. But at present we will just focus on the frequency.

Collecting data to learn probabilities

In the case of the experiment of rolling a die, a probability distribution gives
the probability of each possible result. For a fair die, the probabilities for the
values 1,2,3,4,5,6 are 1/6,1/6,1/6,1/6,1/6,1/6, respectively, but of course
a die may be unfair.

Suppose we have a die, but we don’t know the probability distribution
associated with this die. In this situation, one might roll the die repeatedly
and use the frequency interpretation to get an idea about the distribution.

Imagine rolling the die 20 times, recording the results. (To save time, we
can use a computer to simulate rolling the die. This means that a computer
program produces numbers that have similar statistical properties to the
results of performing the actual repeated experiments. It’s not obvious that
this can be made to work, but it does work, pretty well.)

For a particular sequence of 20 trials, the outcomes happen to be

2,5,5,5,6,2,2,4,2,1,1,1,2,4,3,2,4,4,2,6

You can check that the counts for the outcomes 1,2, 3,4, 5,6, are 3,7,1,4, 3, 2.
Thus the frequencies for outcomes 1, 2, 3,4, 5, 6, are 0.15, 0.35,0.05, 0.2, 0.15, 0.1,
respectively. See Figure [1.2a]

These numbers are not probabilities, of course. They are just numbers
that tell us something about the recorded outcomes for a particular experi-
ment. But if we think about making additional rolls of the same die, we can
hope that these numbers give us some idea of the probability of each possible
outcome.

That hope is based on the frequency interpretation of probability, which
says that the probability of obtaining a particular value on one roll of the die
should be similar to the observed frequency for that value, when we have a
long sequence of repeated trials.

However, a sequence of 20 trials does not seem long, especially when
there are six possible outcomes. So it seems rash to draw a conclusion about
probabilities based on these frequencies.
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Longer sequences of trials

Let’s try to get a more accurate estimate for the probability of each possible
result. If we roll the die 100 times, recording the results, the frequencies for
1,2,3,4,5,6 are 0.11,0.33,0.11, 0.19,0.07, 0.19, respectively. See Figure[L.2h]

Even 100 repetitions is not very many. So let’s do more repetitions.

If we roll the die 1000 times, recording the results, the frequencies for
1,2,3,4,5,6 are 0.099, 0.308,0.099, 0.187,0.109, 0.198. See Figure

This is fairly consistent with the results for 100 trials, but of course is
likely to be more reliable.

Let p; be the probability of obtaining the value ¢ when rolling this par-
ticular die. If we have to start playing a gambling game using this particular
die, as a practical choice we might as well assume that

p1 = 0.099, py = 0.308, ps = 0.099, ps = 0.187, ps = 0.109, ps = 0.198.

If you happen to know that this example was made up by a person who
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likes simple numbers, then you may suspect that the actual probabilities for
outcomes 1,2,3,4,5,6 are .1,.3,.1,.2,.1,.2, respectively. However, in real
world situations we should not expect such convenient values for the proba-
bilities.
Let’s do a sequence of 10000 trials, to check for consistency. This time we
find that the frequencies for 1, 2, 3,4, 5, 6 are 0.0989, 0.2984, 0.09870, 0.20070, 0.1053, 0.198,
respectively. (See Figure [1.2d])
Now we feel reasonably confident that we have a good approximation for
the probability distribution for this die.

Remark 1.12 (Messy data!). By now you will have noticed that when ran-
domness is involved, recorded observations seem rather messy. If we display
all the data in a plot, we are unlikely to obtain obtain a nice neat picture.
This is in contrast to, for example, the beautiful curves we get when plot-
ting solutions of differential equations. We can deal with randomness but we
cannot eliminate it.

With this in mind, it is striking that elegant patterns of behavior do
emerge in data associated with large random systems. The Central Limit
Theorem of probability shows this for a long series of coin tosses ([10] and
Chapter . It is also one of the key insights of statistical physics.

The data for die rolls was obtained by simulation using a computer. We
won’t take time to discuss how a computer actually carries out such simula-
tions. The next exercise asks you to consider a different kind of simulation.

Exercise 1.5 (Simple simulations). Suppose you are thinking about some
experiment with three possible outcomes, each of which is supposed to have
probability 1/3. For convenience, let’s give the three outcomes labels: a, b, c.

The physical apparatus for this experiment is complicated and expensive,
so you won’t actually perform the experiment today. But you would like to
play with some statistical data corresponding to these probabilities. You can
try to simulate this experiment using different equipment. That is, instead of
actually doing the experiment, you will do some other experiment (perhaps
something that is easier to perform repeatedly), which will produce the same
values, with the same statistical properties as the real experiment.

What matters is that your simulation is supposed to produce one of the
labels a, b, ¢, with equal probability for each label. You may not have the
equipment you need, though. Here are some cases to consider.
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(i) Suppose you have in your possession a fair die. How can you perform
the simulation?

(ii) Suppose you don’t have the fair die, but you have a fair coin and an
unfair coin, and the unfair coin is known to produce a head with prob-
ability 1/3. How can you perform the simulation?

[Solution|

1.12 Brownian motion

Our examples have been rather simple, although the principles they illus-
trate also apply to very complex situations. Randomness seems to exist
everywhere, and is almost unavoidable.

When discussing coin-tossing in Section [1.4] we suggested that most peo-
ple seem to have some kind of “shakiness” in their arms and hands, which
causes the result of the coin toss to be unpredictable. One might try to ex-
press this in a more general way by saying that the small motions of their
arms are unpredictable, and this unpredictability then leads to unpredictable
results for coin tosses. But then one can ask, “why are the small arm motions
unpredictable?”. This type of questioning can be continued. It seems to lead
us consider more and more detailed pictures of physical processes, at smaller
and smaller scales. Randomness and unpredictability apparently exist at all
known levels of description.

This book has no ultimate explanation for randomness. However, to
illustrate randomness on a small scale, and how its effects can spread, let’s
briefly consider a famous example: Brownian motion.

It’s 1827, and biologist Robert Brown is peering into his microscope ([4],
[6]). He sees little particles moving around in fluid, in a very irregular man-
ner. The original particles come from pollen grains, but as he continues
his observations he finds that all little particles in fluid seem to move in a
rather similar way. They constantly change direction and do not seem to get
“tired”. He finds that even water that has been trapped inside rocks can
contain moving particles, and they must have kept moving during millions
of years. Apparently the statistical properties of this particle motion do not
change.
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1.12. Brownian motion

What Brown saw is related to heat. Nowadays we interpret heat as dis-
orderly motion of atoms and molecules. So let’s think about disorder. You
can create disorder, for example by dropping something, so that the energy
of its fall is transformed into heat when it hits the ground. You can move
disorder around, for example when a hot object is placed in contact with
a cold object. But it is very difficult to make a large disorderly collection
become more orderly.

The universe seems to be full of disorder, especially at small scales. The
particles that Brown observed were large compared to molecules. That’s why
he could see them. But physicists think that the motion of Brown’s particles
is caused by collisions with molecules of the fluid which contains the particles.

These “invisible” molecules in the fluid are moving in a disorderly way.
We can’t predict the details of the movement of the molecules, and we think
of their movement as random behavior.

It’s interesting to consider how the fluid molecules interact with a particle
that Brown observes. Any such particle will receive many impacts per second
on all sides, from the tiny molecules. At normal temperatures the particle is
going to be hit a lot.

The effect of the collisions on the particle is roughly the same in all
directions, because of the disorderly motion of the molecules. However, the
number of impacts on each side naturally fluctuates, so that briefly one side
of the particle receives more collisions than the other.

We shouldn’t be surprised that there are fluctuations. Fluctuations are
part of random behavior. If you think of tossing a fair coin many times, there
will inevitably be periods when more heads than tails occur, just by chance.
It all evens out in the long run, of course.

But random fluctuations are what cause the particle movement that
Brown observed. When more molecules hit a particle on one side than the
other, it will move. Since the resulting particle motion is large enough to be
observable in a microscope, those tiny invisible molecules must have a lot of
energy.

By our standards molecules move rather violently! If the molecules of
your body somehow became orderly, and all moved in a single direction,
your body would hurtle away at a speed of hundreds of meters per second.

Brownian motion provides us with a vivid picture of disorder. It also
gives us an example of how random behavior on a small scale is pervasive,
and can lead to random behavior on a larger scale.
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1.13 Solutions for Chapter

Solution (Exercise [1.1]). Yep!
You knew, that didn’t you? The success frequency using the new version
of Box 1 will even worse than before (1/10 rather than 1/6).

Solution (Exercise (1.2]). Either a head or a tail must be obtained. Hence
events H,T cover all possibilities. These events are mutually exclusive, since
the coin cannot come up both heads and tails!

By equation [L.4] with Dy = H and D, =T, P(T) + P(H) = 1.
This is equation (|1.5)).

Solution (Exercise [1.3)). Let D; be the event that outcome i occurs, for
1 =1,...,6. By equation (1.4]),

P(Dy)+...+P(Dg) =1.
For a fair die, P(D;) = P(Ds) = ... = P(Dg), and so we have

Thus P(D;) = 1/6, and so P(D;) = 1/6 for each i = 1,...,6. (Yup, we used
the same argument in Section [1.8])
Let B be the event that an odd number is obtained. Clearly

B:D1UD3UD5.

By equation ((1.3)),

3 1
Using the Frequency Interpretation, we expect that in a large number of rolls,

approximately 1/2 of the rolls will result in an odd number.

Solution (Exercise . Suppose that each ticket has an identification
number.
Let D; be the event that ticket j is the winning ticket.
The events D;, 7 = 1,...,n are clearly mutually exclusive and cover all
possibilities.
As far as we know, no ticket is favored, and we will calculate probabilities
based on that. Since no ticket is favored, P(D;) is the same for every j.
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By equation [l.4 P(Dy) + ...+ P(D,) = 1.
Hence

1
P(D;) =~
for every j.

(i) Suppose you purchased ticket ¢. W is the event that ticket ¢ is the
winning ticket. Thus W = Dy, and so P(W) = 1/n.

(ii) We can always number the tickets so that tickets 1,...,k are the ones
that the wealthy gambler purchases. This is just to make it easier to write
down the argument. Then

G:D1UUDk,

and so by equation (1.3) we know that

P(G)=P(Dy) +...+ P(Dy) = %

Solution (Exercise [1.5).

(i) For each roll of the fair die, report the result as label a if the die gave
a 1 or a 2, report label b if the die gave a 3 or a 4, and report label c if the
die gave a 5 or a 6.

The die will give 1 on approximately 1/6 of the tosses and the die will
give a 2 on approximately 1/6 of the tosses. Hence label a will be reported
approximately 1/3 of the time, which is what is desired. Similarly labels b
and ¢ will each be reported 1/3 of the time.

(ii) Toss the unfair coin. If the coin gives a head, report label a. Otherwise,
continue the simulation by tossing the fair coin. If the fair coin gives a head,
report label b. If the fair coin gives a tail, report label c.

Clearly label a will be reported on approximately 1/3 of the times you
perform the simulation. You will report label b during approximately 1/2 of
the times that you don’t report a. Since 1/2 of 2/3 is 1/3, this is what is
desired. Similarly label ¢ will be reported approximately 1/3 of the times.
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Chapter 2

Assumptions for probability,
and their consequences

In this chapter we lay out the general structure of mathematical probability.
General statements are necessarily abstract, but the abstractions of proba-
bility theory are fairly pleasant.

2.1 Abstract outcomes

Often we want to know whether or not the result of a given experiment has
a certain property that we are interested in. The occurrence of this prop-
erty is what we call an “event”. The complete result of the experiment is
called the “outcome”. There may be many possible outcomes for a given
experiment, some of which have the property we are interested in. Calculat-
ing the probability of an event typically requires us to consider all possible
outcomes. With that in mind, let’s think about representing outcomes in a
mathematical model.

In a calculation, we necessarily restrict our attention to abstract rep-
resentations of outcomes. These mathematical representations of physical
outcomes will also be called “outcomes”, or perhaps “abstract outcomes” if
we want to emphasize that these are objects of thought.

Each abstract outcome is a mathematical object, from which all inessen-
tial properties have been ruthlessly stripped. Thus if a botanist is experi-
menting in breeding roses, a beautiful new plant in the real world might be
represented abstractly by a single letter which indicates its color. In general,
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the representation must include whatever properties of the outcome that we
are interested in, but need not have more details.

If we base our calculations on the possible outcomes, then the events that
we are interested in must be represented in terms of the outcomes. When a
physical event is defined by a certain property, we will represent the event as
the set of outcomes which have this property.

Is that an adequate way to represent an event? As a set? The next
example tests this approach.

Example 2.1 (Brown hair as a set of outcomes). Consider an exper-
iment in which one person is randomly selected from a population. The
person selected is the physical outcome of the experiment!

Since the outcome is a person, the outcome has a lot of properties. One
of the properties of the outcome is hair color. Let A be the event that the
selected person has brown hair.

Notice we have defined A physically in terms of a property of the outcome.
Now suppose we wish to represent this event in an abstract model.

We can give each person in the population an identification code. An
abstract outcome would be the ID of the randomly selected person. The
abstract version of A would be the set of all IDs of people that have brown
hair.

The question is whether this representation of A is sufficient for our needs.

Suppose that no one told you what property defines A, but instead showed
you the entire set of people who have that property, would you be able to
guess what the property was?

The entire set of people with the property defining A consists of exactly
those members of the population who have brown hair. If you became aware
of that fact, you might guess that hair color was the property that defines
A. On the other hand, it is conceivable that some other property might
occur in exactly the same set of people. So we must admit that knowing
the set of outcomes does not really tell you what physical property is under
consideration.

However, since you know the abstract representation of A as a set of
outcomes, then, if a particular outcome occurs as a result of the experiment,
you can tell whether or not event A occurred: just check whether the outcome
is in the set which represents A. And that sort of information should be
enough for a probability calculation.
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We should keep in mind that mathematical terminology steals words from
ordinary language. If a mathematical term is well chosen, then its meaning
in ordinary language will suggest its mathematical meaning, but one cannot
simply rely on ordinary language to guess the exact mathematical definition.
The word “event” in ordinary language usually suggests that something in-
teresting has happened. In mathematical probability theory an event is just
a set of outcomes.

The following is some standard terminology for situations where we want
to systematically represent all possible outcomes for an experiment.

Definition 2.2 (Sample space models). The set of all possible abstract
outcomes is called the sample space, often denoted by the uppercase Greek
letter 2 (“Omega”). The abstract outcomes are the “points” making up the
sample space, and they are traditionally called “sample points”. A sample
point is often denoted by the lowercase Greek letter w (“omega”).

The sample space is said to be a “model” for an experiment when its
sample points can be interpreted as the possible outcomes of that experiment.

Certain subsets of the sample space will be referred to as “events”, al-
though of course they are mathematical objects rather than physical events.
When we use the sample space as a model for an experiment, these subsets
provide mathematical representations for actual physical events.

Any one-point set {w} is an event in the model. It represents the event
that the result of the experiment is the outcome represented by w.

Since w represents a possible result of an experiment, it would not be
unreasonable to also say that w itself is an event. However, since we are rep-
resenting general events as sets of sample points, probably it’s less confusing
to stick to that, and use {w} rather than w when we are talking about events.

It should be emphasized that a sample space is a mental concept. It
represents something about the real world, but only indirectly. Even a very
large sample space has no weight!

When (2 is a sample space which represents an experiment, for any prop-
erty that you can express in terms of the outcome of the experiment, there
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is a corresponding set of sample points in €2 which represents that property.
Conversely, when the sample space consists of a finite number of outcomes,
every subset of the sample space can be interpreted as representing some
physical event, although not necessarily an interesting one. When we study
infinite sample spaces later, there will be subsets of the sample space that are
not given a physical interpretation, and such sets will not be called events.
We will find later that the general properties of probability are often
sufficient to solve a problem efficiently without committing our thoughts to
any explicit choice of a sample space. On the other hand, if we cannot think of
any sample space at all to represent the outcomes of a proposed experiment,
it might be a good idea to investigate whether the experiment makes sense.

Here are some standard examples of experiments and corresponding sam-
ple spaces.

Example 2.3 (Tossing a coin once). The points of the sample space (2
should represent exactly two physical outcomes, the occurrence of a head,
and the occurrence of a tail. So we can take 2 = {1,0}, a set with only
two points. Here the point 1 represents the outcome in which a head is
obtained, and the point 0 represents obtaining a tail. There are four events
in the sample space Q: {1,0},{1},{0},0, where () denotes the empty set,
i.e. the set with no members. The event {1,0} in the sample space describes
a physical event which always happens. The empty set () contains no sample
points. There is no outcome which is a member of set, so this event never
happens. But we will still call it an event.

Like all sample spaces, the set €2 is a thought in our heads, not something
in the real world. We could use letters rather than numbers to represent
sample points, so that “h” would mean a head was obtained and “t” would
mean a tail. Then we would have Q = {“h”, “t”}. What matters is the
interpretation. The interpretation associates one sample point with the result
in which the coin toss gives a head, and the other sample point with the result
in which the coin toss gives a tail.

For brevity, sometimes we’ll refer to getting a head as “success”, and
getting a tail as “failure”. Of course, the name doesn’t matter, and we could
switch, and call getting a tail “success”, if we felt like it.
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Example 2.4 (Rolling a die once). Much as in the case of a coin toss,
we can take Q = {1,2,3,4,5,6}, so that the outcome is simply the number
obtained on the roll of the die.

There are 64 possible subsets of this sample space, and each subset is an
event in the sample space which represents a physical event. For instance
the event {2,4,6} in the sample space represents the physical event that an
even number was obtained.

Incidentally, we claimed that there are 64 possible events in the sample
space for one roll of a die. Did that number make sense?
In general, it useful to know the following fact.

Lemma 2.5 (Number of subsets). Any set of size k has exactly 2* subsets.
(The empty set is one of the 2 sets.)

Proof. We can build a subset by making a decision for each object in the set:

“include” or “don’t include”. Thus we build a subset by making £k decisions,

each of which has two choices. This gives 2 x ... X 2 ways to build the subset.
—_—

k factors

]

We can apply Lemma to the sample space for rolling a die. In that
case k = 6, and 2 = 64. Each of the 64 subsets is the mathematical
representation of a possible event.

After considering tossing a coin once, we might consider tossing it n times,
where n can be 1,2, .. ..

Example 2.6 (Tossing a coin a million times). An outcome in the
sample space for the experiment of tossing a coin one million times must
record the result of each toss! Our choice for a sample point is a sequence
(21, ..., T1000000), Where each x; is either 1 or 0, and x; tells what happened
on the ith toss. We could use a similar sample space for tossing a coin n
times, for any n.

Tossing a coin one million times would not be practical for an individual,
but it would be perfectly feasible in an industrial setting. Notice however
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that Q contains 21999 sample points. (We did say that a sample space is
a mental concept, rather than a real object, didn’t we?) Every subset is an
event in the sample space, and so there are 92100000 possible abstract events!
Each of these abstract events has a physical interpretation, though very very
few of the details of such events are significant.

It may seem absurd to consider such a large sample space. Nevertheless,
since we are able to reason precisely in an abstract setting, we are able to

reliably establish useful facts.

Exercise 2.1. Consider the experiment of tossing a coin 400 times, and
recording the result of all 400 tosses. This is not a very complicated experi-
ment, and could easily be carried out by hand by one person.

You can use a sample space for this experiment similar to that in Exam-
ple 2.6l Let N be the number of sample points in this sample space.

According to google, the number 10%? is likely an upper bound for the
number of atoms in the observable universe. How does the number 10%2
compare with N?

olution

Example 2.7 (Drawing a card). A standard deck of playing cards consists
of 52 distinct cards. There are four types of cards. The types are called
“suits”, and every card belongs to exactly one suit. Each suit has 13 cards,
and the names of the suits are “spades”, “hearts”, “diamonds” and “clubs”.

If the deck is shuffled a few times, cards become arranged in a fairly ran-
dom order. Drawing the top card from the deck is equivalent to selecting one
member of a population of 52 (with no member of the population favored).
What would be a reasonable model for this sampling experiment?

We could certainly number the cards, in an arbitrary manner. A number

in {1,...,52} is then an abstract representation for a card, and we could build
our model using these abstract “cards”. Let’s agree to call each number in
{1,...,52} an abstract outcome of the experiment of drawing a card.

Suppose that we are interested in the physical event A that a “heart” card
is drawn. Since our abstract model contains an abstract outcome (a number
label) representing each possible outcome, we can represent the event A as
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the set of abstract outcomes that represent “heart” cards. Thus A contains
13 sample points.

We have already discussed experiments involving sampling from a bowl
of jelly beans (Example , or from the population of a country. The
reader will have no difficulty constructing appropriate sample spaces for these
experiments, when needed.

2.2 Distributions and set-functions

Mathematical probability theory tells us how to reliably calculate new prob-
abilities from given probabilities. Mathematics doesn’t tell us how to get the
probabilities that we start with. To quote the physicist E.T.Jaynes, “ No
matter how profound your mathematics is, if you hope to come out even-
tually with a probability distribution, then at some point you have to put
in a probability distribution” ([5]). The probabilities we start with must
somehow come from the physical description of an experiment.

Probability Assumption 2.1 (Existence of a distribution). When we
work with a model, and represent events as subsets of a sample space, it
is assumed that there is a mathematical probability P(A) for each event,
although we may not know the value of every probability.

This probability P(A) is of course a function of A. Since the domain of
P is made up of sets, one often speaks of P as a probability set-function.

Definition 2.8 (Probability models and probability terminology). A
sample space, together with a given probability set-function, will be called a
probability model.

Any rule which specifies probabilities can be called a distribution (Def-
inition [1.11)). So a probability set-function can also be called a probability
distribution, and we frequently use that terminology.

Of course we often start analyzing a problem by thinking directly about
probabilities for physical events connected with a particular experiment.
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There need not be any sample space chosen at that stage, so the proba-
bility values P(A) are associated with the actual physical events A, or rather
with our mental conceptions of them. In this case we would not think of P
as a set-function, but one can still refer to the family of values P(A) as a
distribution.

Let’s pause for a moment to compare what we are doing here with our
discussions in Chapter [1} In that chapter we talked about probability facts,
namely the frequency interpretation and additivity. But in Probability As-
sumption [2.1, we are apparently starting to make assumptions. What hap-
pened? Did we lose the courage of our convictions?

Here’s what’s going on. In Chapter [I] we were talking about physical
probability, for real-world situations. Now we are talking about abstract
models, things which we can reason about mathematically. Our abstract
models are indeed relevant to the real world, but only if we build in the correct
mathematical assumptions. It is those assumptions that we are talking about
here.

Remark 2.9 (Interpreting a model). A “model” in mathematics may
represent an experiment, but Definition doesn’t say much by itself about
the physical situation that a probability model represents. The connecting
link between a probability model and the real world is the interpretation of
the model, and the interpretation is not part of the mathematical definition.
But we usually need to have at least a rough interpretation in mind to work
successfully with a model.

In a valid interpretation of a probability model, the value of the probabil-
ity for the abstract event A should be approximately equal to the probability
of the physical event represented by A.

Making sure that a model is valid is ultimately a physical problem rather
than a mathematical one, although mathematics may help us to test the
validity of a model. When we discuss the applications of a mathematical
probability model in this book, we will confidently assume that our model is
a valid one. In the real world such confidence can be misplaced.

In this book we will study the general mathematical properties that prob-
ability models have, and then apply those properties when we use a proba-
bility model to represent an experiment. Some simple examples are given in
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Sections 2.4 and [2.6] In later chapters we will deal with more complicated
models. The same rules apply in all situations.

2.3 Events defined in terms of other events

Events in a mathematical model are represented by sets, and so relationships
are often expressed using set language. Consequently, readers will need to
know the basic terminology for set operations. This material is likely familiar,
but Section [2.8|reviews all the concepts and notations which are needed. It’s
a good idea to look through that section, since notations and terminology
for set operations can vary slightly.

Here are some set concepts and notations which are often used.

For sets Ay, ..., Ag, the union of Ay, ..., A, is the set consisting of every
element which is a member of at least one of the sets Ay, ..., A,. This set is
denoted by A;U...UA,,. When Ay, ..., A, are events, the union A;U...UA,
represents the event that at least one of the events Ay,..., A, occurred.

For sets A, ..., Ay, the intersection of Ay,..., Ay is the set consisting
of every element which is a member of all of the sets Ay,..., A,. This set
is denoted by A1 N ... N A,. When Ay,..., A, are events, the intersection
A;N...N A, represents the event that every one of the events Aq,..., A,
occurred.

We often consider situations in which some events Ay, ..., Ay are mutually
exclusive, meaning that at most one of these events can occur. In that case
no sample point can be a member of more than one of the sets Aq,..., A,,
and we say that these sets are disjoint.

The empty set is denoted by (). Note that the definition of disjointness
implies that for any set A, the sets A and () are disjoint.

For any sets A, B, the set difference B — A is the set of all elements which
are members of B but not A. And in situations where all sets are subsets of
some fixed set U, it is convenient to write U — A as A°. The set A€ is referred
to as the complement of A. If A is defined by some property, notice that A€
is the set of all elements in U which do not have this property.

We often denote of elements in a finite set S by |S|. If a set if not finite
we say it is infinite, and say that |S| = oo.

See Section 2.8 for more discussion of sets.

Probability Assumption 2.2 (Set operations and sample space events).
If Ay,..., A, are events in a sample space, then so are A; U... U A, and

47



Chapter 2. Assumptions for probability, and their consequences

A;N...NAg If Aand B are events in the sample space, then so are A — B
and A°.

To justify this assumption, recall that events in the sample space corre-
spond to meaningful statements about the physical result of an experiment.

If we think that given statements «aq, ..., a; are meaningful, then surely
we must also think that the statement “at least one of the statements a, . . ., a; holds”
is meaningful, and “all of the statements a; ... ay hold” is meaningful.

It is also meaningful to say “ay is true and «s is not true”.

Translating such observations into set language gives us Probability As-
sumption [2.2]

Remember Probability Fact , which dealt with adding probabilities of
mutually exclusive events. Suppose now that we are given events D, ..., Dy
which happen to be disjoint subsets of a sample space. Then there is no
outcome w which is a member of more than one of these sets. Whatever
properties these events describe must therefore be mutually exclusive. Thus
we can rephrase Probability Fact using set notation as follows.

Probability Assumption 2.3 (Additivity of probability). Let Dy, ..., Dy
be disjoint events in some probability model. Then

P(DiU...UDy)=P (D)) +...+P(Dy). (2.1)
Also, probabilities in the model are such that

P(Q) = 1. (2.2)

If we think think of a probability simply as a number that measures
degree of belief, we could scale all our probability values up or down by a
factor, without changing their usefulness. Since () represents an event that
always happens, equation tells us that we are using a belief scale for
which certainty is 1. Of course this scale fits the statement of the frequency
interpretation, so it is the natural scale for probability.
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Remark 2.10. If Dy, ..., Dy are disjoint events in some probability model,
and Dy U...U D, =, Probability Assumption [2.3| implies that

P(Dy)+...+P (D) =1 (2.3)

Thus Probability Assumption [2.3|includes the abstract version of equation ({1.4)).

Remark 2.11 (Set notations without sets!). If A and B represent phys-
ical events, we may still use set notation to describe combinations of these
events, even when we are not representing A and B as sets. For example,
the event that A occurs and B occurs will still be expressed as AN B.

This convention can be justified in two ways. First, it is a convenient
brief notation. Second, for any experiment, one could define some sample
space model to represent the experiment. In that case the event that both
A and B occur would indeed be represented by the intersection of two sets
in the sample space.

Many examples in probability theory involve experiments which only have
a finite number of possible outcomes. Each possible outcome is represented
by a sample point w in the sample space. As we noted in Definition
the event {w} is a particularly simple event, since it is a one-point set. We
can make some formulas a bit neater by introducing the following special
notation for the probability of a one-point set.

Definition 2.12 (Probability mass functions). For any probability model,
we can optionally write P({w}) as p(w), for brevity.

The function p is referred to as as a probability mass function, or more
briefly as a probability function.

The word “mass” in the name “probability mass function” is intended to
suggest a lump of probability attached to each sample point. Theorem [2.13
states that the probability of an event can be pictured as the sum of the
masses of all the sample points in the event.
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We include a proof of the next theorem, Theorem [2.13] to emphasize that
this rule follows from the assumptions that we have already made: additivity,
and the fact that one-point sets are events.

Theorem 2.13 (Finite events). Let 2 and P be a probability model. If
A is a finite set of sample points, then A is an event, and

P(4) = Y P{w}) = Y p(w). (2.4)

w€EA w€eA

Proof. By the definition of union,

A=J {w}. (2.5)

wEA

The sets {w} in equation (2.5)) are obviously disjoint. Applying the addi-
tivity of probability to equation (2.5 then gives equation ([2.4)).
]

In the proof just given, if equation ({2.5) does not seem clear, please check
a concrete example. For example, show from the definition of union that

{1,2} = {1y u{2}.

Equations ([2.2]) and (2.4) of course tell us that when € is a finite set,

D pw)=P(Q) =1 (2.6)

weN

When setting up a probability model with a finite sample space, if we
can decide on the value of P({w}) for each sample point w, then (by equa-
tion (2.4)) all other probabilities P(A) are determined. So a simple proba-
bility model is usually defined by listing the probabilities of the outcomes.
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2.4 Some basic examples

Example 2.14 (Probabilities for a single coin toss). There are only
two possible outcomes. As in Example 2.3] we can choose to represent these
outcomes by 0 and 1. The outcome is 1 if a head is obtained, and the outcome
is 0 if a tail is obtained. Thus the sample space € is given by Q = {0, 1}.

By equation (2.3), P({1}) + P({0}) = 1. Using the notation of Defini-
tion [2.12] this says that p(1) + p(0) = 1.

If the probability of a head is p and the probability of a tail is ¢, then
p+q=1. For a fair coin, p=q=1/2.

Example 2.15 (Probabilities for a single roll of a die). We take 2 =
{1,2,3,4,5,6}, with the same interpretations as Example [2.4]

If the die is fair, then the probability of each possible outcome is the
same, so P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({5}). Using
our probability mass function notation, this says that p(1) = p(2) = p(3) =
p(4) =p(5) = p(6).

By equation (2.3), p(1) + p(2) + p(3) + p(4) + p(5) + p(6) = 1.

Thus in the fair case p(i) = 1/6 for each .

Exercise 2.2. Suppose that Q = {1,2,3,4,5,6}, and assume that P({w}) =
1/6 for each w € Q. Let A = {2,4,6}, so that A represents the physical event
that an even number is obtained. Show from the definitions that P(A) = 1/2.

Solution]

2.5 Symmetry in probability

In games, we generally try to use a fair coin.

The true test of fairness is to toss the coin a large number of times, and
see if we obtain approximately the same fraction of heads and tails. If we
can’t do that, we can at least examine the coin carefully, to see if there is
anything about the physical properties of the coin which would favor heads
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or tails. If the physical properties of the coin seem similar when viewed from
either side, we would say that the coin is symmetric with respect to heads and
tails. Since there is nothing that would lead us to assign a higher probability
to one side over the other, it seems reasonable to assign equal probability to
each of the two possible outcomes.

Symmetry in probability calculations has been used for a long time, and
in the old days it was sometimes described as “the Principle of Indifference”,
or “the Principle of Insufficient Reason”. This principle says we should assign
equal probabilities to possible outcomes if we have no positive reason to do
otherwise. We already used a somewhat similar approach in Section [1.8|

The use of symmetry is dangerous if it is based on ignorance. For ex-
ample, suppose you decide to gamble with someone who is tossing a coin,
and you know very little about the person and the coin. As a believer in
the Principle of Insufficient Reason, you may feel you have no choice but to
assign a probability of 1/2 to the occurrence of a head. If your new friend
obtains five tails in a row you may regret this probability assignment.

More generally, even if you make a careful examination of the setting
of an experiment, you may overlook some factor. Then the setting of the
experiment may be less symmetrical than you think.

Of course, in a real-life situation, you need not stick to your original
assumptions, when new information starts to come in. Chapter {4 (on con-
ditional probability) deals with rules for updating probability assessments,
when you obtain additional information.

2.6 More examples

Example 2.16 (Probabilities for tossing a fair coin twice). Consider
the experiment of tossing a coin twice. As in Example we think of 1 as
representing a head, and zero as representing a tail. The result of each toss is
represented that way, and there are two tosses, so we take every sample point
to be an ordered pair of numbers, each of which is either one or zero. The
first number represents the result of the first toss, and the second number
represents the result of the second toss.

There are two choices for the first number, and two for the second number,
so there are four sample points, and Q = {(1,1),(1,0),(0,1),(0,0)}. Our
interpretation is that (1, 1) represents obtaining two heads, (1,0) represents
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getting a head followed by a tail, (0, 1) represents getting a tail and then a
head, and (0, 0) represents getting two tails.

We need to find p((1,1)), p((1,0)), p((0,1)), p((0,0)).

It will be easy to find these probability values, once we introduce the
general concept of independence (Section . If you have used independence
in any previous study of probability, you must be impatient to use it here! But
for the moment we’ll just consider the fair case, and calculate probabilities
based on an extra assumption: that all outcomes should be equally likely.

By equation , the four outcome probabilities should add to one, and
SO

p((1,1)) :p((l,())):p((O,l)):p((0,0)):%.

Exercise 2.3. In the two-toss experiment of Example [2.16] when the coin is
fair, use the four-point sample space () to calculate the probability that the
same result is obtained on both coin tosses.

[Solution|

Exercise 2.4. In the two-toss experiment of Example [2.16 when the coin is
fair, use the four-point sample space €2 to calculate the probability that the
first toss produces a head.
You know the answer already, but we are checking here that the sample
space for two tosses is consistent with the sample space for one toss.
Exercise [5.3| will show that the same result holds when we model tossing
a general coin, one which is not necessarily fair.

Bolution

Exercise is an example of what we do when getting familiar with a
new tool. We check that it works properly!

Exercise 2.5 (First toss of a million). In Exercise you considered
finding the probability of success on one toss of a fair coin, when using the
model for two tossses. To no one’s suprise, the model for two tosses agrees
with the model for one toss.
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Chapter 2. Assumptions for probability, and their consequences

How about using the model for tossing a fair coin a million times, as in
Example 2.6 That has to work too, doesn’t it? But you will check that
Now.

You are only allowed to work with the big sample space. Any event you
consider must be a subset of that space, which has 21000000 points

Just as in the case of tossing a fair coin twice (Example [2. , we will as-
sume that all sample points have the same probability. And that probability
is....

Let A be the event that the very first toss of the coin results in a head.
Using the big sample space, find P(A).

(And yes, we will rerun this problem in Exercise for the case of a coin
which might be unfair. That works too.)

Bolution]

Example 2.17 (Probabilities for two rolls of a fair die). Just as we
can toss a coin twice, we can roll a die twice, or roll two different dice at
the same time. The sample space is larger, but the principle is the same.
Q={@G,j): i=1,...,6, j=1,...6}. There are 36 sample points.

Assume that the die is fair. We would like to know the probability distri-
bution on this sample space. We are willing to assume that all sample points
of 2 have the same probability p.

By equation (2.6), 36p = 1. Hence p((4,;)) = 1/36 for all 4, j

In problems involving experiments with two steps, it is often helpful to
list the sample points in a table. Let the row indices refer to the first element
in a pair and column indices refer to the second element in a pair. Then we
list € as:

1 | 2| 3| 4| 5| 6
1 (LD [ (1,2 (1,3)] (1,415 ] (16
2(2,1)(22)(23) (24 (25 (26
313,113,233 3,435 (36 (2.7)
4141 (4,2) [ (43) (4,4 (4,5 ] (4,6)
5((5,1)](5,2)|(5,3)|(5,4) | (5,5) | (5,6)
6 (6,1)|(6,2)(6,3)(6,4)(6,5)](6,6)

We will revisit this experiment after introducing the concept of indepen-
dence (Chapter [5)).
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One is often interested in the sum of the scores on the two dice. Let Ay
be the event that the sum of the numbers obtained on the two rolls is equal
to k.

The largest possible sum is 12. So we see that A is empty for £ > 12.

The smallest possible sum is 2. So A; is empty.

To find P(A), we need to count the number of outcomes in (x,z5) in
Ay, for each k with 2 < k < 12. Each outcome has probability 1/36, and we
add these probabilities, as usual.

A= {11}, P4 = o
2

Az = {(172)7 (27 1>}7 P (A3> = %7
Ay = {(173)7 (2’2>7 (37 1)}7 P (A4) = %a
As = {(1L49).(2:3),3,2), (4. )}, P(4) = o,
A = {(1>5)7 (2’4)7 (373)’ (47 2)7 (47 1)}7 P (A6) = %’
A? = {(176)7 (275>7 (374)7 (473)7 (5’2)7 (67 1)}7 P (A7) = %’ (28)
As = {(276)7 (37 5)? (47 4)7 (573)7 (672)}7 P (AS) = %7

4

%7

Ag = {(376)v (4’ 5)7 (574)7 (673)}7 P (A9) =
3

A ={(4,6),(5,5),(6,4)}, P(Ap) = —

) 36
All = {(576)7 (6’ 5)}7 P (All) = %7
A = {(6,6)}, P (4n) = o

Exercise 2.6. In the experiment of Example [2.17, let A be the event that
the first roll produces the number 5.
Find P(A), using the sample space Q of Example [2.17]
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Chapter 2. Assumptions for probability, and their consequences

You are checking that the two-roll model is consistent with the one-roll
model. And yes, yes, again this is obvious physically. We are just testing for
bugs in our mathematical machinery.

Bolution]

Exercise 2.7. Consider the experiment of rolling a fair die twice.

Find the probability that the first roll produces an even number and the
second roll produces a number larger than four.

As in Example[2.17] let 2 consists of the pairs (21, z), where z; = 1,...,6
and ro =1,...,6.

We will return to this problem in Exercise [5.5]

Bolution

Exercise 2.8. Again consider the experiment of rolling a fair die twice. Find
the probability that the sum of the numbers obtained on the two rolls is less
than or equal to 5.

Bolution

Exercise 2.9. When rolling a fair die twice, let C' be the event that the sum
of the numbers obtained on the two rolls is an even number.

Find P(C).

Let D be the event that that sum of the numbers obtained on the two
rolls is larger than 6.

Find P(D) and P(C' N D).

Solution]

Example 2.18 (Probability of drawing a card from a deck). This is
the experiment defined in Example 2.7, We said that drawing the top card
from a deck is equivalent to selecting a member of a population of 52, with
no member of the population favored. Thus each card has same probability
to be drawn, and we know these probabilities sum to one. Hence each card
has the probability 1/52 to be drawn.
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Sometimes people think about dealing cards, which means removing cards
repeatedly, starting from the top of the deck. The deck is shuffled before
dealing, to arrange the cards of the deck in random order. Thus the third
card dealt from the deck is a random sample from the deck, just as the top
card is a random sample. And so the probability that any particular card
will be the third card dealt is exactly the same as the probability that it is
the first card dealt, 1/52 in both cases.

We can picture the process more concretely if we think of randomly laying
out all 52 cards face down on a table, forming a long row. Instead of drawing
the top card from the deck, one might think of turning over the first card in
the row. The third card drawn is the third card that we turn over, and so
on. The probability that a particular card is in the first position is clearly
the same as the probability that it is in the third position.

Exercise 2.10. Let Q = {wy,ws, w3, ws,ws} be a sample space with associ-
ated probability mass function p. Suppose that p (w2) = 2p (w1), p (w3) =
3p (wa), p (wa) = 4p (w3), p (ws) = 5p (wa). Find p (w3).

Solutior]

Exercise 2.11. A certain combination lock will only open when the correct
code is entered. The code consists of 4 digits in order. The allowable digits
are 0,...,9. A stranger who does not know the correct code attempts to open
the lock by entering 4 arbitrarily chosen digits. Find the probability that the
lock opens. Express your reasoning in terms of an appropriate sample space
and a probability mass function. If it seems appropriate with your model,
you may assume that all sample points are equally probable.

Bolution]

Exercise 2.12. An experiment consist of tossing a certain coin six times, and
counting the number of heads which are obtained. If we regard the outcome
of the experiment to be the number of heads which are obtained, then an
appropriate sample space for this experiment is Q = {0,1,2,3,4,5,6}. This
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sample space is only adequate for listing the outcomes. It is definitely not
an adequate sample space for computing probabilities of outcomes.

Suppose that the coin which is used in this experiment is unfair, and
actually the probability of a head on each toss is 1/3. We will show later
that the correct probability mass function p for €2 is given by

- () (Y ()

where (5’) is the binomial coefficient given by

(We will not use this particular sample space 2 when we derive this for-
mula. This sample space is too simple to represent what is going on in the
experiment, which involves a number of steps.)

As a small test of whether our formula for p is correct, use the binomial
theorem (if you happen to know it) to verify that the values of p sum to one.
If you haven’t met the binomial theorem before, omit this problem. And do
not worry, the binomial theorem is derived in Section [8.2]

[Solution]

Exercise 2.13 (The number wheel experiment). At a booth in a fair-
ground, we find a large wheel marked with the numbers from 0 to 100. By
spinning the wheel, and seeing where it stops, a random number is chosen.
This will be considered as the outcome of an experiment.

(a) Provide a suitable sample space for this experiment. Assume that each
outcome has equal probability, and find the probability mass function.

(b) Answer the following questions.
(i) What is the probability that the number is 37
(ii) What is the probability that the number is even?

(iii) Let A be the event that the number is smaller than 20, and let B be
the event that the number is larger than 60. Find P(A U B).
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(iv) What is the probability that the number is less than 50 and is divisible
by 37 Remember that zero is divisible by any number.

Bolution

Exercise 2.14 (Probability of a complement). The following obvious
consequence of additivity is often surprisingly useful. Let A be an event for
some experiment. Prove that

P (A9 =1 P(A). (2.9)
Bolutior]

Exercise 2.15. In Exercise [2.11} find the probability that the lock does not
open.

[Solution|

Exercise 2.16. Using the probability model in Exercise find the prob-
ability that at least one head is obtained in the six tosses.

[Solution|

Exercise 2.17. Let A, B be any events. Show that A and B — A are disjoint,
and

B=(ANB)U(B—-A), (2.10)
and so by additivity,
P(B)=P(ANB)+P(B—A). (2.11)
Thus
P(B—A)=P(B)-P(ANB). (2.12)

See Figure 2.1}
[Solution|

29



Chapter 2. Assumptions for probability, and their consequences

Q

Figure 2.1: Exercise B=(ANnB)U(B—-A). B—Aisred, A— B is
blue, and AN B is purple. A= (ANB)U (A — B).

Example 2.19 (Choosing a positive integer). Suppose someone says to
you: “Think of a number, any number.” Probably they mean that you should
choose a positive integer, and they don’t want you to favor any particular
number. Strictly speaking, this is impossible! To check that, consider the
following argument.

Let py is the probability that you choose k. Assume that p, is the same
for all k. Let ¢ be the value of p.

By additivity, the probability that you choose a number less than or equal
to n is exactly

p1+ ...+ Dn.

Any probability is less than or equal to one, so you must have

pr+ ... +p, < 1.

If it is really true that p, = c for all k, then
1

nc<l1, ie c< —.
n
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This can only be true for all n if ¢ = 0. But then the probability of choosing
a number less than or equal to n is zero, for every n. So the chance that you
choose a number less than a million is zero, and the chance that you choose
a number less than a trillion trillion is also zero, and so on. So it seems you
will stand silently. No one will want to play this game with you!

In real life, if someone asks you to think of a number, you will proba-
bly not have a precise recipe in mind, but you likely have a finite range of
possible numbers in mind, and try to choose one of them without being too
predictable.

Here is one more fact that is often useful.

Lemma 2.20 (Monotonicity). If A; and A, are events,

Here we use = to mean “implies”.

In words, we can say that probability is monotone increasing as a function
of events, i.e. bigger sets give bigger probabilities. No surprise here, and
that’s good!

Proof. From the definitions, Ay = A; U (A — A;), and the sets Aj, Ay — A,

are disjoint (see Figure [2.2).
Hence P(AQ) :P(A1> +P(A2 _Al) O

Notice the technique in this proof. We broke sets up into disjoint pieces,
and then used additivity. This is a general trick. It is used, for example, in
the proof of equation [2.14]

The next exercise tells us that if an event has probability one, then we
might as well think of that event as being the whole same space, since it
includes everything that has a chance of happening.

Exercise 2.18 (Probability one includes essentially everything). Sup-
pose that P(A) = 1.
For any event B, prove the following statements.
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Q

Figure 2.2: Lemma Ay = A1 U (As — Ay). Aj is purple, Ay — A is red.

(i)P(B—A)=0.
(ii)) P(ANn B) = P(B).
Lemma[2.20]is useful for writing down the argument. Figure[2.1]shows the

general relation between the events, but explain why under the assumptions
of this exercise, you have P(B — A) = 0.

[Solution]

Definition 2.21 (Uniform distribution on a finite set). When a prob-
ability model uses a finite sample space and assigns the same probability
to every sample point, we will refer to this assignment of probabilities as a
uniform distribution on the finite set €.
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Theorem 2.22 (Fair sampling). Let S be a set of n objects, and let T" be
a subset of S containing j objects. Suppose an object is chosen randomly
from S, in such a way that all objects in S are treated the same way by the

selection process. Then the probability that the chosen object is a member
of T is j/n.

Proof. The simplest choice for a sample space is {2 = 5.

Then the set T' is also the abstract representation of the event that the
selected object lies in T

We want to show that P(T") = j/n.

We are told that there is symmetry in the selection process: all objects
are treated in exactly the same way. Hence P({w}) is the same for all w € .
Let’s call this number p.

Since P(€2) = 1, we know by additivity that

Y plw) =1

weN

Hence np=1,s0 p=1/n.
Using additivity again,

P(T) =3 plw) = jp=".

weT

]

It should be emphasized that Theorem [2.22] is not a surprising fact. If
there are n ways that something can happen, and if j of those ways are
“good”, and all ways seem equally likely, we would naturally think that the
likelihood of a good result depends on how big j is, compared to n. So j/n
is the value we expect for the probability of a good result.

With that in mind, the proof of Theorem can be thought of as yet
another test of the theory of probability. The general theory gives the answer
we expect.

Exercise 2.19. Theorem deals with the situation of Example [1.10} So
let’s review jelly bean selection.
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Chapter 2. Assumptions for probability, and their consequences

Consider picking a jelly bean randomly from a bowl. Suppose that there
are 75 yellow beans, 53 red beans, 27 purple beans, and 18 green beans in
the bowl. Find the probability that the selected jelly bean is red.

Bolution

Exercise 2.20.

(a) A box contains 25 white marbles and 13 blue marbles. Our experiment
consists of randomly selecting one marble. We assume that each marble has
the same probability of being selected. What is the probability that the
selected marble is blue?

(b) Now we prepare a new experiment, which we will call experiment 2.
We replace every blue marble in the box by 10 blue marbles, and we replace
every white marble in the box by 10 white marbles. The actual procedure
for experiment 2 is the same as before: randomly select one marble, in such
a way that every marble has the same chance of being selected. What is the
probability that the selected marble is blue?

[Solution]

Example 2.23 (Choosing two beans). Return to the setting of Exer-
cise 2.190 A new experiment in this setting consists of randomly selecting
two jelly beans. If the chooser is planning to eat the jelly beans, it seems
clear that the precise manner in which the beans are extracted from the bowl
does not matter. The outcome here should be the set of two beans that is
selected.

Let A be the event that a red bean and a green bean are selected. We
would like to find P(A).

No jelly bean is favored in the choosing, so any set of two beans has the
same chance of being selected. This is the crucial fact, since it allows us to
use Theorem [2.22]

Using the chosen set as the sample point, Theorem tells us that

_ 14

P(4) = 15

where as usual we denote the number of elements in a set S by |S|.
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However, we still need to calculate |A| and |€2|. The necessary formula is
given later, in equation [8.3. But we don’t have to wait until we get to that
equation. The idea that is used in deriving equation can already be used
right here: we will think about selecting the jelly beans one at a time.

This may seem unnecessarily complicated, since when we eat the two jelly
beans we don’t care which one was chosen first. However, it seems to be a
good way to calculate the probability that a particular set of two jelly beans
is chosen.

Notice that by thinking about getting the jelly beans one at a time we
have modified our experiment. Now it is a two-step experiment. We must
define a new sample space 2. Now a sample point w is not a set of two jelly
beans from the bowl, it is an ordered pair (by,by), where by represents the
first jelly bean chosen, and b, represents the second.

A key point: We definitely want to eat two jelly beans, so we only allow
sample points with by # b;. That is, after the first bean is selected, it is
removed from the bowl, and is no longer available for the second selection.

No jelly bean is favored, so again all sample points are equally likely.
Using Theorem [2.22] in this new sample space, we have

Al
P(A) al

What is the event A using this sample space? A is the set of all pairs
(b1, by), where either by is red and by is green, or else b; is green and b, is red.

There are 53 x 18 ways of choosing a red bean and then a green. There are
18 x 53 ways of choosing a green bean and then a red. Thus |A| = 2x (53 x18).

We find |2 in much the same way. The total number of beans is 75 +
53 4+ 27 + 18 = 173. Hence there are 173 ways to choose the first jelly bean.
Having chosen the first bean, there are then 172 ways to choose the second
jelly bean.

Notice that the choice of first bean determines the available choices for
the second bean, but the number of choices for the second bean is always the
same, and does not depend on what the first bean was.

Combining our facts,

2 x 53 x 18
PA) = ———.
(4) 173 x 172

65



Chapter 2. Assumptions for probability, and their consequences

Exercise 2.21 (Choosing two red beans). In the setting of Example[2.23]
let R be the event that both chosen beans are red. Find P(R).

[Solution]

2.7 Beyond additivity

It is useful to say something about probabilities for unions which are not
disjoint!

Theorem 2.24 (Inclusion-Exclusion formula). Let A and B be any
events, and let P be a probability set-function. Then

P(AUB) =P(A) + P(B) - P(AN B). (2.14)

The reason for the name of this formula will be evident from the proof.

Proof. See Figure for the general relation between the events A, B, AN
B,B — A. AU B consists of all the colored regions in the figures. A — B is
blue, AN B is purple, and B — A is red.

If an outcome is in A U B, and it is not in both events, then either the
outcome is in A but not in B, or else the outcome is in B but not in A. It
follows that A U B is the disjoint union of AN B, A— B, or B— A. By
additivity,

P(AUB)=P(A-B)+P(B—-A)+P(ANB). (2.15)
Similar arguments show even more easily that P(A) = P(A—B)+P(AN

B) and P(B) = P(B — A) + P(AN B). This is also clear from Figure 2.1]
Adding these two equations gives

P(A)+P(B)=P(A—-B)+2P(ANB)+P(B—-A)

Comparing this equation to equation ([2.15)) gives equation ([2.14]).
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Relating the proof of Theorem to the name of the formula, note that
ANB is the set of outcomes which are included in both A and B, while A— B
is the set of outcomes we obtain from A when we exclude the outcomes in B.

In the proof of Theorem [2.24] we used the technique of breaking up non-
disjoint sets into disjoint pieces. This is often a useful procedure. We have
seen it already in the proof of Lemma

In the statement of Theorem [2.24] consider the special case of finite sets
for which all the outcomes have the same probability. Remember that in
this situation we find the probability of any event by simply counting the
number of outcomes in the event, and then multiplying by the probability
of a single outcome. We can then say that the term —P(A N B) in
compensates for “double-counting” outcomes, since any outcome in AN B
contributes both to P(A) and to P(B).

When events are not disjoint, we don’t have additivity, but we still have
an inequality, as the next theorem shows. Please work Exercise after
reading the next theorem.

Theorem 2.25 (Subadditivity property). Let A;,..., Ay be any events
for some probability model. Then

P(AU...UA) <Y P(4). (2.16)

J=1

Proof. Consider the case k = 2. Let A = A, B = A,. Equation
follows at once from .
This proves the theorem for k = 2.
The statement is obviously true for £ = 1. (Right?)
A proof by induction for the case k > 2 is left to the reader, in Exer-
cise 2.23
]

The title for Theorem uses the word “subadditivity”. Since one of
the meanings of “sub” is “below”, subadditivity seems like a suitable name
for property expressed in equation (2.16)). This inequality says that the
probability of a union of events is never greater than the sum of the separate
probabilities.
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Exercise 2.22 (Obtaining an estimate). In Exercise on sample
spaces, we considered the experiment of tossing a fair coin 400 times.

(a) We accept that for each sample point w, P({w}) is exactly the same.
What is this probability value?

(b) Consider the event A of ever obtaining 20 heads in succession during
these 400 tosses. By definition, A occurs if there is any index k such that
you get a head on toss k, toss k + 1, toss k+ 2, ..., toss £+ 19.

Does this event feel likely or unlikely?

(c) Use subadditivity to find an estimate for the probability of A, and
decide whether A is likely or unlikely.

Bolution

Exercise 2.23 (The Old Induction Trick). Prove the case k > 2 of
Theorem ﬂ (This sort of argument, passing from k = 2 to general k, is
useful in many situations. If you haven’t seen it before it is worth working
through.)

Bolution

2.8 A review of set operations

Since we represent physical events by sets of abstract outcomes in a sample
space, set operations will play a basic role.

This section contains definitions and notations for all the standard set
operations. Readers can quickly skim through it, and then refer back again
as needed. Notations and terminology for sets can differ slightly, so even an
experienced reader might benefit from a quick survey. You might want to
recall something that J.R.R. Tolkien said about hobbits: “they liked to have
books filled with things that they already knew, set out fair and square with
no contradictions”. We are entering hobbit-mode now.

Here we go. The members of a set can be called “elements” of the set,
or “points” of the set, although of course such points need not have any
geometrical meaning. Sometimes we may list the contents of a set as a

68



2.8. A review of set operations

sequence. The order in which the contents are listed is irrelevant, since sets
are not ordered. The words “set” and “collection” have the same meaning
throughout this book. Use of the word “collection” makes it possible to
avoid too many repetitions of the word “set”. For example if we happen to
be dealing with a set of sets, we would tend to use the phrase “collection of
sets” rather than “set of sets”.

Definition 2.26 (Unions of sets). Let Ay, ..., Ay be any sets. The union
of Ay, ..., Ay is the set consisting of every element which is in at least one of
the sets Ay, ..., A,. We can write the union of two sets A, As in symbols as
Ay U A, and the union of Ay,..., Ay as Ay U...U A;.

It is easy to check from the definition that AU B = B U A, or in other
words that union is a commutative operation. It is also easy to check that
AU(BUC)=AUBUC = (AU B)UC(, so that union is an associative
operation.

Definition 2.27 (Intersections of sets). Let A, ..., Ay be any sets. The
intersection of Ay, ..., Ay is the set consisting of those elements which are in
every one of Aq,...,A;. We can write the intersection of two sets Ay, Ay in
symbols as A; N Ay, and the intersection of Ay,..., Ay as A1 N ... N Ay.

Like union, intersection is a commutative and associative operation, as
can easily be checked.

Usually a set that we deal with is defined by some property, i.e. a sample
space event is the set of all sample points which have a certain property.
For sets we have the option of using property language as an alternative
to set language. Union corresponds to “or” and intersection corresponds to
“and”. That is, if set A is the collection of objects that satisfy property «,
and set B is the collection of objects that satisfy property 3, then AU B is
the collection of all objects for which “a or § 7 is true, and AN B is the
collection of all objects for which “a and 7 is true. Writing “AU B” seems
a little shorter than writing “a or 5”7, but is not necessarily clearer.

Remark 2.28 (The inclusive sense of the word “or”). It should be
emphasized that when we say that A U B is the collection of all objects for
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which “a or 7 is true, we are using the word “or” in the inclusive sense,
which includes the possibility that both statements might be true.

The inclusive sense is one of the two correct uses of the word “or” in
English. For example, if I say, “I dream of being rich or famous”, this does
not mean that I would be heartbroken if I were both, so I am using the
inclusive sense.

On the other hand, suppose you are ordering supper at your favorite
diner, and your order comes with a free dessert. When the waiter says: “You
can have jello or rice pudding”, this is very likely an example of using “or”
in the exclusive sense, meaning that exactly one of two possibilities is true.

In mathematics, if we mean “or” in the exclusive sense, we will say so
explicitly, unless it is obvious.

Definition 2.29 (Set difference and complement). For any sets A and
B, A — B denotes the set difference, simply meaning the set of elements
which are in A but not in B. The set difference A — B is sometimes written
as A\ B, but we won’t use that notation.

If you think that your reader knows the “universe” U of elements that
you are currently interested in, then for any set A contained in U, the set
U — A can be written more briefly as A°. The set A€ is called the complement
of A. In probability theory the set U is often the sample space 2.

Just as union corresponds to “or” in property language, and intersection
corresponds to “and” in property language, set difference and complement
correspond to “not” in property language.

If a subset A of the sample space represents the occurrence of a certain
physical event F, then A€ represents the event that £ does not occur. Notice
that

“Two events are equal if and only if their complements are equal.”
Complements are sometimes more convenient than set differences.

Exercise 2.24 (De Morgan’s Laws). Please verify the following facts:

(A% = A, (2.17)
(AU B)¢ = A°N B¢, (2.18)
(AN B)¢ = A°U B (2.19)
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In property language, equation (2.17)) expresses the meaning of a “double
negative”. Equations (2.18]) and (2.19) are known as De Morgan’s laws.
Using equation (2.17) one can deduce either of De Morgan’s laws from the
other.

[Solution|

Definition 2.30 (Venn diagrams). Visual images seem to aid our thinking
at times, and books often represent sets and their relationships with pictures,
called Venn diagrams. Venn diagrams for sets are not pictures of actual sets,
but they are schematic representations which show certain properties.

Most readers will have seen such diagrams, often outside mathematics.
Figure [2.1]is a good example.

In general, readers are encouraged to follow any urge to draw pictures
when thinking about any problems or concepts!

Definition 2.31 (Set membership). We can express membership in a set
by “€”, Thus z € A means that z is a member of A.

Using € takes less space than using the word “in”, so we’ll tend to use €
in formulas later.

Definition 2.32 (Set comparison). We write A C B to mean that every
member of A is also a member of B. In this case we say that A is a subset,
or that A is included in B.

If A is a subset of B, but A is not equal to B, we say in words that A is a
proper subset of B. We do not have a separate notation for proper inclusion.
(The inclusion relation is sometimes written A C B, in which case A C B
might denote proper inclusion, but we won’t use that convention.)

The word “contains” is used in two ways for sets. If x € A we say that
A contains x, but occasionally if A C B one also says B contains A. The
context usually makes the meaning clear.
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Definition 2.33 (Disjoint sets and the empty set). Any sets A, B are
disjoint if there is no element which is in both sets. Thus A and B are
disjoint if AN B = (), where () denotes the empty set.

Sets Ay, ..., Ay are disjoint if there is no point which is a member of more
than one of the sets Ay, ..., Ag.

In property language, disjoint sets correspond to mutually exclusive
properties. If Ay, ..., A, are disjoint events in a sample space, then a sample
point can be a member of at most one of Ay,...,A;. That is, at most one
of the corresponding physical events can occur.

Exercise 2.25. When manipulating sets we often use simple observations
such as

ACB — ANB=A4,

AN(B—A) =0 (220

Here we use = to mean “implies”.
Please prove the facts in equation ([2.20]).

Bolution

Number of elements in a set A set can be finite or infinite. The number
of elements in a finite set S will be denoted by |S|. If S is an infinite set we
will write |S| = oc.

Exercise 2.26 (Intersection distributes over union). Prove that

BN(AjU...UAy) =(BNA)U...U(BNA). (2.21)
[Solution]

Equation (2.21]) can be expressed by saying that “and distributes over
or”.

You are asked to show in the next exercise that “or distributes over and”.
This second fact is not hard either, but it is worth checking, especially since

we only have one distributive law in the case of numbers!
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Exercise 2.27 (Union distributes over intersection). Write an equation
in terms of set operations expressing the fact that union distributes over
intersection. Then prove this equation. Give two proofs. The first proof
should only depend on the basic definitions of union and intersection. The
second proof should use equation and De Morgan’s Laws.

Bolution

In practical situations, using “and” and “or”, we easily recognize the
truth of the rules in Exercises and [2.27] even though we may not think
of them abstractly.

George Boole seems to have been the first person to observe (in 1854) that
such general algebraic properties can be formulated for logical statements
involving “and”, “or”, and “not”.

2.9 Solutions for Chapter

Solution (Exercise [2.1). (a) We can take the sample space to be the
set of all sequences (x1, ..., Z400), where each x; can be either H or T'. Since
there are two choices for each z;, the sample space contains 2%’ points.

(b) Writing 210 as (24)1%° = 16'%° we see that the number of points in the
sample space is much larger than 10'°°, and hence it is much larger than the
number of atoms in the observable universe.

Of course the number of abstract events for the sample space is 2%V, which
is a far bigger number than N.

Solution (Exercise [2.2]). Since A = {2,4,6},

A={2tu {4} u {6},
so by the additivity of probability we have
1

P(A4) = P({2)) + P4 + P =+ 5+ 2 = 5

If you think that we essentially repeated the proof of Theorem [2.13] you
are correct.
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Solution (Exercise [2.3]). Let A be the event that the same result is ob-
tained on both coin tosses. Then

A={(1,1),(0,0)} ={(1, 1)} u{(0,0)}.
By the additivity of probability,

1 1
P(4) = P({(1,)}) + P({(0,0)}) = +
Solution (Exercise 2.4]). Let Q = {(1,1),(1,0),(0,1),(0,0)}.
Remember that the sample point (1, 0) represents the result that the first
toss gives success (a head) and the second toss does not, and so on.
Let H; denote the event that the first toss produces a head. Then H; =

{(1,1),(1,0)}, so
1 1 1

P (H) = P({(LD}) + PULOY = { +7 =5

DO | —

in agreement with the probability found using the sample space for one coin
toss.

Solution (Exercise [2.5]). To save writing, let N = 1000000.

Let (z1,...,2y) be a sample point in A.

Then x; = 1, and there are two choices for each of the remaining z;, for
i=2,...,N. Thus |A| = 2N-1.

Since the coin is fair, each of the 2V sample points is equally likely. Thus
P({w}) = 27% for each sample point w, and so (by additivity)

1
P(A)=2""12 N =271 = 3

as we knew.

Solution (Exercise [2.6]). Using the sample space of Example [2.17]

A={(5,1),(5,2),(5,3),(54),(5,5),(5,6)} .

Hence

P(A) = PH(, D)H+PHG,2)H)+PH(5,3)1)+P({(5,4) ) +P({(5 5)})+P({(5,6)}).
Hence P(A) = 6/36 = 1/6, consistent with the model for rolling a single die.
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Solution (Exercise 2.7). Let A the event that the first roll gives an even
number. Let B be the event that the second roll gives a number larger than
four. Our sample space consists of all pairs (z1,z5), where each z; can be
1,2,3,4,5 or 6.

Each outcome (x1, z5) has probability 1/36.
To obtain an outcome in AN B, it is easy to see that there are 3 ways to

choose z; and 2 ways to choose x5. Thus there are 3 X 2 = 6 outcomes in
ANB,so P(ANB) =6(1/36) = 1/6.

Solution (Exercise . Using the sample space of Example , let A
be the event that the sum of the numbers on the two dice is at most equal
to 5. Consider an outcome (z1,z3) in A.

Since x5 is greater than zero, x; cannot be larger than 4. When x; = 1,
2o can be any of 1,2,3,4. When z; = 2, x5 can be any of 1,2,3. When
r1 = 3, x5 can be 1 or 2. When z; = 4, x5 must be 1. Thus the number of
outcomes in A is equal to 4+3+2+1 = 10. Hence P(A) = 10(1/36) = 5/18.

Solution (Exercise [2.9]). The sets As, ..., Ao are disjoint.
We will use equation ([2.8)).
Since C' = A2 U A4 U Aﬁ U Ag U A10 U A127

P(C) = P(Az) + P(A4) + P(As) + P(Ag) + P(Ay) + P(A)
13 5 5 3 1 18 1

=42 =02 (222
36736 736 73636 36 36 2 P

Since D = A7 U Ag U Ag U AlO U AH U A12,
6 5) 4 3 2 1 7

=36 736736736 3636 12
Since CmD:AggUAloLJAlQ.

P(D)

P(CND)=P(As) + P(Ay) + P(A1p) = % + % + % = }l
Solution (Exercise [2.10). Since P(Q2) = 1 we have p(1) 4+ p(2) + p(3) +
p(4) +p(3) = 1.
We find easily that p (w,) = nlp (wy), for n =1,2,3,4,5.
Hence (14+2+6+24+120)p(w;) = 1, and so p(w;) = 1/153. This
gives p (w3) = 3!/153 = 6/153.
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Solution (Exercise . The sample space ) can be taken to be the set
of all sequences (k1, ko, k3, k4), where each k; is in {0,...,9}. Since there are
10 choices for each k;, the number of sample points is 10*. We have no reason
to think that the owner of the lock prefers a particular code, so we consider
that each sample point w has the same probability p(w) of being the correct
code. These probabilities add to one, so p(w) = 1/10000 for all w. Hence for
any given sample point, such as the sequence which the stranger enters, the
probability that this particular sequence is the correct code is 1/10000.

Solution (Exercise [2.12)). By the binomial theorem,

(a+b)° = i (6) al b,

=0

If we take a = 1/3 and b = 2/3, the right side of this equation is p(0) + ...+
p(6). The left side is clearly equal to one.

Solution (Exercise [2.13]).

(a) Q2 =1{0,1,...,100}. Since the probability values are equal and sum to
1, p(w) = 1/101 for every w.

(b)
() P ({3}) = p(3) = 1/10L.

(ii) There are 51 even numbers in the sequence 0,1, ...,100. Summing up
p(w) for these w, the probability is 51/101.

(iii)
Since A contains 20 numbers, P (A) = 20/101. Since B contains 40
numbers, P (B) = 40/101. A and B are disjoint, so P(A U B) =
P(A)+P(B).

(iv) Numbers divisible by 3 are of the form 3 x k. Numbers of this form
which are less than 50 are the numbers 3 x 0,3 x 1,3 x 2,...,3 x 16.
Hence there are 17 numbers in the event described, and the event has
probability 17/101.

Solution (Exercise [2.14)). O = AU A°, and this is a disjoint union. By
additivity, P(A) + P(A°) = P(Q2) = 1.
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Solution (Exercise [2.15)). From the solution to Exercise [2.11} the prob-
ability that the lock opens is 1/10000. Hence the probability that the lock
does not open is 1 — 1/10000 = 9999,/10000,

Solution (Exercise [2.16]). By the statement of Exercise [2.12] the proba-
bility that no head is obtained is (g)(%)6 = 64/729. Hence the probability
that at least one head is obtained is 1 — 64/729 = 665/729.

Solution (Exercise [2.17)). By definition, if w € B — A then w ¢ A, so A
and B — A are disjoint.

If w e AN B then w € B, by definition. If w € B — A then w € B, by
definition. Hence if w € (AN B) U (B — A) then necessarily w € B.

On the other hand, if w € B then either w € A or w ¢ A. In the first
case w € AN B, and in the second case w € B — A. Thus in all cases
we(ANB)U(B - A).

We have shown that B and (AN B) U (B — A) are the same set. This
proves equation (|2.10)).

Since AN B C A, and since we know that A and B — A are disjoint, we
know that AN B and B — A are disjoint.

Hence by additivity we obtain equation ([2.11]).

Solution (Exercise [2.18)). (i) For any events A, B, B — A C A, so
monotonicity tells us that P(B — A) < P(A¢). When P(A) = 1, P(A°) =
1-P(A)=0,s0 P(B—A)=0.

(ii) For any events A, B, B = (BN A) U (B — A), and this is a disjoint
union, so P(B) =P(BNA)+P(B — A).
If P(A) =1 then P(B — A) = 0 by part (i).

Solution (Exercise [2.19)). There are 173 beans in the bowl. By Theo-
rem the probability of picking a red bean is 53/173.

Solution (Exercise [2.20)).

(a) There are 38 sample points, all of equal probability 1/38. Let A be the
event. A contains 13 sample points, so P(A4) = 13/38, by Theorem [2.22]

(b) There are 380 sample points, all of equal probability 1/380. Let B be
the event. A contains 130 sample points, so P(A) = 130/380 = 13/38, by
Theorem 2.22]
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Solution (Exercise [2.21)). Imagine choosing one bean at a time.
As in Example [2.23] Q is the set of all pairs (by, by), where b; represents
the first bean selected and by presents the second bean selected, with by # by.
There are 173 beans. There are 173 ways to choose the first bean, and,
having selected the first bean, there are 172 ways to choose the second bean.
Thus
|Q] =173 x 172,
and ) )
P = — =
=19 = mxm

for every w.

When choosing two red beans, there are 53 ways to choose the first bean
and, having chosen the first bean, there are 52 ways to choose the second
bean. Thus

|R| = 53 x 52,
and 53 X 52
X
P = .
(R) 173 x 172

Solution (Exercise [2.22]).

(a) There are 2 sample points w, each one of the same probability p.
Hence 2% = 1, so p = 27409,

(c) Let A; be the event that a head is obtained during tosses j,j+1,...,j+
19. This event is defined for 7 =1,...,381.
Since the result of the other tosses is not specified, each set A; contains
2380 sample points, and each sample point has probability 274, Thus
P (A) _ 238027400 _ 2720
;)= = .
Notice that we get the same probability for A;, if we think of tosses j,j +

1,...,7+ 19 as a small experiment by itself.
By the definition of A, A = A; U...U Asg;. By subadditivity,

1
P(A) <P (A)+ ...+ P(Ay) = Z% ~ 0.00036335.

This is a small value.
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Solution (Exercise [2.23]). Assume it is known that for any events A;, Ay,

P(A;UA) <P(A)+P(A). (2.23)
We will prove by induction that equation (2.16)) holds for all & > 2.
For some integer k > 2, suppose it is known that for any events Ay, ..., Ag,
k
P(AU...UA) <Y P(4)). (2.24)
j=1

Let Ay, ..., Agyq1 be given. Define
A=A U---UA;.
By the meaning of union,

AlU...UAkUAk+1:AUAk+1.

By equation ([2.23)),
PA1U...UA) <P(A)+P(Ar).

Since we have assumed the truth of equation (2.24]), we know that

P(A) <) P(4).

j=1
Combining the last two equations,
k k41
P(AjU...UAp) <Y P(4) +P(Ar) = > P(4).
j=1 j=1

Thus equation (2.16)) holds with & replaced by k + 1.
By induction, equation ({2.16]) holds for all & > 2.

Solution (Exercise [2.24)). To verify (A°)° = A, note that by definition A°
is the set of elements which are in the “universe” but not in A.

By definition, (A%)° is the set of elements which are in the universe but
not in A°. Thus (A°) is the set of elements = in the universe such that the
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statement “z is not in A” is false, i.e. the statement “x is in A” is true. This
shows that equation (2.17)) holds.

To verify that (AU B)® = A°N B¢, note that by definition (AU B) is the
set of elements x in the universe for which the statement “x is in AU B” is
false. That is (AU B)“ is the set of elements 2 in the universe for which the
statement “z isin A or x is in B” is false.

Equivalently, (AU B) is the set of elements x in the universe such that
both of the two statements “z is in A” or “x is in B” are false. Thus (AU B)*
is the set of elements x in the universe such that z € A° and = € B¢. This

shows that equation (2.18) holds.

To verify that (AN B)® = A°U B¢, note that by definition (AN B) is the
set of elements x in the universe for which the statement “z is in AN B” is
false. That is (AN B)“ is the set of elements z in the universe for which the
statement “z is in A and z is in B” is false.

Thus (AN B)“ is the set of elements = in the universe such that at least
one of the statements “x € A<, “ x € B is true.

Thus (AN B) is the set of elements x in the universe such that z €
AU B¢. This shows that equation holds.

One way to deduce equation from using , is to start
by letting H = A¢ and K = B°.

Since equation holds for any sets A, B, it also holds with A replaced
by H and B replaced by K.

This gives:

(HUK)" = (H)"N(K)" = (A)"N(B)".

By equation ([2.17)),
(AU B%)“= AN B.

Now take the complement on both sides of this equation:
((A°U B9 ) = (AN B)".

By equation (2.17)),
A°UB°=(ANB)°.

This is equation ([2.19)).
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Solution (Exercise . Yep, these follow from the definitions.

To prove that AC B = AN B = A, assume that A C B.

Then if x € A then x € B. Hence x € AN B.

On the other hand, if x € AN B then by definition z € A and = € B, so
in particular z € A.

We have shown that A = AN B.

This proves the first equality.

To prove that AN (B — A) = 0, consider x € A. If x € B — A then by
definition x is not a member of A, which is false. Thus © ¢ B — A. Since A
and B — A have no members in common, AN (B — A) = 0.

Solution (Exercise [2.26)). Let x be a point in BN (A; U...UA,). By
definition, € B and there is some index j such that x € A;. Then x €
BN A;. Hence by definition z € (BN A;) U...U (BN A).

Let y be a point in (BN A;)U...U(B N Ag). By definition, there is some
index j such that y € BN A;. Then y € B and y € A;. Hence y € B and
y € Ay U...U Ay, so by definition y € BN (A3 U... U Ag).

We have proved that BN (A3 U...UA;) and (BNA;)U...U (BN Ag)
contain exactly the same points, so they are the same set.

Solution (Exercise [2.27]). We must show that:

BU(AIN...NA) =(BUA)N...N(BUA). (2.25)

First proof: Let = be a point in BU (A; N...N Ag). By definition, this
means that at least one of the following statements holds:

(i) z € B.
(i) z € AyN...N A

If statement (i) is true then x € B U A; for every j, and so by definition
re(BUA)N...N(BUAy).

If statement (ii) is true, then = € A; for every j. Hence again we have
x € BUA; for every j, so again x € (BUA;)N...N(BUAy).

Thus in all cases, z € (BU A;) N...N (B U Ag).

Let y be a point in (BU A;) N...N (B U Ay).
By definition, for every index j =1,...,k, y € BUA;.
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If y € B, then statement (i) holds with z replaced by y.

If y ¢ B, then for every index j, y € A; must hold, since otherwise
y € BUA; would be false. Hence in this case y € A;1N...NA, so statement (ii)
holds with x replaced by y.

We have shown that either statement (i) or statement (ii) holds, so y €
BU(A;N...NA).

We have proved that BU (A;N...NAg) and (BUA;)N...N(BUA)
contain exactly the same points, so they are the same set.

This proves equation (2.25)).
Second proof: Let C' be any set, and let Dy, ..., Dy be any sets.

By equation ([2.21)),
CN(DyU...UDg)=(CNDy)U...u(CNDy).

Then
(CN(D1U...UDy)) = ({(CNDy)U...U(CNDy)°.

Using equations ([2.19) and ({2.18]),
CU(D1U...UD)=(CND)N...0(CNDy)°.

Using equation ([2.19)),
C°U(DyU...UDy)" = (C°UD))N...N(C°UD;). (2.26)

Let C'= B¢, and let D; = A§. By equation (2.17), C° = B and (D;)" = A;.

Thus equation (2.26) gives equation ([2.25)).
Incidentally, using equation (2.17)) here is correct, but we could express

things in another way: since C' can be any set, C'° can be any set, and since
Dj can be any set, Dj can be any set. And so, in equation (2.26) we can
replace C° by any B and Dj by any A;.
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Chapter 3

Models with continuous sample
spaces

Probability models come in many forms, and the theory of probability applies
to all of them. Having a wide range of examples deepens our understanding
of general properties. In this chapter we discuss models that have continuous
sample spaces. These will used in applications later.

Our discussion of the general principles of probability resumes in Chap-
ter 4l Impatient readers can read through the present chapter quickly, and
return later as needed. Exercises[3.1] [3.2] 3.4] [3.5] will be useful in seeing

the main ideas here.

3.1 Choosing a point in a continuous interval

In this section we introduce a new class of sample space models. These
models are more abstract than the simple models described in Section
but the general properties of probability remain true.

The particular model we discuss here has a sample space which is made
up of an infinite number of points. And not just that: the sample space
forms a continuous interval, meaning an interval with no gaps.

Consider the physical experiment of choosing a location at random on
a yardstick. Since a yardstick is three feet long, one might represent the
yardstick as the interval [0, 3] of the real line. We can then think of the
experiment more abstractly as choosing a point in the interval [0,3]. The
outcome is the point chosen, and the sample space €1 is simply the interval
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[0, 3] itself.

A point in €2 is a real number, so evidently we have chosen to represent a
physical point on the yardstick as a real number. However, specifying a real
number means specifying an infinite number of decimal digits! For an actual
physical location, this is very wasteful, since an infinitely precise description
of position has no experimental meaning. Thus for a sample point w in [0, 3]
it seems that we can only use the first few digits from the decimal expansion
of w, and the number w is a misleadingly precise description of a physical
location.

But this rather vague interpretation of w seems acceptable for practical
purposes. We know that a mathematical interval is an extreme idealization,
and no one could expect that [0,3] would match up perfectly with a real
physical yardstick.

Still though, since we acknowledge the imprecision in the interpretation,
a reader may suspect that we are cluttering up the sample space with a lot
of irrelevant details. Can’t we find a simpler model?

As an alternative sample space, if we are satisfied by specifying positions
with an accuracy of six decimal places, we could agree to conceptually divide
the yardstick into subintervals of length 1079, and just let the sample space
(2 be a set consisting of integers that label these sections. That sample space
would be less complicated mathematically, and we could adequately describe
any location by simply stating which subinterval contains it.

However, notice that using the interval [0, 3] as the sample space preserves
much more of the geometrical setting for the experiment. And we will find
that meaningful calculations of probabilities are actually clearer and more
elegant if we use real numbers as sample points. So we will stick with using
an interval of the real line as the sample space for this experiment, and for
similar situations.

Does that choice seem strange? It actually should not come as a great
surprise that using a continuous interval of real numbers can make life easier,
when modeling the physical world. Readers have likely already experienced
the benefits of using the real line in calculus, to help solve problems about
physical objects and physical processes.

Now let’s think about how to assign probabilities to events, when the
sample space is a continuous interval of the real line.
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3.2. Probabilities of subsets of an interval

3.2 Probabilities of subsets of an interval

Since we are going to be talking quite a bit about intervals, let’s state a
definition, just to make sure we all agree on what we are talking about.

Definition 3.1 (Intervals). An interval of the real line is defined as a subset
of the form [a,b], or [a,b), or (a,b], or (a,b). A one-point set {b} = [b,b]
counts as an interval too.

As a warmup to defining probabilities, let’s look at what doesn’t work.
What doesn’t work is equation in Theorem m The problem is that
Theorem dealt with the probability of an event A which is composed of
a finite number of points. Until now, that has been the only situation that
we have had to deal with, and it’s a nice situation, because the additivity of
probability basically tells us everything we need.

Theorem says that when there are only a finite number of sample
points in A, then

P(4) = 3" P({w)) (31)
weA

If you have a probability model with a finite sample space, every event is
a finite set of points, so we can define the probability of all possible events by
figuring out the appropriate value of P({w}) for each sample point w. Equa-
tion then gives you the probability of any event A. Very convenient.

But now we are in a new world. When the sample space is an interval of
the real line, the sample space certainly contains an infinite number of points.
Furthermore, for any single sample point w, the one-point set {w} seems
rather useless all by itself when modeling the choice of a random location,
since the idea of specifying a physical position with infinite precision is a
fantasy. And if A is any set which contains only a finite number of points,
the same argument suggests that A is not going to help in modeling real
events either. So we cannot avoid dealing with events which are infinite sets
of points.

After thinking about it, it seems that when choosing a random point in
an interval, the most useful events will be subintervals. If A = [u,v], then A
is the event that the chosen point lies somewhere in the interval [u, v]. This
event seems physically meaningful, at least if the length of [u,v] is not too
small to measure.

85



Chapter 3. Models with continuous sample spaces

So now we have a specific question to think about. Given a subset ) of
the real line, and modeling the random selection of a point from €2, how can
we define a probability distribution for intervals which are contained in €27

3.3 The uniform probability distribution on
an interval

We are considering randomly choosing a point from a subset 2 of the real
line. We take the sample space to be €, so that any point x in {2 represents
the outcome that z is the chosen point. Events are sets of outcomes, so
events are subsets of the €.

Consider a special case. Let’s add the assumption that the random point
will be chosen from €2, in such a way that no point of €2 is favored. For
simplicity, we’ll also assume that ) is an interval of positive length, or is
made up of a finite number of such intervals.

How should we define probabilities in this case?

Physically, it seems clear that a long interval is more likely to contain
that chosen point than is a short one. Building on that insight, it seems
reasonable to make a specific mathematical assumption:

The probability that a point lies in a subinterval A of (2
should be proportional to the length of A.

This means that there is some constant ¢ such that for any subinterval A of
Q

Y

P(A) = clength(A). (3.2)

Definition 3.2 (Uniform distributions on subsets of the real line).
Let Q be a subset of the real line which is an interval, or the union of a finite
number of intervals.

Let P be a probability distribution on €2 such that for some constant c,
equation holds for every subinterval A of Q.

Then we say that the probability distribution P is the uniform distribu-
tion on €.
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3.3. The uniform probability distribution on an interval

When using Definition [3.2) how do we find the constant ¢ in equation

i)

For simplicity, let’s assume that €2 is an interval.
We also must have P(£2) = 1, so equation ({3.4) tells us that

clength(2) =1,

i.e. )
‘= length(Q2) (33)
We conclude that when A is a subinterval of €2,
length(A)
P(A) = ———=. 4
(4) length(Q2) (34)

Exercise 3.1. When Definition holds, and €2 is not a single interval,
but is the union of several disjoint intervals By, ..., By, what is the correct
formula for P(A), instead of equation (3.4))7

olution]

In an experiment, if you want to describe properties of positions, using

a ruler or some other measuring device, you will likely describe one or more

subintervals which are ranges specified by your measurements. Thus a typ-

ical event when choosing a random point seems likely to be a finite union

of intervals. If A denotes such an event, then there are disjoint intervals
I, ..., I, such that

A=LU...UIL,. (3.5)

See Figure 3.1 Mathematically, other events are certainly possible, but we

don’t need to consider these at the moment.

Remark 3.3 (One-point events never happen here!). In the situation
of Definition [3.2] let w be a point of 2, and let A = {w}.
Since A = [w,w], by formula (3.4) we have

length([w,w])
P(4) = length(Q2)

=0.
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Figure 3.1: A=L UL UI3U 4.

This event A has probability zero, so, loosely speaking, it never happens!
Is that right? Let ¢ denote a particular point. Suppose that you randomly
choose a point from the interval every second of every day for a trillion years.
What’s the probability that the particular point ¢ will be one of the points
that is chosen during that period? The probability of obtaining ¢ on any
choice is zero, as we just showed. And adding up lots of zeros still gives zero.
So the probability of ever getting the point c¢ is indeed equal to zero.

On the other hand, every time you perform the experiment, some location
is chosen. So some one-point event always happens!

This sounds a bit like a paradox. To see that there is really no problem,
let’s look at an analogous story about length.

Every one-point set has zero length, right? So the unit interval is made
up of sets which have zero length. But the good old unit interval has length
equal to one.

Is that a paradox? Well, the length of the unit interval is definitely
not found as an “infinite sum” by adding up the lengths of the points that
compose it. So the length story seems ok.

We should keep in mind that the real line is an abstraction, and points
of the real line are not physical objects. We can often think about models as
if points of the real line are physical objects, but it’s not so.
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3.3. The uniform probability distribution on an interval

Incidentally, when one-point events have zero probability, the probability
of an interval does not depend on whether of not we include the endpoints.
That is, when choosing a random point,

P([a,b]) = P([a, b)) = P((a,0]) = P((a,)))- (3.6)

Why is that true? By additivity,

s}

P([a,b]) = P(la, d]) + P((a, b)) + P([b, b])
P([a,b)) = P([a, a]) + P((a, 1))
P((a,b]) = P((a, b)) + P([b,]))

2,

And we are assuming that P([a,a]) = P([b,b]) = 0.

Exercise 3.2. A certain factory makes special telephone cables. Occasion-
ally defects occur in the pieces of cable which are produced. The defects are
rare, and seem equally likely to occur at any point in a cable.

There are four communication centers, A, B,C, D. They are connected
using cables of the sort just described. One cable runs from A to B, another
from B to C, and a final cable runs from C' to D. Cable AB is 3 miles long,
cable BC'is 4 miles long, and cable C'D is 2 miles long.

After the cables are installed, the staff discovers that a signal is unable to
pass from A to D via the three cables. However, a signal passes successfully
from B to C.

Assuming that there is only one defect in the three cables, the defect
must lie in either the cable from A to B or in the cable from C' to D. Find
the probability that the cable from C' to D is the one with the defect.

[Solution]

Exercise 3.3. A certain street is 600 feet long. Sam lost his lucky penny
somewhere along this street. He knows he lost it there, but has no idea in
what part of the street it has fallen.

His friends Alice, Bob and Clancy decide to search for for Sam’s coin.
Alice searches the first 300 feet, Bob searches the next 200 feet, and Clancy
searches the final 100 feet. The searchers are careful, so they will not miss
the coin.
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Chapter 3. Models with continuous sample spaces

(i) Let A be the event that the coin is located in the interval that Alice is
searching. Find P(A).

(i) Suppose that we learn the following additional information. After five
minutes, the coin has not yet been found. Alice has already searched
two-thirds of her section. Bob has searched half of his section, and
Clancy has searched three-quarters of his section.

Let A be the event that Alice eventually finds the coin. Based on all
the information we now have, find the probability of A.

This part of the problem is an example of a conditional probability
calculation, and we have not yet covered conditional probability. How-
ever, you can solve this problem by building a new model, with a new
sample space.

[Solution|

3.4 Probability densities on intervals

Let €2 be an interval of the real line, or perhaps a finite union of intervals.

We will think of €2 as part of a model for the experiment of choosing a
random point. Of course we have to have a probability distribution defined
too. So far we have talked about uniform distributions. But that might
not match the physical conditions of the experiment. It might be that the
random point is more likely to be chosen from one region rather than another.

A probability distribution which is not uniform can be represented by
using a probability density function which is larger in some regions and smaller
in others.

As the name suggests, a probability density which is defined on a portion
of a line tells us the “probability per unit length”.

Definition 3.4 (Probability densities). A probability density f is a func-
tion such that

(i) f is nonnegative, and

(ii) the integral of f over 2 is equal to one.
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3.4. Probability densities on intervals

If P is a probability distribution such that

b
P([a,b]):/ f(z)dx, (3.7)

for every interval [a,b] which is contained in €2, then we say that f is a
probability density for P.

In calculus, fab f(x) dzx is usually referred to as “the integral of f over the
set [a,b]”. Equation says that the probability of [a,b] is given by the
integral of the probability density over the set [a, b].

Conditions (i) and (ii) in Definition [3.4] are needed because probabilities
are nonnegative, and because we must have P(Q) = 1.

1.0 1
0.8
0.6
0.4 4

0.2

0.5 1.0 1.5 2.0 2.5 3.0

Figure 3.2: Exercise the probability of choosing from a set is the integral
of the density over the set.

Exercise 3.4. Let 2 = [0, 3]. Let f be a probability density on 2 which is a
multiple of e=*. A point is chosen at random from |0, 3], with a probability
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distribution given by the density f. Find the probability that the point is
chosen from the interval [1,2]. See Figure [3.2]

[Solution|

Exercise 3.5 (Constant densities give uniform distributions). Let 2
be a subset of the real line which is the union of a finite number of disjoint
intervals. Let f be a constant function on €2 such that the integral of f over
Q) is equal to one.

Let P be the distribution with density f. Prove that P is the uniform
distribution on €2, in the sense of Definition (3.2}

Bolution]

Remark 3.5 (With densities, one-point events never happen). We
noted in Remark that in the case of a uniform probability distribution
on an interval, one-point events always have probability zero. The same is
true for any distribution that is given by a probability density. To see that,
consider equation with b = a.

Since [a,a] = {a}, in this case equation says that

P({a}) = / " f(o) de,

and the integral over an interval of zero length is zero.
Thus equation (3.6 holds, just as it did in the case of a uniform density,
and we don’t need to be fussy about endpoints:

P([a,b]) = P([a, b)) = P((a,b]) = P((a,)))- (3.8)

A general form of Definition will be given in Definition [15.5] The
general definition applies to a wide range of sample spaces, not just the real
line.
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3.5 Cleaning up integral notations

Formulas are easier to understand if we simplify the notation.

For example, in equation , unless we want to show the formula for f
explicitly, there is really no need to write f(x)dz in the traditional calculus
manner. It is clearer to just write

P([a, b]) = / ;. (3.9)

Even this notation can be improved. The best notation for the integral of f
over a general set A is:

integral of f over A = / f. (3.10)
A

Thus equation ([3.9) becomes

P(la,b))= | f. (3.11)

[a,b]

And actually, if equation (3.11]) holds for all intervals [a, b], then for any

event A it is true that
—/f (3.12)
A

This form is convenient, but what does it mean, when A is not an interval?

Presumably we know what the event A means, or we wouldn’t be talking
about it. And so we know what P(A) means. But what about [, f?

The concept of integrating a function over a set actually makes sense for
lots of sets, not just sets which are intervals.

To see this physically, think about a wire whose mass density might vary
along the wire. The mass of any part of the wire is found by integrating
the mass density function over that part of the wire. This makes sense even
if the part of the wire that you are interested in consists of many separate
pieces. Just find the mass of each piece (by integrating the mass density)
and then add up the masses.

In calculus this is how we can find the integral of a function f over a set
A, if A is the union of two disjoint intervals [a, b] and [c, d]:

/f /f+/ 2 (3.13)
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For example: if we are doing a calculus problem where we have to integrate
a function which has a different formula on different parts of an interval A,
we often calculate the integral over A as the sum of the integrals over the
separate parts.

For general sets we can do the same thing. We can find the integral over
a set by integrating over the pieces of the set, and then adding up the results.
We will call this the additive property for integration over a set.

And notice that the additivity of integration over sets is exactly what we
need if equation is used to define a probability distribution. After all,
if A= D;UD,, where Dy, Dy are disjoint events, the additivity of probability
says we must have P(A) = P(D;) + P(D;). That probability equation can

only true if:
/f:/ f+ f (3.14)
A D, Do

And equation expresses additivity for integrating over a set.

So we know how densities define probabilities, and we know how integra-
tion over a set works. That’s all we need to understand probability densities.
But let’s nail this down by giving a nice general definition of the process of
integrating over a set.

Our definition should capture the idea that the integral of f over a set A
is the integral using the values of f on the set A, and nothing else. Using that
idea, it is pleasantly simple to give a general definition of [ 4 [, as follows.

Definition 3.6 (Integration over a set). Let f be a function and let A
be a set.
Define a new function g as follows:

{ f(z) ifxeA, (315

0 otherwise.

/A f= / g (3.16)

We might say that g in equation (3.15)) is formed by discarding the values
of f on A°.

Then by definition
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3.6. Choosing a point in the plane: throwing darts

Incidentally, when it comes to actually computing an integral over a set,
which notation you use won’t make much difference. But the modern [ 4
notation seems clearer for thinking.

Remark 3.7 (Intervals characterize densities). Let {2 be an interval of
the real line, or perhaps a finite union of intervals.

Suppose you are studying a distribution P on 2, and you come up with a
function f such that P([s,t]) = f[& g J for every subinterval [, t] of the sample
space. Then by definition f is a valid density for P. Does that mean that
for any event you can go ahead and calculate P(A) using P(4) = [, f? One
would hope so, and happily that is actually true! Very convenient. We won’t
write down a formal proof, but it illustrates a general principle: knowing
that an equation is true for all intervals is good evidence that it holds for all

sets.
We'll return to this subject in Remark

More examples of densities on the real line are given in Section

3.6 Choosing a point in R?: throwing darts

Consider the experiment of throwing darts at a target called the dart board.
Assume that the thrower is rather inaccurate, so the point where the dart
hits is random. (If the thrown dart misses the target completely, we will
ignore that throw, and consider that the experiment did not occur.)

The outcome of the experiment is the point of impact, i.e. the location
at which the dart hits the board. We can represent this outcome as a point
on an idealized copy of the dart board, which we take to be a region called
T in R?, where R? is the set of all coordinates (z,z2) in the plane, i.e. R?
is the set of all pairs of of real numbers.

The dart board region T is our sample space () in this model. An event
is then simply a sub-region of the dart board region. See Figure for a
picture of 2 and an event A.

If the thrower under consideration is very inaccurate, for simplicity we
might assume that every part of the target has the same chance of being
hit. In that case it seems natural to assume that the probability of hitting
a particular region on the target is proportional to the area of the region.

95



Chapter 3. Models with continuous sample spaces

Figure 3.3: An event on the dart board

Since the probability of hitting the whole target must be 1 (remember that
we disregard any throw that hits elsewhere), this means that the probability
of hitting some region A of the dart board is given by:

area(A)
P(A) = ——. 3.17

(4) area((?) (3.17)
Like the formula for subsets of the real line which was given in equation ([3.4)),
equation (3.17) is a continuous analog of Theorem [2.22]

Definition 3.8 (Uniform distribution on a region in the plane). If a
probability set-function P is defined on subsets of a region T of the plane,
and is such that probability is proportional to area, it will be said to be a
uniform probability distribution on T
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Example 3.9 (Probability of missing the central region). Someone is
throwing darts at a target represented by a disc of radius 5, centered at the
origin of R2.

The point of impact (z,y) is random, with a uniform distribution on the
target.

Let A be the set of points (z,y) in the target such that /x? 4+ y? > 2.

Since y/x? + y? = r, the distance of the point (z,y) from the origin, A
represents the physical event that the dart lands more than two units of
distance from the center. See Figure [3.4]

Figure 3.4: A is the event that the dart misses the center region

Let us find P(A).

Since the probability distribution is uniform,

_area(A)

~area(T)’

where T' = 2 is the target region, and of course area(A) = area(T) —
area(A®) = 257 — 4w = 21x. Thus

P(A)

P(4) = .
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The next two exercises are mostly a test to see if you can still calculate
areas. It’s ok to skip them, as long as the statements of the questions make
sense to you.

Exercise 3.6. Let () be the rectangle consisting of all points x,y such that
0<zxr<2and 0 <y <5. Let P be the uniform probability distribution on

2, so that this sample space and distribution form a model for choosing a
point at random from (2.

(i) Let A be the event that the chosen point (z,y) is such that 2 < y. Find
P(A).

(ii) Let B be the event that y < 4 — 2z. Find P(AN B).

[Solution]

Exercise 3.7. Someone is throwing darts at a target represented by the unit
disc. The point of impact (z,y) is random, with a uniform distribution on
the target.
Let A be an event defined in terms of the height of the point of impact:
A is represented by the set of points (z,y) in the target such that —\/Lﬁ <
y< 5
Find P(A).

[Solution]

Just as in the case of an interval, we can easily define probability densities
for regions in the plane. Two-dimensional integrals take more calculation
than one-dimensional integrals, but the basic idea is the same. Such densities,
and general densities, are considered in Section [15.3]
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3.7 More examples of densities

Readers likely don’t have an urgent need for more examples at the moment.
But it may be enlightening to glance over the examples here, and return
later, when using densities in later chapters.

density f
1.0

0.8

1:0 1j5 2j0 2j5 3j0
Figure 3.5: Exercise

Exercise 3.8. For the experiment of choosing a number from the interval
[0, 3], suppose that points near 0 are more likely to be chosen, specifically that
the probability set-function is given by a density f of the form f(z) = ¢(3—z),
where ¢ is some constant.

(i) Find c.
(ii) Calculate the probability that selected number is less than 1/2.

See Figure [3.5
[Solution]

Exercise 3.9. Consider a probability model with sample space 2 equal to
[0,4] and probability density f(¢) = £t.
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2.5 4
(t=1)°
2.0 P oo
1.5 1
1.0 1
0.5 4
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 3.6: Exercise

(i) Check that f is a probability density.

(ii) Let P be the probability set-function with density f. Suppose that a
random number ¢ is selected. Let A be the event that (t — 1)? > 2.
Find P(A).

See Figure [3.6]
[Solution]

Exercise 3.10. Consider the probability model in Exercise 3.9 Using the
P with density f, let ¢t be the randomly selected point. Let A be the event
that 2t — 2 < (¢t — 1)%. Find P(A)

See Figure [3.7]

(You finally get to use equation in a situation where A is not an
interval!)

[Solution]
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Figure 3.7: Exercise m

Remark 3.10 (To what extent is the probability density unique?).
The purpose of a density f is to define a probability set-function P.

If one just changes f at few points, it makes no difference in any integral
involving f, and so it makes no difference in the definition of P. So such a
modified function works, i.e. is a correct probability density for the probabil-
ity set-function P. It is just as valid as the original function f, even though
it may have a more cumbersome definition.

We might think about the density f as a kind of probability machine.
One turns the crank on this machine (i.e. integrates f) to get a probability.
That is the sole purpose of f, its raison d’étre. Any other function h such
that [, h = [, f for all events A also deserves the honor of being called a
probability density for P.

Example 3.11 (A uniform density on an infinite interval?). Much
as in Example [2.19, consider a constant probability density f on an infinite
interval, like [0, 00) for example. Does such a density make sense?

Let k£ be the constant value of f. k is a nonnegative number since f is
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a density. Since [J°f = [, f =P(Q) =1, k cannot be zero. On the other
hand, since

1>P([0,n]) = f=kn,
[0,n]

for every n, we are forced to conclude that k£ must be zero. This contradiction
shows that a constant probability density on an infinite interval does not
exist.

A nonconstant probability density on an infinite interval is certainly pos-
sible, as the next exercise illustrates.

1.0 A
0.8 1
0.6
0.4 4

0.2 1

1 2 3 4

Figure 3.8: f(z) = ce™8*

Exercise 3.11 (The exponential density). Let A be a positive constant.
Let f(z) = ce ™ for x > 0, f(z) = 0 otherwise. Assuming f is a probability
density on R, find c.

See Figure [3.§

[Solution]
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-2 -1 1 2 3 4

Figure 3.9: a= 8, =13

Exercise 3.12. Let a and [ be positive constants. Let f(x) = ce** for
x>0, f(z) = ce’® for x < 0. Assuming f is a probability density on R, find
c.

See Figure [3.9]

[Solution]

3.8 Solutions for Chapter

Solution (Exercise [3.1]). Since 2 = By U...U By, and the sets By, ..., By
are disjoint, we know by additivity that

P(Q) =P(B)) +... + P(By).
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But P(2) = 1, and by equation (3.2) we know that P(B;) = clength(B;).
Thus
1 =length(B;) + ...+ length(By),

SO
1

‘= length(B;) + ... + length(By)

Replacing ¢ in equation (3.3) by this value gives the correct form of equa-
tion ((3.4)):

1 h(A
length(B;) + ... + length(By)
Remark 3.12. You could extend the definition of length to include sets

which are not intervals. So in the situation of this problem, when 2 is the
union of disjoint intervals By, ..., By, we could agree to define

(3.18)

length(Q2) = length(B;) + ... + length(By).
Then equation (3.4) would still be valid.

Solution (Exercise . Choose numbers a, b, ¢, d such that the length of
[a, b] is equal to the length of the cable from A to B, and the length of ¢, d]
is equal to the length of the cable from C' to D. Choose the numbers so that
the intervals [a, b] and [c, d] are also disjoint.

Let = [a,b] U [c, d].

We can think of a point in one of the intervals [a, ], [c,d] as a position
coordinate which describes the possible location of the cable defect.

Let P be the uniform probability distribution on ).

Let H represent the event that the defect lies in the cable from C to D.
Then H = [¢, d].

By equation ((3.18]),

B length(H) B d—c 22
"~ length([a,b]) + length([c,d])  (b—a)+(d—c) 3+2 5

Solution (Exercise . Let €2 be the union of disjoint intervals U, V.W
where length(U) = 300, length(V') = 200, and length(1/') = 100.

We can think of a point in one of the intervals U, V,W as a position
coordinate which describes the possible location of the lost penny.

P(H)
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Let P be the uniform distribution on f2.

(i) The abstract event representing A is U.

_ length(U) 300

1
p) = ety 2 2
W) length(§2) 600 2

(ii) Let U,V,W be the unsearched parts of U, V, W, respectively. We will
assume that these unsearched parts are intervals. (If the unsearched parts
were made up of many pieces, the same method would work, it would just
take longer to write down.)

Then U,V ,W are intervals with length(U) = (1/3)length(U) = 100,
length(V) = (1/2)length(U) = 100, length(W) = (1/4)length(W) = 25.

Now let the sample space be Q = U UV U W. This represents the
unsearched road.

A point in Q represents the possible position of the missing coin, in the
unsearched road.

The original description of the problem gives no reason to treat any sec-
tion of the whole road differently from any other section. The decision about
where to search for the coin does not seem connected in any way to the actual
location of the coin. So it seems that there is still no reason to treat any
section of the unsearched road differently from any other section.

So the appropriate distribution for the location of the missing coin is the
uniform distribution on Q. Let P be the uniform distribution on .

In this model, the event that Alice eventually finds the coin is U. Using
equation (3.18)),

B(0) — length(U) B 100 4
~ length(U) + length(V) + length(WW) 100+ 100 +25 9’

Solution (Exercise [3.4]). The requested probability is P([1, 2]), where the
density for P is given by ce™ on [0, 3], for some constant c.

Since P(Q2) =1,
3
/ ce Tdr =1,
0

=c(l—e7?).

SO

1= —ce®
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Thus

Thus

2
P([1,2]) = / ce Pdr=—ce
1 1
Solution (Exercise [3.5)). We are told that f is a constant function. Let ¢
be the vaue of f.
Let A be any subinterval of 2. Then

1)

From calculus we know that integrating ¢ over an interval A gives clength(A).
We are given that f is a probability density for P. Thus P(A4) = [, f.
We have shown that P(A) = clength(A) for every subinterval A,

By Definition [3.2, P is the uniform probability distribution on €.

Solution (Exercise [3.6]).

(i) Theset A°= {(z,y) : y <x}NQis a triangle with base 2 and altitude
2. Hence its area is (1/2)4 = 2. The set Q) is a 2 x 5 rectangle, so its area is
10. Thus P(A°) =2/10 = 1/5, and so P(A4) = 4/5.

Alternatively, note that

2 5 2 22
—(5— 2
area(A)://1dydx:/(5—x)dx:¥ :—§+75:8.
0 Ja 0 0

Thus P(A) = area(A)/area(Q2) = 8/10 = 4/5.

(ii) The line y =4 — 2x crosses the line y = z at the point (4/3,4/3).

Let’s find the area of (AN B)¢. The integral of a function of the form
mz + b over an interval is equal to the length of the interval times the value
of the function at the midpoint. Thus

area( (ANB)°) = /04/3 (4 —2x) d:c+/4/23xdx = % (4 -2 (%))—i—; (g) = %.

Hence 6
area(ANB) F 16 8
P(ANB)=—"" =3 — —— — |
( ) area((?) 10 30 15
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Solution (Exercise |3.7)). Let M, = {(x,y) y > \[} N§, and let M_ =

{(ac,y) y < —7} naQ.

Then A =Q — (M, UM_), so area(A) = m — area(M,) — area(M_) =
7w —2 area(M,).

: . 11 1 1 11
Let S be the square W‘lth vertices (75, 75) (7 —7) (—== ——2), (—7, 7)
Then 2 — S is the union of four regions, M, and three other regions with

the same area as M, . Hence

m—4 =4 area(M,),

SO A
area(M, ) = T T
Thus 4
area(A)—W—2area(M+)_7r—7T2 :g—i—Q
Hence 4) 142
area 5
P(A) = = 2 =4 =
(4) area((?) s * T
Solution (Exercise |3.8))
(1) ; -
3 — 9
1:P(Q):/c(3— Yy = — 3= 9
0 2 |, 2

Thus ¢ =2/9.
(ii) The probability is

/01/2cf(:c) dz = 3/05(3—;5) dr — _5(3_@2

Solution (Exercise [3.9)).

(i) f is clearly nonnegative on €, so we only need to check that fQ f=1
4 42

12
/f /—tdt Eto =

(ii) We need to write A more explicitly.
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So we must rewrite the inequality (¢ — 1)? > 2 in an appropriate form.

Ift > 1, thent —1>0, and (t — 1)2 > 2 is equivalent to t — 1 > /2, i.e.
t>1++2.

Ift <1,thent—1<0,501—1¢>0,and (t —1)? > 2 is equivalent to
1—t>+2ie t<1—+2

Combining these statements with the fact that 0 <t < 4, we see that

A=(1++2,4].
Thus
4 2|4 1 2
P(A):/ Lar =L :—<16—<1+\/§))
14v3 8 16{,, 5 16

:1_16<16—<1+2\/§+2))=%(13—N§>~

Solution (Exercise . We could consider cases, as in the previous
problem, but perhaps it’s faster to rewrite the inequality which defines A in
a different way first. A is the set of ¢ such that (t — 1)* — 2t +2 > 0.

This inequality says t* — 4t +3 > 0, i.e. (t —1)(t —3) > 0.

The polynomial (t—1)(t—3) is zero at t = 1 and ¢t = 3, positive for t < 1,
positive for ¢ > 3, and negative otherwise.

Hence A = [0,1] U [3,4], and so

1 4 1
P(A):/ —tdt+/ —tdt = — | t*
0 8 5 8 16

Solution (Exercise [3.11)). Since

1
+¢2
0

4

1 8 1
= —(1-0416—-9) = = = -.
3) g 0r0-9=5=3

(e 9]

1= < ’ X a1 - _ C

/_Oofc/_OOde—l—c/O e dxfc_—)\oe =7

we must have ¢ = \.

Solution (Exercise [3.12). Since

1= / f= c/oo e d:v—{—c/o e P dr = cL Ooe_o‘x—}—cl 0 e’ = £+£,
Q 0 —00 —Qly Bl o a f

we must have
1 af
c= = .
sts atp
Note that the answer here agrees with the answer to Exercise [3.11] if we
set A = a and let § — oo. Why should that be the case?
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Conditional probability

4.1 Conditional probability defined

N

Figure 4.1: Events on the dart board

Consider any experimental situation, and any possible events A, B for
this experiment. Suppose that, based on your knowledge of the experimental
setup, you know the value of probabilities such as P(B) and P(A).
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Chapter 4. Conditional probability

Now suppose the experiment has been performed. Although you do not
yet know the result, someone tells you that the event B did occur. This
extra knowledge, combined with what you already knew, gives you a new
experimental situation, and a new probability for the event A. We call this
new probability “the conditional probability that A occurred given that
B occurred”. This probability value is written as P(A | B).

How do you find P(A | B)?

As a simple example, we can think about the experiment of throwing
darts at a dart board, described in section 3.6, The throw takes place, but
we are not looking. We ask someone a specific question: “Did the dart land
in region B?” (See Figure ) Imagine that the answer is “yes”, so we
have one additional piece of information about the experiment. We do not
have any other additional information.

The question is: what probability should we now assign to the event that
the dart landed in region A?

It should be emphasized that conditional probabilities are not different
from any other probabilities. Every probability is conditional on some infor-
mation! Mathematicians use the word “conditional” here merely to empha-
size the way in which your knowledge has changed from what you started
with.

We are currently thinking about physical probabilities for an actual ex-
periment. There is simple formula for the conditional probability .

Fact 4.1 (The conditional probability formula). Let A and B be phys-
ical events for some experiment. If P(B) # 0,

P(A|B) = %, (4.1)
or equivalently
P(AN B) = P(B)P(A| B). (4.2)

If you construct a probability model for the experiment, you will define
theoretical probabilities for the abstract events in your model. The proba-
bilities P(A) in a valid model will be the appropriate probabilities based on
your initial knowledge. In the case of a probability model the conditional
probability formula holds by definition, but the definition must follow the
physical rule.
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4.1. Conditional probability defined

Definition 4.2 (The conditional probability formula). Let A and B be
events in a model for some experiment. If P(B) # 0, the P(A | B) is defined
by equation (4.1]).

Both equation (4.1)) and equation are useful forms of the conditional
probability formula. We might call equation the “mutiplied-through”
form of the conditional probability formula.

Much of our real-world knowledge about people or things can be regarded
as approximate forms of conditional probability assessments! For example,
if we are getting ready to deal with a person’s possible reactions to some
situation that might occur, we may be using a thought process analogous
to . B would represent the event that the situation occurs, and A would
represent the event that the person reacts in a particular way.

Example 4.3 (Computing conditional dart probabilities). Let’s go
back to the experiment of throwing darts (section [3.6). We said in section
that if the thrower is very inaccurate, one might use a model in which the
probability of hitting any region of the target is proportional to the area of
that region. (We also agreed that if the thrower misses the target entirely
then we will ignore the throw. )

In the model for this experiment, we will let €2 be the region in the plane
representing the target. For any region A inside the target, in our model
the set A is used to represent the event that the dart lands in A. We are
assuming that
P(4) = area(A).

area((2)

Now consider the target shown in Figure [{.1] Then P(A| B) is the prob-
ability that a dart which hits B also hits A. Of course this can only happen
if the dart lands in AN B.

If you tell me that the dart hit B, and nothing else, then I don’t know
in what part of B the dart landed. So to understand P(A| B) it seems
appropriate to think of a new experiment, in which the target is B. In this
new experiment we ignore any throw which does not hit B. By the same
reasoning which made equation seem valid, we now assume that

(4.3)

area(AN B)

probability to hit AN B =
area(B)
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Chapter 4. Conditional probability

So we suspect that P(A | B) is simply given by

area(AN B)

P(4]B) = area(DB)

(4.4)

Is equation (4.4]) consistent with the general conditional probability formula

given in equation (4.1)?
Well, using equation (4.3]),

P(ANB) “maao?  area(AN B)
P(B) areagg)) ~ area(B)

So yes, (4.4) is exactly what equation (4.1)) tells us.

4.2 Why the conditional probability formula
holds

Like additivity, the conditional probability formula is a fundamental rule in
probability. In this section we will spend some time justifying this formula.

Thinking about information To show that equation is correct phys-
ically, think first about events S} and Sy which are subsets of B. Physically,
this means that S; and S are special cases of event B.

Suppose that P(S;) = P(Ss). This means that, based on everything you
know initially, these two events are equally likely.

If someone tells you now that B occurred, does that extra piece of infor-
mation give you any reason to believe that one of the events Sy, S5 is now
more likely than the other? It is hard to see how that could be the case.
The extra information does not treat either event differently. You may know
ways in which events S; and S, differ from each other physically, but you
already knew that when you initially decided that S; and Sy had the same
probability.

Now let’s think more generally, about any events S; and S, which are
subsets of B. If we learn that B occurred, that extra information does not
seem to treat either event differently. So it is plausible that the relative sizes
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4.2. Why the conditional probability formula holds

of P(S1| B) and P(S2 | B) should be the same as the relative sizes of P(5))
and P(5;). In other words, it is plausible that for some constant c,

P(S|B) = cP(S) (4.5)

for every event S which is a subset of B.
Applying equation (4.5) with S = B, we see that P(B| B) = cP(B), and
of course P(B | B) = 1! Thus ¢ = 1/P(B), and so we have
P(5)
P(S|B) = m (4.6)
for every event S which is a subset of B.

That’s the story when the event S is a subset of B. What about the
general case, when we are interested in an event A which need not be a
subset of B?

For any event A, we can see that A is the union of the two parts, the part
S = AN B that is contained in B and the part A — B that is outside B: that
is,

A=SU(A- B).

The rules of probability apply to conditional probability, so conditional
probability is additive:

P(A|B)=P(S|B)+P(A—- B|B), (4.7)
Since S = AN B is a subset of B, we know by equation (4.6)) that

Pwunzigzpfge. (4.8)

Also, since B and A — B are disjoint, they are mutually exclusive. If B
happens then A — B certainly does not happen. That is,

P(A— B|B)=0.

Then equation (4.7)) says that P(A|B) = P(S| B). Hence equation (4.8))
tells us that equation (4.1]) holds, which is the general conditional probability
formula.

Thinking about frequencies We’ve given one justification for the condi-
tional probability formula. Now let’s give another, this time using frequen-

cies.
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Chapter 4. Conditional probability

The frequency interpretation applies to conditional probabilities, since
it applies to all probabilities. So we can use the frequency interpretation
(Probability Fact to derive a formula for P(A | B).

The frequency interpretation says that, when the experiment is per-
formed, P(B) is roughly equal to the fraction of the time that we see B
occur. The frequency interpretation for probabilities given B tells us that if
we only look at times when B occurs, the fraction of the time that we see A
occur is P(A | B).

If we want to know the fraction of the time that we see both A and B
occur, we can find this number as a “fraction of a fraction”: take the fraction
of the time that B occurs, and multiply that fraction by the fraction of those
times when we see A occur. Replacing the fractions by the corresponding
probabilities, this says that

P(AN B) = P(B)P(A|B).

This is the multiplied-through form of the conditional probability formula,
equation (|4.2)).

This completes the derivation of the conditional probability formula from
the frequency interpretation of probability. The next example just writes out
the same “fraction of a fraction” computation more explicitly.

Example 4.4 (Writing out the fractions). P(A| B) is the frequency
with which A occurs in the situation in which the original experiment was
performed and B occurred. The frequency with which A occurs in this
experimental situation is the right approximation to P(A | B).

To get this frequency, repeat the original experiment many times, say
N times, but only record results for those times when the physical event B
occurs. The fraction of those recorded times for which the physical event A
occurs will give us a good approximation to P(A | B).

We are assuming that N is large. Suppose that during the NV repetitions
of the experiment, the physical event B occurred M times.

By the frequency interpretation for the unconditional probability, we

know it is likely that
M
— ~ P(B). 4.9
-~ P(B) (19)
We are only interested here in the case that P(B) > 0, so that B can happen.

When P(B) > 0, equation (4.9) tells us that M will be large when N is large.
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4.3. Using the conditional probability formula

Suppose that during the M times that B occurred, the physical event A
occurred L times.

By the frequency interpretation for the conditional probability, it is likely
that

L
17 ~P(A]B). (4.10)
Thus .
P(A|B)~ X (4.11)
N

Let’s look at the fraction L/N. L counts the times when B occurred
and A occurred. Thus, by the frequency interpretation for the unconditional
probability, we know it is likely that

L
5~ P(ANB). (4.12)

Apply equations (4.9) and (4.12)) to equation (4.11). This allows us to

conclude:

P(ANB)
P(B)
Equation (4.13)) is based on approximations that become more and more ac-
curate as the number of trials increases. Thus the approximation in equation

(4.13]) tells us that P(A | B) and Pl(fégj)g) must be equal, and so equation (4.1
holds.

P(4|B) ~ (4.13)

4.3 Using the conditional probability formula

Exercise 4.1. In the experiment described in Exercise[2.19] you are choosing
a jelly bean from a bowl containing 75 yellow beans, 53 red beans, 27 purple
beans, and 18 green beans.

Let A be the event that the selected bean is yellow, red or green. Let B
be the event that the selected bean is red, purple or green.

Find P(A | B), using the conditional probability formula.

[Solution|
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Exercise 4.2. In the setting of Exercise 4.1, when the experiment consists
of choosing two jelly beans in succession, let B be the event that the first
bean chosen is red.

(i) Find P(B).

(i) From the description of the experiment, R is the event that both beans
chosen are red. Thus P(R| B) is the probability of choosing a a red
bean in the second selection, from the remaining beans, after the first
selection resulted in a red bean. Use this observation to find P(R | B)
by applying Theorem to an appropriate population, without using
the conditional probability formula.

(iii) Fnd P(R) using the multiplied-through form of the conditional proba-
bility formula, equation (4.2)).

Check that your answer agrees with the probability found in Exer-
cise 2211

[Solution|

Remark 4.5 (Conditional probabilities are often simpler). The cal-
culation in part (ii) of Exercise illustrates a general fact: a conditional
probability often holds in an experimental situation which is simpler than
the original model. While calculating such a conditional probability, we tem-
porarily live in the simpler model, and forget everything else. Then, as in
Exercise [£.2] we can return to the original model, and use the conditional
probability we have found to calculate something there.

Exercise 4.3. In the experiment of Exercise 4.2, suppose you learn that the
second jelly bean chosen was purple. What is the probability that the first
jelly bean chosen was also purple?

[Solution]
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Exercise 4.4. Let A, B be events with P(B) # 0. Show that
P(A|B)=P(ANB|B). (4.14)
[Bolution]

Just for fun, the next exercise takes the “fraction of a fraction” idea to a
new level.

Exercise 4.5 (Telescoping conditional probabilities). Simplify
P(APB|APC|ANB)PD|ANBNC).

It is assumed that P(A), P(AN B), and P(AN B N C) are nonzero.
Folution]

The mathematical properties of conditional probability mirror the way
we think. The next exercises illustrate this, and provide some practice in
manipulating conditional formulas.

Exercise 4.6 (Conditioning on an additional event). Suppose that
B, C are events for some probability model. Suppose that P(B) # 0. For
any event D, define Q(D) = P(D | B). This is just to simplify notation.

When using Q as your distribution, the fact that B occurred is “built
into” your probability model.

Assume that P(BNC) # 0.

Show that Q(C') # 0, and that for any event A we have

Q(A|C)=P(A|BNO). (4.15)
Bolutior]

The event B N C' is the event that B occurred and C occurred. Thus
Equation is exactly what we expect from the idea that a conditional
probability uses additional information, since in calculating Q(A | C') we are
adding still more information to the extra information that we already used
to calculate Q(A).
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Exercise 4.7 (Conditioning on stronger information). Suppose that
B, C are events for some probability model. Suppose that P(B) # 0. For
any event D, define Q(D) = P(D | B).

Let C be an event with P(C') > 0, such that C' is a subset of B.

Show that Q(C') # 0, and that for any event A we have

Q(A|C) =P(A]|C). (4.16)
Bolutior]

Exercise 4.8. Let A, B be events in some experiment.
Let C be an event such that P(B N () # 0. Show that

P(AnC|BNC)=P(A|BNC). (4.17)
[Solution)

4.4 Total probability

The name of the next theorem seems a little pretentious, since the statement
is a simple consequence of additivity and the conditional probability formula.
However, breaking a problem up into cases is a fundamental technique, and
is frequently used.

Theorem 4.6 (The Law of Total Probability). Let Dy,..., Dy be dis-
joint events with union D, and let M be an event. Then

P(MND)=> P(D;)P(M|D;). (4.18)

=1

In this equation, it appears that we must assume that P(D;) > 0, so that
P(M | D;) will be defined. However, we can use the equation in all situations,
with the following convention: if P(D;) = 0 then we simply interpret the
whole term P (D;) P (M | D;) as zero.
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4.4. Total probability

Proof. We checked in Exercise [2.26| that intersection distributes over union,
so we know that

k
MnD=|JMnD; (4.19)

i=1

(Actually, one likely doesn’t even think about “the distributive property”
when writing down equation . Instead one can just think about cases,
i.e. think about the possible ways that M N D can happen: the possible ways
are M N Dy,...,M N Dy.)

Since Dy, ..., Dy are disjoint, additivity gives

P(MND)=) P(MND;). (4.20)

=1

Consider a term P(M N D;) on the right side of equation (4.20)). If
P (D;) # 0 then
P(MnND;)=PD)P(M| D) (4.21)

by the conditional probability formula given in equation .
If P(D;) = 0, then, since M N D; C D; we also have P(M N D;) = 0. So
equation holds with P(D;)P(M | D;) replaced by zero.
Substituting for P(MND;) throughout equation gives equation (4.18)).
0

When applying this theorem, we typically look for cases D; where we
know how to find P (M | D;). In this way we can break up problems into
simpler parts.

Often the event M is such that M C D;U...UDy. Then M N D = M,

so equation (4.18)) becomes

P(M) = 3 P (D) P (M| D)), (4.22)

i=1

The following simple corollary to the Law of Total Probability is some-
times convenient.
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Corollary 4.7. For some experiment, let Dy, ..., D, and M be events. Let
D be the event that at least one of Dy, ..., D) occurs.

Suppose that at most one of the events Dy,..., D, can occur, and that
P(M|D;)=pfori=1,... k, where p is some number.

Then P(M | D) = p.

Exercise 4.9. Prove Corollary [4.7]
Sofution]

Does Corollary seem physically obvious? (Think of a hall with many
doors, and suppose that for every door i, a hungry tiger waits behind that
door with probability p. Given that you must pass out through one of the
doors, is it hard to calculate your chance of survival?)

Example 4.8 (Sampling without replacement). Consider the setting
described in Exercises and [£.2] where the bowl contains 75 yellow beans,
53 red beans, 27 purple beans, and 18 green beans.

As in Exercise [£.2], think about an experiment with two steps. In the first
step we stir the bowl, and then select one jelly bean randomly, with no jelly
bean in the bowl favored. We note the color of the chosen jelly bean, but do
not replace the jelly bean in the bowl.

In the second step, we stir the bowl again, and then select a second jelly
bean, again with no jelly bean favored.

Let A; be the event that the bean selected in step 1 is yellow or red. Let
Bs be the event that the bean selected in step 2 is yellow or green.

Goal: As an exercise, let’s find P (A; N By).

Because the bowl is stirred, we are confident that the only way the first
step can affect the second step is by altering the numbers of jelly beans of
each color in the bowl.

We are going to use the conditional probability formula, conditioning on
A;. By the multiplied-through form of the conditional probability formula,

P (A, N By) =P (A)P (Bs | Ay).

Let Y7 be the event that the first bean selected is yellow, and let R; be
the event that the first bean selected is red. There are two possible cases for
Ay, namely Y] and R;. That is, A; =Y U R;.
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4.4. Total probability

So we think about applying equation (4.18) (the law of total probability),
with D = Al, D1 = Yi and D2 = Rl.
Thus, by the law of total probability,

P (AN By) =P (V)P (By| V1) + P (R)P (By | Ry).

Remember, the initial numbers of jelly beans in the bowl are as follows:
75 yellow beans, 53 red beans, 27 purple beans, and 18 green beans.

By Theorem [2.22, P (Y;) = 75/173 and P (R;) = 53/173.

We can also use Theorem to find P (By|Y1) and P (By | Ry). The
point here is that step 2 of the experiment is a “self-contained” sampling
experiment, that is, a sampling experiment that can be considered by itself.

Given Y;: Given Y7, we know that the bowl contains 74 yellow beans and
18 green beans, and 172 beans altogether. Thus there are 92 beans in the
bowl that are yellow or green. Thus by Theorem [2.22, P (B, | Y1) = 92/172.

Given Ry: Similarly, given Ry, we know that the bowl contains 75 yellow
beans and 172 beans altogether, and there are 93 beans in the bowl that are
yellow or green. Thus by Theorem [2.22) P (B | R1) = 93/172.

The rest is arithmetic.

7 92 53 93

P(A,NB,) = — —— 4 22 22
(41N By) 173172 173172

Exercise 4.10. Solve part (ii) of Exercise again, applying the Law of
Total Probability (Theorem |4.6)).

In the setting of Exercise[3.3] let NV be the event that the lost coin has not
been found after searching two-thirds of Alice’s section, half of Bob’s section,
and three-quarters of Clancy’s section.

The event A is defined as the event that the lost coin is located somewhere
in Alice’s section, and you are asked to find P(A|N).

[Solution|

Exercise 4.11. There are two boxes on the table. Box 1 contains 10 red
balls and 30 green balls. Box 2 contains 50 red balls and 10 green balls. Our
experiment takes place in two steps.
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Chapter 4. Conditional probability

(1.) First, toss an unfair coin. The probability of a head is 2/3 for this
unfair coin.

(2.) If the result of the coin toss is a head, choose one ball at random from
Box 1. Otherwise, choose one ball at random from Box 2. All the balls
in Box 1 have the same chance to be selected. All the balls in Box 2
have the same chance to be selected.

Let A be the event that green ball is selected.

(i) Find P(A), using the following sample space argument.

Take € to be the set of all pairs (i,b), where i is the number of the
box that is chosen, and b identifies the ball that is chosen from Box 1.
Let C7 be the event that Box 1 is chosen, and let C5 be the event that
Box 2 is chosen. You may assume from the physical description that
every outcome in C has the same probability, and every outcome in
(U5 has the same probability. The physical description also tells us the
values of P (C) and P (C3). Do not use the conditional probability
formula or the law of total probability.

(ii) Find P(A) again, using the law of total probability.
[Solution|

We will return to the next exercise in Example [9.15 There we will see
how to use random variable concepts to obtain more information.

Exercise 4.12 (Choosing from overlapping intervals). A fair coin is
tossed. Suppose that if the result of the coin toss is a head, a point is chosen
at random from [0, 3], with no point favored. If the result of the coin toss is a
tail, a point is chosen at random from [2, 4], with no point favored. (Uniform
distributions on continuous intervals are discussed in Section [3.3])

Let J be an interval of the real line, and let A be the event that the
chosen point is in J. Using the Law of Total Probability, find P(A) in each
of the following four cases: (i) J C [0,2), (ii) J C [2,3), (iii) J C [3,4], (iv)
J disjoint from [0, 4].

You are not required to define a sample space for this experiment. In your
solution you can simply work with the laws of probability, without specifying
a sample space.
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4.5. The theorem of Bayes

Notice that if you want to have a sample space that represents every-
thing that happens in the two steps of the experiment, it will be a bit more
complicated than usual.

[Solution|

4.5 The theorem of Bayes

Theorem 4.9 (Bayes). Let A and B be events for some probability model,
such that P(A) > 0 and P(B) > 0. Then

P(A)P(B|A)

PAIB) = =55

(4.23)

Theorem is an immediate consequence of the conditional probability
formula, applied twice. First write P(AN B) as P(A)P(B| A) using equa-
tion (4.2)). Then find P(A| B) using equation (4.1)).

The formula in equation (4.23)) was found by Thomas Bayes, and pub-
lished in a posthumous volume of his work in 1763. Although this formula
bears his name, the same formula was independently found by Laplace. De-
spite its simplicity, the formula is frequently used, often repetitively as ex-
perimental results are accumulated.

If we think of A as describing a “cause”, and B as describing an “effect”
due to this cause, we might think of the formula of Bayes as showing how to
calculate the probability of a possible cause when a certain effect is observed.

The quantity P(B) in the denominator of equation (4.23) can often be
calculated using the Law of Total Probability.

The number P(A) is sometimes called a “prior” probability, meaning
the probability of A before an experiment takes place, while P(A | B) is the
“posterior” probability of A, meaning that it is the probability of A after the
event B is observed in the experiment.

Notice that we need to have some idea of the value of P(A) to use Bayes.

Let’s write out a form of equation using the Law of Total Proba-
bility. Let an event M be a subset of the union of disjoint events D1, ..., Dy.
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Chapter 4. Conditional probability

Suppose that we observe M, and we wonder which of the events D; occurred.
By equation (4.22)),
P (DN M) P (D;)P (M| D;)

P(D; | M) = 0D =S P(D)PUIID) (4.24)

In ordinary life we frequently use reasoning similar to the Theorem of
Bayes. Consider the following.

Example 4.10 (An everyday mystery). Grandma has just finished bak-
ing one of her delectable cherry pies. She places it in an open window to
cool. Shortly thereafter, she observes that the pie is missing. There are sev-
eral people who may have passed her window during the interval. Only one,
however, has an extreme fondness for pie. Rolling pin in hand, Grandma
knows where to focus the next stage of her investigation.

Exercise 4.13 (Putting some numbers on Example [4.10). In the sit-
uation of Example [£.10] the pie was only in the window for a short period
of time. Suppose that there are only three people who could have passed
by Grandma’s window during this time period: Alice, Brandon, and Clyde.
Let A be the event that Alice passed by, and let B and C' the corresponding
events for Brandon and Clyde. Grandma thinks it is very unlikely that two
people passed her window during this period, so she considers these events
to be disjoint.

Grandma originally had no reason to think any of the three people is more
likely than the others to pass by. She sets P(A) = P(B) = P(C) = 4, where
0 is some positive number. Here P represents the probability that Grandma
would have assigned to an event, before she discovers that her pie is missing.

Let T be the event that the pie in the window is taken. Alice and Brandon
are highly reliable and have never shown any tendency to eat excessively
large quantities of pie. Clyde, on the other hand, has a bad track record.
Based on past events, Grandma sets P(T'| A) = .01, P(T'| B) = .01, and
P(T|C)=.5.

Calculate P(C'|T).

[Solution]
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4.5. The theorem of Bayes

Grandma can deal with her problem without using numbers, of course.
In other situations the precision of mathematical calculation may be needed,
as the next exercise illustrates.

Exercise 4.14 (A positive result in a test for disease). A rare but
serious disease is present in approximately .01% of the people in a large
population, i.e. a fraction 1/10000 of the population have the disease.

There is a test for this disease. A positive result for this test is an indi-
cation of disease.

The test is good but not perfect. When a healthy person is tested, the
probability of a false positive is .01, i.e. one percent.

For simplicity, assume that the test never misses an actual case of the
disease. That is, assume that the probability of a false negative is zero.

Suppose that someone is randomly selected from the population and
tested. The result of the test is positive. Find the probability that the
person has the disease.

[Solution]

Exercise 4.15. In the experiment of Exercise [4.11 suppose you learn that
a red ball was selected. Find the probability that the toss of the coin for this
experiment produced a head.

[Solution|

Exercise 4.16. Return to the experiment of Exercise 4.12]

Let B be the event that a point in the interval (2,3) is obtained. Find
P(H|B).

Bolution]

Exercise 4.17 (Bayes and the chosen coin). (i) To practice using the
theorem of Bayes, let’s model a situation in which one of two coins is
randomly chosen and then tossed. As usual when tossing a coin, we’ll
think of getting a head as “success” for the toss. The coins are named
coin 1 and coin 2. Coin 1 has success probability 2/5 and coin 2 has
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success probability 4/7. Suppose that each of the two coins has the
same probability to be chosen.

After the coin was chosen and tossed, you find that the result was a
tail. You don’t know which coin was tossed. Find the probability that
coin 2 is the coin that was tossed.

Before calculating this probability, decide whether you think the prob-
ability is greater than 1/2 or less than 1/2.

(ii) Suppose now that in addition to coin 1 and coin 2 we also have coin 3.
Like coin 2, this coin also has success probability 4/7. A new experi-
ment is carried out, in which one of these three coins is selected with
equal probability, and the selected coin is tossed. The result is a tail.
Find the probability that the selected coin had success probability equal
to 4/7.

Bolution

The next exercise gives you a chance to practice with algebra and inequal-
ities. Even if you don’t do the problem, think about equation (4.25)) and see
if it agrees with your own feelings about physical probabilities.

Exercise 4.18. Consider two coins, coin a and coin b. Coin a has success
probability p,, and coin b has success probability p,, where p, > py. That is,
coin a is luckier than coin b.

Suppose now that one of these two coins is randomly selected. Let A
be the event that coin a is selected, and let B be the event that coin b is
selected.

Assume that P(A) > 0 and P(B) > 0, so either coin could be chosen.
If we don’t choose coin a then we must choose coin b. So of course P(A) +
P(B) = 1.

After the selection, suppose that the selected coin is tossed. Let H be
the event that this toss gives success. Show that P(H) > 0 and

P(A|H) > P(A). (4.25)

Thus obtaining a success with the coin makes you more confident that it is
the lucky coin.

[Solution]
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4.6 Tree diagrams

Pictures are helpful in any field of mathematics. In probability problems it
can be helpful to represent events using a “tree of possibilities”, a.k.a. a tree
diagram. Tree diagrams do not introduce any new concepts, but they can
assist us in seeing what is going on, when a computation involves several
events.

Drawing a tree diagram seems to be an art rather than a science, since
the goal is to display ideas visually within a limited space. We can only make
a few general remarks here, and then give some examples.

When using a tree diagram, we only need to draw the part of a tree that
represents events which we are interested in.

There is no general rule about whether a tree diagram will be useful.
When drawing your own diagram, just starting a tree may be enough to
suggest how to actually approach the problem, and you can switch to using
equations.

There is some standard terminology for describing tree diagrams. Every
tree has a root. The branches spread out from the root. The trees in tree
diagrams may be drawn upside down, with the root at the top, or lying on
one side! We'll draw our diagrams here with the root on the left side.

Every branch has two ends. The ends of the branches are often called
“nodes”. The root is a node. A branch begins at one node and ends at
another, and you have to remember which is which (the starting node is the
one which is closer to the root).

In a probability tree diagram, the nodes represent events. The root of
the tree represents 2. The ending node of any branch represents an event
which is a subset of the event represented by the starting node. So a branch
represents inclusion. And the end of one branch can be the starting node for
another branch. So tree diagrams can potentially be large.

If a branch starts with an event A and ends with an event B, then we
often label the connecting branch with the conditional probability P(B | A).
Each node along a chain of branches is always a subset of the earlier nodes
in the chain. A key fact: the probability of a node which lies at the end of
a chain of branches is equal to the product of the conditional probabilities
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along the chain! (This follows from repeated use of the multiplied-through
form of the conditional probability formula.)

Figure [4.2] shows a small tree diagram for Exercise Notice that only
the relevant parts of the tree are shown. Since this is such a simple situation,
a tree diagram is not needed, but the picture does show how trees work. Note
the informal labelling.

Figure 4.2: Obtaining two red jelly beans, one at a time (Exercise {4.2).

Let’s change Exercise [£.2] Instead of calculating the probability of two
red jelly beans, let’s find the probability of winding up with a red and a
green. Figure shows a tree diagram for that calculation. To get the final
answer for this problem, note that you add the probabilities of two events:
getting a red and then a green, and getting a green and then a red. So you
add the probabilities associated with two paths on the tree, and the final
answer is

- 53-18
173-172°

Notice that in a tree diagram, every fork creates nodes that represent
disjoint events. Thus nodes which are not on the same chain of branches
necessarily represent disjoint events. That’s why you add probabilities for
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Figure 4.3: Obtaining one red and one green jelly bean, one at a time, in
either order.

these nodes. Thus interpreting a tree diagram uses the Law of Total Proba-
bility, in an informal manner.

When looking at tree diagrams in probability books, you will notice var-
ious ways of labelling nodes in practical situations. Informality is the order
of the day, and making ideas clear is the priority.

If a branch starts at a node called A and ends at a node representing
AN M, you may see the ending node labelled with “M”, rather than AN M.
In other words, we often label a node using only the additional properties
which distinguish it from the preceding node. However, to make sense of
the diagram you should think of the ending node as representing the event

AN M.

Example 4.11. Just for fun, let’s make a tree diagram which is a bit bigger
than the one shown in Figure [£.3] Think of randomly selecting jelly beans,
one at a time, from a bowl containing two red jelly beans, one yellow jelly
bean, and one green jelly bean. We want the red ones, so we will stop as
soon as we obtain both red beans!
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Let A, be the event that it takes exactly n tries to get both red ones.
Here n might be 2, 3, or 4. Suppose we would like to find P(A4,,).

Figure [4.4] is a tree diagram for this problem, where getting a red bean
is represented by an upward branch, getting a yellow bean is represented by
a horizontal branch, and getting a green bean is represented by a downward
branch. To find P(A,), add up the probabilities for the paths with length .
This gives P(42) = 1/6, P(A3) = 1/3 and P(A4,) = 1/2.

Figure 4.4: Sampling until two red jelly beans are obtained, starting with 2
red, 1 yellow, and 1 green. Upward indicates a red bean, horizontal indicates
a yellow bean, and downward indicates a green bean. There is one path of
length two, four paths of length three, and six paths of length four.

A nice example of a tree diagram is given in [12], for the Monty Hall
problem (see Section [6.2] for information about Monty Hall).
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4.7 Solutions for Chapter

Solution (Exercise [4.1]). Since |B| = 53 + 27 4+ 18 = 98 and [Q| =
754 53 + 27 + 18 = 173, P(B) = 98/173 by Theorem [2.22]
ANB is the event that the selected bean is red or green. Hence P(ANB) =
71/173 by Theorem [2.22]
By the conditional probability formula, P(A|B) = (71/173)/(98/173) =
71/98.

Solution (Exercise |4.2)). There are 75 yellow beans, 53 red beans, 27
purple beans, and 18 green beans in the bowl.

(i) There are 173 beans in the bowl, and 53 of them are red. By Theo-

vem 222
53

B)=—.
(B) 173
(ii) After the selection of a red bean, the bowl contains 75 yellow beans,
52 red beans, 27 purple beans, and 18 green beans. This is the setting for

the second selection, given that B occurred. So we are solving part (i) again,
but in a new setting. By Theorem [2.22]

52

(iii) By the mutiplied-through version of the conditional probability for-
mula, equation (4.2)),

53 52
P =P(B)P(R|B) = — —.
(R) = P(B)P(R|B) = = =
Notice that this agrees with the probability found in Exercise [2.21] which
we solved without using conditional probabilities.

Solution (Exercise [4.3). Let P, be the event that the first jelly bean
selected was purple, and let P, be the event that the second jelly bean selected
was purple. We would like to find P(P; | P%).

We can use a sample space consisting of all pairs of jelly beans (7, 72),
where j; # j5. Since there are 75 + 53 + 27 + 18 = 173 jelly bean altogether,
the sample space contains 173 - 172 sample points. The physical description
of the experiment tells us that all sample points are equally likely.
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Let p denote the probability of a sample point. Then

1
D= 13

The number of purple jelly beans is 27, and the number of non-purple
jelly beans is 173 — 27 = 146.

Since there are 27 purple jelly beans, P; N P, contains 27 - 26 sample
points.

We have

P (P, N Py) = (27 - 26)p.

Using the same sample space, a sample point in P, consists of all sample
points (ji, j2), such that j, is purple. There are 27 choices for j,, and for
each possible js there are 172 choices for j;. Thus P, contains 172-27 sample
points, and so P (Py) = (172 - 27)p.

Hence

P(PNP)  (27-20p  27-26 13
P(P)  (172x27)p 172x27 86

P (P |Py) = (4.26)

Thinking backwards As an alternative method, we might ignore the
physical times at which the steps occur, and just think about the possible
pairs of jelly beans (ji, jo) that are obtained. One could think about building
a pair by (mentally) selecting j, first, and then selecting j;. There are 173
choices for j, and then, having chosen j,, there are 172 choices for j;.

Thus to find P (P, | P»), think that a purple jelly bean has already been
chosen for js. P (P; | P,) is the probability that the choice of j; now gives a
purple jelly bean. Thus

26 13
P(P1|P2):1_72:%7 (4.27)

as before.
Notice that in equation (4.26)) we apply the conditional probability for-
mula to obtain P (P, | P,), while in equation (4.27)) we think of a physical

situation in which P, has occurred, and then perform a calculation to find
P(P,) in that situation.
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Solution (Exercise 4.4]). By the conditional probability formula (equation
@.1)),
P(ANBNB) P(ANDB)

PANBIB) = =5 = —pg = PAID)

The first and last equalities hold by the conditional probability formula. The
middle equality holds because BN B = B.

Solution (Exercise 4.5).

P(A)P(B|A)P(C|ANB)P(D|ANBNC)
P(ANnB)P(ANnBNC)P(ANBNCND)
P(A) P(ANB) P(ANnBNCO)

— P(4)

Cancelling does the rest.
Solution (Exercise |4.6]). By definition,

Q(C) = —Pf(g?

Since we assume that P(C'N B) > 0, Q(C) > 0 also.
By definition,

P(ANCNB)
ANcC P(ANCNB
Q(A4[C) = Q(Q(C) ) PfBE?)C) - (P(BOC’) . P(A|BNCO).
P(B)

Solution (Exercise |4.7)). Since C' N B = C, everything follows from Exer-
cise [L.0l

Solution (Exercise |4.8]).

P(ANC|BNC) = P<A;<ggg)ﬂ @) _ Pg‘(;ig)@ —P(A|BNC).

The first and last equalities hold by the conditional probability formula. The
middle equality holds because C'NC' = C.
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Solution (Exercise [4.9)). By total probability,

P(MND)=> P(D)P(M|Dj)=> P(Di)p=pP(D).

i=1 i=1
Dividing by P(D) gives the result.

Solution (Exercise [4.10). As in the solution for part (i) of Exercise [3.3]
P(A) =300/600 = 1/2.

Suppose that the situation described in part (ii) of Exercise holds.
That is, Alice has searched two-thirds of her section, Bob has searched half
of his section, Clancy has searched three-quarters of his section. We use
probabilities based on this information.

Let N be the event that the coin has not yet been found.

Let A be the event that the coin is located in Alice’s interval, let B be
the event that the coin is located in Bob’s interval, and let C' be the event
that the coin is located in Clancy’s interval. The events A, B, C' are disjoint,
and AUBUC = Q. Part (ii) of Exercise |3.3| asks us to find P(A| N).

By equation (4.22]),

P(N) = P(A)P(N | A) + P(B)P(N | B) + P(C)P(N | C).

Let I be Alice’s interval and let J the part of Alice’s interval which has
not yet been searched. Then P(N | A) is simply the probability that the coin
is located in J. Thus

_length(J) 1
PN|4) = length(I) 3’

The values of P(N | B) and P(N | C) are found similarly.
This gives

1 1 1 1 1 1 3
PN)= (-] (= ) (= (=) =2
0=(2)(3)+(3) &)+ (5) (5) =

We need to find P(A| N). By the Conditional Probability Formula,

CPUANN) PAPKA) (D) 4
PAIN="pm =~ Py~ 2 9
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Solution (Exercise 4.11)).

(i) The probability of a head is given to be 2/3.

Hence P (C}) = 2/3. There are 40 outcomes in C, each of equal proba-
bility. Hence every outcome in C; has probability (2/3)(1/40).

P (Cy) = 1/3. There are 60 outcomes in Cy, each of equal probability.
Hence every outcome in Cy has probability (1/3)(1/60).

There are 30 outcomes in A N Cy, each with probability 1/60. Hence
P(ANnCy) =1/2.

There are 10 outcomes in A N Cy, each of probability 1/180. Hence
P(ANCy) =1/18.

Thus P(A) =1/2 +1/18.

(ii)

230 110 1 1

Solution (Exercise [4.12]). Let H be the event that the coin toss gives
a head. Let T be the event that a tail is obtained. Since the coin is fair,
PH)=P((T)=1/2.

Let J be subinterval of [0,4]. Let A be the event that the chosen point is
in A.
By the Law of Total Probability,

P(A)=PH)PA|H)+P(TP(A|T). (4.28)
Case (i): J C[0,2) When H occurs, the point is chosen from [0, 3) with
uniform probability on [0, 3). By equation ([3.4)),

~ length(J) 1
P(A|H) = Tength([0.3)) _ 3 length(J). (4.29)

When T occurs, the point is chosen from [2,4], so P(A|T) = 0.
Substituting in equation (4.28]),

P(A) = %length(J n1[o,3)) (4.30)
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Case (ii): J C [2,3) When H occurs, the point is chosen from [0, 3) with
uniform probability on [0, 3). By equation (3.4),
length(J) 1

= —length(J). (4.31)

P(AH) = length([0,3)) 3

When T occurs, the point is chosen from [2,4] with uniform probability.
By equation ((3.4)),

length(J) 1
PA|T) )= —————— = -1 th(J). 4.32
(A7) = ot L = 5 length() (4.32)
Substituting in equation (4.28)),
11 11 5

Case (iii): J C [3,4] When H occurs, the point is chosen from [0, 3), so
P(A|H)=0.

When T occurs, the point is chosen from [2,4] with uniform probability.
By equation ((3.4)),

length 1
ength(/) _ 1, ath(). (4.34)

P(A[T) = length([2,4]) T2

Substituting in equation (4.28)),

P(A) = ilength(]). (4.35)

Case (iv): J disjoint from [0,4] In all cases, the point is chosen from
[0,4], so P(A) = 0.

Solution (Exercise . Grandma considers that the events A, B, C' are
mutually exclusive. Let D be their union.

The physical statement of the problem tells us that Alice, Brandon and
Clyde are the only people that could have taken the pie. Hence T' C D, so
TN D =T. By the Law of Total Probability (Theorem 4.6]),

P(I)=P(AP(T|A)+P(B)P(T|B) + P(C)P(T|C)
= 6(.01) +6(.01) + 6(.5). (4.36)
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By definition,

_P(TnC) PC)P(T|C)  §(5) 50
PIT) = P(T)  P(T)  06(52) 52

This number is close to one, and directs Grandma’s attention to Clyde.

Note that in our solution we could have appealed to equation (4.24]), but
instead we simply repeated the derivation of that equation. This is often
natural.

Solution (Exercise 4.14]). Let A be the event that the person who is
tested actually has the disease. Let B be the event that the test is positive.
Using equation (4.24)) or its derivation,

P(ANB) P(A)P(B| A)
PAIB) =55 ~papBI4) + PP B4y 30

We are given that P(A) = .0001. Hence P(A°) = .9999.
We are given that P(B | A°) = .01 and P(B|A) = 1.
Thus

0001(1) 1
0001(1) +.9999(.01)  1+99.99  100.99"

P(A|B) =

Remark 4.12 (The worst case for a positive test recipient). By equa-

tion (4.37)),
1

P(A°)\ (P(B]A9) )
L+ <P(A)> (P(B|A) )

Notice that for any given values of P(A), P(A°) and P(B | A°), the quan-

tity 2(53”’?;)) decreases when P(B| A) increases.

Thus the denominator of the fraction in equation decreases when
P(B| A) increases.

We conclude that P(A | B) increases when P(B| A) increases.

So taking P(B| A) = 1 gives the largest possible value for P(A | B) when
the other numbers are known. Thus in Exercise 4.14] we have calculated
P(A| B) in the worst case.

P(A|B) =

(4.38)
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Solution (Exercise [4.15]). Let R be the event that a red ball was selected,
and let H be the event that the coin which was tossed produced a head.
We wish to find P(H | R).

_PHNR) P(H)P(R|H)  im 1
P = =) = PEP@RIH) +P(H)P(RIF) 1B +I8 &

Solution (Exercise 4.16)). Using Bayes,

P(H | B) = —P(lf(g)B)
Hhos P(H)P(B| H
p(i|B) = £ ;3(53)| )

By the solution to Exercise 4.12}

% %length(@v 3)) — 2
% length((2,3)) 5

P(H|B) =

Solution (Exercise 4.17)).

(i) The coins had equal chances of being chosen, and the result (a tail) is
more likely if coin 1 was tossed. This makes it more likely that coin 1 was
used, so we should expect that the probability that coin 2 was used is less
than 1/2.

Let A be the event that coin 2 was used, and let B be the event that the
result was a tail. We wish to calculate P(A| B).

Using Bayes,

_ P(AP(B|A) P(A)P(B|A)

P(A|B) = P(B)  P(A)P(B|A)+ P(A°)P(B| A
1O N
HOEHCREERE

(ii) Now we let A be the event that the selected coin had probability equal
to 4/7, i.e. the event that coin 2 or coin 3 was used. Similarly to part (i),
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we then have

_ P(AP(B|A) P(A)P(B|A)
PAIB) = =55y ~ BlA)P(BA) + P(A)P(B| &)

Solution (Exercise [4.18]).

P(ANH) P(AP(H | A)
P =500 = AP [ A) + P(B)P(H | B)
That is,
P(A)pa
P(A|H) = 5 A, - P B (4.39)

Take a look at the final expression in equation (4.39)). If we replace p, by p,,
then the denominator gets bigger. So the fraction gets smaller. This tells us

that
P(Ap, P
PATH) > 5 A, + PBIp, ~ PA) +P(B) DA
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Chapter 5

Independence and its
consequences

5.1 Independence defined

Consider an experiment. Let A be an event which describes one property of
the result, and let B be an event which describes another property of the
result.

Definition 5.1 (Physical independence). We will say that physical events
A and B are independent if knowledge that A occurred does nothing to
change your opinion about P(B), and vice versa.

More precisely, if P(A) # 0 we have

P(B|A) =P(B). (5.1)
and if P(B) # 0 we have

P(A|B) = P(A). (5.2)

Equation (5.1)) says that
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and so
P(ANB)=P(A)P(B). (5.3)

In the same way, Equation ([5.2)) also implies equation (5.3]).
Notice that equation (5.3)) also holds when P(A) = 0 or P(B) = 0, and
this equation is symmetric in A and B.
Exercise 5.1. Please check that equation (.3 holds when P(A) = 0.
Solution]

Furthermore, equation implies equation (5.1)) when P(A) # 0, and
equation (5.3) implies equation (5.2)) when P(B) # 0.

So equation ([5.3]) is a single equation that completely expresses the phys-
ical independence of events A, B. This equation is naturally used as the
definition of independence in a mathematical model.

Definition 5.2 (Mathematical Independence). Let A, B be events in a
mathematical model. Whenever holds, we say that the events A and B
are independent. Equivalently, we say that the pair A, B is independent.

Sometimes it is convenient to express independence more colloquially, by
saying that A is independent of B. Of course this also implies that B is
independent of A.

Equation is the whole definition of mathematical independence.
Sometimes one refers to mathematical independence as “statistical indepen-
dence”. This reflects the fact that mathematical independence will hold in a
model whenever the experimental statistics fit equation . We can assert
that events are independent without identifying an underlying physical cause
to explain why they are independent.

Incidentally, when we say “A and B are independent events”, it may
sound as if there is a property called “independence” that each event can
have separately. That is not the case, and one should keep in mind that
independence expresses a relationship, and is a property of two events con-
sidered together.

When holds for two events, we also say that the probability of the
events is multiplicative, meaning that the probability of the intersection is
equal to the product of the separate probabilities.
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5.1. Independence defined

Remark 5.3. Let A, B be events with P(B) # 0. Our discussion shows that
following statements are equivalent.

(i) A, B are independent.
(ii) P(A| B) =P(A).

We can use whichever formulation is convenient.

Example 5.4 (Tossing a coin twice). Consider the experiment of tossing
a coin twice. Let H; be the event that the result of the first toss is a head,
and let Hy be the event that the result of the second toss is a head.

Let p = P(H;). Based on our experience with coins, we expect that also
P(Hy) = p. What about the probability of obtaining two heads in succession,
i.e. P(Hl N Hg)?

In ordinary experience, neither the coin nor the tosser is significantly
altered by the result of the first coin toss. So we expect that when P(H;) > 0,
P(H,| Hi) = P(H). And indeed experience shows us that the probability
of a head on the second toss is unaffected by the result of the first toss. Thus

P(H, N H,) = P(H,)P(H, | Hy) = P(H,)P(H,).

By Definition [5.2, Hy, Hy are independent.
Equation (5.3) is easy to verify directly when P(H;) = 0! Thus in all
cases, Hi, Hy are independent. Thus

P(H, N Hy) = P(H,)P(H,) = p*.

The same argument works for any combination of heads or tails on the
two tosses. Thus, with ¢ = 1 — p we also have

P(H, N H3) = P(H)P(H;) = pq,

P(HY N Hy) = P(H{)P(Hz) = qp,

and
P(Hf N Hy) = P(H})P(H5) = ¢*.
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Chapter 5. Independence and its consequences

Exercise 5.2 (Sample space for two tossses). We can choose a particular
sample space ) to model tossing a coin twice. For example, let 1 denote a
head and let 0 denote a tail, and take 2 = {(1,1),(1,0), (0, 1), (0,0)}.

The interpretation is that (1,0) represents the physical outcome that a
head is obtained on the first toss and a tail is obtained on the second toss.
The other sample points are interpreted similarly.

(i) Define Hy = {(1,1),(1,0)} and define Hy = {(1,1),(0,1)}. (Please check
that Hy, and Hj represent the physical events Hy, Hy in Example )

Find Hy N H, as a set of sample points.

(ii) Let ¢ = 1 — p. Using the coin tossing interpretation, show that the
correct definition for P on this sample space is the following.

P{(1.1)} = 1.
P({(1.0)} = pa.
P({(0,1)} = ap. (5:4)
P({(0,0)} = ¢

(iii) Verify that the values in part (ii) give P({(1,1)}) + P({(1,0)}) +
P{(0,1)}) + P({(0,0)}) = 1.

[Solution]

In previous comments we have mentioned that an abstract sample point
need only represent the properties of an outcome that we currently wish to
analyze. Example provided a model that represents tossing a coin once.
Now in Exercise [5.21 we have considered a model for two tosses. The model
for two tosses also gives a representation for a single toss, since each of the
two tosses is a single toss by itself. Are these representations consistent? The
next exercise addresses that question.

Exercise 5.3. (This extends Exercise from the case of a fair coin to the
case of a general coin.)

In the model for Exercise 5.2 let A be the event that the first of two
tosses results in a head. Check that P(A) = p, using the sample space for
two tosses. That means you can use equation but nothing else.
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Do the same for the event B that the second of two tosses results in a
tail.

Bolution

Exercise 5.4 (Independence for two tosses). In Exercise 5.2 we derived
equation by assuming independence for the results of the tosses.

For the events A and B of Exercise 5.3 show mathematically that P(AN
B) = P(A)P(B). You must base your answer entirely on equation (5.4).

Bolution]

Exercise 5.5. Return to the situation of Exercise 2.7 This deals with the
experiment of rolling a fair die twice. You are asked to find the probability
that the first roll produces an even number and the second roll produces a
number larger than four.

Use independence to obtain the answer. You may use the fact that any
event which only involves the first roll is independent of any event which only
involves the second roll.

(And of course, if your answer now does not agree with the value found
in Exercise , something is wrong.)

Bolution]

Exercise 5.6. When rolling a fair die twice, let A be the event that the sum
of the numbers obtained on the two rolls is an even number.

Find P(A). You have solved this problem in Exercise 2.9 This time use
independence to save work.

olution]

Exercise 5.7 (Simple cases of independence). Please check the following
two easy special cases of independence.
For any events A, B,

P(A)=0or P(A) =1 = A and B are independent. (5.5)
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[Solution]

Exercise 5.8 (Independent and disjoint?). Suppose that events A, B are
disjoint. Under what conditions will A, B also be independent?

[Solution]

We will see many examples of independent events in the rest of this
book. Independence simplifies probability calculations immensely, if it holds.
But an unjustified assumption of independence can lead to disaster (see for
example [11]).

5.2 Independence for sampling with replace-
ment

As in Example 4.8] and Example [2.23] we consider a two-step experiment.
We select two jelly beans, one at a time. Each selection is random, and is
such that no jelly bean in the bowl is favored.

However, unlike Example and Example 2.23] after we have noted the
color of the first jelly bean that is selected, we replace it in the bowl before
proceeding to make the second selection.

Let A; be the event that the bean selected in step 1 is yellow or red. Let
Bs be the event that the bean selected in step 2 is yellow or green. We would
like to find P (A1 N By).

Assume that in the bowl, before any selections, there are y yellow beans,
r red beans, and g green beans.

Consider each step as an experiment in itself. As usual, by Theorem [2.22
we have

+r +
R Y7 S p—a (5.6)
y+r+g y+r+g

Because we stir the bowl before each selection, experience tells us that the
results of step 1 and step 2 are physically independent, and so we confidently

assume that A; and B, are mathematically independent. Hence we can find
P (A; N By) at once:

P(4) =

P (AN By) =P (A)P(By). (5.7)
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5.2. Independence for sampling with replacement

Notice that we did not need to actually specify a sample space for the
two-step experiment. Instead we simply followed the rules of probability,
using independence.

Remark 5.5 (A bit more about the “why” of independence). In an
experimental situation, we would expect statistical independence for events
A and B if there is no connection between the processes involved in A and
the processes involved in B. But that’s not the only case. Even when there
is a connection, we frequently still expect independence.

Consider a person tossing a coin twice. There is a very direct physical
connection between the two tosses, since the same person is doing the tossing.
Nevertheless, experience shows that it doesn’t matter, at least as far as the
statistics of the two tosses is concerned.

The jelly bean experiment might be a little easier to analyze. Let’s think
about that.

When choosing a jelly bean, we prepare for the experiment by stirring the
bowl of jelly beans vigorously, so that the beans in the bowl are thoroughly
mixed. When we select a jelly bean twice, we have a two-step experiment,
and we will stir the bowl of jelly beans before each step of the experiment
(although the second stirring may not be necessary). We feel that that the
two selections have statistically independent results. Why?

To fix our ideas, let’s imagine that in the experiment we always select the
top bean in the center of the bowl. Call that the “pickup location”.

For simplicity, let’s also assume that the bowl only contains yellow and
red jelly beans, and that there are exactly the same number of yellow and
red jelly beans.

Given these assumptions, we are confident that the chance of a yellow
bean being selected on the first choice is 1/2. And we actually don’t believe
this depends on the state of the bowl before the beans are stirred. Suppose,
for example, that all the red beans were initially in one part of the bowl,
and all the yellow beans were in a different region. We still think that a
vigorous stirring is just as likely to move a red bean into the pickup location
as a yellow bean. So knowing where the beans are before the stirring doesn’t
seem to help at all in predicting the color of the bean that is chosen after the
stirring.

That statement applies to the both choices. Knowing the result of the
first choice simply gives us a bit of information about the state of the jelly
beans before the second stirring. So stirring the bowl between the two choices
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should make the results of the two choices statistically independent.

To explore this idea further, let us now change the experimental proce-
dure. Suppose that we didn’t stir the bowl between the two choices, but
we gave it a good stir at the beginning, before any beans were selected. If
we chose the top bean at the pickup location when we made the the first
selection, then we would select the bean just below it in the second selec-
tion. Could this spoil independence? Apparently not. All our experience
suggests that a reasonably thorough stirring of the bowl will make the colors
of adjacent beans statistically independent, or close to it.

It would be nice to give a mathematical model showing precisely why
independence holds. But that seems to be an unsolved hard problem, even
though we believe the conclusion. (Notice that such a model would have
represent the positions of all the jelly beans and their shapes, and we would
have to somehow show that they typically move in a disorderly manner.)
Our probability model for choosing jelly beans doesn’t concern itself with
the details of stirring. We do not try to give a mathematical explanation
of why red or green beans are equally likely, and why the two choices are
independent. Our judgement about the probability of selecting a bean is
just built into the model, based on our general practical experience.

5.3 Independence applies to complements

Lemma 5.6 (Independence and complements). Let A and B be any
events in a probability model. Each of the following statements is mathe-
matically equivalent to any of the others.

(i) A, B are independent.
(ii) A, B¢ are independent.
(iii) A¢, B are independent.

(iv) A, B¢ are independent.
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The phrase “mathematically equivalent” for two statements means that
if either one of the statements is true then the other is true also. The equiv-
alence stated in Lemma [5.6| seems totally reasonable if we think about infor-
mation. If you know whether or not A occurred, then you know whether or
not A€ occurred, and so on!

Using the definition of independence, Lemma [5.6| can be restated as fol-
lows.

Lemma 5.7 (Equations for independence and complements). Let A
and B be any events in a probability model. Each of the following four
equations is mathematically equivalent to any of the others.

P(ANB) = P(A)P(B), (5.8)
P(AN B°) = P(A)P(B°), (5.9)
P(A°N B) = P(A°)P(B), (5.10)

P(A°N B°) = P(A°)P(B). (5.11)

The sets ANB, AN B¢, AN B and A°N B¢ are represented in Figure 5.1

A proof for Lemma is requested in Exercise [5.9] To give a mathemat-
ical proof we will have to think about the precise definition of mathematical
independence, not just the physical meaning. As usual, you are encouraged
to work at the proofs, but the physical meaning is the most important thing.

Exercise 5.9. Prove Lemma [5.7]
For efficiency, we might start by proving the following.

Substitution Fact For any events D, Dy, suppose that:

holds. Then
P(DiNDy) =P (D)) P (Dy). (5.13)

In other words, replacing Dy by D{ throughout the first equation gives an-
other true statement.
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Chapter 5. Independence and its consequences

Of course, since order doesn’t affect the intersection operation, and order
doesn’t affect multiplication either, the Substitution Fact also implies that a
true statement is also obtained from equation ([5.12)) if Ds is replaced by DS.

Once the Substitution Fact is proved, you can apply it to proving the
lemma.

[Solution]

& A &

) A divides the space ) B divides the space ) The pieces

Figure 5.1: The pieces of €2 generated by A and B

Exercise 5.10 (A test for independence). Let A, B be events with P(A) >
0 and P(A°) > 0.

(i) Suppose that
P(B|A)=P(B| A9 (5.14)

Show that A, B are independent.

(ii) Suppose that equation (5.14)) does not hold. Show that A, B are not
independent.

Bolution
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5.4 Using independence to simplify calcula-
tions

We often use independence to justify ignoring events. For example, suppose
that in some large and complicated experiment we think about three events,
A, B, and C. Physically, suppose we believe that A and B depend on certain
properties of the experimental setup which are unrelated to the occurrence
or non-occurrence of C'.

As a practical matter, when calculating something about A and B, for ex-
ample P(B| A), we can completely ignore C, even if we know whether or not
C occurred. We do this automatically in our problems. Calculations of prob-
abilities would be hopelessly complex if we could not make simplifications of
this sort!

That’s the physical picture. It would be interesting to consider mathe-
matical ways to express the fact that C' can be ignored, but we won’t take
time for that, except in the next exercise.

Exercise 5.11. Assume that

P(ANC)=P(A)P(C), (5.15)
P(BNnC)=P(B)P(C), (5.16)
P(AnBNC)=P(ANnB)P(C). (5.17)

Show that then
P(B|ANC)=P(B|A) (5.18)

Equation (5.18)) is an example of ignoring C', when the three independence

statements (5.15)), (5.16)) and (5.17) all hold. One might be guess the first

two independence statements should be sufficient, but they ain’t. Something
like condition ([5.17)) is needed too.

[Solution|

5.5 Extending independence to unions

This section gives us a chance to play a little more with the general definition
of independence.
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The following lemma is not surprising, but it states a useful fact.

Lemma 5.8 (Independence using cases). Let Ay, ..., A be disjoint events
in some probability model. Let B be an event such that A;, B are indepen-
dent for each i =1,..., Ax. Then A;U...U A, and B are also independent.

Physically, Lemma [5.8] seems obvious. After all, for each i, being given
information about the occurrence or non-occurrence of A; has no affect on
our opinion about B. If someone tells us the exciting news that at least one
of the events A; occurred, that is less information than telling us about a
particular A;.

A mathematical proof of Lemma [5.8|is a good exercise.

Exercise 5.12. Prove Lemma [5.8
[Solution]

5.6 Solutions for Chapter

Solution (Exercise [5.1)). Since ANB C A, we have P(ANB) < P(A) = 0.
Thus P(A) = 0 implies that P(A N B) = 0.

Thus when P(A) = 0, equation (5.3)) is equivalent to the assertion that
0=0.
Solution (Exercise |5.2]).
(i) (1,1) is the only point in both Hy and Hs, so Hy N Hy = {(1,1)}.

(ii) We already showed that H; N Hy = {(1,1)}.
Similarly HyNHS = {(1,0)}, HiNHy = {(0,1)}, and Hf N HS = {(0,0)}.
Comparing this with the facts in Example gives equation ((5.4)).

(iii)

P({(1,1D)}) +P({(1,00}) + P({(0,1)}) + P({(0,0)}) = p* + pg+ qp + ¢
=pp+q)+ap+q) =@p+q°=1
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Solution (Exercise [5.3). A = {(1,1),(1,0)}, so P(4) = P({(1,1)}) +
P({(1,0)}) = p* +pg = p(p +q) = p.
B = {(1’0)7(070)}7 S0 P(B> - P({(l,O)}) + P({(070)}) = pq + (]2 =
(r+4a)q=q

Solution (Exercise [5.4)). From the solution of Exercise P(A) = p and
P(B) =q.

Also AN B ={(1,0)}, so P(AN B) = pq by equation ([5.4).

Thus P(AN B) = P(A)P(B).

Solution (Exercise [5.5)). Let A the event that the first roll gives an even
number. Let B be the event that the second roll gives a number larger than
four.

We can look at the first roll as a separate experiment. The sample space
has 6 outcomes of equal probability, so P(A) = 3(1/6) = 1/2.

Similarly we can look at the second roll as a separate experiment, so
P(B)=2(1/6) = 1/3.

By independence, P(AN B) = P(A)P(B) = (1/3)(1/2) = 1/6.

This approach is more efficient than the method used to solve Exercise [2.7]
Physically we are sure that the two methods are both valid.

Solution (Exercise [5.6)). Let By be the event that the first roll gives an

even number, and let C be the event that the first roll gives an odd number.

Let B, be the event that the second roll gives an even number, and let
C5 be the event that the second roll gives an odd number.

Clearly P(By) = § + § + ¢ = 3. Similarly P(Cy) = 3, P(By) = 3 and
P(Cy) = 3.

The sum of an even number and an odd number is odd. Even plus even
is even, and odd plus odd is even.

Thus

A= (BiNBy)U(CiNCy).

Using additivity and independence,

11 11 1
PA=55"5327%

Solution (Exercise [5.7)). Suppose that P(A) = 0. Then for any B, P(AN
B) <P(A)=0,s0 P(ANB) =0 =P(A)P(B). Thus by definition A, B are
independent.

Now suppose that P(A) = 1. By Exercise 2.18, P(AN B) = P(B) =
P(B)P(A), so by definition A, B are independent.
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Solution (Exercise[5.8)). Suppose that A, B are disjoint. Then P(ANB) =
0.

If A, B are also independent then P(AN B) = P(A)P(B). Since 0 =
P(A)P(B), at least one of the events A, B has zero probability.

If P(A) = 0 or P(B) =0, then A, B are independent by Exercise [5.7]

This shows that when A, B are disjoint, then A, B are independent if and
only P(A) =0 or P(B) = 0.

Solution (Exercise [5.9). First let us prove the Substitution Fact.

Suppose that equation holds. We need to show that equation
holds.

That is, suppose that P (D; N Dy) = P (Dy)P (D2). We need to show
that if we replace D; by DY in this equation we get another true equation.

To prove this, note that D N D is exactly the part of Dy which is not
in D;. Thus

P(DiNDy) =P(Dz) — P(D1 N Dy).

(For a justification, see equation (2.12) and Figure 2.1])
Since P(Dl N DQ) = P(Dl)P<D2),

P (DiN D) =P (Dy) — P (D1) P (D)
= (1 =P (D)) P (Ds) =P (D)) P (D),

as claimed.

This proves the stated Substitution Fact.

To prove the lemma, we consider some applications of the Substitution
Fact.

Suppose that equation is true. Replacing A by A° gives equa-
tion , so this equation must also be true.

On the other hand, suppose that equation @D is true. Replacing A¢
by (A%)° = A gives equation , so equation @ must be true also.

We have shown that the truth of either one of equations and
implies the truth of the other.

Switching between B and B¢ shows that equations and are
equivalent.

Switching between A and A°¢ shows that equations and are
equivalent.

Thus we can change any one of the equations into any of the other equa-
tions, using one or two substitution operations, and these substitution oper-
ations preserve truth.
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Solution (Exercise |5.10)).
(i) Suppose that P(B|A) = P(B| A°).
By the Law of Total Probability (Theorem [4.6)),
P(B)=P(AP(B|A) +P(A)P(B| A9). (5.19)
Hence
P(B)=P(AP(B|A)+P(A)P(B|A). (5.20)
Since P(A) + P(A°) =1,

P(B) = P(B| A). (5.21)

By Remark A, B are independent.

(ii) We must show that if A, B are independent then equation ({5.14)) must
hold! (Does it make sense that this formulation is equivalent to what is asked
in part (ii) of the question? It certainly will if you think about it. We could
get fancy here and talk about the “contrapositive” form of a statement, but
we don’t need to.)

Since A, B are independent, Remark tells us that

P(B|A) = P(B).

Also, by Lemmal5.6} if A, B are independent then also A¢, B are independent.
So we can replace A by A€ in the equation just obtained. This gives

P(B|A%) =P(B),
so P(B|A%) =P(B|A).
Solution (Exercise [5.11)).

Proof. By the conditional probability formula,

P(BNANC) PANBPIC) PANB)
P(B|ANC) = PIANC) ~ PAPO) -~ P =P(B|A),

proving equation ([5.18)).
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Solution (Exercise |5.12]).
P(BN(AiU...UAL))=P(BNA)U...U(BNA)).

By assumption, Aj,..., A are disjoint, so BN Ay,..., BN A, are disjoint.
Hence

P(BN(AjU...UA))=P(BNA)+...+P(BNA)

A
—P(B)P (A) +...+ P(B)P (4y)
—P(B)(P(A)+...+P(4)) =P(B)P (A U...UA,).

By definition, this shows that B and A; U...U Ay are independent.
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Chapter 6

Tricky little problems

Sometimes very simple problems are enlightening, for example if they illus-
trate the need to be careful when setting up an abstract model of a real-world
setting. In this short chapter we’ll work through two well-known examples.

6.1 Omne or two successes

The happy Sam problem A local charity has a booth at the fair. This
booth offers donors the opportunity to play a game. In this game, your
chance of winning is p, and if you win, you receive a small prize.

Let us think about a donor named Sam, who visits the fair one afternoon.
He plays the game exactly twice during the afternoon. Sam is easy to please,
so he is happy if he wins at least one prize. If he does not win any prize, he
is unhappy.

Let A be the event that Sam wins both times he plays the game. We
assume that the results of the two games are independent, so the probability
of A is p?. This is what we will call the unconditional probability of A in
this setting.

His friends meet Sam some time after he leaves the fair. They know that
Sam played two games at the fair, but they do not know the results of the
two games. However, they observe that Sam is happy. Thus his friends know
that Sam won at least one game at the fair. Based on their information
about Sam, what probability should his friends assign to A?

We can use a model for Sam’s games which is similar to the model for two
coin tossses (Example[5.4)). Let W be the event that Sam won the first time
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he played the game, and let L; be the event that he lost. Then P(W;) =p
and P(Ly) = ¢, where ¢ = 1 — p. Define Wy, Ly similarly.

Let B be the event that Sam won at least one game at the fair. There
are three ways that could have happened: Sam could have won both games,
Sam could have won the first and lost the second, or Sam could have lost the
first and won the second. That is:

B:(WlﬂWQ)U(WlﬁLZ)U(leWQ)

After they meet Sam, his friends know that the event B has occcurred.
Sam’s friends want to know P(A | B), where A = W, N Wa.
Using additivity and independence,

P(B) = P(W)P(Ws) + P(W1)P(Lz) + P(L1)P(W2) = p” + pq + qp.

Notice that A C B, so ANB = A. Since P(B) = p?+2pq, the conditional
probability formula (4.1)) tells us that

2
p p p
P(A]B) = 1o = —T =
pe+2pg  p+2q +q

When p = 1/2, this says that the probability that Sam won both games is
only 1/3.
For comparison, consider a different problem about Sam’s games.

The Sam’s witness problem The afternoon of the fair, you are strolling
through the fair, and you happen to pass by the charity booth at a moment
when Sam is playing one of his two games. You observe that Sam wins.

You don’t see Sam again that day but you are told that he played the
game twice.

Like Sam’s friends, you know that the event B has occurred. However,
you also have some additional information. What probability should you
assign to A?

Exercise 6.1. Solve the Sam’s witness problem. [Solution]

The difference between these two problems about Sam may be evident,
but in many problems such differences may be obscured by the wording.
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Here is an example of a loosely phrased version of the happy Sam problem:
“Sam played two games at the fair, and he won at least one game. Find the
probability that he won the other game.”

A common variant of this problem: “A couple has two children. Given
that one of the children is a girl, find the probability that the other child is
a girl.”

Remark 6.1 (Using a sample space for independence). In our analysis
of the happy Sam problem, we didn’t bother to define a sample space, but just
worked with events. Just as in Exercise [5.2, we could have defined a sample
space. For example, we could let 2 = {(1,1),(1,0),(0,1),(0,0)}. Here (1,1)
represents the outcome that Same won both games, (1,0) represents the
outcome that Sam won the first game but lost the second game, and so on.
Would that be better? For example, is it easy to see that P({(0,1)}) = gp?
Since we are familiar with the sample space for two coin tosses, it likely is
easy. But working with events like W, and L; lets us use the the definition
of independence directly, and that seems better for our thinking.

6.2 The Monty Hall problem!

This is well-known, but worth reviewing. A good history of this problem is
given in [9]. Apparently some mathematicians refused to believe the correct
answer. The embarrassing details are given in section 1.10 of [9].

At any rate, here is the problem. It is inspired by a game which was
sometimes played on the television show Let’s Make a Deal, hosted by Monty
Hall. The idealized version of the game which is described here may not
match what actually used to happen, so our Monty Hall is not quite the real
Monty Hall.

We assume that in this game, three doors are visible to the contestant,
and the contestant is asked to choose one of these doors. The contestant will
be awarded whatever prize is concealed behind the selected door. There is
a valuable prize, perhaps a sports car, behind one door, and something very
disappointing is behind each of the other two doors.

Of course we assume that the prize can lie behind any door, with no door
favored. The contestant has no idea which door has the prize.
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So far, so good. Now comes the twist. We assume that after the contes-
tant has chosen a door, but before revealing whether the contestant’s guess
was correct, Monty Hall often opens one of the two doors which were not
selected by the contestant, always revealing one of the disappointing non-
prizes when he does so. Then, Monty Hall offers the anxious contestant an
opportunity to switch his or her choice to the other unopened door.

The basic question here is whether the contestant would benefit by switch-
ing.

We begin by focusing our attention on the original choice by the contes-
tant. Let C be the event that the contestant’s choice is correct. Since no
door was favored in setting up the game, P(C) = 1/3.

Here P refers to probabilities based on the information we have before
Monty Hall opens a door.

But notice that Monty Hall does not physically move the valuable prize.

So if the contestant’s choice is correct at the moment of the choosing, the
contestant’s choice is correct for ever. If the choice is wrong, it stays wrong.
We also know there is only one alternative left after Monty Hall has opened
a door. Thus, if the contestant’s original choice was wrong, the contestant
should switch to the other unopened door.

The contestant will choose correctly approximately 1/3 of the time, and
incorrectly 2/3 of the time. Hence the policy of “always switching” pays off
2/3 of the time, while “never switching” pays off 1/3 of the time. So switch!

That answers the basic question. But there seems to be something about
the Monty Hall problem that makes people doubt the answer. It is not com-
pletely clear why. Monty Hall’s actions do complicate the problem. But
sloppy wording of the problem can also cause trouble, if Monty Hall’s proce-
dure is not explained precisely.

Consider the following variation of the Monty Hall problem.

Example 6.2 (The defective door problem). Suppose Monty Hall is on
vacation. In the absence of a skilled host, the manager of the game show
decides that they can only provide a simplified version of the game. The
contestant will choose a door, and will then be given whatever prize lies
behind the door.

However, fate is about to intervene.

After the contestant has chosen a door, one of the other doors suddenly
swings open. The door must have been defective in some way, although no
one knew about this until now. Perhaps a vibration in the floor, or a gust of
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wind, has now made the door open.

We think that the location of the prize does not effect the condition of
any of the doors, and the location of the prize cannot cause any door to open
or not open. However, it happens that the door which opened is not the one
concealing the valuable prize. So the contestant’s door and one other door
remain unopened, and we know that one of them hides the valuable prize.

The manager of the game show notices that this accident has presented
the audience with exactly the same situation that would have been the result
of Monty Hall’s usual antics. To live up to the expectations of the audience,
the manager offers the contestant the opportunity of switching his or her
choice to the other unopened door.

We ask the same question as before. Does the contestant benefit by
switching?

Exercise 6.2. Please solve the defective door problem.

[Solution|

Example 6.2 seems more natural than the Monty Hall problem, and some-
times people may solve the wrong problem.

Exercise 6.3 (Mega-Monty). In order to convince people that switching
is the right policy for the standard Monty Hall problem, the following varia-
tion is sometimes presented. An argument which is claimed to work for the
standard Monty Hall problem can be “stress-tested” on this version of the
problem.

Suppose that for a special edition of the game show, a long hallway is used,
with 100 doors. The prize is behind one of the doors, and the miserable
contestant must choose one door. After the choice has been made, in a
surprising act of generosity Monty Hall opens 98 of the remaining doors,
none of which have prizes, and then offers the contestant a chance to switch
his or her choice to the other unopened door.

Again we ask, does the contestant benefit by switching?

[Solution|
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Exercise 6.4 (Monty with a tell).

Part 1 Returning to the Monty Hall game with the usual three doors,
imagine you have been invited to appear as a contestant. The game will be
hosted by Monty’s sister, Ivy Hall, who sometimes replaces Monty.

You prepare by carefully watching recordings of all previous shows for
which Ivy was the host. By the end of each show the audience knows where
the prize was located for that show, so that information is in the recording.

The three doors for this contest are arranged in a line going from left to
right. You excitedly notice the following behavior pattern. Whenever the
door originally chosen by the contestant is the door with the valuable prize,
so that Ivy Hall can choose which of the two remaining doors to open, Ivy
always opens the remaining door on the left.

Eventually you appear on the game show, and select your door. And then
Ivy Hall opens ...the remaining door on the left!

At this point Ivy Hall offers you the usual opportunity to switch your
choice. As you stand there, weighing your chances, Ivy notices your indeci-
sion, and makes an unusual extra offer. She will pay you an additional $100,
win or lose, if you do not switch.

What should you do?

Part 2 Suppose the same situation arises as in Part 1, except that in this
case you observe that Ivy Hall has opened the remaining door on the right.
Everything else is the same.

What should you do?

[Solution]

6.3 Solutions for Chapter [6]

Solution (Exercise [6.1]). The witness doesn’t just know that Sam won
one game, the witness can also specify which game it was, namely the game
that was played while the witness walked by.

The other game Sam played is well-defined, and the result of that game is
of course independent of anything that happens in the game that the witness
saw.
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Sam won the game that the witness saw, so the probability that Sam won
both games is just the probability that Sam won the other game, and this

is p.

Solution (Exercise [6.2). As usual, the choice made by the contestant is
not influenced by the location of the valuable prize.
In this problem the contestant’s choice is also unrelated to the location
of the defective door. This is in contrast to the situation when Monty Hall
opens a door, since Monty never opens the door chosen by the contestant.

Method 1 The idea of the solution is easy to state: we will use symmetry.

After noting that the choice of a door by the contestant has no effect on
anything else, we can ignore the contestant, and simply look at the doors.
After the defective door has opened, we see two remaining unopened doors.
One of these doors has the valuable prize. Nothing in the description of the
problem (except the contestant’s choice) treats either of these doors differ-
ently. So any probability statement that we derive, concerning the location
of the valuable prize, must also treat both these doors in the same way. Thus
the valuable prize is equally likely to reside behind either door.

There is no reason to switch.

Method 2

If you include the contestant’s choice of a door in the discussion, you might
say something like the following.

From the contestant’s viewpoint, the opening of the door is a random
event, independent of everything else. The chance of any particular door
opening is the same, a small probability.

Let C' be the event that the contestant’s original choice of a door was
correct, meaning that it is the one with the valuable prize.

As usual P(C) =1/3, so P(C¢) =2/3 =2P(C).

Let M be the event which describes the new situation after the door
opened. When deciding whether or not to switch, the contestant should be
interested in P(C'| M).

The key idea in this approach: we are dealing with the situation in which
the door that opened was neither the door with the prize nor the door picked
by the contestant. Common sense probability tells us that this is twice as
likely to happen if the contestant chose correctly, since then the door with
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the valuable prize and the door picked by the contestant are one and the
same door, and there are two possible choices for the defective door. (We
could justify this probability statement more formally, but right now we are
focused on the physical meaning.)

Using our notation, P(M | C) = 2P(M | C°).

The multiplied-through version of the conditional probability formula
(equation (4.2))) tells us that

P(MNC)=P(C)P(M|C) and P(M N C%) = P(C)P(M | C*).

The fact that P(M | C') = 2P(M | C°) exactly compensates for the fact that
P(C°) =2P(C), and we have

P(MNnC)=P(MnNC).

In frequency language, this equation says that contestants will find them-
selves in situation M just as often when the chosen door is correct as when
it 1s incorrect.

And

P(C| M) = P(lﬂf]\;)o) _ P(f(;}fc) _p(ce| M),

Thus the chance of getting the valuable prize in this situation is the same,
whether or not you switch, and there is no reason to switch.

Solution (Exercise [6.3). Now the probability that the original guess was
correct is 1/100. This happens approximately 1/100 of the time. And so
switching brings success approximately 99 times out of 100.

Switch!

Solution (Exercise [6.4]).

Part 1 Let L be the event that Ivy Hall opens the remaining door on the
left.

Let C' be the event that the contestant picked the correct door. From
your study of past Ivy Hall shows, you know that P(L|C) = 1.

If C° occurs, then the prize is behind one of the two doors which the con-
testant did not pick. Knowing that C'¢ occurred does not give us information
which favors either of those two doors.
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If C¢ occurs, Ivy Hall must of course open the remaining door which does
not have the prize, wherever it is, left or right. Thus P(L|C¢) = 1/2.
By the Law of Total Probability (Theorem [4.6)),

1 2
2 3

[GCN N\

1+

Wl

P(L) = P(C)P(L|C) +P(C)P(L|C*) =

Thus
_P(CnL) POPL|C) 31 1
PO ="50" =20 ~ 2%

Since switching does not improve your chances of winning the valuable prize,
stick with your choice and take the $100.

Part 2 If the door you chose had been wrong, Ivy would have chosen the
remaining door on the left. She didn’t do that.
Don’t switch!
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Chapter 7

Independent sequences

The most important facts in this chapter are Definitions[7.1]and [7.7] and the
formulas in Section [7.2]

We’ve discussed independence for two events. But often we want to con-
sider more than two events, perhaps even a long sequence of events.

7.1 Sequences of experiments

Consider a big experiment which consists of a sequence of repetitions of a
smaller experiment. For example think about tossing a coin many times,
or rolling a die many times, or treating many patients with a particular
drug. We've considered repeated experiments in the past, but here we are
thinking of the whole sequence of smaller experiments as making up one big
experiment. We can call each repetition of the smaller experiment a “trial”.

In this situation we typically assume that the smaller experiments do not
influence each other in any significant way, so that properties of different
trials are described by independent events. Then we say that we have an
independent sequence of trials.

We would like to study some mathematical formulas connected with in-
dependent trials. Before doing that, we should state a more precise definition
of independence in this situation.

Definition 7.1 (Independent trials). We will say that a sequence of n
experiments is independent if, for each £ < n, information about the results
for trials 1,..., % does not change our opinion about the probability of any
properties of the result of trial k + 1.
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Chapter 7. Independent sequences

For each i, let D; be a physical event that is defined completely by the
outcome of the i-th experiment. If the sequence of n experiments is inde-
pendent then we will say that the sequence Dq,..., D, is an independent
sequence of physical events.

Suppose that, based on our experience, we think that a certain sequence
of experiments is independent in the sense of Definition [7.1]

Let D; be an event that is defined completely by the outcome of the i-th
experiment. What can we say about these events?

It should be emphasized that Definition[7.1]is concerned with real physical
experiments, not abstract sample spaces. Consider the event D; N ... N
Dy.. Here (as in Remark Dy N ...N Dy is just a convenient way of
expressing the event that every one of the physical events Dy, ..., Dy occurs.
The occurrence or non-occurrence of Dy N ... N Dy, is certainly determined
by the results of trials 1,...,k. So, by Definition [7.1] information about
DiN...N Dy does not change our opinion about the probability of Dy.. If
P(DyN...N Dy) # 0, this says that

P (Dpss | Din... N Dy) = P (Dpss). (7.1)
And as in Definition [5.1] we conclude that

DyN...N Dy and Dy, are independent events. (7.2)
Please do the next exercise!
Exercise 7.1. Let Dy,..., D, be an independent sequence of events. Show
that
P(Din...nD,)=P(Dy)...P(D,). (7.3)

[Solution|

Definition says what we mean by independence for a sequence of
physical events. It is not a definition of mathematical independence for an
abstract model, although of course consequences such as equation must
hold in any valid model for an independent sequence of experiments. We’ll
think later about making a precise mathematical definition of an independent
sequence.

For now, let’s calculate some consequences of Definition [7.1
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7.2 QOutcome probabilities when tossing a coin
n times

In the present section we perform a key computation.

Consider n tosses of a coin. The coin need not be fair. The probability
of a head is some number p and the probability of a tail is ¢ =1 — p.

We mentioned in Example that when the result of a toss is a head,
we sometimes say that result is success. Using this sort of language can be
briefer, and it also makes it a bit easier to adapt our results about coin-tossing
to other situations which are similar.

We’ll usually record the success or failure of a toss using a number, either
0 or 1. Success is represented by 1 and failure is represented by 0.

The record of successes and failures for a whole sequence of n repeated
tosses is then a sequence (x1,...,x,), where for each j, z; is either zero or
one. We can call this sequence the “success record”.

Clearly there are 2" possible success records.

Should we use (z1,...,x,) as the sample point that records the whole
result of the experiment when the coin is tossed n times? Then our sample
space will simply be the set of all possible sequences of this sort.

We certainly can use that sample space, but the probability argument
may clearer if we simply just talk about events, without committing to a
particular sample space representation.

For each j = 1,...,n, let W; be the event that toss j produced success.
Let Djl- = W, and let D? =Wy,

For any sequence (z1,...,x,) of zeros and ones, Di* N ... N D~ is the
event that:

(toss 1 produced z1) and (toss 2 produced x3) and .. . and (toss n
produced x,,).

Thus
Di* N ...N D2 is the event that the success record is (z1,...,2,). (7.4)

For coin tosses, the tosses are independent trials. Thus events defined in
terms of different tosses are physically independent. Thus by equation (|7.3)),
for any success record (z1,...,x,) we know that

P (DM N...AD™) =P (D). P (D). (7.5)
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Equation ([7.5)) is the key probability fact we need.
We know that Dy’ = p if z; = 1 and Dy’ = ¢ if x; = 0. Thus

P (D' n...ND™) =p*¢" ", (7.6)

where £ is the number of indices j such that z; = 1.
We have proved:

Lemma 7.2 (Coin toss outcome probabilities). For any sequence (z1, ..., x,)

of zeros and ones, the probability of obtaining exactly that success record is

pFq" %, where k is the number of successes in the sequence (1,...,x,).

Lemma lets us calculate a very useful probability, in the next lemma.

Lemma 7.3 (Probability of obtaining k successes). Let Gy, be the prob-
ability that n tosses produce exactly k successes. Then

P(Gy) = k,(n”—lk),pq (7.7)

Here 0! is interpreted as 1 in case that £k =0 or k = n.

Proof. Suppose a particular sequence of trials produces exactly k successes.
What would the success record look like?

It is a sequence (z1, . .., x,) made up of zeros and ones. Since there are k
successes, exactly k ones must appear in the sequence. As noted in equation
(7.4), DI* N...N D#~ is the event that the success record is (zy,...,z,). We
don’t care in what order the successes occur, so for general n and k there are
many such success records. Gy is the union all the corresponding events.

That is, Gy is the union of events Di* N ... N D", over all sequences
(21,...,x,) which have exactly k successes. These events Di* N...N D are
clearly disjoint, so P(G},) must be the sum of the probabilities of the various
events Di* N...N D~ where (x1,...,x,) which has exactly k successes.

Let m be the number of distinct sequences (z1,...,x,) which contain
exactly k ones.

Lemma and the additivity of probability tells us that

P(Gy) = mp*q" . (7.8)
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The number m depends on n and k.
Equation ([7.8)) will give us equation (7.7)), once we show that

n!

T Kl(n— k)

How do we show that equation holds? This is a counting problem.

We could explain right now how to count the number of sequences con-
taining the k ones. But it seems more efficient to do that in Lemma as
part of a general discussion. So we will leave equation as an [.O.U. for
the moment. This obligation will be fully discharged in Lemma [8.2]

m

(7.9)

]

Exercise 7.2. Equation (|7.9) tells us that m = n when k£ = 1. Verify in this
special case that m = n is the correct value.

[Solution]

Exercise 7.3. Consider the experiment of tossing a fair coin 5 times. Let A
be the event that the first three tosses produce at most 1 head in total. Let
B be the event that the last two tosses produce exactly 1 head in total. Find
P(ANB).

[Solution]

Exercise 7.4 (Overlapping sequence segments). Consider the experi-
ment of tossing a fair coin 8 times. Let A be the event that the first six
tosses produce exactly 4 heads. Let B be the event that the last five tosses
produce exactly 3 heads. Find P(A N B).

Hint: Let C' = AN B. A reasonable approach to finding P(C') is to break
up the problem into cases. Let M; be the event that the fourth, fifth and sixth
tosses produce exactly j heads. Then P(C) = P(CNMy)+P(CNM;)+....

[Solution|

Exercise 7.5. Consider n tosses of a fair coin. As in Example [2.6] you can
use a sample space () whose points are sequences of length n, made up of
zeros and ones.
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Let A be any event on your sample space 2. Prove that P(A) can be
written as a fraction whose denominator is a power of 2.

Exercise [1.5] considered methods of simulating an experiment with three
equally likely outcomes. In such an experiment, each possible outcome must
have probability 1/3. The present exercise shows that tossing a fair coin,
even many times, can never perfectly simulate such an experiment.

[Solution|

Exercise 7.6 (Counting sequences). Consider tossing a coin 30 times.
Let D} denote the event that toss 7 produces a head and let DY denote
the event that toss ¢ produces a tail.
Using the sequence sample space Q of Exercise [7.5] with n = 30, please
answer the following questions.

(i) How many sample points are there in D3?
(ii) How many sample points are there in Dj N D37
(iii) List all the sample points in D} N DY N DN DN ...N Di, N DY?

[Solution|

7.3 Bernoulli trials terminology

Like coin-tossing, many experimental situations involve repeated indepen-
dent experiments, each of which either results in an event called “success”
or an event called “failure”. The next definition provides a convenient name
for such experiments.

Definition 7.4 (Bernoulli trials). Let W, ..., W, be independent events,
each of which has the same probability p. We will say that the sequence
Wh,...,W, form a sequence of Bernoulli trials. We will often refer to the
occurrence of W; as success on trial ¢, and the occurrence of W¢ as failure
on trial . The probability p will be called the probability of success.

We also speak of the experiments and models associated with the events

Wi, ..., W, as Bernoulli trials.
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Tossing a coin n times, when the probability of a head is p, gives an
example of Bernoulli trials, provided we interpret a head as “success” on
any toss. The event W; in this situation is simply the event that a head is
obtained on toss .

Any mathematical statement about a Bernoulli trial sequence can be
translated into a mathematical statement about a coin-tossing sequence with
the same success probability. Thus we are free to use either Bernoulli trial
language or coin-tossing language to describe the relevant concepts.

Translating Lemma into the language of Bernoulli trials gives the
following.

Theorem 7.5 (Probability of k successes). Let W1, ..., W, be a sequence
of Bernoulli trials with success probability p.

Let P be the appropriate probability for the model. Let G be the event
that exactly k successes occur. Then

n! e

where 0! is interpreted as 1 in case that £k =0 or k = n.

One often writes #lk), as (Z), so equation ([7.10]) can also be written as

P (Gi) = (Z)zfq"k, (7.11)

n\ n!
k) Kl(n—k)
The expression ("

k) is called a “binomial coefficient”, since it appears in the
statement of the Binomial Theorem (equation (8.6)).

where

Definition 7.6 (The binomial distribution). The distribution given by
equation ([7.10) is called the binomial distribution with parameter p.
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0.00 W?T TT’W

0 5 10 15 20 25 30

Figure 7.1: P(k heads) in 30 tosses, success prob 1/3.

Figure shows a plot of P (Gy) versus k for 30 trials, with success
probability 1/3. Notice that the graph appears to be centered around k = 10,
although it is not symmetric around that point. Since the success probability
is 1/3, the average number of successes over many repetitions of a sequence
of 30 trials is also equal to 10, since (1/3) * 30 = 10.

Also notice that those probabilities in Figure [7.1] get awfully small when
you move a moderate distance away from 10.

7.4 Mathematical independence for a sequence

Building on our experience with coin-tossing, let’s give a general mathemat-
ical definition. A precise definition of this sort is interesting, but it is not
really necessary for our work in this book. Our instincts about independence
will tell us what to do in most calculations. So readers can skip this section
if desired, or just skim it quickly.

Definition 7.7 (Independence for n abstract events). Let Wy,... W,
be a sequence of events in some probability model. Suppose that for every
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choice of events Dy, ..., D,, where each D; is either W; or W¢, the following
equation holds.

P(D,N...ND,) =P (D,)---P(D,). (7.12)

Then we say that the sequence W1, ..., W, is an independent sequence
of events in the probability model.

Be careful to note that independence is a property of the whole sequence,
not of each event W; by itself! Nevertheless, for brevity we do often express
independence by saying that “the events are independent”, rather than saying
that the events form an independent sequence.

Notice that equation gives us 2" equations, when we substitute for
Dy, ..., D, in all possible ways. That’s a lot of equations!

Why should we think that equation is a reasonable definition?

Well, suppose your model deals with a sequence of independent physical
trials, and the abstract event W, represents a physical event defined entirely
in terms of the result of trial 4. Since D; is either W, or W¢, we know that
D; also represents a physical event defined entirely in terms of the result of
trial ¢, and so by Exercise we must believe that equation , holds for
any choice of Dy,..., D,.

But is that enough? Perhaps physically independent events have more
properties, which are not captured by those 2" equations given in equation
. Should we worry about that? A reassuring answer is given by the
fact that the 2™ events Dy N ... N D, cover all the possible cases of what
can happen in n tosses. In other words, anything that can be said about the
outcomes can be expressed in terms of set operations on events of the form
Din...NnD,.

So it is plausible that Definition [7.7] is a sound definition. But is it
beautiful? It is expressed using a lot of equations. On the other hand, all 2"
equations follow the same pattern. So it’s not too bad.

There is one exceptional case: for n = 2, Lemma [5.6 shows that the
single equation P(W; NW,) = P(W;)P(W,) implies all four of the equations
obtained by substituting in equation (|7.12]).

This shows that the sequence W7, W5 is independent in the sense of Defi-
nition [7.7]if and only if W5, W5 are independent in the sense of Definition [5.2
That is good, since it avoids ambiguity when we use the word “independent”.
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It’s too bad things are more complicated when n is greater than 2.

But don’t worry! You will usually find that your physical understanding
of independent events will let you guess the correct equations for any practical
problem. We used this approach in Method 1 for the solution of Exercise[7.3]
And of course that’s how our whole discussion of independent sequences got
started, leading us to equation ([7.1). Physical reasoning lets us go directly
to the calculations we need for independent sequences, although it is not
sufficient for a general proof.

Incidentally, when we cover independent random variables in Chapter [12]
you will see a neater way to describe mathematical independence.

Remark 7.8 (Order does not matter for independence of sequences).
Note that if Dq,..., D, is an independent sequence as defined in Defini-
tion [7.7] then any reordering of the sequence is also independent. This is
true because the intersection of sets does not depend on the order in which
they are listed, and the product of their probabilities is also the same regard-
less of the order of the factors.

Your physical understanding of independence will make you confident
that the next exercise is correct. But working out the solution is a good way
to get a feeling for the mathematical definition.

Exercise 7.7. Let A, B,C be three sets which are mathematically inde-
pendent in the sense of Definition [7.12] Based only on the mathematical
definition, prove the following.

(i) Show that A, B are independent. (Suggestion: consider AN B N C and
ANBNCe)

(ii) Show that AN B and C' are independent.

Solution

Remark 7.9 (The length-one case). When n = 1, we should interpret
Dy N...N D, simply as D;. It follows that any length one sequence satis-
fies Definition . Thus every sequence of length one is a (rather boring)
independent sequence.
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Notice we are not saying that D; is independent of itself. In our present
terminology that would be a statement about the length-two sequence Dy, D;.

Whether or not you work Exercise [7.8 please be aware of the danger it
points out.

Exercise 7.8 (Pairwise independence is not enough). Here’s an im-
portant observation that comes up once in a while. For three events A, B, C,
suppose that you know all possible pairwise independence statements hold,
ie.

e A B is an independent pair, and
e B, (' is an independent pair, and
e A (C is an independent pair.

You still cannot be sure that A, B, C' is an independent sequence.

Here’s an example. Consider tossing a fair coin twice. Let A be the event
that the first toss produces a head, and let B be the event that that second
toss produces a head. Let C be the event that the results of the two tosses
agree, that is, C' = (AN B) U (A°N B°).

The statement of the experiment tells us that A, B are independent.

Show:

(i) that also B, C are independent and A, C' are independent, but

(i)
P(ANBNC)#PAPB)PC).

Thus A, B, C' is not an independent sequence.

(See Figure The event C'is the union of two of the four pieces shown
in part (c) of the figure. Notice that each of the four pieces in part (c) has
probability 1/4, so calculations should not be hard.)

[Solution|
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7.5 Thinking about consistency again

In the case of two tosses of a coin, it was mentioned earlier that our physical
experience makes us confident that probability models for two tosses are
consistent with models for one toss. And we checked that in Exercise 2.4

Let’s look now at more general sequences of tosses. As in Example [2.6]
suppose you are studying tossing a coin 1,000,000 times, and using the
sample space consisting of sequences (1, . .., Z1000000), Where each x; is either
1 or 0.

In this section we will check a couple of things.

First, let’s check that the probabilities of the outcomes add up to one.

The following notation is handy.

Let #(1) = p and let #(0) = 1—p. Notice, by the way, that 6(1)+60(0) = 1.

Using the 0 notation, equation can be written neatly as

P(D*n...nDi) =0(xy)...0(x,). (7.13)
If we want to show that the probabilities of the outcomes add up to one,

we must show that
> O(x). . 0(x,) =1,

T1,y5Tm

where the sum in this equation is over all possible values for z1, ..., z,, and
each z; can be 1 or 0.

We have to do something with that big sum on the left side of the equa-
tion.

Using the distributive law as much as possible, we see that

(6(1) +6(0)) ... (6(1) +6(0)) = > O(w). . O(wn).

VvV
n factors

Since 6(1) +60(0) =1,

> 0(x).. () =1x... x1=1,

T, Tn n factors

so the probabilities of the outcomes do indeed add up to one!

Here’s another exercise in checking.
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Exercise 7.9 (Consistency). You've tackled this problem already in the
case of a fair coin, in Exercise 2.5, Now consider the general case, when the
coin is not necessarily fair, and has success probability p.

Fnd P(Dj) using the million-toss sample space. Remember, no peeking
at the one-toss space!

[Solution]

7.6 Solutions for Chapter

Solution (Exercise [7.1)). When n = 2, equation ([7.3)) is simply the state-
ment of equation ([7.2) with k£ = 1.
In general, using equation ([7.2) repeatedly, we have

P(Din...nD,)=P(DiN...ND,_1)P(D,),
=P (DiN...NDy5)P(Dy1) P (D),
=P(DiN...ND,_3)P(D,_2)P(D,_1)P(D,),

=P(D,)...P(D,).
A more formal solution would phrase this as an induction argument.

Solution (Exercise[7.2). Let (z1, ..., ,) be a sequence of ones and zeros,
for which exactly one of the numbers z; is equal to one.

There are n choices for the index ¢ with x; = 1. Hence there are exactly
n sequences of this type.

Solution (Exercise[7.3]). Method 1 We consider the first three tosses as
a separate experiment to find P(A). The sample space consists of sequences
of length 3. A = {(0,0,0), (1,0,0),(0,1,0),(0,0,1)}. Thus P(A) =4(1/8) =
1/2.

We consider the last two tosses as a separate experiment to find P(B).
B ={(1,0),(0,1)}, so P(B) =2(1/4) = 1/2.

Using our physical understanding of independence, A and B should be
independent, since they depend on separate tosses. Thus P(AN B) =

(1/2)(1/2) = 1/4.
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Method 2 The sample space for the five tosses consists of 32 sequences of
zeros and ones. All have the same probability, so P({w}) = 1/32 for every
sample point w.

A consists of all sequences of the form

(0,0,0,x4,x5) or (1,0,0, 24, 25) or (0,1,0, x4, x5) or (0,0, 1, x4, z5),

where x4, x5 can be zero or one. Thus A contains 4 X 2 X 2 points, so
P(A)=16/32 =1/2.
B consists of all sequences of the form

(xlv T2, T3, 17 0) or ('Tla T, T3, 07 1)7

where x1, 9, x3 can be zero or one. Thus B contains 2 X 2 X 2 X 2 points, so
P(B) =16/32 =1/2.

Consider a sample point (z1, x2, T3, x4, x5) € ANB. There are two possible
cases:

e r; =0foralls =1,2,3 and x; = 1 for exactly one of the indices 1 = 4, 5.
There are 1 x 2 = 2 ways to choose x1, xo, 3, T4, T5, SO there are two
sample points for this case.

e 1; = 1 for exactly one of the indices i = 1,2,3, and z; = 1 for ex-
actly one of the indices ¢ = 4,5, There are 3 X 2 = 6 ways to choose
x1, Lo, T3, T4, Ty, SO there are six sample points for this case.

Since AN B contains 8 sample points, P(AN B) = 8/32 = 1/4.

Of course, Method 1 is more efficient, and conceptually clearer.

Solution (Exercise [7.4)). Let L; be the event that the first three tosses
produce exactly ¢ heads.
Let M; be the event that the fourth, fifth and sixth tosses produce exactly
J heads.
Let R; be the event that the last two tosses produce exactly k heads.
Then

P(L;) = (‘:’)31 P(M,;) = (j)% and P(Ry) = (i)Q—lk

Also, for any 4, j,k, L;, M;, Ry, is an independent sequence of events.
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Clearly M; is empty for j > 3. Thus P(C) =P(C'NM,) +P(C N M)+
P(CN M)+ P(C N Ms).

A is the event that the first six tosses produce 4 heads. Thus A N M, is
empty, while AN M; = L3, AN My = Ly, and AN Mz = L.

B is the event that the last five tosses produce 3 heads. Thus B N M, is
empty, while BN M; = Ry, BN My = Ry, BN M3 = R,y.

Thus C'N My is empty, CNM; = Ls N M; N Ry, CN My = Lo\ My N Ry,
CNMs;=LNMsNR,.

It follows that

P(C) =P(L3)P(M;)P(R2) + P(L)P(M2)P(Ry) + P(Ly)P(M3)P(Ry).
Substituting,
- (O OO0 OOE:

(1-3-143-3-243-1-1)

i e

:g‘

Solution (Exercise [7.5)). Each outcome has probability 1/2*. By Theo-
rem m, if an event A contains ¢ outcomes then P = ¢/2F.

Solution (Exercise [7.6)). (i) Let (21,...,230) be a sample point in Dj.
Then x5 = 1. For each index i # 5, there are two possible values for z;.
Hence there are 229 choices for (1, ...,3), so |Di| = 2%.

(ii) Let (z1,...,73) be a sample point in D} N DY.
Then z5 = 1 and 7 = 0. For each index distinct from 5 and 7, there are

two possible values for z;. Hence there are 2% choices for (zy,...,x3), so
|Din DY = 229,

(iii) Let (@1, ...,T30) be asample point in DiND{NDINDIN...NDI,NDY,.
Then z; =1, 20 =0, 23 = 1, x4 = 0, etc. Thus x; = 1 if ¢ is odd and
x; = 0 if 7 is even. This is the only sample point in the event.

Solution (Exercise [7.7)).

(i) From the definition of mathematical independence, P(AN BN C) =
P(A)P(B)P(C), and also P(AN BN C°) = P(A)P(B)P(C°).
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Since P(C) + P(C¢) = 1 we have P(ANBNC)+P(ANBNCY) =
P(A)P(B).

Also (ANBNC)U(ANBNC®) = AN B, and the sets in this union
are disjoint because C' and C° are disjoint. Hence by additivity we have
P(ANB)=P(ANBNC)+P(ANBNC").

Thus we have shown that P(AN B) = P(A)P(B).

(ii) By definition, P(ANBNC) = P(A)P(B)P(C). By part (i), P(A)P(B) =
P(ANB). Hence P(ANB)NC) =P(AN B)P(C), as claimed.

Solution (Exercise [7.8]). From the statement of the problem P(A) = 1/2,
P(B) =1/2, and A, B are independent.

Since A, B are independent, P(AN B) = P(A)P(B) = 1/4.

Using Lemma (.6, P(A N B°) = P(A)P(B°) = 1/4, P(A°N B) =
P(A°)P(B) =1/4, and P(A°N B¢) = P(A°)P(B°) = 1/4.

Since C = (ANB)U(A°N B, P(C)=1/4+1/4=1/2.
(i) Then P(ANC)=P(ANB)=1/4,P(BNC)=P(ANB) =1/4, so
A,C and B, C are independent.

(ii) However, ANBNC = ANB, so P(ANBNC) = 1/4, while of course
P(A)P(B)P(C) =1/8.

Solution (Exercise [7.9)). Let n = 1,000, 000.
When the coin has success probability p, and p # 1/2, sample points are
not equally likely. So we need to use independence.

The event D; consists of points of the form (1,25, ...,x,).
That is,
Di ={(1,29,...,2,): where x; =0or 1fori=2,...,n}. (7.14)
Thus
P(D}) = Y 0(1)0(z2)...0(x)=p Y 6O(x2)...0(s),
where the sum is over all possible values of zs,...,z,, and each x; can be
either O or 1, for i =2,...,n.

By using the distributive law as much as possible, we see that

(0(1) +6(0) ... (0(1) +0(0) = > O(xs) ... 0(wn).

~
n—1 factors
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Hence

> O(w) .. () =1Xx ... x1=1,

L2505 Tn n—1 factors

and so P(D}) = p, as it must.
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Chapter 8

Counting

8.1 Counting ordered and unordered choices

Basic combinatoric methods, i.e. counting “permutations and combinations”,
are essential in analyzing many probability problems.

8.1.1 Ordered choices

Imagine that you are choosing a small administrative board to serve a club
with n members. Three positions must be filled: president, vice-president
and treasurer. No person can fill more than one position. The members
of the board must be members of the club. How many possible boards are
there?

Think of choosing the president first. This can be done in n ways. Next
choose the vice president. Since one member of the group is already assigned
to a position, you have n — 1 choices for the vice-president. Finally, choose
the treasurer from the remaining n — 2 people. The total number of ways to
do this is then n(n — 1)(n — 2).

Is it obvious that we should count the total number of ways by multiplying
the number of choices at each step? Sometimes people picture a “tree of
possibilities” to see this. (Branches represent choices. There are n branches
coming from the root, n — 1 sub-branches coming from the tip of each of
those branches, and then n — 2 sub-sub-branches coming from the tip of each
sub-branch.)

We can also compare this calculation with another one.
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Suppose that a company owns 5 apartments buildings, and each building
has 3 floors, and each floor has 7 apartments. If you are asked to choose
one of the company’s apartments to live in, you have a total of 5 x 3 x 7
choices. Notice that in this situation, if you make a different choice at step
one, you have a completely different set of choices for step two, and so on.
Perhaps that makes it slightly easier to picture what is going on. In the
case of choosing a board, if you make a different choice at step one, the set
of possible choices for step two is only altered slightly. However, because
you have already made a different choice at step one, there is no danger of
counting the same board twice.

Of course, in any calculation like this, the fact that we can simply multiply
the number of choices at each step depends on the fact that the number of
possible choices at each step does not depend on what choices were made in
previous steps.

The number of sequences of k distinct elements chosen from a set of
n elements is often denoted by P'. In case it is needed in a formula, we
interpret Fj as 1, which means that we think there is only one way to choose
zero elements.

The argument just given for choosing a board tells us that

Pl=nn—-1)...(n—k+1). (8.1)

Formulas sometimes become neater if we use factorials. Equation (8.1 can

be written as:
n!

P'=—- 8.2
For k = n we use the standard convention that 0! = 1 in this formula.
As a matter of terminology, a sequence of k distinct elements chosen from

a set S is sometimes called a permutation of length £ chosen from S.

8.1.2 Unordered choices

Now imagine that you are choosing a “clean-up” committee consisting of 3
members, from the club with n members. There are no special roles for the
members of the this committee. They are simply supposed to work together
to clean up after the next club meeting. You can still choose the members
one at a time, but choosing the same three people in a different order just
gives you the same committee.
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If we think about choosing the committee members one by one, and count
the number of ways to do that, we know that there are n(n —1)(n — 2) ways.
But counting these ordered choices means counting the same committee mul-
tiple times. How many times?

A given clean-up committee is a set of 3 people. Equation (8.1)), with
k = n = 3, tells us there are 3! ways to perform the ordered choices which
give us the same committee.

So the actual number of distinct possible clean-up committees is n(n —
1)(n—2)/3.

Generalizing the situation just described, let C}' denote the number of
subsets of size k from a set of n members. A brief way to refer to C} is “n
choose k™. Sometimes people refer to a chosen subset as a “combination”.
Then C} is “the number of combinations of n things taken k at a time”.

Lemma 8.1. C}} is given by

n Pronn-1)...n—k+1) n! _(n
Ok =Tr = k! T K(n—k) (k) (8:3)

where (Z) is the binomial coefficient, defined by

@ - w%k)' (8:4)

By the definition, C} = 1. This is consistent with equation (8.1)) with the
standard convention that 0! = 1.

Proof. We could imitate the argument just given when k£ = 3. But perhaps
it’s neater to rearrange the argument, as follows.

Consider choosing a sequence of k distinct elements from a set S contain-
ing n elements. When we thought about this choice, we chose the members
in order, one at a time. But we can also carry out the choice in two stages.

In stage 1, select an unordered subset A of size k. By the definition of
C}y, that can be done in C} ways. We don’t know the actual numerical value
for C}' yet, but by definition C}' is the number of ways to choose A.

In stage 2, arrange the elements of A in order. By equation , with
n = k, this can be done in k! ways.
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Clearly P} is found by multiplying the number of ways to perform stage 1
times the number of ways to perform stage 2. Hence P’ = C}'k!, proving
equation ([8.3)).

[

We define (Z) =0if k <0 or k > n . This makes equation true for
those values of k.

The reason (Z) is called the binomial coefficient will be clear from equa-

tion below (the binomial theorem).

Lemma 8.2 (Counting successes using zeros and ones). Let S be the
set of all sequences (z1,...,x,), where each x; is zero or one.

Let Ay be the subset of S consisting of all sequences (xq,...,x,) such
that x; = 1 for exactly k indices i. Then

Ay | = (Z) (8.5)

Proof. We can specify any sequence (z1, ..., xy) by simply specifying the set
of indices i for which x; = 1. Hence the number of sequences (z1,...,zx)
which have k successes is exactly equal to the number of ways to choose a
subset of size k from a set of size n. That is, |Ax| = (}).

O

Lemma is what we need to finish deriving equation ([7.9). That equa-
tion gives the formula for the Binomial Distribution (Theorem [7.5]).

8.2 The binomial theorem

We have used the binomial theorem from time to time in examples. Let’s
give a general statement and proof of this theorem now, for comparison with
the proof that was just given for Theorem [7.5]

Consider expanding (a + b)". The usual first step is to write

(a+b)" = (a+b)(a+b)...(a+).

(.

vV
n times
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The next step is to apply the distributive law energetically, resulting in 2"
terms. Notice that each of your 2" terms is a product of n factors. The
factors are a’s and b’s, where we choose either a or b from each of the n
factors in the original expression for (a + b)™.

To record a term, we could simply note the set of factors (a + b) from
which we chose a. That completely specifies the term.

For example, one of the terms in the expansion of

(a+b)(a+b)(a+b)(a+b)(a+Db)

is ababb. We can record that term by saying that we chose a from the first
and third factors and chose b from the other factors.

The final step is called “collecting like terms”. Suppose you would like
to combine all terms which are equal to a*b"~*. How many such terms are
there?

The number of such terms is exactly the same as the number of ways in
which you can select k factors from the n factors in the product (a + b)".
Hence there are (Z) terms which are equal (after rearranging the order) to
akprk,

This proves the binomial theorem:

(a+b)" = i (Z) "k, (8.6)

k=0

8.3 Two recursion formulas

To practice using counting arguments, we’ll prove two recursive formulas for
the binomial coefficients.

Here’s the first one.
n n—1 n—1
)= ()00 57

To prove , take any set of n elements, and choose one particular
element for a special role.

When choosing a subset consisting of £ elements, there are two possibili-
ties. Either your subset contains the special element, or it does not.

If your subset does not contain the special element, then it is chosen from
the other n — 1 non-special elements. That can be done in (";1) ways.
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If your set does contain the special element, then your subset is charac-
terized by the £ — 1 non-special elements it contains. Those elements can be
chosen in (Zj) ways.

Combining the two cases proves (8.7)).

Exercise 8.1. Check equation using algebra.
[Solution]

Remark 8.3 (Pascal’s triangle). This is a pictorial device based on equa-
tion . It is used to quickly find small binomial coefficients. One often
writes coefficients in rows, with (Z), k=0,1,...,nin the n-th row. Elements
to left or right of the binomial coefficients are taken to be zero, and the rows
are staggered, meaning that each element in row n is placed in between the
two nearest elements above it in row n — 1. Equation tells us that each
element in row n is the sum of the two nearest elements in the preceding row.
Thus:

010
0110
01210
013310

and so on.

Here’s another recursion formula. For any n > 1 and any k£ > 1,

010

This formula has an easy algebraic proof.

ny n! n (n—1)!
(k) Tkl —k) k(k—Dl(n—k)

n (n—1)! _n(n-1
_E(k—l)!((n—l)—(k—l))!_E(k—l)'
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Just for fun, let’s make up a counting proof too. Think about choosing
a special clean-up committee made up of k£ members from a club with n
members. The members of the committee all must clean, but one member
of the committee is chosen to be the boss of the committee. That member
of the committee has a special role: the boss is responsible for making sure
that the job is done well.

We can choose the special clean-up committee in two stages:

First stage: Choose a set of £ members. That can be done in (Z) ways.

Second stage: Select one member from the £ people in the chosen set, and
make that person the boss. This can be done in k£ ways.

Hence the total number of possible special committees is

n
k .
Alternatively, we can choose the special clean-up committee in a different

way.

Alternate first stage: Select one person from n people in the club. The
selected person will be the boss.

Alternate second stage: Select the remaining members of the clean-up com-
mittee from the remaining n — 1 members of the club. This can be
done in (Zj) ways.

Hence total number of possible special committees is
n—1
n )
k—1
Equating the two different expressions for the number of possible special
committees gives equation (8.8]).

The general theory of counting is known as combinatorics. It would be
enjoyable to explore this interesting area, but we need to restrain ourselves

and return to probability.
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8.4 Random sets

8.4.1 Choosing a subset

Let S be a set containing a total of N elements. Consider the experiment of
randomly choosing a subset consisting of n elements, in such a way that no
element is favored. It seems most natural to represent a sample point by the
actual subset of elements that are chosen. Let ) be the collection of subsets
of size n.

Let = be a particular point in the set S. The probability that x will be
one of the n random elements chosen is n/N, as was shown in Theorem [2.22]
Here we consider probabilities of choosing several particular points.

Exercise 8.2.

(i) For the experiment in this section, find the number of sample points in
Q.

(ii) Suppose you have a special interest in two of the elements in S, called x
and y. Let A be the event that both x and y are in the selected set. Assume
that n > 1. Find P(A).

(iii)  Generalize your result in part (ii) to the situation where you are
interested in a particular set T" of elements, with |T| = K. Let Ar be the
event that all the elements in 7" are in the selected set. Assume that n > K.

Bolution

Example 8.4. In Section [4.6] we considered the situation of Exercise [£.2] and
found two probabilities. Let’s find the same probabilities using our counting
tools.

In Exercise we are choosing a set of two jelly beans from a bowl which
contains 75 yellow beans, 53 red beans, 27 purple beans, and 18 green beans.

Thus there are a total of 173 jelly beans in the bowl.

Let R be the event that a set of two red jelly beans is obtained, and let
M be the event that a set containing one red and one green jelly bean is
obtained. We wish to find P(R) and P(M).
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Let 2 be the collection of all two-point subsets of the set of jelly beans
in the bowl. We assume that all sample points are equally likely. Clearly

173 173 - 172
o= (1) - 50

so for each w € €2 we have

1 2

PUwl) =11 = T3

The event R is the collection of all subsets made up of two red jelly beans.

Thus
53\ 5352
R| = _ 29002
R (2) :

~53-52 2 . 53-52
2 173172 173-172°
The event M is the collection of all subsets made up of one red jelly bean

and one green jelly beans. There are 53 ways to choose the red bean and 18
ways to choose the green. Thus

Hence

P(R)

|M| =53 18.

Hence
2 5 53 - 18

P(M)=153-18 = .
(M) 173 - 172 173172

Exercise 8.3. Consider the situation of Exercise , part (ii). In addition
to x and y, suppose you are also interested in a third point z. Let B be the
event that y and z are both in the selected set. Find P(B | A).

Bolution

When choosing sets, one has to be careful in labelling the sizes correctly,
and counting. It’s not hard, just takes care. Let’s do a little practicing with
that, next.
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Figure 8.1: Lemma : |IS| = N, |T| = K, |C| = n, |CNT| = 1,
IC—(CNT)|=n—1

Exercise 8.4. A bowl contains N marbles. K of the marbles are red, the
rest are green. A subset consisting of n marbles is selected. No marble is
favored. Let R; be the event that there are exactly i red marbles in the
selected set.

From the description of the problem,

0<K<N,0<n<NAN. (8.9)

(i) Suppose that all the following inequalities hold:

0<i<K, (8.10)
i<n, (8.11)
K—i<N-—n. (8.12)

Find P (R;).
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(ii) Show that equations (8.10)), (8.11)), and (8.12) must hold in for any

possible outcome. Thus R; must be empty, i.e. R; = (), when ¢ does
not satisfy all the inequalities in those equations.

(iii) For what value of ¢ is your answer to part (i) already given by Exer-

cise [R.21
Bolutior]

Abstractly, Exercise deals with a set S of size N, having a specified
subset T of size K. In this situation another subset C', having size n, is
chosen.

For the moment, don’t think about how C' is chosen. Let’s just consider
a simple question: if all we know is that C'is a subset of S with size n, what
are the possible values for the size of C NT7

We'll repeat the arguments for Exercise [8.4] starting by writing down
inequalities. Clearly K <n and n < n.

Let ¢ denote the size of C' NT. Then we must have i > 0, 1 < K, 1 < n.
Must ¢ satisfy any other inequalities?

Well, note that C' = (CNT)U(C —(CNT)). So|C—(CNT)|=n-—1,
and the elements of C—(C'NT) are in S—T. So we also haven—i < N — K
or equivalently n + K < N + ¢, which is equivalent to K —i < N —n.

Notice that in the solution for Exercise we argue slightly differently
to obtain the same inequality, as follows. T'= (CNT)U (T — (CNT)). So
|T'— (CNT)| = K—i, and the elements of T'— (C'NT) are in S — C. So we
also have K — i < N —n.

Incidentally, we might rewrite equations (8.10f), (8.11]), and (8.12)) more

symmetrically:

0 <1,

1 < K,

1 <n,
K+n<N+i.

(8.13)

These inequalities in equation (8.13]) are symmetric in K and n. They
had to be, because we have not used any information here which treats T'
and C' differently.
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We have established that the size ¢ of C'N'T must satisfy equation .
As shown in Exercise [8.4] no more conditions are needed. The following
lemma asserts all this for the record. The remarks already given can easily
be turned into a more formal proof.

Lemma 8.5 (Possible intersections of two subsets). Let S be a set
with |S| = N, and let T be a subset with |T'| = K. Let n be an integer with
0<n<n.

For any integer ¢ satisfying equation , there exists a subset C' with
|C| = n, such that [CNT| = 1.

Conversely, if C' is a subset of S with size n, then i = |C' N T| satisfies
equation (8.13). See Figure|8.1]

Definition 8.6 (The hypergeometric distribution). In Exercise it
was shown that (K) (N_K)

()
when ¢ satisfies the inequalities in equation (or equivalently when i
satisfies equations (8.10), (8.11), and ).

For any distribution, if equation holds when i satisfies the inequali-
ties in equation (8.13), with P(R;) = 0 otherwise, we say that the distribution
is the hypergeometric distribution, with parameters N, K, n.

Since notations in other books will differ, for applications remember that:

P(R,) = (8.14)

e N is the total size of the population from which a random sample of
size n is selected,

e [ is the size of a set of special elements in the population, and

e ¢ is the number of special elements that are in the sample.

8.4.2 Choosing a sequence

Let S be a set containing n elements. Consider the experiment of randomly
choosing a sequence consisting of n elements, in such a way that no element
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is favored during the successive choices. It seems most natural to represent
a sample point as the actual sequence of elements that are chosen. Let €2 be
the collection of subsequences of size n.

Exercise 8.5.
(i) Find the number of sample points in .

(ii) Suppose you have a special interest in two distinct elements in S, called
x and y. Let A be the event that x is the third point chosen and y is the
seventh point chosen. (Assume that n > 6.) Find P(A). [Solution]

Exercise 8.6. In the setting of Exercise [8.5] suppose that, in addition to x
and y, you are also interested in a point z, which is different from = and y.
Let B be the event that y is the seventh point chosen and z is fifth point
chosen. Find P(B|A). (Assume n > 6.)

Bolution]

Exercise 8.7. Recall Exercise [8.4 In that experiment, a subset consisting
of n marbles is chosen randomly from a bowl of n marbles, and R; is the
event that exactly ¢ of the chosen marbles are red. The total number of red
marbles in the bowl is K.

The final goal is to find P (R;), but one may decide to choose the marbles
in the subset one at a time, afterwards ignoring the order in which the marbles
are chosen. Let’s try that approach.

The description of the experiment shows that the values of P (R;) follow
the hypergeometric distribution, with parameters N, K,n (Definition m
So the approach we are trying now must eventually eventually produce the
formula for this distribution which was already given in equation (8.14]).

To compare our model with Bernoulli trials (Section , let a sample
point be w = (wy,...,wy,), where w, is the marble chosen at step ¢. The
number of red marbles chosen is then the number of indices ¢ such that w,
is red.

R; is the set of all outcomes (wy, . . . ,w,) such that exactly ¢ of the marbles
wyp are red.
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Much as when we studied coin tossing, let W, be the event that the ¢-th
marble chosen is red, so that Wy is the event that the /-th marble chosen is
not red. Then for any w = (wy,...,wy,),

{wy=DiN...N Dy, (8.15)

where Dy = Wy if wy is red and D, = Wy if wy is not red.

Thus R; is the union of all events of the form Dy N...N D,, where for
each t, either D, = W, or D, = W, and where the D, = W, for exactly 7 of
the times t.

The next step in this approach would be to calculate P (D; N ...N D,).
But at this point there is an obstacle, since we don’t have independence.

Explain why the events D1, ..., D, are not independent.

Bolution]

The next exercise shows that the sequence model considered in Exer-
cise eventually leads to equation (8.14)), as it should. There are more
steps this way, but the steps are not hard.

Exercise 8.8. In the setting of Exercise|8.7], consider the events DN...ND,,
which make up R;. Show that every event D; N ... N D, has the same
probability, and find this probability.

A good way to think about this is to use the sample space of Exercise|8.7]

Thus a sample point is w = (wy, ..., w,), where w; is the marble chosen
at step £. The number of red marbles chosen is then the number of indices /¢
such that wy is red.

Since no marble is favored, all sequences (wy, . . . ,w,) have the same prob-
ability.

Bolution

Example 8.7 (Plotting a hypergeometric distribution). In the setting
of Exercise [8.7, suppose we have a bowl with 120 marbles, 40 of which are
red and the rest green. If you randomly select a single marble from this bowl,
the probability of a red marble is 1/3 (by Theorem [2.22] say).
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In this setting, consider the experiment of Exercise [8.4] with the total
number of marbles equal to 120, the total number of red marbles equal to
40, and 30 marbles are chosen from the bowl.

In our present notation N = 120, K = 40 and n = 30.

We are interested in P (R;), where R; is the event that i red marbles are
obtained.

This experiment differs from n Bernoulli trials, since the successive colors
obtained in the n selections are not independent, and the values of P (R,,)
follow the hypergeometric distribution with parameters N, K,n. We will use
the formula for this distribution derived earlier in Exercise 8.4l

Figure shows the graph of P (R;) versus i for one experiment (N =
120, K = 40, n = 30). We see that this graph is similar to the coin-tossing
graph in Figure but the graphs are not identical.

For comparison, Figure shows the graph of P (R;) versus ¢ when
N = 12000, K = 4000, n = 30. We see that this graph is almost identical to
the graph in Figure Why is that??

Exercise 8.9. Suggest an answer to the question posed at the very end of
Example [8.7]

Bolution
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(b) Probability that a randomly se-
(a) Figure again. P(k heads), lected subset of size 30 from a set of
30 tosses, success prob 1/3. 120 contains ¢ red marbles, when 40
out of the 120 are red.
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(c) Probability that a randomly se-
lected subset of size 30 from a set of
12000 contains ¢ red marbles, when
4000 out of the 12000 are red.
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8.5 Solutions for Chapter

Solution (Exercise |8.1]).

Proof.
() (o) - s

Bringing the summands to a common denominator gives

(n—Fk)n—-1)'+kn-1)! n! _(n
kl(n —k)! Ckl(n—k) (k)

Solution (Exercise [8.2]).

(i) By definition, a sample point is a subset of S having size n. Hence there
are exactly (J: ) sample points.

(ii) Since no element is favored in the selection, every sample point must
have the same probability. Hence each sample point has probability 1/ (5 )
By additivity,
1
P(A) =Y P{w}) = |4 -
weA (n)

A sample point in A is a subset of S containing x and y and n — 2 additional
elements from S. |A] is equal to the number of ways to choose n— 2 elements
from S — {z,y}. Hence

(8.16)
(%)
Solution (Exercise [8.3). Using, say, Exercise 8.2} part (iii),
N-2 N-3
P(A) — <n72)’ 1:)({4m B) — (nfd) )

() ()
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Hence
(%_g) N_3 (N=3)!
ol @ _GLS) ey
( | )_ (N72) - (N—2> - (N—2)!
ZJ;'; n—2 (n—2)I(N—2)—(n—2))!
N-3)!
ey (V-3 (n-2)! _ n-2
TN T (N (=3 N-=—2
e (N=-2)(n—3)! N-=2

We have followed the general pattern of the conditional probability for-
mula here. However, we would arrive at the same value for P(B | A) if we
considered the selection of x and y as part of the setting of the experiment,
so that the experiment consists of choosing the rest of the sample. Now the
sample space (' is the set of all subsets of S — {x,y}, and we want the prob-
ability that when choosing n — 2 points from €', the point z is in the chosen
set. By Theorem [2.22] this probability is (n — 2)/(N — 2).

In this way we don’t need use of the conditional probability formula. The
second method is a common approach to conditional probability problems.

Solution (Exercise 8.4]).
(i) A sample point w is a subset of size n. Suppose that w € R;.
Since i < K and i < n, there are (If) choices for the red marbles in w.

Since n —1 < N — K, there are (Af;_f() choices for the non-red marbles in

w.
Hence there are (If) (1\;__5() choices for w in R;, that is, |R;| = (If) (]\;__f)

As usual, Q] = (V). Hence

(7) ()
()

(ii) Equation (8.10) says that every chosen red marble is a red marble.
Equation (8.11]) says that every chosen red marble is a chosen marble.
Equation (8.12)) says that every remaining red marble is a remaining

marble.
So all three of these equations must hold.

P(R) = (8.17)

(iii) Ry is simply the event that all the red marbles are chosen. If we think

of the red marbles as the elements of interest in the set, then part (iii) of
N-K

Exercise . tells us that P (Rk) = (?NI){>
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Solution (Exercise [8.5).

(i) A sample point is a sequence of distinct elements, having length n, so
there are exactly P sample points, where P is given by equation (8.1,

PY=NN-1)...(N=n+1) =

(N —n)l’

(ii) Since no element of S is favored in selecting the sequence, all sample
points have the same probability. Thus P({w}) = 1/PY for all w.

For any sequence w in the event A, we are given the positions of z and
y in the sequence. Thus the w is determined once the other elements in the
sequence are determined. The other n — 2 elements in the sequence form a
sequence consisting of distinct elements from S —{z,y}. Since |S — {z,y}| =
N — 2, there are P72 choices for the other elements in the sequence. This
shows that |A| = PN72.

P(A) =) P({w}) = !AI% = P}é—?é
(N=2)..(N=2)—(n—2)+1) 1
- N...(N—-n+1) T NN 1) (8:18)

The positions of x and y in the sequence were given, but we see that the
probability is the same for any fixed choices of the positions.

Solution (Exercise .

Py’
P(ANB) _py _ P
P(B | A) = P(A) = pN-2 = PN—2
n—2 n—2

PN

(N-3)...(N-3-(n—-3)+1) N-3
C(N-2)..(N=-2)—(n—2)+1 N-2

As in the solution for Exercise [8.3] we won’t need the conditional probability
formula if we take the setting of our experiment to include the fact that x is
the third point chosen and y is the seventh point chosen.

Solution (Exercise [8.7)). To see what is going on, take n = 2.
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Suppose Dy = Wy and Dy = W,. Then P (D;) = K/N and P (D,) =
K/N.
However, we can find P (D3| Dy) by thinking of the second choice as a
self-contained experiment, with N — 1 marbles K — 1 red marbles. Hence
K-1

P(D2|D1):m7éP(D2>-

Thus independence does not hold.

Solution (Exercise . We'll use the sample space of Exercise .

Thus a sample point is w = (wy, ..., w,), where w, is the marble chosen
at step £. The number of red marbles chosen is then the number of indices ¢
such that wy is red.

By equation (8.2)),

N!

Since all marbles are treated the same way, all sample points have the same
probability. For any (wy,...,w,),

9 =

P({(w,. .. wn)}) = ﬁ - w (8.19)

Let K be total number of red marbles in the bowl.

Fixi,1<i<nandi < K. Let D;N...ND, be such that D;N...ND, C
Ri-

Consider (wq,...,w,) € Dy N...N D,. Then w, is red for exactly i
of the indices ¢. Let V be the set of indices ¢ such that w, is red. Let
W ={1,...,n} —V be the other indices.

There are ¢ indices in V. So, using equation , the number of ways to

choose z, for £ € V is
K

(K — )l
That is the number of ways to fill the red indices. The number of non-red

indices is n — 7 And the number of non-red marbles is N — K. Hence the
number of ways to fill the non-red indices is: is

(N — K)!
(N—=K)—=(n—1)
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Hence
K (N — K)!
A s (o
Using equation ,
K (N — K)! (N —n)!
PN D) = G (N ) — ) ™
Thus
P(DyN...0D,) = TN = K)! WV = n)t . (8.20)

N (K —)/((N-K)—(n—1)

Equation shows in particular that P(D; N...N D,,) has the same
value for any set D; N ...N D, contained in R;.

To check the probability value given by equation (8.20)), note that a par-
ticular event Dy N ... N D,, is determined once the set V of red indices is
chosen. Hence there are (7;) events D1 N...N D, contained in R;, and so

n\ KI(N — K)! (N —n)!
P(Ri) = (Z) N (K= (N=K)—(n—1d)
n!  KI|(N—K)! N —n)!
P(R;) = il(n —i)! ( N ) (K —1)! ((5\7 — K)) — (n—1))! (8.21)
That is,

K! (N — K)! nl(N —n)!
(K =) (n—i)! (N - K)—(n—1))! Nl

This agrees with equation (8.14}), which says that

() (A=)
)
Solution (Exercise [8.9). When the total number of marbles is large, and

the total number of red marbles is large, choosing one marble has little effect,
meaning that the chance of a red marble on a second choice is almost the

P(R;) =
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same as it was on the first choice, regardless of whether or not the first marble
was red. Thus the outcomes (red or non-red) are almost independent, and
choosing a 30 marbles is almost like 30 independent trials in coin-tossing.
Incidentally, that graph in Figure[8.2b|looks a bit narrower than the graph
in Figure [8.2a] doesn’t it? Could there be a reason for that?
A reason is given Remark [16.26]
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Random variables

In this chapter we introduce a new concept, random variables. The benefits
of using this concept will become evident in the chapters that follow. The
current chapter has important definitions and examples, but not much in the
way of applications. Readers should try to enjoy the peaceful contemplation
of well-chosen concepts. This investment will pay off later.

9.1 Random variables defined

Definition 9.1 (Random variables). Physically, a random variable for
an experiment is a quantity whose value depends on the outcome of the
experiment. In our discussions the quantity will usually be represented by a
number, but it might be represented by a vector, a set, a symbol, or some
other property.

Mathematically, a random variable is a function whose domain is the
sample space {2 of a model, and whose values can be of any kind. A real-
valued random variable is a function from a sample space ) to the real
numbers.

To save words, we often simply use the phrase “random variable” to mean
a real-valued random variable, since that is the most common case for us.
Since we are following that convention, when we are dealing with a random
variable whose values are not numbers, we’ll try to say what the values are,
or at least add an adjective to make that clear. For example we might speak
of a “vector-valued random vector”, or a “random vector”, to indicate that
our random variable has vector values.
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Chapter 9. Random variables

By convention, random variables are normally denoted by uppercase let-
ters, with X, Y, Z being the most common choices.

Definition [9.1] is not quite complete, since it omits a mathematical tech-
nicality. This technicality has no practical significance for our work in this
book, and can be safely ignored, but a brief discussion is given below in
Section Q.7

Notation for properties and sets of values

Suppose that X is a real-valued random variable, and that for some reason
we want to consider the probability that the value of X is greater than five
and less than eight.

The usual notation for this probability is P(5 < X < 8). That expresses
the probability using “property language”.

We can also write the same probability as P( X € (5,8) ). That expresses
the probability using “set language”.

The same kind of notation is used in general. If S is the set of all possible
values that have the property that we are interested in, we can write P(X €
S) to denote the probability that the value of X lies in the set S.

We could use a more formal mathematical notation for P(X € ). If X
is a function on a sample space €2, we could define an event A by

A={w: X(w) € S}. (9.1)

Then P(A) would be P(X € S).

But usually it is more convenient to use the briefer notations which are
common in probability. So we just write P(X € S) instead of defining A.
The notations used in probability theory are the following:

{XeSt={w: X(w)e S},

PXecS)=P{XecS})=P({w: X(w)€S}). (9.2)

Readers will find that this type of notation is quite clear and easy to read.

Notation for random variables Since a random variable is a function,
why not use a typical function name, such as “f”, instead of an uppercase
letter? Perhaps an uppercase letter is used to remind the reader that the
domain of a random variable is the set of possible outcomes for an experiment.
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This can be very different from the domain of a function in calculus, which
is usually an interval of the real line.

Calling a random variable “X” offers another benefit. If we want to refer
to a value of the random variable X, we can denote the value by the lowercase
letter “z”. This reminds the reader of the source of the value.

In this chapter we will mainly consider a random variable whose set of
possible values is finite, i.e. a random variable with finite range. But most
of the concepts make sense for general mathematical random variables.

Example 9.2 (The result of one coin toss). For a single toss of a coin,
let X = 1 if the result is a head, and let X = 0 if the result is a tail. In other
words, X is equal to the number of heads obtained by this toss.

If the probability of a head is p, then the probability that X = 1 is equal
to p, and the probability that X = 0 is equal to 1 — p.

X is a very boring random variable! However, we will soon see that more
interesting random variables can be built using random variables like X.

To represent X mathematically, if the sample space €2 is equal to the
two-point set {1,0}, as in Example , then X (w) = w, but, as usual in
applications, there is no need to use any particular sample space. Given a
physical random variable X, the mathematical random variable representing
X is valid if it has the correct values and produces those values with the
correct probabilities.

Remark 9.3 (An example of an alternate sample space for one coin
toss). To emphasize the fact that the sample space is not unique, here’s a
extreme example of an alternate sample space. We could take €2 equal to the
whole unit interval [0, 1], and use the uniform probability P on [0, 1]. In this
case, define a random variable X by X(w) =1if 0 < w < p, and X (w) = 0
if p <w < 1. (Think about randomly choosing a point in the unit interval
(with a uniform probability distribution) and shouting “success!” or “Pay
me!” if the chosen point lies in the interval [0, p).)

Notice that with this definition we have arranged matters so that the
possible values of X are 1 and 0, the probability that X =1 is equal to D,
and the probability that X = 0 is equal to 1 — p. This exactly matches the
physically observable behavior of the random variable X which was defined
on the two-point set {0,1}.
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Remember, what matters are the values, and the probabilities of those
values. That’s what is “real” about the mathematical random variable.

One might certainly say that using Q2 = [0, 1] is wasteful, since we don’t
need such a big sample space, but the sample space is not incorrect. It might
even be appropriate in a complicated experiment, if there are additional
properties that must be represented using the same sample space.

Exercise 9.1 (Notation check). Let X be the random variable defined in

Remark . Let S = {0}. Find {f( € S}.
Solution

Example 9.4 (The result of one roll of a die). For a single roll of a die,
let X be the number that shows on the die when it comes to rest. Then the
possible values for X are 1,2,3,4,5,6.

If the die is fair, then the probability that X = i is equal to 1/6 for all
. In general, the probability that X = ¢ will be some probability p;, where
p1+pe+Dp3s+patps+ps =1

If the sample space € is equal to the six-point set {1,2,3,4,5,6}, then
X(w) = w, but, as Remark illustrates, we could can always use some
other sample space.

The language of random variables gives us a new way to describe some
events, but we still find probabilities using the same rules. The next exercise
illustrates this.

Exercise 9.2. Let X be the random variable defined in Example [9.4]

o Let A= {X >4}, and let B be the event that X is an even number.
Find A and B, as subsets of {1,2,3,4,5,6}.

e Find the probability that X is an even number.

[Solution|
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Example 9.5 (Number of successes in Bernoulli trials (coin tosses)).
Let Aq,..., A, be Bernoulli trials (see Section with success probability
p. That is, Ay,..., A, are independent and P (A;) = p for each i.

As our most typical example, the experiment consist of tossing a coin n
times, and A; might be the event that toss i gives a head.

Let S,, be the total number of successes. (This notation is not related to
our earlier use of S to denote some set.) By definition, S,, is the number of
indices i such that A; occurs. For the experiment of tossing a coin n times,
S,, is the number of heads which are obtained.

The possible values for S, are 0,1,...n, so S, has a fairly simple range.

The event {S,, =k} is exactly the event G described in Theorem
Thus equation ([7.10)) states that

P(s, =) = (| )1 - o 93)

9.2 The probability of obtaining a value in a
set

Random variables are implicitly present in any probability model. Using the
terminology of random variables explicitly is often convenient, even when we
are performing the same old calculations.

Readers might want to look one more time at the calculation in the second
solution of Exercise The calculation is trivial, of course, but it feels
liberating to simply write

P(X iseven):P(X:2)—|—P(X:4)+P(X:6):%4_

without giving a thought to the sample space.

It’s useful to state a general version of the same argument.

Let X be any random variable, and let S be any set such that S only
contains a finite number of points in the range of X. Let x1,...,x; be the
numbers in the range of X that are members of S, listed in any order, without
repetitions. If the value of X is a member of S, then the value of X must be
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equal to one of the numbers z1, ..., z;. Thus
{XeSt={X=n}U...U{X =u1x4}. (9.4)
Since the values 1, ..., xy are distinct, the sets {X =z}, ..., {X = x;} are
disjoint. By the additivity of probability we have
PXeS)=PX=x)+...+ P(X =xy). (9.5)

We typically use facts like equation (9.5)) without comment. Equations of
this sort help us to think about events in terms of what they mean, rather
than as subsets of the abstract sample space.

Remark 9.6 (Adding some values which are outside the range). In
equations and , suppose we increased the list 1, . . . , £y by including
some additional numbers which are not in the range of X. If a is a number
which is not in the range of X, then of course {X = a} = (), the empty set.

So equations (9.4) and (9.5 will continue to hold.

The next exercise extends equation (9.5) to general sets. All readers
should note the statements, and think about them enough to see that they
are true.

Exercise 9.3 (Cases for a random variable). Let X be any random
variable.

(i) For any sets Sy, ..., Sk, which need not be subsets of the range of X if
S =5 U...U.S}, show that

{XesSt={XeSi}u...U{X € S}. (9.6)

Some of the sets {X € S;} may be empty, but that’s fine.

(ii) Suppose now that the sets S, ..., Sk are disjoint. Show that the sets
{X € 51},....{X € Sy} are disjoint. Let S = S; U...U Sk Show that

PXeS)=PXeS)+...+P(X € 5). (9.7)
(By taking S; = {z;}, we see that equation (9.7) includes equation (9.5) as

a special case.)

[Solution]
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9.3 Estimating probability sums

For the random variable S,, in Example , equations and can be
used to find the probability of any event defined in terms of the value of S,,.
However, when n is large it may take some work to extract the information
we need.

For example, toss a fair coin a million times. Let n = 1000000, so .S,, is the
number of heads obtained. We are rarely interested in the tiny probability
that S, is exactly equal to 499,500. But we might be interested in, say,
the probability that at most 49.95% of the tosses resulted in a head, i.e.
P (S, <499,500). How do we find this probability, or at least estimate this
probability in some way? We know from equation (9.3 and additivity that
the probability is given by

499,500 1,000,000
1,000, 000 1N\
P (S, <499,500) = > ( Y ) (§> : (9.8)
J

5=0

True, but the size of this number does not exactly leap out at us. Not only

are there many terms, but a typical term in this sum is the product of a very
large number times a very small number.

The Central Limit Theorem ([10], Chapter[L8) is a powerful method for es-

timating probabilities like P (S, < 499,500). Incidentally, the Central Limit

Theorem tells us that P (.5, < 499,500) is approximately equal to .159 (Ex-

ercise |18.7]).

9.4 Random variable distributions

Recall that we introduced the general idea of a probability distribution in
Definition[I.11} Any rule which assigns probabilities for a family of events can
be called a probability distribution. The next definition is a very important
example of this terminology.

Definition 9.7 (The distribution of a general random variable). For
any real-valued random variable X associated with any probability model,
the probability distribution of X is the rule that specifies P(X € S) for
subsets S of R.
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If X and Y are random variables with the same distribution, we often
write X ~ Y to express that fact.

Notice that since a distribution specifies probabilities, the probability
distribution of a random variable is something that can be measured exper-
imentally, or at least tested. If X is a random variable associated with a
repeatable experiment, and if someone asserts that P(X > 5) is equal to
.3, then we could in principle perform many repetitions of the experiment,
and measure the average number of times that X > 5 occurs, to see if this
frequency is close to .3. So distributions are “real”.

On the other hand, a sample space is an abstract concept in our minds,
which is useful but can never be directly measured. If two people are sepa-
rately creating probability models for the same experiment, they may come
up with very different sample spaces. But they must agree about the distri-
butions of any physically meaningful random variables.

At present we are mainly dealing with finite-range random variables.
Equation shows that it is easy to find the distribution of a finite-range
random variable once we know the probability of each point in the range.
Sometimes it’s convenient to use the probability mass function notation (in-

troduced in Definition [2.12]).

Definition 9.8 (The probability mass function for the distribution
of a random variable). Let X be a real-valued random variable for a prob-
ability model. The probability mass function for the distribution of X is the
function ¢ on R defined by ¢g(z) = P(X = z).

Clearly g(x) = 0 for any x which is not in the range of X, so g is deter-
mined by its values as a function on the range of X.

Let X be a finite-range random variable whose distribution has probabil-
ity mass function q. Let S be a subset of R, and let xy, ..., x; be any list of
distinct numbers which includes all the numbers in the range of X that are
members of S. We can rewrite Equation using q:

P(X € S) = q(a1) +...q(zp). (9.9)
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We see from equation that the probability mass function of a finite-
range random variable determines its distribution. So the probability mass
function itself is sometimes referred to as the distribution of the random
variable.

Example 9.9 (A random variable with a binomial distribution). For
the random variable S,, defined in Example [9.5] using equation (9.3) we have

P(S, = k) = (Z) P — p) . (9.10)

The distribution of S, is exactly the binomial distribution defined in Defini-
tion We say that S, has a binomial distribution, and may also refer to
S,, as a binomial random variable.

Example 9.10 (A random variable with a hypergeometric distribu-
tion). Consider a set of N objects, K of which are in a certain target class.
Let a set of n objects be randomly selected from the N objects (sampling
without replacement). We assume that the inequalities in equation
hold, i.e. K < N and n < N.

Let Ly k., be the number of target objects in the selected set. P(Ly k. =
i) is the value P (R;) studied in Exercise [8.4] and Definition

Thus the distribution of Ly k, is the hypergeometric distribution, with
parameters N, K, n, which was defined in Definition [8.6]

By definition, the range of Ly g, is the set of all 7 such that equa-

tion (8.13) holds.
By equation (8.17)),

(D)
()

for i such that equation (8.13)) holds. Otherwise P(Ly k., =) = 0.

P<LN,K,n == Z) = (911)

Can we graph a random variable? Our main experience with functions
has likely been in the setting of calculus, and in calculus we certainly can
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understand a function better by plotting its graph. It can be difficult to
graph a random variable, though, since the domain of the random variable
might be very different from the real line. Example illustrates this, since
for this example the domain is the sample space, and that might be the set
of all sequences of zeros and ones that have length n. There seems to be no
convenient way to portray the set of such sequences visually, at least when
n is greater than 2 or 3.

What we can do is to graph the probabilities for the values of the random
variable, i.e. the probability mass function.

For the random variable X of Example [9.5] Figure [7.1] shows a graph of
P(X = k) versus k for n =30 and p = 1/3.

In Example [8.7| we considered a slightly different random variable. Here
L120,30,40 1s the number of red marbles in a set of 30 marbles randomly se-
lected from a bowl containing 120 marbles, when 40 of the marbles in the
bowl are red, so Li930,.40 has a hypergeometric distribution. The graph of
P (L120,30,40 = 1) versus ¢ was given in Figure [3.2b]

9.5 Expressing the distribution of X using a
density on the real line

If X is a random variable which does not have a finite range, it may not be
obvious how to describe its distribution. How can we picture the distribution?
In the case of a finite-range random variable, we were able to picture the
probability mass function as describing lumps of “probability mass” located
at the values of the random variable. For a general random variable X, one
might still have a vague picture of a pile of probability mass lying on the
real line, even if there are no lumps. Just as before, we would say that the
amount of probability mass lying on a set S gives us the probability that the
value of X lies in the set S.

This picture has a precise mathematical description if it happens that the
distribution of X can be described using a probability density. We’'ll state
that in the present section. Example [9.15| in the next section will put such
densities to work, and show how they simplify computations and clarify our
thinking.

Probably densities were defined using equation of Section Read-
ers may wish to review that definition, as well as Remark [3.7, The general
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definition says that a probability distribution has a probability density f if
the probability of every event A is given by the integral of f over A. Of
course in this section we are concerned with a particular kind of distribu-
tion, namely the distribution of a real-valued random variable X, and so the
density is defined on the real line.

Definition 9.11 (Density of the distribution of a real-valued random
variable). The distribution of a real-valued random variable X is described
by a probability density h on R if the probability that the value of X lies in
a set S is given by the integral of h over S, for subsets S of the real line.

In other words,

P(X €5) :/h, (9.12)
s

for subsets S of the real line.

(To be more precise mathematically, equation holds for every set
S that we would ever use to describe an event. See Section [9.7] for another
comment on this.)

In equation , the integral of h over the set S is written as [, h.
This is the modern notation for integration over a set, as in equation
of Section [3.5

Although the general concept of integration over a set is not difficult (see
Definition , we are more familiar with the special case of integrating over
intervals, using calculus notation. When S is the interval [a, b],

/Sh:/abh:/abh(x)dx. (9.13)

Remark 9.12 (Intervals are enough). In Remark [3.7]it is asserted that if
an equation like ((9.12)) is valid when S is an interval, then we are guaranteed
that it holds for all subsets S of the real line. So if you want to check that
some function A is the correct density for the distribution of X, it’s enough
to check that

P(X €J) :/h (9.14)

J

for all intervals J of the real line. When solving exercises, we often work
with intervals.
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Example 9.13 (Extending a given density to the whole line). Con-
sider the experiment described in Exercise 3.8 We are choosing a point
randomly from the interval [0,3]. Let X be the random variable that gives
the location of the chosen point. The statement of Exercise |3.8| implies that
for any subset S of [0, 3],

P(X €59) :/f, (9.15)
S
where the probability density f on [0, 3] is given by
2
ft)=5E-1) (9.16)

for t € [0,3]. (See Figure[3.5])

Is f a probability density for the distribution of X, in the sense of Defi-
nition [Q.11F

Well, almost. There is one extra condition in Definition [9.11] For con-
venience, a probability density for the distribution of a real-valued random
variable should be defined everywhere on the real line. The function f is
only defined on [0, 3], and in Exercise , equation (9.15)) is only assumed
to hold for subsets S of [0, 3]. Sometimes we may find ourselves dealing with
points which are outside the interval [0, 3]. We want to handle such situations
smoothly, without extra steps.

For example, suppose someone asks us to find P(X € [1,7]). How can we
do that? Well, notice that by definition X never takes values outside [0, 3].
So the event that X takes a value in [1,7] is exactly the same as the event
that X takes a value in [1,3]. Thus

P(X €[1,7])=P(X €[1,3]) = /Sf(t) dt. (9.17)

That wasn’t hard, but after looking at equation ((9.17)), it seems sensible to
define a function h everywhere on the real line, as follows:

h(x):{f(x) if x € 10, 3], (9.18)

0 otherwise.
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See Figure [9.1]
With definition of h, equation (9.17) is exactly the same as the statement

that -
P(X €[1,7]) :/ h(t) dt. (9.19)

Equation (9.19)) suggests that h is a correct probability density function for
the distribution of X.

density h
1.0

0.8 1
0.6
0.4 1

0.2 1

-6 -4 -2 2 4 6

Figure 9.1: The probability density h extends the density f on [0, 3] that was
shown in Figure [3.5

Let’s check that, by running the same argument with the set [1, 7] replaced
by any subset S of R. Since X never takes values outside [0, 3], the event
{X € S} is exactly the same as the event {X € SN |[0,3]}. Hence

P(XES):P(XGSQ[O,Z%]):/

£t dt = / h(t)dt.  (9.20)
Sn[0,3] Sn[o,3]

Since h is equal to f on [0,3] and is equal to zero everywhere else,

/S o h(t) dt = /S h(t) dt.

219



Chapter 9. Random variables

Thus equation ((9.20) is equivalent to the statement that

P(X €5) :/h(t) dt. (9.21)
S

By Definition equation ((9.21)) says that h is a probability density for

the distribution of X. We can use equation (9.21)) conveniently for any set S

we encounter, without fussing over whether S is or is not a subset of [0, 3].

Remark 9.14 (Extending densities in general). The situation of Ex-
ample [9.13] is not uncommon. Let D be a set which contains the range of
some random variable X. Frequently we are given a probability density f
on D, such that P(X € S) = [, f for subsets S of D. If we wish to have
an official probability density for the distribution of X, we can obtain that
by extending f to a function h on the whole real line, and defining A be zero
outside D.

In this case we might describe the situation in words by saying: “the
distribution of X is given by a density f on D, and is zero outside D”. If f
is constant on D, we might also say “the distribution of X is uniform on D,
and is zero everywhere else”.

Exercise 9.4. Let X be a random variable whose distribution has a density
h which is equal to a constant on [3,11] and is equal to zero elsewhere. Find
P(1 <X <5).

Solution]

9.6 Random variables as a tool for thinking

When modeling a real-world problem, random variables occur naturally, and
we naturally analyze the problem in terms of random variables.

Example 9.15. Recall Exercise|4.12| There we consider an experiment with
two steps: first a fair coin is tossed. Then, if the result of the toss is a head,
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in step two a point is chosen from [0, 3], with no point favored. If the result
of the coin toss is a tail, in step two a point is chosen from [2,4], with no
point favored.

Our goal in Exercise [1.12|was to find the probability that the chosen point
lies in a given subinterval J of [0, 4].

Let X be the point chosen in step two. Then X is a random variable,
and we can restate the goal of the problem as: find P(X € J). This leads us
to consider trying to obtain a probability density h for the distribution of X.

First, let’s think about conditional probabilities. If the coin toss gives a
head, the second step of the experiment consists of choosing a point from
[0, 3], with a probability distribution which is uniform on [0,3]. Thus, con-
ditional on obtaining a head, we know by Exercise that the distribution
of X has a density h; which is given by

= ifx €]0,3]
h — {3 T 9.22
1) { 0 otherwise. ( )

To say that h; is a density for the distribution of X conditional on H means
that for all S,

Pwesun:/m. (9.23)

Similarly, if the coin toss gives a tail, the second step of the experiment
consists of choosing a point from [2,4]. Conditional on obtaining a tail, the
distribution of X has a density hy which is given by

L ifre (2,4]
h ={2 T 9.24
2(7) { 0 otherwise. ( )

To say that hs is a density for the distribution of X conditional on T" means
that for all S,

PMESHU:/@. (9.25)
S

How can we combine the conditional densities hq, hy to find h?

Just as in the solution to the original form of Exercise [4.12] we can use
the Law of Total Probability (Theorem [4.6). For any set S, applying the
Law of Total Probability to the event {X € S} gives

P(X € S)=P(H)P(X € S|H)+P(T)P(X € S|T), (9.26)
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1.0
0.8
0.6

0.4 1 -

0.2 4

-2 -1 1 2 3 4 5 6

Figure 9.2: h is a density on R for the distribution of X, where X is chosen
from overlapping intervals.

where H,T are the events that the coin toss gives a head or a tail.

Probability densities are not probabilities, but they are closely related to
probabilities. Looking at equation makes us think that we will get a
valid density h if we define h by a nice neat equation:

h=P(H)h, + P(T)hs,. (9.27)

And this is correct! Just integrate the right side of equation over a
set S, use equations and , and you will obtain the right side of
equation ((9.26). Thus the integral of h over S gives us P(S).

A probability density is correct if it gives the correct probabilities when
you integrate it, so the function h defined by equation is a valid density
for the distribution of X.

For this experiment, P(H) = P(T) = 1/2, and equations and
give us hy and hy. Substituting these values into Equation (9.27]),

13 if z € [0,2),
L1, 11 g 2.3
W)= {232z HoE23) (9.28)
33 lf xTr € [3, 4},
0 otherwise.

A graph of h is shown in Figure (9.2
Please check that integrating h gives all the information obtained in
Cases (i), (ii), (iii), (iv) of the solution for Exercise 4.12l Of course the

density h contains much more information, and we can display the graph of

h!
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9.7 A technical point about sets

We mentioned in Section [9.1] that Definition [9.1] omitted a technicality. For
those who are interested, here is a remark about that.

Remark 9.16 (Measurable sets). Recall that Definition stated that
in any probability model, some subsets of a sample space are designated as
events. This definition did not say that every subset of the sample space is
an event. And, in fact, a complete description of a mathematical probability
model includes an extra requirement, something like this: every event must
be a “measurable set”.

What does the mathematical term “measurable” mean in this context? It
has a special meaning here. It refers to the subsets A of the sample space for
which a probability value P(A) can be defined. As a typical example, consider
the real numbers. Roughly speaking, a measurable set of real numbers is any
set which has an explicit description. The term “explicit description” is used
rather generously, since it includes any mathematical construction using an
infinite sequence of set operations on intervals, or an infinite sequence of
infinite sequences of set operations, and so on, forever. Any set that could
conceivably be used in our applications of mathematics is a measurable set.

An optimistic person might conclude from these statements that every
subset of the real line is measurable, but sadly this is not the case. It can be
shown mathematically that there must exist subsets of the real line which are
nonmeasurable. So the best we can say is that any set which is “of interest”
is measurable.

One might philosophize that having nonmeasurable subsets lurking in the
background is part of the price that we pay for using a powerful abstraction
like the real numbers.

When studying advanced probability, it is necessary at times to check
that the mathematical theorems of probability can be applied without using
nonmeasurable sets. Definition would then be slightly enlarged, to spell
out the technical requirements that a random variable must satisfy. However,
in applications such requirements are always met, and we will not take time
to discuss measurable and nonmeasurable sets further. Given any real-valued
function X on a sample space, you may simply take it for granted that X is
a valid random variable. And if S is any subset of the real line that we are
interested in, then you may take it for granted that {X € S} is an event.

In other words, readers may safely banish the subject of measurable sets
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from their minds. However, from the standpoint of mathematical rigor, we
are using the following convention:

Any statement about sets, such as “for all sets S”, or “for any
set S”, may actually mean “for all measurable sets S”, or “for
any measurable set S”. And the difference has no practical sig-
nificance.

This convention applies, for example, to equation (9.7)) and equation (9.12)).

9.8 Solutions for Chapter [9

Solution (Exercise 9.1). By definition, X(w) =1if 0 < w < p, and
X(w)=0ifp<w<1.

Thus ) )
{XES}:{w: X(w):()}:[ 1.
Solution (Exercise [9.2).

e X is the number that shows on the die when it comes to rest. The
range of X is {1,2,3,4,5,6}.

Let’s take the sample space ) to be the six-point set {1,2,3,4,5,6}, so
that X (w) = w for each w € .

From the definition of X, A = {5,6} and B = {2,4,6}.

e By additivity,

P(B) = P({2}) + P({4}) + P({6}) = s + ¢ + o= 5.

(=)

Omitting the sample space Let’s repeat the same argument again,
this time without using an explicit sample space. There is really no need
to define a sample space, as long as we understand the behavior of X.

Each possible value of X has the same probability, so we can immedi-
ately say that

PX=1)=P(X=2=P(X=3=P(X=4)=P(X =5 =P(X
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These numbers add to one, so P(X =i)=1/6fori=1,...,6.

If the value of X is even, then the value of X is one of the numbers
2,4,6. Hence

{Xiseven} ={X =2} U{X =4} U{X =6}.
By the additivity of probability,

1 1 1 1

With practice, reasoning about events in terms of the values of a ran-
dom variable will seem very natural.

Solution (Exercise [9.3)).

(i) We must show that {X € W} is the union of the sets {X € W1}, ... {X € W}}.
For any sets A and B, one can prove that A = B by showing two facts:
first, that every member of A is a member of B, and second, that every
member of B is a member of A. Thus we consider two cases here.
(1.) Suppose that w is in the union of the sets {X € Wi}, ..., {X € W}.
Then for some i, w € {X € W;}, and so X (w) € W;, and thus X (w) € W,
and so w € {X € W}.
(2.) Suppose that w € {X e W}. If X(w) € W, then X(w) € W,
for some i, and so w € {X € W;}, and thus w is in the union of the sets
{X € Wl},...,{XE Wk}
Facts 1. and 2. show that {X € W} is the union of the sets {X € Wi}, ..., {X € W},
as claimed.
(ii) Let W1y,..., Wy bedisjoint sets. We claim that the sets {X € Wi}, ..., {X € Wi}
are disjoint.
To see that, suppose that for some sample point w, we have w € {X € W;}
and w € {X € X;}. Then X(w) € W, and X(w) € W,. Since the sets
Wi, ..., Wy are assumed to be disjoint, it must be the case that + = j.
Thus for ¢ # j, {X € W;} and {X € W,} have no points in common, i.e.
they are disjoint, as claimed.

Let W be the union of the sets Wy, ..., Wy. By part (i), {X € W} is the
union of the sets {X € W1},... {X € Wy}, ie.

{XeWw={XeW}u...U{X e W,}.
Using additivity, equation (9.7) holds.
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Solution (Exercise [9.4)). We are told that h is constant on [3,11]. Let ¢
denote the value of h on [3,11]. Since h is a probability density on R,

[ on=r
Since h = 0 outside [3, 11],

o0 11
/ h:/ h =c(11 — 3) = 8c.
—00o 3
Thus ¢ =1/8.
Let J = [1,5]. We're asked to find P(X € J). Since h is a density for the

distribution of X,
5
P(XGJ):/h:/ h.
J 1

Since h = 0 outside [3, 11],

P(XGJ):/;h:/:
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Expected values, finite range
case

10.1 Expected value defined

We will define expected value in this chapter for the case of a random variable
with finite range, and then establish the main properties of expected values.

When more general random variables are studied, the definition of ex-
pected value will have to be appropriately extended. However the properties
of expected value will remain unchanged, for the most part.

Example 10.1 (Average payoff). Consider tossing an unfair coin. If the
result is a head, we say you have success. Let the probability of success be
3/5.

Suppose you toss the coin 1000 times, and for each success you receive 2
dollars. For failure you get nothing. What is the average amount of money
that you would expect to earn per toss?

The amount you actually receive on any given toss might be called the
“payoft”. So we are asking for the average payoft.

Notice that the payoff on any given toss is determined by the outcome of
the toss. Thus it is a function of the physical result of the toss, and so it is
a random variable in the physical sense. We want to know the average value
of this random variable over a sequence of repeated tosses.

If we choose a mathematical sample space to represent the physical ex-
periment, then the payoff is represented by a mathematical function whose
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domain is the sample space, so it is a random variable in the mathematical
sense. But let’s think physically for a moment.

In order to calculate the average payoff, think about the frequency of suc-
cesses. If you toss the coin 1000 times, it is likely that your success frequency
will be approximately 3/5. Since 3/5 x 1000 = 600, approximately 600 of
the tosses will result in success. Thus you expect to earn approximately 1200
dollars over the whole sequence of trials, so you expect to earn approximately
1.20 per toss. This is your “average payoft”.

In Example [10.1], we have just given a theoretical estimate for the average
payoff in repeated tosses, without actually performing any tosses. That is
certainly simpler than doing repeated experiments! We call this theoretical
estimate the expected value for the payoff random variable.

The expected value of a random variable is only a single number. But it
tells us something about all the possible values of the random variable, taken
together. This is a new idea.

The theoretical approach to finding an expected value is not just simpler
than the experimental alternative. It may also help us to understand the
experiment situation which is being studied.

Now we will give a precise mathematical definition for expected value, for
the case of a random variable with finite range.

Definition 10.2 (Expected value, finite range case). Let X be a ran-
dom variable. Suppose that the range of X is equal to {x1,...,x}, where
x1,...,T are distinct numbers.

The expected value of X, denoted by E [X], is defined by

EX]=) 2P (X =u). (10.1)

In other books, E [X] is often written as E X .
The expected value of X is also called the expectation of X or the mean
of X. A random variable with expected value zero is often called a mean
zero random variable.
Occasionally it is helpful to have a notation which explicitly states which
probability is being used to calculate the expected value. The expected value
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of X using probability set-function P is then denoted by
Ep [X]. (10.2)

If a different probability set-function Q is used, then the corresponding ex-
pected value is denoted by Eq [X], and so on.

The expected value of X is defined by the sum in equation (10.1f). This
sum is said to be a weighted average (Deﬁnition. It is a weighted average
of the possible values of X, in which the weight of each value z; is the
probability P (X = z;) with which it occurs. Readers who have not used
weighted averages may find it worthwhile to work through some exercises in
Appendix [A]

Example shows we can picture the expected value of X as the center
of mass of the distribution, when the distribution is represented as lumps of
probability mass located at the values of X.

Since expected value of X is defined in terms of the values of X and their
probabilities, it is determined by the distribution of X . The distribution of
a random variable is a real and testable physical property, so the expected
value is a real and testable physical property. Expectation can be calculated
using any valid sample space representation that you like, but the value must
be the same for any valid sample space.

Exercise 10.1 (One-toss payoff). In Example , consider just tossing
the coin once.

If the sample space for one toss is Q = {0, 1}, the payoff function Y for
one toss is simply defined by Y (1) =2, Y(0) = 0.

Use Definition to find E[Y].

[Solution]

Exercise 10.2 (Distinct values). In Definition why are the numbers
x1,...,T, required to be distinct?

[Solution|
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Exercise 10.3 (Order of values is irrelevant). In Definition|10.2) x1, ...,z
is a list of the distinct values in the range of the random variable. Explain
why the order in which we list the values does not matter.

Bolution

Is it important to check our general formulas, to make sure they are right?
Well, somebody should certainly check. Expectation is such an important
concept that it seems worthwhile to check that every property we need is a
consequence of the definitions. We won’t always take time to do this, but in
the proof of the next lemma we will.

Lemma 10.3 (Single event expectation). Let A be an event and let ¢ be
a real number. Let X be the random variable defined by X (w) = cif w € A,
X (w) = 0 otherwise. Then

E[X] = cP(A). (10.3)

Proof. Case 1 If A is the empty set, then X (w) = 0 for all w, so the range
of X is {0}.

Then by definition E [X] = 0-P(X = 0) = 0 = ¢P(A), so equation (|10.3])
holds.
Case 2 If ¢ = 0 then again the range of X is {0}, and equation (|10.3]) holds

as in Case 1.
Case 3 If A = Q, then the range of X is {c}, and by definition E [X| =
c-P(X =c¢)=c-P(), so equation ((10.3]) holds.

Case 4 The only remaining case is that A # () and A # Q, with ¢ # 0.
Then the range of X consists of the distinct points 0, c.
Then by definition E[X] = ¢-P(A) +0-P(A°) = ¢-P(A). Thus

equation ((10.3) holds.
0

An important consequence of Lemma [10.3; for any constant c,

E[c] = ¢, (10.4)
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where E [¢] denotes the expected value of the random variable which is equal
to ¢ for all outcomes.

Hmm, we looked at a lot of cases when proving Lemma [10.3] The next
exercise would have saved some work!

Exercise 10.4 (Unused values in the definition are ok). Let X be a

random variable. Let yy, ..., y, be distinct numbers, such that every nonzero
number in the range of X is included in the list ¥4, ..., y,. Prove that
E[X]=) yP(X=y). (10.5)
i=1

olution

Exercise 10.5. Use Exercise to give a shorter proof of Lemma [10.3
Solution]

Example 10.4 (One coin toss). Let X be as in Example[0.2] Notice that
X is the number of successes obtained in the coin toss (either 0 or 1).

Let A be the event that the toss gives success. Then X(w) = 1 when
w € A, and X (w) = 0 otherwise.

Applying Exercise[10.4 E[X] =1-P(X =1)+0-P(X =0) = p.

Example 10.5 (One roll of a die ). We deal with the result of rolling a die
(Example similarly to Example [10.4. Let X be the number obtained
by rolling the die, so that the range of X is {1,2,3,4,5,6}.

By definition, E [X] = 1.P(X = 1)+2.P(X = 2)+3-P(X = 3)+4.P(X =
4)+5-P(X =5)+6-P(X =6), ic.

6

E[X]=) iP(X =i).

i=1
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Lemma 10.6 (Expectation of a scaled random variable). Let X be a
random variable and let ¢ be a number. Then

ElcX] = cE[X]. (10.6)

Proof. The statement is true in general, but we only consider the case of a
finite-range random variable here.

If ¢ = 0, then ¢ X is the zero random variable. Using Lemma m (or the
definition of expected value), we know that E [c X] = 0, so we certainly have
E[c X]| =cE[X].

From now on suppose that ¢ # 0.

Let x1,...,x; be the distinct numbers in the range of X. Since ¢ # 0,
we have X = z; if and only if ¢ X = cx;. Hence the range of ¢ X is the set
{cxy,...,cxy}, and the numbers czq, . .., cxy are distinct. By the definition

of expected value,
ElcX]|=criP(cX =cxy)+ ...+ cxP(c X = cay).
But P(¢c X = cxz;) = P(X = ;) (it’s the same event), so
ElcX]=cr,P(X =x1)+... +c,)P(X = 2;) = cE[X].
[

The property of expectation stated in Lemma is very simple, but it’s
important. Just to have a name for this property, we’ll call it the scaling
property. This is not a standard mathematical term, but it fits, since
Lemma says that if we scale (up or down) all the values of X by a factor
¢, then we scale E [X] by the same factor.

The next exercise is an example for an upcoming theorem, Theorem [10.8|
However, it is instructive to solve it directly here.

Exercise 10.6 (Finding expected value using cases). Consider the
number wheel described in Exercise 2,13

Imagine a game in which the wheel is spun. Let Z be the number at
which the wheel stops. Then Z is a random variable, and the possible values
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for Z are 0, 1,2, ..
the same probability.

., 100. We assume that each of these numbers occurs with

In this game, a payoff is given, based on the number where the wheel

stops, i.e. based on the value of Z.
Let the payoff be called X.
The rules are as follows:

o If 7 =0, then X =0.

o If 7 =100, X = 5.

e If Z is even and less than 100, then X = 2.

e If 7 is odd, then X = 1.

Thus X = ¢(Z), where ¢ is defined in the obvious way:

(10.7)

(i) Find E [X], using the definition of expected value.

(ii) Show that

E[X] = Z e()P(Z =1).

100

(10.8)

Does the statement of equation feel right to you? Since ¢(i) is the
value of X when Z = i, this equation says that E [X] is equal to a weighted
sum of values of X, but it’s not the same sum which is used in the definition
of E[X]. Instead it’s a sum over cases, where each case is given by the value
of Z. The weight of each case is the probability of the case.

olution
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Chapter 10. Expected values, finite range case

10.2 Expected value by cases

Please think about the statement of the next theorem until it seems reason-
able. The proof is optional, but it is not hard to understand the basic step:
grouping similar terms in a sum over cases, where each term is a value times
a probability.

Theorem 10.7 (Expectation by cases). Let Dy, ..., Dy be disjoint events
in some model, such that Dy U...U Dy = Q.

Let vy,...,vr be numbers, and let X be a random variable such that
X(w) = v; at every point w in D;. (Thus X has value v; whenever event D;
happens!)

Then

k
E[X] =) vP(D;). (10.9)

See Figure [10.1}

Proof. Let x1,...,x,, be a list of the distinct numbers in the range of X.

If an event D; is nonempty, then it contains at least one point w. By
assumption, X (w) = v; . Thus for every nonempty D;, v; is a point in the
range of X.

For each 4, if D; happens to be empty, change v; to one of the values
Z1,...,T,. Such changes clearly make no difference to the sum in equation
, so they don’t affect the truth of the theorem.

Now we can say that the numbers v,..., v, are a list of the values
x1, ..., Tm, possibly with repetitions, as Figure [10.1] illustrates.

Since Dy U...U Dy =, for every z; there must be at least one event D;
such that v; = ;.

We can choose the labels for the numbers z1,...,x,, so that 1 < x5 <
e < Ty

The order in which we write the events D; makes no difference in equation
(10.9). For convenience, relabel the events and associated values so that
v Svp << vpg < U

For every j, let i; be the largest index ¢ such that v; = x;. Because of the
ordering of the values, 7, must be k.

The following picture illustrates the general situation.
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10.2. Expected value by cases

The top row is simply Dy, ..., Dy, in order, but grouped.

Dy --- D;, Dy -+ Dy - Di 41 - D

3}1:.”:Uilj<z)i1+1:”':vi2l< """ < Vjp_141 = = U, - (1010)

Ty X2 Tm

The events in Figure [I0.1] are grouped in a similar way.
We see that
{X=x1}=DyU---UD,,

and for j =2,...,m,
{X = I‘j} = D/L'j71+1 U---u Dij; (1011)
Define 7g = 0. Then equation ((10.11|) holds for all j = 1,...,m, which

saves writing.
Since the events D; are disjoint, for every j we have

P(X = le'j) = P(Dij71+1) + ...+ P(Dzj)

By definition,

E[X]=) zP(X =1 = ij (P(Di, ,41) +...+P(Dy))

= Z (ij(Di]._le) +...+ ij<Dij>)

j=1
= Z (Uij_1+1P(Dij_1+1) + ...+ ’Ule(Dlj))
j=1
k
= uP(Dy)
i=1
[
In the proof of Theorem [10.7], did we really need to relabel the events D;
and values v; so that v; < vy < ... < v <7

We didn’t do that in Figure [10.1] did we? And no, we don’t really need
the relabelling step. But if we didn’t do that, we wouldn’t be able to display

the general grouping picture given in equation ((10.10)).
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Chapter 10. Expected values, finite range case

You can still talk about the grouping, though, by defining sets of indices:
you would define N; be the set of indices ¢ such that v; = x;. Then, instead
of saying:

P(X =x;) =P(Dj; ,+1) +... + P(Dy)),

=Y P(D

iENj

you would say:

and run the same argument.

e
~

Figure 10.1: For Theorem Here v1 = x1, v = v3 = X9, and vy = v5 =
x3, where xq, 9,13 are dlstmct. {X =21} = Dy, {X =22} = Dy U Ds,
{X = 1’3} = D4 U D5.

Exercise [10.6|is an example for the next theorem.

Theorem 10.8 (Expectation of a function of a finite-range random
variable). Let Y be a random variable on a sample space 2. Let the distinct
values in the range of Y be yi,...,yx. In this theorem there is no need to
assume that yy, ...,y are numbers. They can be anything.
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10.3. The frequency interpretation for expectation

Let ¢ be any real-valued function whose domain includes v, . .., yx. Then

Ele(Y)] =) ¢ P (Y =y). (10.12)

i=1

Proof. Let D; = {Y =y}, let v; = ¢ (y;), and apply Theorem [10.7]
O

Exercise 10.7. Suppose that the distribution of X is uniform on the points
{-=2,1,0,1,2}. Find E [X?] in two ways: from the definition and using The-
orem [T0.8

Bolution]

Example 10.9 (Expectations on finite sample spaces). Let X be a
random variable defined on a finite sample space 2. Let the distinct sample
points be wy, ..., wy,.

In Theorem let D; = {w;}. Equation (10.9)) gives us a pleasantly
simple formula for expected value:

E[X] =) X(w)P({wi}) (10.13)

Of course the values X (w;) might not be distinct. But as usual that’s
ok, we only give each outcome its own probability weight, so there is no
“double-counting”.

10.3 The frequency interpretation for expec-
tation

Here is a general statement of the key fact linking expected value to the real
world. We have already seen this in Example [10.1}
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Chapter 10. Expected values, finite range case

Probability Fact 10.1 (The frequency interpretation of expected
value). Let X be a random variable defined in terms of an experiment. If
the experiment is repeated many times, the theoretical expected value of the
corresponding mathematical random variable is likely to be approximately
equal to average experimental value of the random variable X obtained from
the repeated experiments.

Justifying the frequency interpretation for expected values We can-
not give a rigorous proof of a practical statement, but we will show that for
a random variable with finite range this rule is a direct consequence of the
frequency interpretation of probability. A similar argument was already used
in Example [10.1}

Let X be a random variable with finite range. Suppose that the range of
X consists of the distinct numbers x4, ..., x;.

By definition,

EX|=0PX=21)+..+2,P(X =2x,).

Suppose that X represents a physical random variable in some experiment.
Consider a sequence of N repetitions of the experiment.

Let M; be the number of those experiments for which the value of X is
equal to x;. Then the average experimental value Z for X is given by

1 1 & boM;
T = i (sum of all measured values) = N ; x; M; = ; iy

The frequency interpretation for probability says that for large N, it is
very likely that M;/N ~ P (X = x;). Applying this approximation to every
term in the sum for z,

k
T~ inP (X =z;) = E[X]. (10.14)

Equation ((10.14)) expresses Rule|10.1} so we have justified this rule.

A traditional name for Rule is “the Law of Large Numbers”. Some
corresponding mathematical properties of expected value are given in two
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10.4. Additivity of expectation

well-known theorems called “the Weak Law of Large Numbers” and “the
Strong Law of Large Numbers”. These are mathematical statements. The
law of large numbers expressed here in Rule [10.1] is a practical statement,
not a mathematical theorem.

10.4 Additivity of expectation

The frequency interpretation of expected value provides a strong connection
between theoretical calculations and experimental results. We can use the
physical interpretation of expected value to tell us what the mathematical
properties must be.

For example, consider two physical random variables X and Y which
are defined for the same experiment. The measured value of X + Y is, by
definition, the sum of the value of X and value of Y. By the frequency
interpretation, the average of the measured values of X + Y, over sufficiently
many repeated experiments, is approximately E[X 4+ Y]. And the average
value for X +Y is equal to the sum of the average value for X and the average
value for Y. This frequency argument leaves us in no doubt that additivity
must hold for mathematical expected values:

E[X +Y]=E[X]+E[Y]. (10.15)

Equation ([10.15]) is confirmed with the formal proof in Lemma [10.10 given
below. Additivity actually holds for expectations of all random variables (see
the statement of Theorem [14.9)).

Lemma 10.10 (Additivity of expectation). Let X and Y be finite-range
random variables defined for the same probability model. Then

E[X +Y]=E[X]+E[Y]. (10.16)

Proof. Let xq,...,x, be the distinct numbers in the range of X, and let
Y1,---,Ym be the distinct numbers in the range of Y.

Let Dij = {X = in,Y = yj}

By Theorem ({10.7)),

n m

E[X] =) ) xP(Dy) (10.17)

i=1 j=1
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Chapter 10. Expected values, finite range case

E[Y]=) > yP(Dy) (10.18)

i=1 j=1

and
n m

EX+Y]=) ) (zi+y)P(Dy). (10.19)

i=1 j=1
The right side of equation ([10.19)) is the sum of the right sides of equations

(10.17) and (10.18). Hence E[X + Y] =E[X] + E[Y].
[

Exercise 10.8. If you love the frequency interpretation, write out a careful
derivation of the additivity property for physical random variables, using the
frequency interpretation.

[Solution]

Remark 10.11 (Using multiple indices). In the proof of Lemma ,
does it seem strange to apply Theorem ([10.7]) to a situation in which the
disjoint sets are described by multiple indices ¢, 57

It is important to see that this is ok. Notice that the properties of the sets
Dy, ..., Dy in Theorem , such as disjointness and having union equal
to the whole space, do not depend on how the sets D,..., Dy are labelled.

Also, the sum in equation ((10.9) would not be changed if we listed the
sets Dy,..., D in a different way, provided that we included all of the sets
and did not list any of them more than once.

So the way we label our indices doesn’t matter.

Here’s some useful terminology.

Definition 10.12 (Linear operations). Consider any set of mathematical
elements such that “addition” and “multiplication by a number” make sense.
Examples: the set of coordinate vectors in R"™, the set of functions on an
interval, the set of random variables on a sample space.)

An operation on such elements is said to be a linear operation if it pre-
serves addition and also preserves multiplication by a number. More pre-
cisely, a linear operation is an operation with the following properties:
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10.5. Using linearity to find expectations

(i) The Additivity Property. The result of applying the operation to
a sum of elements is equal to the sum of the results of applying the
operation to each term separately.

(ii) The Scaling Property. The result of multiplying an element by a
constant and then applying the operation is the same as the result of
applying the operation first, and multiplying by the number afterwards.

Linearity is a handy term, and we often use it. The rules of calculus
tell us that integration of functions is an example of a linear operation. By
Lemma [10.10] and [10.6], the operation of taking expected value is a linear
operation. The next lemma records this fact for future reference.

Lemma 10.13 (Expectation is linear). Taking expected value is a linear
operation, i.e.

(1)
EX+Y]|=E[X]|+E[Y]
and

(i)
E[cX] =cE[X].

10.5 Using linearity to find expectations

We will use linearity so much that it will seem instinctive. Here are a few
examples in which linearity plays a role in finding expectations.

10.5.1 Expected number of successes for Bernoulli tri-
als

As in Example 0.5] let S, be the total number of successes in n Bernoulli
trials with success probability p. Then S, has a binomial distribution. We
wish to find E[S,,].
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Chapter 10. Expected values, finite range case

Before we perform this calculation, let’s try to make it seem a little im-
pressive. Remember that n could be huge, a million or a trillion. If we really
care about the result, our method had better be right. Definitions and proofs
are what gives us the confidence to produce numbers in situations where even
computers would be too slow.

Method 1: using additivity Let X; =1 on A; and X; = 0 on AS. (Thus
X, is the indicator function for the event A;, as defined in Definition )
We have already observed that X; is the number of successes obtained in
trial ¢ (either 0 or 1). From the definition of S, it follows that S, = X; +
...+ X,. By additivity, E[S,] = E[X1] + ... + E[X,,]. From the definition
of expectation, E[X;] =1-P(X; =1)+0-P(X; =0) =p. Hence

E[S,] = np. (10.20)

Notice that E[S,] is exactly what we would immediately compute from
the frequency interpretation, which is the basis of the common sense reason-
ing used in Example [10.1}]

Exercise 10.9 (Method 2 for expected number of heads). Method 2
is what you use when you don’t remember that expectation is additive. It is
perhaps unnecessary to add that this is not the right approach. Nevertheless,
we can learn from it.
By equation (9.3), P (S, = k) = (})p"(1 —p)"*.
Calculate E [S,,] again, this time using Definition and this formula.
As in Example , we can guess ahead of time that E[S,] = np. So if
we see a factor of np in the algebra we should hang onto it in the calculation.
Finishing the calculation will verify our guess.

Bolution

10.5.2 Expected value of a hypergeometric random vari-
able

Consider the experiment of Exercise 8.4 In that experiment, we have a bowl
which contains N marbles. A subset of n marbles is selected, with no marble
favored. There are K red marbles in the bowl, the others being green. Let
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10.5. Using linearity to find expectations

the random variable Ly x, be the number of red marbles selected. We wish
to find E [LN,K,n]‘

Ly k. has hypergeometric distribution with parameters N, K, n (Defini-
tion , and our calculation for the expected value applies to any such
random variable.

Since linearity worked so well for coin-tossing, it’s the natural method to
try here. And it works. But we need to set up the problem, and use all the
information we have. The tricks we use here are worth noting!

Method 1 for E[Ly k,]: using additivity Assign each marble an iden-
tification number, so that the marbles are numbered from 1 to N. For con-
venience, let marbles 1,..., K be the red ones.

Let X, = 1 if marble ¢ is selected, X, = 0 otherwise. Since no marble is
favored, E [X/] is the same for every /.

Incidentally, the experiment was defined as choosing a subset of n marbles.
But it’s ok to focus on what happens to a particular marble. From the
definitions,

Lngn=X1+...+Xk. (10.21)

By linearity,
E[Lnkn =E[Xi]+... + E[Xk]| = KE[X)]. (10.22)

To find E [X;] with minimal work, note that from the description of the
experiment there are always exactly n marbles selected. Hence

Xi+...+ Xy =n, (10.23)

always.
Mathematical expectation has been proven to be linear. So now you can
go ahead and take the expected value of equation ((10.23]). This gives

n=E[X]]+...+E[Xy] = NE[X]].
This gives E [X] = n/N, and hence by equation (10.22)) we have

n K

so we are done.
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Remark 10.14 (Special cases). Fact 1 Incidentally, since we showed
that E[X;] = n/N, and since X; is always either 1 or 0, equation tells
us that E[X;] = P (X; = 1). Thus our work has shown that the probability
of any particular marble being selected is exactly n/N.

Fact 2 Also, by equation (10.24) we know that E [Ly k] = % = K/N.
Since Ly i, is always either 1 or 0, we know that the probability that a
single selected marble lies in the target set is K/N. This probability agrees
with the statement of Theorem 2.22]

Do you think that Fact 1 and Fact 2 are really the same statement? In
Fact 1, we have a particular element, and randomly choose n points. In
Fact 2, we have a particular set of K element, and randomly choose a one
point. But since the particular point could be any point, and the particular
set could be any set, it seems that in both cases we might as well say that
we have a random set and a random point, chosen independently, and we are
finding the probability that the random point is an element in the random
set.

Method 2 for E [Ly k,]: direct calculation By “direct calculation” we
mean something like the method of Exercise [10.9] This is feasible, and a
calculation is given next. You should definitely skip it as long as you agree
that this is not the easy approach!

As in Definition [9.10] the range of Ly k, is the set of all ¢ such that
equation (8.13) holds.

By equation , for each i in the range of Ly k, we have

(0
)

P(Lygn=1)=
Hence by definition:

E[Lykn = ZiP(LN,K,n =1) = Z@ % _ Z Z(Z)(EV];[_Z)7

*

where we write g to mean a sum over the indices 7 in the range of Ly x ,,

i
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*

and we write E to mean a sum over the nonzero indices ¢ in the range of

i>0
LN,K,n'
Using equation (8.8)),
RN (VEY g o (RS (NK
E [LN,K,n] _ Z 7 (]zv—l]\z_(ln—z ) _ Nn (z—l]?[Eln—z ) ) (1025)
i>0 ?(nfl) i>0 (nfl)

Sincd N-K=(N—-1)—(K—-1)andn—i=(n—1)— (i — 1), this gives

. (K—1\ ((N—1)—(K—1)
K i n—1)—(i—
E[Lyxn) = Wn ) ( 1>(((N_1; =) ). (10.26)
>0 n—1

By equation (8.13), the nonzero indices ¢ in the range of Ly k,, are those
7 such that

1<i, K—i<N-n, i<K, andi <n. (10.27)

Let Ly_1 k—1,—1 denote a hypergeometric random variable with param-
eters N -1, K —1,n—1.

Let £ =i — 1. Then equation ((10.27) says that
0<l (K-1)—(<(N—-1)—(n—1), and ¢ <n—1.
This is exactly the statement that ¢ is in the range of Ly_1 x_1,—1. Hence

* (K—l) ((N—l)—(K—l)) *x (Kg_l) ((N—l)—(K—l))

> — (‘ﬁ?)(il) =2 (N(’ﬁ)l” , (10.28)

>0 n—1 4

n—1

kk

where we write g to mean a sum over the indices £ in the range of Ly_1 x—1,n-1,

¢
Using equation (9.11)) with N, K,n replaced by N —1, K —1,n—1, equa-
tion ((10.28)) says that

* K—l (N—l)—(K—l) sk
Z (z—l ) (((Nn:i))—(z—l) ) _ P(LN_LK_Ln_l _ g)
i>0 n—1 l

This is the sum of the probabilities of the values of Ly_1 x_1,-1 over all

possible values, so the sum is equal to one! By equation (10.26), E [Ly x»] =
Kn/N.
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10.5.3 Reflection symmetry

If  is a point on the real line we will say that the point —x is the mirror
image of x under reflection in the origin.

Consider a physical random variable X such that for any possible value
of X, the negative of that value is just as likely to occur. Over many ex-
periments, the positive and negative values of this random variable will tend
to cancel out. In the long run, the average should be close to zero. By the
Frequency Interpretation of Expected Value, it must be true that E [X] = 0.

The next exercise asks you to give a more precise argument to show that
E[X]=0.

Exercise 10.10. Let X be a random variable with finite range. Let ay, ..., ax
be distinct positive numbers, and suppose that the nonzero range of X is the
set of numbers a1, —ay, as, —as,...,ar — ai. In addition, suppose that for
eacht=1,... k,

P(X =—-a)=PX =a). (10.29)

Use Definition to show that E[X] = 0. As usual, Exercise is
convenient in applying the definition of expected value.

Bolution

Exercise [10.10] uses mathematical reasoning which is close to the physical
picture. But general mathematical arguments can be more powerful, as in
the next lemma.

Lemma 10.15 (Reflection symmetry gives mean zero). Let X be a
random variable such that X and —X have the same distribution.
If E [X] exists, then E [X] = 0.

Proof. The expected value of any random variable is determined by its dis-
tribution, and for this particular random variable X it is assumed that X
and —X have the same distribution. Therefore E [X] = E [—X].
Using linearity of expectation, E [-X] = —E [X], and so 2E [X]| = 0.
O
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Does Lemma [10.15| give Exercise [10.15| as a special case? Sure! Saying
that P(X = —a;) = P(X = q;) is the same as saying that P(—X = q;) =
P(X = a;), and so the assumption of Exercise is equivalent to the
assumption that X and —X have the same distribution.

Exercise 10.11. Let X be a random variable whose range is exactly the set
S of integers i with —1000000 < ¢ < 1000000. Assume that the distribution
of X is uniform on S. Find E [X] in two ways:

(i) By calculation using the definition of expected value, and
(ii) using Lemma [10.15
[Solution]

Exercise 10.12. Let X be a random variable whose range is exactly the set
S of integers ¢ with 0 < z < 1000. Assume that the distribution of X is

uniform on S.
(i) Find the distribution of X — 500.
(ii) Find E [X].
[Solution]

10.6 Monotonicity of expectations

Exact values are often not available, so we need to be able to deal with
estimates and inequalities.

Lemma 10.16 (Monotonicity of expectations). Let X and Y be random
variables with finite range, such that X (w) < Y(w) for all sample points w.
Then

E[X] <E[Y]. (10.30)
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Proof. By assumption, ¥ — X is a nonnegative random variable, i.e. all
values are nonnegative.

The definition of expected value in the finite range case shows that
E[Y — X] > 0.

Since Y = X + (Y — X)), additivity tells us that

E[Y]=E[X]+E[Y — X].

Since E[Y — X] > 0, we are done.
0

Exercise 10.13. Give a derivation of the monotonicity property for physical
random variables, using the frequency interpretation.

[Solution|

Example 10.17 (E[X] and E[|X]]). Let X be a finite-range random vari-
able, and let 1, ...,k be the distrinct numbers in the range of X. Using the
definition of expected value and the triangle inequality (Appendix ,

k 00 00
BX]| =) aP(X =) | <> [aPX =) =) || P(X = z,).
i=1 i=1 i=1
The numbers |z4], ..., |zx] may not be distinct, if X happens to have both

positive and negative values. But using Theorem [10.12| we see that
D lw| P(X =) = B[|X]].
i=1

So we have proved an interesting inequality:

EIX]| <E[X]]. (10.31)

A Better Proof for equation ((10.31))

Of course, our proof used the finite-range property for X. But the in-
equality is true for general expected values. Furthermore, there is actually a
slick way to derive it, just using general properties: linearity and monotonic-

1ty:
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Note that X < |X]|. Hence, by monotonicity, E [X] < E[|X] |.

But we also have —X < |-X| = |X|. So, by monotonicity, E[-X] <
E[|X]|]. Then, by linearity, —E [X] < E[|X]].

One of the numbers E [X], —E [X] must be equal to | E[X]|. And each
of these numbers is less than or equal to E[|X]|]. So we have shown that

equation ({10.31)) holds in general.

10.7 General random variables

We won’t take time to define expected value for general mathematical random
variables carefully in this book, but later we will use mathematical expecta-
tion for lots of random variables that do not have finite range. Expectation
can be defined for any bounded random variable, and for unbounded random
variables that are not too big.

A bounded random variable is a random variable which is a bounded
function on the sample space.

You could probably guess the definition of a bounded function, but we’ll
state it carefully anyway.

Definition 10.18 (Bounded functions). A function f on any set is said
to be bounded if there is some number ¢ such that |f(z)| < ¢ holds for every
x in the domain of f.

For unbounded random variables, sometimes the expected value exists,
and sometimes it doesn’t.

Remark 10.19 (Linearity for expectation of general random vari-
ables). The linearity property holds for bounded random variables, as we
would hope. For unbounded random variables, the linear property comes
with a little bit of “fine print”, since expected values might not exist. So the
correct way to state additivity of expectation in the general case will be to
say that if E[X] and E [Y] exist, then E [X + Y] exists and equation
holds (see Theorem . Similarly, the general version of the scaling prop-
erty says that if E[X] exists then E [c X]| exists and equation holds.
That seems easy to remember.
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We'll often stick to finite-range random variables when we want to give
a careful derivation of some fact. But much of what is true for finite-range
random variables is true in general.

Example 10.20 (Expectations with a density on the sample space).
Just so readers can see an example of calculating expected values using a dif-
ferent method from that given in equation , suppose that the sample
space € is a continuous interval [s, t] of the real line, as discussed in Chap-
ter 3] Assume that probabilities are given by a uniform distribution on [s, ¢]
(Definition (3.

Asin Exermse 3.5 the uniform distribution on [s, t] is given by a constant
density, say f = c¢. And since P(2) = 1 must hold, we need to have f f=1,
and so ¢ = 1/(t — s).

In that situation, if X is a random variable on the sample space, it turns
out that the correct formula for E [X] is:

/ X (u)edu. (10.32)

In other words, here we find E [X] by integrating its value over the sample
space.

More generally, if the distribution on € = [s,t| is given by a density
function f (as in Definition [3.4), the correct formula for E [X] is

_ / X (u) f(u) du. (10.33)

Not surprising, just different from finite-range case.

For more discussion of finding expectations using densities, see Section|15.3|

10.8 Solutions for Chapter

Solution (Exercise [10.1]). The range of Y is {0, 2}, while P(Y =0) =2/5
and P(Y =2) = 3/5.
By definition,
2 3
EY =-0+-2=12
Y]=70+¢
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Solution (Exercise [10.2]). Each value v in the range should contribute to
the expected value E [X]. The contribution is given by the term v P(X = v)
in the sum which defines E [X].

Physically, the importance of a value v for the expected value should
depend on the probability that X is equal to v. If a value appears twice in
the sum, then its contribution to the sum is doubled. This is not consistent
with actual importance of the value.

Solution (Exercise [10.3). Definition shows that E [X] is given by a
weighted sum of terms.
Addition is commutative! (Yes, I've been waiting for a chance to say
that.) Changing the order of the terms in a sum does not change the a value
of the sum.

Solution (Exercise [10.4]). Let z1, ...,z be a list of the distinct elements
in the range of X. By definition,

E[X] = ijP(X = ;).

To show that equation ((10.5)) holds, we need to compare two sums, and see
if they are equal:

k n
?
d o P(X =1)=> yP(X =y).
j=1 i=1

The order of the terms in a sum does not matter.

Suppose that a value y; is not in the range. Then P(X = y;) = 0, and
the term y;,P(X = y;) = 0, so that term contributes nothing to the sum on
the right. We can throw away any term like that from the sum on the right.

Suppose that 0 is in the range. Then 0 = z; for some j. The term
z;P(X = z;) = 0, so that term contributes nothing to the sum on the left,
and we can throw it away from the sum on the left. For the same reason, if
y; = 0 for some i, we can throw away the term y,P(X = y;).

After all this throwing away, the remaining sum on the left will have the
same terms as the remaining sum on the right, possibly in a different order.
So the sums are indeed equal.

Solution (Exercise [10.5)). Apply Exercise with n =1 and y; = c.
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Chapter 10. Expected values, finite range case

Solution (Exercise [10.6]).
(i) From the assumptions, the range of X is {0,1,2,5}, and

{X=0}={z2=0},
(X=1}={Z=11U{Z=3}U...U{Z =99},

10.34
{X=2}={Z=2}u{Z=4}uU...U{Z =098}, ( )
{X =5} ={D =100}.
Hence the distribution of X is given by:
1
= = P = = —
P(X=0)=P(Z=0)= .
P(X =1)=P(Z=1)+P(Z=3)+... +P(Z = 99) = 22
14091 (10.35)
PX=2)=P(Z=2)+P(Z=4)+ —I—P(Z:98):ﬁ,

P(X =5)=P(Z =100) =
By definition,
EX]=0-P(X=0)+1-P(X=1)42-P(X=2)+5-P(X =5)
50 49 1 153

1
=0 —+1- —+2. — -— = —\ (10.36
0 101 * 101 * 101 o 101 101 ( )

(ii) By equation ((10.35)),

O-P(X—O)—O-P( =0),
PX=1)=1-PZ=1)+1-P(Z=3)+...+1-P(Z=99), (1037)
2P( = )—2 PZ=2)+2-P(Z=4)+...+2-P(Z=98), '
5-P(X =5)=5-P(Z = 100).
Since ¢ gives the value of X in terms of the value of Z, we can rewrite
equation as
0-P(X =0)=¢(0)-P(Z=0),
1'PX=1)=¢(1) P(Z=1)+¢3) - P(Z=3)+...+¢(99) - P(Z =99),
2-PX=2)=¢p12) - P(Z=2)+¢(4) - P(Z=4)+...+¢(98) - P(Z = 98),
5-P(X =5)=¢(100) - P(Z = 100)
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If you add up all the equations in statement ({10.38)), you obtain:

100

E[X] =} ¢()P(Z = ),

which is equation ([10.8)).
To phrase this differently: the proof of equation (10.8)) is just a matter of
grouping the terms in the sum, in order to obtain equation ((10.36)).

Solution (Exercise [10.7)).

From the definition of expected value

2 9
E[X?] =0-P(X*=0)+1-P(X*=1) +4-P(X* =4) = - +4-- =2

Using Theorem [10.8

1 1 1 1 1 4 1 1 4
E[X?=(-22 -+ (-1)* -40-2+12 2422 =4 -+ -+ - =2
[ ] (=2) 5+( ) 5+ 5+ 5+ 5 5+5+5+5
Solution (Exercise [10.8]). Consider a long sequence of N repeated exper-
iments. Let the measured values of X in these experiments be zq,...,xy
and let the measured values of Y in these experiments by yi,...,yy. Then
the measured results for X +Y are x1 +vy1,..., 2y +yn. The corresponding
experimental averages are:
1 1 & 1 —
Of course
1 — 1
SO
TTy=1+7. (10.40)

The frequency interpretation for expected value tells us that for large NV,
T~ E[X],y= E[Y] and r +y =~ E[X + Y. Since these approximations
can be made as precise as we like by taking a large number of repetitions,
equation implies E[X + Y] =E[X]|+ E[Y].
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Solution (Exercise [10.9)). By definition

B[S, = ki:ok(;f)pk(l ek

The k = 0 term is zero, so

By equation (8.8))

" nfn-—1 . n nin—1 - e
Bl :ZkE(k—1)pk(1_p) kszPE(k—ka H(1=p) Y,
k=1 =1

Letting t = k — 1,
— (n-1 .
E[S.)=np)_ ( Z. )p’(l —p)ni, (10.41)
i=0

Let S,,_1 denote the number of heads obtained in n — 1 coin tosses, when the
coin has success probability p. Equation (10.41]) says that

E[S,] = npiP(Sn,l =1).

1=0

Since the range of S, is {0,1,...,n — 1},

Hence E [S,,] = np.

Solution (Exercise [10.10). By Exercise [10.4]

E[X]=aP(X =a)+.. +aP(X = ay)—aP(X = —a1)—. . .—a;,P(X = —a;) = 0.
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Solution (Exercise [10.11)).
Method 1

range of X = {—10000000, —999999, . ..,999999, 1000000} ,

and all these points have equal probability. There are 2000001 points in the
range. Hence, by definition,

1000000 1 -1 1 1 1000000 1
X . Z " 2000001 ( Z ! 2000001>jL 2000001+ Z " 2000001
i=—1000000 i=—1000000 i=1
Thus
< —1 1 > 10§0:oo 1

EX]={ Y i—<—]+ i .

o e 2000001 “~ 2000001

Let 7 = —i in the first of these two sums. Then that sum becomes

10000000 1
= 2 Jaon00000
J=1
and this term cancels with the second sum, so E [X] = 0.
Method 2 Again we note that
range of X = {—10000000, —999999, . ..,999999, 1000000} ,

All points in the range have the same probability, and if j is in the range
then so is —j.

Since P(—X =j) = P(X = —j) = P(X =), it follows that X and —X
have the same distribution. Hence by Lemma (10.15, E [X] = 0.

Solution (Exercise [10.12). We see that
range of X = {0,1,...,1000}.

All these values have the same probability, so
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Let Y = X — 500.
range of Y = {0 — 500, 1 — 500,...,1000 — 500} = {—500, —499, ..., 499, 500} .

Hence

Fact 1 Y and —Y have the same range.

We also see that for each ¢ in the range of Y,

P(Y = i) = P(X =500 = i) = P(X =i +500) = 15

Hence

Fact 2 All the points in the range of Y have the same probability.

Facts 1 and 2 imply that P(Y =1i) = P(Y = —i) = P(-Y =) for all ¢
in the range of Y. Thus the distributions of ¥ and —Y are the same.

By Lemma [10.15] E [Y] = 0.

That is, E[X — 500] = 0.

Now we use linearity again. Since expectation is a linear operation,

E[X] - E[500] = 0, i.c. E[X]=500.

Solution (Exercise . Consider a long sequence of N repeated ex-
periments. Let the measured values of X in these experiments be z1,...,zy
and let the measured values of Y in these experiments by vy, ..., yn-

By assumption, x; < y; for every .
The corresponding experimental averages are:

1 & 1 &
— =3 10.42
Since

1 & 1
NLUSy.

&Mz

we have ¥ < 7.
Taking N larger and larger gives averages  and ¢ which approximate
E [X] and E [Y] as precisely as we like. Hence we must have E [X]| < E[Y].
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Chapter 11

More properties of expected
value

11.1 Indicator Functions

In this section we introduce a simple notation which is useful when writing
expressions involving expectations or integrals.

Definition 11.1 (Indicator function of a set). Let a set S be given, and
let A be any subset of S. We define the indicator function of A, denoted
by 14, as follows.

1, is a function on S, and for any z € S:

y(z) = {1 if z € A, L)

0 otherwise.

It should be emphasized that indicator functions are a general idea, de-
fined for subsets of any set, not just sample spaces or subsets of the real line.
You can picture 14(z) as a signal light which comes on when z is a member
of A.

Please check that from the definition,

1y=15 <= A=0D. (11.2)

Here we use <= to mean “if and only if” (i.e. “implies” in both directions).
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Lemma [10.3| can be expressed using indicator functions. It says that:
Ecl4] =cP(A). (11.3)

In particular we have the fundamental equation connecting probability and
expected value:

E[14] = P(A). (11.4)

It seems to be easier to manipulate numbers than sets, so it can be prof-
itable to translate set statements into indicator statements.

Exercise 11.1 (Basic indicator facts). Prove all the following facts:

1% = 14, (11.5)
1 =1—1y, (11.6)
1anp = min (14,15) = 1,413, (11.7)
1aup = max (14,1p). (11.8)

[Solution]

As a rather trivial example, note that using equation (|11.6)) twice we have
1(Ac)c :1_1Ac =1 (1— 1A) =14
This gives another derivation of equation (2.24)), which says that (A¢)° = A.

Exercise 11.2 (Indicator of a disjoint union). Suppose that A, B are
any subsets of a given set S. Show that

A and B are disjoint <= 14, =14+ 15. (11.9)
Solution]

Here’s a useful fact about numbers.
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Exercise 11.3 (Sum equals max plus min). Show that for any real num-
bers t, u,

t+ v =max (f,u) + min (f,u) . (11.10)
[Solution]

As a consequence of Exercise and equations ((11.7)) and (11.8)), we

have

lave + 1anp =14+ 15. (11.11)
Rewriting equation ((11.11)) as
lavp =14+ 1 — 1ang, (11.12)

taking expectations of both sides, and then by applying equation (11.4]), we
obtain Theorem the Inclusion-Exclusion formula.

You may remember that in the original proof for inclusion-exclusion, we
used the trick of breaking up events into disjoint pieces. That seemed useful,
but we don’t seem to be using that trick with this approach. Or are we?
Maybe the pieces are the one-point sets in the sample space.

Since 14np is the zero function if and only if A N B is the empty set,

equation ((11.11)) gives us equation ((11.9)) as a special case.

Note that using equation ((11.7)) we can rewrite equation (11.12) as
lavp=14+1p—141p. (11.13)

Exercise 11.4. One can generalize Theorem to the case of n sets. The
usual proof using set operations has two steps. In the first step, one guesses
the correct formula in some way. In the second step, one proves the conjec-
tured formula by induction.

Instead of using that approach, derive the correct formula for the case
n = 3, and prove it at the same time, by applying equation (11.13]) twice.

[Solution|
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Chapter 11. More properties of expected value

Remark 11.2 (Subadditivity for indicators). We used the Inclusion-
Exclusion formula to prove subadditivity, Theorem But now that we
have indicator functions, it seems more direct just to note an obvious sub-
additivity fact for indicator functions: for any events D,..., Dy, if D is the
union of these events, then

k
1p < Z 1p,. (11.14)
j=1

To prove equation , just evaluate both sides for a sample point w, as
follows.

If w € D then w € Dj for at least one 5. Thus the left side of the equation
is one, and the right side is greater than or equal to one.

And if w is not in D, then the left side of the equation is zero, and the
right cannot be negative.

So equation holds. Now take expectation of both sides of the
equality in this equation. Using monotonicity and linearity of expectation,

and equation (11.4), you will produce Theorem [2.25]

The next exercise is important for understanding how our concepts fit
together.

Exercise 11.5 (Random variable as a sum of constants times indi-
cators). Let X be a random variable with finite range. Let x1, ..., z) be the
distinct values in the range of X.

(i) Explain why

X :mll{X:x1}+"-+xk1{X:xk}' (1115)

(ii) Show that linearity of expectation and equation imply equa-
tion ((10.1)), which is the defining formula for E [X].

Thus for finite range random variables, linearity of expectation and equa-
tion imply everything about expected values.

[Solution]
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Remark 11.3 (Integral over a set using indicator notation). In cal-
culus we are very familiar with the idea of integrating a function over a set,
usually when the set is an interval.

In equation (3.16|) we gave the general definition for integrating a function
over a set. The function g in equation is easily seen to be equal to
1af,s0 [ 4 f can be conveniently expressed using indicator functions:

/Af:/lAf. (11.16)

We’ll sometimes use this notation later, for convenience.

Example 11.4 (Additivity for integration). Back in Section [3.5|we men-
tioned that for disjoint sets, the integral over the union is the sum of the
integrals over the disjoint sets making up the union (equation ([3.14)): i.e. if
A = D1 U Dy, where Dy, Dy are disjoint, then

/Afz/le+ Dgf. (11.17)

This follows from the definition of integration over a set. We can express
the argument very neatly by using indicator function notation and equation

(11.16). Equation ((11.9) tells us that
14,=1p, +1p,.

Since integration is an additive operation, integrating this equation gives

equation ((11.17)).

Exercise 11.6 (Writing a random variable using cases). Let Dy, ..., D,
be events for some probability model. Suppose that:

(a) The events Dy, ..., D, are disjoint, and

(b) The union of Dy,..., D, is the whole sample space §.
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Let Z be a random variable such that Z is constant on each set D; (as in
Figure [10.1)). For each i, let v; be a number such that X (w) = v; for every
w € D;. (Thus if D; is empty, v; can be any number.)

Under these assumptions, prove that

Z=uvlp, +...4+v.1p,. (11.18)

Bolution

11.2 Expectation over a set

We defined integration over a set in equation (3.16]). In this section we define
a similar concept for expected value. The idea is simple but convenient.

Definition 11.5 (Expectation over a subset of the sample space).
Let a probability model be given with sample space ). For any real-valued
random variable and any event A, define the expectation of X over A by

expectation of X over A =E[Z], (11.19)

where

Z(w) = (11.20)

0 otherwise.

{X(w) if w e A,

Since this definition is intended to apply to general random variables, we
have to mention that equation (11.19)) is the definition of the expectation of
X over A, if E[Z] exists. If E[Z] does not exist, the the expectation of X
over A is undefined. Of course if the range of X is finite, the range of 7 is
finite, so E[Z] certainly exists, and there is no problem.

Indicator function notation (Definition , gives us a handy way to
write expectation over a set:

expectation of X over A = E[1,X]. (11.21)
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This definition applies to any random variable, although in the present
chapter we will only study its properties in the case of random variables with
finite range.

Expectation over a set is especially useful when dealing with combining
several expectations obtained under differing assumptions. The key concept
for that purpose is called conditional expectation and it deserves its own
section.

11.3 Conditional expectation

The following definition holds for general random variables, not just random
variables with finite range.

Definition 11.6 (Conditional expectation). Let X be a random variable
on a sample space 2, and let A be an event with P(A) > 0. The conditional
expectation of X given A, denoted by E [X | 4], is defined by

E[X|A] = %. (11.22)

Equation is a convenient mathematical formula for conditional
expectation, but the physical meaning of conditional expectation is better
expressed in the following lemma. Like Definition [I1.6], this lemma holds for
all random variables, not just random variables with finite range.

Lemma 11.7 (Conditional expection uses conditional probabilities).
Define the conditional probability set-function P by

P(D)=P(D|A) (11.23)

for any event D. The definition of P says that it is the probability distribution
which incorporates additional knowledge, namely that event A has occurred.

Then: the conditional expectation of X given A, which was defined in
equation , is equal to the expected value of X using P instead of P.
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When we are using P as our probability set-function we can denote the
expectation of X by Ep [X]. Thus Lemma can be stated compactly as:

E[X|A] = Ep [X]. (11.24)

And this equation expresses the fact that conditional expectation really does
mean what its name suggests.

Proof. For the proof we assume that X has a finite range.
Let x1,...,x; be a list of the distinct values in the range of X.
By Exercise [11.5]

k
X = Z xil{X:mi}-
i=1

Let A be an event with P(A) > 0. Then

14X = Z 2ilal{xp.

i=1
Using equation ((11.7)), this says that

k
14X = ZmilAﬂ{X:ri}-

i=1

Taking expected value of both sides of the equation, and using equation
(11.4),

E[1,X] = le (AN{X = z;}),

SO

k
E[1,X] (Aﬂ{X—x}
i X = 4
P(A) 21: Z ziP({ zi})-
By the mathematical definition, the left side of this equation is E [ X| A].

The right side of the equation is equal to Ep [X] by the definition of
expected value.

This proves equation ((11.24]). O]
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Our proof justified Lemma for the special case of a random variable
X with finite range, but remember that this lemma holds for all random
variables X.

Conditional probabilities may be simpler to use than the original proba-
bility distribution, since they permit us to break up a calculation into cases.

In particular, we have the Law of Total Expectation, which generalizes the
Law of Total Probability (Theorem 4.6)).

Theorem 11.8 (Law of Total Expectation). Let Dy, ..., Dy be disjoint
events with union D, and let X be a random variable such that E [X] exists.

Then
k

E[lpX] =) P(D)E[X|D], (11.25)
i=1
where for each ¢ if P (D;) = 0 we replace E [ X| D;] by any number we like.
If D = €, this becomes

E(X]=Y P(D,)E[X|D]. (11.26)

i=1

Exercise 11.7. Let Dy, ..., Dy be disjoint events with union D. Prove that

k
1p = Z 1p,. (11.27)
=1

This equation generalizes equation ((11.9)), of course.

[Solution|

Exercise 11.8 (Proof of the theorem). Prove Theorem [11.8]
Equation (11.22)) is convenient for this purpose. [Solution]

Example 11.9 (A simple model with two cases). Consider the following
very simple game.
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A player tosses a fair coin. If the toss gives a head, the player wins ten
dollars, and the game ends. Otherwise, a fair die is rolled, and the player
wins the number of dollars shown on the die. Let X be the amount that the
player wins. We wish to find E [X].

We will actually calculate E [X] twice, and compare the two approaches.

Method 1

What should be the sample space for this calculation? A reasonable
choice is to take the set €2 to consist of a symbol H together with the numbers
1,2,3,4,5,6.

The symbol H represents the outcome for which the coin toss results in
a head. The number ¢ represents the outcome for which the coin toss results
in a tail and then score on the die roll is .

The distribution P for this sample space is obtained as follows.

By the description of the experiment, P(H) = 3.

By the multiplied-through version of the conditional probability formula
(equation (4.2)),

P({i}) = P(H*)P({i} | H").

In this equation we have physical probabilities, since the abstract model is
still being defined. We know the probabilities for a fair die roll, and we know
the roll of the die is not affected by the coin toss, so

. . 1
P({i} | H) = .
Thus in our model we should define

11 1
P({i}) = 5 = 75 fori=1,2,3,4,5.6.

Using the definition of E [X] gives

6
1 11 1
E[X]:§10+Z—lzz:§10+—12 (1424+3+4+5+6).
=1

Method 2
Let’s start the problem again, and apply the Law of Total Expectation,
Theorem [11.8

E[X] = P(H)E[X|H]+ P(H)E[X| H. (11.28)
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Given H, X = 10, so
E[X| H] = 10.

The physical description of the situation given H¢ is that we are rolling a fair
die, and X is the number shown on the die. We also know by equation ([11.24))
that E[X| H¢] is equal to the expected value of X in this situation. So we
have a little self-contained problem, which we know how to solve: finding the
expected value for one roll of a fair die. Thus

E[X|H|=—-(1424+3+4+5+6).

D~

Since P(H¢) = 1/2 = P(H), substituting in equation (11.28) gives:

1. 1/1
E[X]:§1O+§(6(1+2+3+4+5+6)>.

Either of the two methods of calculating E [X] seems equally easy in the
present example, but we can already notice two significant benefits of using
the Law of Total Expectation.

(i) The problem is decomposed in a natural way into simpler problems,
which are “self-contained problems”, i.e. problems which can be con-
sidered separately.

(ii) There is no need to define a sample space for the original problem.

These benefits are more significant in complex problems.

Exercise 11.9. A player has a fair die and a coin with success probabil-
ity 1/5. In the first stage of the experiment, the player rolls the die once.
Let k be the number obtained. The player then tosses the coin k times. Find
the expected number of successes obtained in this experiment.

Bolution]
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11.4 Solutions for Chapter

Solution (Exercise [11.1]).

Proving equation (11.5) For any set A, the only possible values for 14
are 0 and 1, Since 0> = 0 and 12 = 1, equation (11.5)) follows.

Proving equation (11.6) From the definitions, 14¢(t) = 0 exactly when
14(t) = 1, and 14(t) = 1 exactly when 14(¢) = 0. This is equivalent to
saying that 14c(t) = 1 — 14(t), so equation ({11.6)) holds.

Proving equation (11.7)
When t € AN B, 14n5 = 1, and both of the statements 14(t) = 1,

14(t) =1 hold. Hence 14np(t) = min (14(t), 15(%)).

When t ¢ AN B, certainly 14n5(t) = 0 by definition. Also at least one
of the statements t ¢ A, t ¢ B holds. Thus at least one of the statements
14(t) =0, 15(t) =0, holds, so min (1 4(t),15(t)) = 0 = 1anp(t).

This proves the first equality in equation for all possible cases.

When ¢ € {0,1} and u € {0,1}, we see by checking cases that tu =
min(¢,w). This proves the remaining equality in equation ((11.7)).

Proving equation When t € AU B, 1,05 = 1, and at least one of
the statements 14(¢) = 1, 14(¢) = 1 hold. Hence 14,5(t) = max (14(¢), 15(t)).
When t ¢ AU B, certainly 145(t) = 0 by definition. Also both of the
statements ¢ ¢ A, t ¢ B holds. Thus both of the statements 14(t) = 0,
15(t) =0, holds, so max (14(¢),15(t)) = 0 = 14np(t).
This proves equation for all possible cases.

Proving equation ((11.11)) Since 14,5 = max (14,15) and 145 = min (14, 15),
this proves equation ((11.11)).

Solution (Exercise [11.2]).

—>: Suppose that A and B are disjoint subsets of the given set S.

Let x be a point in S.

Ifz € Athenx € AUB and x ¢ B. Thus 14(z) = 1, 1405 = 1 and
15 = 0. Since 1 =1+ 0, equation holds.

Similarly equation holds if x € B.

The remaining case is the case that x € (AU B)“. In this case 1 p(z) =
0 = 14(z) = 1p(z). Since 0 = 0 + 0, equation holds in this case also.
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<=: Suppose that equation holds. If there were a point x € AN B,
for that point we would have 14,5(z) =1, 14(x) = 1 and 15(x) = 1. Since
1 # 1+ 1, equation ((11.9) would not hold at x.

Since equation does hold, we conclude that A N B is empty.

Solution (Exercise [L1.3). If ¢ # u, then one of these two numbers is the
max, and the other is the min. Thus ¢ + v = max (¢, u) + min (¢, u).
On the other hand, if ¢ = u, then both number are equal to the max and
both are equal to the min. Hence once again we have ¢t + u = max (t,u) +
min (¢, u).

This proves equation ((11.10]).
Solution (Exercise [11.4]). Using equation (|11.13)),

lausue = Lauyue = laus + 1¢ — 1aus 1o
Applying equation (11.13)) to 143,

lavpuec =1a+1p—141p+1c — (14 + 15 —1415) 1¢
=14+1p+1c—141—141¢ — 151+ 14151¢.

Using equation ([11.7)), this says that

lauBuc =1a+1p+1c — 14 — Lanc — 1Bnc + Lansnc-

Taking expectations of both sides, and then applying equation (|11.4]), we
obtain

P(AUBUC)=P(A)+P(B)+P(C)
—~P(ANB)-P(ANC)-P(BNC) (11.29)
+P(ANBNC).

This is the generalization of equation (2.14) of Theorem [2.24] to the case of
three events.

Notice that the plus and minus signs alternate, depending on the number
of sets in the intersection. This pattern holds for all n.

Solution (Exercise [11.5)).

(i) For any outcome w, we must show that

X(w) =21lix=p (W) + ..+ 2plix=g (W). (11.30)
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Let x; be the value of X (w). Then w € {X = z;}.

On the right side of equation (11.30)), 1{x—s;(w) = 0 unless ¢ = j. In
that case, 1ix—z,)(w) = 1.

Thus the only surviving term on the right side of the equation is ;-1 = z;.
This equals the left side, so we are done.

(ii) Taking expected value of both sides of equation gives
E[X]|=xE [1{X=xl}] + ...+ zE [1{X:xk}} .
Applying equation to each term on the right side of this equation gives
EX]=5P{X =21})+ ... + 2, P{X = z}).
This is equation ((10.1]).
Solution (Exercise [11.6]). For any outcome w, we must show that
Z(w) =vlp, (w)+...+v,1p, (w). (11.31)

Suppose that w € D; (it has to be somewhere).

On the right side of equation (11.31]), 1p,(w) = 0 unless ¢ = j. In that
case, 1p,(w) = 1.

Thus the only surviving term on the right side of the equation is v;-1 = v;.
This equals the left side, so we are done.

Solution (Exercise [11.7]).

Method 1 The argument here is similar to the solution to Exercise [11.6]
One checks directly that equation holds by verifying that it holds
for every w.
It holds when w € D; for some i, using disjointness, and it holds when w
is not a member of any D;, since both sides of the equation are zero in that
case.

Method 2 When n = 1, the equation is obvious.
When n = 2, the equation is equivalent to equation ((11.9)).

To obtain the equation for general n, use The Old Induction Trick for
generalizing from 2 to n, (Exercise [2.23)).
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Solution (Exercise . By equation ([11.22]),
E [1DiX]

for each 1.

That is,
P(D,)E[X|D;] = E[1p,X] for each i.

Thus equation (11.25]) is exactly the statement that

E[X1p] = ZE (X1p].

By linearity of expectation, this will be true if

k
X1p=) Xlp,.

=1

And this last equation holds, since equation (11.27]) says that

k
1p=> 1p,.
=1

Solution (Exercise [11.9). Let Dy be the event that the result of rolling
the die is the number k.
Let X be the number of successes when tossing the coin. By equa-

tion (|11.26)),
ZP (DR)E[X] Dy].

Since the die is fair, P(Dy) = 1/6 for all k.

To find E[X]| Dy, think of a simple little self-contained experiment,
namely tossing a coin k times. We know from previous work that the expec-
tation is kp, where p is the success probability of the coin. Thus

E[X| Dy = k (%)

11 12 13 14 15 16 1+24+3+4+5+6 21 7

E[X]=-o4-2422422,22, 22 __ 0
X =55%65765765 65 65 30 30 10

Hence
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Chapter 12

Independent random variables,
first applications

12.1 Two independent random variables

Definition 12.1 (Independence for physical random variables). Let
X and Y be physical random variables defined for the same experiment. We
say that X and Y are independent if every event defined in terms of the
values of X is independent of every event defined in terms of the values of
Y.

As usual we can express an independence statement in terms of infor-
mation. For independent random variables, information about the observed
value of X tells us nothing about the observed value of Y.

Definition [12.1]is a statement about physical random variables, not math-
ematical random variables. Here is a definition of independence for mathe-
matical random variables.

Definition 12.2 (Independence for mathematical random variables).
Let X and Y be real-valued random variables for some probability model.
We say that X and Y are independent if, for any subsets S and T of R, the
events {X € S} and {Y € T} are independent.
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Chapter 12. Independent random variables, first applications

Definition [12.2] applies to all mathematical random variables, not just
those with finite range. Probability theory uses lots of mathematical random
variables with infinite range, but in this chapter we will focus on the finite
range case.

In the special case of mathematical random variables with finite range, the
next lemma tells us that we can check independence by considering events of
the form {X =z} and {Y = y}. This is simpler than using Definition [12.2]

Lemma 12.3 (Checking independence for finite-range random vari-
ables). Let X and Y be finite range random variables. Then the following
statements are equivalent.

(i) X and Y are independent random variables.

(ii) For every number z in the range of X, and every number y in the range
of Y,
{X =2} ,{Y =y} are independent events. (12.1)

Proof. (i) = (ii): Assume that X and Y are independent random vari-
ables. Let S = {x} and let T' = {y}.

Since {X =z} = {X € S}and {Y =y} = {Y € T}, Definition[12.2) gives
equation (12.1).

(ii) = (i): Assume condition (ii) holds.

Let S and T be any sets of real numbers. Let ¢, ..., ¢ list the distinct
numbers in the range of X which are members of S. Let dy,...,d, list the
distinct numbers in the range of Y which are members of T

The statement that X € S is exactly the statement that one of the events
{X = ¢;} has occurred. The statement that Y € T is exactly the statement
that one of the events {Y = d;} has occurred.

By condition (ii), knowing that an event {X = ¢;} has occurred does not
change our opinion about any event {Y = d;}. This suggests that knowing
that {X € S} has occurred should not change our opinion about {Y € T'}.
Thus we expect that {X € S} and {Y € T’} should be independent.

To argue more formally, we note that for any sample point w, if X (w) € S
then X (w) must be equal to some ¢; and if Y (w) € T then Y (w) must be
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equal to some d;. Thus

(Xes=J{x=c} {very=J{vy=43}. (12.2)

Similarly, if w € {X € S}N{Y € T}, then X (w) = x; for some ¢ and Y (w) =
y; for some j. Thus

{(Xesin{yveT}=J{X=a}n{Y =y}

]

Hence
P({X € S}n{Y € T} = Y P(LX =2} n{Y = y;})

= ZP(X = 2,)P(Y = ;).

Using the distributive law,

ZP(X =z,)P(Y =y,;) = (ZP (X = c2)> (ZP Y = dj)>

Thus we have shown that
P{XesSin{YeT})=P(XeS)PY €T).

We have shown that for any subsets S and 7' of R, the events {X € S} and
{Y € T} are independent. Then Definition tells us that condition (i)
holds.

O

Statement (i) of Lemma and statement (ii) of Lemma are logi-
cally equivalent, for finite-range random variables. However: statement (i) of
Lemma [12.3]is convenient for applying independence to a physical situation,
while statement (ii) is convenient for showing that independence holds.
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Example 12.4. Consider a two-step experiment, in which a fair coin is tossed
twice.

Let X; = 1 if toss i gives success, and X; = 0 otherwise.

In this experiment, let H; be the event that the first toss results in a head,
and let Hs be the event that the second toss results in a head. Then P(H;) =
1/2, P(Hs) = 1/2 and, as noted in Example , H,, Hy are independent.
Furthermore, it is also noted in Example that Hy, H5, H{Ho, and H{, HS
are independent pairs.

Since {X; = 1} = H; and {X; = 0} = H{, we conclude using Lemma[12.3]
that X; and X5 are independent!

Remark 12.5 (The naturalness of random variables). In Example[12.4]
notice how the single statement that X, X, are independent random vari-
ables immediately conveys four statements about independent events: H;, Hs
are independent, H,, HS are independent, HY{, H, are independent, and HY, HS
are independent.

Example 12.6. Let’s think about another random variable connected with
the coin-tossing experiment in Example let X3 = X1 Xo.

We will show that X7, X5 are not independent. One way to do that is to
think about information. Suppose someone tells you that X; = 0. Do you
know the value of X537 Heck yes! X3 is zero! So P(X3=0]|X; =0) = 1.

In contrast to the case that X; = 0, if someone tells you that X; = 1,
then the value of X3 is just the value of X5. Since X, X5 are independent,
there are still two possible values for X3 in this case, and indeed

1
P(X3:()|X1:1):P(X2:0|X1:1):§. (12.3)
Thus
P(X3=0|X;=0)#4#P(X3=0|X;=1). (12.4)

So knowledge about the value of X; can definitely change our opinion about

the value of X3, and thus X7, X5 are not independent random variables.
More formally, since equation holds, part (ii) of Exercise tells

us that {X; =0},{X3 =0} are not independent events. The definition of
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independence for random variables then tells us that X5, X3 are not indepen-
dent.

Exercise 12.1. In the setting of Example [12.4] let Y; represent a “payoff”
connected with this experiment. The rule is that Y; = 5 if toss ¢ gives success,
and Y; = —5 otherwise.

Y1 and Y5 are independent random variables, for the same reason that
that X; and X5 in Example are independent random variables.

Let Y3 = Y1Y5.

Prove that Y7, Y3 are independent.

Bolution]

We are concentrating on finite-range random variables at the moment.
But for future reference, here’s a criterion that saves work when checking
independence for general random variables.

Lemma 12.7 (Intervals are sufficient). Real-valued random variables
X,Y are independent if for all intervals [a,b], [c, d], the events {X € [a,b]}
and {Y € [¢,d]} are independent.

The proof depends on technicalities and is omitted.

12.2 Independent indicators

Lemma 12.8 (Sets are independent if and only if their indicators
are independent). Let A, B be events in some model. Then the indica-
tor functions 14, 1p independent are independent if and only if A, B are
independent.

Nothing surprising here if you think about information. Knowing whether
or not A occurred is exactly the same as knowing the value of 1 4, and knowing
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whether or not B occurred is exactly the same as knowing the value of 15.
The proof is just a matter of checking that the definitions mean what you
think they mean.

Proof. Let 14,1p are independent random variables.

Then for any number z in the range of X, and any number y in the range
of Y, {X =z} and {Y =y} are independent.

In particular, {X =1} ,{Y = 1} are independent. That is, A, B are in-
dependent.

Conversely, suppose that A, B are independent.

By Lemma [5.6] the independence of A, B implies the following facts:

e A B are independent,

e A, B are independent,

e A° B are independent, and

e A° B¢ are independent.

These statements say that:

e {1, =1},{1p =1} are independent,

e {1,=1},{1p =0} are independent,

e {1,=0},{1p =1} are independent, and
e {1,=0},{1p =0} are independent.

We have shown that for every x in the range of 14, and every y in the
range of 15, {14 = z},{1p = y} are independent.
Thus by Lemma [12.3] 14, 15 are independent.

12.3 Functions of independents

Let’s review notations from calculus:
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Definition 12.9 (Compositions of functions). Let f and g be any func-
tions. Suppose that for any point ¢ in the domain of g, g(¢) is in the do-
main of f. Then f(g(t)) is defined, and we can define a new function h
by h(t) = f(g(t)). We will often denote this function simply as f(g). This
notation is only a shorthand for the function which sends ¢ to f(g(t)), but it
seems to convey the meaning clearly.

People sometimes refer to the function f(g) using words, as “the compo-
sition of f with g”. However, it’s safer to write the composition symbolically,
since someone might interpret the same phrase as meaning g(f).

Another notation for the composition of functions is fog. Thus fog and
f(g) mean the same thing, and

fog(t)= flg(t)). (12.5)

We can also use this notation when more functions are involved. For
example, f o go h is the function f(g(h))).

Let X and Y be real-valued physical random variables which measure
quantities for the same experiment. Suppose that X and Y are independent
physical random variables. Let ¢ and 6 be functions on R. Since ¢(X) is
determined by X, any information given by ¢(X) is also information about
X. Similarly any information given by #(Y") is also information about Y.

By assumption, information about X does not change your opinion con-
cerning information about Y. So information about ¢(X) does not change
your opinion concerning information about #(Y"). Hence ¢(X) and 6(Y") must
be independent.

The mathematical version of this physical statement is expressed in much
the same way. The proof is just a matter of using the definitions carefully,
so it may not be a high priority for readers. The physical meaning of the
lemma is important, of course.

Lemma 12.10 (Functions of independents are independent). Suppose
X and Y are independent real-valued random variables for some probability
model, and ¢ and 6 are functions on R. Then ¢(X) and #(Y) are indepen-
dent.
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Proof. We will use Definition [12.2l Let X and Y be real-valued random
variables for some probability model. Let S and T" be subsets of R. We must
show that the events {p(X) € S} and {0(Y) € T} are independent.
Let
G={z: z€R, p(z) € S}. (12.6)

To say that (X (w)) € S is logically equivalent to saying that X (w) € G.
Thus
{p(X) e S} ={X € G}. (12.7)

Similarly, let H ={z: 2z € R,0(z) € T}. Then
{0Y)eT}y={Y e H}. (12.8)

Definition tells us that {X € G},{Y € H} are independent events.
Thus {p(X) € S},{0(Y) € T'} are independent events.
Since S, T were any subsets of R, ¢(X),6(Y") are independent by Defini-
tion [12.21
O]

The following exercise is a simple test of Lemma [12.10]

Exercise 12.2. Let X, Y be finite range real-valued random variables, and
suppose that X, Y are independent.

Let G =5X and let H = 16Y. Are GG, H independent? Sure they are, it
seems physically obvious.

But let’s check that. We could appeal to Lemma [12.10, and that would
work even if X and Y did not have finite range. But it seems instructive to
use a more basic argument.

So: using condition (ii) of Lemma[12.3| and without using Lemma [12.10]
show that G, H are independent.

Bolution

12.4 Expectation of a product

The next theorem extends the multiplicative property from independent
events to independent random variables.
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Theorem 12.11 (Expectation of a product of independents). Let X
and Y be independent random variables defined for the same probability
model. Assume that E[X],E[Y] exist. Then E [X Y] exists, and

E[XY]=E[X] E[Y]. (12.9)

Proof. The theorem holds for general random variables, but we will only
write down a proof for the finite-range case.

We can follow the pattern of the proof of Lemma [10.10

Let x1, ..., x, be the distinct numbers in the range of X, and let y1, ..., ym
be the distinct numbers in the range of Y.

Let Dij = {X = (I,’i7Y = yj}

By Theorem ({10.7)),

i=1 j=1
Up to this point we have not used the assumption that X, Y are indepen-
dent. This tells us that
P(X = 2,,Y = y;) = P(X = 2)P(Y = ).

Hence
n

EXY]=) Y 2yP(X =z)PY =y (12.11)

i=1 j=1
Using the distributive law, we see that

E[XY]= (Z P(X = xi)> (Z y,P(Y = yj)> : (12.12)

Thus E[X Y] = E[X]E[Y].
O

Exercise 12.3. Let X and Y be independent random variables with finite
range, such that E[X3] exists and E [Y®] exists. Prove that E[X3Y?] =
E[X3E[Y?].

[Solution]
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Independence of random variables is a powerful tool in analyzing the
behavior of probability models.

12.5 Independence for a sequence of random
variables

Just as in the case of independence for events, we can consider a (possibly
long) sequence of random variables defined on the sample space of some
experiment. Here’s the general definition.

Definition 12.12 (Independent sequences of random variables). Let
X1,...,X, be real-valued random variables which are defined on the same
sample space. The random variables X, ..., X,, are said to be independent
if the following holds.

For any subsets Dq,...,S, of R,

P(X,€8,...,X,€8,)=P(X; € 8)-P(X, € Sy). (12.13)

Take a moment to check that this definition agrees with Definition [12.2]
when n = 2!

When the random variables happen to have finite range, things are sim-
pler, much as in Lemma [12.3

Lemma 12.13 (Checking independence for a sequence of finite-range
random variables). Let X7, ..., X,, be finite range random variables. Then
the following statements are equivalent.

(i) Xi,...,X, are independent.

(ii) For every sequence of numbers 1, ...,x,, where z; is in the range of
Xi

P(Xl = T1,... 7Xn = [En> = P(Xl = Il) s P(Xn = In). (1214)
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The properties of independent sequences of random variables are simi-
lar to the properties of two independent random variables. Physical expe-
rience continues to be a reliable guide, and we will cheerfully write down
mathematical equations without proofs, based on our ideas about physical
independence.

Exercise 12.4 (Maximum of independent). Let X, ..., X, be an inde-
pendent sequence.

Suppose that each random variable X; has a uniform distribution on
{1,...,10}. That is, suppose P(X; =14) =1/10 for i =1, ..., 10.

Let M be the maximum of X, ..., X,. Find P(M < 4).

[Solution]

Exercise 12.5 (Minimum of independent). In the setting of Exercise[12.4]
let m be the minimum of X,..., X,,. Find P(m > 4).

[Solution|

We could have fun proving independence properties based on the defini-
tion. For example,

Ay, ..., A, are independent <= 1,,,...,14, are independent. (12.15)

However, it seems better to just assume facts like that, and keep going.

12.6 Random walk

Sequences of independent random variables occur in many situations, in areas
such as economics, physics and biology.

In this section we present a simple example.

A bug is moving around randomly on the integers. The bug is sitting on
the origin initially.

The movement is as follows.

Every second, a fair coin is tossed. The first toss takes place at time 1,
and every second thereafter. Each toss results in a “step” by the bug, as
follows:
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e If the bug is on integer k, a successful toss (a head) makes the bug
jump instantly to k + 1, and

e if the bug is on integer k, a failure makes the bug jump instantly to
k—1.

This type of mathematical motion is called “random walk”, or more specif-
ically, “simple symmetric random walk”. (The word “simple” refers to the
fact that the bug can only jump a distance of one unit. The word “symmet-
ric” is used because the bug does not favor right or left.)

Since the bug changes direction frequently, it is moving very inefficiently.
A basic question: how far from the origin is the bug likely to be, after n
steps?

We can start by thinking about a more abstract model for the bug’s
motion. Let X; be a random variable that represents the result of the coin
toss at time ¢. We will represent success by 1 and failure by —1, so that

1 1
P(XZ = 1) = — and P(XZ = —1> = —.
2 2
Our physical picture tells us that in the mathematical model, Xy,..., X, is
an independent sequence of random variables.

Define Sy = 0, and let
Sp,=X1+...+ X, foreachn=1,2,.... (12.16)

Sp is the location of the bug at time 0. At time 1, the bug has just taken
a single step, and is now at S; = X;. At time 2, the bug has taken its second
step, and is now at S; = X; + X5. And so on.

There are powerful techniques for analyzing random walk. In the present
chapter we will just consider one fact, which is a consequence of Theo-

rem 2,17}

Lemma 12.14 (Random walk squared distance).

E [S7] =n. (12.17)
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Proof. Note first that, from the distribution, E[X;] = 0 for every step. So
(by linearity) E[S,] = 0. That doesn’t help us much.

Notice that the range of S,, contains quite a few points. It’s easy to see
that the largest possible value in the range is n (when every step is success),
and the smallest possible value is —n (when every step is failure).

A little more thought will convince you that when n is even, the range
consists of all even numbers from —n to n, and when n is odd, the range
consists of all odd numbers from —n to n.

The bottom line is that it won’t be easy to find E [S?] directly from the

=1 ]‘—1

However we can expand S2.
> Xin] . (12.18)

Thus
E[S)]=E

N 2
E[S|=E (ZX) —E
i=1
ij=1
Equation ((12.18]) is the usual distributive law manipulation. If it looks
strange, please write out the case n = 3 to see what is going on!
Additivity of expectation then gives

E[S)] = i E[X:X;].

1,j=1

Now comes the key point. For i # j, X;, X; are independent random vari-
ables. In that case Theorem [12.11] tells us that

E[X,X;]=E[X,|E[X,] =0.

Thus, keeping only the surviving terms on the right, we have:

(st -3 B[x]

Much simpler! The values of X; are —1 or 1. So X? = 1, always. Hence
E [X?] =1, and we have E [S?] = n, as claimed.
]
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Let’s pause to admire equation for a moment. The largest possible
value for S? is n?. When n is large, the average value of S? is much smaller
than n?. So equation is telling us that the distribution of S,, does
not put much weight near the extreme values of S,,.

We would like to make that last statement more precise.

12.7 The Markov Inequality

To extract a little more information from equation , one can use an
inequality (you will do that in Exercise . The inequality you will use is
known as the Markov inequality. Despite its simplicity, the Markov inequality
is useful in many situations.

0.2 0.6 0j8 1?&

{v>s)

Figure 12.1: Sample space [0, 1], uniform probability

Lemma 12.15 (The Markov Inequality). Let Y be a nonnegative random
variable such that E [Y] exists. For any number «,

aP(Y > a) <E[Y]. (12.19)
See Figure [12.]]
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This lemma applies to general random variables. (If Y has finite range
then of course the assumption that E [Y] exists is automatically true.)

The proof of the lemma given here is also general, since it only uses
properties of expectation which always hold.

Proof. Let A ={Y > «a}. We claim that
al, <Y (12.20)

holds everywhere on the sample space.

Indeed, consider a sample point w.

If w € A, then by the definition of A we must have o < Y (w). Since
14(w) = 1, that is exactly what equation asserts.

On the other hand, if w ¢ A, then 14(w) =0, and 0 < Y (w) holds since
Y is assumed to be nonnegative.

Thus equation holds everywhere.

Since expectation is monotone,
Elal, <E[Y].

And
E[al4] = aE[14] = aP(A),

using linearity for the first equality and equation ({11.4]) for the second equal-

1ty.
[

Figure [12.1] illustrates the Markov inequality when the sample space is
[0,1] and P is the uniform distribution on [0,1]. We consider a continuous
sample space because it’s easier to draw the graph of a random variable in
that situation. In Figure[12.1] o = 8, and the blue area is a P(Y > «). As
in Example , E[Y] = [, Y(u)du, and so we can picture the expected
value easily in this case: E[Y] is equal to the entire area under the curve.

Exercise 12.6 (Searching for Charlie). Your pet bug escaped from the
origin at time 0, and has undoubtedly been performing simple symmetric ran-
dom walk ever since then. 10,000 seconds have elapsed since Charlie started
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roaming. You are distressed and searching frantically. Use the Markov in-
equality and equation ((12.17)) to estimate the probability that Charlie at least
500 units away from the origin.

Bolution

Exercise 12.7. Let X be a random variable such that E [eX } =5, and let
£ > 0 be a number.
Find an upper bound estimate for P(X > (). Your estimate should be

in the form:
P(X > ) < something.

Bolution]

Exercise 12.8. Is Lemma [12.15[ an interesting statement when o < 07

[Solution]

Exercise 12.9. Let X be a nonnegative random variable such that E [X]
exists, and let o be any number.

Suppose someone asks you to find an upper bound for P(X > «).

The Markov inequality gives you an upper bound for P(X > «), not
P(X > «). Can you use the Markov inequality to get what you need?

Bolution]

Exercise 12.10 (Using E[f(X)]). Let X be a random variable. Suppose
that f is a nonnegative function, which is strictly increasing on the range of
X.
You are given that E [f(X)] exists, and E [f(X)] = ¢, for some number c.
Let > 0 be a number. Find an upper bound estimate for P(X > (), in
terms of 3, f, and c.

[Solution|
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Remark 12.16 (The “infinite expectation” convention). Let X be a
general nonnegative random variable. When E [X] does not exist we often
say that E[X] = co. Since oo is not a number, this is only a convention, but
it can be convenient. Using this convention, we can assert that the Markov
inequality (equation ((12.19))) holds for every nonnegative random variable Y,
whether or not E [Y] exists.

12.8 The effect of independent steps

Let’s take a moment to consider the idea behind equation . There we
considered independent steps X;, where P(X; = 1) = P(X; = —1) = 1/2.
S, is the position after n steps, so S, = X7 + ...+ X,,.

The maximum possible value for S? is n?, but we showed in equation
that E[S?] is only equal to n. The general explanation for the small-
ness of E [S?] is cancellation, since negative steps happen approximately as
often as positive steps. Calculating E[S?] gave us a measure of how much
cancellation takes place. But it should be emphasized that E [S?] is only one
number. In Chapter |18 we will discuss the Central Limit Theorem (Theo-
rem , which provides much more detailed information about the dis-
tribution of S,, after n independent steps have taken place.

12.9 Solutions for Chapter

Solution (Exercise [12.1)).

There is more than one way to write down a solution. Exercise [5.10
seemed to match our thinking in Example [12.4] so we’ll go with that here.

Notice that the range of Y is the set {5, —5} and the range of Yj is the
set {25, —25}.

If Y7 =5, then Y3 = 5Y5. Hence

1
P(Y; =25]Y; =5) =P(Y=5|Y; =5) = _.
Similarly,

1
P(Y;=25|Yi = —5) =P(Yo = —5|Vi = —5) = _.
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Since {Y; = 25}° = {Y3 = —25}, part (i) of Exercise[5.10[tells us that {Y; = 5}, {Y3 = 25}
are independent.

We could repeat this argument for other cases, and conclude that we also
have that {Y; =5}, {Y3 = —25} are independent, {Y; = —5},{Y; = 25} are
independent, and {Y; = —5},{Y5 = —25} are independent.

Or we could appeal to Lemma to obtain the same facts.

At any rate, we now know that for each of the events {Y; = 5} ,{¥; = —5}
is independent of each of the sets {Y3 = 25}, {Y; = —25}.

Hence, by Lemma [12.3] Y7, Y3 are independent.

Solution (Exercise . Let z,...,x; be the distinct numbers in the
range of X, and let yy,...,y, be the distinct numbers in the range of Y.
Then bxq, ..., bz, are the distinct numbers in the range of GG, and 16y, .. ., 16y,
are the distinct numbers in the range of H.
For any 1, j,

{G =ba;} ={X ==}, and {H =16y;} = {Y =y;}.

Since X, Y are assumed to be independent, {X = z;},{Y = y;} are indepen-
dent events. That is, {G = 5xz;},{H = 16y;} are independent events. Since
this is true for every value 5z; of G' and every value 15y; of H, by Lemma/[12.3]
G, H are independent random variables.

Solution (Exercise [12.3)). This exercise is just checking that you noticed
Lemma [12.100

By that lemma, X?3,Y?® are independent random variables. Then we can
use Theorem 12.111

Solution (Exercise [12.4)). Since M is the maximum, to say that M < 4
is the same as saying that X; < 4 holds for every : = 1,...,n. Thus

(M<4)={X,<4}n...Nn{X, <4}.

Since the events {X; < 4},...,{X,, <4} are independent,

4 4 4\"
P<M§4)_P(X1§4)”'P(X"§4)_1_0"'E_(E) ,

Solution (Exercise [12.5)). Since m is the minimum, to say that m > 4 is
the same as saying that X; > 4 holds for every ¢ = 1,...,n. Thus

{m >4} ={X; >4}n...Nn{X, >4}.
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12.9. Solutions for Chapter

Since the events {X; >4} ,...,{X, > 4} are independent,

6 6 [6)"
P(M>4):P(X1>4)~~~P(Xn>4):1_0...E:(E) ,

Solution (Exercise[12.6]). Let S, be the random variable defined by equa-
tion . Thus S, is Charlie’s location after n steps.

Let n = 10000.

We would like to estimate P(|.S,,| > 500).

That is the same as P(S? > 250000).

Using the Markov Inequality,

250000P (S > 250000) < E [S2] = 10000.

Hence

10000
P(|S,| > < —1/25.
(1] 2 500) < 225556 = 1/25

(With more work, one can get a much sharper estimate. But this inequal-
ity is already interesting.)

Solution (Exercise . We are told that E [eX } = 9, so we know how
to apply the Markov Inequality to e*.
What does {X > 8} look like in terms of e*?
The exponential function is a strictly increasing function, isn’t it? So the
statement that X > 3 is exactly equivalent to the statement that e* > eb.
So {X > g} = {e¥ > ¢}, And, using the Markov Inequality (with Y’
replaced by eX and « replaced by e?),

e’P(eX > e’) <E[e¥] = 5.

Thus

P(X > ) < =,

That finishes the problem.
Solution (Exercise [12.8]). Since P(Y > «) > 0, for a < 0 we always have
aP(Y > a) <0.

Since Y is assumed to be nonnegative, E[Y] > 0.
So the statement that aP(Y > «) < E[Y] is rather obvious.

291



Chapter 12. Independent random variables, first applications

Solution (Exercise . If X > « then certainly X > «. In other words,
the statement “X(w) > «” is a stronger statement than “X(w) > o”. Hence
{X >a} Cc{X >a}.

So we always have P(X > «) < P(X > «). And so the upper bound
estimate for P(X > «) is already an upper bound estimate for P(X > «).

Solution (Exercise [12.10)). Applying the Markov inequality to f(X), we
have

aP(f(X)>a) <E[f(X)] =« (12.21)

Since f is strictly increasing on the range of X, to say that X(w) > 3 is
exactly equivalent to saying that f(X(w)) > f(3). Hence

P(X > 3) =P(f(X) = f(P)).
Let a = f(B). Then equation says that
fBPX =p) <c

Whenever f() > 0, we can write this as

P(X > f) < —c.

)
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Chapter 13

Waiting times

13.1 Waiting for the first head, with a dead-
line

We have mainly worked with mathematical random variables that have finite
range. Now we are going to broaden our view. The present section may
suggest why this is desirable.

Consider tossing a coin n times. Let p be the success probability for the
coin, where as usual by success for a toss we mean that the toss results in a
head. Let ¢ =1 —p.

Let’s study the random variable T,,, which we define as the time of the
first success in the sequence of n tosses, if success ever occurs. Otherwise let
T, =n.

We might imagine that n is our deadline, and we shut down the experi-
ment at time n if there has been no success by that time.

Our first goal is to write down the distribution of 7},.

Let A; be the event that toss i gives success. Since the results of the
tosses are assumed to be physically independent, the events Aq,..., A, are
mathematically independent in the sense of Definition [7.7]

By assumption, P (A4;) = p. Forany k =1,... ,n—1, T,, > k means that
no success occurred on tosses 1 through k. Thus

(T, >k} = ASN...NAS, (13.1)

SO
P (T, > k) =q" (13.2)
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Chapter 13. Waiting times

Since ¢" = 1, the same equation holds for k = 0. (As usual, interpret 0° as 1
to include the case p =1 and k = 0.)
That gives us the value of P (7}, > k). If you want P (7,, = k), note that
for 1 <k <n,
{T,=k}y=A{T, >k -1} —{T, > k}.

Thus for 1 < k < n,
P(T,=k)=¢""—¢"=¢""p (13.3)

Please check that we can obtain the same probability by noting that
{T,, =k} =A{n...NA5_, N A, and using independence!

We have found P(T,, = k) for k < n. To get P(T,, = n), we go back to
the description of the experiment.

Rember that we shut down the experiment by time n, whether or not
success has been achieved.

Thus {T,, =n} ={T, >n— 1}, so

P(T,=n)=q¢"" (13.4)
Combining these facts gives:
Lemma 13.1 (Distribution of T,,).
P(T,=k)=q¢" 'pfor 1 <k<n; P(T, =n) =q¢"". (13.5)
P(T = k) = 0 otherwise.

Exercise 13.1. As a check, please verify in some way that the values we
have found in equation (13.5) for P (7,, =1),...,P (T, = n) actually add
up to one.

Bolution]

Let’s find E [T,,].
Using Definition [10.2]

E[T,) =Y k" 'p+ng". (13.6)



13.1. Waiting for the first head, with a deadline

If p = 0, the formula gives E[T,,] = n. We can check this value directly
from the definition of the experiment. When p = 0 the probability that a
head ever occurs is zero. By the definition of the experiment, if a head never
occurs then T,, = n. Thus when p =0, P(T,, = n) = 1. Hence E[T,,] =n is
correct.

From now on assume that p > 0.

We need two tricks to evaluate the sum in the formula for E [T,,].

First, recall how we find the sum of a finite geometric series. Let
s, =1+q+¢*>+ ...+ q" where for a moment we allow ¢ to stand for any
number. The first trick is to multiply by q.

This gives ¢s, = q+¢*>+...+¢"" =5, — 1+ ¢, Solving for s, when
q # 1 gives the familiar formula for the sum of a finite geometric series:

) 1 — anrl

The second trick is to differentiate the expressions in equation with
respect to q. This gives

d1l— n+1
0+14+2¢+...+ng" ' = S S
dg 1—q
le.
n 1— n+1 1)a™ 1 — n+1 1)a™
S ket = q2__m+ )" 4 _(n+1)g" (13.8)
— (1—q) 1—q p p
Replacing n by n—1 in equation (|13.8]), and substituting in equation ({13.6]),
1 —g"
B[T] = — —ng"~ +ng",
p
o L
ET]=- 1. (13.9)

Exercise 13.2. Derive equation ([13.9) in a different way, without using the
differentiation trick.
First find E [T,,41] — E[T},]. Then show that

ET]=1+q¢+...+¢" " (13.10)
[Solution]
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Since ¢ < 1, lim,,_,, ¢" = 0. Hence for large n,
E[T,] ~1/p, (13.11)

which is a tidier expression for E [T},], although now it is only an approxima-
tion. We note that 1/p grows larger as p becomes smaller, which is completely
reasonable, since it is harder to obtain a head when p is smaller, and thus it
should take longer.

Equation ([13.11]) approximates one number by another. Can we think of
this approximation as arising from a new model?

13.2 Time of first success in oo trials

The simplicity of equation suggests that we might gain a bit of ele-
gance by replacing a probability model with large n with a probability model
in which n = oo, that is, a model in which the coin tossing goes on forever.
(By accepting a more complex concept we obtain a simpler calculation. Con-
ceptual thinking is our human strength, so this seems like a good strategy in
general.)

We will not try to use a sample space to build a rigorous mathematical
model for infinitely many coin tosses. This is possible, and is routine in ad-
vanced courses, but it requires significant technicalities. Here we will simply
use the rules of probability theory to calculate physically relevant numbers.

We are studying how long it takes to obtain the first head. For that
purpose, thinking about an infinite number of tosses seems like a reasonable
idealization. After all, in the physical picture there is not a natural limit on
the number of tosses. And the time of first success does not depend at all on
what happens in coin tosses after the first success.

Let T' denote the time of the first head, in an infinite sequence of coin
tosses, if a head is ever obtained. The mathematical random variable T is
often simply referred to as the waiting time for the first success.

Of course, if a success is never obtained, we need a way to record that
fact. So:

By definition, if success is never obtained, 7" = oo. (13.12)

Notice that if p = 0 we will never obtain a head, so the probability that
T = oo is one, and there is really nothing else to say about this situation.
From now on assume p > 0. Let ¢ =1 — p.
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We showed in equation (13.3)) that P (T, > k) = ¢*, for k =0,...,n — 1.
The same argument shows that here we have

P(T > k) = ¢ (13.13)

for every k =0,1,....
AndP(T=k)=P(T>k—1)—P(T > k)=q¢"' — ¢" Thus

Lemma 13.2 (Distribution of 7).
P(T=k)=q¢" 'pfor1 <k<oo. (13.14)

P(T = k) = 0 otherwise.

Notice that {T" = oo} C {T > k} for every k. Thus P(T = o) < ¢* for
every k. Since we are restricting attention now to the case that ¢ < 1, ¢* — 0
as k — 0o. So

P(T = 00) =0 when p > 0. (13.15)

Definition 13.3 (The geometric distribution). The distribution of T
given by equation ([13.14]) is usually called the geometric distribution, with
parameter p.

The waiting time 7' has no direct physical meaning, since no real ex-
periment goes on forever. A mathematical random variable with a direct
physical interpretation is 7;,, and 7' is one step further away from the phys-
ical world. However, part of the usefulness of the mathematical model for
infinitely many tosses is that we can almost picture it. And so we can still
be guided by reality as we use it.

We notice that P(7 > k) — 0 rapidly (“exponentially fast” or “geomet-
rically fast”) as k — oo. This suggests that calculations using 7" should give
us good approximations to the results of calculations with T;,.

Exercise 13.3 (The memoryless property of the geometric distribu-
tion). Someone is tossing a coin repeatedly, and waiting for the first success.
The success probability is p, where 0 < p < 1. Let T be the number of tosses
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needed to obtain the first success. Let P be the distribution based on the
knowledge that the tosser has, at the time when the sequence of tosses starts.
Then P(T = n) is given by the geometric distribution with parameter p.

Now consider the viewpoint of a spectator who comes upon the tosser
after n tosses have been made. The spectator learns that up to this time no
success has been obtained.

The spectator decides to wait until the first success. Thus the spectator
will wait for T'—n additional tosses. Based on the knowledge that the tosser
(and the spectator) have at that moment, the probability that 7' —n = m is
given by

P(T—n=m|T>n)=PT >n+m|T >n).

Calculate this conditional distribution for 17" — n, and show that
P(T'>n+m|T >n)=P(T >m). (13.16)

This is called the memoryless property of the geometric distribution. It shows
that knowing how long you have already waited for success is not helpful in
estimating the additional time that you will have to wait.

Bolution

What about the expectation of 7?7 We have not defined expected values
for random variables which do not have finite range. But we can easily guess
the right definition. Simply replace the usual sum by an infinite series. (See
Definition for a formal statement.)

Thus

E[T] =Y kP(T =k). (13.17)
k=0
The term with & = 0 contributes nothing, of course. So
E[T] =) kP(T =k => k¢ 'p. (13.18)
k=1 k=1
By definition,
k=1, _ 1 k-1
qu p_JLHJOqu p-
k=1 k=1
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Using equation ([13.8)

o0 1— qn+1
Z kq*'p= lim (— —(n+ 1)61”) :

We have assumed in this discussion that p > 0, so ¢ < 1. Then ¢" — 0 more
rapidly than n — oo, so we have both (n + 1)¢" — 0 and ¢"*' — 0. (One
can use a calculus trick based on the Ratio Test to prove these statements.)

Thus "
1—q" 1
lim <—q —(n+ 1)q"> = —.

We have shown:

Lemma 13.4 (Expectation of a waiting time). Let 7" have the geometric
distribution, given in equation (|13.14)), with p > 0. Then

E[T] = -. (13.19)

Letting n — oo in equation ([13.9)) gives

lim E[T,] = E[T]. (13.20)

n—oo

This limiting agreement increases our confidence that 71" is a useful approxi-
mation to T,,.

Remark 13.5 (The geometric series). The sum of a geometric series
is a standard calculus fact:

> 1

> ok = T forallz e (—1,1). (13.21)
— X

k=0

Remember that 2° means 1 in this series, even for = 0. In other words,
the series is 1 +ax + 2% + 23 + .. ..

To recall why this equation (|13.21]) holds, remember first that the Ratio
Test shows the series in equation converges, for |z| < 1. Let s be the
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sum of this series. The same manipulation used in equation ((13.7)) applies

here:
1

_(EI

rs = s — 1, and hence s =

We'll use equation (|13.21)) in the next examples.

Example 13.6. Here’s an alternative derivation of equation (13.19)). First,
note that

E[T]= ki 'p=p(1+2¢+3¢+...). (13.22)
k=1
Then:
1420+3F°+... =14q¢+P+F+. ..
+0+qg+@+¢E+ ...
F0+0+¢+¢*+... (13.23)

+0+04+0+¢+...

Adding the columns in equation ([13.23]) shows why the equation holds. This
is not a rigorous argument, but it is convincing.

Hence
1429 +3¢° +... = 1,
il
-
Thus
14+2¢+3¢+...= (1+¢+F++..) (%q)

(=) (=)
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By equation ((13.22)),

1 \? 11
B0 =r(75) ==

Exercise 13.4 (One more derivation). Suppose you remember the for-
mula in equation from your good old calculus days. You also remem-
ber from calculus that a convergent power series in x can be differentiated
term by term inside its interval of convergence. The same derivation trick
that gave us equation ([13.7) can be applied directly, to show:

- 1

k—
> kb = (L (13.24)
k=1

for z € (—1,1).
Check this, please. Then use equation ((13.24)) to obtain equation (({13.19)).
Solution]

Remark 13.7 (A sample space describing an infinite sequence of
coin tosses). Suppose we have a sample space which represents everything
that can happen in in an infinite sequence of trials. In this situation each
sample point represents a very large amount of information!

Perhaps a sample point would be an infinite sequence (z1,xs, ...), where
x; = 1 if trial ¢ gives success, and z; = 0 otherwise. If the model represents
infinitely many tosses of a fair coin, what is the probability of the one-point
set containing a single sample point? Consider, say A = {(z1,22,...) }.
Imitating the approach for finitely many tosses, we would say that

1 1 1 1 1
P(A):§X§X§X§X§X....

In this way we are soon forced to conclude that P(A) = 0, for every sample
point. Since the probability of the whole sample space must be equal to one,
a rigorous definition of the probability distribution on this sample space is
going to require some technicalities. And that is why we will not take time
to provide such a definition.
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13.3 Solutions for Chapter

Solution (Exercise|13.1]). Let v} be the value calculated in equation ((13.5])
for P(T,, = k).

Then vf = ¢* Ipfork=1,...,n—1,v" = ¢" ! and v} = 0 for all other
- In this problem we are asked to show that
vl 4+ ...+, =1 (13.25)
Looking at the formula for v}, or perhaps looking back at equation ,
we notice that for k =1,...,n — 1 we have
vp = ¢" Tt — ¢~ (13.26)
So

Wt ==+ g+ (@ =Y.

This is a good old telescoping sum. Cancelling out adjacent positive and
negative terms we see that

oot = (1= ¢" ).
Since v = ¢"~1, it follows that
v+ ..+, =1

Solution (Exercise [13.2]). From the definitions, 77 = 1.

Notice that by the definition of T),, if success occurs by time n or earlier,
then T,,.1 =T,,.

If success does not occur by time n, then necessarily 7,,.1 = n + 1 and
T, =n.

Thus T),41 — T), is either 1 or 0, and P (7,41 — T,, = 1) is the probability
of no success by time n, i.e. ¢".

Hence

E[T,1|—-E[T,) =E[T,,1 —T,] =q". (13.27)

Since
E[T.|-E[I] = (E[T3] - E[T\)+(E[T3] - E[To])+. . +(E[T.] — E[T,1]),
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we have
ET,)-ETNT)=q+¢+...+¢" "

Since obviously E [T] = 1,
E[T,]=14+q+...+q¢"",

as claimed. By the formula in equation ((13.7)) for the sum of a finite geometric
series, this agrees with equation ((13.9)).

One could also use induction and equation ((13.27)) to verify equation ((13.9)),
of course.

Solution (Exercise . By the conditional probability formula and
equation ([13.13),

PHT >n+m}n{T >n})
P(T > n)
PT>n+m) g¢*™

B P(T > n) B q" -4

P(T>n+m|T >n)=

The second equality holds because {T' > n + m} C {T" > n}, and so
{T>n+m}n{T>n}={T>n+m}.
Solution (Exercise [13.4)).
d &=, d = d N
— — — 13.28
dx ,;0 ! ; dr ; dr (13.28)

0

We dropped the k£ = 0 term here because x” is constant.

Equation ((13.28]) shows that
d ™ kN
%Zx = kat (13.29)
k=0 k=1

By equation ((13.21])),

oo
> =

k=0
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SO

d = 4 1
%;x =T (13.30)

Comparing equations and proves equation m

Now let’s find E[T]. Let ¢ = 1 — p. By equation (13.14), P (T = k) =
" 1p, for 1 <k < oo, and P(T = k) = 0 otherwise.

Thus

_ _ 1 p 1

_ o k-1, _ k-1 _ _ _

E[Q]—E kE (?—k)—E kq P—PE kq —p(l q)2——2——-
k=1 k=1 k=1 L E

304



Chapter 14

Random variables with
countable range

14.1 Countable range

The waiting time 7" defined in Section of Chapter [13]is a good example
of a random variable which does not have finite range. Now we should discuss
the general properties of random variables which are somewhat similar to 7.

Readers can probably guess many of the details, but please give some
time to this. Developing a feeling for the theoretical concepts will pay off in
your later work in probability.

14.2 Countability

Definition 14.1 (Countable sets). A set is said to be “countable” if its
elements can be listed in a finite or infinite sequence. A set which is not
countable is said to be uncountable.

It should be emphasized that, by definition, a finite set is a countable set.

Remark 14.2 (Sizes of infinity). After reading Definition [14.1] it is nat-
ural to wonder if there even is such a thing as an uncountable set, since
an infinite sequence seems to be the natural way to describe an infinite set!
However, it was proved by Georg Cantor (1874) that the real line is uncount-
able, in the sense of Definition [14.1} In other words, given any sequence of
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real numbers, there must always be real numbers which are left out, and
do not appear in the sequence ([7]). Cantor’s remarkable discovery showed
that, from the standpoint of mathematics, there are indeed different sizes
of infinity. Of course, out in the real world, life continued much as usual,
despite this disturbing news.

Recall the definition of a bounded function (Definition [10.18). The wait-
ing time 7" defined in Section is definitely not a bounded function. How-
ever, we should be aware that a random variable which has infinite range can
still be bounded. The random variable 1/7" is an example.

14.3 Countable additivity

The theoretical properties of mathematical probability theory are simpler if
we add two technical assumptions about mathematical probability models.
Fortunately, these technical assumptions hold for any model that is com-
monly used.

Probability Assumption 14.1 (Union of an infinite sequence of ab-
stract events). For any probability model that we use, whenever Ay, A,, . ..
is a sequence of abstract events, the union of these sets is also an abstract
event.

When we consider probabilities for an infinite sequence of events, one
more assumption will be made:

Probability Assumption 14.2 (Additivity for an infinite sequence
of abstract events). For any probability model that we use, whenever
Aq, Ay, ... is a sequence of disjoint events with union A,

P(A) = iP(Aj). (14.1)
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14.3. Countable additivity

The property described in equation is usually referred to as count-
able additivity.

From now on, Assumption and Assumption will hold, even if
we don’t mention them.

An infinite sequence of abstract events has no direct physical meaning.
Similarly the action of summing an infinite series of probabilities has no direct
physical meaning. Thus Assumption and Assumption do not seem
to contribute any physical insight to our probability models, despite their
technical usefulness. So it is interesting that in practice, for any experiment
we can always choose a valid probability model such that Assumptions
and [14.2 hold.

Where are Assumption and Assumption [14.2] going to be used?
Sometimes we add up an infinite sequence of probabilities, in the process
of calculating a physically meaningful probability value. But our assump-
tions are also used behind the scenes, to guarantee that abstract events,
probabilities, and expectations exist and have convenient properties.

Since we now assume countable additivity, we could generalize some ear-
lier statements. Typically the generalization amounts to simply replacing a
finite sum by the sum of an infinite series. We usually don’t bother to state
generalizations of this sort, but simply use them when and if they are needed.

Incidentally, countable additivity often holds in mathematical models for
quantities other than probability, for example for abstract quantities that
represent physical properties such as length, area, weight and displacement.
Here’s an example.

Example 14.3 (Chopping up the unit interval). Let 4; = (1/2771,1/27]
fori=0,1,....

It is easy to see that the sets A; are disjoint, that the union of all the sets
A; is exactly equal to (0, 1], and that the length of A; is 1/2F1.

Then

Zlength Z(%) :_Z()i:% Lot

=0

Thus the sum of the lengths of the intervals A; is equal to the length of
the union of these intervals, verifying a particular case of countable additivity
for length.
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Example 14.4 (More general chopping). Let by < b be real numbers,
and let by < b be an increasing sequence of real numbers such that b, — b
(one often writes b, b to indicate an increasing limit).

You can easily convince yourself that the intervals [b;, b;y1) are disjoint,
and that

[e.e]

[bo7b> = U[biabi+1)'

i=0
Clearly
length([b;,bi11)) = biy1 — b

Notice that

Z length([b;, bi11)

1=0

= (big1 = bi) = (by = bo) + (by = b1) + ... + (by — bn1) = by — by,
=0

In other words, the sum telescopes.
Then

Zlength([bi,biﬂ)) = lim Zlength([bi,bi+1))

i=0 "o
n—o0

Thus the sum of the lengths of the intervals [b;, b;11) is equal to the length

of the union of these intervals, verifying another particular case of countable

additivity for length.

In equation (14.2)), why does the first equality hold? It is simply the
definition of the sum of an infinite series. That definition seems to be based
on our geometrical picture of the real line, and gives countable additivity for
lengths of pieces of the real line.

Exercise 14.1. We have not bothered to describe a sample space which is
an adequate model for an infinite sequence of trials (see Remark|13.7). Given
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such a model, we can certainly define the mathematical waiting time T in
Chapter as a function on the sample space.

In this problem, consider any sample space on which 7" is defined, with the
correct distribution. Following the physical meaning of the random variables,
we would naturally define the random variables 7;, of Chapter [L13|on the same
sample space, with 7,, = T' when T < n (success before time n) and 7,, = n
otherwise (success at time n or later, or no success ever).

Thus:

(Thn=n}={T=n}U{T=n+1}U...U{T = oo}. (14.3)

Using countable additivity, we must be able to calculate P (7,, = n) by find-
ing the sum of the series of probabilities of events on the right side of equation
. In this problem you will check this.

Without assuming countable additivity, perform the calculation of the
sum of the series of probabilities of events on the right side of equation
. Assume p > 0 for simplicity and use equation to get the
probabilities you need.

Check that the result agrees with equation . This shows that count-
able additivity holds for the events in equation (|14.3)).

[Solution|

Exercise 14.2. Let T be the mathematical waiting time in Chapter [L3]
Find the probability that 7" is even, assuming countable additivity and
summing a series.

[Solution|

Example 14.5 (Even and odd). In the situation of Exercise|14.2] Lemma
tells us that

P(T=k)=q¢"'pfor1 <k < oo, (14.4)

and P(T = k) = 0 otherwise. You can use equation ({14.4)) to solve Exer-
cise [14.2] But let’s try to find the probability that T is even, without using

equation ([14.4)) explicitly.
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We have, using independence, and the idea that tossing a coin starts over
again on every toss,

PT=k+1)=
P ({failure on first toss } N { first success occurs on k th toss after that })
P ({failure on first toss })P({ first success occurs on k th toss after that })
=qP(T =k). (14.5)

By countable additivity,

P(Todd )=P(T=1)+P(T =3) + P(T =5) +.... (14.6)
Also
P(T even) =P(I'=2)+P(T =4)+...
— P(T=1)+qP(T=3)+qP(T =5) +... (14.7)
— ¢P(T odd).

Hmm, did we really need to use countable additivity and equations ([14.6))
and ([14.7)), in order to obtain the conclusion that P(T" even) = gP(T odd) ?

Well, yes and no.
Here’s a streamlined version of the same argument. We have, using inde-
pendence, and the idea that tossing a coin starts over again on every toss,

P(T even) =
P ({failure on first toss }N{ odd number of subsequent tosses give first success })

P ({failure on first toss })P({ odd number of subsequent tosses give first success })
=qP(T odd). (14.8)

We used our physical ideas about independence to obtain equation (14.5)).
And we cheerfully used the same physical ideas to write down equation ((14.8)).
In future we will do that as needed, since we are fearless. But we should take
note that an infinite number of tosses is a bit further away from physical
reality than a finite number of tosses. The concept of countable additivity,
even behind the scenes, seems to give us more confidence to scoff at danger

and use physical arguments in such cases.
At any rate, using either equation ([14.7)) or equation (14.8]), we have that

P(T even) + P(T odd) = ¢qP(T odd) + P(T odd). (14.9)
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Since it must be true that P(T" even) + P(7T odd) = 1, we have
(14 ¢)P(T odd) =1,

SO

(14.10)

14.4 Calculus review: summing an absolutely
convergent series

We often have to consider the sum of an infinite series of nonnegative num-
bers, or, more generally, the sum of a series which converges absolutely. This
will be the case when adding probability values, but can also happen in other
situations. We can use some facts from calculus.

Series Property 14.1 (Convergence test). If the terms in the series are
nonnegative, and partial sums are bounded, then the series converges.

Series Property 14.2 (Rearrangement property). If the series con-
verges absolutely, then the terms in the series can be rearranged in any
order without changing the sum of the infinite series.

The Properties and imply another useful calculus fact:

Series Property 14.3 (Exchanging the order of summmation). Let
real numbers a;; be given for all positive integers ¢ and j. Suppose that

Do layl < oo (14.11)

i=1 j=1

DD a =) ay, (14.12)

i=1 j=1 j=1 =1

Then

meaning that both sides of the equation are convergent, and they are equal.

We won’t bother to write out the proof of equation ((14.12)), but exchang-
ing the order of summation is an important trick.
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14.5 Distributions for random variables with
countable range

We stated the mathematical definition of the distribution of a general random
variable X in Definition When the random variable X has a finite range,
equation of Section [9.2) gives a simple formula for calculating P(X € S),
using the probability mass function for X. We can use a similar approach in
when X has countable range.

Let x1,25,... be a sequence of distinct values, which includes all the
numbers in the range of X that are members of W. If the value of X is a
member of W, then that value must be equal to one of the numbers in the
sequence. Thus

Since the values z1, z, . .. are distinct, the sets {X = z1},{X = x5} ,... are
disjoint. By the countable additivity of probability we have
PXeW)=PX=x)+P(X=x)+.... (14.14)

This has the same form as equation (9.5 but now the expression on the right
can be either a finite sum or an infinite series.
Using the probability mass function ¢ for X (defined in Definition [9.8)),

equation ({14.14) can be rewritten as

Thus the probability mass function for X characterizes the whole distribution
of X.

14.6 Expected values: countable range case

Definition 14.6 (Expected value with countable range). Let X be a
random variable whose range can be listed in a finite or infinite sequence of
distinct values xy,x9,.... When the sequence is finite, E[X] is defined in
Definition [10.2] When the sequence is infinite, the expected value E [X] is
defined by

E[X] = ixjp (X =), (14.16)
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but only in the case that the series converges absolutely, i.e. when

> ay P (X = 1)) < 0. (14.17)
j=1

Note that Definition is the formula that we guessed (and then used)
when calculating the expected value of the waiting time 7" for the first head
(Lemma [13.4)! The expected value of this waiting time is an excellent ex-
ample to ilustrate the general formula for expectation.

We see from Definition that the expected value of a random variable
is determined by its distribution.

Notice that Definition [14.6] agrees with Definition [10.2] That’s what we
want. We are interested in extending the definition of expected value to new
situations, but we don’t want to change the definition that we’ve already
given earlier.

In Definition [14.6] the expected value of X exists if the series in equa-
tion (|14.16|) converges absolutely, and only in that case.

Remark 14.7 (The meaning of existence). To clarify our terminology,
let us agree that if we say that E[X] exists, we mean that E[X] exists as
real number, in the sense of Definition [14.6] Sometimes we might say “ E [X]
exists as a real number”, just to avoid any possible misunderstanding.

For a nonnegative random variable X, if E [X] does not exist as a real
number people sometimes say that E[X] = co. That notation is helpful in
showing what is going on, but, despite that notation, in this book we will
not say that E [X] exists in that case.

In calculus, the comparison principle for infinite series tells us that a
series which is dominated by a convergent series must itself be convergent. A
similar comparison principle holds for integrals of unbounded functions, and
for expected values of unbounded random variables.

Fact 14.8 (A comparison principle for unbounded random vari-
ables). E [X] exists if and only if E[|X]|] exists. Furthermore, if E[X]
exists and |Y| < |X| everywhere then E [Y] exists also.
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Fact holds for general random variables, not just random variables
with countable range. In the case of an unbounded random variable with
countable range, we have defined expected value in terms of an infinite series,
so Fact is an immediate consequence of the comparison principle for
infinite series. For general random variables, mathematical expected value is
defined in a less direct way, but the comparison principle holds in the general
case also.

14.7 Key properties

Let’s collect some facts that hold for expectations.

Theorem 14.9 (Four key properties of expected values). Four key
properties of expected value are valid for all random variables:

Linearity: If E [X] and E [Y] exist then E [X + Y] exists,
EX+Y]=E[X|+E[Y]. (14.18)
This is the additive property of expectation.
Also, if E [X] exists then for any number ¢, E [cX] exists, and
E[cX] = cE[X]. (14.19)
This is the scaling property of expectation.

Monotonicity: If E [X] exists and E [Y] exists, and if X <Y holds every-
where, then
E[X]<E[Y]. (14.20)

Expectation of an indicator This is equation (|11.4]), which says:
E[14] =P(A).

Comparison principle This is Fact [14.8, which says:

E [X] exists if and only if E[|X|] exists. Furthermore, if E [X] exists
and |Y'| < |X| everywhere then E [Y] exists also.
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It is important to keep in mind that these properties hold for all random
variables, not just countable range random variables (see Theorem [15.2]).
The comparison principle is only needed for unbounded random variables.

Exercise 14.3. Consider a mathematical random variable X such that all
the values of X are positive integers, and such that for some ¢ > 0, P(X =
n)=c/n®*forn=1,2,....

(i) Does such a mathematical random variable actually exist?
(ii) Assuming that X exists, does E [X] exist?

Bolution

Exercise 14.4. Let b;, j = 0,1,2,.. ., be strictly increasing numbers in [0, 1),
with by = 0. Suppose that b; /1 as j — oo.

It is clear that the intervals [b;, b;41) are disjoint and have union equal to
[0,1). You may use this fact in what follows. (Please sketch a picture if this
fact is not clear!)

(i) Consider a probability model with sample space [0, 1] and the uniform
probability distribution. Let X (¢) be the length of the interval [b;, b;;1) which
contains t. Write down a formula for E [X] as an infinite series of numbers.

(if) Suppose that b; =1 — 55, for j =0,1,2,....
Calculate the exact numerical value of E [X] for the random variable in
part (i).

Bolution]

Exercise 14.5. Consider the probability model described in part (i) of Ex-
ercise [14.4. Let Y be the random variable defined by

_sin(bj41) — sin (b))

Y (t
(1 e
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Chapter 14. Random variables with countable range

for every t € [b;,b;41). Calculate E[Y].

Bolution

One of the most useful theoretical facts in Chapter [L0| was Theorem [10.7]
This theorem extends to random variables with countable range, with little
change.

Theorem 14.10 (Expectation by cases). Let Dy, Ds,... be a sequence
of disjoint events in some model, whose union is the whole sample space.

Let vq,vs,... be numbers, and let X be a random variable such that
X =wv; at every point of D;.
Then o
E[X] = v P(D;), (14.21)

i=1
in the sense that E [X] exists if and only the series on the right converges
absolutely, and in this case equality holds.

The proof is similar to the proof of Theorem [10.7] replacing finite sums
with sums of infinite series. Applying Theorem [14.10| gives the general for-
mula for the expectation of a function of a random variable:

Theorem 14.11 (Expectation of a function of a countable-range
random variable). Let Z be a countable-range random variable on a sample
space 2. We do not assume that Z is real-valued. The values of Z can be
anything. Let the distinct values in the range of Z be vy, vs, .. ..

Let ¢ be any real-valued function whose domain includes vy, v, . ... Then
E[p(2)] =) ¢(v)P(Dy), (14.22)
i=1

in the sense that E [p(Z)] exists if and only the series on the right converges
absolutely, and in this case equality holds.
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14.8 Calculating expectation using the tail of
the distribution

Definition 14.12 (The tail of a distribution). For any real-valued ran-
dom variable X, probabilities of the form P(X > t) are sometimes called tail
probabilities, particularly when one is studying the behavior of P(X > t) as
t — 0o. As a function of t, P(X > t) referred to as the tail of the distribution.
(Similar terminology applies to P(X < —t).)

If we know the tail of the distribution, then we can calculate everything
else about the distribution, with a little work. In particular, there is a nice
recipe for calculating expected values of nonnegative random variables. The
next lemma gives the most common case.

Lemma 14.13 (A tail expectation formula). Let X be a nonnnegative
random variable, and let @ > 0 be such that the range of X is contained in

the set of numbers na, n =0,1,.... Then
E[X]=a) P(X > ka) (14.23)
k=1
Proof.

aiP(X > ka)

k=1

Mg

aY P(X=ka)+PX=(k+1)a)+P(X=(k+2)a)+...)

k=1

L

Z aZP(X:&L)Zl

(=1 k=1

||
’ fMg

= (aP(X = la) = E[X].

=0
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Exercise 14.6. Use equation (|14.23) to calculate E [T'], where T is the wait-
ing time defined in section [13.2]
Note that this is the same calculation used in Example [13.6]

Bolution

We have not yet defined expected values for general random variables,
but expectation can be defined in general. Lemma [14.13]is a special case of
the following general theorem, which holds for every random variable.

Theorem 14.14 (Expectation using the tail integral formula). Let X
be a nonnegative random variable. Then

E[X] = /Ooo P(X > t)dt. (14.24)

Equation (14.24)) is completely general, in the sense that if either side of
this equation exists then both sides exist and are equal.

Exercise 14.7. Suppose that X satisfies the assumptions of Lemma [14.13]
Show that equation ([14.24) implies equation ([14.23)).

Bolution]

14.9 Solutions for Chapter

Solution (Exercise [14.1]). Since p > 0, we know that P(7 = oo) = 0.
So we want to show by calculation that

o0
P(T,=n)=Y P(T=k).
k=n
Using equation ((13.14)) and equation ([13.5]), we want to show that:
qnfl _ quflp.
k=n
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Let j =k —n. As k runs from n to oo, 7 runs from 0 to oo. Thus

- n— n— - j n— 1 nf]' n—
D0 =pg" ) =g =g =g
k=n =0 4 p

as claimed.

Solution (Exercise [14.2)).
{T even} ={T' =2}y u{T =4}U{T' =6} U....

Using countable additivity,

P(T even) =P(T' =2)+P(T = 4)+P(T'=6)+... = iP(T =20) = i 2
/=

1 /=1

_ - 2j+1 _ = njg _ P9 pq . q
=D q =Pq q) = = = :
j; ;( L (1=q)(1+q) 1+g

Solution (Exercise (14.3)).

(i) A mathematical random variable has to be defined on a sample space.
So let’s try © = {1,2,...}, and define X(n) = n. Then at least this X will
have positive integer values.

We are supposed to have

for some constant c.
With our definition of X, P(X =n) = P({n}). So we want to have

P({n}) = .

This definition will give us a genuine distribution provided that
Y P{nh)=1,
n=1

ie.
> C
n=1 n
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So finally we see the essential requirement: is it true that

oo

Z%<oo?

n=1

Well, yes, it is true, by the Integral Test from calculus. So now we just define
1

YotiaE

and we have a genuine distribution, such that X does have the stated prop-

erties.

CcC =

(ii) From our definitions, if E [X] exists then

o0

> c
= E nP(X =n)= .
n=1 n=1

But it is a well-known calculus fact is that fo:l% does not converge. So
E [X] does not exist.

Solution (Exercise [14.4]).
(i) By definition,

{X =bjp1 = bj} = [bj, bj1)-
Thus

P(X = bjy1 = bj) = bj1 — b;.

Every point ¢ in the sample space is a member of exactly one of the sets
[bj, bj+1). Hence the range of X consists of the points b —b;. By definition,

o) [e.e]
E bj+1 — j+1 E bjt1 — b;)

j=0 7=0

(ii) In this case,

> /1 1 \? 1\ /1\'"
2-3(3-5) ~Z () -2 )
j=0 Jj=0 J=0
T /1) 1 1 1
72(1) =T
J=0 4
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Solution (Exercise . Every point ¢ in the sample space is a member
of exactly one of the sets [b;,b;41). Hence the range of Y consists of the
points

sin (bj11) — sin (b;)

bjt1 — b

By definition,

E[y] = i (sin (bj11) —sin (bj)) b (Y  sin (bjsy) —sin (bj))

= bj+1 — bj bj+1 - bj
=, [sin (b;1q1) — sin (b; . -
:Z < ( 2—1—1) — ( J)) (bj+1 _bj) 22(51n<bj+1) —Sln(bj)).
0 j+1 — 0j =0

The final series telescopes:

n

> (sin (bj41) — sin (b))

= (sin (by) — sin (b)) + (sin (bg) — sin (by)) + ... + (sin (b,) — sin (b,_1))
= sin (b,,) — sin (by) = sin (by,) .

Letting n — oo, we see that

Z (sin (bj41) — sin (b;)) =sin1,

=0
so E[Y] =sinl.
Solution (Exercise [14.6). By equation ([13.13)),
P(T>k)=P(T > (k—1))¢" "

By equation ([14.23),

=3¢ =Y =" ==,
k=1 n=0

in agreement with equation ((13.19)).
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Solution (Exercise . By assumption, the range of X is contained in
the set of numbers na, n =0,1,.... Thus for na <t < (n+ 1)a, {X >t} =
{X > na}.

Hence for na <t < (n+ 1)a, P(X > t) = P(X > na). Thus

(n+1)a
/ P(X >t)dt =aP(X > na). (14.25)
By equation ((14.24)),
00 00 (n+1)a o}
E[X]:/ P(X>t)dt=2/ P(X >t)dt =) aP(X > na).
0 n=0 v 1@ n=0

Let k = n+1 in the summation. Then k runs from 1 to co, and {X > na} =

{X > ka}. This gives equation ((14.23)).
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Chapter 15

Exponential waiting times and
general random variables

An exponential waiting time is the continuous-time analog of the coin-tossing
waiting time that was introduced in Section [13.2l The range of the expo-
nential waiting time is not a countable set. On the contary, it is the whole
interval [0, co).

15.1 The exponential distribution

Definition 15.1 (The exponential distribution). For each A > 0, let h)
be the function on R defined by

ha(t) = (15.1)

e ™M if ¢ >0,

0 otherwise.
It was shown in Exercise that ffooo hyx = 1, so that h, is a probability
density on R.

The function h) is referred to as the exponential density with parame-
ter . The distribution with probability density h) is called the exponential
distribution with parameter \.

Any random variable having this probability distribution will be referred
to as an exponential waiting time.
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We'll discuss examples of random variables with exponential distributions
in Section A typical experimental example involves recording events
which occur randomly, at an “average rate” A\ per unit time. Let X denote
the length of time until the first event is recorded. It often turns out that
X is a random variable whose distribution is exponential with parameter \.
For t > 0, we then have

[e.9]

P(X >t) = / hy = / Ne Mdy = —e M| =M (15.2)
{X>t} t t

Equation ((15.2]) characterizes the exponential distribution.

In order to establish properties of exponential waiting times, we are going
to have to calculate some expected values. The next two sections say how to
do that in general.

15.2 Facts about general expectations

In this section we’ll outline some facts that are true for all expectations.

We use expected values freely in this book, but we will not state a rig-
orous definition of expectation for general random variables, although such
a definition can be given fairly easily (see Appendix [N|for an outline). The
general definition is consistent with the definitions given previously for ran-
dom variables with a finite range or a countable range. The properties which
hold for expectation are summarized in the next theorem.

Theorem 15.2 (Properties of expectations of general random variables).
(i) For every bounded random variable X, E [X] exists. (Bounded func-
tions are defined in Definition [10.18])

If X is an unbounded random variable then E [X] exists if X is not too
large as a function on the sample space.

(ii) The value of E [X] is determined by the distribution of X, i.e. random
variables with the same distribution have the same expected value.
(And since random variables with the same distribution must have
the same expectation, we sometimes speak of “the expectation of the
distribution”, rather than the expectation of the random variable.)

(iii) The four key properties of expectation stated in Theorem hold for
the general definition of expected value: linearity, monotonicity, the
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formula for the expectation of an indicator function (equation ((11.4)),
and the comparison principle.

In the case of a finite-range random variable, the expected value has a
frequency interpretation, as stated in Probability Fact What can we
say more generally?

Remark 15.3 (Bounded random variables and experiments). Sup-
pose that a bounded random variable X is intended to model a measured
value in an experiment, and X does not have finite range. (Perhaps the ex-
periment involves measuring a random distance along a road, or the weight
of a random lump of butter, so it would be unnatural to use a finite-range
random variable.) In this case the E [X] has the same physical interpretation
described in Section [I0.3] It is the long-run average of the measured value
of X.
See the discussion in Remark of Appendix [N]

What about the interpretation of an unbounded random variable? If X
is unbounded, even if E[X] exists we won't try to state a direct physical
interpretation for E[X]. In our work we will think of unbounded random
variables simply as mathematical tools, which help us to understand bounded
random variables.

Example 15.4 (Using the rules). We didn’t give a rigorous definition for
the expectation of a general random variable, but Theorem says that the
four key properties of expectation which were stated earlier (in Theorem
continue to hold for the general definition of expected value. That is usually
all you need.

For example, we studied the Markov inequality in Section [12.7, and then
used that inequality to understand the behavior of random walk. The deriva-
tion of that inequality only used linearity, monotonicity, and equation .
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15.3 Expectations when there is a density on
the sample space

We have noted two situations where it can be natural to use probability
densities. In Section [3.2] the sample space is an interval of the real line,
and probabilities are defined by equation (3.7). When the sample space is a
region in the plane, we mentioned that probability densities can be used in
a similar way, though we didn’t bother to give details.

Whenever a distribution has a probability density, the probability of an
event is given by integrating the density over the event.

Let’s recall the concept of integration over a set (introduced after equation
in Section [3.4).

Suppose we have a sample space (2 on which integration is defined. (2
doesn’t have to be an interval of the real line, as long as we know how to
integrate. So {2 might be a region in the plane, or more generally a region in
R™ or even something else.

Let [ f denote whatever form of integral we are using on the sample space
Q. If Q is the real line, calculus books often write [ f as ffooo f, and if Q is

the plane, [ f is often written as in calculus books as

/_Z/_Zf(w)dy ai

The integral of a function f over a set A is denoted by [ 4 f I Alis an

interval [a, b] of the real line, calculus books often write [, f as fab f(z),dx,
and if A is a subset of the plane, [ 4 f 1s often written in calculus books as

I

For thinking about the logic of a problem, it is likely clearer to just write
the integral over a set A as [ 4[> as long as the reader understands what sort
of integral you are working with.

Incidentally, a precise general definition of integrating a function f over
a set A, that works on any space, is given in Definition

Probability densities were introduced in Definition in the setting of
the real line. A general definition of a probability density is the following.
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Definition 15.5 (Probability densities for probability distributions
(general formulation)). In general, to say that f is a probability density
simply means that f is a nonnegative function whose integral over the whole
space is equal to one, i.e. [ f = 1. Here it is assumed that integration on
the space has been defined.

To say that a distribution has a probability density f means that the
probability of an event is given by integrating f over the event, i.e. for any
event A,

PM%iAf (15.3)

Remark 15.6 (Comparison with the previous density definition).
Remark shows that Definition is consistent with the original defini-
tion given in Definition for the real line case.

(In Definition [3.4] equation (15.3)) is only required to hold for intervals,
but Remark states that if equation holds for events which are
intervals of the real line, then it actually holds for all events.)

Examples of densities on subsets of the real line were given in Sections
and [3.7 Appendix [F] has some examples of using probability densities on
subsets of the plane.

As noted in Example [10.20] if probabilities are given by a probability
density f on the sample space, we can also use f to find expected values.
For any random variable X on the sample space,

mm_/Xﬁ (15.4)

provided of course that the integral of X f exists.

Here [ X f means the integral of X f over the sample space Q. If Q is
an interval of the real line, say 2 = [s, ], then equation is the same
statement as equation ({10.33)):

E[X]—/ X (u) f(u) du.
3
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But equation holds for any sample space, for example if the sample
space is a region in the plane or in R™. The only difference in those other
cases is that the integral in the equation ((15.4) may require more work.

We are ready to start computing expectations when probabilities are given
by a density on the sample space. But what if we not told the definition of
a random variable X on any sample space? Instead, suppose that someone
simply gives us the probability distribution of X7 Can we still find E [X]?

Theorem [15.2] part (ii), says that the distribution of a random variable
determines the expected value. So, yes, in principle it must be true that we
can find E [X], if someone tells us the distribution of X.

If it happens that the probability distribution of X is given by a density
function A on the real line, then there is a neat formula:

E[X] = / b dt, (15.5)

—00

provided of course that the integral of th(t) exists.
More generally, for any function ¢ on the real line,

(0= [ b, (156
provided that the integral of p(t)h(t) exists.

Equation is the formula for the expected value of a func-
tion of a random variable, in the case that the distribution of the
random variable has a density.

Equation ([15.6)) is often useful. Taking ¢ to be the function ¢(t) =t
shows that equation implies equation ([15.5).

One can derive equation (15.6) from equation (15.4). The argument is
given in Appendix [E]

Example 15.7 (Mean of a uniform distribution). Consider a random
variable X whose distribution is uniform on [a,b]. (This is a short way of
saying that the distribution of X on the real line is uniform on [0, 5] and zero
everywhere else. We talked about the probability density for the distribution
of such a random variable in Example and Remark [0.14])

Let’s find E [X]

By Exercise a density for the uniform distribution on [a, b] is given
by the probability density f which is constant and equal to 1/(b — a) at all
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points of [a, b]. Using the function f in quation (15.4)), we have

E[X] = dt =

. b—a :b—aga 2(b—a) 2

-~ (15.7)

/b t 1 2 -4 a+b

Thus the mean of X is the midpoint of the interval [a, b].

S
Exercise 15.1 (The Cauchy distribution). Let X be a random variable
whose probability distribution has a density A given by

C

M=

(15.8)

for all x € R. Then X is said to have a standard Cauchy distribution.
1. Find c

2. Does E [X] exist?
Bolution]

Exercise 15.2. Let X be a random variable whose distribution is uniform
on [0, 5]. (This is a short way of saying that the distribution on the real line is
uniform on [0, 5] and zero everywhere else. We talked about the probability
density for the distribution of such a random variable in Example [9.13] and
Remark [0.14])

Find E [sin X].

[Solution]

15.4 Properties of the exponential distribu-
tion
Now we are ready to get back to exponential waiting times.
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Exercise 15.3 (Mean of the exponential distribution). Let 7" be a
random variable whose distribution is exponential with parameter A (Defini-

tion [15.1]). Show that

> 1
E[T]:/O Ate*”dt:x. (15.9)

[Solution]

As noted in Section for any random variable 7" the function ¢
P(T > t) is sometimes called the tail of the distribution (on the right).

One of the things we learn from the tail is the rate at which the probability
of P(T > t) approaches zero as t — oo. It is easy to calculate the tail function
for the exponential distribution.

Let T be a random variable having exponential distribution with parame-
ter A. The tail function is P(T > t). By equation (15.2)), the tail function for
the exponential distribution with parameter X is given by P(T" > t) = ¢~
for any ¢t > 0.

Of course, since T has an exponential distribution, P(7" > 0) = 1, so
P(T>t)=1forallt<0.

Clearly the tail of an exponential distribution approaches zero rapidly as
t — 00.

Exercise 15.4. In Theorem we stated a useful general formula for
expectation called “The Tail-Integral formula for expectation”, although no
proof was given. Test the tail integral formula by calculating the mean of
the exponential distribution again.

Bolution]

Exercise 15.5 (Expectation of square of random variable with ex-
ponential distribution). The exponential distribution with parameter \ is
defined in Exercise Suppose that X has this distribution.

Calculate E [X?].

[Solution|
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Recall from equation (13.13) and Definition [I13.3} when T is the waiting
time for first success in coin-tossing with p > 0, the distribution of 7" is the
geometric distribution, and P(T > k) = ¢~, where ¢ = 1 — p and k is a
nonnegative integer.

Let r = — log q, where log ¢ denotes the logarithm of ¢ with base e. Since
q < 1, r is a positive number. We have P(T" > k) = e "%, so the tail of
the geometric distribution seems quite similar to the tail of the exponential
distribution.

The similarity of these two distributions suggests that a random variable
T with exponential distribution is the continuous-time analogue of the wait-
ing time for first success in coin-tossing. And in fact, a random variable T'
with exponential distribution is used as a model for a “lifetime” or a waiting
time in many situations.

For example, suppose you are measuring the rate of decay of some ra-
dioactive material, using a detection device such as a Geiger counter. The
random time until the first emission of a particle from the sample has an
exponential distribution. Similarly, the time spent waiting for a telephone
call at a sales desk, or a data request at a computer server, will often have a
distribution which is approximately exponential.

Discussing any kind of waiting times, one presumably wants to know
when the waiting begins. When waiting for the emission of a particle from
radioactive material, the wait starts when some observer starts to record
data. But radioactivity happens continually, so the starting time is not
connected at all to the physical process. Thus it seems as if the choice of
starting time could affect the observed statistical distribution of the waiting
time.

However, for the exponential distribution, just as with coin-tossing (Exer-
cise , the observed distribution does not depend on the choice of starting
time when waiting.

Lemma 15.8 (The “memoryless” property). Let T be a waiting time
having an exponential distribution with parameter A\. For some given time
s> 0,let A={T > s}. Then for any ¢t > 0,

P(T—s>t|A) =P(T >t), (15.10)

P(T>s+t|A) =P(T>1). (15.11)
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In Lemma [15.8, one can think of 7" as the time that some observer has to
wait, for a particular event to occur. If a new observer arrives at time s > 0,
there are two possibilities.

e If the event has already occurred, the new observer has nothing to wait
for, and does not record the result.

e If the event has not yet occurred (i.e. if we are in the situation described
by A), then the new observer is waiting along with the original observer.
The new observer will wait time 7" — s until the event takes place.

The left side of equation ((15.10f) describes the statistical properties of
the time that the new observer records, given that the event has not
already occurred when the new observer arrives.

Exercise 15.6. Prove Lemma [15.8
olution]

Remark 15.9 (Memoryless really means memoryless). In the setting
of Lemma [15.8] think of T" as the waiting time for some physical event D.
Let [a,b] be a subinterval of (s,00). Let T* = T — s. Equation [15.10|says
that
P(T*>t|{T > s})=P(T >1). (15.12)

Let P* denote probabilities conditioned on {T" > s}. Equation says
that P*(T* > t) = P(T" > t) for all t > 0. Since these random variables are
nonnegative, P*(T* > ¢) =1 =P(T > t) for all t < 0.

So P*(T* > t) =P(T > t) for all t.

Based on that equality, one can show that the whole distribution of 7™
is the same as the whole distribution of T". So all statistical properties must
be the same for both random variables.

Remark explains why we do not need to specify the starting time for
the exponential distribution.
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Let’s think more about the parameter A in the exponential distribution
for T. We know now that P(T > t) = e * and that E[T] = 1/\. Both those
equations tell us that as A\ increases the waiting time 7" becomes smaller. We
can make that statement more precise by considering the tail function s(¢) =
P(T > t). Thinking about T" as the lifetime of a randomly selected object,
we might call s the “survival function”, since it gives the probability that the
randomly selected object is still alive at time ¢. Thinking of the randomly
selected object as part of a large population, the frequency interpretation
says that s(t) represents the fraction of the population that is still alive at
time t. Notice that s(t) = e~ satisfies a simple differential equation on
(0, 00):

s'(t) = = Xs(t), (15.13)

Suppose that the initial size of the population is NV, where N is some large
number. We would expect that at time ¢ the surviving population would have
size approximately equal to Ns(t).

At time t + At, the size of the population is approximately Ns(t + At).
The number of objects that have died during the time interval [t,¢ 4+ At] is

approximately Ns(t) — Ns(t + At). Using equation ((15.13)),
s(t) — s(t + At) = —5'(t) At = \s(t)At.

Thus the number of objects that have died during the time interval [¢, ¢+ At]
is approximately NAs(t)At.

The number of living objects at time ¢ is approximately Ns(t). Thus the
fraction of the current population which dies during [t, t+A] is approximately

NAs(t)At
sy

Dividing by At shows that the average death rate per object per unit time
is .

With this interpretation in mind, one might call A the “death rate”, or
more briefly the rate for the exponential distribution which has parameter .

Equation ([15.13)) is a differential equation for the survival function s. We
assume s(0) = 1, since there has not been time for any deaths. Hence we
are interested in a solution s of equation (15.13) which satisfies the initial
condition s(0) = 1.
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Exercise 15.7 ( Uniqueness for the solution of equation ). Let
s be a solution of equation (15.13). Show that s(t) = s(0)e™* for all ¢. (This
is often shown in calculus courses.) Hint: Define f(t) = s(t)e*. Calculate
7(t).

[Solution]

15.5 Solutions for Chapter

Solution (Exercise [15.1]). (i) Since h is a probability density we must

have [h=1.
0o c b b
/ h = / dz = lim = lim ¢ | arctanzx

= ¢ lim (arctanb — arctan(—b)) = 2¢ lim arctanb = 2" = ¢
b—o0 b—oo 2

Hence ¢ = 1/7.

(ii) By equation (|15.5)),

E[X] = / LR(E) dt.
However, we have to be careful in evaluating this integral, because the inte-
grand has both a positive and a negative part. The integral of the positive
part is

[e.e] 1 ) b t
th(t)dt = — lim dt.

Using the fact that 2 > 1 on [1,00), we have

/Ooth(t)dt> ! li g dt ! li bldt ! lim (logb — log 2)
— 11m by = — l1m - = — 11im (10 — 10 = OQ.
0 T mwbooo f; 212 2mb—oo J; 2T b—oo & &

Thus E [X] does not exist.
(In this calculation, we use log to denote logarithms to the base e. )
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Solution (Exercise [15.2). Let f be the function on [0,5] defined by
f(z) =1/5 for all z € [0,5]. Then f is a probability density for the uniform
distribution on [0, 5].

As in Example[9.13] we obtain a probability density A for the distribution
of X by extending f. We extend it to be equal to zero on the complement
of [0, 5], so h is given as in equation ({9.18)):

L ifze0,5
v [t iz
0 otherwise.
By equation ((15.6)),

5

o) 5 1 1
E [sin X| = / sin(x)h(s) dx = / sin(x)g dx = —gcosT
0

—00

(1 —cosbh).

Ul — o

1
=-x (cosb — cos0) =

Solution (Exercise [15.3)). By equation (15.5)),

0o ) b
E[T] = / tie Mdt = / tAe M dt = lim [ txe ™,
PO 0 — 00 0

Using integration by parts,
b

b 00
+ / e Mdt ] = lim | te™™ .
0 0 b—o00 0

We know that te=* — 0 as b — o0, a consequence of L’Hopital’s Rule, and
of course e — 0 as b — 0. Hence

b
E[T] = lim <te’\t - %e’\t

b—o0

0

Solution (Exercise([15.4]). Let X be a random variable having exponential
distribution with parameter \.
By Theorem [14.14}

o o0 6—)\15 S 1
E[X]I/ P(X>t)dt:/ Ay P
0 0 Ao A

which is consistent with equation ([15.9)).
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Solution (Exercise [15.5)). By equation (15.6)),

o) b
E [X2] = / 22X e dr = lim 2 e " da.
0

b—o0 0

We will use integration by parts to calculate the integral, and then use the
fact that b?e=® — 0 and be=® — 0 as b — co. Thus

b b
—|—/ 2xe " da
0 0
b b b o
= lim | =22 — ¢ —|—/ Ze ™ dx
b—o0 0 )\ 0 0 )\
b
2
= lim (—$26_x>\ A
b—00

Solution (Exercise [15.6]).

b—o0

E [XQ] = lim (—xQe_z)‘

2 .y

b

P(T>s+t|A):P(T>5+t) _P(T'>s+1)

P(A) P(T > s)
By equation ((15.10)),
e—)\(s-‘rt)
P(T>s+t|A)=———=eM=P(T >1).
e~ S

Solution (Exercise [15.7). Let f(t) = s(t)eM.
F/(t) =8(t)e + s(t)Ae™ = —As(t)eM + s(t) e = 0.

By the Mean Value Theorem f(t) — f(0) = 0 for every t, so f(t) = f(0), i.e.
s(t)er = f(0) = s(0), and hence s(t) = s(0)e~*.
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Chapter 16

Moments and inequalities

The mean of a distribution can be thought of as an average value for the
random variable which has that distribution. It can also be thought of as a
“central point” of the distribution. In this chapter we introduce the concept
of the variance of a distribution, which can be thought of as a measure of the
“width” of the distribution.

Readers may not wish to work all the exercises in this chapter. The goal
should be to develop a feeling for how the concept of variance is used.

16.1 Moments

If a random variable has a large range, then its distribution can be compli-
cated, even if the range is finite. We need to identify simple properties that
help us to understand the behavior of the random variable.

The expected value of a random variable X is usually the most important
such property, but an expected value is just one number. We can learn more
by calculating moments of the random variable.

Definition 16.1 (Moments of a random variable). For n = 0,1,2,..
the n-th moment of the random variable X is E [X"], provided that it exists.
The n-th absolute moment is defined to be E [|X|"].

The definition here is general, so we are using the fact that expected
values can be defined for general random variables (see Section [15.2).
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The first moment of X is the expected value E [X]. When it exists, and
when X represents some property of an experiment, we know E [X] is likely
to be close to the average measured value in repeated experiments. The first
absolute moment gives the same sort of information about the absolute value
of X. Thus the first absolute moment gives the average size of the random
variable.

By definition, the second moment of X is E[X?], so it gives the average
size of the square of the random variable. The significance of the second
moment will become clearer as we study the concept of variance.

All moments are expected values, and we have noted that mathematical
random variables can be so large that their expected values do not exist.
A random variable with a Cauchy distribution (Exercise is a typical
example. And even if the expected value exists, higher moments may not.

Here are a few examples.

Exercise 16.1.

(i) Let = (0, 1], with uniform distribution. Let X (¢) = 1/¢t. Show that
E [X] does not exist.

(ii) Let = (0, 1], with uniform distribution. Let X (¢) = 1/+/t. Show that
E [X] exists but E [X?] does not exist.

(iii) Let Q = {1,2,...}, and let P be a distribution on €2 such that P({n}) =
¢/n® for some constant c. Let X(j) = j. Show that E [X], E [X?] and
E [X?] exist but E [X*] does not exist.

[Solution|

Section has some information that you can use if you are trying to
confirm that a moment exists.

16.2 Variance

Variance is a key concept in probability theory. The variance of X is simply
the second moment of the centered version of X.
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Definition 16.2 (Centered random variables). A random variable X
will be said to be centered if E[X] = 0. In this case X is also said to be a
mean zero random variable.

Let X be a random variable such that E [X] exists. The centered version
of X is the random variable X — E [X]. The value of X —E [X] is also called
the deviation of X from its mean.

In calculations we often write E [X] as y, so that the deviation of X from
its mean is written as X — pu.

Definition 16.3 (Variance). Let X be a random variable whose expecta-
tion exists.

The centered second moment, E [(X — E[X])?], is called the variance
of X, and is denoted by Var (X), when this expected value exists. It is often
referred to as the mean square deviation of X.

The positive square root of the variance of X is called the standard
deviation of X, and is often written as o in calculations. In that case
Var (X) = o2

If one must describe the properties of a probability distribution using
only two numbers, the mean and the variance of a distribution are usually
the most informative. The variance tells us how “spread-out” the distribution
is.

We often write the expression for Var (X) more neatly using p to denote
E[X]:

Var (X) =E [(X — p)?] . (16.1)

Remark 16.4 (Variance of a distribution). The distribution of X deter-
mines E [X"] and Var (X), so we will at times speak of the “the moments
of a distribution” and “the variance of a distribution”, or “the moments of a
density” and “the variance of a density”.

Thinking about existence of the variance, note that we only speak about
the variance of X in situations where E [X] exists.
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Denote E[X] by pu. Since X — pu = X + (—p), the n = 2 case of
Lemma tells us that E [(X — u)?] exists if E [X?] exists.

Since X = (X — p) + p, the n = 2 case of Lemma also says that if
E [(X — p)?] exists then E [X?] exists.

Thus we have the following:

Existence Fact Whenever E [X] exists, Var (X) exists if and only if E [X?]
exists.

That’s all we have to say about existence of the variance.

The next exercise is of major importance!

Exercise 16.2 (“Mean square minus square mean”). By expanding

equation ((16.1)), show that
Var (X) = E [X?] — (E[X])*. (16.2)

Bolution

Notice that equation shows immediately that Var (X) < E[X?].
Also, the definition of Var (X) shows that Var (X) > 0, so equation
tells us that

(E[X]))* <E[X?]. (16.3)

Incidentally, we can replace X by |X| in equation (16.3)), so we also have:
(B[|X[)? <B[x?]. (16.4)

Exercise 16.3 (Variance of a constant). Let X be a constant random
variable in some probability model, so that X = 7 everywhere. Find E [X]
and Var (X).

Bolution]

Remark 16.5 (When the variance is zero). Let X be a random variable
with mean p and variance zero. Then E [(X — p)?] = 0.
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Since (X — u)? is a nonnegative random variable with mean zero, it is
tempting to conclude that (X — u)? is the zero random variable. That is not
quite true, but it’s almost true.

The following fact holds: for any nonnegative random variable Y, if
E[Y] = 0 then P(Y # 0) = 0, i.e. P(Y =0) = 1. (See Appendix
for a derivation.)

So when Var (X — ) = 0, we know that P((X — u)?> = 0) = 1, ie.
P(X = p) = 1. So a random variable with zero variance is equal to its mean
with probability one.

Exercise 16.4 (Scaling the variance). Show that
Var (¢X) = |¢[* Var (X). (16.5)
olution]

Exercise 16.5 (Shifting preserves variance). Prove that for any real
number c,

Var (X +¢) = Var (X). (16.6)
olution]

Remark 16.6 (The standard version of a random variable). Let X
be a random variable with mean z and variance o2 > 0.
By the linearity of expectation, E [X — u] = 0. By equation (|16.5)),
1 o
Var (X — p)o = FVar(X) === L.
Thus the random variable
X —p

o
has mean zero and variance one. We will call this random variable the stan-
dard version of X, or sometimes say that we “standardize” X to form this
random variable.
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Exercise 16.6 (Variance of a uniform distribution). Let X be the ran-
dom variable on [0, 5] with X (w) = w. Using the uniform distribution on
[0, 5], calculate the mean and variance of X.

Then, generalize your work. Find the mean and variance of a random
variable X whose distribution is uniform on an interval [s,t].

[Solution]

Example 16.7 (Variance for a coin toss). Let X represent the result of
tossing a coin. X = 1 means a head (success) X = 0 means a tail. Assume
P(X=1)=np.

Then E[X]=1-P(X=1)40-P(X =0) =p.

Since X = X? for this random variable, E [X?] = p also.

By equation ((16.2)),
Var (X) =p —p* = p(1 - p). (16.7)

Example 16.8 (Variance of a binomial random variable). Let S,, be
the number of successes in n tosses of a coin, when the coin has success
probability p. Using equation ((9.3)), we will show that

Var (S,,) = np(1 — p). (16.8)

