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1.1: Statements and Conditional Statements
Much of our work in mathematics deals with statements. In mathematics, a statement is a declarative sentence that is either true or
false but not both. A statement is sometimes called a proposition. The key is that there must be no ambiguity. To be a statement, a
sentence must be true or false, and it cannot be both. So a sentence such as "The sky is beautiful" is not a statement since whether
the sentence is true or not is a matter of opinion. A question such as "Is it raining?" is not a statement because it is a question and is
not declaring or asserting that something is true.

Some sentences that are mathematical in nature often are not statements because we may not know precisely what a variable
represents. For example, the equation 2 +5 = 10 is not a statement since we do not know what  represents. If we substitute a
specific value for  (such as  = 3), then the resulting equation, 2 3 +5 = 10 is a statement (which is a false statement). Following
are some more examples:

There exists a real number  such that 2 +5 = 10. 
This is a statement because either such a real number exists or such a real number does not exist. In this case, this is a true
statement since such a real number does exist, namely  = 2.5.

For each real number , . 

This is a statement since either the sentence  is true when any real number is substituted for  (in

which case, the statement is true) or there is at least one real number that can be substituted for  and produce a false
statement (in which case, the statement is false). In this case, the given statement is true.
Solve the equation . 
This is not a statement since it is a directive. It does not assert that something is true.

 is not a statement since it is not known what  and  represent. However, the sentence, “There exist
real numbers  and  such that " is a statement. In fact, this is a true statement since there are such
integers. For example, if  and , then .
Compare the statement in the previous item to the statement, “For all real numbers  and , ." This is a
false statement since there are values for  and  for which . For example, if  and , then 

 and .

Which of the following sentences are statements? Do not worry about determining whether a statement is true or false; just
determine whether each sentence is a statement or not.

1. 3 + 4 = 8.
2. 2 7 + 8 = 22.
3. .
4. .
5. There are integers  and  such that .
6. There are integers  and  such that .
7. Given a line  and a point  not on that line, there is a unique line through  that does not intersect .
8. .
9.  for all real numbers  and .

10. The derivative of  is .
11. Does the equation  have two real number solutions?
12. If  is a right triangle with right angle at vertex , and if  is the midpoint of the hypotenuse, then the line segment

connecting vertex  to  is half the length of the hypotenuse.
13. There do not exist three integers , , and  such that .

Answer

x x

x x ⋅

 Example:

x x

x

x 2x+5 = 2(x+ )
5

2

2x+5 = 2(x+ )
5

2
x

x

−7x+10 = 0x2

(a+b = +)2 a2 b2 a b

a b (a+b = +)2 a2 b2

a = 1 b = 0 (a+b = +)2 a2 b2

a b (a+b = +)2 a2 b2

a b (a+b ≠ +)2 a2 b2 a = 2 b = 3
(a+b = = 25)2 52 + = + = 13a2 b2 22 32

 Progress Check 1.1: Statements

⋅

(x−1) = x+11)(√
2x+5y = 7

x y 2x+5y = 7
x y 23x+27y = 52

L P P L

(a+b = +3 b+3a +)3 a3 a2 b2 b3

(a+b = +3 b+3a +)3 a3 a2 b2 b3 a b

f(x) = sinx (x) = cosxf ′

3 −5x−7 = 0x2

ABC B D

B D

x y z + =x3 y2 z3
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How Do We Decide If a Statement Is True or False?
In mathematics, we often establish that a statement is true by writing a mathematical proof. To establish that a statement is false,
we often find a so-called counterexample. (These ideas will be explored later in this chapter.) So mathematicians must be able to
discover and construct proofs. In addition, once the discovery has been made, the mathematician must be able to communicate this
discovery to others who speak the language of mathematics. We will be dealing with these ideas throughout the text.

For now, we want to focus on what happens before we start a proof. One thing that mathematicians often do is to make a conjecture
beforehand as to whether the statement is true or false. This is often done through exploration. The role of exploration in
mathematics is often difficult because the goal is not to find a specific answer but simply to investigate. Following are some
techniques of exploration that might be helpful.

Techniques of Exploration
Guesswork and conjectures. Formulate and write down questions and conjectures. When we make a guess in mathematics, we
usually call it a conjecture.
Examples. Constructing appropriate examples is extremely important. Exploration often requires looking at lots of
examples. In this way, we can gather information that provides evidence that a statement is true, or we might find an example
that shows the statement is false. This type of example is called a counterexample.

For example, if someone makes the conjecture that , for all real numbers , we can test this conjecture
by substituting specific values for . One way to do this is to choose values of  for which is known. Using ,
we see that

 and

.

Since , these calculations show that this conjecture is false. However, if we do not find a counterexample for a
conjecture, we usually cannot claim the conjecture is true. The best we can say is that our examples indicate the conjecture
is true. As an example, consider the conjecture that

If  and  are odd integers, then  is an even integer.

We can do lots of calculation, such as  and , and find that every time we add two odd integers, the
sum is an even integer. However, it is not possible to test every pair of odd integers, and so we can only say that the
conjecture appears to be true. (We will prove that this statement is true in the next section.)

Use of prior knowledge. This also is very important. We cannot start from square one every time we explore a statement. We
must make use of our acquired mathematical knowledge. For the conjecture that , for all real numbers , we
might recall that there are trigonometric identities called “double angle identities.” We may even remember the correct identity
for , but if we do not, we can always look it up. We should recall (or find) that 
 
for all real numbers ,

We could use this identity to argue that the conjecture “for all real numbers , ” is false, but if we do, it is
still a good idea to give a specific counterexample as we did before.
Cooperation and brainstorming. Working together is often more fruitful than working alone. When we work with someone
else, we can compare notes and articulate our ideas. Thinking out loud is often a useful brainstorming method that helps
generate new ideas.

 Example:

sin(2x) = 2 sin(x) x

x x sin(x) x = π

4

sin(2( )) = sin( ) = 1,π

4
π

2

2 sin( ) = 2( ) =π

4
2√

2
2
–

√

1 ≠ 2
–

√

x y x+y

3 +7 = 10 5 +11 = 16

sin(2x) = 2 sin(x) x

sin(2x)

x

sin(2x) = 2 sin(x) cos(x). (1.1.1)

x sin(2x) = 2 sin(x)
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Use the techniques of exploration to investigate each of the following statements. Can you make a conjecture as to whether the
statement is true or false? Can you determine whether it is true or false?

1. , for all real numbers a and b.
2. There are integers  and  such that .
3. If  is an even integer, then  is an even integer.
4. If  and  are odd integers, then  is an odd integer.

Answer

Add texts here. Do not delete this text first.

Conditional Statements
One of the most frequently used types of statements in mathematics is the so-called conditional statement. Given statements  and 

, a statement of the form “If  then ” is called a conditional statement. It seems reasonable that the truth value (true or false)
of the conditional statement “If  then ” depends on the truth values of  and . The statement “If  then ” means that 
must be true whenever  is true. The statement  is called the hypothesis of the conditional statement, and the statement  is
called the conclusion of the conditional statement. Since conditional statements are probably the most important type of statement
in mathematics, we give a more formal definition.

A conditional statement is a statement that can be written in the form “If  then ,” where  and  are sentences. For this
conditional statement,  is called the hypothesis and  is called the conclusion.

Intuitively, “If  then ” means that  must be true whenever  is true. Because conditional statements are used so often, a
symbolic shorthand notation is used to represent the conditional statement “If  then .” We will use the notation  to
represent “If  then .” When  and  are statements, it seems reasonable that the truth value (true or false) of the conditional
statement  depends on the truth values of  and . There are four cases to consider:

 is true and  is true.
 is false and  is true.
 is true and  is false.
 is false and  is false.

The conditional statement  means that  is true whenever  is true. It says nothing about the truth value of  when  is
false. Using this as a guide, we define the conditional statement  to be false only when  is true and  is false, that is, only
when the hypothesis is true and the conclusion is false. In all other cases,  is true. This is summarized in Table 1.1, which is
called a truth table for the conditional statement . (In Table 1.1, T stands for “true” and F stands for “false.”)

T
T
F
F

T
F
T
F

T
F
T
T

Table 1.1: Truth Table for 

The important thing to remember is that the conditional statement  has its own truth value. It is either true or false (and not
both). Its truth value depends on the truth values for  and , but some find it a bit puzzling that the conditional statement is
considered to be true when the hypothesis P is false. We will provide a justification for this through the use of an example.

 Progress Check 1.2: Explorations

(a+b = +)2 a2 b2

x y 2x+5y = 41
x x2

x y x ⋅ y

P

Q P Q

P Q P Q P Q Q

P P Q

 Definition

P Q P Q

P Q

P Q Q P

P Q P → Q

P Q P Q

P → Q P Q

P Q

P Q

P Q

P Q

P → Q Q P Q P

P → Q P Q

P → Q

P → Q

P Q P → Q

P → Q

P → Q

P Q
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Suppose that I say

“If it is not raining, then Daisy is riding her bike.”

We can represent this conditional statement as  where  is the statement, “It is not raining” and  is the statement,
“Daisy is riding her bike.”

Although it is not a perfect analogy, think of the statement  as being false to mean that I lied and think of the statement 
 as being true to mean that I did not lie. We will now check the truth value of  based on the truth values of 

and .

1. Suppose that both  and  are true. That is, it is not raining and Daisy is riding her bike. In this case, it seems reasonable
to say that I told the truth and that  is true.

2. Suppose that  is true and  is false or that it is not raining and Daisy is not riding her bike. It would appear that by
making the statement, “If it is not raining, then Daisy is riding her bike,” that I have not told the truth. So in this case, the
statement  is false.

3. Now suppose that  is false and  is true or that it is raining and Daisy is riding her bike. Did I make a false statement by
stating that if it is not raining, then Daisy is riding her bike? The key is that I did not make any statement about what would
happen if it was raining, and so I did not tell a lie. So we consider the conditional statement, “If it is not raining, then Daisy
is riding her bike,” to be true in the case where it is raining and Daisy is riding her bike.

4. Finally, suppose that both  and  are false. That is, it is raining and Daisy is not riding her bike. As in the previous
situation, since my statement was , I made no claim about what would happen if it was raining, and so I did not tell
a lie. So the statement  cannot be false in this case and so we consider it to be true.

1. Consider the following sentence:

If  is a positive real number, then  is a positive real number.

Although the hypothesis and conclusion of this conditional sentence are not statements, the conditional sentence itself can be
considered to be a statement as long as we know what possible numbers may be used for the variable . From the context of
this sentence, it seems that we can substitute any positive real number for . We can also substitute 0 for  or a negative real
number for x provided that we are willing to work with a false hypothesis in the conditional statement. (In Chapter 2, we will
learn how to be more careful and precise with these types of conditional statements.)

(a) Notice that if , then , which is negative. Does this mean that the given conditional statement is
false?

(b) Notice that if , then , which is positive. Does this mean that the given conditional statement is true?

(c) Do you think this conditional statement is true or false? Record the results for at least five different examples where the
hypothesis of this conditional statement is true.

2. “If  is a positive integer, then  is a prime number.” (Remember that a prime number is a positive integer
greater than 1 whose only positive factors are 1 and itself.) 
To explore whether or not this statement is true, try using (and recording your results) for , , , , ,
and . Then record the results for at least four other values of . Does this conditional statement appear to be true?

Answer

Add texts here. Do not delete this text first.

Further Remarks about Conditional Statements
1. The conventions for the truth value of conditional statements may seem a bit strange,especially the fact that the conditional

statement is true when the hypothesis of the conditional statement is false. The following example is meant to show that this
makes sense.

 Example 1.3:

P → Q P Q

P → Q

P → Q P → Q P

Q

P Q

P → Q

P Q

P → Q

P Q

P Q

P → Q

P → Q

 Progress Check 1.4: xplorations with Conditional Statements

x +8xx2

x

x x

x = −3 +8x = −15x2

x = 4 +8x = 48x2

n −n+41n2

n = 1 n = 2 n = 3 n = 4 n = 5
n = 10 n

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86088?pdf


1.1.5 https://math.libretexts.org/@go/page/86088

Suppose that Ed has exactly $52 in his wallet. The following four statements will use the four possible truth combinations for
the hypothesis and conclusion of a conditional statement.

If Ed has exactly $52 in his wallet, then he has $20 in his wallet. This is a true statement. Notice that both the hypothesis and
the conclusion are true.
If Ed has exactly $52 in his wallet, then he has $100 in his wallet. This statement is false. Notice that the hypothesis is true
and the conclusion is false.
If Ed has $100 in his wallet, then he has at least $50 in his wallet. This statement is true regardless of how much money he
has in his wallet. In this case, the hypothesis is false and the conclusion is true.
If Ed has $100 in his wallet, then he has at least $80 in his wallet. This statement is true regardless of how much money he
has in his wallet. In this case, the hypothesis is false and the conclusion is false.

This is admittedly a contrived example but it does illustrate that the conventions for the truth value of a conditional
statement make sense. The message is that in order to be complete in mathematics, we need to have conventions about when
a conditional statement is true and when it is false.

2. The fact that there is only one case when a conditional statement is false often provides a method to show that a given
conditional statement is false. In Progress Check 1.4, you were asked if you thought the following conditional statement was
true or false.

If  is a positive integer, then  is a prime number.

Perhaps for all of the values you tried for ,  turned out to be a prime number. However, if we try , we ge 
 

 
 

 
So in the case where , the hypothesis is true (41 is a positive integer) and the conclusion is false  is not prime.
Therefore, 41 is a counterexample for this conjecture and the conditional statement 
“If  is a positive integer, then  is a prime number” 
is false. There are other counterexamples (such as , , and ), but only one counterexample is needed to
prove that the statement is false.

3. Although one example can be used to prove that a conditional statement is false, in most cases, we cannot use examples to
prove that a conditional statement is true. For example, in Progress Check 1.4, we substituted values for  for the conditional
statement “If  is a positive real number, then  is a positive real number.” For every positive real number used for , we
saw that  was positive. However, this does not prove the conditional statement to be true because it is impossible to
substitute every positive real number for . So, although we may believe this statement is true, to be able to conclude it is true,
we need to write a mathematical proof. Methods of proof will be discussed in Section 1.2 and Chapter 3.

The following statement is a true statement, which is proven in many calculus texts.

If the function  is differentiable at , then the function  is continuous at .

Using only this true statement, is it possible to make a conclusion about the function in each of the following cases?

1. It is known that the function , where , is differentiable at 0.
2. It is known that the function , where , is not differentiable at 0.
3. It is known that the function , where , is continuous at 0.

4. It is known that the function , where  is not continuous at 0.

Answer

Add texts here. Do not delete this text first.

n ( −n+41)n2

n ( −n+41)n2 n = 41

−n+41 = −41 +41n2 412

−n+41 =n2 412

n = 41 412

n ( −n+41)n2

n = 42 n = 45 n = 50

x

x +8xx2 x

+8xx2

x

 Progress Check 1.5: Working with a Conditional Statement

f a f a

f f(x) = sinx
f f(x) = x−−√3

f f(x) = |x|

f f(x) =
|x|

x
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Closure Properties of Number Systems
The primary number system used in algebra and calculus is the real number system. We usually use the symbol R to stand for the
set of all real numbers. The real numbers consist of the rational numbers and the irrational numbers. The rational numbers are
those real numbers that can be written as a quotient of two integers (with a nonzero denominator), and the irrational numbers are
those real numbers that cannot be written as a quotient of two integers. That is, a rational number can be written in the form of a
fraction, and an irrational number cannot be written in the form of a fraction. Some common irrational numbers are ,  and .
We usually use the symbol  to represent the set of all rational numbers. (The letter  is used because rational numbers are
quotients of integers.) There is no standard symbol for the set of all irrational numbers.

Perhaps the most basic number system used in mathematics is the set of natural numbers. The natural numbers consist of the
positive whole numbers such as 1, 2, 3, 107, and 203. We will use the symbol  to stand for the set of natural numbers. Another
basic number system that we will be working with is the set of integers. The integers consist of zero, the positive whole numbers,
and the negatives of the positive whole numbers. If  is an integer, we can write . So each integer is a rational number and

hence also a real number.

We will use the letter  to stand for the set of integers. (The letter  is from the German word, , for numbers.) Three of the
basic properties of the integers are that the set  is closed under addition, the set  is closed under multiplication, and the set of
integers is closed under subtraction. This means that

If  and  are integers, then  is an integer;
If  and  are integers, then  is an integer; and
If  and  are integers, then  is an integer.

Notice that these so-called closure properties are defined in terms of conditional statements. This means that if we can find one
instance where the hypothesis is true and the conclusion is false, then the conditional statement is false.

1. In order for the set of natural numbers to be closed under subtraction, the following conditional statement would have to be
true: If  and  are natural numbers, then  is a natural number. However, since 5 and 8 are natural numbers, 

, which is not a natural number, this conditional statement is false. Therefore, the set of natural numbers is not
closed under subtraction.

2. We can use the rules for multiplying fractions and the closure rules for the integers to show that the rational numbers are
closed under multiplication. If  and  are rational numbers (so , , , and  are integers and  and  are not zero), then 

 

 

 
Since the integers are closed under multiplication, we know that  and  are integers and since  and , .
Hence,  is a rational number and this shows that the rational numbers are closed under multiplication.

Answer each of the following questions.

1. Is the set of rational numbers closed under addition? Explain.
2. Is the set of integers closed under division? Explain.
3. Is the set of rational numbers closed under subtraction? Explain.

Answer
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1. Which of the following sentences are statements?
(a)  
(b)  
(c) There exists integers , , and  such that  
(d) If , then  
(e) For each real number , if , then  
(f) For each real number ,  
(g)  
(h) If  is a prime number, then  has three positive factors. 
(i) 1 +  
(j) Every rectangle is a parallelogram. 
(k) Every even natural number greater than or equal to 4 is the sum of two prime numbers.

2. Identify the hypothesis and the conclusion for each of the following conditional statements. 
(a) If  is a prime number, then  has three positive factors. 
(b) If  is an irrational number and  is an irrational number, then  is an irrational number. 
(c) If  is a prime number, then  or  is an odd number. 
(d) If  is a prime number and  or  is an odd number. 
(e)  or  is a even number, then  is not prime.

3. Determine whether each of the following conditional statements is true or false. 
(a) If 10 < 7, then 3 = 4. 
(b) If 7 < 10, then 3 = 4. 
(c) If 10 < 7, then 3 + 5 = 8. 
(d) If 7 < 10, then 3 + 5 = 8.

4. Determine the conditions under which each of the following conditional sentences will be a true statement. 
(a) If a + 2 = 5, then 8 < 5. 
(b) If 5 < 8, then a + 2 = 5.

5. Let  be the statement “Student X passed every assignment in Calculus I,” and let  be the statement “Student X received
a grade of C or better in Calculus I.” 
(a) What does it mean for  to be true? What does it mean for  to be true? 
(b) Suppose that Student X passed every assignment in Calculus I and received a grade of B-, and that the instructor made
the statement . Would you say that the instructor lied or told the truth? 
(c) Suppose that Student X passed every assignment in Calculus I and received a grade of C-, and that the instructor made
the statement . Would you say that the instructor lied or told the truth? 
(d) Now suppose that Student X did not pass two assignments in Calculus I and received a grade of D, and that the
instructor made the statement . Would you say that the instructor lied or told the truth? 
(e) How are Parts (5b), (5c), and (5d) related to the truth table for ?

6. Following is a statement of a theorem which can be proven using calculus or precalculus mathematics. For this theorem, , 
, and  are real numbers.

Theorem If f is a quadratic function of the form 

 and a < 0, then the function f has a maximum value when . 

 
Using only this theorem, what can be concluded about the functions given by the following formulas? 
(a)  

(b)  

(c)  

(d)  

(e)  
(f) 

 1.1

+ = .32 42 52

+ = .a2 b2 c2

a b c + = .a2 b2 c2

= 4x2 x = 2.
x = 4x2 x = 2.
t t+ t = 1.sin2 cos2

sinx < sin( ).π

4
n n2

θ = θ.tan2 sec2

n n2

a b a ⋅ b
p p = 2 p

p p ≠ 2 p

p ≠ 2 p p

P Q

P Q

P → Q

P → Q

P → Q

P → Q

a

b c

f(x) = a +bx+cx2 x =
−b

2a

g(x) = −8 +5x−2x2

h(x) = − +3x
1

3
x2

k(x) = 8 −5x−7x2

j(x) = − +210
71

99
x2

f(x) = −4 −3x+7x2

F (x) = − + +9x4 x3
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7. Following is a statement of a theorem which can be proven using the quadratic formula. For this theorem, , , and  are
real numbers.

Theorem If  is a quadratic function of the form 
 and ac < 0, then the function  has two x-intercepts.

Using only this theorem, what can be concluded about the functions given by the following formulas? 
(a)  

(b)  

(c)  

(d)  

(e)  
(f) 

8. Following is a statement of a theorem about certain cubic equations.For this theorem,  represents a real number.

Theorem A. If  is a cubic function of the form  and b > 1, then the function  has exactly one -
intercept. 
 
Following is another theorem about -intercepts of functions: 
 
Theorem B. If  and  are functions with , where  is a nonzero real number, then  and  have exactly
the same -intercepts.

Using only these two theorems and some simple algebraic manipulations, what can be concluded about the functions given
by the following formulas? 
(a)  
(b)  
(c)  
(d)  
(e)  
(f) 

9. (a) Is the set of natural numbers closed under division? 
(b) Is the set of rational numbers closed under division? 
(c) Is the set of nonzero rational numbers closed under division? 
(d) Is the set of positive rational numbers closed under division? 
(e) Is the set of positive real numbers closed under subtraction? 
(f) Is the set of negative rational numbers closed under division? 
(g) Is the set of negative integers closed under addition? 
 
Explorations and Activities

10. Exploring Propositions. In Progress Check 1.2, we used exploration to show that certain statements were false and to
make conjectures that certain statements were true. We can also use exploration to formulate a conjecture that we believe to
be true. For example, if we calculate successive powers of  and examine the units digits of these
numbers, we could make the following conjectures (among others): 

 If  is a natural number, then the units digit of  must be 2, 4, 6, or 8. 
 The units digits of the successive powers of 2 repeat according to the pattern “2, 4, 8, 6.” 

(a) Is it possible to formulate a conjecture about the units digits of successive powers of ? If so,
formulate at least one conjecture. 
(b) Is it possible to formulate a conjecture about the units digit of numbers of the form , where  is a natural
number? If so, formulate a conjecture in the form of a conditional statement in the form “If  is a natural number, then ... .” 
(c) Let . Determine the first eight derivatives of this function. What do you observe? Formulate a conjecture
that appears to be true. The conjecture should be written as a conditional statement in the form, “If n is a natural number,
then ... .”

a b c

f

f(x) = a +bx+cx2 f

g(x) = −8 +5x−2x2

h(x) = − +3x
1

3
x2

k(x) = 8 −5x−7x2

j(x) = − +210
71

99
x2

f(x) = −4 −3x+7x2

F (x) = − + +9x4 x3

b

f f(x) = −x+bx3 f x

x

f g g(x) = k ⋅ f(x) k f g

x

f(x) = −x+7x3

g(x) = +x+7x3

h(x) = − +x−5x3

k(x) = 2 +2x+3x3

r(x) = −x+11x4

F (x) = 2 −2x+7x3

2, ( , , , , , . . . )21 22 23 24 25

∙ n 2n

∙
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1.2: Constructing Direct Proofs
Preview Activity 1 (Definition of Even and Odd Integers) 
Definitions play a very important role in mathematics. A direct proof of a proposition in mathematics is often a demonstration that
the proposition follows logically from certain definitions and previously proven propositions. A definition is an agreement that a
particular word or phrase will stand for some object, property, or other concept that we expect to refer to often. In many elementary
proofs, the answer to the question, “How do we prove a certain proposition?”, is often answered by means of a definition. For
example, in Progress Check 1.2 on page 5, all of the examples you tried should have indicated that the following conditional
statement is true:

If  and  are odd integers, then  is an odd integer.

In order to construct a mathematical proof of this conditional statement, we need a precise definition what it means to say that an
integer is an even integer and what it means to say that an integer is an odd integer.

An integer  is an even integer provided that there exists an integer  such that . An integer a is an odd integer
provided there exists an integer  such that .

Using this definition, we can conclude that the integer 16 is an even integer since 16 = 2  8 and 8 is an integer. By answering the
following questions, you should obtain a better understanding of these definitions. These questions are not here just to have
questions in the textbook. Constructing and answering such questions is a way in which many mathematicians will try to gain a
better understanding of a definition.

1. Use the definition given above to 
(a) Explain why 28, -42, 24, and 0 are even integers. 
(b) Explain why 51, -11, 1, and -1 are odd integers. 
 
It is important to realize that mathematical definitions are not made randomly. In most cases, they are motivated by a
mathematical concept that occurs frequently.

2. Are the definitions of even integers and odd integers consistent with your previous ideas about even and odd integers?

Preview Activity 2 (Thinking about a Proof)

Consider the following proposition:

Proposition. If  and  are odd integers, then  is an odd integer.

Think about how you might go about proving this proposition. A direct proof of a conditional statement is a demonstration that the
conclusion of the conditional statement follows logically from the hypothesis of the conditional statement. Definitions and
previously proven propositions are used to justify each step in the proof. To help get started in proving this proposition, answer the
following questions:

1. The proposition is a conditional statement. What is the hypothesis of this conditional statement? What is the conclusion of this
conditional statement?

2. If  and , then . Does this example prove that the proposition is false? Explain.
3. If  and , then . Does this example prove that the proposition is true? Explain. 

 
In order to prove this proposition, we need to prove that whenever both  and  are odd integers,  is an odd integer. Since
we cannot explore all possible pairs of integer values for  and , we will use the definition of an odd integer to help us
construct a proof.

4. To start a proof of this proposition,we will assume that the hypothesis of the conditional statement is true. So in this case, we
assume that both x and yare odd integers. We can then use the definition of an odd integer to conclude that there exists an
integer m such that . Now use the definition of an odd integer to make a conclusion about the integer .

Note: The definition of an odd integer says that a certain other integer exists. This definition may be applied to both  and .
However, do not use the same letter in both cases. To do so would imply that  and we have not made that assumption. To

x y x ⋅ y

 Definition

a n a = 2n

n a = 2n +1

⋅

x y x ⋅ y

x = 2 y = 3 x ⋅ y = 6
x = 5 y = 3 x ⋅ y = 15

x y x ⋅ y

x y

x = 2m +1 y

x y

x = y
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be more specific, if  and , then .

5. We need to prove that if the hypothesis is true, then the conclusion is true. So, in this case, we need to prove that  is an odd
integer. At this point, we usually ask ourselves a so-called backward question. In this case, we ask, “Under what conditions
can we conclude that  is an odd integer?” Use the definition of an odd integer to answer this question, and be careful to use
a different letter for the new integer than was used in Part (4).

Properties of Number Systems

At the end of Section 1.1, we introduced notations for the standard number systems we use in mathematics. We also discussed
some closure properties of the standard number systems. For this text, it is assumed that the reader is familiar with these closure
properties and the basic rules of algebra that apply to all real numbers. That is, it is assumed the reader is familiar with the
properties of the real numbers shown in Table 1.2.

Constructing a Proof of a Conditional Statement

In order to prove that a conditional statement  is true, we only need to prove that  is true whenever  is true. This is
because the conditional statement is true whenever the hypothesis is false. So in a direct proof of , we assume that  is
true, and using this assumption, we proceed through a logical sequence of steps to arrive at the conclusion that  is true.

Unfortunately, it is often not easy to discover how to start this logical sequence of steps or how to get to the conclusion that  is
true. We will describe a method of exploration that often can help in discovering the steps of a proof. This method

For all real numbers ,  and 

Identity Properties  and 

Inverse Properties  and if , then .

Commutative Properties  and 

Associative Properties  and 

Distributive Properties  and 

Table 1.2: Properties of the Real Numbers

will involve working forward from the hypothesis, , and backward from the conclusion, . We will use a device called the
“know-show table” to help organize our thoughts and the steps of the proof. This will be illustrated with the proposition from
Preview Activity 2.

Proposition. If  and  are odd integers, then  is an odd integer. 
The first step is to identify the hypothesis, , and the conclusion, , of the conditional statement. In this case, we have the
following:

 :  and  are odd integers. :  is an odd integer.

We now treat  as what we know (we have assumed it to be true) and treat  as what we want to show (that is, the goal). So we
organize this by using  as the first step in the know portion of the table and  as the last step in the show portion of the table. We
will put the know portion of the table at the top and the show portion of the table at the bottom.

Step Know Reason

 and  are odd integers Hypothesis

1 ... ...

... ... ...

1 ... ...

 is an odd integer. ?

Step Show Reason

x = 2m +1 y = 2m +1 x = y

x ⋅ y

x ⋅ y

P → Q Q P

P → Q P

Q

Q

x y z

x + 0 = x x ⋅ 1 = x

x + (−x) = 0 x ≠ 0 x ⋅ = 1
1

x

x + y = y + x xy = yx

(x + y) + z = x + (y + z) (xy)z = x(yz)

x(y + z) = xy + xz (y + z)x = yx + zx

P Q

x y x ⋅ y

P Q

P x y Q x ⋅ y

P Q

P Q

P x y

P

Q

Q x ⋅ y
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We have not yet filled in the reason for the last step because we do not yet know how we will reach the goal. The idea now is to ask
ourselves questions about what we know and what we are trying to prove. We usually start with the conclusion that we are trying to
prove by asking a so-called backward question. The basic form of the question is, “Under what conditions can we conclude that 

 is true?” How we ask the question is crucial since we must be able to answer it. We should first try to ask and answer the
question in an abstract manner and then apply it to the particular form of statement .

In this case, we are trying to prove that some integer is an odd integer. So our backward question could be, “How do we prove that
an integer is odd?” At this time, the only way we have of answering this question is to use the definition of an odd integer. So our
answer could be, “We need to prove that there exists an integer  such that the integer equals .” We apply this answer to
statement  and insert it as the next to last line in the know-show table.

Step Know Reason

 and  are odd integers Hypothesis

1 ... ...

... ... ...

1 There exists an integer  such that ...

 is an odd integer. Definition of an odd integer

Step Show Reason

We now focus our effort on proving statement 1 since we know that if we can prove 1, then we can conclude that  is true. We
ask a backward question about 1 such as, “How can we prove that there exists an integer  such that ?” We may
not have a ready answer for this question, and so we look at the know portion of the table and try to connect the know portion to the
show portion. To do this, we work forward from step , and this involves asking a forward question. The basic form of this type
of question is, “What can we conclude from the fact that  is true?” In this case, we can use the definition of an odd integer to
conclude that there exist integers m and n such that  and . We will call this Step 1 in the know-show
table. It is important to notice that we were careful not to use the letter q to denote these integers. If we had used q again, we would
be claiming that the same integer that gives  also gives . This is why we used m and n for the integers 
and  since there is no guarantee that  equals . The basic rule of thumb is to use a different symbol for each new object we
introduce in a proof. So at this point, we have:

Step 1. We know that there exist integers  and  such that  and .
Step 1. We need to prove that there exists an integer  such that .

We must always be looking for a way to link the “know part” to the “show part”. There are conclusions we can make from 1, but
as we proceed, we must always keep in mind the form of statement in 1. The next forward question is, “What can we conclude
about from what we know?” One way to answer this is to use our prior knowledge of algebra. That is, we can first use
substitution to write . Although this equation does not prove that  is odd, we can use algebra to try
to rewrite the right side of this equation.  in the form of an odd integer so that we can arrive at step 1. We first
expand the right side of the equation to obtain

Now compare the right side of the last equation to the right side of the equation in step 1. Sometimes the difficult part at this
point is the realization that  stands for some integer and that we only have to show that  equals two times some integer plus
one. Can we now make that conclusion? The answer is yes because we can factor a 2 from the first three terms on the right side of
the equation and obtain

We can now complete the table showing the outline of the proof as follows:

Step Know Reason

 and  are odd integers Hypothesis

Q

Q

q 2q +1
Q

P x y

P

Q
q

xy = 2q + 1

Q x ⋅ y

Q Q Q

Q q x ⋅ y = 2q +1

P

P

x = 2m +1 y = 2n +1 P

x ⋅ y = 2q +1 x = 2q +1 x

y x y

P m n x = 2m +1 y = 2n +1
Q q x ⋅ y = 2q +1

P

Q

x ⋅ y

x ⋅ y = (2m +1)(2n +1) x ⋅ y

(2m +1)(2n +1) Q

x ⋅ y = (2m +1)(2n +1) = 4mn +2m +2n +1

Q

q x ⋅ y

x ⋅ y = 4mn +2m +2n +1 = 2(2mn +m +n) +1

P x y
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1 There exist integers  and  such that 
 and .

Definition of an odd integer.

2 Substitution

3 Algebra

4 Algebra

5  is an integer Closure properties of the integers

1 There exists an integer  such that Use 

 is an odd integer. Definition of an odd integer

It is very important to realize that we have only constructed an outline of a proof. Mathematical proofs are not written in table
form. They are written in narrative form using complete sentences and correct paragraph structure, and they follow certain
conventions used in writing mathematics. In addition, most proofs are written only from the forward perspective. That is, although
the use of the backward process was essential in discovering the proof, when we write the proof in narrative form, we use the
forward process described in the preceding table. A completed proof follows.

If  and  are odd integers, then  is an odd integer.

Proof

We assume that  and  are odd integers and will prove that  is an odd integer. Since  and  are odd, there exist
integers  and  such that

 and .

Using algebra, we obtain

Since  and  are integers and the integers are closed under addition and multiplication, we conclude that 
is an integer. This means that  has been written in the form  for some integer , and hence,  is an odd
integer. Consequently, it has been proven that if  and  are odd integers, then  is an odd integer.

Writing Guidelines for Mathematics Proofs

At the risk of oversimplification, doing mathematics can be considered to have two distinct stages. The first stage is to convince
yourself that you have solved the problem or proved a conjecture. This stage is a creative one and is quite often how mathematics is
actually done. The second equally important stage is to convince other people that you have solved the problem or proved the
conjecture. This second stage often has little in common with the first stage in the sense that it does not really communicate the
process by which you solved the problem or proved the conjecture. However, it is an important part of the process of
communicating mathematical results to a wider audience.

A mathematical proof is a convincing argument (within the accepted standards of the mathematical community) that a certain
mathematical statement is necessarily true. A proof generally uses deductive reasoning and logic but also contains some amount of
ordinary language (such as English). A mathematical proof that you write should convince an appropriate audience that the result
you are proving is in fact true. So we do not consider a proof complete until there is a well-written proof. So it is important to
introduce some writing guidelines. The preceding proof was written according to the following basic guidelines for writing proofs.
More writing guidelines will be given in Chapter 3.

1. Begin with a carefully worded statement of the theorem or result to be proven. This should be a simple declarative
statement of the theorem or result. Do not simply rewrite the problem as stated in the textbook or given on a handout. Problems
often begin with phrases such as “Show that” or “Prove that.” This should be reworded as a simple declarative statement of the
theorem. Then skip a line and write “Proof” in italics or boldface font (when using a word processor). Begin the proof on the
same line. Make sure that all paragraphs can be easily identified. Skipping a line between paragraphs or indenting each

P
m n

x = 2m + 1 y = 2n + 1

P xy = (2m + 1)(2n + 1)

P xy = 4mn + 2m + 2n + 1

P xy = 2(2mn + m + n) + 1

P (2mn + m + n)

Q
q

xy = 2q + 1
q = (2mn + m + n)

Q x ⋅ y

 Theorem

x y x ⋅ y

x y x ⋅ y x y

m n

x = 2m +1 y = 2n +1

x ⋅ y = (2m +1)(2n +1) = 4mn +2m +2n +1 = 2(2mn +m +n) +1

m n 2mn +m +n

x ⋅ y 2q +1 q x ⋅ y

x y x ⋅ y
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paragraph can accomplish this. 
 
As an example, an exercise in a text might read, “Prove that if  is an odd integer, then  is an odd integer.” This could be
started as follows:

If  is an odd integer, then  is an odd integer.

Proof

We assume that x is an odd integer ...

2. Begin the proof with a statement of your assumptions. Follow the statement of your assumptions with a statement of what
you will prove.

If  is an odd integer, then  is an odd integer.

Proof

We assume that  is an odd integer and will prove that  is an odd integer.

3. Usethepronoun“we.” If a pronoun is used in a proof, the usual convention is to use “we” instead of “I.” The idea is to stress
that you and the reader are doing the mathematics together. It will help encourage the reader to continue working through the
mathematics. Notice that we started the proof of Theorem 1.8 with “We assume that... .”

4. Use italics for variables when using a word processor. When using a word processor to write mathematics, the word
processor needs to be capable of producing the appropriate mathematical symbols and equations. The mathematics that is
written with a word processor should look like typeset mathematics. This means that italics font is used for variables, boldface
font is used for vectors, and regular font is used for mathematical terms such as the names of the trigonometric and logarithmic
functions.

For example, we do not write  or . The proper way to typeset this is .

5. Display important equations and mathematical expressions. Equations and manipulations are often an integral part of
mathematical exposition. Do not write equations, algebraic manipulations, or formulas in one column with reasons given in
another column. Important equations and manipulations should be displayed. This means that they should be centered with
blank lines before and after the equation or manipulations, and if the left side of the equations do not change, it should not be
repeated. For example,

Using algebra, we we obtain 
 

 
 
Since  and  are integers, we conclude that ... .

6. Tell the reader when the proof has been completed. Perhaps the best way to do this is to simply write, “This completes the
proof.” Although it may seem repetitive, a good alternative is to finish a proof with a sentence that states precisely what has
been proven. In any case, it is usually good practice to use some “end of proof symbol” such as

Construct a know-show table for each of the following propositions and then write a formal proof for one of the propositions.

1. If  is an even integer and  is an even integer, then  is an even integer.
2. If  is an even integer and  is an odd integer, then  is an odd integer.
3. If  is an even integer and  is an odd integer, then  is an even integer.

x x2

 Theorem

x x2

 Theorem 1.2.1

x x2

x x2

sin x sin x sinx

x ⋅ y = (2m +1)(2n +1) = 4mn +2m +2n +1 = 2(2mn +m +n) +1

m n

 Progress Check 1.9 (Proving Propositions)

x y x +y
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Answer

Some Comments about Constructing Direct Proofs

1. When we constructed the know-show table prior to writing a proof for Theorem 1.8, we had only one answer for the backward
question and one answer for the forward question. Often, there can be more than one answer for these questions. For example,
consider the following statement:

If  is an odd integer, then  is an odd integer.

The backward question for this could be, “How do I prove that an integer is an odd integer?” One way to answer this is to use
the definition of an odd integer, but another way is to use the result of Theorem 1.8. That is, we can prove an integer is odd by
proving that it is a product of two odd integers.

The difficulty then is deciding which answer to use. Sometimes we can tell by carefully watching the interplay between the
forward process and the backward process. Other times, we may have to work with more than one possible answer.

2. Sometimes we can use previously proven results to answer a forward question or a backward question. This was the case in the
example given in Comment (1), where Theorem 1.8 was used to answer a backward question.

3. Although we start with two separate processes (forward and backward), the key to constructing a proof is to find a way to link
these two processes. This can be difficult. One way to proceed is to use the know portion of the table to motivate answers to
backward questions and to use the show portion of the table to motivate answers to forward questions.

4. Answering a backward question can sometimes be tricky. If the goal is the statement , we must construct the know-show table
so that if we know that 1 is true, then we can conclude that  is true. It is sometimes easy to answer this in a way that if it is
known that  is true, then we can conclude that 1 is true. For example, suppose the goal is to prove

,

where  is a real number. A backward question could be, “How do we prove the square of a real number equals four?” One
possible answer is to prove that the real number equals 2. Another way is to prove that the real number equals 2. This is an
appropriate backward question, and these are appropriate answers.

However, if the goal is to prove

where  is a real number, we could ask, “How do we prove a real number equals 2?” It is not appropriate to answer this
question with “prove that the square of the real number equals 4.” This is because if , then it is not necessarily true that 

.

5. Finally,it is very important to realize that not every proof can be constructed by the use of a simple know-show table. Proofs
will get more complicated than the ones that are in this section. The main point of this section is not the know-show table itself,
but the way of thinking about a proof that is indicated by a know-show table. In most proofs, it is very important to specify
carefully what it is that is being assumed and what it is that we are trying to prove. The process of asking the “backward
questions” and the “forward questions” is the important part of the know-show table. It is very important to get into the “habit
of mind” of working backward from what it is we are trying to prove and working forward from what it is we are assuming.
Instead of immediately trying to write a complete proof, we need to stop, think, and ask questions such as

Just exactly what is it that I am trying to prove?
How can I prove this?
What methods do I have that may allow me to prove this?
What are the assumptions?
How can I use these assumptions to prove the result?

Construct a table of values for  using at least six different integers for . Make one-half of the values for 
even integers and the other half odd integers. Is the following proposition true or false?

If  is an odd integer, then  is an odd integer.

x x2

Q

Q Q

Q Q

= 4y2

y

y = 2

y

= 4y2

y = 2

 Progress Check 1.10 (Exploring a Proposition)
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Justify your conclusion. This means that if the proposition is true, then you should write a proof of the proposition. If the
proposition is false, you need to provide an example of an odd integer for which  is an even integer.

Answer

Add texts here. Do not delete this text first.

The Pythagorean Theorem for right triangles states that if a and b are the lengths of the legs of a right triangle and  is the
length of the hypotenuse, then . For example, if  and  are the lengths of the two sides of a right
triangle and if  is the length of the hypotenuse, then the  and . Since c is a length and must be
positive, we conclude that .

Construct and provide a well-written proof for the following proposition.

Proposition. If  is a real number and , , and  are the lengths of the three sides of a right triangle, then .

Although this proposition uses different mathematical concepts than the one used in this section, the process of constructing a
proof for this proposition is the same forward-backward method that was used to construct a proof for Theorem 1.8. However,
the backward question, “How do we prove that ?” is simple but may be difficult to answer. The basic idea is to develop
an equation from the forward process and show that  is a solution of that equation.

Answer

Add texts here. Do not delete this text first.

1. Construct a know-show table for each of the following statements and then write a formal proof for one of the statements. 
 
(a) If  is an even integer,then  is an odd integer. 
(b) If  is an odd integer, then  is an even integer.

2. Construct a know-show table for each of the following statements and then write a formal proof for one of the statements. 
 
(a) If  is an even integer and  is an even integer, then  is an even integer. 
(b) If  is an even integer and  is an odd integer, then  is an odd integer. 
(c) If  is an odd integer and  is an odd integer, then  is an even integer.

3. Construct a know-show table for each of the following statements and then write a formal proof for one of the statements. 
 
(a) If  is an even integer and  is an integer, then  is an even integer. 
(b) If  is an even integer, then  is an even integer. 
(c) If  is an odd integer, then  is an odd integer.

4. Construct a know-show table and write a complete proof for each of the following statements: 
 
(a) If  is an even integer, then  is an odd integer. 
(b) If  is an odd integer, then  is an even integer. 
(c) If  and  are odd integers, then  is an even integer.

5. Construct a know-show table and write a complete proof for each of the following statements: 
 
(a) If  is an even integer, then  is an odd integer. 
(b) If  is an odd integer, then  is an even integer.

6. In this section, it was noted that there is often more than one way to answer a backward question. For example, if the
backward question is, “How can we prove that two real numbers are equal?”, one possible answer is to prove that their
difference equals 0. Another possible answer is to prove that the first is less than or equal to the second and that the second
is less than or equal to the first 

3 +4m +6m2

 Progress Check 1.11 (Constructing and Writing a Proof)

c

+ =a2 b2 c2 a = 5 b = 12

c = +c2 52 122 = 169c2

c = 13

m m m +1 m +2 m = 3

m = 3
m = 3

 Exercises for Section 1.2
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(a) Give at least one more answer to the backward question, “How can we prove that two real numbers are equal?” 
(b) List as many answers as you can for the backward question, “How can we prove that a real number is equal to zero?” 
(c) List as many answers as you can for the backward question, “How can we prove that two lines are parallel?” 
(d) List as many answers as you can for the backward question, “How can we prove that a triangle is isosceles?”

7. Are the following statements true or false? Justify your conclusions. 
 
(a) If ,  and  are integers, then  is an even integer. 
(b) If  and  are odd integers and  is an integer, then  is an even integer.

8. Is the following statement true or false? Justify your conclusion. 
If  and  are nonnegative real numbers and , then .

Either give a counterexample to show that it is false or outline a proof by completing a know-show table.

9. An integer  is said to be a type 0 integer if there exists an integer  such that . An integer  is said to be a type 1
integer if there exists an integer  such that . An integer a is said to be a type 2 integer if there exists an
integer  such that . 
 
(a) Give examples of at least four different integers that are type 1 integers. 
(b) Give examples of at least four different integers that are type 2 integers. 
(c) By multiplying pairs of integers from the list in Exercise (9a), does it appear that the following statement is true or
false?

If  and  are both type 1 integers, then  is a type 1 integer.

10. Use the definitions in Exercise (9) to help write a proof for each of the following statements: 
 
(a) If  and  are both type 1 integers, then  is a type 2 integer. 
(b) If  and  are both type 2 integers, then  is a type 1 integer.
(a) If  is a type 1 integer and  is a type 2 integer, then  is a type 2 integer. 
(a) If  and  are both type 2 integers, then  is type 1 integer.

11. Let , , and  be real numbers with . The solutions of the quadratic equation  are given by the
quadratic formula, which states that the solutions are  and , where 
 

 and . 

 

(a) Prove that the sum of the two solutions of the quadratic equation  is equal to . 

(b) Prove that the product of the two solutions of the quadratic equation  is equal to .

12. (a) See Exercise (11) for the quadratic formula, which gives the solutions to a quadratic equation. Let a, b, and c be real
numbers with . The discriminant of the quadratic equation  is defined to be . Explain how
to use this discriminant to determine if the quadratic equation has two real number solutions, one real number solution, or
no real number solutions. 
(b) Prove that if , , and  are real numbers with  and , then one solutions of the quadratic equation 

 is a positive real number. 
(c) Prove that if , , and  are real numbers with , , and , then the quadratic equation 

 has no real number solutions. 
 
Explorations and Activities

13. Pythagorean Triples. Three natural numbers , , and  with  are said to form a Pythagorean triple provided
that . For example, 3, 4, and 5 form a Pythagorean triple since . The study of Pythagorean triples
began with the development of the Pythagorean Theorem for right triangles, which states that if  and  are the lengths of
the legs of a right triangle and  is the length of the hypotenuse, then . For example, if the lengths of the legs
of a right triangle are 4 and 7 units, then , and the length of the hypotenuse must be  units (since the

a b c ab +ac

b c a ab +ac

a b a +b = 0 a = 0

a n a = 3n a

n a = 3n +1
m a = 3m +2

a b a ⋅ b

a b a +b

a b a +b

a b a ⋅ b

a b a ⋅ b

a b c a ≠ 0 a +bx +c = 0x2

x1 x2

=x1

−b + −4ac)(√ b2

2a
=x2
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b

a
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length must be a positive real number). Notice that 4, 7, and  are not a Pythagorean triple since  is not a natural
number. 
 
(a) Verify that each of the following triples of natural numbers form a Pythagorean triple. 
 
(1) 3, 4, and 5. (2) 8, 15, and 17. (3) 12, 35, and 37 
(4) 6, 8, and 10. (5) 10, 24, and 26 (6) 14, 48, and 50 
 
(b) Does there exist a Pythagorean triple of the form , , and , where  is a natural number? If the answer is
yes, determine all such Pythagorean triples. If the answer is no, prove that no such Pythagorean triple exists. 
 
(c) Does there exist a Pythagorean triple of the form , ,and , where  is a natural number? If the answer
is yes, determine all such Pythagorean triples. If the answer is no, prove that no such Pythagorean triple exists.

14. More Work with Pythagorean Triples. In Exercise (13), we verified that each of the following triples of natural numbers
are Pythagorean triples: 
 
(1) 3, 4, and 5. (2) 8, 15, and 17. (3) 12, 35, and 37 
(4) 6, 8, and 10. (5) 10, 24, and 26 (6) 14, 48, and 50 
 
(a) Focus on the least even natural number in each of these Pythagorean triples. Let  be this even number and find m so
that . Now try to write formulas for the other two numbers in the Pythagorean triple in terms of m. For example,
for 3, 4, and 5,  and , and for 8, 15, and 17,  and . Once you think you have formulas, test your
results with . That is, check to see that you have a Pythagorean triple whose smallest even number is 20. 
 
(b) Write a proposition and then write a proof of the proposition. The proposition should be in the form: If  is a natural
number and , then ......

Answer

Add texts here. Do not delete this text first.

This page titled 1.2: Constructing Direct Proofs is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.
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1.S: Introduction to Writing Proofs in Mathematics (Summary)
Important Definitions

Statement
Odd integer
Conditional statement
Even integer
Pythagorean triple

Important Number Systems and Their Properties

The natural numbers, ; the integers, ; the rational numbers, ; and the real number, .
Closure Properties of the Number Systems

Number System Closed Under

Natural numbers, addition and multiplication

Integers, addition, subtraction, and multiplication

Rational numbers, addition, subtraction, and multiplication, and division by nonzero
rational numbers

Real number, addition, subtraction, and multiplication, and division by nonzero real
numbers

Inverse,commutative,associative, and distributive properties of the real numbers.

Important Theorems and Results

Exercise (1), Section 1.2 
If  is an even integer, then  is an odd integer. 
If  is an odd integer, then  is an even integer.
Exercise (2), Section 1.2 
If  is an even integer and  is an even integer, then  is an even integer. 
If  is an even integer and  is an odd integer, then  is an odd integer. 
If  is an odd integer and  is an odd integer, then  is an even integer.
Exercise (3), Section 1.2.  
If  is an even integer and  is an integer, then  is an even integer.
Theorem1.8. If  is an odd integer and  is an odd integer, then  is an odd integer.
The Pythagorean Theorem. If  and  are the lengths of the legs of a right triangle and  is the length of the hypotenuse, then 

.

This page titled 1.S: Introduction to Writing Proofs in Mathematics (Summary) is shared under a CC BY-NC-SA 3.0 license and was authored,
remixed, and/or curated by Ted Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and
standards of the LibreTexts platform; a detailed edit history is available upon request.

1.S: Introduction to Writing Proofs in Mathematics (Summary) by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source:
https://scholarworks.gvsu.edu/books/7.
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2.1: Statements and Logical Operators

Mathematicians often develop ways to construct new mathematical objects from existing mathematical objects. It is possible to
form new statements from existing statements by connecting the statements with words such as “and” and “or” or by negating
the statement. A logical operator (or connective) on mathematical statements is a word or combination of words that
combines one or more mathematical statements to make a new mathematical statement. A compound statement is a statement
that contains one or more operators. Because some operators are used so frequently in logic and mathematics, we give them
names and use special symbols to represent them.

The conjunction of the statements  and  is the statement “  and ” and its denoted by . The statement  is
true only when both  and  are true.
The disjunction of the statements  and  is the statement “  or ” and its denoted by . The statement  is
true only when at least one of  or  is true.
The negation (of a statement) of the statement  is the statement “not  ” and is denoted by . The negation of  is
true only when  is false, and  is false only when  is true.
The implication or conditional is the statement “If  then ” and is denoted by . The statement  is often
read as “  implies , and we have seen in Section 1.1 that  is false only when  is true and  is false.

Some comments about the disjunction. 
It is important to understand the use of the operator “or.” In mathematics, we use the “inclusive or” unless stated otherwise.
This means that  is true when both  and  are true and also when only one of them is true. That is,  is true when
at least one of  or  is true, or  is false only when both  and  are false.

A different use of the word “or” is the “exclusive or.” For the exclusive or, the resulting statement is false when both
statements are true. That is, “  exclusive or ” is true only when exactly one of  or  is true. In everyday life, we often use
the exclusive or. When someone says, “At the intersection, turn left or go straight,” this person is using the exclusive or.

Some comments about the negation. Although the statement, , can be read as “It is not the case that ,” there are often
betters ways to say or write this in English. For example, we would usually say (or write):

The negation of the statement, “391 is prime” is “391 is not prime.”
The negation of the statement, “ ” is “ .”

1. For the statements

: 15 is odd : 15 is prime 
write each of the following statements as English sentences and determine

whether they are true or false. 
(a) . (b) . (c) . (d) .

2. For the statements

P : 15 is odd R: 15 < 17

write each of the following statements in symbolic form using the operators , , and 

(a) 15  17. (b) 15 is odd or 15  17. 
(c) 15 is even or 15 <17. (d) 15 is odd and 15  17.

We will use the following two statements for all of this Preview Activity:

 is the statement “It is raining.”
 is the statement “Daisy is playing golf.”

In each of the following four parts, a truth value will be assigned to statements  and . For example, in Question (1), we will
assume that each statement is true. In Question (2), we will assume that  is true and  is false. In each part, determine the

 PREVIEW ACTIVITY : Compound Statements2.1.1

P Q P Q P ∧ Q P ∧ Q

P Q

P Q P Q P ∨ Q P ∨ Q

P Q

P P ┐P P

P ┐P P

P Q P → Q P → Q

P Q P → Q P Q

P ∨ Q P Q P ∨ Q

P Q P ∨ Q P Q

P Q P Q

┐P P

12 < 9 12 ≥ 9

P Q

P ∧ Q P ∨ Q P ∧ ┐Q ┐P ∨ ┐Q

∧ ∨ ┐

≥ ≥

≥

 PREVIEW ACTIVITY : Truth Values of Statements2.1.2

P

Q

P Q

P Q
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truth value of each of the following statements:

(a) ( ) It is raining and Daisy is playing golf.

(b) ( ) It is raining or Daisy is playing golf.

(c) ( ) If it is raining, then Daisy is playing golf.

(d) ( ) It is not raining. 

Which of the four statements [(a) through (d)] are true and which are false in each of the following four situations?

1. When  is true (it is raining) and  is true (Daisy is playing golf). 
2. When  is true (it is raining) and  is false (Daisy is not playing golf). 
3. When  is false (it is not raining) and  is true (Daisy is playing golf). 
4. When  is false (it is not raining) and  is false (Daisy is not playing golf).

In the preview activities for this section, we learned about compound statements and their truth values. This information can be
summarized with truth tables as is shown below.

T F

F T

T T T

T F F

F T F

F F F

T T T

T F T

F T T

F F F

T T T

T F F

F T T

F F T

Rather than memorizing the truth tables, for many people it is easier to remember the rules summarized in Table 2.1.

Table 2.1: Truth Values for Common Connectives
Operator Symbolic Form Summary of Truth Values

Conjunction True only when both  and  are true

Disjunction False only when both  and  are false

Negation Opposite truth value of 

Conditional False only when  is true and  is false

P ∧ Q

P ∨ Q

P → Q

┐P

P Q

P Q

P Q

P Q

P ┐P

P Q P ∧Q

P Q P ∨Q

P Q P → Q

P ∧ Q P Q

P ∨ Q P Q

┐P P

P → Q P Q
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Other Forms of Conditional Statements
Conditional statements are extremely important in mathematics because almost all mathematical theorems are (or can be) stated in
the form of a conditional statement in the following form:

If “certain conditions are met,” then “something happens.”

It is imperative that all students studying mathematics thoroughly understand the meaning of a conditional statement and the truth
table for a conditional statement.

We also need to be aware that in the English language, there are other ways for expressing the conditional statement  other
than “If , then .” Following are some common ways to express the conditional statement  in the English language:

page54image1422600880

If , then .
 implies .
 only if .
 if .

Whenever  is true,  is true.
 is true whenever  is true.
 is necessary for . (This means that if  is true, then  is necessarily true.)
 is sufficient for . (This means that if you want  to be true, it is sufficient to show that  is true.)

In all of these cases,  is the hypothesis of the conditional statement and  is the conclusion of the conditional statement.

Recall that a quadrilateral is a four-sided polygon. Let  represent the following true conditional statement:

If a quadrilateral is a square, then it is a rectangle.

Write this conditional statement in English using

1. the word “whenever”
2. the phrase “only if”
3. the phrase “is necessary for”
4. the phrase “is sufficient for”

Answer

Add texts here. Do not delete this text first.

Constructing Truth Tables

Truth tables for compound statements can be constructed by using the truth tables for the basic connectives. To illustrate this, we
will construct a truth table for. . The first step is to determine the number of rows needed.

For a truth table with two different simple statements, four rows are needed since there are four different combinations of truth
values for the two statements. We should be consistent with how we set up the rows. The way we will do it in this text is to
label the rows for the first statement with (T, T, F, F) and the rows for the second statement with (T, F, T, F). All truth tables in
the text have this scheme.
For a truth table with three different simple statements, eight rows are needed since there are eight different combinations of
truth values for the three statements. Our standard scheme for this type of truth table is shown in Table 2.2.

The next step is to determine the columns to be used. One way to do this is to work backward from the form of the given statement.
For , the last step is to deal with the conditional operator . To do this, we need to know the truth values of 

 and . To determine the truth values for , we need to apply the rules for the conjunction operator  and we
need to know the truth values for  and .

Table 2.2 is a completed truth table for  with the step numbers indicated at the bottom of each column. The step
numbers correspond to the order in which the columns were completed.

P → Q

P Q P → Q

P Q

P Q

P Q

Q P

P Q

Q P

Q P P Q

P Q Q P

P Q

 Progress Check 2.1: The "Only if" statemenT

S

(P ∧ ┐Q) → R

(P ∧ ┐Q) → R (→)

(P ∧ ┐Q) R (P ∧ ┐Q) (∧)

P ┐Q

(P ∧ ┐Q) → R
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Table 2.2: Truth Table for 

T T T F F T

T T F F F T

T F T T T T

T F F T T F

F T T F F T

F T F F F T

F F T T F T

F F F T F T

1 1 1 2 3 4

When completing the column for , remember that the only time the conjunction is true is when both  and  are true.
When completing the column for , remember that the only time the conditional statement is false is when the
hypothesis  is true and the conclusion, , is false.

The last column entered is the truth table for the statement  using the set up in the first three columns.

Construct a truth table for each of the following statements:

1. 
2. 
3. 
4. 

Do any of these statements have the same truth table?

Answer

Add texts here. Do not delete this text first.

The Biconditional Statement
Some mathematical results are stated in the form “  if and only if ” or “  is necessary and sufficient for .” An example would
be, “A triangle is equilateral if and only if its three interior angles are congruent.” The symbolic form for the biconditional
statement “  if and only if ” is . In order to determine a truth table for a biconditional statement, it is instructive to look
carefully at the form of the phrase “  if and only if .” The word “and” suggests that this statement is a conjunction. Actually it is
a conjunction of the statements “  if ” and “  only if .” The symbolic form of this conjunction is .

Complete a truth table for . Use the following columns: , , , , and 
. The last column of this table will be the truth for .

Answer

Add texts here. Do not delete this text first.

Other Forms of the Biconditional Statement
As with the conditional statement, there are some common ways to express the biconditional statement, , in the English
language.

(P ∧ ┐Q) → R

P Q R ┐Q (P ∧ ┐Q) (P ∧ ┐Q) → R

P ∧ ┐Q P ┐Q

(P ∧ ┐Q) → R

(P ∧ ┐Q) R

(P ∧ ┐Q) → R

 Progress Check 2.2: Constructing Truth Tables

P ∧ ┐Q

┐(P ∧ Q)

┐P ∧ ┐Q

┐P ∨ ┐Q

P Q P Q

P Q P ↔ Q

P Q

P Q P Q [(Q → P ) ∧ (P → Q]

 Progress Check 2.3: The Truth Table for the Biconditional Statement

[(Q → P ) ∧ (P → Q] P Q Q → P P → Q

[(Q → P ) ∧ (P → Q] P ↔ Q

P ↔ Q
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 is and only if .
 is necessary and sufficient for .
 implies  and  implies .

Tautologies and Contradictions

A tautology is a compound statement S that is true for all possible combinations of truth values of the component statements
that are part of . A contradiction is a compound statement that is false for all possible combinations of truth values of the
component statements that are part of .

That is, a tautology is necessarily true in all circumstances, and a contradiction is necessarily false in all circumstances.

For statements  and :

1. Use a truth table to show that  is a tautology.
2. Use a truth table to show that  is a contradiction.
3. Use a truth table to determine if  is a tautology, a contradiction, nor neither.

Answer

Add texts here. Do not delete this text first.

1. Suppose that Daisy says, “If it does not rain, then I will play golf.” Later in the day you come to know that it did rain but
Daisy still played golf. Was Daisy’s statement true or false? Support your conclusion.

2. Suppose that  and  are statements for which  is true and for which  is true. What conclusion (if any) can be
made about the truth value of each of the following statements? 
 
(a)  
(b)  
(c) 

3. Suppose that  and  are statements for which  is false. What conclusion (if any) can be made about the truth
value of each of the following statements? 
 
(a)  
(b)  
(c) 

4. Suppose that  and  are statements for which  is false and  is true (and it is not known if  is true or false).
What conclusion (if any) can be made about the truth value of each of the following statements? 
 
(a)  
(b)  
(c)  
(d) 

5. Construct a truth table for each of the following statements: 
 
(a)  
(b)  

 Example

P Q

P Q

P Q Q P

 Definition: tautology

S

S

 Progress Check 2.4 (Tautologies and Contradictions)

P Q

(P ∨ ┐P )

(P ∧ ┐P )

P → (P ∨ P )

 Exercises for Section 2.1

P Q P → Q ┐Q

P

P ∧ Q

P ∨ Q

P Q P → Q

┐P → Q

Q → P

P  veeQ

P Q Q ┐P → Q R

┐Q → P

P

P ∧ R

R → ┐P

P → Q

Q → P
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(c)  
(d)  
 
Do any of these statements have the same truth table?

6. Construct a truth table for each of the following statements: 
 
(a)  
(b)  
(c)  
(d)  
 
Do any of these statements have the same truth table?

7. Construct truth table for  and . What do you observe.
8. Suppose each of the following statements is true.

Laura is in the seventh grade.
��Laura got an A on the mathematics test or Sarah got an A on the mathematics test.
��If Sarah got an A on the mathematics test, then Laura is not in the seventh grade. 
 
If possible, determine the truth value of each of the following statements. Carefully explain your reasoning. 
 
(a) Laura got an A on the mathematics test. 
(b) Sarah got an A on the mathematics test. 
(c) Either Laura or Sarah did not get an A on the mathematics test.

9. Let  stand for “the integer  is even,” and let  stand for “  is even.” Express the conditional statement  in
English using 
 
(a) The "if then" form of the conditional statement 
(b) The word "Implies" 
(c) The "only if" form of the conditional statement 
(d) The phrase "is necessary for" 
(e) The phrase "is sufficient for"

10. Repeat Exercise (9) for the conditional statement .
11. For statements  and , use truth tables to determine if each of the following statements is a tautology, a contradiction, or

neither. 
(a) . 
(b) . 
(c) . 
(d) .

12. For statements , , and : 
(a) Show that  is a tautology. Note: In symbolic logic, this is an important logical argument form
called modus ponens. 
(b) Show that  is atautology. Note: In symbolic logic, this is an important logical
argument form called syllogism. 
 
Explorations and Activities

13. Working with Conditional Statements. Complete the following table:

English Form Hypothesis Conclusion Symbolic Form

If , then 

 only if 

 is necessary for    

┐P → ┐Q

┐Q → ┐P

P ∨ ┐Q

┐(P ∨ Q)

┐P ∨ ┐Q

┐P ∧ ┐Q

P ∧ (Q ∨ R) (P ∧ Q) ∨ (P ∧ R)

P x Q x2 P → Q

Q → P

P Q

┐Q ∨ (P → Q)

Q ∧ (P ∧ ┐Q)

(Q ∧ P ) ∧ (P → ┐Q)

┐Q → (P ∧ ┐P )

P Q R

[(P → Q) ∧ P ] → Q

[(P → Q) ∧ (Q → R)] → (P → R)

P Q P Q P → Q

Q P Q P Q → P

P Q
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 is sufficient for    

 is necessary for    

 implies    

 only if    

 if    

if  then    

if  then    

if , then    

if , then    

14. Working with Truth Values of Statements. Suppose that  and  are true statements, that  and  are false statements,
and that  is a statement and it is not known if  is true or false. 
 
Which of the following statements are true, which are false, and for which statements is it not possible to determine if it is
true or false? Justify your conclusions. 
 
(a)  (f)  
(b)  (g)  
(c)  (h)  
(d)  (i)  
(e)  (j) 

Answer

Add texts here. Do not delete this text first.

This page titled 2.1: Statements and Logical Operators is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Ted Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

2.1: Statements and Logical Operators by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source:
https://scholarworks.gvsu.edu/books/7.

P Q

Q P

P Q

P Q

P Q

Q P

┐Q ┐P

Q Q ∧ R

P ∨ Q R

P Q U V

W W

(P ∨ Q) ∨ (U ∧ W ) (┐P ∨ ┐U) ∧ (Q ∨ ┐V )

P ∧ (Q → W ) (P ∧ ┐Q) ∧ (U ∨ W )

P ∧ (W → Q) (P ∨ ┐Q) → (U ∧ W )

W → (P ∧ U) (P ∨ W ) → (U ∧ W )

W → (P ∧ ┐U) (U ∧ ┐V ) → (P ∧ W )
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2.2: Logically Equivalent Statements

In Exercises (5) and (6) from Section 2.1, we observed situations where two different statements have the same truth tables.
Basically, this means these statements are equivalent, and we make the following definition:

Two expressions are logically equivalent provided that they have the same truth value for all possible combinations of
truth values for all variables appearing in the two expressions. In this case, we write  and say that  and  are
logically equivalent.

1. Complete truth tables for  and .
2. Are the expressions  and  logically equivalent?
3. Suppose that the statement “I will play golf and I will mow the lawn” is false. Then its negation is true. Write the negation

of this statement in the form of a disjunction. Does this make sense? 
 
Sometimes we actually use logical reasoning in our everyday living! Perhaps you can imagine a parent making the
following two statements: 
 
Statement 1. If you do not clean your room, then you cannot watch TV. 
Statement 2. You clean your room or you cannot watch TV.

4. Let  be “you do not clean your room,” and let  be “you cannot watch TV.” Use these to translate Statement 1 and
Statement 2 into symbolic forms.

5. Construct a truth table for each of the expressions you determined in Part(4). Are the expressions logically equivalent?
6. Assume that Statement 1 and Statement 2 are false. In this case, what is the truth value of  and what is the truth value of 

? Now, write a true statement in symbolic form that is a conjunction and involves  and .
7. Write a truth table for the (conjunction) statement in Part (6) and compare it to a truth table for . What do you

observe?

We now define two important conditional statements that are associated with a given conditional statement.

If  and  are statements, then

The converse of the conditional statement  is the conditional statement .
The contrapositive of the conditional statement  is the conditional statement .

1. For the following, the variable x represents a real number. Label each of the following statements as true or false. 
(a) If , then . 
(b) If , then . 
(c) If , then . 
(d) If , then .

2. Which statement in the list of conditional statements in Part (1) is the converse of Statement (1a)? Which is the
contrapositive of Statement (1a)?

3. Complete appropriate truth tables to show that 
 is logically equivalent to its contrapositive . 
 is not logically equivalent to its converse 

 Preview Activity : Logically Equivalent Statements2.2.1

 Definition

X ≡ Y X Y

┐(P ∧ Q) ┐P ∨ ┐Q

┐(P ∧ Q) ┐P ∨ ┐Q

P Q

P

Q P Q

┐(P → Q)

 Preview Activity : Converse and Contrapositive2.2.2

 Definition

P Q

P → Q Q → P

P → Q ┐Q → ┐P

x = 3 = 9x2

= 9x2 x = 3

≠ 9x2 x ≠ 3

x ≠ 3 ≠ 9x2

P → Q ┐Q → ┐P

P → Q Q → P
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In Preview Activity , we introduced the concept of logically equivalent expressions and the notation  to indicate that
statements  and  are logically equivalent. The following theorem gives two important logical equivalencies. They are
sometimes referred to as De Morgan’s Laws.

For statements  and ,

The statement  is logically equivalent to . This can be written as .
The statement  is logically equivalent to . This can be written as .

Proof

The first equivalency in Theorem 2.5 was established in Preview Activity . Table 2.3 establishes the second
equivalency.

Table 2.3: Truth Table for One of De Morgan’s Laws

T T T F F F F

T F T F F T F

F T T F T F F

F F F T T T T

It is possible to develop and state several different logical equivalencies at this time. However, we will restrict ourselves to
what are considered to be some of the most important ones. Since many mathematical statements are written in the form of
conditional statements, logical equivalencies related to conditional statements are quite important.

Logical Equivalencies Related to Conditional Statements
The first two logical equivalencies in the following theorem were established in Preview Activity , and the third logical
equivalency was established in Preview Activity .

For statements  and ,

1. The conditional statement  is logically equivalent to .
2. The statement  is logically equivalent to .
3. The conditional statement  is logically equivalent to its contrapositive .

The Negation of a Conditional Statement
The logical equivalency  is interesting because it shows us that the negation of a conditional statement is
not another conditional statement. The negation of a conditional statement can be written in the form of a conjunction. So what
does it mean to say that the conditional statement

If you do not clean your room, then you cannot watch TV,

is false? To answer this, we can use the logical equivalency . The idea is that if  is false, then its
negation must be true. So the negation of this can be written as

You do not clean your room and you can watch TV.

For another example, consider the following conditional statement:

If , then .

This conditional statement is false since its hypothesis is true and its conclusion is false. Consequently, its negation must be true. Its
negation is not a conditional statement. The negation can be written in the form of a conjunction by using the logical equivalency 

2.2.1 X ≡ Y

X Y

 Theorem 2.5: De Morgan’s Laws

P Q

┐(P ∧ Q) ┐P ∨ ┐Q ┐(P ∧ Q) ≡ ┐P ∨ ┐Q

┐(P ∨ Q) ┐P ∧ ┐Q ┐(P ∨ Q) ≡ ┐P ∧ ┐Q

2.2.1

P Q P ∨ Q ┐(P ∨ Q) ┐P ┐Q ┐(P ∨ Q) ≡ ┐P ∧ ┐Q

2.2.1

2.2.2

 Theorem 2.6

P Q

P → Q ┐P ∨ Q

┐(P → Q) P ∧ ┐Q

P → Q ┐Q → ┐P

┐(P → Q) ≡ P ∧ ┐Q

┐(P → Q) ≡ P ∧ ┐Q P → Q

−5 < −3 (−5 < (−3)2 )2
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. So, the negation can be written as follows:

 and .

However, the second part of this conjunction can be written in a simpler manner by noting that “not less than” means the same
thing as “greater than or equal to.” So we use this to write the negation of the original conditional statement as follows:

 and .

This conjunction is true since each of the individual statements in the conjunction is true.

We have seen that it often possible to use a truth table to establish a logical equivalency. However, it is also possible to prove a
logical equivalency using a sequence of previously established logical equivalencies. For example,

 is logically equivalent to . So
 is logically equivalent to .

Hence, by one of De Morgan’s Laws (Theorem 2.5),  is logically equivalent to .
This means that  is logically equivalent to .

The last step used the fact that  is logically equivalent to .

When proving theorems in mathematics, it is often important to be able to decide if two expressions are logically equivalent.
Sometimes when we are attempting to prove a theorem, we may be unsuccessful in developing a proof for the original statement of
the theorem. However, in some cases, it is possible to prove an equivalent statement. Knowing that the statements are equivalent
tells us that if we prove one, then we have also proven the other. In fact, once we know the truth value of a statement, then we
know the truth value of any other logically equivalent statement. This is illustrated in Progress Check 2.7.

In Section 2.1, we constructed a truth table for .

1. Although it is possible to use truth tables to show that  is logically equivalent to , we instead
use previously proven logical equivalencies to prove this logical equivalency. In this case, it may be easier to start working
with . Start with 
 

, 
 
which is justified by the logical equivalency established in Part (5) of Preview Activity 1. Continue by using one of De
Morgan's Laws on .

2. Let a and b be integers. Suppose we are trying to prove the following: 
 
If 3 is a factor of , then 3 is a factor of  or 3 is a factor of . 
 
Explain why we will have proven this statement if we prove the following: 
 
If 3 is a factor of  and 3 is not a factor of , then 3 is a factor of .

Answer

Add texts here. Do not delete this text first.

As we will see, it is often difficult to construct a direct proof for a conditional statement of the form . The logical
equivalency in Progress Check 2.7 gives us another way to attempt to prove a statement of the form . The advantage
of the equivalent form, , is that we have an additional assumption, , in the hypothesis. This gives us more
information with which to work.

Theorem 2.8 states some of the most frequently used logical equivalencies used when writing mathematical proofs.

┐(P → Q) ≡ P ∧ ┐Q

5 < 3 ┐((−5 < (−3 ))2 )2

5 < 3 (−5 ≥ (−3)2 )2

 Another Method of Establishing Logical Equivalencies

P → Q ┐P ∨ Q

┐(P → Q) ┐(┐P ∨ Q)

┐(P → Q) ┐(┐P ) ∧ ┐Q

┐(P → Q) P ∧ ┐Q

┐(┐P ) P

 Progress Check 2.7 (Working with a logical equivalency)

(P ∧ ┐Q) → R

P → (Q ∨ R) P ∧ ┐Q) → R

P ∧ ┐Q) → R

P ∧ ┐Q) → R ≡ ┐(P ∧ ┐Q) ∨ R

┐(P ∧ ┐Q)

a ⋅ b a b

a ⋅ b a b

P → (Q ∨ R)

P → (Q ∨ R)

P ∧ ┐Q) → R ┐Q
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For statement , , and ,

De Morgan's Laws . 
.

Conditional Statement.  (contrapositive) 
 

Biconditional Statement 

Double Negation 

Distributive Laws  

Conditionals withDisjunctions  

We have already established many of these equivalencies. Others will be established in the exercises.

1. Write the converse and contrapositive of each of the following conditional statements. 
(a) If , then . 
(b) If it is not raining, then Laura is playing golf. 
(c) If , then .
(d) If  is an odd integer, then  is an odd integer.

2. Write each of the conditional statements in Exercise (1) as a logically equiva- lent disjunction, and write the negation of
each of the conditional statements in Exercise (1) as a conjunction.

3. Write a useful negation of each of the following statements. Do not leave a negation as a prefix of a statement. For
example, we would write the negation of “I will play golf and I will mow the lawn” as “I will not play golf or I will not
mow the lawn.” 
(a) We will win the first game and we will win the second game. 
(b) They will lose the first game or they will lose the second game. 
(c) If you mow the lawn, then I will pay you $20. 
(d) If we do not win the first game, then we will not play a second game. 
(e) I will wash the car or I will mow the lawn. 
(f) If you graduate from college, then you will get a job or you will go to graduate school. 
(g) If I play tennis, then I will wash the car or I will do the dishes. 
(h) If you clean your room or do the dishes, then you can go to see a movie.
(i) It is warm outside and if it does not rain, then I will play golf.

4. Use truth tables to establish each of the following logical equivalencies dealing with biconditional statements: 
(a)  
(b)  
(c) 

5. Use truth tables to prove each of the distributive laws from Theorem 2.8. 
 
(a)  
(b 

6. Use truth tables to prove the following logical equivalency from Theorem 2.8: 
 

.

 Theorem 2.8: important logical equivalencies

P Q R

┐(P ∧ Q) ≡ ┐P ∨ ┐Q

┐(P ∨ Q) ≡ ┐P ∧ ┐Q

P → Q ≡ ┐Q → ┐P

P → Q ≡ ┐P ∨ Q

┐(P → Q) ≡ P ∧ ┐Q

(P leftrightarrowQ) ≡ (P → Q) ∧ (Q → P )

┐(┐P ) ≡ P

P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)

P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)

P → (Q ∨ R) ≡ (P ∧ ┐Q) → R

(P ∨ Q) → R ≡ (P → R) ∧ (Q → R)

 Exercises for Section 2.2

a = 5 = 25a2

a ≠ b ≠a4 b4

a 3a

(P ↔ Q) ≡ (P → Q) ∧ (Q → P )

(P ↔ Q) ≡ (Q ↔ P )

(P ↔ Q) ≡ (┐P ↔ ┐Q)

P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)

P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)

[(P ∨ Q) → R] ≡ (P → R) ∧ (Q → R)
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7. Use previously proven logical equivalencies to prove each of the following logical equivalencies about conditionals with
conjunctions: 
 
(a)  
(b) 

8. If  and  are statements, is the statement  logically equivalent to the statement 
? Justify your conclusion.

9. Use previously proven logical equivalencies to prove each of the following logical equivalencies: (a) 
 

(b)  
(c)  
(d)  
(e)  
(f)  
(g)  
(h)  
(i) 

10. Let a be a real number and let f be a real-valued function defined on an interval containing . Consider the following
conditional statement: 
 
If  is differentiable at , then  is continuous at .

Which of the following statements have the same meaning as this conditional statement and which ones are negations of
this conditional statement?

Note: This is not asking which statements are true and which are false. It is asking which statements are logically
equivalent to the given statement. It might be helpful to let P represent the hypothesis of the given statement,  represent
the conclusion, and then determine a symbolic representation for each statement. Instead of using truth tables, try to use
already established logical equivalencies to justify your conclusions. 
 
(a) If  is continuous at , then  is differentiable at . 
(b) If  is not differentiable at , then  is not continuous at . 
(c) If  is not continuous at , then  is not differentiable at . 
(d)  is not differentiable at  or  is continuous at .
(e)  is not continuous at  or  is differentiable at . 
(f)  is differentiable at  or  is not continuous at .

11. Let , , and  be integers. Consider the following conditional statement: 
 
If  divides , then  divides  or  divides .

Which of the following statements have the same meaning as this conditional statement and which ones are negations of
this conditional statement?

The note for Exercise (10) also applies to this exercise. 
 
(a) If  divides  or  divides , then  divides . 
(b) If  does not divide  or  does not divide , then  does not divide . 
(c)  divides ,  does not divide , and  does not divide . 
(d) If  does not divide  and  does not divide , then  does not divide . 
(e)  does not divide  or  divides  or  divides . 
(f) If  divides  and  does not divide , then  divides . 
(g) If  divides  or  does not divide , then  divides .

[(P ∧ Q) → R] ≡ (P → R) ∨ (Q → R)

[P → (Q ∧ R)] ≡ (P → R) ∧ (P → R)

P Q (P ∨ Q) ∧ ┐(P ∧ Q)

(P ∧ ┐Q) ∨ (Q ∧ ┐P )

[┐P → (Q ∧ ┐Q)] ≡ P

(P ↔ Q) ≡ (┐P ∨ Q) ∧ (┐Q ∨ p)

┐(P ↔ Q) ≡ (P ∧ ┐Q) ∨ (Q ∧ ┐P )

(P → Q) → R ≡ (P ∧ ┐Q) ∨ R

(P → Q) → R ≡ (┐P → R) ∧ (Q → R)

[(P ∧ Q) → (R ∨ S)] ≡ [(┐R ∧ ┐S) → (┐P ∨ ┐Q)]

[(P ∧ Q) → (R ∨ S)] ≡ [(P ∧ Q ∧ ┐R) → S]

[(P ∧ Q) → (R ∨ S)] ≡ (┐P ∨ ┐Q ∨ R ∨ S)

┐[(P ∧ Q) → (R ∨ S)] ≡ (P ∧ Q ∧ ┐R ∧ ┐S)

x = a

f x = a f x = a

Q

f x = a f x = a

f x = a f x = a

f x = a f x = a

f x = a f x = a

f x = a f x = a

f x = a f x = a

a b c

a bc a b a c

a b a c a bc

a b a c a bc

a bc a b a c

a b a c a bc

a bc a b a c

a bc a c a b

a bc a b a c
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12. Let  be a real number. Consider the following conditional statement: 
 
If , then  or . 
 
Which of the following statements have the same meaning as this conditional statement and which ones are negations of
this conditional statement? Explain each conclusion. (See the note in the instructions for Exercise (10).) 
 
(a) If  and , then . 
(b) If  or , then . 
(c) If  or , then . 
(d) If  and , then . 
(e) If  or , then . 
(f) , , and . 
(g)  or  or . 
 
Explorations and Activities

13. Working with a Logical Equivalency. Suppose we are trying to prove the following for integers  and : 
 
If  is even, then  is even or  is even.

We notice that we can write this statement in the following symbolic form:

, 
 
where  is“  is even,”  is“  is even,”and  is “  is even.” 
 
(a) Write the symbolic form of the contrapositive of . Then use one of De Morgan’s Laws (Theorem 2.5) to
rewrite the hypothesis of this conditional statement. 
(b) Use the result from Part (13a) to explain why the given statement is logically equivalent to the following statement: 
 
If  is odd and  is odd, then  is odd. 
 
The two statements in this activity are logically equivalent. We now have the choice of proving either of these statements. If
we prove one, we prove the other, or if we show one is false, the other is also false. The second statement is Theorem 1.8,
which was proven in Section 1.2.

Answer

Add texts here. Do not delete this text first.

This page titled 2.2: Logically Equivalent Statements is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Ted Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

2.2: Logically Equivalent Statements by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source:
https://scholarworks.gvsu.edu/books/7.

x

−x = 2 +6x3 x2 x = −2 x = 3

x ≠ −2 x ≠ 3 −x ≠ 2 +6x3 x2

x = −2 x = 3 −x = 2 +6x3 x2

x ≠ −2 x ≠ 3 −x ≠ 2 +6x3 x2

−x = 2 +6x3 x2 x ≠ −2 x = 3

−x = 2 +6x3 x2 x ≠ −2 x = 3

−x = 2 +6x3 x2 x ≠ −2 x ≠ 3

−x ≠ 2 +6x3 x2 x = −2 x = 3

x y

x ⋅ y x y

P → (Q ∨ R)

P x ⋅ y Q x R y

P → (Q ∨ R)

x y x ⋅ y
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2.3: Open Sentences and Sets

The theory of sets is fundamental to mathematics in the sense that many areas of mathematics use set theory and its language
and notation. This language and notation must be understood if we are to communicate effectively in mathematics. At this
point, we will give a very brief introduction to some of the terminology used in set theory.

A set is a well-defined collection of objects that can be thought of as a single entity itself. For example, we can think of the set
of integers that are greater than 4. Even though we cannot write down all the integers that are in this set, it is still a perfectly
well-defined set. This means that if we are given a specific integer, we can tell whether or not it is in the set of all even
integers.

The most basic way of specifying the elements of a set is to list the elements of that set. This works well when the set contains
only a small number of objects. The usual practice is to list these elements between braces. For example, if the set  consists
of the integer solutions of the equation , we would write

 = {-3, 3}.

For larger sets, it is sometimes inconvenient to list all of the elements of the set. In this case, we often list several of them and
then write a series of three dots (...) to indicate that the pattern continues. For example,

 = {1, 3, 5, 7, ... 49}

is the set of all odd natural numbers from 1 to 49, inclusive.

For some sets, it is not possible to list all of the elements of a set; we then list several of the elements in the set and again use a
series of three dots (...) to indicate that the pattern continues. For example, if F is the set of all even natural numbers, we could
write

 = {2, 4, 6, ...}.

We can also use the three dots before listing specific elements to indicate the pattern prior to those elements. For example, if E
is the set of all even integers, we could write

 = {... -6, -4, -2, 0, 2, 4, 6, ...}.

Listing the elements of a set inside braces is called the roster method of specifying the elements of the set. We will learn other
ways of specifying the elements of a set later in this section.

1. Use the roster method to specify the elements of each of the following sets: 
 
(a) The set of real numbers that are solutions of the equation . 
(b) The set of natural numbers that are less than or equal to 10. 
(c) The set of integers that are greater than -2.

2. Each of the following sets is defined using the roster method. For each set, determine four elements of the set other than the
ones listed using the roster method. 

 = {1, 4, 7, 10, ...} 
 = {2, 4, 8, 16, ...} 
 = {..., -8, -6, -4, -2, 0} 
 = {..., -9, -6, -3, 0, 3, 6, 9, ...}

Not all mathematical sentences are statements. For example, an equation such as

is not a statement. In this sentence, the symbol  is a variable. It represents a number that may be chosen from some specified
set of numbers. The sentence (equation) becomes true or false when a specific number is substituted for .

 Preview Activity : Sets and Set Notation2.3.1

C

= 9x2

C

D

F

E

−5x = 0x2

A

B

C

D

 Preview Activity : Variables2.3.2

−5 = 0x2

x

x
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1. (a) Does the equation  become a true statement if -5 is substituted for ? 
(b) Does the equation  become a true statement if  is substituted for ?

A variable is a symbol representing an unspecified object that can be chosen from a given set . The set  is called
the universal set for the variable. It is the set of specified objects from which objects may be chosen to substitute for
the variable. A constant is a specific member of the universal set.

Some sets that we will use frequently are the usual number systems. Recall that we use the symbol  to stand for the set of
all real numbers, the symbol  to stand for the set of all rational numbers, the symbol  to stand for the set of all
integers, and the symbol  to stand for the set of all natural numbers.

A variable is a symbol representing an unspecified object that can be chosen from some specified set of objects. This
specified set of objects is agreed to in advance and is frequently called the universal set.

2. What real numbers will make the sentence “ ” a true statement when substituted for ?
3. What natural numbers will make the sentence “ ” a true statement when substituted for ?
4. What real numbers will make the sentence "  is a real number" a true statement when substituted for ?
5. What real numbers will make the sentence " " a true statement when substituted for ?
6. What natural numbers will make the sentence "  is a natural number" a true statement when substituted for ?
7. What real numbers will make the sentence 

 
 

 
a true statement when substituted for ?

Some Set Notation
In Preview Activity , we indicated that a set is a well-defined collection of objects that can be thought of as an entity itself.

If is a set and  is one of the objects in the set , we write  and read this as “  is an element of ” or “  is a member of
.” For example, if  is the set of all integers greater than 4, then we could write  and .

If an object  is not an element in the set , we write  and read this as “  is not an element of .” For example, if  is
the set of all integers greater than 4, then we could write  and .

When working with a mathematical object, such as set, we need to define when two of these objects are equal. We are also often
interested in whether or not one set is contained in another set.

Two sets,  and , are equal when they have precisely the same elements. In this case, we write . When the sets A and
B are not equal, we write .

The set  is a subset of a set  provided that each element of  is an element of . In this case, we write  and also say
that  is contained in . When  is not a subset of , we write .

Using these definitions, we see that for any set ,  and since it is true that for each , if , then , we also
see that . That is, any set is equal to itself and any set is a subset of itself. For some specific examples, we see that:

{1, 3, 5} = {3, 5, 1}
{5, 10} = {5, 10, 5}
{4, 8, 12} = {4, 4, 8, 12, 12}
{5, 10}  {5, 10, 15} but {5,10}  {5, 10, 15} and {5, 10, 15}  {5, 10}.

In each of the first three examples, the two sets have exactly the same elements even though the elements may be repeated or
written in a different order.

−25 = 0x2 x

−25 = 0x2 5
–

√ x

 Definition

U U

R
Q Z

N

−2y−15 = 0y2 y

−2y−15 = 0y2 y

x−−√ x

si x+co x = 1n2 s2 x

n−−√ n

dt > 9∫ y

0
t2

y

2.3.1

A y A y ∈ A y A y

A B 5 ∈ B 10 ∈ B

z A z ∉ A z A B

2 ∉ B 4 ∉ B

 Definitions: Equal sets and Subsets

A B A = B

A ∉ B

A B A B A ⊆ B

A B A B A ⊈ B

A A = A x ∈ U x ∈ A x ∈ A

A ⊆ A

≠ ⊆ ⊈
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1. Let  = {-4, -2, 0, 2, 4, 6, 8, ...}. Use correct set notation to indicate which of the following integers are in the set  and
which are not in the set . For example, we could write  and . 
 
10 22 13 -3 0 -12

2. Use correct set notation (using = or ) to indicate which of the following sets are equal and which are subsets of one of the
other sets. 
 

 = {3, 6, 9}.  = {6, 9, 3, 6} 
 = {3, 6, 9, ... }  = {3, 6, 7, 9}
 = {9, 12, 15, ... }  = {9, 7, 6, 2}

Answer

Add texts here. Do not delete this text first.

Variables and Open Sentences
As we have seen in the Preview Activities, not all mathematical sentences are statements. This is often true if the sentence contains
a variable. The following terminology is useful in working with sentences and statements.

An open sentence is a sentence  involving variables  with the property that when specific
values from the universal set are assigned to , then the resulting sentence is either true or false. That is, the
resulting sentence is a statement. An open sentence is also called a predicate or a propositional function.

Notation: One reason an open sentence is sometimes called a propositional function is the fact that we use function notation 
 for an open sentence in  variables. When there is only one variable, such as , we write , which is read “

 of .” In this notation,  represents an arbitrary element of the universal set, and  represents a sentence. When we substitute
a specific element of the universal set for , the resulting sentence becomes a statement. This is illustrated in the next example.

If the universal set is , then the sentence “ ” is an open sentence involving the one variable .

If we substitute , we obtain the false statement " ."
If we substitute , we obtain the true statement " ."

In this example, we can let  be the predicate “ ” and then say that  is false and  is true.

Using similar notation, we can let  be the predicate " ." This predicate involves two variables. Then,

 is false since " " is false; and
 is true since " " is false.

1. Assume the universal set for all variable is  and let  be the predicate " ." 
(a) Find two values of  for which  is false. 
(b) Find two values of  for which  is true. 
(c) Use the roster method to specify the set of all  for which  is true.

2. Assume the universal set for all variable is  and let  be the predicate " ." 
(a) Find two different examples for which  is false. 
(b) Find two different examples for which  is true.

Answer

 Progress Check 2.9 (Set Notation)

A A

A 6 ∈ A 5 ∉ A

⊆

A B

C D

E F

 Definition: Open Sentence

P ( , , . . . , )x1 x2 xn , , . . . ,x1 x2 xn
, , . . . ,x1 x2 xn

P ( , , . . . , )x1 x2 xn n x P (X)
P x x P (x)

x

 Example 2.10: Open Sentences

R −3x−10 = 0x2 x

x = 2 −3 ⋅ 2 −10 = 022

x = 5 −3 ⋅ 5 −10 = 052

P (x) −3x−10 = 0x2 P (2) P (5)

Q(x, y) x+2y = 7

Q(1, 1) 1 +2 ⋅ 1 = 7
Q(3, 2) 3 +2 ⋅ 2 = 7

 Progress Check 2.11: Working with Open Sentences

Z P (x) ≤ 4x2

x P (x)
x P (x)

x P (x)
Z R(x, y, z) + =x2 y2 z2

R(x, y, z)
R(x, y, z)
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Add texts here. Do not delete this text first.

Without using the term, Example 2.10 and Progress Check 2.11 (and Preview Activity ) dealt with a concept called the truth
set of a predicate.

The truth set of an open sentence with one variable is the collection of objects in the universal set that can be substituted for
the variable to make the predicate a true statement.

One part of elementary mathematics consists of learning how to solve equations. In more formal terms, the process of solving an
equation is a way to determine the truth set for the equation, which is an open sentence. In this case, we often call the truth set the
solution set. Following are three examples of truth sets.

If the universal set is , then the truth set of the equation  is the set {6}.
If the universal set is , then the truth set of the equation  is {-2, 5}.
If the universal set is , then the truth set of the open sentence " " is {1, 4, 9, 16, ...}.

Set Builder Notation
Sometimes it is not possible to list all the elements of a set. For example, if the universal set is , we cannot list all the elements of
the truth set of “ .” In this case, it is sometimes convenient to use the so-called set builder notation in which the set is
defined by stating a rule that all elements of the set must satisfy. If  is a predicate in the variable , then the notation

{ }

stands for the set of all elements  in the universal set  for which  is true. If it is clear what set is being used for the
universal set, this notation is sometimes shortened to { }. This is usually read as “the set of all  such that .” The
vertical bar stands for the phrase “such that.” Some writers will use a colon (:) instead of the vertical bar.

For a non-mathematical example,  could be the property that a college student is a mathematics major. Then { } denotes
the set of all college students who are mathematics majors. This could be written as

{  |  is a college student who is a mathematics major}.

Assume the universal set is  and  is " ." We can describe the truth set of  as the set of all real numbers whose
square is less than 4. We can also use set builder notation to write the truth set of  as

{ }

However, if we solve the inequality , we obtain . So we could also write the truth set as

{ }

We could read this as the set of all real numbers that are greater than -2 and less than 2. We can also write

{ } = { }

Let  be the predicate " ."

1. If the universal set is , describe the truth set of  using English and write the truth set of  using set builder
notation.

2. If the universal set is , then what is the truth set of ? Describe this set using English and then use the roster method
to specify all the elements of this truth set.

3. Are the truth sets in Parts (1) and (2) equal? Explain.

Answer

2.3.2

 Definition: truth set of an open sentence with one variable

R 3x−8 = 10
R −3x−10 = 0x2

N ∈ Nn−−√

R
< 4x2

P (x) x

x ∈ U|P (x)

x U P (x)
x|P (x) x P (x)

P x|P (x)

x x

 Example 2.12 (Truth Sets)

R P (x) < 4x2 P (x)
P (x)

x ∈ R| < 4x2

< 4x2 −2 < x < 2

x ∈ R| −2 < x < 4

x ∈ R| < 4x2 x ∈ R| −2 < x < 4

 Progress Check 2.13 (Working with Truth Sets)

P (x) ≤ 9x2

R P (x) P (x)

Z P (x)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86094?pdf


2.3.5 https://math.libretexts.org/@go/page/86094

Add texts here. Do not delete this text first.

So far, our standard form for set builder notation has been { }. It is sometimes possible to modify this form and put the
predicate first. For example, the set

{ }

describes the set of all natural numbers of the form  for some natural number.

By substituting 1, 2, 3, 4, and so on, for n, we can use the roster method to write

 = { } = {4, 7, 10, 13, ... }.

We can sometimes “reverse this process” by starting with a set specified by the roster method and then writing the same set using
set builder notation.

Let  = {..., -11. -7, -3, 1, 5, 9, 13, ...}. The key to writing this set using set builder notation is to recognize the pattern
involved. We see that once we have an integer in , we can obtain another integer in  by adding 4. This suggests that the
predicate we will use will involve multiplying by 4.

Since it is usually easier to work with positive numbers, we notice that  and . Notice that

 and .

This suggests that we might try . In fact, by trying other integers for , we can see that

 = {..., -11, -7, -3, 1, 5, 9, 13, ...} = { }.

Each of the following sets is defined using the roster method.

 = {1, 5, 9, 13, ...}  = { , , , ... }

 = {..., -8, -6, -4, -2, 0}  = {1, 3, 9, 27, ...}

1. Determine four elements of each set other than the ones listed using the roster method.
2. Use set builder notation to describe each set.

Answer

Add texts here. Do not delete this text first.

The Empty Set

When a set contains no elements, we say that the set is the empty set. For example, the set of all rational numbers that are solutions
of the equation  is the empty set since this equation has no solutions that are rational numbers.

In mathematics, the empty set is usually designated by the symbol . We usually read the symbol  as “the empty set” or “the null
set.” (The symbol  is actually the last letter in the Danish-Norwegian alphabet.)

When the Truth Set Is the Universal Set

The truth set of a predicate can be the universal set. For example, if the universal set is the set of real numbers , then the truth set
of the predicate “ ” is .

Notice that the sentence “ ” has not been quantified and a particular element of the universal set has not been substituted
for the variable . Even though the truth set for this sentence is the universal set, we will adopt the convention that unless the
quantifier is stated explicitly, we will consider the sentence to be a predicate or open sentence. So, with this convention, if the
universal set is , then

 is a predicate;

x ∈ U|P (x)

A = 3n+1|n ∈ N

3n+1

A 3n+1|n ∈ N

 Example 2.14 (Set Builder Notation)

B

B B

1 ∈ B 5 ∈ B

1 = 4 ⋅ 0 +1 5 = 4 ⋅ 1 +1

4n+1|n ∈ z n

B 4n+1|n ∈ Z

 Progress Check 2.15 (Set Builder Notation)

A C 2
–

√ ( 2
–

√ )3 ( 2
–

√ )5

B D

= −��2x2

∅ ∅
∅

R
x+0 = x R

x+0 = x

x

R

x+0 = x
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For each real number ,  is a statement.

1. Use the roster method to specify the elements in each of the following sets and then write a sentence in English describing
the set. 
(a) { } 
(b) { } 
(c) { } 
(d) { } 
(e) { } 
(f) { }

2. Each of the following sets is defined using the roster method. 
 

= {1, 4, 9, 16, 25, ...} 
 = {..., - , - , - , - , 0...} 
 = {3, 9, 15, 21, 27, ...} 
 = {0, 4, 8, ..., 96, 100} 

 
(a) Determine four elements of each set other than the ones listed using the roster method. 
(b) Use set builder notation to describe each set.

3. Let  = { }. Which of the following sets are equal to the set  and which are subsets of ? 

 
(a) { } 

(b) { } 

(c) { } 

(d) { }

4. Use the roster method to specify the truth set for each of the following open sentences. The universal set for each open
sentence is the set of integers . 
 
(a) . 
(b) . 
(c)  and  is less than 50. 
(d)  is an odd integer that is greater than 2 and less than 14. 
(e)  is an even integer that is greater than 10.

5. Use set builder notation to specify the following sets: 
 
(a) The set of all integers greater than or equal to 5. 
(b) The set of all even integers. 
(c) The set of all positive rational numbers. 
(d) The set of all real numbers greater than 1 and less than 7. 
(e) The set of all real numbers whose square is greater than 10.

6. For each of the following sets, use English to describe the set and when appropriate, use the roster method to specify all of
the elements of the set.

(a) { } 
(b) { } 
(c) { } 
(d) { } 
(e) {  is odd} 
(f) { } 

x x+0 = x

 Exercises for Section 2.3

x ∈ R|2 +3x−2 = 0x2

x ∈ Z|2 +3x−2 = 0x2

x ∈ Z| < 25x2

x ∈ N| < 25x2

y ∈ Q||y−2| = 2.5
y ∈ Z||y−2| ≤ 2.5

A

B π4 π3 π2 π

C

D

A x ∈ R|x(x+2 (x− = 0)2 3

2
A A

−2, 0, 3

−2, −2, 0,
3

2

, −2, 0
3

2

−2,
3

2

Z

n+7 = 4
= 64n2

∈ Nn−−√ n

n

n

x ∈ R| −3 ≤ x ≤ 5
x ∈ Z| −3 ≤ x ≤ 5
x ∈ R| = 16x2

x ∈ R| +16 = 0x2

x ∈ Z|x
x ∈ R|3x−4 ≥ 17
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Explorations and Activities

7. Closure Explorations. In Section 1.1, we studied some of the closure properties of the standard number systems. (See page
10.) We can extend this idea to other sets of numbers. So we say that: 
 

 A set  of numbers is closed under addition provided that whenever  and  are are in the set ,  is in the set . 
 A set  of numbers is closed under multiplication provided that whenever  and  are are in the set ,  is in the set
.

 A set  of numbers is closed under subtraction provided that whenever  and  are are in the set ,  is in the set 
.

 
For each of the following sets, make a conjecture about whether or not it is closed under addition and whether or not it is
closed under multiplication. In some cases, you may be able to find a counterexample that will prove the set is not closed
under one of these operations. 
(a) The set of all odd natural numbers 
(b) The set of all even integers 
(c)  = {1, 4, 7, 10, 13, ...} 
(d)  = {..., -6, -3, 0, 3, 6, 9, ...} 
(e)  = { } 

(f)  = { }

Answer

Add texts here. Do not delete this text first.

This page titled 2.3: Open Sentences and Sets is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

2.3: Open Sentences and Sets by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

∙ A x y A x+y A

∙ A x y A x ⋅ y
A

∙ A x y A x−y

A

A

B

C 3n+1|n ∈ Z

D |n ∈ N
1

2n
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2.4: Quantifiers and Negations
Preview Activity 1 (An Introduction to Quantifiers) 
We have seen that one way to create a statement from an open sentence is to substitute a specific element from the universal set for
each variable in the open sentence. Another way is to make some claim about the truth set of the open sentence. This is often done
by using a quantifier. For example, if the universal set is , then the following sentence is a statement.

For each real number , .

The phrase “For each real number x” is said to quantify the variable that follows it in the sense that the sentence is claiming that
something is true for all real numbers. So this sentence is a statement (which happens to be false).

The phrase “for every” (or its equivalents) is called a universal quantifier. The phrase “there exists” (or its equivalents) is
called an existential quantifier. The symbol  is used to denote a universal quantifier, and the symbol  is used to denote an
existential quantifier.

Using this notation, the statement “For each real number ,  > 0” could be written in symbolic form as: . The
following is an example of a statement involving an existential quantifier.

There exists an integer  such that .

This could be written in symbolic form as

.

This statement is false because there are no integers that are solutions of the linear equation . Table 2.4 summarizes the
facts about the two types of quantifiers.

A statement involving Often has the form The statement is true provided that

A universal quantifier: ( ) "For every , ," where  is a
predicate.

Every value of  in the universal set makes 
 true.

An existential quantifier: ( ) "There exists an  such that ," where 
 is a predicate.

There is at least one value of  in the universal
set that makes  true.

Table 2.4: Properties of Quantifiers

In effect, the table indicates that the universally quantified statement is true provided that the truth set of the predicate equals the
universal set, and the existentially quantified statement is true provided that the truth set of the predicate contains at least one
element.

Each of the following sentences is a statement or an open sentence. Assume that the universal set for each variable in these
sentences is the set of all real numbers. If a sentence is an open sentence (predicate), determine its truth set. If a sentence is a
statement, determine whether it is true or false.

1. .
2. .
3. .
4. .
5. .
6. .
7. .
8. .
9. If , then .

10.  (If , then ).

Preview Activity 2 (Attempting to Negate Quantified Statements)

R

x > 0x2

 Definition: universal quantifier

∀ ∃

x x2 (∀x ∈ R)( > 0)x2

x 3x−2 = 0

(∃x ∈ Z)(3x−2 = 0)

3x−2 = 0

∀x,P(x)
x P(x) P(x) x

P(x)

∃x,P(x)
x P(x)

P(x)

x

P(x)

(∀a ∈ R)(a+0 = a)
3x−5 = 9

∈ Rx−−√
sin(2x) = 2(sinx)(cosx)
(∀x ∈ R)(sin(2x) = 2(sinx)(cosx))
(∃x ∈ R)( +1 = 0)x2

(∀x ∈ R)( ≥ )x3 x2

+1 = 0x2

≥ 1x2 x ≥ 1
(∀x ∈ R) ≥ 1x2 x ≥ 1
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1. Consider the following statement written in symbolic form: 
( ) (  is a multiple of 2). 
 
(a) Write this statement as an English sentence. 
(b) Is the statement true or false? Why? 
(c) How would you write the negation of this statement as an English sentence? 
(d) If possible, write your negation of this statement from part(2) symbolically (using a quantifier).

2. Consider the following statement written in symbolic form: 
( ) ( ).
 
(a) Write this statement as an English sentence. 
(b) Is the statement true or false? Why? 
(c) How would you write the negation of this statement as an English sentence? 
(d) If possible, write your negation of this statement from part(2) symbolically (using a quantifier).

We introduced the concepts of open sentences and quantifiers in Section 2.3

Forms of Quantified Statements in English

There are many ways to write statements involving quantifiers in English. In some cases, the quantifiers are not apparent, and this
often happens with conditional statements. The following examples illustrate these points. Each example contains a quantified
statement written in symbolic form followed by several ways to write the statement in English.

1. ( ) ( ). 
 

 For each real number , . 
 The square of every real number is greater than 0. 
 The square of a real number is greater than 0. 
 If , then . 

In the second to the last example, the quantifier is not stated explicitly. Care must be taken when reading this because it really
does say the same thing as the previous examples. The last example illustrates the fact that conditional statements often contain
a “hidden” universal quantifier.

If the universal set is , then the truth set of the open sentence  is the set of all nonzero real numbers. That is, the truth
set is

{ }

So the preceding statements are false. For the conditional statement, the example using  produces a true hypothesis and a
false conclusion. This is a counterexample that shows that the statement with a universal quantifier is false.

2. ( ) ( ). 
 

 There exists a real number  such that . 
  for some real number . 
 There is a real number whose square equals 5. 

 
The second example is usually not used since it is not considered good writing practice to start a sentence with a mathematical
symbol. 
If the universal set is , then the truth set of the predicate " " is { , }. So these are all true statements.

Negations of Quantified Statements
In Preview Activity , we wrote negations of some quantified statements. This is a very important mathematical activity. As we
will see in future sections, it is sometimes just as important to be able to describe when some object does not satisfy a certain
property as it is to describe when the object satisfies the property. Our next task is to learn how to write negations of quantified
statements in a useful English form.

∀x ∈ Z x

∃x ∈ Z > 0x3

∀x ∈ R > 0x2

∙ x > 0x2

∙
∙
∙ x ∈ R > 0x2

R > 0x2

x ∈ R|x ≠ 0

x = 0

∃x ∈ R = 5x2

∙ x = 5x2

∙ = 5x2 x

∙

R = 5x2 −sqrt5 sqrt5

2.4.1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86095?pdf


2.4.3 https://math.libretexts.org/@go/page/86095

We first look at the negation of a statement involving a universal quantifier. The general form for such a statement can be written as
( ) ( ), where is an open sentence and  is the universal set for the variable . When we write

,

we are asserting that the statement  is false. This is equivalent to saying that the truth set of the open sentence 
is not the universal set. That is, there exists an element x in the universal set  such that  is false. This in turn means that
there exists an element  in  such that  is true, which is equivalent to saying that  is true. This explains
why the following result is true:

Similarly, when we write

we are asserting that the statement  is false. This is equivalent to saying that the truth set of the open sentence 
 is the empty set. That is, there is no element x in the universal set  such that  is true. This in turn means that for each

element  in ,  is true, and this is equivalent to saying that  is true. This explains why the following
result is true:

We summarize these results in the following theorem.

For any open sentence ,

, and

Consider the following statement: .

We can write this statement as an English sentence in several ways. Following are two different ways to do so.

For each real number , .
If  is a real number, then  is greater than or equal to .

The second statement shows that in a conditional statement, there is often a hidden universal quantifier. This statement is false
since there are real numbers  for which  is not greater than or equal to . For example, we could use  or .
This means that the negation must be true. We can form the negation as follows:

.

In most cases, we want to write this negation in a way that does not use the negation symbol. In this case, we can now write the
open sentence  as ( ). (That is, the negation of “is greater than or equal to” is “is less than.”) So we obtain
the following:

.

The statement  could be written in English as follows:

There exists a real number  such that .
There exists an  such that  is a real number and .

For each of the following statements

Write the statement in the form of an English sentence that does not use the symbols for quantifiers.
Write the negation of the statement in a symbolic form that does not use the negation symbol.

∀x ∈ U P (x) P (x) U x

┐(∀x ∈ U)[P (x)]

∀x ∈ U)[P (x)] P (x)
U P (x)

x U ┐P (x) (∃x ∈ U)[┐P (x)]

┐(∀x ∈ U)[P (x)] ≡ (∃x ∈ U)[┐P (x)]

┐(∃x ∈ U)[P (x)]

(∃x ∈ U)[P (x)]
P (x) U P (x)

x U ┐P (x) (∀x ∈ U)[┐P (x)]

┐(∃x ∈ U)[P (x)] ≡ (∀x ∈ U)[┐P (x)]

 Theorem 2.16.

P (x)

┐(∀x ∈ U)[P (x)] ≡ (∃x ∈ U)[┐P (x)]

┐(∃x ∈ U)[P (x)] ≡ (∀x ∈ U)[┐P (x)]

 Example 2.17 (Negations of Quantified Statements)

(∀x ∈ R)( ≥ )x3 x2

x ≥x3 x2

x x3 x2

x x3 x2 x = −1 x = 1
2

┐(∀x ∈ R)( ≥ ) ≡ (∃x ∈ R)┐( ≥ )x3 x2 x3 x2

┐( ≥ )x3 x2 <x3 x2

┐(∀x ∈ R)( ≥ ) ≡ (∃x ∈ R)( < )x3 x2 x3 x2

(∃x ∈ R)( < )x3 x2

x <x3 x2

x x <x3 x2

 Progress Check 2.18 (Negating Quantified Statements)
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Write the negation of the statement in the form of an English sentence that does not use the symbols for quantifiers.

1. .
2. .
3. .
4. .
5. .

Answer

Add texts here. Do not delete this text first.

Counterexamples and Negations of Conditional Statements

The real number  in the previous example was used to show that the statement  is false. This is called a
counterexample to the statement. In general, a counterexample to a statement of the form  is an object a in the
universal set  for which  is false. It is an example that proves that  is a false statement, and hence its negation, 

, is a true statement.

In the preceding example, we also wrote the universally quantified statement as a conditional statement. The number  is a
counterexample for the statement

If  is a real number, then  is greater than or equal to .

So the number -1 is an example that makes the hypothesis of the conditional statement true and the conclusion false. Remember
that a conditional statement often contains a “hidden” universal quantifier. Also, recall that in Section 2.2 we saw that the negation
of the conditional statement “If  then ” is the statement “  and not .” Symbolically, this can be written as follows:

.

So when we specifically include the universal quantifier, the symbolic form of the negation of a conditional statement is

.

That is,

.

Use counterexamples to explain why each of the following statements is false.

1. For each integer , ( ) is a prime number.
2. For each real number , if  is positive, then .

Answer

Add texts here. Do not delete this text first.

Quantifiers in Definitions
Definitions of terms in mathematics often involve quantifiers. These definitions are often given in a form that does not use the
symbols for quantifiers. Not only is it important to know a definition, it is also important to be able to write a negation of the
definition. This will be illustrated with the definition of what it means to say that a natural number is a perfect square.

A natural number n is a perfect square provided that there exists a natural number  such that .

This definition can be written in symbolic form using appropriate quantifiers as follows:

A natural number n is a perfect square provided .

(∀a ∈ R)(a+0 = a)
(∀x ∈ R)[sin(2x) = 2(sinx)(cosx)]
(∀x ∈ R)(ta x+1 = se x)n2 c2

(∃x ∈ Q)( −3x−7 = 0)x2

(∃x ∈ R)( +1 = 0)x2

x = −1 (∀x ∈ R)( ≥ )x3 x2

(∀x)[P (x)]
U P (a) (∀x)[P (x)]

(∃x)[┐P (x)]

x = −1

x x3 x2

P Q P Q

┐(P → Q) ≡ P ∧ ┐Q

┐(∀x ∈ U)[P (x) → Q(x)] ≡ (∃x ∈ U)┐[P (x) → Q(x)] ≡ (∃x ∈ U)[P (x) ∧ ┐Q(x)]

┐(∀x ∈ U)[P (x) → Q(x)] ≡ (∃x ∈ U)[P (x) ∧ ┐Q(x)]

 Progress Check 2.19 (Using Counterexamples)

n +n+1n2

x x 2 > xx2

 Definition: perfect square

k n = k2

(∃k ∈ N)(n = )k2
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We frequently use the following steps to gain a better understanding of a definition.

1. Examples of natural numbers that are perfect squares are 1, 4, 9, and 81 since , , , and .
2. Examples of natural numbers that are not perfect squares are 2, 5, 10, and 50.
3. This definition gives two “conditions.” One is that the natural number  is a perfect square and the other is that there exists a

natural number  such that . The definition states that these mean the same thing. So when we say that a natural number
n is not a perfect square, we need to negate the condition that there exists a natural number k such that . We can use the
symbolic form to do this.

Notice that instead of writing , we used the equivalent form of ( ). This will be easier to translate into an English
sentence. So we can write,

A natural number  is not a perfect square provided taht for every natural number , .

The preceding method illustrates a good method for trying to understand a new definition. Most textbooks will simply define a
concept and leave it to the reader to do the preceding steps. Frequently, it is not sufficient just to read a definition and expect to
understand the new term. We must provide examples that satisfy the definition, as well as examples that do not satisfy the
definition, and we must be able to write a coherent negation of the definition

An integer  is a multiple of 3 provided that there exists an integer  such that .

1. Write this definition in symbolic form using quantifiers by completing the following: 
 
An integer  is a multiple of 3 provided that ...

2. Give several examples of integers (including negative integers) that are multiples of 3.
3. Give several examples of integers (including negative integers) that are not multiples of 3.
4. Use the symbolic form of the definition of a multiple of 3 to complete the following sentence: “An integer  is not a

multiple of 3 provided that . . . .”
5. Without using the symbols for quantifiers, complete the following sentence: “An integer \(n\0 is not a multiple of 3 provide

that . . . .”

Answer

Add texts here. Do not delete this text first.

Statements with More than One Quantifier

When a predicate contains more than one variable, each variable must be quantified to create a statement. For example, assume the
universal set is the set of integers, , and let  be the predicate, “ .” We can create a statement from this predicate
in several ways.

1. . 
We could read this as,“ For all integers  and , .” This is a false statement since it is possible to find two integers
whose sum is not zero .

2. . 
We could read this as, “For every integer , there exists an integer  such that .” This is a true statement.

3. . 
We could read this as, “There exists an integer  such that for each integer , .” This is a false statement since there is
no integer whose sum with each integer is zero.

4. . 
We could read this as, “There exist integers  and y such that .” This is a true statement. For example, 

1 = 12 4 = 22 9 = 32 81 = 92

n

k n = k2

n = k2

┐(∃k ∈ N)(n = ) ≡ (∀k ∈ N)(n ≠ )k2 k2

┐(n = )k2 n ≠ k2

n k n ≠ k2

 Progress Check 2.20 (Multiples of Three)

 Definition

n k n = 3k

n

n

Z P (x, y) x+y = 0

(∀x ∈ Z)(∀y ∈ Z)(x+y = 0)
x y x+y = 0

2 +3 ≠ 0
(∀x ∈ Z)(∃y ∈ Z)(x+y = 0)

x y x+y = 0
(∃x ∈ Z)(∀y ∈ Z)(x+y = 0)

x y x+y = 0

(∃x ∈ Z)(∃y ∈ Z)(x+y = 0)
x x+y = 0 2 +(−2) = 0
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When we negate a statement with more than one quantifier, we consider each quantifier in turn and apply the appropriate part of
Theorem 2.16. As an example, we will negate Statement (3) from the preceding list. The statement is

.

We first treat this as a statement in the following form:  where  is the predicate . Using
Theorem 2.16, we have

.

Using Theorem 2.16 again, we obtain the following:

 
 

.

Combining these two results, we obtain

.

The results are summarized in the following table.

 Symbolic Form English Form

Statement There exists an integer  such that for each
integer , .

Negation For each integer , there exists an integer 
such that .

Since the given statement is false, its negation is true. 
We can construct a similar table for each of the four statements. The next table shows Statement (2), which is true, and its negation,
which is false.

 Symbolic Form English Form

Statement For every integer , there exists an integer 
such that .

Negation There exists an integer  such that for every
integer , .

Write the negation of the statement

in symbolic form and as a sentence written in English.

Answer

Add texts here. Do not delete this text first.

Writing Guideline

Try to use English and minimize the use of cumbersome notation. Do not use the special symbols for quantifiers  (for all), 
(there exists),  (such that), or  (therefore) in formal mathematical writing. It is often easier to write and usually easier
to read, if the English words are used instead of the symbols. For example, why make the reader interpret

when it is possible to write

For each real number , there exists a real number  such that , or, more succinctly (if appropriate),

Every real number has an additive inverse.

(∃x ∈ Z)(∀y ∈ Z)(x+y = 0)

(∃x ∈ Z)(P (x)) P (x) (∀y ∈ Z)(x+y = 0)

┐(∃x ∈ Z)(P (x)) ≡ (∀x ∈ Z)(┐P (x))

┐P (x) ≡ ┐(∀y ∈ Z)(x+y = 0)
≡ (∃y ∈ Z)┐(x+y = 0)
≡ (∃y ∈ Z)(x+y ≠ 0)

┐(∃x ∈ Z)(∀y ∈ Z)(x+y = 0) ≡ (∀x ∈ Z)(∃y ∈ Z)(x+y ≠ 0)

(∃x ∈ Z)(∀y ∈ Z)(x + y = 0)
x

y x + y = 0

(∀x ∈ Z)(∃y ∈ Z)(x + y ≠ 0)
x y

x + y ≠ 0

(∃x ∈ Z)(∀y ∈ Z)(x + y = 0)
x y

x + y = 0

(∀x ∈ Z)(∃y ∈ Z)(x + y ≠ 0)
x

y x + y ≠ 0

 Progress Check 2.21 (Negating a Statement with Two Quantifiers)

(∀x ∈ Z)(∀y ∈ Z)(x+y = 0)

∀ ∃
backepsilon ∴

(∀x ∈ R)(∃y ∈ R)(x+y = 0)

x y x+y = 0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86095?pdf


2.4.7 https://math.libretexts.org/@go/page/86095

1. For each of the following, write the statement as an English sentence and then explain why the statement is false. 
 
(a) . 
(b) . 
(c) .

2. For each of the following, use a counterexample to show that the statement is false. Then write the negation of the
statement in English, without using symbols for quantifiers. 
 
(a)  (  is even). 
(b) . 
(c) For each real number , . 
(d) . 

(e) . 
(f) .

3. For each of the following statements 
 Write the statement as an English sentence that does not use the symbols for quantifiers. 
 Write the negation of the statement in symbolic form in which the negation symbol is not used. 
 Write a useful negation of the statement in an English sentence that does not use the symbols for quantifiers. 

 
(a) . 
(b) . 
(c)  (  is even or  is odd). 
(d) . Note: The sentence " " is actually a conjunction. It means  and 

. 
(e)  (If  is odd, then  is odd). 
(f)  [If  is a perfect sqare, then ( ) is not a prime number]. 
(g)  (  is a prime number). 
(h) .

4. Write each of the following statements as an English sentence that does not use the symbols for quantifiers. 
 
(a)  
(b)  
(c)  
(d)  
(e)  
(f) 

5. Write the negation of each statement in Exercise (4) in symbolic form and as an English sentence that does not use the
symbols for quantifiers.

6. Assume that the universal set is . Consider the following sentence: 
 

. 
 
(a) Explain why this sentence is an open sentence and not a statement. 
(b) If 5 is substituted for , is the resulting sentence a statement? If it is a statement, is the statement true or false? 
(c) If 8 is substituted for , is the resulting sentence a statement? If it is a statement, is the statement true or false? 
(d) If 2 is substituted for , is the resulting sentence a statement? If it is a statement, is the statement true or false? 
(e) What is the truth set of the open sentence ?

7. Assume that the universal set is . Consider the following sentence: 
 

.

 Exercises for Section 2.4

(∃x ∈ Q)( −3x−7 = 0)x2

(∃x ∈ R)( +1 = 0)x2

(∃m ∈ N)( 1)m<

(∀m ∈ Z) m2

(∀x ∈ R)( > 0)x2

x ∈ Rx−−√

(∀m ∈ Z)( ∈ Z)
m

3
(∀a ∈ Z)( = a)a2−−

√

(∀x ∈ R)(ta x+1 = se x)n2 c2

∙
∙
∙

(∃x ∈ Q)(x > )2
–

√
(∀x ∈ Q)( −2 ≠ 0)x2

(∀x ∈ Z) x x

(∃x ∈ Q)( < x < )2
–

√ 3
–

√ < x <2
–

√ 3
–

√ < x2
–

√
x < 3

–
√

(∀x ∈ Z) x2 x

(∀n ∈ N) n −12n

(∀n ∈ N) −n+41n2

(∃x ∈ R)(cos(2x) = 2(cosx))

(∃m ∈ Z)(∃n ∈ Z)(m > n)
(∃m ∈ Z)(∀n ∈ Z)(m > n)
(∀m ∈ Z)(∃n ∈ Z)(m > n)
(∀m ∈ Z)(∀n ∈ Z)(m > n)
(∃m ∈ Z)(∀n ∈ Z)( > n)m2

(∀m ∈ Z)(∃n ∈ Z)( > n)m2

Z

(∃t ∈ Z)(t ⋅ x = 20)

x

x

x

(∃t ∈ Z)(t ⋅ x = 20)
R

(∃t ∈ R)(t ⋅ x = 20)
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(a) Explain why this sentence is an open sentence and not a statement. 
(b) If 5 is substituted for , is the resulting sentence a statement? If it is a statement, is the statement true or false? 
(c) If  is substituted for , is the resulting sentence a statement? If it is a statement, is the statement true or false? 
(d) If 0 is substituted for , is the resulting sentence a statement? If it is a statement, is the statement true or false? 
(e) What is the truth set of the open sentence ?

8. Let  be the set of all nonzero integers. 
 
(a) Use a counterexample to explain why the following statement is false: 
For each , there exists a  such that . 
(b) Write the statement in part(a) in symbolic form using appropriate symbols for quantifiers. 
(c) Write the negation of the statement in part (b) in symbolic form using appropriate symbols for quantifiers. 
(d) Write the negation from part(c) in English without usings the symbols for quantifiers.

9. An integer  is said to have the divides property provided that for all integers  and , if  divides , then  divides 
or  divides . 
 
(a) Using the symbols for quantifiers, write what it means to say that the integer  has the divides property. 
(b) Using the symbols for quantifiers, write what it means to say that the integer  does not have the divides property. 
(c) Write an English sentence stating what it means to say that the integer  does not have the divides property.

10. In calculus, we define a function  with domain  to be strictly increasing provided that for all real numbers  and , 
 whenever . Complete each of the following sentences using the appropriate symbols for quantifiers: 

(a) A function  with domain  is strictly increasing provided that ... 
(b) A function  with domain  is not strictly increasing provided that ... 
 
Complete the following sentence in English without using symbols for quantifiers: 
 
(c) A function  with domain  is not strictly increasing provided that ...

11. In calculus, we define a function  to be continuous at a real number  provided that for every , there exists a 
such that if , then .

Note: The symbol  is the lowercase Greek letter epsilon, and the symbol  is the lowercase Greek letter delta.

Complete each of the following sentences using the appropriate symbols for quantifiers: 
 
(a) A function  is continuous at the real number  provided that ... 
(b) A function  is not continuous at the real number  provided that ... 
 
Complete the following sentence in English without using symbols for quantifiers: 
 
(c) A function  is not continuous at the real number  provided that ...

12. The following exercises contain definitions or results from more advanced mathematics courses. Even though we may not
understand all of the terms involved, it is still possible to recognize the structure of the given statements and write a
meaningful negation of that statement. 
 
(a) In abstract algebra, an operation  on a set  is called a commutative operation provided that for all , 

. Carefully explain what it means to say that an operation  on a set A is not a commutative operation. 
 
(b) In abstract algebra, a ring consists of a nonempty set  and two operations called addition and multiplication. A
nonzero element  in a ring  is called a zero divisor provided that there exists a nonzero element  in R such that .
Carefully explain what it means to say that a nonzero element  in a ring  is not a zero divisor. 
 
(c) A set  of real numbers is called a neighborhood of a real number aprovided that there exists a positive real number 
such that the open interval ( ) is contained in . Carefully explain what it means to say that a set  is not a

x

π x

x

(∃t ∈ R)(t ⋅ x = 20)
Z∗

x ∈ Z∗ y ∈ Z∗ xy = 1

m a b m ab m a

m b

m

m

m

f R x y

f(x) < f(y) x < y

f R

f R

f R

f a ε > 0 δ > 0
|x−a| < δ |f(x) −f(a)| < ε

ε δ

f a

f a

f a

∗ A x, y ∈ A

x ∗ y = y ∗ x ∗

R

a R b ab = 0
a R

M ϵ

a− ϵ, a+ ϵ M M
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neighborhood of a real number . 
 
(d) In advanced calculus, a sequence of real numbers { , , ..., , ...} is called a Cauchy sequence provided that for
each positive real number, there exists a natural number  such that for all ; , if  and , then 

. Carefully explain what it means to say that the sequence of real numbers { , , ..., , ...} is not a
Cauchy sequence. 
 
Explorations and Activities

13. Prime Numbers. The following definition of a prime number is very important in many areas of mathematics. We will use
this definition at various places in the text. It is introduced now as an example of how to work with a definition in
mathematics.

A natural number  is a prime number provided that it is greater than 1 and the only natural numbers that are factors
of  are 1 and . A natural number other than 1 that is not a prime number is a composite number. The number 1 is
neither prime nor composite.

Using the definition of a prime number, we see that 2, 3, 5, and 7 are prime numbers. Also, 4 is a composite number since 4
= 2  2; 10 is a composite number since 10 = 2  5; and 60 is a composite number since 60 = 4  15. 
 
(a) Give examples of four natural numbers other than 2, 3, 5, and 7 that are prime numbers. 
(b) Explain why a natural number  that is greater than 1 is a prime number provided that 
For all , if  is a factor of , then  or . 
(c) Give examples of four natural numbers that are composite numbers and explain why they are composite numbers. 
(d) Write a useful description of what it means to say that a natural number is a composite number (other than saying that it
is not prime).

14. Upper Bounds for Subsets of . Let  be a subset of the real numbers. A number  is called an upper bound for the set 
 provided that for each element  in , . 

 
(a) Write this definition in symbolic form by completing the following: 
Let  be a subset of the real numbers. A number  is called an upper bound for the set  provided that ... 
(b) Give examples of three different upper bounds for the set  = { }. 
(c) Does the set  = { } have an upper bound? Explain. 
(d) Give examples of three different real numbers that are not upper bounds for the set  = { }. 
(e) Complete the following in symbolic form: “Let  be a subset of . A number  is not an upper bound for the set 
provided that ...” 
(f) Without using the symbols for quantifiers, complete the following sentence: “Let  be a subset of . A number  is not
an upper bound for the set  provided that ...” 
(g) Are your examples in Part(14d) consistent with your work in Part(14f)? Explain.

15. Least Upper Bound for a Subset of . In Exercise 14, we introduced the definition of an upper bound for a subset of the
real numbers. Assume that we know this definition and that we know what it means to say that a number is not an upper
bound for a subset of the real numbers. 
 
Let  be a subset of . A real number ̨ is the least upper bound for A provided that  is an upper bound for , and if  is
an upper bound for , then . 
 
Note: The symbol  is the lowercase Greek letter alpha, and the symbol  is the lowercase Greek letter beta.

If we define  to be “  is an upper bound for ,” then we can write the definition for least upper bound as follows:

A real number ̨ is the least upper bound for  provided that 
. 

 

a

x1 x2 xk
N m n ∈ N m > N n > N

| − | < ϵxn xm x1 x2 xk

 Definition

p

p p

⋅ ⋅ ⋅

p

d ∈ N d p d = 1 d = p

R A b

A x A x ≤ b

A b A

A x ∈ R|1 ≤ x ≤ 3
B x ∈ R|x > 0

A x ∈ R|1 ≤ x ≤ 3
A R b A

A R b

A

R

A R α A β

A α ≤ β

α β

P (x) x A

A

P (α) ∧ [(∀β ∈ R)(P (β) → (α ≤ β))]
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(a) Why is a universal quantifier used for the real number ? 
(b) Complete the following sentence in symbolic form: “A real number  is not the least upper bound for  provided that
... 
(c) Complete the following sentence as an English sentence: "A real number  is not the least upper bound for  provided
that ..."

Answer

Add texts here. Do not delete this text first.
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platform; a detailed edit history is available upon request.
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2.5.1: Summing Up, Looking Ahead
What we have tried to do in this first chapter is to introduce the concepts of formal languages and formal structures. We hope that
you will agree that you have seen many mathematical structures in the past, even though you may not have called them structures
at the time. By formalizing what we mean when we say that a formula is true in a structure, we will be able to tie together truth and
provability in the next couple of chapters.

You might be at a point where you are about to throw your hands up in disgust and say, "Why does any of this matter? I've been
doing mathematics for over ten years without worrying about structures or assignment functions, and I have been able to solve
problems and succeed as a mathematician so far." Allow us to assure you that the effort and the almost unreasonable precision that
we are imposing on our exposition will have a payoff in later chapters. The major theorems that we wish to prove are theorems
about the existence or nonexistence of certain objects. To prove that you cannot express a certain idea in a certain language, we
have to know, with an amazing amount of exactitude, what a language is and what structures are. Our goals are some theorems that
are easy to state incorrectly, so by being precise about what we are saying, we will be able to make (and prove) claims that are truly
revolutionary.

Since we will be talking about the existence and nonexistence of proofs, we now must turn our attention to defining (yes, precisely)
what sorts of things qualify as proofs. That is the topic of the next chapter.

This page titled 2.5.1: Summing Up, Looking Ahead is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Christopher Leary and Lars Kristiansen (OpenSUNY) via source content that was edited to the style and standards of the LibreTexts platform; a
detailed edit history is available upon request.
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2.5.2: Naïvely
Let us begin by talking informally about mathematical structures and mathematical languages.

There is no doubt that you have worked with mathematical models in several previous mathematics courses, although in all
likelihood it was not pointed out to you at the time. For example, if you have taken a course in linear algebra, you have some
experience with , , and  as examples of vector spaces. In high school geometry you learned that the plane is a "model" of
Euclid's axioms of geometry. Perhaps you have taken a class in abstract algebra, where you saw several examples of groups: The
integers under addition, permutation groups, and the group of invertible  matrices with the operation of matrix multiplication
are all examples of groups - they are "models" of the group axioms. All of these are mathematical models, or structures. Different
structures are used for different purposes.

Suppose we think about a particular mathematical structure, for example , the collection of ordered triples of real numbers. If we
try to do plane Euclidean geometry in , we fail miserably, as (for example) the parallel postulate is false in this structure. On the
other hand, if we want to do linear algebra in , all is well and good, as we can think of the points of  as vectors and let the
scalars be real numbers. Then the axioms for a real vector space are all true when interpreted in . We will say that  is a model
of the axioms for a vector space, whereas it is not a model for Euclid's axioms for geometry.

As you have no doubt noticed, our discussion has introduced two separate types of things to worry about. First, there are the
mathematical models, which you can think of as the mathematical worlds, or constructs. Examples of these include , the
collection of polynomials of degree 17, the set of 3x2 matrices, and the real line. We have also been talking about the axioms of
geometry and vector spaces, and these are something different. Let us discuss those axioms for a moment.

Just for the purposes of illustration, let us look at some of the axioms which state that  is a real vector space. They are listed here
both informally and in a more formal language:

Vector addition is commutative: .

There is a zero vector: .

One times anything is itself: .

Don't worry if the formal language is not familiar to you at this point; it suffices to notice that there is a formal language. But do let
us point out a few things that you probably accepted without question. The addition sign that is in the first two axioms is not the
same plus sign that you were using when you learned to add in first grade. Or rather, it is the same sign, but you interpret that sign
differently. If the vector space under consideration is , you know that as far as the first two axioms up there are concerned,
addition is vector addition. Similarly, the 0 in the second axiom is not the real number 0; rather, it is the zero vector. Also, the
multiplication in the third axiom that is indicated by the juxtaposition of the 1 and the  is the scalar multiplication of the vector
space, not the multiplication of third grade.

So it seems that we have to be able to look at some symbols in a particular formal language and then take those symbols and relate
them in some way to a mathematical structure. Different interpretations of the symbols will lead to different conclusions as regards
the truth of the formal statement. For example, if we take the commutivity axiom above and work with the space  being  but
interpret the sign  as standing for cross product instead of vector addition, we see that the axiom is no longer true, as cross
product is not commutative.

These, then, are our next objectives: to introduce formal languages, to give an official definition of a mathematical structure, and to
discuss truth in those structures. Beauty will come later.

This page titled 2.5.2: Naïvely is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Christopher Leary and
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available upon request.
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2.5.3: Languages
We will be constructing a very restricted formal language, and our goal in constructing that language will be to be able to form
certain statements about certain kinds of mathematical structures. For our work, it will be necessary to be able to talk about
constants, functions, and relations, and so we will need symbols to represent them.

Chaff: Let us emphasize this once more. Right now we are discussing the syntax of our language, the marks on the paper. We
are not going to worry about the semantics, or meaning, of those marks until later - at least not formally. But it is silly to
pretend that the intended meanings do not drive our choice of symbols and the way in which we use them. If we want to
discuss left-hemi-semi-demi-rings, our formal language should include the function and relation symbols that
mathematicians in this lucrative and exciting field customarily use, not the symbols involved in chess, bridge, or right-hemi-
semi-para-fields. It is not our goal to confuse anyone more than is necessary. So you should probably go through the exercise
right now of taking a guess at a reasonable language to use if our intended field of discussion was, say, the theory of the
natural numbers. See Exercise 1.

Definition 1.2.1. A first-order language  is an infinite collection of distinct symbols, no one of which is properly contained in
another, separated into the following categories:

1. Parentheses: (, ).
2. Connectives: , .
3. Quantifier: .
4. Variables, one for each positive integer : . The set of variable symbols will be denoted Vars.
5. Equality symbol: .
6. Constant symbols: Some set of zero or more symbols.
7. Function symbols: For each positive integer , some set of zero or more -ary function symbols.
8. Relation symbols: For each positive integer , some set of zero or more -ary relation symbols.

To say that a function symbol is -ary (or has arity ) means that it is intended to represent a function of  variables. For example, 
 has arity 2. Similarly, an -ary relation symbols will be intended to represent a relation on -tuples of objects. This will be made

formal in Definition 1.6.1.

To specify a language, all we have to do is determine which, if any, constant, function, and relation symbols we wish to use. Many
authors, by the way, let the equality symbol be optional, or treat the equality symbol as an ordinary binary (i.e. 2-ary) relation
symbol. We will assume that each language has the equality symbol, unless specifically noted.

Chaff: We ought to add a word about the phrase "no one of which is properly contained in another", which appears in this
definition. We have been quite vague about the meaning of the word symbol, but you are supposed to be thinking about
marks made on a piece of paper. We will be constructing sequences of symbols and trying to figure out what they mean in the
next few sections, and by not letting one symbol be contained in another, we will find our job of interpreting sequences to be
much easier.

For example, suppose that our language contained both the constant symbol  and the constant symbol  (notice that the
first symbol is properly contained in the second). If you were reading a sequence of symbols and ran across , it would be
impossible to decide if this was one symbol or a sequence of two symbols. By not allowing symbols to be contained in other
symbols, this type of confusion is avoided, leaving the field open for other types of confusion to take its place.

Example 1.2.2. Suppose that we were taking an abstract algebra course and we wanted to specify the language of groups. A group
consists of a set and a binary operation that has certain properties. Among those properties is the existence of an identity element
for the operation. Thus, we could decide that our language will contain one constant symbols for the identity element, one binary
operation symbol, and no relation symbols. We would get

where 0 is the constant symbol and  is a binary function symbol. Or perhaps we would like to write our groups using the
operation as multiplication. Then a reasonable choice could be

L

∨ ¬
∀

n , , … , , …v1 v2 vn
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n n

n n

n n n

+ n n

♡ ♡♡
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which includes not only the constant symbol 1 and the binary function symbol , but also a unary (or 1-ary) function symbol ,
which is designed to pick out the inverse of an element of the group. As you can see, there is a fair bit of choice involved in
designing a language.

Example 1.2.3. The language of set theory is not very complicated at all. We will include one binary relation symbol, , and that is
all:

The idea is that this symbol will be used to represent the elementhood relation, so the interpretation of the string  will be that
the set  is an element of the set . You might be tempted to add other relation symbols, such as , or constant symbols, such as ,
but it will be easier to define such symbols in terms of more primitive symbols. Not easier in terms of readability, but easier in
terms of proving things about the language.

In general, to specify a language we need to list the constant symbols, the function symbols, and the relation symbols. There can be
infinitely many [in fact, uncountably many (cf. the Appendix)] of each. So, here is a specification of a language:

Here, the 's are the constant symbols, the 's are the function symbols, and the 's are the relation symbols. The
superscripts on the function and relation symbols indicate the arity of the associated symbols, so  is a mapping that assigns a
natural number to a string that begins with an  or an , followed by a subscripted ordinal. Thus, an official function symbol might
look like this:

which would say that the function that will be associated with the 17th function symbol is a function of 223 variables. Fortunately,
such dreadful detail will rarely be needed. We will usually see only unary or binary function symbols and the arity of each symbol
will be stated once. Then the authors will trust that the context will remind the patient reader of each symbol's arity.

Exercises
1. Carefully write out the symbols that you would want to have in a language  that you intend to use to write statements of

elementary algebra. Indicate which of the symbols are constant symbols, and the arity of the function and relation symbols that
you choose. Now write out another language,  (i.e., another list of symbols) with the same number of constant symbols,
function symbols, and relation symbols that you would not want to use for elementary algebra. Think about the value of good
notation.

2. What are good examples of unary (1-ary) functions? Binary functions? Can you find natural examples of relations with arity 1,
2, 3, and 4? As you think about this problem, stay mindful of the difference between the function and the function symbol,
between the relation and the relation symbol.

3. In the town of Sneezblatt there are three eating establishments: McBurgers, Chez Fancy, and Sven's Tandoori Palace. Think for
a minute about statements that you might want to make about these restaurants, and then write out , the formal language for
your theory of restaurants. Have fun with this, but try to include both function and relation symbols in . What interpretations
are you planning for your symbols?

4. You have been put in charge of drawing up the schedule for a basketball league. This league involves eight teams, each of
which must play each of the other seven teams exactly two times: once at home and once on the road. Think of a reasonable
language for this situation. What constants would you need? Do you need any relation symbols? Function symbols? It would be
nice if your finished schedule did not have any team playing two games on the same day. Can you think of a way to state this
using the formal symbols that you have chosen? Can you express the sentence which states that each team plays every other
team exactly two times?

5. Let's work out a language for elementary trigonometry. To get you started, let us suggest that you start off with lots of constant
symbols - one for each real number. It is tempting to use the symbols 7 to stand for the number seven, but this runs into
problems. (Do you see why this is illegal? 7, 77, 7/3, ...) Now, what functions would you like to discuss? Think of symbols for
them. What are the arities of your function symbols? Do not forget that you need symbols for addition and multiplication! What
relation symbols would you like to use?

6. A computer language is another example of a language. For example, the symbol  might be a binary function symbol, where
the interpretation of the instruction 

⋅ −1

∈

is {∈}.LST (2.5.3.3)
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would be to alter the internal state of the computer by placing the value 7 into the position in memory referenced by the variable

. Think about the function associated with the binary function symbol 

 
What are the inputs into this function? What sort of thing does the function do? Look at the statement 

 
Identify the function symbols, constant symbols, and relation symbols. What are the arities of each function and relation
symbol?

7. What would be a good language for the theory of vector spaces? This problem is slightly more difficult, as there are two
different varieties of objects, scalars and vectors, and you have to be able to tell them apart. Write out the axioms of vector
spaces in your language. Or, better yet, use a language that includes a unary function symbol for each real number so that
scalars don't exist as objects at all!

8. It is not actually necessary to include function symbols in the language, since a function is just a special kind of relation. Just to
see an example, think about the function  defined by . Remembering that a relation on  is just a set
of ordered pairs of natural numbers, find a relation  on  such that  is an element of  if and only if .
Convince yourself that you could do the same for any function defined on any domain. What condition must be true if a relation

 on  is to be a function mapping  to ?

This page titled 2.5.3: Languages is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Christopher Leary
and Lars Kristiansen (OpenSUNY) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history
is available upon request.

1.3: Languages by Christopher Leary and Lars Kristiansen is licensed CC BY-NC-SA 4.0. Original source: https://milneopentextbooks.org/a-
friendly-introduction-to-mathematical-logic.
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if _______, then _______. (2.5.3.7)

If x +y > 3, then z := 7. (2.5.3.8)
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which ought to have the same meaning as , which is , just as you suspected.

Rest assured that we will continue to use infix notation, commas, and parentheses as seem warranted to increase the readability (by
humans) of this text. So  will be written  and  will be written , with the understanding that
this is shorthand and that our official version is the version given in Definition 1.3.1.

The terms of  play the role of the nouns of the language. To make meaningful mathematical statements about some mathematical
structure, we will want to be able to make assertions about the objects of the structure. These assertions will be the formulas of .

Definition 1.3.3. If  is a first-order language, a formula of  is a nonempty finite string  of symbols from  such that either:

1. , where  and  are terms of , or
2. , where  is an -ary relation symbol of  and  are all terms of , or
3. , where  is a formula of , or
4. , where  and  are formulas of , or
5. , where  is a variable and  is a formula of .

If a formula  contains the subformula  [meaning that the string of symbols that constitute the formula  is a
substring of the string of symbols that make up ], we will say that the scope of the quantifier  is . Any symbol in  will be said
to lie within the scope of the quantifier . Notice that a formula  can have several different occurrences of the symbol , and each
occurrence of the quantifier will have its own scope. Also notice that one quantifier can lie within the scope of another.

The atomic formulas of  are those formulas that satisfy clause (1) or (2) of Definition 1.3.3.

You have undoubtedly noticed that there are no parentheses or commas in the atomic formulas, and you have probably decided that
we will continue to use both commas and infix notation as seems appropriate. You are correct on both counts. So, instead of writing
the official version

in a language containing constant symbol 0, unary function symbol , and binary relation symbol <, we will write

or (after some preliminary definitions)

Also notice that we are using infix notation for the binary logical connective . We hope that this will make your life somewhat
easier.

You will be asked in Exercise 8 in Section 1.4 to prove that unique readability holds for formulas as well as terms. We will, in our
exposition, use different-size parentheses, different shapes of delimiters, and omit parentheses in order to improve readability
without (we hope) introducing confusion on your part.

Notice that a term is not a formula! If the terms are the nouns of the language, the formulas will be the statements. Statements can
be either true or false. Nouns cannot. Much confusion can be avoided if you keep this simple dictum in mind.

For example, suppose that you are looking at a string of symbols and you notice that the string does not contain either the symbol =
or any other relation symbol from the language. Such a string cannot be a formula, as it makes no claim that can be true or false.
The string might be a term, it might be nonsense, but it cannot be a formula.

Chaff: We do hope that you have noticed that we are dealing only with the syntax of our language here. We have not
mentioned that the symbol  will be used for denial, or that  will mean "or", or even that  means "for every". Don't worry,
they will mean what you think they should mean. Similarly, do not worry about the fact that the definition of a formula left
out symbols for conjunctions, implications, and biconditionals. We will get to them in good time.

Exercises
1. Suppose that the language  consists of two constant symbols,  and , a unary relation symbol , a binary function symbol 

, and a 3-ary function symbol . Write down at least three distinct terms of the language . Write down a couple of nonterms

⋅ (+ ) ,3̄2̄ 4̄ (2.5.4.3)

⋅5̄4̄ 20̄

f …t1t2 tn f ( , , … , )t1 t2 tn +3̄2̄ +3̄ 2̄

L

L

L L ϕ L

ϕ :≡= t1t2 t1 t2 L

ϕ :≡ R …t1t2 tn R n L , , … ,t1 t2 tn L

ϕ :≡ (¬α) α L

ϕ :≡ (α ∨ β) α β L

ϕ :≡ (∀v) (α) v α L

ψ (∀v) (α) (∀v) (α)

ψ ∀ α α

∀ ψ ∀

L

< SSSSS0SS0 (2.5.4.4)

S

SSSSS0 < SS0 (2.5.4.5)

<5̄ 2̄ (2.5.4.6)

∨

¬ ∨ ∀

L ♢ ♡ ¥

♭ ♯ L

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/86101?pdf


2.5.4.1 https://math.libretexts.org/@go/page/86101

2.5.4: Terms and Formulas
Suppose that  is the language , and we are going to use  to discuss portions of arithmetic. If we were to write down
the string of symbols from ,

and the string

you would probably agree that the first string conveyed some meaning, even if that meaning were incorrect, while the second string
was meaningless. It is our goal in this section to carefully define which strings of symbols of  we will use. In other words, we will
select the strings that will have meaning.

Now, the point of having a language is to be able to make statements about certain kinds of mathematical systems. Thus, we will
want the statements in our language to have the ability to refer to objects in the mathematical structures under consideration. So we
will need some of the strings in our language to refer to those objects. Those strings are called the terms of .

Definition 1.3.1. If  is a language, a term of  is a nonempty finite string  of symbols from  such that either:

1.  is a variable, or
2.  is a constant symbol, or
3. , where  is an -ary function symbol of  and each of the  is a term of .

A couple of things about this definition need to be pointed out. First, there is the symbol  in the third clause. The symbol  is
not a part of the language . Rather it is a meta-linguistic symbol that means that the strings of -symbols on each side of the 
are identical. Probably the best natural way to read clause 3 would be to say that "  is ".

The other thing to notice about Definition 1.3.1 is that this is a definition by recursion, since in the third clause of the definition, 
is a tern if it contains substrings that are terms. Since the substrings of  are shorter (contain fewer symbols) than , and as none of
the symbols of  are made up of other symbols of , this causes no problems.

Example 1.3.2. Let  be the language , with one constant symbol for each natural number and two binary
function symbols. Here are some of the terms of : , , . Notice that  is not a term of , but rather is a sequence
of three terms in a row.

Chaff: The term  looks pretty annoying at this point, but we will use this sort of notation (called Polish notation) for
functions rather than the infix notation  that you are used to. We are not really being odd here: You have certainly
seen some functions written in Polish notation:  and  come to mind. We are just being consistent in treating
addition in the same way. What makes it difficult is that it is hard to remember that addition really is just another function of
two variables. But we are sure that by the end of this book, you will be very comfortable with that idea and with the notation
that we are using.

A couple of points are probably worth emphasizing, just this once. Notice that in the application of the function symbols, there are
no parentheses and no commas. Also notice that all of our functions are written with the operator on the left. So instead of ,
we write . The reason for this is for consistency and to make sure that we can parse our expressions.

Let us give an example. Suppose that, in some language or other, we wrote down the string of symbols . Assume
that two of our colleagues, Humphrey and Ingrid, were waiting in the hall while we wrote down the string. If Humphrey came into
the room and announced that our string was a 3-ary function symbol followed by three terms, whereas Ingrid proclaimed that the
string was really a 4-ary relation symbol followed by two terms, this would be rather confusing. It would be really confusing if they
were both correct! So we need to make sure that the strings that we write down can be interpreted in only one way. This property,
called unique readability, is addressed in Exercise 7 of Section 1.4.

Chaff: Unique readability is one of those things that, in the opinion of the authors, is important to know, interesting to prove,
and boring to read. Thus the proof is placed in (we do not mean "relegated to") the exercises.

Suppose that we look more carefully at the term . Assume for now that the symbols in this term are supposed to be
interpreted in the usual way, so that  means multiply,  means add, and  means three. Then if we add some parentheses to the
term in order to clarify its meaning, we get

L {0, +, <} L
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that look like they might be terms and explain why they are not terms. Write a couple of formulas and a couple of nonformulas
that look like they ought to be formulas.

2. The fact that we write all of our operations on the left is important for unique readability. Suppose, for example, that we wrote
our binary operations in the middle (and did not allow the use of parentheses). If our language included the binary function
symbol , then the term 

 
could be interpreted two ways. This can make a difference: Suppose that the operation associated with the function symbol  is
"subtract". Find three real numbers , , and  such that the two different interpretations of  lead to different answers.
Any nonassociative binary function will yield another counterexample to unique readability. Can you think of three such
functions?

3. The language of number theory is 

 
where the intended meanings of the symbols are as follows: 0 stands for the number zero,  is the successor function 

, the symbols , , and  mean what you expect, and  stands for exponentiation, so . Assume that 
-formulas will be interpreted with respect to the nonnegative integers and write an -formula to express the claim that 

 is a prime number. Can you write the statement of Lagrange's Theorem, which states that every natural number is the sum of
four squares? 
Write a formula stating that there is no largest prime number. How would we express the Goldbach Conjecture, that every even
number greater than two can be expressed as the sum of two primes? 
What is the formal statement of the Twin Primes Conjecture, which says that there are infinitely many pairs  such that 
and  are both prime and ? The Bounded Gap Theorem, proven in 2013, says that there are infinitely many pairs of
prime numbers that differ by 70,000,000 or less. Write a formal statement of that theorem. 
Use shorthand in your answers to this problem. For example, after you have found the formula which says that  is prime, call
the formula Prime  and use Prime  in your later answers.

4. Suppose that our language has infinitely many constant symbols of the form  and no function or relation symbols
other than =. Explain why this situation leads to problems by looking at the formula . Where in our definitions do we
outlaw this sort of problem?

This page titled 2.5.4: Terms and Formulas is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
Christopher Leary and Lars Kristiansen (OpenSUNY) via source content that was edited to the style and standards of the LibreTexts platform; a
detailed edit history is available upon request.
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2.5.5: Induction
You are familiar, no doubt, with proofs by induction. They are the bane of most mathematics students from their first introduction
in high school through the college years. It is our goal in this section to discuss the proofs by induction that you know so well, put
them in a different light, and then generalize that notion of induction to a setting that will allow us to use induction to prove things
about terms and formulas rather than just the natural numbers.

Just to remind you of the general form of a proof by induction on the natural numbers, let us state and prove a familiar theorem,
assuming for the moment that the set of natural numbers is .

Theorem 1.4.1. For every natural number ,

Proof. If , simple computation shows that the equality holds. For the inductive case, fix  and assume that

If we add  to both sides of this equation, we get

and simplifying the right-hand side of this equation shows that

finishing the inductive step, and the proof.

As you look at the proof of this theorem, you notice that there is a base case, when , and an inductive case. In the inductive
step of the proof, we prove the implication

If the formula holds for , then the formula holds for .

We prove this implication by assuming the antecedent, that the theorem holds for a (fixed, but unknown) number , and from that
assumption proving the consequent, that the theorem hods for the next number, . Notice that this is not the same as assuming
the theorem that we are trying to prove. The theorem is a universal statement - it claims that a certain formula holds for every
natural number.

Looking at this from a slightly different angle, what we have done is to construct a set of numbers with a certain property. If we let 
 stand for the set of numbers for which our theorem holds, in our proof by induction we show the following facts about S:

1. The number 1 is an element of . We prove this explicitly in the base case of the proof.
2. If the number  is an element of , then the number  is an element of . This is the content of the inductive step of the

proof.

But now, notice that we know that the collection of natural numbers can be defined as the smallest set such that:

1. The number 1 is a natural number.
2. If  is a natural number, then  is a natural number.

So , the collection of numbers for which the theorem holds, is identical with the set of natural numbers, thus the theorem holds for
every natural number , as needed. (If you caught the slight lie here, just substitute "superset" where appropriate.)

So what makes a proof by induction work is the fact that the natural numbers can be defined recursively. There is a base case,
consisting of the smallest natural number ("1 is a natural number"), and there is a recursive case, showing how to construct bigger
natural numbers from smaller ones ("If  is a natural number, then  is a natural number").

Now, let us look at Definition 1.3.3, the definition of a formula. Notice that the five clauses of the definition can be separated into
two groups. The first two clauses, the atomic formulas, are explicitly defined: For example, the first case says that anything that is
of the form  is a formula if  and  are terms. These first two clauses form the base case of the definition. The last three
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clauses are the recursive case, showing how if  and  are formulas, they can be used to build more complex formulas, such as 
 or .

Now since the collection of formulas is defined recursively, we can use an inductive-style proof when we want to prove that
something is true about every formula. The inductive proof will consist of two parts, a base case and an inductive case. In the base
case of the proof we will verify that the theorem is true about every atomic formula - about every string that is known to be a
formula from the base case of the definition. In the inductive step of the proof, we assume that the theorem is true about simple
formulas (  and ), and use that assumption to prove that the theorem holds a more complicated formula  that is generated by a
recursive clause of the definition. This method of proof is called induction on the complexity of the formula, or induction on the
structure of the formula.

There are (at least) two ways to think about the word "simple" in the last paragraph. One way in which a formula  might be
simpler than a complicated formula  is if  is a subformula of . The following theorem, although mildly interesting in its own
right, is included here mostly so that you can see an example of a proof by induction in this setting:

Theorem 1.4.2. Suppose that  is a formula in the language . Then the number of left parentheses occurring in  is equal to the
number of right parentheses occurring in .

Proof. We will present this proof in a fair bit of detail, in order to emphasize the proof technique. As you become accustomed to
proving theorems by induction on complexity, not so much detail is needed.'

Base Case. We begin our inductive proof with the base case, as you would expect. Our theorem makes an assertion about all
formulas, and the simplest formulas are the atomic formulas. They constitute our base case. Suppose that  is an atomic formula.
There are two varieties of atomic formulas: Either  begins with an equals sign followed by two terms, or  begins with a relation
symbol followed by several terms. As there are no parentheses in any term (we are using the official definition of term, here), there
are no parentheses in . Thus, there are as many left parentheses as right parentheses in , and we have established the theorem if 

 is an atomic formula.

Inductive Case. The inductive step of a proof by induction on complexity of a formula takes the following form: Assume that  is
a formula by virtue of clause (3), (4), or (5) of Definition 1.3.3. Also assume that the statement of the theorem is true when applied
to the formulas  and . With those assumptions we will prove that the statement of the theorem is true when applied to the
formula . Thus, as every formula is a formula either by virtue of being an atomic formula or by application of clause (3), (4), or
(5) of the definition, we will have shown that the statement of the theorem is true when applied to any formula, which has been our
goal.

So, assume that  and  are formulas that contain equal numbers of left and right parentheses. Suppose that there are  left
parentheses and  right parentheses in  and  left parentheses and  right parentheses in .

If  is a formula by virtue of clause (3) of the definition, then . We observe that there are  left parentheses and 
 right parentheses in , and thus  has an equal number of left and right parentheses, as needed.

If  is a formula because of clause (4), then , and  contains  left and right parentheses, an equal number of
each type.

Finally, if , then  contains  left parentheses and  right parentheses, as needed.

This concludes the possibilities for the inductive case of the proof, so we have established that in every formula, the number of left
parentheses is equal to the number of right parentheses.

A second way in which we might structure a proof by induction on the structure of the formula is to say that  is simpler than  if
the number of connectives/quantifiers in  is less than the number in . In this case one could argue that the induction argument is
really an ordinary induction on the natural numbers. Here is an outline of how such a proof might proceed:

Proof. We argue by induction on the structure of .

Base Case. Assume  has 0 connectives/quantifiers. This means that  is an atomic formula. {Insert argument establishing the
theorem for atomic formulas.}

Inductive Case. Assume that  has  connectives/quantifiers. Then either , or  or , and we
can assume that the theorem holds for every formula that has  or fewer connectives/quantifiers. We now argue that the theorem
holds for the formula . {Insert argument for the three inductive cases.}
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Between the base case and the inductive case we have established that the theorem holds for  no matter how many
connectives/quantifiers the formula  contains, so by induction on the structure of , we have established that the theorem holds
for all formulas .

This might be a bit confusing on first glance, but the power of this proof technique will become very evident as you work through
the following exercises and when we discuss the semantics of our language.

Notice also that the definition of a term (Definition 1.3.1) is also a recursive definition, so we can use induction on the complexity
of a term to prove that a theorem holds for every term.

Exercises
1. Prove, by ordinary induction on the natural numbers, that  

2. Prove, by induction, that the sum of the interior angles in a convex -gon is . (A convex -gon is a polygon with 
 sides, where the interior angles are all less than .)

3. Prove by induction that if  is a set consisting of  elements, then  has  subsets.
4. Suppose that  is , where 0 is a constant symbol,  is a binary function symbol, and  is a 4-ary function symbol. Use

induction on complexity to show that every -term has an odd number of symbols.
5. If  is , where 0 is a constant symbol and  is a binary relation symbol, show that the number of symbols in any formula

is divisible by 3.
6. If  and  are strings, we say that  is an initial segment of  if there is a nonempty string  such that , where  is the

string  followed by the string . For example,  is an initial segment of  and  is an initial segment
of . Prove, by induction on the complexity of , that if  and  are terms, then  is not an initial segment of .
[Suggestion: The base case, when  is either a variable or a constant symbol, should be easy. Then suppose that  is an initial
segment of  and , where you know that each  is not an initial segment of any other term. Look for a
contradiction.]

7. A language is said to satisfy unique readability for terms if, for each term ,  is in exactly one of the following categories: 
(a) Variable 
(b) Constant symbol 
(c) Complex term 
and furthermore, if  is a complex term, then there is a unique function symbol  and a unique sequence of terms 
such that . Prove that our languages satisfy unique readability for terms. [Suggestion: You mostly have to
worry about uniqueness - for example, suppose that  is , a constant symbol. How do you know that  is not also a complex
term? Suppose that  is . How do you show that the  and the 's are unique? You may find Exercise 6 useful.]

8. To say that a language satisfies unique readability for formulas is to say that every formula  is in exactly one of the following
categories: 
(a) Equality (if ) 
(b) Other atomic (if  for an -ary relation symbol ) 
(c) Negation 
(d) Disjunction 
(e) Quantified 
Also, it must be that if  is both  and , then  is identical to  and  is identical to , and similarly for other
atomic formulas. Furthermore, if (for example)  is a negation , then it must be the case that there is not another formula 
such that  is also , and similarly for disjunctions and quantified formulas. You will want to look at, and use, Exercise 7.
You may have to prove an analog of Exercise 6, in which it may be helpful to think about the parentheses in an initial segment
of a formula, in order to prove that no formula is an initial segment of another formula.

9. Take the proof of Theorem 1.4.2 and write it out in the way that you would present it as part of a homework assignment. Thus,
you should cut out all of the inessential motivation and present only what is needed to make the proof work.

This page titled 2.5.5: Induction is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Christopher Leary and
Lars Kristiansen (OpenSUNY) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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2.5.6: Sentences
Among the formulas in the language , there are some in which we will be especially interested. These are the sentences of  - the
formulas that can be either true or false in a given mathematical model.

Let us use an example to introduce a language that will be vitally important to us as we work through this book.

Definition 1.5.1. The language  is , where 0 is a constant symbol,  is a unary function symbol, , , and 
are binary function symbols, and  is a binary relation symbol. This will be referred to as the language of number theory.

Chaff: Although we are not fixing the meanings of these symbols yet, we probably ought to tell you that the standard
interpretation of  will use 0, , , and  in the way that you expect. The symbol  will stand for the successor function
that maps a number  to the number , and  will be used for exponentiation:  is supposed to be .

Consider the following two formulas of :

(Did you notice that we have begun using an informal presentation of the formulas?)

The second formula should look familiar. It is nothing more than the familiar trichotomy law of , and you would agree that the
second formula is a true statement about the collection of natural numbers, where you are interpreting  in the usual way.

The first formula above is different. It "says" that not every  is greater than or equal to . The truth of that statement is
indeterminate: It depends on what natural number  represents. The formula might be true, or it might be false - it all depends on
the value of . So our goal in this section is to separate the formulas of  into one of two classes: the sentences (like the second
example above) and the nonsentences. To begin this task, we must talk about free variables.

Free variables are the variables upon which the truth value of a formula may depend. The variable  is free in the first formula
above. To draw an analogy from calculus, if we look at

the variable  is free in this expression, as the value of the integral depends on the value of . The variable  is not free, and in fact
it doesn't make any sense to decide on a value for . The same distinction holds between free and nonfree variables in an -
formula. Let us try to make things a little more precise.

Definition 1.5.2. Suppose that  is a variable and  is a formula. We will say that  is free in  if

1.  is atomic and  occurs in (is a symbol in) , or
2.  and  is free in , or
3.  and  is free in at least on of  or , or
4.  and  is not  and  is free in .

Thus, if we look at the formula

the variable  is free whereas the variables  and  are not free. A slightly more complicated example is

In this formula,  is free whereas  is not free. Especially when a formula is presented informally, you must be careful about the
scope of the quantifiers and the placement of parentheses.

We will have occasion to use the informal notation . This will mean that  is a formula and  is among the free variables of
. If we then write , where  is an -term, that will denote the formula obtained by taking  and replacing each occurrence of

the variable  with the term . This will all be defined more formally and more precisely in Definition 1.8.2.

Definition 1.5.3. A sentence in a language  is a formula of  that contains no free variables.
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For example, if a language contained the constant symbols 0, 1, and 2 and the binary function symbol , then the following are
sentences:  and . You are probably convinced that the first of these is true and the second of these is
false. In the next two sections we will see that you might be correct. But then again, you might not be.

Exercises
1. For each of the following, find the free variables, if any, and decide if the given formula is a sentence. The language includes a

binary function symbol , a binary relation symbol , and constant symbols 0 and 2. 
(a)  
(b)  
(c) 

2. Explain precisely, using the definition of a free variable, how you know that the variable  is free in the formula 

3. In mathematics, we often see statements such as . Notice that this is not a sentence, as the variable  is free.
But we all agree that this statement is true, given the usual interpretations of the symbols. How can we square this with the
claim that sentences are the formulas that can be either true or false?

4. If we look at the first of our example formulas in this section, 

 
and we interpret the variables as ranging over the natural numbers, you will probably agree that the formula is false if 
represents the natural number 0 and true if  represents any other number. (If you aren't happy with 0 being a natural number,
then use 1.) On the other hand, if we interpret the variables as ranging over the integers, what can we say about the truth or
falsehood of this formula? Can you think of an interpretation for the symbols that would make sense if wy try to apply this
formula to the collection of complex numbers?

5. A variable may occur several times in a given formula. For example, the variable  occurs four times in the formula 

 
What should it mean for an occurrence of a variable to be free? Write a definition that begins: The th occurrence of a variable 

 in a formula  is said to be free if .... An occurrence of  in  that is not free is said to be bound. Give an example of a
formula in a suitable language that contains both free and bound occurrences of a variable .

6. Look at the formula 

 
If we denote this formula by  and  is the term , find . [Suggestion: The trick here is to see that there is a bit of a lie
in the discussion of  in the text. Having completed Exercise 5, we can now say that we only replace the free occurrence of
the variable  when we move from  to .]

This page titled 2.5.6: Sentences is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Christopher Leary
and Lars Kristiansen (OpenSUNY) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history
is available upon request.

1.6: Sentences by Christopher Leary and Lars Kristiansen is licensed CC BY-NC-SA 4.0. Original source: https://milneopentextbooks.org/a-
friendly-introduction-to-mathematical-logic.
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2.5.7: Structures
Let us, by way of example, return to the language  of number theory. Recall that  is , where 0 is a
constant symbol,  is a unary function symbol, , , and  are binary function symbols, and  is a binary relation symbol. We
now want to discuss the possible mathematical structures in which we can interpret these symbols, and thus the formulas and
sentences of .

"But wait!" cries the incredulous reader. "You just said that this is the language of number theory, so certainly we already know
what each of those symbols means."

It is certainly the case that you know an interpretation for these symbols. The point of this section is that there are many different
possible interpretations for these symbols, and we want to be able to specify which of those interpretations we have in mind at any
particular moment.

Probably the interpretation you had in mind (what we will call the standard model for number theory) works with the set of natural
numbers . The symbol 0 stands for the number 0.

Chaff: Carefully, now! The symbol 0 is the mark on the paper, the numeral. The number 0 is the thing that the numeral 0
represents. The numeral is something that you can see. The number is something that you cannot see.

The symbol  is a unary function symbol, and the function for which that symbol stands is the successor function that maps a
number to the next larger natural number. The symbols , , and  represent the functions of addition, multiplication, and
exponentiation, and the symbol  will be used for the "less than" relation.

But that is only one of the ways that we might choose to interpret those symbols. Another way to interpret all of those symbols
would be to work with the numbers 0 and 1, interpreting the symbol 0 as the number 0,  as the function that maps 0 and 1 and 1 to
0,  as addition mod 2,  as multiplication mod 2, and (just for variety)  as the function with constant value 1. The symbol  can
still stand for the relation "less than".

Or, if we were in a slightly more bizarre mood, we could work in a universe consisting of Beethoven, Picasso, and Ernie Banks,
interpreting the symbol 0 as Picasso,  as the identity function,  as equality, and each of the binary function symbols as the
constant function with output Ernie Banks.

The point is that there is nothing sacred about one mathematical structure as opposed to another. Without determining the structure
under consideration, without deciding how we wish to interpret the symbols of the language, we have no way of talking about the
truth or falsity of a sentence as trivial as

Definition 1.6.1. Fix a language . An -structure  is a nonempty set , called the universe of , together with:

1. For each constant symbol  of , an element  of ,
2. For each -ary function symbol  of , a function , and
3. For each -ary relation symbol  of , an -ary relation  on  (i.e., a subset of ).

Notice that the domain of the function  is the set , so  is defined for all elements of . Later in the text we will have
occasion to discuss partial functions, those whose domain in a proper subset of , but for now our functions are total functions,
defined on all of the advertised domain.

Chaff: The letter  is a German Frakture capital A. We will also have occasion to use 's friends,  and .  will be used
for a particular structure involving the natural numbers. The use of this typeface is traditional (which means this is the way
we learned it). For your handwritten work, probably using capital script letters will be the best.

Often, we will write a structure as an ordered -tuple, like this:

As you can see, the notation is starting to get out of hand once again, and we will not hesitate to simplify and abbreviate when we
believe that we can do so without confusion. So, when we are working in , we will often talk about the standard structure
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where the constants, functions, and relations do not get the superscripts they deserve, and the authors trust that you will interpret 
as the collection  of natural numbers, the symbol 0 to stand for the number 0,  to stand for addition,  to stand for
the successor function, and so on. By the way, if you are not used to thinking of 0 as a natural number, do not panic. Set theorists
see 0 as the most natural of objects, so we tend to include it in  without thinking about it.

Table 1.1: A Midsummer Night's Structure

Example 1.6.2. The structure  that we have just introduced is called the standard -structure. To emphasize that there are
other perfectly good -structures, let us construct a different -structure  with exactly four elements. The elements of 
will be Oberon, Titania, Puck, and Bottom. The constant  will be Bottom. Now we have to construct the functions and relations
for our structure. As everything is unary or binary, setting forth tables (as in Table 1.1) seems a reasonable way to proceed. So you
can see that in this structure  that Titania  Puck  Oberon, while Puck  Titania  Titania. You can also see that 0 (also known
as Bottom) is not the additive identity in this structure, and that  is a very strange ordering.

Now the particular functions and relation that we chose were just the functions and relations that jumped into Chris's fingers as he
typed up this example, but any such functions would have worked perfectly well to define an -structure. It may well be worth
your while to figure out if this -sentence is true (whatever that means) in : .

Example 1.6.3. We work in a language with one constant symbol, , and one unary function symbol, . So, to define a model ,
all we need to do is specify a universe, an element of the universe, and a function . Suppose that we let the universe be the
collection of all finite strings of 0 or more capital letters from the Roman alphabet. So  includes such strings as: BABY,
LOGICISBETTERTHANSIX,  (the empty string), and DLKFDFAHADS. The constant symbol  will be interpreted as the string
POTITION, and the function  is the function that adds an X to the beginning of a string. so (YLOPHONE) 
XYLOPHONE. Convince yourself that this is a valid, if somewhat odd, -structure.

To try to be clear about things, notice that we have , the function symbol, which is an element of the language . Then there is X,
the string of exactly one capital letter of the Roman alphabet, which is one of the elements of the universe. (Did you notice the
change in typeface without our pointing it out? You may have a future in publishing!)

Let us look at one of the terms of the language: . In our particular -structure  we will interpret this as

N

{0, 1, 2, …} + S

N

N LNT

LNT LNT A A

0A

A + = + =

<

LNT

LNT A SS0 +SS0 < SSSSS0E0 +S0

L X A
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A
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In a different structure, , it is entirely possible that the interpretation of the term  will be HUNNY or AARDVARK or .
Without knowing the structure, without knowing how to interpret the symbols of the language, we cannot begin to know what
object is referred to by a term.

Chaff: All of this stuff about interpreting terms in a structure will be made formal in the next section, so don't panic if it
doesn't all make sense right now.

What makes this example confusing, as well as important, is that the function symbol is part of the structure for the language and
(modulo a superscript and a change in typeface) the function acts on the elements of the structure in the same way that the function
symbol is used in creating -formulas.

Example 1.6.4. Now, let  be , where 0 is a constant symbol,  is a unary function symbol,  is a binary function
symbol, and  is a 3-ary relation symbol. We define an -structure  as follows: , the universe, is the set of all variable-free -
terms. The constant  is the term 0. The functions  and  are defined as in Example 1.6.3, so if  and  are elements of ,
(i.e., variable-free terms), then  is  and  is .

Let us look at this in a little more detail. Consider 0, the constant symbol, which is an element of . Since 0 is a constant symbol, it
is a term, so 0 is an element of , the universe of our structure . (Alas, there is no change in typeface to help us out this time.) If
we want to see what element of the universe is referred to by the constant symbol 0, we see that , so the term 0 refers to the
element of the universe 0.

If we look at another term of the language, say , and we try to find the element of the universe that is denoted by this term, we
find that it is

So the term  denotes an element of the universe, and that element of the universe is ... . This is pretty confusing, but all that is
going on is that the elements of the universe are the syntactic objects of the language.

This sort of structure is called a Henkin structure, after Leon Henkin, who introduced them in his PhD dissertation in 1949. These
structures will be crucial in our proof of the Completeness Theorem in Chapter 3. The proof of that theorem will involve the
construction of a particular mathematical structure, and the structure that we will build will be a Henkin structure.

To finish building our structure , we have to define a relation . As  is a 3-ary relation symbol,  is a subset of . We
will arbitrarily define

This finishes defining the structure . The definition of  given is entirely arbitrary. We invite you to come up with a more
interesting or more humorous definition on your own.

Exercises
1. Consider the structure constructed in Example 1.6.2. Find the value of each of the following: , , . Do you

think  is true in this structure?
2. Suppose that  is the language . Let's work together to describe an -structure . Let the universe  be the set

consisting of all of the natural numbers together with Ingrid Bergman and Humphrey Bogart. You decide on the interpretations
of the symbols. What is the value of  Ingrid? Is Bogie ?

3. Here is a language consisting of one constant symbol, one 3-ary function symbol, and one binary relation symbol:  is .
Describe an -model that has as its universe , the set of real numbers. Describe another -model that has a finite universe.

4. Write a short paragraph explaining the difference between a language and a structure for a language.
5. Suppose that  and  are two -structures. We will say that  and  are isomorphic and write  if there is a bijection 

 such that for each constant symbol  of , , for each -ary function symbol  and for each 
, , and for each -ary relation symbol  in , 

if and only if . The function  is called an isomorphism. 
(a) Show that  is an equivalence relation. [Suggestion: This means that you must show that the relation  is reflexive,
symmetric, and transitive. To show that  is reflexive, you must show that for any structure , , which means that you
must find an isomorphism, a function, mapping  to  that satisfies the conditions above. So the first line of your proof should

( ) = (POTITION) = XPOTITION.XA
L

A XA (2.5.7.4)
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B B

= 00B
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( ) = (0) = f0.f B 0B f B (2.5.7.5)

f0 f0

B RB R RB B3

= {(r, s, t) ∈ | the number of function symbols in r is even}.RB B3 (2.5.7.6)
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be, "Consider this function, with domain  and codomain  [something brilliant]." Then show that your function  is
an isomorphism. Then show, if , then . Then tackle transitivity. In each case, you must define a particular
function and shown that your function is an isomorphism.] 
(b) Find a new structure that is isomorphic to the structure given in Example 1.6.2. Prove that the structures are isomorphic. 
(c) Find two different structures for a particular language and prove that they are not isomorphic. 
(d) Find two different structures for a particular language such that the structures have the same number of elements in their
universes but they are still not isomorphic.Prove they are not isomorphic.

6. Take the language of Example 1.6.4 and let  be the set of all -terms. Create an -structure  by using this universe in such a
way that the interpretation of a term  is not equal to .

7. If we take the language , we can create a Henkin structure for that language in the same way as in Example 1.6.4. Do so.
Consider the -formula . Is this formula "true" (whatever that means) in your structure? Justify your
answer.

This page titled 2.5.7: Structures is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Christopher Leary
and Lars Kristiansen (OpenSUNY) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history
is available upon request.

1.7: Structures by Christopher Leary and Lars Kristiansen is licensed CC BY-NC-SA 4.0. Original source: https://milneopentextbooks.org/a-
friendly-introduction-to-mathematical-logic.
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2.5.8: Truth in a Structure
It is at last time to tie together the syntax and the semantics. We have some formal rules about what constitutes a language, and we
can identify the terms, formulas, and sentences of a language. We can also identify -structures for a given language . In this
section we will decide what it means to say that an -formula  is true in an -structure .

To begin the process of tying together the symbols with the structures, we will introduce assignment functions. These assignment
functions will formalize what it means to interpret a term or a formula in a structure.

Definition 1.7.1. If  is an -structure, a variable assignment function into  is a function  that assigns to each variable an
element of the universe . So a variable assignment function into  is any function with domain  and codomain .

Variable assignment functions need not be injective or bijective. For example, if we work with  and the standard structure ,
then the function  defined by  is a variable assignment function, as is the function  defined by

We will have occasion to want to fix the value of the assignment function  for certain variables.

Definition 1.7.2. If  is a variable assignment function into  and  is a variable and , then  is the variable assignment
function into  defined as follows:

We call the function  an -modification of the assignment function .

So an -modification of  is just like , except that the variable  is assigned to a particular element of the universe.

What we will do next is extend a variable assignment function  to a term assignment function, . This function will assign an
element of the universe to each term of the language .

Definition 1.7.3. Suppose that  is an -structure and  is a variable assignment function into . The function , called the term
assignment function generated by , is the function with domain consisting of the set of -terms and codomain  defined
recursively as follows:

1. If  is a variable, .
2. If  is a constant symbol , then .
3. If , then .

Although we will be primarily interested in truth of sentences, we will first describe truth (or satisfaction) for arbitrary formulas,
relative to an assignment function.

Definition 1.7.4. Suppose that  is an -structure,  is an -formula, and  is an assignment function. We will say
that  satisfies  with assignment , and write , in the following circumstances:

1. If  and  is the same element of the universe  as , or
2. If  and , or
3. If  and , (where  means "does not satisfy"), or
4. If  and , or  (or both), or
5. If  and, for each element  of , .

If  is a set of -formulas, we say that  satisfies  with assignment , and write  if for each , .

Chaff: Notice that the symbol  is not part of the language . Rather,  is a metalinguistic symbol that we use to talk about
formulas in the language and structures for the language.

Chaff: Also notice that we have at last tied together the syntax and semantics of our language! The definition above is the
place where we formally put the meanings on the symbols that we will use, so that  means "or" and  means "for all".

Example 1.7.5. Let us work with the empty language, so  has no constant symbols, no function symbols, and no relation
symbols. So an -structure is simply a nonempty set, and let us consider the -structure , where .
Consider the formula  and the assignment function , where  is Humphrey and  is also Humphrey. If we ask

L L

L ϕ L A

A L A s

A A V ars A

LNT N

s s ( ) = ivi s′

( ) = the smallest prime number that does not divide i.s′ vi (2.5.8.1)

s

s A x a ∈ A s [x|a]

A

s [x|a] = {
s (v) if v is a variable other than x

a if v is the variable x
(2.5.8.2)
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x s s x
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t c (t) =s̄ cA

t :≡ f …t1t2 tn (t) = ( ( ) , ( ) , … , ( ))s̄ f A s̄ t1 s̄ t2 s̄ tn

A L ϕ L s : V ars → A

A ϕ s A ⊨ ϕ [s]

ϕ :≡ t1t2 ( )s̄ t1 A ( )s̄ t2

ϕ :≡ R …t1t2 tn ( ( ) , ( ) , … , ( )) ∈s̄ t1 s̄ t2 s̄ tn RA

ϕ :≡ (¬α) A ⊭ α [s] ⊭

ϕ :≡ (α ∨ β) A ⊨ α [s] A ⊨ β [s]

ϕ :≡ (∀x) (α) a A A ⊨ α [s (x|a)]

Γ L A Γ s A ⊨ Γ [s] γ ∈ Γ A ⊨ γ [s]
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L
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whether , we have to check whether  is the same element of  as . Since the two objects are identical,
the formula is true.

To emphasize this, the formula  can be true in some universes with some assignment functions. Although the variables  and 
 are distinct, the truth or falsity of the formula depends not on the variables (which are not equal) but rather, on which elements of

the structure the variables denote, the values of the variables (which are equal for this example). Of course, there are other
assignment functions and other structures that make our formula false. We are sure you can think of some.

To talk about the truth or falsity of a sentence in a structure, we will take our definition of satisfaction relative to an assignment
function and prove that for sentences, the choice of the assignment function is inconsequential. Then we will say that a sentence 
is true in a structure  if and only if  for any (and therefore all) variable assignment functions .

Chaff: The next couple of proofs are proofs by induction on the complexity of terms or formulas. You may want to reread the
proof of Theorem 1.4.2 if you find these difficult.

Lemma 1.7.6. Suppose that  and  are variable assignment functions into a structure  such that  for every
variable  in the term . Then .

Proof. We use induction on the complexity of the term . If  is either a variable or a constant symbol, the result is immediate. If 
, then as  for  by the inductive hypothesis, the definition of  and the definition of 

 are identical, and thus .

Proposition 1.7.7. Suppose that  and  are variable assignment functions into a structure  such that  for every
free variable  in the formula . Then  if and only if .

Proof. We use induction on the complexity of . If , then the free variables of  are exactly the variables that occur in 
. Thus Lemma 1.7.6 tells us that  and , meaning that they are the same element of the universe 
, so  if and only if , as needed.

The other base case, if , is similar and is left as part of Exercise 6.

To begin the first inductive clause, if , notice that the free variables of  are exactly the free variables of , so  and 
agree on the free variables of . By the inductive hypothesis,  if and only if , and thus (by the definition of
satisfaction),  if and only if . The second inductive clause, if , is another part of Exercise 6.

If , we first note that the only variable that might be free in  that is not free in  is . Thus, if , the
assignment functions  and  agree on all of the free variables of . Therefore, by inductive hypothesis, for each 

,  if and only if . So, by Definition 1.7.4,  if and only if \(\mathfrak{A} \models
\phi \left[ s_2 \right]|). This finishes the last inductive clause, and our proof.

Corollary 1.7.8 If  is a sentence in the language  and  is an -structure, either  for all assignment functions , or 
 for no assignment function .

Proof. There are no free variables in , so if  and  are two assignment functions, they agree on all of the free variables of ,
there just aren't all that many of them. So by Proposition 1.7.7,  if and only if , as needed.

Definition 1.7.9. If  is a formula in the language  and  is an -structure, we say that  is a model of , and write , if
and only if  for every assignment function . If  is a set of -formulas, we will say that  models , and write ,
if and only if  for each .

Notice that if  is a sentence, then  if and only if  for any assignment function . In this case we will say that the
sentence  is true in .

Example 1.7.10. Let's work in , and let

be the standard structure. Let  be the variable assignment function that assigns  to the number . Now let the formula  be 
.

To show that , notice that

A ⊨ x = y [s] bars (x) A (y)s̄

x = y x

y
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A A ⊨ σ [s] s

s1 s2 A (v) = (v)s1 s2
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t t
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(t)s2̄ (t) = (t)s1̄ s2̄

s1 s2 A (v) = (v)s1 s2

v ϕ mathfrakA ⊨ ϕ [ ]s1 A ⊨ ϕ [ ]s2

ϕ ϕ :≡= t1t2 ϕ

ϕ ( ) = ( )s1̄ t1 s2̄ t1 ( ) = ( )s1̄ t2 s2̄ t2

A A ⊨ (= ) [ ]t1t2 s1 A ⊨ (= ) [ ]t1t2 s2

ϕ :≡ R …t1t2 tn

ϕ :≡ ¬α ϕ α s1 s2

α A ⊨ α [ ]s1 A ⊨ α [ ]s2

A ⊨ ϕ [ ]s1 A ⊨ ϕ [ ]s2 ϕ :≡ α ∨ β
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σ L A L A ⊨ σ [s] s

A ⊨ σ [s] s

σ s1 s2 σ

A ⊨ σ [ ]s1 A ⊨ σ [ ]s2
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while

Now, in the same setting, consider , the sentence

which states that everything is even. [That is hard to see unless you know to look for that  and to read it as . See the
last couple of paragraphs of this section.] You know that  is false in the standard structure, but to show how the formal argument
goes, let  be any variable assignment function and notice that

Now, if we consider the case when  is the number 3, it is perfectly clear that there is no such , so we have shown .
Then, by Definition 1.7.9, we see that the sentence  is false in the standard structure. As you well knew.

When you were introduced to symbolic logic, you were probably told that there were five connectives. In the mathematics that you
have learned recently, you have been using two quantifiers. We hope you have noticed that we have not used all of those symbols in
this book, but is now time to make those symbols available. Rather than adding the symbols to our language, however, we will
introduce them as abbreviations. This will help us to keep our proofs slightly less complex (as our inductive proofs will have fewer
cases) but will still allow us to use the more familiar symbols, at least as shorthand.

Thus, let us agree to use the following abbreviations in constructing -formulas: We will write  instead of 
,  instead of , and  instead of . We will also introduce our

missing existential quantifier as an abbreviation, writing  instead of . It is an easy exercise to check that the
introduced connectives , , and  behave as you would expect them to. Thus  if and only if both 
and . The existential quantifier is only slightly more difficult. See Exercise 7.

Exercises
1. We suggested after Definition 1.5.3 that the truth or falsity of the sentences  and  might not be

automatic. Find a structure for the language discussed there that makes the sentence  true. Find another structure
where  is false. Prove your assertions. Then show that you can find a structure where  is true, and
another structure where it is false.

2. Let the language  be , where  is a unary function symbol and  is a binary relation symbol. Let  be the formula 
.

(a) Find an -structure  such that . 
(b) Find an -structure  such that . 
(c) Prove that your answer to part (a) or part (b) is correct. 
(d) Write an -sentence that is true in a structure  if and only if the universe  of  consists of exactly two elements.

3. Consider the language and structure of Example 1.6.4. Write two nontrivial sentences in the language, one of which is true in
the structure and one of which (not the denial of the first) is false in the structure. Justify your assertions.

4. Consider the sentence : . Find two structures for a suitable language, one of which makes 
true, and the other of which makes  false.

5. One more bit of shorthand. Assume that the language  contains the binary relation symbol , which you are intending to use
to mean the elementhood relation (so  will mean that  is an element of ). Often, it is the case that you want to claim that 

 is true for every element of a set . Of course, to do this you could write  

( + )s̄ v1 v1 is ( ( ) , ( ))+N s̄ v1 s̄ v1

is (2, 2)+N

is 4

(2.5.8.4)

(2.5.8.5)

(2.5.8.6)

(SSSS0)s̄ is ( ( ( ( ))))SN SN SN SN 0N

is 4

(2.5.8.7)

(2.5.8.8)

σ

(∀ ) ¬ (∀ ) ¬ ( = + ) ,v1 v2 v1 v2 v1 (2.5.8.9)

¬ (∀ ) ¬v2 (∃ )v2
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N ⊨ σ [s] iff For every a ∈ N, N ⊨ ¬ (∀ ) ¬ ( = + ) s [ |a]v2 v1 v2 v2 v1

iff For every a ∈ N, N ⊭ (∀ ) ¬ ( = + ) s [ |a]v2 v1 v2 v2 v1

iff For every a ∈ N, there is a b ∈ N, N ⊨ = + s [ |a] [ |b] .v1 v2 v2 v1 v2

(2.5.8.10)

(2.5.8.11)

(2.5.8.12)

a b N ⊭ σ [s]

σ

L (α ∧ β)

(¬ ((¬α) ∨ (¬β))) (α → β) ((¬α) ∨ β) (α ↔ β) ((α → β) ∧ (β → α))

(∃x) (α) (¬ (∀x) (¬α))

∧ → ↔ A ⊨ (α ∧ β) [s] A ⊨ α [s]

A ⊨ β [s]

1 +1 = 2 (∀x) (x +1 = x)

1 +1 = 2

1 +1 = 2 (∀x) (x +1 = x)

L {S, C} S < ϕ

(∀x) (∃y) (Sx < y)

L A A ⊨ ϕ

L B B ⊨ (¬ϕ)

L A A A

σ (∀x) (∃y) [x < y → x +1¬y] σ

σ

L ∈

p ∈ q p q

ϕ (x) b

(∀x) [(x ∈ b) → ϕ (x)] . (2.5.8.13)
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We will abbreviate this formula as 

 
Similarly,  will be an abbreviation for the formula . Notice that this formula has a
conjunction where the previous formula had an implication!. We do that just to see if you are paying attention. (Well, if you
think about what the abbreviations are supposed to mean, you'll see that the change is necessary. We'll have to do something
else just to see if you're paying attention.) 
Now suppose that  is a structure for the language of set theory. So  has only this one binary relation symbol, , which is
interpreted as the elementhood relation. Suppose, in addition, that 

 
In particular, notice that there is no element  of  such that . Consider the sentence 

 
Is this sentence true or false in ?

6. Fill in the details to complete the proof of Proposition 1.7.7.
7. Show that  if and only if there is an element  such that .

This page titled 2.5.8: Truth in a Structure is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Christopher
Leary and Lars Kristiansen (OpenSUNY) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.

1.8: Truth in a Structure by Christopher Leary and Lars Kristiansen is licensed CC BY-NC-SA 4.0. Original source:
https://milneopentextbooks.org/a-friendly-introduction-to-mathematical-logic.

(∀x ∈ b) (ϕ (x)) . (2.5.8.14)

(∃x ∈ b) (ϕ (x)) (∃x) [(x ∈ b) ∧ ϕ (x)]

A L ∈

A = {u, v, w, {u}, {u, v}, {u, v, w}}. (2.5.8.15)

x A x ∈ x

(∀y ∈ y) (∃x ∈ x) (x = y) . (2.5.8.16)
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2.5.9: Substitutions and Substitutability
Suppose you knew that the sentence  was true in a particular structure . Then, if  is a constant symbol in the language,
you would certainly expect  to be true in  as well. What we have done is substitute the constant symbol  for the variable .
This seems perfectly reasonable, although there are times when you do have to be careful.

Suppose that . This sentence is, in fact, true in any structure  such that  has at least two elements. If we
then proceed to replace the variable  by the variable , we get the statement , which will still be true in , no matter
what value we give to the variable . If, however, we take our original formula and replace  by , then we find ourselves looking
at , which will be false in any structure. So by a poor choice of substituting variable, we have changed the truth value
of our formula. The rules of substitutability that we will discuss in this section are designed to help us avoid this problem, the
problem of attempting to substitute a term inside a quantifier that binds a variable involved in the term.

We begin by defining exactly what we mean when we substitute a term  for a variable  in either a term  or a formula .

Definition 1.8.1. Suppose that  is a term,  is a variable, and  is a term. We define the term  (read "  with  replaced by ") as
follows:

1. If  is a variable not equal to , then  is .
2. If  is , then  is .
3. If  is a constant symbol, then  is .
4. If , where  is an -ary function symbol and the  are terms, then  is 

Chaff: In the fourth clause of the definition above and in the first two clauses of the next definition, the parentheses are not
really there. However, we believe that no one can look at  and figure out what it is supposed to mean. So the parentheses
have been added in the interest of readability.

For example, if we let  be  and we let  be , then  is

The definition of substitution into a formula is also by recursion:

Definition 1.8.2. Suppose that  is an -formula,  is a term, and  is a variable. We define the formula  (read "  with 
replaced by ") as follows:

1. If , then  is .
2. If , then  is .
3. If , then  is .
4. If , then  is .
5. If , then 

As an example, suppose that  is the formula

Then, if  is the term , we get

Having defined what we mean when we substitute a term for a variable, we will now define what it means for a term to be
substitutable for a variable in a formula. The idea is that if  is substitutable for a variable in a formula. The idea is that if  is
substitutable for  in , we will not run into the problems discussed at the beginning of this section - we will not substitute a term
in such a way that a variable contained in that term is inadvertently bound by a quantifier.

Definition 1.8.3. Suppose that  is an -formula,  is a term, and  is a variable. We way that  is substitutable for  in  if

1.  is atomic, or
2.  and  is substitutable for  in , or

∀xϕ (x) A c

ϕ (c) A c x

A ⊨ ∀x∃y¬ (x = y) A A

x u ∃y¬ (u = y) A

u x y

∃y¬ (y = y)

t x u ϕ

u x t ux
t u x t

u x ux
t u

u x ux
t t

u ux
t u

u :≡ f …u1u2 un f n ui ux
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x
t ( )u2

x
t ( )un

x
t

u1
x
t

t g (c) u f (x, y) +h (z, x, g (x)) ux
t

f (g (c) , y) +h (z, g (c) , g (g (c))) . (2.5.9.1)
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3.  and  is substitutable for  in both  and , or
4.  and either 

(a)  is not free in , or 
(b)  does not occur in  and  is substitutable for  in 

Notice that  is defined whether or not  is substitutable for  in . Usually we will not want to do a substitution unless we check
for substitutability, but we have the ability to substitute whether or not it is a good idea. In the next chapter, however, you will often
see that certain operations are allowed only if  is substitutable for  in . That restriction is there for good reason, as we will be
concerned with preserving the truth of formulas after performing substitutions.

Exercises
1. For each of the following, write out : 

(a) ,  is . 
(b) ,  is . 
(c) ,  is .

2. For each of the following, first write out , then decide if  is substitutable for  in , and then (if you haven't already) use the
definition of substitutability to justify your conclusions. 
(a) ,  is . 
(b) ,  is . 
(c) ,  is .

3. Show that if  is variable-free, then  is always substitutable for  in .
4. Show that  is always substitutable for  in .
5. Prove that if  is not free in , then  is .
6. You might think that  is , but a moment's thought will give you an example to show that this doesn't always work. (What

if  is free in ?) Find an example that shows that even if  is not free in , we can still have  different from . Under
what conditions do we know that  is ?

7. Write a computer program (in your favorite language, or in pseudo-code) that accepts as input a formula , a variable , and a
term  and outputs "yes" or "no" depending on whether or not  is substitutable for  in .
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2.5.10: Logical Implication
At first glance it seems that a large portion of mathematics can be broken down into answering questions of the form: If I know this
statement is true, is it necessarily the case that this other statement is true? In this section we will formalize that question.

Definition 1.9.1. Suppose that  and  are sets of -formulas. We will say that  logically implies  and write  if for
every -structure , if , then .

This definition is a little bit tricky. It says that if  is true in , then  is true in . Remember, for  to be true in , it must be the
case that  for every assignment function . See Exercise 4.

If  is a set consisting of a single formula, we will write  rather than the official .

Definition 1.9.2. An -formula  is said to be valid if , in other words, if  is true in every -structure with every
assignment function . In this case, we will write .

Chaff: It doesn't seem like it would be easy to check whether . To do so directly would mean that we would have to
examine every possible -structure and every possible assignment function \(s\, of which there will be many.

I'm also sure that you've noticed that this double turnstyle symbol, , is getting a lot of use. Just remember that if there is a
structure on the left, , we are discussing truth in a single structure. If there is a set of sentences on the left, , then
we are discussing logical implication.

Example 1.9.3. Let  be the language consisting of a single binary relation symbol, , and let  be the sentence 
. We show that  is valid.

So let  be any -structure and let  be any assignment function. We must show that

Assume that , we know that there is an element of the universe, , such that .
And so, again by the definition of satisfaction, we know that if  is any element of , . If we chase
through the definition of satisfaction (Definition 1.7.4) and of the various assignment functions, this means that for our one fixed ,
the ordered pair  for any choice of .

We have to prove that . As the statement of interest is universal, we must show that, if  is an arbitrary
element of , , which means that we must produce an element of the universe, , such that 

. Again, from the definition of satisfaction this means that we must find a  such that 
. Fortunately, we have such a  in hand, namely . As we know, , we have shown 

, and we are finished.

Exercises
1. Show that  for any formulas  and . Translate this result into everyday English. Or Norwegian, if you prefer.
2. Show that the formula  is valid. Show that the formula  is not valid. What can you prove about the formula 

in terms of validity?
3. Suppose that  is an -formula and  is a variable. Prove that  is valid if and only if  is valid. Thus, if  has free

variables , , and ,  will be valid if and only if  is valid. The sentence  is called the universal closure of 
.

4. (a) Assume that . Show that . 
(b) Suppose that  is  and  is . Show that  but . (The slash through  means "does not logically
imply.")
 
[This exercise shows that the two possible ways to define logical equivalence are not equivalent. The strong form of the
definition says that  and  are logically equivalent if  and . The weak form of the definition states that

 and  are logically equivalent if  and .]
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2.S: Logical Reasoning (Summary)
Important Definitions

Logically equivalent statements, page 43
Converse of a conditional statement, page 44
Contrapositive of a conditional statement, page 44
Equal sets, page 55
Variable, page 54
Universal set for a variable, page 54
Constant, page 54
Predicate, page 54
Open sentence, page 54
Truth set of a predicate, page 58
Universal quantifier, page 63
Existential quantifier, page 63
Empty set, page 60
Counterexample, page 66 and 69
Perfect square, page 70
Prime number, page 78
Composite number, page 78

Important Theorems and Results
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De Morgan's Laws  
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CHAPTER OVERVIEW

3: Constructing and Writing Proofs in Mathematics
A proof in mathematics is a convincing argument that some mathematical statement is true. A proof should contain enough
mathematical detail to be convincing to the person(s) to whom the proof is addressed. In essence, a proof is an argument that
communicates a mathematical truth to another person (who has the appropriate mathematical background). A proof must use
correct, logical reasoning and be based on previously established results. These previous results can be axioms, definitions, or
previously proven theorems. These terms are discussed in the sections below.

3.1: Direct Proofs
3.2: More Methods of Proof
3.3: Proof by Contradiction
3.4: Using Cases in Proofs
3.5: The Division Algorithm and Congruence
3.6: Review of Proof Methods
3.S: Constructing and Writing Proofs in Mathematics (Summary)
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3.1: Direct Proofs
Preview Activity 1 (Definition of Divides, Divisor, Multiple) 
In Section 1.2, we studied the concepts of even integers and odd integers. The definition of an even integer was a formalization of
our concept of an even integer as being one this is “divisible by 2,” or a “multiple of 2.” We could also say that if “2 divides an
integer,” then that integer is an even integer. We will now extend this idea to integers other than 2. Following is a formal definition
of what it means to say that a nonzero integer  divides an integer .

A nonzero integer  divides an integer  provided that there is an integer  such that . We also say that  is a
divisor of ,  is a factor of , and  is a multiple of . The integer 0 is not a divisor of any integer. If  and  are integers
and , we frequently use the notation as a shorthand for “  divides .”

A Note about Notation: Be careful with the notation . This does not represent the rational number . The notation 

represents a relationship between the integers  and  and is simply a shorthand for “  divides .”

A Note about Definitions: Technically, a definition in mathematics should almost always be written using “if and only if.” It is not
clear why, but the convention in mathematics is to replace the phrase “if and only if” with “if” or an equivalent. Perhaps this is a bit
of laziness or the “if and only if” phrase can be a bit cumbersome. In this text, we will often use the phrase “provided that” instead.

The definition for “divides” can be written in symbolic form using appropriate quantifiers as follows: A nonzero integer  divides
an integer  provided that .

1. Use the definition of divides to explain why 4 divides 32 and to explain why 8 divides -96.
2. Give several examples of two integers where the first integer does not divide the second integer.
3. According to the definition of “divides,” does the integer 10 divide the integer 0? That is, is 10 a divisor of 0? Explain.
4. Use the definition of “divides” to complete the following sentence in symbolic form: “The nonzero integer  does not divide

the integer  means that ....”
5. Use the definition of “divides” to complete the following sentence without using the symbols for quantifiers: “The nonzero

integer  does not divide the integer . ....”
6. Give three different examples of three integers where the first integer divides the second integer and the second integer divides

the third integer. 
 
As we have seen in Section 1.2, a definition is frequently used when constructing and writing mathematical proofs. Consider
the following conjecture:

Conjecture: Let ,  and  be integers with  and . If  divides  and  divides , then  divides .

7. Explain why the examples you generated in part (6) provide evidence that this conjecture is true.

In Section 1.2, we also learned how to use a know-show table to help organize our thoughts when trying to construct a proof of
a statement. If necessary, review the appropriate material in Section 1.2.

8. State precisely what we would assume if we were trying to write a proof of the preceding conjecture.
9. Use the definition of “divides” to make some conclusions based on your assumptions in part (8).

10. State precisely what we would be trying to prove if we were trying to write a proof of the conjecture.
11. Use the definition of divides to write an answer to the question, “How can we prove what we stated in part (10)?

Preview Activity 2 (Calendars and Clocks) 
This preview activity is intended to help with understanding the concept of congruence, which will be studied at the end of this
section.

1. Suppose that it is currently Tuesday. (a) What day will it be 3 days from now? 
(b) What day will it be 10 days from now? 
(c) What day will it be 17 days from now? What day will it be 24 days from now? 
(d) Find several other natural numbers  such that it will be Friday  days from now. 
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n

m n

a b c a ≠ 0 b ≠ 0 a b b c a c

x x
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(e) Create a list (in increasing order) of the numbers 3; 10; 17; 24, and the numbers you generated in Part (1d). Pick any two
numbers from this list and subtract one from the other. Repeat this several times. 
(f) What do the numbers you obtained in Part (1e) have in common?

2. Suppose that we are using a twelve-hour clock with no distinction between A.M. and P.M. Also, suppose that the current time is
5:00. (a) What time will it be 4 hours from now? 
(b) What time will it be 16 hours from now? What time will it be 28 hours from now? 
(c) Find several other natural numbers  such that it will be 9:00  hours from now. 
(d) Create a list (in increasing order) of the numbers 4; 16; 28, and the numbers you generated in Part (2c). Pick any two
numbers from this list and subtract one from the other. Repeat this several times. 
(e) What do the numbers you obtained in Part (2d) have in common?

3. This is a continuation of Part (1). Suppose that it is currently Tuesday. 
 
(a) What day was it 4 days ago? 
(b) What day was it 11 days ago? What day was it 18 days ago? 
(c) Find several other natural numbers  such that it was Friday  days ago. 
(d) Create a list (in increasing order) consisting of the numbers18; 11; 4, the opposites of the numbers you generated in Part (3c)
and the positive numbers in the list from Part (1e). Pick any two num- bers from this list and subtract one from the other. Repeat
this several times. 
(e) What do the numbers you obtained in Part (3d) have in common?

Some Mathematical Terminology
In Section 1.2, we introduced the idea of a direct proof. Since then, we have used some common terminology in mathematics
without much explanation. Before we proceed further, we will discuss some frequently used mathematical terms.

A proof in mathematics is a convincing argument that some mathematical statement is true. A proof should contain enough
mathematical detail to be convincing to the person(s) to whom the proof is addressed. In essence, a proof is an argument that
communicates a mathematical truth to another person (who has the appropriate mathematical background). A proof must use
correct, logical reasoning and be based on previously established results. These previous results can be axioms, definitions, or
previously proven theorems. These terms are discussed below.

Surprising to some is the fact that in mathematics, there are always undefined terms. This is because if we tried to define
everything, we would end up going in circles. Simply put, we must start somewhere. For example, in Euclidean geometry, the
terms “point,” “line,” and “contains” are undefined terms. In this text, we are using our number systems such as the natural
numbers and integers as undefined terms. We often assume that these undefined objects satisfy certain properties. These assumed
relationships are accepted as true without proof and are called axioms (or postulates). An axiom is a mathematical statement that is
accepted without proof. Euclidean geometry starts with undefined terms and a set of postulates and axioms. For example, the
following statement is an axiom of Euclidean geometry:

Given any two distinct points, there is exactly one line that contains these two points.

The closure properties of the number systems discussed in Section 1.1 and the properties of the number systems in Table 1.2 on
page 18 are being used as axioms in this text.

A definition is simply an agreement as to the meaning of a particular term. For example, in this text, we have defined the terms
“even integer” and “odd integer.” Definitions are not made at random, but rather, a definition is usually made because a certain
property is observed to occur frequently. As a result, it becomes convenient to give this property its own special name. Definitions
that have been made can be used in developing mathematical proofs. In fact, most proofs require the use of some definitions.

In dealing with mathematical statements, we frequently use the terms “conjecture,” “theorem,” “proposition,” “lemma,” and
“corollary.” A conjecture is a statement that we believe is plausible. That is, we think it is true, but we have not yet developed a
proof that it is true. A theorem is a mathematical statement for which we have a proof. A term that is often considered to be
synonymous with “theorem” is proposition.

Often the proof of a theorem can be quite long. In this case, it is often easier to communicate the proof in smaller “pieces.” These
supporting pieces are often called lemmas. A lemma is a true mathematical statement that was proven mainly to help in the proof
of some theorem. Once a given theorem has been proven, it is often the case that other propositions follow immediately from the

x x

x x
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fact that the theorem is true. These are called corollaries of the theorem. The term corollary is used to refer to a theorem that is
easily proven once some other theorem has been proven.

Constructing Mathematical Proofs
To create a proof of a theorem, we must use correct logical reasoning and mathematical statements that we already accept as true.
These statements include axioms, definitions, theorems, lemmas, and corollaries.

In Section 1.2, we introduced the use of a know-show table to help us organize our work when we are attempting to prove a
statement. We also introduced some guidelines for writing mathematical proofs once we have created the proof. These guidelines
should be reviewed before proceeding.

Please remember that when we start the process of writing a proof, we are essentially “reporting the news.” That is, we have
already discovered the proof, and now we need to report it. This reporting often does not describe the process of discovering the
news (the investigative portion of the process).

Quite often, the first step is to develop a conjecture. This is often done after working within certain objects for some time. This is
what we did in Preview Activity  when we used examples to provide evidence that the following conjecture is true:

Conjecture: Let ,  and  be integers with  and . If  divides  and  divides , then  devides .

Before we try to prove a conjecture, we should make sure we have explored some examples. This simply means to construct some
specific examples where the integers a, b, and c satisfy the hypothesis of the conjecture in order to see if they also satisfy the
conclusion. We did this for this conjecture in Preview Activity .

We will now start a know-show table for this conjecture.

Step Know Reason

, , , , ,  and Hypothesis

1   

... ... ...

1   

 

Step Show Reason

The backward question we ask is, “How can we prove that  divides ?” One answer is to use the definition and show that there
exists an integer  such that . This could be step 1 in the know-show table.

We now have to prove that a certain integer  exists, so we ask the question, “How do we prove that this integer exists?” When we
are at such a stage in the backward process of a proof, we usually turn to what is known in order to prove that the object exists or to
find or construct the object we are trying to prove exists. We often say that we try to “construct” the object or at least prove it exists
from the known information. So at this point, we go to the forward part of the proof to try to prove that there exists an integer 
such that .

The forward question we ask is, “What can we conclude from the facts that  and ?” Again, using the definition, we know that
there exist integers  and  such that  and . This could be step 1 in the know-show table.

The key now is to determine how to get from 1 to 1. That is, can we use the conclusions that the integers  and  exist in order
to prove that the integer  (from the backward process) exists. Using the equation , we can substitute  for  in the
second equation, . This gives

 
 

.

The last step used the associative property of multiplication. (See Table 1.2 on page 18.) This shows that  is equal to  times some
integer. (This is because  is an integer by the closure property for integers.) So although we did not use the letter , we have
arrived at step 1. The completed know-show table follows.

3.1.1

a b c a ≠ 0 b ≠ 0 a b b c a c

3.1.1

P a b c ∈ Z a ≠ 0 b ≠ 0 a|b b|c

P

Q

Q a|c

a c

q c = a ⋅ q Q

q

q

c = a ⋅ q

a|b b|c
s t b = a ⋅ s c = b ⋅ t P

P Q s t

q b = a ⋅ s a ⋅ s b

c = b ⋅ t

c = b ⋅ t
= (a ⋅ s) ⋅ t
= a(s ⋅ t)

c a

s ⋅ t q

Q
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Step Know Reason

, , , , ,  and Hypothesis

1  Definition of "Divides"

2 Substitution for 

3 ) Associative property of multiplication

1 Step 3 and the closure properties of the
integers

Definition of "divides"

Notice the similarities between what we did for this proof and many of the proofs about even and odd integers we constructed in
Section 1.2. When we try to prove that a certain object exists, we often use what is called the construction method for a proof.
The appearance of an existential quantifier in the show (or backward) portion of the proof is usually the indicator to go to what is
known in order to prove the object exists.

We can now report the news by writing a formal proof.

Let ,  and  be integers with  and . If  divides  and  divides , then  divides .

Proof

We assume that , , and  are integers with  and . We further assume that  divides  and that  divides . We
will prove that  divides .

Since  divides  and  divides , there exist an integers  and  such that

We can now substitute the expression for  from equation (1) into equation (2). This gives

.

Using the associate property for multiplication, we can rearrange the right side of the last equation to obtain

.

Because both s and t are integers, and since the integers are closed under multiplication, we know that . Therefore,
the previous equation proves that  divides . Consequently, we have proven that whenever , , and  are integers with 

 and  such that  divides  and  divides , then  divides .

Writing Guidelines for Equation Numbers

We wrote the proof for Theorem 3.1 according to the guidelines introduced in Section 1.2, but a new element that appeared in this
proof was the use of equation numbers. Following are some guidelines that can be used for equation numbers.

If it is necessary to refer to an equation later in a proof, that equation should be centered and displayed. It should then be given it a
number. The number for the equation should be written in parentheses on the same line as the equation at the right-hand margin as
in shown in the following example.

Since  is an odd integer, there exists an integer  such that

.

Later in the proof, there may be a line such as

P a b c ∈ Z a ≠ 0 b ≠ 0 a|b b|c

P
(∃s ∈ Z)(b = a ⋅ s)

(∃t ∈ Z)(c = b ⋅ t)

P c = (a ⋅ s) ⋅ t b

P c = a ⋅ (s ⋅ t

Q (∃q ∈ Z)(c = a ⋅ q)
P

Q a|c

 Theorem 3.1

a b c a ≠ 0 b ≠ 0 a b b c a c

a b c a ≠ 0 b ≠ 0 a b b c

a c

a b b c s t

b = a ⋅ s, and (3.1.1)

c = b ⋅ t (3.1.2)

b

c = (a ⋅ s) ⋅ t

c = a ⋅ (s ⋅ t)

s ⋅ t ∈ Z

a c a b c

a ≠ 0 b ≠ 0 a b b c a c

x n

x = 2n+1 (3.1.3)
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Then, using the result in equation (1), we obtain . . . .

Notice that we did not number every equation in Theorem 3.1. We should only number those equations we will be referring to later
in the proof, and we should only number equations when it is necessary. For example, instead of numbering an equation, it is often
better to use a phrase such as, “the previous equation proves that . . . ” or “we can rearrange the terms on the right side of the
previous equation.” Also, note that the word “equation” is not capitalized when we are referring to an equation by number.
Although it may be appropriate to use a capital “E,” the usual convention in mathematics is not to capitalize.

1. Give at least four different examples of integers , , and  with  such that  divides  and  divides .
2. For each example in Part (1), calculate the sum . Does the integer  divide the sum ?
3. Construct a know-show table for the following proposition: For all integers , , and  with , if  divides  and 

divides , then a divides .

Answer

Add texts here. Do not delete this text first.

Using Counterexamples

In Section 1.2 and so far in this section, our focus has been on proving statements that involve universal quantifiers. However,
another important skill for mathematicians is to be able to recognize when a statement is false and then to be able to prove that it is
false. For example, suppose we want to know if the following proposition is true or false.

For each integer , if 5 divides , then 5 divides .

Suppose we start trying to prove this proposition. In the backward process, we would say that in order to prove that 5 divides 
, we can show that there exists an integer  such that

 :  or .

For the forward process, we could say that since 5 divides (n^2 - 1), we know that there exists an interger  such that

:  or .

The problem is that there is no straightforward way to use  to prove . At this point, it would be a good idea to try some
examples for  and try to find situations in which the hypothesis of the proposition is true. (In fact, this should have been done
before we started trying to prove the proposition.) The following table summarizes the results of some of these explorations with
values for .

Does 5 divide ( ) Does 5 divide ( )

1 0 yes 0 yes

2 3 no 1 no

3 8 no 2 no

4 15 yes 3 no

We can stop exploring examples now since the last row in the table provides an example where the hypothesis is true and the
conclusion is false. Recall from Section 2.4 (see page 69) that a counterexample for a statement of the form  is an
element a in the universal set for which  is false. So we have actually proved that the negation of the proposition is true.

When using a counterexample to prove a statement is false, we do not use the term “proof” since we reserve a proof for proving a
proposition is true. We could summarize our work as follows:

Conjecture. For each integer , if 5 divides (  - 1), then 5 divides (  - 1).

The integer  = 4 is a counterexample that proves this conjecture is false. Notice that when  = 4,  - 1 = 15 and 5 divides 15.
Hence,the hypothesis of the conjecture is true in this case. In addition,  - 1 = 3 and 5 does not divide 3 and so the conclusion

 Progress Check 3.2 (A Property of Divisors)

a b c a ≠ 0 a b a c

b+c a b+c

a b c a ≠ 0 a b a

c b+c

n −1n2 n−1

n−1 k

Q1 n−1 = 5k n = 5k+1

m

P1 −1 = 5mn2 = 5m+1n2

P1 Q1

n

n

n − 1n2 − 1n2 n− 1 n− 1

∀x ∈ U)(P (x))
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n n n2
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of the conjecture is false in this case. Since this is an example where the hypothesis is true and the conclusion is false, the
conjecture is false.

As a general rule of thumb, anytime we are trying to decide if a proposition is true or false, it is a good idea to try some examples
first. The examples that are chosen should be ones in which the hypothesis of the proposition is true. If one of these examples
makes the conclusion false, then we have found a counterexample and we know the proposition is false. If all of the examples
produce a true conclusion, then we have evidence that the proposition is true and can try to write a proof.

Use a counterexample to prove the following statement is false.

For all integers  and , if 5 divides  or 5 divides , then 5 divides (5  + ).

Answer

Add texts here. Do not delete this text first.

Congruence
What mathematicians call congruence is a concept used to describe cycles in the world of the integers. For example, the day of the
week is a cyclic phenomenon in that the day of the week repeats every seven days. The time of the day is a cyclic phenomenon
because it repeats every 12 hours if we use a 12-hour clock or every 24 hours if we use a 24-hour clock. We explored these two
cyclic phenomena in Preview Activity .

Similar to what we saw in Preview Activity , if it is currently Monday, then it will be Wednesday 2 days from now, 9 days
from now, 16 days from now, 23 days from now, and so on. In addition, it was Wednesday 5 days ago, 12 days ago, 19 days ago,
and so on. Using negative numbers for time in the past, we generate the following list of numbers:

..., -19, -12, -5, 2, 9, 16, 23, ...

Notice that if we subtract any number in the list above from any other number in that list, we will obtain a multiple of 7. For
example,

16 - 2 = 14 = 7  2

(-5) - (9) = -14 = 7  (-2)

16 - (-12) = 28 = 7  4.

Using the concept of congruence, we would say that all the numbers in this list are congruent modulo 7, but we first have to define
when two numbers are congruent modulo some natural number .

Let . If  and  are integers, then we say that  is congruent to  modulo  provided that  divides . A standard
notation for this is  (mod ). This is read as “  is congruent to  modulo ” or “  is congruent to  mod .”

Notice that we can use the definition of divides to say that  divides  if and only if there exists an integer  such that 
. So we can write

 (mod ) means , or 
 (mod ) means .

This means that in order to find integers that are congruent to  modulo , we only need to add multiples of  to . For example, to
find integers that are congruent to 2 modulo 5, we add multiples of 5 to 2. This gives the following list:

... -13, -8, -3, 2, 7, 12, 17,...

 Progress Check 3.3: Using a Counterexample

a b a b a b

3.1.2

3.1.2

 Example:
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n

 Definition
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a ≡ b n a b n a b n

n a−b k
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We can also write this using set notation and say that

{  (mod 5)} = {... -13, -8, -3, 2, 7, 12, 17,...}

1. Determine at least eight different integers that are congruent to 5 modulo 8.
2. Usesetbuildernotationandtherostermethodtospecifythesetofallintegers

that are congruent to 5 modulo 8.

3. Choose two integers that are congruent to 5 modulo 8 and add them. Then repeat this for at least five other pairs of integers
that are congruent to 5 modulo 8.

4. Explain why all of the sums that were obtained in Part (3) are congruent to 2 modulo 8.

Answer

Add texts here. Do not delete this text first.

We will study the concept of congruence modulo  in much more detail later in the text. For now, we will work with the definition
of congruence modulo  in the context of proofs. For example, all of the examples used in Progress Check 3.4should provide
evidence that the following proposition is true.

For all integers  and , if  (mod 8) and  (mod 8), then (  + )  2 (mod 8).

We will use “backward questions” and “forward questions” to help construct a proof for Proposition 3.5. So, we might ask,
“How do we prove that (  + )  2 (mod 8)” One way to answer this is to use the definition of congruence and state that(  + 
)  2 (mod 8) provided that 8 divides ( ).

1. Use the definition of divides to determine a way to prove that 8 divides ( ). 
 
We now turn to what we know and ask, "What can we conclude from the assumptions that  (mod 8) and  (mod
8)." We can again use the definition of congruence and conclude that 8 divides (  - 5) and 8 divides (  - 5).

2. Use the definition of divides to make conclusions based on the facts that 8 divides (  - 5) and 8 divides (  - 5).
3. Solve an equation from part (2) for  and for .
4. Use the results from part (3) to prove that 8 divides ( ).
5. Write a proof for Proposition 3.5.

Answer

Add texts here. Do not delete this text first.

Additional Writing Guidelines

We will now be writing many proofs, and it is important to make sure we write according to accepted guidelines so that our proofs
may be understood by others. Some writing guidelines were introduced in Chapter 1. The first four writing guidelines given below
can be considered general guidelines, and the last three can be considered as technical guidelines specific to writing in
mathematics.

1. Know your audience. Every writer should have a clear idea of the intended audience for a piece of writing. In that way, the
writer can give the right amount of information at the proper level of sophistication to communicate effectively. This is
especially true for mathematical writing. For example, if a mathematician is writing a solution to a textbook problem for a
solutions manual for instructors, the writing would be brief with many details omitted. However, if the writing was for a
students’ solution manual, more details would be included.

a ∈ Z|a ≡ 2

 Progress Check 3.4 (Congruence Modulo 8)

n

n

 Proposition 3.5.

a b a ≡ 5 b ≡ 5 a b ≡

 Progress Check 3.6 (Proving Proposition 3.5)

a b ≡ a

b ≡ a+b−2

a+b−2

a ≡ 5 b ≡ 5
a b

a b

a b

a+b−2
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2. Use complete sentences and proper paragraph structure. Good grammar is an important part of any writing. Therefore,
conform to the accepted rules of grammar. Pay careful attention to the structure of sentences. Write proofs using complete
sentences but avoid run-on sentences. Also, do not forget punctuation, and always use a spell checker when using a word
processor.

3. Keep it simple. It is often difficult to understand a mathematical argument no matter how well it is written. Do not let your
writing help make it more difficult for the reader. Use simple, declarative sentences and short paragraphs, each with a simple
point.

4. Write a first draft of your proof and then revise it. Remember that a proof is written so that readers are able to read and
understand the reasoning in the proof. Be clear and concise. Include details but do not ramble. Do not be satisfied with the first
draft of a proof. Read it over and refine it. Just like any worthwhile activity, learning to write mathematics well takes practice
and hard work. This can be frustrating. Everyone can be sure that there will be some proofs that are difficult to construct, but
remember that proofs are a very important part of mathematics. So work hard and have fun.

5. Do not use  for multiplication or ˆ for exponents. Leave this type of notation for writing computer code. The use of this
notation makes it difficult for humans to read. In addition, avoid using / for division when using a complex fraction. 
 
For example, it is very difficult to read ( ); the fraction 
 

 
 
is much easier to read.

6. Do not use a mathematical symbol at the beginning of a sentence. For example, we should not write, “Let n be an integer. n
is an odd integer provided that . . . .” Many people find this hard to read and often have to re- read it to understand it. It would
be better to write, “An integer n is an odd integer provided that . . . .”

7. Use English and minimize the use of cumbersome notation. Do not use the special symbols for quantifiers  (for all), 
(there exists),  (such that), or  (therefore) in formal mathematical writing. It is often easier to write, and usually easier to read,
if the English words are used instead of the sym- bols. For example, why make the reader interpret 
 

 
 
When it is possible to write 
For each real number , there exists a real number  such that , or, more succinctly (if appropriate),

Every real number has an additive inverse.

1. Prove each of the following statements: 
 
(a) For all integers , , and  with , if  and , then . 
(b) For each , if  is an odd integer, then  is an odd integer. 
(c) For each integer , if 4 divides (  - 1), then 4 divides (  - 1).

2. For each of the following, use a counterexample to prove the statement is false. 
 
(a) For each odd natural number , if , then 3 divides (  - 1). 
(b) For each natural number , ( ) is a prime number. 
(c) For all real numbers  and , . 
(d) For each integer , if 4 divides (  - 1), then 4 divides (  - 1).

∗

−3 +1/2)/(2x/3 −7x3 x2

−3 +x3 x2 1

2

−7
2x

3

(3.1.4)

∀ exists

ϵ ∴

(∀x ∈ R)(∃y ∈ R)(x+y = 0) (3.1.5)

x y x+y = 0

 Exercise for section 3.1

a b c a ≠ 0 a|b a|c a|(b−c)
n ∈ Z n n3

a a a2

n n > 3 n2

n 3 ⋅ +2 ⋅ +12n 3n

x y > 2xy+x2 y2− −−−−−√
a a2 a
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3. Determine if each of the following statements is true or false. If a statement is true, then write a formal proof of that
statement, and if it is false, then provide a counterexample that shows it is false. 
 
(a) For all integers , , and  with , if , then . 
(b) For all integers  and  with , if , then  or . 
(c) For all integers ,  and  with , if  divides (  - 1) and  divides (  -1), then  divides (  - 1). 
(d) For each integer , if 7 divides ( ), then 7 divides ( ). 
(e) For every integer ,  is an odd integer. 
(f) For every odd integer ,  is an odd integer 
(g) For all integer , , and  with , if  divides both  and , then  divides . 
(h) For all integer , , and  with , if , then  or .

4. (a) If  and  are integers and , explain why  or . 
(b) Is the following proposition true or false? 
For all nonzero integers  and , if  and , then .

5. Prove the following proposition:
 
Let  be an integer. If there exists an integer  such that  and , then  or . 
 
Hint: Use the fact that the only divisors of 1 are 1 and -1.

6. Determine if each of the following statements is true or false. If a statement is true, then write a formal proof of that
statement, and if it is false, then provide a counterexample that shows it is false. (a) For each integer , if there exists an
integer  such that  divides ( ) and  divides ( ), then  divides 5. 
(a) For each integer , if there exists an integer  such that  divides ( ) and  divides ( ), then  divides 7. 
(c) For each integer , if  is odd, then 8 divides ( ). 
(d) For each integer , if  is odd, then 8 divides ( ).

7. Let  be an integer and let . 
 
(a) Prove that if  (mod ), then . 
(b) Prove that if , then  (mod ).

8. Let  and  be integers. Prove that if  (mod 3) and  (mod 3), then 
 
(a)  (mod 3). 
(b)  (mod 3).

9. Let  and  be integers. Prove that if  (mod 8) and  (mod 8), then 
 
(a)  (mod 8). 
(b)  (mod 8).

10. Determine if each of the following propositions is true or false. Justify each conclusion. 
 
(a) For all integers  and , if  (mod 6), then  (mod 6) or  (mod 6). 
(b) For each integer , if  (mod 8), then  (mod 8). 
(c) For each integer , if  (mod 8), then  (mod 8).

11. Let  be a natural number. Prove each of the following: 
 
(a) For every integer ,  (mod ). 
This is called the reflexive property of congruence modulo . 
(b) For every integer  and , if  (mod ), then  (mod ). 
This is called the symmetric property of congruence modulo . 
(c) For every integer ,  and \9c\), if  (mod ) and  (mod ), then  (mod ). 
This is called the transitive property of congruence modulo .

a b c a ≠ 0 a|b a|(bc)
a b a ≠ 0 6|(ab) 6|a 6|b
a b c a ≠ 0 a b a c a bc

n −4n2 n−2
n 4 +7n+6n2

n 4 +7n+6n2

a b d d ≠ 0 d a−b a+b d a

a b c a ≠ 0 a|(bc) a|b a|c
x y xy = 1 x = 1 x = −1

a b a|b b|a a = ±b

a n a|(4n+3) a|(2n+1) a = 1 a = −1

a

n a 8n+7 a 4n+1 a

a n a 9n+5 a 6n+1 a

n n +4 +11n4 n2

n n + +2nn4 n2

a n ∈ N

a ≡ 0 n n|a
n|a a ≡ 0 n

a b a ≡ 2 b ≡ 2

a+b ≡ 1
a ⋅ b ≡ 1
a b a ≡ 7 b ≡ 3

a+b ≡ 2
a ⋅ b ≡ 5

a b ab ≡ 0 a ≡ 0 b ≡
a a ≡ 2 ≡ 4a2

a ≡ 4a2 a ≡ 2
n

a a ≡ a n

n

a b a ≡ b n b ≡ a n

n

a b a ≡ b n b ≡ c n a ≡ c n

n
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12. Let  be a natural number and let , , , and  be integers. Prove each of the following. 
 
(a) If  (mod ) and  (mod ), then  (mod ). 
(b) If  (mod ) and  (mod ), then  (mod ).

13. (a) Let , , and  be real numbers with . Explain how to use a part of the quadratic formula (called the discriminant)
to determine if the quadratic equation  has two real number solutions, one real number solution, or no
real number solutions. (See Exercise (11) in Section 1.2 for a statement of the quadratic formula.)

(b) Prove that if , , and  are real numbers for which  and , then one solution of the quadratic equation 
 is a positive real number.

(c) Prove that if , , and  are real numbers, if ,  and , then the quadratic equation 

 has no real number solution.

14. Let  and  be real numbers and let  be a positive number. The equation for a circle whose center is at the point ( , ) and
whose radius is  is 
 

. 
 
We also know that if  and  are real numbers, then 
 

 The point ( , ) is inside the circle if . 
 The point ( , ) is on the circle if . 
 The point ( , ) is outside the circle if . 

 
Prove that all points on or inside the circle whose equation is  are inside the circle whose equation
is .

15. Let  be a positive real number. The equation for a circle of radius  whose center is the origin is . 
 

(a) Use implicit differentiation to determine . 

(b) Let ( , ) be a point on the circle with  and . Determine the slope of the line tangent to the circle at the point
( , ). 
(c) Prove that the radius of the circle to the point ( , ) is perpendicular to the line tangent to the circle at the point ( , ).
Hint: Two lines (neither of which is horizontal) are perpendicular if and only if the products of their slopes is equal to -1.

16. Determine if each of the following statements is true or false. Provide a counterexample for statements that are false and
provide a complete proof for those that are true. 
 

(a) For all real numbers  and , . 

(b) For all real numbers  and , . 

(c) For all nonnegative real numbers  and , .

17. Use one of the true in equalities in Exercise(16) to prove the following proposition. 
 

For each real number , the value of  that gives the maximum value of  is .

18. (a) State the Pythagorean Theorem for right triangles. 
The diagrams in Figure 3.1 will be used for the problems in this exercise. 
(b) In the diagram on the left,  is the length of a side of the equilateral triangle and  is the length of an altitude of the
equilateral triangle. The labeling in the diagram shows the fact that the altitude intersects the base of the equilateral triangle
at the midpoint of the base. Use the 

n a b c d

a ≡ b n c ≡ d n (a+c) ≡ (b+d) n

a ≡ b n c ≡ d n ac ≡ bd n

a b c a ≠ 0
a +bx+c = 0x2

a b c a > 0 c < 0
a +bx+c = 0x2

a b c a ≠ 0 b > 0 <
b

2
ac−−

√

a +bx+c = 0x2

h k r h k

r

(x−h +(y−k =)2 )2 r2 (3.1.6)

a b

∙ a b (a−h +(b−k <)2 )2 r2

∙ a b (a−h +(b−k =)2 )2 r2

∙ a b (a−h +(b−k >)2 )2 r2

(x−1 +(y−2 = 4)2 )2

+ = 26x2 y2

r r + =x2 y2 r2

dy

dx
a b a ≠ 0 b ≠ 0

a b

a b a b

x y ≤xy−−
√

x+y

2

x y xy ≤ (
x+y

2
)2

x y ≤xy−−
√

x+y

2

a x y = x(a−x) x =
a

2

x h
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Figure 3.1: Diagrams for Exercise (18) 

Pythagorean Theorem to prove that the area of this equilateral triangle is . 

(c) In the diagram on the right,  is a right triangle. In addition, there has been an equilateral triangle constructed on
each side of this right triangle. Prove that the area of the equilateral triangle on the hypotenuse is equal to the sum of the
areas of the equilateral triangles constructed on the other two sides of the right triangle.

19. Evaluation of proofs 
This type of exercise will appear frequently in the book. In each case, there is a proposed proof of a proposition. However,
the proposition may be true or may be false. 
 

 If a proposition is false, the proposed proof is, of course, incorrect. In this situation, you are to find the error in the proof
and then provide a counterexample showing that the proposition is false. 

 If a proposition is true, the proposed proof may still be incorrect. In this case, you are to determine why the proof is
incorrect and then write a correct proof using the writing guidelines that have been presented in this book. 

 If a proposition is true and the proof is correct, you are to decide if the proof is well written or not. If it is well written,
then you simply must indicate that this is an excellent proof and needs no revision. On the other hand, if the proof is not
well written, then you must then revise the proof so by writing it according to the guidelines presented in this text. 
 
(a) Proposition. If m is an even integer, then  is an even integer. 
 
Proof. We see that . Therefore,  is an even integer. 
 
(b) Proposition. For all real numbers  and , if , , and , then . 

 
Proof. Since  and  are positive real numbers,  is positive and we can multiply both sides of the inequality by  to
obtain 
 

 

. 
 
By combining all terms on the left side of the inequality, we see that  and then by factoring the left side,
we obtain . Since ,  and so . This proves that if , , and , any 

3
–

√

4
x2

△ ABC

∙

∙

∙

5m+4

5m+4 = 10n+4 = 2(5n+2) 5m+4

x y x ≠ y x > 0 y > 0 + > 2
x

y

y

x

x y xy xy

( + ) ⋅ xy > 2 ⋅ xy
x

y

y

x
(3.1.7)

+ > 2xyx2 y2 (3.1.8)

−2xy+ > 0x2 y2

(x−y > 0)2 x ≠ y (x−y) ≠ 0 (x−y > 0)2 x ≠ y x > 0 y > 0
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, then . 

 
(c) Proposition. For all integers , , and , if , then  or . 
 
Proof. We assume that , , and  are integers and that  divides . So, there exists an integer  such that . We
now factor  as , where  and  are integers. We then see that 
 

. 
 
This means that  or  and hence,  or . 
 
(d) Proposition. For all positive integers , , and , . 
This proposition is false as is shown by the following counterexample: If we let , , and , then 
 

 

 

 

 
 
Explorations and Activities

20. Congruence Modulo 6 
 
(a) Find several integers that are congruent to 5 modulo 6 and then square each of these integers. 
(b) For each integer  from Part (20a), determine an integer  so that  and  (mod 6), then ... 
(c) Based on the work in Part (20b), complete the following conjecture: 
 
For each integer , if  (mod 6), then ... 
(d) Complete a know-show table for the conjecture in Part (20c) or write a proof of the conjecture.

21. Pythagorean Triples. Three natural numbers , , and  with  are called a Pythagorean triple provided that 
. See Exercise (13) on page 29 in Section 1.2. Three natural numbers are called consecutive natural numbers

if they can be written in the form ,  + 1, and  + 2, where  is a natural number. 
 
(a) Determine all Pythagorean triples consisting of three consecutive natural numbers. (State a theorem and prove it.) 
(b) Determine all Pythagorean triples that can be written in the form , , and , where  is a natural number.
State a theorem and prove it.

Answer

Add texts here. Do not delete this text first.

This page titled 3.1: Direct Proofs is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted Sundstrom
(ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts platform; a

y > 0 + > 2
x

y

y

x

a b c a|(bc) a|b a|c

a b c a bc k bc = ka

k k = mn m n

bc = mna (3.1.9)

b = ma c = na a|b a|c

a b c ( = )ab)c a(bc

a = 2 b = 3 c = 2

( =ab)c ab
c

(3.1.10)

( =23)2 232

(3.1.11)

=82 29 (3.1.12)

64 ≠ 512 (3.1.13)

m k 0 ≤ k < 6 ≡ km2

m m ≡ 5

a b c a < b < c

+ =a2 b2 c2

m m m m

m m+7 m+8 m
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3.2: More Methods of Proof

The following statement was proven in Exercise (3c) on page 27 in Section 1.2.

If  is an odd integer, then  is an odd integer.

Now consider the following proposition:

For each integer , if  is an odd integer, then  is an odd integer.

1. After examining several examples, decide whether you think this proposition is true or false.
2. Try completing the following know-show table for a direct proof of this proposition. The question is, “Can we perform

algebraic manipulations to get from the ‘know’ portion of the table to the ‘show’ portion of the table?” Be careful with this!
Remember that we are working with integers and we want to make sure that we can end up with an integer q as stated in
Step 1.

Step Know Reason

 is an odd integer Hypothesis

1 Definition of "odd integer"

... ... ...

1  

 is an odd integer. Definition of "odd integer"

Step Show Reason

Recall that the contrapositive of the conditional statement  is the conditional statement . We have seen in
Section 2.2 that the contrapositive of a conditional statement is logically equivalent to the conditional statement. (It might be a
good idea to review Preview Activity  from Section 2.2 on page 44.) Consider the following proposition once again: 
 
For each integer , if  is an odd integer, then  is an odd integer.

3. Write the contrapositive of this conditional statement. Remember that “not odd” means “even.”
4. Complete a know-show table for the contrapositive statement from Part(3).
5. By completing the proof in Part (4), have you proven the given proposition? That is, have you proven that if  is an odd

integer, then  is an odd integer? Explain.

1. In Exercise (4a) from Section 2.2, we constructed a truth table to prove that the biconditional statement, , is
logically equivalent to . Complete this exercise if you have not already done so.

2. Suppose that we want to prove a biconditional statement of the form . Explain a method for completing this proof
based on the logical equivalency in part (1).

3. Let  be an integer. Assume that we have completed the proofs of the following two statements:
If n is an odd integer, then n2 is an odd integer.
If n2 is an odd integer, then n is an odd integer.

(See Exercise (3c) from Section 1.2 and Preview Activity .) Have we completed the proof of the following proposition?

For each integer ,  is an odd integer if and only if  is an odd integer. Explain.

Review of Direct Proofs

In Sections 1.2 and 3.1, we studied direct proofs of mathematical statements. Most of the statements we prove in mathematics are
conditional statements that can be written in the form . A direct proof of a statement of the form  is based on the

 Preview Activity 1: Using the Contrapositive

n n2

n n2 n

Q

P n2

P (∀k ∈ Z)( = 2k + 1)n2

Q (∀q ∈ Z)(n = 2k + 1)

Q n

P → Q ┐Q → ┐P

3.2.2

n n2 n

n2

n

 Preview Activity 2: A Biconditional Statement

P ↔ Q

P → Q) ∧ (Q → P

P ↔ Q

n

3.2.1

n n n2

P → Q P → Q
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definition that a conditional statement can only be false when the hypothesis, , is true and the conclusion, , is false. Thus, if the
conclusion is true whenever the hypothesis is true, then the conditional statement must be true. So, in a direct proof,

We start by assuming that  is true.
From this assumption, we logically deduce that  is true.

We have used the so-called forward and backward method to discover how to logically deduce  from the assumption that  is
true.

Proof Using the Contrapositive

As we saw in Preview Activity , it is sometimes difficult to construct a direct proof of a conditional statement. This is one
reason we studied logical equivalencies in Section 2.2. Knowing that two expressions are logically equivalent tells us that if we
prove one, then we have also proven the other. In fact, once we know the truth value of a statement, then we know the truth value
of any other statement that is logically equivalent to it.

One of the most useful logical equivalencies in this regard is that a conditional statement  is logically equivalent to its
contrapositive, . This means that if we prove the contrapositive of the conditional statement, then we have proven the
conditional statement. The following are some important points to remember.

A conditional statement is logically equivalent to its contrapositive.
Use a direct proof to prove that  is true.
Caution: One difficulty with this type of proof is in the formation of correct negations. (We need to be very careful doing this.)
We might consider using a proof by contrapositive when the statements  and  are stated as negations.

Writing Guidelines

One of the basic rules of writing mathematical proofs is to keep the reader informed. So when we prove a result using the
contrapositive, we indicate this within the first few lines of the proof. For example,

We will prove this theorem by proving its contrapositive.
We will prove the contrapositive of this statement.

In addition, make sure the reader knows the status of every assertion that you make. That is, make sure you state whether an
assertion is an assumption of the theorem, a previously proven result, a well-known result, or something from the reader’s
mathematical background. Following is a completed proof of a statement from Preview Activity .

For each integer , if  is an even integer, then  is an even integer.

Proof

We will prove this result by proving the contrapositive of the statement, which is

For each integer , if  is an odd integer, then  is an odd integer.

However, in Theorem 1.8 on page 21, we have already proven that if  and  are odd integers, then  is an odd integer.
So using , we can conclude that if  is an odd integer, then , or , is an odd integer. We have thus proved
the contrapositive of the theorem, and consequently, we have proved that if  is an even integer, then  is an even integer.

Using Other Logical Equivalencies
As was noted in Section 2.2, there are several different logical equivalencies. Fortunately, there are only a small number that we
often use when trying to write proofs, and many of these are listed in Theorem 2.8 at the end of Section 2.2. We will illustrate the
use of one of these logical equivalencies with the following proposition:

For all real numbers  and , if  and , then .

First, notice that the hypothesis and the conclusion of the conditional statement are stated in the form of negations. This suggests
that we consider the contrapositive. Care must be taken when we negate the hypothesis since it is a conjunction. We use one of De
Morgan’s Laws as follows:

P Q

P

Q

Q P

3.2.1

P → Q

┐Q → ┐P

┐Q → ┐P

P Q

3.2.1

 Theorem 3.7

n n2 n

n n n2

x y x ⋅ y

x = y = n n n ⋅ n n2

n2 n

a b a ≠ 0 b ≠ 0 ab ≠ 0
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1. In English, write the contrapositive of, "For all real numbers  and , if  and , then ."

The contrapositive is a conditional statement in the form . The difficulty is that there is not much we can do
with the hypothesis  since we know nothing else about the real numbers  and . However, if we knew that  was

not equal to zero, then we could multiply both sides of the equation  by . This suggests that we consider using the

following logical equivalency based on a result in Theorem 2.8 on page 48: 
 

2. In English, use this logical equivalency, to write a statement that is logically equivalent to the contrapositive from Part (1).

The logical equivalency in Part (2) makes sense because if we are trying to prove , we only need to prove that at
least one of  or  is true. So the idea is to prove that if  is false, then  must be true.

3. Use the ideas presented in the progress check to complete the proof of the following proposition.

For all real numbers  and , if  and , then .

Proof

We will prove the contrapositive of this proposition, which is

For all real numbers  and , if , then  or .

This contrapositive, however, is logically equivalent to the following:

For all real numbers  and , if  and , then .

To prove this, we let  and  be real numbers and assume that  and . We can then multiply both sides of

the equation  by . This gives

Now complete the proof.

...

Therefore, . This completes the proof of a statement that is logically equivalent to the contrapositive, and
hence, we have proven the proposition.

Answer

Add texts here. Do not delete this text first.

Proofs of Biconditional Statements

In Preview Activity , we used the following logical equivalency:

This logical equivalency suggests one method for proving a biconditional statement written in the form “  if and only if .” This
method is to construct separate proofs of the two conditional statements  and . For example, since we have now
proven each of the following:

For each integer , if  is an even integer, then  is an even integer. (Exercise (3c) on page 27 in Section 1.2)
For each integer , if  is an even integer, then  is an even integer. (Theorem 3.7)

We can state the following theorem.

┐(a ≠ 0 ∧ b ≠ 0) ≡ (a = 0) ∨ (b = 0). (3.2.1)

 Progress Check 3.8 (Using Another Logical Equivalency)

a b a ≠ 0 b ≠ 0 ab ≠ 0

X → (Y ∨ Z

ab = 0 a b a

ab = 0
1

a

X → (Y ∨ Z) ≡ (X ∧ ┐Y ) → Z. (3.2.2)

Y ∨ Z

Y Z Y Z

 Proposition 3.9.

a b a ≠ b ≠ 0 ab ≠ 0

a b ab = 0 a = 0 b = 0

a b ab = 0 a ≠ 0 b = 0

a b ab = 0 a ≠ 0

ab = 0
1

a

b = 0

3.2.2

(P ↔ Q) ≡ (P → Q) ∧ (Q → P ). (3.2.3)

P Q

P → Q Q → P

n n n2

n n2 n
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For each integer ,  is an even integer if and only if  is an even integer.

Writing Guidelines
When proving a biconditional statement using the logical equivalency , we actually need to
prove two conditional statements. The proof of each conditional statement can be considered as one of two parts of the proof of the
biconditional statement. Make sure that the start and end of each of these parts is indicated clearly. This is illustrated in the proof of
the following proposition.

Let . The real number  equals 2 if and only if .

Proof

We will prove this biconditional statement by proving the following two conditional statements:

For each real number , if  equals 2, then .
For each real number , if , then  equals 2.

For the first part, we assume  and prove that . We can do this by substituting  into the
expression . This gives

This completes the first part of the proof.

For the second part, we assume that  and from this assumption, we will prove that . We will do
this by solving this equation for . To do so, we first rewrite the equation  by subtracting 2 from both
sides:

We can now factor the left side of this equation by factoring an  from the first two terms and then factoring ( ) from
the resulting two terms. This is shown below.

Now, in the real numbers, if a product of two factors is equal to zero, then one of the factors must be zero. So this last
equation implies that

 or 

The equation  has not real numbers solution. So since  is a real number, the only possibility is that .
From this we can conclude that  must be equal to 2.

Since we have now proven both conditional statements, we have proven that  if and only if 

Constructive Proofs

We all know how to solve an equation such as , where  is a real number. To do so, we first add -8 to both sides of the
equation and then divide both sides of the resulting equation by 3. Doing so, we obtain the following result:

If  is a real number and , then .

Notice that the process of solving the equation actually does not prove that  is a solution of the equation . This
process really shows that if there is a solution, then that solution must be . To show that this is a solution, we use the process
of substituting 5 for  in the left side of the equation as follows: If ,then

 Theorem 3.10.

n n n2

(P ↔ Q) ≡ (P → Q) ∧ (Q → P )

 Proposition 3.11

x ∈ R x −2 +x = 2x3 x2

x x −2 +x = 2x3 x2

x −2 +x = 2x3 x2 x

x = 2 −2 +x = 2x3 x2 x = 2
−2 +xx3 x2

−2 +x = −2( ) +2 = 8 −8 +2 = 2x3 x2 23 22 (3.2.4)

−2 +x = 2x3 x2 x = 2
x −2 +x = 2x3 x2

−2 +x −2 = 0x3 x2

x x −2

−2 +x −2 = 0x3 x2

(x −2) +x −2 = 0x2

(x −2)( +1) = 0x2

x −2 = 0 +1 = 0x2

+1 = 0x2 x x −2 = 0
x

x = 2 −2 +x = 2x3 x2

3x +8 = 23 x

x 3x +8 = 23 x = 5

x = 5 3x +8 = 23
x = 5

x x = 5
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This proves that  is a solution of the equation . Hence, we have proven that  is the only real number
solution of .

We can use this same process to show that any linear equation has a real number solution. An equation of the form

,

where , , and  are real numbers with , is called a linear equation in one variable.

If , , and  are real numbers with , then the linear equation  has exactly one real number solution, which is 

.

Proof
Assume that , , and  are real numbers with . We can solve the linear equation  by adding  to
both sides of the equation and then dividing both sides of the resulting equation by  (since , to obtain

.

This shows that if there is a solution, then it must be . We also see that if , then,

Therefore, the linear equation  has exactly one real number solution and the solution is .

The proof given for Proposition 3.12 is called a constructive proof. This is a technique that is often used to prove a so-called
existence theorem. The objective of an existence theorem is to prove that a certain mathematical object exists. That is, the goal is
usually to prove a statement of the form

There exists an  such that .

For a constructive proof of such a proposition, we actually name, describe, or explain how to construct some object in the universe

that makes  true. This is what we did in Proposition 3.12 since in the proof, we actually proved that  is a solution of the

equation . In fact, we proved that this is the only solution of this equation.

Nonconstructive Proofs

Another type of proof that is often used to prove an existence theorem is the so- called nonconstructive proof. For this type of
proof, we make an argument that an object in the universal set that makes  true must exist but we never construct or name the
object that makes  true. The advantage of a constructive proof over a nonconstructive proof is that the constructive proof will
yield a procedure or algorithm for obtaining the desired object.

The proof of the Intermediate Value Theorem from calculus is an example of a nonconstructive proof. The Intermediate Value
Theorem can be stated as follows:

If  is a continuous function on the closed interval [ , ] and if  is any real number strictly between  and , then
there exists a number  in the interval ( , ) such that .

The Intermediate Value Theorem can be used to prove that a solution to some equations must exist. This is shown in the next
example.

3x +8 = 3(5) +8 = 15 +8 = 23

x = 5 3x +8 = 23 x = 5
3x +8 = 23

ax +b = c (3.2.5)

a b c a ≠ 0

 Proposition 3.12

a b c a ≠ 0 ax +b = c

x =
c −b

a

a b c a ≠ 0 ax +b = c −b

a a ≠ 0

x =
c −b

a

x =
c −b

a
x =

c −b

a

ax +b = a( ) +b = (c −b) +b = c
c −b

a

ax +b = c x =
c −b

a

x P (x)

P (x)
c −b

a
ax +b = c

P (x)
P (x)

f a b q f(a) f(b)
c a b f(c) = q

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86110?pdf


3.2.6 https://math.libretexts.org/@go/page/86110

Let  represent a real number. We will use the Intermediate Value Theorem to prove that the equation  has a
real number solution.

To investigate solutions of thee quation , we will use the function

Notice that  = -5 and that  > 1. Since  < 0 and  > 0, the Intermediate Value Theorem tells us that there is a
real number  between -2 and 0 such that . This means that there exists a real number  between -2 and 0 such that

,

and hence  is a real number solution of the equation . This proves that the equation  has at
least one real number solution.

Notice that this proof does not tell us how to find the exact value of . It does, however, suggest a method for approximating
the value of . This can be done by finding smaller and smaller intervals [ , ] such that  and  have opposite signs.

page128image3580513632 page128image3580513904

1. Let  be an integer. Prove each of the following: 
 
(a) If  is even, then  is even. 
(b) If  is even, then  is even. 
(c) The integer  is even if and only if  is an even integer. 
(d) The integer  is odd if and only if  is an odd integer.

2. In Section 3.1, we defined congruence modulo  where  is a natural number. If  and  are integers, we will use the notation 
 (mod ) to mean that  is not congruent to  modulo . 

 
(a) Write the contrapositive of the following conditional statement: 
For all integers  and , if  (mod 6) and  (mod 6), then  (mod 6). 
 
(b) Is this statement true or false? Explain.

3. (a) Write the contrapositive of the following statement: 
 

For all positive real numbers  and , if , then . 

(b) Is this statement true or false? Prove the statement if it is true or provide a counterexample if it is false.
4. Are the following statements true or false? Justify your conclusions. 

(a) For each , if  (mod 5), then  (mod 5). 
(b) For each , if  (mod 5), then  (mod 5). 
(c) For each ,  (mod 5) if and only if  (mod 5).

5. Is the following proposition true or false? 
 
For all integers  and , if  is even, then  is even or  is even. 
 
Justify your conclusion by writing a proof if the proposition is true or by providing a counterexample if it is false.

6. Consider the following proposition: For each integer ,  (mod 7) if and only if  (mod 7). 
 
(a) Write the proposition as the conjunction of two conditional statements. 
(b) Determine if the two conditional statements in Part(a) are true or false. If a conditional statement is true, write a proof, and if
it is false, provide a counterexample. 
(c) Is the given proposition true or false? Explain.

 Example 3.13 (Using the Intermediate Value Theorem)

x −x +1 = 0x3

−x +1 = 0x3

f(x) = −x +1 = 0x3

f(−2) f(0) f(−2) f(0
c f(c) = 0 c

−c +1 = 0c3

c −x +1 = 0x3 −x +1 = 0x3

c

c a b f(a) f(b)

Exercise for section 3.2

n

n n3

n3 n

n n3

n n3

n n a b

a ≢ b n a b n

a b a ≢ 0 b ≢ 0 ab ≢ 0

a b ≠ab
−−

√
a +b

2
a ≠ b

a ∈ Z a ≡ 2 ≡ 4a2

a ∈ Z ≡ 4a2 a ≡ 2
a ∈ Z a ≡ 2 ≡ 4a2

a b ab a b

a a ≡ 3 ( +5a)) ≡ 3a2
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7. Consider the following proposition: For each integer ,  (mod 8) if and only if  (mod 8). 
 
(a) Write the proposition as the conjunction of two conditional statements. 
(b) Determine if the two conditional statements in Part(a) are true or false. If a conditional statement is true, write a proof, and if
it is false, provide a counterexample. 
(c) Is the given proposition true or false? Explain.

8. For a right triangle, suppose that the hypotenuse has length  feet and the lengths of the sides are  feet and  feet. 
 
(a) What is a formula for the area of this right triangle? What is an isosceles triangle? 
(b) State the Pythagorean Theorem for right triangles. 

(c) Prove that the right triangle describe above is an isosceles triangle if and only if the area of the right triangle is .

9. A real number  is defined to be a rational number provided

there exist integers  and  with  such that .

A real number that is not a rational number is called an irrational number.It is known that if x is a positive rational number,
then there exist positive integers  and  with  such that  

Is the following proposition true or false? Explain. 
For each positive real number , if  is irrational, then  is irrational.

10. Is the following proposition true or false? Justify your conclusion. 
 
For each integer ,  is even if and only if 4 divides .

11. Prove that for each integer , if  is even, then 4 divides .
12. Prove that for all integers  and , if  and  are the lengths of the sides of a right triangle and  is the length of the

hypotenuse, then  is an odd integer.
13. Prove the following proposition:

 
If ,  with , then there exists an  with .

14. Are the following propositions true or false? Justify your conclusion. 
 
(a) There exist integers  and  such that . 
(b) There exist integers  and  such that .
(c) There exist integers  and  such that .

15. Prove that there exists a real number  such that .
16. Let , , ,  be real numbers. The mean, , of these four numbers is defined to be the sum of the four numbers divided by

4, That is, 
 

 
 
Prove that there exists a  with  such that . 
Hint: One way is to let  be the largest of , , , .

17. Let  and  be natural numbers such that . Prove each of the propositions in Parts (6a) trough (6d). (The results of
Exercise (1) and Theorem 3.10 may be helpful.) 
 
(a) If  is even, then 4 divides . 
(b) If 4 divides , then 4 divides . 
(c) If 4 divides , then 8 divides . 
(d) If  is even, then 8 divides . 
(e) Given an example of natural numbers  and  such that  is even and , but  is not divisible by 8.

a a ≡ 2 ( +4a) ≡ 4a2

c a b

1

4
c2

x

m n n ≠ 0 x =
m

n

m n n ≠ 0 x =
m

n

x x x−−√

n n n2

a −1a2 −1a2

a m a m m +1
a

p q ∈ Q p < q x ∈ Q p < x < q

x y 4x +6y = 2
x y 6x +15y = 2
x y 6x +15y = 9

x −4 = 7x3 x2

y1 y2 y3 y4 ȳ

= .ȳ
+ + +y1 y2 y3 y4

4
(3.2.6)

yi 1 ≤ i ≤ 4 ≥yi ȳ

ymax y1 y2 y3 y4

a b =a2 b3

a a

a b

b a

a a

a b a =a2 b3 b
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18. Prove the following proposition:
Let  and  be integers with . If  does not divide , then the equation  does not have a solution
that is a natural number. 
Hint: It may be necessary to factor a sum of cubes. Recall that  
 

19. Evaluation of Proofs 
See the instructions for Excercise (19) on page 100 from Section 3.1.  
(a)

If  is an odd integer, then ( ) is an odd integer.

Proof

For  to be an odd integer, there must exist an integer  such that

By subtracting 6 from both sides of this equation, we obtain

By the closure properties of the integers, ( ) is an integer, and hence, the last equation implies that  is an odd
integer. This proves that if  is an odd integer, then  is an odd integer.

(b)

For all integers  and , if  is an even integer, then  is even or  is even.

Proof

For either  or  to be even, there exists an integer  such that  or . So if we multiply  and , the
product will contain a factor of 2 and, hence,  will be even.

Explorations and Activities

20. Using a Logical Equivalency. Consider the following proposition: 
Proposition. For all integers  and , if 3 does not divide  and 3 does not divide , then 3 does not divide the product . 
 
(a) Notice that the hypothesis of the proposition is stated as a conjunction of two negations (“3 does not divide  and 3 does
not divide ”). Also, the conclusion is stated as the negation of a sentence (“3 does not divide the product .”). This often
indicates that we should consider using a proof of the contrapositive. If we use the symbolic form  as a
model for this proposition, what is , what is , and what is ? 
(b) Write a symbolic form for the contrapositive of . 
(c) Write the contrapositive of the proposition as a conditional statement in English. 
We do not yet have all the tools needed to prove the proposition or its contrapositive. However, later in the text, we will learn
that the following proposition is true. 
 
Proposition X. Let  be an integer. If 3 does not divide , then there exist integers  and  such that . 
 
(d) i. Find integers  and  guaranteed by Proposition X when . 
ii. Find integers  and  guaranteed by Proposition X when . 

a b a ≠ 0 a b a +bx +(b +a) = 0x3

+ = (u +v)( −uv+ ).u3 v3 u2 v2 (3.2.7)

 proposition

m m +6

m +6 n

m +6 = 2n +1. (3.2.8)

m = 2n −6 +1 = 2(n −3) = 1. (3.2.9)

n −3 m

m m +6

 proposition

m n mn m n

m n k m = 2k n = 2k m n

mn

a b a b a ⋅ b

a

b a ⋅ b

(┐Q ∧ ┐R) → ┐P

P Q R

(┐Q ∧ ┐R) → ┐P

a a x y 3x +ay = 1

x y a = 5
x y a = 2
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iii. Find integers  and  guaranteed by Proposition X when . 
(e) Assume that Proposition X is true and use it to help construct a proof of the contrapositive of the given proposition. In
doing so, you will most likely have to use the logical equivalency .

Answer

Add texts here. Do not delete this text first.

This page titled 3.2: More Methods of Proof is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

3.2: More Methods of Proof by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

x y a = −2

P → (Q ∨ R) ≡ (P ∧ ┐Q) → R
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3.3: Proof by Contradiction
Preview Activity 1 (Proof by Contradiction)

In Section 2.1, we defined a tautology to be a compound statement  that is true for all possible combinations of truth values of the
component statements that are part of S. We also defined contradiction to be a compound statement that is false for all possible
combinations of truth values of the component statements that are part of .

That is, a tautology is necessarily true in all circumstances, and a contradiction is necessarily false in all circumstances.

1. Use truth tables to explain why  is a tautology and  is a contradiction. 
 
Another method of proof that is frequently used in mathematics is a proof by contradiction. This method is based on the fact
that a statement  can only be true or false (and not both). The idea is to prove that the statement  is true by showing that it
cannot be false. This is done by assuming that  is false and proving that this leads to a contradiction. (The contradiction often
has the form , where  is some statement.) When this happens, we can conclude that the assumption that the statement 

 is false is incorrect and hence  cannot be false. Since it cannot be false, then  must be true. 
A logical basis for the contradiction method of proof is the tautology

where  is a statement and  is a contradiction. The following truth table establishes this tautology.

T F F T T

F F T F T

 
This tautology shows that if  leads to a contradiction, then  must be true. The previous truth table also shows that the
statement  is logically equivalent to . This means that if we have proved that  leads to a contradiction, then we
have proved statement . So if we want to prove a statement  using a proof by contradiction, we assume that  is true and
show that this leads to a contradiction.

When we try to prove the conditional statement, “If  then ” using a proof by contradiction, we must assume that  is
false and show that this leads to a contradiction.

2. Use a truth table to show that  is logical equivalent to . 
 
The preceding logical equivalency shows that when we assume that  is false, we are assuming that  is true and  is
false. If we can prove that this leads to a contradiction, then we have shown that  is false and hence that  is
true.

3. Given a counterexample to show that the following statement is false. 
 

For each real number , .

4. When a statement is false, it is sometimes possible to add an assumption that will yield a true statement. This is usually done by
using a conditional statement. So instead of working with the statement in (3), we will work with a related statement that is
obtained by adding an assumption (or assumptions) to the hypothesis. 
 

For each real number , if , then . 

To begin a proof by contradiction for this statement, we need to assume the negation of the statement. To do this, we need to
negate the entire statement, including the quantifier. Recall that the negation of a statement with a universal quantifier is a
statement that contains an existential quantifier. (See Theorem 2.16 on page 67). With this in mind, carefully write down all
assumptions made at the beginning of a proof by contradiction for this statement.

Preview Activity 2 (Constructing a Proof by Contradiction)

S

S

P ∨ ┐P P ∧ ┐P

X X

X

R∧ ┐R R

X X X

[┐X → C] → X, (3.3.1)

X C

X C ┐X ┐X → C (┐X → C) → X

┐X X

┐X → C X ┐X

X X ┐X

P Q P → Q

┐(P → Q) P ∧ ┐Q

P → Q P Q

┐(P → Q) P → Q

x ≥ 4
1

x(1 −x)

x 0 < x < 1 ≥ 4
1

x(1 −x)
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Consider the following proposition:

Proposition. For all real numbers  and , if , , and , then .

To start a proof by contradiction, we assume that this statement is false; that is, we assume the negation is true. Because this is a
statement with a universal quantifier, we assume that there exist real numbers  and  such that , ,  and that 

. (Notice that the negation of the conditional sentence is a conjunction.)

For this proof by contradiction, we will only work with the know column of a know-show table. This is because we do not have a
specific goal. The goal is to obtain some contradiction, but we do not know ahead of time what that contradiction will be. Using our
assumptions, we can perform algebraic operations on the inequality

until we obtain a contradiction.

1. Try the following algebraic operations on the inequality in (2). First, multiply both sides of the inequality by , which is a
positive real number since  and . Then, subtract  from both sides of this inequality and finally, factor the left
side of the resulting inequality.

2. Explain why the last inequality you obtained leads to a contradiction.

By obtaining a contradiction, we have proved that the proposition cannot be false, and hence, must be true.

Writing Guidelines: Keep the Reader Informed

A very important piece of information about a proof is the method of proof to be used. So when we are going to prove a result
using the contrapositive or a proof by contradiction, we indicate this at the start of the proof.

We will prove this result by proving the contrapositive of the statement.
We will prove this statement using a proof by contradiction.
We will use a proof by contradiction.

We have discussed the logic behind a proof by contradiction in the preview activities for this section. The basic idea for a proof by
contradiction of a proposition is to assume the proposition is false and show that this leads to a contradiction. We can then conclude
that the proposition cannot be false, and hence, must be true. When we assume a proposition is false, we are, in effect, assuming
that its negation is true. This is one reason why it is so important to be able to write negations of propositions quickly and correctly.
We will illustrate the process with the proposition discussed in Preview Activity .

For each real number , if , then 

Proof

We will use a proof by contradiction. So we assume that the proposition is false, or that there exists a real number  such
that  and

We note that since , we can conclude that  and that . Hence,  and if we multiply
both sides of inequality (1) by , we obtain

We can now use algebra to rewrite the last inequality as follows:

x y x ≠ y x > 0 y > 0 + > 2
x

y

y

x

x y x ≠ y x > 0 y > 0

+ ≤ 2
x

y

y

x

+ ≤ 2
x

y

y

x
(3.3.2)

xy

x > 0 y > 0 2xy

3.3.1

 Proposition 3.14

x 0 < x < 1 ≥ 4
1

x(1 −x)

x

0 < x < 1

< 4.
1

x(1 −x)
(3.3.3)

0 < x < 1 x > 0 (1 −x) > 0 x(1 −x) > 0
x(1 −x)

1 < 4x(1 −x).

1 < 4x−4x2

4 −4x+1 < 0x2
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However,  is a real number and the last inequality says that a real number squared is less than zero. This is a
contradiction since the square of any real number must be greater than or equal to zero. Hence, the proposition cannot be

false, and we have proved that for each real number , if , then .

One of the most important parts of a proof by contradiction is the very first part, which is to state the assumptions that will be
used in the proof by contradiction. This usually involves writing a clear negation of the proposition to be proven. Review De
Morgan’s Laws and the negation of a conditional statement in Section 2.2. (See Theorem 2.8 on page 48.) Also, review
Theorem 2.16 (on page 67) and then write a negation of each of the following statements. (Remember that a real number is
“not irrational” means that the real number is rational.)

1. For each real number , if  is irrational, then  is irrational.
2. For each real number ,  is irrational or  is irrational.
3. For all integers  and , if 5 divides , then 5 divides  or 5 divides .

4. For all real numbers  and , if  and , then .

Answer

Add texts here. Do not delete this text first.

A proof by contradiction is often used to prove a conditional statement  when a direct proof has not been found and it
is relatively easy to form the negation of the proposition. The advantage of a proof by contradiction is that we have an
additional assumption with which to work (since we assume not only  but also ). The disadvantage is that there is no well-
defined goal to work toward. The goal is simply to obtain some contradiction. There usually is no way of telling beforehand
what that contradiction will be, so we have to stay alert for a possible absurdity. Thus, when we set up a know-show table for a
proof by contradiction, we really only work with the know portion of the table.

Consider the following proposition:

For each integer , if  (mod 4), then  (mod 6).

1. Determine at least five different integers that are congruent to 2 modulo 4, and determine at least five different integers that
are congruent to 3 modulo 6. Are there any integers that are in both of these lists?

2. For this proposition, why does it seem reasonable to try a proof by contradiction?
3. For this proposition, state clearly the assumptions that need to be made at the beginning of a proof by contradiction, and

then use a proof by contradiction to prove this proposition.

Answer

Add texts here. Do not delete this text first.

Proving that Something Does Not Exist

In mathematics, we sometimes need to prove that something does not exist or that something is not possible. Instead of trying to
construct a direct proof, it is sometimes easier to use a proof by contradiction so that we can assume that the something exists. For
example, suppose we want to prove the following proposition:

(2x−1 < 0)2

(2x−1)

x 0 < x < 1 ≥ 4
1

x(1 −x)

 Progress Check 3.15: Starting a Proof by Contradiction

x x x−−√3

x (x+ )2
–

√ (−x+ )2
–

√
a b ab a b

a b a > 0 b > 0 + ≠
2

a

2

b

4

a+b

 Important Note

P → Q

P ┐Q

 Progress Check 3.16: Exploration and a Proof by Contradiction

n n ≡ 2 n ≢ 3
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For all integers  and , if  and  are odd integers, then there does not exist an integer  such that .

Notice that the conclusion involves trying to prove that an integer with a certain property does not exist. If we use a proof by
contradiction, we can assume that such an integer z exists. This gives us more with which to work.

Complete the following proof of Proposition 3.17:

Proof. We will use a proof by contradiction. So we assume that there exist integers  and  such that  and  are odd and there
exists an integer  such that . Since  and  are odd, there exist integers  and  such that  and 

.

1. Use the assumptions that  and  are odd to prove that  is even and hence,  is even. (See Theorem 3.7 on page
105.) 
 
We can now conclude that  is even. (See Theorem 3.7 on page 105.) So there exists an integer  such that . If we
substitute for , , and  in the equation , we obtain 

2. Use the previous equation to obtain a contradiction. Hint: One way is to use algebra to obtain an equation where the left
side is an odd integer and the right side is an even integer.

Answer

Add texts here. Do not delete this text first.

Rational and Irrational Numbers

One of the most important ways to classify real numbers is as a rational number or an irrational number. Following is the definition
of rational (and irrational) numbers given in Exercise (9) from Section 3.2.

A real number  is defined to be a rational number provided that there exist integers  and  with  such that .

A real number that is not a rational number is called an irrational number.

This may seem like a strange distinction because most people are quite familiar with the rational numbers (fractions) but the
irrational numbers seem a bit unusual. However, there are many irrational numbers such as , , , , and the number . We
are discussing these matters now because we will soon prove that  is irrational in Theorem 3.20.

We use the symbol  to stand for the set of rational numbers. There is no standard symbol for the set of irrational numbers.
Perhaps one reason for this is because of the closure properties of the rational numbers. We introduced closure properties in Section
1.1, and the rational numbers  are closed under addition, subtraction, multiplication, and division by nonzero rational numbers.
This means that if , then

, , and  are in ; and

If , then  is in .

The basic reasons for these facts are that if we add, subtract, multiply, or divide two fractions, the result is a fraction. One reason
we do not have a symbol for the irrational numbers is that the irrational numbers are not closed under these operations. For
example, we will prove that  is irrational in Theorem 3.20. We then see that

 and .

 Proposition 3.17.

x y x y z + =x2 y2 z2

 Progress Check 3.18

x y x y

z + =x2 y2 z2 x y m n x = 2m+1
y = 2n+1

x y +x2 y2 z2

z k z = 2k
x y z + =x2 y2 z2

(2m+1 +(2n+1 = (2k .)2 )2 )2 (3.3.4)

 Definitions: Rational and Irrational Number

x m n n ≠ 0 x =
m

n

2
–

√ 3
–

√ 2
–

√3
π e

2
–

√

Q

Q

x, y ∈ Q

x+y xy xy Q

y ≠ 0
x

y
Q

2
–

√

= 22
–

√ 2
–

√ = 1
2
–

√

2
–

√
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which shows that the product of irrational numbers can be rational and the quotient of irrational numbers can be rational.

It is also important to realize that every integer is a rational number since any integer can be written as a fraction. For example, we

can write . In general, if , then , and hence, .

Because the rational numbers are closed under the standard operations and the definition of an irrational number simply says that
the number is not rational, we often use a proof by contradiction to prove that a number is irrational. This is illustrated in the next
proposition.

For all real numbers  and , if  is rational and  and  is irrational, then  is irrational.

Proof

We will use a proof by contradiction. So we assume that there exist real numbers  and  such that  is rational,  is
irrational, and  is rational. Since , we can divide by , and since the rational numbers are closed under division

by nonzero rational numbers, we know that . We now know that  and  are rational numbers and since the

rational numbers are closed under multiplication, we conclude that

However,  and hence,  must be a rational number. Since a real number cannot be both rational and irrational,

this is a contradiction to the assumption that  is irrational. We have therefore proved that for all real numbers  and , if 
is rational and  and  is irrational, then  is irrational.

The Square Root of 2 Is an Irrational Number
The proof that the square root of 2 is an irrational number is one of the classic proofs in mathematics, and every mathematics
student should know this proof. This is why we will be doing some preliminary work with rational numbers and integers before
completing the proof. The theorem we will be proving can be stated as follows:

If  is a real number such that , then  is an irrational number.

This is stated in the form of a conditional statement, but it basically means that  is irrational (and that  is irrational). That
is,  cannot be written as a quotient of integers with the denominator not equal to zero.

In order to complete this proof, we need to be able to work with some basic facts that follow about rational numbers and even
integers.

1. Each integer  is a rational number since  can be written as .

2. Notice that , since 

 

We can also show that , , and  

Item (2) was included to illustrate the fact that a rational number can be written as a fraction in "lowest terms" with a positive

denominator. This means that any rational number can be written as a quotient , where  and  are integers, , and 

and  have no common factor greater than 1.
3. If  is an integer and  is even, what can be conclude about . Refer to theorem 3.7 on page 105.

3 =
3

1
n ∈ Z n =

n

1
n ∈ Q

 Proposition 3.19

x y x x ≠ 0 y x ⋅ y

x y x y

x ⋅ y x ≠ 0 x

∈ Q
1

x
x ⋅ y

1

x

⋅ (xy) ∈ Q
1

x
(3.3.5)

⋅ (xy) = y
1

x
y

y x y x

x ≠ 0 y x ⋅ y

 Theorem 3.20

r = 2r2 r

2
–

√ − 2
–

√
2
–

√

m m m =
m

1

=
2

3

4

6

= = ⋅ =
4

6

2 ⋅ 2

3 ⋅ 2

2

2

2

3

2

3
(3.3.6)

=
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12

5

4
=

10
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−5

4
=

−30

−16
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8
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n
m n n > 0 m

n

n n2 n
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In a proof by contradiction of a conditional statement , we assume the negation of this statement or . So in a proof
by contradiction of Theorem 3.20, we will assume that  is a real number, , and  is not irrational (that is,  is rational).

If  is a real number such that , then  is an irrational number.

Proof

We will use a proof by contradiction. So we assume that the statement of the theorem is false. That is, we assume that

 is a real number, , and  is a rational number.

Since r is a rational number, there exist integers  and  with \(n > 0\0 such that

and  and  have no common factor greater than 1. We will obtain a contradiction by showing that  and  must both be
even. Squaring both sides of the last equation and using the fact that , we obtain

Equation (1) implies that  is even, and hence, by Theorem 3.7,  must be an even integer. This means that there exists
an integer  such that . We can now substitute this into equation (1), which gives

We can divide both sides of equation (2) by 2 to obtain . Consequently,  is even and we can once again use
Theorem 3.7 to conclude that  is an even integer.

We have now established that both  and  are even. This means that 2 is a common factor of  and , which contradicts
the assumption that  and  have no common factor greater than 1. Consequently, the statement of the theorem cannot be
false, and we have proved that if  is a real number such that , then  is an irrational number.

1. This exercise is intended to provide another rationale as to why a proof by contradiction works. 
 
Suppose that we are trying to prove that a statement P is true. Instead of proving this statement, assume that we prove that
the conditional statement “If , then  ” is true, where  is some contradiction. Recall that a contradiction is a statement
that is always false. 
 
(a) In symbols, write a statement that is a disjunction and that is logically equivalent to . 
(b) Since we have proven that  is true, then the disjunction in Exercise (1a) must also be true. Use this to explain
why the statement  must be true. 
(c) Now explain why  must be true if we prove that the negation of  implies a contradiction.

2. Are the following statements true or false? Justify each conclusion. 
 
(a) For all integers  and , if  is even and  is odd, then 4 does not divide . 
(b) For all integers  and , if  is even and  is odd, then 6 does not divide . 
(c) For all integers  and , if  is even and  is odd, then 4 does not divide . 
(d) For all integers  and , if  is odd and  is odd, then 4 divides .

3. Consider the following statement: 
If  is a real number such that , then  is irrational. 
 

P → Q P ∧ ┐Q

r = 2r2 r r

 Theorem 3.20

r = 2r2 r

r = 2r2 r

m n

r =
m

n

m n m n

= 2r2

2 =
m2

n2

= 2m2 n2 (3.3.7)

m2 m

p m = 2p

(2p = 2)2 n2

4 = 2 .p2 n2 (3.3.8)

= 2n2 p2 n2

m

m n m n

m n

r = 2r2 r

 Exercises for Section 3.3

┐P C C

┐P → C

┐P → C

P

P P

a b a b ( + )a2 b2

a b a b ( + )a2 b2

a b a b ( +2 )a2 b2

a b a b ( +3 )a2 b2

r = 18r2 r
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(a) If you were setting up a proof by contradiction for this statement, what would you assume? Carefully write down all
conditions that you would assume. 
(b) Complete a proof by contradiction for this statement.

4. Prove that the cube root of 2 is an irrational number. That is, prove that if  is a real number such that , then  is an
irrational number.

5. Prove the following propositions: 
 
(a) For all real numbers  and , if  is rational and  is irrational, then  is irrational. 

(b) For all nonzero real numbers  and , if  is rational and  is irrational, then  is irrational.

6. Are the following statements true or false? Justify each conclusion. 
 
(a) For each positive real number , if  is irrational, then  is irrational. 
(b) For each positive real number , if  is irrational, then  is irrational. 
(c) For every pair of real numbers  and , if  is irrational, then  is irrational and  is irrational. 
(d) For every pair of real numbers  and , if  is irrational, then  is irrational or  is irrational.

7. (a) Give an example that shows that the sum of two irrational numbers can be a rational number. 
(b) Now explain why the following proof that  is an irrational number is not a valid proof: Since  and 
are both irrational numbers, their sum is an irrational number. Therefore,  is an irrational number 
Note: You may even assume that we have proven that  is an irrational number. (We have not proven this.) 
(c) is the real number  a rational number or an irrational number? Justify your conclusion.

8. (a) Prove that for each reach number ,  is irrational or  is irrational. 
(b) Generalize the proposition in Part(a) for any irrational number (instead of just ) and then prove the new proposition.

9. Is the following statement true or false? 
For all positive real number  and , .

10. Is the following proposition true or false? Justify your conclusion. 

For each real number , .

11. (a) Is the base 2 logarithm of 32, , a rational number or an irrational number? Justify your conclusion. 
(b) Is the base 2 logarithm of 3, , a rational number or an irrational number? Justify your conclusion.

12. In Exercise (15) in Section 3.2, we proved that there exists a real number solution to the equation . Prove that
there is no integer  such that .

13. Prove each of the following propositions: 
 
(a) For each real number , if , then . 

(b) For all real numbers  and , if  and , then . 
(c) If  is an integer greater than 2, then for all integers ,  does not divide  or . 
(d) For all numbers  and , if  and , then 

14. Prove that there do not exist three consecutive natural numbers such that the cube of the largest is equal to the sum of the
cubes of the other two.

15. Three natural numbers , , and  with  are called a Pythagorean triple provided that . For
example, the numbers 3, 4, and 5 form a Pythagorean triple, and the numbers 5, 12, and 13 form a Pythagorean triple. 
 
(a) Verify that if , , and , then , and hence, 20, 21, and 29 form a Pythagorean triple. 
(b) Determine two other Pythagorean triples. That is, find integers , , and  such that . 
(c) Is the following proposition true or false? Justify your conclusion. 
For all integers , , and , if , then  is even or  is even.

16. Consider the following proposition: There are no integers a and b such that . 
 
(a) Rewrite this statement in an equivalent form using a universal quantifier by completing the following: 

r = 2r3 r

x y x y x+y

x y x y
x

y

x x x2

x x x−−√
x y x+y x y

x y x+y x y

( + )2
–

√ 5
–

√ 2
–

√ 5
–

√
( + )2

–
√ 5

–
√

5
–

√
+2

–
√ 5

–
√

x (x+ )2
–

√ (−x+ )2
–

√
2
–

√

x y ≤ +x+y− −−−−
√ x−−√ y√

x x(1 −x) ≤
1

4
lo 32g2

lo 3g2

−4 = 7x3 x2

x −4 = 7x3 x2

θ 0 < θ <
π

2
(sinθ+cosθ) > 1

a b a ≠ 0 b ≠ 0 ≠ a+b+a2 b2
− −−−−−

√

n m n m n+m ≠ nm

a b a > 0 b > 0

+ ≠ .
2

a

2

b

4

a+b
(3.3.9)

a b c a < b < c + =a2 b2 c2

a = 20 b = 21 c = 29 + =a2 b2 c2

a b c + =a2 b2 c2

a b c + =a2 b2 c2 a b

= 4a+2b2
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For all integers  and , ... 
(b) Prove the statement in Part (a).

17. Is the following statement true or false? Justify your conclusion. 
 
For each integer  that is greater than 1, if a is the smallest positive factor of  that is greater than 1, then a is prime. 
 
See Exercise (13) in Section 2.4 (page 78) for the definition of a prime number and the definition of a composite number.

18. A magic square is a square array of natural numbers whose rows, columns, and diagonals all sum to the same number. For
example, the following is a 3 by 3 magic square since the sum of 3 numbers in each row is equal to 15, the sum of the 3
numbers in each column is equal to 15, and the sum of the 3 numbers in each diagonal is equal to 15.

8 3 4

1 5 9

6 7 2

Prove that the following 4 by 4 square cannot be completed to form a magic square.

 1  2

3 4 5  

6 7  8

9  10  

Hint: Assign each of the six blank cells in the square a name. One possibility is to use , , , , , and .

19. Using only the digits 1 through 9 one time each, is it possible to construct a 3 by 3 magic square with the digit 3 in the
center square? That is, is it possible to construct a magic square of the form

a b c

d 3 e

f g h

where , , , , , , ,  are all distinct digits, none of which is equal to 3? Either construct such a magic square or prove
that it is not possible.

20. Evaluation of proofs 
See the instructions for Exercise (19) on page 100 from Section 3.1

For each real number , if  is irrational and  is an integer, then  is irrational.

Proof

We assume that  is a real number and is irrational. This means that for all integers  and  with , .

Hence, we may conclude that  and, therefore,  is irrational.

For all real numbers  and , if  is irrational and  is rational, then  is irrational.

Proof

We will use a proof by contradiction. So we assume that the proposition is false, which means that there exist real
numbers  and  where , , and . Since the rational numbers are closed under subtraction

a b

n n

a b c d e f

a b c d e f g h

 proposition

x x m mx

x a b b ≠ 0 x ≠
a

b

mx ≠
ma

b
mx

 proposition

x y x y x+y

x y x ∉ Q y ∈ Q x+y ∈ Q
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and  and  are rational, we see that

.

However, , and hence we can conclude that . This is a contradiction to the assumption that 
. Therefore, the proposition is not false, and we have proven that for all real numbers  and , if  is

irrational and  is rational, then  is irrational.

For each real number , .

Proof

A proof by contradiction will be used. So we assume the proposition is false. This means that there exists a real

number  such that . If multiply both sides of this inequality by 4, we obtain .

However, if we let , we then see that

 
 

The last inequality is clearly a contradiction and so we have proved the proposition.

Explorations and Activities

21. A Proof by Contradiction. Consider the following proposition:

Proposition. Let , , and  be integers. If 3 divides , 3 divides , and  (mod 3), then the equation

has not solution in which both  and  are integers.

Proof. A proof by contradiction will be used. So we assume that the statement is false. That is, we assume that there
exist integers , , and  such that 3 divides both  and , that  (mod 3), and that the equation

has a solution in which both  and  are integers. So there exist integers  and  such that

Hint: Now use the facts that 3 divides , 3 divides , and  (mod 3).

22. Exploring a Quadratic Equation. Consider the following proposition:

Proposition. For all integers  and , if  is odd, then the equation

has no integer solution for x. 
 
(a) What are the solutions of the equation when  and ? That is, what are the solutions of the equation 

? 
(b) What are the solutions of the equation when  and ? That is, what are the solutions of the equation 

? 
(c) Solve the resulting quadratic equation for at least two more examples using values of  and  that satisfy the
hypothesis of the proposition. 
(d) For this proposition, why does it seem reasonable to try a proof by contradiction? 

x+y y

(x+y) −y ∈ Q (3.3.10)

(x+y) −y = x x ∈ Q

x ∉ Q x y x

y x+y

 proposition

x x(1 −x) ≤
1

4

x x(1 −x) >
1

4
4x(1 −x) > 1

x = 3

4x(1 −x) > 1
4 ⋅ 3(1 −3) > 1

−12 > 1

a b c a b c ≡ 1

ax+by = c

x y

a b c a b c ≡ 1

ax+by = c

x y m n

am+bn = c

a b c ≡ 1

m n n

+2mx+2n = 0x2

m = 1 n = 1
+2x−2 = 0x2

m = 2 n = 3
+4x+2 = 0x2

m n
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(e) For this proposition, state clearly the assumptions that need to be made at the beginning of a proof by contradiction. 
(f) Use a proof by contradiction to prove this proposition.

Answer

Add texts here. Do not delete this text first.

This page titled 3.3: Proof by Contradiction is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.
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3.4: Using Cases in Proofs

1. Complete a truth table to show that  is logical equivalent to .
2. Suppose that you are trying to prove a statement that is written in the form . Explain why you can complete

this proof by writing separate and independent proofs of  and .
3. Now consider the following proposition: 

 
Proposition. For all integers  and , if  is odd, then  is odd and  is odd. 
Write the contrapositive of this proposition.

4. Now prove that if  is an even integer, then  is an even integer. Also, prove that if  is an even integer, then  is an even
integer.

5. Use the results proved in part (4) and the explanation in part (2) to explain why we have proved the contrapositive of the
proposition in part (3).

The work in Preview Activity  was meant to introduce the idea of using cases in a proof. The method of using cases is
often used when the hypothesis of the proposition is a disjunction. This is justified by the logical equivalency

See Theorem 2.8 on page 48 and Exercise (6) on page 50.

In some other situations when we are trying to prove a proposition or a theorem about an element  in some set , we often
run into the problem that there does not seem to be enough information about x to proceed. For example, consider the
following proposition:

Proposition 1. If  is an integer, then  is an even integer.

If we were trying to write a direct proof of this proposition, the only thing we could assume is that  is an integer. This is not
much help. In a situation such as this, we will sometimes use cases to provide additional assumptions for the forward process
of the proof. Cases are usually based on some common properties that the element  may or may not possess. The cases must
be chosen so that they exhaust all possibilities for the object  in the hypothesis of the original proposition. For Proposition 1,
we know that an integer must be even or it must be odd. We can thus use the following two cases for the integer :

The integer  is an even integer;
The integer  is an odd integer.

1. Complete the proof for the following proposition: 
 
Proposition 2: If  is an even integer, then  is an even integer. 
Proof. Let  be an even integer. Then there exists an integer  such that . Substituting this into the expression 

 yields ...
2. Construct a proof for the following proposition: 

 
Proposition 3: If  is an odd integer, then  is an even integer.

3. Explain why the proofs of Proposition 2 and Proposition 3 can be used to construct a proof of Proposition 1.

Some Common Situations to Use Cases
When using cases in a proof, the main rule is that the cases must be chosen so that they exhaust all possibilities for an object x in
the hypothesis of the original proposition. Following are some common uses of cases in proofs.

When the hypothesis is, "  is an integer." Case 1:  is an even integer. 
Case 2:  is an odd integer.

 PREVIEW ACTIVITY : Using a Logical Equivalency3.4.1

(P ∨Q) → R (P → R) ∧ (Q → R)

(P ∨Q) → R

P → R Q → R

x y xy x y

x xy y xy

 Preview Activity : Using Cases in a Proof3.4.1

3.4.1

[(P ∨Q) → R] ≡ [(P → R) ∧ (Q → R)] (3.4.1)

x U

n +nn2

n

x

x
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n

n
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When the hypothesis is, "  and  are integers."

Case 1:  and  are even. 
Case 2:  is even and  is odd. 
Case 3:  is odd and  is even. 
Case 4:  and  are both odd.

When the hypothesis is, "  is a real number." Case 1:  is rational. 
Case 2:  is irrational.

When the hypothesis is, "  is a real number."
Case 1:  OR Case 1:  
Case 2:  Case 2:  
Case 3: 

When the hypothesis is, "  and  are real numbers."
Case 1:  OR Case 1:  
Case 2:  Case 2:  
Case 3: 

Writing Guidelines for a Proof Using Cases

When writing a proof that uses cases, we use all the other writing guidelines. In addition, we make sure that it is clear where each
case begins. This can be done by using a new paragraph with a label such as “Case 1,” or it can be done by starting a paragraph
with a phrase such as, “In the case where . . . .”

Complete the proof of the following proposition:

Proposition. For each integer ,  is an odd integer.

Proof. Let  be an integer. We will prove that  is an odd integer by examining the case where  is even and the
case where  is odd.

Case 1. The integer  is even. In this case, there exists an integer  such that . Therefore, ....

Answer

Add texts here. Do not delete this text first.

As another example of using cases, consider a situation where we know that  and  are real numbers and . If we want to
make a conclusion about , the temptation might be to divide both sides of the equation by . However, we can only do this if 

. So, we consider two cases: one when  and the other when .

For all real numbers  and , if , then  or .

Proof

We let  and  be real numbers and assume that . We will prove that  or  by considering two cases: (1) 
, and (2) .

In the case where , the conclusion of the proposition is true and so there is nothing to prove.

In the case where , we can multiply both sides of the equation  by  and obtain

So in both cases,  or , and this proves that for all real numbers  and , if , then  or .

m n

m n

m n

m n

m n

x
x

x

x

x = 0 x > 0

x ≠ 0 x = 0

x < 0

a b

a = b a > b

a ≠ b a = b

a < b

 Progress Check 3.21: Using Cases:  Is Even or  Is Oddn n

n −5n+7n2

n −5n+7n2 n

n

n m n = 2m

a b ab = 0

b a

a ≠ 0 a = 0 a ≠ 0

 proposition 3.22

a b ab = 0 a = 0 b = 0

a b ab = 0 a = 0 b = 0

a = 0 a ≠ 0

a = 0

a ≠ 0 ab = 0 dfrac1a

⋅ ab = ⋅ 0
1

a

1

a

b = 0

a = 0 b = 0 a b ab = 0 a = 0 b = 0
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Absolute Value
Most students by now have studied the concept of the absolute value of a real number. We use the notation  to stand for the
absolute value of the real number . One way to think of the absolute value of  is as the “distance” between  and 0 on the
number line. For example,

|-5| = 5 and |-7| = 7

Although this notion of absolute value is convenient for determining the absolute value of a specific number, if we want to prove
properties about absolute value, we need a more careful and precise definition.

For , we define , called the absolute value of , by

Let’s first see if this definition is consistent with our intuitive notion of absolute value by looking at two specific examples.

Since 5 > 0, we see that |5| = 5, which should be no surprise.
Since -7 < 0, we see that |-7| = -(-7) = 7.

Notice that the definition of the absolute value of  is given in two parts, one for when  and the other for when . This
means that when attempting to prove something about absolute value, we often uses cases. This will be illustrated in Theorem 3.23.

Let  be a positive real number. For each real number ,

1.  if and only if  or .
2. .

Proof

The proof of Part (2) is part of Exercise (10). We will prove Part (1).

We let a be a positive real number and let . We will first prove that if , then  or . So we assume
that . In the case where , we see that , and since , we can conclude that .

In the case where , we see that . Since , we can conclude that  and hence that .
These two cases prove that if , then  or .

We will now prove that if  or , then . We start by assuming that  or . Since the
hypothesis of this conditional statement is a disjunction, we use two cases. When , we see that

 since .

When , we conclude that

 since .

and hence, . This proves that if  or , then . Because we have proven both conditional
statements, we have proven that  if and only if  or .

1. What is |4,3| and what is |- |?
2. Use the properties of absolute value in Proposition 3.23 to help solve the following equations for , where  is a real

number. 
 
(a) . 
(b)  

|x|

x x x

 Definition: absolute value

x ∈ R |x| x

|x| = {x

−x

 if x ≥ 0;
 if x < 0.

x x ≥ 0 x < 0

 Theorem 3.23

a x

|x| = a x = a x = −a

| −x| = |x|

x ∈ R |x| = a x = a x = −a

|x| = a x ≥ 0 |x| = x |x| = a x = −a

x < 0 |x| = −x |x| = a −x = a x = −a

|x| = a x = a x = −a

x = a x = −a |x| = a x = a x = −a

x = a

|x| = |a| = a a > 0

x = −a

|x| = | −a| = −(−a) −a < 0

|x| = a x = a x = −a |x| = a

|x| = a x = a x = −a

 Progress Check 3.24: Equations Involving Absolute Values

π

t t

|t| = 12

|t+3| = 5
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(c) . 

(d) .

Answer

Add texts here. Do not delete this text first.

Although solving equations involving absolute values may not seem to have anything to do with writing proofs, the point of
Progress Check 3.24 is to emphasize the importance of using cases when dealing with absolute value. The following theorem
provides some important properties of absolute value.

Let  be a positive real number. For all real numbers  and ,

1.  if and only if .
2. .
3. . This is know as the Triangle Inequality.

Proof

We will prove Part (1). The proof of Part (2) is included in Exercise (10), and the proof of Part (3) is Exercise (14). For Part
(1), we will prove the biconditional proposition by proving the two associated conditional propositions.

So we let a be a positive real number and let  and first assume that . We will use two cases: either  or 
.

In the case where , we know that  and so the inequality  implies that . However, we also
know that  and that . Therefore, we conclude that  and, hence, .
When , we see that . Therefore, the inequality  implies that , which in turn implies that 

. In this case, we also know that  since  is negative and  is positive. Hence, 

So in both cases, we have proven that  and this proves that if , then . We now assume that
.

If , then  and hence, .
If , then  and so . Thus, . By multiplying both sides of the last inequality by -1,
we conclude that .

These two cases prove that if , then . Hence, we have proven that  if and only if .

1. In Preview Activity , we proved that if  is an integer, then  is an even integer. We define two integers to be
consecutive integers if one of the integers is one more than the other integer. This means that we can represent consecutive
integers as  and , where  is some integer. 
Explain why the result proven in Preview Activity  can be used to prove that the product of any two consecutive
integers is divisible by 2.

2. Prove that if  is an odd integer, then the equation  has no solution that is an integer.
3. Prove that if  is an odd integer, then  for some integer  or  for some integer .
4. Prove the following proposition:

 
For each integer , if , then  or .

5. (a) Prove the following proposition: 
For all integers , , and  with , if  divides  or  divides , then  divides the product . 
Hint: Notice that the hypothesis is a disjunction. So use two cases. 

|t−4| =
1

5
|3t−4| = 8

 Theorem 3.25

a x y

|x| < a −a < x < a

|xy| = |x||y|

|x+y| ≤ |x| + |y|

x ∈ R |x| < a x ≥ 0

x < 0

x ≥ 0 |x| = x |x| < a x < a

−a < 0 x > 0 −a < x −a < x < a

x < 0 |x| = −x |x| < a −x < a

−a < x x < a x a −a < x < a

−a < x < a |x| < a −a < x < a

−a < x < a

x ≥ 0 |x| = x |x| < a

x < 0 |x| = −x |x| = −x −a < −|x|

|x| < a

−a < x < a |x| < a |x| < a −a < x < a

 Exercises for section 3.4

3.4.2 n +nn2

m m+1 m

3.4.2

u +x−u = 0x2

n n = 4k+1 k n = 4k+3 k

a = aa2 a = 0 a = 1

a b d d ≠ 0 d a d b d ab
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(b) Write the contrapositive of the proposition in Exercise(5a). 
(c) Write the converse of the proposition in Exercise (5a). Is the converse true or false? Justify your conclusion.

6. Are the following propositions true or false? Justify all your conclusions. If a biconditional statement is found to be false,
you should clearly determine if one of the conditional statements within it is true. In that case, you should state an
appropriate theorem for this conditional statement and prove it. (a) For all integers  and ,  and  are consecutive
integers if and only if 4 divides . 
(b) For all integers  and , 4 divides  if and only if  and  are both even or  and  are both odd.

7. Is the following proposition true or false? Justify your conclusion with a counterexample or a proof. 
 
For each integer , if  is odd, then .

8. Prove that there are no natural numbers  and  with  and .
9. Are the following propositions true or false? Justify each conclusions with a counterexample or a proof.

(a) For all integers  and  with , the equation  has a rational number solution. 
(b) For all integers , , and , if , , and  are odd, then the equation  has no solution that is a rational
number. 
Hint: Do not use the quadratic formula. Use a proof by contradiction and recall that any rational number can be written in

the form , where  and  are integers, , and  and  have no common factor greater than 1. 

(c) For all integers , , , and , if , , , and  are odd, then the equation  has no solution that
is a rational number.

10. (a) Prove Part (2) of Proposition 3.23. 
For each , . 
(b) Prove Part (2) of Proposition 3.25. 
For all real numbers  and , .

11. Let  be a positive real number. In Part (1) of Theorem 3.25, we proved that for each real number ,  if and only if 
. It is important to realize that the sentence  is actually the conjunction of two inequalities. That

is,  means that  and . 
 
(a) Complete the following statement: For each real number ,  if and only if .... 
(b) Prove that for each real number ,  if and only if  
(c) Complete the following statement: For each real number ,  if and only if ....

12. Prove each of the following: 
 

(a) For each nonzero real number , . 

(b) For all real number  and , . 
Hint: An idea that is often used by mathematicians is to add 0 to an expression “intelligently”. In this case, we know that 

. Start by adding this “version” of 0 inside the absolute value sign of . 
(c) For all real number  and , .

13. Evaluation of proofs 
See the instructions for Exercise (19) on page 100 from Section 3.1.

The probabilities assigned to events by a distribution function on a sample space are given by.

Proof

Add proof here and it will automatically be hidden if you have a "AutoNum" template active on the page.

m n m n

( + −1m2 n2

m n ( − )m2 n2 m n m n

n n 8|( −1)n2

a n n ≥ 2 +1 =a2 2n

a b a ≠ 0 ax+b = 0

a b c a b c a +bx+c = 0x2

p

q
p q q > 0 p q

a b c d a b c d a +b +cx+d = 0x3 x2

x ∈ R | −x| = |x|

x y |xy| = |x||y|

a x |x| < a

−a < x < a −a < x < a

−a < x < a −a < x x < a

x |x| ≥ a

x |x| ≤ a −a ≤ x ≤ a

x |x| > a

x | | =x−1
1

|x|
x y |x−y| ≥ |x| − |y|

(−y) +y = 0 |x|

x y ||x| − |y|| ≤ |x−y|

 Theorem 3.4.1
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The probabilities assigned to events by a distribution function on a sample space are given by.

Proof

Add proof here and it will automatically be hidden if you have a "AutoNum" template active on the page.

Explorations and Activities

14. Proof of the Triangle Inequality. 
 
(a) Verify that the triangle inequality is true for several different real numbers  and . Be sure to have some examples
where the real numbers are negative. 
(b) Explain why the following proposition is true: For each real number , . 
(c) Now let  and  be real numbers. Apply the result in Part (14b) to both  and . Then add the corresponding parts of the
two inequalities to obtain another inequality. Use this to prove that .

Answer

Add texts here. Do not delete this text first.

This page titled 3.4: Using Cases in Proofs is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

3.4: Using Cases in Proofs by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

 Theorem 3.4.1

x y

r −|r| ≤ r ≤ |r|

x y x y

|x+y| ≤ |x| + |y|
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3.5: The Division Algorithm and Congruence

1. Let  and . We will now determine several pairs of integers  and  so that . For example, if 
and , we obtain . The following table is set up for various values of . For each , determine the
value of  so that .

1 2 3 4 5 6 7 8 9 10

 19      -5   

27 27 27 27 27 27 27 27 27 27

2. What is the smallest positive value for r that you obtained in your examples from Part (1)? 
 
Division is not considered an operation on the set of integers since the quotient of two integers need not be an integer.
However, we have all divided one integer by another and obtained a quotient and a remainder. For example, if we divide

113 by 5, we obtain a quotient of 22 and a remainder of 3. We can write this as . If we multiply both sides

of this equation by 5 and then use the distributive property to “clear the parentheses,” we obtain 
 

 

 
 
This is the equation that we use when working in the integers since it involves only multiplication and addition of integers.

3. What are the quotient and the remainder when we divide 27 by 4? How is this related to your answer for Part (2)?
4. Repeat part (1) using  and . So the object is to find integers  and  so that . Do this by

completing the following table.

-7 -6 -5 -4 -3 -2 -1

18     -7  

-17 -17 -17 -17 -17 -17 -17

5. The convention we will follow is that the remainder will be the smallest positive integer  for which  and the
quotient will be the corresponding value of . Using this convention, what is the quotient and what is the remainder when
-17 is divided by 5?

1. Let  be a natural number and let  and  be integers.

(a) Write the definition of “  is congruent to  modulo ,” which is written  (mod ).

(b) Use the definition of “divides” to complete the following: 
When we write  (mod ), we may conclude that there exists an integer  such that .... 
 
We will now explore what happens when we multiply several pairs of integers where the first one is congruent to 3 modulo
6 and the second is congruent to 5 modulo 6. We can use set builder notation and the roster method to specify the set  of
all integers that are congruent to 2 modulo 6 as follows: 

2. Use the roster method to specify the set  of all integers that are congruent to 5 modulo 6. 

 Preview Activity 1: Quotients and Remainders

a = 27 b = 4 q r 27 = 4q+r q = 2
r = 19 4 ⋅ 2 +19 = 27 q q

r 4q+r = 27

q

r

4q+ r

= 22 +
113

5

3

5

5 ⋅ = 5(22 + )
113

5

3

5
113 = 5 ⋅ 22 +3

a = −17 b = 5 q r −17 = 5q+r

q

r

5q+ r

r −17 = 5q+r

q

 Preview Activity 2: Some Work with Congruence Modulo n

n a b

a b n a ≡ b n

a ≡ b n k

A

A = {a ∈ Z|a ≡ 3 (mod 6)} = {. . . −15, −9, −3, 3, 9, 15, 21, . . . } (3.5.1)

B

B = {b ∈ Z|b ≡ 5 (mod 6)} =. . . (3.5.2)
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Notice that  and  and that . Also notice that  (mod 6) and that 2 is the smallest positive
integer that is congruent to 26 (mod 6).

3. Now choose at least four other pairs of integers  and  where  and . For each pair, calculate  and then
determine the smallest positive integer  for which  (mod 6). Note: The integer  will satisfy the inequalities 

.
4. Prove that for all integers  and , if  3 (mod 6) and  5 (mod 6), then  2 (mod 6).

The Division Algorithm

Preview Activity  was an introduction to a mathematical result known as the Division Algorithm. One of the purposes of this
preview activity was to illustrate that we have already worked with this result, perhaps without knowing its name. For example,
when we divide 337 by 6, we often write

When we multiply both sides of this equation by 6, we get

When we are working within the system of integers, the second equation is preferred over the first since the second one uses only
integers and the operations of addition and multiplication, and the integers are closed under addition and multiplication. Following
is a complete statement of the Division Algorithm.

For all integers  and  with , there exist unique integers  and  such that

 and 

Some Comments about the Division Algorithm
1. The Division Algorithm can be proven, but we have not yet studied the methods that are usually used to do so. In this text, we

will treat the Division Algorithm as an axiom of the integers. The work in Preview Activity  provides some rationale that
this is a reasonable axiom.

2. The statement of the Division Algorithm contains the new phrase, “there exist unique integers q and r such that ....” This means
that there is only one pair of integers  and  that satisfy both the conditions  and . As we saw in Preview
Activity , there are several different ways to write the integer  in the form . However, there is only one way to
do this and satisfy the additional condition that .

3. In light of the previous comment, when we speak of the quotient and the remainder when we “divide an integer  by the
positive integer ,” we will always mean the quotient  and the remainder  guaranteed by the Division Algorithm. So the
remainder r is the least nonnegative integer such that there exists an integer (quotient)  with .

4. If , then we must be careful when writing the result of the Division Algorithm. For example, in parts (4) and (5) of
Preview Activity , with  and , we obtained , and so the quotient is -4 and the remainder

is 3. Notice that this is different than the result from a calculator, which would be . But this means

If we multiply both sides of this equation by 5, we obtain

This is not the result guaranteed by the Division Algorithm since the value of 2 does not satisfy the result of being greater than
or equal to 0 and less than 5.

5. One way to look at the Division Algorithm is that the integer  is either going to be a multiple of , or it will lie between two
multiples of . Suppose that  is not a multiple of  and that it lies between the multiples  and , where  is some

15 ∈ A 11 ∈ B 15 +11 = 26 26 ≡ 2

a b a ∈ A b ∈ B (a+b)
r (a+b) ≡ r r

0 ≤ r < 6
a b a ≡ b ≡ (a+b) ≡

3.5.1

= 56 + .
337

6

1

6

337 = 6 ⋅ 56 +1

 The Division Algorithm

a b b > 0 q r

a = bq+r 0 ≤ r < b

3.5.1

q r a = bq+r 0 ≤ r < b

3.5.1 a a = bq+r

0 ≤ r < b

a

b (q) (r)
q a = bq+r

a < 0
3.5.1 a = −17 b = 5 −17 = 5 ⋅ (−4) +3

= −3.4
−17

5

= −(3 + ) = −3 − .
−17

5

4

10

2

5
(3.5.3)

−17 = 5(−3) +(−2). (3.5.4)

a b

b a b b ⋅ q b(q+1) q
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integer. This is shown on the number line in Figure 3.2.

Figure 3.2: Remainder for the Division Algorithm

6. If  represents the distance from  to , then 

 
From the diagram, also notice that  is less than the distance between  and . Algebraically, this distance is 

 
Thus, in the case where  is not a multiple of , we get .

7. We have been implicitly using the fact that an integer cannot be both even and odd. There are several ways to understand this
fact, but one way is through the Division Algorithm. When we classify an integer as even or odd, we are doing so on the basis
of the remainder (according to the Division Algorithm) when the integer is “divided” by 2. If , then by the Division
Algorithm there exist unique integers  and  such that 
 

 and .

This means that the remainder, , can only be zero or one (and not both). When , the integer is even, and when , the
integer is odd.

1. What are the possible remainders (according to the Division Algorithm) when an integer is
a. (a) Divided by 4?
b. (b) Divided by 9?

2. For each of the following, find the quotient and remainder (guaranteed by the Division Algorithm) and then summarize the
results by writing an equation of the form , where .

a. When 17 is divided by 3.
b. When -17 is divided by 3.
c. When 73 is divided by 7.
d. When -73 is divided by 7.
e. When 436 is divided by 27.
f. When 539 is divided by 110.

Answer

Add texts here. Do not delete this text first.

Using Cases Determined by the Division Algorithm
The Division Algorithm can sometimes be used to construct cases that can be used to prove a statement that is true for all integers.
We have done this when we divided the integers into the even integers and the odd integers since even integers have a remainder of
0 when divided by 2 and odd integers have a remainder o 1 when divided by 2.

r b ⋅ q a

r

a

=

=

a−b ⋅ q, or

b ⋅ q+r.

(3.5.5)

(3.5.6)

r b ⋅ q b(q+1)

b(q+1) −b ⋅ q =

=

b ⋅ q+b−b ⋅ q

b.

(3.5.7)

(3.5.8)

a b 0 < r < b

a ∈ Z

q r

a = 2q+r 0 ≤ r < 2

r r = 0 r = 1

 Progress Check 3.26: Using the Division Algorithm

a = bq+r 0 ≤ r < b

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86113?pdf


3.5.4 https://math.libretexts.org/@go/page/86113

Sometimes it is more useful to divide the integer  by an integer other than 2. For example, if  is divided by 3, there are three
possible remainders: 0, 1, and 2. If  is divided by 4, there are four possible remainders: 0, 1, 2, and 3. The remainders form the
basis for the cases.

If the hypothesis of a proposition is that “  is an integer,” then we can use the Division Algorithm to claim that there are unique
integers  and  such that

 and 

We can then divide the proof into the following three cases: (1) ; (2) ; and (3) . This is done in Proposition 3.27.

If  is an integer, then 3 divides .

Proof

Let  be an integer. We will show that 3 divides  by examining the three cases for the remainder when  is divided
by 3. By the Division Algorithm, there exist unique integers  and  such that

, and .

This means that we can consider the following three cases:(1) ; (2) ; and (3) .

In the case where , we have . By substituting this into the expression , we get

Since  is an integer, the last equation proves that .

In the second case,  and . When we substitute this into , we obtain

Since  is an integer, the last equation proves that .

The last case is when . The details for this case are part of Exercise (1). Once this case is completed, we will have
proved that 3 divides  in all three cases. Hence, we may conclude that if n is an integer, then 3 divides .

Properties of Congruence
Most of the work we have done so far has involved using definitions to help prove results. We will continue to prove some results
but we will now prove some theorems about congruence (Theorem 3.28 and Theorem 3.30) that we will then use to help prove
other results.

Let . Recall that if  and  are integers, then we say that  is congruent to  modulo  provided that  divides , and we
write  (mod ). (See Section 3.1.) We are now going to prove some properties of congruence that are direct consequences of
the definition. One of these properties was suggested by the work in Preview Activity  and is Part (1) of the next theorem.

Let  be a natural number and let , , , and  be integers. If  (mod ) and  (mod ), then

1.  (mod ).
2.  (mod ).
3. For each ,  (mod ).

a a

a

n

q r

n = 3q+r 0 ≤ r < 3

r = 0 r = 1 r = 2

 Proposition 3.27

n −nn3

n −nn3 n

q r

n = 3q+r 0 ≤ r < 3

r = 0 r = 1 r = 2

r = 0 n = 3q −nn3

−nn3 =

=

=

(3q −(3q))3

27 −3qq3

3(9 −q).q3

(3.5.9)

(3.5.10)

(3.5.11)

(9 −q)q3 3|( −n)n3

r = 1 n = 3q+1 ( −n)n3

−nn3 =

=

=

=

(3q+1 −(3q+1))3

(27 27 +27q+1) −(3q+1)q3 q2

27 +27 +6qq3 q2

3(9 +9 +2q).q3 q2

(3.5.12)

(3.5.13)

(3.5.14)

(3.5.15)

(9 +9 +2q)q3 q2 3|( −n)n3

r = 2
−nn3 −nn3

n ∈ N a b a b n n a−b

a ≡ b n

3.5.2

 Theorem 3.28: Properties of Congruence Modulo n

n a b c d a ≡ b n c ≡ d n

a+c) ≡ (b+d) n

ac ≡ bd n

m ∈ N ≡am bm n
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Proof

We will prove Parts (2) and (3). The proof of Part (1) is Progress Check 3.29. Let  be a natural number and let , , , and 
 be integers. Assume that  (mod ) and  (mod ). This means that  divides  and that  divides .

Hence, there exist integers  and  such that  and . We can then write  and 
and obtain

by subtracting  from both sides of the last equation, we see that

Since  is an integer, this proves that , and hence we can conclude that  (mod ). This
completes the proof of Part (2).

Part (2) basically means that if we have two congruences, we can multiply the corresponding sides of these congruences to
obtain another congruence. We have assumed that  (mod ) and so we write this twice as follows:

If we now use the result in Part (2) and multiply the corresponding sides of these two congruences, we obtain 
(mod ). We can then use this congruence and the congruence  (mod ) and the result in Part (2) to conclude that

or that  (mod ). We can say that we can continue with this process to prove Part (3), but this is not considered to
be a formal proof of this result. To construct a formal proof for this, we could use a proof by mathematical induction. This
will be studied in Chapter 4. See Exercise (13) in Section 4.1.

Prove part (1) of Theorem 3.28.

Answer

Add texts here. Do not delete this text first.

Exercise (11) in Section 3.1 gave three important properties of congruence modulo . Because of their importance, these properties
are stated and proved in Theorem 3.30. Please remember that textbook proofs are usually written in final form of “reporting the
news.” Before reading these proofs, it might be instructive to first try to construct a know-show table for each proof.

Let , and let , , and  be integers.

1. For every integer ,  (mod ). 
This is called the reflexive property of congruence modulo .

2. If  (mod ), then  (mod ). 
This is called symmetric property of congruence modulo .

3. If  (mod ) and  (mod ), then  (mod ). 
This is called transitive property of congruence modulo .

Proof

We will prove the reflexive property and the transitive property. The proof of the symmetric property is Exercise (3).

Let , and let . We will show that  (mod ). Notice that

n a b c

d a ≡ b n c ≡ d n n a−b n c−d

k q a−b = nk c−d = nq a = b+nk c = d+nq

ac =

=

=

(b+nk)(d+nq)

bd+bnq+dnk+ kqn2

bd+n(bq+dk+nkq).

(3.5.16)

(3.5.17)

(3.5.18)

bd

ac−bd = n(bq+dk+nkq). (3.5.19)

bq+dk+nkq n|(ac−bd) ac ≡ bd n

a ≡ ��b n

a

a

≡

≡

b(mod n),  and

b(mod n).

(3.5.20)

(3.5.21)

≡a2 b2

n a ≡ b n

⋅ b ≡ ⋅ b(mod n),a2 b2 (3.5.22)

≡a3 b3 n

 Progress Check 3.29: Proving Part (1) of Theorem 3.28

n

 Theorem 3.30: Properties of Congruence Modulo n

n ∈ N a b c

a a ≡ a n

n

a ≡ b n b ≡ a n

n

a ≡ b n b ≡ c n a ≡ c n

n

n ∈ N a ∈ Z a ≡ a n
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This proves that  divides  and hence, by the definition of congruence modulo , we have proven that  (mod 
).

To prove the transitive property, we let , and let , , and  be integers. We assume that  (mod ) and 
(mod ). We will use the definition of congruence modulo  to prove that  (mod ). Since  (mod ) and 
(mod ), we know that  and . Hence, there exist integers  and  such that

by adding the corresponding sides of these two equations, we obtain

If we simplify the left side of the last equation and factor the right side, we get

By the closure property of the integers, , and so this equation proves that  and hence that  (mod
). This completes the proof of the transitive property of congruence modulo .

Using Cases Based on Congruence Modulo 
Notice that the set of all integers that are congruent to 2 modulo 7 is

If we divide any integer in this set by 7 and write the result according to the Division Algorithm, we will get a remainder of 2. For
example,

Is this a coincidence or is this always true? Let’s look at the general case. For this, let  be a natural number and let . By the
Division Algorithm, there exist unique integers  and  such that

 and .

By subtracting  from both sides of the equation , we obtain

.

But this implies that  and hence that  (mod ). We have proven the following result.

Let  and let . If  and  for some integers  and , then  (mod ).

This theorem says that an integer is congruent (mod ) to its remainder when it is divided by . Since this remainder is unique and
since the only possible remainders for division by  are 0, 1, 2,..., , we can state the following result.

a−a = 0 = n ⋅ 0. (3.5.23)

n a−a n a ≡ a

n

n ∈ N a b c a ≡ b n b ≡ c

n n a ≡ c n a ≡ b n b ≡ c

n n|(a−b) n|(b−c) k q

a−b

b−c

=

=

nk

nq.

(3.5.24)

(3.5.25)

(a−b) +(b−c) = nk+nq. (3.5.26)

a−c = n(k+q). (3.5.27)

(k+q) ∈ Z n|(a−c) a ≡ c

n n

n

{n ∈ Z|n ≡ 2 (mod 7)} = {. . . , −19, −12, −5, 2, 9, 16, 23, . . . } (3.5.28)

2

9

16

23

−5

−12

−19

=

=

=

=

=

=

=

7 ⋅ 0 +2

7 ⋅ 1 +2

7 ⋅ 2 +2

7 ⋅ 3 +2

7(−1) +2

7(−2) +2

7(−3) +2

(3.5.29)

(3.5.30)

(3.5.31)

(3.5.32)

(3.5.33)

(3.5.34)

(3.5.35)

n a ∈ Z

q r

a = nq+r 0 ≤ r < n

r a = nq+r

a−r = nq

n|(a−r) a ≡ r n

 Theorem 3.31

n ∈ N a ∈ mathbbZ a = nq+r 0 ≤ r < n q r a ≡ r n

n n

n n1
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If , then each integer is congruent, modulo , to precisely one of the integers 0, 1, 2, ..., . That is, for each integer 
, there exists a unique integer  such that

 (mod ) and .

Corollary 3.32 can be used to set up cases for an integer in a proof. If  and , then we can consider  cases for . The
integer a could be congruent to 0,1, 2, ..., or  modulo . For example, if we assume that 5 does not divide an integer , then
we know  is not congruent to 0 modulo 5, and hence, that  must be congruent to 1, 2, 3, or 4 modulo 5. We can use these as 4
cases within a proof. For example, suppose we wish to determine the values of  modulo 5 for integers that are not congruent to 0
modulo 5. We begin by squaring some integers that are not congruent to 0 modulo 5. We see that

These explorations indicate that the following proposition is true and we will now outline a method to prove it.

For each integer , if  (mod 5), then  (mod 5) or \(a^2 \equiv 4) (mod 5).

Proof

We will prove this proposition using cases for  based on congruence modulo 5. In doing so, we will use the results in
Theorem 3.28 and Theorem 3.30. Because the hypothesis is  (mod 5), we can use four cases, which are: (1)
(mod 5), (2)  (mod 5), (3)  (mod 5), and (4)\(a \equiv 4) (mod 5). Following are proofs for the first and fourth
cases.

Case 1. (  (mod 5)). In this case, we use Theorem 3.28 to conclude that

 (mod 5) or  (mod 5).

This proves that if  (mod 5), then  (mod 5).

Case 4. (  (mod 5)). In this case, we use Theorem 3.28 to conclude that

 (mod 5) or  (mod 5).

We also know that  (mod 5). So we have  (mod 5) and  (mod 5), and we can now use the transitive
property of congruence (Theorem 3.30) to conclude that  (mod 5). This proves that if  (mod 5), then 
(mod 5).

Complete a proof of Proposition 3.33 by completing proofs for the other two cases.

Note: It is possible to prove Proposition 3.33 using only the definition of congruence instead of using the properties that we
have proved about congruence. However, such a proof would involve a good deal of algebra. One of the advantages of using
the properties is that it avoids the use of complicated algebra in which it is easy to make mistakes.

Answer

Add texts here. Do not delete this text first.

In the proof of Proposition 3.33, we used four cases. Sometimes it may seem a bit overwhelming when confronted with a proof that
requires several cases. For example, if we want to prove something about some integers modulo 6, we may have to use six cases.

 Corollary 3.32

n ∈ N n n−1
a r

a ≡ r n 0 ≤ r < n

n ∈ N a ∈ Z n a

n−1 n a

a a

a2

12

32

62

82

92

=

=

=

=

=

1                      and                    1

9                      and                    9

36                    and                    36

64                    and                    64

81                    and                    81

≡

≡

≡

≡

≡

1 (mod 5).

4 (mod 5).

1 (mod 5).

4 (mod 5).

1 (mod 5).

(3.5.36)

(3.5.37)

(3.5.38)

(3.5.39)

(3.5.40)

 Proposition 3.33.

a a ≢ 0 ≡ 1a2

a

a ≢ 0 a ≡ 1
a ≡ 2 a ≡ 3

a ≡ 1

≡a2 12 ≡ 1a2

a ≡ 1 1a≡

a ≡ 4

≡a2 42 ≡ 16a2

16 ≡ 1 ≡ 16a2 16 ≡ 1
≡ 1a2 a ≡ 4 ≡ 1a2

 Progress Check 3.34 (Using Properties of Congruence)
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However, there are sometimes additional assumptions (or conclusions) that can help reduce the number of cases that must be
considered. This will be illustrated in the next progress check.

Suppose we want to determine the possible values for  modulo 6 for odd integers that are not multiples of 3. Before
beginning to use congruence arithmetic (as in the proof of Proposition 3.33) in each of the possible six cases, we can show that
some of the cases are not possible under these assumptions. (In some sense, we use a short proof by contradiction for these
cases.) So assume that  is an odd integer. Then:

If  (mod 6), then there exists an integer  such that . But then  and hence,  is even. Since we
assumed that  is odd, this case is not possible.
If  (mod 6), then there exists an integer  such that . But then  and hence,  is even. Since
we assumed that  is odd, this case is not possible.

1. Prove that if  is an odd integer, then  cannot be congruent to 4 modulo 6.
2. Prove that if  is an integer and 3 does not divide , then  cannot be congruent to 3 modulo 6.
3. So if  is an odd integer that is not a multiple of 3, then  must be congruent to 1 or 5 modulo 6. Use these two cases to

prove the following proposition:

Answer

Add texts here. Do not delete this text first.

For each integer , if  is an odd integer that is not multiple of 3, then  (mod 6).

1. Complete the details for the proof of Case 3 of Proposition 3.27.
2. Extending the idea in Exercise (1) of Section 3.4, we can represent three consecutive integers as , , and ,

where  is an integer. 
 
(a) Explain why we can also represent three consecutive integers as , , and , where  is an integer.
(b) Explain why Proposition 3.27 proves that the product of any three consecutive integers is divisible by 3. 
(c) Prove that the product of three consecutive integers is divisible by 6.

3. Prove the symmetric property of congruence stated in Theorem 3.30.
4. (a) Let  and let . Explain why  divides  if and only if  (mod ). 

(b) Let . Explain why if  (mod 3), then  (mod 3) or  (mod 3). 
(c) Is the following proposition true or false? Justify your conclusion. 
For each ,  (mod 3) if and only if  (mod 3).

5. (a) Use cases based on congruence modulo 3 and properties of congruence to prove that for each integer ,  (mod
3).  
(b) Explain why the result in Part (a) proves that for each integer , 3 divides . Compare this to the proof of the
same result in Proposition 3.27.

6. Prove that for each natural number ,  is not a natural number.
7. Prove the following proposition by proving its contrapositive. (Hint: Use case analysis. There are several cases. 

 
For all integers  and , if  (mod 3), then  (mod 3) or  (mod 3).

8. (a) Explain why the following proposition is equivalent to the proposition in Exercise (7). 
For all integers  and , if , then  or . 
(b) Prove that for each integer , if 3 divides , then 3 divides .

 Progress Check 3.35: Using Cases Modulo 6

a2

a

a ≡ 0 k a = 6k a = 2(3k) a

a

a ≡ 2 k a = 6k+2 a = 2(3k+1) a

a

a a

a a a

a a

 Proposition 3.36.

a a ≡ 1a2

 Exercises for Section 3.5

m m+1 m+2
m

k−1 k k+1 k

n ∈ N a ∈ Z n a a ≡ 0 n

a ∈ Z a ≢ 0 a ≡ 1 a ≡ 2

a ∈ Z a ≢ 0 ≡ 1a2

n ≡ nn3

n −nn3

n 3n+2
− −−−−

√

a b ab ≡ 0 a ≡ 0 b ≡ 0

a b 3|ab 3|a 3|b
a a2 a
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9. (a) Prove that the real number  is an irrational number. That is, prove that 
If  is a positive real number such that , then  is irrational. 
(b) Prove that the real number  is an irrational number.

10. (a) Use the result in Proposition 3.33 to help prove that the integer  = 5, 344, 580, 232, 468, 953, 153 is not a perfect
square. Recall that an integer  is a perfect square provided that there exists an integer  such that . Hint: Use a
proof by contradiction. 
(b) Is the integer  = 782, 456, 231, 189, 002, 288, 438 a perfect square? Justify your conclusion.

11. (a) Use the result in Proposition 3.33 to help prove that for each integer , if 5 divides , then 5 divides . 
(b) Prove that the real number  is an irrational number.

12. (a) Prove that for each integer , if  (mod 7), then  (mod 7). 
(b) Prove that for each integer , if 7 divides , then 7 divides . 
(c) Prove that the real number  is an irrational number.

13. (a) If an integer has a remainder of 6 when it is divided by 7, is it possible to determine the remainder of the square of that
integer when it is divided by 7? If so, determine the remainder and prove that your answer is correct. 
(b) If an integer has a remainder of 11 when it is divided by 12, is it possible to determine the remainder of the square of
that integer when it is divided by 12? If so, determine the remainder and prove that your answer is correct. 
(c) Let  be a natural number greater than 2. If an integer has a remainder of  when it is divided by , is it possible to
determine the remainder of the square of that integer when it is divided by ? If so, determine the remainder and prove that
your answer is correct.

14. Let  be a natural number greater than 4 and let a be an integer that has a remainder of  when it is divided by .
Make whatever conclusions you can about the remainder of  when it is divided by . Justify all conclusions.

15. Is the following proposition true or false? Justify your conclusion with a proof or a counterexample. 
For each natural number , if 3 does not divide , then  is not a prime number or .

16. (a) Is the following proposition true or false? Justify your conclusion with a counterexample or a proof. 
For each integer , if  is odd then  (mod 8). 
(b) Compare this proposition to the proposition in Exercise (7) from Section 3.4. Are these two propositions equivalent?
Explain. 
(c) Is the following proposition true or false? Justify your conclusion with a counterexample or a proof. 
For each integer , if  is odd and  is not a multiple of 3, then  (mod 24).

17. Prove the following proposition:
For all integers  and , if 3 divides , then 3 divides  and 3 divides .

18. Is the following proposition true or false? Justify your conclusion with a counterexample or a proof. 
For each integer , 3 divides .

19. Are the following statements true or false? Either prove the statement is true or provide a counterexample to show it is
false. 
 
(a) For all integer  and , if  (mod 6), then  (mod 6) or  (mod 6). 
(b) For all integer  and , if  (mod 8), then  (mod 8) or  (mod 8). 
(c) For all integer  and , if  (mod 6), then  (mod 6) or  (mod 6). 
(d) For all integer  and , if  (mod 6), then either  (mod 12) or  (mod 12).

20. (a) Determine several pairs of integers  and  such that  (mod 5). For each such pair, calculate , , and 
. Are each of the resulting integers congruent to 0 modulo 5? 

(b) Prove or disprove the following proposition: 
Let  and  be integers such that  (mod 5) and let . If  (mod 5), then  (mod 5).

21. Evaluation of proofs 
See the instructions for Exercise (19) on page 100 from Section 3.1. 
(a)

For all integers  and , if  (mod 3), then  (mod 3).

Proof

3
–

√
r = 3r2 r

12
−−

√

m

n k n = k2

n

a a2 a

5
–

√
a a ≢ 0 ≢ 0a2

a a2 a

7
–

√

n n−1 n

n

n n−2 n

a2 n

n ( +2)n2 n n = 3

n n ≡ 1n2

n n n ≡ 1n2

a b ( + )a2 b2 a b

a +23aa3

a b a ⋅ b ≡ 0 a ≡ 0 b ≡ 0
a b a ⋅ b ≡ 0 a ≡ 0 b ≡ 0
a b a ⋅ b ≡ 1 a ≡ 1 b ≡ 1
a b ab ≡ 7 a ≡ 1 b ≡ 7

a b a ≡ b 4a+b 3a+2b
7a+3b

m n (m+n) ≡ 0 a, b ∈ Z a ≡ b (ma+nb) ≡ 0

 Proposition

a b (a+2b) ≡ 0 (2a+b) ≡ 0
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We assume  and  (mod 3). This means that 3 divides  and, hence, there exists an
integer  such that . Hence, . For  (mod 3), there exists an integer  such
that . Hence,

Since  is an integer, this proves that 3 divides  and hence,  (mod 3)

(b)

For each integer , 5 divides .

Proof

Let . We will prove that 5 divides  by proving that divides  (mod 5). We will use
cases.

For the first case, if  (mod 5), then  (mod 5) and, hence, ((m^5 - m) \equiv 0\) (mod 5).

For the second case, if  (mod 5), then  (mod 5) and, hence, ((m^5 - m) \equiv (1 - 1)\) (mod 5),
which means that ((m^5 - m) \equiv 0\) (mod 5).

For the third case, if  (mod 5), then  (mod 5) and, hence, ((m^5 - m) \equiv (32 - 2)\) (mod 5),
which means that ((m^5 - m) \equiv 0\) (mod 5).

Explorations and Activities

22. Using a Contradiction to Prove a Case Is Not Possible. Explore the statements in Parts (a) and (b) by considering several
examples where the hypothesis is true. 
 
(a) If an integer  is divisible by both 4 and 6, then it divisible by 24. 
(b) If an integer  is divisible by both 2 and 3, then it divisible by 6. 
(c) What can you conclude from the examples in Part (a)? 
(d) What can you conclude from the examples in Part (b)? 
 
The proof of the following proposition based on Part (b) uses cases. In this proof, however, we use cases and a proof by
contradiction to prove that a certain integer cannot be odd. Hence, it must be even. Complete the proof of the proposition. 
 
Proposition. Let . If 2 divides a and 3 divides , then 6 divides . 
 
Proof : Let  and assume that 2 divides  and 3 divides . We will prove that 6 divides . Since 3 divides , there
exists an integer  such that 

 
The integer  is either even or it is odd. We will show that it must be even by obtaining a contradiction if it assumed to be
odd. So, assume that  is odd. (Now complete the proof.)

23. The Last Two Digits of a Large Integer. 
Notice that 7, 381, 272  72 (mod 100) since 7, 381, 272 - 72 = 7, 381, 200, which is divisible by 100. In general, if we
start with an integer whose decimal representation has more than two digits and subtract the integer formed by the last two
digits, the result will be an integer whose last two digits are 00. This result will be divisible by 100. Hence, any integer with

a, b ∈ Z (a+2b) ≡ 0 a+2b
m a+2b = 3m a = 3m−2b (2a+b) ≡ 0 x

2a+b = 3x

2(3m−2b) +b

6m−3b

3(2m−b)

2m−b

=

=

=

=

3x

3x

3x

x

(3.5.41)

(3.5.42)

(3.5.43)

(3.5.44)

(2m−b) (2a+b) (2a+b) ≡ 0

 Proposition.

m ( −m)m5

m ∈ Z ( −m)m5 ( −m) ≡ 0m5

m ≡ 0 ≡ 0m5

m ≡ 1 ≡ 1m5

m ≡ 2 ≡ 32m5

a

a

a ∈ Z a a

a ∈ Z a a a a

n

a = 3n. (3.5.45)

n

n

≡
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more than 2 digits is congruent modulo 100 to the integer formed by its last two digits. 
 
(a) Start by squaring both sides of the congruence  (mod 100) to prove that  (mod 100) and then prove that 

 (mod 100). What does this tell you about the last two digits in the decimal representation of ? 
(b) Use the two congruences in Part (23a) and laws of exponents to determine  where  (mod 100) and  with 

. What does this tell you about the last two digits in the decimal representation of ? 
(c) Determine the last two digits in the decimal representation of . 
(d) Determine the last two digits in the decimal representation of . 
Hint: One way is to determine the "mod 100 values", for , , , , , , and so on. Then use these values and laws
of exponents to determine , where  (mod 100) and  with . 
(e) Determine the last two digits in the decimal representation of . 
(f) Determine the last two digits in the decimal representation of .

Answer

Add texts here. Do not delete this text first.

This page titled 3.5: The Division Algorithm and Congruence is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or
curated by Ted Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.

3.5: The Division Algorithm and Congruence by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source:
https://scholarworks.gvsu.edu/books/7.

≡ 8134 ≡ 6138

≡ 21316 316

r ≡ r320 r ∈ Z

0 ≤ r < 100 320

3400

4804

42 44 48 416 432 464

r ≡ r4804 r ∈ Z 0 ≤ r < 100
33356

7403
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3.6: Review of Proof Methods
This section is different from others in the text. It is meant primarily as a review of the proof methods studied in Chapter 3. So the
first part of the section will be a description of some of the main proof techniques introduced in Chapter 3. The most important part
of this section is the set of exercises since these exercises will provide an opportunity to use the proof techniques that we have
studied so far.

We will now give descriptions of three of the most common methods used to prove a conditional statement.

Direct Proof of a Conditional Statement 

When is it indicated? This type of proof is often used when the hypothesis and the conclusion are both stated in a “positive”
manner. That is, no negations are evident in the hypothesis and conclusion. That is, no negations are evident in the hypothesis
and conclusion.
Description of the process. Assume that  is true and use this to conclude that  is true. That is, we use the forward-backward
method and work forward from  and backward from .
Why the process makes sense. We know that the conditional statement  is automatically true when the hypothesis is
false. Therefore, because our goal is to prove that  is true, there is nothing to do in the case that  is false.
Consequently, we may assume that  is true. Then, in order for  to be true, the conclusion  must also be true. (When 

 is true, but  is false,  is false.) Thus, we must use our assumption that  is true to show that  is also true.

Proof of a Conditional Statement  Using the Contrapositive

When is it indicated? This type of proof is often used when both the hypothesis and the conclusion are stated in the form of
negations. This often works well if the conclusion contains the operator “or”; that is, if the conclusion is in the form of a
disjunction. In this case, the negation will be a conjunction.
Description of the process. We prove the logically equivalent statement . The forward-backward method is used to
prove . That is, we work forward from  and backward from .
Why the process makes sense. When we prove , we are also proving  because these two statements are
logically equivalent. When we prove the contrapositive of , we are doing a direct proof of . So we assume 
because, when doing a direct proof, we assume the hypothesis, and  is the hypothesis of the contrapositive. We must show 

 because it is the conclusion of the contrapositive.

Proof of  Using a Proof by Contradiction

When is it indicated? This type of proof is often used when the conclusion is stated in the form of a negation, but the hypothesis
is not. This often works well if the conclusion contains the operator “or”; that is, if the conclusion is in the form of a
disjunction. In this case, the negation will be a conjunction.
Description of the process. Assume  and  and work forward from these two assumptions until a contradiction is obtained.
Why the process makes sense. The statement  is either true or false. In a proof by contradiction, we show that it is true
by eliminating the only other possibility (that it is false). We show that  cannot be false by assuming it is false and
reaching a contradiction. Since we assume that  is false, and the only way for a conditional statement to be false is for
its hypothesis to be true and its conclusion to be false, we assume that  is true and that  is false (or, equivalently, that  is
true). When we reach a contradiction, we know that our original assumption that  is false is incorrect. Hence, 
cannot be false, and so it must be true.

Other Methods of Proof

The methods of proof that were just described are three of the most common types of proof. However, we have seen other methods
of proof and these are described below.

Proofs that Use a Logical Equivalency

As was indicated in Section 3.2, we can sometimes use of a logical equivalency to help prove a statement. For example, in order to
prove a statement of the form

it is sometimes possible to use the logical equivalency

(P →Q)

P Q

P Q

P → Q

P → Q P

P P → Q Q

P Q P → Q P Q

(P →Q)

┐Q → ┐P

┐Q → ┐P ┐Q ┐P

┐Q → ┐P P → Q

P → Q ┐Q → ┐P ┐Q

┐Q

┐P

P →Q

P ┐Q

P → Q

P → Q

P → Q

P Q ┐Q

P → Q P → Q

P → (Q∨R), (3.6.1)

[P → (Q∨R)] ≡ [(P ∧ ┐Q) → R]. (3.6.2)
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We would then prove the statement

Most often, this would use a direct proof for statement (3.6.1) but other methods could also be used. Because of the logical
equivalency, by proving statement (3.6.3), we have also proven the statement (3.6.1).

Proofs that Use Cases

When we are trying to prove a proposition or a theorem, we often run into the problem that there does not seem to be enough
information to proceed. In this situation, we will sometimes use cases to provide additional assumptions for the forward process of
the proof. When this is done, the original proposition is divided into a number of separate cases that are proven independently of
each other. The cases must be chosen so that they exhaust all possibilities for the hypothesis of the original proposition. This
method of case analysis is justified by the logical equivalency

which was established in Preview Activity  in Section 3.4.

Constructive Proof

This is a technique that is often used to prove a so-called existence theorem. The objective of an existence theorem is to prove that
a certain mathematical object exists. That is, the goal is usually to prove a statement of the form

There exists an  such that .

For a constructive proof of such a proposition, we actually name, describe, or explain how to construct some object in the universe
that makes  true.

Nonconstructive Proof

This is another type of proof that is often used to prove an existence theorem is the so-called nonconstructive proof. For this type
of proof, we make an argument that an object in the universal set that makes  true must exist but we never construct or name
the object that makes  true.

1. Let  and  be real numbers and let  be a positive number. The equation for a circle whose center is at the point  and
whose radius is  is 

 
We also know that if  and  are real numbers, then 
 

 The point  is inside the circle if . 
 The point  is on the circle if . 
 The point  is outside the circle if . 

 
Prove that all points on or inside the circle whose equation is  are inside the circle whose equation
is .

2. Let  be a positive real number. The equation for a circle of radius  whose center is the origin is . 
 

(a) Use implicit differentiation to determine . 

(b) Let  be a point on the circle with  and . Determine the slope of the line tangent to the circle at the point
. 

(c) Prove that the radius of the circle to the point  is perpendicular to the line tangent to the circle at the point .
Hint: Two lines (neither of which is horizontal) are perpendicular if and only if the products of their slopes is equal to 1.

[(P ∧ ┐Q) → R]. (3.6.3)

(P ∨Q) → R ≡ (P → R) ∧ (Q → R). (3.6.4)

3.6.1

x P (x)

P (x)

P (x)
P (x)

 Exercises for Section 3.6

h k r (h, k)
r

(x−h +(y−k = .)2 )2 r2 (3.6.5)

a b

∙ (a, b) (a−h +(b−k <)2 )2 r2

∙ (a, b) (a−h +(b−k =)2 )2 r2

∙ (a, b) (a−h +(b−k >)2 )2 r2

(x−1 +(y−2 = 4)2 )2

+ = 26x2 y2

r r + =x2 y2 r2

dy

dx
(a, b) a ≠ 0 b ≠ 0

(a, b)
(a, b) (a, b)
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3. Are the following statements true or false? Justify your conclusions. 
 
(a) For each integer , if 3 does not divide , then 3 divides . 
(b) For each integer , if 3 divides , then 3 does not divide . 
(c) For each integer , 3 does not divide  if and only if 3 divides .

4. Prove that for each real number  and each irrational number ,  is irrational or  is irrational.
5. Prove that there exist irrational numbers  and  such that  is a rational number. 

Hint: We have proved that  is irrational. For the real number , either  is rational or  is irrational. Use this
disjunction to set up two cases.

6. Let  and  be natural numbers such that . Prove each of the propositions in Parts (6a) through (6d). (The results of
Exercise (1) and Theorem 3.10 from Section 3.2 may be helpful.) 
 
(a) If  is even, then 4 divides . 
(b) If 4 divides , then 4 divides . 
(c) If 4 divides , then 8 divides . 
(d) If  is even, then 8 divides . 
(e) Give an example of natural numbers  and  such that  is even and , but  is not divisible by 8.

7. Prove the following proposition:
Let  and  be integers with . If  does not divide , then the equation  does not have a
solution that is a natural number. 
Hint: It may be necessary to factor a sum of cubes. Recall that 

8. Recall that a Pythagorean triple consists of three natural numbers , , and  such that  and . Are
the following propositions true or false? Justify your conclusions. 
 
(a) For all  such that , if , , and  form a Pythagorean triple, then 3 divides  or 3 divides . 
(b) For all  such that , if , , and  form a Pythagorean triple, then 5 divides  or 5 divides  or 5
divides .

9. (a) Prove that there exists a Pythagorean triple , , and , where  and  and  are consecutive natural numbers. 
(b) Prove that there exists a Pythagorean triple , , and , where  and  and  are consecutive natural numbers. 
(c) Let  be an odd natural number that is greater than 1. Prove that there exists a Pythagorean triple , , and , where 

 and  and  are consecutive natural numbers.
10. One of the most famous unsolved problems in mathematics is a conjecture made by Christian Goldbach in a letter to

Leonhard Euler in 1742. The conjecture made in this letter is now known as Goldbach’s Conjecture. The conjecture is as
follows: 
Every even integer greater than 2 can be expressed as the sum of two (not necessarily distinct) prime numbers. 
Currently, it is not known if this conjecture is true or false. 
 
(a) Write 50, 142, and 150 as a sum of two prime numbers 
(b)Prove the following: 
If Goldbach’s Conjecture is true, then every integer greater than 5 can be written as a sum of three prime numbers. 
(c)Prove the following: 
If Goldbach’s Conjecture is true, then every odd integer greater than 7 can be written as a sum of three odd prime numbers.

11. Two prime numbers that differ by 2 are called twin primes. For example, 3 and 5 are twin primes, 5 and 7 are twin primes,
and 11 and 13 are twin primes. Determine at least two other pairs of twin primes. Is the following proposition true or false?
Justify your conclusion.

For all natural numbers  and  if  and  are twin primes other than 3 and 5, then  is a perfect square and 36 divides
.

a a 2 +1a2

a 2 +1a2 a

a a 2 +1a2

x q x+q x−q

u v uv

2
–

√ q = 2
–

√
2√

q q

a b =a2 b3

a a

a b

b a

a a

a b a =a2 b3 b

a b a ≤ 0 a b a +bx+(b+a) = 0x3

+ = (u+v)( −uv+ ).u3 v3 u2 v2 (3.6.6)

a b c a < b < c + =a2 b2 c2

a, b, c ∈ N a < b < c a b c a b

a, b, c ∈ N a < b < c a b c a b

c

a b c a = 5 b c

a b c a = 7 b c

m a b c

a = m b c

p q p q pq+1
pq+1
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12. Are the following statements true or false? Justify your conclusions. 
 
(a) For all integers  and , . 
(b) For all integers  and , . 
(c) For all integers  and , . 
(d) For all integers  and , . 
 
If any of the statements above are false, write a new statement of the following form that is true (and prove that it is true): 
 
For all integers  and , .

13. Let , , , and  be real numbers with  and let .

(a) Determine the derivative and second derivative of the cubic function .

(b) Prove that the cubic function  has at most two critical points and has exactly one inflection point. 
 
Explorations and Activities

14. A Special Case of Fermat’s Last Theorem. We have already seen examples of Pythagorean triples, which are natural
numbers , , and  where . For example, 3, 4, and 5 form a Pythagorean triple as do 5, 12, and 13. One of the
famous mathematicians of the 17th century was Pierre de Fermat (1601 – 1665). Fermat made an assertion that for each
natural number  with , there are no integers , , and  for which . This assertion was discovered in a
margin of one of Fermat’s books after his death, but Fermat provided no proof. He did, however, state that he had
discovered truly remarkable proof but the margin did not contain enough room for the proof. 
 
This assertion became known as Fermat’s Last Theorem but it more prop- erly should have been called Fermat’s Last
Conjecture. Despite the efforts of mathematicians, this “theorem” remained unproved until Andrew Wiles, a British
mathematician, first announced a proof in June of 1993. However, it was soon recognized that this proof had a serious gap,
but a widely accepted version of the proof was published by Wiles in 1995. Wiles’ proof uses many concepts and
techniques that were unknown at the time of Fermat. We cannot discuss the proof here, but we will explore and prove the
following proposition, which is a (very) special case of Fermat’s Last Theorem.

Proposition. There do not exist prime numbers a, b,and c such that 

. 
Although Fermat’s Last Theorem implies this proposition is true, we will use a proof by contradiction to prove this
proposition. For a proof by contradiction, we assume that

there exist prime numbers , , and  such that . 
 
Since 2 is the only even prime number, we will use the following cases: (1) ; (2)  and  are both odd; and (3)
one of  and  is odd and the other one is 2. 
 
(a) Show that the case where  leads to a contradiction and hence, this case is not possible. 
(b) Show that the case where  and  are both odd leads to a contradiction and hence, this case is not possible. 
(c) We now know that one of  or  must be equal to 2. So we assume that  and that  is an odd prime. Substitute 

 into the equation  and then factor the expression . Use this to obtain a contradiction. 
(d) Write a complete proof of the proposition.

Answer

Add texts here. Do not delete this text first.
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a b (a+b ≡ ( + )(mod 2))2 a2 b2

a b (a+b ≡ ( + )(mod 3))3 a3 b3

a b (a+b ≡ ( + )(mod 4))4 a4 b4

a b (a+b ≡ ( + )(mod 5))5 a5 b5

a b (a+b ≡ ( +something+ )(modn))n an bn

a b c d a ≠ 0 f(x) = a +b +cx+dx3 x2

f

f

a b c + =a2 b2 c2

n n ≥ 3 a b c + =an bn cn

+b3 = c3a3 (3.6.7)

a b c + =a3 b3 c3

a = b = 2 a b

a b

a = b = 2
a b

a b b = 2 a

b = 2 = −b3 c3 a3 −c3 a3
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3.S: Constructing and Writing Proofs in Mathematics (Summary)
Important Definitions

Divides,divisor,page82
Factor, multiple, page 82
Proof, page 85
Undefined term, page 85
Axiom, page 85
Definition,page86
Conjecture, page 86
Theorem, page 86
Proposition,page 86
Lemma, page 86
Corollary, page 86
Congruence modulo , page 92
Tautology,page 40
Contradiction,page 40
Absolutevalue,page 135

Important Theorems and Results about Even and Odd Integers

Exercise (1), Section 1.2 
If  is an even integer, then  is an odd integer. 
If  is an odd integer, then  is an even integer.
Exercise (2), Section 1.2 
If  is an even integer and  is an even integer, then  is an even integer. 
If  is an even integer and  is an odd integer, then  is an odd integer. 
If  is an odd integer and  is an odd integer, then  is an even integer.
Exercise (3), Section 1.2. If  is an even integer and  is an integer, then  is an even integer.
Theorem1.8. If  is an odd integer and  is an odd integer, then  is an odd integer.
Theorem 3.7. The integer  is an even integer if and only if  is an even integer. 
Preview Activity  in Section 3.2. The integer  is an odd integer if and only if  is an odd integer.

Important Theorems and Results about Divisors

Theorem 3.1. For all integers , , and  with , if  and , then .
Exercise (3), Section 3.1. For all integers , , and  with , 
If  and , then . 
If  and , then .
Exercise (3a), Section 3.1. For all integers , , and  with , if , then .
Exercise (4), Section 3.1. For all nonzero integers  and , if  and , then .

The Division Algorithm

Let  and  be integers with . Then there exist unique integers  and  such that

 and .

Important Theorems and Results about Congruence

Theorem 3.28. Let  and let . If  (mod ) and  (mod ), then 
 

 (mod ). 
 

 (mod ). 
For each ,  (mod ).

n

m m+1

m m+1

x y x+y

x y x+y

x y x+y

x y x ⋅ y

x y x ⋅ y

n n2

3.S.2 n n2

a b c a ≠ 0 a|b b|c a|c

a b c a ≠ 0

a|b a|c a|(b+c)

a|b a|c a|(b−c)

a b c a ≠ 0 a|b a|(bc)

a b a|b b|a a = ±b

a b b > 0 q r

a = bq+r 0 ≤ r < b

a, b, c ∈ Z n ∈ N a ≡ b n c ≡ d n

(a+c) ≡ (b+d) n

ac ≡ bd n

m ∈ N ≡am bm n
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Theorem 3.30. For all integers a, b, and c, 
Reflexive Property.  (mod ). 
Symmetric Property. If  (mod ), then  (mod ). 
Transitive Property. If  (mod ) and  (mod ), then  (mod ).
Theorem 3.31. Let  and let . If  and  for some integers  and , then  (mod ).
Corollary 3.32. Each integer is congruent, modulo , to precisely one of the integers 0, 1, 2, ..., . That is, for each integer

, there exists a unique integer  such that

 (mod ) and .
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a r

a ≡ r n 0 ≤ r < n

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86115?pdf
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/03%3A_Constructing_and_Writing_Proofs_in_Mathematics/3.S%3A_Constructing_and_Writing_Proofs_in_Mathematics_(Summary)
https://creativecommons.org/licenses/by-nc-sa/3.0
https://www.tedsundstrom.com/
https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/books/7
https://math.libretexts.org/@go/page/7053
https://www.tedsundstrom.com/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://scholarworks.gvsu.edu/books/7


1

CHAPTER OVERVIEW

4: Mathematical Induction (with Sequences)
Mathematical induction is a mathematical proof technique that is used to prove that a property  holds for every natural
number , i.e. for n = 0, 1, 2, 3, and so on.

4.1: The Principle of Mathematical Induction
4.2: Other Forms of Mathematical Induction
4.3: Induction and Recursion
4.S: Mathematical Induction (Summary)
Supplementary Notes: Sequences, Definitions

Supplementary Notes: Sequences, Arithmetic and Geometric
Supplementary Notes: Recurrence Relations

Thumbnail: Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. Image
used wtih permission (CC BY-SA 3.0; Pokipsy76).
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4.1: The Principle of Mathematical Induction

One of the most fundamental sets in mathematics is the set of natural numbers . In this section, we will learn a new proof
technique, called mathematical induction, that is often used to prove statements of the form . In Section 4.2,
we will learn how to extend this method to statements of the form , where  is a certain type of subset of the
integers .

For each natural number , let  be the following open sentence:

4 divides .

1. Does this open sentence become a true statement when ? That is, is 1 in the truth set of ?
2. Does this open sentence become a true statement when ? That is, is 2 in the truth set of ?
3. Choose at least four more natural numbers and determine whether the open sentence is true or false for each of your

choices.

All of the examples that were used should provide evidence that the following proposition is true:

For each natural number , 4 divides .

We should keep in mind that no matter how many examples we try, we cannot prove this proposition with a list of examples
because we can never check if 4 divides  for every natural number . Mathematical induction will provide a method
for proving this proposition.

For another example, for each natural number , we now let  be the following open sentence:

The expression on the left side of the previous equation is the sum of the squares of the first  natural numbers. So when 
, the left side of equation (4.1.1) is . When , the left side of equation (4.1.1) is .

4. Does  become a true statement when 
 

? (Is 1 in the truth set of ? 
? (Is 1 in the truth set of ? 
? (Is 1 in the truth set of ?

5. Choose at least four more natural numbers and determine whether the open sentence is true or false for each of your

choices. A table with the columns , , and  may help you organize your work.

All of the examples we have explored, should indicate the following proposition is true:

For each natural number , \(1^2 + 2^2 + ... + n^2 = \dfrac{n(n + 1)(2n + 1)}{6}.\]

In this section, we will learn how to use mathematical induction to prove this statement.

Intuitively, the natural numbers begin with the number 1, and then there is 2, then 3, then 4, and so on. Does this process of
“starting with 1” and “adding 1 repeatedly” result in all the natural numbers? We will use the concept of an inductive set to
explore this idea in this activity.

A set  that is a subset of  is an inductive set provided that for each integer , if , then .

 Preview Activity : Exploring Statements of the Form 4.1.1 (∀n ∈ N)(P (n))

N

(∀n ∈ N)(P (n))

(∀n ∈ T )(P (n)) T

Z

n P (n)

( −1)5n

n = 1 P (n)

n = 2 P (n)

n ( −1)5n

( −1)5n n

n Q(n)

+ +. . . + = .12 22 n2 n(n+1)(2n+1)

6
(4.1.1)

n

n = 1 12 n = 2 +12 22

Q(n)

∙ n = 1 Q(n)

∙ n = 2 Q(n)

∙ n = 3 Q(n)

n + +. . . +12 22 n2
n(n+1)(2n+1)

6

n

 Preview Activity : A Property of the Natural Numbers4.1.1

 Definition

T Z k k ∈ T k+1 ∈ T
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1. Carefully explain what it means to say that a subset  of the integers  is not an inductive set. This description should use an
existential quantifier.

2. Use the definition of an inductive set to determine which of the following sets are inductive sets and which are not. Do not
worry about formal proofs, but if a set is not inductive, be sure to provide a specific counterexample that proves it is not
inductive. 
 
(a)  
(b) The set of natural numbers,  
(c)  
(d)  
(e)  
(f) The set of integers,  
(g) The set of odd natural numbers.

3. This part will explore one of the underlying mathematical ideas for a proof by induction. Assume that  and assume that 
 and that  is an inductive set. Use the definition of an inductive set to answer each of the following: 

 
(a) Is ? Explain. 
(b) Is ? Explain. 
(c) Is ? Explain. 
(d) Is ? Explain. 
(e) Do you think that ? Explain.

Inductive Sets
The two open sentences in Preview Activity  appeared to be true for all values of  in the set of natural numbers, . That is,
the examples in this preview activity provided evidence that the following two statements are true.

For each natural number , 4 divides .

For each natural number , 

One way of proving statements of this form uses the concept of an inductive set introduced in Preview Activity . The idea is
to prove that if one natural number makes the open sentence true, then the next one also makes the open sentence true. This is how
we handle the phrase “and so on” when dealing with the natural numbers. In Preview Activity , we saw that the number
systems  and  and other sets are inductive. What we are trying to do is somehow distinguish  from the other inductive sets.
The way to do this was suggested in Part (3) of Preview Activity . Although we will not prove it, the following statement
should seem true.

Statement 1: For each subset  of , if  and  is inductive, then .

Notice that the integers, , and the set  both contain 1 and both are inductive, but they both contain numbers
other than natural numbers. For example, the following statement is false:

Statement 2: For each subset  of , if  and  is inductive, then .

The set  is a counterexample that shows that this statement is false.

Suppose that T is an inductive subset of the integers. Which of the following statements are true, which are false, and for which
ones is it not possible to tell?

1.  and .
2. If , then .
3. If , then .
4. For each integer , if , then .
5. For each integer ,  or .
6. There exists an integer  such that  and .

T Z

A = {1, 2, 3, . . . , 20}

N

B = {n ∈ N|n ≥ 5}

S = {n ∈ Z|n ≥ −3}

R = {n ∈ Z|n ≤ 100}

Z

T ⊆N

1 ∈ T T

2 ∈ T

3 ∈ T

4 ∈ T

100 ∈ T

T =N

4.1.1 n N

n ( −1)5n

n + +. . . + = .12 22 n2
n(n+1)(2n+1)

6

4.1.2

4.1.2

N Z N

4.1.2

T N 1 ∈ T T T =N

Z S = {n ∈ Z|n ≥ −3}

T Z 1 ∈ T T T =Z

S = {n ∈ Z|n ≥ −3} = {−3, −2, −1, 0, 1, 2, 3, . . . }

 Progress Check 4.1 (Inductive Sets)

1 ∈ T 5 ∈ T

1 ∈ T 5 ∈ T

5 ∉ T 2 ∉ T

k k ∈ T k+7 ∈ T

k k ∉ T k+1 ∈ T

k k ∈ T k+1 ∉ T
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7. For each integer , if , then .
8. For each integer , if , then .

Answer

Add texts here. Do not delete this text first.

The Principle of Mathematical Induction
Although we proved that Statement (2) is false, in this text, we will not prove that Statement (1) is true. One reason for this is that
we really do not have a formal definition of the natural numbers. However, we should be convinced that Statement (1) is true. We
resolve this by making Statement (1) an axiom for the natural numbers so that this becomes one of the defining characteristics of
the natural numbers.

If  is a subset of  such that

1. , and
2. For every , if , then .

Then .

Using the Principle of Mathematical Induction

The primary use of the Principle of Mathematical Induction is to prove statements of the form

.

where  is some open sentence. Recall that a universally quantified statement like the preceding one is true if and only if the
truth set T of the open sentence  is the set . So our goal is to prove that , which is the conclusion of the Principle of
Mathematical Induction. To verify the hypothesis of the Principle of Mathematical Induction, we must

1. Prove that . That is, prove that  is true.
2. Prove that if , then . That is, prove that if  is true, then  is true.

The first step is called the basis step or the initial step, and the second step is called the inductive step. This means that a proof by
mathematical induction will have the following form:

To prove: 

Basis step: Prove .\

Inductive step: Prove that for each , if  is true, then  is true.

We can then conclude that  is true for all 

Note that in the inductive step, we want to prove that the conditional statement “for each , if  then ” is true. So
we will start the inductive step by assuming that  is true. This assumption is called the inductive assumption or the inductive
hypothesis.

The key to constructing a proof by induction is to discover how  is related to  for an arbitrary natural number . For
example, in Preview Activity , one of the open sentences  was

Sometimes it helps to look at some specific examples such as  and . The idea is not just to do the computations, but to
see how the statements are related. This can sometimes be done by writing the details instead of immediately doing computations.

k k+1 ∈ T k ∈ T

k k+1 ∉ T k ∉ T

 The Principle of Mathematical Induction

T N

1 ∈ T

k ∈ N k ∈ T (k+1) ∈ T

T =N

(∀n ∈ N)(P (n))

P (n)

P (n) N T =N

1 ∈ T P (1)

k ∈ T (k+1) ∈ T P (k) P (k+1)

 Procedure for a Proof by Mathematical Induction

(∀n ∈ N)(P (n))

P (1)

k ∈ N P (k) P (k+1)

P (n) n ∈ N

k ∈ N P (k) P (k+1)

P (k)

P (k+1) P (k) k

4.1.1 P (n)

+ +. . . + = .12 22 n2
n(n+1)(2n+1)

6

P (2) P (3)
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In this case, the key is the left side of each equation. The left side of  is obtained from the left side of  by adding one
term, which is . This suggests that we might be able to obtain the equation for  by adding  to both sides of the equation 

. Now for the general case, if , we look at  and compare it to .

The key is to look at the left side of the equation for  and realize what this notation means. It means that we are adding
the squares of the first  natural numbers. This means that we can write

This shows us that the left side of the equation for  can be obtained from the left side of the equation for  by adding 
. This is the motivation for proving the inductive step in the following proof.

For each natural number ,

Proof

We will use a proof by mathematical induction. For each natural number , we let  be

We first prove that  is true. Notice that . This shows that

\(1^2 = \dfrac{1(1 + 1)(2 \cdot 1 + 1}{6},

which proves that  is true.

For the inductive step, we prove that for each , if  is true, then  is true. So let  be a natural number
and assume that  is true. That is, assume that

The goal now is to prove that  is true. That is, it must be proved that

To do this, we add  to both sides of equation (1) and algebraically rewrite the right side of the resulting equation.
This gives

     

     

P (2)

P (3)

         

         

is

is

                       +12 22

               + +12 22 32

=

=

2 ⋅ 3 ⋅ 5

6
3 ⋅ 4 ⋅ 7

6

(4.1.2)

(4.1.3)

P (3) P (2)

32 P (3) 32

P (2) k ∈ N P (k+1) P (k)

     P (k)   

   P (k+1)  

is

is

            + +. . . + =12 22 k2 k(k+1)(2k+1)

6

   + +. . . +(k+1 =12 22 )2 (k+1)[(k+1) +1][2(k+1) +1]

6

(4.1.4)

(4.1.5)

P (k+1)

k+1

+ +. . . +(k+1 = + +. . . + +(k+1 .12 22 )2 12 22 k2 )2

P (k+1) P (k)

(k+1)2

 Proposition 4.2.

n

+ +. . . + = .12 22 n2
n(n+1)(2n+1)

6

n P (n)

+ +. . . + = .12 22 n2
n(n+1)(2n+1)

6

P (1) = 1
1(1 +1)(2 ⋅ 1 +1)

6

P (1)

k ∈ N P (k) P (k+1) k

P (k)

+ +. . . + = .12 22 k2
k(k+1)(2k+1)

6
(4.1.6)

P (k+1)

+ +. . . + +(k+112 22 k2 )2 =

=

(k+1)[(k+1) +1][2(k+1) +1]

6

.
(k+1)(k+2)(2k+3)

6

(4.1.7)

(4.1.8)

(k+1)2
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Comparing this result to equation (2), we see that if  is true, then  is true. Hence, the inductive step has been
established, and by the Principle of Mathematical Induction, we have proved that for each natural number , 

Writing Guideline

The proof of Proposition 4.2 shows a standard way to write an induction proof. When writing a proof by mathematical induction,
we should follow the guideline that we always keep the reader informed. This means that at the beginning of the proof, we should
state that a proof by induction will be used. We should then clearly define the open sentence (P(n)\) that will be used in the proof.

Summation Notation

The result in Proposition 4.2 could be written using summation notation as follows:

In this case, we use  for the index for the summation, and the notation  tells us to add all the values of  for  from 1 to 
, inclusive. That is,

So in the proof of Proposition 4.2, we would let  be , and we would use the fact that for each

natural number ,

1. Calculate  and  for several natural numbers . What do you observe?

2. Use mathematical induction to prove that . To do this, let  be the open sentence, "

." For the basis step, notice that the equation  shows that  is true. Now

let  be a natural number and assume that  is true. That is, assume that 

 
and complete the proof.

Answer

+ +. . . + +(k+112 22 k2 )2 =

=

=

=

=

+(k+1
k(k+1)(2k+1)

6
)2

k(k+1)(2k+1) +6(k+1)2

6
(k+1)[k(2k+1) +6(k+1)]

6
(k+1)(2 +7k+6)k2

6
(k+1)(k+2)(2k+3) +6(k+1)2

6

(4.1.9)

(4.1.10)

(4.1.11)

(4.1.12)

(4.1.13)

P (k) P (k+1)

n

+ +. . . + = .12 22 n2
n(n+1)(2n+1)

6

For each natural number n, = .∑
j=1

n

j2
n(n+1)(2n+1)

6

j ∑n
j=1 j

2 j2 j

n

= + +. . . + .∑
j=1

n

j2 12 22 n2

P (n) =∑n
j=1 j

2 n(n+1)(2n+1)

6
k

= ( ) +(k+1 .∑
j=1

k+1

j2 ∑
j=1

k

j2 )2

 Progress Check 4.3 (An Example of a Proof by Induction)

1 +2 +3+. . . +n
n(n+1)

2
n

1 +2 +3+. . . +n =
n(n+1)

2
P (n)

1 +2 +3+. . . +n =
n(n+1)

2
1 =

1(1 +1)

2
P (1)

k P (k)

1 +2 +3+. . . +k = ,
k(k+1)

2
(4.1.14)
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Add texts here. Do not delete this text first.

Some Comments about Mathematical Induction

1. The basis step is an essential part of a proof by induction. See Exercise (19) for an example that shows that the basis step is
needed in a proof by induction.

2. Exercise (20) provides an example that shows the inductive step is also an essential part of a proof by mathematical induction.
3. It is important to remember that the inductive step in an induction proof is a proof of a conditional statement. Although we did

not explicitly use the forward-backward process in the inductive step for Proposition 4.2, it was implicitly used in the discussion
prior to Proposition 4.2. The key question was, “How does knowing the sum of the first  squares help us find the sum of the
first  squares?”

4. When proving the inductive step in a proof by induction, the key question is,
 
How does knowing  help us prove ? 
 
In Proposition 4.2, we were able to see that the way to answer this question was to add a certain expression to both sides of the
equation given in . Sometimes the relationship between  and  is not as easy to see. For example, in Preview
Activity , we explored the following proposition: 
 
For each natural number , 4 divides . 
 
This means that the open sentence, , is "4 divides ." So in the inductive step, we assume  and that 4 divides 

. This means that there exists an integer  such that 

 
In the backward process, the goal is to prove that 4 divides . This can accomplished if we can prove that there exists
an integer  such that 

 
We now need to see if there is anything in equation (4.1.15) that can be used in equation (4.1.16). The key is to find something
in the equation  that is related to something similar in the equation  In this case, we notice that 

 
So if we can solve  for , we could make a substitution for . This is done in the proof of the following
proposition. page195image4184747072

For every natural number , 4 divides .

Proof

(Proof by Mathematical Induction) For each natural number , let  be “4 divides ” We first prove that 
is true. Notice that when , . Since 4 divides 4,  is true.

For the inductive step, we prove that for all , if  is true, then  is true. So let  be a natural number and
assume that  is true. That is, assume that

4 divides .

This means that there exists an integer  such that

k

(k+1)

P (k) P (k+1)

P (k) P (k) P (k+1)

4.1.1

n ( −1)5n

P (n) ( −1)5n k ∈ N

( −1)5k m

−1 = 4m.5k (4.1.15)

( −1)5k+1

s

−1 = 4s.5k+1 (4.1.16)

−1 = 4m5k −1 = 4s5k+1

= 5 ⋅ .5k+1 5k (4.1.17)

−1 = 4m5k 5k 5k

 Proposition 4.4.

n ( −1)5n

n P (n) ( −1)5n P (1)

n = 1 −1 = 45n P (1)

k ∈ N P (k) P (k+1) k

P (k)

( −1)5k

m

−1 = 4m.5k
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Thus,

In order to prove that  is true, we must show that 4 divides . Since , we can write

We now substitute the expression for 5k from equation (4.1.18) into equation (4.1.19). This gives

Since  is an integer, equation (4.1.20) shows that 4 divides . Therefore, if  is true, then 
is true and the inductive step has been established. Thus, by the principle of Mathematical Induction, for every natural
number , 4 divides .

Proposition 4.4 was stated in terms of “divides.” We can use congruence to state a proposition that is equivalent to Proposition 4.4.
The idea is that the sentence, 4 divides  means that  (mod 4). So the following proposition is equivalent to
Proposition 4.4.

For every natural number ,  (mod 4).

Since we have proved Proposition 4.4, we have in effect proved Proposition 4.5. However, we could have proved Proposition 4.5
first by using the results in Theorem 3.28 on page 147. This will be done in the next progress check.

To prove Proposition 4.5, we let  be  (mod 4) and notice that  is true since  (mod 4). For the inductive
step, let  be a natural number and assume that  is true. That is, assume that  (mod 4).

1. What must be proved in order to prove that  is true?
2. Since , multiply both sides of the congruence  (mod 4) by 5. The results in Theorem 3.28 on page 147

justify this step.
3. Now complete the proof that for each , if  is true, then  is true and complete the induction proof of

Proposition 4.5.

It might be nice to compare the proofs of Propositions 4.4 and 4.5 and decide which one is easier to understand.

Answer

Add texts here. Do not delete this text first.

1. Which of the following sets are inductive sets? Explain. 
 
(a)  
(b)  
(c)  
(d) {1, 2, 3, ..., 500}

= 4m+1.5k (4.1.18)

P (k+1) ( −1)5k+1 = 5 ⋅5k+1 5k

−1 = 5 ⋅ −1.5k+1 5k (4.1.19)

−15k+1 =

=

=

=

=

5 ⋅ −15k

5(4m+1) −1

(20m+5) −1

20m+4

4(5m+1)

(4.1.20)

(5m+1) ( −1)5k+1 P (k) P (k+1)

n ( −1)5n

( −1)5n ≡ 15n

 Proposition 4.5.

n ≡ 15n

 Progress Check 4.6 (Proof of Proposition 4.5) .

P (n) ≡ 15n P (1) 5 ≡ 1

k P (k) ≡ 15n

P (k+1)

= 5 ⋅5k+1 5k ≡ 15k

k ∈ N P (k) P (k+1)

 Exercises for Section 4.1

Z

{x ∈ N|x ≥ 4}

{x ∈ Z|x ≤ 10}
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2. (a) Can a finite, nonempty set be inductive? Explain. 
(b) Is the empty set inductive? Explain.

3. Use mathematical induction to prove each of the following: 
 

(a) For each natural number , . 

(b) For each natural number , . 

(c) For each natural number , .

4. Based on the results in Progress Check 4.3 and Exercise (3c), if , is there any conclusion that can be made about the
relationship between the sum  and the sum ?

5. Instead of using induction, we can sometimes use previously proven results about a summation to obtain results about a
different summation. 
 
(a) Use the result in Progress Check4.3 to prove the following proposition: 

 
(b) Subtract  from each side of the equation in Part (a). On the left side of this equation, explain why this can be done by
subtracting 1 from each term in the summation. 
(c) Algebraically simplify the right side of the equation in Part (b) to obtain a formula for the sum 
Compare this to Exercise (3a).

6. (a) Calculate  for several nuatural numbers . 
(b) Based on your work in exercise (6a), if , make a conjecture about the value of the sum 

 
(c) Use mathematical induction to prove your conjecture in Exercise (6b).

7. In Section 3.1, we defined congruence modulo  for a natural number , and in Section 3.5, we used the Division
Algorithm to prove that each integer is congruent, modulo , to precisely one of the integers 0, 1, 2, \cdot\cdot\cdot, 

(Corollary 3.32). 
 
(a) Find the value of  so that  (mod 3) and . 
(b) Find the value of  so that  (mod 3) and . 
(c) Find the value of  so that  (mod 3) and . 
(d) For two other values of , find the value of  so that  (mod 3) and . 
(e) If  make a conjecture concerning the value of  where  (mod 3) and . This conjecture should
be written as a self-contained proposition including an appropriate quantifier. 
(f) Use mathematical induction to prove your conjecture.

8. Use mathematical induction to prove each of the following: 
 
(a) For each natural number , 3 divides . 
(b) For each natural number , 6 divides .

9. In Exercise (7), we proved that for each natural number ,  (mod 3). Explain how this result is related to the
proposition in Exercise (8a).

10. Use mathematical induction to prove that for each natural number , 3 divides . Compare this proof to the proof
from Exercise (18) in Section 3.5.

11. (a) Calculate the value of  for  and . 
(b) Based on your work in Part (a), make a conjecture about the values of  for each natural number . 
(c) Use mathematical induction to prove your conjecture in Part (b).

12. Let  and  be integers. Prove that for each natural number ,  divides . Explain why your conjecture in
Exercise (11) is a special case of this result.

13. Prove Part (3) of Theorem 3.28 from Section 3.4. Let  and let  and  be integers. For each , if  (mod 
), then  (mod ).

n 2 +5 +8 +⋅ ⋅ ⋅ +(3n−1) =
n(3n+1)

2
n 1 +5 +9 +⋅ ⋅ ⋅ +(4n−3) = n(2n−1)

n + + +⋅ ⋅ ⋅ + = [13 23 33 n3
n(n+1)

2
]2

n ∈ N

( + + +. . . + )13 23 33 n3 (1 +2 +3 +⋅ ⋅ ⋅ +n)

For each natural number n, 3 +6 +9+. . . +3n = .
3n(n+1)

2
(4.1.21)

n

2 +5 +8+. . . (3n−1).

1 +3 +5 +⋅ ⋅ ⋅ +(2n−1) n

n ∈ N

1 +3 +5 +⋅ ⋅ ⋅ +(2n−1) = (2j−1).∑n
j=1

n n

n

n−1

r 4 ≡ r r ∈ {0, 1, 2}

r ≡ r42 r ∈ {0, 1, 2}

r ≡ r43 r ∈ {0, 1, 2}

n r ≡ r4n r ∈ {0, 1, 2}

n ∈ N r ≡ r4n r ∈ {0, 1, 2}

n ( −1)4n

n ( −n)n3

n ≡ 14n

n +23nn3

−5n 2n n = 1,n = 2,n = 3,n = 4,n = 5 n = 6

−5n 2n n

x y n (x−y) ( − )xn yn

n ∈ N a b m ∈ N a ≡ b

n ≡am bm n
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14. Use mathematical induction to prove that the sum of the cubes of any three consecutive natural numbers is a multiple of 9.
15. Let  be a real number. We will explore the derivatives of the function . By using the chain rule, we see that 

 
Recall that the second derivative of a function is the derivative of the derivative function. Similarly, the third derivative is
the derivative of the second derivative. 
 

(a) What is , the second derivative of ? 

(b) What is , the third derivative of ? 

(c) Let  be a natural number. Make a conjecture about the th derivatives of the function . That is, what is 

? This conjecture should be written as a self-contained proposition including an appropriate quantifier. 

(d) Use mathematical induction to prove that your conjecture.
16. In calculus, it can be shown that 

 
Using integration by parts, it is also possible to prove that for each natural number , 

 
 
(a) Determine the values of 

 
(b) Use mathematical induction to prove that for each natural number  

 
These are known as the Wallis sine formulas. 
(c) Use mathematical induction to prove that 

 
These are known as the Wallis cosine formulas.

a f(x) = eax

( ) = a .
d

dx
eax eax (4.1.22)

( )
d2

dx2
eax eax

( )
d3

dx3
eax eax

n n f(x) = eax

( )
dn

dxn
eax

∫ si xdxn2

∫ co xdxs2

=

=

− sinxcosx+c  and
x

2

1

2

+ sinxcosx+c.
x

2

1

2

(4.1.23)

n

∫ si xdxnn

∫ co xdxsn

=

=

− si xcosx+ ∫ si xdx  and
1

n
nn−1

n−1

n
nn−2

co xsinx+ ∫ co xdx.
1

n
sn−1 n−1

n
sn−2

(4.1.24)

si xdx   and    si xdx.∫
π/2

0

n2 ∫
π/2

0

n4 (4.1.25)

n

si xdx∫ π/2
0 n2n

si xdx∫ π/2
0 n2n+1

=

=

   and
1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (2n−1)

2 ⋅ 4 ⋅ 6 ⋅ ⋅ ⋅ (2n)

π

2

2 ⋅ 4 ⋅ 6 ⋅ ⋅ ⋅ (2n)

1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (2n+1).

(4.1.26)

co xdx∫ π/2
0 s2n

co xdx∫ π/2
0 s2n+1

=

=

   and
1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (2n−1)

2 ⋅ 4 ⋅ 6 ⋅ ⋅ ⋅ (2n)

π

2

2 ⋅ 4 ⋅ 6 ⋅ ⋅ ⋅ (2n)

1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (2n+1).

(4.1.27)
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17. (a) Why is it not possible to use mathematical induction to prove a proposition of the form 

 
where  is some predicate? 
(b) Why is it not possible to use mathematical induction to prove a proposition of the form 
For each real number  with , , 
where \(P(x) is some predicate?

18. Evaluation of proofs 
See the instructions for Exercise (19) on page 100 from Section 3.1.

For each natural number , 

Proof

We will prove this proposition using mathematical induction. So we let  be the open sentence

Using , we see taht  and hence,  is true.

We now assume taht  is true. That is,

We then see that

We have thus proved that  is true, and hence, we have proved the proposition.

For each natural number , 

Proof

We will prove this proposition using mathematical induction. So we let

.

Using , we see that  and hence,  is true.

We now assume that  is true. That is,

We then see that

(∀x ∈ Q)(P (x)), (4.1.28)

P (x)

x x ≥ 1 P (x)

 (a)

n 1 +4 +7 +⋅ ⋅ ⋅ +(3n−2) = .
n(3n−1)

2

P (n)

1 +4 +7 +⋅ ⋅ ⋅ +(3n−2).

n = 1 3n−2 = 1 P (1)

P (k)

1 +4 +7 +⋅ ⋅ ⋅ +(3k−2) = .
k(3k−1)

2

1 +4 +7 +⋅ ⋅ ⋅ +(3k−2) +(3(k+1) −2)

+(3k+1)
k(3k−1)

2

(3 −k) +(6k+2)k2

2
3 +5k+2k2

2

=

=

=

=

(k+1)(3k+2)

2
(k+1)(3k+2)

2

3 +5k+2k2

2

.
3 +5k+2k2

2

(4.1.29)

P (k+1)

 (b)

n 1 +4 +7 +⋅ ⋅ ⋅ +(3n−2) = .
n(3n−1)

2

P (n) = 1 +4 +7 +⋅ ⋅ ⋅ +(3n−2)

n = 1 P (1) = 1 P (1)

P (k)

1 +4 +7 +⋅ ⋅ ⋅ +(3k−2) = .
k(3k−1)

2
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we have thus proved that  is true, and hence, we have proved the proposition.

All dogs are the same breed.

Proof

We will prove this proposition using mathematical induction. For each natural number , we let  be

Any set of  dogs consists entirely of dogs of the same breed.

We will prove that for each natural number ,  is true, which will prove that all dogs are the same breed. A set
with only one dog consists entirely of dogs of the same breed and, hence,  is true.

So we let  be a natural number and assume that  is true, that is, that every set of  dogs consists of dogs of
the same breed. Now consider a set  of  dogs, where

If we remove the dog  from the set , we then have a set  of  dogs, and using the assumption that  is
true, these dogs must all be of the same breed. Similarly, if we remove  from the set , we again have a set 
of  dogs, and these dogs must all be of the same breed. Since , we have proved that all of the dogs
in  must be of the same breed.

This proves that if  is true, then  is true and, hence, by mathematical induction, we have proved that
for each natural number , any set of  dogs consists entirely of dogs of the same breed.

Explorations and Activities

19. The Importance of the Basis Step. Most of the work done in constructing a proof by induction is usually in proving the
inductive step. This was certainly the case in Proposition 4.2. However, the basis step is an essential part of the proof.
Without it, the proof is incomplete. To see this, let  be 

 
 
(a) Let . Complete the following proof that if  is true, then  is true. 
Let . Assume that  is true. That is, assume that 

 
The goal is to prove that  is true. That is, we need to prove that 

P (k+1) =

=

=

=

=

1 +4 +7 +⋅ ⋅ ⋅ +(3k−2) +(3(k+1) −2)

+3(k+1) −2
k(3k−2)

2

3 −k+6k+6 −4k2

2
3 +5k+2k2

2

.
(k+1)(3k+2)

2

(4.1.30)

P (k+1)

 (c)

n P (n)

n

n P (n)

P (1)

k P (k) k

D k+1

D = { , , . . . , , }.d1 d2 dk dk+1

d1 D D1 k P (k)

dk+1 D D2

k D = ∪D1 D2

D

P (k) P (k+1)

n n

P (n)

1 +2 +⋅ ⋅ ⋅ +n = .
+n+1n2

2
(4.1.31)

k ∈ N P (k) P (k+1)

k ∈ mathbbN P (k)

1 +2 +⋅ ⋅ ⋅ +k = .
+k+1k2

2
(4.1.32)

P (k+1)

1 +2 +⋅ ⋅ ⋅ +k+(k+1) = .
(k+1 +(k+1) +1)2

2
(4.1.33)
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To do this, we add  to both sides of equation (4.1.32). This gives 

 
(b) Is  true? Is  true? What about  and ? Explain how this shows that the basis step is an essential part
of a proof by induction.

20. Regions of a Circle. Place n equally spaced points on a circle and connect each pair of points with the chord of the circle
determined by that pair of points. See Figure 4.1. 

 
Count the number of distinct regions within each circle. For example, with three points on the circle, there are four distinct
regions. Organize your data in a table with two columns: “Number of Points on the Circle” and “Number of Distinct
Regions in the Circle.” 
 
(a) How many regions are there when there are four equally spaced points on the circle? 
(b) Based on the work so far, make a conjecture about how many distinct regions would you get with five equally spaced
points. 
(c) Based on the work so far, make a conjecture about how many distinct regions would you get with six equally spaced
points. 
(d) Figure 4.2 shows the figures associated with Parts (b) and (c). Count the number of regions in each case. Are your
conjectures correct or incorrect? 
(e) Explain why this activity shows that the inductive step is an essential part of a proof by mathematical induction. 

Answer

Add texts here. Do not delete this text first.

This page titled 4.1: The Principle of Mathematical Induction is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or
curated by Ted Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.

4.1: The Principle of Mathematical Induction by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source:
https://scholarworks.gvsu.edu/books/7.

k+1

1 +2 +⋅ ⋅ ⋅ +k+(k+1) =

=

+(k+1)
+k+1k2

2
⋅ ⋅ ⋅.

(4.1.34)

P (1) P (2) P (3) P (4)
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4.2: Other Forms of Mathematical Induction

If n is a natural number, we define  factorial, denoted by , to be the product of the first  natural numbers. In addition,
we define  to be equal to 1.

Using this definition, we see that

In general, we write  or . Notice that for any natural number , 
.

1. Compute the values of  and  for each natural number  with .

Now let  be the open sentence, " ."

2. Which of the statements  through  are true?

3. Based on the evidence so far, does the following proposition appear to be true or false? For each natural number  with 
, .

Let  be a natural number with . Suppose that we want to prove that if  is true, then  is true. (This could
be the inductive step in an induction proof.) To do this, we would be assuming that  and would need to prove that 

. Notice that if we multiply both sides of the inequality  by , we obtain

4. In the inequality in (4.2.2), explain why .

5. Now look at the right side of the inequality in (4.2.2). Since we are assuming that , we can conclude that .
Use this to help explain why .

6. Now use the inequality in (4.2.2) and the work in steps (4) and (5) to explain why .

Recall that a natural number  is a prime number provided that it is greater than 1 and the only natural numbers that divide 
are 1 and . A natural number other than 1 that is not a prime number is a composite number. The number 1 is neither prime
nor composite.

1. Give examples of four natural numbers that are prime and four natural numbers that are composite.
2. Write each of the natural numbers 20, 40, 50, and 150 as a product of prime numbers.
3. Do you think that any composite number can be written as a product of prime numbers?
4. Write a useful description of what it means to say that a natural number is a composite number (other than saying that it is

not prime).
5. Based on your work in Part (2), do you think it would be possible to use induction to prove that any composite number can

be written as a product of prime numbers?

The Domino Theory
Mathematical induction is frequently used to prove statements of the form

 Preview Activity : Exploring a Proposition about Factorials4.2.1

 Definition

n n! n

0!

0!

1!

2!

=

=

=

1                                 3!

1                                 4!

1 ⋅ 2 = 2                    5!

=

=

=

1 ⋅ 2 ⋅ 3 = 6

1 ⋅ 2 ⋅ 3 ⋅ 4 = 24

1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 5 = 120.

(4.2.1)

n! = 1 ⋅ 2 ⋅ 3 ⋅ ⋅ ⋅ (n−1) ⋅n n! = n ⋅ (n−1) ⋅ ⋅ ⋅ 2 ⋅ 1 n

n! = n ⋅ (n−1)!

2n n! n 1 ≤ n≤ 7

P (n) n! > 2n

P (1) P (1)

n

n≥ 4 n! > 2n

k k≥ 4 P (k) P (k+1)

k! > 2k

(k+1)! > 2k+1 k! > 2k (k+1)

(k+1) ⋅ k! > (k+1) .2k (4.2.2)

(k+1) ⋅ k! = (k+1)!

k≥ 4 (k+1) > 2

(k+1) >2k 2k+1

(k+1)! > 2k+1

 PREVIEW ACTIVITY : Prime Factors of a Natural Number4.2.1

p p

p

(∀n ∈ N)(P (n)). (4.2.3)
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where  is an open sentence. This means that we are proving that every statement in the following infinite list is true.

The inductive step in a proof by induction is to prove that if one statement in this infinite list of statements is true, then the next
statement in the list must be true. Now imagine that each statement in Equation  is a domino in a chain of dominoes. When we
prove the inductive step, we are proving that if one domino is knocked over, then it will knock over the next one in the chain. Even
if the dominoes are set up so that when one falls, the next one will fall, no dominoes will fall unless we start by knocking one over.
This is why we need the basis step in an induction proof. The basis step guarantees that we knock over the first domino. The
inductive step, then, guarantees that all dominoes after the first one will also fall.

Now think about what would happen if instead of knocking over the first domino, we knock over the sixth domino. If we also
prove the inductive step, then we would know that every domino after the sixth domino would also fall. This is the idea of the
Extended Principle of Mathematical Induction. It is not necessary for the basis step to be the proof that  is true. We can make
the basis step be the proof that  is true, where  is some natural number. The Extended Principle of Mathematical Induction
can be generalized somewhat by allowing  to be any integer. We are still only concerned with those integers that are greater than
or equal to .

Let  be an integer. If  is a subset of  such that

1. , and
2. For every  with , if , then ,

Then  contains all integers greater than or equal to . That is .

Using the Extended Principle of Mathematical Induction
The primary use of the Principle of Mathematical Induction is to prove statements of the form

where  is an integer and  is some open sentence. (In most induction proofs, we will use a value of  that is greater than or
equal to zero.) So our goal is to prove that the truth set  of the predicate  contains all integers greater than or equal to . So
to verify the hypothesis of the Extended Principle of Mathematical Induction, we must

1. Prove that , That is, prove that  is true.
2. Prove that for every  with , if , then .Thatis, prove that if  is true, then  is true.

As before, the first step is called the basis step or the initial step, and the second step is called the inductive step. This means that
a proof using the Extended Principle of Mathematical Induction will have the following form:

Let  be an integer. To prove: 

Basis step: Prove .

Inductive step: Prove that for every  with , if  is true, then  is true.

We can then conclude that  is true for all 

This is basically the same procedure as the one for using the Principle of Mathematical Induction. The only difference is that the
basis step uses an integer  other than 1. For this reason, when we write a proof that uses the Extended Principle of Mathematical
Induction, we often simply say we are going to use a proof by mathematical induction. We will use the work from Preview Activity

 to illustrate such a proof.

P (n)

P (1),P (2),P (3), . . . (4.2.4)

???

P (1)

P (M) M

M

M

 The Extended Principle of Mathematical Induction

M T Z

M ∈ T

k ∈ Z k≥M k ∈ T (k+1) ∈ T

T M {n ∈ Z|n≥M} ⊆ T

(∀n ∈ Z,  withn≥M)(P (n)).

M P (n) M

T P (n) M

M ∈ T P (M)

k ∈ Z k≥M k ∈ T (k+1) ∈ T P (k) P (k+1)

 Using the Extended Principle of Mathematical Induction

M (∀n ∈ Z,  withn≥M)(P (n)).

P (M)

k ∈ Z k≥M P (k) P (k+1)

P (n) n ∈ Z,  withn≥M)(P (n)).

M
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For each natural number  with , .

Proof

We will use a proof by mathematical induction. For this proof, we let

 be " ."

We first prove that  is true. Using , we see that  and . This means that  and, hence, 
is true.

For the inductive step, we prove that for all  with , if  is true, then  is true. So let  be a natural
number greater than or equal to 4, and assume that  is true. That is, assume that

The goal is to prove that  is true or that . Multiplying both sides of inequality (4.2.5) by 
gives

Now . Thus, , and hence . This means that

Inequalities (4.2.6) and (4.2.7) show that

and this proves that if  is true, then  is true. Thus, the inductive step has been established, and so by the
Extended Principle of Mathematical Induction,  for each natural number  with .

Formulate a conjecture (with an appropriate quantifier) that can be used as an an- swer to each of the following questions.

1. For which natural numbers  is  greater than ?
2. For which natural numbers  is  greater than \((n + 1)^2)?

3. For which natural numbers  is  less than  ?

Answer

Add texts here. Do not delete this text first.

The Second Principle of Mathematical Induction

Let  be

 is a prime number or  is a product of prime numbers.

(This is related to the work in Preview Activity .)

Suppose we would like to use induction to prove that  is true for all natural numbers greater than 1. We have seen that the idea
of the inductive step in a proof by induction is to prove that if one statement in an infinite list of statements is true, then the next
statement must also be true. The problem here is that when we factor a composite number, we do not get to the previous case. For
example, if assume that P.39/ is true and we want to prove that  is true, we could factor 40 as . However, the
assumption that  is true does not help us prove that  is true.

 Proposition 4.7

n n≥ 4 n! > 2n

P (n) n! > 2n

P (4) n= 4 4! = 24 = 1624 4! > 24 P (4)

k ∈ N k≥ 4 P (k) P (k+1) k

P (k)

k! > .2k (4.2.5)

P (k+1) (k+1)! > 2k+1 k+1

(k+1) ⋅ k!

(k+1)!

>

>

(k+1) ⋅ ,  or2k

(k+1) ⋅ .2k
(4.2.6)

k≥ 4 k+1 > 2 (k+1) ⋅ > 2 ⋅2k 2k

(k+1) ⋅ > .2k 2k+1 (4.2.7)

(k+1)! > .2k+1

P (k) P (k+1)

n! > 2n n n≥ 4

 Progress Check 4.8: Formulating Conjectures

n 3n 1+2n

n 2n

n (1+
1

n
)n n

P (n)

n n

4.2.2

P (n)

P (40) 40 = 2 ⋅ 20

P (39) P (40)
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This work is intended to show the need for another principle of induction. In the inductive step of a proof by induction, we assume
one statement is true and prove the next one is true. The idea of this new principle is to assume that all of the previous statements
are true and use this assumption to prove the next statement is true. This is stated formally in terms of subsets of natural numbers in
the Second Principle of Mathematical Induction. Rather than stating this principle in two versions, we will state the extended
version of the Second Principle. In many cases, we will use  or .

Let  be an integer. If  is a subset of  such that

1. , and
2. For every  with , if , then .

Then  contains all integers greater than or equal to . That is .

Using the Second Principle of Mathematical Induction
The primary use of mathematical induction is to prove statements of the form

where  is an integer and  is some predicate. So our goal is to prove that the truth set  of the predicate  contains all
integers greater than or equal to . To use the Second Principle of Mathematical Induction, we must

1. Prove that , That is, prove that  is true.
2. Prove that for every , if  and , then . That is, prove that if , 

, ...,  are true, then  is true.

As before, the first step is called the basis step or the initial step, and the second step is called the inductive step. This means that
a proof using the Second Principle of Mathematical Induction will have the following form:

Let  be an integer. To prove: 

Basis step: Prove .

Inductive step: Let  with . Prove that if , , ...,  are true, then  is true.

We can then conclude that  is true for all  with .

We will use this procedure to prove the proposition suggested in Preview Activity .

Each natural number greater than 1 is either a prime number or is a product of prime numbers.

Proof

We will use the Second Principle of Mathematical Induction. We let  be

 is either a prime number or  is a product of prime numbers.

For the basis step,  is true since 2 is a prime number.

To prove the inductive step, we let  be a natural number with . We assume that , , ...,  are true. That
is, we assume that each of the natural numbers 2, 3, ...,  is a prime number or a product of prime numbers. The goal is to
prove that  is true or that  is a prime number or a product of prime numbers.

Case 1: If  is a prime number, then  is true.

Case 2: If  is not a prime number, then  can be factored into a product of natural numbers with each one
being less than . That is, there exist natural numbers  and  with

 and  and .

M = 1 M = 0

 The Second Principle of Mathematical Induction

M T Z

M ∈ T

k ∈ Z k≥M {M ,M +1, . . . , k} ⊆ T (k+1) ∈ T

T M {n ∈ Z|n≥M} ⊆ T

(∀n ∈ Z,  withn≥M)(P (n)),

M P (n) T P (n)

M

M ∈ T P (M)

k ∈ N k≥M {M ,M +1, . . . , k} ⊆ T (k+1) ∈ T P (M)

P (M +1) P (k) P (k+1)

 Using the Second Principle of Mathematical Induction

M ∀n ∈ Zwithn≥M)(P (n))

P (M)

k ∈ Z k≥M P (M) P (M +1) P (k) P (k+1)

P (n) n ∈ Z n≥M

4.2.2

 Theorem 4.9

P (n)

n n

P (2)

k k≥ 2 P (2) P (3) P (k)

k

P (k+1) (k+1)

(k+1) P (k+1)

(k+1) (k+1)

(k+1) a b

k+1 = a ⋅ b, 1 < a≤ k 1 < b ≤ k
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Using the inductive assumption, this means that  and  are both true. Consequently,  and  are prime numbers or
are products of prime numbers. Since , we conclude that  is a product of prime numbers. That is, we
conclude that  is true. This proves the inductive step.

Hence, by the Second Principle of Mathematical Induction, we conclude that  is true for all  with , and
this means that each natural number greater than 1 is either a prime number or is a product of prime numbers.

We will conclude this section with a progress check that is really more of an activity. We do this rather than including the activity at
the end of the exercises since this activity illustrates a use of the Second Principle of Mathematical Induction in which it is
convenient to have the basis step consist of the proof of more than one statement.

Consider the following question:

For which natural numbers  do there exist nonnegative integers  and such that ?

To help answer this question, we will let , and let  be

There exist  such that .

Notice that  is false since if both  and  are zero, then  and if either  or , then .
Also notice that  is true since  and  is true since .

1. Explain why , , and  are false and why  and  are true.
2. Explain why , , , and  are true.

We could continue trying to determine other values of n for which  is true. However, let us see if we can use the work in
part (2) to determine if  is true. Notice that  and we know that  is true. We should be able to use this
to prove that  is true. This is formalized in the next part.

3. Let . Prove that if , , ...,  are true, then  is true. Hint: .

4. Prove the following proposition using mathematical induction. Use the Sec- ond Principle of Induction and have the basis
step be a proof that , , and  are true. (The inductive step is part (3).)

For each  with , there exist nonnegative integers  and  such that .

Answer

Add texts here. Do not delete this text first.

1. Use mathematical induction to prove each of the following: 
 
(a) For each natural number  with , . 
(b) For each natural number  with , . 

(c) For each natural number  with , .

2. For each natural number  with ? Justify your conclusion.
3. For each natural number  with ? Justify your conclusion.

4. (a) Verify that  and that  

(b) Verify that  and that . 

(c) For  with , make a conjecture about a formula for the product . 

P (a) P (b) a b

k+1 = a ⋅ b (k+1)

P (k+1)

P (n) n ∈ N n≥ 2

 Progress Check 4.10 (Using the Second Principle of Induction)

n x y n= 3x+5y

= {x ∈ Z|x ≥ 0}Z
∗ P (n)

x, y ∈ Z
∗ n= 3x+5y

P (1) x y 3x+5y = 0 x > 0 y > 0 3x+5y ≥ 3

P (6) 6 = 3 ⋅ 2+5 ⋅ 0 P (8) 8 = 3 ⋅ 1+5 ⋅ 1

P (2) P (4) P (7) P (3) P (5)

P (9) P (10) P (11) P (12)

P (n)

P (13) 13 = 3+10 P (10)

P (13)

k ∈ N P (8) P (9) P (k) P (k+1) k+1 = 3+(k−2)

P (8) P (9) P (10)

 Proposition 4.11.

n ∈ N n≥ 8 x y n= 3x+5y

 Exercises for Section 4.2

n n≥ 2 > 1+3n 2n

n n≥ 6 > (n+12n )2

n n≥ 3 (1+ < n
1

n
)n

n <n2 2n

n n! > 3n

(1− ) =
1

4

3

4
(1− )(1− ) = .

1

4

1

9

4

6

(1− )(1− )(1− ) =
1

4

1

9

1

16

5

8
(1− )(1− )(1− )(1− ) =

1

4

1

9

1

16

1

25

6

10

n ∈ N n≥ 2 (1− )(1− )(1− ) ⋅ ⋅ ⋅ (1− )
1

4

1

9

1

16

1

n2
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(d) Based on your work in Parts (4a) and (4b), state a. proposition and then use the Extended Principle of Mathematical
Induction to prove your proposition.

5. Is the following proposition true or false? Justify your conclusion. 
For each nonnegative integer , :

6. Let . 
 

(a) Determine , and . 

(b) Let  be a natural number. Formulate a conjecture for a formula for . Then use mathematical induction to prove

your conjecture.
7. For which natural numbers  do there exist nonnegative integers  and  such that ? Justify your conclusion.
8. Can each natural number greater than or equal to 4 be written as the sum of at least two natural numbers, each of which is a

2 or a 3? Justify your conclusion. For example, , and .
9. Can each natural number greater than or equal to 6 be written as the sum of at least two natural numbers, each of which is a

2 or a 5? Justify your conclusion. For example, , , and .
10. Use mathematical induction to prove the following proposition: 

 
Let  be a real number with . Then for each natural number  with , . 
 
Explain where the assumption that  was used in the proof.

11. Prove that for each odd natural number  with , 

12. Prove that for each natural number , 
 

any set. with  elements has  two-element subsets.

13. Prove or disprove each of the following propositions: 
 

(a) For each , . 

(b) For each natural number  with ,

. 

(c) For each , .

14. Is the following proposition true or false? Justify your conclusion. 
 

For each natural number ,  is a natural number.

15. Is the following proposition true or false? Justify your conclusion. 
 

For each natural number ,  is an integer.

16. (a) Prove that if , then there exists an odd natural number  and a nonnegative integer  such that . 
(b) For each , prove that there is only one way to write n in the form described in Part (a). To do this, assume that 

 and  where  and  are odd natural numbers and  and  are nonnegative integers. Then prove that 
 and .

17. Evaluation of proofs 
See the instructions for Exercise (19) on page 100 from Section 3.1.

n |(4n)!8n

y = lnx

, ,
dy

dx

yd2

dx2

yd3

dx3

yd4

dx4

n
ydn

dxn

n x y n= 4x+5y

7 = 2+2+3 17 = 2+2+2+2+3+3+3

6 = 2+2+2 9 = 2+2+5 17 = 2+5+5+5

x x > 0 n n≥ 2 (1+x > 1+nx)n

x > 0

n n≥ 3

(1+ )(1− )(1+ ) ⋅ ⋅ ⋅ (1+ ) = 1.
1

2

1

3

1

4

(−1)n

n
(4.2.8)

n

n
n(n−1)

2

n ∈ N . + +⋅ ⋅ ⋅ + =
1

1 ⋅ 2

1

2 ⋅ 3

1

n(n+1)

n

n+1
n n≥ 3

+ +⋅ ⋅ ⋅ + =
1

3 ⋅ 4

1

4 ⋅ 5

1

n(n+1)

n−2

3n+3
(4.2.9)

n ∈ N 1 ⋅ 2+2 ⋅ 3+3 ⋅ 4+⋅ ⋅ ⋅ +n(n+1) =
n(n+1)(n+2)

3

n ( + + )
n3

3

n2

2

7n

6

n ( + + − )
n5

5

n4

2

n3

3

n

30
n ∈ N m k n= m2k

n ∈ N

n= m2k n= p2q m p k q

k= q m = p
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For each natural number  with , .

Proof

We let  be a natural number and assume that . Multiplying both sides of this inequality by 2, we see
that . However,  and, hence,

.

By mathematical induction, we conclude that .

Each natural number greater than or equal to 6 can be written as the sum of natural numbers, each of which is a 2 or a
5.

Proof

We will use a proof by induction. For each natural number , we let  be, “There exist nonnegative integers 
and  such that .” Since

We see that , , , and  are true.

We now suppose that for some natural number  with  that , , ...  are true. Now

Since , we see that  and, hence,  is true. So  and, hence,

This proves that  is true, and hence, by the Second Principle of Mathematical Induction, we have proved
that for each natural number  with , there exist nonnegative integers  and  such that .

Explorations and Activities

18. The Sum of the Angles of a Convex Quadrilateral. There is a famous theorem in Euclidean geometry that states that the
sum of the interior angles of a triangle is . 
 
(a) Use the theorem about triangles to determine the sum of the angles of a convex quadrilateral. Hint: Draw a convex
quadrilateral and draw a diagonal. 
(b) Use the result in Part (1) to determine the sum of the angles of a convex pentagon. 
(c) Use the result in Part (2) to determine the sum of the angles of a convex hexagon. 
(d) Let  be a natural number with . Make a conjecture about the sum of the angles of a convex polygon with n sides
and use mathematical induction to prove your conjecture.

19. De Moivre’s Theorem. One of the most interesting results in trigonometry is De Moivre’s Theorem, which relates the
complex number  to the trigonometric functions. Recall that the number  is the complex number whose square is 1, that
is, . One version of the theorem can be stated as follows: 
If  is a real number, then for each nonnegative integer . 

 (a)

n n≥ 2 > 1+n2n

k > 1+k2k

> 2+2k2k+1 2+2k> 2+k

> 1+(k+1)2k+1

> 1+n2n

 (b)

n P (n) x

y n= 2x+5y

6

8

=

=

3 ⋅ 2+0 ⋅ 5                7

4 ⋅ 2+0 ⋅ 5                9

=

=

2+5

2 ⋅ 2+1 ⋅ 5
(4.2.10)

P (6) P (7) P (8) P (9)

k k≥ 10 P (6) P (7) P (k)

k+1 = (k−4)+5.

k≥ 10 k−4 ≥ 6 P (k−4) k−4 = 2x+5y

k+1 =

=

(2x+5y)+5

2x+5(y+1).
(4.2.11)

P (k+1)

n n≥ 6 x y n= 2x+5y

180∘

n n≥ 3

i i

=−1i2

x n

[cosx+ i(sinx) = cos(nx)+ i(sin(nx)).]n (4.2.12)
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This theorem is named after Abraham de Moivre (1667 – 1754), a French mathematician. 
 
(a) The proof of De Moivre’s Theorem requires the use of the trigonometric identities for the sine and cosine of the sum of
two angles. Use the Internet or a book to find identities for  and . 
(b) To get a sense of how things work, expand  and write the result in the form . Then use the
identities from part (1) to prove that .

20. (c) Use mathematical induction to prove De Moivre’s Theorem.

Answer

Add texts here. Do not delete this text first.

This page titled 4.2: Other Forms of Mathematical Induction is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or
curated by Ted Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.

4.2: Other Forms of Mathematical Induction by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source:
https://scholarworks.gvsu.edu/books/7.

sin(α+β) cos(α+β)

[cosx+ i(sinx)]2 a+bi

[cosx+ i(sinx) = cos(2x)+ i(sin(2x))]2
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4.3: Induction and Recursion

In a proof by mathematical induction, we “start with a first step” and then prove that we can always go from one step to the
next step. We can use this same idea to define a sequence as well. We can think of a sequence as an infinite list of numbers that
are indexed by the natural numbers (or some infinite subset of . We often write a sequence in the following form:

The number  is called the  term of the sequence. One way to define a sequence is to give a specific formula for the 

term of the sequence such as .

Another way to define a sequence is to give a specific definition of the first term (or the first few terms) and then state, in
general terms, how to determine  in terms of  and the first  terms . This process is known as definition
by recursion and is also called a recursive definition. The specific definition of the first term is called the initial condition,
and the general definition of  in terms of  and the first  terms  is called the recurrence relation. (When
more than one term is defined explicitly, we say that these are the initial conditions.) For example, we can define a sequence
recursively as follows:

, and for each , .

Using  and then , we then see that

1. Calculate  through . What seems to be happening to the values of  as  gets larger?
2. Define a sequence recursively as follows: 

, and for each , . 

 

Then . Caluculate  through . What seems to be happening to the values of  as 

gets larger?

The sequences in Parts (1) and (2) can be generalized as follows: Let a and r be real numbers. Define two sequences
recursively as follows:

, and for each , .

, and for each , .

3. Determine formulas (in terms of  and ) for  through . What do you think an is equal to (in terms of , , and )?
4. Determine formulas (in terms of  and ) for  through . What do you think an is equal to (in terms of , , and )? 

 
In Preview Activity  in Section 4.2, for each natural number , we defined , read  factorial, as the product of the
first n natural numbers. We also defined  to be equal to 1. Now recursively define a sequence of numbers , , , ... as
follows: 
 

, and  
for each nonnegative integer , . 
 
Using , we see that this implies that , Then using , we see that  

 Preview Activity : Recursively Defined Sequences4.3.1

N∪ {0})

, , . . . , , . . .a1 a2 an

an nth nth

=an
1

n

an+1 n n , , . . . ,a1 a2 an

an+1 n n , , . . . ,a1 a2 an

= 16b1 n ∈ N =bn+1
1

2
bn

n = 1 n = 2

b2 =

=

=

             
1

2
b1 b3

⋅ 16
1

2
8

=

=

=

1

2
b2

⋅ 8
1

2
4

(4.3.1)

b4 b10 bn n

= 16T1 n ∈ N = 16 +Tn+1
1

2
Tn

= 16 + = 16 +8 = 24T2
1

2
T1 T3 T10 Tn n

= aa1 n ∈ N = r ⋅an+1 an

= aS1 n ∈ N = a+r ⋅Sn+1 Sn

a r a2 a6 a r n

a r S2 S6 a r n

4.3.1 n n! n

0! a0 a1 a2

= 1a0

n = (n+1) ⋅an+1 an

n = 0 = 1 ⋅ = 1 ⋅ 1 = 1a1 a0 n = 1

= 2 = 2 ⋅ 1 = 2.a2 a1 (4.3.2)
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5. Calculate , ,  and .
6. Do you think that it is possible to calculate  and ? Explain.
7. Do you think it is possible to calculate  for any natural number ? Explain.
8. Compare the values of , , , , , , and  with those of 0!, 1!, 2!, 3!, 4!, 5!, and 6!. What do you observe? We

will use mathematical induction to prove a result about this sequence in Exercise (1).

The Fibonacci numbers are a sequence of natural numbers , , , ..., , ... defined recursively as follows:

 and , and
For each natural number , .

In words, the recursion formula states that for any natural number  with , the  Fibonacci number is the sum of the
two previous Fibonacci numbers. So we see that

1. Calculate  through .
2. Which of the Fibonacci numbers  through  are even? Which are multiples of 3?
3. For , , , and , how is the sum of the first  Fibonacci numbers related to the 

Fibonacci number?
4. Record any other observations about the values of the Fibonacci numbers or any patterns that you observe in the sequence

of Fibonacci numbers. If necessary, compute more Fibonacci numbers.

The Fibonacci Numbers

The Fibonacci numbers form a famous sequence in mathematics that was investigated by Leonardo of Pisa (1170 – 1250), who is
better known as Fibonacci. Fibonacci introduced this sequence to the Western world as a solution of the following problem:

Suppose that a pair of adult rabbits (one male, one female) produces a pair of rabbits (one male, one female) each month.
Also, suppose that newborn rabbits become adults in two months and produce another pair of rabbits. Starting with one
adult pair of rabbits, how many pairs of rabbits will be produced each month for one year?

Since we start with one adult pair, there will be one pair produced the first month, and since there is still only one adult pair, one
pair will also be produced in the second month (since the new pair produced in the first month is not yet mature). In the third
month, two pairs will be produced, one by the original pair and one by the pair which was produced in the first month. In the fourth
month, three pairs will be produced, and in the fifth month, five pairs will be produced.

The basic rule is that in a given month after the first two months, the number of adult pairs is the number of adult pairs one month
ago plus the number of pairs born two months ago. This is summarized in Table 4.1, where the number of pairs produced is equal
to the number of adult pairs, and the number of adult pairs follows the Fibonacci sequence of numbers that we developed in
Preview Activity .

Table 4.1: Fibonacci Numbers

Months 1 2 3 4 5 6 7 8 9 10

Adult
Pairs

1 1 2 3 5 8 13 21 34 55

Newborn
Pairs

1 1 2 3 5 8 13 21 34 55

Month-
Old Pairs

0 1 1 2 3 5 8 13 21 34

Historically, it is interesting to note that Indian mathematicians were studying these types of numerical sequences well before
Fibonacci. In particular, about fifty years before Fibonacci introduced his sequence, Acharya Hemachandra (1089 – 1173)

a3 a4 a5 a6

a20 a100

an n

a0 a1 a2 a3 a4 a5 a6

 Preview Activity : The Fibonacci Numbers4.3.1

f1 f2 f3 fn

= 1f1 = 1f2

n = +fn+2 fn+1 fn

n n ≥ 3 nth

f3

f4

f5

=

=

=

+ = 1 +1 = 2,f2 f1

+ = 2 +1 = 3, andf3 f2

+ = 3 +2 = 5,f4 f3

(4.3.3)

f6 f20

f1 f20

n = 2 n = 3 n = 4 n = 5 (n−1) (n+1)st

4.3.2
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considered the following problem, which is from the biography of Hemachandra in the MacTutor History of Mathematics Archive:

Suppose we assume that lines are composed of syllables which are either short or long. Suppose also that each long syllable
takes twice as long to articulate as a short syllable. A line of length  contains  units where each short syllable is one unit
and each long syllable is two units. Clearly a line of length  units takes the same time to articulate regardless of how it is
composed. Hemchandra asks: How many different combinations of short and long syllables are possible in a line of length 

?

This is an important problem in the Sanskrit language since Sanskrit meters are based on duration rather than on accent as in the
English Language. The answer to this question generates a sequence similar to the Fibonacci sequence. Suppose that hn is the
number of patterns of syllables of length . We then see that  and . Now let  be a natural number and consider
pattern of length . This pattern either ends in a short syllable or a long syllable. If it ends in a short syllable and this syllable is
removed, then there is a pattern of length , and there are  such patterns. Similarly, if it ends in a long syllable and this
syllable is removed, then there is a pattern of length , and there are  such patterns. From this, we conclude that

This actually generates the sequence 1, 2, 3, 5, 8, 13, 21, .... For more information about Hemachandra, see the article Math for
Poets and Drummers by Rachel Wells Hall in the February 2008 issue of Math Horizons.

We will continue to use the Fibonacci sequence in this book. This sequence may not seem all that important or interesting.
However, it turns out that this sequence occurs in nature frequently and has applications in computer science. There is even a
scholarly journal, The Fibonacci Quarterly, devoted to the Fibonacci numbers.

The sequence of Fibonacci numbers is one of the most studied sequences in mathematics, due mainly to the many beautiful patterns
it contains. Perhaps one observation you made in Preview Activity  is that every third Fibonacci number is even. This can be
written as a proposition as follows:

For each natural number ,  is an even natural number.

As with many propositions associated with definitions by recursion, we can prove this using mathematical induction. The first step
is to define the appropriate open sentence. For this, we can let  be, “  is an even natural number.”

Notice that  is true since . We now need to prove the inductive step. To do this, we need to prove that for each ,

if  is true, then  is true.

That is, we need to prove that for each , if  is even, then  is even.

So let’s analyze this conditional statement using a know-show table.

Step Know Reason

 is even Inductive hypothesis

1 Definition of "even integer"

... ... ...

1  

 is even. Definition of "even integer"

Step Show Reason

The key question now is, “Is there any relation between  and ?” We can use the recursion formula that defines the
Fibonacci sequence to find such a relation.

The recurrence relation for the Fibonacci sequence states that a Fibonacci number (except for the first two) is equal to the sum of
the two previous Fibonacci numbers. If we write , then we get . For , the two previous
Fibonacci numbers are  and . This means that

Using this and continuing to use the Fibonacci relation, we obtain the following:

n n

n

n

n = 1h1 = 2h2 n

n+2
n+1 +1hn

n hn

= + .hn+2 hn+1 hn

4.3.2

n f3n

P (n) f3n

P (1) = 2f3n k ∈ N

P (k) P (k+1)

k ∈ N f3k f3(k+1)

P f3k

P (∃m ∈ N)( = 2m)f3k

Q (∃q ∈ N)( = 2q)f3(k+1)

Q f3(k+1)

f3(k+1) fk

3(k+1) = 3k+3 =f3(k+1) f3k+3 f3k+3

f3k+2 f3k+1

= + .f3k+3 f3k+2 f3k+1
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The preceding equation states that . This equation can be used to complete the proof of the induction step.

Complete the proof of Proposition 4.13.

For each natural number , the Fibonacci number  is an even natural number.

Hint: We have already defined the predicate  to be used in an induction proof and have proved the basis step. Use the
information in and after the preceding know-show table to help prove that if  is even, then  is even.

Answer

Add texts here. Do not delete this text first.

Geometric Sequences and Geometric Series

Let . The following sequence was introduced in Preview Activity .

This is a recursive definition for a geometric sequence with initial term  and (common) ratio . The basic idea is that the next
term in the sequence is obtained by multiplying the previous term by the ratio . The work in Preview Activity  suggests that
the following proposition is true.

Let , If a geometric sequence is defined by  and for each , , then for each , 
.

Proof

The proof of this proposition is Exercise (6).

Another sequence that was introduced in Preview Activity  is related to geometric series and is defined as follows:

For each , the term  is a (finite) geometric series with initial term  and (common) ratio . The work in Preview
Activity  suggests that the following proposition is true.

Let . If the sequence  is defined by  and for each , , then for each 
, . That is, the geometric series  is the sum of the first  terms of the

corresponding geometric sequence.

Proof

Add proof here and it will automatically be hidden if you have a "AutoNum" template active on the page.

f3(k+1) =

=

=

f3k+3

+f3k+2 f3k+1

( + ) + .f3k+1 f3k f3k+1

(4.3.4)

= 2 +f3(k+1) f3k+1 f3k

 Progress Check 4.12 (Every Third Fibonacci Number Is Even)

 Proposition 4.13.

n f3n

P (n)
f3k f3(k+1)

a,  r ∈ R 4.3.1

Initial condition

Recurrence relation

:

:

= a.a1

For each n ∈ N, = r ⋅ .an+1 an
(4.3.5)

a r

r 4.3.1

 Theorem 4.14

a,  r ∈ R = aa1 n ∈ N = r ⋅an+1 an n ∈ N

= a ⋅an rn−1

4.3.1

Initial condition

Recurrence relation

:

:

= a.S1

For each n ∈ N, = r ⋅ .Sn+1 Sn

(4.3.6)

n ∈ N Sn a r

4.3.1

 Theorem 4.15

a,  r ∈ R , , . . . , , . . .S1 S2 Sn = aS1 n ∈ N = a+r ⋅Sn+1 Sn

n ∈ N = a+a ⋅ r+a ⋅ + ⋅ ⋅ ⋅ +a ⋅Sn r2 rn−1 Sn n
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The proof of Proposition 4.15 is Exercise (7). The recursive definition of a geometric series and Proposition 4.15 give two different
ways to look at geometric series. Proposition 4.15 represents a geometric series as the sum of the first nterms of the corresponding
geometric sequence. Another way to determine this sum a geometric series is given in Theorem 4.16, which gives a formula for the
sum of a geometric series that does not use a summation.

Let  and . If the sequence  is defined by  and for each , ,

then for each , .

Proof

The proof of Proposition 4.16 is Exercise (8).

1. For the sequence , assume that  and that for each , . Use
mathematical induction to prove that for each , .

2. Assume that  are the Fibonacci numbers. Prove each of the following: 
 
(a) For each ,  is a multiple of 3. 
(b) For each ,  is a multiple of 5. 
(c) For each , with , . 
(d) For each , . 
(e) For each , . 
(f) For each , . 
(g) For each  such that  (mod 3),  is an odd integer.

3. Use the result in Part (f) of Exercise (2) to prove that 

4. The quadratic formula can be used to show that  and  are the two real number solutions of the

quadratic equation . Notice that this implies that  

 
It may be surprising to find out that these two irrational numbers are closely related to the Fibonacci numbers. 
 

(a) Verify that  and that  

(b) (This part is optional, but it may help with the induction proof in part (c).) Work with the relation  and
substitute the expressions for  and  from part (a). Rewrite the expression as a single fraction and then in the numerator

use  and a similar equation involving . Now prove that . 

(c) Use induction to prove that for each natural number , if  and , then . Note:

This formula for the  Fibonacci number is known as Binet's formula, named after the French mathematician Jacques
Binet (1786 - 1856).

5. Is the following conjecture true or false? Justify your conclusion. 
 
Conjecture. Let  be the sequence of the Fibonacci numbers. For each natural number , the numbers 

 Theorem 4.16

a,  r ∈ R r ≠ 1 , , . . . , , . . .S1 S2 Sn = aS1 n ∈ N = a+r ⋅Sn+1 Sn

n ∈ N = a( )Sn

1 −rn

1 −r

 Exercises for Section 4.3

, , , . . . , , . . .a0 a1 a2 an = 1a0 n ∈ N∪ {0} = (n+1)an+1 an
n ∈ N∪ {0} = n!an

, , . . . , , . . .f1 f2 fn

n ∈ N f4n

n ∈ N f5n

n ∈ N n ≥ 2 + +⋅ ⋅ ⋅ + = −1f1 f2 fn−1 fn+1

n ∈ N + +⋅ ⋅ ⋅ + =f1 f3 f2n−1 f2n

n ∈ N + +⋅ ⋅ ⋅ + = −1f2 f4 f2n f2n+1

n ∈ N + +⋅ ⋅ ⋅ + =f 2
1 f 2

2 f 2
n fnfn+1

n ∈ N n ≢ 0 fn

= 1 +
+ +⋅ ⋅ ⋅ + +f 2

1 f 2
2 f 2

n f 2
n+1

+ +⋅ ⋅ ⋅ +f 2
1 f 2

2 f 2
n

fn+1

fn
(4.3.7)

α =
1 + 5

–
√

2
β =

1 − 5
–

√

2
−x−1 = 0x2

α2

β2

=

=

α+1,  and

β+1.
(4.3.8)

=f1
−α1 β1

α−β
=f2

−α2 β2

α−β
= +f3 f2 f1

f1 f2

+α = α(α+1)α2 β =f3
−α3 β3

α−β

n α =
1 + 5

–
√

2
β =

1 − 5
–

√

2
=fn

−αn βn

α−β

nth

, , . . . , , . . .f1 f2 fm n
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, , and  form a Pythagorean triple.
6. Prove Proposition 4.14. Let , If a geometric sequence is defined by  and for each , ,

then for each , .
7. Prove Proposition 4.15. Let . If the sequence  is defined by  and for each , 

, then for each , . That is, the geometric series  is the
sum of the first  terms of the corresponding geometric sequence.

8. Prove Proposition 4.16. Let  and . If the sequence  is defined by  and for each 

, , then for each , .

9. For the sequence , assume that  and that for each , . 
 
(a) Calculate  through . 
(b) Make a conjecture for a formula for  for each  for each . 
(c) Prove that your conjecture in Exercise (9b) is correct.

10. The sequence in Exercise (9) is an example of an arithmetic sequence. An arithmetic sequence is defined recursively as
follows: 
 
Let  and  be real numbers. Define the sequence  by  and for each , . 
 
(a) Determine formulas for  through . 
(b) Make a conjecture for a formula for  for each  for each . 
(c) Prove that your conjecture in Exercise (10b) is correct.

11. For the sequence , assume that , , and that for each , . Prove
that for each natural number , .

12. For the sequence , assume that  and that for each , . 
 
(a) Calculate, or approximate,  through . 
(b) Prove that for each , .

13. For the sequence , assume that , , and that for each , . 
 
(a) Calculate  through . 
(b) Make a conjecture for a formula for  for each  for each . 
(c) Prove that your conjecture in Exercise (13b) is correct.

14. For the sequence , assume that , , and that for each , . 

 
(a) Calculate  through . 
(b) Prove that for each , .

15. For the sequence , assume that , , , and for that each natural number , 

 
(a) Compute , , , and . 
(b) Prove that for each natural number  with , .

16. For the sequence , assume that , and for each natural number ,  

 
(a) Compute  for the first 10 natural numbers. 
(b) Compute  for the first 10 natural numbers. 
(c) Make a conjecture about a formula for  in terms of  that does not involve a summation or a recursion. 
(d) Prove your conjecture in Part (c).

fnfn+3 2fn+1fn+2 ( + )f 2
n+1 f 2

n+2

a,  r ∈ R = aa1 n ∈ N = r ⋅an+1 an
n ∈ N = a ⋅an rn−1

a,  r ∈ R , , . . . , , . . .S1 S2 Sn = aS1 n ∈ N

= a+r ⋅Sn+1 Sn n ∈ N = a+a ⋅ r+a ⋅ + ⋅ ⋅ ⋅ +a ⋅Sn r2 rn−1 Sn

n

a,  r ∈ R r ≠ 1 , , . . . , , . . .S1 S2 Sn = aS1

n ∈ N = a+r ⋅Sn+1 Sn n ∈ N = a( )Sn

1 −rn

1 −r
, , . . . , , . . .a1 a2 an = 2a1 n ∈ N = +5an+1 an

a2 a6

an n n ∈ N

c d , , . . . , , . . .a1 a2 an = ca1 n ∈ N = +dan+1 an

a3 a8

an n n ∈ N

, , . . . , , . . .a1 a2 an = 1a1 = 5a2 n ∈ N = +2an+1 an an−1

n = +(−1an 2n )n

, , . . . , , . . .a1 a2 an = 1a1 n ∈ N =an+1 5 +an
− −−−−

√

a2 a6

n ∈ N < 3an
, , . . . , , . . .a1 a2 an = 1a1 = 3a2 n ∈ N = 3 −2an+2 an+1 an

a3 a6

an n n ∈ N

, , . . . , , . . .a1 a2 an = 1a1 = 1a2 n ∈ N = ( + )an+2
1

2
an+1

2

an

a3 a6

n ∈ N 1 ≤ ≤ 2an
, , . . . , , . . .a1 a2 an = 1a1 = 1a2 = 1a3 n

= + + .an+3 an+2 an+1 an (4.3.9)

a4 a5 a6 a7

n n > 1 ≤an 2n−2

, , . . . , , . . .a1 a2 an = 1a1 n

= +n ⋅n!.an+1 an (4.3.10)

n!
an

an n
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17. For the sequence , assume that , , and for each , . Determine
which terms in this sequence are divisible by 4 and prove that your answer is correct.

18. The Lucas numbers are a sequence of natural numbers , which are defined recursively as follows: 
 

  and , and 
 For each natural number , . 

 
List the first 10 Lucas numbers and the first ten Fibonacci numbers and then prove each of the following propositions. The
Second Principle of Mathematical Induction may be needed to prove some of these propositions. 
 
(a) For each natural number , . 
(b) For each  with , . 
(c) For each  with , .

19. There is a formula for the Lucas number similar to the formula for the Fibonacci numbers in Exercise (4). Let 

 and . Prove that for each , .

20. Use the result in Exercise (19), previously proven results from Exercise (18), or mathematical induction to prove each of
the following results about Lucas numbers and Fibonacci numbers. 
 

(a) For each ,  

(b) For each , . 

(c) For each , . 

(d) For each  with , .
21. Evaluation of proofs 

See the instructions for Exercise (19) on page 100 from Section 3.1.

Let  be the th Fibonacci number, and let  be the positive solution of the equation . So .

For each natural number , .

Proof

We will use a proof by mathematical induction. For each natural number , we let  be, “ .”

We first note that  is true since  and . We also notice that  is true since  and, hence, 
.

We now let  be a natural number with  and assume that , , ...,  are all true. We now need to
prove that  is true or that .

Since  and  are true, we know that  and . Therefore,

\[\begin{array} {rcl} {f_{k + 1}} &= & {f_k + f_{k - 1}} \\ {f_{k + 1}} &\le & {\alpha ^{k - 1} + {\alpha ^{k -
2}} \\ {f_{k + 1}} &\le & {\alpha ^{k - 2} (\alpha + 1).} \end{array}\]

We now use the fact that  and the preceding inequality to obtain

This proves that if , , ...,  are true, then  is true. Hence, by the Second Principle of
Mathematical Induction, we conclude that or each natural number , .

, , . . . , , . . .a1 a2 an = 1a1 = 1a2 n ∈ N = +3an+2 an+1 an

, , , . . . , , . . .L1 L2 L3 Ln

bullet = 1L1 = 3L2

bullet n = +Ln+2 Ln+1 Ln

n = 2 −Ln fn+1 fn
n ∈ N n ≥ 2 5 = +fn Ln−1 Ln+1

n ∈ N n ≥ 3 = −Ln fn+1 fn−2

α =
1 + 5

–√

2
β =

1 − 5
–√

2
n ∈ N = +Ln αn βn

n ∈ N =Ln

f2n

fn

n ∈ N =fn+1
+fn Ln

2

n ∈ N =Ln+1
+5Ln fn

2
n ∈ N n ≥ 2 = +Ln fn+1 fn−1

 (a)

fn n α = x+1x2 α =
1 + 5

–
√

2
n ≤fn αn−1

n P (n) ≤fn αn−1

P (1) = 1f1 = 1α0 P (2) = 1f2

≤f2 α1

k k ≥ 2 P (1) P (2) P (k)
P (k+1) ≤fk+1 αk

P (k−1) P (k) ≤fk−1 αk−2 ≤fk αk−1

α+1 = α2

fk+1

fk+1

≤

≤

αk−2α2

.αk
(4.3.11)

P (1) P (2) P (k) P (k+1)
n ≤fn αn−1
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Explorations and Activities
22. Compound Interest. Assume that R dollars is deposited in an account that has an interest rate of i for each compounding

period. A compounding period is some specified time period such as a month or a year.
For each integer  with , let Vn be the amount of money in an account at the end of the nth compounding period.
Then 

 
 
(a) Explain why . Then use the formula for V2 to determine a formula for  in terms of  and . 
(b) Determine a recurrence relation for  in terms of  and . 
(c) Write the recurrence relation in Part (22b) so that it is in the form of a recurrence relation for a geometric sequence.
What is the initial term of the geometric sequence and what is the common ratio? 
(d) Use Proposition 4.14 to determine a formula for  in terms of , , and .

23. The Future Value of an Ordinary Annuity. For an ordinary annuity,  dollars is deposited in an account at the end of
each compounding period. It is assumed that the interest rate, , per compounding period for the account remains constant.

Let  represent the amount in the account at the end of the th compounding period.  is frequently called the future
value of the ordinary annuity.

So . To determine the amount after two months, we first note that the amount after one month will gain interest and
grow to . In addition, a new deposit of  dollars will be made at the end of the second month. So 

 
 
(a) For each , use a similar argument to determine a recurrence relation for  in terms of , , and . 
(b) By recognizing this as a recursion formula for a geometric series, use Proposition 4.16 to determine a formula for  in
terms of , , and  that does not use a summation. Then show that this formula can be written as 

 
(c) What is the future value of an ordinary annuity in 20 years if $200 dollars is deposited in an account at the end of each
month where the interest rate for the account is 6% per year compounded monthly? What is the amount of interest that has
accumulated in this account during the 20 years?

Answer

Add texts here. Do not delete this text first.
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n n ≤ 0

V1 =

=

R+ i ⋅R           V2

R(1 + i)

=

=

=

+ i ⋅V1 V1

(1 + i)V1

(1 + i R.)2

(4.3.12)

= + i ⋅V3 V2 V2 V3 i R

Vn+1 i Vn

Vn I R n

R

i

St t St

= RS1

(1 + i)S1 R

= R+(1 + i)S2 S1 (4.3.13)

n ∈ N Sn+1 R i Sn

Sn

R i n

= R( ).Sn

(1 + i −1)n

i
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4.S: Mathematical Induction (Summary)
Important Definitions

Inductive set, page 171
Factorial, page 201
Recursive definition, page 200
Fibonacci numbers, page 202
Geometric sequence, page 206
Geometric series, page 206

The Various Forms of Mathematical Induction

1. The Principle of Mathematical Induction 
If  is a subset of  such that  
 
(a) , and  
(b) For every , if , then . 
 
then  
Procedure for a Proof by Mathematical Induction 
To prove (P(n))\) 

2. The Extended Principle of Mathematical Induction 
Let  be an integer. If  is a subset of  such that 
 
(a) , and 
(b) For every  with , if , then . 
 
then  contains all integers greater than or equal to . 
Using the Extended Principle of Mathematical Induction 
Let  be an intteger. To prove  

 
We can then conclude that  is true for all  with .

3. The Second Principle of Mathematical Induction 
Let  be an integer. If  is a subset of  such that 
 
(a) , and 
(b) For every  with , if , then . 
 
then  contains all integers greater than or equal to . 
Using the Second Principle of Mathematical Induction 
Let  be an intteger. To prove  

 
We can then conclude that  is true for all  with .

Important Results

Theorem 4.9. Each natural number greater than 1 is either a prime number or is a product of prime numbers.
Theorem 4.14. Let . If a geometric sequence is defined by  and for each , , then for each , 

.

T N

1 ∈ T

k ∈ N k ∈ T (k +1) ∈ T

T =N

(∀n ∈ N

Basis step

Inductive step

:

:

ProveP (1).

Prove that for eachk ∈ N, ifP (k)is true, thenP (k +1)is true.
(4.S.1)

M T Z

M ∈ T

k ∈ Z k ≥ M k ∈ T (k +1) ∈ T

T M

M (∀n ∈ Zwithn ≥ M)(P (n))

Basis step

Inductive step

:

:

ProveP (M).

Prove that for eachk ∈ Zwithk ≥ M , ifP (k)is true, thenP (k +1)is true.
(4.S.2)

P (n) n ∈ Z n ≥ M

M T Z

M ∈ T

k ∈ Z k ≥ M {M , M +1, . . . , k} ⊆ T (k +1) ∈ T

T M

M (∀n ∈ Zwithn ≥ M)(P (n))

Basis step

Inductive step

:

:

ProveP (M).

Letk ∈ Zwithk ≥ M . Prove that ifP (M), P (M +1), . . . , P (k)are true, thenP (k +1)is true.
(4.S.3)

P (n) n ∈ Z n ≥ M

a, r ∈ R = aa1 n ∈ N = r ⋅an+1 an n ∈ N

= a ⋅an r
n−1
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Theorem 4.15. Let . If the sequence  is defined by  and for each , , then for
each , . That is, the geometric series  is the sum of the first n terms of the corresponding
geometric sequence.
Theorem 4.16. Let  and . If the sequence  is defined by  and for each , ,

then for each , .

This page titled 4.S: Mathematical Induction (Summary) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.

4.S: Mathematical Induction (Summary) by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

a, r ∈ R , , . . . , , . . .S1 S2 Sn = aS1 n ∈ N = a +r ⋅Sn+1 Sn

n ∈ N = a +a ⋅ r +a ⋅ + ⋅ ⋅ ⋅ +a ⋅Sn r
2

r
n−1

Sn

a, r ∈ R r ≠ 1 , , . . . , , . . .S1 S2 Sn = aS1 n ∈ N = a +r ⋅Sn+1 Sn
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Supplementary Notes: Sequences, Definitions

What comes next:

A sequence is simply an ordered list of numbers. For example, here is a sequence: 0, 1, 2, 3, 4, 5, …. This is different from the set 
 because, while the sequence is a complete list of every element in the set of natural numbers, in the sequence we very much care

what order the numbers come in. For this reason, when we use variables to represent terms in a sequence they will look like this:

To refer to the entire sequence at once, we will write  or  or sometimes if we are being sloppy, just  (in which
case we assume we start the sequence with ).

We might replace the  with another letter, and sometimes we omit  starting with  in which case we would use  to
refer to the sequence as a whole. The numbers in the subscripts are called indices (the plural of index).

While we often just think of sequences as an ordered list of numbers, they really are a type of function. Specifically, the sequence 
 is a function with domain  where  is the image of the natural number  Later we will manipulate sequences in much

the same way you have manipulated functions in algebra or calculus. We can shift a sequence up or down, add two sequences, or
ask for the rate of change of a sequence. These are done exactly as you would for functions.

That said, while keeping the rigorous mathematical definition in mind is helpful, we often describe sequences by writing out the
first few terms.

Can you find the next term in the following sequences?

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 

Solution

No you cannot. You might guess that the next terms are:

1. 
2. 
3. 
4. 64
5. 49
6. 34
7. 28
8. 17
9. 

10. 

Investigate!

1,   11,   21,   1211,   111221,   312211,    …

N

, , , , …a0 a1 a2 a3

(an)n∈N ( ,an)n≥0 ( )an
a0

a ,a0 ,a1 (an)n≥1

(an)n≥0 N an n.

Example SupplementaryNotes. 1

7, 7, 7, 7, 7, …
3, −3, 3, −3, 3, …
1, 5, 2, 10, 3, 15, …
1, 2, 4, 8, 16, 32, …
1, 4, 9, 16, 25, 36, …
1, 2, 3, 5, 8, 13, 21, …
1, 3, 6, 10, 15, 21, …
2, 3, 5, 7, 11, 13, …
3, 2, 1, 0, −1, …
1, 1, 2, 6, …

7
−3
4

−2
24
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In fact, those are the next terms of the sequences I had in mind when I made up the example, but there is no way to be sure
they are correct.

Still, we will often do this. Given the first few terms of a sequence, we can ask what the pattern in the sequence suggests
the next terms are.

Given that no number of initial terms in a sequence is enough to say for certain which sequence we are dealing with, we need to
find another way to specify a sequence. We consider two ways to do this:

A closed formula for a sequence  is a formula for  using a fixed finite number of operations on  This is what you
normally think of as a formula in  just like if you were defining a function in terms of  (because that is exactly what you are
doing).

A recursive definition (sometimes called an inductive definition) for a sequence  consists of a recurrence relation: an
equation relating a term of the sequence to previous terms (terms with smaller index) and an initial condition: a list of a few
terms of the sequence (one less than the number of terms in the recurrence relation).

It is easier to understand what is going on here with an example:

Here are a few closed formulas for sequences:

Note in each case, if you are given  you can calculate  directly: just plug in  For example, to find  in the second
sequence, just compute 

Here are a few recursive definitions for sequences:

 with 
 with 

 with  and 

In these cases, if you are given  you cannot calculate  directly, you first need to find  (or  and ). In the
second sequence, to find  you would take  but to find  we would need to know  We do know this, so
we could trace back through these equations to find   and finally 

You have a large collection of  squares and  dominoes. You want to arrange these to make a  strip. How
many ways can you do this?

1. Start by collecting data. How many length  strips can you make? How many  strips? How many  strips?
And so on.

2. How are the  and  strips related to the  strips?
3. How many  strips can you make?
4. What if I asked you to find the number of  strips? Would the method you used to calculate the number fo 

strips be helpful?

Closed formula

(an)n∈N an n.
n, n

Recursive definition

(an)n∈N

Example SupplementaryNotes. 2

= .an n2

= .an
n(n+1)

2

= .an

−( )1+ 5√
2

n

( )1+ 5√
2

−n

5

n, an n. a3

= = 6.a3
3(3+1)

2

= 2an an−1 = 1.a0

= 2an an−1 = 27.a0

= +an an−1 an−2 = 0a0 = 1.a1

n, an an−1 an−1 an−2

a3 2 ,a2 = 2a2 a1 = 2 .a1 a0

= 54,a1 = 108a2 = 216.a3

Investigate!

1 ×1 1 ×2 1 ×15

1 ×1 1 ×2 1 ×3

1 ×3 1 ×4 1 ×5
1 ×15

1 ×1000 1 ×15
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You might wonder why we would bother with recursive definitions for sequences. After all, it is harder to find  with a recursive
definition than with a closed formula. This is true, but it is also harder to find a closed formula for a sequence than it is to find a
recursive definition. So to find a useful closed formula, we might first find the recursive definition, then use that to find the closed
formula.

This is not to say that recursive definitions aren't useful in finding  You can always calculate  given a recursive definition, it
might just take a while.

Find  in the sequence defined by  with  and 

Solution

We know that  So to find  we need to find  and  Well

so if we can only find  and  we would be set. Of course

so we only need to find  and  But we are given these. Thus

Note that now we can guess a closed formula for the th term of the sequence:  To be sure this will always
work, we could plug in this formula into the recurrence relation:

That is not quite enough though, since there can be multiple closed formulas that satisfy the same recurrence relation; we
must also check that our closed formula agrees on the initial terms of the sequence. Since  and 

 are the correct initial conditions, we can now conclude we have the correct closed formula.

Finding closed formulas, or even recursive definitions, for sequences is not trivial. There is no one method for doing this. Just like
in evaluating integrals or solving differential equations, it is useful to have a bag of tricks you can apply, but sometimes there is no
easy answer.

One useful method is to relate a given sequence to another sequence for which we already know the closed formula.

Use the formulas  and  to find closed formulas for the following sequences.

1.  
2.  
3.  
4.  
5.  

an

.an an

Example SupplementaryNotes. 3

a6 = 2 −an an−1 an−2 = 3a0 = 4.a1

= 2 − .a6 a5 a4 a6 a5 .a4

= 2 − and = 2 − ,a5 a4 a3 a4 a3 a2

a3 a2

= 2 − and = 2 − ,a3 a2 a1 a2 a1 a0

a1 .a0

a0

a1

a2

a3

a4

a5

a6

= 3
= 4

= 2 ⋅ 4 −3 = 5
= 2 ⋅ 5 −4 = 6
= 2 ⋅ 6 −5 = 7
= 2 ⋅ 7 −6 = 8

= 2 ⋅ 8 −7 = 9.

n = n+3.an

2 −an−1 an−2 = 2((n−1) +3) −((n−2) +3)

= 2n+4 −n−1
= n+3
= .an

= 0 +3 = 3a0

= 1 +3 = 4a1

Example SupplementaryNotes. 4

=Tn
n(n+1)

2
=an 2n

( ):bn 1, 2, 4, 7, 11, 16, 22, … .
( ):cn 3, 5, 9, 17, 33, … .
( ):dn 0, 2, 6, 12, 20, 30, 42, … .
( ):en 3, 6, 10, 15, 21, 28, … .
( ):fn 0, 1, 3, 7, 15, 31, … .
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6.  
7.  
8.  

Solution
1. Before you say this is impossible, what we are asking for is simply to find a closed formula which agrees with all of the

initial terms of the sequences. Of course there is no way to read into the mind of the person who wrote the numbers
down, but we can at least do this.

2. The first few terms of  are  (these are called the triangular numbers). The first few terms
of  are  Let's try to find formulas for the given sequences:

3.  Note that if subtract 1 from each term, we get the sequence  So we have 

Therefore a closed formula is  A quick check of the first few  confirms we have it right.
4.  Each term in this sequence is one more than a power of 2, so we might guess the closed formula is 

 If we try this though, we get  and  We are off because the
indices are shifted. What we really want is  giving 

5. ( ). Notice that all these terms are even. What happens if we factor out a 2? We get  More
precisely, we find that  so this sequence has closed formula 

6.  These are all triangular numbers. However, we are starting with 3 as our initial term instead of
as our third term. So if we could plug in 2 instead of 0 into the formula for  we would be set. Therefore the closed

formula is  (where  came from ). Thinking about sequences as functions, we are
doing a horizontal shift by 2:  which would cause the graph to shift 2 units to the left.

7.  Try adding 1 to each term and we get powers of 2. You might guess this because each term is a
little more than twice the previous term (the powers of 2 are exactly twice the previous term). Closed formula: 

8.  These numbers are also doubling each time, but are also all multiples of 3. Dividing each by 3
gives 1, 2, 4, 8, …. Aha. We get the closed formula 

9.  To get from one term to the next, we almost double each term. So maybe we can relate this back
to  Yes, each term is 2 more than a power of 2. So we get  (the  is because the first term is 2
more than  not ). Alternatively, we could have related this sequence to the second sequence in this example:
starting with 3, 5, 9, 17, … we see that this sequence is twice the terms from that sequence. That sequence had closed
formula  Our sequence here would be twice this, so  which is the same as we got
before.

10.  Try dividing each term by 3. That gives the sequence  Now add 1: 
 which is  in this example, except starting with 6 instead of 0. So let's start with the formula 

 To start with the 6, we shift:  But this is one too many, so subtract 1: 
 That gives us our sequence, but divided by 3. So we want 
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( )gn 3, 6, 12, 24, 48, … .
( ):hn 6, 10, 18, 34, 66, … .
( ):jn 15, 33, 57, 87, 123, … .

(Tn)n≥0 0, 1, 3, 6, 10, 15, 21, …
(an)n≥0 1, 2, 4, 8, 16, … .

(1, 2, 4, 7, 11, 16, 22, …). ( ).Tn = +1.bn Tn

= +1.bn
n(n+1)

2
n

(3, 5, 9, 17, 33, …).
= +1 = +1.cn an 2n +1 = 2c020 = +1 = 3.c1 21

= +1cn an+1 = +1.cn 2n+1

0, 2, 6, 12, 20, 30, 42, … ( )!Tn
/2 = ,dn Tn = n(n+1).dn

(3, 6, 10, 15, 21, 28, …).
,Tn

=en
(n+2)(n+3)

2
n+3 (n+2) +1

=en Tn+2

(0, 1, 3, 7, 15, 31, …).

= −1.fn 2n

(3, 6, 12, 24, 48, …).
= 3 ⋅ .gn 2n

(6, 10, 18, 34, 66, …).

.2n = +2hn 2n+2 n+2
,22 20

= +1.cn 2n+1 = 2( +1),hn 2n

(15, 33, 57, 87, 123, …). 5, 11, 19, 29, 41, … .
6, 12, 20, 30, 42, … , ( )dn

= n(n+1).dn (n+2)(n+3).
(n+2)(n+3) −1. = 3((n+2)(n+3) −1).jn
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Supplementary Notes: Sequences, Arithmetic and Geometric

For the patterns of dots below, draw the next pattern in the sequence. Then give a recursive definition and a closed formula for
the number of dots in the th pattern.

1. 

2. 

3. 

We now turn to the question of finding closed formulas for particular types of sequences.

If the terms of a sequence differ by a constant, we say the sequence is arithmetic. If the initial term ( ) of the sequence is 
and the common difference is  then we have,

Recursive definition:  with 

Closed formula: 

How do we know this? For the recursive definition, we need to specify  Then we need to express  in terms of  If we call
the first term  then  For the recurrence relation, by the definition of an arithmetic sequence, the difference between
successive terms is some constant, say  So  or in other words,

To find a closed formula, first write out the sequence in general:

We see that to find the th term, we need to start with  and then add  a bunch of times. In fact, add it  times. Thus 

Find recursive definitions and closed formulas for the sequences below. Assume the first term listed is 

1. 
2. 

Solution

Investigate!

n

Arithmetic Sequences

a0 a

d,

= +dan an−1 = a.a0

= a+dn.an

.a0 an .an−1

a, = a.a0
d. − = d,an an−1

= a = +d.a0 an an−1

a0

a1
a2
a3

= a

= +d = a+da0
= +d = a+d+d = a+2da1
= +d = a+2d+d = a+3da2

⋮

n a d n

= a+dn.an

Example SupplementaryNotes. 1

.a0

2, 5, 8, 11, 14,… .
50, 43, 36, 29,… .
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First we should check that these sequences really are arithmetic by taking differences of successive terms. Doing so will
reveal the common difference 

1.   etc. To get from each term to the next, we add three, so  The recursive definition is
therefore  with  The closed formula is 

2. Here the common difference is  since we add  to 50 to get 43, and so on. Thus we have a recursive definition of 
 with  The closed formula is 

What about sequences like \(2, 6, 18, 54, \ldots\text{?}\) This is not arithmetic because the difference between terms is not
constant. However, the ratio between successive terms is constant. We call such sequences geometric.

The recursive definition for the geometric sequence with initial term  and common ratio  is  To get the next
term we multiply the previous term by  We can find the closed formula like we did for the arithmetic progression. Write

We must multiply the first term  by  a number of times,  times to be precise. We get 

A sequence is called geometric if the ratio between successive terms is constant. Suppose the initial term  is  and the
common ratio is  Then we have,

Recursive definition:  with 
Closed formula: 

Find the recursive and closed formula for the sequences below. Again, the first term listed is 

1. 
2. 

Solution

Again, we should first check that these sequences really are geometric, this time by dividing each term by its previous term.
Assuming this ratio is constant, we will have found 

1.    etc. Yes, to get from any term to the next, we multiply by  So the recursive
definition is  with  The closed formula is 

2. The common ratio is  So the sequence has recursive definition  with  and closed formula 

In the examples and formulas above, we assumed that the initial term was  If your sequence starts with  you can easily find
the term that would have been  and use that in the formula. For example, if we want a formula for the sequence \(2, 5, 8,\ldots\)
and insist that  then we can find  (since the sequence is arithmetic with common difference 3, we have 

). Then the closed formula will be 

If you look at other textbooks or online, you might find that their closed formulas for arithmetic and geometric sequences differ
from ours. Specifically, you might find the formulas  (arithmetic) and  (geometric). Which is
correct? Both! In our case, we take  to be  If instead we had  as our initial term, we would get the (slightly more
complicated) formulas you find elsewhere.

d.

5 −2 = 3, 8−5 = 3, d = 3.
= +3an an−1 = 2.a0 = 2+3n.an

−7, −7
= −7an an−1 = 50.a0 = 50−7n.an

a r = ⋅ r; = a.an an a0
r.

a0
a1

a2

= a

= ⋅ ra0

= ⋅ r= ⋅ r ⋅ r= ⋅a1 a0 a0 r2

⋮

a r n = a ⋅ .an rn

Geometric Sequences

a0 a

r.

= ran an−1 = a.a0
= a ⋅ .an rn

Example SupplementaryNotes. 3

.a0

3, 6, 12, 24, 48,…
27, 9, 3, 1, 1/3,…

r.

6/3 = 2,12/6 = 2,24/12 = 2, r= 2.
= 2an an−1 = 3.a0 = 3 ⋅ .an 2n

r= 1/3. =an
1
3 an−1 = 27a0

= 27 ⋅ .an
1
3

n

.a0 ,a1
a0

2 = ,a1 =−1a0
+3 =a0 a1 =−1+3n.an

= a+(n−1)dan = a ⋅an rn−1

a .a0 a1
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Sums of Arithmetic and Geometric Sequences

Your neighborhood grocery store has a candy machine full of Skittles.

1. Suppose that the candy machine currently holds exactly 650 Skittles, and every time someone inserts a quarter, exactly 7
Skittles come out of the machine.
a. How many Skittles will be left in the machine after 20 quarters have been inserted?
b. Will there ever be exactly zero Skittles left in the machine? Explain.

2. What if the candy machine gives 7 Skittles to the first customer who put in a quarter, 10 to the second, 13 to the third, 16 to
the fourth, etc. How many Skittles has the machine given out after 20 quarters are put into the machine?

3. Now, what if the machine gives 4 Skittles to the first customer, 7 to the second, 12 to the third, 19 to the fourth, etc. How
many Skittles has the machine given out after 20 quarters are put into the machine?

Look at the sequence  which starts  These are called the triangular numbers since they represent the
number of dots in an equilateral triangle (think of how you arrange 10 bowling pins: a row of 4 plus a row of 3 plus a row of 2 and
a row of 1).

Is this sequence arithmetic? No, since  and  so there is no common difference. Is the sequence geometric?
No.  but  so there is no common ratio. What to do?

Notice that the differences between terms form an arithmetic sequence:  This says that the th term of the sequence
 is the sum of the first  terms in the sequence  We say that the first sequence is the sequence of

partial sums of the second sequence (partial sums because we are not taking the sum of all infinitely many terms). If we know how
to add up the terms of an arithmetic sequence, we could use this to find a closed formula for a sequence whose differences are the
terms of that arithmetic sequence.

This should become clearer if we write the triangular numbers like this:

Consider how we could find the sum of the first 100 positive integers (that is, ). Instead of adding them in order, we regroup
and add  The next pair to combine is  Then  Keep going. This gives 50 pairs which
each add up to  so This insight is usually attributed to Carl Friedrich Gauss, one of the greatest
mathematicians of all time, who discovered it as a child when his unpleasant elementary teacher thought he would keep the class
busy by requiring them to compute the lengthy sum.

In general, using this same sort of regrouping, we find that  Incidentally, this is exactly the same as  which
makes sense if you think of the triangular numbers as counting the number of handshakes that take place at a party with 
people: the first person shakes  hands, the next shakes an additional  hands and so on.

The point of all of this is that some sequences, while not arithmetic or geometric, can be interpreted as the sequence of partial sums
of arithmetic and geometric sequences. Luckily there are methods we can use to compute these sums quickly.

Summing Arithmetic Sequences: Reverse and Add

Here is a technique that allows us to quickly find the sum of an arithmetic sequence.

Investigate!

(Tn)n≥1 1, 3, 6, 10, 15,… .

3−1 = 2 6−3 = 3 ≠ 2,
3/1 = 3 6/3 = 2,

2, 3, 4, 5, 6,… . n

1, 3, 6, 10, 15,… n 1, 2, 3, 4, 5,… .

1
3
6

10

⋮
Tn

= 1
= 1+2
= 1+2+3
= 1+2+3+4

⋮
= 1+2+3+⋯+n.

T100

1+100 = 101. 2+99 = 101. 3+98 = 101.
101, = 101 ⋅ 50 = 5050.T100

 1 

= .Tn
n(n+1)

2 ( ),n+1
2

n+1
n n−1
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Find the sum: 

Solution

The idea is to mimic how we found the formula for triangular numbers. If we add the first and last terms, we get 472. The
second term and second-to-last term also add up to 472. To keep track of everything, we might express this as follows. Call
the sum  Then,

470

2

To find  then we add 472 to itself a number of times. What number? We need to decide how many terms (summands) are
in the sum. Since the terms form an arithmetic sequence, the th term in the sum (counting  as the 0th term) can be
expressed as  If  then  So  ranges from 0 to 156, giving 157 terms in the sum. This is the
number of 472's in the sum for  Thus

It is now easy to find 

This will work for any sum of arithmetic sequences. Call the sum  Reverse and add. This produces a single number added to
itself many times. Find the number of times. Multiply. Divide by 2. Done.

Find a closed formula for 

Solution

Again, we have a sum of an arithmetic sequence. We need to know how many terms are in the sequence. Clearly each term
in the sequence has the form  (as evidenced by the last term). For which values of  though? To get 6,  To get 

 take  So to find the number of terms, we need to know how many integers are in the range  The
answer is  (There are  numbers from 1 to  so one less if we start with 2.)

Now reverse and add:

6

Since there are  terms, we get

Besides finding sums, we can use this technique to find closed formulas for sequences we recognize as sequences of partial sums.

Use partial sums to find a closed formula for  which starts 

Solution

Example SupplementaryNotes. 4

2+5+8+11+14+⋯+470.

S.

S = 2 + 5 + 8 +⋯+ 467 +

+ S = 470 + 467 + 464 +⋯+ 5 +

2S = 472 + 472 + 472 +⋯+ 472 + 472

2S
n 2

2+3n. 2 +3n= 470 n= 156. n

2S.

2S = 157 ⋅ 472 = 74104

S:

S = 74104/2 = 37052

S.

Example SupplementaryNotes. 5

6+10+14+⋯+(4n−2).

4k−2 k k= 2.
4n−2 k= n. 2, 3,… ,n.

n−1. n n,

S = 6 + 10 +⋯+ 4n−6 + 4n−2

+ S = 4n−2 + 4n−6 +⋯+ 10 +

2S = 4n+4 + 4n+4 +⋯+ 4n+4 + 4n+4

n−2

2S = (n−2)(4n+4)  so  S =
(n−2)(4n+4)

2

Example SupplementaryNotes. 6

(an)n≥0 2, 3, 7, 14, 24, 37,……
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First, if you look at the differences between terms, you get a sequence of differences:  which is an
arithmetic sequence. Written another way:

and so on. We can write the general term of  in terms of the arithmetic sequence as follows:

(we use  instead of  to get the indices to line up correctly; for  we add up to 7, which is 
).

We can reverse and add, but the initial 2 does not fit our pattern. This just means we need to keep the 2 out of the reverse
part:

Not counting the first term (the 4) there are  summands of  so the right-hand side becomes 

Finally, solving for  we get

Just to be sure, we check   etc. We have the correct closed formula.

Summing Geometric Sequences: Multiply, Shift and Subtract

To find the sum of a geometric sequence, we cannot just reverse and add. Do you see why? The reason we got the same term added
to itself many times is because there was a constant difference. So as we added that difference in one direction, we subtracted the
difference going the other way, leaving a constant total. For geometric sums, we have a different technique.

What is 

Solution

Multiply each term by 2, the common ratio. You get . Now subtract: 
 Since  we have our answer.

To better see what happened in the above example, try writing it this way:

Then divide both sides by  and we have the same result for  The idea is, by multiplying the sum by the common ratio, each
term becomes the next term. We shift over the sum to get the subtraction to mostly cancel out, leaving just the first term and new
last term.

1, 4, 7, 10, 13,… ,

a0

a1
a2
a3

= 2
= 2+1
= 2+1+4
= 2+1+4+7

( )an

= 2+1+4+7+10+⋯+(1+3(n−1))an

1+3(n−1) 1+3n a3
1+3(3−1)

=an 2 + 1 + 4 +⋯+ 1+ 3(n−1)

+  =an 2 + 1 + 3(n−1) + 1 + 3(n−2) +⋯+ 1

2 =an 4 + 2 + 3(n−1) + 2 + 3(n−1) +⋯+ 2+ 3(n−1)

n 2+3(n−1) = 3n−1
2+(3n−1)n.

an

= .an
4+(3n−1)n

2

= = 2,a0
4
2

= = 3,a1
4+2
2

Example SupplementaryNotes. 7

3+6+12+24+⋯+12288?

2S = 6+12+24+⋯+24576
2S−S =−3+24576 = 24573. 2S−S = S,

S = 3+ 6+ 12 + 24 +⋯+12288

− 2S = 6+ 12 + 24 +⋯+12288 +24576

−S = 3+ 0+ 0+ 0+⋯+0 −24576

−1 S.
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Find a closed formula for 

Solution

The common ratio is 5. So we have

Thus 

Even though this might seem like a new technique, you have probably used it before.

Express  as a fraction.

Solution

Let  Consider  We get:

So  What have we done? We viewed the repeating decimal  as a sum of the geometric sequence 
 The common ratio is  The only real difference is that we are now computing an infinite geometric

sum, we do not have the extra “last” term to consider. Really, this is the result of taking a limit as you would in calculus when you
compute infinite geometric sums.

 and  notation

To simplify writing out sums, we will use notation like  This means add up the 's where  changes from 1 to 

Use  notation to rewrite the sums:

1. 
2. 
3. 

Solution

  

If we want to multiply the  instead, we would write  For example, 

 

Example SupplementaryNotes. 8

S(n) = 2+10+50+⋯+2 ⋅ .5n

S = 2+ 10 + 50 +⋯+2 ⋅ 5n

−  5S =       10 + 50 +⋯+2 ⋅ + 2 ⋅5n 5n+1

−4S = 2− 2 ⋅ 5n+1

S =
2−2 ⋅ 5n+1

−4

Example SupplementaryNotes. 9

0.464646…

N = 0.46464646… . 0.01N .

N = 0.4646464…

− 0.01N = 0.00464646…

0.99N = 0.46

N = .46
99

0.464646…
0.46, 0.0046, 0.000046,… 0.01.

∑ ∏

.∑
k=1

n

ak ak k n.

Example SupplementaryNotes. 10

∑

1+2+3+4+⋯+100
1+2+4+8+⋯+250

6+10+14+⋯+(4n−2).

k∑
k=1

100

∑
k=0

50

2k (4k−2)∑
k=2

n

ak .∏
k=1

n

ak k= n!.∏
k=1

n
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Supplementary Notes: Recurrence Relations

Consider the recurrence relation

1. What sequence do you get if the initial conditions are   Give a closed formula for this sequence.
2. What sequence do you get if the initial conditions are   Give a closed formula.
3. What if  and  Find a closed formula.

We have seen that it is often easier to find recursive definitions than closed formulas. Lucky for us, there are a few techniques for
converting recursive definitions to closed formulas. Doing so is called solving a recurrence relation. Recall that the recurrence
relation is a recursive definition without the initial conditions. For example, the recurrence relation for the Fibonacci sequence is 

 (This, together with the initial conditions  and  give the entire recursive definition for the
sequence.)

Find a recurrence relation and initial conditions for 

Solution

Finding the recurrence relation would be easier if we had some context for the problem (like the Tower of Hanoi, for
example). Alas, we have only the sequence. Remember, the recurrence relation tells you how to get from previous terms to
future terms. What is going on here? We could look at the differences between terms:  Notice that these
are growing by a factor of 3. Is the original sequence as well?    and so on. It appears that
we always end up with 2 less than the next term. Aha!

So  is our recurrence relation and the initial condition is 

We are going to try to solve these recurrence relations. By this we mean something very similar to solving differential equations:
we want to find a function of  (a closed formula) which satisfies the recurrence relation, as well as the initial condition.
Recurrence relations are sometimes called difference equations since they can describe the difference between terms and this
highlights the relation to differential equations further. Just like for differential equations, finding a solution might be tricky, but
checking that the solution is correct is easy.

Check that  is a solution to the recurrence relation  with 

Solution

First, it is easy to check the initial condition:  should be  according to our closed formula. Indeed, 
which is what we want. To check that our proposed solution satisfies the recurrence relation, try plugging it in.

That's what our recurrence relation says! We have a solution.

Sometimes we can be clever and solve a recurrence relation by inspection. We generate the sequence using the recurrence relation
and keep track of what we are doing so that we can see how to jump to finding just the  term. Here are two examples of how you
might do that.

Investigate!

= 5 −6 .an an−1 an−2

= 1,a0 = 2?a1
= 1,a0 = 3?a1

= 2a0 = 5?a1

= + .Fn Fn−1 Fn−2 = 0F0 = 1F1

Example SupplementaryNotes. 1

1, 5, 17, 53, 161, 485… .

4, 12, 36, 108,… .
1 ⋅ 3 = 3, 5 ⋅ 3 = 15, 17 ⋅ 3 = 51

= 3 +2an an−1 = 1.a0

n  2 

Example SupplementaryNotes. 2

= +1an 2n = 2 −1an an−1 = 3.a1

a1 +121 +1 = 3,21

2 −1an−1 = 2( +1)−12n−1

= +2−12n

= +12n

= .an

an
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Telescoping refers to the phenomenon when many terms in a large sum cancel out - so the sum “telescopes.” For example:

because every third term looks like:  and then  and so on.

We can use this behavior to solve recurrence relations. Here is an example.

Solve the recurrence relation  with initial term 

Solution

To get a feel for the recurrence relation, write out the first few terms of the sequence:  Look at the
difference between terms.  and  and so on. The key thing here is that the difference between terms
is  We can write this explicitly:  Of course, we could have arrived at this conclusion directly from the
recurrence relation by subtracting  from both sides.

Now use this equation over and over again, changing  each time:

Add all these equations together. On the right-hand side, we get the sum  We already know this can be

simplified to  What happens on the left-hand side? We get

This sum telescopes. We are left with only the  from the first equation and the  from the last equation. Putting this all

together we have  or  But we know that  So the solution to the recurrence
relation, subject to the initial condition is

(Now that we know that, we should notice that the sequence is the result of adding 4 to each of the triangular numbers.)

The above example shows a way to solve recurrence relations of the form  where  has a known
closed formula. If you rewrite the recurrence relation as  and then add up all the different equations with 
ranging between 1 and  the left-hand side will always give you  The right-hand side will be  which is why
we need to know the closed formula for that sum.

However, telescoping will not help us with a recursion such as  since the left-hand side will not telescope. You will
have 's but only one  However, we can still be clever if we use iteration.

We have already seen an example of iteration when we found the closed formula for arithmetic and geometric sequences. The idea
is, we iterate the process of finding the next term, starting with the known initial condition, up until we have  Then we simplify.
In the arithmetic sequence example, we simplified by multiplying  by the number of times we add it to  when we get to  to
get from  to 

To see how this works, let's go through the same example we used for telescoping, but this time use iteration.

(2−1)+(3−2)+(4−3)+⋯+(100−99)+(101−100) =−1+101

2+−2 = 0, 3+−3 = 0

Example SupplementaryNotes. 3

= +nan an−1 = 4.a0

4, 5, 7, 10, 14, 19,… .
− = 1a1 a0 − = 2a2 a1

n. − = n.an an−1

an−1

n

−a1 a0
−a2 a1
−a3 a2

⋮
−an an−1

= 1
= 2
= 3

⋮
= n.

1 +2+3+⋯+n.

.
n(n+1)

2

( − )+( − )+( − )+⋯( − )+( − ).a1 a0 a2 a1 a3 a2 an−1 an−2 an an−1

−a0 an

− + =a0 an
n(n+1)

2
= + .an

n(n+1)

2
a0 = 4.a0

= +4.an
n(n+1)

2

= +f(n)an an−1 f(k)∑
n
k=1

− = f(n),an an−1 n

n, − .an a0 f(k),∑
n
k=1

= 3 +2an an−1

−3an−1 .an−1

.an
d a ,an

= a+d+d+d+⋯+dan = a+dn.an
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Use iteration to solve the recurrence relation  with 

Answer

Again, start by writing down the recurrence relation when  This time, don't subtract the  terms to the other side:

Now  but we know what  is. By substitution, we get

Now go to  using our known value of 

We notice a pattern. Each time, we take the previous term and add the current index. So

Regrouping terms, we notice that  is just  plus the sum of the integers from  to  So, since 

Of course in this case we still needed to know formula for the sum of  Let's try iteration with a sequence for which
telescoping doesn't work.

Solve the recurrence relation  subject to 

Answer

Again, we iterate the recurrence relation, building up to the index 

It is difficult to see what is happening here because we have to distribute all those 3's. Let's try again, this time simplifying
a bit as we go.

Now we simplify.  so we have  Note that all the other terms have a 2 in them. In fact, we have a
geometric sum with first term  and common ratio  We have seen how to simplify 
We get  which simplifies to  Putting this together with the first  term gives our closed formula:

Example SupplementaryNotes. 4

= +nan an−1 = 4.a0

n= 1. an−1

= +1.a1 a0

= +2,a2 a1 a1

= ( +1)+2.a2 a0

= +3,a3 a2 :a2

= (( +1)+2)+3.a3 a0

= (((( +1)+2)+3)+⋯+n−1)+n.an a0

an a0 1 n. = 4,a0

= 4+ .an
n(n+1)

2

1,… ,n.

Example SupplementaryNotes. 5

= 3 +2an an−1 = 1.a0

n.

a1

a2

a3

⋮
an

= 3 +2a0

= 3( )+2 = 3(3 +2)+2a1 a0

= 3[ ] +2 = 3[3(3 +2)+2]+2a2 a0

⋮ ⋮
= 3( )+2 = 3(3(3(3⋯(3 +2)+2)+2)⋯+2)+2.an−1 a0

a1

a2

a3

⋮
an

= 3 +2a0

= 3( )+2 = 3(3 +2)+2 = +2 ⋅ 3+2a1 a0 32a0
= 3[ ] +2 = 3[ +2 ⋅ 3+2]+2 = +2 ⋅ +2 ⋅ 3+2a2 32a0 33a0 32

⋮ ⋮
= 3( )+2 = 3( +2 ⋅ +⋯+2)+2an−1 3n−1a0 3n−2

= +2 ⋅ +2 ⋅ +⋯+2 ⋅ 3+2.3na0 3n−1 3n−2

= 1,a0 + ⟨stuff⟩.3n

2 3. 2+2 ⋅ 3+2 ⋅ +⋯+2 ⋅ .32 3n−1

2−2⋅3n

−2 −1.3n 3n

= 2 ⋅ −1.an 3n
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Iteration can be messy, but when the recurrence relation only refers to one previous term (and maybe some function of ) it can
work well. However, trying to iterate a recurrence relation such as  will be way too complicated. We would
need to keep track of two sets of previous terms, each of which were expressed by two previous terms, and so on. The length of the
formula would grow exponentially (double each time, in fact). Luckily there happens to be a method for solving recurrence
relations which works very well on relations like this.

The Characteristic Root Technique
Suppose we want to solve a recurrence relation expressed as a combination of the two previous terms, such as 
In other words, we want to find a function of  which satisfies  Now iteration is too complicated, but
think just for a second what would happen if we did iterate. In each step, we would, among other things, multiply a previous
iteration by 6. So our closed formula would include  multiplied some number of times. Thus it is reasonable to guess the solution
will contain parts that look geometric. Perhaps the solution will take the form  for some constant 

The nice thing is, we know how to check whether a formula is actually a solution to a recurrence relation: plug it in. What happens
if we plug in  into the recursion above? We get

Now solve for 

so by factoring,  or  (or  although this does not help us). This tells us that  is a solution to the
recurrence relation, as is  Which one is correct? They both are, unless we specify initial conditions. Notice we could also
have  Or  In fact, for any  and   is a solution (try plugging this
into the recurrence relation). To find the values of  and  use the initial conditions.

This points us in the direction of a more general technique for solving recurrence relations. Notice we will always be able to factor
out the  as we did above. So we really only care about the other part. We call this other part the characteristic equation for the
recurrence relation. We are interested in finding the roots of the characteristic equation, which are called (surprise) the
characteristic roots.

Given a recurrence relation  the characteristic polynomial is

giving the characteristic equation:

If  and  are two distinct roots of the characteristic polynomial (i.e, solutions to the characteristic equation), then the
solution to the recurrence relation is

where  and  are constants determined by the initial conditions.

Solve the recurrence relation  with  and 

Solution

Rewrite the recurrence relation  Now form the characteristic equation:

and solve for 

n

= 2 +3an an−1 an−2

= +6 .an an−1 an−2

n − −6 = 0.an an−1 an−2

6
rn r.

rn

− −6 = 0.rn rn−1 rn−2

r:

( −r−6) = 0,rn−2 r2

r=−2 r= 3 r= 0, = (−2an )n

= .an 3n

= (−2 + .an )n 3n = 7(−2 +4 ⋅ .an )n 3n a b, = a(−2 +ban )n 3n

a b,

rn−2

Characteristic Roots

+α +β = 0,an an−1 an−2

+αx+βx2

+αx+β = 0.x2

r1 r2

= a +b ,an rn1 rn2

a b

Example SupplementaryNotes. 6

= 7 −10an an−1 an−2 = 2a0 = 3.a1

−7 +10 = 0.an an−1 an−2

−7x+10 = 0x2

x:

(x−2)(x−5) = 0
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so  and  are the characteristic roots. We therefore know that the solution to the recurrence relation will have the
form

To find  and  plug in  and  to get a system of two equations with two unknowns:

Solving this system gives  and  so the solution to the recurrence relation is

Perhaps the most famous recurrence relation is  which together with the initial conditions  and 
defines the Fibonacci sequence. But notice that this is precisely the type of recurrence relation on which we can use the
characteristic root technique. When you do, the only thing that changes is that the characteristic equation does not factor, so you
need to use the quadratic formula to find the characteristic roots. In fact, doing so gives the third most famous irrational number, 
the golden ratio.

Before leaving the characteristic root technique, we should think about what might happen when you solve the characteristic
equation. We have an example above in which the characteristic polynomial has two distinct roots. These roots can be integers, or
perhaps irrational numbers (requiring the quadratic formula to find them). In these cases, we know what the solution to the
recurrence relation looks like.

However, it is possible for the characteristic polynomial to only have one root. This can happen if the characteristic polynomial
factors as  It is still the case that  would be a solution to the recurrence relation, but we won't be able to find solutions
for all initial conditions using the general form  since we can't distinguish between  and  We are in luck
though:

Suppose the recurrence relation  has a characteristic polynomial with only one root  Then the solution
to the recurrence relation is

where  and  are constants determined by the initial conditions.

Notice the extra  in  This allows us to solve for the constants  and  from the initial conditions.

Solve the recurrence relation  with initial conditions  and 

Answer

The characteristic polynomial is  We solve the characteristic equation

by factoring:

so  is the only characteristic root. Therefore we know that the solution to the recurrence relation has the form

for some constants  and  Now use the initial conditions:

x = 2 x = 5

= a +b .an 2n 5n

a b, n= 0 n= 1

2
3

= a +b = a+b20 50

= a +b = 2a+5b21 51

a= 7
3 b =− 1

3

= − .an
7
3
2n

1
3
5n

= + ,Fn Fn−1 Fn−2 = 0F0 = 1F1

φ,

(x−r .)2 rn

= a +b ,an rn1 rn2 rn1 .rn2

Characteristic Root Technique for Repeated Roots

= α +βan an−1 an−2 r.

= a +bnan rn rn

a b

n bn .rn a b

Example SupplementaryNotes. 7

= 6 −9an an−1 an−2 = 1a0 = 4.a1

−6x+9.x2

−6x+9 = 0x2

(x−3 = 0)2

x = 3

= a +bnan 3n 3n

a b.
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Since  we find that  Therefore the solution to the recurrence relation is

Although we will not consider examples more complicated than these, this characteristic root technique can be applied to much
more complicated recurrence relations. For example,  has characteristic polynomial 

 Assuming you see how to factor such a degree 3 (or more) polynomial you can easily find the characteristic
roots and as such solve the recurrence relation (the solution would look like  if there were 3 distinct roots).
It is also possible to solve recurrence relations of the form  for some constant  It is also possible (and
acceptable) for the characteristic roots to be complex numbers.
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5.1: Sets and Operations on Sets
Before beginning this section, it would be a good idea to review sets and set notation, including the roster method and set builder
notation, in Section 2.3.

In Section 2.1, we used logical operators (conjunction, disjunction, negation) to form new statements from existing statements.
In a similar manner, there are several ways to create new sets from sets that have already been defined. In fact, we will form
these new sets using the logical operators of conjunction (and), disjunction (or), and negation (not). For example, if the
universal set is the set of natural numbers  and

The set consisting of all natural numbers that are in  and are in  is the set ;
The set consisting of all natural numbers that are in  or are in  is the set ; and
The set consisting of all natural numbers that are in  and are not in  is the set 

These sets are examples of some of the most common set operations, which are given in the following definitions.

Let  and  be subsets of some universal set . The intersection of  and , written  and read “  intersect ,” is the
set of all elements that are in both  and . That is,

The union of  and , written  and read “  union ,” is the set of all elements that are in  or in . That is,

Let  and  be subsets of some universal set . The set difference of  and , or relative complement of  with respect to 
, written  and read “  minus ” or “the complement of  with respect to ,” is the set of all elements in  that are

not in . That is,

The complement of the set , written  and read “the complement of ,” is the set of all elements of  that are not in .
That is,

For the rest of this preview activity, the universal set is , and we will use the following subsets of :

So in this case,  Use the roster method to specify each of the following
subsets of .

1. 
2. 
3. 

We can now use these sets to form even more sets. For example,

Use the roster method to specify each of the following subsets of .

4. 

 PREVIEW ACTIVITY : Set Operations5.1.1

N

A = {1, 2, 3, 4, 5, 6}  and  B = {1, 3, 5, 7, 9}, (5.1.1)

A B {1, 3, 5}
A B {1, 2, 3, 4, 5, 6, 7, 9}
A B {2, 4, 6}.

 Definition: intersection

A B U A B A∩B A B

A B

A∩B = {x ∈ U | x ∈ A and x ∈ B}. (5.1.2)

A B A∪B A B A B

A∪B = {x ∈ U | x ∈ A or x ∈ B}. (5.1.3)

 Definition: complement

A B U A B B

A A−B A B B A A

B

A−B = {x ∈ U | x ∈ A and x ∉ B}. (5.1.4)

A Ac A U A

= {x ∈ U | x ∉ A}.Ac (5.1.5)

U = {0, 1, 2, 3, . . . , 10} U

A = {0, 1, 2, 3, 9}  and  B = {2, 3, 4, 5, 6}, (5.1.6)

A∩B = {x ∈ U | x ∈ A and x ∈ B} = {2, 3}.
U

A∪B

Ac

Bc

A∩ = {0, 1, 2, 3, 9} ∩ {0, 1, 7, 8, 9, 10} = {0, 1, 9}.Bc (5.1.7)

U

A∪Bc
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5. 
6. 
7. 

In Preview Activity , we worked with verbal and symbolic definitions of set operations. However, it is also helpful to
have a visual representation of sets. Venn diagrams are used to represent sets by circles (or some other closed geometric shape)
drawn inside a rectangle. The points inside the rectangle represent the universal set , and the elements of a set are represented
by the points inside the circle that represents the set. For example, Figure  is a Venn diagram showing two sets.

Figure : Venn Diagram for Two Sets

In Figure , the elements of  are represented by the points inside the left circle, and the elements of  are represented by
the points inside the right circle. The four distinct regions in the diagram are numbered for reference purposes only. (The
numbers do not represent elements in a set.) The following table describes the four regions in the diagram.

Region Elements of Set

1 In  and not in 

2 In  and in 

3 In  and not in 

4 Not in  and not in 

We can use these regions to represent other sets. For example, the set  is represented by regions 1, 2, and 3 or the shaded
region in Figure .

Figure : Venn Diagram for 

Let  and  be subsets of a universal set . For each of the following, draw a Venn diagram for two sets and shade the region
that represent the specified set. In addition, describe the set using set builder notation.

∩Ac Bc

∪Ac Bc

(A∩B)c

 Preview Activity : Venn Diagrams for Two Sets5.1.2

5.1.1

U

5.1.1

5.1.1

5.1.1 A B

U

A B A −B

A B A ∩ B

B A B −A

A B ∩Ac Bc

A∪B

5.1.2

5.1.2 A∪B

A B U
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1. 
2. 
3. 
4. 
5. 
6. 

Set Equality, Subsets, and Proper Subsets

In Section 2.3, we introduced some basic definitions used in set theory, what it means to say that two sets are equal and what it
means to say that one set is a subset of another set. We need one more definition.

Let  and  be two sets contained in some universal set . The set  is a proper subset of  provided that  and 
. When  is a proper subset of , we write .

One reason for the definition of proper subset is that each set is a subset of itself. That is,

If  is a set, then 

However, sometimes we need to indicate that a set  is a subset of  but . For example, if

 and 

then . We know that  since each element of  is an element of , but  since  and . (Also, 
and .) Notice that the notations  and  are used in a manner similar to inequality notation for numbers (
and ).

It is often very important to be able to describe precisely what it means to say that one set is not a subset of the other. In the
preceding example,  is not a subset of  since there exists an element of  (namely, 0) that is not in .

In general, the subset relation is described with the use of a universal quantifier since  means that for each element  of ,
if , then . So when we negate this, we use an existential quantifier as follows:

So we see that  means that there exists an  in  such that  and .

Notice that if , then the conditional statement, “For each , if , then ” must be true since the hypothesis will
always be false. Another way to look at this is to consider the following statement:

 means that there exists an  such that .

However, this statement must be false since there does not exist an  in . Since this is false, we must conclude that .
Although the facts that  and  may not seem very important, we will use these facts later, and hence we summarize
them in Theorem 5.1.

For any set ,  and .

In Section 2.3, we also defined two sets to be equal when they have precisely the same elements. For example,

.

If the two sets  and  are equal, then it must be true that every element of  is an element of , that is, , and it must be
true that every element of  is an element of , this is, . Conversely, if  and , then  and  must have

Ac

Bc

∪BAc

∪Ac Bc

(A∩B)c

(A∪B) −(A∩B)

 Definition: proper subset

A B U A B A ⊆ B

A ≠ B A B A ⊂ B

A A ⊆ A

X Y X ≠ Y

X = {1, 2} Y = {0, 1, 2, 3}.

X ⊂ Y X ⊆ Y X Y X ≠ Y 0 ∈ Y 0 ∉ X 3 ∈ Y

3 ∉ X A ⊂ B A ⊆ B a < b

a ≤ b

Y X Y X

A ⊆ B x U

x ∈ A x ∈ B

A ⊆ B

A ⊈ B

means

means

(∀x ∈ U)[(x ∈ A) → (x ∈ B)].

┐(∀x ∈ U)[(x ∈ A) → (x ∈ B)]

(∃x ∈ U)┐[(x ∈ A) → (x ∈ B)]

(∃x ∈ U)[(x ∈ A) ∧ (x ∉ B)].

(5.1.8)

A ⊈ B x U x ∈ A x ∉ B

A = ∅ x ∈ U x ∈ ∅ x ∈ B

∅ ⊈ B x ∈ ∅ x ∉ B

x ∅ ∅ ⊆ B

∅ ⊆ B B ⊆ B

 Theorem 5.1

B ∅ ⊆ B B ⊆ B

{x ∈ R | 4} = {−2, 2}x=

A B A B A ⊆ B

B A B ⊆ A A ⊆ B B ⊆ A A B
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precisely the same elements. This gives us the following test for set equality:

Let  and  be subsets of some universal set . Then  if and only if  and .

Let the universal set be , and let

, , .

In each of the following, fill in the blank with one or more of the symbols , , =, ,  or  so that the resulting statement is
true. For each blank, include all symbols that result in a true statement. If none of these symbols makes a true statement, write
nothing in the blank.

Answer

Add texts here. Do not delete this text first.

More about Venn Diagrams
In Preview Activity , we learned how to use Venn diagrams as a visual representation for sets, set operations, and set
relationships. In that preview activity, we restricted ourselves to using two sets. We can, of course, include more than two sets in a
Venn diagram. Figure  shows a general Venn diagram for three sets (including a shaded region that corresponds to ).

In this diagram, there are eight distinct regions, and each region has a unique reference number. For example, the set A is
represented by the combination of regions 1, 2, 4, and 5, whereas the set C is represented by the combination of regions 4, 5, 6, and
7. This means that the set  is represented by the combination of regions 4 and 5. This is shown as the shaded region in Figure

.

Finally, Venn diagrams can also be used to illustrate special relationships be- tween sets. For example, if , then the circle
representing  should be completely contained in the circle for . So if , and we know nothing about

 Theorem 5.2

A B U A = B A ⊆ B B ⊆ A

 Progress Check 5.3: Using Set Notation

U = {1, 2, 3, 4, 5, 6}

A = {1, 2, 4} B = {1, 2, 3, 5} C = {x ∈ U | ≤ 2}x2

⊂ ⊆ ≠ ∈ ∉

A

5

A

{1, 2}

6

_____________

_____________

_____________

_____________

_____________

B ∅

B    {5}

C       {1, 2}

A    {4, 2, 1}

A B

_____________

_____________

_____________

_____________

_____________

A

B

C

A

∅

5.1.2

5.1.3 A∩C

A∩C

5.1.3

A ⊆ B

A B A ⊆ B
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any relationship between the set  and the sets  and , we could use the Venn diagram shown in Figure .

Let , , and  be subsets of a universal set .

1. For each of the following, draw a Venn diagram for three sets and shade the region(s) that represent the specified set. 
 
(a)  
(b)  
(c)  
(d) 

2. Draw the most general Venn diagram showing .
3. Draw the most general Venn diagram showing .

Answer

Add texts here. Do not delete this text first.

The Power Set of a Set

The symbol 2 is used to describe a relationship between an element of the universal set and a subset of the universal set, and the
symbol  is used to describe a relationship between two subsets of the universal set. For example, the number 5 is an integer, and
so it is appropriate to write . It is not appropriate, however, to write  since 5 is not a set. It is important to distinguish
between 5 and {5}. The difference is that 5 is an integer and {5} is a set consisting of one element. Consequently, it is appropriate
to write , but it is not appropriate to write . The distinction between these two symbols (5 and {5}) is important
when we discuss what is called the power set of a given set.

C A B 5.1.4

 Progress Check 5.4: Using Venn Diagrams

A B C U

(A∩B) ∩C

(A∩B) ∪C

( ∪B)Ac

∩ (B∪C)Ac

B ⊆ (A∪C)
A ⊆ ( ∪C)Bc

⊆
5 ∈ Z 5 ⊆ Z

{5} ⊆ Z {5} ∈ Z
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If  is a subset of a universal set , then the set whose members are all the subsets of  is called the power set of . We
denote the power set of  by . Symbolically, we write

That is,  if and only if .

When dealing with the power set of , we must always remember that  and . For example, if , then the
subsets of  are

We can write this as

Now let . Notice that . We can determine the subsets of  by starting with the subsets of  in (5.1.10).
We can form the other subsets of  by taking the union of each set in (5.1.10) with the set . This gives us the following subsets
of .

So the subsets of  are those sets in (5.1.10) combined with those sets in (5.1.11). That is, the subsets of  are

which means that

Notice that we could write

 or that .

Also, notice that  has two elements and  has four subsets, and  has three elements and  has eight subsets. Now, let  be a
nonnegative integer. The following result can be proved using mathematical induction. (See Exercise 17).)

Let  be a nonnegative integer and let  be a subset of some universal set. If the set  has  elements, then the set  has 
subsets. That is,  has  elements.

The Cardinality of a Finite Set
In our discussion of the power set, we were concerned with the number of elements in a set. In fact, the number of elements in a
finite set is a distinguishing characteristic of the set, so we give it the following name.

The number of elements in a finite set  is called the cardinality of  and is denoted by card( )

card( ) = 0;

card({ , }) = 2

card( ) = 4

Theoretical Note: There is a mathematical way to distinguish between finite and infinite sets, and there is a way to define the
cardinality of an infinite set. We will not concern ourselves with this at this time. More about the cardinality of finite and infinite

 Definition: power set

A U A A

A P(A)

P(A) = {X ⊆ U |X ⊆ A}.

X ∈ P(A) X ⊆ A

A ∅ ⊆ A A ⊆ A A = {a, b}
A

∅, {a}, {b}, {a, b}. (5.1.9)

P(A) = {∅, {a}, {b}, {a, b}}.

B = {a, b, c} B = A∪ {c} B A

B {c}
B

{c}, {a, c}, {b, c}, {a, b, c}. (5.1.10)

B B

∅, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, (5.1.11)

P(B) = {∅, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}}.

{a, c} ⊆ B {a, c} ∈ P(B)

A A B B n

 Theorem 5.5.

n T T n T 2n

P(T ) 2n

 Definition: cardinality

A A A

 Example

∅

a b

P({a, b})
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sets is discussed in Chapter 9.

Standard Number Systems
We can use set notation to specify and help describe our standard number systems. The starting point is the set of natural
numbers, for which we use the roster method.

The integers consist of the natural numbers, the negatives of the natural numbers, and zero. If we let 
, then we can use set union and write

.

So we see that , and in fact, .

We need to use set builder notation for the set  of all rational numbers, which consists of quotients of integers.

Since any integer  can be written as , we see that .

We do not yet have the tools to give a complete description of the real numbers. We will simply say that the real numbers consist
of the rational numbers and the irrational numbers. In effect, the irrational numbers are the complement of the set of rational
numbers  in . So we can use the notation  and write

 and .

A number system that we have not yet discussed is the set of complex numbers. The complex numbers, , consist of all numbers
of the form , where  and  (or ). That is,

We can add and multiply complex numbers as follows: If , then

1. Assume the universal set is the set of real numbers. Let 
 

 
 

 
 

 
Respond to each of the following questions. In each case, explain your answer. 
 
(a) Is the set  equal to the set ? 
(b) Is the set  a subset of the set ? 
(c) Is the set  equal to the set ? 
(d) Is the set  a subset of the set ? 
(e) Is the set  a subset of the set ?

2. (a) Explain why the set  is equal to the set .
(b) Explain why the set  is equal to the set .

3. Assume that the universal set is the set of integers. Let 
 

 
 

N = {1, 2, 3, 4, . . . }

= {. . . , −4, −3, −2, −1}N−

Z = ∪ {0} ∪ NN−

N ⊆ Z N ⊂ Z

Q

Q = {  | m,n ∈ Zand n ≠ 0}
m

n

n n =
n

1
Z ⊆ Q

Q R = {x ∈ R | x ∉ Q}Qc

R = Q∪ Qc Q∩ = ∅Qc

C
a+bi a, b ∈ R i = −1

−−−
√ = −1i2

C = {a+bi | a, b ∈ Rand i = sqrt−1}.

a, b, c, d ∈ R

(a+bi) +(c+di)

(a+bi)(c+di)

=

=

=

(a+c) +(b+d)i,  and

ac+adi+bci+bdi2

(ac−bd) +(ad+bc)i.

(5.1.12)

 Exercises for Section 5.1

A = {−3, −2, 2, 3}.
B = {x ∈ R |  = 4 or  = 9},x2 x2

C = {x ∈ R |  +2 = 0},x2

D = {x ∈ R | x > 0}.

A B

A B

C D

C D

A D

{a, b} {b, a}
{a, b, b, a, c} {b, c, a}

A = {−3, −2, 2, 3}.
B = {x ∈ Z |  ≤ 9},x2
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In each of the following, fill in the blank with one or more of the symbols , , , , ,  or  so that the resulting
statement is true. For each blank, include all symbols that result in a true statement. If none of these symbols makes a true
statement, write nothing in the blank. 

4. Write all of the proper subset relations that are possible using the sets of numbers , , , and .
5. For each statement, write a brief, clear explanation of why the statement is true or why it is false. 

 
(a) The set  is a subset of . 
(b) The set  is equal to  is even and  
(c) The empty set  is a subset of  
(d) If , then the set  is a subset of .

6. Use the definitions of set intersection, set union, and set difference to write useful negations of these definitions. That is,
complete each of the following sentences 
 
(a)  if and only if ... . 
(b)  if and only if ... . 
(c)  if and only if ... .

7. Let  and let 
 

 
 

 

Use the roster method to list all of the elements of each of the following sets. 
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  
(g)  
(h)  
(i)  
(j)  
(k)  
(l)  
(m)  
(n) 

8. Let , and let 
 

 

C = {x ∈ Z | x ≥ −3},
D = {1, 2, 3, 4},

⊂ ⊆ ⊈ = ≠ ∈ ∉

A

5

A

{1, 2}

4

card(A)

A

_____________

_____________

_____________

_____________

_____________

_____________

_____________

B      ∅

C   {5}

C      {1, 2}

A   {3, 2, 1}

B      D

card(D)  card(A)

P(A) A

_____________

_____________

_____________

_____________

_____________

_____________

_____________

A

C

B

D

∅

card(B)

P(B)

(5.1.13)

N Z Q R

{a, b} {a, c, d, e}
{−2, 0, 2} {x ∈ Z | x < 5}.x2

∅ {1}.
A = {a, b} {a} P(A)

x ∉ A∩B

x ∉ A∪B

x ∉ A−B

U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

A = {3, 4, 5, 6, 7}
B = {1, 5, 7, 9}
C = {3, 6, 9}
D = {2, 4, 6, 8}

A∩B

A∪B

(A∪B)c

∩Ac Bc

(A∪B) ∩C

A∩C

B∩C

(A∩C) ∪ (B∩C)
B∩D

(B∩D)c

A−D

B−D

(A−D) ∪ (B−D)
(A∪B) −D

U = N

A = {x ∈ N | x ≥ 7},
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Use the roster method to list all of the elements of each of the following sets. 
 
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  
(g)  
(h)  
(i)  
(j)  
(k)  
(l) 

9. let , , , and , be subsets of a universal set , Assume that . 
 
(a) Complete the following sentence: 
For each , if , then ... . 
(b) Write a useful negation of the statement in Part (9a). 
(c) Write the contrapositive of the statement in Part (9a).

10. Let  be the universal set. Consider the following statement: 
 
For all , , and  that are subsets of , if , then . 
 
(a) Identify three conditional statements in the given statement. 
(b) Write the contrapositive of this statement. 
(c) Write the negation of this statement.

11. Let , , and  be subsets of some universal sets . Draw a Venn diagram for each of the following situations. 
 
(a)  
(b)  
(c) , , , and  
(d) , , and 

12. Let , , and  be subsets of some universal sets . For each of the following, draw a general Venn diagram for the three
sets and then shade the indicated region. 
 
(a)  
(b)  
(c)  
(d)  
(e)  
(f) 

13. We can extend the idea of consecutive integers (See Exercise (2) in Section 3.5) to represent four consecutive integers as 
, , , and , where  is an integer. There are other ways to represent four consecutive integers. For

example, if , then , , , and  are four consecutive integers. 
 
(a) Prove that for each ,  is the sum of four consecutive integers if and only if  (mod 4). 
(b) Use set builder notation or the roster method to specify the set of integers that are the sum of four consecutive integers. 

B = {x ∈ N | x is odd},
C = {x ∈ N | x is a multiple of 3},
D = {x ∈ N | x is even},

A∩B

A∪B

(A∪B)c

∩Ac Bc

(A∪B) ∩C

(A∩C) ∪ (B∩C)
B∩D

(B∩D)c

A−D

B−D

(A−D) ∪ (B−D)
(A∪B) −D

P Q R S U (P −Q) ⊆ (R∩S)

x ∈ U x ∈ (P −Q)

U

A B C U A ⊆ B ⊆Bc Ac

A B C U

A ⊆ C

A∩B = ∅
A ⊈ B B ⊈ A C ⊆ A C ⊈ B

A ⊆ B C ⊆ B A∩C = ∅
A B C U

A∩B

A∩C

(A∩B) ∪ (A∩C)
B∪C

A∩ (B∪C)
(A∩B) −C

m m+1 m+2 m+3 m

k ∈ Z k−1 k k+1 k+2

n ∈ Z n n ≡ 2
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(c) Specify the set of all natural numbers that can be written as the sum of four consecutive natural numbers. 
(d) Prove that for each ,  is the sum of eight consecutive integers if and only if  (mod 8). 
(e) Use set builder notation or the roster method to specify the set of integers that are the sum of eight consecutive integers. 
(f) Specify the set of all natural numbers can be written as the sum of eight consecutive natural numbers.

14. One of the properties of real numbers is the so-called Law of Trichotomy, which states that if , then exactly one of
the following is true:

;
;
. 

 
Is the following proposition concerning sets true or false? Either provide a proof that it is true or a counterexample showing
it is false. 
 
If A and B are subsets of some universal set, then exactly one of the following is true:

;
;
.

Explorations and Activities

15. Intervals of Real Numbers. In previous mathematics courses, we have frequently used subsets of the real numbers called
intervals. There are some common names and notations for intervals. These are given in the following table, where it is
assumed that a and b are real numbers and .

Interval Notation Set Notation Name

( , ) = { } Open interval from  to 

[ , ] = { } Closed interval from  to 

[ , ) = { } Half-open interval

( , ] = { } Half-open interval

( , ) = { } Open ray

( , ) = { } Open ray

[ , ) = { } Closed ray

( , ] = { } Closed ray

(a) Is  a proper subset of ? Explain. 
(b) Is  a subset of ? Explain. 
(c) Use interval notation to describe 
 
i. the intersection of the interval  with the interval  
ii. the union of the interval  with the interval  
iii. the set difference 

(d) Write the set { } using interval notation. 
(e) Write the set { } as the union of two intervals.

16. More Work with Intervals. For this exercise, use the interval notation described in Exercise 15. 
 
(a) Determine the intersection and union of  and  
(b) Determine the intersection and union of  and  
(c) Determine the intersection and union of  and  
 
Now let ,  and  be real numbers with . 

n ∈ Z n n ≡ 4

a, b ∈ R

a < b

a = b

a > b

A ⊆ B

A = B

B ⊆ A

a < b

a b x ∈ R |a < x < b a b

a b x ∈ R |a ≤ x ≤ b a b

a b x ∈ R |a ≤ x < b

a b x ∈ R |a < x ≤ b

a +∞ x ∈ R |x > a

−∞ b x ∈ R |x < b

a +∞ x ∈ R |x ≥ a

−∞ b x ∈ R |x ≤ b

(a, b) (a, b]
[a, b] (a, +∞)

[−3, 7] (5, 9];
[−3, 7] (5, 9];

[−3, 7] −(5, 9].

x ∈ R | |x| ≤ 0.01
x ∈ R | |x| > 2

[2, 5] [−1, +∞).
[2, 5] [3.4, +∞).
[2, 5] [7, +∞).

a b c a < b
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(d) Explain why the intersection of  and  is either a closed interval, a set with one element, or the empty set. 
(e)Explain why the union of  and  is either a closed ray or the union of a closed interval and a closed ray.

17. Proof of Theorem 5.5. To help with the proof by induction of Theorem 5.5, we first prove the following lemma. (The idea
for the proof of this lemma was illustrated with the discussion of power set after the definition on page 222.)

Let  and  be subsets of some universal set. If , where , then any subset of  is either a subset of 
or a set of the form , where  is a subset of .

Proof

Let  and  be subsets of some universal set, and assume that  where . Let  be a subset of .
We need to show that  is a subset of  or that , where  is some subset of . There are two cases to
consider: (1)  is not an element of , and (2)  is an element of .

Case 1: Assume that . Let . Then.  and . Since

,

this means that  must be in . Therefore, .

Case 2: Assume that . In this case, let . Then every element of  is an element of . Hence, we
can conclude that  and that .

Cases (1) and (2) show that if , then  or , where .

To begin the induction proof of Theorem 5.5, for each nonnegative integer , we let  be, “If a finite set has exactly 
elements, then that set has exactly  subsets.” 
 
(a) Verify that  is true. (This is the basis step for the induction proof.) 
(b) Verify that  and  are true. 
(c) Now assume that  is a nonnegative integer and assume that  is true. That is, assume that if a set has  elements, then
that set has  subsets. (This is the inductive assumption for the induction proof.) Let  be a subset of the universal set with
card , and let . Then the set  has  elements. 
 
Now use the inductive assumption to determine how many subsets  has. Then use Lemma 5.6 to prove that  has twice as
many subsets as . This should help complete the inductive step for the induction proof.

Answer

Add texts here. Do not delete this text first.

This page titled 5.1: Sets and Operations on Sets is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

5.1: Sets and Operations on Sets by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

[a, b] [c, +∞)
[a, b] [c, +∞)

 Lemma 5.6

A B A = B∪ {x} x ∉ B A B

C ∪ {x} C B

A B A = B∪ {x} x ∉ B Y A

Y B Y = C ∪ {x} C B

x Y x Y

x ∉ Y y ∈ Y y ∈ A y ≠ x

A = B∪ {x}

y B Y ⊆ B

x ∈ Y C = Y −{x} C B

C ⊆ B Y = C ∪ {x}

Y ⊆ A Y ⊆ B Y = C ∪ {x} C ⊆ B

n P (n) n

2n

P (0)
P (1) P (2)

k P (k) k

2k T

(T ) = k+1 x ∈ T B = T −{x} k

B T

B
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5.2: Proving Set Relationships

Let  be the set of all integers that are multiples of 6, and let  be the set of all even integers.

1. List at least four different positive elements of  and at least four different negative elements of . Are all of these integers
even?

2. Use the roster method to specify the sets  and . (See Section 2.3 for a review of the roster method.) Does there appear to
be any relationship between these two sets? That is, does it appear that the sets are equal or that one set is a subset of the
other set?

3. Use set builder notation to specify the sets  and . (See Section 2.3 for a review of the set builder notation.)
4. Using appropriate definitions, describe what it means to say that an integer  is a multiple of 6 and what it means to say

that an integer  is even.
5. In order to prove that  is a subset of , we need to prove that for each integer , if , then . 

 
Complete the know-show table in Table 5.1 for the proposition that  is a subset of . 
 
This table is in the form of a proof method called the choose-an-element method. This method is frequently used when we
encounter a universal quantifier in a statement in the backward process. (In this case, this is Step 1.) The key is that we
have to prove something about all elements in . We can then add something to the forward process by choosing an
arbitrary element from the set S. (This is done in Step 1.) This does not mean that we can choose a specific element of .
Rather, we must give the arbitrary element a name and use only the properties it has by being a member of the set . In this
case, the element is a multiple of 6.

Table 5.1: Know-show table for Preview Activity 
Step Know Reason

 is the set of all integers that are multiples
of 6.  is the set of all even. integers.

Hypothesis

1 Let . Choose an arbitrary element of .

2 Definition of "multiple"

... ... ...

2  is an element .  is even

1 Step 1 and Step 2

. Definition of "subset"

Step Show Reason

1. Draw a Venn diagram for two sets,  and , with the assumption that  is a subset of . On this Venn diagram, lightly
shade the area corresponding to . Then, determine the region on the Venn diagram that corresponds to . What appears
to be the relationship between  and ? Explain.

2. Draw a general Venn diagram for two sets,  and . First determine the region that corresponds to the set  and then,
on the Venn diagram, shade the region corresponding to  and shade the region corresponding to . What
appears to be the relationship between these two sets? Explain.

In this section, we will learn how to prove certain relationships about sets. Two of the most basic types of relationships between
sets are the equality relation and the subset relation. So if we are asked a question of the form, “How are the sets  and 
related?”, we can answer the question if we can prove that the two sets are equal or that one set is a subset of the other set. There
are other ways to answer this, but we will concentrate on these two for now. This is similar to asking a question about how two real

 Preview Activity : Working with Two Specific Sets5.2.1

S T

S S

S T

S T

x

y

S T x x ∈ S x ∈ T

S T

Q

Z
P S

S

5.2.1

P
S

T

P x ∈ S S

P (∃m ∈ Z)(x = 6m)

Q x T x

Q (∀x ∈ Z)[(x ∈ S) → (x ∈ T )] P Q

Q S ⊆ T

 Preview Activity : Working with Venn Diagrams5.2.2

A B A B

Ac Bc

Ac Bc

A B A −B

A −(A −B) A ∩ B

A B
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numbers are related. Two real numbers can be related by the fact that they are equal or by the fact that one number is less than the
other number.

The Choose-an-Element Method
The method of proof we will use in this section can be called the choose-an-element method. This method was introduced in
Preview Activity . This method is frequently used when we encounter a universal quantifier in a statement in the backward
process. This statement often has the form

For each element with a given property, something happens.

Since most statements with a universal quantifier can be expressed in the form of a conditional statement, this statement could have
the following equivalent form:

If an element has a given property, then something happens.

We will illustrate this with the proposition from Preview Activity . This proposition can be stated as follows:

Let  be the set of all integers that are multiples of 6, and let  be the set of all even integers. Then  is a subset of .

In Preview Activity , we worked on a know-show table for this proposition. The key was that in the backward process, we
encountered the following statement:

Each element of  is an element of  or, more precisely, if , then .

In this case, the “element” is an integer, the “given property” is that it is an element of , and the “something that happens” is that
the element is also an element of . One way to approach this is to create a list of all elements with the given property and verify
that for each one, the “something happens.” When the list is short, this may be a reasonable approach. However, as in this case,
when the list is infinite (or even just plain long), this approach is not practical.

We overcome this difficulty by using the choose-an-element method, where we choose an arbitrary element with the given
property. So in this case, we choose an integer  that is a multiple of 6. We cannot use a specific multiple of 6 (such as 12 or 24),
but rather the only thing we can assume is that the integer satisfies the property that it is a multiple of 6. This is the key part of this
method.

Whenever we choose an arbitrary element with a given property, we are not selecting a specific element. Rather, the only
thing we can assume about the element is the given property.

It is important to realize that once we have chosen the arbitrary element, we have added information to the forward process. So in
the know-show table for this proposition, we added the statement, “Let ” to the forward process. Following is a completed
proof of this proposition following the outline of the know-show table from Preview Activity .

Let  be the set of all integers that are multiples of 6, and let  be the set of all even integers. Then  is a subset of .

Proof

Let  be the set of all integers that are multiples of 6, and let  be the set of all even integers. We will show that  is a
subset of  by showing that if an integer x is an element of , then it is also an element of .

Let . (Note: The use of the word “let” is often an indication that the we are choosing an arbitrary element.) This
means that x is a multiple of 6. Therefore, there exists an integer  such that

.

Since , this equation can be written in the form

.

By closure properties of the integers, 3m is an integer. Hence, this last equation proves that  must be even. Therefore, we
have shown that if  is an element of , then  is an element of , and hence that .

5.2.1

5.2.1

S T S T

5.2.1

S T x ∈ S x ∈ T

S

T

x

x ∈ S

5.2.1

 Proposition 5.7

S T S T

S T S

T S T

x ∈ S

m

x = 6m

6 = 2 ⋅ 3

x = 2(3m)

x

x S x T S ⊆ T
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Having proved that  is a subset of , we can now ask if  is actually equal to . The work we did in Preview Activity  can
help us answer this question. In that preview activity, we should have found several elements that are in  but not in . For
example, the integer 2 is in  since 2 is even but  since 2 is not a multiple of 6. Therefore,  and we can also conclude
that  is a proper subset of .

One reason we do this in a “two-step” process is that it is much easier to work with the subset relation than the proper subset
relation. The subset relation is de- fined by a conditional statement and most of our work in mathematics deals with proving
conditional statements. In addition, the proper subset relation is a conjunction of two statements (  and ) and so it is
natural to deal with the two parts of the conjunction separately.

Let  and let 

1. Is the set  a subset of ? Justify your conclusion.
2. Is the set  equal to the set ? Justify your conclusion.

Answer

Add texts here. Do not delete this text first.

The Venn diagram in Preview Activity  suggests that the following proposition is true.

Let  and  be subsets of the universal set . If , then .

1. The conclusion of the conditional statement is . Explain why we should try the choose-an-element method to
prove this proposition.

2. Complete the following know-show table for this proposition and explain exactly where the choose-an-element method
is used.

Step Know Reason

Hypothesis

1 Let . Choose an arbitrary element of .

2 If , then . Definition of "subset"

... ... ...

1 If , then .  

Definition of "subset"

Step Show Reason

Answer

Add texts here. Do not delete this text first.

Proving Set Equality
One way to prove that two sets are equal is to use Theorem 5.2 and prove each of the two sets is a subset of the other set. In
particular, let A and B be subsets of some universal set. Theorem 5.2 states that  if and only if  and .

In Preview Activity , we created a Venn diagram that indicated that . Following is a proof of this
result. Notice where the choose-an-element method is used in each case.

S T S T 5.2.1
T S

T 2 ∉ S S ≠ T

S T

S ⊆ T S ≠ T

 Progress Check 5.8: Subsets and Set Equality

A = {x ∈ Z | x is a multiple of 9} B = {x ∈ Z | x is a multiple of 3}

A B

A B

 Progress Check 5.9: Using the Choose-an-Element Method

5.2.2

 Proposition 5.10.

A B U A ⊆ B ⊆Bc Ac

⊆Bc Ac

P A ⊆ B

P x ∈ Bc Bc

P x ∈ A x ∈ B

Q x ∈ Bc x ∈ Ac

Q ⊆Bc Ac

A = B A ⊆ B B ⊆ A

5.2.2 A −(A −B) = A ∩ B
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Let  and  be subsets of some universal set. Then .

Proof

Let  and  be subsets of some universal set. We will prove that  by proving that 
 and that .

First, let . This means that

 and .

We know that an element is in  if and only if it is in  and not in . Since , we conclude that 
or . However, we also know that  and so we conclude that . This proves that

 and .

This means that , and hence we have proved that .

Now we choose . This means that

 and .

We note that  if and only if  and  and hence,  if and only if  or . Since
we have proved that , we conclude that , and hence, we have established that  and .
This proves that if , then  and hence, .

Since we have proved that  and  we conclude that 
.

Prove the following proposition. To do so, prove each set is a subset of the other set by using the choose-an-element method.

Let  and  be subsets of some universal set. Then .

Answer

Add texts here. Do not delete this text first.

Disjoint Sets
Earlier in this section, we discussed the concept of set equality and the relation of one set being a subset of another set. There are
other possible relationships between two sets; one is that the sets are disjoint. Basically, two sets are disjoint if and only if they
have nothing in common. We express this formally in the following definition.

Let  and  be subsets of the universal set . The sets  and  are said to be disjoint provided that .

For example, the Venn diagram in Figure 5.5 shows two sets  and  with . The shaded region is the region that represents 
. From the Venn diagram, it appears that . This means that  and  are disjoint. The preceding example suggests

that the following proposition is true:

If , then .

If we would like to prove this proposition, a reasonable “backward question” is, “How do we prove that a set (namely ) is
equal to the empty set?”

 Proposition 5.11.

A B A −(A −B) = A ∩ B

A B A −(A −B) = A ∩ B

A −(A −B) ⊆ A ∩ B A ∩ B ⊆ A −(A −B)

x ∈ A −(A −B)

x ∈ A x ∉ (A −B)

(A −B) A B x ∉ (A −B) x ∉ A

x ∈ B x ∈ A x ∈ B

x ∈ A x ∈ B

x ∈ A ∩ B A −(A −B) ⊆ A ∩ B

y ∈ A ∩ B

y ∈ A y ∈ B

y ∈ (A −B) y ∈ A y ∉ B y ∉ (A −B) y ∉ A y ∈ B

y ∈ B y ∉ (A −B) y ∈ A y ∉ (A −B)
y ∈ A ∩ B y ∈ A −(A −B) A ∩ B ⊆ A −(A −B)

A −(A −B) ⊆ A ∩ B A ∩ B ⊆ A −(A −B)
A −(A −B) = A ∩ B

 Progress Check 5.12: Set Equality

 Proposition 5.13.

A B A −B = A ∩ Bc

 Definition: disjoint

A B U A B A ∩ B = ∅

A B A ⊆ B

Bc A ∩ = ∅Bc A Bc

A ⊆ B A ∩ = ∅Bc

A ∩ Bc

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86123?pdf


5.2.5 https://math.libretexts.org/@go/page/86123

This question seems difficult to answer since how do we prove that a set is empty? This is an instance where proving the
contrapositive or using a proof by contradiction could be reasonable approaches. To illustrate these methods, let us assume the
proposition we are trying to prove is of the following form:

If , then .

If we choose to prove the contrapositive or use a proof by contradiction, we will assume that . These methods can be
outlined as follows:

The contrapositive of “If , then ” is, “If , then .” So in this case, we would assume  and try to prove .
Using a proof by contradiction, we would assume  and assume that . From these two assumptions, we would attempt to
derive a contradiction.

One advantage of these methods is that when we assume that , then we know that there exists an element in the set . We
can then use that element in the rest of the proof. We will prove one of th the conditional statements for Proposition 5.14 by
proving its contrapositive. The proof of the other conditional statement associated with Proposition 5.14 is Exercise (10).

Let  and  be subsets of some universal set. Then  if and only if .

Proof

Let  and  be subsets of some universal set. We will first prove that if , then , by proving
its contrapositive. That is, we will prove

If , then .

So assume that . We will prove that  by proving that there must exist an element  such
that  and .

Since , there exists an element  that is in . This means that

 and .

Now the fact that  means that . Hence, we can conclude that

 and .

This means that , and hence, we have proved that if , then , and therefore, we have
proved that if , then .

The proof that if , then  is Exercise (10).

It has been noted that it is often possible to prove that two sets are disjoint by using a proof by contradiction. In this case, we
assume that the two sets are not disjoint and hence, there intersection is not empty. Use this method to prove that the following
two sets are disjoint.

 and 

P T = ∅

T ≠ ∅

P T = ∅ T ≠ ∅ ┐P T ≠ ∅ ┐P

P T ≠ ∅

T ≠ ∅ T

 Proposition 5.14

A B A ⊆ B A ∩ = ∅Bc

A B A ⊆ B A ∩ = ∅Bc

A ∩ ≠ ∅Bc A ⊈ B

A ∩ ≠ ∅Bc A ⊈ B x

x ∈ A x ∉ B

A ∩ ≠ ∅Bc x A ∩ Bc

x ∈ A x ∈ Bc

x ∈ Bc x ∉ B

x ∈ A x ∉ B

A ⊈ B A ∩ ≠ ∅Bc A ⊈ B

A ⊆ B A ∩ = ∅Bc

A ∩ = ∅Bc A ⊆ B

 Progress Check 5.15: Proving Two Sets Are Disjoint

A = {x ∈ Z | x ≡ 3 (mod 12)} B = {y ∈ Z | y ≡ 2 (mod 8)}
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Answer

Add texts here. Do not delete this text first.

A Final Comment

We have used the choose-an-element method to prove Propositions 5.7, 5.11, and 5.14. Proofs involving sets that use this method
are sometimes referred to aselement-chasing proofs. This name is used since the basic method is to choose an arbitrary element
from one set and “chase it” until you prove it must be in another set.

1. Let  and let  
 
(a) Is ? Justify your conclusion with a proof or a counterexample. 
(b) Is ? Justify your conclusion with a proof or a counterexample.

2. Let , , and  be subsets of a universal set . 
 
(a) Draw a Venn diagram with  and . Does it appear that ? 
(b) Prove the following proposition: 
If  and , then . 
Note: This may seem like an obvious result. However, one of the reasons for this exercise is to provide practice at properly
writing a proof that one set is a subset of another set. So we should start the proof by assuming that  and .
Then we should choose an arbitrary element of .

3. Let  and . 
 
(a) List at least five different elements of the set  and at least five elements of the set . 
(b) Is ? Justify your conclusion with a proof or a counterexample. 
(c) Is ? Justify your conclusion with a proof or a counterexample.

4. Let  and . 
 
(a) List at least five different elements of the set  and at least five elements of the set . 
(b) Is ? Justify your conclusion with a proof or a counterexample. 
(c) Is ? Justify your conclusion with a proof or a counterexample.

5. In each case, determine if , , , or  or none of these. 
 
(a)  and . 
(b)  and . 
(c)  and 

6. To prove the following set equalities, it may be necessary to use some of the properties of positive and negative real
numbers. For example, it may be necessary to use the facts that:

 The product of two real numbers is positive if and only if the two real numbers are either both positive or are both
negative.

 The product of two real numbers is negative if and only if one of the two numbers is positive and the other is negative. 
 
For example, if , then we can conclude that either (1)  and  or (2)  and .
However, in the first case, we must have  and , and this is impossible. Therefore, we conclude that  and 

, which means that . 
 
Use the choose-an-element method to prove each of the following: 
 
(a)  

 Exercises for Section 5.2

A = {x ∈ R |  < 4}x2 B = {x ∈ R | x < 2}

A ⊆ B

B ⊆ A

A B C U

A ⊆ B B ⊆ C A ⊆ C

A ⊆ B B ⊆ C A ⊆ C

A ⊆ B B ⊆ C

A

A = {x ∈ Z | x ≡ 7 (mod 8)} B = {x ∈ Z | x ≡ 3 (mod 4)}

A B

A ⊆ B

B ⊆ A

C = {x ∈ Z | x ≡ 7 (mod 9)} D = {x ∈ Z | x ≡ 1 (mod 3)}

C D

C ⊆ D

D ⊆ C

A ⊆ B B ⊆ A A = B A ∩ B = ∅

A = {x ∈ Z | x ≡ 2 (mod 3)} B = {y ∈ Z | 6 divides (2y −4)}
A = {x ∈ Z | x ≡ 3 (mod 4)} B = {y ∈ Z | 3 divides (y −2)}
A = {x ∈ Z | x ≡ 1 (mod 5)} B = {x ∈ Z | y ≡ 7 (mod 10)}

∙

∙

x(x −2) < 0 x < 0 x −2 > 0 x > 0 x −2 < 0
x < 0 x > 2 x > 0

x −2 < 0 0 < x < 2

{x ∈ R |  −3x −10 < 0} = {x ∈ R |  −2 < x < 5}x2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86123?pdf


5.2.7 https://math.libretexts.org/@go/page/86123

(b)  
(c) 

7. Let  and  be subsets of some universal set . Prove each of the following:
 
(a)  
(b)  
(c)  
(d)  
(e)  
(f) 

8. Let  and  be subsets of some universal set . From Proposition 5.10, we know that if , then . Now
prove the following proposition:

For all sets (A\) and  be subsets of some universal set ,  if and only if .

9. Is the following proposition true or false? Justify your conclusion with a proof or a counterexample. 
 
For all sets (A\) and  be subsets of some universal set , the sets  and  are disjoint.

10. Complete the proof of Proposition 5.14 by proving the following conditional statement: 
 
Let (A\) and  be subsets of some universal set. If , then .

11. Let , , , and  be subsets of some universal set . Are the following propositions true or false? Justify your
conclusions. 
 
(a) If  and  and  and  are disjoint, then  and  are disjoint. 
(b) If  and  and  and  are disjoint, then  and  are disjoint.

12. Let , , and  be subsets of a universal set . Prove: 
 
(a) If , then . 
(b) If , then .

13. Let , , and  be subsets of a universal set . Are the following propositions true or false? Justify your conclusions. 
 
(a) If , then . 
(b) If , then . 
(c) If , then . 
(d) If , then . 
(e) If  and , then .

14. Prove the following proposition:
 
For all sets , , and  that are subsets of some universal set, if  and , then .

15. Are the following biconditional statements true or false? Justify your conclusion. If a biconditional statement is found to be
false, you should clearly determine if one of the conditional statements within it is true and provide a proof of this
conditional statement. 
 
(a) For all subsets  and  of some universal set ,  if and only if . 
(b) For all subsets  and  of some universal set ,  if and only if . 
(c) For all subsets  and  of some universal set ,  if and only if . 
(d) For all subsets , , and  of some universal set ,  if and only if  or . 
(e) For all subsets , , and  of some universal set ,  if and only if  and .

16. Let , , , and  be subsets of some universal set. Assume that 
 
(i) ; (ii) ; and (iii) . 
 

{x ∈ R |  −5x +6 < 0} = {x ∈ R | 2 < x < 3}x2

{x ∈ R |  ≥ 4} = {x ∈ R | x ≤ −2} cup{x ∈ R | x ≥ 2}x2

A B U

A ∩ B ⊆ A

A ⊆ A ∪ B

A ∩ A = A

A ∪ A = A

A ∩ ∅ = ∅
A ∪ ∅ = A

A B U A ⊆ B ⊆Bc Ac

B U A ⊆ B ⊆Bc Ac

B U A ∩ B A −B

B A ∩ = ∅Bc A ⊆ B

A B C D U

A ⊆ B C ⊆ D A C B D

A ⊆ B C ⊆ D B D A C

A B C U

A ⊆ B A ∩ C ⊆ B ∩ C

A ⊆ B A ∪ C ⊆ B ∪ C

A B C U

A ∩ C ⊆ B ∩ C A ⊆ B

A ∪ C ⊆ B ∪ C A ⊆ B

A ∪ C = B ∪ C A = B

A ∩ C = B ∪ C A = B

A ∪ C = B ∪ C A ∩ C = B ∩ C A = B

A B C A ∩ B = A ∩ C ∩ B = ∩ CAc Ac B = C

A B U A ⊆ B A ∩ = ∅Bc

A B U A ⊆ B A ∪ B = B

A B U A ⊆ B A ∩ B = A

A B C U A ⊆ B ∪ C A ⊆ B A ⊆ C

A B C U A ⊆ B ∪ C A ⊆ B A ⊆ C

S T X Y

S ∪ T ⊆ X ∪ Y S ∩ T = ∅ X ⊆ S
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(a) Using assumption (i), what conclusion(s) can be made if it is known that ? 
(b) Using assumption (ii), what conclusion(s) can be made if it is known that ? 
(c) Using all three assumptions, either prove that  or explain why it is not possible to do so.

17. Evaluation of Proofs 
See the instructions for Exercise (19) on page 100 from Section 3.1.

Let , , and  be subsets of some universal set. If  and , then .

Proof

We assume that , , and  be subsets of some universal set and that  and . This means that there
exists an element  in  that is not in  and there exists an element  that is in  and not in . Therefore, 
and , and we have proved that .

Let , , and  be subsets of some universal set. If , then .

Proof

We assume that  and prove that . We will first prove that .

So let . If , then , and hence, . From this we can conclude that . If ,
then , and hence, . However, since , we may conclude that . Therefore, .

The proof that  may be done in a similar manner. Hence, .

Let , , and  be subsets of some universal set. If  and , then .

Proof

Assume that  and . Since , there exists an element  such that  and . Since 
, we may conclude that . Hence,  and , and we have proved that .

Explorations and Activities

18. Using the Choose-an-Element Method in a Different Setting. We have used the choose-an-element method to prove
results about sets. This method, however, is a general proof technique and can be used in settings other than set theory. It is
often used whenever we encounter a universal quantifier in a statement in the backward process. Consider the following
proposition.

Let ,  and  be integers with . If  divides  and  divides , then for all integers  and ,  divides .

(a) Whenever we encounter a new proposition, it is a good idea to explore the proposition by looking at specific examples. For
example, let , , and . In this case,  |  and  | . In each of the following cases, determine the value of 

 and determine if  divides . 
 
i. , . 
ii. , . 
iii. , . 
iv. , . 

a ∈ T

a ∈ T

T ⊆ Y

 (a)

A B C A ⊈ B B ⊈ C A ⊈ C

A B C A ⊈ B B ⊈ C

x A B x B C x ∈ A

x ∉ C A ⊈ C

 (b)

A B C A ∩ B = A ∩ C B = C

A ∩ B = A ∩ C B = C B ⊆ C

x ∈ B x ∈ A x ∈ A ∩ B x ∈ A ∩ C x ∈ C x ∉ A

x ∉ A ∩ B x ∉ A ∩ C x ∉ A x ∈ C B ⊆ C

C ⊆ B B = C



A B C A ⊈ B B ⊆ C A ⊈ C

A ⊈ B B ⊆ C A ⊈ B x x ∈ A x ∉ B

B ⊆ C x ∉ C x ∈ A x ∉ C A ⊈ C

 Proposition 5.16.

a b t t ≠ 0 t a t b x y t (ax +by)

a = 20 b = 12 t = 4 t a t b

(ax +by) t (ax +by)

x = 1 y = 1
x = 1 y = −1
x = 2 y = 2
x = 2 y = −3
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v. , . 
vi. , .

(b) Repeat Part (18a) with , , and .

Notice that the conclusion of the conditional statement in this proposition involves the universal quantifier. So in the backward
process, we would have

: For all integers  and ,  divides .

The “elements” in this sentence are the integers  and . In this case, these integers have no “given property” other than that
they are integers. The “something that happens” is that  divides . This means that in the forward process, we can use
the hypothesis of the proposition and choose integers  and . That is, in the forward process, we could have

: , , and  are integers with ,  divides  and  divides .

1: Let  and let .

(c) Complete the following proof of Proposition 5.16.

Proof. Let ,  and  be integers with , and assume that  divides  and  divides . We will prove that for all integers 
and ,  dibides .

So let  and let . Since  divides , there exists an integer  such that ... .

Answer

Add texts here. Do not delete this text first.

This page titled 5.2: Proving Set Relationships is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

5.2: Proving Set Relationships by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

x = −2 y = 3
x = −2 y = −5

a = 21 b = 6 t = 3

Q x y t ax +by

x y

t (ax +by)
x y

P a b t t ≠ 0 t a t b

P x ∈ Z y ∈ Z

a b t t ≠ 0 t a t b x

y t (ax +by)

x ∈ Z y ∈ Z t a m
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5.3: Properties of Set Operations

Let  and  be subsets of some universal set .

1. Draw two general Venn diagrams for the sets  and . On one, shade the region that represents , and on the
other, shade the region that represents . Explain carefully how you determined these regions.

2. Based on the Venn diagrams in Part (1), what appears to be the relationship between the sets ((A \cup B)^c\) and ?

Some of the properties of set operations are closely related to some of the logical operators we studied in Section 2.1. This is
due to the fact that set intersection is defined using a conjunction (and), and set union is defined using a disjunction (or). For
example, if  and  are subsets of some universal set , then an element  is in  if and only if  or .

3. Use one of De Morgan’s Laws (Theorem 2.8 on page 48) to explain carefully what it means to say that an element  is not
in .

4. What does it mean to say that an element  is in ? What does it mean to say that an element  is in ?
5. Explain carefully what it means to say that an element  is in .
6. Compare your response in Part (3) to your response in Part (5). Are they equivalent? Explain.
7. How do you think the sets  and  are related? Is this consistent with the Venn diagrams from Part (1)?

1. Let , , and  be statements. Complete a truth table for 
.

2. Assume that , , and  are statements and that we have proven that the following conditional statements are true: 
 

 If  then . 
 If  then . 
 If  then .

Explain why each of the following statements is true. 
 
(a)  if and only if . 
(b)  if and only if . 
(c)  if and only if . 
Remember that  is logically equivalent to .

Algebra of Sets – Part 1

This section contains many results concerning the properties of the set operations. We have already proved some of the results.
Others will be proved in this section or in the exercises. The primary purpose of this section is to have in one place many of the
properties of set operations that we may use in later proofs. These results are part of what is known as the algebra of sets or as set
theory.

Let , , and  be subsets of some universal set . Then

 and .
If , then  and .

Proof

The first part of this theorem was included in Exercise (7) from Section 5.2. The second part of the theorem was Exercise
(12) from Section 5.2.

 PREVIEW ACTIVITY : Exploring a Relationship between Two Sets5.3.1

A B U

A B (A∪B)c

∩Ac Bc

∩Ac Bc

A B U x A∪B x ∈ A x ∈ B

x

A∪B

x Ac x Bc

x ∩Ac Bc

(A∪B)c ∩Ac Bc

 PREVIEW ACTIVITY : Proving that Statements Are Equivalent5.3.2

X Y Z

[(X → Y ) ∧ (Y → Z)] → (X → Z)
P Q R

∙ P Q(P → Q)
∙ R P (R → P )
∙ Q R(Q → R)

P Q(P ↔ Q

Q R(Q ↔ R

R P (R ↔ P

X ↔ Y (X → Y ) ∧ (Y → X)

 Theorem 5.17

A B C U

A∩B ⊆ A A ⊆ A∪B

A ⊆ B A∩C ⊆ B∩C A∪C ⊆ B∪C
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The next theorem provides many of the properties of set operations dealing with intersection and union. Many of these results may
be intuitively obvious, but to be complete in the development of set theory, we should prove all of them. We choose to prove only
some of them and leave some as exercises.

Let , , and  be subsets of some universal set . Then all of the following equalities hold.

Proporties of the Empty Set   and the Universal Set  

Idempotent Laws  

Commutative Laws  

Associative Laws  

Distributive Laws  

Before proving some of these properties, we note that in Section 5.2, we learned that we can prove that two sets are equal by
proving that each one is a subset of the other one. However, we also know that if  and  are both subsets of a universal set ,
then

 if and only if for each ,  if and only if .

We can use this to prove that two sets are equal by choosing an element from one set and chasing the element to the other set
through a sequence of “if and only if” statements. We now use this idea to prove one of the commutative laws.

We will prove that . Let . Then

However, we know that if  and  are statements, then  is logically equivalent to . Consequently, we can
conclude that

Now we know that

This means that we can use (5.3.1), (5.3.2) and (5.3.3) to conclude that

 if and only if ,

and, hence, we have proved that .

We can use Venn diagrams to explore the more complicated properties in Theorem 5.18, such as the associative and
distributive laws. To that end, let , , and  be subsets of some universal set .

1. Draw two general Venn diagrams for the sets , , and . On one, shade the region that represents , and on
the other, shade the region that represents . Explain carefully how you determined these regions.

2. Based on the Venn diagrams in Part (1), what appears to be the relationship between the sets  and 
?

Answer

Add texts here. Do not delete this text first.

 Theorem 5.18: Algebra of Set Operations

A B C U

A∩ ∅ = ∅ A∩U = A A∪ ∅ = A A∪U = U

A∩A = A A∪A = A

A∩B = B∩A A∪B = B∪A

(A∩B) ∩C = A∩ (B∩C)
(A∪B) ∪C = A∪ (B∪C)

A∩ (B∪C) = (A∩B) ∪ (A∩C)
A∪ (B∩C) = (A∪B) ∩ (A∪C)

S T U

S = T x ∈ U x ∈ S x ∈ T

 Proof of One of the Commutative Laws in Theorem 5.18

A∩B = B∩A x ∈ A∩B

x ∈ A∩B if and only if x ∈ A and x ∈ B. (5.3.1)

P Q PwedgeQ Q∧P

x ∈ A and x ∈ B if and only if x ∈ B and x ∈ A. (5.3.2)

x ∈ B and x ∈ A if and only if x ∈ B∩A. (5.3.3)

x ∈ A∩B x ∈ B∩A

A∩B = B∩A

□

 Progress Check 5.19: Exploring a Distributive Property

A B C U

A B C A∪ (B∩C

(A∪B) ∩ (A∪C)
A∪ (B∩C

(A∪B) ∩ (A∪C)
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We will now prove the distributive law explored in Progress Check 5.19. Notice that we will prove two subset relations, and
that for each subset relation, we will begin by choosing an arbitrary element from a set. Also notice how nicely a proof dealing
with the union of two sets can be broken into cases.

Proof. Let , , and  be subsets of some universal set . We will prove that  by
proving that each set is a subset of the other set.

We will first prove that . We let . Then  or .

So in one case, if , then  and . This means that .

On the other hand, if , then  and . But  implies that , and  implies that 
. Since  is in both sets, e conclude that . So in both cases, we see that 

, and this proves that .

We next prove that . So let . Then,  and .
We must prove that . We will consider the two cases where  or . In the case where , we see
that .

So we consider the case that . It has been established that  and . Since  and , 
must be an element of . Similarly, since  and ,  must be an element of . Thus,  and, hence, 

.

In both cases, we have proved that . This proves that . The two subset
relations establish the equality of the two sets. Thus, .

Important Properties of Set Complements
The three main set operations are union, intersection, and complementation. The- orems 5.18 and 5.17 deal with properties of
unions and intersections. The next theorem states some basic properties of complements and the important relations dealing with
complements of unions and complements of intersections. Two relationships in the next theorem are known as De Morgan’s Laws
for sets and are closely related to De Morgan’s Laws for statements.

Let , , and  be subsets of some universal set . Then the following are true:

Basic Properties  

Empty Set and Universal Set  and  
 and 

De Morgan's Laws  

Subsets and Complements  if and only if 

We will only prove one of De Morgan’s Laws, namely, the one that was explored in Preview Activity . The proofs of the
other parts are left as exercises. Let  and  be subsets of some universal set . We will prove that  by
proving that an element is in  if and only if it is in . So let  be in the universal set . Then

and

 Proof of One of the Distributive Laws in Theorem 5.18

A B C U A∪ (B∩C) = (A∪B) ∩ (A∪C)

A∪ (B∩C) ⊆ (A∪B) ∩ (A∪C x ∈ A∪ (B∩C) x ∈ A x ∈ B∩C

x ∈ A x ∈ A∪B x ∈ A∪C x ∈ (A∪B) ∩ (A∪C)

x ∈ B∩C x ∈ B x ∈ C x ∈ B x ∈ A∪B x ∈ C

x ∈ A∪C x x ∈ (A∪B) ∩ (A∪C)
x ∈ (A∪B) ∩ (A∪C) A∪ (B∩C) ⊆ (A∪B) ∩ (A∪C

(A∪B) ∩ (A∪C) ⊆ A∪ (B∩C) y ∈ (A∪B) ∩ (A∪C) y ∈ A∪B y ∈ A∪C

y ∈ A∪ (B∩C) y ∈ A y ∉ A y ∈ A

y ∈ A∪ (B∩C)

y ∉ A y ∈ A∪B y ∈ A∪C yi ̸nA y ∈ A∪B y

B y ∉ A y ∈ A∪C y C y ∈ B∩C

y ∈ A∪ (B∩C)

y ∈ A∪ (B∩C) (A∪B) ∩ (A∪C) ⊆ A∪ (B∩C)
A∪ (B∩C) = (A∪B) ∩ (A∪C)

square

 Theorem 5.20

A B C U

( = AAc)c

A−B = A∩Bc

A−∅ = A A−U = ∅
= U∅c = ∅U c

(A∩B = ∪)c Ac Bc

(A∪B = ∩)c Ac Bc

A ⊆ B ⊆Bc Ac

 Proof

5.3.1
A B U (A∪B = ∩)c Ac Bc

(A∪B)c ∩Ac Bc x U

x ∈ (A∪B  if and only if x ∉ A∪B.)c (5.3.4)
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Combining (5.3.4) and (5.3.5), we see that

In addition, we know that

and this is true if and only if . So we can use (5.3.6) and (5.3.7) to conclude that

 if and only if .

and, hence, that .

1. Draw two general Venn diagrams for the sets , , and . On one, shade the region that represents , and on
the other, shade the region that represents . Explain carefully how you determined these regions and why
they indicate that .

It is possible to prove the relationship suggested in Part (1) by proving that each set is a subset of the other set. However, the
results in Theorems 5.18 and 5.20 can be used to prove other results about set operations. When we do this, we say that we are
using the algebra of sets to prove the result. For example, we can start by using one of the basic properties in Theorem 5.20 to
write

.

We can then use one of the commutative properties to write

2. Determine which properties from Theorems 5.18 and 5.20 justify each of the last three steps in the following outline of the
proof that .

Note: It is sometimes difficult to use the properties in the theorems when the theorems use the same letters to represent the sets
as those being used in the current problem. For example, one of the distributive properties from Theorems 5.18 can be written
as follows: For all sets , , and  that are subsets of a universal set ,

Answer

Add texts here. Do not delete this text first.

Proving that Statements Are Equivalent

When we have a list of three statements P , Q, and R such that each statement in the list is equivalent to the other two statements in
the list, we say that the three statements are equivalent. This means that each of the statements in the list implies each of the other
statements in the list.

The purpose of Preview Activity  was to provide one way to prove that three (or more) statements are equivalent. The basic
idea is to prove a sequence of conditional statements so that there is an unbroken chain of conditional statements from each

x ∉ A∪B if and only if x ∉ A and x ∉ B. (5.3.5)

x ∈ (A∪B  if and only if x ∉ A and x ∉ B.)c (5.3.6)

x ∉ A and x ∉ B if and only if x ∈  and x ∈ .Ac Bc (5.3.7)

x ∈ ∩Ac Bc

x ∈ (A∪B)c x ∈ ∩Ac Bc

(A∪B = ∩)c Ac Bc

□

 Progress Check 5.21: Using the Algebra of Sets

A B C (A∪B) −C

(A−C) ∪ (B−C)
(A∪B) −C = (A−C) ∪ (B−C)

A∪B) −C = (A∪B) ∩C c

(A∪B) −C =

=

(A∪B) ∩C c

∩ (A∪B).C c
(5.3.8)

(A∪B) −C = (A−C) ∪ (B−C)

(A∪B) −C =

=

=

=

=

(A∪B) ∩                       (Theorem 5.20)C c

∩ (A∪B)               (Commutative Property)C c

( ∩A) ∪ ( ∩B)C c C c

(A∩ ) ∪ (B∩ )C c C c

(A−C) ∪ (B−C)

(5.3.9)

X Y Z U

(X∩ (Y ∪Z) = (X∩Y ) ∪ (X∩Z).

5.3.2
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statement to every other statement. This method of proof will be used in Theorem 5.22.

Let  and  be subsets of some universal set . The following are equivalent:

1. 
2. 
3. 

Proof

To prove that these are equivalent conditions, we will prove that (1) implies (2), that (2) implies (3), and that (3) implies
(1).

Let  and  be subsets of some universal set . We have proved that (1) implies (2) in Proposition 5.14.

To prove that (2) implies (3), we will assume that  and use the fact that . We then see that

.

Then, using one of De Morgan's Laws, we obtain

This completes the proof that (2) implies (3).

We now need to prove that (3) implies (1). We assume that  and will prove that  by proving that every
element of  must be in .

So let . Then we know that . However,  and since , we can conclude that .
Since , we conclude that . This proves that  and hence that (3) implies (1).

Since we have now proved that (1) implies (2), that (2) implies (3), and that (3) implies (1), we have proved that the three
conditions are equivalent.

1. Let  be a subset of some universal set . Prove each of the following (from Theorem 5.20): 
 
(a)  
(b)  
(c)  
(d) 

2. Let , , and  be subsets of some universal set . As part of Theorem 5.18, we proved one of the distributive laws.
Prove the other one. That is, prove that 

3. Let , , and  be subsets of some universal set . As part of Theorem 5.20, we proved one of De Morgan’s Laws. Prove
the other one. That is, prove that 

4. Let , , and  be subsets of some universal set . 
 
(a) Draw two general Venn diagrams for the sets , , and . On one, shade the region that represents , and
on the other, shade the region that represents . Based on the Venn diagrams, make a conjecture about
the relationship between the sets  and . 
(b) Use the choose-an-element method to prove the conjecture from Exercise (4a). 
(c) Use the algebra of sets to prove the conjecture from Exercise (4a).

 Theorem 5.22

A B U

A ⊆ B

A∩ = ∅Bc

∪B = UAc

A B U

A∩ = ∅Bc = U∅c

(A∩ =Bc)c ∅c

begin{array} {rcl} {A^c \cup (B^c)^c} &= & {U} \\ {A^c \cup B} &= & {U.} \end{array}

∪B = UAc A ⊆ B

A B

x ∈ A x ∉ Ac x ∈ U ∪B = UAc x ∈ ∪BAc

x ∉ Ac x ∈ B A ⊆ B

 Exercises for Section 5.3

A U

( = AAc)c

A−∅ = A

= U∅c

= ∅U c

A B C U

A∩ (B∪C) = (A∩B) ∪ (A∩C). (5.3.10)

A B C U

(A∩B = ∪ .)c Ac Bc (5.3.11)

A B C U

A B C A−(B∪C)
(A−B) ∩ (A−C)

A−(B∪C) (A−B) ∩ (A−C)
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5. Let , , and  be subsets of some universal set . 
 
(a) Draw two general Venn diagrams for the sets , , and . On one, shade the region that represents , and
on the other, shade the region that represents . Based on the Venn diagrams, make a conjecture about
the relationship between the sets  and . 
(b) Use the choose-an-element method to prove the conjecture from Exercise (5a). 
(c) Use the algebra of sets to prove the conjecture from Exercise (5a).

6. Let , , and  be subsets of some universal set . Prove or disprove each of the following: 
 
(a)  
(b) 

7. Let , , and  be subsets of some universal set . 
 
(a) Draw two general Venn diagrams for the sets , , and . On one, shade the region that represents , and
on the other, shade the region that represents . Based on the Venn diagrams, make a conjecture about the
relationship between the sets  and . 
(b) Prove the conjecture from Exercise (7a).

8. Let , , and  be subsets of some universal set . 
 
(a) Draw two general Venn diagrams for the sets , , and . On one, shade the region that represents , and
on the other, shade the region that represents . Based on the Venn diagrams, make a conjecture about
the relationship between the sets  and . 
(b) Prove the conjecture from Exercise (8a).

9. Let  and  be subsets of some universal set . 
 
(a) Prove that  and  are disjoint sets. 
(b) Prove that .

10. Let  and  be subsets of some universal set . 
 
(a) Prove that  and  are disjoint sets. 
(b) Prove that .

11. Let  and  be subsets of some universal set . Prove or disprove each of the following: 
 
(a)  
(b)  
(c)  
(d)  
(e) 

12. Evaluation of proofs 
See the instructions for Exercise (19) on page 100 from Section 3.1.

Let , , and  be subsets of some universal set , then .

Proof

A B C U

A B C A−(B∩C)
(A−B) ∪ (A−C)

A−(B∩C) (A−B) ∪ (A−C)

A B C U

(A∩B) −C = (A−C) ∩ (B−C)
(A∪B) −(A∩B) = (A−B) ∪ (B−A)
A B C U

A B C A−(B−C)
(A−B) −C

A−(B−C) (A−B) −C

A B C U

A B C A−(B−C)
(A−B) ∪ (A− )C c

A−(B−C) (A−B) ∪ (A− )C c

A B U

A B−A

A∪B = A∪ (B−A)
A B U

A−B A∩B

A = (A−B) ∪ (A∩B)
A B U

A−(A∩ ) = A∩BBc

( ∪B ∩A = A−BAc )c

(A∪B) −A = B−A

(A∪B) −B = A−(A∩B)
(A∪B) −(A∩B) = (A−B) ∪ (B−A)

 (a)

A B C U A−(B−C) = A−(B∪C)

A−(B−C) =

=

=

=

=

(A−B) −(A−C)

(A∩ ) ∩ (A∩ )Bc C c

A∩ ( ∩ )Bc C c

A∩ (B∪C)c

A−(B∪C)

(5.3.12)
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Let , , and  be subsets of some universal set , then .

Proof

We first write  and then use one of De Morgan's Laws to obtain

.

We now use the fact that  and obtain

Explorations and Activities

13. (Comparison to Properties of the Real Numbers). The following are some of the basic properties of addition and
multiplication of real numbers

Commutative Laws: , for all . 
, for all .

Associative Laws: , for all . 
, for all .

Distributive Law: , for all .

Additive Identity: For all , .

Multiplicative Identity: For all , .

Additive Inverses: For all , .

Multiplicative Inverses: For all  with , .

Discuss the similarities and differences among the properties of addition and multiplication of real numbers and the
properties of union and intersection of sets.

Answer

Add texts here. Do not delete this text first.

This page titled 5.3: Properties of Set Operations is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

5.3: Properties of Set Operations by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

 Theorem 5.3.1

A B C U A−(B∪C) = (A−B) ∩ (A−C)

A−(B∪C) = A∩ (B∪C)c

A−(B∪C) = A∩ ( ∩ )Bc C c

A = A∩A

A−(B∪C) =

=

=

A∩A∩ ∩Bc C c

(A∩ ) ∩ (A∩ )Bc C c

(A−B) ∩ (A−C).

(5.3.13)

a+b = b+a a, b ∈ R

a ⋅ b = b ⋅ a a, b ∈ R

(a+b) +c = a+(b+c) a, b, c ∈ R

(a ⋅ b) ⋅ c = a ⋅ (b ⋅ c) a, b, c ∈ R

a ⋅ (b+c) = a ⋅ b+a ⋅ c a, b, c ∈ R

a ∈ R a+0 = a = 0 +a

a ∈ R a ⋅ 1 = a = 1 ⋅ a

a ∈ R a+(−a) = 0 = (−a) +a

a ∈ R a ≠ 0 a ⋅ = 1 = ⋅ aa−1 a−1
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5.4: Cartesian Products

In Section 2.3, we introduced the concept of the truth set of an open sentence with one variable. This was defined to be the
set of all elements in the universal set that can be substituted for the variable to make the open sentence a true statement.

In previous mathematics courses, we have also had experience with open sentences with two variables. For example, if we
assume that x and y represent real numbers, then the equation

is an open sentence with two variables. An element of the truth set of this open sentence (also called a solution of the equation)
is an ordered pair ( , ) of real numbers so that when  is substituted for  and  is substituted for , the open sentence
becomes a true statement (a true equation in this case). For example, we see that the ordered pair (6, 0) is in the truth set for
this open sentence since

is a true statement. On the other hand, the ordered pair (4, 1) is not in the truth set for this open sentence since

is a false statement.

Important Note: The order of the of the two numbers in the ordered pair is very important. We are using the convention that
the first number is to be substituted for  and the second number is to be substituted for . With this convention, (3, 2) is a
solution of the equation , but (2, 3) is not a solution of this equation.

1. List six different elements of the truth set (often called the solution set) of the open sentence with two variables 
.

2. From previous mathematics courses, we know that the graph of the equation  is a straight line. Sketch the
graph of the equation  in the -coordinate plane. What does the graph of the equation  show?

3. Write a description of the solution set  of the equation  using set builder notation.

In Preview Activity , we worked with ordered pairs without providing a formal definition of an ordered pair. We instead
relied on your previous work with ordered pairs, primarily from graphing equations with two variables. Following is a formal
definition of an ordered pair.

Let  and  be sets. An ordered pair (with first element from  and second element from ) is a single pair of objects,
denoted by ( , ), with  and  and an implied order. This means that for two ordered pairs to be equal, they
must contain exactly the same objects in the same order. That is, if  and , then

( , ) = ( , ) if and only if  and .

The objects in the ordered pair are called the coordinates of the ordered pair. In the ordered pair ( , ),  is the first
coordinate and  is the second coordinate.

We will now introduce a new set operation that gives a way of combining elements from two given sets to form ordered pairs.
The basic idea is that we will create a set of ordered pairs.

If  and  are sets, then the Cartesian product, , of  and  is the set of all ordered pairs ( , ) where  and 
. We use the notation  for the Cartesian product of  and , and using set builder notation, we can write

.

 PREVIEW ACTIVITY : An Equation with Two Variables5.4.1

2x+3y = 12

a b a x b y

2 ⋅ 6 +3 = 12

2 ⋅ 4 +3 ⋅ 1 = 12

x y

2x+3y = 12

2x+3y = 12
2x+3y = 12

2x+3y = 12 xy 2x+3y = 12
S 2x+3y = 12

 PREVIEW ACTIVITY : The Cartesian Product of Two Sets5.4.1

5.4.1

 Definition: ordered pair

A B A B

a b a ∈ A b ∈ B

a, c ∈ A b, d ∈ B

a b c d a = c b = d

a b a

b

 Definition: Cartesian product

A B A×B A B x y x ∈ A

y ∈ B A×B A B

A×B = {(x, y) | x ∈ A and y ∈ B}
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We frequently read  as "  cross ." In the case where the two sets are the same, we will write  for . That
is,

.

Let  {1, 2, 3} and  { , }.

1. Is the ordered pair (3, ) in the Cartesian product ? Explain.
2. Is the ordered pair (3, ) in the Cartesian product ? Explain.
3. Is the ordered pair (3, 1) in the Cartesian product ? Explain.
4. Using the roster method to specify all the elements of . (Remember that the elements of  will be ordered

pairs.
5. Use the roster method to specify all of the elements of the set .
6. For any sets  and , explain carefully what it means to say that the ordered pair ( , ) is not in the Cartesian product 

.

Cartesian Products
When working with Cartesian products, it is important to remember that the Cartesian product of two sets is itself a set. As a set, it
consists of a collection of elements. In this case, the elements of a Cartesian product are ordered pairs. We should think of an
ordered pair as a single object that consists of two other objects in a specified order. For example,

If , then the ordered pair (1, ) is not equal to the ordered pair ( , 1). That is, (1, )  ( , 1).
If  {1, 2, 3} and  { , }, then the ordered pair (3, ) is an element of the set . That is, (3, ) .
If  {1, 2, 3} and  { , }, then the ordered pair (5, ) is not an element of the set  since . That is, 

.

In Section 5.3, we studied certain properties of set union, set intersection, and set complements, which we called the algebra of sets.
We will now begin something similar for Cartesian products. We begin by examining some specific examples in Progress Check
5.23 and a little later in Progress Check 5.24.

Let  {1, 2, 3},  {a, b}, and  {a, c}. We can then form new sets from all of the set operations we have studied. For
example,  { }, and so

1. Use the roster method to list all of the elements (ordered pairs) in each of the following sets: 
 
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  
(g)  
(h)  
(i)  
(j) 

2. List all the relationships between the sets in Part (1) that you observe.

Answer

Add texts here. Do not delete this text first.

A×B A B A2 A×A

= A×A = {(a, b) | a ∈ A and b ∈ A}A2

A  = B  = a b

a A×B

a A×A

A×A

A×B A×B

A×A = A2

C D x y

C ×D

a ≠ 1 a a a ≠ a

A  = B  = a b a A×B a ∈ A×B

A  = B  = a b a A×B 5 ∉ A

(5, a) ∉ A×B

 progress check 5.23 (relationships between Cartesian products)

A = T = C =
B∩C = a

A×(B∩C) = {(1, a), (2, a), (3, a)}.

A×B

T ×B

A×C

A×(B∩C)
(A×B) ∩ (A×C)
A×(B∪C)
(A×B) ∪ (A×C)
A×(B−C)
(A×B) −(A×C)
B×A
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The Cartesian Plane
In Preview Activity , we sketched the graph of the equation  in the -plane. This -plane, with which you are
familiar, is a representation of the set  or . This plane is called the Cartesian plane.

The basic idea is that each ordered pair of real numbers corresponds to a point in the plane, and each point in the plane corresponds
to an ordered pair of real numbers. This geometric representation of  is an extension of the geometric representation of  as a
straight line whose points correspond to real numbers.

Since the Cartesian product  corresponds to the Cartesian plane, the Cartesian product of two subsets of  corresponds to a
subset of the Cartesian plane. For example, if  is the interval [1, 3], and  is the interval [2, 5], then

A graph of the set  can then be drawn in the Cartesian plane as shown in Figure 5.6.

This illustrates that the graph of a Cartesian product of two intervals of finite length in  corresponds to the interior of a rectangle
and possibly some or all of its boundary. The solid line for the boundary in Figure 5.6 indicates that the boundary is included. In
this case, the Cartesian product contained all of the boundary of the rectangle. When the graph does not contain a portion of the
boundary, we usually draw that portion of the boundary with a dotted line.

Note: A Caution about Notation. The standard notation for an open interval in  is the same as the notation for an ordered pair,
which is an element of . We need to use the context in which the notation is used to determine which interpretation is
intended. For example,

If we write ( , 7) , then we are using ( , 7) to represent an ordered pair of real numbers.
If we write (1, 2)  {4}, then we are interpreting (1, 2) as an open interval. We could write

(1, 2)  {4} = {( , 4) | 1 <  < 2}.

The following progress check explores some of the same ideas explored in Progress Check 5.23 except that intervals of real
numbers are used for the sets.

We will use the following intervals that are subsets of .

 [0, 2]  (1, 2)  [2, 4)  (3, 5]

5.4.1 2x+3y = 12 xy xy

R×R R
2

R
2

R

R
2

R

A B

A×B = {(x, y) ∈  | 1 ≤ x ≤ 3 and 2 ≤ y ≤ 5}.R
2

A×B

R

R

R×R

sqrt2 ∈ R×R sqrt2
×

× x x

 Progress Check 5.24: Cartesian Products of Intervals

R

A = T = B = C =
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1. Draw a graph of each of the following subsets of the Cartesian plane and write each subset using set builder notation. 
 
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  
(g)  
(h)  
(i)  
(j) 

2. List all the relationships between the sets in Part (1) that you observe.

Answer

Add texts here. Do not delete this text first.

One purpose of the work in Progress Checks 5.23 and 5.24 was to indicate the plausibility of many of the results contained in the
next theorem.

Let , . and  be sets. Then

1. 
2. 
3. 
4. 
5. 
6. 
7. If , then .
8. If , then .

We will not prove all these results; rather, we will prove Part (2) of Theorem 5.25 and leave some of the rest to the exercises. In
constructing these proofs, we need to keep in mind that Cartesian products are sets, and so we follow many of the same principles
to prove set relationships that were introduced in Sections 5.2and 5.3.

The other thing to remember is that the elements of a Cartesian product are ordered pairs. So when we start a proof of a result such
as Part (2) of Theorem 5.25, the primary goal is to prove that the two sets are equal. We will do this by proving that each one is a
subset of the other one. So if we want to prove that , we can start by choosing an arbitrary
element of . The goal is then to show that this element must be in . When we start by choosing
an arbitrary element of , we could give that element a name. For example, we could start by letting

We can then use the definition of "ordered pair" to conclude that

In order to prove that , we must now show that the ordered pair  from (5.4.1) is in 
. In order to do this, we can use the definition of set union and prove that

Since , we can prove (5.4.3) by proving that

A×B

T ×B

A×C

A×(B∩C)
(A×B) ∩ (A×C)
A×(B∪C)
(A×B) ∪ (A×C)
A×(B−C)
(A×B) −(A×C)
B×A

 Theorem 5.25

A B C

A×(B∩C) = (A×B) ∩ (A×C)
A×(B∪C) = (A×B) ∪ (A×C)
(A∩B) ×C = (A×C) ∩ (B×C)
(A∪B) ×C = (A×C) ∪ (B×C)
A×(B−C) = (A×B) −(A×C)
(A−B) ×C = (A×C) −(B×C)
T ⊆ A T ×B ⊆ A×B

T ⊆ B A×Y ⊆ A×B

A×(B∪C) ⊆ (A×B) ∪ (A×C)
A×(B∪C) (A×B) ∪ (A×C)

A×(B∪C)

u be an element of A×(B∪C). (5.4.1)

there exists x ∈ A and there exits y ∈ B∪C  such that u = (x, y). (5.4.2)

A×(B∪C) ⊆ (A×B) ∪ (A×C) u

A×(B∪C) ⊆ (A×B) ∪ (A×C)

u ∈ (A×B) or u ∈ (A×C). (5.4.3)

u = (x, y)

(x ∈ A and y ∈ B) or (x ∈ A and y ∈ C). (5.4.4)
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If we look at the sentences in (5.4.2) and (5.4.4), it would seem that we are very close to proving that 
. Following is a proof of Part (2) of Theorem 5.25.

Let , . and  be sets. Then

Proof

Let , . and  be sets. We will prove that  is equal to  by proving that each set is a
subset of the other set.

To prove that , we let . Then there exists  and there exists 
 such that . Since , we know that  or .

In the case where , we have , where  and . So in this case, , and hence 
. Similarly, in the case where , we have , where  and . So in this

case,  and, hence, .

In both cases, . Hence, we may conclude that if  is an element of , then 
, and this proves that

We must now prove that . So we let . Then  or
.

In the case where , we know that there exists  and there exists  such that . But because 
, we can conclude that  and, hence, .

In both cases, . Hence, we may conclude that if , then , and
this proves that

The relationships in (5.4.5) and (5.4.6) prove that .

The definition of an ordered pair in Preview Activity  may have seemed like a lengthy definition, but in some areas of
mathematics, an even more formal and precise definition of “ordered pair” is needed. This definition is explored in Exercise
(10).

1. Let  {1, 2},  { , , , }, and  {1, , }. Use the roster method to list all of the elements of each of the
following sets:
 
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  
(g)  
(h) 

A×(B∪C) ⊆ (A×B) ∪ (A×C)

 Theorem 5.25 (Part (2)).

A B C

A×(B∪C) = (A×B) ∪ (A×C)

A B C A×(B∪C) (A×B) ∪ (A×C)

A×(B∪C) ⊆ (A×B) ∪ (A×C) u ∈ A×(B∪C) x ∈ A

y ∈ B∪C u = (x, y) y ∈ B∪C y ∈ B y ∈ C

y ∈ B u = (x, y) x ∈ A y ∈ B u ∈ A×B

u ∈ (A×B) ∪ (A×C) y ∈ C u = (x, y) x ∈ A y ∈ C

u ∈ A×C u ∈ (A×B) ∪ (A×C)

u ∈ (A×B) ∪ (A×C) u A×(B∪C)
u ∈ (A×B) ∪ (A×C)

A×(B∪C) ⊆ (A×B) ∪ (A×C). (5.4.5)

(A×B) ∪ (A×C) ⊆ A×(B∪C) v∈ (A×B) ∪ (A×C) v∈ (A×B)
v∈ (A×C)

v∈ (A×B) s ∈ A t ∈ B v= (s, t)
t ∈ C t ∈ B∪C v∈ A×(B∪C)

v∈ A×(B∪C) v∈ (A×B) ∪ (A×C) v∈ A×(B∪C)

(A×B) ∪ (A×C) ⊆ A×(B∪C). (5.4.6)

A×(B∪C) = (A×B) ∪ (A×C)

 Final Note.

5.4.2

 Exercises for Section 5.4

A = B = a b c d C = a b

A×B

B×A

A×C

A2

A×(B∩C)
(A×B) ∩ (A×C)
A×∅
B×{2}
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2. Sketch a graph of each of the following Cartesian products in the Cartesian plane. 
 
(a) [0, 2]  [1, 3] 
(b) (0, 2)  (1, 3] 
(c) [2, 3]  {1}
(d) {1}  [2, 3] 
(e)   (2, 4) 
(f) (2, 4)   
(g)   {-1} 
(h) {-1}  [1, + )

3. Prove Theorem 5.25, Part (1): .
4. Prove Theorem 5.25, Part (4): .
5. Prove Theorem 5.25, Part (5): .
6. Prove Theorem 5.25, Part (7): If , then .
7. Let  {1},  {2}, and  {3}. 

 
(a) Explain why . 
(b) Explain why .

8. Let  and  be nonempty sets. Prove that  if and only if .
9. Is the following proposition true or false? Justify your conclusion. 

 
Let ,  and  be sets with . If , then . Explain where the assumption that  is
needed. 
 
Explorations and Activities

10. (A Set Theoretic Definition of an Ordered Pair) In elementary mathematics, the notion of an ordered pair introduced at
the beginning of this section will suffice. However, if we are interested in a formal development of the Cartesian product of
two sets, we need a more precise definition of ordered pair. Following is one way to do this in terms of sets. This definition
is credited to Kazimierz Kuratowski (1896 – 1980). Kuratowski was a famous Polish mathematician whose main work was
in the areas of topology and set theory. He was appointed the Director of the Polish Academy of Sciences and served in that
position for 19 years. 
 
Let  be an element of the set , and let  be an element of the set . The ordered pair ( , ) is defined to be the set 

. That is, 

 
(a) Explain how this definition allows us to distinguish between the ordered pairs (3, 5) and (5, 3). 
 
(b) Let  and  be sets and let  and . Use this definition of an ordered pair and the concept of set equality
to prove that  if and only if  and . 
 
An ordered triple can be thought of as a single triple of objects, denoted by ( , , ), with an implied order. This means that
in order for two ordered triples to be equal, they must contain exactly the same objects in the same order. That is 

 if and only if ,  and . 
 
(c) Let ,  and  be sets, and let , , and . Write a set theoretic definition of the ordered triple 
similar to the set theoretic definition of “ordered pair.”

Answer

Add texts here. Do not delete this text first.

×
×
×

×
R ×

× R

R ×
× ∞

A×(B∩C) = (A×B) ∩ (A×C)
(A∪B) ×C = (A×C) ∪ (B×C)
A×(B−C) = (A×B) −(A×C)
T ⊆ A T ×B ⊆ A×B

A = B = C =

A×B ≠ B×A

A×B) ×C ≠ A×(B×C)
A B A×B = B×A A = B

A B C A ≠ ∅ A×B = A×C B = C A ≠ ∅

x A y B x y

{{x}, {x, y}}

(x, y) = {{x}, {x, y}}. (5.4.7)

A B a, c ∈ A b, d ∈ B

(a, b) = (c, d) a = c b = d

a b c

(a, b, c) = (p, q, r) a = p b = q c = r

A B C x ∈ A y ∈ B z ∈ C (x, y, z)
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5.5: Indexed Families of Sets

In Section 5.3, we discussed various properties of set operations. We will now focus on the associative properties for set union
and set intersection. Notice that the definition of “set union” tells us how to form the union of two sets. It is the associative law
that allows us to discuss the union of three sets. Using the associate law, if , , and  are subsets of some universal set, then
we can define  to be  or . That is,

For this activity, the universal set is N and we will use the following four sets:

 {1, 2, 3, 4, 5}

 {2, 3, 4, 5, 6}

 {3, 4, 5, 6, 7}

 {4, 5, 6, 7, 8}

1. Use the roster method to specify the sets , , , and .
2. Use the roster method to specify each of the following sets. In each case, be sure to follow the order specified by the

parentheses. 
 
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  
(g)  
(h) 

3. Based on the work in Part (2), does the placement of the parentheses matter when determining the union (or intersection) of
these four sets? Does this make it possible to define  and ?

We have already seen that the elements of a set may themselves be sets. For example, the power set of a set , , is the set
of all subsets of . The phrase, “a set of sets” sounds confusing, and so we often use the terms collection and family when we
wish to emphasize that the elements of a given set are themselves sets. We would then say that the power set of  is the family
(or collection) of sets that are subsets of .

One of the purposes of the work we have done so far in this preview activity was to show that it is possible to define the union
and intersection of a family of sets.

Let  be a family of sets. The union over  is defined as the set of all elements that are in at least one of the sets in . We
write

The intersection over  is defined as the set of all elements that are in all of the sets in . That is,

For example, consider the four sets , , , and  used earlier in this preview activity and the sets

 {5, 6, 7, 8, 9} and  {6, 7, 8, 9, 10}

We can then consider the following families of sets:  and 

4. Explain why

 Preview Activity : The Union and Intersection of a Family of Sets5.5.1

A B C

A ∪ B ∪ C (A ∪ B) ∪ C A ∪ (B ∪ C)

A ∪ B ∪ C = (A ∪ B) ∪ C = A ∪ (B ∪ C).

A =

B =

C =

D =

A ∪ B ∪ C B ∪ C ∪ D A ∩ B ∩ C B ∩ C ∩ D

(A ∪ B ∪ C) ∪ D

A ∪ (B ∪ C ∪ D)
A ∪ (B ∪ C) ∪ D

(A ∪ B) ∪ (C ∪ D)
(A ∩ B ∩ C) ∩ D

A ∩ (B ∩ C ∩ D)
A ∩ (B ∩ C) ∩ D

(A ∩ B) ∩ (C ∩ D)

A ∪ B ∪ C ∪ D A ∩ B ∩ C ∩ D

T P(T )
T

T

T

 Definition

C C C

X = {x ∈ U  | x ∈ X for some X ∈ C}⋃X∈C

C C

X = {x ∈ U  | x ∈ X for some X ∈ C}⋂X∈C

A B C D

S = T =

A = {A, B, C, D} B = {A, B, C, D, S, T }
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 and 

and use your work in (1), (2), and (3) to determine  and .

5. Use the roster method to specify  and 

6. Use the roster method to specify the sets  and . Remember that the universal set is .

We often use subscripts to identify sets. For example, in Preview Activity , instead of using , , , and  as the names
of the sets, we could have used , , , and . When we do this, we are using the subscript as an identifying tag, or
index, for each set. We can also use this idea to specify an infinite family of sets. For example, for each natural number , we
define

So if we have a family of sets , we use the notation  to mean the same thing as .

1. Determine  and  
 
We can see that with the use of subscripts, we do not even have to define the family of sets . We can work with the
infinite family of sets 

 
and use the subscripts to indicate which sets to use in a union or an intersection.

2. Use the roster method to specify each of the following pairs of sets. The universal set is . 
 
(a)  and  
(b)  and  
(c)  and  
(d)  and 

The Union and Intersection over an Indexed Family of Sets
One of the purposes of the preview activities was to show that we often encounter situations in which more than two sets are
involved, and it is possible to define the union and intersection of more than two sets. In Preview Activity , we also saw that it
is often convenient to “index” the sets in a family of sets. In particular, if  is a natural number and  is a
family of  sets, then the union of these  sets, denoted by  or , is defined as

We can also defined the intersection of these  sets, denoted by  or , as

We can also extend this idea to define the union and intersection of a family that consists of infinitely many sets. So if 
, then

, and

.

X = A ∪ B ∪ C ∪ D⋃X∈A X = A ∩ B ∩ C ∩ D⋂X∈A

X⋃X∈A X⋂X∈A

X⋃X∈B X⋂X∈B

( X⋃X∈A )c ⋂X∈A Xc
N

 Preview Activity : An Indexed Family of Sets5.5.2

5.5.1 A B C D

A1 A2 A3 A4

n

= {n, n +1, n +2, n +3, n +4}.Cn

C = { , , , }C1 C2 C3 C4 ⋃4
j=1 Cj X⋃x∈C

⋃
4
j=1 Cj ⋂

4
j=1 Cj

A

= {  | n ∈ N}C∗ An (5.5.1)

N

⋃6
j=1 Cj ⋂6

j=1 Cj

⋃8
j=1 Cj ⋂8

j=1 Cj

⋃8
j=4 Cj ⋂8

j=4 Cj

(⋂
4
j=1 Cj)c ⋃

4
j=1 C c

j

5.5.2
n A = { , , . . . , }A1 A2 An

n n ∪ ∪ ⋅ ⋅ ⋅ ∪A1 A2 An ⋃n
j=1 Aj

= {x ∈ U  | x ∈ ,  for some j with 1 ≤ j ≤ n}.⋃
j=1

n

Aj Aj (5.5.2)

n ∩ ∩ ⋅ ⋅ ⋅ ∩A1 A2 An ⋂
n
j=1 Aj

= {x ∈ U  | x ∈ ,  for some j with 1 ≤ j ≤ n}.⋂
j=1

n

Aj Aj (5.5.3)

B = { , , . . . , , . . . }B1 B2 Bn

= {x ∈ U  | x ∈ ,  for some j with j ≥ 1}⋃∞
j=1 Bj Bj

= {x ∈ U  | x ∈ ,  for all j with j ≥ 1}⋂∞
j=1 Bj Bj
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For each natural number , let . For example,

, , ,

and

, .

Determine each of the following sets:

1. 
2. 
3. 
4. 
5. 
6. 

Answer

Add texts here. Do not delete this text first.

In all of the examples we have studied so far, we have used  or a subset of  to index or label the sets in a family of sets. We can
use other sets to index or label sets in a family of sets. For example, for each real number , we can define  to be the closed
interval [x, x + 2]. That is,

.

So we make the following definition. In this definition,  is the uppercase Greek letter lambda and  is the lowercase Greek letter
alpha.

Let  be a nonempty set and suppose that for each , there is a corresponding set . The family of sets  is
called an indexed family of sets indexed by . Each  is called an index and  is called an indexing set.

In each of the indexed families of sets that we seen so far, if the indices were different, then the sets were different. That is, if 
 is an indexing for the family of sets , then if  and , then . (Note: The letter  is

the Greek lowercase beta.)

1. Let , and for each , let , and let . Determine , 
, , and .

2. Is the following statement true or false for the indexed family  in (1)?
3. Now let . For each , define . Is the following statement true for the indexed family of set 

?
For all , if , then .

Answer

Add texts here. Do not delete this text first.

We now restate the definitions of the union and intersection of a family of sets for an indexed family of sets.

 Progress Check 5.26 (An Infinite Family of Sets)

n = {1, n, }An n2

= {1}A1 = {1, 2, 4}A2 = {1, 3, 9}A3

= {1, 2, 3, 4, 9}⋃3
j=1 Aj = {1}⋂3

j=1 Aj

⋃6
j=1 Aj

⋂6
j=1 Aj

⋃6
j=3 Aj

⋂
6
j=3 Aj

⋃∞
j=1 Aj

⋂
∞
j=1 Aj

N N

x Bx

= {y ∈ R | x ≤ y ≤ x +2}Bx

∧ α

 Definition

Λ α ∈ ∧ Aα {  | α ∈ ∧}Aα

∧ α ∈ ∧ Λ

 Progress Check 5.27 (Indexed Families of Sets)

Λ A = {  | α ∈ ∧}Aα α, β ∈ ∧ α ≠ β ≠Aα Aβ β

Λ = {1, 2, 3, 4} n ∈ Λ = {2n +6, 16 −3n}An A = { , , , }A1 A2 A3 A4 A1

A2 A3 A4

A

Λ =R x ∈ R = {0, , }Bx x2 x4

B = {  | x ∈ R}Bx

x, y ∈ R x ≠ y ≠Bx By
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Let  be a nonempty indexing set and let  be an indexed family of sets. The union over  is defined as the
set of all elements that are in at least one of sets , where . We write

.

The intersection over (\mathcal{A}\) is the set of all elements that are in all of the sets  for each . That is,

.

For each positive real numbe , let  be the interval (-1, ]. That is,

If we let  be the set of positive real numbers, then we have a family of sets indexed by . We will first determine the
union of this family of sets. Notice that for each , , and if  is a real number with , then 

. Also notice that if  and , then for each , . With these observations, we conclude
that

To determine the intersection of this family, notice that

if  and , then for each , ;
if  and , then  for each ; and
if  and , then of we let ,  and .

From these observations, we conclude that

Using the family of sets from Example 5.28, for each , we see that

Use the results from Example 5.28 to help determine each of the following sets. For each set, use either interval notation or set
builder notation.

1. 
2. 
3. 
4. 

Answer

Add texts here. Do not delete this text first.

Properties of Union and Intersection
In Theorem 5.30, we will prove some properties of set operations for indexed families of sets. Some of these properties are direct
extensions of corresponding properties for two sets. For example, we have already proved De Morgan’s Laws for two sets in
Theorem 5.20. The work in the preview activities and Progress Check 5.29 suggests that we should get similar results using set
operations with an indexed family of sets. For example, in Preview Activity , we saw that

 Definition

Λ A = {  | α ∈ Λ}Aα A

Aα α ∈ ∧

= {x ∈ U  |  there exits an α ∈ Λ with x ∈ }⋃α∈Λ Aα Aα

Aα α ∈ Λ

= {x ∈ U  |  for all α ∈ ∧, x ∈ }⋂α∈∧ Aα Aα

 Example 5.28 (A Family of Sets Indexed by the Positive Real Numbers)

α Aα α

= {x ∈ R |  −1 < x ≤ α}.Aα

R
+

R
+

α ∈ mathbbR+ α ∈ Aα y −1 < y ≤ 0
y ∈ Aα y ∈ R y < −1 α ∈ mathbbR+ y ∉ Aα

= (−1, ∞) = {x ∈ R |  −1 < x}.⋃α∈R+ Aα

y ∈ R y < −1 α ∈ R
+ y ∉ Aα

y ∈ R −1 < y ≤ 0 y ∈ Aα α ∈ mathbbR+

y ∈ R y > 0 β =
y

2
y > β y ∉ Aβ

= (−1, 0] = {x ∈ R |  −1 < x ≤ 0}.⋂α∈R+ Aα

 Progress Check 5.29 (A Continuation of Example 5.28)

α ∈ mathbbR+

= (−∞, 1] ∪ (α, ∞).Ac
α

(⋃α∈R+ Aα)c

(⋂α∈R+ Aα)c

⋂α∈R+ Ac
α

⋃α∈R+ Ac
α

5.5.2

( = .⋂4
j=1 Aj)c ⋃4

j=1 Ac
j
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Let  be a nonempty indexing set and let  be an indexed family of sets. Then

1. For each , 
2. For each , 
3. 
4. 

Parts (3) and (4) are known as De Morgan's Laws.

Proof

We will prove Parts (1) and (3). The proofs of Parts (2) and (4) are included in Exercise (4). So we let  be a nonempty
indexing set and let  be an indexed family of sets. To prove Part (1), we let  and note
that if , then , for all . Since  is one element in , we may conclude that . This proves
that .

To prove Part (3), we will prove that each set is a subset of the other set. We first let . This means that 
, and this means that

there exists a  such that .

Hence, , which implies that . Therefore, we have proved that

We now let . This means that there exists a  such that  or . However, since , we
may conclude that  and, hence, . This proves that

Using the results in (5.5.4) and (5.5.5), we have proved that 

Many of the other properties of set operations are also true for indexed families of sets. Theorem 5.31 states the distributive laws
for set operations.

Let  be a nonempty indexing set and let  be an indexed family of sets, and let  be a set. Then

1. , and
2. .

Proof

The proof of Theorem 5.31 is Exercise (5).

Pairwise Disjoint Families of Sets

In Section 5.2, we defined two sets  and  to be disjoint provided that . In a similar manner, if  is a nonempty
indexing set and  is an indexed family of sets, we can say that this indexed family of sets is disjoint provided
that . However, we can use the concept of two disjoint sets to define a somewhat more interesting type of
“disjointness” for an indexed family of sets.

 Theorem 5.30.

Λ A = {  | α ∈ ∧}Aα

β ∈ Λ ⊆⋂α∈Λ Aα Aβ

β ∈ Λ ⊆Aβ ⋃α∈Λ Aα

( =⋂α∈Λ Aα)c ⋃α∈Λ Ac
α

( =⋃α∈Λ Aα)c ⋂α∈Λ Ac
α

Λ
mathcalA = {  | α ∈ Λ}Aα β ∈ Λ

x ∈⋂α∈Λ Aα x ∈ Aα α ∈ Λ β Λ x ∈ Aβ

⊆⋂α∈Λ Aα Aβ

x ∈ (⋂α∈Λ Aα)c

x ∉ ( )⋂α∈Λ Aα

β ∈ Λ x ∉ Aβ

x ∈ Ac
β x ∈⋃α∈Λ Ac

α

( ⊆ .⋂
α∈Λ

Aα)c ⋃
α∈Λ

Ac
α (5.5.4)

y ∈⋃α∈Λ Ac
α β ∈ Λ y ∈ Ac

β y ∉ Aβ y ∉ Aβ

y ∉⋂α∈Λ Aα y ∈ (⋂α∈Λ Aα)c

⊆ ( .⋃
α∈Λ

Ac
α ⋂

α∈Λ

Aα)c (5.5.5)

( = .⋂α∈Λ Aα)c ⋃α∈Λ Ac
α

 Theorem 5.31.

Λ A = {  | α ∈ Λ}Aα B

B ∩ ( ) = (B ∩ )⋃α∈Λ Aα ⋃α∈Λ Aα

B ∪ ( ) = (B ∪ )⋂α∈Λ Aα ⋂α∈Λ Aα

A B A ∩ B = ∅ Λ
A = {  | α ∈ Λ}Aα

= ∅⋂α∈Λ Aα
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Let  be a nonempty indexing set, and let  be an indexed family of sets. We say that  is pair wise disjoint
provided that for all  and  in , if , then .

Figure 5.7 shows two families of sets,

 { , , , } and  { , , , }.

1. Is the family of sets  a disjoint family of sets? A pairwise disjoint family of sets?
2. Is the family of sets  a disjoint family of sets? A pairwise disjoint family of sets? 

 
Now let the universal be . For each , let , and let .

3. Is the family of sets  a disjoint family of sets? A pairwise disjoint family of sets?

Answer

Add texts here. Do not delete this text first.

1. For each natural number , let . Use the roster method to specify each of the following sets: 
 
(a)  
(b)  
(c)  
(d)  
(e)  
(f) 

2. For each natural number , let . Use the roster method or set builder notation to specify each of the
following sets:
 
(a)  
(b)  

 Definition

Λ A = {  | α ∈ Λ}Aα A

α β Λ ≠Aα Aβ ∩ = ∅Aα Aβ

 Progress Check 5.32 (Disjoint Families of Sets)

A = A1 A2 A3 A4 B = B1 B2 B3 B4

A

B

R n ∈ N =  (n, ∞)Cn C = {  | n ∈ N}Cn

C

 Exercise 5.5.1

n = {n, n +1, n +2, n +3}An

⋂
3
j=1 Aj

⋃3
j=1 Aj

⋂7
j=3 Aj

⋃7
j=3 Aj

∩ ( )A9 ⋃7
j=3 Aj

( ∩ )⋃7
j=3 A9 Aj

n = {k ∈ N | k ≥ n}An

⋂
5
j=1 Aj

(⋂
5
j=1 Aj)c
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(c)  
(d)  
(e)  
(f)  
(g) \(\bigcap_{j \in \mathbb{N}^{} A_j\) 
(h) \(\bigcup_{j \in \mathbb{N}^{} A_j\)

3. For each positive real number , define  to be the closed interval . That is 

 
Let . Use either interval notation or set builder notation to specify each of the following sets: 
 
(a)  
(b)  
(c)  
(d)  
(e)  
(f) 

4. Prove Parts (2) and (4) of Theorem 5.30. Let  be a nonempty indexing set and let  be an indexed
family of sets. 
 
(a) For each , . 
(b) 

5. Prove Theorem 5.31. Let  be a nonempty indexing set, let  be an indexed family of sets, and let  be
a set. Then 
 
(a) , and 
(b) .

6. Let  and  be nonempty indexing sets and let  and  be indexed families of sets.
Use the distributive laws in Exercise (5) to: 
 
(a) Write \((\bigcup_{\alpha \in \Lambda}^{} A_{\alpha}) \cap (\bigcup_{\beta \in \Gamma}^{} B_{\beta}) as a union of
intersections of two sets. 
(b) Write \((\bigcap_{\alpha \in \Lambda}^{} A_{\alpha}) \cup (\bigcap_{\beta \in \Gamma}^{} B_{\beta}) as a union of
intersections of two sets.

7. Let  be a nonempty indexing set and let  be an indexed family of sets. Also, assume that  and 
. (Note: The letter  is the uppercase Greek letter gamma.) Prove that 

 
(a)  
(b) 

8. Let  be a nonempty indexing set and let  be an indexed family of sets. 
 
(a) Prove that if  is a set such that  for every , then . 
(b) Prove that if  is a set such that  for every , then .

9. For each natural number , let . Prove that  is a pairwise disjoint family of
sets and that .

10. For each natural number , let . Determine if the following statements are true or false. Justify each
conclusion. 
 
(a) For all , if , then . 
(b) .

⋂5
j=1 Ac

j

⋃5
j=1 Ac

j

⋃5
j=1 Aj

(⋃5
j=1 Aj)c

r Tr [− , ]r2 r2

= {x ∈ R |  − ≤ x ≤ }.Tr r2 r2 (5.5.6)

∧ = {m ∈ N | 1 ≤ m ≤ 10}

⋃k∈∧ Tk

⋂k∈∧ Tk

⋃r∈R+ Tk

⋂r∈R+ Tk

⋃r∈N Tk

⋂r∈N Tk

Λ A = {  | α ∈ Λ}Aα

β ∈ Λ ⊆Aβ ⋃α∈Λ Aα

( =⋃α∈Λ Aα)c ⋂α∈Λ Ac
α

Λ A = {  | α ∈ Λ}Aα B

B ∩ ( ) = (B ∩ )⋃α∈Λ Aα ⋃α∈Λ Aα

B ∪ ( ) = (B ∪ )⋂α∈Λ Aα ⋂α∈Λ Aα

Λ Γ A = {  | α ∈ Λ}Aα B = {  | β ∈ Γ}Bβ

Λ A = {  | α ∈ Λ}Aα Γ ⊆ Λ
Γ ≠ ∅ Γ

⊆⋃α∈Γ Aα ⋃α∈Λ Aα

⊆⋂α∈Λ Aα ⋂α∈Γ Aα

Λ A = {  | α ∈ Λ}Aα

B B ⊆ Aα α ∈ Λ B ⊆⋂α∈Λ Aα

C ⊆ CAα α ∈ Λ ⊆ C⋂α∈Λ Aα

n = {x ∈ R | n −1 < x < n}An {  | n ∈ N}An

= ( −N)⋃n∈N An R
+

n = {k ∈ N | k ≥ n}An

j, k ∈ N j ≠ k ∩ ≠ ∅Aj Ak

= ∅⋂k∈N Ak
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11. Give an example of an indexed family of sets  such all three of the following conditions are true: 
 
(i) For each , ; 
(ii) For each , if , then ; and 
(iii) .

12. Let  be a nonempty indexing set, let  be an indexed family of sets, and let  be a set. Use the results
of Theorem 5.30 and Theorem 5.31 to prove each of the following: 
 
(a)  
(b)  
(c)  
(d)  
 
Explorations and Activities

13. An Indexed Family of Subsets of the Cartesian Plane. Let  be the set of nonnegative real numbers, and for each ,
let 

If , then the set  is the circle of radius  with center at the origin as shown in Figure 5.8, and the set  is the
shaded disk (including the boundary) shown in Figure 5.8. 

 
 
(a) Determine  and  
(b) Determine  and  
(c) Determine  and  
(d) Let , , and . Are any of these indexed families of sets
pairwise disjoint? Explain. 
 
Now let  be the closed interval [0, 2] and let  be the closed interval [1, 2]. 
(e) Determine , , , and  
(f) Determine , , , and  
(g) Determine , , , and  
(h) Determine , , , and  
(i) Use De Morgan's Laws to explain the relationship between your answers in Parts (13g) and (13h).

{  | n ∈ N}An

m ∈ N ⊆ (0, 1)Am

j, k ∈ N j ≠ k ∩ ≠ ∅Aj Ak

= ∅⋂k∈N Ak

Λ A = {  | α ∈ Λ}Aα B

( ) −B = ( −B)⋃α∈Λ Aα ⋃α∈Λ Aα

( ) −B = ( −B)⋂α∈Λ Aα ⋂α∈Λ Aα

B −( ) = B −( )⋃α∈Λ Aα ⋂α∈Λ Aα

B −( ) = B −( )⋂α∈Λ Aα ⋃α∈Λ Aα

R
∗ r ∈ R

∗

Cr

Dr

Tr

=

=

=

{(x, y) ∈ R×R |  + = }x2 y2 r2

{(x, y) ∈ R×R |  + ≤ }x2 y2 r2

{(x, y) ∈ R×R |  + > } = .x2 y2 r2 Dc
r

(5.5.7)

r > 0 Cr r Dr

⋃r∈R∗ Cr ⋂r∈R∗ Cr

⋃r∈R∗ Dr ⋂r∈R∗ Dr

⋃r∈R∗ Tr ⋂r∈R∗ Tr

C = {  | r ∈ }Cr R
∗ D= {  | r ∈ }Dr R

∗ T = {  | r ∈ }Tr R
∗

I J

⋃r∈I Cr ⋂r∈I Cr ⋃r∈J Cr ⋂r∈J Cr

⋃r∈I Dr ⋂r∈I Dr ⋃r∈J Dr ⋂r∈J Dr

(⋃r∈I Dr)c (⋂r∈I Dr)c (⋃r∈J Dr)c (bigcapr∈J Dr)c

⋃r∈I Tr ⋂r∈I Tr ⋃r∈J Tr ⋂r∈J Tr
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Answer

Add texts here. Do not delete this text first.
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5.S: Set Theory (Summary)
Important Definitions

Equal sets, page 55
Subset, page 55
Proper subset, page 218
Power set, page 222
Cardinality of a finite set, page 223
Intersection of two sets, page 216
Union of two sets, page 216
Set difference, page 216
Complement of a set, page 216
Disjoint sets, page 236
Cartesian product of two sets, pages 256
Ordered pair, page 256
Union over a family of sets, page 265
Intersection over a family of sets, page 265
Indexing set, page 268
Indexed family of sets, page 268
Union over an indexed family of sets, page 269
Intersection over an indexed family of sets, page 269
Pairwise disjoint family of sets, page 272

Important Theorems and Results about Sets

Theorem 5.5. Let  be a nonnegative integer and let  be a subset of some universal set. If  is a finite set with  elements,
then  has  subsets. That is, if , then .
Theorem 5.18. Let , , and  be subsets of some universal set . Then all of the following equalities hold. 
 
Properties of the Empty Set   
and the Universal Set   
 
Idempotent Laws   
 
Commutative Laws.   
 
Associative Laws  

 
 
Distributive Laws  

Theorem 5.20. Let  and  be subsets of some universal set . Then the following are true: 

Theorem 5.25. Let , , and  be sets. Then 
 

n A A n

A 2n |A| = n |P(A)| = 2n

A B C U

A ∩ ∅ = ∅ A ∩ U = A

A ∪ ∅ = A A ∪ U = U

A ∩ A = A A ∪ A = A

A ∩ B = B ∩ A A ∪ B = B ∪ A

(A ∩ B) ∩ C = A ∩ (B ∩ C)
(A ∪ B) ∪ C = A ∪ (B ∪ C)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A B U

Basic Properties

Empty Set, Universal Set             

De Morgan's Laws

Subsets and Complements

( = AAc)c

A −B = A ∩ Bc

A −∅ = A and A −U = ∅

= U  and  = ∅∅c U c

(A ∩ B = ∪)c Ac Bc

(A ∪ B = ∩)c Ac Bc

A ⊆ B if and only if  ⊆ .Bc Ac

(5.S.1)

A B C
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1.  
2.  
3.  
4.  
5.  
6.  
7. If , then . 
8. If , then .
Theorem 5.30. Let  be a nonempty indexing set and let  be an indexed family of sets. Then 
 
1. For each , . 
2. For each , . 
3.  
4.  
 
Parts(3) and (4) are known as De Morgan's Laws.
Theorem 5.31. Let  be a nonempty indexing set, let  be an indexed family of sets, and let  be a set.
Then 
 
1. , and 
2. ,

Important Proof Method

The Choose-an-Element Method 
The choose-an-element method is frequently used when we encounter a universal quantifier in a statement in the backward process
of a proof. This statement often has the form

For each element with a given property, something happens.

In the forward process of the proof, we then we choose an arbitrary element with the given property.

Whenever we choose an arbitrary element with a given property, we are not selecting a specific element. Rather, the only
thing we can assume about the element is the given property.

For more information, see page 232.

page297image2085397184 page297image2085397456

This page titled 5.S: Set Theory (Summary) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
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platform; a detailed edit history is available upon request.
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A ×(B ∩ C) = (A ×B) ∩ (A ×C)
A ×(B ∪ C) = (A ×B) ∪ (A ×C)
(A ∩ B) ×C = (A ×C) ∩ (B ×C)
(A ∪ B) ×C = (A ×C) ∪ (B ×C)
A ×(B −C) = (A ×B) −(A ×C)
(A −B) ×C = (A ×C) −(B ×C)

T ⊆ A T ×B ⊆ A ×B

T ⊆ B A ×Y ⊆ A ×B
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α
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6.1: Introduction to Functions

Preview Activity 1 (Functions from Previous Courses) 
One of the most important concepts in modern mathematics is that of a function. In previous mathematics courses, we have
often thought of a function as some sort of input-output rule that assigns exactly one output to each input. So in this context, a
function can be thought of as a procedure for associating with each element of some set, called the domain of the function,
exactly one element of another set, called the codomain of the function. This procedure can be considered an input-output-
rule. The function takes the input, which is an element of the domain, and produces an output, which is an element of the
codomain. In calculus and precalculus, the inputs and outputs were almost always real numbers. So the notationf 

 means the following:

 is the name of the function.
 is a real number. It is the output of the function when the input is the real number . For example, 

For this function, it is understood that the domain of the function is the set  of all real numbers. In this situation, we think of
the domain as the set of all possible inputs. That is, the domain is the set of all possible real numbers  for which a real number
output can be determined.

This is closely related to the equation . With this equation, we frequently think of  as the input and  as the
output. In fact, we sometimes write . The key to remember is that a function must have exactly one output for each
input. When we write an equation such as

we can use this equation to define  as a function of . This is because when we substitute a real number for  (the input), the
equation produces exactly one real number for  (the output). We can give this function a name, such as , and write

However, as written, an equation such as

cannot be used to define  as a function of  since there are real numbers that can be substituted for  that will produce more
than one possible value of . For example, if , then , and  could be -2 or 2.

Which of the following equations can be used to define a function with  as the input and  as the output?

1. 
2. 

3. 

4. 

5. 
6. 
7. 

 Exercise 6.1.1

f(x) = sinxx2

f

f(x) x

f( )
π

2
=

=

=

( sin( )
π

2
)2 π

2

⋅ 1
π2

4

.
π2

4

(6.1.1)
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y x x
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y = −1
1

2
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The domain and codomain of the functions in Preview Activity  is the set  of all real numbers, or some subset of . In
most of these cases, the way in which the function associates elements of the domain with elements of the codomain is by a
rule determined by some mathematical expression. For example, when we say that  is the function such that

then the algebraic rule that determines the output of the function  when the input is  is . In this case, we would say

that the domain of  is the set of all real numbers not equal to 1 since division by zero is not defined.

However, the concept of a function is much more general than this. The domain and codomain of a function can be any set, and
the way in which a function associates elements of the domain with elements of the codomain can have many different forms.
The input-output rule for a function can be a formula, a graph, a table, a random process, or a verbal description. We will
explore two different examples in this preview activity.

1. Let  be the function that assigns to each person his or her birthday (month and day). The domain of the function  is the set
of all people and the codomain of  is the set of all days in a leap year (i.e., January 1 through December 31, including
February 29). 
 
(a) Explain why  really is a function. We will call this the birthday function. 
(b) In 1995, Andrew Wiles became famous for publishing a proof of Fermat’s Last Theorem. (See A. D. Aczel, Fermat’s
Last Theorem: Unlocking the Secret of an Ancient Mathematical Problem, Dell Publishing, New York, 1996.) Andrew
Wiles’s birthday is April 11, 1953. Translate this fact into functional notation using the “birthday function” . That is, fill in
the spaces for the following question marks:

 
(c) Is the following statement true or false? Explain. 
For each day  of the year, there exists a person  such that . 
(d) Is the following statement true or false? Explain. 
For any people  and , if  and  are different people, then .

2. Let  be the function that associates with each natural number the sum of its distinct natural number divisors. This is called
the sum of the divisors function. For example, the natural number divisors of 6 are 1, 2, 3, and 6, and so 

 
 
(a) Calculate  for each natural number  from 1 through 15. 
(b) Does there exist a natural number  such that ? Justify your conclusion. 
(c) Is it possible to find two different natural numbers  and  such that ? Explain. 
(d) Use your responses in (b) and (c) to determine whether the following statements true or false. 
i. For each , there exists a natural number  such that . 
ii. For all , if , then .

The Definition of a Function

The concept of a function is much more general than the idea of a function used in calculus or precalculus. In particular, the domain
and codomain do not have to be subsets of . In addition, the way in which a function associates elements of the domain with
elements of the codomain can have many different forms. This input-output rule can be a formula, a graph, a table, a random
process, a computer algorithm, or a verbal description. Two such examples were introduced in Preview Activity .

For the birthday function, the domain would be the set of all people and the codomain would be the set of all days in a leap year.
For the sum of the divisors function, the domain is the set  of natural numbers, and the codomain could also be . In both of

 Preview Activity 2 (Some Other Types of Functions)

6.1.1 R R

f

f(x) = ,
x

x−1

f x
x

x−1
f

b b

b

b

b

b(?) =?. (6.1.2)

D x b(x) = D

x y x y b(x) ≠ b(y)
s

s(6) =

=

1 +2 +3 +6

12.
(6.1.3)

s(k) k

n s(n) = 5
m n s(m) = s(n)

m ∈ N n s(n) = m
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these cases, the input-output rule was a verbal description of how to assign an element of the codomain to an element of the
domain.

We formally define the concept of a function as follows:

A function from a set  to a set  is a rule that associates with each element  of the set  exactly one element of the set . A
function from  to  is also called a mapping from  to .

Function Notation. When we work with a function, we usually give it a name. The name is often a single letter, such as  or . If 
 is a function from the set  to be the set , we will write . This is simply shorthand notation for the fact that  is a

function from the set  to the set . In this case, we also say that  maps  to .

Let . (This is read, “Let  be a function from  to .”) The set  is called the domain of the function , and we
write . The set  is called the codomain of the function , and we write .

If , then the element of  that is associated with  is denoted by  and is called the image of a under . If ,
with , then a is called a preimage of  under .

Some Function Terminology with an Example. When we have a function , we often write . In this case, we
consider  to be an unspecified object that can be chosen from the set , and we would say that  is the independent variable of
the function  and  is the dependent variable of the function .

For a specific example, consider the function , where  is defined by the formula

Note that this is indeed a function since given any input  in the domain, , there is exactly one output  in the codomain, .
For example,

So we say that the image of -2 under  is 2, the image of 5 under  is 23, and so on.

Notice in this case that the number 0 in the codomain has two preimages,  and . This does not violate the mathematical
definition of a function since the definition only states that each input must produce one and only one output. That is, each element
of the domain has exactly one image in the codomain. Nowhere does the definition stipulate that two different inputs must produce
different outputs.

Finding the preimages of an element in the codomain can sometimes be difficult. In general, if  is in the codomain, to find its
preimages, we need to ask, “For which values of  in the domain will we have ?” For example, for the function g, to find
the preimages of 5, we need to find all  for which . In this case, since , we can do this by solving the
equation

The solutions of this equation are  and . So for the function , the preimages of 5 are  and . We often use set
notation for this and say that the set of preimages of 5 for the function  is { , }.

Also notice that for this function, not every element in the codomain has a preimage. For example, there is no input  such that 
. This is true since for all real numbers ,  and hence . This means that for all  in , .

Finally, note that we introduced the function g with the sentence, “Consider the function , where  is defined by the
formula .” This is one correct way to do this, but we will frequently shorten this to, “Let  be defined by 

”, or “Let , where .”

 Definition

A B x A B

A B A B

f g

f A B f : A → B f

A B f A B

 Definition

f : A → B f A B A f
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a ∈ A B a f(a) f f(a) = b

b ∈ B b f

f : A → B y = f(x)
x A x

f y f

g : R →R g(x)

g(x) = −2.x2

x R g(x) R
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(6.1.4)

g g

− 2
–

√ 2
–

√

y

x y = g(x)
x g(x) = 5 g(x) = −2x2

−2 = 5.x2

− 7
–√ 7

–√ g − 7
–√ 7

–√

g − 7
–√ 7

–√

x

g(x) = −3 x ≥ 0x2 −2 ≥ −2x2 x R g(x) ≥ −2

g : R →R g(x)
g(x) = −2x2 g : R →R

g(x) = −2x2 g : R →R g(x) = −2x2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86129?pdf


6.1.4 https://math.libretexts.org/@go/page/86129

Let  be defined by  for all . and let  be defined by  for all 
.

1. Determine  and .
2. Determine  and .
3. Determine the set of all preimage of 6 for the function .
4. Determine the set of all preimage of 6 for the function .
5. Determine the set of all preimage of 2 for the function .
6. Determine the set of all preimage of 2 for the function .

Answer

Add texts here. Do not delete this text first.

The Codomain and Range of a Function
Besides the domain and codomain, there is another important set associated with a function. The need for this was illustrated in the
example of the function  on page 285. For this function, it was noticed that there are elements in the codomain that have no
preimage or, equivalently, there are elements in the codomain that are not the image of any element in the domain. The set we are
talking about is the subset of the codomain consisting of all images of the elements of the domain of the function, and it is called
the range of the function.

Let . The set  is called the range of the function  and is denoted by range ( ). The range of  is
sometimes called the image of the function  (or the image of  under ).

The range of  could equivalently be defined as follows:

range( ) .

Notice that this means that range( )  codom( ) but does not necessarily mean that range( )  codom( ). Whether we have this
set equality or not depends on the function . More about this will be explored in Section 6.3.

1. Let  be the function that assigns to each person his or her birthday (month and day). 
 
(a) What is the domain of this function? 
(b) What is a codomain for this function? 
(c) In Preview Activity , we determined that the following statement is true: For each day  of the year, there exists a
person  such that . What does this tell us about the range of the function ? Explain.

2. Let  be the function that associates with each natural number the sum of its distinct natural number factors. 
 
(a) What is the domain of this function? 
(b) What is a codomain for this function? 
(c) In Preview Activity , we determined that the following statement is false: 
For each , there exists a natural number  such that . 
Give an example of a natural number  that shows this statement is false, and explain what this tells us about the range of
the function .

Answer

Add texts here. Do not delete this text first.

 Progress Check 6.1 (Images and Preimages)

f : R →R f(x) = −5xx2 x ∈ R g : Z → Z g(m) = −5mm2

m ∈ Z

f(−3) f( )8
–

√

g(2) g(−2)
f

g

f

g

g

 Definition

f : A → B {f(x) | x ∈ A} f f f

f A f

f : A → B

f = {y ∈ B | y = f(x) for some x ∈ A}

f ⊆ f f = f

f

 Progress Check 6.2 (Codomain and Range)
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The Graph of a Real Function
We will finish this section with methods to visually communicate information about two specific types of functions. The first is the
familiar method of graphing functions that was a major part of some previous mathematics courses. For example, consider the
function  defined by .

Every point on this graph corresponds to an ordered pair ( , ) of real numbers, where . Because we use
the Cartesian plane when drawing this type of graph, we can only use this type of graph when both the domain and the codomain of
the function are subsets of the real numbers . Such a function is sometimes called a real function. The graph of a real function is
a visual way to communicate information about the function. For example, the range of  is the set of all y-values that correspond
to points on the graph. In this case, the graph of  is a parabola and has a vertex at the point (1, -2). (Note: The x-coordinate of the
vertex can be found by using calculus and solving the equation .) Since the graph of the function  is a parabola, we
know that pattern shown on the left end and the right end of the graph continues and we can conclude that the range of  is the set
of all  such that . That is,

range( )

The graph in Figure 6.2 shows the graph of (slightly more than) two complete periods for a function , where 
 for some positive real number constants  and .

g : R →R g(x) = −2x−1x2

x y y = g(x) = −2x−1x2

R

g

g

f ′(x) = 0 g

g

y ∈ R y ≥ −2

g = {y ∈ R | y ≥ −2}.

 Progress Check 6.3 (Using the Graph of a Real Function)

f : R →R

f(x) = Asin(Bx) A B
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1. We can use the graph to estimate the output for various inputs. This is done by estimating the -coordinate for the point on
the graph with a specified -coordinate. On the graph, draw vertical lines at  and  and estimate the values of 

 and .
2. Similarly, we can estimate inputs of the function that produce a specified output. This is done by estimating the -

coordinates of the points on the graph that have a specified -coordinate. Draw a horizontal line at  and estimate at
least two values of  such that .

3. Use the graph Figure 6.2 to estimate the range of the function .

Answer

Add texts here. Do not delete this text first.

Arrow Diagrams

Sometimes the domain and codomain of a function are small, finite sets. When this is the case, we can define a function simply by
specifying the outputs for each input in the domain. For example, if we let  and let , we can define a
function  by specifying that

This is a function since each element of the domain is mapped to exactly one element in . A convenient way to illustrate or
visualize this type of function is with a so-called arrow diagram as shown in Figure 6.3. An arrow diagram can

y

x x = −1 x = 2
f(−1) f(2)

x

y y = 2
x f(x) = 2

f

A = {1, 2, 3} B = {a, b}
F : A → B

F (1) = a,F (2) = a,  and F (3) = b.

B
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be used when the domain and codomain of the function are finite (and small). We represent the elements of each set with points and
then use arrows to show how the elements of the domain are associated with elements of the codomain. For example, the arrow
from the point 2 in  to the point  in  represents the fact that . In this case, we can use the arrow diagram in Figure 6.3
to conclude that range( ) .

Let  and let .

1. Which of the arrow diagrams in Figure 6.4 can be used to represent a function from  to ? Explain.
2. For those arrow diagrams that can be used to represent a function from  to , determine the range of the function. 

Answer

Add texts here. Do not delete this text first.

1. Let  be defined by . 
 
(a) Evaluate , , , and . 
(b) Determine the set of all of the preimages of 0 and the set of all of the preimages of 4. 
(c) Sketch a graph of the function . 
(d) Determine the range of the function .

A a B F (2) = a

F = {a, b}

 Progress Check 6.4 (Working with Arrow Diagrams)

A = {1, 2, 3, 4} B = {a, b, c}

A B

A B

 Exercises 6.1

f : R →R f(x) = −2xx2

f(−3) f(−1) f(1) f(3)

f

f
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2. Let , and let  be defined by . 
 
(a) Evaluate , , , and . 
(b) Determine the set of all of the preimages of 0 and the set of all of the preimages of 2. 
(c) Sketch a graph of the function . 
(d) Determine the range of the function .

3. Let  be defined by . 
 
(a) Evaluate , , , and . 
(b) Determine the set of all of the preimages of 5 and the set of all of the preimages of 4. 
(c) Determine the range of the function . 
(d) This function can be considered a real function since . Sketch a graph of this function. Note: The graph will be
an infinite set of points that lie on a line. However, it will not be a line since its domain is not  but is .

4. Let  be defined by . 
 
(a) Evaluate , , , and . 
(b) Determine the set of all of the preimages of 5 and the set of all of the preimages of 4. 
(c) Determine the range of the function . 
(d) Sketch a graph of the function . See the comments in Exercise (3d).

5. Recall that a real function is a function whose domain and codomain are subsets of the real numbers R. (See page 288.)
Most of the functions used in calculus are real functions. Quite often, a real function is given by a formula or a graph with
no specific reference to the domain or the codomain. In these cases, the usual convention is to assume that the domain of
the real function  is the set of all real numbers  for which  is a real number, and that the codomain is . For
example, if we define the (real) function  by 

 
we would be assuming that the domain is the set of all real numbers that are not equal to 2 and that the codomain in . 
Determine the domain and range of each of the following real functions. It might help to use a graphing calculator to plot a
graph of the function. 
 
(a) The function  defined by  
(b) The function  defined by  
(c) The function  defined by  

(d) The function  defined by  

(e) The function  defined by 
6. The number of divisors function. Let  be the function that associates with each natural number the number of its natural

number divisors. That is  where  is the number of natural number divisors of . For example, 
since 1, 2, 3, and 6 are the natural number divisors of 6. 
 
(a) Calculate  for each natural number  from 1 through 12. 
(b) Does there exist a natural number  such that ? What is the set of preimages of the natural number 1. 
(c) Does there exist a natural number  such that ? If so, determine the set of all preimages of the natural number
2. 
(d) Is the following statement true or false? Justify your conclusion. 
For all , if , then . 
(e) Calculate  for  and for each natural number  from 1 through 6. 
(f) Based on your work in Exercise (6e), make a conjecture for a formula for  where  is a nonnegative integer. Then
explain why your conjecture is correct. 
(g) Is the following statement is true or false? 
For each , there exists a natural number  such that .

= {x ∈ R | x ≥ 0}R
∗ s : R →R

∗ s(x) = x2

s(−3) s(−1) s(1) s(3)

s

s
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f
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(6.1.5)
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7. In Exercise (6), we introduced the number of divisors function . For this function, , where  is the number
of natural number divisors of . 
A function that is related to this function is the so-called set of divisors function. This can be defined as a function  that
associates with each natural number the set of its distinct natural number factors. For example,  and 

. 
 
(a) Discuss the function  by carefully stating its domain, codomain, and its rule for determining outputs. 
(b) Determine  for at least five different values of . 
(c) Determine  for at least three different prime number values of . 
(d) Does there exist a natural number  such that card( )? Explain. [Recall that card( ) is the number of
elements in the set .] 
(e) Does there exist a natural number  such that card( )? Explain. 
(f) Write the output for the function  in terms of the output for the function . That is, write  in terms of . 
(g) Is the following statement true or false? Justify your conclusion. 
For all natural numbers  and , if , then . 
(h) Is the following statement true or false? Justify your conclusion. 
For all sets  that are subsets of , there exists a natural number  such that . 
 
Explorations and Activities

8. Creating Functions with Finite Domains. Let , . and . In each of the
following exercises, draw an arrow diagram to represent your function when it is appropriate. 
 
(a) Create a function  whose range is the set  or explain why it is not possible to construct such a function. 
(b) Create a function  whose range is the set  or explain why it is not possible to construct such a function. 
(c) Create a function  whose range is the set  or explain why it is not possible to construct such a function. 
(d) Create a function  whose range is the set  or explain why it is not possible to construct such a function. 
(e) If possible, create a function  that satisfies the following condition: 
For all , if , then . 
If it is not possible to create such a function, explain why. 
(f) If possible, create a function  that satisfies the following condition: 
For all , if , then . 
If it is not possible to create such a function, explain why.

Answer

Add texts here. Do not delete this text first.

This page titled 6.1: Introduction to Functions is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

6.1: Introduction to Functions by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

d d : N →N d(n)
n

S

S(6) = {1, 2, 3, 6}
S(10) = {1, 2, 5, 10}

S

S(n) n

S(n) n

n S(n) = 1 S(n)
S(n)

n S(n) = 2
d S d(n) S(n)

m n m ≠ n S(m) ≠ S(n)

T N n S(n) = T

A = {a, b, c, d} B = {a, b, c} C = {s, t, u, v}

f : A → C C

f : A → C {u, v}
f : B → C C

f : A → C {u}
f : A → C

x, y ∈ A x ≠ y f(x) ≠ f(y)

f : A → {s, t, u}
x, y ∈ A x ≠ y f(x) ≠ f(y)
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6.2: More about Functions
In Section 6.1, we have seen many examples of functions. We have also seen various ways to represent functions and to convey
information about them. For example, we have seen that the rule for determining outputs of a function can be given by a formula, a
graph, or a table of values. We have also seen that sometimes it is more convenient to give a verbal description of the rule for a
function. In cases where the domain and codomain are small, finite sets, we used an arrow diagram to convey information about
how inputs and outputs are associated without explicitly stating a rule. In this section, we will study some types of functions, some
of which we may not have encountered in previous mathematics courses.

A polygon is a closed plane figure formed by the joining of three or more straight lines. For example, a triangle is a polygon
that has three sides; a quadrilateral is a polygon that has four sides and includes squares, rectangles, and parallelograms; a
pentagon is a polygon that has five sides; and an octagon is a polygon that has eight sides. A regular polygon is one that has
equal-length sides and congruent interior angles.

A diagonal of a polygon is a line segment that connects two nonadjacent vertices of the polygon. In this activity, we will
assume that all polygons are convex polygons so that, except for the vertices, each diagonal lies inside the polygon. For
example, a triangle (3-sided polygon) has no diagonals and a rectangle has two diagonals.

1. How many diagonals does any quadrilateral (4-sided polygon) have?
2. Let . Define  so that  is the number of diagonals of a convex polygon with  sides.

Determine the values of , , , , , and . Arrange the results in the form of a table of values for the
function .

3. Let  be defined by

Determine the values of , , , , , , , , , and . Arrange the results in the form of a
table of values for the function .

4. Compare the functions in Parts (2) and (3). What are the similarities between the two functions and what are the
differences? Should these two functions be considered equal functions? Explain.

In calculus, we learned how to find the derivatives of certain functions. For example, if , then we can use the
product rule to obtain

1. If possible, find the derivative of each of the following functions: 
 
(a)  
(b)  

(c)  

(d)  
(e) 

2. Is it possible to think of differentiation as a function? Explain. If so, what would be the domain of the function, what could
be the codomain of the function, and what is the rule for computing the element of the codomain (output) that is associated
with a given element of the domain (input)?

Functions Involving Congruences

Theorem 3.31 and Corollary 3.32 state that an integer is congruent (mod ) to its remainder when it is divided by . (Recall that
we always mean the remainder guaranteed by the Division Algorithm, which is the least nonnegative remainder.) Since this

 Preview Activity : The Number of Diagonals of a Polygon6.2.1

D =N−{1, 2} d : D →N∪ {0} d(n) n

d(3) d(4) d(5) d(6) d(7) d8)
d

f : R →R

f(x) = .
x(x−3)

2
(6.2.1)

f(0) f(1) f(2) f(3) f(4) f(5) f(6) f(7) f(8) f9)
f

 Preview Activity : Derivatives6.2.1

f(x) = (sinx)x2

f ′(x) = 2x(sinx) + (cosx).x2 (6.2.2)

f(x) = −5 +3x−7x4 x3

g(x) = cos(5x)

h(x) =
sinx

x
k(x) = e−x2

r(x) = |x|

n n
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remainder is unique and since the only possible remainders for division by  are 0, 1, 2, ..., , we then know that each integer
is congruent, modulo , to precisely one of the integers 0, 1, 2, ..., . So for each natural number , we will define a new set 

 as follows:

For example,  and . We will now explore a method to define a function from  to .

For each , we can compute  and then determine the value of  in  so that

 (mod 6).

Since  must be in , we must have . The results are shown in the following table.

Table6 .1: Table of Values Defined by a Congruence
x , where x , where 

0 3 3 0

1 4 4 1

2 1 5 4

The value of  in the first column can be thought of as the input for a function with the value of  in the second column as the
corresponding output. Each input produces exactly one output. So we could write

 by  where  (mod 6).

This description and the notation for the outputs of this function are quite cumbersome. So we will use a more concise notation. We
will, instead, write

Let  by  (mod 6).

Let . Define

 by  (mod 5), for each ;

 by  (mod 5), for each ;

1. Determine , , , , and  and represent the function  with an arrow diagram.
2. Determine , , , , and  and represent the function  with an arrow diagram.

Answer

Add texts here. Do not delete this text first.

Equality of Functions
The idea of equality of functions has been in the background of our discussion of functions, and it is now time to discuss it
explicitly. The preliminary work for this discussion was Preview Activity , in which  and there were two
functions:

, where  is the number of diagonals of a convex polygon with  sides

, where , for each real number .

In Preview Activity , we saw that these two functions produced the same outputs for certain values of the input (independent
variable). For example, we can verify that

, , 
, and .

Although the functions produce the same outputs for some inputs, these are two different functions.For example, the outputs of the
function  are determined by a formula, and the outputs of the function  are determined by a verbal description. This is not

n n−1
n n−1 n

Zn

= {0, 1, 2, . . . ,n−1}.Zn

= {0, 1, 2, 3}Z4 = {0, 1, 2, 3, 4, 5}Z6 Z6 Z6

x ∈ Z6 +3x2 r Z6

( +3) ≡ rx2

r Z6 0 ≤ r < 6

r + 3) ≡ r(mod 6)x2 r + 3) ≡ r(mod 6)x2

x r

f : →Z6 Z6 f(x) = r ( +3) ≡ rx2

f : →Z6 Z6 f(x) = ( +3)x2

 Progress Check 6.5 (Functions Defined by Congruences)

= {0, 1, 2, 3, 4}Z6

f : →Z5 Z5 f(x) = x4 x ∈ Z5

g : →Z5 Z5 g(x) = x5 x ∈ Z5

f(0) f(1) f(2) f(3) f(4) f

g(0) g(1) g(2) g(3) g(4) g

6.2.1 D =N−{1, 2}

d : D →N∪ {0} d(n) n

f : R →R f(x) =
x(x−3)

2
x

6.2.1

d(3) = f(3) = 0 d(4) = f(4) = 2
d(5) = f(5) = 5 d(6) = f(6) = 9

f d
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enough, however, to say that these are two different functions. Based on the evidence from Preview Activity , we might make
the following conjecture:

For , .

Although we have not proved this statement, it is a true statement. (See Exercise 6.) However, we know the function  and the
function  are not the same function. For example,

, but 0 is not in the domain of ;

, but  is not in the domain of .

We thus see the importance of considering the domain and codomain of each of the two functions in determining whether the two
functions are equal or not. This motivates the following definition.

Two functions  and  are equal provided that

The domain of  equals the domain of . That is dom( ) = dom( )
The codomain of  equals the codomain of . That is codom( ) = codom( )
For each  in the domain of  (which equals the domain of ), .

Let  be a nonempty set. The identity function on the set , denoted by , is the function  defined by 
 for every  in . That is, for the identity map, the output is always equal to the input.

For this progress check, we will use the functions  and  from Progress Check 6.5. The identity function on the set  is

 by  (mod 5), for each .

Is the identity function on  equal to either of the functions  or  from Progress Check 6.5? Explain.

Answer

Add texts here. Do not delete this text first.

Mathematical Processes as Functions

Certain mathematical processes can be thought of as functions. In Preview Activity , we reviewed how to find the derivatives
of certain functions, and we considered whether or not we could think of this differentiation process as a function. If we use a
differentiable function as the input and consider the derivative of that function to be the output, then we have the makings of a
function. Computer algebra systems such as Maple and Mathematica have this derivative function as one of their predefined
operators.

Following is some Maple code (using the Classic Worksheet version of Maple) that can be used to find the derivative function of
the function given by . The lines that start with the Maple prompt, [>, are the lines typed by the user. The
centered lines following these show the resulting Maple output. The first line defines the function , and the second line uses the
derivative function  to produce the derivative of the function .

[> f := x  x^2  sin (x);

[> f1 := D(f);

We must be careful when determining the domain for the derivative function since there are functions that are not differentiable. To
make things reasonably easy, we will let  be the set of all real functions that are differentiable and call this the domain of the
derivative function . We will use the set  of all real functions as the codomain. So our function  is

6.2.1

n ≥ 3 d(n) =
n(n−3)

2

d

f

f(0) = 0 d

f(π) =
π(π−3)

2
π d

 Definition: equal Functions

f g

f g f g

f g f g

x f g f(x) = g(x)

 Progress Check 6.6: Equality of Functions

A A IA : A → AIA
(x) = xIA x A

f g Z5

: →IZ5 Z5 Z5 (x) = xIZ5 x ∈ Z5

Z5 f g

6.2.2

f(x) = (sinx)x2

f

D f

→ ∗

f := x → sin(x)x2

f1 := x → 2x sin(x) + cos(x)x2

F

D T D
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 by .

Let  be a finite set whose elements are the real numbers . We define the average of the set 
 to be the real number , where

1. Find the average of .
2. Find the average of .
3. Find the average of .
4. Now let  be the set of all finite subsets of . That is, a subset  of  is in  if and only if  contains only a

finite number of elements. Carefully explain how the process of finding the average of a finite subset of  can be thought
of as a function. In doing this, be sure to specify the domain of the function and the codomain of the function.

Answer

Add texts here. Do not delete this text first.

Sequences as Functions
A sequence can be considered to be an infinite list of objects that are indexed (subscripted) by the natural numbers (or some infinite
subset of ). Using this idea, we often write a sequence in the following form:

In order to shorten our notation, we will often use the notation  to represent this sequence. Sometimes a formula can be used to
represent the terms of a sequence, and we might include this formula as the th term in the list for a sequence such as in the
following example:

In this case, the th term of the sequence is . If we know a formula for the th term, we often use this formula to represent the

sequence. For example, we might say

Define the sequence  by  for each .

This shows that this sequence is a function with domain . If it is understood that the domain is , we could refer to this as the

sequence . Given an element of the domain, we can consider  to be the output. In this case, we have used subscript notation

to indicate the output rather than the usual function notation. We could just as easily write

 instead of .

We make the following formal definition.

An (infinite) sequence is a function whose domain is  or some infinite subset of .

Find the sixth and tenth terms of each of the following sequences:

1. , , , , ...

2. , where  for each 

D : F → T D(f) = f ′

 Progress Check 6.7: Average of a Finite Set of Numbers

A = { , , . . . }a1 a2 an , , . . .a1 a2 an
A Ā

= .Ā
, , . . .a1 a2 an

n

A = {3, 7, −1, 5}
B = {7, −2, 3.8, 4.2, 7.1}
C = { , , π− }2

–
√ 3

–
√ 3

–
√

F (R) R A R F (R) A

R

N∪ {0}

, , . . . , , . . . .a1 a2 an

⟨ ⟩an
n

1, , , . . . , , . . . .
1

2

1

3

1

n

n
1

n
n

⟨ ⟩an =an
1

n
n ∈ N

N N

⟨ ⟩
1

n
an

a(n) =
1

n
=an

1

n

 Definition: sequence

N N∪ {0}

 Progress Check 6.8 (Sequences)

1

3

1

6

1

9

1

12

⟨ ⟩an =an
1

n2
n ∈ N
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3. 

Answer

Add texts here. Do not delete this text first.

Functions of Two Variables
In Section 5.4, we learned how to form the Cartesian product of two sets. Recall that a Cartesian product of two sets is a set of
ordered pairs. For example, the set  is the set of all ordered pairs, where each coordinate of an ordered pair is an integer.
Since a Cartesian product is a set, it could be used as the domain or codomain of a function. For example, we could use  as
the domain of a function as follows:

Let  be defined by .

Technically, an element of  is an ordered pair, and so we should write  for the out put of the function  when
the input is the ordered pair . However, the double parentheses seem unnecessary in this context and there should be no
confusion if we write  for the output of the function  when the input is . So, for example, we simply write 

Since the domain of this function is  and each element of  is an ordered pair of integers, we frequently call this type
of function a function of two variables.

Finding the preimages of an element of the codomain for the function , , usually involves solving an equation with two
variables. For example, to find the preimages of 0 2 Z, we need to find all ordered pairs  such that .
This means that we must find all ordered pairs  such that

Three such ordered pairs are (0,0), (1, -2), and (-1, 2). In fact, whenever we choose an integer value for , we can find a
corresponding integer  such that . This means that 0 has infinitely many preimages, and it may be difficult to specify
the set of all of the preimages of 0 using the roster method. One way that can be used to specify this set is to use set builder
notation and say that the following set consists of all of the preimages of 0:

The second formulation for this set was obtained by solving the equation  for .

Let  be defined by  for all .

1. Determine , , , and .
2. Determine the set of all preimages of the integer 0 for the function . Write your answer using set builder notation.
3. Determine the set of all preimages of the integer 5 for the function . Write your answer using set builder notation.

Answer

Add texts here. Do not delete this text first.

1. Let . Define  by  (mod 5) and define  by 
 (mod 5). 

 
(a) Calculate , , , , and . 
(b) Calculate , , , , and . 
(c) Is the function  equal to the function ? Explain.

⟨(−1 ⟩)n

Z×Z

Z×Z

f : Z×Z → Z f(m,n) = 2m+n

Z×Z f((m,n)) f

(m,n)
f(m,n) f (m,n)

f(3, 2)

f(−4, 5)

=

=

2 ⋅ 3 +2 = 8,  and

2 ⋅ (−4) +5 = −3.
(6.2.3)

Z×Z Z×Z

f Z

(m,n) ∈ Z×Z f(m,n) = 0
(m,n) ∈ Z×Z

2m+n = 0

m

n 2m+n = 0

{(m,n) ∈ Z×Z | 2m+n = 0} = {(m,n) ∈ Z×Z | n = −2m}.

2m+n = 0 n

 Progress Check 6.9 (Working with a Function of Two Variables)

g : Z×Z → Z g(m,n) = −nm2 (m,n) ∈ Z×Z

g(0, 3) g(3, −2) g(−3, −2) g(7, −1)
g

g

 Exercise 6.2

= {0, 1, 2, 3, 4}Z5 f : →Z5 Z5 f(x) = +4x2 g : →Z5 Z5

g(x) = (x+1)(x+4)

f(0) f(1) f(2) f(3) f(4)
g(0) g(1) g(2) g(3) g(4)

f g
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2. Let . Define  by  (mod 5) and define  by 
 (mod 5). 

 
(a) Calculate , , , , and . 
(b) Calculate , , , , and . 
(c) Is the function  equal to the function ? Explain.

3. Let  by  and let  by . 

 
(a) Calculate , , , and . 
(b) Calculate , , , , and . 
(c) Is the function  equal to the function ? Explain. 
(d) Now let  by . Is the function  equal to the function ? Explain.

4. Represent each of the following sequences as functions. In each case, state the domain, codomain, and rule for determining
the outputs of the function. Also, determine if any of the sequences are equal. 
 

(a)  

(b)  

(c) 1, -1, 1, -1, 1, -1, ... 
(d) cos(0), cos( ), cos( ), cos( ), cos( ), ...

5. Let  and  be two nonempty sets. There are two projection functions with domain , the Cartesian product of 
and . One projection function will map an ordered pair to its first coordinate, and the other projection function will map
the ordered pair to its second coordinate. So we define 

 by  for every ; and 
 by  for every . 

Let  and let . 
 
(a) Determine the outputs for all possible inputs for the projection function . 
(b) Determine the outputs for all possible inputs for the projection function . 
(c) What is the range of these projection functions? 
(d) Is the following statement true or false? Explain. 
For all , if , then 

.
6. Let  and define  by  the number of diagonals of a convex polygon with  sides.

In Preview Activity , we showed that for values of  from 3 through 8, 

 
Use mathematical induction to prove that for all , 

 
Hint: To get an idea of how to handle the inductive step, use a pentagon. First, form all the diagonals that can be made
from four of the vertices. Then consider how to make new diagonals when the fifth vertex is used. This may generate an
idea of how to proceed from a polygon with  sides to a polygon with  sides.

7. Let  be defined by . 
 
(a) Calculate  and . 

= {0, 1, 2, 3, 4, 5}Z6 f : →Z5 Z5 f(x) = +4x2 g : →Z5 Z5

g(x) = (x+1)(x+4)

f(0) f(1) f(2) f(3) f(4)
g(0) g(1) g(2) g(3) g(4)

f g

f : (R−{0}) →R f(x) =
+5xx3

x
g : R →R g(x) = +5x2

f(2) f(−2) f(3) f( )2
–

√

g(0) g(2) g(−2) g(3) g( )2
–

√

f g

h : (R−{0}) →R h(x) = +5x2 f h

1, , , , . . .
1

4

1

9

1

16

, , , , . . .
1

3

1

9

1

27

1

81

π 2π 3π 4π
A B A×B A

B

: A×B → Ap1 (a, b) = ap1 (a, b) ∈ A×B

: A×B → Bp2 (a, b) = ap2 (a, b) ∈ A×B

A = {1, 2} B = {x, y, z}

: A×B → Ap1

: A×B → Bp2

(m,n), (u, v) ∈ A×B (m,n) ≠ (u, v)
(m,n) ≠ (u, v)p1 p1

D =N−{1, 2} d : D →N∪ {0} d(n) = n

6.2.1 n

d(n) = .
n(n−3)

2
(6.2.4)

n ∈ D

d(n) = .
n(n−3)

2
(6.2.5)

k k+1
f : Z×Z → Z f(m,n) = m+3n

f(−3, 4) f(−2, −7)
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(b) Determine the set of all the preimages of 4 by using set builder notation to describe the set of all  such
that .

8. Let  be defined by . 
 
(a) Calculate  and . 
(b) Determine all the preimages of .0; 0/. That is, find all  such that . 
(c) Determine the set of all the preimages of (8, -3). 
(d) Determine the set of all the preimages of (1, 1). 
(e) Is the following proposition true or false? Justify your conclusion. 
For each , there exists an  such that .

9. A 2 by 2 matrix over  is a rectangular array of four real numbers arranged in two rows and two columns. We usually
write this array inside brackets (or parentheses) as follows: 

 
where , ,  and  are real numbers. The determinant of the 2 by 2 matrix , denoted by det( ), is defined as 
det( ) = . 
 
(a) Calculate the determinant of each of the following matrices: 

, , and . 

(b) Let  be the set of all 2 by 2 matrices over . The mathematical process of finding the determinant of a 2 by 2
matrix over  can be thought of as a function. Explain carefully how to do so, including a clear statement of the domain
and codomain of this function.

10. Using the notation from Exercise (9), let 

 
be a 2 by 2 matrix over . The transpose of the matrix , denoted by , is the 2 by 2 matrix over  defined by 

 
 
(a) Calculate the transpose of each of the following matrices: 

, , and . 

(b) Let  be the set of all 2 by 2 matrices over . The mathematical process of finding the determinant of a 2 by 2
matrix over  can be thought of as a function. Explain carefully how to do so, including a clear statement of the domain
and codomain of this function. 
 
Explorations and Activities

11. Integration as a Function. In calculus, we learned that if f is real function that is continuous on the closed interval [ , ],
then the definite integral  is a real number. In fact, one form of the Fundamental Theorem of Calculus states
that 

(m,n) ∈ Z×Z

f(m,n) = 4
g : Z×Z → Z×Z g(m,n) = (2m,m−n)

g(3, 5) g(−1, 4)
(m,n) ∈ Z×Z g(m,n) = (0, 0)

(s, t) ∈ Z×Z (m,n) ∈ Z×Z g(m,n) = (s, t)
R

A = [ ]
a

c

b

d
(6.2.6)

a b c d A A

A ad−bc

[ ]
3

4

5

1
[ ]

1

0

0

7
[ ]

3

5

−2

0
(R)M2 R

R

A = [ ]
a

c

b

d
(6.2.7)

R A AT
R

= [ ]AT a

b

c

d
(6.2.8)

[ ]
3

4

5

1
[ ]

1

0

0

7
[ ]

3

5

−2

0
(R)M2 R

R

a b

f(x)dx∫ b

a

f(x)dx = F (b) −F (a),∫
b

a

(6.2.9)
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where  is any antiderivative of , that is, where . 
 
(a) Let [ , ] be a closed interval of real numbers and let  be the set of all real functions that are continuous on [ , 
]. That is, 

 
i. Explain how the definite integral  can be used to define a function  from  to .
ii. Let . Calculate , where . 
iii. Let . Calculate , where . 
 
In calculus, we also learned how to determine the indefinite integral  of a continuous funtion . 
 
(b) Let  and . Determine  and . 
(c) Let  be a continuous function on the closed interval [0, 1] and let  be the set of all real functions. Can the process of
determining the indefinite integral of a continuous function be used to define a function from  to ? Explain. 
(d) Another form of the Fundamental Theorem of Calculus states that if  is continuous on the interval [ , ] and if  

 
For each  in [ , ], then . That is,  is an antiderivative of . Explain how this t heorem can be used to define
a function from  to , where the output of the function i s an antiderivative of the input. (Recall that  is the set of
all real functions.)

Answer

Add texts here. Do not delete this text first.

This page titled 6.2: More about Functions is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

6.2: More about Functions by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

F f F ′ = f

a b C[a, b] a

b

C[a, b] = {f : [a, b] →R | f  is continuous on [a, b]}. (6.2.10)

f(x)dx∫ b

a
I C[a, b] R

[a, b] = [0, 2] I(f) f(x) = +1x2

[a, b] = [0, 2] I(g) g(x) = sin(πx)

∫ f(x)dx f

f(x) = +1x2 g(x) = cos(2x) ∫ f(x)dx ∫ g(x)dx
f T

C[0, 1] T

f a b

g(x) = f(t)dt∫
x

a

(6.2.11)

x a b g′(x) = f(x) g f

C[a, b] T T
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6.3: Injections, Surjections, and Bijections
Functions are frequently used in mathematics to define and describe certain relationships between sets and other mathematical
objects. In addition, functions can be used to impose certain mathematical structures on sets. In this section, we will study special
types of functions that are used to describe these relationships that are called injections and surjections. Before defining these types
of functions, we will revisit what the definition of a function tells us and explore certain functions with finite domains.

Let  and  be sets. Given a function , we know the following:

For every , . That is, every element of  is an input for the function . This could also be stated as follows:
For each , there exists a  such that .
For a given , there is exactly one  such that .

The definition of a function does not require that different inputs produce different outputs. That is, it is possible to have 
 with  and . The arrow diagram for the function  in Figure 6.5 illustrates such a function.

Also, the definition of a function does not require that the range of the function must equal the codomain. The range is always
a subset of the codomain, but these two sets are not required to be equal. That is, if , then it is possible to have a 

 such that  for all . The arrow diagram for the function g in Figure 6.5 illustrates such a function.

Now let , , and . Define

1. Which of these functions satisfy the following property for a function ? 
For all , if , then .

2. Which of these functions satisfy the following property for a function ? 
For all , if , then .

3. Determine the range of each of these functions.
4. Which of these functions have their range equal to their codomain?
5. Which of the these functions satisfy the following property for a function ? 

For all  in the codomain of , there exists an \) such that .

Let  and  be nonempty sets and let . In Preview Activity , we determined whether or not certain functions
satisfied some specified properties. These properties were written in the form of statements, and we will now examine these
statements in more detail.

 Preview Activity : Functions with Finite Domains6.3.1

A B f : A → B

x ∈ A f(x) ∈ B A f

x ∈ A y ∈ B y = f(x)
x ∈ A y ∈ B y = f(x)

, ∈ Ax1 x2 x1 ≠ x2 f( ) = f( )x1 x2 f

g : A → B

y ∈ B g(x) ≠ y x ∈ A

A = {1, 2, 3} B = {a, b, c, d} C = {s, t}

F

x, y ∈ dom(F ) x ≠ y F (x) ≠ F (y)
F

x, y ∈ dom(F ) F (x) = F (y) x = y

F

y F x ∈ dom(F F (x) = y

 Preview Activity : Statements Involving Functions6.3.1

A B f : A → B 6.3.1
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1. Consider the following statement: 
For all , if , then . 
 
(a) Write the contrapositive of this conditional statement. 
(b) Write the negation of this conditional statement.

2. Now consider the statement: 
For all , there exists an  such that . 
Write the negation of this statement.

3. Let  be defined by , for all . Complete the following proofs of the following propositions
about the function . 
 
Proposition 1. For all , if , then . 
Proof. We let , and we assume that  and will prove that . Since , we know that 

 
(Now prove that in this situation, .) 
 
Proposition 2. For all , there exists an  such that . 
Proof. We let . We will prove that there exists an  such that  by constructing such an  in . In order
for this to happen, we need . 
(Now solve the equation for  and then show that for this real number , .)

Injections

In previous sections and in Preview Activity , we have seen examples of functions for which there exist different inputs that
produce the same output. Using more formal notation, this means that there are functions  for which there exist 

 with  and . The work in the preview activities was intended to motivate the following
definition.

Let  be a function from the set  to the set . The function  is called an injection provided that

for all , if , then .

When  is an injection, we also say that  is a one-to-one function, or that  is an injective function.

Notice that the condition that specifies that a function  is an injection is given in the form of a conditional statement. As we shall
see, in proofs, it is usually easier to use the contrapositive of this conditional statement. Although we did not define the term then,
we have already written the contrapositive for the conditional statement in the definition of an injection in Part (1) of Preview
Activity . In that preview activity, we also wrote the negation of the definition of an injection. Following is a summary of this
work giving the conditions for  being an injection or not being an injection.

Let 

"The function  is an injection" means that

for all , if , then ; or
for all , if , then .

“The function  is not an injection” means that

There exist  such that  and .

x, y ∈ A x ≠ y f(x) ≠ f(y)

y ∈ B x ∈ A f(x) = y

g : R →R g(x) = 5x+3 x ∈ R

g

a, b ∈ R g(a) = g(b) a = b

a, b ∈ R g(a) = g(b) a = b g(a) = g(b)

5a+3 = 5b+3. (6.3.1)

a = b

b ∈ R a ∈ R g(a) = b

b ∈ R a ∈ R g(a) = b a R

g(a) = 5a+3 = b

a a g(a) = b

6.3.1
f : A → B

, ∈ Ax1 x2 ≠x1 x2 f( ) = f( )x1 x2

 Definition

f : A → B A B f

, ∈ Ax1 x2 ≠x1 x2 f( ) ≠ f( )x1 x2

f f f

f

6.3.2
f

f : A → B

f

, ∈ Ax1 x2 ≠x1 x2 f( ) ≠ f( )x1 x2

, ∈ Ax1 x2 f( ) = f( )x1 x2 =x1 x2

f

, ∈ Ax1 x2 ≠x1 x2 f( ) = f( )x1 x2
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Now that we have defined what it means for a function to be an injection, we can see that in Part (3) of Preview Activity ,
we proved that the function  is an injection, where  for all . Use the definition (or its
negation) to determine whether or not the following functions are injections.

1. , where , , and , and .
2. , where , , and , and .
3.  defined by  for all 
4.  defined by  for all 
5.  defined by  for all 

Answer

Add texts here. Do not delete this text first.

Surjections
In previous sections and in Preview Activity , we have seen that there exist functions  for which range .
This means that every element of  is an output of the function f for some input from the set . Using quantifiers, this means that
for every , there exists an  such that . One of the objectives of the preview activities was to motivate the
following definition.

Let  be a function from the set  to the set . The function  is called a surjection provided that the range of 
equals the codomain of . This means that

for every , there exists an  such that .

When  is a surjection, we also say that  is an onto function or that  maps  onto . We also say that  is a surjective
function.

One of the conditions that specifies that a function  is a surjection is given in the form of a universally quantified statement, which
is the primary statement used in proving a function is (or is not) a surjection. Although we did not define the term then, we have
already written the negation for the statement defining a surjection in Part (2) of Preview Activity . We now summarize the
conditions for  being a surjection or not being a surjection.

Let 

"The function  is a surjection" means that

range( ) = codom ; or
For every , there exsits an  such that .

“The function  is not a surjection” means that

rang( ) \ne codom( ); or
There exists a  such that for all , .

One other important type of function is when a function is both an injection and surjection. This type of function is called a
bijection.

A bijection is a function that is both an injection and a surjection. If the function  is a bijection, we also say that  is one-to-
one and onto and that  is a bijective function.

 Progress Check 6.10 (Working with the Definition of an Injection)

6.3.2
g : R →R g(x/) = 5x+3 x ∈ R

k : A → B A = {a, b, c} B = {1, 2, 3, 4} k(a) = 4, k(b) = 1 k(c) = 3
f : A → C A = {a, b, c} C = {1, 2, 3} f(a) = 2, f(b) = 3 f(c) = 2
F : Z → Z F (m) = 3m+2 m ∈ Z

h : R →R h(x) = −3xx2 x ∈ R

s : →Z5 Z5 sx) = x3 x ∈ Z5

6.3.1 f : A → B (f) = B

B A

y ∈ B x ∈ A f(x) = y

 Definition

f : A → B A B f f

f

y ∈ B x ∈ A f(x) = y

f f f A B f

f

6.3.2
f

f : A → B

f

f (f) = B

y ∈ B x ∈ A f(x) = y

f

f f

y ∈ B x ∈ A f(x) ≠ y

 Definition

f f

f
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Now that we have defined what it means for a function to be a surjection, we can see that in Part (3) of Preview Activity ,
we proved that the function  is a surjection, where  for all . Determine whether or not the
following functions are surjections.

1. , where , , and , and .
2.  defined by  for all .
3.  defined by  for all .
4.  defined by  for all .

Answer

Add texts here. Do not delete this text first.

The Importance of the Domain and Codomain
The functions in the next two examples will illustrate why the domain and the codomain of a function are just as important as the
rule defining the outputs of a function when we need to determine if the function is a surjection.

Let  be defined by . Notice that

 and .

This is enough to prove that the function  is not an injection since this shows that there exist two different inputs that produce
the same output.

Since , we know that  for all . This implies that the function  is not a surjection. For example,
-2 is in the codomain of  and  for all  in the domain of .

Let , and define  by . As in Example 6.12, the function  is not an injection
since .

Is the function  a surjection? That is, does  map  onto ? As in Example 6.12, we do know that  for all .

To see if it is a surjection, we must determine if it is true that for every , there exists an  such that . So
we choose . The goal is to determine if there exists an  such that

One way to proceed is to work backward and solve the last equation (if possible) for . Doing so, we get

 or 

Now, since , we know that  and hence that . This means that . Hence, if we use 
, then , and

This proves that  is a surjection since we have shown that for all , there exists an

 Progress Check 6.11 (Working with the Definition of a Surjection)

6.3.2
g : R →R g(x) = 5x+3 x ∈ R

k : A → B A = {a, b, c} B = {1, 2, 3, 4} k(a) = 4, k(b) = 1 k(c) = 3
f : R →R f(x) = 3x+2 x ∈ R

F : Z → Z F (m) = 3m+2 m ∈ Z

s : →Z5 Z5 s(x) = x3 x ∈ Z5

 Example 6.12 (A Function that Is Neither an Injection nor a Surjection)

f : R →R f(x) = +1x2

f(2) = 5 f(−2) = 5

f

f(x) = +1x2 f(x) ≥ 1 x ∈ R f

f f(x) ≠ −2 x f

 Example 6.13 (A Function that Is Not an Injection but Is a Surjection)

T = {y ∈ R | y ≥ 1} F : R → T F (x) = +1x2 F

F (2) = F (−2) = 5

F F R T F (x) ≥ 1 x ∈ R

y ∈ T x ∈ R F (x) = y

y ∈ T x ∈ R

F (x)

+1x2

=

=

y,  or

y.
(6.3.2)

x

= y−1x2

x = y−1
− −−−

√ x = − .y−1
− −−−

√

y ∈ T y ≥ 1 y−1 ≥ 0 ∈ Ry−1
− −−−

√
x = y−1

− −−−
√ x ∈ R

F (x) =

=

=

=

F ( )y−1
− −−−

√

( +1y−1
− −−−

√ )2

(y−1) +1

y.

(6.3.3)

F y ∈ T
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 such that . Notice that for each , this was a constructive proof of the existence of an  such that 
.

In Examples 6.12 and 6.13, the same mathematical formula was used to determine the outputs for the functions. However, one
function was not a surjection and the other one was a surjection. This illustrates the important fact that whether a function is
surjective not only depends on the formula that defines the output of the function but also on the domain and codomain of the
function.

The next example will show that whether or not a function is an injection also depends on the domain of the function.

Let . Define  by . (Notice that this is the same formula used in
Examples 6.12 and 6.13.) Following is a table of values for some inputs for the function .

Notice that the codomain is , and the table of values suggests that some natural numbers are not outputs of this function. So it
appears that the function  is not a surjection.

To prove that g is not a surjection, pick an element of  that does not appear to be in the range. We will use 3, and we will use
a proof by contradiction to prove that there is no x in the domain ( ) such that . So we assume that there exists an 

 with . Then

But this is not possible since . Therefore, there is no  with . This means that for every , 
. Therefore, 3 is not in the range of , and hence  is not a surjection.

The table of values suggests that different inputs produce different outputs, and hence that  is an injection. To prove that  is
an injection, assume that  (the domain) with . Then

Since , we know that  and . So the preceding equation implies that . Hence,  is an injection.

The functions in the three preceding examples all used the same formula to determine the outputs. The functions in Exam- ples
6.12 and 6.13 are not injections but the function in Example 6.14 is an injection. This illustrates the important fact that whether
a function is injective not only depends on the formula that defines the output of the function but also on the domain of the
function.

Let . Define

\[\begin{array} {rcl} {f} &: & {\mathbb{R} \to \mathbb{R} \text{ by } f(x) = e^{-x}, \text{ for each } x \in \mathbb{R},
\text{ and }} \\ {g} &: & {\mathbb{R} \to \mathbb{R}^{+} \text{ by } g(x) = e^{-x}, \text{ for each } x \in \mathbb{R}.}

x ∈ R F (x) = y y ∈ T x ∈ R

F (x) = y

 An Important Lesson.

 Example 6.14 (A Function that Is a Injection but Is Not a Surjection)

= {x ∈ Z | x ≥ 0} =N∪ {0}Z∗ g : →NZ∗ g(x) = +1x2

g

N

g

N

Z∗ g(x) = 3
x ∈ Z∗ g(x) = 3

+1x2

x2

x

=

=

=

3

2

± .2
–

√

(6.3.4)

∉2
–

√ Z∗ x ∈ Z∗ g(x) = 3 x ∈ Z∗

g(x) ≠ 3 g g

g g

s, t ∈ Z∗ g(s) = g(t)

+1s2

s2

=

=

+1t2

.t2
(6.3.5)

s, t ∈ Z∗ s ≥ 0 t ≥ 0 s = t g

 An Important Lesson

 Progress Check 6.15 (The Importance of the Domain and Codomain)

= {y ∈ R | y > 0}R+
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Determine if each of these functions is an injection or a surjection. Justify your conclusions. Note: Before writing proofs, it
might be helpful to draw the graph of . A reasonable graph can be obtained using  and .
Please keep in mind that the graph is does not prove your conclusions, but may help you arrive at the correct conclusions,
which will still need proof.

Answer

Add texts here. Do not delete this text first.

Working with a Function of Two Variables
It takes time and practice to become efficient at working with the formal definitions of injection and surjection. As we have seen,
all parts of a function are important (the domain, the codomain, and the rule for determining outputs). This is especially true for
functions of two variables.

For example, we define  by

 for all .

Notice that both the domain and the codomain of this function is the set . Thus, the inputs and the outputs of this function are
ordered pairs of real numbers. For example,

 and .

To explore wheter or not  is an injection, we assume that , , and . This means that

.

Since this equation is an equality of ordered pairs, we see that

By adding the corresponding sides of the two equations in this system, we obtain  and hence, . Substituting 
into either equation in the system give us . Since  and , we conclude that

.

Hence, we have shown that if , then . Therefore,  is an injection.

Now, to determine if  is a surjection, we let , where  is considered to be an arbitrary element of the codomain
of the function f . Can we find an ordered pair  such that ? Working backward, we see that in order
to do this, we need

That is, we need

 and .

Solving this system for  and  yields

 and .

Since , we can conclude that  and  and hence that .

We now need to verify that for. these values of  and , we get . So

y = e−x −3 ≤ x ≤ 3 −2 ≤ y ≤ 10

f : R×R →R×R

f(a, b) = (2a+b, a−b) (a, b) ∈ R×R

R×R

f(1, 1) = (3, 0) f(−1, 2) = (0, −3)

f (a, b) ∈ R×R (c, d) ∈ R×R f(a, b) = f(c, d)

(2a+b, a−b) = (2c+d, c−d)

2a+b

a−b

=

=

2c+d,  and 

c−d.
(6.3.6)

3a = 3c a = c a = c

b = d a = c b = d

(a, b) = (c, d)

f(a, b) = f(c, d) (a, b) = (c, d) f

f (r, s) ∈ R×R (r, s)
(a, b) ∈ R×R f(a, b) = (r, s)

(2a+b, a−b) = (r, s).

2a+b = r a−b = s

a b

a =
r+s

3
b =

r−2s

3

r, s ∈ R a ∈ R b ∈ R (a, b) ∈ R×R

a b f(a, b) = (r, s)

f(a, b) =

=

=

=

f( , )
r+s

3

r−2s

3

(2( ) + , − )
r+s

3

r−2s

3

r+s

3

r−2s

3

( , )
2r+2s+r−2s

3

r+s−r+2s

3
(r, s).

(6.3.7)
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This proves that for all , there exists  such that . Hence, the function  is a
surjection. Since  is both an injection and a surjection, it is a bijection.

Let  be defined by , for all .

Note: Be careful! One major difference between this function and the previous example is that for the function , the codomain
is , not . It is a good idea to begin by computing several outputs for several inputs (and remember that the inputs are
ordered pairs).

1. Notice that the ordered pair . That is (1, 0) is in the domain of . Also notice that . Is it possible
to find another ordered pair  such that ?

2. Let . Then  and so . Now determine ?
3. Is the function  an injection? Is the function  a surjection? Justify your conclusions.

Answer

Add texts here. Do not delete this text first.

1. (a) Draw an arrow diagram that represents a function that is an injection but is not a surjection. 
(b) Draw an arrow diagram that represents a function that is an injection and is a surjection.
(c) Draw an arrow diagram that represents a function that is not an injection and is not a surjection. 
(d) Draw an arrow diagram that represents a function that is not an injection but is a surjection. 
(e) Draw an arrow diagram that represents a function that is not a bijection.

2. Let  and let . For each of the following functions, determine if the function is an
injection and determine if the function is a surjection. Justify all conclusions. 
 
(a)  by  (mod 5), for all  
(b)  by  (mod 6), for all  
(c)  by  (mod 5), for all 

3. For each of the following functions, determine if the function is an injection and determine if the function is a surjection.
Justify all conclusions. 
 
(a)  defined by , for all . 
(b)  defined by , for all . 
(c)  defined by , for all . 
(d)  defined by , for all . 
(e)  defined by , for all . 
(f)  defined by , for all . 
Note:  
(g)  defined by , for all , where . 

(h)  defined by , for all . 

(i)  defined by , for all .

4. For each of the following functions, determine if the function is a bijection. Justify all conclusions. 
 
(a)  defined by , for all . 
(b)  defined by , for all . 

(c)  defined by , for all . 

(d)  defined by , for all .

(r, s) ∈ R×R (a, b) ∈ R×R f(a, b) = (r, s) f

f

 Progress Check 6.16 (A Function of Two Variables)

g : R×R →R g(x, y) = 2x+y (x, y) ∈ R×R

g

R R×R

(1, 0) ∈ R×R g g(1, 0) = 2
(a, b) ∈ R×R g(a, b) = 2

z ∈ R (0, z) ∈ R×R (0, z) ∈ dom(g) g(0, z)
g g

 Exercise 6.3

= {0, 1, 2, 3, 4}Z5 = {0, 1, 2, 3, 4, 5}Z6

f : →Z5 Z5 f(x) = +4x2 x ∈ Z5

g : →Z6 Z6 g(x) = +4x2 x ∈ Z6

F : →Z5 Z5 F (x) = +4x3 x ∈ Z5

f : Z → Z f(x) = 3x+1 x ∈ Z

F : Q→Q F (x) = 3x+1 x ∈ Q

g : R →R g(x) = x3 x ∈ R

G : Q→Q G(x) = x3 x ∈ Q

k : R →R k(x) = e−x2
x ∈ R

K : →RR∗ K(x) = e−x2
x ∈ R∗

= {x ∈ R | x ≥ 0}.R∗

: → TK1 R
∗ (x) =K1 e−x2

x ∈ R
∗ T = {y ∈ R | 0 < y ≤ 1}

h : R →R h(x) =
2x

+4x2
x ∈ R

H : {x ∈ R | x ≥ 0} → {y ∈ R | 0 ≤ y ≤ }
1

2
H(x) =

2x

+4x2
x ∈ {x ∈ R | x ≥ 0}

F : R →R F (x) = 5x+3 x ∈ R

G : Z → Z G(x) = 5x+3 x ∈ Z

f : (R−{4}) →R f(x) =
3x

x−4
x ∈ (R−{4})

g : (R−{4}) → (R−{3}) g(x) =
3x

x−4
x ∈ (R−{4})
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5. Let , where for each ,  is the sum of the distinct natural number divisors of . This is the sum of the
divisors function that was introduced in Preview Activity  from Section 6.1. Is  an injection? Is  a surjection?
Justify your conclusions.

6. Let , where  is the number of natural number divisors of . This is the number of divisors function
introduced in Exercise (6) from Section 6.1. Is the function  an injection? Is the function  a surjection? Justify your
conclusions.

7. In Preview Activity  from Section 6.1 , we introduced the birthday function. Is the birthday function an injection? Is
it a surjection? Justify your conclusions.

8. (a) Let  be defined by . Is the function  an injection? Is the function  a surjection?
Justify your conclusions. 
(b) Let  be defined by . Is the function  an injection? Is the function  a surjection?
Justify your conclusions.

9. (a) Let  be defined by . Is the function  an injection? Is the function  a
surjection? Justify your conclusions. 
(b) Let  be defined by . Is the function  an injection? Is the function  a
surjection? Justify your conclusions.

10. Let  be the function defined by , for all . Is the function  and
injection? Is the function  a surjection? Justify your conclusions.

11. Let  be the function defined by , for all . Is the function  and
injection? Is the function  a surjection? Justify your conclusions.

12. Let  be a nonempty set. The identity function on the set , denoted by , is the function  defined by 
 for every  in . Is  an injection? Is  a surjection? Justify your conclusions.

13. Let  and  be two nonempty sets. Define 

 
for every . That is the first projection function introduced in Exercise (5) in Section 6.2. 
(a) Is the function  a surjection? Justify your conclusion. 
(b) If , is the function  an injection? Justify your conclusion. 
(c) Under what condition(s) is the function  not an injection? Make a conjecture and prove it.

14. Define  be defined as follows: For each , 

 
Is the function  an injection? Is the function  a surjection? Justify your conclusions. 
 
Suggestions. Start by calculating several outputs for the function before you attempt to write a proof. In exploring whether
or not the function is an injection, it might be a good idea to uses cases based on whether the inputs are even or odd. In
exploring whether f is a surjection, consider using cases based on whether the output is positive or less than or equal to
zero.

15. Let  be the set of all real functions that are continuous on the closed interval [0, 1]. Define the function  as
follows: For each . 

 
Is the function  an injection? Is it a surjection? Justify your conclusions.

16. Let . Define  as follows: 

For each , . 

(a) Is the function f an injection? Justify your conclusion. 
(b) Is the function f a surjection? Justify your conclusion.

s : N →N n ∈ N s(n) n

6.3.2 s s

d : N →N d(n) n

d d

6.3.2

f : Z×Z → Z f(m,n) = 2m+n f f

g : Z×Z → Z g(m,n) = 6m+3n g g

f : R×R →R×R f(x, y) = (2x, x+y) f f

g : Z×Z → Z×Z g(x, y) = (2x, x+y) g g

f : R×R →R f(x, y) = − y+3yx2 (x, y) ∈ R×R f

f

g : R×R →R g(x, y) = ( +2)sinyx3 (x, y) ∈ R×R g

g

A A IA : A → AIA
(x) = xIA x A IA IA
A B

: A×B → A by  (a, b) = ap1 p1 (6.3.8)

(a, b) ∈ A×B

p1

B = {b} p1

p1

f : N → Z n ∈ N

f(n) = .
1 +(−1 (2n−1))n

4
(6.3.9)

f f

C A : C →R

f ∈ C

A(f) = f(x)dx.∫
1

0
(6.3.10)

A

A = {(m,n) | m ∈ Z,n ∈ Z,  and n ≠ 0} f : A →Q

(m,n) ∈ A f(m,n) =
m+n

n
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17. Evaluation of proofs 
See the instructions for Exercise (19) on page 100 from Section 3.1. 

Proposition. The function  defined by  is an injection.

Proof

For each  and  in , if , then

We will use systems of equations to prove that  and .

Since , we see that

So . Therefore, we have proved that the function  is an injection.

Proposition. The function  defined by  is an surjection.

Proof

We need to find an ordered pair such that  for each  in . That is, we need 
, or

 and .

Treating these two equations as a system of equations and solving for  and , we find that

 and .

Hence,  and  are real numbers, , and

Therefore, we. have proved that for every , there exists an  such that 
. This proves that the function  is a surjection.

Explorations and Activities

18. Piecewise Defined Functions. We often say that a function is a piecewise defined function if it has different rules for
determining the output for different parts of its domain. For example, we can define a function  by giving a rule
for calculating  when  and giving a rule for calculating  when x < 0 as follows: 

 (a)

f : R×R →R×R f(x, y) = (2x+y, x−y)

(a, b) (c, d) R×R f(a, b) = f(c, d)

(2a+b, a−b) = (2c+d, c−d).

a = c b = d

2a+b

a−b

3a

a

=

=

=

=

2c+d

c−d

3c

c

(6.3.11)

a = c

(2c+b, c−b) = (2c+d, c−d).

b = d f

 (b)

f : R×R →R×R f(x, y) = (2x+y, x−y)

f(x, y) = (a, b) (a, b) R×R

(2x+y, x−y) = (a, b)

2x+y = a x−y = b

x y

x =
a+b

3
y =

a−2b

3

x y (x, y) ∈ R×R

f(x, y) =

=

=

=

=

f( , )
a+b

3

a−2b

3

(2( ) + , − )
a+b

3

a−2b

3

a+b

3

a−2b

3

( , )
2a+2b+a−2b

3

a+b−a+2b

3

( , )
3a

3

3b

3
(a, b).

(6.3.12)

(a, b) ∈ R×R (x, y) ∈ R×R

f(x, y) = (a, b) f

f : R →R

f(x) x ≥ 0 f(x)
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(a) Sketch a graph of the function . Is the function  and injection? Is the function  a surjection? Justify your
conclusions. 
 
For each of the following functions, determine if the function is an injection and determine if the function is a surjection.
Justify all conclusions. 
 
(b)  by 

 
(c)  by  

19. Functions Whose Domain is . Let . represent the set of all 2 by 2 matrices over . 
 
(a) Defien det:  by 

 
This is the determinant function introduced in Exercise (9) from Section 6.2. Is the determinant function an injection? Is
the determinant function a surjection? Justify your conclusions. 
 
(b) Define tran:  by 

 
This is the transpose function introduced in Exercise (10) from Section 6.2. Is the transpose function an injection? Is the
transpose function a surjection? Justify your conclusions. 
 
(c) Define  by 

 
Is the function  an injection? Is the function  a surjection? Justify your conclusions.

Answer

Add texts here. Do not delete this text first.

This page titled 6.3: Injections, Surjections, and Bijections is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or
curated by Ted Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.

f(x) = { +1,x2

x−1
 if x ≥ 0;
 if x < 0.

(6.3.13)

f f f

g : [0, 1] → (0, 1)

g(x) =
⎧

⎩⎨
0.8,
0.5x
0.6

 if x = 0;
 if 0 < x < 1;
 if x = 1.

(6.3.14)

h : Z → {0, 1}

h(x) = { 0,
1,

 if x is even;
 if x is odd.

(6.3.15)

(R)M2 (R)M2 R

(R) →RM2

det [ ] = ad−bc.
a

c

b

d
(6.3.16)

(R) → (R)M2 M2

tran[ ] = = [ ] .
a

c

b

d
AT a

b

c

d
(6.3.17)

F : (R) →RM2

F [ ] = + − − .
a

c

b

d
a2 d2 b2 c2 (6.3.18)

F F
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6.4: Composition of Functions

Let , , and . The arrow diagram in Figure 6.6 shows two functions: 
and . Notice that if , then . Since , we can apply the function  to , and we obtain 

, which is an element of .

Using this process, determine , , , and . Then explain how we can use this information to define
a function from  to .

Figure 6.6: Arrow Diagram Showing Two Functions

The outputs of most real functions we have studied in previous mathematics courses have been determined by mathematical
expressions. In many cases, it is possible to use these expressions to give step-by-step verbal descriptions of how to compute
the outputs. For example, if

 is defined by ,

we could describe how to compute the outputs as follows:

Step Verbal Description Symbolic Result

1 Choose an input.

2 Multiply by 3.

3 Add 2.

4 Cube the result.

Complete step-by-step verbal descriptions for each of the following functions.

1.  by , for each .
2.  by , for each .
3.  by , for each .
4.  by , for each .

5.  by , for each .

Composition of Functions
There are several ways to combine two existing functions to create a new function. For example, in calculus, we learned how to
form the product and quotient of two functions and then how to use the product rule to determine the derivative of a product of two
functions and the quotient rule to determine the derivative of the quotient of two functions. The chain rule in calculus was used to
determine the derivative of the composition of two functions, and in this section, we will focus only on the composition of two
functions. We will then consider some results about the compositions of injections and surjections.

 PREVIEW ACTIVITY : Constructing a New Function6.4.1

A = {a, b, c, d} B = {p, q, r} C = {s, t, u, v} f : A → B

g : B → C x ∈ A f(x) ∈ B f(x) ∈ B g f(x)
g(f(x)) C

g(f(a)) g(f(b)) g(f(c)) g(f(d))
A C

 PREVIEW ACTIVITY : Verbal Descriptions of Functions6.4.1

f : R →R f(x) = (3x+2)3

x

3x

3x + 2

(3x + 3)3

f : R →R f(x) = 3 +2x2
− −−−−−

√ x ∈ R

g : R →R g(x) = sin(3 +2)x2 x ∈ R

h : R →R h(x) = e3 +2x2

x ∈ R

G : R →R G(x) = ln( +3)x4 x ∈ R

k : R →R k(x) =
sin(4x+3)

+1x2

− −−−−−−−−−

√3 x ∈ R
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The basic idea of function composition is that when possible, the output of a function  is used as the input of a function . This
can be referred to as “  followed by ” and is called the composition of  and . In previous mathematics courses, we used this
idea to determine a formula for the composition of two real functions.

For example, if

 and 

then we can compute  as follows:

In this case, , the output of the function , was used as the input for the function . We now give the formal definition of the
composition of two functions.

Let , , and  be nonempty sets, and let  and  be functions. The composition of  and  is the
function  defined by

for all . We often refer to the function  as a composite function.

It is helpful to think of composite function  as "  followed by ". We then refer to  as the inner function and  as the outer
function.

Composition and Arrow Diagrams

The concept of the composition of two functions can be illustrated with arrow diagrams when the domain and codomain of the
functions are small, finite sets. Although the term “composition” was not used then, this was done in Preview Activity , and
another example is given here.

Let , , and . The arrow diagram in Figure 6.7 shows two functions:  and 
.

If we follow the arrows from the set  to the set , we will use the outputs of  as inputs of , and get the arrow diagram from 
to  shown in Figure 6.8. This diagram represents the composition of  followed by .

f g

f g f g

f(x) = 3 +2x2 g(x) = sinx

g(f(x))

g(f(x)) =

=

g(3 +2)x2

sin(3 +2).x2
(6.4.1)

f(x) f g

 Definition: composite function

A B C f : A → B g : B → C f g

g∘ f : A → C

(g∘ f)(x) = g(f(x))

x ∈ A g∘ f

g∘ f f g f g

6.4.1

A = {a, b, c, d} B = {p, q, r} C = {s, t, u, v} f : A → B

g : B → C

A C f g A

C f g
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Let  and . Define the function  and  as follows:

 defined by , , , and .

 defined by . , and .

Create arrow diagrams for the function , , , and .

Answer

Add texts here. Do not delete this text first.

Decomposing Functions
We use the chain rule in calculus to find the derivative of a composite function. The first step in the process is to recognize a given
function as a composite function. This can be done in many ways, but the work in Preview Activity  can be used to
decompose a function in a way that works well with the chain rule. The use of the terms “inner function” and “outer function” can
also be helpful. The idea is that we use the last step in the process to represent the outer function, and the steps prior to that to
represent the inner function. So for the function,

 by ,

the last step in the verbal description table was to cube the result. This means that we will use the function  (the cubing function)
as the outer function and will use the prior steps as the inner function. We will denote the inner function by . So we let 
by  and  by . Then

We see that  and, hence, we have “decomposed” the function . It should be noted that there are other ways to write the
function  as a composition of two functions, but the way just described is the one that works well with the chain rule. In this case,
the chain rule gives

Write each of the following functions as the composition of two functions.

1.  by 
2.  by 
3.  by 

4.  by 

Answer

Add texts here. Do not delete this text first.

Theorems about Composite Functions
If  and , then we can form the composite function . In Section 6.3, we learned about
injections and surjections. We now explore what type of function  will be if the functions  and  are injections (or

 Progress Check 6.17 (The Composition of Two Functions)

A = {a, b, c, d} B = {1, 2, 3} f g

f : A → B f(a) = 2 f(b) = 3 f(c) = 1 f(d) = 2

g : A → B g(1) = 3 g(2) = 1 g(3) = 2

f g g∘ f g∘ g

6.4.2

f : R →R f(x) = (3x+2)3

g

h h : R →R

h(x) = 3x+2 g : R →R g(x) = x3

(g∘ h)(x) =

=

=

=

g(h(x))

g(3x+2)

(3x+2)3

f(x).

(6.4.2)

g∘ h = f f

f

f ′(x) =

=

=

=

(g∘ h)′(x)

g′(h(x))h′(x)

3(h(x) ⋅ 3)2

g(3x+2)2

(6.4.3)

 Progress Check 6.18 (Decomposing Functions

F : R →R F (x) = ( +3x2 )3

G : R →R G(x) = In( +3)x2

f : Z → Z f(x) = | −3|x2

g : R →R g(x) = cos( )
2x−3

+1x2

f : A → B g : B → C g∘ f : A → C

g∘ f f g
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surjections).

Although other representations of functions can be used, it will be helpful to use arrow diagrams to represent the functions in
this progress check. We will use the following sets:

, , , and .

1. Draw an arrow diagram for a function  that is an injection and an arrow diagram for a function  that
is an injection. In this case, is the composite function  an injection? Explain.

2. Draw an arrow diagram for a function  that is a surjection and an arrow diagram for a function  that
is a surjection. In this case, is the composite function  a surjection? Explain.

3. Draw an arrow diagram for a function  that is a bijection and an arrow diagram for a function  that is
a bijection. In this case, is the composite function  bijection? Explain.

Answer

Add texts here. Do not delete this text first.

In Progress Check 6.19, we explored some properties of composite functions related to injections, surjections, and bijections. The
following theorem contains results that these explorations were intended to illustrate. Some of the proofs will be included in the
exercises.

Let , , and  be nonempty sets and assume that  and .

1. If  and  are both injections, then  is an injection.
2. If  and  are both surjections, then  is an surjection.
3. If  and  are both bijections, then  is an bijection.

The proof of Part (1) is Exercise (6).

Part (3) is a direct consequence of the first two parts. We will discuss a process for constructing a proof of Part (2). Using the
forward-backward process, we first look at the conclusion of the conditional statement in Part (2). The goal is to prove that 

 is a surjection. Since , this is equivalent to proving that

For all , there exists an  such that .

Since this statement in the backward process uses a universal quantifier, we will use the choose-an-element method and choose
an arbitrary element  in the set . The goal now is to find an  such that .

Now we can look at the hypotheses. In particular, we are assuming that both  and  are surjections. Since
we have chosen , and  is a surjection, we know that

there exists a  such that .

Now,  and  is a surjection. Hence

there exists an  such that .

If we now compute , we will see that

.

We can now write the proof as follows:

 Progress Check 6.19: Compositions of Injections and Surjections

A = {a, b, c} B = {p, q, r} C = {u, v,w, x} D = {u, v}

f : A → B g : B → C

g∘ f : A → C

f : A → B g : B → D

g∘ f : A → D

f : A → B g : B → A

g∘ f : A → A

 Theorem 6.20.

A B C f : A → B g : B → C

f g (g∘ f) : A → C

f g (g∘ f) : A → C

f g (g∘ f) : A → C

 Proof

g∘ f (g∘ f) : A → C

c ∈ C a ∈ A (g∘ f)(a) = c

c C a ∈ A (g∘ f)(a) = c

f : A → B g : B → C

c ∈ C g : B → C

b ∈ B g(b) = c

b ∈ B f : A → B

a ∈ A f(a) = b

(g∘ f)(a)

(g∘ f)(a) = g(f(a)) = g(b) = c
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Let , , and  be nonempty sets and assume that  and  are both surjections. We will prove that 
 is a surjection.

Let  be an arbitrary element of . We will prove there exists an  such that . Since  is a
surjection, we conclude that

there exists a  such that .

Now,  and  is a surjection. Hence

there exists an  such that .

We now see that

We have now shown that for every , there exists an  such that , and this proves that  is a
surjection.

Theorem 6.20 shows us that if  and  are both special types of functions, then the composition of  followed by  is also that type
of function.The next question is, “If the composition of  followed by  is an injection (or surjection), can we make any
conclusions about  or ?” A partial answer to this question is provided in Theorem 6.21. This theorem will be investigated and
proved in the Explorations and Activities for this section. See Exercise (10).

Let , , and  be nonempty sets and assume that  and .

1. If  is an injection, then  is an injection.
2. If  is a surjection, then  is a surjection.

1. In our definition of the composition of two functions,  and , we required that the domain of  be equal to the codomain
of . However, it is sometimes possible to form the composite function  even though dom( )  codom( ). For
example, let 

 
 
(a) Is it possible to determine  for all ? Explain. 
(b) In general, let  and . Find a condition on the domain of  (other than ) that results in a
meaningful definition of the composite function .

2. Let  be defined  and  be defined by . Determine formulas for the composite
functions  and . Is the function  equal to the function ? Explain. What does this tell you about the
operation of composition of functions?

3. Following are formulas for certain real functions. Write each of these real functions as the composition of two functions.
That is, decompose each of the functions. 
 
(a)  
(b)  

 Proof of Theorem 6.20, Part (2)

A B C f : A → B g : B → C

g∘ f : A → C

c C a ∈ A (g∘ f)(a) = c g : B → C

b ∈ B g(b) = c

b ∈ B f : A → B

a ∈ A f(a) = b

(g∘ f)(a) =

=

=

g(f(a))

g(b)

c.

c ∈ C a ∈ A (g∘ f)(a) = c g∘ f

f g f g

f g

f g

 Theorem 6.21

A B C f : A → B g : B → C

g∘ f : A → C f : A → B

g∘ f : A → C f : A → B

 Exercise 6.4

f g g

f g∘ f g ≠ f

f : R →R

g : R−{0} →R

textbedefinedby

textbedefinedby

f(x) = +1, and letx2

g(x) = .
1

x

(6.4.4)

(g∘ f)(x) x ∈ R

f : A → T g : B → C g B = T

g∘ f : A → C

h : R →R h(x) = 3x+2 g : R →R g(x) = x3

g∘ h h ∘ g g∘ h h ∘ g

F (x) = cos( )ex

G(x) = ecos(x)
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(c)  

(d) 
4. The identity function on a set , denoted by , is defined as follows:  by  for each . Let 

. 
 
(a) For each , determine  and use this to prove that . 
(b) Prove that .

5. (a) Let  be defined by , let  be defined by , and let  be defined by 
. 

 
Determine formulas for  and . 
 
Does this prove that  for these particular functions? Explain. 
 
(b) Now let , , and  be sets and let , , and . Prove that .
That is, prove that function composition is an associative operation.

6. Prove Part (1) of Theorem 6.20. 
Let , , and  be nonempty sets and let  and . If  and  are both injections, then  is an
injection.

7. For each of the following, give an example of functions  and  that satisfy the stated conditions, or
explain why no such example exists. 
 
(a) The function  is a surjection, but the function  is not a surjection. 
(b) The function  is an injection, but the function  is not an injection. 
(c) The function  is a surjection, but the function  is not a surjection. 
(d) The function  is an injection, but the function  is not an injection. 
(e) The function  is not a surjection, but the function  is a surjection. 
(f) The function  is not an injection, but the function  is an injection. 
(g) The function  is not an injection, but the function  is an injection.
(h) The function  is not an injection, but the function  is an injection.

8. Let  be a nonempty set and let . For each , define a funciton  recursively as follows: 
 and for each , . For example,  and . 

 
(a) Let  by  for each . For each  and for each , determine a formula for 
and use induction to prove that your formula is correct. 
(b) Let  and let  by  for each . For each  and for each , determine a
formula for  and use induction to prove that your formula is correct. 
(c) Now let  be a nonempty set and let . Use induction to prove that for each , . (Note:
You will need to use the result in Exercise (5).) 
 
Explorations and Activities

H(x) =
1

sinx
K(x) = cos( )e−x2

S IS : S → SIS (x) = xIs x ∈ S

f : A → B

x ∈ A (f ∘ )(x)IA f ∘ = fIA
∘ f = fIB

f : R →R f(x) = x2 g : R →R g(x) = sinx h : R →R

h(x) = x−−√3

[(h ∘ g) ∘ f ](x) [h ∘ (g∘ f)](x)

(h ∘ g) ∘ f = h ∘ (g∘ f)

A B C f : A → B g : B → C h : C → D (h ∘ g) ∘ f = h ∘ (g∘ f)

A B C f : A → B g : B → C f g g∘ f

f : A → B g : B → C

f g∘ f
f g∘ f
g g∘ f
g g∘ f
f g∘ f
f g∘ f
f g∘ f
g g∘ f

A f : A → A n ∈ N : A → Af n

= ff 1 n ∈ N = f ∘f n+1 f n = f ∘ = f ∘ ff 2 f 1 = f ∘ = f ∘ (f ∘ f)f 3 f 2

f : R →R f(x) = x+1 x ∈ R n ∈ N x ∈ R (x)f n

a, b ∈ R f : R →R f(x) = ax+b x ∈ R n ∈ N x ∈ R

(x)f n

A f : A → A n ∈ N = ∘ ff n+1 f n
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9. Exploring Composite Functions. Let , , and  be nonempty sets and let  and . For this activity,
it may be useful to draw your arrow diagrams in a triangular arrangement as follows: 

 
It might be helpful to consider examples where the sets are small. Try constructing examples where the set  has 2
elements, the set  has 3 elements, and the set  has 2 elements. 
 
(a) Is it possible to construct an example where  is an injection,  is an injection, but  is not an injection? Either
construct such an example or explain why it is not possible. 
(b) Is it possible to construct an example where  is an injection,  is an injection, but  is not an injection? Either
construct such an example or explain why it is not possible. 
(c) Is it possible to construct an example where  is a surjection,  is a surjection, but  is not a surjection? Either
construct such an example or explain why it is not possible. 
(d) Is it possible to construct an example where  is a surjection,  is a surjection, but  is not a surjection? Either
construct such an example or explain why it is not possible.

10. The Proof of Theorem 6.21. Use the ideas from Exercise (9) to prove Theorem 6.21. Let ,  and  be nonempty sets and
let  and . 
 
(a) If  is an injection, then  is an injection. 
(b) If  is a surjection, then  is a surjection. 
 
Hint: For part (a), start by asking, “What do we have to do to prove that  is an injection? ” Start with a similar question
for part (b).

Answer

Add texts here. Do not delete this text first.

This page titled 6.4: Composition of Functions is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

6.4: Composition of Functions by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

A B C f : A → B g : B → C

A

B C

g∘ f f g

g∘ f g f

g∘ f f g

g∘ f g f

A B C

f : A → B g : B → C

g∘ f : A → C f : A → B

g∘ f : A → C g : B → C

f
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6.5: Inverse Functions
For this section, we will use the concept of Cartesian product of two sets  and , denoted by , which is the set of all ordered
pairs  where  and . That is,

See Preview Activity  in Section 5.4 for a more thorough discussion of this concept.

When we graph a real function, we plot ordered pairs in the Cartesian plane where the first coordinate is the input of the function
and the second coordinate is the output of the function. For example, if , then every point on the graph of  is an
ordered pair  of real numbers where . This shows how we can generate ordered pairs from a function. It happens
that we can do this with any function. For example, let

 and .

Define the function  by

, , and .

We can convert each of these to an ordered pair in  by using the input as the first coordinate and the output as the second
coordinate. For example,  is converted to ,  is converted to , and  is converted to . So
we can think of this function as a set of ordered pairs, which is a subset of , and write

Note: Since  is the name of the function, it is customary to use  as the name for the set of ordered pairs.

1. Let  and let . Define the function  by , , and . Write the
function  as a set of ordered pairs in .

For another example, if we have a real function, such as:  by , then we can think of  as the following
infinite subset of :

We can also write this sometimes write this as 

2. Let  be defined by , for all . Use set builder notation to write the function  as a set of
ordered pairs, and then use the roster method to write the function  as a set of ordered pairs.

So any function  can be thought of as a set of ordered pairs that is a subset of . This subset is

 or 

On the other hand, if we started with , , and

then we could think of  as a function from  to  with , , and . The idea is to use the first
coordinate of each ordered pair as the input, and the second coordinate as the output. However, not every subset of  can be
used to define a function from  to . This is explored in the following questions.

3. Let . Could this set of ordered pairs be used to define a function from  to ? Explain.
4. Let . Could this set of ordered pairs be used to define a function from  to ? Explain.
5. Let . Could this set of ordered pairs be used to define a function from  to ? Explain.

Let  and let .

1. Construct an example of a function  that is a bijection. Draw an arrow diagram for this function.
2. On your arrow diagram, draw an arrow from each element of  back to its corresponding element in . Explain why this

defines a function from  to .
3. If the name of the function in Part (2) is , so that , what are , , , and ?

A B A×B

(x, y) x ∈ A y ∈ B

A×B = {(x, y) | x ∈ A and y ∈ B}.

6.5.2

 PREVIEW ACTIVITY : Functions and Sets of Ordered Pairs6.5.1

g : R → R g

(x, y) y = g(x)

A = {1, 2, 3} B = {a, b}

F : A → B

F (1) = a F (2) = b F (3) = b

A×B

F (1) = a (1, a) F (2) = b (2, b) F (3) = b (3, b)
A×B

F = {(1, a), (2, b), (3, b)}.

F F

A = {1, 2, 3} C = {a, b, c, d} g : A → C g(1) = a g(2) = b g(3) = d

g A×C

g : R → R g(x) = −2x2 g

R×R

g = {(x, y) ∈ R×R | y = −2}.x2

g = {(x, −2) | x ∈ R}.x2

f : Z → Z f(m) = 3m+5 m ∈ Z f

f

f : A → B A×B

f = {(a, f(a)) | a ∈ A} f = {(a, b) ∈ A×B | b = f(a)}.

A = {1, 2, 3} B = {a, b}

G= {(1, a), (2, a), (3, b)} ⊆ A×B,

G A B G(1) = a G(2) = a G(3) = b

A×B

A B

f = {(1, a), (2, a), (3, a), (1, b)} A B

g = {(1, a), (2, a), (3, a)} A B

h = {(1, a), (2, b)} A B

 PREVIEW ACTIVITY : A Composition of Two Specific Functions6.5.1

A = {a, b, c, d} B = {p, q, r, s}

f : A → B

B A

B A

g g : B → A g(p) g(q) g(r) g(s)
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4. Construct a table of values for each of the functions  and . What do you observe about these
tables of values?

The Ordered Pair Representation of a Function

In Preview Activity , we observed that if we have a function , we can generate a set of ordered pairs  that is a subset
of  as follows:

 or 

However, we also learned that some sets of ordered pairs cannot be used to define a function. We now wish to explore under what
conditions a set of ordered pairs can be used to define a function. Starting with a function , since dom( ) = , we know
that

Specifically, we use . This says that every element of  can be used as an input. In addition, to be a function, each input can
produce only one output. In terms of ordered pairs, this means that there will never be two ordered pairs  and  in the
function  where , , and . We can formulate this as a conditional statement as follows:

This also means that if we start with a subset  of  that satisfies conditions in Equation  and , then we can consider 
to be a function from  to  by using  whenever  is in . This proves the following theorem.

Let  and  be nonempty sets and let  be a subset of  that satisfies the following two properties:

For every , there exists  such that ; and
For every  and every , if  and , then .

If we use  whenever , then  is a function from  to .

A Note about Theorem 6.22. The first condition in Theorem 6.22 means that every element of A is an input, and the second condition
ensures that every input has exactly one output. Many texts will use Theorem 6.22 as the definition of a function. Many
mathematicians believe that this ordered pair representation of a function is the most rigorous definition of a function. It allows us to
use set theory to work with and compare functions. For example, equality of functions becomes a question of equality of sets.
Therefore, many textbooks will use the ordered pair representation of a function as the definition of a function.

Let  and let . Explain why each of the following subsets of  cannot be used to define a function
from  to .

1. ,
2. .

Answer

Add texts here. Do not delete this text first.

The Inverse of a Function

In previous mathematics courses, we learned that the exponential function (with base ) and the natural logarithm functions are
inverses of each other. This was often expressed as follows:

For each  with  and for each ,  if and only if .

Notice that this means that  is the input and  is the output for the natural logarithm function if and only if  is the input and  is the
output for the exponential function. In essence, the inverse function (in this case, the exponential function) reverses the action of the
original function (in this case, the natural logarithm function). In terms of ordered pairs (input-output pairs), this means that if  is

g∘ f : A → A f ∘ g : B → B

6.5.1 f : A → B f

A×B

f = {(a, f(a) | a ∈ A} f = {(a, b) ∈ A×B | b = f(a)}.

f : A → B f A

For every a ∈ A, there exists a b ∈ B such that (a, b) ∈ f . (6.5.1)

b = f(a) A

(a, b) (a, c)
f a ∈ A b, c ∈ B b ≠ c

For every a ∈ A and every b, c ∈ B,

if (a, b) ∈ f  and (a, c) ∈ f , then b = c.

(6.5.2)

f A×B 6.5.1 6.5.2 f

A B b = f(a) (a, b) f

 Theorem 6.22

A B f A×B

a ∈ A b ∈ B (a, b) ∈ f

a ∈ A b, c ∈ B (a, b) ∈ f (a, c) ∈ f b = c

f(a) = b (a, b) ∈ f f A B

 Progress Check 6.23 (Sets of Ordered Pairs that Are Not Functions)

A = {1, 2, 3} B = {a, b} A×B

A B

F = {(1, a), (2, a)}
G= {(1, a), (2, b), (3, c), (2, c)}

e

x ∈ R x > 0 y ∈ R y = lnx x = ey

x y y x

(x, y)
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an ordered pair for a function, then  is an ordered pair for its inverse. This idea of reversing the roles of the first and second
coordinates is the basis for our definition of the inverse of a function.

Let  be a function. The inverse of , denoted by , is the set of ordered pairs . That is,

.

If we use the ordered pair representation for , we could also write

.

Notice that this definition does not state that  is a function. It is simply a subset of . After we study the material in Chapter
7, we will say that this means that  is a relation from  to . This fact, however, is not important to us now. We are mainly
interested in the following question:

Under what conditions will the inverse of the function  be a function from  to ?

Let , , and . Define

1. Draw an arrow diagram for each function.
2. Determine the inverse of each function as a set of ordered pairs.
3. (a) Is  a function from  to ? Explain. 

(b) Is  a function from  to ? Explain. 
(c) Is  a function from  to ? Explain.

4. Draw an arrow diagram for each inverse from Part (3) that is a function. Use your existing arrow diagram from Part (1) to draw
this arrow diagram.

5. Make a conjecture about what conditions on a function  will ensure that its inverse is a function from  to .

Answer

Add texts here. Do not delete this text first.

We will now consider a general argument suggested by the explorations in Progress Check 6.24. By definition, if  is a
function, then  is a subset of . However,  may or may not be a function from  to . For example, suppose that 

 with  and . This is represented in Figure 6.9.

In this case, if we try to reverse the arrows, we will not get a function from  to . This is because  and 
with . Consequently,  is not a function. This suggests that when  is not an injection, then  is not a function.

Also, if  is not a surjection, then there exists a  such that  for all , as in the diagram in Figure 6.9. In other
words, there is no ordered pair in  with  as the second coordinate. This means that there would be no ordered pair in  with  as a
first coordinate. Consequently,  cannot be a function from  to .

(y, x)

 Definition: Inverse of a Function

f : A → B f f−1 {(b, a) ∈ B×A | f(a) = b}

= {(b, a) ∈ B×A | f(a) = b}f−1

f

= {(b, a) ∈ B×A | (a, b) ∈ f}f−1

f−1 B×A

f−1 B A

f : A → B B A

 Progress Check 6.24: Exploring the Inverse of a Function

A = {a, b, c} B = {a, b, c, d} C = {p, q, r}

f−1 C A

g−1 C A

h−1 C B

F : S → T T S

f : A → B

f−1 B×A f−1 B A

s, t ∈ A s ≠ t f(s) = f(t)

B A (y, s) ∈ f−1 (y, t) ∈ f−1

s ≠ t f−1 f f−1

f z ∈ B f(a) ≠ z a ∈ A

f z f−1 z

f−1 B A
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This motivates the statement in Theorem 6.25. In the proof of this theorem, we will frequently change back and forth from the input-
output representation of a function and the ordered pair representation of a function. The idea is that if  is a function, then
for  and ,

 if and only if .

When we use the ordered pair representation of a function, we will also use the ordered pair representation of its inverse. In this case,
we know that

 if and only if .

Let  and  be nonempty sets and let . The inverse of  is a function from  to  if and only if  is a bijection.

Proof

Let  and  be nonempty sets and let . We will first assume that f is a bijection and prove that  is a function
from  to . To do this, we will show that  satisfies the two conditions of Theorem 6.22.

We first choose . Since the function  is a surjection, there exists an  such that . This implies that 
 and hence that . Thus, each element of  is the first coordinate of an ordered pair in , and hence 

 satisfies the first condition of Theorem 6.22.

To prove that  satisfies the second condition of Theorem 6.22, we must show that each element of  is the first coordinate
of exactly one ordered pair in . So let ,  and assume that

 and .

This means that \((a_1, b) \in f) and \((a_2, b) \in f). We can then conclude that

 and .

But this means that . Since  is a bijection, it is an injection, and we can conclude that . This proves
that  is the first element of only one ordered pair in . Consequently, we have proved that  satisfies both conditions of
Theorem 6.22 and hence that  is a function from  to .

We now assume that  is a function  to  and prove that  is a bijection. First, to prove that  is an injection, we assume
that  and that . We wish to show that . If we let , we can conclude that

\((a_1, b) \in f) and \((a_2, b) \in f).

But this means that

 and .

Since we have assumed that  is a function, we can conclude that . Hence, f is an injection.

Now to prove that  is a surjection, we choose  and will show that there exists an  such that . Since 
is a function,  must be the first coordinate of some ordered pair in . Consequently, there exists an  such that

.

Now this implies that  and hence that . This proves that  is a surjection. Since we have also proved that 
is an injection, we conclude that  is a bijection.

Inverse Function Notation

In the situation where  is a bijection and  is a function from  to , we can write . In this case, we
frequently say that  is an invertible function, and we usually do not use the ordered pair representation for either  or . Instead of
writing , we write , and instead of writing , we write . Using the fact that  if and
only if , we can now write  if and only if . We summarize this in Theorem 6.26.

G : S → T

s ∈ S t ∈ T

G(s) = t (s, t) ∈ G

(s, t) ∈ G (t, s) ∈ G−1

 Theorem 6.25.

A B f : A → B f B A f

A B f : A → B f−1

B A f−1

b ∈ B f a ∈ A f(a) = b

(a, b) ∈ f (b, a) ∈ f−1 B f−1

f−1

f−1 B

f−1 b ∈ B , ∈ Aa1 a2

(b, ) ∈a1 f−1 (b, ) ∈a2 f−1

f( ) = ba1 f( ) = ba2

f( ) = f( )a1 a2 f =a1 a2

b f−1 f−1

f−1 B A

f−1 B A f f

, ∈ Aa1 a2 f( ) = f( )a1 a2 =a1 a2 b = f( ) = f( )a1 a2

(b, ) ∈a1 f−1 (b, ) ∈a2 f−1

f−1 =a1 a2

f b ∈ B a ∈ A f(a) = b f−1

b f−1 a ∈ A

(b, a) ∈. f−1

(a, b) ∈ f f(a) = b f f

f

f : A → B f−1 B A : B → Af−1

f f f−1

(a, b) ∈ f f(a) = b (b, a) ∈. f−1 (b) = af−1 (a, b) ∈ f

(b, a) ∈. f−1 f(a) = b (b) = af−1
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Let  and  be nonempty sets and let  to be a bijection. Then  is a function, and for every  and 
.

 if and only if .

For an example of the use of the notation in Theorem 6.26, let . Define

 by ; and  by .

Notice that  is the codomain of . We can then say that both  and  are bijections. Consequently, the inverses of these
functions are also functions. In fact,

 by ; and  by .

For each function (and its inverse), we can write the result of Theorem 6.26 as follows:

Theorems about Inverse Functions
The next two results in this section are two important theorems about inverse functions. The first is actually a corollary of Theorem
6.26.

Let  and  be nonempty sets and let  be a bijection. Then

1. For every  in , ).
2. For every  in , ).

Proof

Let  and  be nonempty sets and assume that  is a bijection. So let  and let . By Theorem 6.26,
we can conclude that . Therefore,

Hence, for each , ).

The proof that for each  in , ) is Exercise (4).

For the cubing function and the cube root function, we have seen that

For ,  if and only if .

Notice that

If we substitute  into the equation , we obtain .
If we substitute  into the equation , we obtain .

This is an illustration of Corollary 6.28. We can see this by using  defined by  and  defined by 
. Then  and ,

 Theorem 6.26

A B f : A → B : B → Af−1 a ∈ A

b ∈ B

f(a) = b (b) = af−1

 Example 6.27: Inverse Function Notation

= {x ∈ R | x > 0}R
+

f : R → R f(x) = x3 g : R → R
+ g(x) = ex

R
+ g f g

: R → Rf−1 (y) =f−1 y√3 : → Rg−1
R

+ (y) = Inyg−1

 Corollary 6.28.

A B f : A → B

x A ( ∘ f)(x) = xf−1

y B (f ∘ )(y) = yf−1

A B f : A → B x ∈ A f(x) = y

(y) = xf−1

\begin{array} {rcl} {(f^{-1} \circ f)(x)} &= & {f^{-1}(f(x))} \\ {} &= & {f^{-1}(y}} \\ {} &= & {x.} \end{array}

x ∈ A ( ∘ f)(x) = xf−1

y B (f ∘ )(y) = yf−1

 Example 6.27 (continued)

x, y ∈ R = yx3 = xy√3

= yx3 = xy√3 = xx3−−
√3

= xy√3 = yx3 ( = yy√3 )3

f : R → R f(x) = x3 : R → Rf−1

(y) =f−1 y√3 ∘ f : R → Rf−1 ∘ f =f−1 IR
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Similarly, the equation  for each  can be obtained from the fact that for each , ).

We will now consider the case where  and  are both bijections. In this case,  and .
Figure 6.10 can be used to illustrate this situation.

By Theorem 6.20,  is also a bijection. Hence, by Theorem 6.25,  is a function and, in fact, 
. Notice that we can also form the composition of  followed by  to get . Figure 6.10

helps illustrate the result of the next theorem.

Let  and  be bijections. Then  is a bijection and .

Proof

Let  and  be bijections. Then  and . Hence, . Also, by
Theorem 6.20,  is a bijection, and hence . We will now prove that for each , 

.

Let . Since the function  is a surjection, there exists a  such that

Also, since  is a surjection, there exists an  such that

Now these two equations can be written in terms of the respective inverse functions as

Using equations (6.5.5) and (6.5.6), we see that

Using equations (6.5.3) and (6.5.4) again, we see that . However, in terms of the inverse function, this means
that

Comparing equations (6.5.7) and (6.5.8), we have shown that for all , . This proves that 
.

\beign{array} {rcl} [(f^{-1} \circ f)(x)} &= & {x} \\ {f^{-1}(f(x))} &= & {x} \\ {f^{-1}(x^3)} &= & {x} \\ {\sqrt[3]{x^3}} &= & {x.} \end{array}

( = yy√3 )3 y ∈ R y ∈ R (f ∘ )(y) = yf−1

f : A → B g : B → C : B → Af−1 : C → Bg−1

g∘ f : A → C (g∘ f)−1

(g∘ f : C → A)−1 g−1 f−1 ∘ : C → Af−1 g−1

 Theorem 6.29.

f : A → B g : B → C g∘ f (g∘ f = ∘)−1 f−1 g−1

f : A → B g : B → C : B → Af−1 : C → Bg−1 ∘ : C → Af−1 g−1

g∘ f : A → C (g∘ f : C → A)−1 z ∈ C

(g∘ f (z) = ∘ (z))−1 f−1 g−1

z ∈ C g y ∈ B

g(y) = z. (6.5.3)

f x ∈ A

f(x) = y. (6.5.4)

g^{-1}(z) = y\text[; and}

(y) = x.f−1 (6.5.5)

∘ (z)f−1 g−1 =

=

=

( (z))f−1 g−1

(y)f−1

x.

(6.5.6)

(g∘ f)(x) = z

(g∘ f (z) = x.)−1 (6.5.7)

z ∈ C (g∘ f (z) = ∘ (z))−1 f−1 g−1

(g∘ f = ∘)−1 f−1 g−1
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1. Let  and . 
(a) Construct an example of a function  that is not a bijection. Write the inverse of this function as a set of ordered
pairs. Is the inverse of  a function? Explain. If so, draw an arrow diagram for  and .
(b) Construct an example of a function  that is a bijection. Write the inverse of this function as a set of ordered
pairs. Is the inverse of  a function? Explain. If so, draw an arrow diagram for  and .

2. Let . Define  by defining  to be the following set of ordered pairs. 

 
(a) Draw an arrow diagram to represent the function . Is the function fa bijection? 
(b) Write the inverse of  as a set of ordered pairs. Is  a function? Explain. 
(c) Draw an arrow diagram for  using the arrow diagram from Exercise (2a). 
(d) Compute  and  for each  in . What theorem does this illustrate?

3. Inverse functions can be used to help solve certain equations. The idea is to use an inverse function to undo the function. 
(a) Since the cube root function and the cubing function are inverses of each other, we can often use the cube root function to
help solve an equation involving a cube. For example, the main step in solving the equation 

 
is to take the cube root of each side of the equation. This gives 
\[\begin{array} {rcl} {\sqrt[3]{(2t - 1)^3} &= & {\sqrt[3]{20}} \\ {2t - 1} &= &{\sqrt[3]{20}.} \end{array}\] 
Explain how this step in solving the equation is a use of Corollary 6.28. 
 
(b) A main step in solving the equation \(e^{2t - 1} = 20} is to take the natural logarithm of both sides of this equation. Explain
how this step is a use of Corollary 6.28, and then solve the resulting equation to obtain a solution for t in terms of the natural
logarithm function. 
(c) How are the methods of solving the equations in Exercise (3a) and Exercise (3b) similar?

4. Prove Part (2) of Corollary 6.28. Let  and  be nonempty sets and let  be a bijection. Then for every  in , 
.

5. In Progress Check 6.6 on page 298, we defined the identity function on a set. The identity function on the set , denoted by 
, is the function  defined by  for every  in . Explain how Corollary 6.28 can be stated using the

concept of equality of functions and the identity functions on the sets  and .
6. Let  and . Let  and  be the identity functions on the sets  and , respectively. Prove each of the

following: 
(a) If , then  is an injection. 
(b) If , then  is a surjection. 
(c) If  and , then  and  are bijections and .

7. (a) Define  by . Is the inverse of  a function? Justify your conclusion. 
(b) Let . Define  by . Is the inverse of  a function? Justify your
conclusion.

8. (a) Let  be defined by . Explain why the inverse of  is not a function. 
(b) Let . Define  by . Explain why this squaring function (with a restricted
domain and codomain) is a bijection. 
(c) Explain how to define the square root function as the inverse of the function in Exercise (8b). 
(d) True or false:  for all  such that . 
(e) True or false:  for all .

9. Prove the following: 
If  is a bijection, then  is also a bijection.

10. For each natural number , let  be a set, and for each natural number , let . 
For example, , , , , and so on. 
Use mathematical induction to prove that for each natural number  with , if , , ...,  are all bijections, then 

 is a bijection and 

 Exercise 6.5

A = {1, 2, 3} B = {a, b, c}
f : A → B

f f f−1

g : A → B

g g g−1

S = {a, b, c, d} f : S → S f

f = {(a, c), (b, b), (c, d), (d, a)} (6.5.8)

f

f f−1

f−1

( ∘ f)(x)f−1 (f ∘ (x)f−1 x S

(2t−1 = 20)3 (6.5.9)

A B f : A → B y B

(f ∘ (y) = yf−1

T

IT : T → TIT (t) = tIT t T

A B

f : A → B g : B → A IA IB A B

g∘ f = IA f

g∘ g = IB f

g∘ f = IA g∘ g = IB f g g = f−1

f : R → R f(x) = e−x2
f

= {x ∈ R | x ≥ 0}R
∗ g : → (0, 1]R

∗ g(x) = e−x2
g

f : R → R f(x) = x2 f

= {t ∈ R | t ≥ 0}R
∗ g : →R

∗
R

∗ g(x) = x2

( = xx−−√ )2 x ∈ R x ≥ 0

= xx2−−
√ x ∈ R

f : A → B : B → Af−1

k Ak n : →fn An An+1

= →f1 A1 A2 = →f1 A1 A2 = →f2 A2 A3 = →f3 A3 A4

n n ≥ 2 f1 f2 fn
∘ ∘ ⋅ ⋅ ⋅ ∘ ∘fn fn−1 f2 f1
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\[(f_n \circ f_{n - 1} \circ \cdot\cdot\cdot \circ f_2 \circ f_1)^{-1} = f_{1}^{-1} \cdot f_{2}^{-1} \cdot \cdot\cdot\cdot \circ
f_{n - 1}^{-1} \circ f_{n}^{-1} 
Note: This is an extension of Theorem 6.29. In fact, Theorem 6.29 is the basis step of this proof for .

11.  by  for all . Explain why the inverse of the function  is not a function. 
(b) Let  and let . Define  by  for all .
Explain why the inverse of the function  is a function and find a formula for , where .

12. Let . 
(a) Define  by  (mod 5) for all . Write the inverse of  as a set of ordered pairs and explain
why  is not a function. 
(b) Define  by  (mod 5) for all . Write the inverse of  as a set of ordered pairs and explain
why  is not a function. 
(c) Is it possible to write a formula for , where ? The answer to this question depends on whether or not is
possible to define a cube root of elements of . Recall that for a real number , we define the cube root of x to the real
number  such that . That is, 

 
Using this idea, is it possible to define the cube root of each number in ? If so, what is , , , , and . 
(d) Now answer th equestion posed at the beginning of Part (c). If possible, determine a formula for  where 

. 
 
Explorations and Activities

13. Constructing an Inverse Function. If  is a bijection, then we know that its inverse is a function. If we are given a
formula for the function , it may be desirable to determine a formula for the function . This can sometimes be done, while
at other times it is very difficult or even impossible. 
Let  be defined by . A graph of this function would suggest that this function is a bijection. 
 
(a) Prove that the function f is an injection and a surjection. 
 
Let . One way to prove that  is a surjection is to set  and solve for . If this can be done, then we would know
that there exists an  such that . For the function , we are using  for the input and y for the output. By solving
for  in terms of , we are attempting to write a formula where  is the input and  is the output. This formula represents the
inverse function. 
 
(b) Solve the equation  for . Use this to write a formula for , where . 
(c) Use the result of Part (13b) to verify that for each ,  and for each , . 
 
Now let . Define  by . 
 
(d) Set  and solve for  in terms of . 
(e) Use your work in Exercise (13d) to define a function . 
(f) For each , determine  and for each , determine . 
(g) Use Exercise (6) to explain why .

14. The Inverse Sine Function. We have seen that in order to obtain an inverse function, it is sometimes necessary to restrict the
domain (or the codomain) of a function. 
 
(a) Let  be defined by . Explain why the inverse of the function  is not a function. (A graph may be
helpful.)
 
Notice that if we use the ordered pair representation, then the sine function can be represented as 

 
If we denote the inverse of the sine function by sin , then 

n = 2
a)Define\(f : R → R f(x) = −4x2 x ∈ R f

= {x ∈ R | x ≥ 0}R
∗ T = {y ∈ R | y ≥ −4} F : → TR

∗ F (x) = −4x2 x ∈ R
∗

F (y)F −1 y ∈ T

= {0, 1, 2, 3, 4}Z5

f : →Z5 Z5 f(x) = +4x2 x ∈ Z5 f

f−1

g : →Z5 Z5 g(x) = +4x3 x ∈ Z5 g

g−1

(y)g−1 y ∈ Z5

Z5 x

y = xy3

y =  if and only if  = x.x−−√3 y3 (6.5.10)

Z5 0
–

√3 1
–√3 2

–√3 3
–

√3 4
–

√3

(y)g−1

: →g−1
Z5 Z5

f : A → B

f f−1

f : R → R f(x) = 2 −7x3

y ∈ R f y = f(x) x

x ∈ R f(x) = y f x

x y y x

y = 2 −7x3 x (y)f−1 : R → Rf−1

x ∈ R (f(x)) = xf−1 y ∈ R f( (y)) = yf−1

= {y ∈ R | y > 0}R
+ g : R → R

+ g(x) = e2x−1

y = e2x−1 x y

h : → RR
+

x ∈ R (h ∘ g)(x) y ∈ R
+ (g∘ h)(y)

h = g−1

f : R → R f(x) = sinx f

f = {(x, y) ∈ R → R | y = sinx}. (6.5.11)

−1
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Part (14a) proves that  is not a function. However, in previous mathematics courses, we frequently used the “inverse sine
function.” This is not really the inverse of the sine function as defined in Part (14a) but, rather, it is the inverse of the sine
function restricted to the domain . 

 

(b) Explain why the function  defined by  is a bijection. 

 
The inverse of the function in Part (14b) is itself a function and is called the inverse sine function (or sometimes the arcsine
function). 
 
(c) What is the domain of the inverse sine function? What are the range and codomain of the inverse sine function? 
 
Let us now use  to represent the restricted sine function in Part (14b). Therefore,  can be
used to represent the inverse sine function. Observe that 

 
(d) Using this notation, explain why 

 if and only if [  and ]; 

 for all ; and 
 for all 

Answer

Add texts here. Do not delete this text first.

This page titled 6.5: Inverse Functions is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted Sundstrom
(ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.

6.5: Inverse Functions by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

= {(y, x) ∈ R → R | y = sinx}.f−1 (6.5.12)

f−1

[− , ]
π

2

π

2

F : [− , ] → [−1, 1]
π

2

π

2
F (x) = sinx

F (x) = sin(x) (x) = sin (x)F −1 −1

F : [− , ] → [−1, 1] and  : [−1, 1] → [− , ].
π

2

π

2
F −1 π

2

π

2
(6.5.13)

sin y = x−1 y = sin x − ≤ x ≤
π

2

π

2
sin(sin (y)) = y−1 y ∈ [−1, 1]

sin (sin(x)) = x−1 x ∈ [− , ].
π

2

π

2
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6.6: Functions Acting on Sets
Preview Activity 1 (Functions and Sets) 
Let  and . Define  by

   

1. Let  and . Notice that  and  are subsets of . Use the roster method to specify the elements of the
following two subsets of : 
 
(a)  
(b) 

2. Let  and . Notice that  and  are subsets of . Use the roster method to specify the elements of the
following two subsets of : 
 
(a)  
(b)  
 
Now let  be defined by , for each .

3. Let . Use the roster method to specify the elements of the set .
4. Use the roster method to specify the elements of each of the following sets: 

 
(a)  
(b)  
(c)  
(d) 

5. Let . Use the roster method to specify the elements of the set 
\{\x \in \mathbb{R}\ |\ g(x) \in B\}\).

Preview Activity 2 (Functions and Intervals)  
Let  be defined by , for each .

1. We will first determine where g maps the closed interval [1, 2]. (Recall that .) That is, we will
describe, in simpler terms, the set . This is the set of all images of the real numbers in the closed interval [1,
2]. 
 
(a) Draw a graph of the function  using . 
(b) On the graph, draw the vertical lines  and  from the x-axis to the graph. Label the points  and 

 on the graph. 
(c) Now draw horizontal lines from the points  and  to the y-axis. Use this information from the graph to describe the set 

 in simpler terms. Use interval notation or set builder notation.
2. We will now determine all real numbers that g maps into the closed interval [1, 4]. That is, we will describe the set 

 in simpler terms. This is the set of all preimages of the real numbers in the closed interval [1, 4]. 
(a) Draw a graph of the function  using . 
(b) On the graph, draw the horizontal lines  and  from they-axis to the graph. Label all points where these two lines
intersect the graph.
(c) Now draw vertical lines from the points in Part (2) to the x-axis, and then use the resulting information to describe the set 

 in simpler terms. (You will need to describe this set as a union of two intervals. Use interval notation or
set builder notation.)

Functions Acting on Sets

In our study of functions, we have focused on how a function “maps” individual elements of its domain to the codomain. We also
studied the preimage of an individual element in its codomain. For example, if  is defined by , for each 

, then

S = {a, b, c, d} T = {s, t, u} f : S → T

f(a) = s f(b) = t f(c) = t f(d) = s

A = {a, c} B = {a, d} A B S

T

{f(x) | x ∈ A}
{f(x) | x ∈ B}
C = {s, t} D = {s, u} C D T

S

{x ∈ S | f(x) ∈ C}
{x ∈ S | f(x) ∈ D}

g : R →R g(x) = x2 x ∈ R

A = {1, 2, 3, −1} {g(x) | x ∈ A}

{x ∈ R | g(x) = 1}
{x ∈ R | g(x) = 9}
{x ∈ R | g(x) = 15}
{x ∈ R | g(x) = −1}
B = {1, 9, 15, −1}

g : R →R g(x) = x2 x ∈ R

[1, 2] = {x ∈ R | 1 ≤ x ≤ 2}
{g(x) | x ∈ [1, 2]}

g −3 ≤ x ≤ 3
x = 1 x = 2 P (1, f(1))

Q(2, f(2))
P Q

{g(x) | x ∈ [1, 2]}

{x ∈ R | g(x) ∈ [1, 4]}
g −3 ≤ x ≤ 3

y = 1 y = 4

{x ∈ R | g(x) ∈ [1, 4]}

f : R →R f(x) = x2

x ∈ R
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. We say that  maps 2 to 4 or that 4 is the image of 2 under the function .
Since  implies that  or , we say that the preimages of 4 are 2 and -2 or that the set of preimages of 4 is
{-2, 2}.

For a function , the next step is to consider subsets of  or  and what corresponds to them in the other set. We did this
in the Preview Activities. We will give some definitions and then revisit the examples in the Preview Activities in light of these
definitions. We will first consider the situation where  is a subset of  and consider the set of outputs whose inputs are from .
This will be a subset of .

Let . If , then the image of  under  is the set , where

.

If there is no confusion as to which function is being used, we call  the image of .

We now consider the situation in which  is a subset of  and consider the subset of  consisting of all elements of  whose
outputs are in .

Let . If , then the preimage of  under  is the set , where

.

If there is no confusion as to which function is being used, we call  the preimage of . The preimage of the set 
under  is also called the inverse image of  under .

Notice that the set  is defined whether or not  is a function.

Let  and . Define  by

   .

Let , , , and .

Use your work in Preview Activity  to determine each of the following sets:

1. 
2. 
3. 
4. 

Answer

Add texts here. Do not delete this text first.

Let  be defined by , for each . The following results are based on the examples in Preview Activity 
 and Preview Activity .

Let . Then .
Let . Then .

The graphs from Preview Activity  illustrate the following results:

If  is the closed interval [1, 2], then the image of the set  is 

f(2) = 4 f f

f(2) = 4 x = 2 x = −2

f : S → T S T

A S A

T

 Definition

f : S → T A ⊆ S A f f(A)

f(A) = {f(x) | x ∈ A}

f(A) A

C T A T

C

 Definition

f : S → T C ⊆ T C f (C)f−1

(C) = {x ∈ S | f(x) ∈ C}f−1

(C)f−1 C C

f C f

(C)f−1 f−1

 Progress Check 6.30 (Preview Activity  Revisited)6.6.1

S = {a, b, c, d} T = {s, t, u} f : S → T

f(a) = s f(b) = t f(c) = t f(d) = s

A = {a, c} B = {a, d} C = {s, t} D = {s, u}

6.6.1

f(A)
f(B)

(C)f−1

(D)f−1

 Example 6.31 (Images and Preimages of Sets)

g : R →R g(x) = x2 x ∈ R

6.6.1 6.6.2

A = {1, 2, 3, −1} f(A) = {1, 4, 9}
B = {1, 9, 15, −1} (B) = {− , −3, −1, 1, 3, }f−1 15

−−
√ 15

−−
√

6.6.2

T T
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If  is the closed interval [1, 4], then the preimage of the set  is 

Set Operations and Functions Acting on Sets

We will now consider the following situation: Let  and  be sets and let f be a function from  to . Also, let  and  be
subsets of  and let  and  be subsets of . In the remainder of this section, we will consider the following situations and answer
the questions posed in each case.

The set  is a subset of  and so  is a subset of . In addition,  and  are subsets of . Hence, 
 is a subset of . 

 
Is there any relationship between  and ?
The set  is a subset of  and so  is a subset of . In addition,  and  are subsets of . Hence, 

 is a subset of . 
 
Is there any relationship between  and ?
The set  is a subset of  and so  is a subset of . In addition,  and  are subsets of . Hence, 

 is a subset of . 
 
Is there any relationship between the sets  and ?
The set  is a subset of  and so  is a subset of . In addition,  and  are subsets of . Hence, 

 is a subset of . 
 
Is there any relationship between the sets  and ?

These and other questions will be explored in the next progress check.

In Section 6.2, we introduced functions involving congruences. For example, if we let

then we can define  by , where  (mod 8) and . Moreover, we shortened this notation
to

 (mod 8)

We will use the following subsets of :

   

1. Verify that , , , and . Then determine , ,  and .
2. Determine , , , and .
3. For each of the following, determine the two subsets of  and then determine if there is a relationship between the two

sets. For example,  and since , we see that . 
 
(a)  and  
(b)  and  
(c)  and  
(d)  and 

4. Notice that  is a subset of the codomain, . Consequently,  is a subset of the domain, . Is there any
relation between  and  in this case?

f(T ) =

=

{f(x) | x ∈ [1, 2]}

[1, 4].
(6.6.1)

C C

(C) = {x ∈ R | f(x) ∈ [1, 4]} = [−2, −1] ∪ [1, 2].f−1 (6.6.2)

S T S T A B

S C D T

A∩B S f(A∩B T f(A) f(B) T

f(A) ∩ f(B) T

f(A∩B f(A) ∩ f(B)
A∪B S f(A∪B T f(A) f(B) T

f(A) ∪ f(B) T

f(A∪B f(A) ∪ f(B)
C ∩D T (C ∩D)f−1 S (C)f−1 (D)f−1 S

(C) ∩ (D)f−1 f−1 S

(C ∩D)f−1 (C) ∩ (D)f−1 f−1

C ∪D T (C ∪D)f−1 S (C)f−1 (D)f−1 S

(C) ∪ (D)f−1 f−1 S

(C ∪D)f−1 (C) ∪ (D)f−1 f−1

 Progress check 6.32 (set operations and functions acting on sets)

= {0, 1, 2, 3, 4, 5, 6, 7}.Z8

f : →Z8 Z8 f(x) = r ( +2) ≡ rx2 r ∈ Z8

f(x) = ( +2)x2

Z8

A = {1, 2, 4} B = {3, 4, 6} C = {1, 2, 3}D = {3, 4, 5}

f(0) = 2 f(1) = 3 f(2) = 6 f(3) = 3 f(4) f(5) f(6) f(7)
f(A) F = f(A = B) (C)f−1 (D)f−1

Z8

A∩B = {4} f(4) = 2 f(A∩B) = {2}

f(A∩B) f(A) ∩ f(B)
f(A∪B) f(A) ∪ f(B)

(C ∩D)f−1 (C) ∩ (D)f−1 f−1

(C ∪D)f−1 (C) ∪ (D)f−1 f−1

f(A) Z8 (f(A))f−1 Z8

A f(A))f−1
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5. Notice that  is a subset of the codomain, . Consequently,  is a subset of the domain, . Is there
any relation between  and  in this case?

Answer

Add texts here. Do not delete this text first.

Define  by  for all . It will be helpful to use the graph shown in Figure 6.11.

We will use the following closed intervals:

   .

1. Verify that , , , and that .
2. (a) Explain why  and . So in this case, . 

(b) Explain why  and . So in this case, . 
(c) Explain why  and . So in this case, 

. 
(d) Explain why  and . So in this case, 

.
3. Reacll that . Notice  is a subset of the codomain, . Explain why . Since 

 is a subset of the domain, , we see that in this case, .
4. Reacll that . Notice  is a subset of the codomain, . Explain why . Since 

 is a subset of the domain, , we see that in this case, .

The examples in Progress Check 6.32 and Example 6.33 were meant to illustrate general results about how functions act on sets. In
particular, we investigated how the action of a function on sets interacts with the set operations of intersection and union. We will
now state the theorems that these examples were meant to illustrate. Some of the proofs will be left as exercises.

Let  be a function and let  and  be subsets of . Then

1.  \subseteq f(A) \cap f(B)\)
2.  = f(A) \cup f(B)\)

Proof

We will prove Part (1). The proof of Part (2) is Exercise (5).

Assume that  is a function and let  and  be subsets of . We will prove that  \subseteq f(A) \cap
f(B)\) by proving that for all , if , then .

We assume that . This means that there exists an  such that . Since , we
conclude that  and .

(C)f−1
Z8 f( (f(C))f−1

Z8

C f( f(C))f−1

 Example 6.33 (Set Operations and Functions Acting on Sets)

f : R →R f(x) = +2x2 x ∈ R

A = [0, 3] B = [−2, 1] C = [2, 6] D = [0, 3]

f(A) = [2, 11] f(B) = [2, 6] (C) = [−2, 2]f−1 (D) = [−1, 1]f−1

f(A∩B) = [2, 3] f(A) ∩ f(B) = [2, 6] f(A∩B) ⊆ f(A) ∩ f(B)
f(A∪B) = [2, 11] f(A) ∪ f(B) = [2, 11] f(A∪B) ⊆ f(A) ∪ f(B)

(C ∩D) = [−1, 1]f−1 (C) ∩ (D) = [−1, 1]f−1 f−1

(C ∩D) ⊆ (C) ∩ (D)f−1 f−1 f−1

(C ∪D) = [−2, 2]f−1 (C) ∩ (D) = [−2, 2]f−1 f−1

(C ∪D) ⊆ (C) ∪ (D)f−1 f−1 f−1

A = [0, 3] f(A) = [2, 11] R (f(A)) = [−3, 3]f−1

f(A))f−1 R A ⊆ (f(A))f−1

C = [2, 6] (C) = [−2, 2]f−1 R f( f(C)) = [2, 6]f−1

f(C))f−1 R f( (C)) = Cf−1

 Theorem 6.34.

f : S → T A B S

f(A∩B

f(A∪B

f : S → T A B S f(A∩B

y ∈ T y ∈ f(A∩B) y ∈ f(A) ∩ f(B)

y ∈ f(A∩B) x ∈ A∩B f(x) = y x ∈ A∩B

x ∈ A x ∈ B
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Since  and , we conclude that .
Since  and , we conclude that .

Since  and , . This proves that if , then . Hence 
 \subseteq f(A) \cap f(B)\).

Let  be a function and let  and  be subsets of . Then

1. 
2. 

Proof

We will prove Part (2). The proof of Part (1) is Exercise (6).

Assume that  is a function and that  and  are subsets of . We will prove that 
 by proving that each set is a subset of the other.

We start by letting  be an element of . This means that  is an element of . Hence,

 or 

In the case where , we conclude that , and hence that . In the case where 
, we see that , and hence that . So in both cases, ,

and we have proved that 

We now let . This means that

 or 

In the case where , we conclude that  and hence that . This means that 
.

Similarly, when , it follows that  and hence that . This means that .

These two cases prove that if , then . Therefore, 
.

Since we have now proved that each of the two sets is a subset of the other set, we can conclude that 
.

Let  be a function and let  be a subset of  and let  be a subset of . Then

1. 
2. 

Proof

We will prove Part (1). The proof of Part (2) is Exercise (7).

To prove Part (1), we will prove that for all , if , then . So let . Then, by definition, 
. We know that , and so . Notice that

Since , we use this to conclude that , then , and
hence that 

x ∈ A f(x) = y y ∈ f(A)
x ∈ B f(x) = y y ∈ f(B)

x ∈ f(A) y ∈ f(B) y ∈ f(A) ∩ f(B) y ∈ f(A∩B) y ∈ f(A) ∩ f(B)
f(A∩B

 Theorem 6.35

f : S → T C D T

(C ∩D) = (C) ∩ (D)f−1 f−1 f−1

(C ∪D) = (C) ∪ (D)f−1 f−1 f−1

f : S → T C D T

(C ∪D) = (C) ∪ (D)f−1 f−1 f−1

x (C ∪D)f−1 f(x) C ∪D

f(x) ∈ C f(x) ∈ D

f(x) ∈ C x ∈ (C)f−1 x ∈ (C) ∪ (D)f−1 f−1

f(x) ∈ D x ∈ (D)f−1 x ∈ (C) ∪ (D)f−1 f−1 x ∈ (C) ∪ (D)f−1 f−1

(C ∪D) ⊆ (C) ∪ (D)f−1 f−1 f−1

t ∈ (C) ∪ (D)f−1 f−1

t ∈ (C)f−1 t ∈ (D)f−1

t ∈ (C)f−1 f(t) ∈ C f(t) ∈ C ∪D

t ∈ (C ∪D)f−1

t ∈ (D)f−1 f(t) ∈ D f(t) ∈ C ∪D t ∈ (C ∪D)f−1

t ∈ (C) ∪ (D)f−1 f−1 t ∈ (C ∪D)f−1

(C) ∪ (D) ⊆ (C ∪D)f−1 f−1 f−1

(C ∪D) = (C) ∪ (D)f−1 f−1 f−1

 Theorem 6.36.

f : S → T A S C T

A ⊆ (f(A))f−1

f( (C)) ⊆ Cf−1

a ∈ S a ∈ A a ∈ (f(A))f−1 a ∈ A

f(a) ∈ f(A) f(A) ⊆ T (f(A)) ⊆ Sf−1

(f(A)) = {x ∈ S | f(x) ∈ f(A)}.f−1

f(a) ∈ f(A) a ∈ (f(A)).Thisprovesthatif\(a ∈ Af−1 a ∈ (f(A))f−1

A ∈ (f(A))f−1
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1. Let . let  and  be subsets of , and let  and  be subsets of . For  and , carefully explain
what it means to say that 
 
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  
(g)  
(h) 

2. Let  by . Let 
 

   . 
 
Find each of the following: 
 
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  
(g)  
(h) 

3. Let  by , let , and let . Find 
 
(a)  
(b)  
(c)  
(d) 

4. (a) Let . Define  by  for each . What is the range of the function  and what is 
? How do these two sets compare? 

 
Now let  and  be sets and let  be an arbitrary function from  to . 
 
(b) Explain why . 
(c) Define a function  by  for all  in . Prove that the function  is a surjection.

5. Prove Part (2) of Theorem 6.34. 
Let  be a function and let  and  be subsets of . Then .

6. Prove Part (1) of Theorem 6.35. 
Let  be a function and let  and  be subsets of . Then .

7. Prove Part (2) of Theorem 6.36. 
Let  be a function and let . Then .

8. Let  and let  and  be subsets of . Prove or disprove each of the following: 
 
(a) If , then . 
(b) If , then .

9. Let  and let  and  be subsets of . Prove or disprove each of the following: 
 
(a) If , then . 

 Exercise 6.6

f : S → T A B S C D T x ∈ S y ∈ T

y ∈ f(A∩B)
y ∈ f(A∪B)
y ∈ f(A) ∩ f(B)
y ∈ f(A) ∪ f(B)
x ∈ (C ∩D)f−1

x ∈ (C ∪D)f−1

x ∈ (C) ∩ (D)f−1 f−1

x ∈ (C) ∪ (D)f−1 f−1

f : R →R f(x) = −2x+1

A = [2, 5] B = [−1, 3] C = [−2, 3] D = [1, 4]

f(A)
(f(A))f−1

(C)f−1

f( (C))f−1

f(A∩B)
f(A) ∩ f(B)

(C ∩D)f−1

(C) ∩ (D)f−1 f−1

g : N×N →N g(m,n) = 2m3n A = {1, 2, 3} C = {1, 4, 6, 9, 12, 16, 18}

g(A×A)
(C)g−1

(g(A×A))g−1

g( (C))g−1

S = {1, 2, 3, 4} F : S →N F (x) = x2 x ∈ s F

F (S)

A B f : A → B A B

f(A) = range(f)
g : A → f(A) g(x) = f(x) x A g

f : S → T A B S f(A∪B) = f(A) ∪ f(B)

f : S → T C D T (C ∪D) = (C) ∪ (D)f−1 f−1 f−1

f : S → T C ⊆ T f( (C)) ⊆ Cf−1

f : S → T A B S

A ⊆ B f(A) ⊆ f(B)
f(A) ⊆ f(B) A ⊆ B

f : S → T C D T

C ⊆ D (C) ⊆ (D)f−1 f−1
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(b) If , then .
10. Prove or disprove: 

If  is a function and  and  are subsets of , then 
. 

Note: Part (1) of Theorem 6.34 states that .
11. If  is a function, let , and let . 

(a) Part (1) of Theorem 6.36 states that . Give an example where . 
(b) Part (2) of Theorem 6.36 states that . Give an example where .

12. Is the following proposition true or false? Justify your conclusion with a proof or a counterexample. 
If  is an injection and , then .

13. Is the following proposition true or false? Justify your conclusion with a proof or a counterexample. 
If  is an injection and , then .

14. Let (f: S \to T\). Prove that  for all subsets  and  of  if and only if  is an injection.

Answer

Add texts here. Do not delete this text first.

This page titled 6.6: Functions Acting on Sets is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

6.6: Functions Acting on Sets by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

(C) ⊆ (D)f−1 f−1 C ⊆ D

f : S → T A B S

f(A) ∩ f(B) ⊆ f(A∩B)
f(A∩B) ⊆ f(A) ∩ f(B)

f : S → T A ⊆ S C ⊆ T

A ⊆ (f(A))f−1 (f(A))\notsubseteqAf−1

f( (C)) ⊆ Cf−1 C\notsubseteqf( (C))f−1

f : S → T A ⊆ S (f(A)) = Af−1

f : S → T C ⊆ T (f(C)) = Cf−1

f(A∩B) = f(A) ∩ f(B) A B S f

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86134?pdf
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.06%3A_Functions_Acting_on_Sets
https://creativecommons.org/licenses/by-nc-sa/3.0
https://www.tedsundstrom.com/
https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/books/7
https://math.libretexts.org/@go/page/7072
https://www.tedsundstrom.com/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://scholarworks.gvsu.edu/books/7


6.S.1 https://math.libretexts.org/@go/page/86135

6.S: Functions (Summary)
Important Definitions

Function, page 284
Domain of a function, page 285
Codomain of a function,page285
Image of  under , page 285
preimage of  under , page 285
Independent variable, page 285
Dependent variable, page 285
Range of a function, page 287
Image of a function, page 287
Equal functions, page 298
Sequence, page 301
Injection, page 310
One-to-one function, page 310
Surjection, page 311
Onto function, page 311
Bijection, page 312
One-to-one and onto, page 312
Composition of  and , page 325
Composite function, page 325

 followed by , page 325
Inverse of a function, page 338
Image of a set under a function, page 351
preimage of a set under a function, page 351

Important Theorems and Results about Functions

Theorem 6.20. Let ,  and  be nonempty sets and let  and . 
 
1. If  and  are both injections, then  is an injection. 
2. If  and  are both surjections, then  is a surjection. 
3. If  and  are both bijections, then  is a bijection.
Theorem 6.21. Let ,  and  be nonempty sets and let  and . 
 
1. If  is an injection, then  is an injeciton. 
2. If  is a surjection, then  is a surjeciton.
Theorem 6.22. Let  and  be nonempty sets and let  be a subset of  that satisfies the following two properties: 
 

 For every , there exists  such that ; and 
 For every  and every , if  and , then . 

 
If we use  whenever , then  is a function from  to .
Theorem 6.25. Let  and  be nonempty sets and let . The inverse of  is a function from  to  if and only if  is
a bijection.
Theorem 6.26. Let  and  be nonempty sets and let  be a bijection. Then  is a function, and for
every  and , 

 if and only if .
Corollary 6.28. Let  and  be nonempty sets and let  be a bijection. Then 
 
1. For every  in , . 
2. For every  in , .

x f

y f

f g

f g

A B C f : A → B g : B → C

f g g ∘ f

f g g ∘ f

f g g ∘ f

A B C f : A → B g : B → C

g ∘ f : A → C f : A → B

g ∘ f : A → C g : B → C

A B f A ×B

∙ a ∈ A b ∈ B (a, b) ∈ f

∙ a ∈ A b, c ∈ B (a, b) ∈ f (a, c) ∈ f b = c

f(a) = b (a, b) ∈ f f A B

A B f : A → B f B A f

A B f : A → B : B → Af −1

a ∈ A b ∈ B

f(a) = b (b) = af −1

A B f : A → B

x A ( ∘ f)(x) = xf −1

y B (f ∘ (y) = yf −1
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Theorem 6.29. Let  and  be bijections. Then  is a bijection and .
Theorem 6.34. Let  be a function and let  and  be subsets of . Then 
 
1.  
2. 
Theorem 6.35. Let  be a function and let  and  be subsets of . Then 
 
1.  
2. 
Theorem 6.36. Let  be a function and let  and let  be a subset of . Then 
 
1.  
2. 

This page titled 6.S: Functions (Summary) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.
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f : A → B g : B → C g ∘ f (g ∘ f = ∘)−1 f −1 g−1

f : S → T A B S

f(A ∩ B) ⊆ f(A) ∩ f(B)

f(A ∪ B) = f(A) ∪ f(B)

f : S → T C D T

(C ∩ D) = (C) ∩ (D)f −1 f −1 f −1

(C ∪ D) = (C) ∩ (D)f −1 f −1 f −1

f : S → T A\(beasubsetof\(S C T

A ⊆ (f(A))f −1

f( (C) ⊆ Cf −1
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CHAPTER OVERVIEW

7: Equivalence Relations
In Section 6.1, we introduced the formal definition of a function from one set to another set. The notion of a function can be
thought of as one way of relating the elements of one set with those of another set (or the same set). A function is a special type of
relation in the sense that each element of the first set, the domain, is “related” to exactly one element of the second set, the
codomain. This idea of relating the elements of one set to those of another set using ordered pairs is not restricted to functions. For
example, we may say that one integer, a , is related to another integer, b , provided that a is congruent to b modulo 3. Notice that
this relation of congruence modulo 3 provides a way of relating one integer to another integer. However, in this case, an integer a is
related to more than one other integer.

7.1: Relations
7.2: Equivalence Relations
7.3: Equivalence Classes
7.4: Modular Arithmetic
7.S: Equivalence Relations (Summary)

This page titled 7: Equivalence Relations is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.
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7.1: Relations

Recall from Section 5.4 that the Cartesian product of two sets  and , written , is the set of all ordered pairs ,
where  and . That is, .

Let  be the set of all states in the United States and let

.

For example, since California and Oregon have a land border, we can say that (California, Oregon)  and (Oregon,
California) . Also, since California and Michigan do not share a land border, (California, Michigan)  and (Michigan,
California) .

1. Use the roster method to specify the elements in each of the following sets: 
 
(a)  
(b)  
(c) 

2. Find two different examples of two ordered pairs  and  such that , , but , or
explain why no such example exists. Based on this, is the following conditional statement true or false? 
 
For all , if  and , then .

3. Is the following conditional statement true or false? Explain. 
 
For all , if  then .

In Section 2.3, we introduced the concept of the truth set of an open sentence with one variable. This was defined to be the
set of all elements in the universal set that can be substituted for the variable to make the open sentence a true proposition.
Assume that  and  represent real numbers. Then the equation

is an open sentence with two variables. An element of the truth set of this open sentence (also called a solution of the equation)
is an ordered pair  of real numbers so that when a is substituted for  and  is substituted for , the predicate becomes a
true statement (a true equation in this case). We can use set builder notation to describe the truth set  of this equation with two
variables as follows:

When a set is a truth set of an open sentence that is an equation, we also call the set the solution set of the equation.

1. List four different elements of the set .
2. The graph of the equation  in the xy-coordinate plane is an ellipse. Draw the graph and explain why this

graph is a representation of the truth set (solutions set) of the equation .
3. Describe each of the following sets as an interval of real numbers: 

 
(a)  
(b) 

Introduction to Relations
In Section 6.1, we introduced the formal definition of a function from one set to another set. The notion of a function can be
thought of as one way of relating the elements of one set with those of another set (or the same set). A function is a special type of

 PREVIEW ACTIVITY : The United States of America7.1.1

A B A ×B (a, b)

a ∈ A b ∈ B A ×B = {(a, b) | a ∈ A and b ∈ B}

A

R = {(x, y) ∈ A ×A | x and y have a land border in common}

∈ R

∈ R ∉ R

∉ R

B = {y ∈ A | (Michigan, y) ∈ R}

C = {x ∈ A | (x, Michigan) ∈ R}

D = {y ∈ A | (Wisconsin, y) ∈ R}

(x, y) (y, z) (x, y) ∈ R (y, z) ∈ R (x, z) ∉ R

x, y, z ∈ A (x, y) ∈ R (y, z) ∈ R (x, z) ∈ R

x, y ∈ A (x, y) ∈ R (y, x) ∈ R

 PREVIEW ACTIVITY : The Solution Set of an Equation with Two Variables7.1.2

x y

4 + = 16x2 y2

(a, b) x b y

S

S = {(x, y) ∈ R ×R | 4 + = 16}.x2 y2

S

4 + = 16x2 y2

4 + = 16x2 y2

A = {x ∈ R | there exists a y ∈ R such that 4 + = 16}.x2 y2

B = {y ∈ R | there exists an x ∈ R such that 4 + = 16}.x2 y2
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relation in the sense that each element of the first set, the domain, is “related” to exactly one element of the second set, the
codomain.

This idea of relating the elements of one set to those of another set using ordered pairs is not restricted to functions. For example,
we may say that one integer, , is related to another integer, , provided that  is congruent to  modulo 3. Notice that this relation
of congruence modulo 3 provides a way of relating one integer to another integer. However, in this case, an integer  is related to
more than one other integer. For example, since

 (mod 3),  (mod 3), and  (mod 3),

we can say that 5 is related to 3, 5 is related to 2, and 5 is related to -1. Notice that, as with functions, each relation of the form 
 (mod 3) involves two integersa and  and hence involves an ordered pair , which is an element of .

Let  and  be sets. A relation  from the set  to the set  is a subset of . That is,  is a collection of ordered
pairs where the first coordinate of each ordered pair is an element of , and the second coordinate of each ordered pair is an
element of .

A relation from the set  to the set  is called a relation on the set . So a relation on the set  is a subset of .

In Section 6.1, we defined the domain and range of a function. We make similar definitions for a relation.

If  is a relation from the set  to the set , then the subset of  consisting of all the first coordinates of the ordered pairs in 
 is called the domain of . The subset of  consisting of all the second coordinates of the ordered pairs in  is called the

range of .

We use the notation dom( ) for the domain of  and range( ) for the range of . So using set builder notation,

dom( ) 

range( ) .

A relation was studied in each of the Preview Activities for this section. For Preview Activity 2, the set 
 is a subset of  and, hence,  is a relation on . In Problem (3) of Preview

Activity , we actually determined the domain and range of this relation.

dom( ) 

range( ) 

So from the results in Preview Activity , we can say that the domain of the relation  is the closed interval [-2, 2] and the
range of S is the closed interval [-4, 4].

1. Let . 
 
(a) Explain why  is a relation on . 
(b) Find all values of  such that . Find all values of  such that . 
(c) What is the domain of the relation ? What is the range of ? 
(d) Since  is a relation on , its elements can be graphed in the coordinate plane. Describe the graph of the relation .

2. From Preview Activity ,  is the set of all states in the United States, and 

a b a b

a

5 ≡ 5 5 ≡ 2 5 ≡ −1

a ≡ b b (a, b) Z ×Z

 Definition: relations

A B R A B A ×B R

A

B

A A A A A ×A

 Definition: Domain and Range

R A B A

R R B R

R

R R R R

R = {u ∈ A | (u, y) ∈ R for at least one y ∈ B}

R = {v ∈ B | (x, v) ∈ R for at least one x ∈ A}

 Example 7.1: Domain and Range

S = {(x, y) ∈ R ×R | 4 + = 16}x2 y2
R ×R S R

7.1.2

S = A = {x ∈ R | there exists a y ∈ R such that 4 + = 16}x2 y2

S = B = {y ∈ R | there exists an x ∈ R such that 4 + = 16}x2 y2

7.1.2 S

 Progress Check 7.2: Examples of Relations

T = {(x, y) ∈ R ×R |  + = 64}x2 y2

T R

x (x, 4) ∈ T x (x, 9) ∈ T

T T

T R T

7.1.1 A

R = {(x, y) ∈ A ×A | x and y have a border in common}. (7.1.1)
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(a) Explain why  is a relation on . 
(b) What is the domain of the relation ? What is the range of the relation ? 
(c) Are the following statements true or false? Justify your conclusions. 
i. For all , if , then . 
ii. For all , if  and , then .

Answer

Add texts here. Do not delete this text first.

Some Standard Mathematical Relations
There are many different relations in mathematics. For example, two real numbers can be considered to be related if one number is
less than the other number. We call this the "less than" relation on . If  and  is less than , we often write . As a
set of ordered pairs, this relation is , where

\{R_{<} = \{(x, y) \in \mathbb{R} \times \mathbb{R}\ |\ x < y\}\).

With many mathematical relations, we do not write the relation as a set of ordered pairs even though, technically, it is a set of
ordered pairs. Table 7.1 describes some standard mathematical relations.

Notation for Relations
The mathematical relations in Table 7.1 all used a relation symbol between the two elements that form the ordered pair in .
For this reason, we often do the same thing for a general relation from the set  to the set . So if  is a relation from  to , and

 and , we use the notation

In some cases, we will even use a generic relation symbol for defining a new relation or speaking about relations in a general
context. Perhaps the most commonly use symbol is "~", read “tilde” or “squiggle” or “is related to.” When we do this, we will write

Whenever we have spoken about one integer dividing another integer, we have worked with the “divides” relation on . In
particular, we can write

In this case, we have a specific notation for “divides,” and we write

R A

R R

x, y ∈ A (x, y) ∈ R (y, x) ∈ R

x, y, z ∈ A (x, y) ∈ R (y, x) ∈ R (x, z) ∈ R

R x, y ∈ R x y x < y

R<

A ×B

A B R A B

x ∈ A y ∈ B

x   y

x ≁ y

means the same thing as

means the same thing as

(x, y) ∈ R;  and

(x, y) ∉ R.
(7.1.2)

 Progress Check 7.3: The Divides Relation

Z

D = {(m, n) ∈ Z ×Z | m divides n}.
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 if and only if .

1. What is the domain of the “divides” relation? What is the range of the “divides” relation?
2. Are the following statements true or false? Explain.

(a) For every nonzero integer , . 
(b) For all nonzero integers  and , if , then . 
(c) For all nonzero integers , , and ,if  and , then .

Answer

Add texts here. Do not delete this text first.

Functions as Relations
If we have a function , we can generate a set of ordered pairs  that is a subset of  as follows:

 or 

This means that  is a relation from  to . Since, dom( ) , we know that

(1) For every , there exists  such that .

When ., we write . In addition, to be a function, each input can produce only one output. In terms of ordered
pairs, this means that there will never be two ordered pairs  and  in the function , where , , and .
We can formulate this as a conditional statement as follows:

(2) For every  and every , if  and , then .

This means that a function  from  to  is a relation from A to B that satisfies conditions (1) and (2). (See Theorem 6.22 in
Section 6.5.) Not every relation, however, will be a function. For example, consider the relation  in Progress Check 7.2.

Let . The set  can then be considered to be relation on  since it is a subset of .

1. List five different ordered pairs that are in the set .
2. Use the roster method to specify the elements of each of the following the sets: 

 
(a)  
(b)  
(c)  
(d) 

3. Since each real number  produces only one value of  for which , the set  can be used to define a function from
the set  to . Draw a graph of this function.

Answer

Add texts here. Do not delete this text first.

Visual Representations of Relations
In Progress Check 7.4, we were able to draw a graph of a relation as a way to visualize the relation. In this case, the relation was a
function from  to . In addition, in Progress Check 7.2, we were also able to use a graph to represent a relation. In this case, the
graph of the relation  is a circle of radius 8 whose center is at the origin.

When  is a relation from a subset of the real numbers  to a subset of , we can often use a graph to provide a visual
representation of the relation. This is especially true if the relation is defined by an equation or even an inequality. For example, if

,

then we can use the following graph as a way to visualize the points in the plane that are also in this relation.

m | n (m, n) ∈ D

a a | a

a b a | b b | a

a b c a | b b | c a | c

f : A → B f A ×B

f = {(a, f(a)) | a ∈ A} f = {(a, b) ∈ A ×B | b = f(a)}.

f A B f = A

a ∈ A a, b ∈ B (a, b) ∈ f

(a, b) ∈ f b = f(a)

(a, b) a, c) f a ∈ A b, c ∈ B b = c

a ∈ A b, c ∈ B (a, b) ∈ f (a, c) ∈ f b = c

f A B

T

 Progress Check 7.4: A Set of Ordered Pairs

F = {(x, y) ∈ R ×R | y = }x2 F R R ×R

F

A = {x ∈ R | (x, 4) ∈ F }

B = {x ∈ R | (x, 10) ∈ F }

C = {y ∈ R | (5, y) ∈ F }

D = {y ∈ R | (−3, y) ∈ F }

x y y = x2 F

R R

R R

T = {(x, y) ∈ R ×R |  + = 64}x2 y2

R R R

R = {(x, y) ∈ R ×R | y ≥ }x2
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The points  in the relation  are the points on the graph of  or are in the shaded region. This because for these points, 
. One of the shortcomings of this type of graph is that the graph of the equation and the shaded region are actually

unbounded and so we can never show the entire graph of this relation. However, it does allow us to see that the points in this
relation are either on the parabola defined by the equation  or are “inside” the parabola.

When the domain or range of a relation is infinite, we cannot provide a visualization of the entire relation. However, if  is a
(small) finite set, a relation  on  can be specified by simply listing all the ordered pairs in . For example, if ,
then

is a relation on . A convenient way to represent such a relation is to draw a point in the plane for each of the elements of  and
then for each  (or ), we draw an arrow starting at the point  and pointing to the point . If  (or ),
we draw a loop at the point . The resulting diagram is called a directed graph or a digraph. The diagram in Figure 7.2 is a
digraph for the relation .

In a directed graph, the points are called the vertices. So each element of  corresponds to a vertex. The arrows, including the
loops, are called the directed edges of the directed graph. We will make use of these directed graphs in the next section when we
study equivalence relations.

Let . Draw a directed graph for the following two relations on the set . For each relation, it may be
helpful to arrange the vertices of  as shown in Figure 7.3.

, .

(x, y) R y = x2

y ≥ x2

y = x2

A

R A R A = {1, 2, 3, 4}

R = {(1, 1), (4, 4), (1, 3), (3, 2), (1, 2), (2, 1)}

A A

(x, y) ∈ R x R y x y (x, x) ∈ R x R x

x

R

A

 Progress Check 7.5: The Directed Graph of a Relation

A = {1, 2, 3, 4, 5, 6} A

A

R = {(x, y) ∈ A ×A | x divides y} T = {(x, y) ∈ A ×A | x +y is even}
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Answer

Add texts here. Do not delete this text first.

1. Let , , and let  be the set of ordered pairs defined by . 
 
(a) Use the roster method to list all the elements of . Explain why  can be considered to be a relation from 
to . 
(b) Explain why  is a relation from  to . 
(c) What is the domain of ? What is the range of ?

2. Let  and let  (so  is a relation on ). Are the following
statements true or false? Explain. 
 
(a) For each , . 
(b) For every , if , then . 
(c) For every , if  and , then . 
(d)  is a function from  to .

3. Let  be the set of all females citizens of the United States. Let  be the relation on  defined by 

 
That is,  means that  is a daughter of . 
 
(a) Describe those elements of  that are in the domain of . 
(b) Describe those elements of  that are in the range of . 
(c) Is the relation  a function from  to ? Explain.

4. Let  be a nonempty set, and let  be the “subset relation” on . That is,

 
 
(a) Write the open sentence  using standard subset notation. 
(b) What is the domain of this subset relation, ? 
(c) What is the range of this subset relation, ? 
(d) Is  a function from  to ? Explain.

5. Let  be a nonempty set, and let  be the "element of" relation from  to . That is, 

 Exercise 7.1

A = {a, b, c} B = {p, q, r} R R = {(a, p), (b, q), (c, p), (a, q)}

A ×B A ×B A

B

R A B

R R

A = {a, b, c} R = {(a, a), (a, c), (b, b), (b, c), (c, a), (c, b)} R A

x ∈ A x R x

x, y ∈ A x R y y R x

x, y, z ∈ A x R y y R z x R z

R A A

A D A

D = {(x, y) ∈ A ×A | x is a daughter of y}. (7.1.3)

x D y x y

A D

A D

D A A

U R P(U)

R = {(S, T ) ∈ P(U) ×P(U) | S ⊆ T }. (7.1.4)

(S, T ) ∈ R

R

R

R P(U) P(U)

U R U P(U)

R = {(x, S) ∈ U ×P(U) | x ∈ S}. (7.1.5)
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(a) What is the domain of this “element of” relation, ? 
(b) What is the range of this "element of" relation, ? 
(c) Is  a function from  to ? Explain.

6. Let . 
 
(a) Determine the set of all values of  such that , and determine the set of all values of  such that . 
(b) Determine the domain and range of the relation  and write each set using set builder notation. 
(c) Is the relation  a function from  to ? Explain. 
(d) Since  is a relation on , its elements can be graphed in the coordinate plane. Describe the graph of the relation . Is
the graph consistent with your answers in Exercises (6a) through (6c)? Explain.

7. Repeat Exercise( 6) using the relation on  defined by 

 
What is the connection between this relation and the relation in Exercise (6)?

8. Determine the domain and range of each of the following relations on  and sketch the graph of each relation. 
 
(a) 
(b)  
(c)  
(d) 

9. Let  be the relation on  where for all ,  if and only if . 
 
(a) Use set builder notation to describe the relation  as a set of ordered pairs. 
(b) Determine the domain and range of the relation .
(c) Use the roster method to specify these to fall integers  such that  and the set of all integers  such that . 
(d) If possible, find integers  and  such that , , but . 
(e) If , use the roster method to specify the set of all  such that .

10. Let . This means that  is the "less than" relation on . 
 
(a) What is the domain of the relation ? 
(b) What is the range of the relation ? 
(c) Is the relation  a function from  to ? Explain. 
 
Note: Remember that a relation is a set. Consequently, we can talk about one relation being a subset of another relation.
Another thing to remember is that the elements of a relation are ordered pairs. 
 
Explorations and Activities

11. The Inverse of a Relation. In Section 6.5, we introduced the inverse of a function. If  and  are nonempty sets and if 
 is a function, then the inverse of , denoted by , is defined as 

 
Now that we know about relations, we see that  is always a relation from  to . The concept of the inverse of a
function is actually a special case of the more general concept of the inverse of a relation, which we now define.

Let  be a relation from the set  to the set . The inverse of , written  and read "  inverse," is the relation
from  to  defined by 

R

R

R U P(U)

S = {(x, y) ∈ R ×R |  + = 100}x2 y2

x (x, 6) ∈ S x (x, 9) ∈ S

S

S R R

S R S

R

S = {(x, y) ∈ R ×R | y = }.100 −x2− −−−−−−
√ (7.1.6)

R

R = {(x, y) ∈ R ×R |  + = 10}x2 y2

S = {(x, y) ∈ R ×R |  = x +10}y2

T = {(x, y) ∈ R ×R | |x| + |y| = 10}

R = {(x, y) ∈ R ×R |  = }x2 y2

R Z a, b ∈ Z a R b |a −b| ≤ 2

R

R

x x R 5 x 5 R x

x y x R 8 8 R y

a ∈ Z x ∈ Z x R a

= {(x, y) ∈ R ×R | x < y}R< R< R

R<

R<

R< R R

A B

f : A → B f f −1

f −1 =

=

{(b, a) ∈ B ×A | f(a) = b}

{(b, a) ∈ B ×A | (a, b) ∈ f}.
(7.1.7)

f −1 B A

 Definition

R A B R R−1 R

B A
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That is,  is the subset of  consisting of all ordered pairs  such that .

For example, let  be the “divides” relation on . See Progress Check 7.3. So 

 

This means that we can write  if and only if . So, in this case, 

 
Now, if we would like to focus on the first coordinate instead of the second coordinate in , we know that “  divides 

” means the same thing as “  is a multiple of .” Hence, 

 
We can say that the inverse of the “divides” relation on  is the “is a multiple of” relation on . 
Theorem 7.6, which follows, contains some elementary facts about inverse.

Let  be a relation from the set  to the set . Then

The domain of  is the range of . That is, dom( ) = range( ).
The range of  is the domain of . That is, range( ) = dom( ).
The inverse of  is R. That is, .

To prove the first part of Theorem 7.6, observe that the goal is to prove that two sets are equal,

dom( ) = range( )

One way to do this is to prove that each is a subset of the other. To prove that dom( )  range( ), we can start by
choosing an arbitrary element of dom( ). So let  dom( ). The goal now is to prove that  range( ). What
does it mean to say that  dom( )? It means that there exists an  such that

.

Now what does it mean to say that ? It means that . What does this tell us about ?

Complete the proof of the first part of Theorem 7.6. Then, complete the proofs of the other two parts of Theorem 7.6.

Proof

Add proof here and it will automatically be hidden

Answer

Add texts here. Do not delete this text first.
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R−1

R−1

=

=

{(y, x) ∈ B ×A | (x, y) ∈ R},  or

{(y, x) ∈ B ×A | x R y}.
(7.1.8)

R−1 B ×A (y, x) x R y

D Z

D = {(m, n) ∈ Z ×Z | m divides n}. (7.1.9)

m | n (m, n) ∈ D

D−1 =

=

{(n, m) ∈ Z ×Z | (m, n) ∈ D}

{(n, m) ∈ Z ×Z | m divides n}.
(7.1.10)

D−1 m

n n m

= {(n, m) ∈ Z ×Z | n is a multiple of m}.D−1 (7.1.11)

Z Z

 Theorem 7.6.

R A B

R−1 R R−1 R

R−1 R R−1 R

R−1 ( = RR−1)−1

R−1 R

R−1 ⊆ R

R−1 y ∈ R−1 y ∈ R

y ∈ R−1 x ∈ A

(y, x) ∈ R−1

(y, x) ∈ R−1 (x, y) ∈ R y
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7.2: Equivalence Relations

In previous mathematics courses, we have worked with the equality relation. For example, let R be the relation on  defined as
follows: For all ,  if and only if . We know this equality relation on  has the following properties:

For each ,  and so .
For all , if , then . That is, if , then .
For all , if  and , then . That is, if  and , then .

In mathematics, when something satisfies certain properties, we often ask if other things satisfy the same properties. Before
investigating this, we will give names to these properties.

Let  be nonempty set and let  be a relation on .

The relation  is reflexive on  provided that for each ,  or, equivalently, .
The relation  is symmetric provided that for every , if , then  or, equivalently, for every 

, if , then .
The relation  is transitive provided that for every , if  and , then  or, equivalently, for
every , if  and , then .

Before exploring examples, for each of these properties, it is a good idea to understand what it means to say that a relation does
not satisfy the property. So let  be a nonempty set and let  be a relation on .

1. Carefully explain what it means to say that the relation  is not reflexive on the set .
2. Carefully explain what it means to say that the relation  is not symmetric.
3. Carefully explain what it means to say that the relation  is not transitive. 

To illustrate these properties, we let  and define the relations  and  on  as follows: 

4. Draw a directed graph for the relation . Then explain why the relation  is reflexive on , is not symmetric, and is not
transitive.

5. Draw a directed graph for the relation . Is the relation  reflexive on ? Is the relation  symmetric? Is the relation 
transitive? Explain.

1. Let  and let . On page 92 of Section 3.1, we defined what it means to say that  is congruent to  modulo .
Write this definition and state two different conditions that are equivalent to the definition.

2. Explain why congruence modulo n is a relation on .
3. Carefully review Theorem 3.30 and the proofs given on page 148 of Section 3.5. In terms of the properties of relations

introduced in Preview Activity , what does this theorem say about the relation of congruence modulo non the
integers?

4. Write a complete statement of Theorem 3.31 on page 150 and Corollary 3.32.
5. Write a proof of the symmetric property for congruence modulo . That is, prove the following:

Let  and let . If  (mod ), then  (mod ).

Directed Graphs and Properties of Relations
In Section 7.1, we used directed graphs, or digraphs, to represent relations on finite sets. Three properties of relations were
introduced in Preview Activity  and will be repeated in the following descriptions of how these properties can be visualized

 Preview Activity : Properties of Relations7.2.1

Z

a, b ∈ Z a R b a = b Z

a ∈ Z a = b a R a
a, b ∈ Z a = b b = a a R b b R a
a, b, c ∈ Z a = b b = c a = c a R b b R c a R c

 Definition

A R A

R A x ∈ A x R x (x, x) ∈ R

R x, y ∈ A x R y y R x
x, y ∈ A (x, y) ∈ R (y, x) ∈ R

R x, y, z ∈ A x R y y R z x R z
x, y, z ∈ A (x, y) ∈ R (y, z) ∈ R (x, z) ∈ R

A R A

R A

R

R

A = {1, 2, 3, 4} R T A

R

T

=

=

{(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (3, 2)}

{(1, 1), (1, 4), (2, 4), (4, 1), (4, 2)}
(7.2.1)

R R A

T T A T T

 Preview Activity : Review of Congruence Modulo 7.2.2 n

a, b ∈ Z n ∈ N a b n

Z

7.2.1

n

a, b ∈ Z n ∈ N a ≡ b n b ≡ a n

7.2.1
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on a directed graph.

Let  be a nonempty set and let R be a relation on .

The relation  is reflexive on  provided that for each ,  or, equivalently, . . This means that if a
reflexive relation is represented on a digraph, there would have to be a loop at each vertex, as is shown in the following figure.

The relation  is symmetric provided that for every , if , then  or, equivalently, for every , if 
, then .

This means that if a symmetric relation is represented on a digraph, then anytime there is a directed edge from one vertex to a
second vertex, there would be a directed edge from the second vertex to the first vertex, as is shown in the following figure.

The relation  is transitive provided that for every , if  and , then  or, equivalently, for every 
, if  and , then . So if a transitive relation is represented by a digraph, then anytime

there is a directed edge from a vertex  to a vertex  and a directed edge from y to a vertex , there would be a directed edge
from  to .

In addition, if a transitive relation is represented by a digraph, then anytime there is a directed edge from a vertex  to a vertex 
 and a directed edge from  to the vertex , there would be loops at  and . These two situations are illustrated as follows:

Let  and let  be the following relation on :

Draw a directed graph for the relation  and then determine if the relation  is reflexive on , if the relation  is symmetric,
and if the relation  is transitive.

Answer

Add texts here. Do not delete this text first.

Definition of an Equivalence Relation
In mathematics, as in real life, it is often convenient to think of two different things as being essentially the same. For example,
when you go to a store to buy a cold soft drink, the cans of soft drinks in the cooler are often sorted by brand and type of soft drink.
The Coca Colas are grouped together, the Pepsi Colas are grouped together, the Dr. Peppers are grouped together, and so on. When
we choose a particular can of one type of soft drink, we are assuming that all the cans are essentially the same. Even though the
specific cans of one type of soft drink are physically different, it makes no difference which can we choose. In doing this, we are
saying that the cans of one type of soft drink are equivalent, and we are using the mathematical notion of an equivalence relation.

An equivalence relation on a set is a relation with a certain combination of properties that allow us to sort the elements of the set
into certain classes. In this section, we will focus on the properties that define an equivalence relation, and in the next section, we
will see how these properties allow us to sort or partition the elements of the set into certain classes.

A A

R A x ∈ A x R x (x, x) ∈ R

R x, y ∈ A x R y y R x x, y ∈ A

(x, y) ∈ R (y, x) ∈ R

R x, y, z ∈ A x R y y R z x R z
x, y, z ∈ A (x, y) ∈ R (y, z) ∈ R (x, z) ∈ R

x y z

x z

x

y y x x y

 Progress Check 7.7: Properties of Relations

A = {a, b, c, d} R A

R = {(a, a), (b, b), (a, c), (c, a), (b, d), (d, b)}.

R R A R

R
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Let  be a nonempty set. A relation  on the set  is an equivalence relation provided that  is reflexive, symmetric, and
transitive. For , if  is an equivalence relation on  and   , we say that  is equivalent to .

Most of the examples we have studied so far have involved a relation on a small finite set. For these examples, it was convenient to
use a directed graph to represent the relation. It is now time to look at some other type of examples, which may prove to be more
interesting. In these examples, keep in mind that there is a subtle difference between the reflexive property and the other two
properties. The reflexive property states that some ordered pairs actually belong to the relation , or some elements of  are
related. The reflexive property has a universal quantifier and, hence, we must prove that for all , . Symmetry and
transitivity, on the other hand, are defined by conditional sentences. We often use a direct proof for these properties, and so we start
by assuming the hypothesis and then showing that the conclusion must follow from the hypothesis.

Let  be the relation on  defined as follows:

For ,  if and only if  is a multiple of .

So  if and only if there exists a  such that .

The relation  is reflexive on  since for each ,  and, hence, .
Notice that , but  So there exist integers  and  such that  but  Hence, the relation  is not
symmetric.
Now assume that  and . Then there exist integers  and  such that 

 
Using the second equation to make a substitution in the first equation, we see that . Since , we have shown
that  is a multiple of  and hence . Therefore,  is a transitive relation.

The relation  is reflexive on  and is transitive, but since  is not symmetric, it is not an equivalence relation on .

Solution

Add text here.

Define the relation  on  as follows: For all ,    if and only if . For example:

   since  and .

 since  and .

To prove that  is reflexive on , we note that for all , . Since , we conclude that   . Now prove
that the relation  is symmetric and transitive, and hence, that  is an equivalence relation on .

Answer

Add texts here. Do not delete this text first.

Congruence Modulo 
One of the important equivalence relations we will study in detail is that of congruence modulo . We reviewed this relation in
Preview Activity .

Theorem 3.30 tells us that congruence modulo n is an equivalence relation on . Recall that by the Division Algorithm, if ,
then there exist unique integers  and  such that

 Definition: equivalence relation

A ∼ A ∼
a, b ∈ A ∼ A a ∼ b a b

R A

x ∈ A x R x

 Example 7.8: A Relation that Is Not an Equivalence Relation

M Z

a, b ∈ Z a M  b a b

a M  b k ∈ Z a = bk

M Z x ∈ Z x = x ⋅ 1 x M  x

4 M  2 x y x M  y M

x M  y y M  z p q

x = yp and y = zq. (7.2.2)

x = z(pq) pq ∈ Z

x z x M  z M

M Z M Z

 Progress check 7.9 (a relation that is an equivalence relation)

∼ Q a, b ∈ Q a ∼ b a−b ∈ Z

3

4
∼

7

4
− = −1

3

4

7

4
−1 ∈ Z

≁
3

4

1

2
− =

3

4

1

2

1

4
∉ Z

1

4

∼ Q q ∈ Q a−a = 0 0 ∈ Z a ∼ a

∼ ∼ Q

n

n

7.2.2

Z a ∈ Z

q r
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 and .

Theorem 3.31 and Corollary 3.32 then tell us that  (mod ). That is, a is congruent modulo n to its remainder  when it is
divided by . When we use the term “remainder” in this context, we always mean the remainder  with  that is
guaranteed by the Division Algorithm. We can use this idea to prove the following theorem.

Let  and let . Then  (mod ) if and only if  and  have the same remainder when divided by .

Proof

Let  and let . We will first prove that if  and  have the same remainder when divided by , then 
(mod ). So assume that a and bhave the same remainder when divided by , and let  be this common remainder. Then,
by Theorem 3.31,

 (mod ) and  (mod ).

Since congruence modulo  is an equivalence relation, it is a symmetric relation. Hence, since  (mod ), we can
conclude that  (mod ). Combining this with the fact that  (mod ), we now have

 (mod ) and  (mod )

We can now use the transitive property to conclude that  (mod ). This proves that if  and  have the same
remainder when divided by , then  (mod ).

We will now prove that if  (mod ), then  and  have the same remainder when divided by . Assume that 
(mod ), and let  be the least nonnegative remainder when  is divided by . Then  and, by Theorem 3.31,

 (mod ).

Now, using the facts that  (mod ) and  (mod ), we can use the transitive property to conclude that

 (mod )

This means that there exists an integer  such that  or that

Since we already know that , the last equation tells us that  is the least nonnegative remainder when  is
divided by . Hence we have proven that if  (mod ), then  and  have the same remainder when divided by .

1. The relation  on  from Progress Check 7.9 is an equivalence relation.
2. Let  be a nonempty set. The equality relation on  is an equivalence relation. This relation is also called the identity

relation on  and is denoted by , where 

3. Define the relation  on  as follows: 
For ,    if and only if there exists an integer  such that . 
 
We will prove that the relation ~ is an equivalence relation on . The relation  is reflexive on  since for each , 

. 
Now, let  and assume that   . We will prove that   . Since   , there exists an integer  such that  

 
By multiplying both side of this equation by -1, we obtain 

a = nq+r 0 ≤ r < n

a ≡ r n r

n r 0 ≤ r < n

 Theorem 7.10

n ∈ N a, b ∈ Z a ≡ b n a b n

n ∈ N a, b ∈ Z a b n a ≡ b

n n r

a ≡ r n b ≡ r n

n b ≡ r n

r ≡ b n a ≡ r n

a ≡ r n r ≡ b n

a ≡ b n a b

n a ≡ b n

a ≡ b n a b n a ≡ b

n r b n 0 ≤ r < n

b ≡ r n

a ≡ b n b ≡ r n

a ≡ r n

q a−r = nq

a = nq+r.

0 ≤ r < n r a

n a ≡ b n a b n

 Examples of Other Equivalence Relations

∼ Q

A A

A IA

= {(x, x) | x ∈ A}.IA (7.2.3)

∼ R

a, b ∈ R a ∼ b k a−b = 2kπ

R ∼ R a ∈ R

a−a = 0 = 2 ⋅ 0 ⋅ π
a, b ∈ R a ∼ b b ∼ a a ∼ b k

a−b = 2kπ. (7.2.4)

(−1)(a−b)

b−a

=

=

(−1)(2kπ)

2(−k)π.
(7.2.5)
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Since , the last equation proves that   . Hence, we have proven that if   , then    and, therefore, the
relation  is symmetric. 
 
To prove transitivity, let  and assume that    and   . We will prove that   . Now, there exist integers 
and  such that  

 
By adding the corresponding sides of these two equations, we see that 

By the closure properties of the integers, . So this proves that    and, hence the relation  is transitive.

We have now proven that  is an equivalence relation on . This equivalence relation is important in trigonometry. If 
, then there exists an integer  such that  and, hence, . Since the sine and cosine functions

are periodic with a period of , we see that

 
Therefore, when , each of the trigonometric functions have the same value at  and .

4. For an example from Euclidean geometry, we define a relation  on the set  of all lines in the plane as follows:

For ,  if and only if  is parallel to  or .

We added the second condition to the definition of  to ensure that  is reflexive on . Theorems from Euclidean
geometry tell us that if  is parallel to , then  is parallel to , and if  is parallel to  and  is parallel to , then  is
parallel to . (Drawing pictures will help visualize these properties.) This tells us that the relation  is reflexive,
symmetric, and transitive and, hence, an equivalence relation on .

Let  be a finite, nonempty set and let  be the power set of . Recall that  consists of all subsets of . (See page
222.) Define the relation  on  as follows:

For ,  if and only if card( ) = card( ).

For the definition of the cardinality of a finite set, see page 223. This relation states that two subsets of  are equivalent
provided that they have the same number of elements. Prove that  is an equivalence relation on

Answer

Add texts here. Do not delete this text first.

1. Let  and let . Is  an equivalence relation on ? If not, is  reflexive, symmetric, or transitive?
Justify all conclusions.

2. Let . For each of the following, draw a directed graph that represents a relation with the specified properties. 
 
(a) A relation on  that is symmetric but not transitive 
(b) A relation on  that is transitive but not symmetric 
(c) A relation on  that is symmetric and transitive but not reflexive on  

−k ∈ Z b ∼ a a ∼ b b ∼ a

∼

a, b, c ∈ R a ∼ b b ∼ c a ∼ c k

n

a−b = 2kπ and b−c = 2nπ. (7.2.6)

(a−b) +(b−c)

a−c

=

=

2kπ+2nπ

2(k+n)π.
(7.2.7)

k+n ∈ Z a ∼ c ∼

∼ R

a ∼ b k a−b = 2kπ a = b+k(2π)
2π

sin a

cos a

=

=

sin(b+k(2π)) = sin b, and 

cos(b+k(2π)) = cos b.
(7.2.8)

a ∼ b a b

P L

, ∈ Ll1 l2  P  l1 l2 l1 l2 =l1 l2

P P L

l1 l2 l2 l1 l1 l2 l2 l3 l1
l3 P

L

 Progress Check 7.11: Another Equivalence Relation

U P(U) U P(U) U

≈ P(U)

A,B ∈ P (U) A ≈ B A B

U

≈

 Exercise 7.2

A = {a, b} R = {(a, b)} R A R

A = {a, b, c}

A

A

A A
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(d) A relation on  that is not reflexive on , is not symmetric, and is not transitive 
(e) A relation on , other than the identity relation, that is an equivalence relation on 

3. Let . The identity relation on  is 

 
Determine an equivalence relation on  that is different from  or explain why this is not possible.

4. Let . Then  is a relation on . Is  an equivalence relation on ? If not, is 
reflexive, symmetric, or transitive? Justify all conclusions.

5. A relation  is defined on  as follows: For all  in ,  if and only if . Is  an equivalence relation on 
? If not, is  reflexive, symmetric, or transitive. Justify all conclusions.

6. Let  be defined by  for each . Define a relation  on  as follows: 
For ,  if and only if . 
(a) Is the relation an equivalence relation on ?Justify your conclusion. 
(b) Determine all real numbers in the set 

7. Repeat Exercise (6) using the function  that is defined by  for each .
8. (a) Repeat Exercise (6a) using the function  that is defined by  for each . 

(b) Determine all real numbers in the set .
9. Define the relation  on  as follows: For ,  if and only if . In progress Check 7.9, we showed

that the relation  is a equivalence relation on . 
 

(a) List four different elements of the set  

(b) Use set builder notation (without using the symbol ) to specify the set . 
(c) Use the roster method to specify the set .

10. Let  and  be relation on  defined as follows: 
 

 For ,  if and only if 2 divides . 
 For ,  if and only if 3 divides . 

 
(a) Is  an equivalence relation on ? If not, is this relation reflexive, symmetric, or transitive? 
(b)Is  an equivalence relation on ? If not, is this relation reflexive, symmetric, or transitive?

11. Let  be a finite, nonempty set and let  be the power set of . That is,  is the set of all subsets of . Define the
relation  on  as follows: For ,  if and only if . That is, the ordered pair  is in
the relaiton  if and only if  and  are disjoint. 
Is the relation  an equivalence relation on ? If not, is it reflexive, symmetric, or transitive? Justify all conclusions.

12. Let  be a nonempty set and let  be the power set of . That is,  is the set of all subsets of . 
For  and  in , define  to mean that there exists a bijection . Prove that  is an equivalence
relation on . 
Hint: Use results from Sections 6.4 and 6.5.

13. Let  and  be relation on  defined as follows: 
 

 For ,  if and only if  (mod 5). 
 For ,  if and only if  (mod 5). 

 
(a) Is  an equivalence relation on ? If not, is this relation reflexive, symmetric, or transitive? 
(b)Is  an equivalence relation on ? If not, is this relation reflexive, symmetric, or transitive?

14. Let  and  be relation on  defined as follows: 
 

 For ,  if and only if . 
 For ,  if and only if . 

 

A A

A A

A = {1, 2, 3, 4, 5} A

= {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}.IA (7.2.9)

A IA
R = {(x, y) ∈ R ×R | |x| + |y| = 4} R R R R R

R Z a, b Z a R b |a−b| ≤ 3 R

R R

f : R → R f(x) = −4x2 x ∈ R ∼ R

a, b ∈ R a ∼ b f(a) = f(b)
R

C = {x ∈ R | x ∼ 5}.
f : R → R f(x) = −3x−7x2 x ∈ R

f : R → R f(x) = sin x x ∈ R

C = {x ∈ R | x ∼ π}
∼ Q a, b ∈ Q a ∼ b a−b ∈ Z

∼ Q

C = {x ∈ Q | x ∼ }.
5

7
sim C

C

∼ ≈ Z

∙ a, b ∈ Z a ∼ b a+b

∙ a, b ∈ Z a ≈ b a+b

∼ Z

≈ Z

U P(U) U P(U) U

∼ P(U) A,B ∈ P (U) A ∼ B A∩B = ∅ (A,B)
∼ A B

∼ P(U)
U P(U) U P(U) U

A B P(U) A ∼ B f : A → B ∼
P(U)

∼ ≈ Z

∙ a, b ∈ Z a ∼ b 2a+3b ≡ 0
∙ a, b ∈ Z a ≈ b a+3b ≡ 0

∼ Z

≈ Z

∼ ≈ R

∙ a, b ∈ Z a ∼ b xy ≥ 0
∙ a, b ∈ Z a ≈ b xy ≤ 0
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(a) Is  an equivalence relation on ? If not, is this relation reflexive, symmetric, or transitive? 
(b)Is  an equivalence relation on ? If not, is this relation reflexive, symmetric, or transitive?

15. Define the relation  on  as follows: For ,  if and only if . 
 
(a) Prove that  is an equivalence relation on . 
(b) List four different elements of the set 

 
(c) Give a geometric description of set .

16. Evaluation of proofs 
See the instructions for Exercise (19) on page 100 from Section 3.1.

Proposition. Let  be a relation on a set . If  is symmetric and transitive, then  is reflexive.

Proof

Let . If , then  since  is symmetric. Now,  and , and since  is transitive, we can
conclude that . Therefore,  is reflexive.

Proposition. Let  be a relation on  where for all ,  if and only if  (mod 3). The relation 
 is an equivalence relation on .

Proof

Assume . Then  (mod 3) since  (mod 3). Therefore,  is reflexive on . In addition, if
, then  (mod 3), and if we multiply both sides of this congruence by 2, we get

This means that  and hence,  is symmetric.

We now assume that  (mod 3) and  (mod 3).

By adding the corresponding sides of these two congruences, we obtain

Hence, the relation  is transitive and we have proved that  is an equivalence relation on .

Explorations and Activities

17. Other Types of Relations. In this section, we focused on the properties of a relation that are part of the definition of an
equivalence relation. However, there are other properties of relations that are of importance. We will study two of these
properties in this activity.

A relation  on a set  is a circular relation provided that for all , , and  in , if  and , then .

(a) Carefully explain what it means to say that a relation  on a set  is not circular.

∼ R

≈ R

≈ R ×R (a, b), (c, d) ∈ R ×R (a, b) ≈ (c, d) + = +a2 b2 c2 d2

≈ R ×R

C = {(x, y) ∈ R ×R | (x, y) ≈ (4, 3)}. (7.2.10)

C

 (a)

R A R R

x, y ∈ A x R y y R x R x R y y R x R

x R x R

 (b)

∼ Z a, b ∈ Z a ∼ b (a+2b) ≡ 0
∼ Z

a ∼ a (a+2a) ≡ 0 (3a) ≡ 0 ∼ Z

a ∼ b (a+2b) ≡ 0

2(a+2b)

(2a+4b)

(a+2b)

(b+2a)

≡

≡

≡

≡

2 ⋅ 0 (mod 3)

0 (mod 3)

0 (mod 3)

0 (mod 3).

(7.2.11)

b  ∼  a ∼

(a+2b) ≡ 0 (b+2c) ≡ 0

(a+2b) +(b+2c)

(a+3b+2c)

(a+2c)

≡

≡

≡

0 +0 (mod 3)

0 (mod 3)

0 (mod 3).

(7.2.12)

∼ ∼ Z

R A x y z A x R y y R z z R x

R A
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(b) Let . Draw a directed graph of a relation on  that is circular and draw a directed graph of a relation on 
that is not circular. 
(c) Let . Draw a directed graph of a relation on  that is circular and not transitive and draw a directed graph of a
relation on  that is transitive and not circular.

(d) Prove the following proposition: 
A relation  on a set  is an equivalence relation if and only if it is reflexive and circular.

A relation  on a set  is an antisymmetric relation provided that for all , if  and , then .

(e) Carefully explain what it means to say that a relation on a set  is not antisymmetric.

(f) Let . Draw a directed graph of a relation on  that is antisymmetric and draw a directed graph of a relation on
 that is not antisymmetric.

(g)Are the following propositions true or false? Justify all conclusions.

If a relation  on a set  is both symmetric and antisymmetric, then  is transitive.
If a relation  on a set  is both symmetric and antisymmetric, then  is reflexive.

Answer

Add texts here. Do not delete this text first.

This page titled 7.2: Equivalence Relations is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

7.2: Equivalence Relations by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

A = {1, 2, 3} A A

A = {1, 2, 3} A

A

R A

R A x, y ∈ A x R y y R x x = y

A

A = {1, 2, 3} A

A

R A R

R A R
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7.3: Equivalence Classes

As was indicated in Section 7.2, an equivalence relation on a set  is a relation with a certain combination of properties
(reflexive, symmetric, and transitive) that allow us to sort the elements of the set into certain classes. This is done by means of
certain subsets of  that are associated with the elements of the set . This will be illustrated with the following example. Let 

, and let  be the relation on the set  defined as follows:

     
    
   

For each , define the subset  of  as follows:

That is,  consists of those elements in  such that . For example, using , we see that , , and ,
and so .

1. Determine , ,  and .
2. Draw a directed graph for the relation  and explain why  is an equivalence relation on .
3. Which of the sets , , ,  and  are equal?
4. Which of the sets , , ,  and  are disjoint?

As we will see in this section, the relationships between these sets is typical for an equivalence relation. The following example
will show how different this can be for a relation that is not an equivalence relation.

Let , and let  be the relation on the set  defined as follows:

    
   
 

5. Draw a digraph that represents the relation  on . Explain why  is not an equivalence relation on .

For each , define the subset  of  as follows: 

For example, using , we see that  since  and . In addition, we see that  since
there is no x 2 A such that.x;a/ 2 S.

6. Determine , , and .

7. Which of the sets , , , , and  are equal?

8. Which of the sets , , , and  are disjoint?

An important equivalence relation that we have studied is congruence modulo  on the integers. We can also define subsets of
the integers based on congruence modulo . We will illustrate this with congruence modulo 3. For example, we can define 

 to be the set of all integers a that are congruent to 0 modulo 3. That is,

Since an integer  is congruent to 0 modulo 3 if an only if 3 divides , we can use the roster method to specify this set as
follows:

 PREVIEW ACTIVITY : Sets Associated with a Relation7.3.1

A

A A

A = {a, b, c, d, e} R A

a R a b R b c R c d R d e R e
a R b b R a b R e e R b
a R e e R a c R d d R c

y ∈ A R[y] A

R[y] = {x ∈ A | x R y}.

R[y] A x R y y = a a R a b R a e R a
R[a] = {a, b, e}

R[b] R[c] R[d] R[e]
R R A

R[a] R[b] R[c] R[d] R[e]
R[a] R[b] R[c] R[d] R[e]

A = {a, b, c, d} S A

b S b c S c d S d e S e
a S b a S d b S c
c S d d S c

S A S A

y ∈ A S[y] A

S[y] = {x ∈ A | x S y} = {x ∈ A | (x, y) ∈ S}.

y = b S[b] = {a, b} (a, b) ∈ S (b, b) ∈ S S[a] = ∅

S[c] S[d] S[e]

S[a] S[b] S[c] S[d] S[e]

S[b] S[c] S[d] S[e]

 PREVIEW ACTIVITY : Congruence Modulo 37.3.2

n

n

C[0]

C[0] = {a ∈ Z | a ≡ 0 (mod 3)}.

a a

C[0] = {. . . , −9, −6, −3, 0, 3, 6, 9, . . . }.
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1. Use the roster method to specify each of the following sets: 
 
(a) The set  of all integers  that are congruent to 1 modulo 3. That is,  
(b) The set  of all integers  that are congruent to 2 modulo 3. That is,  
(c) The set  of all integers  that are congruent to 3 modulo 3. That is, 

2. Now consider the three sets, , , and . 
 
(a) Determine the intersection of any two of these sets. That is, determine , , and .
(b) Let . What is the remainder when  is divided by 3? Which of the three sets, if any, contains ? 
(c) Repeat Part (2b) for  and for . 
(d) Do you think that  Explain. 
(e) Is the set  equal to one of the sets , , or ? 
(f) We can also define . Is this set equal to any of the previous sets we have studied in
this part? Explain.

The Definition of an Equivalence Class

We have indicated that an equivalence relation on a set is a relation with a certain combination of properties (reflexive, symmetric,
and transitive) that allow us to sort the elements of the set into certain classes. We saw this happen in the preview activities. We can
now illustrate specifically what this means. For example, in Preview Activity , we used the equivalence relation of congruence
modulo 3 on  to construct the following three sets:

The main results that we want to use now are Theorem 3.31 and Corollary 3.32 on page 150. This corollary tells us that for any 
,  is congruent to precisely one of the integers 0, 1, or 2. Consequently, the integer  must be congruent to 0, 1, or 2, and it

cannot be congruent to two of these numbers. Thus

1. For each , , , or ; and
2. , , and .

This means that the relation of congruence modulo 3 sorts the integers into three distinct sets, or classes, and that each pair of these
sets have no elements in common. So if we use a rectangle to represent , we can divide that rectangle into three smaller
rectangles, corresponding to , , and  and we might picture this situation as follows:

The Integers

 consisting of all integers with a
remainder of 0 when divided by 3

 consisting of all integers with a remainder
of 1 when divided by 3

 consisting of all integers with a remainder
of 2 when divided by 3

Each integer is in exactly one of the three sets (C[0]\), , or , and two integers are congruent modulo 3 if and only if they
are in the same set. We will see that, in a similar manner, if  is any natural number, then the relation of congruence modulo  can
be used to sort the integers into  classes. We will also see that in general, if we have an equivalence relation  on a set , we can
sort the elements of the set  into classes in a similar manner.

Let  be an equivalence relation on a nonempty set . For each , the equivalence class of  determined by  is the
subset of , denoted by [ ], consisting of all the elements of  that are equivalent to . That is,

We read [ ] as "the equivalence class of " or as "bracket ."

Notes

C[1] a C[1] = {a ∈ Z | a ≡ 1 (mod 3)}.
C[2] a C[2] = {a ∈ Z | a ≡ 2 (mod 3)}.
C[3] a C[3] = {a ∈ Z | a ≡ 3 (mod 3)}.

C[0] C[1] C[2]

C[0] ∩C[1] C[0] ∩C[2] C[1] ∩C[2]
n = 734 n n = 734

n = 79 n = −79
C[0] ∪C[1] ∪C[2] = Z

C[3] C[0] C[1] C[2]
C[4] = {a ∈ Z | a ≡ 4 (mod 3)}

7.3.2
Z

C[0]

C[1]

C[2]

=

=

=

{a ∈ Z | a ≡ 0 (mod 3)},

{a ∈ Z | a ≡ 1 (mod 3)},  and

{a ∈ Z | a ≡ 2 (mod 3)}.

(7.3.1)

a ∈ Z a a

a ∈ Z a ∈ C[0] a ∈ C[1] a ∈ C[2]
C[0] ∩C[1] = ∅ C[0] ∩C[2] = ∅ C[1] ∩C[2] = ∅

Z

C[0] C[1] C[2]

C[0] C[1] C[2]

C[1] C[2]
n n

n R A

A

 Definition

∼ A a ∈ A a ∼
A a A a

[a] = {x ∈ A | x ∼ a}.

a a a
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1. We use the notation [ ] when only one equivalence relation is being used. If there is more than one equivalence relation, then
we need to distinguish between the equivalence classes for each relation. We often use something like , or if  is the name
of the relation, we can use  or  for the equivalence class of a determined by . In any case, always remember that
when we are working with any equivalence relation on a set A if , then the equivalence class [ ] is a subset of .

2. We know that each integer has an equivalence class for the equivalence relation of congruence modulo 3. But as we have seen,
there are really only three distinct equivalence classes. Using the notation from the definition, they are: 
 

 
 and 

Without using the terminology at that time, we actually determined the equivalence classes of the equivalence relation  in
Preview Activity . What are the distinct equivalence classes for this equivalence relation?

Answer

Add texts here. Do not delete this text first.

Congruence Modulo  and Congruence Classes
In Preview Activity , we used the notation  for the set of all integers that are congruent to  modulo 3. We could have
used a similar notation for equivalence classes, and this would have been perfectly acceptable. However, the notation [ ] is
probably the most common notation for the equivalence class of . We will now use this same notation when dealing with
congruence modulo  when only one congruence relation is under consideration.

Let . Congruence modulo  is an equivalence relation on . So for ,

In this case, [ ] is called the congruence class of  modulo .

We have seen that congruence modulo 3 divides the integers into three distinct congruence classes. Each congruence class consists
of those integers with the same remainder when divided by 3. In a similar manner, if we use congruence modulo 2, we simply
divide the integers into two classes. One class will consist of all the integers that have a remainder of 0 when divided by 2, and the
other class will consist of all the integers that have a remainder of 1 when divided by 2. That is, congruence modulo 2 simply
divides the integers into the even and odd integers.

Determine all of the distinct congruence classes for the equivalence relation of congruence modulo 4 on the integers. Specify
each congruence class using the roster method.

Answer

Add texts here. Do not delete this text first.

Properties of Equivalence Classes
As we have seen, in Preview Activity , the relation R was an equivalence relation. For that preview activity, we used  to
denote the equivalence class of , and we observed that these equivalence classes were either equal or disjoint.

However, in Preview Activity , the relation  was not an equivalence relation, and hence we do not use the term “equivalence
class” for this relation. We should note, however, that the sets  were not equal and were not disjoint. This exhibits one of the
main distinctions between equivalence relations and relations that are not equivalence relations.

a

[a]∼ R

R[a] [a]R R

a ∈ A a A

[0] = {a ∈ Z | a ≡ 0 (mod 3)},
[1] = {a ∈ Z | a ≡ 1 (mod 3)},
[2] = {a ∈ Z | a ≡ 2 (mod 3)}.

 Progress Check 7.12 (Equivalence Classes from Preview Activity )7.3.1

R

7.3.1

n

7.3.2 C[k] k

a

a

n

 Definition: congruence class of  modulo .a n

n ∈ N n Z a ∈ Z

[a] = {x ∈ Z | x ≡ a (mod n)}.

a a n

 Progress Check 7.13: Congruence Modulo 4

7.3.1 R[y]
y ∈ A

7.3.1 S

S[y]
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In Theorem 7.14, we will prove that if  is an equivalence relation on the set , then we can “sort” the elements of  into distinct
equivalence classes. The properties of equivalence classes that we will prove are as follows: (1) Every element of A is in its own
equivalence class; (2) two elements are equivalent if and only if their equivalence classes are equal; and (3) two equivalence classes
are either identical or they are disjoint.

Let  be a nonempty set and let  be an equivalence relation on the set . Then,

1. For each , .
2. For each ,  if and only if ,
3. For each ,  or .

Proof

Let A be a nonempty set and assume that  is an equivalence relation on . To prove the first part of the theorem, let 
. Since  is an equivalence relation on , it is reflexive on . Thus, , and we can conclude that .

The second part of this theorem is a biconditional statement. We will prove it by proving two conditional statements. We
will first prove that if , then . So let  and assume that . We will now prove that the two sets 
and  are equal. We will do this by proving that each is a subset of the other.

First, assume that . Then, by definition, . Since we have assumed that , we can use the transitive
property of  to conclude that , and this means that . This proves that .

We now assume that . This means that , and hence by the symmetric property, that . Again, we are
assuming that . So we have

 and .

We use the transitive property to conclude that  and then, using the symmetric property, we conclude that . This
proves that  and, hence, that . This means that we can conclude that if , then .

We must now prove that if , then . Let  and assume that . Using the first part of the theorem,
we know that  and since the two sets are equal, this tells us that . Hence by the definition of , we conclude
that . This completes the proof of the second part of the theorem.

For the third part of the theorem, let . Since this part of the theorem is a disjunction, we will consider two cases:
Either

 or .

In the case where , the first part of the disjunction is true, and hence there is nothing to prove. So we assume
that ; and will show that . Since , there is an element  in  such that

.

This means that  and . Consequently,  and , and so we can use the first part of the theorem to
conclude that  and . Hence, , and we have proven that  or .

Theorem 7.14 gives the primary properties of equivalence classes. Consequences of these properties will be explored in the
exercises. The following table restates the properties in Theorem 7.14 and gives a verbal description of each one.

Formal Statement from Theorem 7.14 Verbal Description

For each , . Every element of  is in its own equivalence class.

For each ,  if and only if . Two elements of  are equivalent if and only if their equivalence classes
are equal.

For each ,  or 
Any two equivalence classes are either equal or they are disjoint. This
means that if two equivalence classes are not disjoint then they must be
equal.

∼ A A

 Theorem 7.14

A ∼ A

a ∈ A a ∈ [a]
a, b ∈ A a ∼ b [a] = [b]
a, b ∈ A [a] = [b] [a] ∩ [b] = ∅

∼ A

a ∈ A ∼ A A a ∼ a a ∈ [a]

a ∼ b [a] = [b] a, b ∈ A a ∼ b [a]
[b]

x ∈ [a] x ∼ a a ∼ b

∼ x ∼ b x ∈ [b] [a] ⊆ [b]

y ∈ [b] y ∼ b b ∼ y

a ∼ b

a ∼ b b ∼ y

a ∼ y y ∼ a

y ∈ [a] [b] ⊆ [a] a ∼ b [a] = [b]

[a] = [b] a ∼ b a, b ∈ A [a] = [b]
a ∈ [a] a ∈ [b] [b]

a ∼ b

a, b ∈ A

[a] ∩ [b] = ∅ [a] ∩ [b] ≠ ∅

[a] ∩ [b] = ∅
[a] ∩ [b] ≠ ∅ [a] = [b] [a] ∩ [b] ≠ ∅ x A

a ∈ [a] ∩ [b]

x ∈ [a] x ∈ [b] x ∈ a x ∈ b

[x] = [a] [x] = [b] [a] = [b] [a] = [b] [a] ∩ [b] = ∅

a ∈ A a ∈ [a] A

a,b ∈ A a ∼ b [a] = [b]
A

a,b ∈ A [a] = [b] [a] ∩ [b] = ∅
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Let  be defined by  for each . Define a relation  on  as follows:

For ,  if and only if .

In Exercise (6) of Section 7.2, we proved that  is an equivalence relation on . Consequently, each real number has an
equivalence class. For this equivalence relation,

1. Determine the equivalence classes of 5, -5, 10, -10, , and .
2. Determine the equivalence class of 0.
3. If , use the roster method to specify the elements of the equivalence class .

Answer

Add texts here. Do not delete this text first.

The results of Theorem 7.14 are consistent with all the equivalence relations studied in the preview activities and in the progress
checks. Since this theorem applies to all equivalence relations, it applies to the relation of congruence modulo  on the integers.
Because of the importance of this equivalence relation, these results for congruence modulo n are given in the following corollary.

Let . For each , let  represent the congruence class of  modulo .

1. For each , .
2. For each ,  (mod ) if and only if .
3. For each ,  or .

For the equivalence relation of congruence modulo , Theorem 3.31 and Corollary 3.32 tell us that each integer is congruent to
its remainder when divided by , and that each integer is congruent modulo  to precisely one of one of the integers 

. This means that each integer is in precisely one of the congruence classes . Hence,
Corollary 7.16 gives us the following result

Let . For each , let  represent the congruence class of  modulo .

1. 
2. For , if , then .

Partitions and Equivalence Relations
A partition of a set  is a collection of subsets of  that “breaks up” the set  into disjoint subsets. Technically, each pair of
distinct subsets in the collection must be disjoint. We then say that the collection of subsets is pairwise disjoint. We introduce the
following formal definition.

Let  be a nonempty set, and let  be a collection of subsets of . The collection of subsets  is a partition of  provided
that

1. For each , .
2. For each , there exists a  such that .
3. For every ,  or .

There is a close relation between partitions and equivalence classes since the equivalence classes of an equivalence relation form a
partition of the underlying set, as will be proven in Theorem 7.18. The proof of this theorem relies on the results in Theorem 7.14.

 Progress Check 7.15: Equivalence Classes

f : R → R f(x) = −4x2 x ∈ R ∼ R

a, b ∈ R a ∼ b f(a) = f(b)

∼ R

π −π

a ∈ R [a]

n

 Corollary 7.16.

n ∈ N a ∈ Z [a] a n

a ∈ Z a ∈ [a]
a, b ∈ Z a ≡ b n [a] = [b]
a, b ∈ Z [a] = [b] [a] ∩ [b] = ∅

n

n n

0, 1, 2, . . . ,n−1 [0], [1], [2], . . . , [n−1]

 Theorem 7.3.1

n ∈ N a ∈ Z [a] a n

Z = [0] ∪ [1] ∪ [2] ∪ ⋅ ⋅ ⋅ ∪ [n−1]
j, k ∈ {0, 1, 2, . . . ,n−1} j≠ k [j] ∩ [k] = ∅

A A A

 Definition: partition of A

A C A C A

V ∈ C V ≠ ∅
x ∈ A V ∈ C x ∈ V

V ,W ∈ C V = W V ∩W = ∅
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Let  be an equivalence relation on the nonempty set . Then the collection  of all equivalence classes determined by  is a
partition of the set .

Proof

Let  be an equivalence relation on the nonempty set , and let  be the collection of all equivalence classes determined
by . That is,

.

We will use Theorem 7.14 to prove that  is a partition of .

Part (1) of Theorem 7.14 states that for each , . In terms of the equivalence classes, this means that each
equivalence class is nonempty since each element of  is in its own equivalence class. Consequently, , the collection of
all equivalence classes determined by , satisfies the first two conditions of the definition of a partition.

We must now show that the collection  of all equivalence classes determined by  satisfies the third condition for being a
partition. That is, we need to show that any two equivalence classes are either equal or are disjoint. However, this is exactly
the result in Part (3) of Theorem 7.14.

Hence, we have proven that the collection C of all equivalence classes determined by  is a partition of the set A.

Note: Theorem 7.18 has shown us that if  is an equivalence relation on a nonempty set , then the collection of the equivalence
classes determined by  form a partition of the set .

This process can be reversed. This means that given a partition  of a nonempty set , we can define an equivalence relation on 
whose equivalence classes are precisely the subsets of  that form the partition. This will be explored in Exercise (12).

1. Let  and let  be the relation on  that is represented by the directed graph in Figure 7.4. 

 
Prove that  is an equivalence relation on the set , and determine all of the equivalence classes determined by this
equivalence relation.

2. Let , and assume that  is an equivalence relation on . Also assume that it is known that 
   
   

Draw a complete directed graph for the equivalence relation  on the set , and then determine all of the equivalence
classes for this equivalence relation.

3. Let . Define the relation  on  as follws: 
For ,  if and only if  and  have the same number of digits.

Prove that  is an equivalence relation on the set  and determine all of the distinct equivalence classes determined by .

4. Determine all of the congruence classes for the relation of congruence modulo 5 on the set of integers.

 Theorem 7.18

∼ A C ∼
A

∼ A C

∼

C = {[a] | a ∈ A}

C A

a ∈ A a ∈ [a]
A C

∼

C ∼

∼

∼ A

∼ A

C A A

A

 Exercise 7.3

A = {a, b, c, d, e} ∼ A

∼ A

A = {a, b, c, d, e, f} ∼ A

a ∼ b a ≁ c e ∼ f

a ∼ d a ≁ f e ≁ c

∼ A

A = {0, 1, 2, 3, . . . , 999, 1000} R A

x, y ∈ A x R y x y

R A R
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5. Let . 
(a) Define the relation  on  as follows: for all ,  if and only if  (mod 9). Prove that  is an
equivalence relation on  and determine all of the distinct equivalence classes of this equivalence relation. 
(b) Define the relation  on  as follows: For all ,  if and only if  (mod 9). Prove that  is an
equivalence relation on  and determine all of the distinct equivalence classes of this equivalence relation.

6. Define the relation  on  as follows: For ,  if and only if . In Progress Check 7.9 of Section 7.2,
we showed that the relation  is an equivalence relation on . Also, see Exercise (9) in Section 7.2. 
 

(a) Prove that . 

(b) If , then what is the equivalence class of ? 

(c) If , prove that there is a bijection from  to .

7. Define the relation  on  as follows: 
For ,  if and only if . 
 
(a) Prove that  is an equivalence relation on . 
(b) List four different real numbers that are in the equivalence class of . 
(c) If , what is the equivalence class of ? 
(d) Prove that . 
(e) If , prove that there is a bijection from  to .

8. Define the relation  on  as follows: For ,  if and only if  (mod 5). The relation  is an
equivalence relation on . (See Exercise (13) in Section 7.2). Determine all the distinct equivalence classes for this
equivalence relation.

9. Let . That is, . Define the relation  on  as follows: 
For ,  if and only if . 
 
(a) Prove that  is an equivalence relation on . 
(b) Why was it necessary to include the restriction that  in the definition of the set ? 
(c) Determine an equation that gives a relation between  and  if  and . 
(d) Determine at least four different elements in [(2, 3)], the equivalence class of (2, 3). 
(e) Use set builder notion to describe [(2, 3)], the equivalence class of (2, 3).

10. For , define  if and only if . In Exercise (15) of Section 7.2, we
proved that  is an equivalence relation on . 
 
(a) Determine the equivalence class of (0, 0). 
(b) Use set builder notation (and do not use the symbol ) to describe the equivalence class of (2, 3) and then give a
geometric description of this equivalence class. 
(c) Give a geometric description of a typical equivalence class for this equivalence relation. 
(d) Let . Prove that there is a one-to-one correspondence (bijection) between  and the set of all
equivalence classes for this equivalence relation.

11. Let  be a nonempty set and let  be an equivalence relation on . Prove each of the following: 
 
(a) For each ,  if and only if . 
(b) For each , if , then . 
(c) For each , if  then . 
 
Explorations and Activities

12. A Partition Defines an Equivalence Relation. Let  and let . 
 
(a) Explain why  is a partition of . 
 
Define a relation  on  as follows: For ,  if and only if there exists a set  in  such that  and 

= {0, 1, 2, 3, 4, 5, 6, 7, 8}Z9

∼ Z9 a, b ∈ Z9 a ∼ b ≡a2 b2 ∼
Z9

≈ Z9 a, b ∈ Z9 a ≈ b ≡a3 b3 ≈
Z9

∼ Q a, b ∈ Q a ∼ b a−b ∈ Z

∼ Q

[ = {m+  | m ∈ Z}
5

7

5

7
a ∈ Z a

a ∈ Z [a] [ ]
5

7
∼ R

x, y ∈ R x ∼ y x−y ∈ Q

∼ R

2
–

√

a ∈ Q a

[ ] = {r+  | r ∈ Q}2
–

√ 2
–

√

a ∈ Q [a] [ ]2
–

√

∼ Z a, b ∈ Z a ∼ b (2a+3b ≡ 0 ∼
Z

A = Z ×(Z −{0}) A = {(a, b) ∈ Z ×Z | b ≠ 0} ≈ A

(a, b), (c, d) ∈ A (a, b) ≈ (c, d) ad = bc

≈ A

b ≠ 0 A

a b (a, b) ∈ A (a, b) ≈ (2, 3)

(a, b)(c, d) ∈ R ×R (a, b) ∼ (c, d) + = +a2 b2 c2 d2

∼ R ×R

∼

= {x ∈ R | x ≥ 0}R
∗

R
∗

A ∼ A

a, b ∈ A a ≁ b [a] ∩ [b] = ∅
a, b ∈ A [a] ≠ [b] [a] ∩ [b] = ∅
a, b ∈ A [a] ∩ [b] ≠ ∅ [a] = [b]

A = {a, b, c, d, e} C = {{a, b, c}, {d, e}}

C A

∼ A x, y ∈ A x ∼ y U C x ∈ U
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. 
 
(b) Prove that  is an equivalence relation on the set , and then determine all the equivalence classes for . How does the
collection of all equivalence classes compare to ? 
 
What we did for the specific partition in Part (12b) can be done for any partition of a set. So to generalize Part (12b), we let 

 be a nonempty set and let  be a partition of . We then define a relation  on  as follows: 
For ,  if and only if there exists a set  in  such that  and . 
 
(c) Prove that  is an equivalence relation on the set . 
(d) Let  and let  such that . Prove that .

13. Equivalence Relations on a Set of Matrices. The following exercises require a knowledge of elementary linear algebra.
We let  be the set of all  by  matrices with real number entries. 
 
(a) Define a relation  on  as follows: For all ,  if and only if there exists an invertible
matrix  in  such that . Is  an equivalence relation on ? Justify your conclusion. 
(b) Define a relation  on  as follows: For all ,  if and only if det( ) = det( ). Is  an
equivalence relation on ? Justify your conclusion. 
(c) Let  be an equivalence relation on . Define a relation  on  as follow: For all ,  if
and only if det( )  det( ). Is  an equivalence relation on ? Justify your conclusion.

Answer

Add texts here. Do not delete this text first.

This page titled 7.3: Equivalence Classes is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted
Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

7.3: Equivalence Classes by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

y ∈ U

∼ A ∼
C

A C A ∼ A

x, y ∈ A x ∼ y U C x ∈ U y ∈ U

∼ A

a ∈ A U ∈ C a ∈ U [a] = U

(RMn,n n n

∼ (RMn,n A,B ∈ (RMn,n A ∼ B

P (RMn,n B = PAP −1 ∼ (RMn,n

R (RMn,n A,B ∈ (RMn,n A R B A B R

(RMn,n

∼ R ≈ (RMn,n A,B ∈ (RMn,n A ≈ B

A ∼ B ≈ (RMn,n

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86139?pdf
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/07%3A_Equivalence_Relations/7.03%3A_Equivalence_Classes
https://creativecommons.org/licenses/by-nc-sa/3.0
https://www.tedsundstrom.com/
https://scholarworks.gvsu.edu/
https://scholarworks.gvsu.edu/books/7
https://math.libretexts.org/@go/page/7077
https://www.tedsundstrom.com/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://scholarworks.gvsu.edu/books/7


7.4.1 https://math.libretexts.org/@go/page/86140

7.4: Modular Arithmetic

For this preview activity, we will only use the relation of congruence modulo 6 on the set of integers.

1. Find five different integers a such that  (mod 6) and find five different integers  such that  (mod 6). That is,
find five different integers in [3], the congruence class of 3 modulo 6 and five different integers in [4], the congruence class
of 4 modulo 6.

2. Calculate  using several values of  in [3] and several values of  in [4] from Part (1). For each sum  that is
calculated, find  so that  and  (mod 6). What do you observe?

3. Calculate  using several values of  in [3] and several values of  in [4] from Part (1). For each product  that is
calculated, find  so that  and  (mod 6). What do you observe?

4. Calculate  using several values of a in [3] from Part (1). For each product  that is calculated, find  so that 
 and  (mod 6). What do you observe?

If a and b are integers with b > 0, then from the Division Algorithm, we know that there exist unique integers  and  such that

 and .

In this activity, we are interested in the remainder . Notice that . So, given  and , if we can calculate , then we
can calculate .

We can use the “int” function on a calculator to calculate . [The “int” function is the “greatest integer function.” If  is a real
number, then int( ) is the greatest integer that is less than or equal to .]

So, in the context of the Division Algorithm, . Consequently,

.

If  is a positive integer, we will let  denote the sum of the digits of . For example, if , then

.

For each of the following values of , calculate

The remainder when  is divided by 9, and
The value of  and the remainder when  is divided by 9.

1. 
2. 
3. 
4. 
5. 
6. 

What do you observe?

The Integers Modulo 

Let . Since the relation of congruence modulo n is an equivalence relation on , we can discuss its equivalence classes.
Recall that in this situation, we refer to the equivalence classes as congruence classes.

Let . The set of congruence classes for the relation of congruence modulo  on  is the set of integers modulo , or the
set of integers mod . We will denote this set of congruence classes by .

 PREVIEW ACTIVITY : Congruence Modulo 67.4.1

a ≡ 3 b b ≡ 4

s = a+b a b s

r 0 ≤ r < 6 s ≡ r

p = a ⋅ b a b p

r 0 ≤ r < 6 p ≡ r

q = a2 q r

0 ≤ r < 6 q ≡ r

 PREVIEW ACTIVITY : The Remainder When Dividing by 97.4.2

q r

a = bq+r 0 ≤ r < b

r r = a−bq a b q

r

q x

x x

q = int( )
a

b

r = a−b ⋅ int( )
a

b

n s(n) n n = 731

s(731) = 7 +3 +1 = 11

n

n

s(n) s(n)

n = 498

n = 7319

n = 4672

n = 9845

n = 51381

n = 305877

n

n ∈ N Z

 Definition: integers modulo n

n ∈ N n Z n

n Zn
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Corollary 7.17 tells us that

.

In addition, we know that each integer is congruent to precisely one of the integers 0, 1, 2, ..., . This tells us that one way to
represent  is

.

Consequently, even though each integer has a congruence class, the set  has only  distinct congruence classes.

The set of integers  is more than a set. We can add and multiply integers. That is, there are the arithmetic operations of addition
and multiplication on the set , and we know that  is closed with respect to these two operations.

One of the basic problems dealt with in modern algebra is to determine if the arithmetic operations on one set “transfer” to a related
set. In this case, the related set is . For example, in the integers modulo 5, , is it possible to add the congruence classes [4] and
[2] as follows?

We have used the symbol ̊ to denote addition in  so that we do not confuse it with addition in . This looks simple enough, but
there is a problem. The congruence classes [4] and [2] are not numbers, they are infinite sets. We have to make sure that we get the
same answer no matter what element of [4] we use and no matter what element of [2] we use. For example,

 (mod 5) and so [9] = [4]. Also, 
 (mod 5) and so [7] = [2].

Do we get the same result if we add [9] and [7] in the way we did when we added [4] and [2]? The following computation confirms
that we do:

This is one of the ideas that was explored in Preview Activity . The main difference is that in this preview activity, we used
the relation of congruence, and here we are using congruence classes. All of the examples in Preview Activity  should have
illustrated the properties of congruence modulo 6 in the following table. The left side shows the properties in terms of the
congruence relation and the right side shows the properties in terms of the congruence classes.

If  (mod 6) and  (mod 6), then

 (mod 6);
 (mod 6).

If  and  in , then

;
.

These are illustrations of general properties that we have already proved in Theorem 3.28. We repeat the statement of the theorem
here because it is so important for defining the operations of addition and multiplication in .

Let  be a natural number and let , , , and  be integers. Then

1. If  (mod ) and  (mod ), then  (mod ).
2. If  (mod ) and  (mod ), then  (mod ).
3. If  (mod ) and , then  (mod ).

Proof

Add proof here and it will automatically be hidden

Since  (mod ) if and only if , we can restate the result of this Theorem 3.28 in terms of congruence classes in .

Z = [0] ∪ [1] ∪ [2] ∪ ⋅ ⋅ ⋅ ∪ [n−1]

n−1

Zn

= {[0], [1], [2], . . . [n−1]}Zn

Zn n

Z

Z Z

Zn Z5

[4] ⊕[2] =

=

=

[4 +2]

[6]

[1].

(7.4.1)

Z5 Z

9 ≡ 4

7 ≡ 2

[9] ⊕[7] =

=

=

[9 +7]

[16]

[1].

(7.4.2)

7.4.1

7.4.1

a ≡ 3 b ≡ 4

(a+ b) ≡ (3 + 4)

(a ⋅ b) ≡ (3 ⋅ 4)

[a] = [3] [b] = [4] Z6

[a+ b] = [3 + 4]

[a ⋅ b] = [3 ⋅ 4]

Zn

 Theorem 3.28

n a b c d

a ≡ b n c ≡ d n (a+c) ≡ (b+d) n

a ≡ b n c ≡ d n ac ≡ bd n

a ≡ b n m ∈ N ≡am bm n

x ≡ y n [x] = [y] Zn
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Let  be a natural number and let , , , and  be integers. Then, in .

1. If  and , then .
2. If  and , then .
3. If  and , then .

Because of Corollary 7.19, we know that the following formal definition of addition and multiplication of congruence classes in 
is independent of the choice of the elements we choose from each class. We say that these definitions of addition and multiplication
are well defined.

Let . Addition and multiplication in  are defined as follows: For ,

 and .

The term modular arithmetic is used to refer to the operations of addition and multiplication of congruence classes in the
integers modulo .

So if , then we have an addition and multiplication defined on , the integers modulo .

Always remember that for each of the equations in the definitions, the operations on the left,  and , are the new operations that
are being defined. The operations on the right side of the equations (+ and ) are the known operations of addition and
multiplication in .

Since  is a finite set, it is possible to construct addition and multiplication tables for . In constructing these tables, we follow
the convention that all sums and products should be in the form [ ], where . For example, in , we see that by the
definition, , but since  (mod 3), we see that  and so we write

Similarly, by definition, , and in , [4] = [1]. So we write

The complete addition and multiplication tables for  are

1. Construct addition and multiplication tables for , the integers modulo 2.
2. Verify that the following addition and multiplication tables for  are correct. 

3. Construct complete addition and multiplication tables for .
4. In the integers, the following statement is true. We sometimes call this the zero product property for the integers. 

For all , if , then  or . 
Write the contrapositive of the conditional statement in this property.

5. Are the following statements true or false? Justify your conclusions. 
 
(a) For all , if , then  or . 

 Corollary 7.19.

n a b c d Zn

[a] = [b] [c] = [d] [a+c] = [b+d]

[a] = [b] [c] = [d] [a ⋅ c] = [b ⋅ d]

[a] = [b] m ∈ N [a = [b]m ]m

Zn

 Definition

n ∈ N Zn [a], [c] ∈ Zn

[a] ⊕ [c] = [a+c] [a] ⊙ [c] = [ac]

n

n ∈ N Zn n

⊕ ⊙

⋅

Z

Zn Zn

r 0 ≤ r < n Z3

[1] ⊕[2] = [3] 3 ≡ 0 [3] = [0]

[1] ⊕[2] = [3] = [0]

[2] ⊙[2] = [4] Z3

[2] ⊙[2] = [4] = [1]

Z3

 Progress Check 7.20 (Modular Arithmetic in , , and )Z2 Z5 Z6

Z2

Z5

Z6

a, b ∈ Z a ⋅ b = 0 a = 0 b = 0

[a], [b] ∈ Z5 [a] ⊙ [b] = [0] [a] = [0] [b] = [0]
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(b) For all , if , then  or .

Answer

Add texts here. Do not delete this text first.

Divisibility Tests
Congruence arithmetic can be used to proof certain divisibility tests. For example, you may have learned that a natural number is
divisible by 9 if the sum of its digits is divisible by 9. As an easy example, note that the sum of the digits of 5823 is equal to 

, and we know that 18 is divisible by 9. It can also be verified that 5823 is divisible by 9. (The quotient is 647.)
We can actually generalize this property by dealing with remainders when a natural number is divided by 9.

Let  and let s.n/ denote the sum of the digits of . For example, if , then . In
Preview Activity , we saw that

 (mod 9) and  (mod 9).

In fact, for every example in Preview Activity , we saw that n and s.n/ were congruent modulo 9 since they both had the same
remainder when divided by 9. The concepts of congruence and congruence classes can help prove that this is always true.

We will use the case of  to illustrate the general process. We must use our standard place value system. By this, we mean
that we will write 7319 as follows:

The idea is to now use the definition of addition and multiplication in  to convert equation (7.4.3) to an equation in . We do
this as follows:

Since  (mod 9),  (mod 9) and  (mod 9), we can conclude that ,  and .
Hence, we can use these facts and equation (7.4.4) to obtain

Equation (7.4.5) tells us that 7319 has the same remainder when divided by 9 as the sum of its digits. It is easy to check that the
sum of the digits is 20 and hence has a remainder of 2. This means that when 7319 is divided by 9, the remainder is 2.

To prove that any natural number has the same remainder when divided by 9 as the sum of its digits, it is helpful to introduce
notation for the decimal representation of a natural number. The notation we will use is similar to the notation for the number 7319
in equation (7.4.3).

In general, if , and  is the decimal representation of , then

This can also be written using summation notation as follows:

Using congruence classes for congruence modulo 9, we have

[a], [b] ∈ Z6 [a] ⊙ [b] = [0] [a] = [0] [b] = [0]

5 +8 +2 +3 = 18

n ∈ N n n = 7319 s(7319) = 7 +3 +1 +9 = 20

7.4.2

7319 ≡ 2 20 ≡ 2

7.4.2

n = 7319

7319 = (7 × ) +(3 × ) +(1 × ) +(9 × ).103 102 101 100 (7.4.3)

Z9 Z9

[7319] =

=

=

[(7 × ) +(3 × ) +(1 × ) +(9 × )]103 102 101 100

[7 × ] ⊕[3 × ] ⊕[1 × ] ⊕[9 × ]103 102 101 100

([7] ⊙[ ]) ⊕([3] ⊙[ ]) ⊕([1] ⊙[ ]) ⊕([9] ⊙[1]).103 102 101

(7.4.4)

≡ 1103 ≡ 1102 10 ≡ 1 [ ] = [1]103 [ ] = [1]102 [10] = [1]

[7319] =

=

=

=

([7] ⊙[ ]) ⊕([3] ⊙[ ]) ⊕([1] ⊙[10]) ⊕([9] ⊙[1])103 102

([7] ⊙[1]) ⊕([3] ⊙[1]) ⊕([1] ⊙[1]) ⊕([9] ⊙[1])

[7] ⊕[3] ⊕[1] ⊕[9]

[7 +3 +1 +9].

(7.4.5)

n ∈ N n = ⋅ ⋅ ⋅akak−1 a1a0 n

n = ( × ) +( × ) +⋅ ⋅ ⋅ +( × ) +( × ).ak 10k ak−1 10k−1
a1 101

a0 100

n = ( × ).∑k
j=0 aj 10j

[n] =

=

=

[( × ) +( × ) +⋅ ⋅ ⋅ +( × ) +( × )]ak 10k ak−1 10k−1 a1 101 a0 100

[ × ] ⊕[ × ] ⊕⋅ ⋅ ⋅ ⊕[ × ] ⊕[ × ]ak 10k ak−1 10k−1
a1 101

a0 100

([ ] ⊙ [ ]) ⊕([ ] ⊙[ ]) ⊕⋅ ⋅ ⋅ ⊕([ ] ⊙[ ]) ⊕([ ] ⊙[ ]).ak 10k ak−1 10k−1 a1 101 a0 100

(7.4.6)
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One last detail is needed. It is given in Proposition 7.21. The proof by mathematical induction is Exercise (6).

If  is a nonnegative integer, then  (mod 9), and hence for the equivalence relation of congruence modulo 9, 
.

If we let  denote the sum of the digits of , then

Now using equation (7.4.6) and Proposition 7.21, we obtain

\[\begin{array} {rcl} {[n]} &= & {([a_k] \odot [1]) \oplus ([a_{k - 1}] \odot [1]) \oplus \cdot\cdot\cdot \oplus ([a_1] \odot [1])
\oplus ([a_0] \odot [1])} \\ {} &= & {[a_k] \oplus [a_{k - 1}] \oplus \cdot\cdot\cdot \oplus [a_1] \oplus [a_0] \\ {} &= & {[a_k +
a_{k-1} + \cdot\cdot\cdot + a_1 + a_0].} \\ {} &= & {[s(n)].} \end{array}\]

This completes the proof of Theorem 7.22.

Let  and let  denote the sum of the digits of . Then

1. , using congruence classes modulo 9.
2.  (mod 9)
3.  if and only if .

Part (3) of Theorem 7.22 is called a divisibility test. If gives a necessary and sufficient condition for a natural number to be
divisible by 9. Other divisibility tests will be explored in the exercises. Most of these divisibility tests can be proved in a manner
similar to the proof of the divisibility test for 9.

1. (a) Complete the addition and multiplication tables for . 
(b) Complete the addition and multiplication tables for . 
(c) Complete the addition and multiplication tables for .

2. The set  contains  elements. One way to solve an equation in  is to substitute each of these  elements in the
equation to check which ones are solutions. In , when parentheses are not used, we follow the usual order of operations,
which means that multiplications are done first and then additions. Solve each of the following equations: 
 
(a)  in  
(b)  in  
(c)  in  
(d)  in  
(e)  in  
(f)  in  
(g)  in  
(h)  in 

3. In each case, determine if the statement is true or false. 
 
(a) For all , if , then there exists a  such that . 
(b) For all , if , then there exists a  such that .

4. In each case, determine if the statement is true or false. 
 
(a) For all , if  and , then . 
(b) For all , if  and , then .

 Proposition 7.21.

n ≡ 110n

[ ] = [1]10n

s(n) n

s(n) = + +⋅ ⋅ ⋅ + + .ak ak−1 a1 a0

 Theorem 7.22.

n ∈ N s(n) n

[n] = [s(n)]

n ≡ s(n)

9 | n 9 | s(n)

 Exercise 7.4

Z4

Z7

Z8

Zn n Zn n

Zn

[x = [1]]2 Z4

[x = [1]]2 Z8

[x = [1]]4 Z5

[x ⊕[3] ⊙[x] = [3]]2 Z6

[x ⊕[1] = [0]]2 Z5

[3] ⊙[x] ⊕ [2] = [0] Z5

[3] ⊙[x] ⊕ [2] = [0] Z6

[3] ⊙[x] ⊕ [2] = [0] Z9

[a] ∈ Z6 [a] ≠ [0] [b] ∈ Z6 [a] ⊙ [b] = [1]

[a] ∈ Z5 [a] ≠ [0] [b] ∈ Z5 [a] ⊙ [b] = [1]

[a], [b] ∈ Z6 [a] ≠ [0] [b] ≠ [0] [a] ⊙ [b] ≠ [0]

[a], [b] ∈ Z5 [a] ≠ [0] [b] ≠ [0] [a] ⊙ [b] ≠ [0]
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5. (a) Prove the following proposition: 
For each , if , then  or . 
(b) Does there exist an integer  such that ? Use your work in Part (a) to justify your
conclusion. Compare to Exercise (10) in Section 3.5.

6. Use mathematical induction to prove Proposition 7.21. 
If  is a nonnegative integer, then  (mod 9), and hence for the equivalence relation of congruence modulo 9, 

.
7. Use mathematical induction to prove that if  is a nonnegative integer, then  (mod 3). Hence, for congruence

classes modulo 3, if n is a nonnegative integer, then .
8. Let  and let  denote the sum of the digits of .So if we write 

 
then . Use the result in Exercise (7) to help prove each of the following: 
 
(a) , using congruence classes modulo 3. 
(b)  (mod 3). 
(c)  if only if .

9. Use mathematical induction to prove that if  is an integer and , then  (mod 5). Hence, for congruence classes
modulo 5, if  is an integer and , then .

10. Let  and assume 

 
Use the result in Exercise (9) to help prove each of the following: 
 
(a) , using congruence classes modulo 5. 
(b)  (mod 5). 
(c)  if only if .

11. Use mathematical induction to prove that if  is an integer and , then  (mod 4). Hence, for congruence classes
modulo 4, if  is an integer and , then .

12. Let  and assume 

 
Use the result in Exercise (11) to help prove each of the following: 
 
(a) , using congruence classes modulo 4. 
(b)  (mod 5). 
(c)  if only if .

13. Use mathematical induction to prove that if  is an integer and , then  (mod 8). Hence, for congruence classes
modulo 8, if  is an integer and , then .

14. Let  and assume 

 
Use the result in Exercise (13) to help develop a divisibility test for 8. Prove that your divisibility test is correct.

15. Use mathematical induction to prove that if  is a nonnegative integer then . Hence, for congruence
classes modulo 11, if  is a nonnegative integer, then .

16. Let  and assume 

[a] ∈ Z5 [a] ≠ [0] [a = [1]]2 [a = [4]]2

a = 5, 158, 232, 468, 953, 153a2

n ≡ 110n

[ ] = [1]10n

n ≡ 110n

[ ] = [1]10n

n ∈ N s(n) n

n = ( × \) +( × +⋅ ⋅ ⋅ +( × ) +( × ).ak 10k ak−1 10k−1
a1 101

a0 100 (7.4.7)

s(n) = + +⋅ ⋅ ⋅ + +ak ak−1 a1 a0

[n] = [s(n)]

n ≡ s(n)

3 | n 3 | s(n)

n nge1 ≡ 010n

n n ≥ 1 [ ] = [0]10n

n ∈ N

n = ( × ) +( × +⋅ ⋅ ⋅ +( × ) +( × ).ak 10k ak−1 10k−1
a1 101

a0 100 (7.4.8)

[n] = [ ]a0

n ≡ a0

5 | n 5 | a0

n nge2 ≡ 010n

n n ≥ 2 [ ] = [0]10n

n ∈ N

n = ( × ) +( × +⋅ ⋅ ⋅ +( × ) +( × ).ak 10k ak−1 10k−1
a1 101

a0 100 (7.4.9)

[n] = [10 + ]a1 a0

n ≡ (10 + )a1 a0

4 | n 4 | (10 + )a1 a0

n nge3 ≡ 010n

n n ≥ 3 [ ] = [0]10n

n ∈ N

n = ( × ) +( × +⋅ ⋅ ⋅ +( × ) +( × ).ak 10k ak−1 10k−1 a1 101 a0 100 (7.4.10)

n ≡ (−1 (mod11)10n )n

n [ ] = [(−1 ]10n )n

n ∈ N

n = ( × ) +( × +⋅ ⋅ ⋅ +( × ) +( × ).ak 10k ak−1 10k−1 a1 101 a0 100 (7.4.11)
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Use the result in Exercise (15) to help prove each of the following: 
 
(a)  (mod 11). 
(b) , using congruence classes modulo 11. 
(c) 11 divides  if and only if 11 divides 

17. (a) Prove the following proposition: 
For all , if , then  and . 
(b) Use Exercise (17a) to prove the following proposition: 
Let . If  (mod 3), then  (mod 3) and  (mod 3). 
(c) Use Exercise (17b) to prove the following proposition: 
Let , if 3 divides , then 3 divides  and 3 divides .

18. Prove the following proposition:
For each , if there exist integers  and  such that , then the units digit of  must be 0, 1, 2, 5, 6, or 7.

19. Is the following proposition true or false? Justify your conclusion. 
For . If  is odd, then . Hint: What are the possible values of  (mod 8)?

20. Prove the following proposition:
For . If  (mod 8), then  is not the sum of three squares. That is, there do not exist natural numbers , , and 
such that . 
 
Explorations and Activities

21. Using Congruence Modulo 4. The set  is a finite set, and hence one way to prove things about  is to simply use the 
elements in  as the  cases for a proof using cases. For example, if , then in , , , , or 

. 
 
(a) Prove that if , then in ,  or . Use this to conclude that in ,  or . 
(b) Translate the equations  and  in  into congruences modulo 4. 
(c) Use a result in Exercise (12) to determine the value of  so that , , and  

 
That is,  in . 
(d) Is the natural number 104 257 833 259 a perfect square? Justify your conclusion.

Answer

Add texts here. Do not delete this text first.
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n ≡ (−1∑
k
j=0 )jaj

[n] = [ (−1 ]∑
k
j=0 )jaj

n (−1∑
k

j=0 )jaj

[a], [b] ∈ Z3 [a +[b = [0]]2 ]2 [a] = 0 [b] = [0]

a, b ∈ Z ( + ) ≡ 0a2 b2 a ≡ 0 b ≡ 0

a, b ∈ Z ( + )a2 b2 a b

a ∈ Z b c a = +b4 c4 a

n ∈ Z n 8 | ( −1)n2 n

n ∈ Z n ≡ 7 n a b c

n = + +a2 b2 c2

Zn Zn n

Zn n n ∈ Z Z4 [n] = [0] [n] = [1] [n] = [2]

[n] = [3]

n ∈ Z Z4 [n = [0]]2 [n = [1]]2 Z4 [ ] = [0]n2 [ ] = [1]n2

[ ] = [0]n2 [ ] = [1]n2
Z4

r r ∈ Z 0 ≤ r < 3

104 257 833 259 ≡ r (mod 4). (7.4.12)

[104 257 833 259] = [r] Z4
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7.S: Equivalence Relations (Summary)
Important Definitions

Relation from  to , page 364
Relation on , page 364
Domain of a relation, page 364
Range of a relation, page 364
Inverse of a relation, page 373
Reflexive relation, page 375
Symmetric relation, page 375
Transitiverelation,page375
Equivalence relation, page 378
Equivalence class, page 391
Congruence class, page 392
Partition of a set, page 395
Integers modulo n, page 402
Addition in , page 404
Multiplication in , page 404

Important Theorems and Results about Relations, Equivalence Relations, and Equivalence Classes

Theorem 7.6. Let  be a relation from the set  to the set . Then 
 
1. The domain of  is range of . That is, dom( ) = range( ). 
2. The range of  is domain of . That is, range( ) = dom( ). 
3. The inverse of  is . That is, .
Theorem 7.10. Let  and let . Then  (mod  if and only if  and  have the same remainder when divided
by .
Theorem 7.14. Let  be a nonempty set and let  be an equivalence relation on . 
 
1. For each , . 
2. For each ,  if and only if . 
3. For each ,  or .
Corollary 7.16. Let . For each , let [ ] represent the congruence class of  modulo . 
 
1. For each , . 
2. For each ,  (mod ) if and only if . 
3. For each ,  or .
Corollary 7.17. Let . For each , let [ ] represent the congruence class of  modulo . 
 
1.  
2. For , if , then .
Theorem 7.18. Let  be an equivalence relation on the nonempty set . Then the collection  of all equivalence classes
determined by  is a partition of the set .
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A B

A

Zn

Zn

R A B

R−1 R R−1 R

R−1 R R−1 R

R−1 R ( = RR−1)−1

n ∈ N a, b ∈ Z a ≡ b n a b

n

A ∼ A

a ∈ A a ∈ [a]
a, b ∈ A a ∼ b [a] = [b]
a, b ∈ A [a] = [b] [a] ∩ [b] = ∅

n ∈ N a ∈ Z a a n

a ∈ Z a ∈ [a]
a, b ∈ Z a ≡ b n [a] = [b]
a, b ∈ Z [a] = [b] [a] ∩ [b] = ∅

n ∈ N a ∈ Z a a n

Z = [0] ∪ [1] ∪ [2] ∪ ⋅ ⋅ ⋅ ∪ [n −1]
j, k ∈ {0, 1, 2, . . . , n −1} j ≠ k [j] ∩ [k] = ∅

∼ A C

∼ A
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8.1: The Greatest Common Divisor

1. Explain what it means to say that a nonzero integer  divides an integer . Recall that we use the notation  to
indicate that the nonzero integer  divides the integer .

2. Let  and  be integers with . Explain what it means to say that  does not divide .

Let  and  be integers, not both 0. A common divisor of  and  is any nonzero integer that divides both  and . The
largest natural number that divides both  and  is called the greatest common divisor of  and . The greatest common
divisor of  and  is denoted by gcd( , ).

1. Use the roster method to list the elements of the set that contains all the natural numbers that are divisors of 48.
2. Use the roster method to list the elements of the set that contains all the natural numbers that are divisors of 84.
3. Determine the intersection of the two sets in Parts (3) and (4). This set contains all the natural numbers that are common

divisors of 48 and 84.
4. What is the greatest common divisor of 48 and 84?
5. Use the method suggested in Parts (3) through (6) to determine each of the following: gcd (8, -12), gcd (0, 5), gcd (8, 27),

and gcd (14, 28).
6. If  and  are integers, make a conjecture about how the common divisors of  and  are related to the greatest common

divisor of  and .

When we speak of the quotient and the remainder when we “divide an integer  by the positive integer ,” we will always
mean the quotient  and the remainder  guaranteed by the Division Algorithm. (See Section 3.5, page 143.)

1. Each row in the following table contains values for the integers  and . In this table, the value of  is the remainder (from
the Division Algorithm) when  is divided by . Complete each row in this table by determining gcd( , ), , and gcd( ). 

gcd( , ) Remainder gcd( , )

44 12    

75 21    

50 33    

2. Formulate a conjecture based on the results of the table in Part (1).

The System of Integers
Number theory is a study of the system of integers, which consists of the set of integers,  and
the various properties of this set under the usual operations of addition and multiplication and under the usual ordering relation of
“less than.” The properties of the integers in Table 8.1 will be considered axioms in this text.

Table 8.1: Axioms for the Integers
For all integers , , and ;

Closure Properties for Addition and Multiplication  and 

Commutative Properties for Addition and Multiplication , and 

Associative Properties for Addition and Multiplication  and 

Distributive Properties of Multiplication over Addition , and 

Additive and Multiplicative Identity Properties , and 

 Preview Activity : The Greatest Common Divisor8.1.1

m n m | n

m n

m n m ≠ 0 m n

 Definition

a b a b a b

a b a b

a b a b

a b a b

a b

 Preview Activity : The GCD and the Division Algorithm8.1.2

a b

q r

a b r

a b a b r b, r

a b a b r b r

Z = {. . . , −3, −2, −1, 0, 1, 2, 3, . . . }

a b c

a+ b ∈ Z ab ∈ Z

a+ b = b+ a ab = ba

(a+ b) + c = a+ (b+ c) (ab) c = a (bc)

a (b+ c) = (ab+ ac) (b+ c) a = ba+ ca

a+ 0 = 0 + a = a a ⋅ 1 = 1 ⋅ a = a
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For all integers , , and ;

Additive Inverse Property \(a + (-a) = (-a) + a = 0

We will also assume the properties of the integers shown in Table 8.2. These properties can be proven from the properties in Table
8.1. (However, we will not do so here.)

Table 8.2: Properties of the Integers
Zero Property of Multiplication If , then .

Cancellation Properties of Addition and Multiplication If , and , then . 
If ,  and , then .

We have already studied a good deal of number theory in this text in our discussion of proof methods. In particular, we have
studied even and odd integers, divisibility of integers, congruence, and the Division Algorithm. See the summary for Chapter 3 for
a summary of results concerning even and odd integers as well as results concerning properties of divisors. We reviewed some of
these properties and the Division Algorithm in the Preview Activities.

The Greatest Common Divisor
One of the most important concepts in elementary number theory is that of the greatest common divisor of two integers. The
definition for the greatest common divisor of two integers (not both zero) was given in Preview Activity .

1. If  and  and  are not both 0, and if , then  gcd ( , ) provided that it satisfies all of the following
properties:

 and . That is,  is a common divisor of  and .
If  is  natural number such that  and , then .That is, any other common divisor of  and  is less than or
equal to .

2. Consequently, a natural number  is not the greatest common divisor of  and  provided that it does not satisfy at least one of
these properties. That is,  is not equal to gcd( , ) provided that

  does not divide  or  does not divide ; or
 There exists a natural number  such that  and  and .

3. This means that  is not the greatest common divisor of  and  provided that it is not a common divisor of  and  or that there
exists a common divisor of  and  that is greater than .

In the preview activities, we determined the greatest common divisors for several pairs of integers. The process we used was to list
all the divisors of both integers, then list all the common divisors of both integers and, finally, from the list of all common divisors,
find the greatest (largest) common divisor. This method works reasonably well for small integers but can get quite cumbersome if
the integers are large. Before we develop an efficient method for determining the greatest common divisor of two integers, we need
to establish some properties of greatest common divisors.

One property was suggested in Preview Activity . If we look at the results in Part (7) of that preview activity, we should
observe that any common divisor of  and  will divide gcd( , ). In fact, the primary goals of the remainder of this section are

1. To find an efficient method for determining gcd( , ), where  and  are integers.
2. To prove that the natural number gcd( , ) is the only natural number  that satisfies the following properties: 

 
  divides  and  divides ; and  
 if  is a natural number such that  and , then .

The second goal is only slightly different from the definition of the greatest common divisor. The only difference is in the second
condition where  is replaced by .

We will first consider the case where  and  are integers with  and . The proof of the result stated in the second goal
contains a method (called the Euclidean Algorithm) for determining the greatest common divisors of the two integers a and b. The
main idea of the method is to keep replacing the pair of integers .a; b/ with another pair of integers .b; r/, where  and
gcd.b; r/ D gcd.a; b/. This idea was explored in Preview Activity . Lemma 8.1is a conjecture that could have been formulated
in Preview Activity .

a b c

a ∈ Z a ⋅ 0 = 0 ⋅ a = 0

a,b,c ∈ Z a+ b = a+ c b = c

a,b,c ∈ Z a ≠ 0 ac = bc b = c

8.1.1

a, b ∈ Z a b d ∈ N d = a b

d | a d | b d a b

k a k | a k | b k ≤ d a b

d

d a b

d a b

∙ d a d b

∙ k k | a k | b k > d

d a b a b

a b d

8.1.1

a b a b

a b a b

a b d

∙ d a d b

∙ k k | a k | b k | d

k ≤ d k | d

a b a ≠ 0 b > 0

0 ≤ r < b

8.1.2

8.1.2
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Let  and  be integers, not both equal to zero. If  and  are integers such that , then gcd( , ) = gcd( , ).

Proof

Let  and  be integers, not both equal to zero. Assume that  and  are integers such that . For ease of
notation, we will let

 gcd( , ) and  gcd( , ).

Now,  divides  and  divides . Consequently, there exist integers  and  such that  and . Hence,

But this means that  divides . Since m divides  and  divides ,  is less than or equal to gcd( , ). Thus, .

Using a similar argument, we see that  divides  and  divides . Since , we can prove that  divides .
Hence,  divides  and  divides . Thus,  gcd( , ) or . We now have  and . Hence,  and
gcd( , ) = gcd( , ).

We completed several examples illustrating Lemma 8.1 in Preview Activity . For another example, let  and 
. The greatest common divisor of 56 and 12 is 4.

1. According to the Division Algorithm, what is the remainder  when 56 is divided by 12?
2. What is the greatest common divisor of 12 and the remainder ? 

 
The key to finding the greatest common divisor (in more complicated cases) is to use the Division Algorithm again, this
time with 12 and . We now find integers  and  such that 

3. What is the greatest common divisor of  and ?

Answer

Add texts here. Do not delete this text first.

The Euclidean Algorithm

The example in Progress Check 8.2 illustrates the main idea of the Euclidean Algorithm for finding gcd( , ), which is explained
in the proof of the following theorem.

Let  and  be integers with  and . Then gcd( , ) is the only natural number  such that

(a)  divides  and  divides , and 
(b) if  is an integer that divides both  and , then  divides .

Proof

Let  and  be integers with  and , and let  gcd( , ). By the Division Algorithm, there exist integers  and
 such that

 Lemma 8.1.

c d q r c = d ⋅ q+r c d d r

c d q r c = d ⋅ q+r

m = c d n = d r

m c m d x y c = mx d = my

r

r

r

=

=

=

c−d ⋅ q

mx−(my)q

m(x−yq).

(8.1.1)

m r d m r m d r m ≤ n

n d n r c = d ⋅ q+r n c

n c n d n ≤ c d n ≤ m m ≤ n n ≤ m m = n

c d d r

 Progress Check 8.2: Illustrations of Lemma 8.1

8.1.2 c = 56

d = 12

r

r

r q2 r2

12 = r ⋅ + .q2 r2 (8.1.2)

r r2

a b

 Theorem 8.3: Euclidean Algorithm

a b a ≠ 0 b > 0 a b d

d a d b

k a b k d

a b a ≠ 0 b > 0 d = a b q1

r1

a = b ⋅ + , and 0 ≤ < b.q1 r1 r1 (8.1.3)
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If , then equation (8.1.3) implies that  divides . Hence,  gcd( , ) and this number satisfies Conditions (a)
and (b).

If , then by Lemma 8.1, gcd( , ) = gcd( , ). We use the Division Algorithm again to obtain integers  and 
such that

If , then equation (8.1.4) implies that  divides . This means that  gcd( , ). But we have already seen that
gcd( , ) = gcd( , ). Hence,  gcd( , ). In addition, if  is an integer that divides both  and , then, using equation
(8.1.3), we see that  and, hence  divides . This shows that  gcd( , ) satisfies Conditions (a) and (b).

If , then by Lemma 8.1, gcd( , ) = gcd( , ). But we have already seen that gcd( , ) = gcd( , ). Hence, gcd(
, ) = gcd( , ). We now continue to apply the Division Algorithm to produce a sequence of pairs of integers (all of

which have the same greatest common divisor). This is summarized in the following table:

Original Pair Equation from Division Inequality from Division
Algorithm

New Pair

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

... ... ... ...

From the inequalities in the third column of this table, we have a strictly decreasing sequence of nonnegative integers (
). Consequently, a term in this sequence must eventually be equal to zero. Let  be the smallest

natural number such that . This means that the last two rows in the preceding table will be

Original Pair Equation from Division
Algorithm

Inequality from Division
Algorithm

New Pair

( ) ( )

( )   

Remember that this table was constructed by repeated use of Lemma 8.1 and that the greatest common divisor of each pair
of integers produced equals gcd( , ). Also, the last row in the table indicates that  divides . This means that gcd(

)  and hence  gcd( , ).

This proves that  gcd( , ) satisfies Condition (a) of this theorem. Now assume that  is an integer such that  divides 
 and  divides . We proceed through the table row by row. First, since , we see that

 must divide .

The second row tells us that . Since  divides  and  divides , we conclude that

 divides .

Continuing with each row, we see that  divides each of the remainders . This means that  gcd( , )
satisfies Condition (b) of the theorem.

1. Use the Euclidean Algorithm to determine gcd(180, 126). Notice that we have deleted the third column (Inequality from
Division Algorithm) from the following table. It is not needed in the computations.

Original Pair Equation from Division Algorithm New Pair

= 0r1 b a b = d = a b

> 0r1 a b b r1 q2 r2

b = ⋅ + , and 0 ≤ < .r1 q2 r2 r2 r1 (8.1.4)

= 0r2 r1 b =r1 b r1

a b b r1 =r1 a b k a b

= a−b ⋅r1 q1 k r1 =r1 a b

> 0r2 b r1 r1 r2 a b b r1

a b r1 r2

a,b a = b ⋅ +q1 r1 0 ≤ < br1 b,r1

b,r1 b = ⋅ +r1 q2 r2 0 ≤ <r2 r1 ,r1 r2

,r1 r2 = ⋅ +r1 r2 q1 r3 0 ≤ <r3 r2 ,r2 r3

,r2 r3 = ⋅ +r2 r3 q1 r4 0 ≤ <r4 r3 ,r3 r4

,r3 r4 = ⋅ +r3 r4 q1 r5 0 ≤ <r5 r4 ,r4 r5

b > > > > ⋅ ⋅⋅r1 r2 r3 r4 p

= 0rp+1

,rp−2 rp−1 = ⋅ +rp−2 rp−1 qp rp 0 ≤ <rp rp−1 ,rp−1 rp

,rp−1 rp = ⋅ + 0rp−1 rp qp+1

a b rp rp−1

,rp−1 rp = rp =rp a b

=rp a b k k

a k b = a−b ⋅ qr1

k r1

= b− ⋅r2 r1 q2 k b k r1

k r2

k , , , . . . ,r1 r2 r3 rp =rp a b

 Progress Check 8.4 (Using the Euclidean Algorithm)
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(180, 126) (126, 54)

(126, 54) 126 =  

   

Consequently, gcd(180, 126) = .

2. Use the Euclidean Algorithm to determine gcd(4208, 288).

Original Pair Equation from Division Algorithm New Pair

(4208, 288) (288, )

   

Consequently, gcd(4208, 288) = .

Answer

Add texts here. Do not delete this text first.

Some Remarks about Theorem 8.3

Theorem 8.3 was proven with the assumptions that  with  and . A more general version of this theorem can be
proven with  and . This can be proven using Theorem 8.3 and the results in the following lemma.

Let  with . Then

1. gcd(0, ) = | |.
2. If gcd( , ) = , then gcd( , ) = .

The proofs of these results are in Exercise (4). An application of this result is given in the next example.

Let  and . We will use the Euclidean Algorithm to determine gcd(234, 42).

Step Original Pair Equation from Division
Algorithm

New Pair

1 (234, 42) (42, 24)

2 (42, 24) (24, 18)

3 (24, 18) (18, 6)

4 (18, 6)  

So gcd(234, 42) = 6 and hence gcd(234, -42) = 6.

Writing gcd( , ) in Terms of  and 

We will use Example 8.6 to illustrate another use of the Euclidean Algorithm. It is possible to use the steps of the Euclidean
Algorithm in reverse order to write gcd( , ) in terms of  and . We will use these steps in reverse order to find integers  and 
such that gcd(234, 42) = 234  + 42 . The idea is to start with the row with the last nonzero remainder and work backward as
shown in the following table:

Explanation Result

First, use the equation in Step 3 to write 6 in terms of 24 and 18.

180 = 126 ⋅ 1 + 54

4208 = 288 ⋅ 14 + 176

a, b ∈ Z a ≠ 0 b > 0

a, b ∈ Z b = 0

 Lemma 8.5.

a, b ∈ Z b ≠ 0

b b

a b d a −b d

 Example 8.6 (Using the Euclidean Algorithm)

a = 234 b = −42

234 = 42 ⋅ 5 + 24

42 = 24 ⋅ 1 + 18

24 = 18 ⋅ 1 + 6

18 = 6 ⋅ 3

a b a b

a b a b m n

m n

6 = 24 − 18 ⋅ 1
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Use the equation in Step 2 to write \(18 = 42 - 24 \cdot 1\). Substitute
this into the preceding result and simplify.

We now have written 6 in terms of 42 and 24. Use the equation in Step
1 to write . Substitute this into the preceding result
and simplify.

Hence, we can write

(Check this with a calculator.) In this case, we say that we have written gcd(234, 42) as a linear combination of 234 and 42. More
generally, we have the following definition.

Let  and  be integers. A linear combination of  and  is an integer of the form , where  and  are integers.

Use the results from Progress Check 8.4 to

1. Write gcd(180, 126) as a linear combination of 180 and 126.
2. Write gcd(4208, 288) as a linear combination of 4208 and 288.

Answer

Add texts here. Do not delete this text first.

The previous example and progress check illustrate the following important result in number theory, which will be used in the next
section to help prove some other significant results.

Let  and  be integers, not both 0. Then gcd( , ) can be written as a linear combination of  and . That is, there exist
integers  and  such that .

We will not give a formal proof of this theorem. Hopefully, the examples and activities provide evidence for its validity. The idea is
to use the steps of the Euclidean Algorithm in reverse order to write gcd( , ) as a linear combination of  and . For example,
assume the completed table for the Euclidean Algorithm is

Step Original Pair Equation from Division Algorithm New Pair

1

2

3

4

We can use Step 3 to write  as a linear combination of  and . We can then solve the equation in Step 2 for  and
use this to write  as a linear combination of  and . We can then use the equation in Step 1 to solve for  and use
this to write  as a linear combination of  and .

In general, if we can write  as a linear combination of a pair in a given row, then we can use the equation in the
preceding step to write  as a linear combination of the pair in this preceding row.

The notational details of this induction argument get quite involved. Many mathematicians prefer to prove Theorem 8.8 using a
property of the natural numbers called the Well-Ordering Principle. The Well-Ordering Principle for the natural numbers states

6 =

=

=

24 − 18 ⋅ 1

24 − (42 − 24 ⋅ 1)

42 ⋅ (−1) + 24 ⋅ 2

24 = 234 − 42 ⋅ 5

6 =

=

=

42 ⋅ (−1) + 24 ⋅ 2

42 ⋅ (−1) + (234 − 42 ⋅ 5) ⋅ 2

234 ⋅ 2 + 42 ⋅ (−11)

gcd(234, 42) = 234 ⋅ 2 +42 ⋅ (−11).

 Definition

a b a b ax+by x y

 Progress Check 8.7 (Writing the gcd as a Linear Combination)

 Theorem 8.8

a b a b a b

u v gcd(a, b) = au+bv

a b a b

(a,b) a = b ⋅ +q1 r1 (b, )r1

(b, )r1 b = ⋅ +r1 q2 r2 ( , )r1 r2

( , )r1 r2 = ⋅ +r1 r2 q3 r3 ( , )r2 r3

( , )r2 r3 = ⋅ + 0r2 r3 q4 ( , )r3 r4

= gcd(a, b)r3 r1 r2 r2

= gcd(a, b)r3 r1 b r1

= gcd(a, b)r3 a b

= gcd(a, b)rp
= gcd(a, b)rp
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that any nonempty set of natural numbers must contain a least element. It can be proven that the Well-Ordering Principle is
equivalent to the Principle of Mathematical Induction.

1. Find each of the following greatest common divisors by listing all of the common divisors of each pair of integers. 
 
(a) gcd(21, 28) 
(b) gcd(-21, 28) 
(c) gcd(58, 63) 
(d) gcd(0, 12)
(e) gcd(110, 215)
(f) gcd(110, -215)

2. (a) Let  and let  with . Prove that if  and , then , and hence . 
(b) Let . Find the greatest common divisor of the consecutive integers  and . That is, determine gcd( , ).

3. (a) Let  and let  with . Prove that if  and , then . 
(b) Let . Find the greatest common divisor of the common divisor  and .

4. Let  with . Prove each of the following: 
 
(a) gcd(0, ) = | | 
(b) If gcd( , ) = , then gcd( , ) = . That is, gcd( , ) = gcd( , ).

5. For each of the following pairs of integers, use the Euclidean Algorithm to find gcd( , ) and to write gcd( , ) as a linear
combination of  and . That is, find integers  and  such that . 
 
(a) ,  
(b) ,  
(c) ,  
(d) ,  
(e) ,  
(f) , 

6. (a) Find integers  and  such that  or explain why it is not possible to do so. Then find integers  and  such
that  or explain why it is not possible to do so. 
(b) Find integers  and  such that  or explain why it is not possible to do so. 
(c) Find integers  and  such that  or explain why it is not possible to do so.

7. (a) Notice that gcd(11, 17) = 1. Find integers  and  such that . 

(b) Let . Wrtie the sum  as a single fraction. 

(c) Find two rational numbers with denominators of 11 and 17, respectively, whose sum is equal to . Hint: Write the

rational numbers in the form , where . Then write  

 
Use Exercises (7a) and (7b) to determine  and . 

(d) Find two rational numbers with denominators 17 and 21, respectively, whose sum is equal to  or explain why it is

not possible to do so.

(e) Find two rational numbers with denominators 9 and 15, respectively, whose sum is equal to  or explain why it is

not possible to do so. 
 
Exploration and Activities

 Exercise 8.1

a ∈ Z k ∈ Z k ≠ 0 k | a k | (a+1) k | 1 k = ±1

a ∈ Z a a+1 a a+1

a ∈ Z k ∈ Z k ≠ 0 k | a k | (a+2) k | 2

a ∈ Z a a+2

a, b ∈ Z b ≠ 0

b b

a b d a −b d a −b a b

a b a b

a b m n d = am+bn

a = 36 b = 60

a = 901 b = 935

a = 72 b = 714

a = 12528 b = 21361

a = −36 b = −60

a = 901 b = −935

u v 9u+14v= 1 x y

9x+14y = 10

x y 9x+15y = 10

x y 9x+15y = 3162

x y 11x+17y = 1

m,n ∈ Z +
m

11

n

17
10

187
+

m

11

n

17
m,n ∈ Z

+ = .
m

11

n

17

10

187
(8.1.5)

m n
326

357

10

225
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8. Linear Combinations and the Greatest Common Divisor 
 
(a) Determine the greatest common divisor of 20 and 12? 
(b) Let . Write d as a linear combination of 20 and 12. 
(c) Generate at least six different linear combinations of 20 and 12. Are these linear combinations of 20 and 12 multiples of
gcd(20, 12)? 
(d) Determine the greatest common divisor of 21 and -6 and then generate at least six different linear combinations of 21
and -6. Are these linear combinations of 21 and -6 multiples of gcd(21, -6)?
(e) The following proposition was first introduced in Exercise (18) on page 243 in Section 5.2. Complete the proof of this
proposition if you have not already done so.

Let , , and  be integers with . If  divides  and  divides , then for all integers  and ,  divides 

Proof: Let ,  and  be integers with , and assume that  divides  and  divides . We will prove that for all integers
 and ,  divides . 

So let  and let . Since  divides , there exists an integer msuch that ... 
(f) Now let  and  be integers, not both zero and let  gcd( , ). Theorem 8.8 states that  is a linear combination of 
and . In addition, let  and  be the following sets: 

 
That is,  is the set of all linear combinations of  and , and  is the set of all multiples of the greatest common divisor of 

 and . Does the set  equal the set ? If not, is one of these sets a subset of the other set? Justify your conclusions.

Note: In Parts (c) and (d), we were exploring special cases for these two sets.

Answer

Add texts here. Do not delete this text first.

This page titled 8.1: The Greatest Common Divisor is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Ted Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

8.1: The Greatest Common Divisor by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source:
https://scholarworks.gvsu.edu/books/7.

d = gcd(20, 12)

 Proposition 5.16

a b t t ≠ 0 t a t b x y t ax+by

a b t t ≠ 0 t a t b

x y t (ax+by)

x ∈ Z y ∈ Z t a

a b d = a b d a

b S T

S = {ax+by | x, y ∈ Z}   and     T = {kd | k ∈ Z}. (8.1.6)

S a b T

a b S T
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8.2: Prime Numbers and Prime Factorizations

1. Find at least three different examples of nonzero integers , , and  such that  but a does not divide  and  does
not divide . In each case, compute gcd( , ) and gcd( , ).

2. Find at least three different examples of nonzero integers , , and  such that gcd( , ) = 1 and . In each example,
is there any relation between the integers  and ?

3. Formulate a conjecture based on your work in Parts (1) and (2).

Recall that a natural number  is a prime number provided that it is greater than 1 and the only natural numbers that divide 
are 1 and . A natural number other than 1 that is not a prime number is a composite number. The number 1 is neither prime
nor composite. (See Exercise 13 from Section 2.4 on page 78.)

1. Give examples of four natural numbers that are prime and four natural numbers that are composite.

Theorem 4.9 in Section 4.2 states that every natural number greater than 1 is either a prime number or a product of prime
numbers. When a composite number is written as a product of prime numbers, we say that we have obtained a prime
factorization of that composite number. For example, since , we say that  is a prime factorization of 60.

2. Write the number 40 as a product of prime numbers by first writing  and then factoring 20 into a product of
primes. Next, write the number 40 as a product of prime numbers by first writing  and then factoring 8 into a
product of primes.

3. In Part (2), we used two different methods to obtain a prime factorization of 40. Did these methods produce the same prime
factorization or different prime factorizations? Explain.

4. Repeat Parts (2) and (3) with 150. First, start with , and then start with .

Greatest Common Divisors and Linear Combinations
In Section 8.1, we introduced the concept of the greatest common divisor of two integers. We showed how the Euclidean
Algorithm can be used to find the greatest common divisor of two integers,  and , and also showed how to use the results of the
Euclidean Algorithm to write the greatest common divisor of  and  as a linear combination of  and .

In this section, we will use these results to help prove the so-called Fundamental Theorem of Arithmetic, which states that any
natural number greater than 1 that is not prime can be written as product of primes in “essentially” only one way. This means that
given two prime factorizations, the prime factors are exactly the same, and the only difference may be in the order in which the
prime factors are written. We start with more results concerning greatest common divisors. We first prove Proposition 5.16, which
was part of Exercise (18) in Section 5.2 and Exercise (8) in Section 8.1.

Let , , and  be integers with . If  divides  and  divides , then for all integers  and ,  divides .

Proof

Let , , and  be integers with , and assuem that  divides  and  divides . We will prove that for all integers  and 
,  divides .

So let  and let . Since  divides , there exists an integer  such that  and since  divides , there exists
an integer  such that . Using substitution and algebra, we then see that

Since ) is an integer, the last equation proves that  divides  and this proves that for all integers  and , 
 divides .

 Preview Activity : Exploring Examples where  Divides 8.2.1 a b ⋅ c

a b c a | (bc) b a

c a b a c

a b c a b a | (bc)
a c

 Preview Activity : Prime Factorizations8.2.2

p p

p

60 = ⋅ 3 ⋅ 522 ⋅ 3 ⋅ 522

40 = 2 ⋅ 20
40 = 5 ⋅ 8

150 = 3 ⋅ 50 150 = 5 ⋅ 30

a b

a b a b

 Theorem 5.16

a b t t ≠ 0 t a t b x y t (ax+by)

a b t t ≠ 0 t a t b x

y t (ax+by)

x ∈ Z y ∈ Z t a m a = mt t b

n b = nt

ax+by =

=

(mt)x+(nt)y

t(mx+ny)
(8.2.1)

(mx+ny t ax+by x y

t (ax+by)
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We now let , not both 0, and let . Theorem 8.8 states that d can be written as a linear combination of  and .
Now, since  and , we can use the result of Proposition 5.16 to conclude that for all , . This means
that  divides every linear combination of  and . In addition, this means that  must be the smallest positive number that is a
linear combination of  and . We summarize these results in Theorem 8.9.

Let , not both 0.

1. The greatest common divisor, , is a linear combination of  and . That is, there exist integers  and  such that 
.

2. The greatest common divisor, , divides every linear combination of  and . That is, for all , .
3. The greatest common divisor, , is the smallest positive number that is a linear combination of  and .

Relatively Prime Integers

In Preview Activity , we constructed several examples of integers , , and  such that  but  does not divide  and 
does not divide . For each example, we observed that  and .

We also constructed several examples where  and . In all of these cases, we noted that  divides . Integers
whose greatest common divisor is equal to 1 are given a special name.

Two nonzero integers  and  are relatively prime provided that .

1. Construct at least three different examples where  is a prime number, , and . In each example, what is gcd( , 
)? Based on these examples, formulate a conjecture about gcd( , ) when .

2. Construct at least three different examples where  is a prime number, , and  does not divide . In each example,
what is gcd( )? Based on these examples, formulate a conjecture about gcd( , ) when  does not divide .

3. Give at least three different examples of integers  and  where a is not prime,  is not prime, and , or explain
why it is not possible to construct such examples.

Answer

Add texts here. Do not delete this text first.

Let  and  be nonzero integers, and let  be a prime number.

1. If  and  are relatively prime, then there exist integers  and  such that . That is, 1 can be written as linear
combination of  of .

2. If , then .
3. If  does not divide , then .

Part (1) of Theorem 8.11 is actually a corollary of Theorem 8.9. Parts (2) and (3) could have been the conjectures you formulated in
Progress Check 8.10. The proofs are included in Exercise (1).

Given nonzero integers a and b, we have seen that it is possible to use the Euclidean Algorithm to write their greatest common
divisor as a linear combination of  and . We have also seen that this can sometimes be a tedious, time-consuming process, which
is why people have programmed computers to do this. Fortunately, in many proofs of number theory results, we do not actually
have to construct this linear combination since simply knowing that it exists can be useful in proving results. This will be illustrated
in the proof of Theorem 8.12, which is based on work in Preview Activity .

a, b ∈ Z d = gcd(a, b) a b

d | a d | b x, y ∈ Z d | (ax+by)
d a b d

a b

 Theorem 8.9.

a, b ∈ Z

d a b m n

d = am+bn

d a b x, y ∈ Z d | (ax+by)
d a b

8.2.1 a b c a | (bc) a b a

c gcd(a, b) ≠ 1 gcd(a, c) ≠ 1

a | (bc) gcd(a, b) = 1 a c

 Definition: relatively prime

a b gcd(a, b) = 1

 Progress Check 8.10: Relatively Prime Integers

p a ∈ Z p | a a

p a p p | a
p a ∈ Z p a

a, p a p p a

a b b gcd(a, b) = 1

 Theorem 8.11.

a b p

a b m n am+bn = 1
a b

p | a gcd(a, p) = p

p a gcd(a, p) = 1

a b

8.2.1
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Let , , be nonzero integers and let  be an integer. If  and  are relatively prime and , then 

The explorations in Preview Activity  were related to this theorem. We will first explore the forward-backward process for the
proof. The goal is to prove that . A standard way to do this is to prove that there exists an integer  such that

Since we are given , there exists an integer  such that

It may seem tempting to divide both sides of Equation  by , but if we do so, we run into problems with the fact that the
integers are not closed under division. Instead, we look at the other part of the hypothesis, which is that  and  are relatively
prime. This means that . How can we use this? This means that  and  have no common factors except for 1. In light
of Equation , it seems reasonable that any factor of  must also be a factor of . But how do we formalize this?

One conclusion that we can use is that since , by Theorem 8.11, there exist integers  and  such that

We may consider solving equation (8.2.4) for  and substituting this into Equation . The problem, again, is that in order to solve
Equation  for , we need to divide by .

Before doing anything else, we should look at the goal in Equation . We need to introduce c into Equation . One way to do
this is to multiply both sides of equation (8.2.4) by . (This keeps us in the system of integers since the integers are closed under
multiplication.) This gives

Notice that the left side of Equation  contains a term, , that contains . This means that we can use Equation  and
substitute bc D ak in Equation . After doing this, we can factor the left side of the equation to prove that .

Write a complete proof of Theorem 8.12.

Answer

Add texts here. Do not delete this text first.

1. Let , and let  be a prime number. If , then  or .
2. Let  be a prime number, let , and let . If , then there exists a natural number 

with  such that .

Part (1) of Corollary 8.14 is a corollary of Theorem 8.12. Part (2) is proved using mathematical induction. The basis step is the case
where , and Part (1) is the case where . The proofs of these two results are included in Exercises (2) and (3).

Part (1) of Corollary 8.14 is known as Euclid’s Lemma. Most people associate geometry with Euclid’s Elements, but these
books also contain many basic results in number theory. Many of the results that are contained in this section appeared in
Euclid’s Elements.

 Theorem 8.12

a b c a b a | (bc) a | c

8.2.1
a | c q

c = aq. (8.2.2)

a | (bc) k

bc = ak. (8.2.3)

??? b

a b

gcd(a, b) = 1 a b

??? a c

gcd(a, b) = 1 m n

am+bn = 1. (8.2.4)

b ???
??? b n

??? ???
c

(am+bn)c

acm+bcn

=

=

1 ⋅ c

c.
(8.2.5)

??? bcn bc ???
??? a | c

 Progress Check 8.13: Completing the Proof of Theorem 8.12

 Corollary 8.14

a, b ∈ Z p p | (ab) p | a p | b
p n ∈ N , , . . . , ∈ Za1 a2 an p | ( ⋅ ⋅ ⋅ )a1a2 an k

1 ≤ k ≤ n p | ak

n = 1 n = 2

 Historical Note: Euclid’s Lemma
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Prime Numbers and Prime Factorizations
We are now ready to prove the Fundamental Theorem of Arithmetic. The first part of this theorem was proved in Theorem 4.9 in
Section 4.2. This theorem states that each natural number greater than 1 is either a prime number or is a product of prime numbers.
Before we state the Fundamental Theorem of Arithmetic, we will discuss some notational conventions that will help us with the
proof. We start with an example.

We will use . Since , we can write . In addition, we can factor 24 as . So we can write

This is a prime factorization of 120, but it is not the way we usually write this factorization. Most often, we will write the prime
number factors in ascending order. So we write

 or .

Now, let . To write the prime factorization of  with the prime factors in ascending order requires that if we write 
, where  are prime numbers, we will have .

1. Each natural number greater than 1 is either a prime number or is a product of prime numbers.
2. let  with . Assume that 

 
where  and  are prime with  and . Then , and for each 
 from 1 to , .

Proof

The first part of this theorem was proved in Theorem 4.9. We will prove the second part of
the theorem by induction on  using the Second Principle of Mathematical Induction. (See
Section 4.2.) For each natural number  with , let  be

If  and , where  and  are primes with 
 and , then , and for each  from 1 to , 

.

For the basis step, we notice that since 2 is a prime number, its only factorization is 
. This means that the only equation of the form , where 

 are prime numbers, is the case where  and .This proves that 
is true.

For the inductive step, let  with . We will assume that 
are true. The goal now is to prove that  is true. To prove this, we assume that 

 has two prime factorizations and then prove that these prime factorizations are the
same. So we assume that

 and that , wher  and  are
prime with  and .

We must now prove that , and for each  from 1 to , . We can break our proof
into two cases: (1) ; and (2) . Since one of these must be true, and since the
proofs will be similar, we can assume, without loss of generality, that .

Since , we know that , and hence we may conclude that 
. We now use Corollary 8.14 to conclude that there exists a  with 

 such that . Since  and  are primes, we conclude that

.

n = 120 5 | 120 120 = 5 ⋅ 24 24 = 2 ⋅ 2 ⋅ 2 ⋅ 3

120 =

=

5 ⋅ 24

5(2 ⋅ 2 ⋅ 2 ⋅ 3).
(8.2.6)

120 = 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 5 120 = ⋅ 3 ⋅ 523

n ∈ N n

n = ⋅ ⋅ ⋅p1p2 pr ⋅ ⋅ ⋅p1p2 pr ≤ ≤ ⋅ ⋅ ⋅ ≤p1 p2 pr

 Theorem 8.15: The Fundamental Theorem of Arithmetic

n ∈ N n > 1

n = ⋅ ⋅ ⋅  and that n = ⋅ ⋅ ⋅ ,p1p2 pr q1q2 qs (8.2.7)

⋅ ⋅ ⋅p1p2 pr ⋅ ⋅ ⋅q1q2 qs ≤ ≤ ⋅ ⋅ ⋅ ≤p1 p2 pr ≤ ≤ ⋅ ⋅ ⋅ ≤q1 q2 qs r = s

j r = qjpj

n

n n > 1 P (n)

n = ⋅ ⋅ ⋅p1p2 pr n = ⋅ ⋅ ⋅q1q2 qs ⋅ ⋅ ⋅p1p2 pr ⋅ ⋅ ⋅q1q2 qs

≤ ≤ ⋅ ⋅ ⋅ ≤p1 p2 pr ≤ ≤ ⋅ ⋅ ⋅ ≤q1 q2 qs r = s j r

= qjpj

2 = 1 ⋅ 2 n = ⋅ ⋅ ⋅p1p2 pr

⋅ ⋅ ⋅p1p2 pr r = 1 = 2p1 P (2)

k ∈ N k ≥ 2 P (2),P (3), . . . ,P (k)
P (k+1)

(k+1)

k+1 = ⋅ ⋅ ⋅p1p2 pr k+1 = ⋅ ⋅ ⋅q1q2 qs ⋅ ⋅ ⋅p1p2 pr ⋅ ⋅ ⋅q1q2 qs

≤ ≤ ⋅ ⋅ ⋅ ≤p1 p2 pr ≤ ≤ ⋅ ⋅ ⋅ ≤q1 q2 qs

r = s j r =pj qj

≤p1 q1 ≤q1 p1

≤p1 q1

k+1 = ⋅ ⋅ ⋅p1p2 pr  | (k+1)p1

 | ( ⋅ ⋅ ⋅ )p1 q1q2 qs j

1 ≤ j≤ s  | p1 qj p1 qj

=p1 qj
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We now use this and the fact that  to conclude that

.

The product in the previous equation is less that . Hence, we can apply our induction
hypothesis to these factorizations and conclude that , and for each  from 2 to , 

.

This completes the proof that if  are true, then  is true.
Hence, by the Second Principle of Mathematical Induction, we conclude that  is true
for all  with . This completes the proof of the theorem.

Note: We often shorten the result of the Fundamental Theorem of Arithmetic by simply saying that each natural number greater
than one that is not a prime has a unique factorization as a product of primes. This simply means that if , , and n is
not prime, then no matter how we choose to factor n into a product of primes, we will always have the same prime factors. The
only difference may be in the order in which we write the prime factors.

Further Results and Conjectures about Prime Numbers
1. The Number of Prime Numbers 

Prime numbers have fascinated mathematicians for centuries. For example, we can easily start writing a list of prime numbers
in ascending order. Following is a list of the prime numbers less than 100. 
 
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 
 
This list contains the first 25 prime numbers. Does this list ever stop? The question was answered in Euclid’s Elements, and the
result is stated in Theorem 8.16. The proof of this theorem is considered to be one of the classical proofs by contradiction.

There are infinitely many prime numbers.

Proof

We will use a proof by contradiction. We assume that there are only finitely many primes, and let

be the list of all the primes. Let

Notice that . So  is either a prime number or, by the Fundamental Theorem of Arithmetic,  is a product of
prime numbers. In either case,  has a factor that is a prime number. Since we have listed all the prime numbers, this
means that there exists a natural number  with  such that . Now, we can rewrite equation (8.2.8) as
follows:

We have proved , and since  is one of the prime factors of , we can also conclude that 
. Since  divides both of the terms on the right side of equation (8.2.9), we can use this equation to

conclude that  divides 1. This is a contradiction since a prime number is greater than 1 and cannot divide 1. Hence,
our assumption that there are only finitely many primes is false, and so there must be infinitely many primes.

2. There are infinitely many primes, but when we write a list of the prime numbers, we can see some long sequences of
consecutive natural numbers that contain no prime numbers. For example, there are no prime numbers between 113 and 127.
The following theorem shows that there exist arbitrarily long sequences of consecutive natural numbers containing no prime
numbers. A guided proof of this theorem is included in Exercise (15).

k+1 = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅p1p2 pr q1q2 qs

⋅ ⋅ ⋅ = ⋅ ⋅ ⋅p2 pr q2 qs

k+1
r = s j r

=pj qj

P (2),P (3), . . . ,P (k) P (k+1)
P (n)

n ∈ N n ≥ 2

n ∈ N n > 1

 Theorem 8.16.

, , . . . ,p1 p2 pm

M = , . . . , +1.p1p2 pm (8.2.8)

M ≠ 1 M M

M

j 1 ≤ j≤ m  | Mpj

1 = M − ⋅ ⋅ ⋅ .p1p2 pm (8.2.9)

 | Mpj pj ⋅ ⋅ ⋅p1p2 pm

 | ( ⋅ ⋅ ⋅ )pj p1p2 pm pj

pj
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For any natural number , there exist at least  consecutive natural numbers that are composite numbers.

There are many unanswered questions about prime numbers, two of which will now be discussed.

3. By looking at the list of the first 25 prime numbers, we see several cases where consecutive prime numbers differ by 2.
Examples are: 3 and 5; 11 and 13; 17 and 19; 29 and 31. Such pairs of prime numbers are said to be twin primes. How many
twin primes exist? The answer is not known. The Twin Prime Conjecture states that there are infinitely many twin primes. As
of June 25, 2010, this is still a conjecture as it has not been proved or disproved.

For some interesting information on prime numbers, visit the Web site The Prime Pages (primes.utm.edu/), where there is a link
to The Largest Known Primes Web site. According to information at this site as of June 25, 2010, the largest known twin primes
are 

 
Each of these prime numbers contains 100355 digits.

4. Given an even natural number, is it possible to write it as a sum of two prime numbers? For example, 
 
4 = 2 + 2 6 = 3 + 3 8 = 5 + 3 
78 = 37 + 41 90 = 43 + 47 128 = 67 + 71 

One of the most famous unsolved problems in mathematics is a conjecture made by Christian Goldbach in a letter to Leonhard
Euler in 1742. The conjecture, now known as Goldbach’s Conjecture, is as follows:

Every even integer greater than 2 can be expressed as the sum of two (not necessarily distinct) prime numbers.

As of June 25, 2010, it is not known if this conjecture is true or false, al- though most mathematicians believe it to be true.

1. Prove the second and third parts of Theorem 8.11. 
 
(a) Let  be a nonzero integer, and let  be a prime number. If , then . 
(b) Let  be a nonzero integer, and let  be a prime number. If  does not divide , then .

2. Prove the first part of Corollary 8.14. 
Let , let  be a prime number. If , then  or . Hint: Consider two cases: (1) ; and (2)  does
not divide .

3. Use mathematical induction to prove the second part of Corollary 8.14. 
Let  be a prime number, let , and let . If , then there exists a  with 

 such that .
4. (a) Let  and  be nonzero integers. If there exist integers  and  such that , what conclusion can be made

about gcd( )? Explain. 
(b) Let  and  be nonzero integers. If there exist integers  and  such that , what conclusion can be made
about gcd( )? Explain.

5. (a) Let . What is gcd.a; a C 1/? That is, what is the greatest common divisor of two consecutive integers? Justify your
conclusion.

Hint: Exercise (4) might be helpful.

(b) Let . What conclusion can be made about gcd( , )? That is, what conclusion can be made about the greatest
common divisor of two integers that differ by 2? Justify your conclusion.

6. (a) Let . What conclusion can be made about gcd( , )? That is, what conclusion can be made about the greatest
common divisor of two integers that differ by 3? Justify your conclusion. 
(b) Let . What conclusion can be made about gcd( , )? That is, what conclusion can be made about the greatest
common divisor of two integers that differ by 4? Justify your conclusion.

 Theorem 8.17,

n n

(65516468355 × −1) and (65516468355 × +1).2333333 2333333 (8.2.10)

 Exercise 8.2

a p p | a gcd(a, p) = p

a p p a gcd(a, p) = 1

a, b ∈ Z p p | (ab) p | a p | b p | a p

a

p n ∈ N , , . . . , ∈ Za1 a2 an p | ( ⋅ ⋅ ⋅ )a1a2 an k ∈ N

1 ≤ k ≤ n p | ak
a b x y ax+by = 1

a, b
a b x y ax+by = 2

a, b
a ∈ Z

a ∈ Z a a+2

a ∈ Z a a+3

a ∈ Z a a+4
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7. (a) Let  and . Determine the value of , and then determine the value of gcd( , ). 

(b) Repeat Exercise (7a) with  and . 

(c) Let , not both equal to 0, and let . Explain why  and  are integers. Then prove that 

. Hint: Start by writing  as a linear combination of  and . 

This says that if you divide both  and  by their greatest common divisor, the result will be two relatively prime integers.
8. Are the following propositions true or false? Justify your conclusions. 

 
(a) For all integers , , and , if  and , then . 
(b) For all integers , , and , if , , and , then .

9. In Exercise (16) in Section 3.5, it was proved that if  is an odd integer, then \). (This result was also proved in
Exercise (19) in Section 7.4.) Now, prove the following proposition: 
If  is an odd integer and 3 does not divide , then .

10. (a) Prove the following proposition: 
For all ,  if and only if  and . 
(b) Use mathematical induction to prove the following proposition: 
Let  and let . If  for all  with , then .

11. Is the following proposition true or false? Justify your conclusion. 
Fro all integer , , and , if  and , then  and .

12. Is the following proposition true or false? Justify your conclusion. 
If , then 

13. Let . Use the Fundamental Theorem of Arithmetic to prove that there exists an odd natural number x and a
nonnegative integer  such that .

14. (a) Determine five different primes that are congruent to 3 modulo 4. 
(b) Prove that there are infinitely many primes that are congruent to 3 modulo 4.

15. (a) Let . Prove that 2 divides . 
(b) Let  with . Prove that 3 divides . 
(c) Let . Prove that for each  with ,  divides . 
(d) Use the result of Exercise (15c) to prove that for each , there exist at least  consecutive composite natural
numbers.

16. The Twin Prime Conjecture states that there are infinitely many twin primes, but it is not known if this conjecture is true or
false. The answers to the following questions, however, can be determined. 
 
(a) How many pairs of primes  and  exist where ? That is, how many pairs of primes are there that differ by 3?
Prove that your answer is correct. (One such pair is 2 and 5.) 
(b) How many triplets of primes of the form , , and  are there? That is, how many triplets of primes exist where
each prime is 2 more than the preceding prime? Prove that your answer is correct. Notice that one such triplet is 3, 5, and 7. 
Hint: Try setting up cases using congruence modulo 3.

17. Prove the following proposition:
Let . For each , if , then for every , there exists an  such that  (mod ). 
Hint: One way is to start by writing 1 as a linear combination of  and .

18. Prove the following proposition:

For all natural numbers  and , if  and  are twin primes other than the pair 3 and 5, then 36 divides  and 
 is a perfect square.

Hint: Look at several examples of twin primes. What do you notice about the number that is between the two twin primes?
Set up cases based on this observation.

Explorations and Activities

19. Square Roots and Irrational Numbers. In Chapter 3, we proved that some square roots (such as  and ) are
irrational numbers. In this activity, we will use the Fundamental Theorem of Arithmetic to prove that if a natural number is not
a perfect square, then its square root is an irrational number. 

a = 16 b = 28 d = gcd(a, b)
a

d

b

d
a = 10 b = 45

a, b ∈ Z d = gcd(a, b)
a

d

b

d

gcd( , ) = 1
a

d

b

d
d a b

a b

a b c a | c b | c (ab) | c
a b c a | c b | c gcd(a, b) = 1 (ab) | c

n 8 | ( −1n2

n n 24 | ( −1)n2

a, b, c ∈ Z gcd(a, bc) = 1 gcd(a, b) = 1 gcd(a, c) = 1

n ∈ N a, , , . . . , ∈ Zb1 b2 bn gcd(a, ) = 1bi i ∈ N 1 ≤ i ≤ n gcd(a, ⋅ ⋅ ⋅ ) = 1b1b2 bn

a b c gcd(a, b) = 1 c | (a+b) gcd(a, c) = 1 gcd(b, c) = 1

n ∈ N gcd(5n+2, 12n+5) = 1
y ∈ N

k y = x2k

n ∈ N [(n+1)! +2]
n ∈ N n ≥ 2 [(n+1)! +3]
n ∈ N k ∈ N 2 ≤ k ≤ (n+1) k [(n+1)! +k]

n ∈ N n

p q q−p = 3

p p+2 p+4

n ∈ N a ∈ Z gcd(a,n) = 1 b ∈ Z x ∈ Z ax ≡ b n

a n

m n m n mn+1
mn+1

2
–

√ 3
–

√
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(a) Let  be a natural number. Use the Fundamental Theorem of Arithmetic to explain why if n is composite, then there exist
prime numbers  and natural numbers  such that

Then,if we use  and  for a prime number, explain why we can write any natural number in the form given in
equation (8.2.11).

(b) A natural number  is a perfect square if and only if there exists a natural number  such that . Explain why 36, 400,
and 15876 are perfect squares. Then determine the prime factorization of these perfect squares. What do you notice about these
prime factorizations?

(c) Let  be a natural number written in the form given in equation (8.2.11) in part (a). Prove that  is a perfect square if and
only if for each natural number  with ,  is even.

(d) Prove that for all natural numbers , if  is not a perfect square, then  is an irrational number. Hint: Use a proof by
contradiction.

Answer

Add texts here. Do not delete this text first.

This page titled 8.2: Prime Numbers and Prime Factorizations is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or
curated by Ted Sundstrom (ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.

8.2: Prime Numbers and Prime Factorizations by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source:
https://scholarworks.gvsu.edu/books/7.

n

, , . . . ,p1 p2 pr , , . . . ,α1 α2 αr

n = ⋅ ⋅ ⋅ .p
α1
1 p

α2
2 p

αr
r (8.2.11)

r = 1 = 1α1

b a b = a2

n n

k 1 ≤ k ≤ r αk

n n n
−−

√
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8.3: Linear Diophantine Equations

1. Does the linear equation  have a solutions that is an integer? Explain.
2. Does the linear equation  have a solution that is an integer? Explain.
3. Does the linear equation  have a solution that is an integer? Explain.
4. Does the linear equation  have a solution that is an integer? Explain.
5. Prove the following theorem:

Let  with .

If  divides , then the equation  has exactly one solution that is an integer.
If  does not divide , then the equation  has no solution that is an integer.

1. Find integers  and  so that  or explain why it is not possible to find such a pair of integers.
2. Find integers  and  so that  or explain why it is not possible to find such a pair of integers.
3. Notice that  and  is a solution of the equation , and that  and  is also a solution of

the equation .

(a) Find two pairs of integers  and  so that  and . (Try to keep the integer values of x as small as
possible.) 
(b) Find two pairs of integers  and  so that  and . (Try to keep the integer values of  as close to 2 as
possible.) 
(c) Determine formulas (one for x and one for y) that will generate pairs of integers  and  so that . 
Hint: The two formulas can be written in the form  and , where  is an arbitrary integer and  and 
are specific integers.

4. Notice that  and  is a solution of the equation , and that  and  is a solution of the
equation . (a) Find two pairs of integers  and  so that  and . (Try to keep the integer
values of  as small as possible.)
(b) Find two pairs of integers  and  so that  and . (Try to keep the integer values of  as close to 4 as
possible.) 
(c) Determine formulas (one for  and one for ) that will generate pairs of integers x and y so that . 
Hint: The two formulas can be written in the form  and , where  is an arbitrary integer and  and

 are specific integers.

In the two preview activities, we were interested only in integer solutions for certain equations. In such instances, we give the
equation a special name.

An equation whose solutions are required to be integers is called a Diophantine equation.

Diophantine equations are named in honor of the Greek mathematician Diophantus of Alexandria (circa 300 c.e.). Very little is
known about Diophantus’ life except that he probably lived in Alexandria in the early part of the fourth centuryc.e. and was
probably the first to use letters for unknown quantities in arithmetic problems. His most famous work, Arithmetica, consists of
approximately 130 problems and their solutions. Most of these problems involved solutions of equations in various numbers of
variables. It is interesting to note that Diophantus did not restrict his solutions to the integers but recognized rational number
solutions as well. Today, however, the solutions for a so-called Diophantine equation must be integers.

 Preview Activity : Integer Solutions for Linear Equations in One Variable8.3.1

6x = 42

7x = −21

4x = 9

−3x = 20

 Theorem 8.18

a, b ∈ Z a ≠ 0

a b ax = b

a b ax = b

 Preview Activity : Linear Equations in Two Variables8.3.2

x y 2x+6y = 25

x y 6x−9y = 100

x = 2 y = 1 3x+5y = 11 x = 7 y = −2

3x+5y = 11

x y x > 7 3x+5y = 11

x y x < 2 3x+5y = 11 x

x y 3x+5y = 11

x = 2 +km y = 1 +kn k m n

x = 4 y = 0 4x+6y = 16 x = 7 y = −2

4x+6y = 16 x y x > 7 4x+6y = 16

x

x y x < 4 4x+6y = 16 x

x y 4x+6y = 16

x = 4 +km y = 0 +kn k m

n

 Definition: Diophantine equation
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If  and  are integers with , then the equation  is a linear Diophantine equation in one variable.

Theorem 8.18 in Preview Activity  provides us with results that allows us to determine which linear diophantine equations in
one variable have solutions and which ones do not have a solution.

A linear Diophantine equation in two variables can be defined in a manner similar to the definition for a linear Diophantine
equation in one variable.

Let , , and  be integers with  and . The Diophantine equation  is called a linear Diophantine
equation in two variables.

The equations that were investigated in Preview Activity  were linear Diophantine equations in two variables. The problem of
determining all the solutions of a linear Diophantine equation has been completely solved. Before stating the general result, we will
provide a few more examples.

The following example is similar to the examples studied in Preview Activity .

We can use substitution to verify that  and  is a solution of the linear Diophantine equation

.

The following table shows other solutions of this Diophantine equation.

It would be nice to determine the pattern that these solutions exhibit. If we consider the solution  and  to be the
“starting point,” then we can see that the other solutions are obtained by adding 3 to  and subtracting 4 from  in the previous
solution. So we can write these solutions to the equation as

 and ,

where  is an integer. We can use substitution and algebra to verify that these expressions for  and  give solutions of this
equation as follows:

We should note that we have not yet proved that these solutions are all of the solutions of the Diophantine equation 
. This will be done later.

If the general form for a linear Diophantine equation is , then for this example,  and . Notice that for
this equation, we started with one solution and obtained other solutions by adding  to  and subtracting  from  in
the previous solution. Also, notice that gcd(3, 4) = 1.

 Definition: linear Diophantine equation in one variable

a b a ≠ 0 ax = b

8.3.1

 Definition: linear Diophantine equation in two variables

a b c a ≠ 0 b ≠ 0 ax+by = c

8.3.2

 Example 8.19: A Linear Diophantine Equation in Two Variables

8.3.2

x = 2 y = −1

4x+3y = 5

x = 2 y = −1

x y

x = 2 +3k y = −1 −4k

k x y

4x+3y =

=

=

4(2 +3k) +3(−1 −4k)

(8 +12k) +(−3 −12k)

5.

(8.3.1)

4x+3y = 5

ax+by = c a = 4 b = 3

b = 3 x a = 4 y

 Progress Check 8.20: An Example of a Linear Diophantine Equation
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1. Verify that the following table shows some solutions of the linear Diophantine equation . 

2. Follow the pattern in this table to determine formulas for  and  that will generate integer solutions of the equation 
. Verify that the formulas actually produce solutions for the equation .

Answer

Add texts here. Do not delete this text first.

Do the solutions for the linear Diophantine equations in Preview Activity  show the same type of pattern as the solutions
for the linear Diophantine equations in Example 8.19 and Progress Check 8.20? Explain.

Answer

Add texts here. Do not delete this text first.

The solutions for the linear Diophantine equations in Preview Activity , Example 8.19, and Progress Check 8.20 provide
examples for the second part of Theorem 8.22.

Let ,  and  be integers with  and , and let .

1. If  does not divide , then the linear Diophantine equation  has no solution.
2. If  divides , then the linear Diophantine equation  has infinitely many solutions. In addition, if ( , ) is a

particular solution of this equation, then all the solutions of this equation can be written in the form 

 
for some integer .

Proof

The proof of Part (1) is Exercise (1). For Part (2), we let , , and  be integers with  and , and let 
. We also assume that . Since , Theorem 8.8 tells us that  is a linear combination of  and

. So there exist integers  and  such that

Since , there exists an integer  such that . We can now multiply both sides of equation (8.3.3) by m and
obtain

This means that ,  is a solution of , and we have proved that the Diophantine equation 
 has at least one solution.

Now let  be any particular solution of , let , and let

6x+9y = 12

x y

6x+9y = 12 6x+9y = 12

 Progress Check 8.21: Revisiting Preview Activity 8.3.2

8.3.2

8.3.2

 Theorem 8.22

a b c a ≠ 0 b ≠ 0 d = gcd(a, b)

d c ax+by = c

d c ax+by = c x0 y0

x = + k        and        y = − k,x0
b

d
y0

a

d
(8.3.2)

k

a b c a ≠ 0 b ≠ 0

d = gcd(a, b) d | c d = gcd(a, b) d a

b s t

d = as+bt. (8.3.3)

d | c m c = dm

dm

c

=

=

(as+bt)m

a(sm) +b(tm).
(8.3.4)

x = sm y = tm ax+by = c

ax+by = c

x = , y =x0 y0 ax+by = c k ∈ Z

x = + k        y = − k.x0
b

d
y0

a

d
(8.3.5)
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We now verify that for each , the equations in (8.3.4) produce a solution of .

This proves that the Diophantine equation  has infinitely many solutions.

We now show that every solution of this equation can be written in the form described in (8.3.4). So suppose that  and 
are integers such that . Then

and this equation can be rewritten in the following form:

Dividing both sides of this equation by , we obtain

This implies that

 divides 

However, by Exercise (7) in Section 8.2, , and so by Theorem 8.12, we can conclude that  divides 

. This means that there exists an integer  such that , and solving for  gives

Substituting this value for  in equation (8.3.5) and solving for  yields

This proves that every solution of the Diophantine equation  can be written in the form prescribed in (8.3.4).

The proof of the following corollary to Theorem 8.22 is Exercise (2)

Let , , and  be integers with  and .If  and  are relatively prime, then the linear Diophantine equation 
 has infinitely many solutions. In addition, if ,  is a particular solution of this equation, then all the solutions

of the equation are given by

 

where 

1. Use the Euclidean Algorithm to verify that gcd.63; 336/ D 21. What conclusion can be made about linear Diophantine
equation  using Theorem 8.22? If this Diophantine equation has solutions, write formulas that will
generate the solutions.

2. Use the Euclidean Algorithm to verify that gcd.144; 225/ D 9. What conclusion can be made about linear Diophantine
equation  using Theorem 8.22? If this Diophantine equation has solutions, write formulas that will
generate the solutions.

k ∈ Z ax+by = c

ax+by =

=

=

=

a( + k) +b( − k)x0
b

d
y0

a

d

a + k+b − kx0
ab

d
y0

ab

d

a +bx0 y0

c.

(8.3.6)

ax+by = c

x y

ax+by = c

(ax+by) −(a +b ) = c−c = 0,x0 y0

a(x− ) = b( −y).x0 y0 (8.3.7)

d

( )(x− ) = ( )( −y).
a

d
x0

b

d
y0

a

d
( )( −y).
b

d
y0

textgcd( , ) = 1
a

d

b

d

a

d

−yy0 k −y = ky0
a

d
y

y = − k.y0
a

d

y x

x = + )k.x0
b

d

ax+by = c

 Theorem 8.3.1

a b c a ≠ 0 b ≠ 0 a b

ax+by = c x0 y0

x = +bkx0 y = −aky0

k ∈ Z

 Progress Check 8.24 (Linear Diophantine Equations)

63x+336y = 40

144x+225y = 27
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Answer

Add texts here. Do not delete this text first.

1. Prove Part (1) of Theorem 8.22:

Let , , and  be integers with  and , and let . If  does not divide , then the linear Diophantine
equation  has no solution.

2. Prove Corollary 8.23.

Let , , and  be integers with  and . If  and  are relatively prime, then the linear Diophantine equation 
 has infinitely many solutions. In addition, if ( ) is a particular solution of this equation, then all the

solutions of the equation are given by 

 
where .

3. Determine all solutions of the following linear Diophantine equations. 
 
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  
(g)  
(h) 

4. A certain rare artifact is supposed to weigh exactly 25 grams. Suppose that you have an accurate balance scale and 500 each
of 27 gram weights and 50 gram weights. Explain how to use Theorem 8.22 to devise a plan to check the weight of this
artifact.

Hint: Notice that gcd(50, 27) = 1. Start by writing 1 as a linear combination of 50 and 27.

5. On the night of a certain banquet, a caterer offered the choice of two dinners, a steak dinner for $25 and a vegetarian dinner
for $16. At the end of the evening, the caterer presented the host with a bill (before tax and tips) for $1461. What is the
minimum number of people who could have attended the banquet? What is the maximum number of people who could
have attended the banquet?

6. The goal of this exercise is to determine all (integer) solutions of the linear Diophantine equation in three variables 
 

 
(a) First, notice that gcd(12, 9) = 3. Determine formulas that will generate all solutions for the linear Diophantine equation 

. 
(b) Explain why the solutions (for  and ) of the Diophantine equation  can be used to geneate
solutions for . 
(c) Use the general value for y from Exercise (6a) to determine the solutions of  
(d) Use the results from Exercises (6a) and (6c) to determine formulas that will generate all solutions for the Diophantine
equation . 
Note: These formulas will involve two arbitrary integer parameters. Substitute specific values for these integers and then
check the resulting solution in the original equation. Repeat this at least three times. 
(e) Check the general solution for  from Exercise (6d).

7. Use the method suggested in Exercise (6) to determine formulas that will generate all solutions of the Diophantine equation
. Check the general solution.

8. Explain why the Diophantine equation  has no solution.

 Exercises 8.3

a b c a ≠ 0 b ≠ 0 d = gcd(a, b) d c

ax+by = c

a b c a ≠ 0 b ≠ 0 a b

ax+by = c ,x0 y0

x = +bk       y = −ak,x0 y0 (8.3.8)

k ∈ Z

9x+14y = 1

18x+22y = 4

48x−18y = 15

12x+9y = 6

200x+49y = 10

200x+54y = 21

10x−7y = 31

12x+18y = 6

12 +9 +16 = 20.x1 x2 x3

3y+16 = 20x3

x1 x2 12 +9 = 3yx1 x2

12 +9 +16 = 20x1 x2 x3

12 +9 = 3yx1 x2

12 +9 +16 = 20x1 x2 x3

12 +9 +16 = 20x1 x2 x3

8 +4 −6 = 6x1 x2 x3

24 −18 +60 = 21x1 x2 x3

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86145?pdf


8.3.6 https://math.libretexts.org/@go/page/86145

9. The purpose of this exercise will be to prove that the nonlinear Diophantine equation  has no solution. 
 
(a) Explain why if there is a solution of the Diophantine equation , then that solution must also be a
solution of the congruence  (mod 3). 
(b) If there is a solution to the congruence  (mod 3), explain why there then must be an integer  such that 

 (mod 3). 
(c) Use a proof by contradiction to prove that the Diophantine equation  has no solution.

10. Use the method suggested in Exercise (9) to prove that the Diophantine equation  has no solution. 
 
Explorations and Activities

11. Linear Congruences in One Variable. Let  be a natural number and let  with . A congruence of the form 
 (mod ) is called a linear congruence in one variable. This is called a linear congruence since the variable  occurs

to the first power.

A solution of a linear congruence in one variable is defined similarly to the solution of an equation. A solution is an
integer that makes the resulting congruence true when the integer is substituted for the variable . For example, 
 

 The integer  is a solution for the congruence  (mod 5) since  (mod 5) is a true congruence. 
 The integer  is a solution for the congruence  (mod 6) since  (mod 6) is not a true congruence. 

 
(a) Verify that  and  are the only solutions the linear congruence  (mod 6) with . 
(b) Show that the linear congruence  (mod 6) has no solutions with . 
(c) Determine all solutions of the linear congruence  (mod 8) with . 
 
The following parts of this activity show that we can use the results of Theorem 8.22 to help find all solutions of the linear
congruence  (mod 8). 
 
(d) Verify that  and  are the only solutions the linear congruence  (mod 8) with . 
(e) Use the definition of “congruence” to rewrite the congruence  (mod 8) in terms of "divides". 
(f) Use the definition of “divides” to rewrite the result in part (11e) in the form of an equation. (An existential quantifier
must be used.) 
(g) Use the results of parts (11d) and (11f) to write an equation that will generate all the solutions of the linear congruence 

 (mod 8). 
Hint: Use Theorem 8.22. This can be used to generate solutions for  and the variable introduced in part (11f). In this case,
we are interested only in the solutions for . 
 
Now let  be a natural number and let  with . A general linear congruence of the form  (mod ) can
be handled in the same way that we handled in  (mod 8). 
 
(h) Use the definition of “congruence” to rewrite  (mod ) in terms of “divides.” 
(i) Use the definition of “divides” to rewrite the result in part (11h) in the form of an equation. (An existential quantifier
must be used.) 
(j) Let . State and prove a theorem about the solutions of the linear congruence  (mod ) in the case
where  does not divide . 
Hint: Use Theorem 8.22.
(k) Let . State and prove a theorem about the solutions of the linear congruence  (mod ) in the case
where  divides .

Answer

Add texts here. Do not delete this text first.

3 − = −2x2 y2

3 − = −2x2 y2

3 − ≡ −2x2 y2

3 − ≡ −2x2 y2 y

≡ 2y2

3 − = −2x2 y2

7 +2 =x2 y3

n a, b ∈ Z a ≠ 0

ax ≡ b n x

x

∙ x = 3 2x ≡ 1 2 ⋅ 3 ≡ 1

∙ x = 7 3x ≡ 1 3 ⋅ 7 ≡ 1

x = 2 x = 5 4x ≡ 2 0 ≤ x < 6

4x ≡ 3 0 ≤ x < 6

3x ≡ 7 0 ≤ x < 8

6x ≡ 4

x = 2 x = 5 6x ≡ 4 0 ≤ x < 8

6x ≡ 4

6x ≡ 4

x

x

n a, c ∈ Z a ≠ 0 ax ≡ c n

6x ≡ 4

ax ≡ c n

d = gcd(a,n) ax ≡ c n

d c

d = gcd(a,n) ax ≡ c n

d c
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8.S: Topics in Number Theory (Summary)
Important Definitions

Greatest common divisor of two integers, page 414
Linear combination of two integers, page 423
Prime number, page 426
Composite number, page 426
Prime factorization, page 427
Relatively prime integers, page 428
Diophantine equation, page 441
Linear Diophantine equation in two variables, page 441

Important Theorems and Results about Relations, Equivalence Relations, and Equivalence Classes

Theorem 8.3. Let  and  be integers with  and . Then gcd( ) is the only natural number  such that 
 
(a)  divides , 
(b)  divides , and 
(c) if  is an integer that divides both  and , then  divides .
Theorem 8.8. Let  and  be integers, not both 0. Then gcd( ) can be written as a linear combination of  and . That is,
there exist integers  and  such that gcd( ) .
Theorem 8.9.
1. The greatest common divisor, , is a linear combination of  and . That is, there exist integers  and  such that 

.
2. The greatest common divisor, , divides every linear combination of  and . That is, for all , .
3. The greatest common divisor, , is the smallest positive number that is a linear combination of  and .

Theorem 8.11. Let  and  be nonzero integers, and let  be a prime number.

1. If  and  are relatively prime, then there exist integers m and n such that . That is, 1 can be written as linear
combination of  and .

2. If ,then .
3. If  does not divide , then .

Theorem 8.12 Let , , and  be integers. If a and b are relatively prime and , then .
Corollary8.14
1. Let , and let  be a prime number. If , then  or .
2. Let  be a prime number, let , and let . If , then there exists a natural number 

with  such that .
Theorem 8.15, The Fundamental Theorem of Arithmetic
1. Each natural number greater than 1 is either a prime number or is a product of prime numbers.
2. Let  with . Assume that 

where  and  are primes with  and . Then , and for each 
from 1 to , .

Theorem 8.16. There are infinitely many prime numbers.
Theorem 8.22. Let a, b, and c be integers with  and , and let .

1. If  does not divide , then the linear Diophantine equation  has no solution.

2. If  divides , then the linear Diophantine equation  has infinitely many solutions. In addition, if ( ) is a
particular solution of this equation, then all the solutions of the equation are given by

a b a ≠ 0 b > 0 a, b d

d a

d b

k a b k d

a b a, b a b

u v a, b = au+bv

d a b m n

d = am+bn

d a b x, y ∈ Z d | (ax+by)

d a b

a b p

a b am+bn = 1

a b

p | a gcd(a, p) = p

p a gcd(a, p) = 1

a b c a | (bc) a | c

a, b ∈ Z p p | (ab) p | a p | b

p n ∈ N , , . . . , ∈ Za1 a2 an p | ( ⋅ ⋅ ⋅ )a1a2 an k

1 ≤ k ≤ n p | ak

n ∈ N n > 1

n = ⋅ ⋅ ⋅  and that n = ⋅ ⋅ ⋅ .p1p2 pr q1q2 qs (8.S.1)

⋅ ⋅ ⋅p1p2 pr ⋅ ⋅ ⋅q1q2 qs ≤ ≤ ⋅ ⋅ ⋅p1 p2 pr ≤ ≤ ⋅ ⋅ ⋅ ≤q1 q2 qs r = s j

r =pj qj

a ≠ 0 b ≠ 0 d = gcd(a, b)

d c ax+by = c

d c ax+by = c ,x0 y0

x = + k    and    y = − k.x0
b

d
y0

a

d
(8.S.2)
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where .

Corollary8.23. Let , , and  be integers with  and . If  and  are relatively prime, then the linear Diophantine
equation  has infinitely many solutions. In addition, if ,  is a particular solution of this equation, then all the
solutions of the equation are given by

page468image4254810384 page468image4254810656 page468image4254810928

where .
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k ∈ Z

a b c a ≠ 0 b ≠ 0 a b

ax+by = c x0 y0

x = +bk    and    y = −ak,x0 y0 (8.S.3)

k ∈ Z
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9.1: Finite Sets

1. Let  and  be sets and let  be a function from  to . ( ). Carefully complete each of the following using
appropriate quantifiers: (If necessary, review the material in Section 6.3.)
a. The function  is an injection provided that...
b. The function  is not an injection provided that...
c. The function  is a surjection provided that...
d. The function  is not a surjection provided that...
e. The function  is a bijection provided that...

Let  and  be sets.

The set  is equivalent to the set  provided that there exists a bijection from the set  onto the set . In this case,
we write .
When , we also say that the set  is in one-to-one correspondence with the set  and that the set  has the
same cardinality as the set .

Note: When  is not equivalent to , we write .

2. For each of the following, use the definition of equivalent sets to determine if the first set is equivalent to the second set.

a.  and 
b.  and 
c.  and 

3. Let  be the set of all odd natural numbers. Prove that the function  defined by , for all 
, is a bijection and hence that .

4. Let  be the set of all positive real numbers. Prove that the function  defined by , for all  is a
bijection and hence, that .

1. Review Theorem 6.20 in Section 6.4, Theorem 6.26 in Section 6.5, and Exercise (9) in Section 6.5.
2. Prove each part of the following theorem.

Let , , and  be sets.

a. For each set , .
b. For all sets  and , if , then .
c. For all sets ,  and , if  and , then .

Equivalent Sets
In Preview Activity , we introduced the concept of equivalent sets. The motivation for this definition was to have a formal
method for determining whether or not two sets “have the same number of elements.” This idea was described in terms of a one-to-
one correspondence (a bijection) from one set onto the other set. This idea may seem simple for finite sets, but as we will see, this
idea has surprising consequences when we deal with infinite sets. (We will soon provide precise definitions for finite and infinite
sets.)

 Preview Activity : Equivalent Sets, Part 19.1.1

A B f A B f : A → B

f

f

f

f

f

 Definitions: equivalent Sets and one-to-one correspondence

A B

A B A B

A ≈ B

A ≈ B A B A

B

A B A ≉ B

A = {1, 2, 3} B = {a, b, c}
C = {1, 2} B = {a, b, c}
X = {1, 2, 3, . . . , 10} Y = {57, 58, 59, . . . , 66}

D+ f : N → D+ f(x) = 2x −1
x ∈ N N ≈ D+

R
+ g : R → R

+ g(x) = ex x ∈ R

R ≈ R
+

 Preview Activity : Equivalent Sets, Part 29.1.2

 Theorem 9.1.

A B C

A A ≈ A

A B A ≈ B B ≈ A

A B C A ≈ B B ≈ C A ≈ C

9.1.1
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The three properties we proved in Theorem 9.1 in Preview Activity  are very similar to the concepts of reflexive,
symmetric, and transitive relations. However, we do not consider equivalence of sets to be an equivalence relation on a set 
since an equivalence relation requires an underlying (universal) set . In this case, our elements would be the sets , , and 

, and these would then have to subsets of some universal set W (elements of the power set of ). For equivalence of sets, we
are not requiring that the sets , , and  be subsets of the same universal set. So we do not use the term relation in regards to
the equivalence of sets. However, if  and  are sets and , then we often say that  and  are equivalent sets.

We will use the definition of equivalent sets from in Preview Activity  in all parts of this progress check. It is no longer
sufficient to say that two sets are equivalent by simply saying that the two sets have the same number of elements.

1. Let  and let . Define  by , for
each  in . Prove that  is a bijection from the set  to the set  and hence, .

2. Let  be the set of all even integers and let  be the set of all odd integers. 
Prove that  by proving that , where , for all , is a bijection.

3. Let (0, 1) be the open interval of real numbers between 0 and 1. Similarly, if  with , let  be the open interval
of real numbers between 0 and . 
Prove that the function  by , for all , is a bijection and hence .

Answer

Add texts here. Do not delete this text first.

In Part (3) of Progress Check 9.2, notice that if , then (0, 1) is a proper subset of (0, ) and . Also, in Part (3) of
Preview Activity , we proved that the set  of all odd natural numbers is equivalent to , and we know that  is a proper
subset of .

These results may seem a bit strange, but they are logical consequences of the definition of equivalent sets. Although we have not
defined the terms yet, we will see that one thing that will distinguish an infinite set from a finite set is that an infinite set can be
equivalent to one of its proper subsets, whereas a finite set cannot be equivalent to one of its proper subsets.

Finite Sets

In Section 5.1, we defined the cardinality of a finite set , denoted by card( ), to be the number of elements in the set . Now
that we know about functions and bijections, we can define this concept more formally and more rigorously. First, for each ,
we define  to be the set of all natural numbers between 1 and , inclusive. That is,

.

We will use the concept of equivalent sets introduced in Preview Activity  to define a finite set.

A set  is a finite set provided that  or there exists a natural number  such that .
A set is an infinite set provided that it is not a finite set.
If , we say that the set  has cardinality  (or cardinal number ), and we write card( ) .

In addition, we say that the empty set has cardinality 0 (or cardinal number 0), and we write .

Notice that by this definition, the empty set is a finite set. In addition, for each , the identity function on  is a bijection and
hence, by definition, the set  is a finite set with cardinality .

 Technical Note

9.1.2
U

U A B

C W

A B C

A B A ≈ B A B

 Progress Check 9.2: Examples of Equivalent Sets

9.1.1

A = {1, 2, 3, . . . , 99, 100} B = {351, 352, 353, . . . , 449, 450} f : A → B f(x) = x +350
x A f A B A ≈ B

E D

E ≈ D F : E → D F (x) = x +1 x ∈ E

b ∈ R b > 0 0, b

b

f : (0, 1) → (0, b) f(x) = bx x ∈ (0, 1) (0, 1) ≈ (0, b)

b > 1 b (0, 1) ≈ (0, b)
9.1.1 D N D

N

A A A

k ∈ N

Nk k

= {1, 2, . . . , k}Nk

9.1.1

 Definition: finite and infinite sets

A A = ∅ k A ≈ Nk

A ≈ Nk A k k A = k

card(∅) = 0

k ∈ N Nk

Nk k
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Any set equivalent to a finite nonempty set  is a finite set and has the same cardinality as .

Proof

Suppose that  is a finite nonempty set,  is a set, and . Since  is a finite set, there exists a  such that 
. We also have assumed that  and so by part (b) of Theorem 9.1 (in Preview Activity ), we can

conclude that . Since , we can use part (c) of Theorem 9.1 to conclude that . Thus,  is finite and
has the same cardinality as .

It may seem that we have done a lot of work to prove an “obvious” result in Theorem 9.3. The same may be true of the remaining
results in this section, which give further results about finite sets. One of the goals is to make sure that the concept of cardinality for
a finite set corresponds to our intuitive notion of the number of elements in the set. Another important goal is to lay the groundwork
for a more rigorous and mathematical treatment of infinite sets than we have encountered before. Along the way, we will see the
mathematical distinction between finite and infinite sets.

The following two lemmas will be used to prove the theorem that states that every subset of a finite set is finite.

If  is a finite set and , then  is a finite set and .

Proof

Let  is a finite set and assume that , where  or . Assume .

If , then  and , which is equivalent to . Thus,  is a finite set with cardinality
1, which equals card( ) + 1.

If , then , for some . This means that , and there exists a bijection . We will
now use this bijection to define a function  and then prove that the function  is a bijection. We define 

 as follows: For each ,

To prove that  is an injection, we let  and assume .

If , then since  is a bijection, , and this implies that .
If , then since , we conclude that  and hence . So , and since 
and , we can conclude that .

This proves that the function  is an injection. The proof that g is a surjection is Exercise (1). Since g is a bijection, we
conclude that , and

.

Since , we have proved that .

For each natural number , if , then  is a finite set and .

Proof

We will use a proof using induction on . For each , let  be, "If , then  is finite and 
".

We first prove that  is true. If , then  or , both of which are finite and have cardinality less than
or equal to the cardinality of . This proves that  is true.

 Theorem 9.3

A A

A B A ≈ B A k ∈ N

A ≈ Nk A ≈ B 9.1.2
B ≈ A A ≈ Nk B ≈ Nk B

A

 Lemma 9.4

A x ∉ A A ∪ {x} card(A ∪ {x}) = card(A) +1

A card(A) = k k = 0 k ∈ N x ∉ A

A = ∅ card(A) = 0 A ∪ {x} = {x} N1 A ∪ {x}
A

A ≠ ∅ A ≈ Nk k ∈ N card(A) = k f : A → Nk

g : A ∪ {x} → Nk+1 g

g : A ∪ {x} → Nk+1 t ∈ A ∪ {x}

g(t) = { f(t)
k +1

 if t ∈ A

 if t = x.

g , ∈ A ∪ {x}x1 x2 ≠x1 x2

, ∈ Ax1 x2 f f( ) ≠ f( )x1 x2 g( ) ≠ g( )x1 x2

= xx1 ≠x2 x1 ≠ xx2 ∈ Ax2 g( ) = k +1x1 f( ) ∈x2 Nk

g( ) = f( )x2 x2 g( ) ≠ g( )x1 x2

g

A ∪ {x} ≈ Nk+1

card(A ∪ {x}) = k +1

card(A) = k card(A ∪ {x}) = card(A) +1

 Lemma 9.5

m A ⊆ Nm A card(A) ≤ m

m m ∈ N P (m) A ⊆ Nm A

card(A) ≤ m

P (1) A ⊆ N1 A = ∅ A = {1}
N1 P (1)
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For the inductive step, let  and assume that  is true. That is, assume that if , then  is a finite set and 
. We need to prove that  is true.

So assume that  is a subset of . Then  is a subset of . Since  is true,  is a finite set
and

.

There are two cases to consider: Either  or .

If , then . Hence,  is finite and

.

If , then . Hence, by Lemma 9.4,  is a finite set and

 + 1\).

Since , we can conclude that .

This means that we have proved the inductive step. Hence, by mathematical induction, for each , if , then 
 is finite and .

The preceding two lemmas were proved to aid in the proof of the following theorem.

If  is a finite set and  is a subset of , then  is a finite set and .

Proof

Let  be a finite set and assume that  is a subset of . If , then  is a finite set and . So we
assume that .

Since S is finite, there exists a bijection  for some . In this case, . We need to show that  is
equivalent to a finite set. To do this, we define  by

 for each .

Since  is an injection, we conclude that  is an injection. Now let . Then there exists an  such that 
. But by the definition of , this means that , and hence  is a surjection. This proves that  is a bijection.

Hence, we have proved that . Since  is a subset of , we use Lemma 9.5 to conclude that  is finite
and . In addition, by Theorem 9.3,  is a finite set and . This proves that  is a
finite set and .

Lemma 9.4 implies that adding one element to a finite set increases its cardinality by 1. It is also true that removing one element
from a finite nonempty set reduces the cardinality by 1. The proof of Corollary 9.7 is Exercise (4).

If  is a finite set and , then  is a finite set and 

The next corollary will be used in the next section to provide a mathematical distinction between finite and infinite sets.

A finite set is not equivalent to any of its proper subsets.

Proof

Let  be a finite set and assume that  is a proper subset of . Since  is a proper subset of , there exists an element 
in . This means that  is a subset of . Hence, by Theorem 9.6,

k ∈ N P (k) B ⊆ Nk B

card(B) ≤ k P (k +1)

A Nk+1 A −{k +1} Nk P (k) A −{k +1}

card(A −{k +1}) ≤ k

k +1 ∈ A k +1 ∉ A

k +1 ∉ A A = A −{k +1} A

card(A) ≤ k < k +1

k +1 ∈ A A = (A −{k +1}) ∪ {k +1} A

card(A) = card(A −{k +1}

card(A −{k +1}) ≤ k card(A) ≤ k +1

m ∈ N A ⊂ Nm

A card(A) ≤ m

 Theorem 9.6.

S A S A card(A) ≤ card(S)

S A S A = ∅ A card(A) ≤ card(S)
A ≠ ∅

f : S → Nk k ∈ N card(S) = k A

g : A → f(A)

g(x) = f(x) x ∈ A

f g y ∈ f(A) a ∈ A

f(a) = y g g(a) = y g g

A ≈ f(A) f(A) Nk f(A)
card(f(A)) ≤ k A card(A) = card(f(A)) A

card(A) ≤ card(S)

 corollary 9.7

A x ∈ A A −{x} card(A −{x}) = card(A) −1

 Corollary 9.8

B A B A B x

B −A A B −{x}
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Also, by Corollary 9.7

Hence, we may conclude that  and that

Theorem 9.3 implies that . This proves that a finite set is not equivalent to any of its proper subsets.

The Pigeonhole Principle
The last property of finite sets that we will consider in this section is often called the Pigeonhole Principle. The “pigeonhole”
version of this property says, “If  pigeons go into  pigeonholes and , then at least one pigeonhole has more than one
pigeon.”

In this situation, we can think of the set of pigeons as being equivalent to a set  with cardinality m and the set of pigeonholes as
being equivalent to a set  with cardinality . We can then define a function  that maps each pigeon to its pigeonhole.
The Pigeonhole Principle states that this function is not an injection. (It is not one-to-one since there are at least two pigeons
“mapped” to the same pigeonhole.)

Let  and  be finite sets. If , then any function  is not an injection.

Proof

Let  and  be finite sets. We will prove the contrapositive o the theorem, which is, if there exists a function 
that is an injection, then .

So assume that  is an injection. As in Theorem 9.6, we define a function  by

 for each .

As we saw in Theorem 9.6, the function  is a bijection. But then  and . Hence,

 and .

Hence, , and this proves the contrapositive. Hence, if , then any function 
 is not an injection.

The Pigeonhole Principle has many applications in the branch of mathematics called “combinatorics.” Some of these will be
explored in the exercises.

1. Prove that the function  in Lemma 9.4 is a surjection.
2. Let  be a subset of some universal set . Prove that if , then .
3. Let  be the set of all even natural numbers. Prove that .
4. Prove Corollary 9.7. 

If  is a finite set and , then  is a finite set and  
Hint: One approch is to use the fact that .

5. Let  and  be sets. Prove that 
 
(a) If  is a finite set, then  is a finite set. 
(b) If  is a finite set, then  and  are finite set. 
(c) If  is an infinite set, then  is an infinite set. 
(d) If  is an infinite set or  is an infinite set, then  is an infinite set.

card(A) ≤ card(B −{x}).

card(B −{x}) = card(B) −1.

card(A) ≤ card(B) −1

card(A) < card(B).

B ≉ A

m r m > r

P

H r f : P → H

 Theorem 9.9: The Pigeonhole Principle

A B card(A) > card(B) f : A → B

A B f : A → B

card(A) ≤ card(B)

f : A → B g : A → f(A)

g(x) = f(x) x ∈ A

g A ≈ f(A) f(A) ⊆ B

card(A) = card(f(x)) cardf((A)) ≤ card(B)

cardf((A)) ≤ card(B) card(A) > card(B)
f : A → B

 Exercises 9.1

g : A ∪ {x} → Nk+1

A U x ∈ U A ×{x} ≈ A

E+ N ≈ E+

A x ∈ A A −{x} card(A −{x}) = card(A) −1
A = (A −{x}) ∪ {x}

A B

A A ∩ B

A ∪ B A B

A ∩ B A

A B A ∪ B
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6. There are over 7 million people living in New York City. It is also known that the maximum number of hairs on a human
head is less than 200,000. Use the Pigeonhole Principle to prove that there are at least two people in the city of New York
with the same number of hairs on their heads.

7. Prove the following proposiitons: 
 
(a) If , , , and  are sets with  and , then . 
(b) If , , , and  are sets with  and  and if  and  are disjoint and  and  are disjoint, then 

. 
 
Hint: Since  and , there exist bijections  and . To prove that , prove
that  is a bijection, where , for all . 
If  and , then to prove that , prove that the following function is a bijection: 

, where 

8. Let . 
 
(a) Construct a function  such that  is a surjection. 
(b) Use the function  to construct a function  so that , where  is the identity function on the set 

. Is the function  an injection? Explain.
9. This exercise is a generalization of Exercise (8). Let m be a natural number, let  be a set, and assume that  is

a surjection. Define  asfollows:
For each , , where  is the least natural number in . 
Prove that , where  is the identity function on the set  and prove that  is an injection.

10. Let  be a finite, nonempty set and assume that  is a surjection. Prove that there exists a function 
such that  and  is an injection. 
Hint: Since  is finite, there exists a natural number  such that . This means there exists a bijection 

. Now let , where  is the function constructed in Exercise (9). 
 
Explorations and Activities

11. Using the Pigeonhole Principle. For this activity, we will consider subsets of  that contain eight elements. 
 
(a) One such set is . Notice that 

 
Use this information to find two disjoint subsets of  whose elements have the same sum. 
(b) Let . Find two disjoint subsets of  whose elements have the same sum. Note: By
convention, if , where , then the sum of the elements in  is equal to . 
(c) Now let  be any subset of  that contains eight elements. 
i. How many subsets does  have? 
ii. The sum of the elements of the empty set is 0. What is the maximum sum for any subset of  that contains eight
elements.? Let  be this maximum sum. 
iii. Now define a function  so that for each ,  is equal to the sum of the elements in . 
Use the Pigeonhole Principle to prove that there exist two subsets of C whose elements have the same sum. 
(d) If the two subsets in part (11(c)iii) are not disjoint, use the idea presented in part (11a) to prove that there exist two
disjoint subsets of  whose elements have the same sum. 
(e) Let  be a subset of  that contains 10 elements. Use the Pigeonhole Principle to prove that there exist two disjoint
subsets of  whose elements have the same sum.

Answer

A B C D A ≈ B C ≈ D A ×C ≈ B ×D

A B C D A ≈ B C ≈ D A C B D

A ∪ C ≈ B ∪ D

A ≈ B C ≈ D f : A → B g : C → D A ×C ≈ B ×D

h : A ×C → B ×D h(a, c) = (f(a), g(c)) (a, c) ∈ A ×C

A ∩ C = ∅ B ∩ D = ∅ A ∪ C ≈ B ∪ D

k : A ∪ C → B ∪ D

k(x) = {
f(x)
g(x)

 if t ∈ A

 if x ∈ C.
(9.1.1)

A = {a, b, c}

f : → AN5 f

f g : A → N5 f ∘ g = IA IA

A g

A f : → ANm

g : A → Nm

x ∈ A g(x) = j j ({x})f −1

f ∘ g = IA IA A g

B f : B → A h : A → B

f ∘ h = IA h

B m ≈ BNm

k : → BNm h = k ∘ g g

0N3

A = {3, 5, 11, 17, 21, 24, 26, 29}

{3, 21, 24, 26} ⊆ A

{3, 5, 11, 26, 29} ⊆ A

and

and

3 +21 +24 +26 = 74

3 +5 +11 +26 +29 = 74
(9.1.2)

A

B = {3, 5, 9, 12, 15, 18, 21, 24} B

T = {a} a ∈ N T a

C N30

C

N30

M

f : P(C) → NM X ∈ P f(X) X

C

S N99

S
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9.2: Countable Sets

In Section 9.1, we defined a finite set to be the empty set or a set  such that  for some natural number . We also
defined an infinite set to be a set that is not finite, but the question now is, “How do we know if a set is infinite?” One way to
determine if a set is an infinite set is to use Corollary 9.8, which states that a finite set is not equivalent to any of its subsets. We
can write this as a conditional statement as follows:

If  is a finite set, then  is not equivalent to any of its proper subsets. or more formally as

For each set , if  is a finite set, then for each proper subset  of , .

1. Write the contrapositive of the preceding conditional statement. Then explain how this statement can be used to determine
if a set is infinite.

2. Let DC be the set of all odd natural numbers. In Preview Activity  from Section 9.1, we proved that .

(a) Use this to explain carefully why  is an infinite set. 
(b) Is  a finite set or an infinite set? Explain carefully how you know.

3. Let  be a positive real number. Let (0, 1) and  be the open intervals from 0 to 1 and 0 to , respectively. In Part (3) of
Progress Check 9.2 (on page 454), we proved that .

(a) Use a value for  where  to explain why (0, 1) is an infinite set. 
(b) Use a value for  where  to explain why  is an infinite set.

In this preview activity, we will define and explore a function . We will start by defining  for the first few
natural numbers .

Notice that if we list the outputs of  in the order , , , ..., we create the following list of integers: 0, 1, -1, 2, -2, 3,
-3, ... . We can also illustrate the outputs of this function with the following diagram:

1. If the pattern suggested by the function values we have defined continues, what are  and ? What is  for 
from 13 to 16?

2. If the pattern of outputs continues, does the function  appear to be an injection? Does  appear to be a surjection? (Formal
proofs are not required.) 
 
We will now attempt to determine a formula for , where . We will actually determine two formulas: one for
when  is even and one for when  is odd.

3. Look at the pattern of the values of  when  is even. What appears to be a formula for  when  is even?
4. Look at the pattern of the values of  when n is odd. What appears to be a formula for  when  is odd?
5. Use the work in Part (3) and Part (4) to complete the following: Define , where 

 Preview Activity : Introduction to Infinite Sets9.2.1

A A ≈ Nk k

A A

A A B A A ≉ B

9.2.1 N ≈ D+

N

D+

b (0, b) b

(0, 1) ≈ (0, b)

b 0 < b < 1

b b > 1 (0, b)

 Preview Activity : A Function from  to 9.2.2 N Z

f : N → Z f(n)

n

f f(1) f(2) f(3)

f(11) f(12) f(n) n

f f

f(n) n ∈ N

n n

f(n) n f(n) n

f(n) f(n) n

f : N → Z

f(n) = { ??
??

 if n is even
 if n is odd.

(9.2.1)
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6. Use the formula in Part (5) to (a) Calculate  through . Are these results consistent with the pattern exhibited at
the beginning of this preview activity? 
(b) Calculate  and . 
(c) Determine the value of  so that .

In this section, we will describe several infinite sets and define the cardinal number for so-called countable sets. Most of our
examples will be subsets of some of our standard numbers systems such as , , and .

Infinite Sets
In Preview Activity , we saw how to use Corollary 9.8 to prove that a set is infinite. This corollary implies that if A is a finite
set, then A is not equivalent to any of its proper subsets. By writing the contrapositive of this conditional statement, we can restate
Corollary 9.8 in the following form:

If a set  is equivalent to one of its proper subsets, then  is infinite.

In Preview Activity , we used Corollary 9.8 to prove that

The set of natural numbers, , is an infinite set.
The open interval (0, 1) is an infinite set.

Although Corollary 9.8 provides one way to prove that a set is infinite, it is sometimes more convenient to use a proof by
contradiction to prove that a set is infinite. The idea is to use results from Section 9.1 about finite sets to help obtain a contra-
diction. This is illustrated in the next theorem.

Let  and  be sets.

1. If  is infinite and , then  is infinite.
2. If  is infinite and , then  is infinite.

Proof

We will prove part (1). The proof of part (2) is exercise (3) on page 473.

To prove part (1), we use a proof by contradiction and assume that A is an infinite set, , and  is not infinite. That
is,  is a finite set. Since  and  is finite, Theorem 9.3 on page 455 implies that  is a finite set. This is a
contradiction to the assumption that  is infinite. We have therefore proved that if  is infinite and , then  is
infinite.

1. In Preview Activity , we used Corollary 9.8 to prove that  is an infinite set. Now use this and Theorem 9.10 to
explain why our standard number systems ( , , and ) are infinite sets. Also, explain why the set of all positive rational
numbers, , and the set of all positive real numbers, , are infinite sets.

2. Let  be the set of all odd natural numbers. In Part (2) of Preview Activity , we proved that . Use Theorem
9.10 to explain why  is an infinite set.

3. Prove that the set  of all even natural numbers is an infinite set.

Answer

Add texts here. Do not delete this text first.

f(1) f(10)

f(1000) f(1001)

n f(n) = 1000

N Z Q

9.2.1

 Corollary 9.8

A A

9.2.1

N

 Theorem 9.10.

A B

A A ≈ B B

A A ⊆ B B

A ≈ B B

B A ≈ B B A

A A A ≈ B B

 Progress Check 9.11 (Examples of Infinite Sets)

9.2.1 N

Z Q R

Q
+

R
+

D+ 9.2.1 ≈ ND+

D+

E+
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Countably Infinite Sets
In Section 9.1, we used the set  as the standard set with cardinality  in the sense that a set is finite if and only if it is equivalent
to . In a similar manner, we will use some infinite sets as standard sets for certain infinite cardinal numbers. The first set we will
use is .

We will formally define what it means to say the elements of a set can be “counted” using the natural numbers. The elements of a
finite set can be “counted” by defining a bijection (one-to-one correspondence) between the set and  for some natural number .
We will be able to “count” the elements of an infinite set if we can define a one-to-one correspondence between the set and .

The cardinality of  is denoted by . The symbol  is the first letter of the Hebrew alphabet, aleph. The subscript 0 is often
read as “naught” (or sometimes as “zero” or “null”). So we write

and say that the cardinality of  is “aleph naught.”

A set  is countably infinite provided that . In this case, we write

A set that is countably infinite is sometimes called a denumerable set. A set is countable provided that it is finite or countably
infinite. An infinite set that is not countably infinite is called an uncountable set.

1. In Preview Activity  from Section 9.1, we proved that , where  is the set of all odd natural numbers.
Explain why .

2. Use a result from Progress Check 9.11 to explain why .
3. At this point, if we wish to prove a set  is countably infinite, we must find a bijection between the set  and some set that

is known to be countably infinite.

Let  be the set of all natural numbers that are perfect squares. Define a function

 
that can be used to prove that  and, hence, that .

Answer

Add texts here. Do not delete this text first.

The fact that the set of integers is a countably infinite set is important enough to be called a theorem. The function we will use to
establish that  was explored in Preview Activity .

The set  of integers is countably infinite, and so 

Proof

To prove that , we will use the following funciton: , where

Nk k

Nk

N

Nk k

N

 Definition

N ℵ0 ℵ

card(N) = ℵ0

N

 Definition

A A ≈ N

card(A) = ℵ0

 progress check 9.12. (examples of countably infinite sets)

9.2.1 N ≈ D+ D+

card( ) =D+ ℵ0

card( ) =E+ ℵ0

S S

S

f : S → N (9.2.2)

S ≈ N card(S) = ℵ0

N ≈ Z 9.2.2

 Theorem 9.13

Z card(Z) = ℵ0

N ≈ Z f : N → Z

f(n) =

⎧

⎩
⎨
⎪

⎪

n

2
1 −n

2

 if n is even

 if n is odd.
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From our work in Preview Activity , it appears that if n is an even natural number, then , and if  is an odd
natural number, then . So it seems reasonable to use cases to prove that  is a surjection and that  is an injection.
To prove that  is a surjection, we let .

If , then , and 

If , then  and  is an odd natural number. Hence, 

These two cases prove that if , then there exists an  such that . Hence,  is a surjection.

To prove that  is an injection, we let  and assume that . First note that if one of  and  is odd
and the other is even, then one of  and  is positive and the other is less than or equal to 0. So if ,
then both  and  must be even or both  and  must be odd.

If both  and  are even, then 

 
and hence that .
If both  and  are odd, then 

 
From this, we conclude that  and hence that . This proves that if , then  and
hence that  is an injection.

Since  is both a surjection and an injection, we see that  is a bijection and, therefore, . Hence,  is countably
infinite and .

The result in Theorem 9.13 can seem a bit surprising. It exhibits one of the distinctions between finite and infinite sets. If we add
elements to a finite set, we will increase its size in the sense that the new set will have a greater cardinality than the old set.
However, with infinite sets, we can add elements and the new set may still have the same cardinality as the original set. For
example, there is a one-to-one correspondence between the elements of the sets  and . We say that these sets have the same
cardinality.

Following is a summary of some of the main examples dealing with the cardinality of sets that we have explored.

The sets , where , are examples of sets that are countable and finite.
The sets , , the set of all odd natural numbers, and the set of all even natural numbers are examples of sets that are countable
and countably infinite.
We have not yet proved that any set is uncountable.

The Set of Positive Rational Numbers
If we expect to find an uncountable set in our usual number systems, the rational numbers might be the place to start looking. One
of the main differences between the set of rational numbers and the integers is that given any integer m, there is a next integer,
namely . This is not true for the set of rational numbers. We know that  is closed under division (by nonzero rational
numbers) and we will see that this property implies that given any two rational numbers, we can also find a rational number
between them. In fact, between any two rational numbers, we can find infinitely many rational numbers. It is this property that may
lead us to believe that there are “more” rational numbers than there are integers.

9.2.2 f(n) > 0 n

f(n) ≤ 0 f f

f y ∈ Z

y > 0 2y ∈ N

f(2y) = = y.
2y

2
(9.2.3)

y ≤ 0 −2y ≥ 0 1 −2y

f(1 −2y) = = = y.
1 −(1 −2y)

2

2y

2
(9.2.4)

y ∈ Z n ∈ N f(n) = y f

f m, n ∈ N f(m) = f(n) m n

f(m) f(n) f(m) = f(n)

m n m n

m n

f(m) = f(n) implies that  =
m

2

n

2
(9.2.5)

m = n

m n

f(m) = f(n) implies that  = .
1 −m

2

1 −n

2
(9.2.6)

1 −m = 1 −n m = n f(m) = f(n) m = n

f

f f N ≈ Z Z

card(Z) = ℵ0

N Z

Nk k ∈ N

N Z

m +1 Q
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The basic idea will be to “go half way” between two rational numbers. For example, if we use  and , we can use

as a rational number between  and . We can then repeat this process to find a rational number between  and .

So we will now let  and  be any two rational numbers with  and let . We then see that

Since , we see that  and so the previous equations show that  and . We can then conclude
that .

We can now repeat this process by using  and proving that , In fact, for each natural number, we can

define

and obtain the result that  and this proves that the set  is a countably infinite set
where each element is a rational number between  and . (A formal proof can be completed using mathematical induction. See
Exercise ().

This result is true no matter how close together  and  are. For example, we can now conclude that there are infinitely many

rational numbers between 0 and  This might suggest that the set  of rational numbers is uncountable. Surprisingly, this is

not the case. We start with a proof that the set of positive rational numbers is countable.

The set of positive rational numbers is countably infinite.

Proof

We can write all the positive rational numbers in a two-dimensional array as shown in Figure 9.2. The top row in Figure 9.2
represents the numerator of the rational number, and the left column represents the denominator. We follow the arrows in
Figure 9.2 to define . The idea is to start in the upper left corner of the table and move to successive diagonals
as follows:

a =
1

3
b =

1

2

= ( + ) =
a +b

2

1

2

1

3

1

2

5

12

a b
5

12

1

2

a b a < b =c1
a +b

2

b > a b −a > 0 −a > 0c1 b − > 0c1

a < < bc1

=c2

+bc1

2
< < bc1 c2

=ck+1
+bck

2

a < < < ⋅ ⋅ ⋅ < < ⋅ ⋅ ⋅ < bc1 c2 cn {  | k ∈ Nck

a b

a b
1

10000
Q

 Theorem 9.14

f : N → Q
+
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We start with all fractions in which the sum of the numerator and denominator is 2 (only ). So . 

We next use those fractions in which the sum of the numerator and denominator is 3. So  and .

We next use those fractions in which the sum of the numerator and denominator is 4. So , . We

skipped  since . In this way, we will ensure that the function f is a one-to-one function.

We now continue with successive diagonals omitting fractions that are not in lowest terms. This process guarantees that the
function  will be an injection and a surjection. Therefore,  and .

Note: For another proof of Theorem 9.14, see exercise (14) on page 475.

Since  is countable, it seems reasonable to expect that  is countable. We will explore this soon. On the other hand, at this
point, it may also seem reasonable to ask,

"Are there any uncountable sets?”

The answer to this question is yes, but we will wait until the next section to prove that certain sets are uncountable. We still have a
few more issues to deal with concerning countable sets.

Countably Infinite Sets

If  is a countably infinite set, then  is a countably infinite set.

Proof

Let  be a countably infinite set. Then there exists a bijection . Since  is either in  or not in , we can
consider two cases.

If , then  and  is countably infinite.

If , define  by

The proof that the function  is a bijection is Exercise (4). Since  is a bijection, we have proved that  and
hence,  is a countably infinite set.

1

1
f(1) =

1

1

f(2) =
2

1
f(3) =

1

2

f(4) =
1

3
f(5) =

3

1
2

2
=

2

2

1

1

f N ≈ Q
+ card( ) =Q

+ ℵ0

Q+ Q

 Theorem 9.15.

A A ∪ {x}

A f : N → A x A A

x ∈ A A ∪ {x} = A A ∪ {x}

x ∉ A g : N → A ∪ {x}

g(n) = {
x

f(n −1)
 if n = 1
 if n > 1.

g g A ∪ {x} ≈ N

A ∪ {x}
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If  is a countably infinite set and  is a finite set, then  is a countably infinite set.

Proof

Exercise (5) on page 474.

Theorem 9.16 says that if we add a finite number of elements to a countably infinite set, the resulting set is still countably infinite.
In other words, the cardinality of the new set is the same as the cardinality of the original set. Finite sets behave very differently in
the sense that if we add elements to a finite set, we will change the cardinality. What may even be more surprising is the result in
Theorem 9.17 that states that the union of two countably infinite (disjoint) sets is countably infinite. The proof of this result is
similar to the proof that the integers are countably infinite (Theorem 9.13). In fact, if  and 

, then we can use the following diagram to help define a bijection from  to .

If  and  are disjoint countably infinite sets, then  is a countably infinite set.

Proof

Let  and  be countably infinite sets and let  and  be bijections. Define  by

It is left as Exercise (6) on page 474 to prove that the function  is a bijection.

Since we can write the set of rational numbers Q as the union of the set of nonnegative rational numbers and the set of rational
numbers, we can use the results in Theorem 9.14, Theorem 9.15, and Theorem 9.17 to prove the following theorem.

The set  of all rational numbers is countably infinite.

Proof

Exercise (7) on page 474.

In Section 9.1, we proved that any subset of a finite set is finite (Theorem 9.6). A similar result should be expected for countable
sets. We first prove that every subset of  is countable. For an infinite subset  of , the idea of the proof is to define a function 

 by removing the elements from  from smallest to the next smallest to the next smallest, and so on. We do this by
defining the function  recursively as follows:

Let  be the smallest natural number in .
Remove  from B and let  be the smallest natural number in .
Remove  and let  be the smallest natural number in .
We continue this process. The formal recursive definition of  is included in the proof of Theorem 9.19.

 Theorem 9.16.

A B A ∪ B

A = { , , , . . . }a1 a2 a3

B = { , , , . . . }b1 b2 b3 N A ∪ B

 Theorem 9.17

A B A ∪ B

A B f : N → A g : N → B h : N → A ∪ B

h(n) =

⎧

⎩
⎨
⎪

⎪

f( )
n +1

2

g( )
n

2

 if n is odd

 if n is even.

h

 Theorem 9.18.

Q

N B N

g : N → B B

g

g(1) B

g(1) g(2) B −{g(1)}

g(2) g(3) B −{g(1), g(2)}

g : N → B
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Every subset of the natural numbers is countable.

Proof

Let  be a subset of . If  is finte, then  is countable. So we next assume that  is infinite. We will next give a
recursive definition of a function  and then prove that  is a bijection.

Let  be the smallest natural number in .
For each , the set  is not empty since  is infinte. Define  to be the smallest
natural number in .

The proof that the function g is a bijection is Exercise (11) on page 475.

Every subset of a countable set is countable.

Proof

Exercise (12) on page 475.

1. State whether each of the following is true or false. 
 
(a) If a set  is countably infinite, then  is infinite. 
(b) If a set  is countably infinite, then  is countable. 
(c) If a set  is uncountable, then  is not countably infinite. 
(d) If  for some , then  is not countable.

2. Prove that each of the following sets is countably infinite. 
 
(a) The set  of all natural numbers that are multiple of 5 
(b) The set  of all integers that are multiples of 5 

(c)  

(d) \{n \in \mathbb{Z}\ |\ n \ge -10\}\) 
(e)  
(f) \(\{m \in \mathbb{Z}\ |\ m \equiv 2\text{ (mod 3)\}\)

3. Prove part (2) of Theorem 9.10. 
Let  and  be sets. If  is infinite and , then  is infinite.

4. Complete the proof of Theorem 9.15 by proving the following: 
Let  be a countably infinite set and . If  is a bijection, then  is a bijection, where  by 

5. Prove Theorem 9.16. 
If  is a countably infinite set and  is a finite set, then  is a countably infinite set.

Hint: Let card( )  and use a proof by induction on . Theorem 9.15 is the basis step.

6. Complete the proof of Theorem 9.17 by proving the following: 
Let  and  be disjoint countably infinite sets and let  and  be bijections. Define  by 

 Theorem 9.19.

B N B B B

g : N → B g

g(1) B

n ∈ N B −{g(1), g(2), . . . , g(n)} B g(n +1)

B −{g(1), g(2), . . . , g(n)}

 Corollary 9.20.

 Exercise 9.2

A A

A A

A A

A ≈ Nk k ∈ N A

F +

F

{  | k ∈ N}
1

2k

N −{4, 5, 6}

A B A A ⊆ B B

A x ∉ A f : N → A g g : N → A ∪ {x}

g(n) = {
x

f(n −1)
 if n = 1
 if n > 1.

(9.2.7)

A B A ∪ B

B = n n

A B f : N → A g : N → B h : N → A ∪ B
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Then the function  is a bijection.

7. Prove Theorem 9.18. 
The set  of all rational numbers is countable. 
Hint: Use Theorem 9.15 and Theorem 9.17.

8. Prove that if  is countably infinite and  is finite, then  is countably infinite.
9. Define  as follows: For each ,  

 
 
(a) Prove that  is an injection. Hint: If , there are three cases to consider: , , and .
Use laws of exponents to prove that the first two cases lead to a contradiction. 
(b) Prove that  is a surjection. Hint: You may use the fact that if , then , where  is an odd natural number
and  is a nonnegative integer. This is actually a consequence of the Fundamental Theorem of Arithmetic, Theorem 8.15.
[See Exercise (13) in Section 8.2.] 
(c) Prove that  and hence that card .

10. Use Exercise (9) to prove that if  and  are countably infinite sets, then  is a countably infinite set.
11. Complete the proof of Theorem 9.19 by proving that the function  defined in the proof is a bijection from  to .

Hint: To prove that  is an injection, it might be easier to prove that for all , if , then . To do this,
we may assume that  since one of the two numbers must be less than the other. Then notice that 

.

To prove that  is a surjection, let  and notice that for some , there will be  natural numbers in  that are less
than .

12. Prove Corollary 9.20, which states that every subset of a countable set is countable.

Hint: Let  be a countable set and assume that . There are two cases:  is finite or  is infinite. If  is infinite, let 
 be a bijection and define  by , for each .

13. Use Corollary 9.20 to prove that the set of all rational numbers between 0 and 1 is countably infinite. 
 
Explorations and Activities

14. Another Proof that  Is Countable. For this activity, it may be helpful to use the Fundamental Theorem of Arithmetic
(see Theorem 8.15 on page 432). Let  be the set of positive rational numbers. Every positive rational number has a

unique representation as a fraction , where  and  are relatively prime natural numbers. We will now define a function

 as follows: 
 
If  and , where ,  and gcd , we write 

 
where  are distinct prime numbers,  are distinct prime numbers, and  and 

 are natural numbers. 
We also write  when . We then define 

h(n) =

⎧

⎩
⎨
⎪

⎪

f(
n +1

2

g( )
n

2

 if n is odd

 if n is even.
(9.2.8)

h

Q

A B A −B

f : N ×N → N (m, n) ∈ N ×N

f(m, n) = (2n −1).2m−1 (9.2.9)

f f(m, n) = f(s, t) m > s m < s m = s

f y ∈ N y = x2k x

k

N ×N ≈ N (N ×N) = ℵ0

A B A ×B

g N B

g r, s ∈ N r ≠ s g(r) ≠ g(s)

r < s

g(r) ∈ {g(1), g(2), . . . , g(s −1)}

g b ∈ B k ∈ N k B

b

S A ⊆ S A A A

f : S → N g : A → f(A) g(x) = f(x) x ∈ A

Q
+

Q
+

m

n
m n

f : → NQ
+

x ∈ Q
+ x =

m

n
m, n ∈ N n ≠ 1 (m, n) = 1

m

n

=

=

⋅ ⋅ ⋅ ,  andpα1

1
pα2

2
pαr

r

⋅ ⋅ ⋅ ,qβ1
1 qβ2

2 qβs
s

(9.2.10)

, , . . . ,p1 p2 pr , , . . . ,q1 q2 qs , , . . . ,α1 α2 αr

, , . . . ,β1 β2 βs

1 = 20 m = 1

f(x) = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ .p2α1

1
p2α2

2
p2αr

r q2 −1β1

1
q2 −1β2

2
q2 −1βs

s (9.2.11)
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If , then we define . 

 

(a) Determine , , , , , and . 

(b) If possible, find  such that . 
(c) If possible, find  such that . 
(d) If possible, find  such that . 
(e) Prove that the function  is an injection. 
(f) Prove that the function  is a surjection. 
(g) What has been proved?

Answer

Add texts here. Do not delete this text first.

This page titled 9.2: Countable Sets is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted Sundstrom
(ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts platform; a
detailed edit history is available upon request.

9.2: Countable Sets by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

x =
m

1
f(x) = ⋅ ⋅ ⋅ =p2α1

1 p2α2

2 p2αr
r m2

f( )
2

3
f( )

5

6
f(6) f( )

12

25
f( )

375

392
f( )

⋅23 113

3 ⋅ 54

x ∈ Q
+ f(x) = 100

x ∈ Q
+ f(x) = 12

x ∈ Q+ f(x) = ⋅ ⋅ 13 ⋅28 35 172

f

f
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9.3: Uncountable Sets

(From The Heart of Mathematics: An Invitation to Effective Thinking by Edward B. Burger and Michael Starbird, Key
Publishing Company, 2000 by Edward B. Burger and Michael Starbird.)

Dodge Ball is a game for two players. It is played on a game board such as the one shown in Figure 9.4. Player One has a 6 by
6 array to complete and Player Two has a 1 by 6 row to complete. Each player has six turns as described next.

Player One begins by filling in the first horizontal row of his or her table with a sequence of six X’s and O’s, one in each
square in the first row.
Then Player Two places either an X or an O in the first box of his or her row. At this point, Player One has completed the
first row and Player Two has filled in the first box of his or her row with one letter. 

The game continues with Player One completing a row with six letters (X’s and O’s), one in each box of the next row
followed by Player Two writing one letter (an X or an O) in the next box of his or her row. The game is completed when
Player One has completed all six rows and Player Two has completed all six boxes in his or her row.

Winning the Game

Player One wins if any horizontal row in the 6 by 6 array is identical to the row that Player Two created. (Player One
matches Player Two.)
Player Two wins if Player Two’s row of six letters is different than each of the six rows produced by Player One. (Player
Two “dodges” Player One.)

There is a winning strategy for one of the two players. This means that there is plan by which one of the two players will
always win. Which player has a winning strategy? Carefully describe this winning strategy.

Applying the Winning Strategy to Lists of Real Numbers

Following is a list of real numbers between 0 and 1. Each real number is written as a decimal number.

  
  
  
  
 

Use a method similar to the winning strategy in Cantor’s dodge ball to write a real number (in decimal form) between 0 and 1
that is not in this list of 10 numbers.

 Preview Activity : The Game of Dodge Ball9.3.1

= 0.1234567890a1 = 0.0103492222a6

= 0.3216400000a2 = 0.0011223344a7

= 0.4321593333a3 = 0.7077700022a8

= 0.9120930092a4 = 0.2100000000a9

= 0.0000234102a5 = 0.9870008943a10

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86150?pdf
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/09%3A_Finite_and_Infinite_Sets/9.03%3A_Uncountable_Sets


9.3.2 https://math.libretexts.org/@go/page/86150

1. Do you think your method could be used for any list of 10 real numbers between 0 and 1 if the goal is to write a real
number between 0 and 1 that is not in the list?

2. Do you think this method could be extended to a list of 20 different real numbers? To a list of 50 different real numbers?
3. Do you think this method could be extended to a list consisting of countably infinite list of real numbers?

Let  be a set. In Section 5.1, we defined the power set  of  to be the set of all subsets of . This means that

 if and only if .

Theorem 5.5 in Section 5.1 states that if a set  has n elements, then  has  subsets or that  has  elements. Using
our current notation for cardinality, this means that

if card , then card .

(The proof of this theorem was Exercise (17) on page 229.)

We are now going to define and explore some functions from a set  to its power set . This means that the input of the
function will be an element of  and the output of the function will be a subset of .

1. Let . Define  by 
  
 . 

 
(a) Is ? Is ? Is ? Is ? 
(b) Determine . 
(c) Notice that . Does there exist an element  in  such that ? That is, is ?

2. Let . Define  by

 
(a) Determine . Is ? 
(b) Determine . Is ? 
(c) Determine . Is ? 
(d) Determine . Is ? 
(e) Determine . 
(f) Notice that . Does there exist an element  in  such that ? That is, is ?

3. Define  by 

 
(a) Determine , , , and . In each of these cases, determine if . 
(b) Prove that if , then . Hint: Prove that if , then  and . 
(c) Determine . 
(d) Notice that . Does there exist an element  in  such that ? That is, is ?

We have seen examples of sets that are countably infinite, but we have not yet seen an example of an infinite set that is
uncountable. We will do so in this section. The first example of an uncountable set will be the open interval of real numbers (0, 1).
The proof that this interval is uncountable uses a method similar to the winning strategy for Player Two in the game of Dodge Ball
from Preview Activity 1. Before considering the proof, we need to state an important results about decimal expressions for real
numbers.

Decimal Expressions for Real Numbers
In its decimal form, any real number a in the interval (0, 1) can be written as , where each  is an integer with 

. For example,

 Preview Activity : Functions from a Set to Its Power Set9.3.2

A P(A) A A

X ∈ P(A) X ⊆ A

A A 2n P(A) 2n

(A) = n (P(A) = 2n

A P(A)
A A

A = {1, 2, 3, 4} f : A → P(A)
f(1) = {1, 2, 3}f(3) = {1, 4}
f(2) = {1, 3, 4}f(4) = {2, 4}

1 ∈ f(1) 2 ∈ f(2) 3 ∈ f(3) 4 ∈ f(4)
S = {x ∈ A | x ∉ f(x)}
S ∈ P(A) t A f(t) = S S ∈ range(f)

A = {1, 2, 3, 4} f : A → P(A)

f(x) = A−{x} for each x ∈ A. (9.3.1)

f(1) 1 ∈ f(1)
f(2) 2 ∈ f(2)
f(3) 3 ∈ f(3)
f(4) 4 ∈ f(4)
S = {x ∈ A | x ∉ f(x)}
S ∈ P(A) t A f(t) = S S ∈ range(f)

f : N → P(N)

f(n) −N −{ , −2n}, for eachn ∈ N.n2 n2 (9.3.2)

f(1) f(2) f(3) f(4) k ∈ f(k)
n > 3 n ∈ f(n) n > 3 > nn2 −2n > nn2

S = {x ∈ N | x ∉ f(x)}
S ∈ P(N) t N f(t) = S S ∈ range(f)

a = 0. . . .a1a2a3a4 ai
0 ≤ ≤ 9ai
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We often abbreviate this as  to indicate that the 6 is repeated. We can also repeat a block of digits. For example, 

 to indicate that the block 230769 repeats. That is

There is only one situation in which a real number can be represented as a decimal in more than one way. A decimal that ends with
an infinite string of 9’s is equal to one that ends with an infinite string of 0’s. For example, 0.3199999... . represents the same real
number as 0.3200000... . Geometric series can be used to prove that a decimal that ends with an infinite string of 9’s is equal to one
that ends with an infinite string of 0’s, but we will not do so here.

A decimal representation of a real number  is in normalized form provided that there is no natural number  such that for all
natural numbers  with , . That is, the decimal representation of  is in normalized form if and only if it does not
end with an infinite string of 9’s.

One reason the normalized form is important is the following theorem (which will not be proved here).

Two decimal numbers in normalized form are equal if and only if they have identical digits in each decimal position.

Uncountable Subsets of 
In the proof that follows, we will use only the normalized form for the decimal representation of a real number in the interval (0, 1).

The open interval (0, 1) is an uncountable set.

Proof

Since the interval (0, 1) contains the infinite subset�� , we can use Theorem 9.10, to conclude that (0, 1)

is an infinite set. So (0, 1) is either countably infinite or uncountable. We will prove that (0, 1) is uncountable by proving
that any injection from (0, 1) to  cannot be a surjection, and hence, there is no bijection between (0, 1) and .

So suppose that the function  is an injection. We will show that  cannot be a surjection by showing that
there exists an element in (0, 1) that cannot be in the range of . Writing the images of the elements of  in normalized
form, we can write

 
 
 
 
 

... 
 

...

Notice the use of the double subscripts. The number  is the th digit to the right of the decimal point in the normalized
decimal representation of .

We will now construct a real number  in (0, 1) and in normalized form that is not in this list.

= 0.416666...
5

12

= 0.41
5

12
6̄

= 0.19
5

26
230769
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯

= 0.19230769230769230769...
5

26

 Definition

a k

n n > k = 9an a

 Theorem 9.21

R

 Theorem 9.22.

{ , , , . . . }
1

2

1

3

1

4

N N

f : N → (0, 1) f

f N

f(1) = 0. . . .a11a12a13a14a15

f(2) = 0. . . .a21a22a23a24a25

f(3) = 0. . . .a31a32a33a34a35

f(4) = 0. . . .a41a42a43a44a45

f(5) = 0. . . .a51a52a53a54a55

f(n) = 0. . . .an1an2an3an4an5

aij j

f(i)

b = 0. . . .b1b2b3b4b5
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Note: The idea is to start in the upper left corner and move down the diagonal in a manner similar to the winning strategy
for Player Two in the game in Preview Activity 1. At each step, we choose a digit that is not equal to the diagonal digit.

Start with  in . We want to choose  so that , , and . (To ensure that we end up with a
decimal that is in normalized form, we make sure that each digit is not equal to 9.) We then repeat this process with , 

, , , and so on. So we let  be the real number , where for each 

(The choice of 3 and 5 is arbitrary. Other choices of distinct digits will also work.)

Now for each ,  since  and  are in normalized form and  and  differ in the th decimal place.
This proves that any function from  to (0, 1) cannot be surjection and hence, there is no bijection from  to (0, 1).
Therefore, (0, 1) is not countably infinite and hence must be an uncountable set.

The proof of Theorem 9.22 is often referred to as Cantor’s diagonal argument. It is named after the mathematician Georg
Cantor, who first published the proof in 1874. Explain the connection between the winning strategy for Player Two in Dodge
Ball (see Preview Activity 1) and the proof of Theorem 9.22 using Cantor’s diagonal argument.

Answer

Add texts here. Do not delete this text first.

The open interval (0, 1) is our first example of an uncountable set. The cardinal number of (0, 1) is defined to be , which stands
for the cardinal number of the continuum. So the two infinite cardinal numbers we have seen are  for countably infinite sets
and .

A set  is said to have cardinality  provided that  is equivalent to (0, 1). In this case, we write card  and say that the
cardinal number of  is .

The proof of Theorem 9.24 is included in Progress Check 9.25.

Let  and  be real numbers with . The open interval  is uncountable and has cardinality .

Proof

Add proof here and it will automatically be hidden

1. In Part (3) of Progress Check 9.2, we proved that if  and , then the open interval (0, 1) is equivalent to the open
interval (0, ). Now let  and  be real numbers with . Find a function

 
that is a bijection and conclude that . 
Hint: Find a linear function that passes through the points (0, ) and (1, ). Use this to define the function . Make sure
you prove that this function  is a bijection.

2. Let  be real numbers with  and . Prove that .

Answer

a11 f(1) b1 ≠ 0b1 ≠b1 a11 ≠ 9b1

a22

a33 a44 a55 b b = 0. . . .b1b2b3b4b5 k ∈ N

= {bk
3
5

 if  ≠ 3akk
 if  = 3.akk

n ∈ N b ≠ f(n) b f(n) b f(n) n

N N

 Progress Check 9.23 (Dodge Ball and Cantor’s Diagonal Argument)

c

ℵ0

c

 Definition

A c A (A) = c

A c

 Theorem 9.24.

a b a < b (a, b) c

 Progress Check 9.25 (Proof of Theorem 9.24)

b ∈ R b > 0
b a b a < b

f : (0, 1) → (a, b) (9.3.3)

(0, 1) ≈ (a, b)
a b f

f

a, b, c, d a < b c < d (a, b) ≈ (c, d)
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Add texts here. Do not delete this text first.

The set of real numbers  is uncountable and has cardinality .

Proof

Let  be defined by , for each . The function  is as bijection and, hence, 

. So by Theorem 9.24,  is uncountable and has cardinality .

Cantor’s Theorem
We have now seen two different infinite cardinal numbers,  and . It can seem surprising that there is more than one infinite
cardinal number. A reasonable question at this point is, “Are there any other infinite cardinal numbers?” The astonishing answer is
that there are, and in fact, there are infinitely many different infinite cardinal numbers. The basis for this fact is the following
theorem, which states that a set is not equivalent to its power set. The proof is due to Georg Cantor (1845–1918), and the idea for
this proof was explored in Preview Activity 2. The basic idea of the proof is to prove that any function from a set  to its power set
cannot be a surjection.

For every set ,  and  do not have the same cardinality.

Proof

Let  be a set. If , then , which has cardinality 1. Therefore,  and  do not have the same
cardinality.

Now suppose that , and let . We will show that  cannot be a surjection, and hence there is no
bijection from  to . This will prove that  is not equivalentt to . Define

.

Assume that there exists a  in  such that . Now, either  to .

If , then . By the definition of , this means that . However,  and so we
conclude that . But now we have  and . This is a contradiction.
If , then . By the definition of , this means that . However,  and so we
conclude that . But now we have  and . This is a contradiction.

So in both cases we have arrived at a contradiction. This means that there does not exist a  in  such that .
Therefore, any function from  to  is not a surjection and hence not a bijection. Hence,  and  do not have the
same cardinality.

 is an infinite set that is not countably infinite.

Proof

Since  contains the infinite subset , we can use Theorem 9.10, to conclude that  is an infinite
set. By Cantor’s Theorem (Theorem 9.27),  and  do not have the same cardinality. Therefore, P.N/ is not countable
and hence is an uncountable set.

Some Final Comments about Uncountable Sets

 Theorem 9.26.

R c

f : (− , ) → R
π

2

π

2
f(x) = tanx x ∈ R f

(− , ) ≈ R
π

2

π

2
R c

ℵ0 c

A

 Theorem 9.27 (Cantor’s Theorem).

A A P(A)

A A = ∅ P(A) = {∅} ∅ P(∅)

A ≠ ∅ f : A → P(A) f

A P(A) A P(A)

S = {x ∈ A | x ∉ f(x)}

t A f(t) = S f ∈ S t ∉ S

t ∈ S t ∈ {x ∈ A | x ∉ f(x)} S t ∉ f(t) f(t) = S

t ∉ S t ∈ S t ∉ S

t ∉ S t ∉ {x ∈ A | x ∉ f(x)} S t ∈ f(t) f(t) = S

t ∈ S t ∉ S t ∈ S

t A f(t) = S

A P(A) A P(A)

 corollary 9.28.

P(N)

P(N) {{1}, {2}, {3}. . . } P(N)
N P(N)
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1. We have now seen that any open interval of real numbers is uncountable and has cardinality c. In addition, R is uncountable and
has cardinality c. Now, Corollary 9.28 tells us that P.N/ is uncountable. A question that can be asked is, 

 
The answer is yes, although we are not in a position to prove it yet. A proof of this fact uses the following theorem, which is
known as the Cantor-Schr der-Bernstein Theorem.

Let  and  be sets. If there exist injections  and , then 

In the statement of this theorem, notice that it is not required that the function  be the inverse of the function . We will not
prove the Cantor-Schr der-Bernstein Theorem here. The following items will show some uses of this important theorem.

2. The Cantor-Schr der-Bernstein Theorem can also be used to prove that the closed interval [0, 1] is equivalent to the open
interval (0, 1). See Exercise (6) on page 486.

3. Another question that was posed earlier is, 

Again, the answer is yes, and the basis for this is Cantor’s Theorem (Theorem 9.27). We can start with card . We then
define the following infinite cardinal numbers: 

 
Cantor’s Theorem tells us that these are all different cardinal numbers, and so we are just using the lowercase Greek letter 
(alpha) to help give names to these cardinal numbers. In fact, although we will not define it here, there is a way to “order” these
cardinal numbers in such a way that 

 
Keep in mind, however, that even though these are different cardinal numbers, Cantor’s Theorem does not tell us that these are
the only cardinal numbers.

4. In Comment (1), we indicated that  and  have the same cardinality. Combining this with the notation in Comment (3),
this means that

However, this does not necessarily mean that  is the “next largest” cardinal number after . A reasonable question is, “Is there
an infinite set with cardinality between  and ?” Rewording this in terms of the real number line, the question is, “On the real
number line, is there an infinite set of points that is not equivalent to the entire line and also not equivalent to the set of natural
numbers?” This question was asked by Cantor, but he was unable to find any such set. He conjectured that no such set exists.
That is, he conjectured that  is really the next cardinal number after . This conjecture has come to be known as the
Continuum Hypothesis. Stated somewhat more formally, the Continuum Hypothesis is

 
The question of whether the Continuum Hypothesis is true or false is one of the most famous problems in modern mathematics.

Through the combined work of Kurt G del in the 1930s and Paul Cohen in 1963, it has been proved that the Continuum
Hypothesis cannot be proved or disproved from the standard axioms of set theory. This means that either the Continuum
Hypothesis or its negation can be added to the standard axioms of set theory without creating a contradiction.

“Does P(N) have the same cardinality as R?” (9.3.4)

ö

 Theorem 9.29. Cantor-Schr der-Bernsteinö

A B f : A → B g : B → A A ≈ B

g f

ö

ö

“Are there other infinite cardinal numbers other than   and c?”ℵ0 (9.3.5)

(N) = ℵ0

card(P(N)) = .α1

card(P((N))) = .α1

card(P(((N)))) = .α1

. . .
(9.3.6)

α

< < < < ⋅ ⋅ ⋅.ℵ0 α1 α2 α3 (9.3.7)

P(N) R

= c.α1 (9.3.8)

c ℵ0

ℵ0 c

c ℵ0

There is no set X such that  < card(X) < c.ℵ0 (9.3.9)

ö
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1. Use an appropriate bijection to prove that each of the following sets has cardinality . 
 
(a) (0, ) 
(b) ( , ), for any  
(c)  
(d) , for any 

2. Is the set of irrational numbers countable or uncountable? Prove that your answer is correct.
3. Prove that if  is uncountable and , then  is uncountable.
4. Do two uncountable sets always have the same cardinality? Justify your conclusion.
5. Let  be the set of all infinite sequences, each of whose entries is the digit 0 or the digit 1. For example, 

 
Is the set  a countable set or an uncountable set? Justify your conclusion.

6. The goal of this exercise is to use the Cantor-Schr der-Bernstein Theorem to prove that the cardinality of the closed
interval [0, 1]�� is . 
 
(a) Find an injection . 
(b) Find an injection . 
(c) Use the fact that  to prove that there exists an injection . (It is only necessary to prove
that the injection  exists. It is not necessary to determine a specific formula for .) 
Note: Instead of doing Part (b) as stated, another approach is to find an injection . Then, it is possible to
skip Part (c) and go directly to Part (d). 
(d) Use the Cantor-Schr der-Bernstein Theorem to conclude that  and hence that the cardinality of [0, 1] is .

7. In Exercise (6), we proved that the closed interval [0, 1] is uncountable and has cardinality . Now let  with .
Prove that  and hence that  is counttable and has cardinality .

8. Is the set of all finite subsets of  countable or uncountable? Let  be the set of all finite subsets of . Determine the
cardinality of the set . 
 
Consider defining a function  that produces the following. 

 If , then . 
 If , then . 
 If  with , then . 

It might be helpful to use the Fundamental Theorem of Arithmetic on page 432and to denote the set of all primes as 
 with . Using the sets , , and  define above, we could then write 

, , and .
9. In Exercise (2), we showed that the set of irrational numbers is uncountable. However, we still do not know the cardinality

of the set of irrational numbers. Notice that we can use  to stand for the set of irrational numbers. 
 
(a) Construct a function  that is an injection. 
 
We know that any real number a can be represented in decimal form as follows: 

 
where  is an integer and the decimal part ( ) is in normalized form. (See page 480.) We also know that the
real number  is an irrational number if and only  has an infinite non-repeating decimal expansion. We now associate with

 the real number 

 Exercise 9.3

c

∞
a ∞ a ∈ R

R −{0}
R −{a} a ∈ R

A A ⊆ B B

C

(1, 0, 1, 0, 1, 0, 1, 0, . . . )

(0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, . . . )

(2, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, . . . )

∈

∈

∉

C;

C;

C.

(9.3.10)

C

ö

c

f : (0, 1) → [0, 1]
h : [0, 1] → (−1, 2)

(−1, 2) ≈ (0, 1) g : [0, 1] → (0, 1)
g g(x)

k : [0, 1] → (0, 1)

ö [0, 1] ≈ (0, 1) c

c a, b ∈ R a < b

[a, b] ≈ [0, 1] [a, b] c

N F N

F

f : F → N

∙ A = {1, 2, 6} f(A) = 213256

∙ B = {3, 6} f(B) = 2336

∙ C = { , , , }m1 m2 m3 m4 < < <m1 m2 m3 m4 f(C) = 2m1 3m2 5m3 7m4

P = { , , , , . . . }p1 p2 p3 p4 > < < ⋅ ⋅⋅p1 p2 p3 p4 A B C

f(A) = p1
1p

2
2p

6
3 f(B) = p3

1p
6
2 f(C) = pm1

1 pm2
2 pm3

3 pm4
4

Q
c

f : → RQ
c

a = A. ⋅ ⋅ ⋅ ⋅ ⋅⋅,a1a2a3a4 an (9.3.11)

A 0. ⋅ ⋅⋅a1a2a3a4

a a

a
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Notice that to construct the real number in (9.3.12), we started with the decimal expansion of a, inserted a 0 to the right of
the first digit after the decimal point, inserted two 1’s to the right of the second digit to the right of the decimal point,
inserted three 0’s to the right of the third digit to the right of the decimal point, and so on. 
 
(b) Explain why the real number in (9.3.12) is an irrational number. 
(c) Use these ideas to construct a function  that is an injection. 
(d) What can we now conclude by using the Cantor-Schr der-Bernstein Theorem?

10. Let  be the unit open interval. That is,  and let 
. We call  the unit open square. We will now define a function  from

 to . Let  and write the decimal expansions of  and  in normalized form as 

 
We then define   
 

(a) Determine the values of , , and . 

(b) If possible, find  such that . 

(c) If possible, find  such that . 

(d) If possible, find  such that . 

(e) Explain why the function  is an injection but is not a surjection. 
(f) Use the Cantor-Schr der-Bernstein Theorem to prove that the cardinality of the unit open square  is equal to . If this
result seems surprising, you are in good company. In a letter written in 1877 to the mathematician Richard Dedekind
describing this result that he had discovered, Georg Cantor wrote, “I see it but I do not believe it.” 
 
Explorations and Activities

11. The Closed Interval [0,1]. In Exercise (6), the Cantor-Schr der-Bernstein Theorem was used to prove that the closed
interval [0, 1] has cardinality . This may seem a bit unsatisfactory since we have not proved the Cantor-Schr der-
Bernstein Theorem. In this activity, we will prove that card  by using appropriate bijections. 
 
(a) Let  by 

 

i. Determine , , , , , and . 

ii. Sketch a graph of the function . Hint: Start with the graph of  for . Remove the point (1, 1) and replace

it with the point (1, ). Next, remove the point  and replace it with the point . Continue this process of

removing points on the graph of  and replacing them with the points determined from the information in Part (11(a)i).
Stop after repeating this four or five times so that pattern of this process becomes apparent. 
iii. Explain why the function  is a bijection. 
iv. Prove that .

(b) Let  by 

A. 0 11 000 1111 00000 111111 ⋅ ⋅⋅.a1 a2 a3 a4 a5 a6 (9.3.12)

g : R → Q
c

ö

J J = {x ∈ R | 0 < x < 1}
S = {(x, y) ∈ R ×R | 0 < x < 1 and 0 < y < 1} S f

S J (a, b) ∈ S a b

a

b

=

=

0. ⋅ ⋅ ⋅ ⋅ ⋅⋅a1a2a3a4 an

0. ⋅ ⋅ ⋅ ⋅ ⋅⋅.b1b2b3b4 bn
(9.3.13)

f(a, b) = 0. ⋅ ⋅ ⋅ ⋅ ⋅⋅.a1b1a2b2a3b3a4b4 anbn

f(0.3, 0.625) f( , )
1

3

1

4
f( , )

1

6

5

6
(x, y) ∈ S f(x, y) = 0.2345

(x, y) ∈ S f(x, y) =
1

3

(x, y) ∈ S f(x, y) =
1

2
f : S → J

ö S c

ö

c ö

([0, 1]) = c

f : [0, 1] → [0, 1)

f(x) =

⎧

⎩

⎨

⎪⎪⎪⎪

⎪⎪⎪⎪

1

2
1

n+1
x

 if x = 0

 if x =  for some n ∈ N
1

2
otherwise.

(9.3.14)

f(0) f(1) f( )
1

2
f( )

1

3
f( )

1

4
f( )

1

5
f y = x 0 ≤ x ≤ 1

1

2
( , )

1

2

1

2
( , )

1

2

1

3
y = x

f

[0, 1] ≈ [0, 1)

g : [0, 1) → (0, 1)
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i. Follow the procedure suggested in Part (11a) to sketch a graph of . 
ii. Explain why the function  is a bijection. 
iii. Prove that . 
(c) Prove that [0, 1] and [0, 1) are both uncountable and have cardinality .

Answer

Add texts here. Do not delete this text first.

This page titled 9.3: Uncountable Sets is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Ted Sundstrom
(ScholarWorks @Grand Valley State University) via source content that was edited to the style and standards of the LibreTexts platform; a
detailed edit history is available upon request.

9.3: Uncountable Sets by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

g(x) =
⎧

⎩⎨
1

n+1
x

 if x =  for some n ∈ N
1

2
otherwise.

(9.3.15)

g

g

[0, 1) ≈ (0, 1)
c
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9.S: Finite and Infinite Sets (Summary)
Important Definitions

Equivalent sets, page 452
Sets with the same cardinality, page 452
Finite set, page 455
Infinite set, page 455
Cardinality of a finite set, page 455
Cardinality of , page 466

, page 466
Countably infinite set, page 466
Denumerable set, page 466
Uncountable set, page 466

Important Theorems and Results about Finite and Infinite Sets

Theorem 9.3. Any set equivalent to a finite nonempty set  is a finite set and has the same cardinality as .
Theorem 9.6. If  is a finite set and  is a subset of , then  is finite and .
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CHAPTER OVERVIEW

10: Graph Theory
Graph Theory is a relatively new area of mathematics, first studied by the super famous mathematician Leonhard Euler in 1735.
Since then it has blossomed in to a powerful tool used in nearly every branch of science and is currently an active area of
mathematics research.
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10.1: Prelude to Graph Theory

In the time of Euler, in the town of Königsberg in Prussia, there was a river containing two islands. The islands were connected
to the banks of the river by seven bridges (as seen below). The bridges were very beautiful, and on their days off, townspeople
would spend time walking over the bridges. As time passed, a question arose: was it possible to plan a walk so that you cross
each bridge once and only once? Euler was able to answer this question. Are you?

Graph Theory is a relatively new area of mathematics, first studied by the super famous mathematician Leonhard Euler in 1735.
Since then it has blossomed in to a powerful tool used in nearly every branch of science and is currently an active area of
mathematics research.

The problem above, known as the Seven Bridges of Königsberg, is the problem that originally inspired graph theory. Consider a
“different” problem: Below is a drawing of four dots connected by some lines. Is it possible to trace over each line once and only
once (without lifting up your pencil, starting and ending on a dot)?

There is an obvious connection between these two problems. Any path in the dot and line drawing corresponds exactly to a path
over the bridges of Königsberg.

Pictures like the dot and line drawing are called graphs. Graphs are made up of a collection of dots called vertices and lines
connecting those dots called edges. When two vertices are connected by an edge, we say they are adjacent. The nice thing about
looking at graphs instead of pictures of rivers, islands and bridges is that we now have a mathematical object to study. We have
distilled the “important” parts of the bridge picture for the purposes of the problem. It does not matter how big the islands are, what
the bridges are made out of, if the river contains alligators, etc. All that matters is which land masses are connected to which other
land masses, and how many times. This was the great insight that Euler had.

We will return to the question of finding paths through graphs later. But first, here are a few other situations you can represent with
graphs:

Al, Bob, Cam, Dan, and Euclid are all members of the social networking website Facebook. The site allows members to be
“friends” with each other. It turns out that Al and Cam are friends, as are Bob and Dan. Euclid is friends with everyone.
Represent this situation with a graph.

Solution

Each person will be represented by a vertex and each friendship will be represented by an edge. That is, two vertices will be
adjacent (there will be an edge between them) if and only if the people represented by those vertices are friends. We get the
following graph:

Investigate!

Example 10.1.1
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Each of three houses must be connected to each of three utilities. Is it possible to do this without any of the utility lines
crossing?

Solution

We will answer this question later. For now, notice how we would ask this question in the context of graph theory. We are
really asking whether it is possible to redraw the graph below without any edges crossing (except at vertices). Think of the
top row as the houses, bottom row as the utilities.

10.1: Prelude to Graph Theory is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

4.0: Prelude to Graph Theory has no license indicated.
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10.2: Definitions

Which (if any) of the graphs below are the same?

    

The graphs above are unlabeled. Usually we think of a graph as having a specific set of vertices. Which (if any) of the graphs
below are the same?

   

Actually, all the graphs we have seen above are just drawings of graphs. A graph is really an abstract mathematical object
consisting of two sets  and  where  is a set of 2-element subsets of  Are the graphs below the same or different?

Graph 1:

Graph 2:

Before we start studying graphs, we need to agree upon what a graph is. While we almost always think of graphs as pictures (dots
connected by lines) this is fairly ambiguous. Do the lines need to be straight? Does it matter how long the lines are or how large the
dots are? Can there be two lines connecting the same pair of dots? Can one line connect three dots?

The way we avoid ambiguities in mathematics is to provide concrete and rigorous definitions. Crafting good definitions is not easy,
but it is incredibly important. The definition is the agreed upon starting point from which all truths in mathematics proceed. Is there
a graph with no edges? We have to look at the definition to see if this is possible.

We want our definition to be precise and unambiguous, but it also must agree with our intuition for the objects we are studying. It
needs to be useful: we could define a graph to be a six legged mammal, but that would not let us solve any problems about bridges.
Instead, here is the (now) standard definition of a graph.

A graph is an ordered pair  consisting of a nonempty set  (called the vertices) and a set  (called the edges) of
two-element subsets of 

Strange. Nowhere in the definition is there talk of dots or lines. From the definition, a graph could be

Here we have a graph with four vertices (the letters ) and four edges (the pairs ).

Looking at sets and sets of 2-element sets is difficult to process. That is why we often draw a representation of these sets. We put a
dot down for each vertex, and connect two dots with a line precisely when those two vertices are one of the 2-element subsets in
our set of edges. Thus one way to draw the graph described above is this:

Investigate!

V E E V .

V = {a, b, c, d, e},

E = {{a, b}, {a, c}, {a, d}, {a, e}, {b, c}, {d, e}}.

V = { , , , , },v1 v2 v3 v4 v5
E = {{ , }, { , }, { , }, { , }, { , }, { , }}.v1 v3 v1 v5 v2 v4 v2 v5 v3 v5 v4 v5

Definition

G= (V ,E) V E

V .

({a, b, c, d}, {{a, b}, {a, c}, {b, c}, {b, d}, {c, d}}).

a, b, c, d {a, b}, {a, c}, {b, c}, {b, d}, {c, d})
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However we could also have drawn the graph differently. For example either of these:

 

We should be careful about what it means for two graphs to be “the same.” Actually, given our definition, this is easy: Are the
vertex sets equal? Are the edge sets equal? We know what it means for sets to be equal, and graphs are nothing but a pair of two
special sorts of sets.

Are the graphs below equal?

equal?

Solution

No. Here the vertex sets of each graph are equal, which is a good start. Also, both graphs have two edges. In the first graph,
we have edges  and  while in the second graph we have edges  and  Now we do have 

 so that is not the problem. The issue is that  Since the edge sets of the two graphs are not
equal (as sets), the graphs are not equal (as graphs).

Even if two graphs are not equal, they might be basically the same. The graphs in the previous example could be drawn like this:

Graphs that are basically the same (but perhaps not equal) are called isomorphic. We will give a precise definition of this term after
a quick example:

Consider the graphs:

 where  and 
 where  and 

Are these graphs the same?

Solution

The two graphs are NOT equal. It is enough to notice that  since  but  However, both of these
graphs consist of three vertices with edges connecting every pair of vertices. We can draw them as follows:

Clearly we want to say these graphs are basically the same, so while they are not equal, they will be isomorphic. The reason
is we can rename the vertices of one graph and get the second graph as the result.

Intuitively, graphs are isomorphic if they are basically the same, or better yet, if they are the same except for the names of the
vertices. To make the concept of renaming vertices precise, we give the following definitions:

Example 10.2.1

= ({a, b, c}, {{a, b}, {b, c}}); = ({a, b, c}, {{a, c}, {c, b}})G1 G2

{a, b} {b, c}, {a, c} {c, b}.

{b, c} = {c, b}, {a, b} ≠ {a, c}.

Example 10.2.2

= { , }G1 V1 E1 = {a, b, c}V1 = {{a, b}, {a, c}, {b, c}};E1

= { , }G2 V2 E2 = {u, v,w}V2 = {{u, v}, {u,w}, {v,w}}.E2

≠V1 V2 a ∈ V1 a ∉ .V2
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An isomorphism between two graphs  and  is a bijection  between the vertices of the graphs such that if 
 is an edge in  then  is an edge in 

Two graphs are isomorphic if there is an isomorphism between them. In this case we write 

An isomorphism is simply a function which renames the vertices. It must be a bijection so every vertex gets a new name. These
newly named vertices must be connected by edges precisely if they were connected by edges with their old names.

Decide whether the graphs  and  are equal or isomorphic.

 
 

Solution

The graphs are NOT equal, since  but  However, since both graphs contain the same number of
vertices and same number of edges, they might be isomorphic (this is not enough in most cases, but it is a good start).

We can try to build an isomorphism. How about we say    and  This is definitely a
bijection, but to make sure that the function is an isomorphism, we must make sure it respects the edge relation. In 
vertices  and  are connected by an edge. In   and  are connected by an edge. So far, so good, but we
must check the other three edges. The edge  in  corresponds to  but here we have a
problem. There is no edge between  and  in  Thus  is NOT an isomorphism.

Not all hope is lost, however. Just because  is not an isomorphism does not mean that there is no isomorphism at all. We
can try again. At this point it might be helpful to draw the graphs to see how they should match up.

 

Alternatively, notice that in  the vertex  is adjacent to every other vertex. In  there is also a vertex with this
property:  So build the bijection  by defining  to start with. Next, where should we send  In 
the vertex  is only adjacent to vertex  There is exactly one vertex like this in  namely  So let  As for the
last two, in this example, we have a free choice: let  and  (switching these would be fine as well).

We should check that this really is an isomorphism. It is definitely a bijection. We must make sure that the edges are
respected. The four edges in  are

Under the proposed isomorphism these become

which are precisely the edges in  Thus  is an isomorphism, so 

Sometimes we will talk about a graph with a special name (like  or the Peterson graph) or perhaps draw a graph without any
labels. In this case we are really referring to all graphs isomorphic to any copy of that particular graph. A collection of isomorphic
graphs is often called an isomorphism class. This is not unlike geometry, where we might have more than one copy of a particular
triangle. There instead of isomorphic we say congruent.

Isomorphic Graphs

G1 G2 f : →V1 V2

{a, b} G1 {f(a), f(b)} .G2

≅ .G1 G2

Example 10.2.3

= { , }G1 V1 E1 = { , }G2 V2 E2

= {a, b, c, d},V1 = {{a, b}, {a, c}, {a, d}, {c, d}}E1

= {a, b, c, d},V2 = {{a, b}, {a, c}, {b, c}, {c, d}}E2

{a, d} ∈ E1 {a, d} ∉ .E2

f(a) = b, f(b) = c, f(c) = d f(d) = a.

,G1

a b ,G2 f(a) = b f(b) = c

{a, c} G1 {f(a), f(c)} = {b, d},

b d .G2 f

f

,G1 a ,G2

c. g : →V1 V2 g(a) = c b? ,G1

b a. ,G2 d. g(b) = d.

g(c) = b g(d) = a

G1

{a, b}, {a, c}, {a, d}, {c, d}

{g(a), g(b)}, {g(a), g(c)}, {g(a), g(d)}, {g(c), g(d)}

{c, d}, {c, b}, {c, a}, {b, a}

.G2 g ≅G1 G2

Kn

 1 
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There are other relationships between graphs that we care about, other than equality and being isomorphic. For example, compare
the following pair of graphs:

These are definitely not isomorphic, but notice that the graph on the right looks like it might be part of the graph on the left,
especially if we draw it like this:

We would like to say that the smaller graph is a subgraph of the larger.

We should give a careful definition of this. In fact, there are two reasonable notions for what a subgroup should mean.

We say that  is a subgraph of  provided  and 

We say that  is an induced subgraph of  provided  and  contains all edges of 
which are subsets of 

Notice that every induced subgraph is also an ordinary subgraph, but not conversely. Think of a subgraph as the result of deleting
some vertices and edges from the larger graph. For the subgraph to be an induced subgraph, we can still delete vertices, but now we
only delete those edges that included the deleted vertices.

Consider the graphs:

   

Here both  and  are subgraphs of  But only  is an induced subgraph. Every edge in  that connects vertices in 
is also an edge in  In  the edge  is in  but not  even though vertices  and  are in 

The graph  is NOT a subgraph of  even though it looks like all we did is remove vertex  The reason is that in  we
have the edge  but this is not an element of  so we don't have the required 

Back to some basic graph theory definitions. Notice that all the graphs we have drawn above have the property that no pair of
vertices is connected more than once, and no vertex is connected to itself. Graphs like these are sometimes called simple, although
we will just call them graphs. This is because our definition for a graph says that the edges form a set of 2-element subsets of the
vertices. Remember that it doesn't make sense to say a set contains an element more than once. So no pair of vertices can be
connected by an edge more than once. Also, since each edge must be a set containing two vertices, we cannot have a single vertex
connected to itself by an edge.

That said, there are times we want to consider double (or more) edges and single edge loops. For example, the “graph” we drew for
the Bridges of Königsberg problem had double edges because there really are two bridges connecting a particular island to the near
shore. We will call these objects multigraphs. This is a good name: a multiset is a set in which we are allowed to include a single
element multiple times.

Subgraphs

= ( , )G1 V1 E1 = ( , )G2 V2 E2 ⊆V1 V2 ⊆ .E1 E2

= ( , )G1 V1 E1 = ( , )G2 V2 E2 ⊆V1 V2 E1 E2

.V1

Example 10.2.4

G2 G3 .G1 G2 G1 G2

.G2 ,G3 {a, b} E1 ,E3 a b .V3

G4 ,G1 e. E4

{c, f} ,E1 ⊆ .E4 E1
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The graphs above are also connected: you can get from any vertex to any other vertex by following some path of edges. A graph
that is not connected can be thought of as two separate graphs drawn close together. For example, the following graph is NOT
connected because there is no path from  to 

Most of the time, it makes sense to treat non-connected graphs as separate graphs (think of the above graph as two squares), so
unless otherwise stated, we will assume all our graphs are connected.

Vertices in a graph do not always have edges between them. If we add all possible edges, then the resulting graph is called
complete. That is, a graph is complete if every pair of vertices is connected by an edge. Since a graph is determined completely by
which vertices are adjacent to which other vertices, there is only one complete graph with a given number of vertices. We give
these a special name:  is the complete graph on  vertices.

Each vertex in  is adjacent to  other vertices. We call the number of edges emanating from a given vertex the degree of
that vertex. So every vertex in  has degree  How many edges does  have? One might think the answer should be 

 since we count  edges  times (once for each vertex). However, each edge is incident to 2 vertices, so we counted
every edge exactly twice. Thus there are  edges in  Alternatively, we can say there are  edges, since to draw an
edge we must choose 2 of the  vertices.

In general, if we know the degrees of all the vertices in a graph, we can find the number of edges. The sum of the degrees of all
vertices will always be twice the number of edges, since each edge adds to the degree of two vertices. Notice this means that the
sum of the degrees of all vertices in any graph must be even!

At a recent math seminar, 9 mathematicians greeted each other by shaking hands. Is it possible that each mathematician shook
hands with exactly 7 people at the seminar?

Solution

It seems like this should be possible. Each mathematician chooses one person to not shake hands with. But this cannot
happen. We are asking whether a graph with 9 vertices can have each vertex have degree 7. If such a graph existed, the sum
of the degrees of the vertices would be  This would be twice the number of edges (handshakes) resulting in a
graph with  edges. That is impossible. Thus at least one (in fact an odd number) of the mathematicians must have
shaken hands with an even number of people at the seminar.

One final definition: we say a graph is bipartite if the vertices can be divided into two sets,  and  with no two vertices in 
adjacent and no two vertices in  adjacent. The vertices in  can be adjacent to some or all of the vertices in  If each vertex in 

 is adjacent to all the vertices in  then the graph is a complete bipartite graph, and gets a special name:  where 
and  The graph in the houses and utilities puzzle is 

Some graphs are used more than others, and get special names.

: The complete graph on  vertices.
: The complete bipartite graph with sets of  and  vertices.

: The cycle on  vertices, just one big loop.
: The path on  vertices, just one long path.

There are a lot of definitions to keep track of in graph theory. Here is a glossary of the terms we have already used and will
soon encounter.

a b:

Kn n

Kn n−1

Kn n−1. Kn

n(n−1), n−1 n

n(n−1)/2 .Kn ( )n
2

n

Example 10.2.5

9 ⋅ 7 = 63.

31.5

A B, A

B A B.

A B, ,Km,n |A| =m

|B| = n. .K3,3

Named Graphs

Kn n

Km,n m n

Cn n

Pn n
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Graph: A collection of vertices, some of which are connected by edges. More precisely, a pair of sets  and  where  is a
set of vertices and  is a set of 2-element subsets of 
Adjacent: Two vertices are adjacent if they are connected by an edge. Two edges are adjacent if they share a vertex.
Bipartite graph: A graph for which it is possible to divide the vertices into two disjoint sets such that there are no edges
between any two vertices in the same set.
Complete bipartite graph: A bipartite graph for which every vertex in the first set is adjacent to every vertex in the second
set.
Complete graph: A graph in which every pair of vertices is adjacent.
Connected: A graph is connected if there is a path from any vertex to any other vertex.
Chromatic number: The minimum number of colors required in a proper vertex coloring of the graph.
Cycle: A path (see below) that starts and stops at the same vertex, but contains no other repeated vertices.
Degree of a vertex: The number of edges incident to a vertex.
Euler path: A walk which uses each edge exactly once.
Euler circuit: An Euler path which starts and stops at the same vertex.
Multigraph: A multigraph is just like a graph but can contain multiple edges between two vertices as well as single edge
loops (that is an edge from a vertex to itself).
Planar: A graph which can be drawn (in the plane) without any edges crossing.
Subgraph: We say that  is a subgraph of  if every vertex and edge of  is also a vertex or edge of  We say  is an
induced subgraph of  if every vertex of  is a vertex of  and each pair of vertices in  are adjacent in  if and only if
they are adjacent in 
Tree: A (connected) graph with no cycles. (A non-connected graph with no cycles is called a forest.) The vertices in a tree
with degree 1 are called leaves.
Vertex coloring: An assignment of colors to each of the vertices of a graph. A vertex coloring is proper if adjacent vertices
are always colored differently.
Walk: A sequence of vertices such that consecutive vertices (in the sequence) are adjacent (in the graph). A walk in which
no vertex is repeated is called simple

This page titled 10.2: Definitions is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Oscar Levin.
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10.3: Planar Graphs
Investigate!
When a connected graph can be drawn without any edges crossing, it is called planar. When a planar graph is drawn in this way,
it divides the plane into regions called faces.

1. Draw, if possible, two different planar graphs with the same number of vertices, edges, and faces.
2. Draw, if possible, two different planar graphs with the same number of vertices and edges, but a different number of faces.

When is it possible to draw a graph so that none of the edges cross? If this is possible, we say the graph is planar (since you can
draw it on the plane).

Notice that the definition of planar includes the phrase “it is possible to.” This means that even if a graph does not look like it is
planar, it still might be. Perhaps you can redraw it in a way in which no edges cross. For example, this is a planar graph:

That is because we can redraw it like this:

The graphs are the same, so if one is planar, the other must be too. However, the original drawing of the graph was not a planar
representation of the graph.

When a planar graph is drawn without edges crossing, the edges and vertices of the graph divide the plane into regions. We will call
each region a face. The graph above has 3 faces (yes, we do include the “outside” region as a face). The number of faces does not
change no matter how you draw the graph (as long as you do so without the edges crossing), so it makes sense to ascribe the
number of faces as a property of the planar graph.

WARNING: you can only count faces when the graph is drawn in a planar way. For example, consider these two representations of
the same graph:

 

If you try to count faces using the graph on the left, you might say there are 5 faces (including the outside). But drawing the graph
with a planar representation shows that in fact there are only 4 faces.

There is a connection between the number of vertices ( ), the number of edges ( ) and the number of faces ( ) in any connected
planar graph. This relationship is called Euler's formula.

Definition: Euler's Formula for Planar Graphs
For any (connected) planar graph with  vertices,  edges and  faces, we have

v e f

v e f

v−e +f = 2
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Why is Euler's formula true? One way to convince yourself of its validity is to draw a planar graph step by step. Start with the
graph 

Any connected graph (besides just a single isolated vertex) must contain this subgraph. Now build up to your graph by adding
edges and vertices. Each step will consist of either adding a new vertex connected by a new edge to part of your graph (so creating
a new “spike”) or by connecting two vertices already in the graph with a new edge (completing a circuit).

What do these “moves” do? When adding the spike, the number of edges increases by 1, the number of vertices increases by one,
and the number of faces remains the same. But this means that  does not change. Completing a circuit adds one edge,
adds one face, and keeps the number of vertices the same. So again,  does not change.

Since we can build any graph using a combination of these two moves, and doing so never changes the quantity  that
quantity will be the same for all graphs. But notice that our starting graph  has   and  so  This
argument is essentially a proof by induction. A good exercise would be to rewrite it as a formal induction proof.

Non-planar Graphs
Investigate!
For the complete graphs  we would like to be able to say something about the number of vertices, edges, and (if the graph is
planar) faces. Let's first consider 

1. How many vertices does  have? How many edges?
2. If  is planar, how many faces should it have?

Repeat parts (1) and (2) for   and 

What about complete bipartite graphs? How many vertices, edges, and faces (if it were planar) does  have? For which
values of  and  are  and  planar?

Not all graphs are planar. If there are too many edges and too few vertices, then some of the edges will need to intersect. The first
time this happens is in 

If you try to redraw this without edges crossing, you quickly get into trouble. There seems to be one edge too many. In fact, we can
prove that no matter how you draw it,  will always have edges crossing.

Theorem 

 is not planar.

Proof

The proof is by contradiction. So assume that  is planar. Then the graph must satisfy Euler's formula for planar graphs. 
 has 5 vertices and 10 edges, so we get

:P2

v−e +f

v−e +f

v−e +f ,

P2 v = 2, e = 1 f = 1, v−e +f = 2.

,Kn

:K3

K3

K3

,K4 ,K5 .K23

K7,4

m n Kn Km,n

.K5
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which says that if the graph is drawn without any edges crossing, there would be  faces.

Now consider how many edges surround each face. Each face must be surrounded by at least 3 edges. Let  be the total
number of boundaries around all the faces in the graph. Thus we have that  But also  since each edge is
used as a boundary exactly twice. Putting this together we get

But this is impossible, since we have already determined that  and  and  This is a contradiction so in
fact  is not planar.

The other simplest graph which is not planar is 

Proving that  is not planar answers the houses and utilities puzzle: it is not possible to connect each of three houses to each of
three utilities without the lines crossing.

Theorem 
 is not planar.

Proof

Again, we proceed by contradiction. Suppose  were planar. Then by Euler's formula there will be 5 faces, since  
 and 

How many boundaries surround these 5 faces? Let  be this number. Since each edge is used as a boundary twice, we have 
 Also,  since each face is surrounded by 4 or more boundaries. We know this is true because  is

bipartite, so does not contain any 3-edge cycles. Thus

But this would say that  which is clearly false. Thus  is not planar.

Note the similarities and differences in these proofs. Both are proofs by contradiction, and both start with using Euler's formula to
derive the (supposed) number of faces in the graph. Then we find a relationship between the number of faces and the number of
edges based on how many edges surround each face. This is the only difference. In the proof for  we got  and for 
we go  The coefficient of  is the key. It is the smallest number of edges which could surround any face. If some number
of edges surround a face, then these edges form a cycle. So that number is the size of the smallest cycle in the graph.

In general, if we let  be the size of the smallest cycle in a graph (  stands for girth, which is the technical term for this) then for
any planar graph we have  When this disagrees with Euler's formula, we know for sure that the graph cannot be planar.

Polyhedra
Investigate!
A cube is an example of a convex polyhedron. It contains 6 identical squares for its faces, 8 vertices, and 12 edges. The cube is a
regular polyhedron (also known as a Platonic solid) because each face is an identical regular polygon and each vertex joins an
equal number of faces.

There are exactly four other regular polyhedra: the tetrahedron, octahedron, dodecahedron, and icosahedron with 4, 8, 12 and 20
faces respectively. How many vertices and edges do each of these have?

f = 7

B

B ≥ 3f . B = 2e,

3f ≤ 2e

f = 7 e = 10, 21 ≰ 20.

K5

□

K3,3

K3,3

10.3.2

K3,3

K3,3 v = 6,

e = 9, 6 −9 +f = 2.

B

B = 2e. B ≥ 4f K3,3

4f ≤ 2e.

20 ≤ 18, K3,3

□

,K5 3f ≤ 2e K3,3

4f ≤ 2e. f

g g

gf ≤ 2e.
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Another area of mathematics where you might have heard the terms “vertex,” “edge,” and “face” is geometry. A polyhedron is a
geometric solid made up of flat polygonal faces joined at edges and vertices. We are especially interested in convex polyhedra,
which means that any line segment connecting two points on the interior of the polyhedron must be entirely contained inside the
polyhedron. An alternative definition for convex is that the internal angle formed by any two faces must be less than \
(180\deg\text{.}\)

Notice that since  the vertices, edges and faces of a cube satisfy Euler's formula for planar graphs. This is not a
coincidence. We can represent a cube as a planar graph by projecting the vertices and edges onto the plane. One such projection
looks like this:

In fact, every convex polyhedron can be projected onto the plane without edges crossing. Think of placing the polyhedron inside a
sphere, with a light at the center of the sphere. The edges and vertices of the polyhedron cast a shadow onto the interior of the
sphere. You can then cut a hole in the sphere in the middle of one of the projected faces and “stretch” the sphere to lay down flat on
the plane. The face that was punctured becomes the “outside” face of the planar graph.

The point is, we can apply what we know about graphs (in particular planar graphs) to convex polyhedra. Since every convex
polyhedron can be represented as a planar graph, we see that Euler's formula for planar graphs holds for all convex polyhedra as
well. We also can apply the same sort of reasoning we use for graphs in other contexts to convex polyhedra. For example, we know
that there is no convex polyhedron with 11 vertices all of degree 3, as this would make 33/2 edges.

Example 

Is there a convex polyhedron consisting of three triangles and six pentagons? What about three triangles, six pentagons and five
heptagons (7-sided polygons)?

Solution

How many edges would such polyhedra have? For the first proposed polyhedron, the triangles would contribute a total of 9
edges, and the pentagons would contribute 30. However, this counts each edge twice (as each edge borders exactly two
faces), giving 39/2 edges, an impossibility. There is no such polyhedron.

The second polyhedron does not have this obstacle. The extra 35 edges contributed by the heptagons give a total of 74/2 =
37 edges. So far so good. Now how many vertices does this supposed polyhedron have? We can use Euler's formula. There
are 14 faces, so we have  or equivalently  But now use the vertices to count the edges again. Each
vertex must have degree at least three (that is, each vertex joins at least three faces since the interior angle of all the
polygons must be less that ), so the sum of the degrees of vertices is at least 75. Since the sum of the degrees must be
exactly twice the number of edges, this says that there are strictly more than 37 edges. Again, there is no such polyhedron.

To conclude this application of planar graphs, consider the regular polyhedra. Above we claimed there are only five. How do we
know this is true? We can prove it using graph theory.

Theorem : regular polyhedra
There are exactly five regular polyhedra.

Proof

Recall that a regular polyhedron has all of its faces identical regular polygons, and that each vertex has the same degree.
Consider the cases, broken up by what the regular polygon might be.

Case 1: Each face is a triangle. Let  be the number of faces. There are then  edges. Using Euler's formula we have 
 so  Now each vertex has the same degree, say  So the number of edges is also 

Putting this together gives

 2 

8 −12 +6 = 2,

10.3.3

v−37 +14 = 2 v = 25.

180∘

10.3.3

f 3f/2

v−3f/2 +f = 2 v = 2 +f/2. k. kv/2.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/86155?pdf


10.3.5 https://math.libretexts.org/@go/page/86155

which says

We need  and  to both be positive integers. Note that  is an increasing function for positive  and has a horizontal

asymptote at 6. Thus the only possible values for  are 3, 4, and 5. Each of these are possible. To get  we need 
(this is the tetrahedron). For  we take  (the octahedron). For  take  (the icosahedron). Thus there are
exactly three regular polyhedra with triangles for faces.

Case 2: Each face is a square. Now we have  Using Euler's formula we get  and counting edges
using the degree  of each vertex gives us

Solving for  gives

This is again an increasing function, but this time the horizontal asymptote is at  so the only possible value that 
could take is 3. This produces 6 faces, and we have a cube. There is only one regular polyhedron with square faces.

Case 3: Each face is a pentagon. We perform the same calculation as above, this time getting  so 
Then

so

Now the horizontal asymptote is at  This is less than 4, so we can only hope of making  We can do so by using 12
pentagons, getting the dodecahedron. This is the only regular polyhedron with pentagons as faces.

Case 4: Each face is an -gon with  Following the same procedure as above, we deduce that

which will be increasing to a horizontal asymptote of  When  this asymptote is at  Any larger value of 
will give an even smaller asymptote. Therefore no regular polyhedra exist with faces larger than pentagons. Notice that you
can tile the plane with hexagons. This is an infinite planar graph; each vertex has degree 3. These infinitely many hexagons
correspond to the limit as \(f \to\infty \) to make \(k = 3\text{.}\)

This page titled 10.3: Planar Graphs is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Oscar Levin.
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10.4: Coloring

Mapmakers in the fictional land of Euleria have drawn the borders of the various dukedoms of the land. To make the map
pretty, they wish to color each region. Adjacent regions must be colored differently, but it is perfectly fine to color two distant
regions with the same color. What is the fewest colors the mapmakers can use and still accomplish this task?

Perhaps the most famous graph theory problem is how to color maps.

Given any map of countries, states, counties, etc., how many colors are needed to color each region on the map so that
neighboring regions are colored differently?

Actual map makers usually use around seven colors. For one thing, they require watery regions to be a specific color, and with a lot
of colors it is easier to find a permissible coloring. We want to know whether there is a smaller palette that will work for any map.

How is this related to graph theory? Well, if we place a vertex in the center of each region (say in the capital of each state) and then
connect two vertices if their states share a border, we get a graph. Coloring regions on the map corresponds to coloring the vertices
of the graph. Since neighboring regions cannot be colored the same, our graph cannot have vertices colored the same when those
vertices are adjacent.

In general, given any graph  a coloring of the vertices is called (not surprisingly) a vertex coloring. If the vertex coloring has the
property that adjacent vertices are colored differently, then the coloring is called proper. Every graph has a proper vertex coloring.
For example, you could color every vertex with a different color. But often you can do better. The smallest number of colors
needed to get a proper vertex coloring is called the chromatic number of the graph, written .

Find the chromatic number of the graphs below.

Solution

The graph on the left is  The only way to properly color the graph is to give every vertex a different color (since every
vertex is adjacent to every other vertex). Thus the chromatic number is 6.

The middle graph can be properly colored with just 3 colors (Red, Blue, and Green). For example:

G,

χ(G)

Example : chromatic numbers10.4.1
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There is no way to color it with just two colors, since there are three vertices mutually adjacent (i.e., a triangle). Thus the
chromatic number is 3.

The graph on the right is just  As with all bipartite graphs, this graph has chromatic number 2: color the vertices on the
top row red and the vertices on the bottom row blue.

It appears that there is no limit to how large chromatic numbers can get. It should not come as a surprise that  has chromatic
number  So how could there possibly be an answer to the original map coloring question? If the chromatic number of graph can
be arbitrarily large, then it seems like there would be no upper bound to the number of colors needed for any map. But there is.

The key observation is that while it is true that for any number  there is a graph with chromatic number  only some graphs
arrive as representations of maps. If you convert a map to a graph, the edges between vertices correspond to borders between the
countries. So you should be able to connect vertices in such a way where the edges do not cross. In other words, the graphs
representing maps are all planar!

So the question is, what is the largest chromatic number of any planar graph? The answer is the best known theorem of graph
theory:

If  is a planar graph, then the chromatic number of  is less than or equal to 4. Thus any map can be properly colored with 4
or fewer colors.

We will not prove this theorem. Really. Even though the theorem is easy to state and understand, the proof is not. In fact, there is
currently no “easy” known proof of the theorem. The current best proof still requires powerful computers to check an unavoidable
set of 633 reducible configurations. The idea is that every graph must contain one of these reducible configurations (this fact also
needs to be checked by a computer) and that reducible configurations can, in fact, be colored in 4 or fewer colors.

Coloring in General

The math department plans to offer 10 classes next semester. Some classes cannot run at the same time (perhaps they are taught
by the same professor, or are required for seniors).

Class: Conflicts with:

A D I

B D I J

C E F I

D A B F

E H I

F I

G J

H E I J

I A B C E F H

.K2,3

Kn

n.

n, n,

Theorem : The Four Color Theorem10.4.1
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Class: Conflicts with:

J B G H

How many different time slots are needed to teach these classes (and which should be taught at the same time)? More
importantly, how could we use graph coloring to answer this question?

Cartography is certainly not the only application of graph coloring. There are plenty of situations in which you might wish partition
the objects in question so that related objects are not in the same set. For example, you might wish to store chemicals safely. To
avoid explosions, certain pairs of chemicals should not be stored in the same room. By coloring a graph (with vertices representing
chemicals and edges representing potential negative interactions), you can determine the smallest number of rooms needed to store
the chemicals.

Here is a further example:

Radio stations broadcast their signal at certain frequencies. However, there are a limited number of frequencies to choose from,
so nationwide many stations use the same frequency. This works because the stations are far enough apart that their signals will
not interfere; no one radio could pick them up at the same time.

Suppose 10 new radio stations are to be set up in a currently unpopulated (by radio stations) region. The radio stations that are
close enough to each other to cause interference are recorded in the table below. What is the fewest number of frequencies the
stations could use.

Solution

Represent the problem as a graph with vertices as the stations and edges when two stations are close enough to cause
interference. We are looking for the chromatic number of the graph. Vertices that are colored identically represent stations
that can have the same frequency.

This graph has chromatic number 5. A proper 5-coloring is shown on the right. Notice that the graph contains a copy of the
complete graph  so no fewer than 5 colors can be used.

In the example above, the chromatic number was 5, but this is not a counterexample to the Four Color Theorem, since the graph
representing the radio stations is not planar. It would be nice to have some quick way to find the chromatic number of a (possibly

Example 10.4.3
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non-planar) graph. It turns out nobody knows whether an efficient algorithm for computing chromatic numbers exists.

While we might not be able to find the exact chromatic number of graph easily, we can often give a reasonable range for the
chromatic number. In other words, we can give upper and lower bounds for chromatic number.

This is actually not very difficult: for every graph  the chromatic number of  is at least 1 and at most the number of vertices of 

What? You want better bounds on the chromatic number? Well you are in luck.

A clique in a graph is a set of vertices all of which are pairwise adjacent. In other words, a clique of size  is just a copy of the
complete graph  We define the clique number of a graph to be the largest  for which the graph contains a clique of size 
Any clique of size  cannot be colored with fewer than  colors, so we have a nice lower bound:

The chromatic number of a graph  is at least the clique number of 

There are times when the chromatic number of  is equal to the clique number. These graphs have a special name; they are called
perfect. If you know that a graph is perfect, then finding the chromatic number is simply a matter of searching for the largest
clique. There are special classes of graphs which can be proved to be perfect. One such class is the set of chordal graphs, which
have the property that every cycle in the graph contains a chord—an edge between two vertices in of the cycle which are not
adjacent in the cycle. However, not all graphs are perfect.

For an upper bound, we can improve on “the number of vertices” by looking to the degrees of vertices. Let  be the largest
degree of any vertex in the graph  One reasonable guess for an upper bound on the chromatic number is 
Why is this reasonable? Starting with any vertex, it together with all of its neighbors can always be colored in  colors,
since at most we are talking about  vertices in this set. Now fan out! At any point, if you consider an already colored
vertex, some of its neighbors might be colored, some might not. But no matter what, that vertex and its neighbors could all be
colored distinctly, since there are at most  neighbors, plus the one vertex being considered.

In fact, there are examples of graphs for which  For any  the complete graph  has chromatic number 
but  (since every vertex is adjacent to every other vertex). Additionally, any odd cycle will have chromatic number
3, but the degree of every vertex in a cycle is 2. It turns out that these are the only two types of examples where we get equality, a
result known as Brooks' Theorem.

Any graph  satisfies  unless  is a complete graph or an odd cycle, in which case 

The proof of this theorem is just complicated enough that we will not present it here (although you are asked to prove a special case
in the exercises). The adventurous reader is encouraged to find a book on graph theory for suggestions on how to prove the
theorem.

Coloring Edges
The chromatic number of a graph tells us about coloring vertices, but we could also ask about coloring edges. Just like with vertex
coloring, we might insist that edges that are adjacent must be colored differently. Here, we are thinking of two edges as being
adjacent if they are incident to the same vertex. The least number of colors required to properly color the edges of a graph  is
called the chromatic index of  written .

Six friends decide to spend the afternoon playing chess. Everyone will play everyone else once. They have plenty of chess sets
but nobody wants to play more than one game at a time. Games will last an hour (thanks to their handy chess clocks). How
many hours will the tournament last?

Solution

G, G

G.

n

.Kn n n.

n n

Theorem 10.4.2

G G.

G

 4 

Δ(G)

G. χ(G) ≤Δ(G)+1.

Δ(G)+1

Δ(G)+1

Δ(G)

χ(G) =Δ(G)+1. n, Kn n,

Δ( ) = n−1Kn

Theorem : Brooks' Theorem10.4.3

G χ(G) ≤Δ(G), G χ(G) =Δ(G)+1.

G
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Represent each player with a vertex and put an edge between two players if they will play each other. In this case, we get
the graph 

We must color the edges; each color represents a different hour. Since different edges incident to the same vertex will be
colored differently, no player will be playing two different games (edges) at the same time. Thus we need to know the
chromatic index of 

Notice that for sure  since there is a vertex of degree 5. It turns out 5 colors is enough (go find such a
coloring). Therefore the friends will play for 5 hours.

Interestingly, if one of the friends in the above example left, the remaining 5 chess-letes would still need 5 hours: the chromatic
index of  is also 5.

In general, what can we say about chromatic index? Certainly  But how much higher could it be? Only a little
higher.

For any graph  the chromatic index  is either  or .

At first this theorem makes it seem like chromatic index might not be very interesting. However, deciding which case a graph is in
is not always easy. Graphs for which  are called class 1, while the others are called class 2. Bipartite graphs always
satisfy  so are class 1 (this was proved by König in 1916, decades before Vizing proved his theorem in 1964). In
1965 Vizing proved that all planar graphs with  are of class 1, but this does not hold for all planar graphs with 

 Vizing conjectured that all planar graphs with  or  are class 1; the  case was
proved in 2001 by Sanders and Zhao; the  case is still open.

There is another interesting way we might consider coloring edges, quite different from what we have discussed so far. What if we
colored every edge of a graph either red or blue. Can we do so without, say, creating a monochromatic triangle (i.e., an all red or all
blue triangle)? Certainly for some graphs the answer is yes. Try doing so for  What about   How far can we go?

The answer to the above problem is known and is a fun problem to do as an exercise. We could extend the question in a variety of
ways. What if we had three colors? What if we were trying to avoid other graphs. The surprising fact is that very little is known
about these questions. For example, we know that you need to go up to  in order to force a monochromatic triangle using three
colors, but nobody knows how big you need to go with more colors. Similarly, we know that using two colors  is the smallest
graph that forces a monochromatic copy of  but the best we have to force a monochromatic  is a range, somewhere from 

 to  If you are interested in these sorts of questions, this area of graph theory is called Ramsey theory. Check it out.

This page titled 10.4: Coloring is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Oscar Levin.
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10.5: Euler Paths and Circuits
Investigate!
An Euler path, in a graph or multigraph, is a walk through the graph which uses every edge exactly once. An Euler circuit is an
Euler path which starts and stops at the same vertex. Our goal is to find a quick way to check whether a graph (or multigraph)
has an Euler path or circuit.

1. Which of the graphs below have Euler paths? Which have Euler circuits?

   

2. List the degrees of each vertex of the graphs above. Is there a connection between degrees and the existence of Euler paths
and circuits?

3. Is it possible for a graph with a degree 1 vertex to have an Euler circuit? If so, draw one. If not, explain why not. What about
an Euler path?

4. What if every vertex of the graph has degree 2. Is there an Euler path? An Euler circuit? Draw some graphs.
5. Below is part of a graph. Even though you can only see some of the vertices, can you deduce whether the graph will have an

Euler path or circuit?

1. If we start at a vertex and trace along edges to get to other vertices, we create a walk through the graph. More precisely, a walk in a
graph is a sequence of vertices such that every vertex in the sequence is adjacent to the vertices before and after it in the sequence.
If the walk travels along every edge exactly once, then the walk is called an Euler path (or Euler walk). If, in addition, the starting
and ending vertices are the same (so you trace along every edge exactly once and end up where you started), then the walk is called
an Euler circuit (or Euler tour). Of course if a graph is not connected, there is no hope of finding such a path or circuit. For the rest
of this section, assume all the graphs discussed are connected.

The bridges of Königsberg problem is really a question about the existence of Euler paths. There will be a route that crosses every
bridge exactly once if and only if the graph below has an Euler path:

This graph is small enough that we could actually check every possible walk that does not reuse edges, and in doing so convince
ourselves that there is no Euler path (let alone an Euler circuit). On small graphs which do have an Euler path, it is usually not
difficult to find one. Our goal is to find a quick way to check whether a graph has an Euler path or circuit, even if the graph is quite
large.

One way to guarantee that a graph does not have an Euler circuit is to include a “spike,” a vertex of degree 1.
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The vertex  has degree 1, and if you try to make an Euler circuit, you see that you will get stuck at the vertex. It is a dead end.
That is, unless you start there. But then there is no way to return, so there is no hope of finding an Euler circuit. There is however
an Euler path. It starts at the vertex  then loops around the triangle. You will end at the vertex of degree 3.

You run into a similar problem whenever you have a vertex of any odd degree. If you start at such a vertex, you will not be able to
end there (after traversing every edge exactly once). After using one edge to leave the starting vertex, you will be left with an even
number of edges emanating from the vertex. Half of these could be used for returning to the vertex, the other half for leaving. So
you return, then leave. Return, then leave. The only way to use up all the edges is to use the last one by leaving the vertex. On the
other hand, if you have a vertex with odd degree that you do not start a path at, then you will eventually get stuck at that vertex.
The path will use pairs of edges incident to the vertex to arrive and leave again. Eventually all but one of these edges will be used
up, leaving only an edge to arrive by, and none to leave again.

What all this says is that if a graph has an Euler path and two vertices with odd degree, then the Euler path must start at one of the
odd degree vertices and end at the other. In such a situation, every other vertex must have an even degree since we need an equal
number of edges to get to those vertices as to leave them. How could we have an Euler circuit? The graph could not have any odd
degree vertex as an Euler path would have to start there or end there, but not both. Thus for a graph to have an Euler circuit, all
vertices must have even degree.

The converse is also true: if all the vertices of a graph have even degree, then the graph has an Euler circuit, and if there are exactly
two vertices with odd degree, the graph has an Euler path. To prove this is a little tricky, but the basic idea is that you will never get
stuck because there is an “outbound” edge for every “inbound” edge at every vertex. If you try to make an Euler path and miss
some edges, you will always be able to “splice in” a circuit using the edges you previously missed.

Definitions: Euler Paths and Circuits
A graph has an Euler circuit if and only if the degree of every vertex is even.
A graph has an Euler path if and only if there are at most two vertices with odd degree.

Since the bridges of Königsberg graph has all four vertices with odd degree, there is no Euler path through the graph. Thus there is
no way for the townspeople to cross every bridge exactly once.

Hamilton Paths

Suppose you wanted to tour Königsberg in such a way where you visit each land mass (the two islands and both banks) exactly
once. This can be done. In graph theory terms, we are asking whether there is a path which visits every vertex exactly once. Such a
path is called a Hamilton path (or Hamiltonian path). We could also consider Hamilton cycles, which are Hamliton paths which
start and stop at the same vertex.

Example 
Determine whether the graphs below have a Hamilton path.

 

Solution

The graph on the left has a Hamilton path (many different ones, actually), as shown here:

The graph on the right does not have a Hamilton path. You would need to visit each of the “outside” vertices, but as soon as
you visit one, you get stuck. Note that this graph does not have an Euler path, although there are graphs with Euler paths but

a

a,
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no Hamilton paths.

It appears that finding Hamilton paths would be easier because graphs often have more edges than vertices, so there are fewer
requirements to be met. However, nobody knows whether this is true. There is no known simple test for whether a graph has a
Hamilton path. For small graphs this is not a problem, but as the size of the graph grows, it gets harder and harder to check wither
there is a Hamilton path. In fact, this is an example of a question which as far as we know is too difficult for computers to solve; it
is an example of a problem which is NP-complete.

This page titled 10.5: Euler Paths and Circuits is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Oscar
Levin.
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10.6: Matching in Bipartite Graphs
Investigate!
Given a bipartite graph, a matching is a subset of the edges for which every vertex belongs to exactly one of the edges. Our goal
in this activity is to discover some criterion for when a bipartite graph has a matching.

Does the graph below contain a matching? If so, find one.

Not all bipartite graphs have matchings. Draw as many fundamentally different examples of bipartite graphs which do NOT
have matchings. Your goal is to find all the possible obstructions to a graph having a perfect matching. Write down the
necessary conditions for a graph to have a matching (that is, fill in the blank: If a graph has a matching, then ). Then ask
yourself whether these conditions are sufficient (is it true that if , then the graph has a matching?).

We conclude with one more example of a graph theory problem to illustrate the variety and vastness of the subject.

Suppose you have a bipartite graph  This will consist of two sets of vertices  and  with some edges connecting some vertices
of  to some vertices in  (but of course, no edges between two vertices both in  or both in ). A matching of  is a subset of
the edges for which each vertex of  belongs to exactly one edge of the subset, and no vertex in  belongs to more than one edge
in the subset. In practice we will assume that  (the two sets have the same number of vertices) so this says that every
vertex in the graph belongs to exactly one edge in the matching. Note: what we are calling a matching is sometimes called a
perfect matching or complete matching. This is because in it interesting to look at non-perfect matchings as well. We will call those
partial matchings.

Some context might make this easier to understand. Think of the vertices in  as representing students in a class, and the vertices
in  as representing presentation topics. We put an edge from a vertex  to a vertex  if student  would like to present
on topic  Of course, some students would want to present on more than one topic, so their vertex would have degree greater than
1. As the teacher, you want to assign each student their own unique topic. Thus you want to find a matching of  you pick some
subset of the edges so that each student gets matched up with exactly one topic, and no topic gets matched to two students. The
standard example for matchings used to be the marriage problem in which \(A\) consisted of the men in the town, \(B\) the women,
and an edge represented a marriage that was agreeable to both parties. A matching then represented a way for the town elders to
marry off everyone in the town, no polygamy allowed. We have chosen a more progressive context for the sake of political
correctness.

The question is: when does a bipartite graph contain a matching of  To begin to answer this question, consider what could
prevent the graph from containing a matching. This will not necessarily tell us a condition when the graph does have a matching,
but at least it is a start.

One way  could not have a matching is if there is a vertex in  not adjacent to any vertex in  (so having degree 0). What else?
What if two students both like the same one topic, and no others? Then after assigning that one topic to the first student, there is
nothing left for the second student to like, so it is very much as if the second student has degree 0. Or what if three students like
only two topics between them. Again, after assigning one student a topic, we reduce this down to the previous case of two students
liking only one topic. We can continue this way with more and more students.

It should be clear at this point that if there is every a group of  students who as a group like  or fewer topics, then no
matching is possible. This is true for any value of  and any group of  students.

To make this more graph-theoretic, say you have a set  of vertices. Define  to be the set of all the neighbors of vertices
in  That is,  contains all the vertices (in ) which are adjacent to at least one of the vertices in  (In the student/topic
graph,  is the set of topics liked by the students of ) Our discussion above can be summarized as follows:

Matching Condition
If a bipartite graph  has a matching of  then

G. A B

A B A B A

A B

|A| = |B|
 5 

A

B a ∈ A b ∈ B a

b.

A:
 6 

A?

G A B

n n−1

n, n

S ⊆ A N(S)
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for all 

Is the converse true? Suppose  satisfies the matching condition  for all  (every set of vertices has at least as
many neighbors than vertices in the set). Does that mean that there is a matching? Surprisingly, yes. The obvious necessary
condition is also sufficient. This happens often in graph theory. If you can avoid the obvious counterexamples, you often get what
you want. This is a theorem first proved by Philip Hall in 1935. There is also an infinite version of the theorem which was proved
by Marshal Hall, Jr. The name is a coincidence though as the two Halls are not related.

Hall's Marriage Theorem
Let  be a bipartite graph with sets  and  Then  has a matching of  if and only if

for all 

There are quite a few different proofs of this theorem – a quick internet search will get you started.

In addition to its application to marriage and student presentation topics, matchings have applications all over the place. We
conclude with one such example.

Example 

Suppose you deal 52 regular playing cards into 13 piles of 4 cards each. Prove that you can always select one card from each
pile to get one of each of the 13 card values Ace, 2, 3, …, 10, Jack, Queen, and King.

Solution

Doing this directly would be difficult, but we can use the matching condition to help. Construct a graph  with 13 vertices
in the set  each representing one of the 13 card values, and 13 vertices in the set  each representing one of the 13 piles.
Draw an edge between a vertex  to a vertex  if a card with value  is in the pile  Notice that we are just
looking for a matching of  each value needs to be found in the piles exactly once.

We will have a matching if the matching condition holds. Given any set of card values (a set ) we must show that 
 That is, the number of piles that contain those values is at least the number of different values. But what if it

wasn't? Say  If  then we would have fewer than  different cards in those piles (since each pile
contains 4 cards). But there are  cards with the  different values, so at least one of these cards must be in another pile, a
contradiction. Thus the matching condition holds, so there is a matching, as required.

This page titled 10.6: Matching in Bipartite Graphs is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Oscar
Levin.
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10.7: Weighted Graphs and Dijkstra's Algorithm
Investigate!
In the table, the time it takes to travel between various locations by bus in South Bend is given. Incorporate this information in a
graph, and then find shortest paths from the airport to every other location.

Saint Mary's Holy Cross Notre Dame Ranjan's
House

Chocolate
Cafe

Crooked Ewe Airport

Saint Mary's 0 3 7 - - - 17

Holy Cross 0 6 - 11 - -

Notre Dame 0 8 - 14 -

Ranjan's
House

0 - 15 22

Chocolate
Cafe

0 12 15

Crooked Ewe 0 -

Airport 0

Definition
A graph with a number (usually positive) assigned to each edge is called a weighted graph. (A graph without weights can be
thought of as a weighted graph with all weights equal to 1.) We denote the weight between vertices  and  by .

In the previous example, the weights represented distances. What else could we represent using weights?

In many situations, we want to find a shortest path (or path of least weight) between two locations. Dijkstra's algorithm gives us
a way to do this.

Dijkstra's algorithm
Input: a weighted graph, , with a source vertex 

for each vertex  in :

 set of all vertices in 
while  is not empty:

 vertex in  with smallest distance
remove  from 
for each neighbor  of 

if 

return 

Remark: If you only want to know the distance from the source to a particular vertex, you can terminate the algorithm when
that vertex is removed from .

Challenge: Find a big-O estimate for the number of operations (additions and comparisons) used by Dijkstra's algorithm.

Exercise 

u v w(u, v)

G s

v G

dist(v) := ∞

prev(v) := undefined

dist(s) := 0

Q := G

Q

u := Q

u Q

v u

alt := dist(u) +w(u, v)

alt < dist(v)

dist(v) := alt

prev(v) := u

dist(), prev()

Q
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Saint Mary's once had tunnels connecting various buildings on campus. The tunnels and their lengths are as follows (and
definitely not accurate): Regina to McCandless (400 ft), Regina to Student Center (200), McCandless to Student Center (100),
McCandless to Angela (500), Student Center to Angela (800), Student Center to Library (1000), Angela to Library (200),
Angela to Madeleva (600), Library to Madeleva (300). Find a shortest path from Regina to Madeleva using Dijkstra's
Algorithm.

Theorem 

Dijkstra's Algorithm finds a shortest path between two vertices in a simple undirected weighted graph.

Proof

We will prove the theorem by induction on . The first vertex removed from  is . In this case  and
Dijkstra's algorithm tells us that the distance from the source to  (ie from  to itself) is 0. Therefore, the base case is true.

The inductive hypothesis is that for any vertex not in , the distance assigned to that vertex by the algorithm is in fact the
minimum distance from the source to that vertex.

Let  be the most recent vertex removed from . By the inductive hypothesis, the algorithm has provided the minimum
distance from the source for every vertex in  besides .

Suppose by contradiction that a shortest path  from  to  has length less than . In other words, 
. Let  be the first edge along  that isn't in  and let  be the sub-path of  from  to .

Then

,

and by the induction hypothesis

.

Since  is adjacent to , the algorithm recalculates , so

.

Combining these inequalities, we see that . But the algorithm removed  from  and not , so we must
have that . This is a contradiction, and the proof is complete.

10.7: Weighted Graphs and Dijkstra's Algorithm is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by
LibreTexts.

10.7.2

|V ∖Q| Q s |V ∖Q| = 1

s s

Q

u Q

V ∖Q u

P s u dist(u)

length(P ) < dist(u) xy P V ∖Q Px P s x

length( ) +w(x, y) ≤ length(P )Px

dist(x) +w(x, y) ≤ length(P )

y x dist(y)

dist(y) ≤ dist(x) +w(x, y)

dist(y) < dist(u) u Q y

dist(u) ≤ dist(y)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://math.libretexts.org/@go/page/86159?pdf
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/10%3A_Graph_Theory/10.07%3A_Weighted_Graphs_and_Dijkstra's_Algorithm
https://creativecommons.org/licenses/by-nc-sa/


10.8.1 https://math.libretexts.org/@go/page/86160

10.8: Trees
Investigate!
Consider the graph drawn below.

1. Find a subgraph with the smallest number of edges that is still connected and contains all the vertices.
2. Find a subgraph with the largest number of edges that doesn't contain any cycles.
3. What do you notice about the number of edges in your examples above? Is this a coincidence?

Definition
A tree is a connected graph with no cycles. (Alternatively, a tree is a connected acyclic graph.)

A forest is a graph containing no cycles. Note that this means a connected forest is a tree.

So far so good, but while your grandparents are (probably) not blood-relatives, if we go back far enough, it is likely that they did
have some common ancestor. If you trace the tree back from you to that common ancestor, then down through your other
grandparent, you would have a cycle, and thus the graph would not be a tree.

You might also have seen something called a decision tree before (for example when deciding whether a series converges or
diverges). Sometimes these too contain cycles, as the decision for one node might lead you back to a previous step.

Both the examples of trees above also have another feature worth mentioning: there is a clear order to the vertices in the tree. In
general, there is no reason for a tree to have this added structure, although we can impose such a structure by considering rooted
trees, where we simply designate one vertex as the root. We will consider such trees in more detail later in this section.

Properties of Trees

We wish to really understand trees. This means we should discover properties of trees; what makes them special and what is special
about them.

A tree is an connected graph with no cycles. Is there anything else we can say? It would be nice to have other equivalent conditions
for a graph to be a tree. That is, we would like to know whether there are any graph theoretic properties that all trees have, and
perhaps even that only trees have.

To get a feel for the sorts of things we can say, we will consider three propositions about trees. These will also illustrate important
proof techniques that apply to graphs in general, and happen to be a little easier for trees.

Our first proposition gives an alternate definition for a tree. That is, it gives necessary and sufficient conditions for a graph to be a
tree.

Proposition 

A graph T is a tree if and only if between every pair of distinct vertices there is a unique path.

Proof

This is an “if and only if” statement, so we must prove two implications. We start by proving that if T is a tree, then between
every pair of distinct vertices there is a unique path.

10.8.1
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Assume T is a tree, and let  and  be distinct vertices (if T only has one vertex, then the conclusion is satisfied
automatically). We must show two things to show that there is a unique path between  and : that there is a path, and that
there is not more than one path. The first of these is automatic, since T is a tree, it is connected, so there is a path between
any pair of vertices.

To show the path is unique, we suppose there are two paths between  and , and get a contradiction. The two paths might
start out the same, but since they are different, there is some first vertex  after which the two paths diverge. However, since
the two paths both end at , there is some first vertex after  that they have in common, call it . Now consider the two
paths from  to . Taken together, these form a cycle, which contradicts our assumption that T is a tree.

Now we consider the converse: if between every pair of distinct vertices of T there is a unique path, then T is a tree. So
assume the hypothesis: between every pair of distinct vertices of T there is a unique path. To prove that T is a tree, we must
show it is connected and contains no cycles.

The first half of this is easy: T is connected, because there is a path between every pair of vertices. To show that T has no
cycles, we assume it does, for the sake of contradiction. Let  and  be two distinct vertices in a cycle of T. Since we can get
from  to  by going clockwise or counterclockwise around the cycle, there are two paths from  and , contradicting our
assumption.

We have established both directions so we have completed the proof.

Read the proof above very carefully. Notice that both directions had two parts: the existence of paths, and the uniqueness of paths
(which related to the fact there were no cycles). In this case, these two parts were really separate. In fact, if we just considered
graphs with no cycles (a forest), then we could still do the parts of the proof that explore the uniqueness of paths between vertices,
even if there might not exist paths between vertices.

This observation allows us to state the following corollary:

Corollary 
A graph is a forest if and only if there is at most one path between every pair of vertices.

Proposition 

Any tree with at least two vertices has at least two vertices of degree one.

Proof

We give a proof by contradiction. Let T be a tree with at least two vertices, and suppose, contrary to stipulation, that there
are not two vertices of degree one.

Let  be a path in T of longest possible length. Let  and  be the endpoints of the path. Since T does not have two vertices
of degree one, at least one of these must have degree two or higher. Say that it is . We know that  is adjacent to a vertex in
the path , but now it must also be adjacent to another vertex, call it .

Where is ? It cannot be a vertex of , because if it was, there would be two distinct paths from  to : the edge between
them, and the first part of  (up to ). But  also cannot be outside of , for if it was, there would be a path from  to 
that was longer than , which has longest possible length.

This contradiction proves that there must be at least two vertices of degree one. In fact, we can say a little more:  and 
must both have degree one.

The proposition is quite useful when proving statements about trees, because we often prove statements about trees by induction.
To do so, we need to reduce a given tree to a smaller tree (so we can apply the inductive hypothesis). Getting rid of a vertex of
degree one is an obvious choice, and now we know there is always one to get rid of.

To illustrate how induction is used on trees, we will consider the relationship between the number of vertices and number of edges
in trees. Is there a tree with exactly 7 vertices and 7 edges? Try to draw one? Could a tree with 7 vertices have only 5 edges? There
is a good reason that these seem impossible to draw.

Proposition 
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Let T be a tree with  vertices and  edges. Then .

Proof

We will give a proof by induction on the number of vertices in the tree. That is, we will prove that every tree with  vertices
has exactly  edges, and then use induction to show this is true for all 

For the base case, consider all trees with  vertices. There is only one such tree: the graph with a single isolated vertex.
This graph has  edges, so we see that  as needed.

Now for the inductive case, fix  and assume that all trees with  vertices have exactly  edges. Now
consider an arbitrary tree T with  vertices. By Proposition 3, T has a vertex  of degree one. Let T′ be the tree
resulting from removing  from T (together with its incident edge). Since we removed a leaf, T′ is still a tree (the unique
paths between pairs of vertices in T′ are the same as the unique paths between them in T).

Now T′ has  vertices, so by the inductive hypothesis, has  edges. What can we say about T? Well, it has one more
edge than T′, so it has  edges. But this is exactly what we wanted: ,  so indeed . This completes
the proof.

There is a very important feature of this induction proof that is worth noting. Induction makes sense for proofs about graphs
because we can think of graphs as growing into larger graphs. However, this does NOT work. It would not be correct to start with a
tree with  vertices, and then add a new vertex and edge to get a tree with  vertices, and note that the number of edges also
grew by one. Why is this bad? Because how do you know that every tree with  vertices is the result of adding a vertex to your
arbitrary starting tree? You don't!

The point is that whenever you give an induction proof that a statement about graphs that holds for all graphs with  vertices, you
must start with an arbitrary graph with  vertices, then reduce that graph to a graph with  vertices, to which you can apply
your inductive hypothesis.

Rooted Trees
So far, we have thought of trees only as a particular kind of graph. However, it is often useful to add additional structure to trees to
help solve problems. Data is often structured like a tree. This book, for example, has a tree structure: draw a vertex for the book
itself. Then draw vertices for each chapter, connected to the book vertex. Under each chapter, draw a vertex for each section,
connecting it to the chapter it belongs to. The graph will not have any cycles; it will be a tree. But a tree with clear hierarchy which
is not present if we don't identify the book itself as the “top”.

As soon as one vertex of a tree is designated as the root, then every other vertex on the tree can be characterized by its position
relative to the root. This works because between any two vertices in a tree, there is a unique path. So from any vertex, we can travel
back to the root in exactly one way. This also allows us to describe how distinct vertices in a rooted tree are related.

If two vertices are adjacent, then we say one of them is the parent of the other, which is called the child of the parent. Of the two,
the parent is the vertex that is closer to the root. Thus the root of a tree is a parent, but is not the child of any vertex (and is unique
in this respect: all non-root vertices have exactly one parent).

Not surprisingly, the child of a child of a vertex is called the grandchild of the vertex (and it is the grandparent). More in general,
we say that a vertex  is a descendent of a vertex  provided  is a vertex on the path from  to the root. Then we would call  an
ancestor of .

For most trees (in fact, all except paths with one end the root), there will be pairs of vertices neither of which is a descendant of the
other. We might call these cousins or siblings. In fact, vertices  and  are called siblings provided they have the same parent. Note
that siblings are never adjacent (do you see why?).

Example 

Consider the tree below.
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If we designate vertex  as the root, then , , and  are the children of , and are siblings of each other. Among the other things
we can say are that  is a child of , and a descendant of . The vertex  is a descendant of , in fact, is a grandchild of .
Vertices  and  are siblings, since they have the common parent .

Notice how this changes if we pick a different vertex for the root. If  is the root, then its lone child is , which also has only
one child, namely . We would then have  the child of ee (instead of the other way around), and  is the descendant of ,
instead of the ancestor.  and  are now siblings.

Example 
Explain why every tree is a bipartite graph.

Solution

To show that a graph is bipartite, we must divide the vertices into two sets  and  so that no two vertices in the same set are
adjacent. Here is an algorithm that does just this.

Designate any vertex as the root. Put this vertex in set . Now put all of the children of the root in set . None of these children
are adjacent (they are siblings), so we are good so far. Now put into  every child of every vertex in  (i.e., every grandchild of
the root). Keep going until all vertices have been assigned one of the sets, alternating between  and  every “generation.”
That is, a vertex is in set  if and only if it is the child of a vertex in set .

The key to how we partitioned the tree in the example was to know which vertex to assign to a set next. We chose to visit all
vertices in the same generation before any vertices of the next generation. This is usually called a breadth first search (we say
“search” because you often traverse a tree looking for vertices with certain properties).

In contrast, we could also have partitioned the tree in a different order. Start with the root, put it in . Then look for one child of
the root to put in . Then find a child of that vertex, into , and then find its child, into , and so on. When you get to a vertex
with no children, retreat to its parent and see if the parent has any other children. So we travel as far from the root as fast as
possible, then backtrack until we can move forward again. This is called depth first search.

These algorithmic explanations can serve as a proof that every tree is bipartite, although care needs to be spent to prove that the
algorithms are correct. Another approach to prove that all trees are bipartite, using induction, is requested in the exercises.

Spanning Trees
One of the advantages of trees is that they give us a few simple ways to travel through the vertices. If a connected graph is not a
tree, then we can still use these traversal algorithms if we identify a subgraph that is a tree.

First we should consider if this even makes sense. Given any connected graph  ,will there always be a subgraph that is a tree?
Well, that is actually too easy: you could just take a single edge of . If we want to use this subgraph to tell us how to visit all
vertices, then we want our subgraph to include all of the vertices. We call such a tree a spanning tree. It turns out that every
connected graph has one (and usually many).

Definition
Given a connected graph , a spanning tree of  is a subgraph of  which is a tree and includes all the vertices of .

How do we know? We can give an algorithm for finding a spanning tree! Start with the graph connected graph . If there is no
cycle, then the  is already a tree and we are done. If there is a cycle, let  be any edge in that cycle and consider the new graph 

 (i.e., the graph you get by deleting ). This graph is still connected since  belonged to a cycle, there were at least two
paths between its incident vertices. Now repeat: if  has no cycles, we are done, otherwise define  to be , where  is
an edge in a cycle in . Keep going. This process must eventually stop, since there are only a finite number of edges to remove.
The result will be a tree, and since we never removed any vertex, a spanning tree.
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This is by no means the only algorithm for finding a spanning tree. You could have started with the empty graph and added edges
that belong to  as long as adding them would not create a cycle. You have some choices as to which edges you add first: you
could always add an edge adjacent to edges you have already added (after the first one, of course), or add them using some other
order. Which spanning tree you end up with depends on these choices.

Example 

Find two different spanning trees of this graph.

We will present some algorithms related to trees in the next section.

10.8: Trees is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.
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10.9: Tree Traversal
Definition
An ordered rooted tree is a rooted tree in which the children of each internal vertex have an order (generally from left to right).

investigate!
Create an ordered rooted tree for the expression . Each vertex should either be assigned a number or an
operation.

Mathematical expressions can be ambiguous (as many internet memes show), and the ambiguity can be removed by strict
adherence to an order of operations or by complete use of parentheses (called infix notation). There are other ways of writing
expressions; we will also consider prefix and postfix notation. Each of these ways of writing a mathematical expression can be
derived from an ordered rooted tree for that expression.

Tree traversal algorithms
Definition
A tree traversal algorithm is a method for systematically visiting every vertex of an ordered rooted tree.

We discuss three such algorithms below.

preorder traversal algorithm
Input: , an ordered rooted tree with root 
Return 
For each child  of , from left to right:

Traverse subtree of  with root  using preorder

postorder traversal algorithm
Input: , an ordered rooted tree with root 
For each child  of , from left to right:

Traverse subtree of  with root  using postorder
Return 

Inorder traversal algorithm
Input: , an ordered rooted tree with root 
If  is a leaf, then return 
Else, let  be the leftmost child of 

Traverse subtree of  with root  using inorder
Return 
For each child  of  except  from left to right:

Traverse subtree of  with root  using inorder

Exercise 
Determine the preorder, inorder, and postorder traversals of the ordered rooted tree below.
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Answer

Preorder: 8, 3, 1, 6, 4, 7, 10, 14, 13

Inorder: 1, 3, 4, 6, 7, 8, 13, 14, 10

Postorder: 1, 4, 7, 6, 3, 13, 14, 10, 8

In fact, there is a simpler way to determine these traversals. First, draw a closed curve around the rooted tree, hugging both
sides of each edge. To get the preorder traversal, simply list each vertex the first time it is passed. For postorder, list the
vertices the last time they are passed. For inorder, list leaves the first time they are passed and internal vertices the second
time.

Exercise 

Determine the prefix form and postfix form of the mathematical expression above by traversing the ordered rooted tree you
created in preorder and postorder, respectively. Use  to denote exponentiation.

Determine the infix form of the expression by traversing the tree in inorder, including all parentheses

To evaluate an expression in prefix form, notice that an operator precedes the numbers it is applied to. Therefore, we can read right
to left, and whenever we encounter an operator preceded immediately by two numbers we can perform the operation. Likewise, we
can evaluate an expression in postfix form by reading left to right and performing an operation when we encounter an operator
immediately preceded by two numbers.

Example 
1. Evaluate the following expression written in prefix form: .
2. Evaluate the following expression written in postfix form: .

Tags recommended by the template: article:topic
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10.10: Spanning Tree Algorithms
Definition
Given a connected graph , a spanning tree of  is a subgraph of  which is a tree and includes all the vertices of .

We also provided the ideas of two algorithms to find a spanning tree in a connected graph.

Start with the graph connected graph . If there is no cycle, then the  is already a tree and we are done. If there is a cycle, let  be
any edge in that cycle and consider the new graph  (i.e., the graph you get by deleting ). This tree is still connected
since  belonged to a cycle, there were at least two paths between its incident vertices. Now repeat: if  has no cycles, we are
done, otherwise define  to be , where  is an edge in a cycle in . Keep going. This process must eventually stop,
since there are only a finite number of edges to remove. The result will be a tree, and since we never removed any vertex, a
spanning tree.

This is by no means the only algorithm for finding a spanning tree. You could have started with the empty graph and added edges
that belong to  as long as adding them would not create a cycle. You have some choices as to which edges you add first: you
could always add an edge adjacent to edges you have already added (after the first one, of course), or add them using some other
order. Which spanning tree you end up with depends on these choices.

We now provide two algorithms that follow this latter idea of starting with an empty graph and adding edges until we have formed
a tree.

Depth-first search algorithm
Input , a connected graph with vertices 
Let tree with no edges and only the vertex 

 (i.e. apply the procedure  to )

VISIT
Input , a vertex of a graph 
For each vertex  adjacent to  and not yet in 

add vertex  and edge  to 

Notice that we can pick our starting vertex arbitrarily and adjacent vertices in any order. Label the vertices in the graph below, pick
a starting vertex, and use depth-first search to find a spanning tree of the graph below.

Breadth-first search algorithm
Input , a connected graph with vertices 
Let tree with no edges and only the vertex 
Let empty list
Put  in , a list of unprocessed vertices
While  is not empty

remove the first vertex  from 
for each neighbor  of 

if  is not in  and not in 
add  to the end of the list 
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add  and the edge  to 

Using the same graph, same labels, and same starting vertex, apply the breadth-first search algorithm to find a spanning tree of the
graph above.

Find a big-O estimate of the number of steps these algorithms require.

Spanning trees in weighted graphs

In the graph below, there is an oil well located at the left-most vertex, while other vertices represent storage facilities.

1. Suppose the edges represent the possible pipelines we could build, and the weight on an edge represents the cost of building
that edge (in millions of dollars). Which pipelines should we build so that we can transport oil from the well to each storage
facility, but we want to spend as little money as possible? What is the total cost of building these pipelines? Describe an
algorithm that could be used to solve this problem.

2. Again, suppose the edges represent the possible pipelines we could build. Now suppose that the weight on each edge represents
the time it takes for oil to get through that section of the pipeline (in hours). Which pipelines should we build so that we can
transport oil from the well to each storage facility as quickly as possible? Describe an algorithm that could be used to solve this
problem.

Definition
A minimum spanning tree in a connected weighted graph is a spanning tree with minimum possible total edge weight.

A shortest path spanning tree from v in a connected weighted graph is a spanning tree such that the distance from  to any
other vertex  is as small as possible.

We present below two common algorithms used to find minimum spanning trees.

Prim's algorithm
Input: , a connected weighted graph with  vertices
Let any edge with minimum weight
for  from  to 

let an edge of minimum weight among those incident to a vertex in  that will not form a cycle in  if added to it

Return 

Kruskal's algorithm
Input: , a connected weighted graph with  vertices
Let  be an empty graph
for  from  to 

let an edge in  of minimum weight among those that do not form a cycle in  if added to it

Return 

Notice the difference between the two algorithms. In Prim's edges that are incident to a vertex already in the tree are added, while
in Kruskal's the edges that are added need not be incident to a vertex already in the tree.

We now present an algorithm that creates a shortest path spanning tree from a given vertex.
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Shortest path spanning tree algorithm
Input: , a connected weighted graph with  vertices and with source vertex 
Apply Dijkstra's algorithm (Section 5.7) to 
Let  be an empty graph
For  from  to 

Add edge  to 
Return 

10.10: Spanning Tree Algorithms is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.
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10.11: Transportation Networks and Flows
investigate!
At the end of the school day, all the students plan on driving from school (vertex A) to the concert (at vertex Z). The directed
edges in the graph below represent one-way roads, and the weight of each edge represents the number of vehicles (in hundreds)
that particular road can handle in one hour. What is the greatest number of vehicles that can get from school to the concert in
one hour? How many vehicles should take each road?

Definition
A transportation network is a connected, weighted, directed graph with the following properties.

1. There is one source, a vertex with no incoming edges. [In other language, the vertex has indegree 0.]
2. There is one sink, a vertex with no outgoing edges. [In other language, the vertex has outdegree 0.]
3. Each edge  is assigned a nonnegative weight  called the capacity of that edge. [Notice I wrote the edge as an

ordered pair rather than a set. This is because each edge has an initial vertex and a terminal vertex, so the order matters.]

Transportation networks can also be used to model oil flowing through a series of pipelines, data flowing through a network of
computers, and many other situations.

Definition
Let  be a transportation network with capacity  on edge . A flow  on  assigns to each edge  a nonnegative
number , called the flow on edge  with the following properties.

1. .
2. For every vertex  other than the source or the sink, .

What do these two conditions mean in words? The first says that the flow cannot exceed the capacity on an edge. We can see why
this condition is necessary - we cannot, for example, send more oil through a pipeline than it can handle. The second says that the
flow IN to a vertex must be equal to the flow OUT of that same vertex (except at the source or the sink). Again this condition
makes sense: if oil is flowing through a series of pipelines, we should not gain or lose oil between the source of the oil and location
to which we are sending it.

To write a flow on a transportation network, give each edge a pair of numbers with the capacity of an edge preceding the flow
along that edge: . Express your solution to the initial example in this section as a flow on a transportation network.

Theorem 

For any flow  on a transportation network, the flow out of the source must equal the flow into the sink. In symbols, 
.

Proof

This proof is left as an exercise.

Because of the previous theorem, we can make the following definition.

Definition
The value of a flow is the total flow out of the sink (or into the source). A maximal flow is a flow with greatest possible value.
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Definition
A cut in a transportation network  is a partition of the vertices of  into two sets  and  so that the source is in  and the
sink is in .

For example  and  is a cut for the transportation network at the beginning of the section.

Definition
The capacity of the cut S,T is the sum of the capacities of all edges starting at a vertex in  and ending at a vertex in .
Equivalently, it is the number . A minimal cut is a cut with the least possible capacity.

The capacity of the previous cut is . A minimal cut for the same network is  and . This
cut has capacity 9.

It turns out that maximal flows are related to minimal cuts.

Theorem 
Let  be a flow on a transportation network  and let  be a cut. If  (i.e. if the value of the flow is
equal to the capacity of the cut), then the flow is maximal and the cut is minimal.

Proof

The proof is omitted.

We present below an algorithm that can be used to find a maximal flow in a transportation network. It is given below in sentences
rather than in pseudocode for ease of understanding. The basic idea is that we begin with a flow of zero along each edge. We use
the algorithm to find a path from the source to the sink along which we can increase the flow. We do so, and then we try again. We
keep doing so until we cannot anymore; what we are left with is a maximal flow. The proof that the algorithm produces a maximal
flow and a minimum cut are omitted.

Max Flow algorithm
1. Label the source .

2. Look at a labeled vertex. Suppose it is called  and has label . For each unlabeled vertex  do the following:

1. If there is an edge from  to , and the current flow from  to  is below capacity, give  the label  where  is
either  or the capacity minus the flow, whichever is smaller.

2. If there is an edge from  to  and the current flow from  to  is positive, then give  the label  where  is
either  or the current flow, whichever is smaller.

3. Otherwise, don't give  a label.

3. Repeat step 2 until the sink is labeled or you can't label anymore.

1. If the sink is labeled, increase the flow by the amount in the label on the sink, following the path back to the source.
Notice that if you encounter any “-” you need to decrease the flow on that arc. Then start again at step 1 with this new
flow.

2. If the sink isn’t labeled you are done. The current flow is maximal. We have also found a minimal cut: the set of labeled
vertices is S and the set of unlabeled vertices is T.

Exercise 

Use the max flow algorithm to determine a maximal flow, the value of the maximal flow, and a minimal cut for the
transportation network below.
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Use the max flow algorithm to determine a maximal flow, the value of the maximal flow, and a minimal cut for the
transportation network with the given flow below.

10.11: Transportation Networks and Flows is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.
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10.12: Data Structures for Graphs
In this section, we will describe data structures that are commonly used to represent graphs. In addition we will introduce the basic
syntax for graphs in Sage.

10.12.1: Basic Data Structures

Assume that we have a graph with  vertices that can be indexed by the integers  Here are three different data
structures that can be employed to represent graphs.

a. Adjacency Matrix: As we saw in Chapter 6, the information about edges in a graph can be summarized with an adjacency
matrix,  where  if and only if vertex  is connected to vertex  in the graph. Note that this is the same as the
adjacency matrix for a relation.

b. Edge Dictionary: For each vertex in our graph, we maintain a list of edges that initiate at that vertex. If  represents the
graph's edge information, then we denote by  the list of vertices that are terminal vertices of edges initiating at vertex 
The exact syntax that would be used can vary. We will use Sage/Python syntax in our examples.

c. Edge List: Note that in creating either of the first two data structures, we would presume that a list of edges for the graph
exists. A simple way to represent the edges is to maintain this list of ordered pairs, or two element sets, depending on
whether the graph is intended to be directed or undirected. We will not work with this data structure here, other than in the
first example.

We consider the representation of the following graph:

Figure : Graph for a Very Small
Example

The adjacency matrix that represents the graph would be

The same graph could be represented with the edge dictionary

{1:[2,4],2:[3,4],3:[3],4:[1]} .

Notice the general form of each item in the dictionary: vertex:[list of vertices] .

Finally, a list of edges [(1,2),(1,4),(2,3),(2,4),(3,3),(4,1)]  also describes the same graph.

A natural question to ask is: Which data structure should be used in a given situation? For small graphs, it really doesn't make
much difference. For larger matrices the edge count would be a consideration. If  is large and the number of edges is relatively
small, it might use less memory to maintain an edge dictionary or list of edges instead of building an  matrix. Some software
for working with graphs will make the decision for you.

List : Data Structures for Graphs10.12.1
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Consider the tournament graph representing a NCAA Division 1 men's (or women's) college basketball season in the United
States. There are approximately 350 teams in Division 1. Suppose we constructed the graph with an edge from team A to team
B if A beat B at least once in the season; and we label the edge with the number of wins. Since the average team plays around
30 games in a season, most of which will be against other Division I teams, we could expect around  edges in
the graph. This would be somewhat reduced by games with lower division teams and cases where two or more wins over the
same team produces one edge. Since 5,250 is much smaller than  entries in an adjacency matrix, an edge
dictionary or edge list would be more compact than an adjacency matrix. Even if we were to use software to create an
adjacency matrix, many programs will identify the fact that a matrix such as the one in this example would be “sparse” and
would leave data in list form and use sparse array methods to work with it.

10.12.2: Graphs
The most common way to define a graph in Sage is to use an edge dictionary. Here is how the graph in Example  is
generated and then displayed. Notice that we simply wrap the function DiGraph()  around the same dictionary expression we
identified earlier.

You can get the adjacency matrix of a graph with the adjacency_matrix  method.

You can also define a graph based on its adjacency matrix.

The edge list of any directed graph can be easily retrieved. If you replace edges  with edge_iterator , you can iterate
through the edge list. The third coordinate of the items in the edge is the label of the edge, which is None  in this case.

Replacing the wrapper DiGraph()  with Graph()  creates an undirected graph.

There are many special graphs and graph families that are available in Sage through the graphs  module. They are referenced
with the prefix graphs.  followed by the name and zero or more parameters inside parentheses. Here are a couple of them, first
a complete graph with five vertices.

Here is a wheel graph, named for an obvious pattern of vertices and edges. We assign a name to it first and then show the graph
without labeling the vertices.

Example : NCAA Basketball10.12.2

= 5, 25030⋅350
2

= 122, 5003502

10.12.1

1 G1 = DiGraph( {1 : [4, 2], 2 : [3, 4], 3 : [3], 4 : [1]})
2 G1.show()

1 G1.adjacency_matrix()

1 M = Matrix([[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],
2               [0,0,0,0,1],[1,0,0,0,0]])
3 DiGraph(M).show()

1 DiGraph(M).edges()

1 G2 = Graph( {1 : [4, 2], 2 : [3, 4], 3 : [3], 4 : [1]})
2 G2.show()

1 graphs.CompleteGraph(5).show()

1 w=graphs.WheelGraph(20)
2 w.show(vertex_labels=false)
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There are dozens of graph methods, one of which determines the degree sequence of a graph. In this case, it's the wheel graph
above.

The degree sequence method is defined within the graphs module, but the prefix graphs.  is not needed because the value of 
w  inherits the graphs methods.

10.12.3: Exercises

Estimate the number of vertices and edges in each of the following graphs. Would the graph be considered sparse, so that an
adjacency matrix would be inefficient?

a. Vertices: Cities of the world that are served by at least one airline. Edges: Pairs of cities that are connected by a regular
direct flight.

b. Vertices: ASCII characters. Edges: connect characters that differ in their binary code by exactly two bits.
c. Vertices: All English words. Edges: An edge connects word  to word  if  is a prefix of 

Answer
a. A rough estimate of the number of vertices in the “world airline graph” would be the number of cities with population

greater than or equal to 100,000. This is estimated to be around 4,100. There are many smaller cities that have airports,
but some of the metropolitan areas with clusters of large cities are served by only a few airports. 4,000-5,000 is
probably a good guess. As for edges, that's a bit more difficult to estimate. It's certainly not a complete graph. Looking
at some medium sized airports such as Manchester, NH, the average number of cities that you can go to directly is in the
50-100 range. So a very rough estimate would be  This is far less than  so an edge list or
dictionary of some kind would be more efficient.

b. The number of ASCII characters is 128. Each character would be connected to  others and so there are 
 edges. Comparing this to the  an array is probably the best choice.

c. The Oxford English Dictionary as approximately a half-million words, although many are obsolete. The number of
edges is probably of the same order of magnitude as the number of words, so an edge list or dictionary is probably the
best choice.

Each edge of a graph is colored with one of the four colors red, blue, yellow, or green. How could you represent the edges in
this graph using a variation of the adjacency matrix structure?

Directed graphs  , each with vertex set  are represented by the matrices below. Which graphs are
isomorphic to one another?

1 w.degree_sequence()

Exercise 10.12.1

x y x y.

= 168, 750.75⋅4500
2

4, ,5002

( ) = 288
2

= 3, 584128⋅28
2

= 16, 384,1282

Exercise 10.12.2

Exercise 10.12.3

, … ,G1 G6 {1, 2, 3, 4, 5}
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Answer

Each graph is isomorphic to itself. In addition,  are isomorphic; and  are isomorphic to one
another.

The following Sage command verifies that the wheel graph with four vertices is isomorphic to the complete graph with four
vertices.

A list of all graphs in this the graphs  database is available via tab completion. Type "graphs." and then hit the tab key to
see which graphs are available. This can be done using the Sage application or SageMathCloud, but not sage cells. Find some
other pairs of isomorphic graphs in the database.

This page titled 10.12: Data Structures for Graphs is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Al
Doerr & Ken Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.
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 and G2 G4 , ,  and G3 G5 G6

Exercise 10.12.4

1 graphs.WheelGraph(4).is_isomorphic(graphs.CompleteGraph(4))
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10.E: Graph Theory (Exercises)

5.2: Definitions

1

If 10 people each shake hands with each other, how many handshakes took place? What does this question have to do with graph
theory?

Answer

This is asking for the number of edges in  Each vertex (person) has degree (shook hands with) 9 (people). So the sum of
the degrees is  However, the degrees count each edge (handshake) twice, so there are 45 edges in the graph. That is how
many handshakes took place.

2

Among a group of 5 people, is it possible for everyone to be friends with exactly 2 of the people in the group? What about 3 of the
people in the group?

Answer

It is possible for everyone to be friends with exactly 2 people. You could arrange the 5 people in a circle and say that everyone
is friends with the two people on either side of them (so you get the graph ). However, it is not possible for everyone to be
friends with 3 people. That would lead to a graph with an odd number of odd degree vertices which is impossible since the sum
of the degrees must be even.

3

Is it possible for two different (non-isomorphic) graphs to have the same number of vertices and the same number of edges? What
if the degrees of the vertices in the two graphs are the same (so both graphs have vertices with degrees 1, 2, 2, 3, and 4, for
example)? Draw two such graphs or explain why not.

Answer

Yes. For example, both graphs below contain 6 vertices, 7 edges, and have degrees (2,2,2,2,3,3).

 

4

Are the two graphs below equal? Are they isomorphic? If they are isomorphic, give the isomorphism. If not, explain.

Graph 1:  
Graph 2:

Answer

The graphs are not equal. For example, graph 1 has an edge  but graph 2 does not have that edge. They are isomorphic.
One possible isomorphism is  defined by     

.K10

90.

C5

V = {a, b, c, d, e}, E = {{a, b}, {a, c}, {a, e}, {b, d}, {b, e}, {c, d}}.

{a, b}

f : →G1 G2 f(a) = d, f(b) = c, f(c) = e, f(d) = b, f(e) = a.
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5

Consider the following two graphs:

a. Let  be a function that takes the vertices of Graph 1 to vertices of Graph 2. The function is given by the following
table:

Does  define an isomorphism between Graph 1 and Graph 2? Explain.

b. Define a new function  (with ) that defines an isomorphism between Graph 1 and Graph 2.

c. Is the graph pictured below isomorphic to Graph 1 and Graph 2? Explain.

6

Which of the graphs below are bipartite? Justify your answers.

   

Answer

Three of the graphs are bipartite. The one which is not is  (second from the right). To see that the three graphs are bipartite,
we can just give the bipartition into two sets  and  as labeled below:

  

The graph  is not bipartite because it is an odd cycle. You would want to put every other vertex into the set  but if you
travel clockwise in this fashion, the last vertex will also be put into the set  leaving two  vertices adjacent (which makes it
not a bipartition).

G1

= {a, b, c, d, e, f , g}V1

= {{a, b}, {a, d}, {b, c}, {b, d}, {b, e}, {b, f}, {c, g}, {d, e},E1

{e, f}, {f , g}}.

G2

= { , , , , , , },V2 v1 v2 v3 v4 v5 v6 v7
= {{ , }, { , }, { , }, { , }, { , },E2 v1 v4 v1 v5 v1 v7 v2 v3 v2 v6

{ , }, { , }, { , }, { , }, { , }}v3 v5 v3 v7 v4 v5 v5 v6 v5 v7

f : →G1 G2

x a b c d e f g

f(x) v4 v5 v1 v6 v2 v3 v7

f

g g≠ f

C7

A B,

C7 A,

A, A
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7

For which  is the graph  bipartite?

8

For each of the following, try to give two different unlabeled graphs with the given properties, or explain why doing so is
impossible.

a. Two different trees with the same number of vertices and the same number of edges. A tree is a connected graph with no cycles.
b. Two different graphs with 8 vertices all of degree 2.
c. Two different graphs with 5 vertices all of degree 4.
d. Two different graphs with 5 vertices all of degree 3.

Answer
1. 1. For example:

 

2. This is not possible if we require the graphs to be connected. If not, we could take  as one graph and two copies of  as
the other.

3. Not possible. If you have a graph with 5 vertices all of degree 4, then every vertex must be adjacent to every other vertex.
This is the graph 

4. This is not possible. In fact, there is not even one graph with this property (such a graph would have  edges).

5.3: Planar Graphs

1

Is it possible for a planar graph to have 6 vertices, 10 edges and 5 faces? Explain.

2

The graph  has 6 vertices with degrees  How many edges does  have? Could  be planar? If so, how many faces
would it have. If not, explain.

3

I'm thinking of a polyhedron containing 12 faces. Seven are triangles and four are quadralaterals. The polyhedron has 11 vertices
including those around the mystery face. How many sides does the last face have?

Answer

Say the last polyhedron has  edges, and also  vertices. The total number of edges the polyhedron has then is 
 In particular, we know the last face must have an odd number of edges. We also have that 

 By Euler's formula, we have  and solving for  we get  so the last face is a
pentagon.

4

Consider some classic polyhedrons.

a. An octahedron is a regular polyhedron made up of 8 equilateral triangles (it sort of looks like two pyramids with their bases
glued together). Draw a planar graph representation of an octahedron. How many vertices, edges and faces does an octahedron
(and your graph) have?

b. The traditional design of a soccer ball is in fact a (spherical projection of a) truncated icosahedron. This consists of 12 regular
pentagons and 20 regular hexagons. No two pentagons are adjacent (so the edges of each pentagon are shared only by
hexagons). How many vertices, edges, and faces does a truncated icosahedron have? Explain how you arrived at your answers.
Bonus: draw the planar graph representation of the truncated icosahedron.

c. Your “friend” claims that he has constructed a convex polyhedron out of 2 triangles, 2 squares, 6 pentagons and 5 octagons.
Prove that your friend is lying. Hint: each vertex of a convex polyhedron must border at least three faces.

n≥ 3 Cn

C8 C4

.K5

5 ⋅ 3/2 = 7.5

G 2, 2, 3, 4, 4, 5. G G

n n

(7 ⋅ 3+4 ⋅ 4+n)/2 = (37+n)/2.

v= 11. 11−(37+n)/2+12 = 2, n n= 5,
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5

Prove Euler's formula using induction on the number of edges in the graph.

Answer

Proof

Let  be the statement, “every planar graph containing  edges satisfies ” We will show  is true for all
 Base case: there is only one graph with zero edges, namely a single isolated vertex. In this case   and 

so Euler's formula holds. Inductive case: Suppose  is true for some arbitrary  Now consider an arbitrary graph
containing  edges (and  vertices and  faces). No matter what this graph looks like, we can remove a single edge to get a
graph with  edges which we can apply the inductive hypothesis to. There are two possibilities. First, the edge we remove
might be incident to a degree 1 vertex. In this case, also remove that vertex. The smaller graph will now satisfy 

 by the induction hypothesis (removing the edge and vertex did not reduce the number of faces). Adding the
edge and vertex back gives  as required. The second case is that the edge we remove is incident to
vertices of degree greater than one. In this case, removing the edge will keep the number of vertices the same but reduce the
number of faces by one. So by the inductive hypothesis we will have  Adding the edge back will give 

 as needed. Therefore, by the principle of mathematical induction, Euler's formula holds for all planar
graphs.

6

Prove Euler's formula using induction on the number of vertices in the graph.

7

Euler's formula ( ) holds for all connected planar graphs. What if a graph is not connected? Suppose a planar graph
has two components. What is the value of  now? What if it has  components?

8

Prove that the Petersen graph (below) is not planar.

Answer:

What is the length of the shortest cycle? (This quantity is usually called the girth of the graph.)

9

Prove that any planar graph with  vertices and  edges satisfies 

Answer

Proof

We know in any planar graph the number of faces  satisfies  since each face is bounded by at least three edges, but
each edge borders two faces. Combine this with Euler's formula:

P (n) n v−n+f = 2. P (n)

n≥ 0. v= 1, f = 1 e= 0,

P (k) k≥ 0.

k+1 v f

k

v−1−k+f = 2

v−(k+1)+f = 2,

v−k+f −1 = 2.

v−(k+1)+f = 2

v−e+f = 2

v−e+f k

v e e≤ 3v−6.

f 3f ≤ 2e

v−e+f = 2

v−e+ ≥ 2
2e

3

3v−e≥ 6

3v−6 ≥ e.
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10

Prove that any planar graph must have a vertex of degree 5 or less.

5.4: Coloring

1

What is the smallest number of colors you need to properly color the vertices of  That is, find the chromatic number of the
graph.

Answer

2, since the graph is bipartite. One color for the top set of vertices, another color for the bottom set of vertices.

2

Draw a graph with chromatic number 6 (i.e., which requires 6 colors to properly color the vertices). Could your graph be planar?
Explain.

Answer

For example,  If the chromatic number is 6, then the graph is not planar; the 4-color theorem states that all planar graphs can
be colored with 4 or fewer colors.

3

Find the chromatic number of each of the following graphs.

4

A group of 10 friends decides to head up to a cabin in the woods (where nothing could possibly go wrong). Unfortunately, a
number of these friends have dated each other in the past, and things are still a little awkward. To get the cabin, they need to divide
up into some number of cars, and no two people who dated should be in the same car.

a. What is the smallest number of cars you need if all the relationships were strictly heterosexual? Represent an example of such a
situation with a graph. What kind of graph do you get?

b. Because a number of these friends dated there are also conflicts between friends of the same gender, listed below. Now what is
the smallest number of conflict-free cars they could take to the cabin?

Friend A B C D E F G H I J

Conflicts
with BEJ ADG HJ BF AI DJ B CI EHJ ACFI

c. What do these questions have to do with coloring?

5

What is the smallest number of colors that can be used to color the vertices of a cube so that no two adjacent vertices are colored
identically?

 

Answer

The cube can be represented as a planar graph and colored with two colors as follows:

?K4,5

.K6
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Since it would be impossible to color the vertices with a single color, we see that the cube has chromatic number 2 (it is
bipartite).

6

Prove the chromatic number of any tree is two. Recall, a tree is a connected graph with no cycles.

a. Describe a procedure to color the tree below.
b. The chromatic number of  is two when  is even. What goes wrong when  is odd?
c. Prove that your procedure from part (a) always works for any tree.
d. Now, prove using induction that every tree has chromatic number 2.

7

Prove the 6-color theorem: every planar graph has chromatic number 6 or less. Do not assume the 4-color theorem (whose proof is
MUCH harder), but you may assume the fact that every planar graph contains a vertex of degree at most 5.

8

Not all graphs are perfect. Give an example of a graph with chromatic number 4 that does not contain a copy of  That is, there
should be no 4 vertices all pairwise adjacent.

Answer

The wheel graph below has this property. The outside of the wheel forms an odd cycle, so requires 3 colors, the center of the
wheel must be different than all the outside vertices.

9

Prove by induction on vertices that any graph  which contains at least one vertex of degree less than  (the maximal degree
of all vertices in ) has chromatic number at most 

10

You have a set of magnetic alphabet letters (one of each of the 26 letters in the alphabet) that you need to put into boxes. For
obvious reasons, you don't want to put two consecutive letters in the same box. What is the fewest number of boxes you need
(assuming the boxes are able to hold as many letters as they need to)?

Answer

If we drew a graph with each letter representing a vertex, and each edge connecting two letters that were consecutive in the
alphabet, we would have a graph containing two vertices of degree 1 (A and Z) and the remaining 24 vertices all of degree 2
(for example,  would be adjacent to both  and ). By Brooks' theorem, this graph has chromatic number at most 2, as that is
the maximal degree in the graph and the graph is not a complete graph or odd cycle. Thus only two boxes are needed.

Cn n n

.K4

G Δ(G)

G Δ(G).

D C E
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11

Prove that if you color every edge of  either red or blue, you are guaranteed a monochromatic triangle (that is, an all red or an all
blue triangle).

5.5: Euler Paths and Circuits

1

You and your friends want to tour the southwest by car. You will visit the nine states below, with the following rather odd rule: you
must cross each border between neighboring states exactly once (so, for example, you must cross the Colorado-Utah border exactly
once). Can you do it? If so, does it matter where you start your road trip? What fact about graph theory solves this problem?

2

Which of the following graphs contain an Euler path? Which contain an Euler circuit?

a. 
b. 
c. 
d. 
e. 
f. 

3

Edward A. Mouse has just finished his brand new house. The floor plan is shown below:

a. Edward wants to give a tour of his new pad to a lady-mouse-friend. Is it possible for them to walk through every doorway
exactly once? If so, in which rooms must they begin and end the tour? Explain.

b. Is it possible to tour the house visiting each room exactly once (not necessarily using every doorway)? Explain.
c. After a few mouse-years, Edward decides to remodel. He would like to add some new doors between the rooms he has. Of

course, he cannot add any doors to the exterior of the house. Is it possible for each room to have an odd number of doors?
Explain.

4

For which  does the graph  contain an Euler circuit? Explain.

Answer

When  is odd,  contains an Euler circuit. This is because every vertex has degree  so an odd  results in all degrees
being even.

K6
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.K5
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5

For which  and  does the graph  contain an Euler path? An Euler circuit? Explain.

Answer

If both  and  are even, then  has an Euler circuit. When both are odd, there is no Euler path or circuit. If one is 2 and
the other is odd, then there is an Euler path but not an Euler circuit.

6

For which  does  contain a Hamilton path? A Hamilton cycle? Explain.

Answer

All values of  In particular,  contains  as a subgroup, which is a cycle that includes every vertex.

7

For which  and  does the graph  contain a Hamilton path? A Hamilton cycle? Explain.

Answer

As long as  the graph  will have a Hamilton path. To have a Hamilton cycle, we must have 

8

A bridge builder has come to Königsberg and would like to add bridges so that it is possible to travel over every bridge exactly
once. How many bridges must be built?

Answer

If we build one bridge, we can have an Euler path. Two bridges must be built for an Euler circuit.

9

Below is a graph representing friendships between a group of students (each vertex is a student and each edge is a friendship). Is it
possible for the students to sit around a round table in such a way that every student sits between two friends? What does this
question have to do with paths?

Answer

We are looking for a Hamiltonian cycle, and this graph does have one:

m n Km,n

m n Km,n
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10
a. Suppose a graph has a Hamilton path. What is the maximum number of vertices of degree one the graph can have? Explain why

your answer is correct.
b. Find a graph which does not have a Hamilton path even though no vertex has degree one. Explain why your example works.

11

Consider the following graph:

a. Find a Hamilton path. Can your path be extended to a Hamilton cycle?
b. Is the graph bipartite? If so, how many vertices are in each “part”?
c. Use your answer to part (b) to prove that the graph has no Hamilton cycle.
d. Suppose you have a bipartite graph  in which one part has at least two more vertices than the other. Prove that  does not

have a Hamilton path.

5.6: Matching in Bipartite Graphs

1

Find a matching of the bipartite graphs below or explain why no matching exists.

  

Answer

The first and third graphs have a matching, shown in bold (there are other matchings as well). The middle graph does not have a
matching. If you look at the three circled vertices, you see that they only have two neighbors, which violates the matching
condition  (the three circled vertices form the set ).

  

2

A bipartite graph that doesn't have a matching might still have a partial matching. By this we mean a set of edges for which no
vertex belongs to more than one edge (but possibly belongs to none). Every bipartite graph (with at least one edge) has a partial
matching, so we can look for the largest partial matching in a graph.

Your “friend” claims that she has found the largest partial matching for the graph below (her matching is in bold). She explains that
no other edge can be added, because all the edges not used in her partial matching are connected to matched vertices. Is she
correct?

3

One way you might check to see whether a partial matching is maximal is to construct an alternating path. This is a sequence of
adjacent edges, which alternate between edges in the matching and edges not in the matching (no edge can be used more than

G G

|N(S)| ≥ |S| S
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once). If an alternating path starts and stops with an edge not in the matching, then it is called an augmenting path.

 

a. Find the largest possible alternating path for the partial matching of your friend's graph. Is it an augmenting path? How would
this help you find a larger matching?

b. Find the largest possible alternating path for the partial matching below. Are there any augmenting paths? Is the partial
matching the largest one that exists in the graph?

4

The two richest families in Westeros have decided to enter into an alliance by marriage. The first family has 10 sons, the second has
10 girls. The ages of the kids in the two families match up. To avoid impropriety, the families insist that each child must marry
someone either their own age, or someone one position younger or older. In fact, the graph representing agreeable marriages looks
like this:

The question: how many different acceptable marriage arrangements which marry off all 20 children are possible?

a. How many marriage arrangements are possible if we insist that there are exactly 6 boys marry girls not their own age?
b. Could you generalize the previous answer to arrive at the total number of marriage arrangements?
c. How do you know you are correct? Try counting in a different way. Look at smaller family sizes and get a sequence.
d. Can you give a recurrence relation that fits the problem?

5

We say that a set of vertices  is a vertex cover if every edge of the graph is incident to a vertex in the cover (so a vertex
cover covers the edges). Since  itself is a vertex cover, every graph has a vertex cover. The interesting question is about finding a
minimal vertex cover, one that uses the fewest possible number of vertices.

a. Suppose you had a matching of a graph. How can you use that to get a minimal vertex cover? Will your method always work?
b. Suppose you had a minimal vertex cover for a graph. How can you use that to get a partial matching? Will your method always

work?
c. What is the relationship between the size of the minimal vertex cover and the size of the maximal partial matching in a graph?

6

For many applications of matchings, it makes sense to use bipartite graphs. You might wonder, however, whether there is a way to
find matchings in graphs in general.

a. For which  does the complete graph  have a matching?
b. Prove that if a graph has a matching, then  is even.
c. Is the converse true? That is, do all graphs with  even have a matching?
d. What if we also require the matching condition? Prove or disprove: If a graph with an even number of vertices satisfies 

 for all  then the graph has a matching.

A⊆ V

V
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|V |

|V |
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5.7: Weighted Graphs and Dijkstra's Algorithm

1

Find a big-O estimate for the number of operations (additions and comparisons) used by Dijkstra's algorithm.

2

An oil well is located on the left side of the graph below; each other vertex is a storage facility. The edges represent pipes between
the well and storage facilities or between two storage facilities. The weights on the edges represent the time it takes for oil to travel
from one vertex to another. Using Dijkstra's algorithm find a shortest path and the total time it takes oil to get from the well to the
facility on the right side. Use a table.

3

Solve the same problem as in #2, but draw several copies of the graph rather than the table when performing Dijkstra's algorithm.

4

A graph  is given by 
. Furthermore, the

weight on an edge is . Draw the graph, determine a shortest path from  to , and also give the total weight of
this path. Use Dijkstra's algorithm (you may make a table or draw multiple copies of the graph).

5.8: Trees

1

Which of the following graphs are trees?

a.  with  and 

b.  with  and 

c.  with  and 

d.  with  and 

2

For each degree sequence below, decide whether it must always, must never, or could possibly be a degree sequence for a tree.
Remember, a degree sequence lists out the degrees (number of edges incident to the vertex) of all the vertices in a graph in non-
increasing order.

a. (4,1,1,1,1)

b. (3,3,2,1,1)

c. (2,2,2,1,1)

d. (4,4,3,3,3,2,2,1,1,1,1,1,1,1)

3

For each degree sequence below, decide whether it must always, must never, or could possibly be a degree sequence for a tree.
Justify your answers.

a. (3,3,2,2,2)

G

G= ({ , , , , , }, {{ , }, { , }, { , }, { , }, { , }, { , }, { , }, { , }})v1 v2 v3 v4 v5 v6 v1 v2 v1 v3 v2 v4 v2 v5 v3 v4 v4 v5 v4 v6 v5 v6
w( , ) = |i−j|vi vj v1 v6

G= (V ,E) V = {a, b, c, d, e} E = {{a, b}, {a, e}, {b, c}, {c, d}, {d, e}}

G= (V ,E) V = {a, b, c, d, e} E = {{a, b}, {b, c}, {c, d}, {d, e}}

G= (V ,E) V = {a, b, c, d, e} E = {{a, b}, {a, c}, {a, d}, {a, e}}

G= (V ,E) V = {a, b, c, d, e} E = {{a, b}, {a, c}, {d, e}}
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b. (3,2,2,1,1,1)

c. (3,3,3,1,1,1)

d. (4,4,1,1,1,1,1,1)

4

Suppose you have a graph with  vertices and  edges that satisfies  Must the graph be a tree? Prove your answer.

5

Prove that any graph (not necessarily a tree) with  vertices and  edges that satisfies  will NOT be connected. [Hint: try
a proof by contradiction and consider a spanning tree of the graph.]

6

If a graph  with  vertices and  edges is connected and has  must it contain a cycle? Prove your answer. [Hint: use the
contrapositive.]

7

We define a forest to be a graph with no cycles.

a. Explain why this is a good name. That is, explain why a forest is a union of trees.

b. Suppose  is a forest consisting of  trees and  vertices. How many edges does  have? Explain.

c. Prove that any graph  with  vertices and  edges that satisfies  must contain a cycle (i.e., not be a forest).

8

Give a proof of the following statement: A graph is a forest if and only if there is at most one path between any pair of vertices. Use
proof by contrapositive (and not a proof by contradiction) for both directions.

9

Give a careful proof by induction on the number of vertices, that every tree is bipartite.

10

a. Suppose we designate vertex  as the root. List the children, parents and siblings of each vertex. Does any vertex other than 
have grandchildren?

b. Suppose  is not chosen as the root. Does our choice of root vertex change the number of children  has? The number of
grandchildren? How many are there of each?

c. In fact, pick any vertex in the tree and suppose it is not the root. Explain why the number of children of that vertex does not
depend on which other vertex is the root.

d. Does the previous part work for other trees? Give an example of a different tree for which it holds. Then either prove that it
always holds or give an example of a tree for which it doesn't.

11

Let T be a rooted tree that contains vertices , , and  (among possibly others). Prove that if  is a descendant of both  and ,
then  is a descendant of  or  is a descendant of .

12

Unless it is already a tree, a given graph  will have multiple spanning trees. How similar or different must these be?

a. Must all spanning trees of a given graph be isomorphic to each other? Explain why or give a counterexample.

b. Must all spanning trees of a given graph have the same number of edges? Explain why or give a counterexample.

v e v= e+1.

v e v> e+1

G v e v< e+1

F m v F

G v e v< e+1

e e

e e

u v w w u v

u v v u

G
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c. Must all spanning trees of a graph have the same number of leaves (vertices of degree 1)? Explain why or give a
counterexample.

13

Find all spanning trees of the graph below. How many different spanning trees are there? How many different spanning trees are
there up to isomorphism(that is, if you grouped all the spanning trees by which are isomorphic, how many groups would you
have)?

14

Give an example of a graph that has exactly 7 different spanning trees. Note, it acceptable for some or all of these spanning trees to
be isomorphic. [Hint: there is an example with 7 edges.)

15

Prove that every connected graph which is not itself a tree must have at last three different (although possibly isomorphic) spanning
trees.

16

Consider edges that must be in every spanning tree of a graph. Must every graph have such an edge? Give an example of a graph
that has exactly one such edge.

17

An -ary tree is a rooted tree in which every internal vertex has at most  children. A full -ary tree is a rooted tree in which
every internal vertex has exactly  children. A full -ary tree with  vertices has how many internal vertices and how many
leaves?

5.9.1: Tree traversal

1

Create a rooted ordered tree for the expression .

2

Determine the preorder and postorder traversals of this tree.

3

Evaluate the following postfix expression: .

Evaluate the following prefix expression: .

4

Find a big-O estimate of the time complexity of the preorder, inorder, and postorder traversals.

5.9.2: Spanning tree algorithms

Use the graph below for all 5.9.2 exercises.

m m m

m m n

(4+2 /((4−1)+(2 ∗ 3))+4)3

6 2 3 − +2 3 1 ∗ +−

↑ − ∗ 3 3 ∗ 1 2 3
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1

Use the depth-first search algorithm to find a spanning tree for the graph above. Let  be the vertex labeled "Tiptree" and choose
adjacent vertices alphabetically. You can ignore the edge weights.

2

Use the breadth-first search algorithm to find a spanning tree for the graph above, with Tiptree being . Add vertices to 
alphabetically.

3

Find a minimum spanning tree using Prim's algorithm. Make sure to keep track of the order in which edges are added to the tree.
Then find a minimum spanning tree using Kruskal's algorithm, again keeping track of the order in which edges are added.

4

Find a shortest path spanning tree from Maldon. Make sure to show steps of Dijkstra's algorithm in detail.

5.9.3: Transportation Networks and Flows

1

A telephone call can be routed from South Bend to Orlando on various routes. The line from South Bend to Indianapolis can carry
40 calls at the same time. Other lines and their capacities are as follows: South Bend to St. Louis (30 calls), South Bend to
Memphis (20 calls), Indianapolis to Memphis (15 calls), Indianapolis to Lexington (25 calls), St. Louis to Little Rock (20 calls),
Little Rock to Memphis (15 calls), Little Rock to Orlando (10 calls), Memphis to Orlando (25 calls), Lexington to Orlando (15
calls). Draw a transportation network displaying this information.

2

Fill in the missing values on the edges so that the result is a flow on the transportation network.

3

Use the max flow algorithm to find a maximal flow and minimum cut on the transportation network below. Determine the value of
the flow. Find a minimal cut and give its capacity.

v1

v1 L
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4

Use the max flow algorithm to find a larger flow than the one currently displayed on the transportation network below.

5

Use the max flow algorithm to find a larger flow than the one currently displayed on the transportation network below.
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10.S: Graph Theory (Summary)
Hopefully this chapter has given you some sense for the wide variety of graph theory topics as well as why these studies are
interesting. There are many more interesting areas to consider and the list is increasing all the time; graph theory is an active area of
mathematical research.

One reason graph theory is such a rich area of study is that it deals with such a fundamental concept: any pair of objects can either
be related or not related. What the objects are and what “related” means varies on context, and this leads to many applications of
graph theory to science and other areas of math. The objects can be countries, and two countries can be related if they share a
border. The objects could be land masses which are related if there is a bridge between them. The objects could be websites which
are related if there is a link from one to the other. Or we can be completely abstract: the objects are vertices which are related if
their is an edge between them.

What question we ask about the graph depends on the application, but often leads to deeper, general and abstract questions worth
studying in their own right. Here is a short summary of the types of questions we have considered:

Can the graph be drawn in the plane without edges crossing? If so, how many regions does this drawing divide the plane into?
Is it possible to color the vertices of the graph so that related vertices have different colors using a small number of colors? How
many colors are needed?
Is it possible to trace over every edge of a graph exactly once without lifting up your pencil? What other sorts of “paths” might
a graph posses?
Can you find subgraphs with certain properties? For example, when does a (bipartite) graph contain a subgraph in which all
vertices are only related to one other vertex?

Not surprisingly, these questions are often related to each other. For example, the chromatic number of a graph cannot be greater
than 4 when the graph is planar. Whether the graph has an Euler path depends on how many vertices each vertex is adjacent to (and
whether those numbers are always even or not). Even the existence of matchings in bipartite graphs can be proved using paths.

Chapter Review

1

Which (if any) of the graphs below are the same? Which are different? Explain.

Solution

The first and the third graphs are the same (try dragging vertices around to make the pictures match up), but the middle graph is
different (which you can see, for example, by noting that the middle graph has only one vertex of degree 2, while the others
have two such vertices).

2

Which of the graphs in the previous question contain Euler paths or circuits? Which of the graphs are planar?

Solution

The first (and third) graphs contain an Euler path. All the graphs are planar.

3

Draw a graph which has an Euler circuit but is not planar.

Solution

For example, 

4

Draw a graph which does not have an Euler path and is also not planar.

Solution

For example, 

.K5

.K3,3
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5

If a graph has 10 vertices and 10 edges and contains an Euler circuit, must it be planar? How many faces would it have?

Solution

Yes. According to Euler's formula it would have 2 faces. It does. The only such graph is 

6

Suppose  is a graph with  vertices, each having degree 5.

a. For which values of  does this make sense?
b. For which values of  does the graph have an Euler path?
c. What is the smallest value of  for which the graph might be planar? (tricky)

Solution
a. Only if  and is even.
b. None.
c. 12. Such a graph would have  edges. If the graph is planar, then  so there would be  faces. Also, we

must have  since the graph is simple. So we must have  Solving for  gives        

7

At a school dance, 6 girls and 4 boys take turns dancing (as couples) with each other.

a. How many couples danced if every girl dances with every boy?
b. How many couples danced if everyone danced with everyone else (regardless of gender)?
c. Explain what graphs can be used to represent these situations.

Solution
a. There were 24 couples: 6 choices for the girl and 4 choices for the boy.
b. There were 45 couples:  since we must choose two of the 10 people to dance together.
c. For part (a), we are counting the number of edges in  In part (b) we count the edges of 

8

Among a group of  people, is it possible for everyone to be friends with an odd number of people in the group? If so, what can
you say about 

Solution

Yes, as long as  is even. If  were odd, then corresponding graph would have an odd number of odd degree vertices, which is
impossible.

9

Your friend has challenged you to create a convex polyhedron containing 9 triangles and 6 pentagons.

a. Is it possible to build such a polyhedron using only these shapes? Explain.
b. You decide to also include one heptagon (seven-sided polygon). How many vertices does your new convex polyhedron contain?
c. Assuming you are successful in building your new 16-faced polyhedron, could every vertex be the joining of the same number

of faces? Could each vertex join either 3 or 4 faces? If so, how many of each type of vertex would there be?

Solution
a. No. The 9 triangles each contribute 3 edges, and the 6 pentagons contribute 5 edges. This gives a total of 57, which is

exactly twice the number of edges, since each edge borders exactly 2 faces. But 57 is odd, so this is impossible.
b. Now adding up all the edges of all the 16 polygons gives a total of 64, meaning there would be 32 edges in the polyhedron.

We can then use Euler's formula  to deduce that there must be 18 vertices.
c. If you add up all the vertices from each polygon separately, we get a total of 64. This is not divisible by 3, so it cannot be

that each vertex belongs to exactly 3 faces. Could they all belong to 4 faces? That would mean there were 
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vertices, but we know from Euler's formula that there must be 18 vertices. We can write  and solve for  and 
 (as integers). We get that there must be 10 vertices with degree 4 and 8 with degree 3. (Note the number of faces joined at

a vertex is equal to its degree in graph theoretic terms.)       

10

Is there a convex polyhedron which requires 5 colors to properly color the vertices of the polyhedron? Explain.

Solution

No. Every polyhedron can be represented as a planar graph, and the Four Color Theorem says that every planar graph has
chromatic number at most 4.

11

How many edges does the graph  have? For which values of  does the graph contain an Euler circuit? For which values of 
is the graph planar?

Solution

 has  edges. The graph will have an Euler circuit when  is even. The graph will be planar only when 

12

The graph  has 6 vertices with degrees  How many edges does  have? If  was planar how many faces would it
have? Does  have an Euler path?

Solution

 has 8 edges (since the sum of the degrees is 16). If  is planar, then it will have 4 faces (since ).  does not
have an Euler path since there are more than 2 vertices of odd degree.

13

What is the smallest number of colors you need to properly color the vertices of  Can you say whether  is planar based on
your answer?

Solution

 colors. Thus  is not planar (by the contrapositive of the Four Color Theorem).

14

What is the smallest number of colors you need to properly color the vertices of  Can you say whether  is planar based
on your answer?

Solution

The chromatic number of  is 2, since the graph is bipartite. You cannot say whether the graph is planar based on this
coloring (the converse of the Four Color Theorem is not true). In fact, the graph is not planar, since it contains  as a
subgraph.

15

A dodecahedron is a regular convex polyhedron made up of 12 regular pentagons.

a. Suppose you color each pentagon with one of three colors. Prove that there must be two adjacent pentagons colored identically.
b. What if you use four colors?
c. What if instead of a dodecahedron you colored the faces of a cube?

Solution

For all these questions, we are really coloring the vertices of a graph. You get the graph by first drawing a planar representation
of the polyhedron and then taking its planar dual: put a vertex in the center of each face (including the outside) and connect two
vertices if their faces share an edge.

64 = 3x+4y x

y

Kn,n n n

Kn,n n2 n n < 3.

G 1, 2, 2, 3, 3, 5. G G

G
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a. Since the planar dual of a dodecahedron contains a 5-wheel, it's chromatic number is at least 4. Alternatively, suppose you
could color the faces using 3 colors without any two adjacent faces colored the same. Take any face and color it blue. The 5
pentagons bordering this blue pentagon cannot be colored blue. Color the first one red. Its two neighbors (adjacent to the
blue pentagon) get colored green. The remaining 2 cannot be blue or green, but also cannot both be red since they are
adjacent to each other. Thus a 4th color is needed.

b. The planar dual of the dodecahedron is itself a planar graph. Thus by the 4-color theorem, it can be colored using only 4
colors without two adjacent vertices (corresponding to the faces of the polyhedron) being colored identically.

c. The cube can be properly 3-colored. Color the “top” and “bottom” red, the “front” and “back” blue, and the “left” and
“right” green.

16

If a planar graph  with  vertices divides the plane into 8 regions, how many edges must  have?

Solution

 has  edges, since we need 

17

Consider the graph below:

1. Does the graph have an Euler path or circuit? Explain.
2. Is the graph planar? Explain.
3. Is the graph bipartite? Complete? Complete bipartite?
4. What is the chromatic number of the graph.

Solution
1. The graph does have an Euler path, but not an Euler circuit. There are exactly two vertices with odd degree. The path starts

at one and ends at the other.
2. The graph is planar. Even though as it is drawn edges cross, it is easy to redraw it without edges crossing.
3. The graph is not bipartite (there is an odd cycle), nor complete.
4. The chromatic number of the graph is 3.

18

For each part below, say whether the statement is true or false. Explain why the true statements are true, and give counterexamples
for the false statements.

a. Every bipartite graph is planar.
b. Every bipartite graph has chromatic number 2.
c. Every bipartite graph has an Euler path.
d. Every vertex of a bipartite graph has even degree.
e. A graph is bipartite if and only if the sum of the degrees of all the vertices is even.

Solution
a. False. For example,  is not planar.
b. True. The graph is bipartite so it is possible to divide the vertices into two groups with no edges between vertices in the

same group. Thus we can color all the vertices of one group red and the other group blue.
c. False.  has 6 vertices with degree 3, so contains no Euler path.
d. False.  again.
e. False. The sum of the degrees of all vertices is even for all graphs so this property does not imply that the graph is bipartite.

19

Consider the statement “If a graph is planar, then it has an Euler path.”

a. Write the converse of the statement.
b. Write the contrapositive of the statement.

G 7 G

G 13 7−e+8 = 2.

K3,3

K3,3

K3,3
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c. Write the negation of the statement.
d. Is it possible for the contrapositive to be false? If it was, what would that tell you?
e. Is the original statement true or false? Prove your answer.
f. Is the converse of the statement true or false? Prove your answer.

Solution
a. If a graph has an Euler path, then it is planar.
b. If a graph does not have an Euler path, then it is not planar.
c. There is a graph which is planar and does not have an Euler path.
d. Yes. In fact, in this case it is because the original statement is false.
e. False.  is planar but does not have an Euler path.
f. False.  has an Euler path but is not planar.       

20

Remember that a tree is a connected graph with no cycles.

a. Conjecture a relationship between a tree graph's vertices and edges. (For instance, can you have a tree with 5 vertices and 7
edges?)

b. Explain why every tree with at least 3 vertices has a leaf (i.e., a vertex of degree 1).
c. Prove your conjecture from part (a) by induction on the number of vertices. Hint: For the inductive step, you will assume that

your conjecture is true for all trees with  vertices, and show it is also true for an arbitrary tree with  vertices. Consider
what happens when you cut off a leaf and then let it regrow.

This page titled 10.S: Graph Theory (Summary) is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Oscar
Levin.

4.S: Graph Theory (Summary) by Oscar Levin is licensed CC BY-SA 4.0.
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CHAPTER OVERVIEW

11: Counting
One of the first things you learn in mathematics is how to count. Now we want to count large collections of things quickly and
precisely. For example:

In a group of 10 people, if everyone shakes hands with everyone else exactly once, how many handshakes took place?
How many ways can you distribute 1010 girl scout cookies to 77 boy scouts?
How many anagrams are there of “anagram”?

Before tackling questions like these, let's look at the basics of counting.

11.1: Additive and Multiplicative Principles
11.2: Binomial Coefficients
11.3: Combinations and Permutations
11.4: Combinatorial Proofs
11.5: Stars and Bars
11.6: Advanced Counting Using PIE
11.E: Counting (Exercises)
11.S: Counting (Summary)

This page titled 11: Counting is shared under a CC BY-SA license and was authored, remixed, and/or curated by Oscar Levin.
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11.1: Additive and Multiplicative Principles

1. A restaurant offers 8 appetizers and 14 entrées. How many choices do you have if:

a. you will eat one dish, either an appetizer or an entrée?
b. you are extra hungry and want to eat both an appetizer and an entrée?

2. Think about the methods you used to solve question 1. Write down the rules for these methods.
3. Do your rules work? A standard deck of playing cards has 26 red cards and 12 face cards.

a. How many ways can you select a card which is either red or a face card?
b. How many ways can you select a card which is both red and a face card?
c. How many ways can you select two cards so that the first one is red and the second one is a face card?

Consider this rather simple counting problem: at Red Dogs and Donuts, there are 14 varieties of donuts, and 16 types of hot dogs.
If you want either a donut or a dog, how many options do you have? This isn't too hard, just add 14 and 16. Will that always work?
What is important here?

The additive principle states that if event  can occur in  ways, and event  can occur in  disjoint ways, then the event “
or ” can occur in  ways.

It is important that the events be disjoint: i.e., that there is no way for  and  to both happen at the same time. For example, a
standard deck of 52 cards contains  red cards and  face cards. However, the number of ways to select a card which is either red
or a face card is not  This is because there are 6 cards which are both red and face cards.

How many two letter “words” start with either A or B? (A word is just a string of letters; it doesn't have to be English, or even
pronounceable.)

Solution

First, how many two letter words start with A? We just need to select the second letter, which can be accomplished in 26
ways. So there are 26 words starting with A. There are also 26 words that start with B. To select a word which starts with
either A or B, we can pick the word from the first 26 or the second 26, for a total of 52 words.

The additive principle also works with more than two events. Say, in addition to your 14 choices for donuts and 16 for dogs, you
would also consider eating one of 15 waffles? How many choices do you have now? You would have  options.

How many two letter words start with one of the 5 vowels?

Solution

There are 26 two letter words starting with A, another 26 starting with E, and so on. We will have 5 groups of 26. So we
add 26 to itself 5 times. Of course it would be easier to just multiply  We are really using the additive principle again,
just using multiplication as a shortcut.

Suppose you are going for some fro-yo. You can pick one of 6 yogurt choices, and one of 4 toppings. How many choices do
you have?

Solution

Investigate!

Additive Principle

A m B n A

B m+n

A B

26 12
26+12 = 38.

Example 11.1.1

14+16+15 = 45

Example 11.1.2

5 ⋅ 26.

Example 11.1.3
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Break your choices up into disjoint events:  are the choices with the first topping,  the choices featuring the second
topping, and so on. There are four events; each can occur in 6 ways (one for each yogurt flavor). The events are disjoint, so
the total number of choices is 

Note that in both of the previous examples, when using the additive principle on a bunch of events all the same size, it is quicker to
multiply. This really is the same, and not just because  We can first select the topping in 4 ways (that is, we
first select which of the disjoint events we will take). For each of those first 4 choices, we now have 6 choices of yogurt. We have:

The multiplicative principle states that if event  can occur in  ways, and each possibility for  allows for exactly  ways
for event  then the event “  and ” can occur in  ways.

The multiplicative principle generalizes to more than two events as well.

How many license plates can you make out of three letters followed by three numerical digits?

Solution

Here we have six events: the first letter, the second letter, the third letter, the first digit, the second digit, and the third digit.
The first three events can each happen in 26 ways; the last three can each happen in 10 ways. So the total number of license
plates will be  using the multiplicative principle.

Does this make sense? Think about how we would pick a license plate. How many choices we would have? First, we need
to pick the first letter. There are 26 choices. Now for each of those, there are 26 choices for the second letter: 26 second
letters with first letter A, 26 second letters with first letter B, and so on. We add 26 to itself 26 times. Or quicker: there are 

 choices for the first two letters.

Now for each choice of the first two letters, we have 26 choices for the third letter. That is, 26 third letters for the first two
letters AA, 26 choices for the third letter after starting AB, and so on. There are  of these  third letter choices, for a
total of  choices for the first three letters. And for each of these  choices of letters, we have a bunch
of choices for the remaining digits.

In fact, there are going to be exactly 1000 choices for the numbers. We can see this because there are 1000 three-digit
numbers (000 through 999). This is 10 choices for the first digit, 10 for the second, and 10 for the third. The multiplicative
principle says we multiply: 

All together, there were  choices for the three letters, and  choices for the numbers, so we have a total of 
choices of license plates.

Careful: “and” doesn't mean “times.” For example, how many playing cards are both red and a face card? Not  The answer
is 6, and we needed to know something about cards to answer that question.

Another caution: how many ways can you select two cards, so that the first one is a red card and the second one is a face card? This
looks more like the multiplicative principle (you are counting two separate events) but the answer is not  here either. The
problem is that while there are 26 ways for the first card to be selected, it is not the case that for each of those there are 12 ways to
select the second card. If the first card was both red and a face card, then there would be only 11 choices for the second card. To
solve this problem, you could break it into two cases. First, count how many ways there are to select the two cards when the first
card is a red non-face card. Second, count how many ways when the first card is a red face card. Doing so makes the events in each
separate case independent, so the multiplicative principle can be applied.

How many functions  are there?

Solution

A B

6+6+6+6 = 24.

6+6+6+6 = 4 ⋅ 6.

Multiplicative Principle

A m A n

B, A B m ⋅n

Example 11.1.4

26 ⋅ 26 ⋅ 26 ⋅ 10 ⋅ 10 ⋅ 10,

26 ⋅ 26

26 ⋅ 26 26
(26 ⋅ 26) ⋅ 26 26 ⋅ 26 ⋅ 26

10 ⋅ 10 ⋅ 10 = 1000.

263 103 ⋅263 103

26 ⋅ 12.

26 ⋅ 12

 1 

Counting functions

f : {1, 2, 3, 4, 5} → {a, b, c, d}
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Remember that a function sends each element of the domain to exactly one element of the codomain. To determine a
function, we just need to specify the image of each element in the domain. Where can we send 1? There are 4 choices.
Where can we send 2? Again, 4 choices. What we have here is 5 “events” (picking the image of an element in the domain)
each of which can happen in 4 ways (the choices for that image). Thus there are  functions.

This is more than just an example of how we can use the multiplicative principle in a particular counting question. What we
have here is a general interpretation of certain applications of the multiplicative principle using rigorously defined
mathematical objects: functions. Whenever we have a counting question that asks for the the number of outcomes of a
repeated event, we can interpret that as asking for the number of functions from  (where  is the number of
times the event is repeated) to  (where  is the number of ways that event can occur).

Counting With Sets
Do you believe the additive and multiplicative principles? How would you convince someone they are correct? This is surprisingly
difficult. They seem so simple, so obvious. But why do they work?

To make things clearer, and more mathematically rigorous, we will use sets. Do not skip this section! It might seem like we are just
trying to give a proof of these principles, but we are doing a lot more. If we understand the additive and multiplicative principles
rigorously, we will be better at applying them, and knowing when and when not to apply them at all.

We will look at the additive and multiplicative principles in a slightly different way. Instead of thinking about event  and event 
we want to think of a set  and a set  The sets will contain all the different ways the event can happen. (It will be helpful to be
able to switch back and forth between these two models when checking that we have counted correctly.) Here's what we mean:

Suppose you own 9 shirts and 5 pairs of pants.

1. How many outfits can you make?
2. If today is half-naked-day, and you will wear only a shirt or only a pair of pants, how many choices do you have?

Answer

By now you should agree that the answer to the first question is  and the answer to the second question is 
 These are the multiplicative and additive principles. There are two events: picking a shirt and picking a pair of

pants. The first event can happen in 9 ways and the second event can happen in 5 ways. To get both a shirt and a pair of
pants, you multiply. To get just one article of clothing, you add.

Now look at this using sets. There are two sets, call them  and  The set  contains all 9 shirts so  while 
 since there are 5 elements in the set  (namely your 5 pairs of pants). What are we asking in terms of these sets?

Well in question 2, we really want  the number of elements in the union of shirts and pants. This is just 
(since there is no overlap; ). Question 1 is slightly more complicated. Your first guess might be to find 
but this is not right (there is nothing in the intersection). We are not asking for how many clothing items are both a shirt and
a pair of pants. Instead, we want one of each. We could think of this as asking how many pairs  there are, where  is
a shirt and  is a pair of pants. As we will soon verify, this number is 

From this example we can see right away how to rephrase our additive principle in terms of sets:

Given two sets  and  if  (that is, if there is no element in common to both  and ), then

This hardly needs a proof. To find  you take everything in  and throw in everything in  Since there is no element in both
sets already, you will have  things and add  new things to it. This is what adding does! Of course, we can easily extend this
to any number of disjoint sets.

4 ⋅ 4 ⋅ 4 ⋅ 4 ⋅ 4 = 45

{1, 2,… ,n} n

{1, 2,… , k} k

A B,
A B.

Example 11.1.6

9 ⋅ 5 = 45
9+5 = 14.

S P . S |S| = 9
|P | = 5, P

|S∪P |, |S| + |P |
|S∩P | = 0 |S∩P |,

(x, y) x

y |S| ⋅ |P |.

Additive Principle (with sets)

A B, A∩B= ∅ A B

|A∪B| = |A| + |B| .

A∪B, A B.
|A| |B|
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From the example above, we see that in order to investigate the multiplicative principle carefully, we need to consider ordered
pairs. We should define this carefully:

Given sets  and  we can form the set  to be the set of all ordered pairs  where 
is an element of  and  is an element of  We call  the Cartesian product of  and 

Let  and  Find 

Answer

We want to find ordered pairs  where  can be either  or  and  can be either 3, 4, or 5.  is the set of all of
these pairs:

The question is, what is  To figure this out, write out  Let  and 
 (so  and ). The set  contains all pairs with the first half of the pair being some 

 and the second being one of the  In other words:

Notice what we have done here: we made  rows of  pairs, for a total of  pairs.

Each row above is really  for some  That is, we fixed the -element. Broken up this way, we have

So  is really the union of  disjoint sets. Each of those sets has  elements in them. The total (using the additive principle)
is 

To summarize:

Given two sets  and  we have 

Again, we can easily extend this to any number of sets.

Principle of Inclusion/Exclusion

A recent buzz marketing campaign for Village Inn surveyed patrons on their pie preferences. People were asked whether they
enjoyed (A) Apple, (B) Blueberry or (C) Cherry pie (respondents answered yes or no to each type of pie, and could say yes to
more than one type). The following table shows the results of the survey.

Pies enjoyed: A B C AB AC BC ABC

Number of
people:

20 13 26 9 15 7 5

How many of those asked enjoy at least one of the kinds of pie? Also, explain why the answer is not 95.

Cartesian Product

A B, A×B= {(x, y) : x ∈ A∧ y ∈ B} (x, y) x

A y B. A×B A B.

Example 11.1.7

A= {1, 2} B= {3, 4, 5}. A×B.

(a, b) a 1 2 b A×B

A×B= {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)}

|A×B| ? A×B. A= { , , ,… , }a1 a2 a3 am
B= { , , ,… , }b1 b2 b3 bn |A| =m |B| = n A×B

∈ Aai ∈ B.bj

A×B= { ( , ), ( , ), ( , ),… ( , ),a1 b1 a1 b2 a1 b3 a1 bn

( , ), ( , ), ( , ),… , ( , ),a2 b1 a2 b2 a2 b3 a2 bn

( , ), ( , ), ( , ),… , ( , ),a3 b1 a3 b2 a3 b3 a3 bn

⋮
( , ), ( , ), ( , ),… , ( , )}.am b1 am b2 am b3 am bn

m n m ⋅n

{ }×Bai ∈ A.ai A

A×B= ({ }×B)∪ ({ }×B)∪ ({ }×B)∪⋯∪({ }×B).a1 a2 a3 am

A×B m n

n+n+n+⋯+n=m ⋅n.

Multiplicative Principle (with sets)

A B, |A×B| = |A| ⋅ |B| .

Investigate!
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While we are thinking about sets, consider what happens to the additive principle when the sets are NOT disjoint. Suppose we want
to find  and know that  and  This is not enough information though. We do not know how many of the 8
elements in  are also elements of  However, if we also know that  then we can say exactly how many elements
are in  and, of those, how many are in  and how many are not (6 of the 10 elements are in  so 4 are in  but not in ). We
could fill in a Venn diagram as follows:

This says there are 6 elements in  4 elements in  and 2 elements in  Now these three sets are disjoint, so we
can use the additive principle to find the number of elements in  It is 

This will always work, but drawing a Venn diagram is more than we need to do. In fact, it would be nice to relate this problem to
the case where  and  are disjoint. Is there one rule we can make that works in either case?

Here is another way to get the answer to the problem above. Start by just adding  This is  which would be
the answer if  We see that we are off by exactly 6, which just so happens to be  So perhaps we guess,

This works for this one example. Will it always work? Think about what we are doing here. We want to know how many things are
either in  or  (or both). We can throw in everything in  and everything in  This would give  many elements. But
of course when you actually take the union, you do not repeat elements that are in both. So far we have counted every element in 

 exactly twice: once when we put in the elements from  and once when we included the elements from  We correct by
subtracting out the number of elements we have counted twice. So we added them in twice, subtracted once, leaving them counted
only one time.

In other words, we have:

For any finite sets  and 

We can do something similar with three sets.

An examination in three subjects, Algebra, Biology, and Chemistry, was taken by 41 students. The following table shows how
many students failed in each single subject and in their various combinations:

Subject: A B C AB AC BC ABC

Failed: 12 5 8 2 6 3 1

How many students failed at least one subject?

Solution

The answer is not 37, even though the sum of the numbers above is 37. For example, while 12 students failed Algebra, 2 of
those students also failed Biology, 6 also failed Chemestry, and 1 of those failed all three subjects. In fact, that 1 student
who failed all three subjects is counted a total of 7 times in the total 37. To clarify things, let us think of the students who
failed Algebra as the elements of the set  and similarly for sets  and  The one student who failed all three subjects is
the lone element of the set  Thus, in Venn diagrams:

|A∪B| |A| = 10 |B| = 8.
B A. |A∩B| = 6,

A, B B, A B

A∩B, A ∖B B∖A.
A∪B. 6 +4+2 = 12.

A B

|A| + |B| . 10+8 = 18,
|A∩B| = 0. |A∩B| .

|A∪B| = |A| + |B| − |A∩B| .

A B A, B. |A| + |B|

A∩B A B.

Cardinality of a union (2 sets)

A B,

|A∪B| = |A| + |B| − |A∩B| .

Example 11.1.8

A, B C.
A∩B∩C.
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Now let's fill in the other intersections. We know  contains 2 elements, but 1 element has already been counted. So
we should put a 1 in the region where  and  intersect (but  does not). Similarly, we calculate the cardinality of 

 and 

Next, we determine the numbers which should go in the remaining regions, including outside of all three circles. This last
number is the number of students who did not fail any subject:

We found 5 goes in the “  only” region because the entire circle for  needed to have a total of 12, and 7 were already
accounted for. Similarly, we calculate the “  only” region to contain only 1 student and the “  only” region to contain no
students.

Thus the number of students who failed at least one class is 15 (the sum of the numbers in each of the eight disjoint
regions). The number of students who passed all three classes is 26: the total number of students, 41, less the 15 who failed
at least one class.

Note that we can also answer other questions. For example, now many students failed just Chemistry? None. How many
passed Algebra but failed both Biology and Chemistry? This corresponds to the region inside both  and  but outside of 

 containing 2 students.

Could we have solved the problem above in an algebraic way? While the additive principle generalizes to any number of sets, when
we add a third set here, we must be careful. With two sets, we needed to know the cardinalities of   and  in order to find
the cardinality of  With three sets we need more information. There are more ways the sets can combine. Not surprisingly
then, the formula for cardinality of the union of three non-disjoint sets is more complicated:

For any finite sets   and 

To determine how many elements are in at least one of   or  we add up all the elements in each of those sets. However, when
we do that, any element in both  and  is counted twice. Also, each element in both  and  is counted twice, as are elements in

 and  so we take each of those out of our sum once. But now what about the elements which are in  (in all three
sets)? We added them in three times, but also removed them three times. They have not yet been counted. Thus we add those
elements back in at the end.

Returning to our example above, we have    We also have   
and  Therefore:

This is what we got when we solved the problem using Venn diagrams.

This process of adding in, then taking out, then adding back in, and so on is called the Principle of Inclusion/Exclusion, or simply
PIE. We will return to this counting technique later to solve for more complicated problems (involving more than 3 sets).

This page titled 11.1: Additive and Multiplicative Principles is shared under a CC BY-SA license and was authored, remixed, and/or curated by
Oscar Levin.

1.1: Additive and Multiplicative Principles by Oscar Levin is licensed CC BY-SA 4.0.

A∩B

A B C

(A∩C) ∖B, (B∩C) ∖A:

A A

B C

B C

A,

A, B, A∩B

A∪B.

Cardinality of a union (3 sets)

A, B, C,

|A∪B∪C| = |A| + |B| + |C| − |A∩B| − |A∩C| − |B∩C| + |A∩B∩C|

A, B, C

A B A C

B C, A∩B∩C

|A| = 12, |B| = 5, |C| = 8. |A∩B| = 2, |A∩C| = 6, |B∩C| = 3,
|A∩B∩C| = 1.

|A∪B∪C| = 12+5+8−2−6−3+1 = 15
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11.2: Binomial Coefficients

In chess, a rook can move only in straight lines (not diagonally). Fill in each square of the chess board below with the number
of different shortest paths the rook, in the upper left corner, can take to get to that square. For example, one square is already
filled in. There are six different paths from the rook to the square: DDRR (down down right right), DRDR, DRRD, RDDR,
RDRD and RRDD.

Here are some apparently different discrete objects we can count: subsets, bit strings, lattice paths, and binomial coefficients. We
will give an example of each type of counting problem (and say what these things even are). As we will see, these counting
problems are surprisingly similar.

Subsets

Subsets should be familiar, otherwise read over Section 0.3 again. Suppose we look at the set . How many
subsets of  contain exactly 3 elements?

First, a simpler question: How many subsets of  are there total? In other words, what is  (the cardinality of the power set
of )? Think about how we would build a subset. We need to decide, for each of the elements of  whether or not to include the
element in our subset. So we need to decide “yes” or “no” for the element 1. And for each choice we make, we need to decide
“yes” or “no” for the element 2. And so on. For each of the 5 elements, we have 2 choices. Therefore the number of subsets is
simply  (by the multiplicative principle).

Of those 32 subsets, how many have 3 elements? This is not obvious. Note that we cannot just use the multiplicative principle.
Maybe we want to say we have 2 choices (yes/no) for the first element, 2 choices for the second, 2 choices for the third, and then
only 1 choice for the other two. But what if we said “no” to one of the first three elements? Then we would have two choices for
the 4th element. What a mess!

Another (bad) idea: we need to pick three elements to be in our subset. There are 5 elements to choose from. So there are 5 choices
for the first element, and for each of those 4 choices for the second, and then 3 for the third (last) element. The multiplicative
principle would say then that there are a total of  ways to select the 3 element subset. But this cannot be correct (

 for one thing). One of the outcomes we would get from these choices would be the set  by choosing the element
3 first, then the element 2, then the element 5. Another outcome would be  by choosing the element 5 first, then the
element 2, then the element 3. But these are the same set! We can correct this by dividing: for each set of three elements, there are 6
outcomes counted amoung our 60 (since there are 3 choices for which element we list first, 2 for which we list second, and 1 for
which we list last). So we expect there to be 10 3-element subsets of .

Is this right? Well, we could list out all 10 of them, being very systematic in doing so, to make sure we don't miss any or list any
twice. Or we could try to count how many subsets of  don't have 3 elements in them. How many have no elements? Just 1 (the
empty set). How many have 5? Again, just 1. These are the cases in which we say “no” to all elements, or “yes” to all elements.
Okay, what about the subsets which contain a single element? There are 5 of these. We must say “yes” to exactly one element, and
there are 5 to choose from. This is also the number of subsets containing 4 elements. Those are the ones for which we must say
“no” to exactly one element.

Investigate!

A = {1, 2, 3, 4, 5}

A

A |P(A)|

A A,

2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 25

5 ⋅ 4 ⋅ 3 = 60

60 > 32 {3, 2, 5},

{5, 2, 3}

A

A
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So far we have counted 12 of the 32 subsets. We have not yet counted the subsets with cardinality 2 and with cardinality 3. There
are a total of 20 subsets left to split up between these two groups. But the number of each must be the same! If we say “yes” to
exactly two elements, that can be accomplished in exactly the same number of ways as the number of ways we can say “no” to
exactly two elements. So the number of 2-element subsets is equal to the number of 3-element subsets. Together there are 20 of
these subsets, so 10 each.

Number of
elements:

0 1 2 3 4 5

Number of
subsets:

1 5 10 10 5 1

Bit Strings

“Bit” is short for “binary digit,” so a bit string is a string of binary digits. The binary digits are simply the numbers 0 and 1. All of
the following are bit strings:

The number of bits (0's or 1's) in the string is the length of the string; the strings above have lengths 4, 1, 4, and 10 respectively. We
also can ask how many of the bits are 1's. The number of 1's in a bit string is the weight of the string; the weights of the above
strings are 2, 0, 4, and 5 respectively.

An -bit string is a bit string of length . That is, it is a string containing  symbols, each of which is a bit, either 0 or 1.
The weight of a bit string is the number of 1's in it.

 is the set of all -bit strings.
 is the set of all -bit strings of weight .

For example, the elements of the set  are the bit strings 011, 101, and 110. Those are the only strings containing three bits
exactly two of which are 1's.

The counting questions: How many bit strings have length 5? How many of those have weight 3? In other words, we are asking for
the cardinalities  and .

To find the number of 5-bit strings is straight forward. We have 5 bits, and each can either be a 0 or a 1. So there are 2 choices for
the first bit, 2 choices for the second, and so on. By the multiplicative principle, there are  such strings.

Finding the number of 5-bit strings of weight 3 is harder. Think about how such a string could start. The first bit must be either a 0
or a 1. In the first case (the string starts with a 0), we must then decide on four more bits. To have a total of three 1's, among those
four remaining bits there must be three 1's. To count all of these strings, we must include all 4-bit strings of weight 3. In the second
case (the string starts with a 1), we still have four bits to choose, but now only two of them can be 1's, so we should look at all the
4-bit strings of weight 2. So the strings in  all have the form  (that is, a 1 followed by a string from ) or . These two
sets are disjoint, so we can use the additive principle:

This is an example of a recurrence relation. We represented one instance of our counting problem in terms of two simpler instances
of the problem. If only we knew the cardinalities of  and . Repeating the same reasoning,

We can keep going down, but this should be good enough. Both  and  contain 3 bit strings: we must pick one of the three bits
to be a 1 (three ways to do that) or one of the three bits to be a 0 (three ways to do that). Also,  contains just one string: 111.
Thus  and  which puts  at a total of 10 strings.

But wait —32 and 10 were the answers to the counting questions about subsets. Coincidence? Not at all. Each bit string can be
thought of as a code for a subset. For the set  we would use 5-bit strings, one bit for each element of . Each bit
in the string is a 0 if its corresponding element of  is not in the subset, and a 1 if the element of  is in the subset. Remember,

1001 0 1111 1010101010

Definition: Bit Strings
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deciding the subset amounted to a sequence of five yes/no votes for the elements of . Instead of yes, we put a 1; instead of no, we
put a 0.

For example, the bit string  represents the subset  since the first, second and fifth bits are 1's. The subset 
would be coded by the string . What we really have here is a bijection from  to .

Now for a subset to contain exactly three elements, the corresponding bit string must contain exactly three 1's. In other words, the
weight must be 3. Thus counting the number of 3-element subsets of  is the same as counting the number 5-bit strings of weight
3.

Lattice Paths

The integer lattice is the set of all points in the Cartesian plane for which both the  and  coordinates are integers. If you like to
draw graphs on graph paper, the lattice is the set of all the intersections of the grid lines.

A lattice path is one of the shortest possible paths connecting two points on the lattice, moving only horizontally and vertically. For
example, here are three possible lattice paths from the points  to 

Notice to ensure the path is the shortest possible, each move must be either to the right or up. Additionally, in this case, note that no
matter what path we take, we must make three steps right and two steps up. No matter what order we make these steps, there will
always be 5 steps. Thus each path has length 5.

The counting question: how many lattice paths are there between  and  We could try to draw all of these, or instead of
drawing them, maybe just list which direction we travel on each of the 5 steps. One path might be RRUUR, or maybe UURRR, or
perhaps RURRU (those correspond to the three paths drawn above). So how many such strings of R's and U's are there?

Notice that each of these strings must contain 5 symbols. Exactly 3 of them must be R's (since our destination is 3 units to the
right). This seems awfully familiar. In fact, what if we used 's instead of R's and 0's instead of U's? Then we would just have 5-bit
strings of weight 3. There are 10 of those, so there are 10 lattice paths from (0,0) to (3,2).

The correspondence between bit strings and lattice paths does not stop there. Here is another way to count lattice paths. Consider
the lattice shown below:

Any lattice path from (0,0) to (3,2) must pass through exactly one of  and . The point  is 4 steps away from (0,0) and two of
them are towards the right. The number of lattice paths to  is the same as the number of 4-bit strings of weight 2, namely 6. The
point  is 4 steps away from (0,0), but now 3 of them are towards the right. So the number of paths to point  is the same as the
number of 4-bit strings of weight 3, namely 4. So the total number of paths to (3,2) is just . This is the same way we
calculated the number of 5-bit strings of weight 3. The point: the exact same recurrence relation exists for bit strings and for lattice
paths.

Binomial Coefficients

Binomial coefficients are the coefficients in the expanded version of a binomial, such as . What happens when we multiply
such a binomial out? We will expand  for various values of . Each of these are done by multiplying everything out (i.e.,
FOIL-ing) and then collecting like terms.

A

11001 {1, 2, 5} {3, 5}

00101 P(A) B
5

A

x y

(0, 0) (3, 2):

(0, 0) (3, 2)?

1

A B A

A

B B

6+4

(x+y)5

(x+y)n n
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In fact, there is a quicker way to expand the above binomials. For example, consider the next one, . What we are really
doing is multiplying out,

If that looks daunting, go back to the case of . Why do we only have one  and  but three 
 and  terms? Every time we distribute over an  we create two copies of what is left, one multiplied by  the other

multiplied by . To get  we need to pick the “multiplied by ” side every time (we don't have any 's in the term). This will only
happen once. On the other hand, to get  we need to select the  side twice and the  side once. In other words, we need to pick
one of the three  terms to “contribute” their .

Similarly, in the expansion of  there will be only one  term and one  term. This is because to get an  we need to
use the  term in each of the copies of the binomial  and similarly for . What about  To get terms like this, we need
to use four 's and one  so we need exactly one of the five binomials to contribute a . There are 5 choices for this, so there are 5
ways to get  so the coefficient of  is 5. This is also the coefficient for  for the same (but opposite) reason: there are 5
ways to pick which of the 5 binomials contribute the single . So far we have

We still need the coefficients of  and . In both cases, we need to pick exactly 3 of the 5 binomials to contribute one
variable, the other two to contribute the other. Wait. This sounds familiar. We have 5 things, each can be one of two things, and we
need a total of 3 of one of them. That's just like taking 5 bits and making sure exactly 3 of them are 1's. So the coefficient of 
(and also ) will be exactly the same as the number of bit strings of length 5 and weight 3, which we found earlier to be 10. So
we have:

These numbers we keep seeing over and over again. They are the number of subsets of a particular size, the number of bit strings of
a particular weight, the number of lattice paths, and the coefficients of these binomial products. We will call them binomial
coefficients. We even have a special symbol for them: .

For each integer  and integer  with  there is a number

read “  choose .” We have:

 the number of -bit strings of weight .
 is the number of subsets of a set of size  each with cardinality .
 is the number of lattice paths of length  containing  steps to the right.
 is the coefficient of  in the expansion of .
 is the number of ways to select  objects from a total of  objects.

The last bullet point is usually taken as the definition of . Out of  objects we must choose  of them, so there are  choose 
ways of doing this. Each of our counting problems above can be viewed in this way:

How many subsets of  contain exactly 3 elements? We must choose  of the 5 elements to be in our subset. There
are  ways to do this, so there are  such subsets.

(x+y = x+y)1

(x+y = +2xy +)2 x2 y2

(x+y = +3 y +3x +)3 x3 x2 y2 y3

(x+y = +4 y +6 +4x + .)4 x4 x3 x2y2 y3 y4

(x+y)5

(x+y)(x+y)(x+y)(x+y)(x+y).

(x+y = (x+y)(x+y)(x+y))3 x3 y3

yx2 xy2 (x+y) x,

y ,x3 x y

yx2 x y

(x+y) y

(x+y ,)5 x5 y5 ,x5

x (x+y), y5 y?x4

x y, y
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x
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Definition: Binomial Coefficients
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How many bit strings have length 5 and weight 3? We must choose  of the 5 bits to be 1's. There are  ways to do this, so
there are  such bit strings.
How many lattice paths are there from (0,0) to (3,2)? We must choose 3 of the 5 steps to be towards the right. There are 
ways to do this, so there are  such lattice paths.
What is the coefficient of  in the expansion of  We must choose 3 of the 5 copies of the binomial to contribute an

. There are  ways to do this, so the coefficient is .

It should be clear that in each case above, we have the right answer. All we had to do is phrase the question correctly and it became
obvious that  is correct. However, this does not tell us that the answer is in fact 10 in each case. We will eventually find a
formula for  but for now, look back at how we arrived at the answer 10 in our counting problems above. It all came down to bit
strings, and we have a recurrence relation for bit strings:

Remember, this is because we can start the bit string with either a 1 or a 0. In both cases, we have  more bits to pick. The
strings starting with 1 must contain  more 1's, while the strings starting with 0 still need  more 1's.

Since  the same recurrence relation holds for binomial coefficients:

Pascal's Triangle
Let's arrange the binomial coefficients  into a triangle like follows:

This can continue as far down as we like. The recurrence relation for  tells us that each entry in the triangle is the sum of the two
entries above it. The entries on the sides of the triangle are always 1. This is because  for all  since there is only one way
to pick 0 of  objects and  since there is one way to select all  out of  objects. Using the recurrence relation, and the fact
that the sides of the triangle are 1's, we can easily replace all the entries above with the correct values of . Doing so gives us
Pascal's triangle.
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We can use Pascal's triangle to calculate binomial coefficients. For example, using the triangle below, we can find .

This page titled 11.2: Binomial Coefficients is shared under a CC BY-SA license and was authored, remixed, and/or curated by Oscar Levin.

1.2: Binomial Coefficients by Oscar Levin is licensed CC BY-SA 4.0.
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11.3: Combinations and Permutations

You have a bunch of chips which come in five different colors: red, blue, green, purple and yellow.

1. How many different two-chip stacks can you make if the bottom chip must be red or blue? Explain your answer using both
the additive and multiplicative principles.

2. How many different three-chip stacks can you make if the bottom chip must be red or blue and the top chip must be green,
purple or yellow? How does this problem relate to the previous one?

3. How many different three-chip stacks are there in which no color is repeated? What about four-chip stacks?
4. Suppose you wanted to take three different colored chips and put them in your pocket. How many different choices do you

have? What if you wanted four different colored chips? How do these problems relate to the previous one?

A permutation is a (possible) rearrangement of objects. For example, there are 6 permutations of the letters a, b, c:

We know that we have them all listed above —there are 3 choices for which letter we put first, then 2 choices for which letter
comes next, which leaves only 1 choice for the last letter. The multiplicative principle says we multiply 

How many permutations are there of the letters a, b, c, d, e, f?

Answer

We do NOT want to try to list all of these out. However, if we did, we would need to pick a letter to write down first. There
are 6 choices for that letter. For each choice of first letter, there are 5 choices for the second letter (we cannot repeat the first
letter; we are rearranging letters and only have one of each), and for each of those, there are 4 choices for the third, 3
choices for the fourth, 2 choices for the fifth and finally only 1 choice for the last letter. So there are 

 permutations of the 6 letters.

A piece of notation is helpful here:  read “  factorial”, is the product of all positive integers less than or equal to  (for reasons
of convenience, we also define 0! to be 1). So the number of permutation of 6 letters, as seen in the previous example is 

 This generalizes:

There are  permutations of  (distinct) elements.

How many functions  are bijective?

Solution

Remember what it means for a function to be bijective: each element in the codomain must be the image of exactly one
element of the domain. Using two-line notation, we could write one of these bijections as

What we are really doing is just rearranging the elements of the codomain, so we are creating a permutation of 8 elements.
In fact, “permutation” is another term used to describe bijective functions from a finite set to itself.

If you believe this, then you see the answer must be  You can see this directly as well: for each
element of the domain, we must pick a distinct element of the codomain to map to. There are 8 choices for where to send 1,
then 7 choices for where to send 2, and so on. We multiply using the multiplicative principle.

Investigate!

abc,   acb,   bac,   bca,   cab,   cba.

3 ⋅ 2 ⋅ 1.

Example 11.3.1

6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 720

n!, n n

6! = 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1.

Permutations of  elementsn

n! = n ⋅ (n−1) ⋅ (n−2) ⋅⋯ ⋅ 2 ⋅ 1 n

Counting Bijective Functions

f : {1, 2,… , 8} → {1, 2,… , 8}

f =( )
1

3

2

1

3

5

4

8

5

7

6

6

7

2

8

4

8! = 8 ⋅ 7 ⋅⋯ ⋅ 1 = 40320.
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Sometimes we do not want to permute all of the letters/numbers/elements we are given.

How many 4 letter “words” can you make from the letters a through f, with no repeated letters?

Solution

This is just like the problem of permuting 4 letters, only now we have more choices for each letter. For the first letter, there
are 6 choices. For each of those, there are 5 choices for the second letter. Then there are 4 choices for the third letter, and 3
choices for the last letter. The total number of words is \(6\cdot 5\cdot 4 \cdot 3 = 360\text{.}\) This is not \(6!\) because we
never multiplied by 2 and 1. We could start with \(6!\) and then cancel the 2 and 1, and thus write \(\frac{6!}{2!}\text{.}\)

In general, we can ask how many permutations exist of  objects choosing those objects from a larger collection of 
objects. (In the example above,  and ) We write this number  and sometimes call it a -permutation of

 elements. From the example above, we see that to compute  we must apply the multiplicative principle to 
numbers, starting with  and counting backwards. For example

Notice again that  starts out looking like  but we stop after 7. We can formally account for this “stopping” by
dividing away the part of the factorial we do not want:

Careful: The factorial in the denominator is not  but rather 

 is the number of -permutations of  elements, the number of ways to arrange  objects chosen from  distinct
objects.

Note that when  we have  (since we defined  to be 1). This makes sense —we already know 

gives the number of permutations of all  objects.

How many functions  are injective?

Solution

Note that it doesn't make sense to ask for the number of bijections here, as there are none (because the codomain is larger
than the domain, there are no surjections). But for a function to be injective, we just can't use an element of the codomain
more than once.

We need to pick an element from the codomain to be the image of 1. There are 8 choices. Then we need to pick one of the
remaining 7 elements to be the image of 2. Finally, one of the remaining 6 elements must be the image of 3. So the total
number of functions is 

What this demonstrates in general is that the number of injections  where  and  is 

Here is another way to find the number of -permutations of  elements: first select which  elements will be in the permutation,
then count how many ways there are to arrange them. Once you have selected the  objects, we know there are  ways to arrange
(permute) them. But how do you select  objects from the  You have  objects, and you need to choose  of them. You can do

Example 11.3.3

k n

k = 4, n = 6. P (n, k) k

n P (n, k) k

n

P (10, 4) = 10 ⋅ 9 ⋅ 8 ⋅ 7.

P (10, 4) 10!,
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that in  ways. Then for each choice of those  elements, we can permute them in  ways. Using the multiplicative principle, we
get another formula for 

Now since we have a closed formula for  already, we can substitute that in:

If we divide both sides by  we get a closed formula for 

We say  counts permutations, and  counts combinations. The formulas for each are very similar, there is just an extra 
in the denominator of  That extra  accounts for the fact that  does not distinguish between the different orders that the 
objects can appear in. We are just selecting (or choosing) the  objects, not arranging them. Perhaps “combination” is a misleading
label. We don't mean it like a combination lock (where the order would definitely matter). Perhaps a better metaphor is a
combination of flavors — you just need to decide which flavors to combine, not the order in which to combine them.

To further illustrate the connection between combinations and permutations, we close with an example.

You decide to have a dinner party. Even though you are incredibly popular and have 14 different friends, you only have enough
chairs to invite 6 of them.

1. How many choices do you have for which 6 friends to invite?
2. What if you need to decide not only which friends to invite but also where to seat them along your long table? How many

choices do you have then?

Solution

1. You must simply choose 6 friends from a group of 14. This can be done in  ways. We can find this number either by
using Pascal's triangle or the closed formula: 

2. Here you must count all the ways you can permute 6 friends chosen from a group of 14. So the answer is 
which can be calculated as 

Notice that we can think of this counting problem as a question about counting functions: how many injective functions are
there from your set of 6 chairs to your set of 14 friends (the functions are injective because you can't have a single chair go
to two of your friends).

How are these numbers related? Notice that  is much larger than  This makes sense.  picks 6 friends, but 
 arranges the 6 friends as well as picks them. In fact, we can say exactly how much larger  is. In both

counting problems we choose 6 out of 14 friends. For the first one, we stop there, at 3003 ways. But for the second
counting problem, each of those 3003 choices of 6 friends can be arranged in exactly  ways. So now we have 
choices and that is exactly 

Alternatively, look at the first problem another way. We want to select 6 out of 14 friends, but we do not care about the
order they are selected in. To select 6 out of 14 friends, we might try this:

This is a reasonable guess, since we have 14 choices for the first guest, then 13 for the second, and so on. But the guess is
wrong (in fact, that product is exactly ). It distinguishes between the different orders in which we could
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invite the guests. To correct for this, we could divide by the number of different arrangements of the 6 guests (so that all of
these would count as just one outcome). There are precisely  ways to arrange 6 guests, so the correct answer to the first
question is

Note that another way to write this is

which is what we had originally.

This page titled 11.3: Combinations and Permutations is shared under a CC BY-SA license and was authored, remixed, and/or curated by Oscar
Levin.

1.3: Combinations and Permutations by Oscar Levin is licensed CC BY-SA 4.0.
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11.4: Combinatorial Proofs

1. The Stanley Cup is decided in a best of 7 tournament between two teams. In how many ways can your team win? Let's
answer this question two ways:

a. How many of the 7 games does your team need to win? How many ways can this happen?
b. What if the tournament goes all 7 games? So you win the last game. How many ways can the first 6 games go down?
c. What if the tournament goes just 6 games? How many ways can this happen? What about 5 games? 4 games?
d. What are the two different ways to compute the number of ways your team can win? Write down an equation involving

binomial coefficients (that is, 's). What pattern in Pascal's triangle is this an example of?
2. Generalize. What if the rules changed and you played a best of  tournament (5 wins required)? What if you played an 

game tournament with  wins required to be named champion?

Patterns in Pascal's Triangle
Have a look again at Pascal's triangle. Forget for a moment where it comes from. Just look at it as a mathematical object. What do
you notice?

There are lots of patterns hidden away in the triangle, enough to fill a reasonably sized book. Here are just a few of the most
obvious ones:

1. The entries on the border of the triangle are all 1.
2. Any entry not on the border is the sum of the two entries above it.
3. The triangle is symmetric. In any row, entries on the left side are mirrored on the right side.
4. The sum of all entries on a given row is a power of 2. (You should check this!)

We would like to state these observations in a more precise way, and then prove that they are correct. Now each entry in Pascal's
triangle is in fact a binomial coefficient. The 1 on the very top of the triangle is . The next row (which we will call row 1, even
though it is not the top-most row) consists of  and . Row 4 (the row 1, 4, 6, 4, 1) consists of the binomial coefficients

Given this description of the elements in Pascal's triangle, we can rewrite the above observations as follows:

1.  and .
2. .
3. .
4. .

Each of these is an example of a binomial identity: an identity (i.e., equation) involving binomial coefficients.

Investigate!
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Our goal is to establish these identities. We wish to prove that they hold for all values of  and . These proofs can be done in
many ways. One option would be to give algebraic proofs, using the formula for 

Here's how you might do that for the second identity above.

Give an algebraic proof for the binomial identity

Solution

Proof

By the definition of , we have

and

Thus, starting with the right-hand side of the equation:

The second line (where the common denominator is found) works because  and 
.

This is certainly a valid proof, but also is entirely useless. Even if you understand the proof perfectly, it does not tell you why the
identity is true. A better approach would be to explain what  means and then say why that is also what  means.
Let's see how this works for the four identities we observed above.

Explain why  and .

Solution

What do these binomial coefficients tell us? Well,  gives the number of ways to select 0 objects from a collection of 
objects. There is only one way to do this, namely to not select any of the objects. Thus . Similarly,  gives the

n k
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number of ways to select  objects from a collection of  objects. There is only one way to do this: select all  objects.
Thus .

Alternatively, we know that  is the number of -bit strings with weight 0. There is only one such string, the string of all
0's. So . Similarly  is the number of -bit strings with weight . There is only one string with this property, the
string of all 1's.

Another way:  gives the number of subsets of a set of size  containing 0 elements. There is only one such subset, the
empty set.  gives the number of subsets containing  elements. The only such subset is the original set (of all elements).

Explain why .

Solution

The easiest way to see this is to consider bit strings.  is the number of bit strings of length  containing  1's. Of all of
these strings, some start with a 1 and the rest start with a 0. First consider all the bit strings which start with a 1. After the 1,
there must be  more bits (to get the total length up to ) and exactly  of them must be 1's (as we already have
one, and we need  total). How many strings are there like that? There are exactly  such bit strings, so of all the
length  bit strings containing  1's,  of them start with a 1. Similarly, there are  which start with a 0 (we still
need  bits and now  of them must be 1's). Since there are  bit strings containing  bits with  1's, that is
the number of length  bit strings with  1's which start with a 0. Therefore .

Another way: consider the question, how many ways can you select  pizza toppings from a menu containing  choices?
One way to do this is just . Another way to answer the same question is to first decide whether or not you want
anchovies. If you do want anchovies, you still need to pick  toppings, now from just  choices. That can be done
in  ways. If you do not want anchovies, then you still need to select  toppings from  choices (the anchovies are
out). You can do that in  ways. Since the choices with anchovies are disjoint from the choices without anchovies, the
total choices are . But wait. We answered the same question in two different ways, so the two answers must
be the same. Thus .

You can also explain (prove) this identity by counting subsets, or even lattice paths.

Prove the binomial identity

Solution

Why is this true?  counts the number of ways to select  things from  choices. On the other hand,  counts the
number of ways to select  things from  choices. Are these really the same? Well, what if instead of selecting the 

 things you choose to exclude them. How many ways are there to choose  things to exclude from  choices.
Clearly this is  as well (it doesn't matter whether you include or exclude the things once you have chosen them). And
if you exclude  things, then you are including the other  things. So the set of outcomes should be the same.

Let's try the pizza counting example like we did above. How many ways are there to pick  toppings from a list of 
choices? On the one hand, the answer is simply . Alternatively, you could make a list of all the toppings you don't want.
To end up with a pizza containing exactly  toppings, you need to pick  toppings to not put on the pizza. You have 

 choices for the toppings you don't want. Both of these ways give you a pizza with  toppings, in fact all the ways to
get a pizza with  toppings. Thus these two answers must be the same: .
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You can also prove (explain) this identity using bit strings, subsets, or lattice paths. The bit string argument is nice: 
counts the number of bit strings of length  with  1's. This is also the number of bit string of length  with  0's (just
replace each 1 with a 0 and each 0 with a 1). But if a string of length  has  0's, it must have  1's. And there are
exactly  strings of length  with  1's.

Prove the binomial identity

Solution

Proof

Let's do a “pizza proof” again. We need to find a question about pizza toppings which has  as the answer. How about
this: If a pizza joint offers  toppings, how many pizzas can you build using any number of toppings from no toppings to
all toppings, using each topping at most once?

On one hand, the answer is . For each topping you can say “yes” or “no,” so you have two choices for each topping.

On the other hand, divide the possible pizzas into disjoint groups: the pizzas with no toppings, the pizzas with one topping,
the pizzas with two toppings, etc. If we want no toppings, there is only one pizza like that (the empty pizza, if you will) but
it would be better to think of that number as  since we choose 0 of the  toppings. How many pizzas have 1 topping?
We need to choose 1 of the  toppings, so . We have:

Pizzas with 0 toppings:  Pizzas with 1 topping:  Pizzas with 2 toppings: 

The total number of possible pizzas will be the sum of these, which is exactly the left-hand side of the identity we are trying
to prove.

Again, we could have proved the identity using subsets, bit strings, or lattice paths (although the lattice path argument is a
little tricky).

Pizzas with  toppings: .

Hopefully this gives some idea of how explanatory proofs of binomial identities can go. It is worth pointing out that more
traditional proofs can also be beautiful. Most every binomial identity can be proved using mathematical induction, using the
recursive definition for . We will discuss induction in Section 2.5. For example, consider the following rather slick proof of the
last identity.

Expand the binomial 

Let  and . We get:

Of course this simplifies to:

Something fun to try: Let  and . Neat huh?
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More Proofs
The explanatory proofs given in the above examples are typically called combinatorial proofs. In general, to give a combinatorial
proof for a binomial identity, say  you do the following:

1. Find a counting problem you will be able to answer in two ways.
2. Explain why one answer to the counting problem is .
3. Explain why the other answer to the counting problem is .

Since both  and  are the answers to the same question, we must have .

The tricky thing is coming up with the question. This is not always obvious, but it gets easier the more counting problems you
solve. You will start to recognize types of answers as the answers to types of questions. More often what will happen is you will be
solving a counting problem and happen to think up two different ways of finding the answer. Now you have a binomial identity and
the proof is right there. The proof is the problem you just solved together with your two solutions.

For example, consider this counting question:

How many 10-letter words use exactly four A's, three B's, two C's and one D?

Let's try to solve this problem. We have 10 spots for letters to go. Four of those need to be A's. We can pick the four A-spots in 
ways. Now where can we put the B's? Well there are only 6 spots left, we need to pick  of them. This can be done in  ways.
The two C's need to go in two of the 3 remaining spots, so we have  ways of doing that. That leaves just one spot of the D, but
we could write that 1 choice as . Thus the answer is:

But why stop there? We can find the answer another way too. First let's decide where to put the one D: we have 10 spots, we need
to choose 1 of them, so this can be done in  ways. Next, choose one of the  ways to place the two C's. We now have  spots
left, and three of them need to be filled with B's. There are  ways to do this. Finally the A's can be placed in  (that is, only
one) ways. So another answer to the question is

Interesting. This gives us the binomial identity:

Here are a couple of other binomial identities with combinatorial proofs.

Prove the identity

Solution

To give a combinatorial proof we need to think up a question we can answer in two ways: one way needs to give the left-
hand-side of the identity, the other way needs to be the right-hand-side of the identity. Our clue to what question to ask
comes from the right-hand side:  counts the number of ways to select 3 things from a group of  things. Let's
name those things . In other words, we want to find 3-element subsets of those numbers (since order
should not matter, subsets are exactly the right thing to think about). We will have to be a bit clever to explain why the left-
hand-side also gives the number of these subsets. Here's the proof.

Proof
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Consider the question “How many 3-element subsets are there of the set ” We answer this in two
ways:

Answer 1: We must select 3 elements from the collection of  elements. This can be done in  ways.

Answer 2: Break this problem up into cases by what the middle number in the subset is. Say each subset is  written
in increasing order. We count the number of subsets for each distinct value of . The smallest possible value of  is , and
the largest is .

When , there are  subsets: 1 choice for  and  choices (3 through ) for .

When , there are  subsets: 2 choices for  and  choices for .

When , there are  subsets: 3 choices for  and  choices for .

And so on. When , there are  choices for  and only 1 choice for , so  subsets.

Therefore the total number of subsets is

Since Answer 1 and Answer 2 are answers to the same question, they must be equal. Therefore

Prove the binomial identity

Solution 1

We will give two different proofs of this fact. The first will be very similar to the previous example (counting subsets). The
second proof is a little slicker, using lattice paths.

Proof

Consider the question: “How many pizzas can you make using  toppings when there are  toppings to choose from?”

Answer 1: There are  toppings, from which you must choose . This can be done in  ways.

Answer 2: Divide the toppings into two groups of  toppings (perhaps  meats and  veggies). Any choice of  toppings
must include some number from the first group and some number from the second group. Consider each possible number
of meat toppings separately:

0 meats: , since you need to choose 0 of the  meats and  of the  veggies.

1 meat: , since you need 1 of  meats so  of  veggies.

2 meats: . Choose 2 meats and the remaining  toppings from the  veggies.

And so on. The last case is  meats, which can be done in  ways.

Thus the total number of pizzas possible is

This is not quite the left-hand side … yet. Notice that  and  and so on, by the identity in Example
1.4.4. Thus we do indeed get

{1, 2, 3,… ,n+2}?

n+2 ( )n+2
3

{a, b, c}
b b 2

n+1

b = 2 1 ⋅n a n n+2 c

b = 3 2 ⋅ (n−1) a n−1 c

b = 4 3 ⋅ (n−2) a n−2 c

b = n+1 n a c n ⋅ 1

1n+2(n−1)+3(n−2)+⋯+(n−1)2+n1.

1n+2(n−1)+3(n−2)+⋯+(n−1)2+n1 =( ).
n+2
3

□

Example 11.4.7

+ + +⋯+ =( ).( )
n

0

2

( )
n

1

2

( )
n

2

2

( )
n

n

2 2n

n

n 2n

2n n ( )2n
n

n n n n

( )( )n

0
n

n
n n n

( )( )n
1

n
n−1 n n−1 n

( )( )n
2

n
n−2 n−2 n

n ( )( )n

n

n

0

( )( )+( )( )+( )( )+⋯+( )( ).
n

0
n

n

n

1
n

n−1
n

2
n

n−2
n

n

n

0

( ) = ( )n

n

n

0 ( ) = ( )n

n−1
n

1

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/86171?pdf


11.4.7 https://math.libretexts.org/@go/page/86171

Since these two answers are answers to the same question, they must be equal, and thus

For an alternative proof, we use lattice paths. This is reasonable to consider because the right-hand side of the identity
reminds us of the number of paths from  to .

Proof

Consider the question: How many lattice paths are there from  to 

Answer 1: We must travel  steps, and  of them must be in the up direction. Thus there are  paths.

Answer 2: Note that any path from  to  must cross the line . That is, any path must pass through
exactly one of the points: , , , …, . For example, this is what happens in the case 

How many paths pass through  To get to that point, you must travel  units, and  of them are to the right, so there are 
ways to get to . From  to  takes  steps, and  of them are up. So there are  ways to get from  to .
Therefore there are  paths from  to  through the point .

What about through . There are  paths to get there (  steps, 1 to the right) and  paths to complete the journey to 
 (  steps,  up). So there are  paths from  to  through .

In general, to get to  through the point  we have  paths to the midpoint and then  paths from the midpoint to 
. So there are  paths from  to  through .

All together then the total paths from  to  passing through exactly one of these midpoints is

Since these two answers are answers to the same question, they must be equal, and thus

This page titled 11.4: Combinatorial Proofs is shared under a CC BY-SA license and was authored, remixed, and/or curated by Oscar Levin.
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11.5: Stars and Bars

Suppose you have some number of identical Rubik's cubes to distribute to your friends. Imagine you start with a single row of
the cubes.

1. Find the number of different ways you can distribute the cubes provided:
a. You have 3 cubes to give to 2 people.
b. You have 4 cubes to give to 2 people.
c. You have 5 cubes to give to 2 people.
d. You have 3 cubes to give to 3 people.
e. You have 4 cubes to give to 3 people.
f. You have 5 cubes to give to 3 people.

2. Make a conjecture about how many different ways you could distribute 7 cubes to 4 people. Explain.
3. What if each person were required to get at least one cube? How would your answers change?

Consider the following counting problem:

You have 7 cookies to give to 4 kids. How many ways can you do this?

Take a moment to think about how you might solve this problem. You may assume that it is acceptable to give a kid no cookies.
Also, the cookies are all identical and the order in which you give out the cookies does not matter.

Before solving the problem, here is a wrong answer: You might guess that the answer should be  because for each of the 7
cookies, there are 4 choices of kids to which you can give the cookie. This is reasonable, but wrong. To see why, consider a few
possible outcomes: we could assign the first six cookies to kid A, and the seventh cookie to kid B. Another outcome would assign
the first cookie to kid B and the six remaining cookies to kid A. Both outcomes are included in the  answer. But for our counting
problem, both outcomes are really the same – kid A gets six cookies and kid B gets one cookie.

What do outcomes actually look like? How can we represent them? One approach would be to write an outcome as a string of four
numbers like this:

which represent the outcome in which the first kid gets 3 cookies, the second and third kid each get 1 cookie, and the fourth kid
gets 2 cookies. Represented this way, the order in which the numbers occur matters. 1312 is a different outcome, because the first
kid gets a one cookie instead of 3. Each number in the string can be any integer between 0 and 7. But the answer is not  We need
the sum of the numbers to be 7.

Another way we might represent outcomes is to write a string of seven letters:

which represents that the first cookie goes to kid A, the second cookie goes to kid B, the third and fourth cookies go to kid A, and
so on. In fact, this outcome is identical to the previous one—A gets 3 cookies, B and C get 1 each and D gets 2. Each of the seven
letters in the string can be any of the 4 possible letters (one for each kid), but the number of such strings is not  because here
order does not matter. In fact, another way to write the same outcome is

This will be the preferred representation of the outcome. Since we can write the letters in any order, we might as well write them in
alphabetical order for the purposes of counting. So we will write all the A's first, then all the B's, and so on.

Now think about how you could specify such an outcome. All we really need to do is say when to switch from one letter to the
next. In terms of cookies, we need to say after how many cookies do we stop giving cookies to the first kid and start giving cookies
to the second kid. And then after how many do we switch to the third kid? And after how many do we switch to the fourth? So yet
another way to represent an outcome is like this:

Investigate!

47

47

3112,

.74

ABAADCD,

,47

AAABCDD.

∗ ∗ ∗| ∗ | ∗ | ∗ ∗
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Three cookies go to the first kid, then we switch and give one cookie to the second kid, then switch, one to the third kid, switch,
two to the fourth kid. Notice that we need 7 stars and 3 bars – one star for each cookie, and one bar for each switch between kids,
so one fewer bars than there are kids (we don't need to switch after the last kid – we are done).

Why have we done all of this? Simple: to count the number of ways to distribute 7 cookies to 4 kids, all we need to do is count how
many stars and bars charts there are. But a stars and bars chart is just a string of symbols, some stars and some bars. If instead of
stars and bars we would use 0's and 1's, it would just be a bit string. We know how to count those.

Before we get too excited, we should make sure that really any string of (in our case) 7 stars and 3 bars corresponds to a different
way to distribute cookies to kids. In particular consider a string like this:

Does that correspond to a cookie distribution? Yes. It represents the distribution in which kid A gets 0 cookies (because we switch
to kid B before any stars), kid B gets three cookies (three stars before the next bar), kid C gets 0 cookies (no stars before the next
bar) and kid D gets the remaining 4 cookies. No matter how the stars and bars are arranged, we can distribute cookies in that way.
Also, given any way to distribute cookies, we can represent that with a stars and bars chart. For example, the distribution in which
kid A gets 6 cookies and kid B gets 1 cookie has the following chart:

After all that work we are finally ready to count. Each way to distribute cookies corresponds to a stars and bars chart with 7 stars
and 3 bars. So there are 10 symbols, and we must choose 3 of them to be bars. Thus:

While we are at it, we can also answer a related question: how many ways are there to distribute 7 cookies to 4 kids so that each kid
gets at least one cookie? What can you say about the corresponding stars and bars charts? The charts must start and end with at
least one star (so that kids A and D) get cookies, and also no two bars can be adjacent (so that kids B and C are not skipped). One
way to assure this is to only place bars in the spaces between the stars. With 7 stars, there are 6 spots between the stars, so we must
choose 3 of those 6 spots to fill with bars. Thus there are  ways to distribute 7 cookies to 4 kids giving at least one cookie to
each kid.

Another (and more general) way to approach this modified problem is to first give each kid one cookie. Now the remaining 3
cookies can be distributed to the 4 kids without restrictions. So we have 3 stars and 3 bars for a total of 6 symbols, 3 of which must
be bars. So again we see that there are  ways to distribute the cookies.

Stars and bars can be used in counting problems other than kids and cookies. Here are a few examples:

Your favorite mathematical pizza chain offers 10 toppings. How many pizzas can you make if you are allowed 6 toppings? The
order of toppings does not matter but now you are allowed repeats. So one possible pizza is triple sausage, double pineapple,
and onions.

Solution

We get 6 toppings (counting possible repeats). Represent each of these toppings as a star. Think of going down the menu
one topping at a time: you see anchovies first, and skip to the next, sausage. You say yes to sausage 3 times (use 3 stars),
then switch to the next topping on the list. You keep skipping until you get to pineapple, which you say yes to twice.
Another switch and you are at onions. You say yes once. Then you keep switching until you get to the last topping, never
saying yes again (since you already have said yes 6 times. There are 10 toppings to choose from, so we must switch from
considering one topping to the next 9 times. These are the bars.

Now that we are confident that we have the right number of stars and bars, we answer the question simply: there are 6 stars
and 9 bars, so 15 symbols. We need to pick 9 of them to be bars, so there number of pizzas possible is

| ∗ ∗ ∗ || ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ | ∗ ||

 There are ( ) ways to distribute 7 cookies to 4 kids.
10

3

( )6
3

( )6
3

Example 11.5.1

( ).
15

9
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How many 7 digit phone numbers are there in which the digits are non-increasing? That is, every digit is less than or equal to
the previous one.

Solution

We need to decide on 7 digits so we will use 7 stars. The bars will represent a switch from each possible single digit
number down the next smaller one. So the phone number 866-5221 is represented by the stars and bars chart

 
There are 10 choices for each digit (0-9) so we must switch between choices 9 times. We have 7 stars and 9 bars, so the
total number of phone numbers is

How many integer solutions are there to the equation

(An integer solution to an equation is a solution in which the unknown must have an integer value.)

1. where  for each 
2. where  for each 
3. where  for each 

Solution

This problem is just like giving 13 cookies to 5 kids. We need to say how many of the 13 units go to each of the 5 variables.
In other words, we have 13 stars and 4 bars (the bars are like the “+” signs in the equation).

1. If  can be 0 or greater, we are in the standard case with no restrictions. So 13 stars and 4 bars can be arranged in 
ways.

2. Now each variable must be at least 1. So give one unit to each variable to satisfy that restriction. Now there are 8 stars
left, and still 4 bars, so the number of solutions is 

3. Now each variable must be 2 or greater. So before any counting, give each variable 2 units. We now have 3 remaining
stars and 4 bars, so there are  solutions.

Counting with Functions

Many of the counting problems in this section might at first appear to be examples of counting functions. After all, when we try to
count the number of ways to distribute cookies to kids, we are assigning each cookie to a kid, just like you assign elements of the
domain of a function to elements in the codomain. However, the number of ways to assign 7 cookies to 4 kids is  while
the number of functions  is  What is going on here?

When we count functions, we consider the following two functions, for example, to be different:

But these two functions would correspond to the same cookie distribution: kids  and  each get one cookie, kid  gets the rest (and
none for kid ).

The point: elements of the domain are distinguished, cookies are indistinguishable. This is analogous to the distinction between
permutations (like counting functions) and combinations (not).

Example 11.5.2

| ∗ || ∗ ∗| ∗ ||| ∗ ∗| ∗ |

( ).
16

9

Example 11.5.3

+ + + + = 13.x1 x2 x3 x4 x5

≥ 0xi ?xi
> 0xi ?xi
≥ 2xi ?xi

xi ( )17
4

( ).12
4

( )7
4

( ) = 120,10
7

f : {1, 2, 3, 4, 5, 6, 7} → {a, b, c, d} = 16384.47

f =( ) g =( ) .
1

a

2

b

3

c

4

c

5

c

6

c

7

c

1
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c
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c
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c
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11.6: Advanced Counting Using PIE

You have 11 identical mini key-lime pies to give to 4 children. However, you don't want any kid to get more than 3 pies. How
many ways can you distribute the pies?

1. How many ways are there to distribute the pies without any restriction?
2. Let's get rid of the ways that one or more kid gets too many pies. How many ways are there to distribute the pies if Al gets

too many pies? What if Bruce gets too many? Or Cat? Or Dent?
3. What if two kids get too many pies? How many ways can this happen? Does it matter which two kids you pick to overfeed?
4. Is it possible that three kids get too many pies? If so, how many ways can this happen?
5. How should you combine all the numbers you found above to answer the original question?

Suppose now you have 13 pies and 7 children. No child can have more than 2 pies. How many ways can you distribute the
pies?

Stars and bars allows us to count the number of ways to distribute 10 cookies to 3 kids and natural number solutions to 
 for example. A relatively easy modification allows us to put a lower bound restriction on these problems: perhaps

each kid must get at least two cookies or  This was done by first assigning each kid (or variable) 2 cookies (or units)
and then distributing the rest using stars and bars.

What if we wanted an upper bound restriction? For example, we might insist that no kid gets more than 4 cookies or that 
 It turns out this is considerably harder, but still possible. The idea is to count all the distributions and then remove those

that violate the condition. In other words, we must count the number of ways to distribute 11 cookies to 3 kids in which one or
more of the kids gets more than 4 cookies. For any particular kid, this is not a problem; we do this using stars and bars. But how to
combine the number of ways for kid A, or B or C? We must use the PIE.

The Principle of Inclusion/Exclusion (PIE) gives a method for finding the cardinality of the union of not necessarily disjoint sets.
We saw in Subsection how this works with three sets. To find how many things are in one or more of the sets   and  we
should just add up the number of things in each of these sets. However, if there is any overlap among the sets, those elements are
counted multiple times. So we subtract the things in each intersection of a pair of sets. But doing this removes elements which are
in all three sets once too often, so we need to add it back in. In terms of cardinality of sets, we have

Three kids, Alberto, Bernadette, and Carlos, decide to share 11 cookies. They wonder how many ways they could split the
cookies up provided that none of them receive more than 4 cookies (someone receiving no cookies is for some reason
acceptable to these kids).

Solution

Without the “no more than 4” restriction, the answer would be  using 11 stars and 2 bars (separating the three kids).
Now count the number of ways that one or more of the kids violates the condition, i.e., gets at least 4 cookies.

Let  be the set of outcomes in which Alberto gets more than 4 cookies. Let  be the set of outcomes in which Bernadette
gets more than 4 cookies. Let  be the set of outcomes in which Carlos gets more than 4 cookies. We then are looking (for
the sake of subtraction) for the size of the set  Using PIE, we must find the sizes of     and
so on. Here is what we find.

 First give Alberto 5 cookies, then distribute the remaining 6 to the three kids without restrictions, using 6 stars
and 2 bars. 

 Just like above, only now Bernadette gets 5 cookies at the start. 
 Carlos gets 5 cookies first. 

 Give Alberto and Bernadette 5 cookies each, leaving 1 (star) to distribute to the three kids (2 bars). 
 Alberto and Carlos get 5 cookies first. 

Investigate!

x+y+z= 11,

x, y, z≥ 2.

x, y, z≤ 4.

A, B, C,

|A∪B∪C| = |A| + |B| + |C| − |A∩B| − |A∩C| − |B∩C| + |A∩B∩C|.

Example :11.6.1

( ),13
2

A B

C

A∪B∪C. |A|, |B|, |C|, |A∩B|

|A| = ( ).8
2

|B| = ( ).8
2

|C| = ( ).8
2

|A∩B| = ( ).3
2

|A∩C| = ( ).3
2
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 Bernadette and Carlos get 5 cookies first. 
 It is not possible for all three kids to get 4 or more cookies.

Combining all of these we see

Thus the answer to the original question is  This makes sense now that we see it. The only way
to ensure that no kid gets more than 4 cookies is to give two kids 4 cookies and one kid 3; there are three choices for which
kid that should be. We could have found the answer much quicker through this observation, but the point of the example is
to illustrate that PIE works!

For four or more sets, we do not write down a formula for PIE. Instead, we just think of the principle: add up all the elements in
single sets, then subtract out things you counted twice (elements in the intersection of a pair of sets), then add back in elements you
removed too often (elements in the intersection of groups of three sets), then take back out elements you added back in too often
(elements in the intersection of groups of four sets), then add back in, take back out, add back in, etc. This would be very difficult if
it wasn't for the fact that in these problems, all the cardinalities of the single sets are equal, as are all the cardinalities of the
intersections of two sets, and that of three sets, and so on. Thus we can group all of these together and multiply by how many
different combinations of 1, 2, 3, … sets there are.

How many ways can you distribute 10 cookies to 4 kids so that no kid gets more than 2 cookies?

Solution

There are  ways to distribute 10 cookies to 4 kids (using 10 stars and 3 bars). We will subtract all the outcomes in
which a kid gets 3 or more cookies. How many outcomes are there like that? We can force kid A to eat 3 or more cookies
by giving him 3 cookies before we start. Doing so reduces the problem to one in which we have 7 cookies to give to 4 kids
without any restrictions. In that case, we have 7 stars (the 7 remaining cookies) and 3 bars (one less than the number of
kids) so we can distribute the cookies in  ways. Of course we could choose any one of the 4 kids to give too many
cookies, so it would appear that there are  ways to distribute the cookies giving too many to one kid. But in fact, we
have over counted.

We must get rid of the outcomes in which two kids have too many cookies. There are  ways to select 2 kids to give extra
cookies. It takes 6 cookies to do this, leaving only 4 cookies. So we have 4 stars and still 3 bars. The remaining 4 cookies
can thus be distributed in  ways (for each of the  choices of which 2 kids to over-feed).

But now we have removed too much. We must add back in all the ways to give too many cookies to three kids. This uses 9
cookies, leaving only 1 to distribute to the 4 kids using stars and bars, which can be done in  ways. We must consider
this outcome for every possible choice of which three kids we over-feed, and there are  ways of selecting that set of 3
kids.

Next we would subtract all the ways to give four kids too many cookies, but in this case, that number is 0.

All together we get that the number of ways to distribute 10 cookies to 4 kids without giving any kid more than 2 cookies
is:

 
which is

 
This makes sense: there is NO way to distribute 10 cookies to 4 kids and make sure that nobody gets more than 2. It is

|B∩C| = ( ).3
2

|A∩B∩C| = 0.

|A∪B∪C| =( )+( )+( )−( )−( )−( )+0 = 75.
8

2

8

2

8

2

3

2

3

2

3

2

( )−75 = 78−75 = 3.13
2

Example 11.6.2

( )13
3

( )10
3

( )( )4
1

10
3

( )4
2

( )73 ( )42

( )43
( )43

( )−[( )( )−( )( )+( )( )]
13

3

4

1

10

3

4

2

7

3

4

3

4

3

286−[480−210+16] = 0.
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slightly surprising that

but since PIE works, this equality must hold.

Just so you don't think that these problems always have easier solutions, consider the following example.

Earlier (Example 1.5.3) we counted the number of solutions to the equation

where  for each 

How many of those solutions have  for each 

Solution

We must subtract off the number of solutions in which one or more of the variables has a value greater than 3. We will need
to use PIE because counting the number of solutions for which each of the five variables separately are greater than 3
counts solutions multiple times. Here is what we get:

Total solutions: 
Solutions where   Give  4 units first, then distribute the remaining 9 units to the 5 variables.
Solutions where  and   After you give 4 units to  and another 4 to  you only have 5 units left to
distribute.
Solutions where   and  
Solutions where    and  0.

We also need to account for the fact that we could choose any of the five variables in the place of  above (so there will be
 outcomes like this), any pair of variables in the place of  and  (  outcomes) and so on. It is because of this that

the double counting occurs, so we need to use PIE. All together we have that the number of solutions with  is

Counting Derangements

For your senior prank, you decide to switch the nameplates on your favorite 5 professors' doors. So that none of them feel left
out, you want to make sure that all of the nameplates end up on the wrong door. How many ways can this be accomplished?

The advanced use of PIE has applications beyond stars and bars. A derangement of  elements  is a permutation in
which no element is fixed. For example, there are  permutations of the three elements 

but most of these have one or more elements fixed:  has all three elements fixed since all three elements are in their original
positions,  has the first element fixed (1 is in its original first position), and so on. In fact, the only derangements of three
elements are

If we go up to 4 elements, there are 24 permutations (because we have 4 choices for the first element, 3 choices for the second, 2
choices for the third leaving only 1 choice for the last). How many of these are derangements? If you list out all 24 permutations

( ) = [( )( )−( )( )+( )( )]
13

3

4

1

10

3

4

2

7

3

4

3

4

3

Example 11.6.3

+ + + + = 13x1 x2 x3 x4 x5

≥ 0xi .xi

0 ≤ ≤ 3xi ?xi

( ).17
4

> 3:x1 ( ).13
4 x1

> 3x1 > 3:x2 ( ).9
4 x1 ,x2

> 3,x1 > 3x2 > 3:x3 ( ).5
4

> 3,x1 > 3,x2 > 3,x3 > 3:x4

x1

( )5
1

x1 x2 ( )5
2

0 ≤ ≤ 3xi

( )−[( )( )−( )( )+( )( )]= 15.
17

4

5

1

13

4

5

2

9

4

5

3

5

4

Investigate!

n {1, 2, 3,… ,n}

6 {1, 2, 3}:

123  132  213  231  312  321.

123

132

231 and 312.
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and eliminate those which are not derangements, you will be left with just 9 derangements. Let's see how we can get that number
using PIE.

How many derangements are there of 4 elements?

Solution

We count all permutations, and subtract those which are not derangements. There are  permutations of 4 elements.
Now for a permutation to not be a derangement, at least one of the 4 elements must be fixed. There are  choices for
which single element we fix. Once fixed, we need to find a permutation of the other three elements. There are 
permutations on 3 elements. But now we have counted too many non-derangements, so we must subtract those
permutations which fix two elements. There are  choices for which two elements we fix, and then for each pair, 
permutations of the remaining elements. But this subtracts too many, so add back in permutations which fix 3 elements, all 

 of them. Finally subtract the  permutations (recall ) which fix all four elements. All together we get that
the number of derangements of 4 elements is:

Of course we can use a similar formula to count the derangements of any number of elements. However, the more elements we
have, the longer the formula gets. Here is another example:

Five gentlemen attend a party, leaving their hats at the door. At the end of the party, they hastily grab hats on their way out.
How many different ways could this happen so that none of the gentlemen leave with their own hat?

Solution

We are counting derangements on 5 elements. There are  ways for the gentlemen to grab hats in any order—but many of
these permutations will result in someone getting their own hat. So we subtract all the ways in which one or more of the
men get their own hat. In other words, we subtract the non-derangements. Doing so requires PIE. Thus the answer is:

Counting Functions

Consider all functions  How many functions are there all together? How many of those
are injective? Remember, a function is an injection if every input goes to a different output.
Consider all functions  How many of the injections have the property that  for
any ? Your friend claims that the answer is:

Explain why this is correct.
Recall that a surjection is a function for which every element of the codomain is in the range. How many of the functions 

 are surjective? Use PIE!

We have seen throughout this chapter that many counting questions can be rephrased as questions about counting functions with
certain properties. This is reasonable since many counting questions can be thought of as counting the number of ways to assign
elements from one set to elements of another.

Example 11.6.4

4! = 24

( )4
1

3!

( )42 2!

( )1!4
3

( )0!4
4

0! = 1

4!−[( )3!−( )2!+( )1!−( )0!]= 24−15 = 9.
4

1

4

2

4

3

4

4

Example 11.6.5

5!

5! −[( )4!−( )3!+( )2!−( )1!+( )0!] .
5

1

5

2

5

3

5

4

5

5

Investigate!

f : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5}.

f : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5}. f(x) ≠ x

x ∈ {1, 2, 3, 4, 5}

5!−[( )4!−( )3!+( )2!−( )1!+( )0!] .
5

1

5

2

5

3

5

4

5

5

f : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5}
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You decide to give away your video game collection so to better spend your time studying advance mathematics. How many
ways can you do this, provided:

1. You want to distribute your 3 different PS4 games among 5 friends, so that no friend gets more than one game?
2. You want to distribute your 8 different 3DS games among 5 friends?
3. You want to distribute your 8 different SNES games among 5 friends, so that each friend gets at least one game?

In each case, model the counting question as a function counting question.

Solution

We must use the three games (call them 1, 2, 3) as the domain and the 5 friends (a,b,c,d,e) as the codomain (otherwise the
function would not be defined for the whole domain when a friend didn't get any game). So how many functions are there
with domain  and codomain  The answer to this is  since we can assign any of 5 elements
to be the image of 1, any of 5 elements to be the image of 2 and any of 5 elements to be the image of 3.

But this is not the correct answer to our counting problem, because one of these functions is  one friend

can get more than one game. What we really need to do is count injective functions. This gives  functions,
which is the answer to our counting question.

Again, we need to use the 8 games as the domain and the 5 friends as the codomain. We are counting all functions, so the
number of ways to distribute the games is 

This question is harder. Use the games as the domain and friends as the codomain (otherwise an element of the domain
would have more than one image, which is impossible). To ensure that every friend gets at least one game means that every
element of the codomain is in the range. In other words, we are looking for surjective functions. How do you count those?

     In Example 1.1.5 we saw how to count all functions (using the multiplicative principle) and in Example 1.3.4 we learned how to
count injective functions (using permutations). Surjective functions are not as easily counted (unless the size of the domain is
smaller than the codomain, in which case there are none).

The idea is to count the functions which are not surjective, and then subtract that from the total number of functions. This works
very well when the codomain has two elements in it:

How many functions  are surjective?

Solution

There are  functions all together, two choices for where to send each of the 5 elements of the domain. Now of these, the
functions which are not surjective must exclude one or more elements of the codomain from the range. So first, consider
functions for which  is not in the range. This can only happen one way: everything gets sent to  Alternatively, we could
exclude  from the range. Then everything gets sent to  so there is only one function like this. These are the only ways in
which a function could not be surjective (no function excludes both  and  from the range) so there are exactly 
surjective functions.

When there are three elements in the codomain, there are now three choices for a single element to exclude from the range.
Additionally, we could pick pairs of two elements to exclude from the range, and we must make sure we don't over count these. It's
PIE time!

How many functions  are surjective?

Solution

Example 11.6.6

{1, 2, 3} {a, b, c, d, e}? = 125,53

f =( ) ;
1

a

2

a

3

a

P (5, 3) = 60

.58

Example 11.6.7

f : {1, 2, 3, 4, 5} → {a, b}

25

a b.

b a,

a b −225

Example 11.6.8

f : {1, 2, 3, 4, 5} → {a, b, c}
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Again start with the total number of functions:  (as each of the five elements of the domain can go to any of three
elements of the codomain). Now we count the functions which are not surjective.

Start by excluding  from the range. Then we have two choices (  or ) for where to send each of the five elements of the
domain. Thus there are  functions which exclude  from the range. Similarly, there are  functions which exclude  and
another  which exclude  Now have we counted all functions which are not surjective? Yes, but in fact, we have counted
some multiple times. For example, the function which sends everything to  was one of the  functions we counted when
we excluded  from the range, and also one of the  functions we counted when we excluded  from the range. We must
subtract out all the functions which specifically exclude two elements from the range. There is 1 function when we exclude 

 and  (everything goes to ), one function when we exclude  and  and one function when we exclude  and 

We are using PIE: to count the functions which are not surjective, we added up the functions which exclude   and 
separately, then subtracted the functions which exclude pairs of elements. We would then add back in the functions which
exclude groups of three elements, except that there are no such functions. We find that the number of functions which are
not surjective is

Perhaps a more descriptive way to write this is

since each of the 's was the result of choosing 1 of the 3 elements of the codomain to exclude from the range, each of the
three 's was the result of choosing 2 of the 3 elements of the codomain to exclude. Writing  instead of 1 makes sense
too: we have 1 choice of were to send each of the 5 elements of the domain.

Now we can finally count the number of surjective functions:

You might worry that to count surjective functions when the codomain is larger than 3 elements would be too tedious. We need to
use PIE but with more than 3 sets the formula for PIE is very long. However, we have lucked out. As we saw in the example above,
the number of functions which exclude a single element from the range is the same no matter which single element is excluded.
Similarly, the number of functions which exclude a pair of elements will be the same for every pair. With larger codomains, we will
see the same behavior with groups of 3, 4, and more elements excluded. So instead of adding/subtracting each of these, we can
simply add or subtract all of them at once, if you know how many there are. This works just like it did in for the other types of
counting questions in this section, only now the size of the various combinations of sets is a number raised to a power, as opposed
to a binomial coefficient or factorial. Here's what happens with  and  elements in the codomain.

1. How many functions  are surjective?
2. How many functions  are surjective?

Solution

There are  functions all together; we will subtract the functions which are not surjective. We could exclude any one of the
four elements of the codomain, and doing so will leave us with  functions for each excluded element. This counts too
many so we subtract the functions which exclude two of the four elements of the codomain, each pair giving  functions.
But this excludes too many, so we add back in the functions which exclude three of the four elements of the codomain, each
triple giving  function. There are  groups of functions excluding a single element,  groups of functions excluding a
pair of elements, and  groups of functions excluding a triple of elements. This means that the number of functions which
are not surjective is:

35

a b c

25 a 25 b,

25 c.

c 25

a 25 b

a b c a c, b c.

a, b, c

+ + −1−1−1+0.25 25 25

( ) −( ) +( ) .
3

1
25

3

2
15

3

3
05

25

15 15

−[( ) −( ) ]= 150.35
3

1
25

3

2
15

4 5

Example 11.6.9

f : {1, 2, 3, 4, 5} → {a, b, c, d}

f : {1, 2, 3, 4, 5} → {a, b, c, d, e}

45

35

25

15 ( )41 ( )42
( )4
3

( ) −( ) +( ) .
4

1
35

4

2
25

4

3
15

https://libretexts.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://math.libretexts.org/@go/page/86173?pdf


11.6.7 https://math.libretexts.org/@go/page/86173

We can now say that the number of functions which are surjective is:

The number of surjective functions is:

We took the total number of functions  and subtracted all that were not surjective. There were  ways to select a single
element from the codomain to exclude from the range, and for each there were  functions. But this double counts, so we
use PIE and subtract functions excluding two elements from the range: there are  choices for the two elements to
exclude, and for each pair,  functions. This takes out too many functions, so we add back in functions which exclude 3
elements from the range:  choices for which three to exclude, and then  functions for each choice of elements. Finally
we take back out the 1 function which excludes 4 elements for each of the  choices of 4 elements.

If you happen to calculate this number precisely, you will get 120 surjections. That happens to also be the value of  This
might seem like an amazing coincidence until you realize that every surjective function  with  finite
must necessarily be a bijection. The number of bijections is always  in this case. What we have here is a combinatorial
proof of the following identity:

 We have seen that counting surjective functions is another nice example of the advanced use of the Principle of
Inclusion/Exclusion. Also, counting injective functions turns out to be equivalent to permutations, and counting all functions has a
solution akin to those counting problems where order matters but repeats are allowed (like counting the number of words you can
make from a given set of letters).

These are not just a few more examples of the techniques we have developed in this chapter. Quite the opposite: everything we
have learned in this chapter are examples of counting functions!

How many 5-letter words can you make using the eight letters  through  How many contain no repeated letters?

Solution

By now it should be no surprise that there are  words, and  words without repeated letters. The new piece here is
that we are actually counting functions. For the first problem, we are counting all functions from  to 

 The numbers in the domain represent the position of the letter in the word, the codomain represents the letter
that could be assigned to that position. If we ask for no repeated letters, we are asking for injective functions.

If  and  are any sets with  and  then the number of functions  is  and the number of
injections is  So if you can represent your counting problem as a function counting problem, most of the work is
done.

How many subsets are there of  How many 9-bit strings are there (of any weight)?

Solution

We saw in Section 1.2 that the answer to both these questions is  as we can say yes or no (or 0 or 1) to each of the 9
elements in the set (positions in the bit-string). But  also looks like the answer you get from counting functions. In fact, if
you count all functions  with  and  this is exactly what you get.
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Example 11.6.10

a h?

85 P (8, 5)

{1, 2,… , 5}

{a, b,… ,h}.

A B |A| = 5 |B| = 8, f : A→B 85

P (8, 5).

Example 11.6.11

{1, 2,… , 9}?

,29

29

f : A→B |A| = 9 |B| = 2,
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This makes sense! Let  and  We are assigning each element of the set either a yes or a no. Or
in the language of bit-strings, we would take the 9 positions in the bit string as our domain and the set  as the
codomain.

So far we have not used a function as a model for binomial coefficients (combinations). Think for a moment about the relationship
between combinations and permutations, say specifically  and  We do have a function model for  This is the
number of injective functions from a set of size 3 (say  to a set of size 9 (say ) since there are 9 choices for
where to send the first element of the domain, then only 8 choices for the second, and 7 choices for the third. For example, the
function might look like this:

This is a different function from:

Now  counts these as different outcomes correctly, but  will count these (among others) as just one outcome. In fact, in
terms of functions  just counts the number of different ranges possible of injective functions. This should not be a surprise since
binomial coefficients counts subsets, and the range is a possible subset of the codomain. A more mathematically sophisticated
interpretation of combinations is that we are defining two injective functions to be equivalent if they have the same range, and then
counting the number of equivalence classes under this notion of equivalence.

While it is possible to interpret combinations as functions, perhaps the better advice is to instead use combinations (or stars and
bars) when functions are not quite the right way to interpret the counting question.

This page titled 11.6: Advanced Counting Using PIE is shared under a CC BY-SA license and was authored, remixed, and/or curated by Oscar
Levin.

1.6: Advanced Counting Using PIE by Oscar Levin is licensed CC BY-SA 4.0.

A= {1, 2,… , 9} B= {y,n}.

{0, 1}

( )9
3

P (9, 3). P (9, 3).

{1, 2, 3} {1, 2,… , 9}

f(1) = 5 f(2) = 8 f(3) = 4.

f(1) = 4 f(2) = 5 f(3) = 8.

P (9, 3) ( )9
3

( )93
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11.E: Counting (Exercises)

1.1: Additive and Multiplicative Principles

1

Your wardrobe consists of 5 shirts, 3 pairs of pants, and 17 bow ties. How many different outfits can you make?

Answer

There are 255 outfits. Use the multiplicative principle.

2

For your college interview, you must wear a tie. You own 3 regular (boring) ties and 5 (cool) bow ties.

a. How many choices do you have for your neck-wear?
b. You realize that the interview is for clown college, so you should probably wear both a regular tie and a bow tie. How many

choices do you have now?
c. For the rest of your outfit, you have 5 shirts, 4 skirts, 3 pants, and 7 dresses. You want to select either a shirt to wear with a skirt

or pants, or just a dress. How many outfits do you have to choose from?

Answer
a. 8 ties. Use the additive principle.
b. 15 ties. Use the multiplicative principle
c.  outfits.

3

Your Blu-ray collection consists of 9 comedies and 7 horror movies. Give an example of a question for which the answer is:

a. 16.
b. 63.

Answer
a. For example, 16 is the number of choices you have if you want to watch one movie, either a comedy or horror flick.
b. For example, 63 is the number of choices you have if you will watch two movies, first a comedy and then a horror.

4

We usually write numbers in decimal form (or base 10), meaning numbers are composed using 10 different “digits” 
Sometimes though it is useful to write numbers hexadecimal or base 16. Now there are 16 distinct digits that can be used to form
numbers:  So for example, a 3 digit hexadecimal number might be 2B8.

a. How many 2-digit hexadecimals are there in which the first digit is E or F? Explain your answer in terms of the additive
principle (using either events or sets).

b. Explain why your answer to the previous part is correct in terms of the multiplicative principle (using either events or sets).
Why do both the additive and multiplicative principles give you the same answer?

c. How many 3-digit hexadecimals start with a letter (A-F) and end with a numeral (0-9)? Explain.
d. How many 3-digit hexadecimals start with a letter (A-F) or end with a numeral (0-9) (or both)? Explain.

5

Suppose you have sets  and  with  and 

a. What is the largest possible value for 
b. What is the smallest possible value for 
c. What are the possible values for 

Answer
a. To maximize the number of elements in common between  and  make  This would give 

5 ⋅ (4+3)+7 = 42

{0, 1,… , 9}.

{0, 1,… , 9, A, B, C,D, E, F}.

A B |A| = 10 |B| = 15.

|A∩B| ?

|A∩B| ?

|A∪B| ?

A B, A⊂B. |A∩B| = 10.
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b.  and  might have no elements in common, giving 
c.  In fact, when  then  and when  then 

6

If  and  what is 

Answer

 Use PIE: we know 

7

A group of college students were asked about their TV watching habits. Of those surveyed, 28 students watch The Walking Dead,
19 watch The Blacklist, and 24 watch Game of Thrones. Additionally, 16 watch The Walking Dead and The Blacklist, 14 watch The
Walking Dead and Game of Thrones, and 10 watch The Blacklist and Game of Thrones. There are 8 students who watch all three
shows. How many students surveyed watched at least one of the shows?

Answer

39 students. Use PIE or a Venn diagram.

8

In a recent survey, 30 students reported whether they liked their potatoes Mashed, French-fried, or Twice-baked. 15 liked them
mashed, 20 liked French fries, and 9 liked twice baked potatoes. Additionally, 12 students liked both mashed and fried potatoes, 5
liked French fries and twice baked potatoes, 6 liked mashed and baked, and 3 liked all three styles. How many students hate
potatoes? Explain why your answer is correct.

9

For how many  is  a multiple of one or more of 5, 6, or 7?

Hint:

To find out how many numbers are divisible by 6 and 7, for example, take  and round down.

10

Let   and  be sets.

a. Find  provided       and 

b. Describe a set in terms of   and  with cardinality 26.

11

Consider all 5 letter “words” made from the letters  through  (Recall, words are just strings of letters, not necessarily actual
English words.)

a. How many of these words are there total?
b. How many of these words contain no repeated letters?
c. How many of these words start with the sub-word “aha”?
d. How many of these words either start with “aha” or end with “bah” or both?
e. How many of the words containing no repeats also do not contain the sub-word “bad”?

Answer

a.  words, since you select from 8 letters 5 times.
b.  words. After selecting a letter, you have fewer letters to select for the next one.
c.  words: you need to select the 4th and 5th letters.
d.  words. There are 64 words which start with “aha” and another 64 words that end with “bah.” Perhaps

we over counted the words that both start with “aha” and end with “bah”, but since the words are only 5 letters long, there
are no such words.

A B |A∩B| = 0.

15 ≤ |A∪B| ≤ 25. |A∩B| = 0 |A∪B| = 25 |A∩B| = 10 |A∪B| = 15.

|A| = 8 |B| = 5, |A∪B| + |A∩B| ?

|A∪B| + |A∩B| = 13. |A∪B| = 8+5−|A∩B| .

n ∈ {1, 2,… , 500} n

500/42

A, B, C

|(A∪C) ∖B| |A| = 50, |B| = 45, |C| = 40, |A∩B| = 20, |A∩C| = 15, |B∩C| = 23,

|A∩B∩C| = 12.

A, B, C

a h.

= 3276885

8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 = 6720

8 ⋅ 8 = 64

64+64−0 = 128
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e.  words. All the words minus the bad ones. The taboo word can be in any of three
positions (starting with letter 1, 2, or 3) and for each position we must choose the other two letters (from the remaining 5
letters).

12

For how many three digit numbers (100 to 999) is the sum of the digits even? (For example,  has an even sum of digits: 
 which is even.) Find the answer and explain why it is correct in at least two different ways.

13

The number 735000 factors as  How many divisors does it have? Explain your answer using the multiplicative
principle.

1.2: Binomial Coefficients

1

Let 

a. How many subsets are there total?
b. How many subsets have  as a subset?
c. How many subsets contain at least one odd number?
d. How many subsets contain exactly one even number?

Answer

a.  subsets. We need to select yes/no for each of the six elements.
b.  subsets. We need to select yes/no for each of the remaining three elements.
c.  subsets. There are 8 subsets which do not contain any odd numbers (select yes/no for each even number).
d.  subsets. First pick the even number. Then say yes or no to each of the odd numbers.

2

Let 

a. How many subsets are there of cardinality 4?
b. How many subsets of cardinality 4 have  as a subset?
c. How many subsets of cardinality 4 contain at least one odd number?
d. How many subsets of cardinality 4 contain exactly one even number?

Answer

a.  subsets.
b.  subsets. We need to select 1 of the 3 remaining elements to be in the subset.
c.  subsets. All subsets of cardinality 4 must contain at least one odd number.
d.  subsets. Select 1 of the 3 even numbers. The remaining three odd numbers of  must all be in the set.

3

Let 

a. How many subsets of  are there? That is, find  Explain.
b. How many subsets of  contain exactly 5 elements? Explain.
c. How many subsets of  contain only even numbers? Explain.
d. How many subsets of  contain an even number of elements? Explain.

4

How many -bit strings (that is, bit strings of length 9) are there which:

a. Start with the sub-string 101? Explain.
b. Have weight 5 (i.e., contain exactly five 1's) and start with the sub-string 101? Explain.

(8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4)−3 ⋅ (5 ⋅ 4) = 6660

343

3+4+3 = 10

⋅ 3 ⋅ ⋅ .23 54 72

S = {1, 2, 3, 4, 5, 6}

{2, 3, 5}

= 6426

= 823

− = 5626 23

3 ⋅ = 2423

S = {1, 2, 3, 4, 5, 6}

{2, 3, 5}

( ) = 156
4

( ) = 33
1

( ) = 156
4

( ) = 33
1 S

A= {1, 2, 3,… , 9}.

A |P(A)|.

A

A

A

9
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c. Either start with  or end with  (or both)? Explain.
d. Have weight 5 and either start with 101 or end with 11 (or both)? Explain.

5

You break your piggy-bank to discover lots of pennies and nickels. You start arranging these in rows of 6 coins.

a. You find yourself making rows containing an equal number of pennies and nickels. For fun, you decide to lay out every possible
such row. How many coins will you need?

b. How many coins would you need to make all possible rows of 6 coins (not necessarily with equal number of pennies and
nickels)?

Answer
a. We can think of each row as a 6-bit string of weight 3 (since of the 6 coins, we require 3 to be pennies). Thus there are 

 rows possible. Each row requires 6 coins, so if we want to make all the rows at the same time, we will need 120
coins (60 of each).

b. Now there are  rows possible, which is also  if you break them up into
rows containing 0, 1, 2, etc. pennies. Thus we need  coins (192 of each).

6

How many 10-bit strings contain 6 or more 1's?

Answer

 strings. Count the number of strings with each permissible number of 1's separately,
then add them up.

7

How many subsets of  have cardinality 6 or more?

Hint:

Break the question into five cases.

8

What is the coefficient of  in 

Answer

To get an  we must pick 12 of the 15 factors to contribute an  leaving the other 3 to contribute a 2. There are  ways to
select these 12 factors. So the term containing an  will be  In other words, the coefficient of  is 

9

What is the coefficient of  in the expansion of 

10

How many shortest lattice paths start at (3,3) and

a. end at (10,10)?
b. end at (10,10) and pass through (5,7)?
c. end at (10,10) and avoid (5,7)?

Answer

a.  paths. The paths all have length 14 (7 steps up and 7 steps right), we just select which 7 of those 14 should be
up.

b.  paths. First travel to (5,7), and then continue on to (10,10).

101 11
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c.  paths. Remove all the paths that you found in part (b).

11

Gridtown USA, besides having excellent donut shoppes, is known for its precisely laid out grid of streets and avenues. Streets run
east-west, and avenues north-south, for the entire stretch of the town, never curving and never interrupted by parks or schools or the
like.

Suppose you live on the corner of 1st and 1st and work on the corner of 12th and 12th. Thus you must travel 22 blocks to get to
work as quickly as possible.

a. How many different routes can you take to work, assuming you want to get there as quickly as possible?
b. Now suppose you want to stop and get a donut on the way to work, from your favorite donut shoppe on the corner of 8th st and

10th ave. How many routes to work, via the donut shoppe, can you take (again, ensuring the shortest possible route)?
c. Disaster Strikes Gridtown: there is a pothole on 4th avenue between 5th and 6th street. How many routes to work can you take

avoiding that unsightly (and dangerous) stretch of road?
d. How many routes are there both avoiding the pothole and visiting the donut shoppe?

12

Suppose you are ordering a large pizza from D.P. Dough. You want 3 distinct toppings, chosen from their list of 11 vegetarian
toppings.

a. How many choices do you have for your pizza?
b. How many choices do you have for your pizza if you refuse to have pineapple as one of your toppings?
c. How many choices do you have for your pizza if you insist on having pineapple as one of your toppings?
d. How do the three questions above relate to each other?

13

Explain why the coefficient of  the same as the coefficient of  in the expansion of 

1.3: Combinations and Permutations

1

A pizza parlor offers 10 toppings.

a. How many 3-topping pizzas could they put on their menu? Assume double toppings are not allowed.
b. How many total pizzas are possible, with between zero and ten toppings (but not double toppings) allowed?
c. The pizza parlor will list the 10 toppings in two equal-sized columns on their menu. How many ways can they arrange the

toppings in the left column?

Answer

a.  pizzas. We must choose (in no particular order) 3 out of the 10 toppings.
b.  pizzas. Say yes or no to each topping.
c.  ways. Assign each of the 5 spots in the left column to a unique pizza topping.

2

A combination lock consists of a dial with 40 numbers on it. To open the lock, you turn the dial to the right until you reach a first
number, then to the left until you get to second number, then to the right again to the third number. The numbers must be distinct.
How many different combinations are possible?

Answer

Despite its name, we are not looking for a combination here. The order in which the three numbers appears matters. There are 
 different possibilities for the “combination”. This is assuming you cannot repeat any of the numbers (if

you could, the answer would be ).

( )−( )( )14
7

6
2

8
5

x5y3 x3y5 (x+y ?)8

( ) = 12010
3

= 1024210

P (10, 5) = 30240

P (40, 3) = 40 ⋅ 39 ⋅ 38
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3

Using the digits 2 through 8, find the number of different 5-digit numbers such that:

a. Digits can be used more than once.
b. Digits cannot be repeated, but can come in any order.
c. Digits cannot be repeated and must be written in increasing order.
d. Which of the above counting questions is a combination and which is a permutation? Explain why this makes sense.

4

How many triangles are there with vertices from the points shown below? Note, we are not allowing degenerate triangles - ones
with all three vertices on the same line, but we do allow non-right triangles. Explain why your answer is correct.

Hint:

You need exactly two points on either the - or -axis, but don't over-count the right triangles.

5

How many quadrilaterals can you draw using the dots below as vertices (corners)?

Answer

 quadrilaterals. We must pick two of the seven dots from the top row and two of the seven dots on the bottom row.
However, it does not make a difference which of the two (on each row) we pick first because once these four dots are selected,
there is exactly one quadrilateral that they determine.

6

How many of the quadrilaterals possible in the previous problem are:

a. Squares?
b. Rectangles?
c. Parallelograms?
d. Trapezoids? Here, as in calculus, a trapezoid is defined as a quadrilateral with at least one pair of parallel sides. In particular,

parallelograms are trapezoids.
e. Trapezoids that are not parallelograms?

Answer
a. 5 squares. You need to skip exactly one dot on the top and on the bottom to make the side lengths equal. Once you pick a dot

on the top, the other three dots are determined.
b.  rectangles. Once you select the two dots on the top, the bottom two are determined.
c. This is tricky since you need to worry about running out of space. One way to count: break into cases by the location of the

top left corner. You get  parallelograms.
d. All of them

e.  All of them, except the parallelograms.

7

An anagram of a word is just a rearrangement of its letters. How many different anagrams of “uncopyrightable” are there? (This
happens to be the longest common English word without any repeated letters.)

8

How many anagrams are there of the word “assesses” that start with the letter “a”?

Answer

After the first letter (a), we must rearrange the remaining 7 letters. There are only two letters (s and e), so this is really just a bit-
string question (think of s as 1 and e as 0). Thus there  anagrams starting with “a”.

x y
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2
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9

How many anagrams are there of “anagram”?

10

On a business retreat, your company of 20 businessmen and businesswomen go golfing.

a. You need to divide up into foursomes (groups of 4 people): a first foursome, a second foursome, and so on. How many ways
can you do this?

b. After all your hard work, you realize that in fact, you want each foursome to include one of the five Board members. How many
ways can you do this?

Answer

a.  ways. Pick 4 out of 20 people to be in the first foursome, then 4 of the remaining 16 for the second
foursome, and so on (use the multiplicative principle to combine).

b.  ways. First determine the tee time of the 5 board members, then select 3 of the 15 non board members
to golf with the first board member, then 3 of the remaining 12 to golf with the second, and so on.

11

How many different seating arrangements are possible for King Arthur and his 9 knights around their round table?

Answer

 (there are 10 people seated around the table, but it does not matter where King Arthur sits, only who sits to his left, two seats
to his left, and so on).

12

Consider sets  and  with  and 

a. How many functions  are there?
b. How many functions  are injective?

Answer

a.  functions. There are 17 choices for the image of each element in the domain.
b.  injective functions. There are 17 choices for image of the first element of the domain, then only 16 choices for the

second, and so on.

13

Consider functions 

a. How many functions are there total?
b. How many functions are injective?
c. How many of the injective functions are increasing? To be increasing means that if  then  or in other words,

the outputs get larger as the inputs get larger.

14

We have seen that the formula for  is  Your task here is to explain why this is the right formula.

a. Suppose you have 12 chips, each a different color. How many different stacks of 5 chips can you make? Explain your answer
and why it is the same as using the formula for 

b. Using the scenario of the 12 chips again, what does  count? What does  count? Explain.
c. Explain why it makes sense to divide  by  when computing  (in terms of the chips).
d. Does your explanation work for numbers other than 12 and 5? Explain the formula  using the variables  and 
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1.4: Combinatorial Proofs

1

Prove the identity  using a question about subsets.

Answer

Proof

Question: How many subsets of size  are there of the set 

Answer 1: You must choose  out of  elements to put in the set, which can be done in  ways.

Answer 2: First count the number of -element subsets of  which contain the number  We must choose  of
the  other element to include in this set. Thus there are  such subsets. We have not yet counted all the -element
subsets of  though. In fact, we have missed exactly those subsets which do NOT contain  To form one of these
subsets, we need to choose  of the other  elements, so this can be done in  ways. Thus the answer to the question is

Since the two answers are both answers tot eh same question, they are equal, establishing the identity 

2

Give a combinatorial proof of the identity 

Answer

Proof

Question: How many 2-letter words start with a, b, or c and end with either y or z?

Answer 1: There are two words that start with a, two that start with b, two that start with c, for a total of 

Answer 2: There are three choices for the first letter and two choices for the second letter, for a total of 

Since the two answers are both answers to the same question, they are equal. Thus 

3

Give a combinatorial proof for the identity 

Answer

Proof

Question: How many subsets of  contain exactly two elements?

Answer 1: We must choose 2 elements from  choices, so there are  subsets.

Answer 2: We break this question down into cases, based on what the larger of the two elements in the subset is. The larger
element can't be 1, since we need at least one element smaller than it.

Larger element is 2: there is 1 choice for the smaller element.

Larger element is 3: there are 2 choices for the smaller element.

Larger element is 4: there are 3 choices for the smaller element.

And so on. When the larger element is  there are  choices for the smaller element. Since each two element subset must
be in exactly one of these cases, the total number of two element subsets is 

Answer 1 and answer 2 are both correct answers to the same question, so they must be equal. Therefore,
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4

A woman is getting married. She has 15 best friends but can only select 6 of them to be her bridesmaids, one of which needs to be
her maid of honor. How many ways can she do this?

a. What if she first selects the 6 bridesmaids, and then selects one of them to be the maid of honor?
b. What if she first selects her maid of honor, and then 5 other bridemaids?
c. Explain why 

Answer
a. She has  ways to select the 6 bridesmaids, and then for each way, has 6 choices for the maid of honor. Thus she has 

 choices.
b. She has 15 choices for who will be her maid of honor. Then she needs to select 5 of the remaining 14 friends to be

bridesmaids, which she can do in  ways. Thus she has  choices.
c. We have answered the question (how many wedding parties can the bride choose from) in two ways. The first way gives the

left-hand side of the identity and the second way gives the right-hand side of the identity. Therefore the identity holds.

5

Give a combinatorial proof of the identity 

Answer

Proof

Question: You have a large container filled with ping-pong balls, all with a different number on them. You must select  of the
balls, putting two of them in a jar and the others in a box. How many ways can you do this?

Answer 1: First select 2 of the  balls to put in the jar. Then select  of the remaining  balls to put in the box. The
first task can be completed in  different ways, the second task in  ways. Thus there are  ways to select the
balls.

Answer 2: First select  balls from the  in the container. Then pick 2 of the  balls you picked to put in the jar, placing the
remaining  in the box. The first task can be completed in  ways, the second task in  ways. Thus there are 
ways to select the balls.

Since both answers count the same thing, they must be equal and the identity is established.

6

Consider the bit strings in  (bit strings of length 6 and weight 2).

a. How many of those bit strings start with 1?
b. How many of those bit strings start with 01?
c. How many of those bit strings start with 001?
d. Are there any other strings we have not counted yet? Which ones, and how many are there?
e. How many bit strings are there total in 
f. What binomial identity have you just given a combinatorial proof for?

Answer

a. After the 1, we need to find a 5-bit string with one 1. There are  ways to do this.
b.  strings (we need to pick 1 of the remaining 4 slots to be the second 1).
c.  strings.
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d. Yes. We still need strings starting with 0001 (there are  of these) and strings starting 00001 (there is only  of
these).

e.  strings
f. An example of the Hockey Stick Theorem:

7

Let's count ternary digit strings, that is, strings in which each digit can be 0, 1, or 2.

a. How many ternary digit strings contain exactly  digits?
b. How many ternary digit strings contain exactly  digits and  2's.
c. How many ternary digit strings contain exactly  digits and  2's. (Hint: where can you put the non-2 digit, and then what

could it be?)
d. How many ternary digit strings contain exactly  digits and  2's. (Hint: see previous hint)
e. How many ternary digit strings contain exactly  digits and  2's.
f. How many ternary digit strings contain exactly  digits and no 2's. (Hint: what kind of a string is this?)
g. Use the above parts to give a combinatorial proof for the identity

Answer
a.  strings, since there are 3 choices for each of the  digits.
b.  string, since all the digits need to be 2's. However, we might write this as  strings.
c. There are  places to put the non-2 digit. That digit can be either a 0 or a 1, so there are  such strings.
d. We must choose two slots to fill with 0's or 1's. There are  ways to do that. Once the slots are picked, we have two

choices for the first slot (0 or 1) and two choices for the second slot (0 or 1). So there are a total of  such strings.
e. There are  ways to pick which slots don't have the 2's. Then those slots can be filled in  ways (0 or 1 for each slot). So

there are  such strings.
f. These strings contain just 0's and 1's, so they are bit strings. There are  bit strings. But keeping with the pattern above, we

might write this as  strings.
g. We answer the question of how many length  ternary digit strings there are in two ways. First, each digit can be one of

three choices, so the total number of strings is  On the other hand, we could break the question down into cases by how
many of the digits are 2's. If they are all 2's, then there are  strings. If all but one is a 2, then there are  strings. If all
but 2 of the digits are 2's, then there are  strings. We choose 2 of the  digits to be non-2, and then there are 2 choices
for each of those digits. And so on for every possible number of 2's in the string. Therefore 

8

How many ways are there to rearrange the letters in the word “rearrange”? Answer this question in at least two different ways to
establish a binomial identity.

Answer

The word contains 9 letters: 3 “r”s, 2 “a”s and 2 “e”s, along with an “n” and a “g”. We could first select the positions for the
“r”s in  ways, then the “a”s in  ways, the “e”s in  ways and then select one of the remaining two spots to put the “n”
(placing the “g” in the last spot). This gives the answer

Alternatively, we could select the positions of the letters in the opposite order, which would give an answer
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(where the 3 “r”s go in the remaining 3 spots). These two expressions are equal:

9

Give a combinatorial proof for the identity 

Answer

Proof

Question: How many -letter words can you make using  different letters without repeating any letter?

Answer 1: There are  choices for the first letter,  choices for the second letter,  choices for the third letter, and so
on until  choices for the th letter (since  letters have already been assigned at that point). The product of
these numbers can be written  which is  Therefore there are  words.

Answer 2: First pick  letters to be in the word from the  choices. This can be done in  ways. Now arrange those letters
into a word. There are  choices for the first letter,  choices for the second, and so on, for a total of  arrangements of the

 letters. Thus the total number of words is 

Since the two answers are correct answers to the same question, we have established that 

10

Establish the identity below using a combinatorial proof.

Answer

Proof

Question: How many 5-element subsets are there of the set 

Answer 1: We choose 5 out of the  elements, so  subsets.

Answer 2: Break this up into cases by what the “middle” (third smallest) element of the 5 element subset is. The smallest this
could be is a 3. In that case, we have  choices for the numbers below it, and  choices for the numbers above it.
Alternatively, the middle number could be a 4. In this case there are  choices for the bottom two numbers and  choices
for the top two numbers. If the middle number is 5, then there are  choices for the bottom two numbers and  choices
for the top two numbers. An so on, all the way up to the largest the middle number could be, which is  In that case there
are  choices for the bottom two numbers and  choices for the top number. Thus the number of 5 element subsets is

Since the two answers correctly answer the same question, we have

1.5: Stars and Bars

1

A multiset is a collection of objects, just like a set, but can contain an object more than once (the order of the elements still doesn't
matter). For example,  is a multiset of size 6.

a. How many sets of size 5 can be made using the 10 numeric digits 0 through 9?
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b. How many multisets of size 5 can be made using the 10 numeric digits 0 through 9?

Answer

a.  sets. We must select 5 of the 10 digits to put in the set.
b. Use stars and bars: each star represents one of the 5 elements of the set, each bar represents a switch between digits. So there

are 5 stars and 9 bars, giving us  sets.

2

Each of the counting problems below can be solved with stars and bars. For each, say what outcome the diagram

represents, if there are the correct number of stars and bars for the problem. Otherwise, say why the diagram does not represent any
outcome, and what a correct diagram would look like.

a. How many ways are there to select a handful of 6 jellybeans from a jar that contains 5 different flavors?
b. How many ways can you distribute 5 identical lollipops to 6 kids?
c. How many 6-letter words can you make using the 5 vowels?
d. How many solutions are there to the equation 

Answer
a. You take 3 strawberry, 1 lime, 0 licorice, 2 blueberry and 0 bubblegum.
b. This is backwards. We don't want the stars to represent the kids because the kids are not identical, but the stars are. Instead

we should use 5 stars (for the lollipops) and use 5 bars to switch between the 6 kids. For example,

would represent the outcome with the first kid getting 2 lollipops, the third kid getting 3, and the rest of the kids getting
none.

c. This is the word AAAEOO.
d. This doesn't represent a solution. Each star should represent one of the 6 units that add up to 6, and the bars should switch

between the different variables. We have one too many bars. An example of a correct diagram would be

representing that    and 

3

After gym class you are tasked with putting the 14 identical dodgeballs away into 5 bins.

a. How many ways can you do this if there are no restrictions?
b. How many ways can you do this if each bin must contain at least one dodgeball?

Answer
a.  ways. Each outcome can be represented by a sequence of 14 stars and 4 bars.
b.  ways. First put one ball in each bin. This leaves 9 stars and 4 bars.

4

How many integer solutions are there to the equation  for which

a.   and  are all positive?
b.   and  are all non-negative?
c.   and  are all greater than 

Answer

a.  solutions. After each variable gets 1 star for free, we are left with 5 stars and 2 bars.
b.  solutions. We have 8 stars and 2 bars.

( )10
5

( )14
9

∗ ∗ ∗| ∗ || ∗ ∗|

+ + + = 6.x1 x2 x3 x4

∗ ∗ || ∗ ∗ ∗ |||

∗| ∗ ∗|| ∗ ∗∗,

= 1,x1 = 2,x2 = 0,x3 = 3.x4

( )18
4

( )13
4

x+y+z= 8

x, y, z

x, y, z

x, y, z −3.

( )7
2

( )10
2
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c.  solutions. This problem is equivalent to finding the number of solutions to  where   and  are
non-negative. (In fact, we really just do a substitution. Let   and ).

5

Using the digits 2 through 8, find the number of different 5-digit numbers such that:

a. Digits cannot be repeated and must be written in increasing order. For example, 23678 is okay, but 32678 is not.
b. Digits can be repeated and must be written in non-decreasing order. For example, 24448 is okay, but 24484 is not.

Answer

a. There are  numbers. We simply choose five of the seven digits and once chosen put them in increasing order.
b. This requires stars and bars. Use a star to represent each of the 5 digits in the number, and use their position relative to the

bars to say what numeral fills that spot. So we will have 5 stars and 6 bars, giving  numbers.

6

When playing Yahtzee, you roll five regular 6-sided dice. How many different outcomes are possible from a single roll? The order
of the dice does not matter.

7

Your friend tells you she has 7 coins in her hand (just pennies, nickels, dimes and quarters). If you guess how many of each kind of
coin she has, she will give them to you. If you guess randomly, what is the probability that you will be correct?

8

How many integer solutions to  are there for which    and 

9

Solve the three counting problems below. Then say why it makes sense that they all have the same answer. That is, say how you
can interpret them as each other.

a. How many ways are there to distribute 8 cookies to 3 kids?
b. How many solutions in non-negative integers are there to 
c. How many different packs of 8 crayons can you make using crayons that come in red, blue and yellow?

10

Consider functions 

a. How many of these functions are strictly increasing? Explain. (A function is strictly increasing provided if  then 
)

b. How many of the functions are non-decreasing? Explain. (A function is non-decreasing provided if  then )

11

Conic, your favorite math themed fast food drive-in offers 20 flavors which can be added to your soda. You have enough money to
buy a large soda with 4 added flavors. How many different soda concoctions can you order if:

a. You refuse to use any of the flavors more than once?
b. You refuse repeats but care about the order the flavors are added?
c. You allow yourself multiple shots of the same flavor?
d. You allow yourself multiple shots, and care about the order the flavors are added?

Answer

a.  sodas (order does not matter and repeats are not allowed).
b.  sodas (order matters and repeats are not allowed).
c.  sodas (order does not matter and repeats are allowed; 4 stars and 19 bars).
d.  sodas (order matters and repeats are allowed; 20 choices 4 times).

( )19
2

+ + = 17x′ y′ z′ ,x′ y′ z′

x = −3,x′ y = −3y′ z= −3z′

( )7
5

( )11
6

+ + + = 25x1 x2 x3 x4 ≥ 1,x1 ≥ 2,x2 ≥ 3x3 ≥ 4?x4

x+y+z= 8?

f : {1, 2, 3, 4, 5} → {0, 1, 2,… , 9}.

a< b,

f(a) < f(b).

a< b, f(a) ≤ f(b).

( )20
4

P (20, 4) = 20 ⋅ 19 ⋅ 18 ⋅ 17

( )23
19

204
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1.6: Advanced Counting Using PIE

1

The dollar menu at your favorite tax-free fast food restaurant has 7 items. You have $10 to spend. How many different meals can
you buy if you spend all your money and:

a. Purchase at least one of each item.
b. Possibly skip some items.
c. Don't get more than 2 of any particular item.

Answer a

 meals.

Answer b

 meals.

Answer c

 me als. Use PIE to subtract all the meals in which you get 3 or more of a particular item.

2

After a late night of math studying, you and your friends decide to go to your favorite tax-free fast food Mexican restaurant, Burrito
Chime. You decide to order off of the dollar menu, which has 7 items. Your group has $16 to spend (and will spend all of it).

a. How many different orders are possible? Explain. (The order in which the order is placed does not matter - just which and how
many of each item that is ordered.)

b. How many different orders are possible if you want to get at least one of each item? Explain.
c. How many different orders are possible if you don't get more than 4 of any one item? Explain.

3

After another gym class you are tasked with putting the 14 identical dodgeballs away into 5 bins. This time, no bin can hold more
than 6 balls. How many ways can you clean up?

Solution

 Subtract all the distributions for which one or more bins contain 7 or more balls.

4

Consider the equation  How many solutions are there with  for all 

Solution

The easiest way to solve this is to instead count the solutions to  with  By taking 
 each solution to this new equation corresponds to exactly one solution to the original equation.

Now all the ways to distribute the 7 units to the four  variables can be found using stars and bars, specifically 7 stars and 3
bars, so  ways. But this includes the ways that one or more  variables can be assigned more than 3 units. So subtract,
using PIE. We get

The  counts the number of ways to pick one variable to be over-assigned, the  is the number of ways to assign the
remaining 3 units to the 4 variables. Note that this is the final answer because it is not possible to have two variables both get 4
units.

( )9
6

( )16
6

( )−[( )( )−( )( )+( )( )]16
6

7
1

13
6

7
2

10
6

7
3

7
6

( )−[( )( )−( )( )] .18
4

5
1

11
4

5
2

4
4

+ + + = 15.x1 x2 x3 x4 2 ≤ ≤ 5xi i ∈ {1, 2, 3, 4}?

+ + + = 7y1 y2 y3 y4 0 ≤ ≤ 3.yi
= +2,xi yi

yi

( )10
3

yi

( )−( )( ).
10

3

4

1

6

3

( )41 ( )63
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5

Suppose you planned on giving 7 gold stars to some of the 13 star students in your class. Each student can receive at most one star.
How many ways can you do this? Use PIE, and also an easier method, and compare your results.

6

Based on the previous question, give a combinatorial proof for the identity:

7

Illustrate how the counting of derangements works by writing all permutations of  and the crossing out those which are
not derangements. Keep track of the permutations you cross out more than once, using PIE.

Solution

The 9 derangements are: 2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321.

8

How many permutations of  leave exactly 1 element fixed?

Solution

First pick one of the five elements to be fixed. For each such choice, derange the remaining four, using the standard advanced

PIE formula. We get  permutations.

9

Ten ladies of a certain age drop off their red hats at the hat check of a museum. As they are leaving, the hat check attendant gives
the hats back randomly. In how many ways can exactly six of the ladies receive their own hat (and the other four not)? Explain.

10

The Grinch sneaks into a room with 6 Christmas presents to 6 different people. He proceeds to switch the name-labels on the
presents. How many ways could he do this if:

a. No present is allowed to end up with its original label? Explain what each term in your answer represents.
b. Exactly 2 presents keep their original labels? Explain.
c. Exactly 5 presents keep their original labels? Explain.

11

Consider functions  How many functions have the property that  or  or both?

Solution

There are  functions for which  and another  functions for which  There are  functions for
which both  and  So the total number of functions for which  or  or both is

12

Consider sets  and  with  and  How many functions  are surjective?

Solution

 functions. The  is all the functions from  to  We subtract those that aren't
surjective. Pick one of the five elements in  to not have in the range (in  ways) and count all those functions ( ). But this
overcounts the functions where two elements from  are excluded from the range, so subtract those. And so on, using PIE.

( ) =( )− (−1 ( )( ).
n

k

n+k−1

k
∑
j=1

n

)j+1 n

j

n+k−(2j+1)

k

{1, 2, 3, 4}

{1, 2, 3, 4, 5}

( )(4!−[( )3!−( )2!+( )1!−( )0!])5
1

4
1

4
2

4
3

4
4

f : {1, 2, 3, 4} → {a, b, c, d, e, f}. f(1) ≠ a f(2) ≠ b,

5 ⋅ 63 f(1) ≠ a 5 ⋅ 63 f(2) ≠ b. ⋅52 62

f(1) ≠ a f(2) ≠ b. f(1) ≠ a f(2) ≠ b

5 ⋅ +5 ⋅ − ⋅ = 1260.63 63 52 62

A B |A| = 10 |B| = 5. f : A→B

−[( ) −( ) +( ) −( ) ]510 5
1
410 5

2
310 5

3
210 5

4
110 510 A B.

B ( )5
1

410

B
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13

Let  How many injective functions  have the property that for each  

14

Let  be the number of derangements of  objects. For example, using the techniques of this section, we find

We can use the formula for  to write this all in terms of factorials. After simplifying, for  we would get

Generalize this to find a nicer formula for  Bonus: For large  approximately what fraction of all permutations are
derangements? Use your knowledge of Taylor series from calculus.

11.E: Counting (Exercises) is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

1.E: Counting (Exercises) has no license indicated.

A= {1, 2, 3, 4, 5}. f : A→A x ∈ A, f(x) ≠ x?

dn n

= 3!−(( )2!−( )1!+( )0!)d3
3

1

3

2

3

3

( )nk d3

= 3!(1− + − )d3
1

1

1

2

1

6

.dn n,
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11.S: Counting (Summary)

Suppose you have a huge box of animal crackers containing plenty of each of 10 different animals. For the counting questions
below, carefully examine their similarities and differences, and then give an answer. The answers are all one of the following:

1. How many animal parades containing 6 crackers can you line up?
2. How many animal parades of 6 crackers can you line up so that the animals appear in alphabetical order?
3. How many ways could you line up 6 different animals in alphabetical order?
4. How many ways could you line up 6 different animals if they can come in any order?
5. How many ways could you give 6 children one animal cracker each?
6. How many ways could you give 6 children one animal cracker each so that no two kids get the same animal?
7. How many ways could you give out 6 giraffes to 10 kids?
8. Write a question about giving animal crackers to kids that has the answer 

With all the different counting techniques we have mastered in this last chapter, it might be difficult to know when to apply which
technique. Indeed, it is very easy to get mixed up and use the wrong counting method for a given problem. You get better with
practice. As you practice you start to notice some trends that can help you distinguish between types of counting problems. Here
are some suggestions that you might find helpful when deciding how to tackle a counting problem and checking whether your
solution is correct.

Remember that you are counting the number of items in some list of outcomes. Write down part of this list. Write down an
element in the middle of the list – how are you deciding whether your element really is in the list. Could you get this element
more than once using your proposed answer?
If generating an element on the list involves selecting something (for example, picking a letter or picking a position to put a
letter, etc), can the things you select be repeated? Remember, permutations and combinations select objects from a set without
repeats.
Does order matter? Be careful here and be sure you know what your answer really means. We usually say that order matters
when you get different outcomes when the same objects are selected in different orders. Combinations and “Stars & Bars” are
used when order does not matter.
There are four possibilities when it comes to order and repeats. If order matters and repeats are allowed, the answer will look
like  If order matters and repeats are not allowed, we have  If order doesn't matter and repeats are allowed, use stars
and bars. If order doesn't matter and repeats are not allowed, use  But be careful: this only applies when you are selecting
things, and you should make sure you know exactly what you are selecting before determining which case you are in.
Think about how you would represent your counting problem in terms of sets or functions. We know how to count different
sorts of sets and different types of functions.
As we saw with combinatorial proofs, you can often solve a counting problem in more than one way. Do that, and compare your
numerical answers. If they don't match, something is amiss.

While we have covered many counting techniques, we have really only scratched the surface of the large subject of enumerative
combinatorics. There are mathematicians doing original research in this area even as you read this. Counting can be really hard.

In the next chapter, we will approach counting questions from a very different direction, and in doing so, answer infinitely many
counting questions at the same time. We will create sequences of answers to related questions.

Chapter Review

1

You have 9 presents to give to your 4 kids. How many ways can this be done if:

a. The presents are identical, and each kid gets at least one present?
b. The presents are identical, and some kids might get no presents?
c. The presents are unique, and some kids might get no presents?

Investigate!

P(10,6) ( )10
6 106 ( ).15

9

( ).10
6

.nk P (n, k).

( ).n

k
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d. The presents are unique and each kid gets at least one present?

Answer

a.  ways, after giving one present to each kid, you are left with 5 presents (stars) which need to be divide among the 4 kids
(giving 3 bars).

b.  ways. You have 9 stars and 3 bars.
c.  You have 4 choices for whom to give each present. This is like making a function from the set of presents to the set of

kids.

d.  ways. Now the function from the set of presents to the set of kids must be surjective.

2

For each of the following counting problems, say whether the answer is   or neither. If you answer is “neither,” say
what the answer should be instead.

a. How many shortest lattice paths are there from  to 
b. If you have 10 bow ties, and you want to select 4 of them for next week, how many choices do you have?
c. Suppose you have 10 bow ties and you will wear one on each of the next 4 days. How many choices do you have?
d. If you want to wear 4 of your 10 bow ties next week (Monday through Sunday), how many ways can this be accomplished?
e. Out of a group of 10 classmates, how many ways can you rank your top 4 friends?
f. If 10 students come to their professor's office but only 4 can fit at a time, how different combinations of 4 students can see the

prof first?
g. How many 4 letter words can be made from the first 10 letters of the alphabet?
h. How many ways can you make the word “cake” from the first 10 letters of the alphabet?
i. How many ways are there to distribute 10 apples among 4 children?
j. If you have 10 kids (and live in a shoe) and 4 types of cereal, how many ways can your kids eat breakfast?
k. How many ways can you arrange exactly 4 ones in a string of 10 binary digits?
l. You want to select 4 single digit numbers as your lotto picks. How many choices do you have?

m. 10 kids want ice-cream. You have 4 varieties. How many ways are there to give the kids as much ice-cream as they want?
n. How many 1-1 functions are there from  to 
o. How many surjective functions are there from  to 
p. Each of your 10 bow ties match 4 pairs of suspenders. How many outfits can you make?
q. After the party, the 10 kids each choose one of 4 party-favors. How many outcomes?
r. How many 6-elements subsets are there of the set 
s. How many ways can you split up 11 kids into 5 teams?
t. How many solutions are there to  where each  is non-negative?
u. Your band goes on tour. There are 10 cities within driving distance, but only enough time to play 4 of them. How many choices

do you have for the cities on your tour?
v. In how many different ways can you play the 4 cities you choose?
w. Out of the 10 breakfast cereals available, you want to have 4 bowls. How many ways can you do this?
x. There are 10 types of cookies available. You want to make a 4 cookie stack. How many different stacks can you make?
y. From your home at (0,0) you want to go to either the donut shop at (5,4) or the one at (3,6). How many paths could you take?
z. How many 10-digit numbers do not contain a sub-string of 4 repeated digits?

Answer

a. Neither.  paths.
b.  bow ties.  since order is important.
c. Neither. Assuming you will wear each of the 4 ties on just 4 of the 7 days, without repeats: 
d.  
e. Neither. Since you could repeat letters:  If no repeats are allowed, it would be 
f. Neither. Actually, “k” is the 11th letter of the alphabet, so the answer is 0. If “k” was among the first 10 letters, there would

only be 1 way - write it down.
g. Neither. Either  (if every kid gets an apple) or  (if appleless kids are allowed).

( )83

( )12
3

.49

−[( ) −( ) +( ) ]49 4
1 39 4

2 29 4
3 19

( ),10
4

P (10, 4),

(0, 0) (10, 4)?

{1, 2,… , 10} {a, b, c, d}?

{1, 2,… , 10} {a, b, c, d}?

{1, 2,… , 10}

+ +⋯+ = 6x1 x2 x5 xi

( )14
4

( )10
4 P (10, 4),

( )P (7, 4).10
4

P (10, 4).( ).10
4

.104 P (10, 4).

( )9
3

( )13
3
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h. Neither. Note that this could not be  since the 10 things and 4 things are from different groups. 
i.  - don't be fooled by the “arrange” in there - you are picking 4 out of 10 spots to put the 1's.  (assuming order is

irrelevant).
j. Neither.  (each kid chooses yes or no to 4 varieties).
k. Neither. 0.
l. Neither. 

m. Neither. 
n. Neither. 
o.  (which is the same as ).
p. Neither. If all the kids were identical, and you wanted no empty teams, it would be  Instead, this will be the same as the

number of surjective functions from a set of size 11 to a set of size 5.
q.  
r. Neither. 
s. Neither. It's  if you won't repeat any choices. If repetition is allowed, then this becomes 

which has  solutions in non-negative integers.
t. Neither. Since repetition of cookie type is allowed, the answer is  Without repetition, you would have 
u.  since that is equal to 
v. Neither. It will be a complicated (possibly PIE) counting problem.

3

Recall, you own 3 regular ties and 5 bow ties. You realize that it would be okay to wear more than two ties to your clown college
interview.

a. You must select some of your ties to wear. Everything is okay, from no ties up to all ties. How many choices do you have?
b. If you want to wear at least one regular tie and one bow tie, but are willing to wear up to all your ties, how many choices do you

have for which ties to wear?
c. How many choices do you have if you wear exactly 2 of the 3 regular ties and 3 of the 5 bow ties?
d. Once you have selected 2 regular and 3 bow ties, in how many orders could you put the ties on, assuming you must have one of

the three bow ties on top?

Answer
a.  choices. You have two choices for each tie: wear it or don't.
b. You have 7 choices for regular ties (the 8 choices less the “no regular tie” option) and 31 choices for bow ties (32 total

minus the “no bow tie” option). Thus total you have  choices.
c.  choices.
d. Select one of the 3 bow ties to go on top. There are then 4 choices for the next tie, 3 for the tie after that, and so on. Thus 

 choices.

4

Give a counting question where the answer is  Give another question where the answer is 

Answer

You own 8 purple bow ties, 3 red bow ties, 3 blue bow ties and 5 green bow ties. How many ways can you select one of each
color bow tie to take with you on a trip?  ways. How many choices do you have for a single bow tie to wear
tomorrow?  choices.

5

Consider five digit numbers  with each digit from the set 

a. How many such numbers are there?
b. How many such numbers are there for which the sum of the digits is even?
c. How many such numbers contain more even digits than odd digits?

( )10
4

.410

( )10
4 ( )10

4

1610

−[( ) −( ) +( ) ].410 4
1 310 4

2 210 4
3 110

10 ⋅ 4.

.410

( )10
4

( )10
6

( ).10
4

( ).10
4

( ).10
4

4!.

( )10
4

+ +⋯+ =4,x1 x2 x10

( )13
9

.104 P (10, 4).

( )10
4 ( )+( ).9

4
9
3

= 25628

7 ⋅ 31 = 217

( )( )= 303
2

5
3

3 ⋅ 4! = 72

8 ⋅ 3 ⋅ 3 ⋅ 5. 8+3+3+5.

8 ⋅ 3 ⋅ 3 ⋅ 5

8+3+3+5

α = ,a1a2a3a4a5 {1, 2, 3, 4}.
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Answer
a.  numbers.
b.  numbers (choose any digits for the first four digits - then pick either an even or an odd last digit to make the sum

even).
c. We need 3 or more even digits. 3 even digits:  4 even digits:  5 even digits:  So all together: 

 numbers.

6

In a recent small survey of airline passengers, 25 said they had flown American in the last year, 30 had flown Jet Blue, and 20 had
flown Continental. Of those, 10 reported they had flown on American and Jet Blue, 12 had flown on Jet Blue and Continental, and
7 had flown on American and Continental. 5 passengers had flown on all three airlines.

How many passengers were surveyed? (Assume the results above make up the entire survey.)

Answer

51 passengers.

7

Recall, by -bit strings, we mean strings of binary digits, of length 8.

a. How many -bit strings are there total?
b. How many -bit strings have weight 5?
c. How many subsets of the set  contain exactly 5 elements?
d. Explain why your answers to parts (b) and (c) are the same. Why are these questions equivalent?

Answer
a.  strings.
b.  strings.
c.  strings.
d. There is a bijection between subsets and bit strings: a 1 means that element in is the subset, a 0 means that element is not in

the subset. To get a subset of an 8 element set we have a 8-bit string. To make sure the subset contains exactly 5 elements,
there must be 5 1's, so the weight must be 5.

8

What is the coefficient of  in the expansion of 

Answer

9

How many 8-letter words contain exactly 5 vowels (a,e,i,o,u)? What if repeated letters were not allowed?

Answer

With repeated letters allowed:  words. Without repeats:  words.

10

For each of the following, find the number of shortest lattice paths from  to  which:

a. pass through the point 
b. avoid (do not pass through) the point 
c. either pass through  or  (or both).

Answer

45

⋅ 244

( ) .5
3
2322 ( ) 2.5

4
24 ( ) .5

5
25

( ) +( ) 2+( )5
3 2322 5

4 24 5
5 25

8

8

8

{a, b, c, d, e, f , g,h}

28

( )8
5

( )85

x10 (x+1 + (x+1 ?)13 x2 )17

( )+( ).13
10

17
8

( )8
5
55213 ( )5!P (21, 3)8

5

(0, 0) (8, 8)

(2, 3).

(7, 5).

(2, 3) (5, 7)
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a.  paths.
b.  paths.
c.  paths.

11

You live in Grid-Town on the corner of 2nd and 3rd, and work in a building on the corner of 10th and 13th. How many routes are
there which take you from home to work and then back home, but by a different route?

Answer

 routes.

12

How many 10-bit strings start with  or end with  or both?

Answer

 strings (using PIE).

13

How many 10-bit strings of weight 6 start with  or end with  or both?

Answer

 strings.

14

How many 6 letter words made from the letters  without repeats do not contain the sub-word “bad” in (a) consecutive
letters? or (b) not-necessarily consecutive letters (but in order)?

Answer

(a)  words. (b)  words.

15

Explain using lattice paths why 

Answer

 is the number of lattice paths which have length  since for each step you can go up or right. Such a path would end along
the line  So you will end at  or  or  or … or  Counting the paths to each of these
points separately, give    …,  (each time choosing which of the  steps to be to the right). These two methods
count the same quantity, so are equal.

16

Suppose you have 20 one-dollar bills to give out as prizes to your top 5 discrete math students. How many ways can you do this if:

a. Each of the 5 students gets at least 1 dollar?
b. Some students might get nothing?
c. Each student gets at least 1 dollar but no more than 7 dollars?

Hint

Stars and bars.

Answer

a.  ways.
b.  ways.
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c.  ways.

17

How many functions  are there satisfying:

a.  or  (or both)?
b.  or  (or both)?
c.  and  and  is injective?
d.  is surjective, but     and 

Answer
a.  functions.
b.  functions.
c.  functions. Note we use factorials instead of powers because we are looking for injective functions.
d. Note that being surjective here is the same as being injective, so we can start with all  injective functions and subtract

those which have one or more “fixed point”. We get  functions.

18

How many functions map  onto  (i.e., how many surjections are there)?

Answer

19

To thank your math professor for doing such an amazing job all semester, you decide to bake Oscar cookies. You know how to
make 10 different types of cookies.

a. If you want to give your professor 4 different types of cookies, how many different combinations of cookie type can you select?
Explain your answer.

b. To keep things interesting, you decide to make a different number of each type of cookie. If again you want to select 4 cookie
types, how many ways can you select the cookie types and decide for which there will be the most, second most, etc. Explain
your answer.

c. You change your mind again. This time you decide you will make a total of 12 cookies. Each cookie could be any one of the 10
types of cookies you know how to bake (and it's okay if you leave some types out). How many choices do you have? Explain.

d. You realize that the previous plan did not account for presentation. This time, you once again want to make 12 cookies, each
one could be any one of the 10 types of cookies. However, now you plan to shape the cookies into the numerals 1, 2, …, 12
(and probably arrange them to make a giant clock, but you haven't decided on that yet). How many choices do you have for
which types of cookies to bake into which numerals? Explain.

e. The only flaw with the last plan is that your professor might not get to sample all 10 different varieties of cookies. How many
choices do you have for which types of cookies to make into which numerals, given that each type of cookie should be present
at least once? Explain.

Answer

a.  combinations. You need to choose 4 of the 10 cookie types. Order doesn't matter.
b.  ways. You are choosing and arranging 4 out of 10 cookies. Order matters now.
c.  choices. You must switch between cookie type 9 times as you make your 12 cookies. The cookies are the stars, the

switches between cookie types are the bars.
d.  choices. You have 10 choices for the “1” cookie, 10 choices for the “2” cookie, and so on.
e.  choices. We must use PIE to remove all the ways in which one or more cookie

type is not selected.
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20

For which of the parts of the previous problem (Exercise 1.7.19) does it make sense to interpret the counting question as counting
some number of functions? Say what the domain and codomain should be, and whether you are counting all functions, injections,
surjections, or something else.

Answer
a. You are giving your professor 4 types of cookies coming from 10 different types of cookies. This does not lend itself well to

a function interpretation. We could say that the domain contains the 4 types you will give your professor and the codomain
contains the 10 you can choose from, but then counting injections would be too much (it doesn't matter if you pick type 3
first and type 2 second, or the other way around, just that you pick those two types).

b. We want to consider injective functions from the set most, second most, second least, least  to the set of 10 cookie types.
We want injections because we cannot pick the same type of cookie to give most and least of (for example).

c. This is not a good problem to interpret as a function. The problem is that the domain would have to be the 12 cookies you
bake, but these elements are indistinguishable (there is not a first cookie, second cookie, etc.).

d. The domain should be the 12 shapes, the codomain the 10 types of cookies. Since we can use the same type for different
shapes, we are interested in counting all functions here.

e. Here we insist that each type of cookie be given at least once, so now we are asking for the number of surjections of those
functions counted in the previous part.

This page titled 11.S: Counting (Summary) is shared under a CC BY-SA license and was authored, remixed, and/or curated by Oscar Levin.

1.S: Counting (Summary) by Oscar Levin is licensed CC BY-SA 4.0.
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CHAPTER OVERVIEW

12: Boolean Algebra

Figure : George Boole, 1815 - 1864

George Boole

George Boole wasn't idle a lot. 
He churned out ideas on the spot, 
Making marvellous use of 
Inclusive/exclusive 
Expressions like AND, OR, and NOT

Andrew Robinson, The Omnificent English Dictionary in Limerick Form
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In this chapter we will develop a type of algebraic system, Boolean algebras, that is particularly important to computer scientists, as
it is the mathematical foundation of computer design, or switching theory. The similarities of Boolean algebras and the algebra of
sets and logic will be discussed, and we will discover properties of finite Boolean algebras.

In order to achieve these goals, we will recall the basic ideas of posets introduced in Chapter 6 and develop the concept of a lattice.
The reader should view the development of the topics of this chapter as another example of an algebraic system. Hence, we expect
to define first the elements in the system, next the operations on the elements, and then the common properties of the operations in
the system.

12.1: Posets Revisited
12.2: Lattices
12.3: Boolean Algebras
12.4: Atoms of a Boolean Algebra
12.5: Finite Boolean Algebras as n-tuples of 0's and 1's
12.6: Boolean Expressions
12.7: A Brief Introduction to Switching Theory and Logic Design

This page titled 12: Boolean Algebra is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Al Doerr & Ken
Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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12.1: Posets Revisited
We recall the definition a partially ordering:

Let  be a relation on a set  We say that  is a partial ordering on  if it is reflexive, antisymmetric, and transitive. That is:

1.  is reflexive: 
2.  is antisymmetric: 
3.  is transitive: 

The set together with the relation  is called a poset.

We recall a few examples of posets:

a.  is a poset. Notice that our generic symbol for the partial ordering,  is selected to remind us that a partial ordering
is similar to “less than or equal to.”

b. Let  Then  is a poset.
c. Let  Then  is a poset.

The posets we will concentrate on in this chapter will be those which have upper and lower bounds in relation to any pair of
elements. Next, we define this concept precisely.

Let  be a poset, and  Then  is a lower bound of  and  if  and  Also,  is an upper
bound of  and  if  and 

In most of the posets that will interest us, every pair of elements have both upper and lower bounds, though there are posets for
which this is not true.

Let  be a poset. If  then  is a greatest lower bound of  and  if and only if

If  such that  and  then 

The last condition in the definition of Greatest Lower Bound says that if  is also a lower bound, then  is “greater” in relation to 
 than  The definition of a least upper bound is a mirror image of a greatest lower bound:

Let  be a poset. If  then  is a least upper bound of  and  if and only if

If  such that if  and  then 

Notice that the two definitions above refer to “...a greatest lower bound” and “a least upper bound.” Any time you define an object
like these you need to have an open mind as to whether more than one such object can exist. In fact, we now can prove that there
can't be two greatest lower bounds or two least upper bounds.

Definition : Partial Ordering12.1.1

⪯ L. ⪯ L

⪯ a⪯ a ∀a ∈ L

⪯ a⪯ b and a ≠ b ⇒ b ⋠ a ∀a, b ∈ L

⪯ a⪯ b and b ⪯ c ⇒ a⪯ c ∀a, b, c ∈ L

(L,⪯)

Example : Some Posets12.1.1

(R, ≤) ⪯ ,

A = {a, b}. (P(A), ⊆)
L = {1, 2, 3, 6}. (L, ∣)

Definition : Lower Bound, Upper Bound12.1.2

(L,⪯) a, b ∈ L. c ∈ L a b c ⪯ a c ⪯ b. d ∈ L

a b a⪯ d b ⪯ d.

Definition : Greatest Lower Bound12.1.3

(L,⪯) a, b ∈ L, ℓ ∈ L a b

ℓ ⪯ a

ℓ ⪯ b

∈ Lℓ′ ⪯ aℓ′ ⪯ b,ℓ′ ⪯ ℓ.ℓ′

ℓ′ ℓ
⪯ .ℓ′

Definition : Least Upper Bound12.1.4

(L,⪯) a, b ∈ L, u ∈ L a b

a⪯ u

b ⪯ u

∈ Lu′ a⪯ u′ b ⪯ ,u′ u ⪯ .u′
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Let  be a poset, and  If a greatest lower bound of  and  exists, then it is unique. The same is true of a least
upper bound, if it exists.

Proof

Let  and  be greatest lower bounds of  and  We will prove that 

1.  a greatest lower bound of  and    is a lower bound of  and 
2.  a greatest lower bound of  and  and  a lower bound of  and   by the definition of greatest lower

bound.
3.  a greatest lower bound of  and   is a lower bound of  and 
4.  a greatest lower bound of  and  and  a lower bound of  and   by the definition of greatest lower

bound.
5.  and  by the antisymmetry property of a partial ordering.

The proof of the second statement in the theorem is almost identical to the first and is left to the reader.

Let  be a poset.  is called the greatest (maximum) element of  if, for all   In addition,  is
called the least (minimum) element of  if for all   The greatest and least elements, when they exist, are
frequently denoted by  and  respectively.

Consider the partial ordering “divides” on  Then  is a poset. To determine the least upper
bound of 3 and 7, we look for all  such that  and  Certainly, both  and  satisfy these conditions
and no other element of  does. Next, since   is the least upper bound of 3 and 7. Similarly, the least upper bound of
3 and 5 is 15. The greatest element of  is 105 since  for all  To find the greatest lower bound of 15 and 35, we
first consider all elements  of  such that  They are 1, 3, 5, and 15. The elements for which  are 1, 5, 7, and 35.
From these two lists, we see that  and  satisfy the required conditions. But since  the greatest lower bound is 5.
The least element of  is 1 since  for all 

For any positive integer  the divisors of  is the set of integers that divide evenly into  We denote this set 

For example, the set  of Example  is 

Consider the poset  where  The greatest lower bound of  and  is  For any other
element  which is a subset of  and  (there is only one; what is it?),  The least element of  is  and the
greatest element is  The Hasse diagram of this poset is shown in Figure .

Theorem : Uniqueness of Least Upper and Greatest Lower Bounds12.1.1

(L,⪯) a, b ∈ L. a b

ℓ ℓ′ a b. ℓ = .ℓ′

ℓ a b ⇒ ℓ a b.
ℓ′ a b ℓ a b ⇒ ℓ ⪯ ,ℓ′

ℓ′ a b ⇒ ℓ′ a b.
ℓ a b ℓ′ a b. ⇒ ⪯ ℓℓ′

ℓ ⪯ ℓ′ ⪯ ℓ ⇒ ℓ =ℓ′ ℓ′

Definition : Greatest Element, Least Element12.1.5

(L,⪯) M ∈ L L a ∈ L, a⪯M . m ∈ L

L a ∈ L, m ⪯ a.
11 00

Example : Bounds on the Divisors of 10512.1.2

L = {1, 3, 5, 7, 15, 21, 35, 105}. (L, ∣)
u ∈ L, 3|u 7|u. u = 21 u = 105

L 21|105,21
L a|105 a ∈ L.

g L g ∣ 15. g ∣ 35
ℓ = 5 ℓ = 1 1|5,

L 1|a a ∈ L.

Definition : The Set of Divisors of an Integer12.1.6

n, n n. .Dn

L 12.1.2 .D105

Example : The Power Set of a Three Element Set12.1.3

(P(A), ⊆), A = {1, 2, 3}. {1, 2} {1, 3} ℓ = {1}.
ℓ′ {a, b} {a, c} ⊆ ℓ.ℓ′

P(A) ∅
A = {a, b, c}. 12.1.1
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Figure : Power Set of 

The previous examples and definitions indicate that the least upper bound and greatest lower bound are defined in terms of the
partial ordering of the given poset. It is not yet clear whether all posets have the property such every pair of elements always has
both a least upper bound and greatest lower bound. Indeed, this is not the case (see Exercise ).

12.1.1: Exercises

Consider the poset  where 

a. Find all lower bounds of 10 and 15.
b. Find the greatest lower bound of 10 and 15.
c. Find all upper bounds of 10 and 15.
d. Determine the least upper bound of 10 and 15.
e. Draw the Hasse diagram for  with respect to  Compare this Hasse diagram with that of Example . Note that the

two diagrams are structurally the same.

Answer
a. 1, 5
b. 5
c. 30
d. 30
e. See the Sage cell below with the default input displaying a Hasse diagram for 

List the elements of the sets   and  For each set, draw the Hasse diagram for “divides.”

12.1.1 {1, 2, 3}

12.1.1

Exercise 12.1.1

( , ∣),D30 = {1, 2, 3, 5, 6, 10, 15, 30}.D30

D30 ∣ . 12.1.3

.D12

Exercise 12.1.2

,D8 ,D50 .D1001

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86177?pdf


12.1.4 https://math.libretexts.org/@go/page/86177

Figure  contains Hasse diagrams of posets.

a. Determine the least upper bound and greatest lower bound of all pairs of elements when they exist. Indicate those pairs that
do not have a least upper bound (or a greatest lower bound ).

b. Find the least and greatest elements when they exist.

Figure : Figure for Exercise 

Answer
Solution for Hasse diagram (b):

 
 is the least element and  is the greatest element.

Partial solution for Hasse diagram (f):
 and  do not exist.

No greatest element exists, but  is the least element.

For the poset  what are the greatest lower bound and least upper bound of two elements  and  Are there least and/or
greatest elements?

a. Prove the second part of Theorem , the least upper bound of two elements in a poset is unique, it one exists.
b. Prove that if a poset  has a least element, then that element is unique.

Answer

Exercise 12.1.3

12.1.2

12.1.2 12.1.3

∨

a1

a2

a3

a4

a5

a1

a1

a2

a3

a4

a5

a2

a2

a2

a4

a4

a5

a3

a3

a4

a3

a4

a5

a4

a4

a4

a4

a4

a5

a5

a5

a5

a5

a5

a5

∧

a1

a2

a3

a4

a5

a1

a1

a1

a1

a1

a1

a2

a1

a2

a1

a2

a2

a3

a1

a1

a3

a3

a3

a4

a1

a2

a3

a4

a4

a5

a1

a2

a3

a4

a5

a1 a5

 lub( , )a2 a3  lub( , )a4 a5

a1

Exercise 12.1.4

(N, ≤), a b?

Exercise 12.1.5

12.1.1
L
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If  and  are distinct least elements, then

We naturally order the numbers in  with “less than or equal to,” which is a partial ordering. We define an
ordering,  on the elements of  by

a. Prove that  is a partial ordering on 
b. Draw the ordering diagrams for  on   and 
c. In general, how does one determine the least upper bound and greatest lower bound of two elements of  

and 
d. Are there least and/or greatest elements in 

Let  be the set of all subsets  of  such that the sum of the elements in  is even. (Note that the empty set 
 will be included as an element of ) For instance,  is in  because  is even, but  is not

in  because  is odd. Consider the poset  Let  and  be elements of 

a. Explain why  is not element of the poset.
b. Use the definitions of the italicized terms and the given partial ordering to complete the following statements:

i.  is an upper bound of  and  if \rule{3cm}{0.01cm}
ii.  is the least element of  if \rule{3cm}{0.01cm}

c. Find three different upper bounds of  and 
d. Find the least upper bound of  and  If it doesn't exist, explain why not.

Answer
a. The sum of elements in  is odd and disqualifies the set from being an element of the poset.
b. Use the definitions of the italicized terms and the given partial ordering to complete the following statements:

i.  and 
ii.  for all , 

c. Any set that contains the union of  but also contains 3 or 5, but not both will be an upper
bound. You can create several by including on not including 4 or 8.

d. The least upper bound doesn't exist. Notice that the union of  and  isn't in . One of the two sets 
and  is contained within every upper bound of A and B but neither is contained within the other.

This page titled 12.1: Posets Revisited is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Al Doerr & Ken
Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

0 0′

} ⇒ 0 =  by antisymmetry, a contradiction
0 ≤ 0′

≤ 00′

 since 0 is a least element

 since   is a least element0′
0′

Exercise 12.1.6

= {1, 2, . . . ,m}Am

⪯ ×Am An

(a, b) ⪯ ( , ) ⇔ a ≤  and b ≤a′ b′ a′ b′

⪯ × .Am An

⪯ × ,A2 A2 × ,A2 A3 × .A3 A3

× ,Am An (a, b)
( , )?a′ b′

× ?Am An

Exercise 12.1.7

P0 T S = {1, 2, … , 9} T

∅ .P0 {2, 3, 6, 7} P0 2 +3 +6 +7 {1, 3, 5, 6}
P0 1 +3 +5 +6 ( , ⊆).P0 A = {1, 2, 3, 6} B = {2, 3, 6, 7} .P0

A∩B

R ∈ P0 A B

R ∈ P0 P0

A B.
A B.

A∩B = {2, 3, 6}

…A ⊆ R B ⊆ R

… A ∈ P0 R ⊆ A

A∪B = {1, 2, 3, 6, 7}

A B P0 {1, 2, 3, 5, 6, 7}
{1, 2, 3, 6, 7, 9}
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12.2: Lattices
In this section, we restrict our discussion to lattices, those posets for which every pair of elements has both a greatest lower bound
and least upper bound. We first introduce some notation.

Let  be a poset, and  We define:

 read “  join ”, as the least upper bound of  and  if it exists. and
 read “  meet ”, as the greatest lower bound of  and  if it exists.

Since the join and meet produce a unique result in all cases where they exist, by Theorem 13.1.1, we can consider them as binary
operations on a set if they always exist. Thus the following definition:

A lattice is a poset  for which every pair of elements has a greatest lower bound and least upper bound. Since a lattice 
is an algebraic system with binary operations  and  it is denoted by  If we want to make it clear what partial
ordering the lattice is based on, we say it is a lattice under 

Consider the poset  we examined in Example 13.1.3. It isn't too surprising that every pair of sets had a greatest
lower bound and least upper bound. Thus, we have a lattice in this case; and  and  The
reader is encouraged to write out the operation tables 

Our first concrete lattice can be generalized to the case of any set  producing the lattice  where the join operation is
the set operation of union and the meet operation is the operation intersection; that is,  and 

It can be shown (see the exercises) that the commutative laws, associative laws, idempotent laws, and absorption laws are all true
for any lattice. A concrete example of this is clearly  since these laws hold in the algebra of sets. This lattice also has
distributive property in that join is distributive over meet and meet is distributive over join. However, this is not always the case for
lattices in general.

Let  be a lattice under  .  is called a distributive lattice if and only if the distributive laws hold; that is, for all 
 we have

We now give an example of a lattice where the distributive laws do not hold. Let  We define the partial
ordering  on  by the set

The operation tables for  and  on  are:

Definition : Join, Meet12.2.1

(L,⪯) a, b ∈ L.

a∨ b, a b a b,

a∧ b, a b a b,

Definition : Lattice12.2.2

(L,⪯) L

∨ ∧, [L; ∨, ∧].

⪯ .

Example : The Power Set of a Three Element Set12.2.1

(P(A), ⊆)

A∨B = A∪B A∧B = A∩B.

[P(A); ∪, ∩].

A, [P(A); ∨, ∧],

∨ = ∪ ∧ = ∩.

[P(A); ∪, ∩],

Definition : Distributive Lattice12.2.3

L = [L; ∨, ∧] ⪯ L

a, b, c ∈ L

a∨ (b∧ c) = (a∨ b) ∧ (a∨ c)

and

a∧ (b∨ c) = (a∧ b) ∨ (a∧ c)

Example : A Nondistributive Lattice12.2.2

L = {0, a, b, c, 1}.0 1

⪯ L

{(0, 0), (0, a), (0, b), (0, c), (0, 1), (a, a), (a, 1), (b, b), (b, 1), (c, c), (c, 1), (1, 1)}0 0 0 0 0 0 1 1 1 1 1 1

∨ ∧ L
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Since every pair of elements in  has both a join and a meet,  is a lattice (under divides). Is this lattice distributive?
We note that:  and  Therefore,  for
some values of  Thus, this lattice is not distributive.

Our next observation uses the term “sublattice”, which we have not defined at this point, but we would hope that you could
anticipate a definition, and we will leave it as an exercises to do so.

It can be shown that a lattice is nondistributive if and only if it contains a sublattice isomorphic to one of the lattices in Figure 
. The ordering diagram on the right of this figure, produces the diamond lattice, which is precisely the one that is defined in

Example . The lattice based on the left hand poset is called the pentagon lattice.

Figure : Nondistributive lattices, the pentagon and diamond lattices

12.2.1: 13.2.1: Exercises

Let  be the set of all propositions generated by  and  What are the meet and join operations in this lattice under
implication? What are the maximum and minimum elements?

Which of the posets in Exercise 13.1.3 are lattices? Which of the lattices are distributive?

a. State the commutative laws, associative laws, idempotent laws, and absorption laws for lattices.
b. Prove laws you stated.

Demonstrate that the pentagon lattice is nondistributive.

What is a reasonable definition of the term sublattice?

Answer

One reasonable definition would be this: Let  be a lattice and let  be a nonempty subset of  Then  is a
sublattice of  if and only if  is closed under both  and 

∨

00

a

b

c

11

00

00

a

b

c

11

a

a

a

11

11

11

b

b

11

b

11

11

c

c

11

11

c

11

11

11

11

11

11

11

∧

00

a

b

c

11

00

00

00

00

00

00

a

00

a

00

00

a

b

00

00

b

00

b

c

00

00

00

c

c

11

00

a

b

c

11

L [L; ∨, ∧]

a∨ (c∧ b) = a∨ 0 = a0 (a∨ c) ∧ (a∨ b) = 1 ∧ 1 = 1.1 1 1 a∨ (b∧ c) ≠ (a∨ b) ∧ (a∨ c)

a, b, c ∈ L.

12.2.1

12.2.2

12.2.1

Exercise 12.2.1

L p q.

Exercise 12.2.2

Exercise 12.2.3

Exercise 12.2.4

Exercise 12.2.5

[L; ∨, ∧] K L. K

L K ∨ ∧
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Let  be a lattice based on a partial ordering  Prove that if 

a. 
b. 
c.  and 

This page titled 12.2: Lattices is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Al Doerr & Ken
Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

Exercise 12.2.6

[L; ∨, ∧] ⪯ . a, b, c ∈ L,

a⪯ a∨ b.

a∧ b ⪯ a.

b ⪯ a c ⪯ a ⇒ b∨ c ⪯ a.
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12.3: Boolean Algebras
In order to define a Boolean algebra, we need the additional concept of complementation. A lattice must have both a greatest
element and a least element in order for complementation to take place. The following definition will save us some words in the
rest of this section.

A bounded lattice is a lattice that contains both a least element and a greatest element.

We use the symbols  and  for the least and greatest elements of a bounded lattice in the remainder of this section.

Let  be a bounded lattice. If  then  has a complement if there exists  such that

Notice that by the commutative laws for lattices, if  complements  then  complements 

Let  be a bounded lattice.  is a complemented lattice if every element of  has a complement in 

In Chapter 1, we defined the complement of a subset of any universe. This turns out to be a concrete example of the general
concept we have just defined, but we will reason through why this is the case here. Let  where  Then 

 is a bounded lattice with  and  To find the complement, if it exists, of  for example, we
want  such that

It's not too difficult to see that  since we need to include  to make the first condition true and can't include  or  if
the second condition is to be true. Of course this is precisely how we defined  in Chapter 1. Since it can be shown that each
element of  has a complement (see Exercise 1),  is a complemented lattice. Note that if  is any set and 
then  is a complemented lattice where the complement of  is 

In Example , we observed that the complement of each element of  is unique. Is this always true in a complemented lattice?
The answer is no. Consider the following.

Let  and consider the lattice  (under “divides”). The least element of  is 1 and the greatest
element is 30. Let us compute the complement of the element  We want to determine  such that  and 

 Certainly,  works, but so does  so the complement of  in this lattice is not unique. However, 
 is still a complemented lattice since each element does have at least one complement.

Definition : Bounded Lattice12.3.1

00 11

Definition : The Complement of a Lattice Element12.3.2

[L; ∨, ∧] a ∈ L, a b ∈ L

a∨ b = 11

and

a∧ b = 00

b a, a b.

Definition : Complemented Lattice12.3.3

L = [L; ∨, ∧] L L L.

Example : Set Complement is a Complement12.3.1

L =P(A), A = {a, b, c}.
[L; ∪, ∩] 0 = ∅ 1 = A. B = {a, b} ∈ L,

D

{a, b} ∩D = ∅

and

{a, b} ∪D = A

D = {c}, c a b

Ac

L [L; ∪, ∩] A L =P(A),
[L; ∪, ∩] B ∈ L = A−B.Bc

12.3.1 L

Example : A Lattice for Which Complements are Not Unique12.3.2

L = {1, 2, 3, 5, 30} [L; ∨, ∧] L

a = 2. ā 2 ∧ = 1ā

2 ∨ = 30.ā = 3ā = 5,ā a = 2
[L; ∨, ∧]
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If a complemented lattice has the property that the complement of every element is unique, then we consider complementation
to be a unary operation. The usual notation for the complement of  is 

The following theorem gives us an insight into when uniqueness of complements occurs.

If  is a complemented, distributive lattice, then the complement of each element  is unique.

Proof

Let  and assume to the contrary that  has two complements, namely  and  Then by the definition of
complement,

Then

On the other hand,

Hence  which contradicts the assumption that  has two different complements.

A Boolean algebra is a lattice that contains a least element and a greatest element and that is both complemented and
distributive. The notation  is used to denote the boolean algebra with operations join, meet and complementation.

Since the complement of each element in a Boolean algebra is unique (by Theorem ), complementation is a valid unary
operation over the set under discussion, which is why we will list it together with the other two operations to emphasize that we are
discussing a set together with three operations. Also, to help emphasize the distinction between lattices and lattices that are Boolean
algebras, we will use the letter  as the generic symbol for the set of a Boolean algebra; that is,  will stand for a
general Boolean algebra.

Let  be any set, and let  Then  is a Boolean algebra. Here,  stands for the complement of an element
of  with respect to  

This is a key example for us since all finite Boolean algebras and many infinite Boolean algebras look like this example for
some  In fact, a glance at the basic Boolean algebra laws in Table , in comparison with the set laws of Chapter 4 and
the basic laws of logic of Chapter 3, indicates that all three systems behave the same; that is, they are isomorphic.

Definition : Complementation as an Operation12.3.4

a .ā

Theorem : One Condition for Unique Complements12.3.1

[L; ∨, ∧] a ∈ L

a ∈ L a a1 .a2

.

a∧ = 0 and a∨ = 1,a1 a1

and

a∧ = 0 and a∨ = 1,a2 a2

a1 = ∧ 1 = ∧ (a∨ )a1 1 a1 a2

= ( ∧ a) ∨ ( ∧ )a1 a1 a2

= 0 ∨ ( ∧ )0 a1 a2

= ∧a1 a2

a2 = ∧ 1 = ∧ (a∨ )a2 1 a2 a1

= ( ∧ a) ∨ ( ∧ )a2 a2 a1

= 0 ∨ ( ∧ )0 a2 a1

= ∧a2 a1

= ∧a1 a2

= ,a1 a2 a

Definition : Boolean Algebra12.3.5

[B; ∨, ∧, ]¯

12.3.1

B [B; ∨, ∧, ]¯

Example : Boolean Algebra of Sets12.3.3

A B =P(A). [B; ∪, ∩, ]c c

B A, A−B.

A. 12.3.1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86179?pdf
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Applied_Discrete_Structures_(Doerr_and_Levasseur)/04%3A_More_on_Sets
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Applied_Discrete_Structures_(Doerr_and_Levasseur)/03%3A_Logic


12.3.3 https://math.libretexts.org/@go/page/86179

A somewhat less standard example of a boolean algebra is derived from the lattice of divisors of 30 under the relation
“divides”. If you examine the ordering diagram for this lattice, you see that it is structurally the same as the boolean algebra of
subsets of a three element set. Therefore, the join, meet and complementation operations act the same as union, intersection
and set complementation. We might conjecture that the lattice of divisors of any integer will produce a boolean algebra, but it
is only the case of certain integers. Try out a few integers to see if you can identify what is necessary to produce a boolean
algebra.

Table : Basic Boolean Algebra Laws

Commutative Laws

Associative Laws

Distributive Laws

Identity Laws

Complement Laws

Idempotent Laws

Null Laws

Absorption Laws

DeMorgan's Laws

Involution Law  

The “pairings” of the boolean algebra laws reminds us of the principle of duality, which we state for a Boolean algebra.

Let  be a Boolean algebra under  and let  be a true statement for  If  is obtained from  by replacing
 with  (this is equivalent to turning the graph upside down),  with   with   with  and  with  then  is also a

true statement in 

12.3.1: Exercises

Determine the complement of each element  in Example . Is this lattice a Boolean algebra? Why?

Answer

This lattice is a Boolean algebra since it is a distributive complemented lattice.

Example : Divisors of 3012.3.4

12.3.1

a∨ b = b∨ a a∧ b = b∧ a

a∨ (b∨ c) = (a∨ b) ∨ c a∧ (b∧ c) = (a∧ b) ∧ c

a∧ (b∨ c) = (a∧ b) ∨ (a∧ c) a∨ (b∧ c) = (a∨ b) ∧ (a∨ c)

a∨ 0 = 0 ∨ a = a a∧ 1 = 1 ∧ a = a

a∨ = 1ā a∧ = 0ā

a∨ a = a a∧ a = a

a∨ 1 = 1 a∧ 0 = 0

a∨ (a∧ b) = a a∧ (a∨ b) = a

= ∧a∨ b
¯ ¯¯̄¯̄ ¯̄ ¯̄

ā b̄ = ∨a∧ b
¯ ¯¯̄¯̄ ¯̄ ¯̄

ā b̄

= aā
¯̄̄

Definition : Principle of Duality for Boolean Algebras12.3.6

B = [B; ∨, ∧, ]c ⪯ , S B. S∗ S

⪯ ⪰ ∨ ∧, ∧ ∨, 00 1,1 11 0,0 S∗

B.

Exercise 12.3.1

B ∈ L 12.3.1

B

∅

{a}

{b}

{c}

{a, b}

{a, c}

{b, c}

A

 Complement of B

A

{b, c}

{a, c}

{a, b}

{c}

{b}

{a}

∅

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86179?pdf


12.3.4 https://math.libretexts.org/@go/page/86179

a. Determine the complement of each element of  in 
b. Repeat part a using the lattice in Example 13.2.2.
c. Repeat part a using the lattice in Exercise 13.1.1.
d. Are the lattices in parts a, b, and c Boolean algebras? Why?

Determine which of the lattices of Exercise 13.1.3 of Section 13.1 are Boolean algebras.

Answer

a and g.

Let  and 

a. Prove that  is a Boolean algebra.
b. Write out the operation tables for the Boolean algebra.

It can be shown that the following statement,  holds for any Boolean algebra  :  if and only if 

a. Write the dual,  of the statement 
b. Write the statement  and its dual,  in the language of sets.
c. Are the statements in part b true for all sets?
d. Write the statement  and its dual,  in the language of logic.
e. Are the statements in part d true for all propositions?

Answer
a. 
b. The dual of  is 
c. Yes
d. The dual of  is 
e. Yes

State the dual of:

a. 

b. 

c. 

Formulate a definition for isomorphic Boolean algebras.

Answer

 is isomorphic to  if and only if there exists a function  such that

a.  is a bijection;

Exercise 12.3.2

D6 [ ; ∨, ∧] .D6

Exercise 12.3.3

Exercise 12.3.4

A = {a, b} B =P(A).

[B; ∪, ∩, ]c

Exercise 12.3.5

S, [B; ∨, ∧, −] (a∧ b) = a a ≤ b.

,S∗ S.
S ,S∗

S ,S∗

: a∨ b = a if a ≥ bS∗

S : A∩B = A if A ⊆ B : A∪B = A if A ⊇ BS∗

S : p∧ q ⇔ p  if p ⇒ q : p∨ q ⇔ p if q ⇒ pS∗

Exercise 12.3.6

a∨ (b∧ a) = a.

a∨( ) = 1.( ∨ a)∧ bb̄
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯

( )∧ b = a∨ b.a∧ b̄
¯ ¯¯̄¯̄¯̄¯̄¯

Exercise 12.3.7

[B; ∧, ∨, −] [ ; ∧, ∨, ]B′ ~ T : B → B′

T
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b. 
c. 
d. 

For what positive integers,  does the lattice  produce a boolean algebra?

This page titled 12.3: Boolean Algebras is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Al Doerr &
Ken Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

T (a∧ b) = T (a) ∧T (b)  for all a, b ∈ B

T (a∨ b) = T (a) ∨T (b)  for all a, b ∈ B

T ( ) =  for all a ∈ B.ā T (a)
~

Exercise 12.3.8

n, [ , ∣]Dn
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12.4: Atoms of a Boolean Algebra
In this section we will look more closely at something we've hinted at, which is that every finite Boolean algebra is isomorphic to
an algebra of sets. We will show that every finite Boolean algebra has  elements for some  with precisely  generators, called
atoms.

Consider the Boolean algebra  whose ordering diagram is depicted in Figure 

Figure : Illustration of the atom concept

We note that    and  that is, each of the elements above level one can
be described completely and uniquely in terms of the elements on level one. The 's have uniquely generated the non-least
elements of  much like a basis in linear algebra generates the elements in a vector space. We also note that the 's are the
immediate successors of the minimum element, 0. In any Boolean algebra, the immediate successors of the minimum element are
called atoms. For example, let  be any nonempty set. In the Boolean algebra  (over ), the singleton sets are the
generators, or atoms, of the algebraic structure since each element  can be described completely and uniquely as the join, or
union, of singleton sets.

A non-least element  in a Boolean algebra  is called an atom if for every   or 

The condition that  tells us that  is a successor of  that is,  as depicted in Figure (a)

The condition  is true only when  and  are “not connected.” This occurs when  is another atom or if  is a successor
of atoms different from  as depicted in Figure (b).

Figure : Conditions for an atom

An alternate definition of an atom is based on the concept of “covering.”

2n n n

[B; ∨, ∧, ],¯ 12.4.1

12.4.1

1 = ∨ ∨ ,a1 a2 a3 = ∨ ,b1 a1 a2 = ∨ ,b2 a1 a3 = ∨ ;b3 a2 a3

ai

B ai

A [P(A); ∪, ∩, ]c ⊆
P(A)

Definition : Atom12.4.1

a [B; ∨, ∧, ]¯ x ∈ B, x ∧ a = a x ∧ a = 0.

x ∧ a = a x a; a ⪯ x, 12.4.2

x ∧ a = 0 x a x x

a, 12.4.2

12.4.2
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Given a Boolean algebra  let  We say that  covers  iff  and there does not exist  with 

It can be proven that the atoms of Boolean algebra are precisely those elements that cover the zero element.

The set of atoms of the Boolean algebra  is  To see that  is an atom, let  be any non-least
element of  and note that one of the two conditions  or  holds. Of course, to apply the definition to this
Boolean algebra, we must remind ourselves that in this case the 0-element is 1, the operation  is greatest common divisor, and the
poset relation is “divides.” So if  we have  (or ), so Condition 1 holds. If  the first condition is not
true. (Why?) However, Condition 2,  is true. The reader is encouraged to show that 3 and 5 also satisfy the definition of
an atom. Next, if we should compute the join (the least common multiple in this case) of all possible combinations of the atoms 2,
3, and 5 to generate all nonzero (non-1 in this case) elements of  For example,  and  We state this
concept formally in the following theorem, which we give without proof.

Let  be any finite Boolean algebra. Let  be the set of all atoms of  Then every element
in  can be expressed uniquely as the join of a subset of 

The least element in relation to this theorem bears noting. If we consider the empty set of atoms, we would consider the join of
elements in the empty set to be the least element. This makes the statement of the theorem above a bit more tidy since we don't
need to qualify what elements can be generated from atoms.

We now ask ourselves if we can be more definitive about the structure of different Boolean algebras of a given order. Certainly, the
Boolean algebras  and  have the same graph (that of Figure ), the same number of atoms,
and, in all respects, look the same except for the names of the elements and the operations. In fact, when we apply corresponding
operations to corresponding elements, we obtain corresponding results. We know from Chapter 11 that this means that the two
structures are isomorphic as Boolean algebras. Furthermore, the graphs of these examples are exactly the same as that of Figure 

, which is an arbitrary Boolean algebra of order 

In these examples of a Boolean algebra of order 8, we note that each had 3 atoms and  number of elements, and all were
isomorphic to  where  This leads us to the following questions:

Are there any different (nonisomorphic) Boolean algebras of order 8?
What is the relationship, if any, between finite Boolean algebras and their atoms?
How many different (nonisomorphic) Boolean algebras are there of order 2? Order 3? Order 4? etc.

The answers to these questions are given in the following theorem and corollaries.

Let  be any finite Boolean algebra, and let A be the set of all atoms of  Then  is isomorphic
to 

Proof

An isomorphism that serves to prove this theorem is  defined by  where  is
interpreted as the zero of  We leave it to the reader to prove that this is indeed an isomorphism.

Every finite Boolean algebra  has  elements for some positive integer 

Proof

Let  be the set of all atoms of  and let  Then there are exactly  elements (subsets) in and by Theorem 
,  is isomorphic to  and must also have  elements.

Definition : The Covering Relation12.4.2

[B; ∨, ∧, ],¯ x, z ∈ B. z x x ≺ z y ∈ B

x ≺ y ≺ z.

[ ; ∨, ∧, ]D30 ¯ M = {2, 3, 5}. a = 2 x

D30 x ∧ 2 = 2 x ∧ 2 = 1
∧

x = 10, 10 ∧ 2 = 2 2 ∣ 10 x = 15,
15 ∧ 2 = 1,

.D30 2 ∨ 3 ∨ 5 = 30 2 ∨ 5 = 10.

Theorem 12.4.1

B = [B; ∨, ∧, ]¯ A = { , , … , }a1 a2 an B.
B A.

[ ; ∨, ∧, ∧ ]D30 ¯ [P(A); ∪, ∩, ]c 12.4.1

12.4.1 8 = .23

= 823

[P(A); ∪, ∩, ],c A = {a, b, c}.

Theorem 12.4.2

B = [B; ∨, ∧, −] B. [P(A); ∪, ∩, ]c

[B; ∨, ∧, −]

T : P(A) → B T (S) = a,⋁a∈S T (∅)

B.

Corollary 12.4.1

B = [B; ∨, ∧, ]¯ 2n n.

A B |A| = n. 2n P(A),
12.4.2 [B; ∨, ∧, ]¯ [P(A); ∪, ∩ ]c 2n
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All Boolean algebras of order  are isomorphic to one another.

Proof

Figure : Isomorphisms to be combined

Every Boolean algebra of order  is isomorphic to  when  Hence, if  and  each have 
elements, they each have  atoms. Suppose their sets of atoms are  and  respectively. We know there are
isomorphisms  and  where   In addition we have an isomorphism,  from  into 

 which we ask you to prove in Exercise . We can combine these isomorphisms to produce the isomorphism 
 which proves the corollary.

The above theorem and corollaries tell us that we can only have finite Boolean algebras of orders  and that all
finite Boolean algebras of any given order are isomorphic. These are powerful tools in determining the structure of finite Boolean
algebras. In the next section, we will discuss one of the easiest ways of describing a Boolean algebra of any given order.

12.4.1: Exercises

a. Show that  is an atom of the Boolean algebra 
b. Repeat part a for the elements 3 and 5 of 
c. Verify Theorem  for the Boolean algebra 

Answer
a. For  we must show that for each  one of the following is true:  or  We do this

through the following table: 

 
For  a similar verification can be performed.

b.    and 

Corollary 12.4.2

2n

12.4.1

2n [P(A); ∪, ∩, ]c |A| = n. B1 B2 2n

n A1 ,A2

T1 ,T2 : → P( ),Ti Bi Ai i = 1, 2. N P( )A1

P( ),A2 12.4.9
∘ N ∘ : → ,T −1

2 T1 B1 B2

, , , . . , ,21 22 23 2n

Exercise 12.4.1

a = 2 [ ; ∨, ∧, −] .D30

.D30

12.4.1 [ ; ∨, ∧, −] .D30

a = 3 x ∈ D30 x ∧ 3 = 3 x ∧ 3 = 1.

x

1

2

3

5

6

10

15

30

 verification

1 ∧ 3 = 1

2 ∧ 3 = 1

3 ∧ 3 = 3

5 ∧ 3 = 1

6 ∧ 3 = 3

20 ∧ 3 = 1

15 ∧ 3 = 3

30 ∧ 3 = 3

a = 5,
6 = 2 ∨ 3, 10 = 2 ∨ 5, 15 = 3 ∨ 5, 30 = 2 ∨ 3 ∨ 5.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86180?pdf


12.4.4 https://math.libretexts.org/@go/page/86180

Let 

a. Rewrite the definition of atom for  What does  mean in this example?
b. Find all atoms of 
c. Verify Theorem  for 

Verify Theorem  and its corollaries for the Boolean algebras in Exercises  and  of this section.

Answer

If  30 then  and  is isomorphic to  where 

 and 

Give an example of a Boolean algebra of order 16 whose elements are certain subsets of the set 

Corollary  implies that there do not exist Boolean algebras of orders 3, 5, 6, 7, 9, etc. (orders different from ). Without
this corollary, directly show that we cannot have a Boolean algebra of order 3.

Hint

Assume that  is a Boolean algebra of order 3 where  and show that this cannot happen by
investigating the possibilities for its operation tables.

Answer

Assume that  is the third element of a Boolean algebra. Then there is only one possible set of tables for join and
meet, all following from required properties of the Boolean algebra.

Next, to find the complement of  we want  such that  and  No element satisfies both conditions;
hence the lattice is not complemented and cannot be a Boolean algebra. The lack of a complement can also be seen from
the ordering diagram from which  and  must be derived.

a. There are many different, yet isomorphic, Boolean algebras with two elements. Describe one such Boolean algebra that is
derived from a power set,  under  Describe a second that is described from  for some  under “divides.”

b. Since the elements of a two-element Boolean algebra must be the greatest and least elements, 1 and 0, the tables for the
operations on  are determined by the Boolean algebra laws. Write out the operation tables for 

Exercise 12.4.2

A = {a, b, c}.

[P(A); ∪, ∩, c]. a ≤ x

[P(A); ∪, ∩, c].
12.4.1 [P(A); c, ∪, ∩].

Exercise 12.4.3

12.4.2 12.4.1 12.4.2

B =  D30 A = {2, 3, 5} D30 P(A),
1 ↔ ∅ 

2 ↔ {2} 

3 ↔ {3} 

6 ↔ {2, 3} 

5 ↔ {5}

10 ↔ {2, 5}

15 ↔ {3, 5}

30 ↔ {2, 3, 5}

 Join ↔  Union

 Meet ↔  Intersection

 Complement ↔  Set Complement

Exercise 12.4.4

{1, 2, 3, 4, 5, 6, 7}

Exercise 12.4.5

12.4.1 2n

[B; ∨, ∧, −] B = {0, x, 1}

x ≠ 0 or 1

∨

0

x

1

0 x 1

0

x

1

x

x

1

1

1

1

∧

0

x

1

0 x 1

0

0

0

0

x

x

0

x

1

x y x ∧ y = 0 x ∨ y = 1.

∧ ∨

Exercise 12.4.6

P(A), ⊆ . ,Dn n ∈ P ,

{0, 1} [{0, 1}; ∨, ∧, −].
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Find a Boolean algebra with a countably infinite number of elements.

Answer

Let  be any countably infinite set, such as the integers. A subset of  is cofinite if it is finite or its complement is finite.
The set of all cofinite subsets of  is:

a. Countably infinite - this might not be obvious, but here is a hint. Assume  For each finite subset 
 of  map that set to the integer  You can do a similar thing to sets that have a finite complement,

but map them to negative integers. Only one minor adjustment needs to be made to accommodate both the empty set
and 

b. Closed under union
c. Closed under intersection, and
d. Closed under complementation.

Therefore, if  then  is a countable Boolean algebra under the usual set operations.

Prove that the direct product of two Boolean algebras is a Boolean algebra.

Hint

“Copy” the corresponding proof for groups in Section 11.6.

Prove if two finite sets  and  both have  elements then  is isomorphic to 

Prove an element of a Boolean algebra is an atom if and only if it covers the zero element.

This page titled 12.4: Atoms of a Boolean Algebra is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Al
Doerr & Ken Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

Exercise 12.4.7

X X

X

X = { , , , …} .x0 x1 x2

A X, ( )∑∞
i=0 χA xi 2i

X.

B = {A ⊆ X : A is cofinite}, B

Exercise 12.4.8

Exercise 12.4.9

A1 A2 n [P( ); ∪, ∩, ]A1
c [P( ); ∪, ∩, ]A2

c

Exercise 12.4.10
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12.5: Finite Boolean Algebras as n-tuples of 0's and 1's
From the previous section we know that all finite Boolean algebras are of order  where  is the number of atoms in the algebra.
We can therefore completely describe every finite Boolean algebra by the algebra of power sets. Is there a more convenient, or at
least an alternate way, of defining finite Boolean algebras? In Chapter 11 we found that we could produce new groups by taking
Cartesian products of previously known groups. We imitate this process for Boolean algebras.

The simplest nontrivial Boolean algebra is the Boolean algebra on the set  The ordering on  is the natural one, 
 If we treat 0 and 1 as the truth values “false” and “true,” respectively, we see that the Boolean operations 

 and  are nothing more than the logical operation with the same symbols. The Boolean operation, 
(complementation) is the logical  (negation). In fact, this is why these symbols were chosen as the names of the Boolean
operations. The operation tables for  are simply those of “or,” “and,” and “not,” which we repeat here.

By Theorem 13.4.2 and its corollaries, all Boolean algebras of order 2 are isomorphic to this one.

We know that if we form  we obtain the set  a set of order 4. We define operations on 
 the natural way, namely componentwise, so that  

 and  We claim that  is a Boolean algebra under the
componentwise operations. Hence,  is a Boolean algebra of order 4. Since all Boolean algebras of order 4 are
isomorphic to one other, we have found a simple way of describing all Boolean algebras of order 4.

It is quite clear that we can describe any Boolean algebra of order 8 by considering  and, more generally, any
Boolean algebra of order  with  (  factors).

12.5.1: Exercises

a. Write out the operation tables for 
b. Draw the Hasse diagram for  and compare your results with Figure 6.3.1.
c. Find the atoms of this Boolean algebra.

Answer

a. 

b. The graphs are isomorphic.
c. (0, 1) and (1,0)

,2n
n

= {0, 1}.B2 B2

0 ≤ 0, 0 ≤ 1, 1 ≤ 1.

∨(join) ∧(meet) −,

¬

[ ; ∨, ∧, −]B2

∨

0

1

0

0

1

1

1

1

∧

0

1

0

0

0

1

0

1

u

0

1

u
−

1

0

× =B2 B2 B
2
2 {(0, 0), (0, 1), (1, 0), (1, 1)},

B
2
2 (0, 1) ∨ (1, 1) = (0 ∨ 1, 1 ∨ 1) = (1, 1),

(0, 1) ∧ (1, 1) = (0 ∧ 1, 1 ∧ 1) = (0, 1) = ( , ) = (1, 0).(0, 1)
¯ ¯¯̄¯̄¯̄¯̄¯

0̄ 1̄ B
2
2

[ ; ∨, ∧, ]B2
2 ¯

× × =B2 B2 B2 B
3
2

2n = × ×⋯ ×B
n

2 B2 B2 B2 n

Exercise 12.5.1

[ ; ∨, ∧, −] .B2
2

[ ; ∨, ∧, −]B
2
2

∨

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(0, 0)

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(0, 1)

(0, 1)

(0, 1)

(1, 1)

(1, 1)

(1, 0)

(1, 0)

(1, 1)

(1, 0)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

∧

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 1)

(0, 0)

(0, 1)

(0, 0)

(0, 1)

(1, 0)

(0, 0)

(0, 0)

(1, 0)

(1, 0)

(1, 1)

(0, 0)

(0, 1)

(1, 0)

(1, 1)

u

(0, 0)

(0, 1)

(1, 0)

(1, 1)

u
__

(1, 1)

(1, 0)

(0, 1)

(0, 0)
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a. Write out the operation tables for 
b. Draw the Hasse diagram for 

a. List all atoms of 
b. Describe the atoms of 

Answer
a.    and  are the atoms.
b. The -tuples of bits with exactly one 1.

Theorem 13.4.2 tells us we can think of any finite Boolean algebra in terms of sets. In Chapter 4, we defined minsets
Definition 4.3.1 and minset normal form Definition 4.3.2. Rephrase these definitions in the language of Boolean algebra. The
generalization of minsets are called minterms.

This page titled 12.5: Finite Boolean Algebras as n-tuples of 0's and 1's is shared under a CC BY-NC-SA 3.0 license and was authored, remixed,
and/or curated by Al Doerr & Ken Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.

Exercise 12.5.2

[ ; ∨, ∧, −] .B
3
2

[ ; ∨, ∧, −]B3
2

Exercise 12.5.3

.B4
2

, n ≥ 1.Bn

2

(1, 0, 0, 0),(0, 1, 0, 0),(0, 0, 1, 0), (0, 0, 0, 1)

n

Exercise 12.5.4
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12.6: Boolean Expressions
In this section, we will use our background from the previous sections and set theory to develop a procedure for simplifying
Boolean expressions. This procedure has considerable application to the simplification of circuits in switching theory or logical
design.

Let  be any Boolean algebra, and let  be variables in  that is, variables that can assume values
from  A Boolean expression generated by  is any valid combination of the  and the elements of  with the
operations of meet, join, and complementation.

This definition is the analog of the definition of a proposition generated by a set of propositions, presented in Section 3.2.

Each Boolean expression generated by  variables,  defines a function  where 
 If  is a finite Boolean algebra, then there are a finite number of functions from  into 

Those functions that are defined in terms of Boolean expressions are called Boolean functions. As we will see, there is an infinite
number of Boolean expressions that define each Boolean function. Naturally, the “shortest” of these expressions will be preferred.
Since electronic circuits can be described as Boolean functions with  this economization is quite useful.

In what follows, we make use of Exercise 7.1.5 in Section 7.1 for counting number of functions.

Consider any Boolean algebra of order 2,  How many functions  are there? First, all Boolean algebras
of order 2 are isomorphic to  so we want to determine the number of functions  If we consider a
Boolean function of two variables,  and  we note that each variable has two possible values 0 and 1, so there are  ways
of assigning these two values to the  variables. Hence, the table below has  rows. So far we have a table such as
this one:

How many possible different functions can there be? To list a few:    
  etc. Each of these will fill in the question marks in the table

above. The tables for  and  are

Two functions are different if and only if their tables are different for at least one row. Of course by using the basic laws of
Boolean algebra we can see that  Why? So if we simply list by brute force all “combinations” of  we will
obtain unnecessary duplication. However, we note that for any combination of the variables  and  there are only two
possible values for  namely 0 or 1. Thus, we could write  different functions on 2 variables.

Now, let's count the number of different Boolean functions in a more general setting. We will consider two cases: first, when 
, and second, when  is any finite Boolean algebra with  elements.

Let  Each function  is defined in terms of a table having  rows. Therefore, since there are two possible
images for each element of  there are 2 raised to the  or  different functions. We will show that every one of these

Definition : Boolean Expression12.6.1

[B; ∨, ∧,−] , ,… ,x1 x2 xk B;

B. , ,… ,x1 x2 xk xi B

k e ( ,… , ) ,x1 xk f : → BBk

f ( ,… , ) = e ( ,… , ) .a1 ak a1 ak B Bk B.

B = ,B2

Example : Two Variables Over 12.6.1 B2

[B; ∨, ∧,−]. f : → BB2

[ ; ∨, ∧,−]B2 f : → .B2
2

B2

x1 ,x2 22

k = 2 = 422

x1

0

0

1

1

x2

0

1

0

1

f ( , )x1 x2

?

?

?

?

( , ) = ,f1 x1 x2 x1 ( , ) = ,f2 x1 x2 x2 ( , ) = ∨ ,f3 x1 x2 x1 x2

( , ) = ( ∧ )∨ ,f4 x1 x2 x1 x2
¯ ¯¯̄¯ x2 ( , ) = ∧ ∨ ,f5 x1 x2 x1 x2 x2

¯ ¯¯̄¯

 f1 f3

x1

0

0

1

1

x2

0

1

0

1

( , )f1 x1 x2

0

0

1

1

x1

0

0

1

1

x2

0

1

0

1

( , )f3 x1 x2

0

1

1

1

= .f3 f4  and x1 x2

,x1 x2

f ( , ) ,x1 x2 = 1624

B = B2 B 2n

B = .B2 f : → BBk 2k

,Bk ,2k 22
k
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functions is a Boolean function.

Now suppose that  A function from  into  can still be defined in terms of a table. There are  rows to each
table and  possible images for each row. Therefore, there are  raised to the power  different functions. We will show that if

 not every one of these functions is a Boolean function.

Since all Boolean algebras are isomorphic to a Boolean algebra of sets, the analogues of statements in sets are useful in Boolean
algebras.

A Boolean expression generated by  that has the form

where each  may be either  or  is called a minterm generated by  We use the notation  for the
minterm generated by  where  if  and  if 

An example of the notation is that 

By a direct application of the Rule of Products we see that there are  different minterms generated by 

A Boolean expression generated by  is in minterm normal form if it is the join of expressions of the form 
where  and  is a minterm generated by  That is, it is of the form

where  and  are the minterms generated by 

We seem to require every minterm generated by  in , and we really do. However, some of the values of 
 can be  which effectively makes the corresponding minterm disappear.

If  then each  in a minterm normal form is either 0 or 1. Therefore,  is either 0 or 

Let  be a Boolean expression over B. There exists a unique minterm normal form  that is
equivalent to  in the sense that e and M define the same function from  into 

The uniqueness in this theorem does not include the possible ordering of the minterms in  (commonly referred to as “uniqueness
up to the order of minterms”). The proof of this theorem would be quite lengthy, and not very instructive, so we will leave it to the
interested reader to attempt. The implications of the theorem are very interesting, however.

If  then there are  raised to the  different minterm normal forms. Since each different minterm normal form defines a
different function, there are a like number of Boolean functions from  into  If  there are as many Boolean functions
(2 raised to the ) as there are functions from  into  since there are  raised to the  functions from  into  The
significance of this result is that any desired function can be realized using electronic circuits having 0 or 1 (off or on, positive or
negative) values.

More complex, multivalued circuits corresponding to boolean algebras with more than two values would not have this flexibility
because of the number of minterm normal forms, and hence the number of boolean functions, is strictly less than the number of
functions.

We will close this section by examining minterm normal forms for expressions over  , since they are a starting point for circuit
economization.

|B| = > 2.2n Bk B |B|k

|B| 2n 2nk

n > 1,

Definition : Minterm12.6.2
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= ∧ ∧ .M110 x1 x2 x3̄
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Definition : Minterm Normal Form12.6.3
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Theorem : Uniqueness of Minterm Normal Form12.6.1
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Consider the Boolean expression  One method of determining the minterm normal form of  is to think
in terms of sets. Consider the diagram with the usual translation of notation in Figure . Then

Figure : Visualization of minterms for 

Table : Definition of the boolean function 

Consider the function  defined by Table .

The minterm normal form for  can be obtained by taking the join of minterms that correspond to rows that have an image
value of 1. If  then include the minterm  where

Or, to use alternate notation, include  in the expression if and only if 

Therefore,

The minterm normal form is a first step in obtaining an economical way of expressing a given Boolean function. For functions of
more than three variables, the above set theory approach tends to be awkward. Other procedures are used to write the normal form.
The most convenient is the Karnaugh map, a discussion of which can be found in any logical design/switching theory text (see, for
example, [18]), on Wikipedia.

12.6.1: Exercises 

Example 12.6.2

f ( , ) = ∨ .x1 x2 x1 x2
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a. Write the 16 possible functions of Example .
b. Write out the tables of several of the above Boolean functions to show that they are indeed different.
c. Determine the minterm normal forms of

i. 
ii. 

iii. 
iv. 

Answer

a. 

b. The truth table for the functions in part (a) are 

 

c.  

i. 
ii. 

iii. 
iv. 

Exercise 12.6.1
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Consider the Boolean expression  on 

a. Simplify this expression using basic Boolean algebra laws.
b. Write this expression in minterm normal form.
c. Write out the table for the given function defined by  and compare it to the tables of the functions in parts a and b.
d. How many possible different functions in three variables on  are there?

Let  be a Boolean algebra of order 4, and let  be a Boolean function of two variables on 

a. How many elements are there in the domain of f?
b. How many different Boolean functions are there of two, variables? Three variables?
c. Determine the minterm normal form of 
d. If  define a function from  into  that is not a Boolean function.

Answer

a. The number of elements in the domain of  is 
b. With two variables, there are  different Boolean functions. With three variables, there are  different

Boolean functions.
c. 
d. Consider , defined by , , , , and , with the

images of all other pairs in  defined arbitrarily. This function is not a Boolean function. If we assume that it is
Boolean function then  can be computed with a Boolean expression . This expression can be put into
minterm normal form:  

 

 
Therefore,  and so, using this formula, 

 This contradicts , and so  is not a Boolean function.

This page titled 12.6: Boolean Expressions is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Al Doerr &
Ken Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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12.7: A Brief Introduction to Switching Theory and Logic Design

I'm still looking for a good application for drawing logic gates. The figures here are quite rough.

Early computers relied on many switches to perform the logical operations needed for computation. This was true as late as the
1970's when early personal computers such as the Altair ( Figure ) started to appear. Pioneering computer scientists such as
Claude Shannon realized that the operation of these computers could be simplified by making use of an isomorphism between
computer circuits and boolean algebra. The term Switching Theory was used at the time. Logical gates realized through
increasingly smaller and smaller integrated circuits still perform the same functions as in early computers, but using purely
electronic means. In this section, we give examples of some switching circuits. Soon afterward, we will transition to the more
modern form of circuits that are studied in Logic Design, where gates replace switches. Our main goal is to give you an overview
of how boolean functions corresponds to any such circuit. We will introduce the common system notation used in logic design and
show how it corresponds with the mathematical notation of Boolean algebras. Any computer scientist should be familiar with both
systems.

Figure : The Altair Computer, an early PC, by
Todd Dailey, Creative Commons

The simplest switching device is the on-off switch. If the switch is closed/ON, current will pass through it; if it is open/OFF, current
will not pass through it. If we designate ON by 1, and OFF by 0, we can describe electrical circuits containing switches by Boolean
expressions with the variables representing the variable states of switches or the variable bits passing through gates.

The electronics involved in these switches take into account whether we are negating a switch or not. For electromagnetic switches,
a magnet is used to control whether the switch is open or closed. The magnets themselves may be controlled by simple ON/OFF
switches. There are two types of electromagnetic switches. One is normally open (OFF) when the magnet is not activated, but
activating the magnet will close the circuit and the switch is then ON. A separate type of switch corresponds with a negated switch.
For that type, the switch is closed when the magnet is not activated, and when the magnet is activated, the switch opens. We won't
be overly concerned with the details of these switches or the electronics corresponding to logical gates. We will simply assume they
are available to plug into a circuit. For simplicity, we use the inversion symbol on a variable that labels a switch to indicate that it is
a switch of the second type, as in Figure .

Standby power generators that many people have in their homes use a transfer switch to connect the generator to the home
power system. This switch is open (OFF) if there is power coming from the normal municipal power supply. It stays OFF
because a magnet is keeping it open. When power is lost, the magnet is no longer activated, and the switch closes and is ON.
So the transfer switch is a normally ON switch.

Figure : Representation of a normally OFF switch controlled by variable 

Disclaimer

12.7.1

12.7.1

12.7.3

Note 12.7.1

12.7.2 x1
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Figure : Representation of a normally ON switch controlled by variable 

The standard notation used for Boolean algebra operations in switching theory and logic design is  for join, instead of  and  for
meet, instead of  Complementation is the same in both notational systems, denoted with an overline.

The expression  represents the situation in which a series of two switches appears in sequence as in Figure . In order
for current to flow through the circuit, both switches must be ON; that is, they must both have the value 1. Similarly, a pair of
parallel switches, as in Figure , is described algebraically by  Here, current flows through this part of the circuit as
long as at least on of the switches is ON.

Figure : Two switches in AND configuration realizing 

Figure : Two switches in OR configuration realizing 

All laws and concepts developed previously for Boolean algebras hold. The only change is purely notational. We make the change
in this section solely to introduce the reader to another frequently used system of notation.

Many of the laws of Boolean algebra can be visualized thought switching theory. For example, the distributive law of meet over
join is expressed as

The switching circuit analogue of the above statement is that the circuits in the two images below are equivalent. In circuit (b), the
presence of two 's might represent two electromagnetic switches controlled by the same magnet.

Figure : (a)

Figure : (b)

The circuits in a computer are now composed of large quantities of gates, which serve the same purpose as switches, but can be
miniaturized to a great degree. For example, the OR gate, usually drawn as in Figure  implements the logical OR function.
This happens electronically, but is equivalent to Figure . The AND gate, which is equivalent to two sequential switches is
shown in Figure .

Figure : An OR gate
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Figure : An AND gate

The complementation process is represented in a gate diagram by an inverter, as pictured in Figure .

Figure : Inverter, or NOT gate

When drawing more complex circuits, multiple AND's or OR's are sometimes depicted using a more general gate drawing. For
example if we want to depict an OR gate with three inputs that is ON as long as at least one input is ON, we would draw it as in
Figure , although this would really be two binary gates, as in Figure . Both diagrams are realizing the boolean
expression  Strictly speaking, the gates in Figure  represent  but the associative law for join
tells us that the grouping doesn't matter.

Figure : Simple version of a ternary OR gate

Figure : A ternary OR gate created with binary OR gates

In Figure , we show a few other commonly used gates, XOR, NAND, and NOR, which correspond to the boolean
exressions   and  respectively.

Figure : Other common gates

Let's start with a logic circuit and see how the laws of boolean algebra can help us simplify it.

Consider the circuit in Figure . As usual, we assume that three inputs enter on the left and the output exits on the right.

Figure : Initial gate diagram

If we trace the inputs through the gates we see that this circuit realizes the boolean function

We simplify the boolean expression that defines  simplifying the circuit in so doing. You should be able to identify the laws
of Boolean algebra that are used in each of the steps. See Exercise .
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Therefore,  which can be realized with the much simpler circuit in Figure , without using the
input 

Figure : Simplified gate diagram

Next, we start with a table of desired outputs based on three bits of input and design an efficient circuit to realize this output.

Consider the following table of desired outputs for the three input bits 

Table : Desired output table

The first step is to write the Minterm Normal Form, Definition 13.6.3, of  Since we are working with the two value Boolean
algebra,  the constants in each minterm are either 0 or 1, and we simply list the minterms that have a 1. These correspond
with the rows of the table above that have an output of 1. We will then attempt to simplify the expression as much as possible.

Therefore we can realize our table with the boolean function  A circuit diagram for this
function is Figure . But is this the simplest circuit that realizes the table? See Exercise .

Figure : A realization of the table of desired outputs.
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12.7.1: 13.7.1: Exercises

List the laws of boolean algebra that justify the steps in the simplification of the boolean function  in Example 
. Some steps use more than one law.

Answer
1. Associative, commutative, and idempotent laws.
2. Distributive law.
3. Idempotent and complement laws.
4. Null and identity laws
5. Distributive law.
6. Null and identity laws.

Write the following Boolean expression in the notation of logic design.

Answer

Find a further simplification of the boolean function in Example , and draw the corresponding gate diagram for the
circuit that it realizes.

Answer

A simpler boolean expression for the function is 

Figure : An even
simpler circuit

Consider the switching circuit in Figure .

Exercise 12.7.1

f ( , , )x1 x2 x3

12.7.1

Exercise 12.7.2

( ∧ ) ∨ ( ∧ ) ∨ ( ∧ ) .x1 x2
¯ ¯¯̄¯ x1 x2 x1

¯ ¯¯̄¯ x2

( ⋅ ) +( ⋅ ) +( ⋅ ).x1 x2
¯ ¯¯̄¯ x1 x2 x1

¯ ¯¯̄¯ x2

Exercise 12.7.3

12.7.2

⋅ ( + ).x2
¯ ¯¯̄¯ x1 x3

12.7.17

Exercise 12.7.4

12.7.18
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Figure : Can this circuit be simplified?

a. Draw the corresponding gate diagram for this circuit.
b. Construct a table of outputs for each of the eight inputs to this circuit.
c. Determine the minterm normal of the Boolean function based on the table.
d. Simplify the circuit as much as possible.

Consider the circuit in Figure .

Figure : Can this circuit be
simplified?

a. Trace the inputs though this circuit and determine the Boolean function that it realizes.
b. Construct a table of outputs for each of the eight inputs to this circuit.
c. Find the minterm normal form of 
d. Draw the circuit based on the minterm normal form.
e. Simplify the circuit algebraically and draw the resulting circuit.

Consider the Boolean function 

a. Simplify  algebraically.
b. Draw the gate diagram based on the simplified version of 

Draw a logic circuit using only AND, OR and NOT gates that realizes an XOR gate.

12.7.18

Exercise 12.7.5

12.7.19

12.7.19

f .

Exercise 12.7.6

f ( , , , ) = +( ⋅ ( + ) + ⋅ ( + )) .x1 x2 x3 x4 x1 x2 x1
¯ ¯¯̄¯ x4 x3 x2

¯ ¯¯̄¯ x4
¯ ¯¯̄¯

f

f .

Exercise 12.7.7
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Draw a logic circuit using only AND, OR and NOT gates that realizes the Boolean function on three variables that returns 1 if
the majority of inputs are 1 and 0 otherwise.

This page titled 12.7: A Brief Introduction to Switching Theory and Logic Design is shared under a CC BY-NC-SA 3.0 license and was authored,
remixed, and/or curated by Al Doerr & Ken Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a
detailed edit history is available upon request.
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CHAPTER OVERVIEW

13: Monoids and Automata
The first topic is monoid theory. The second is automata theory, in which computers and other machines are described in abstract
terms.

13.1: Monoids
13.2: Free Monoids and Languages
13.3: Automata, Finite-State Machines
13.4: The Monoid of a Finite-State Machine
13.5: The Machine of a Monoid
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13.1: Monoids
Recall that in Section 11.2 we introduced systems called monoids. Here is the formal definition.

A monoid is a set  together with a binary operation  with the properties

 is associative:   and
 has an identity in   such that  

Since the requirements for a group contain the requirements for a monoid, every group is a monoid.

a. The power set of any set together with any one of the operations intersection, union, or symmetric difference is a monoid.
b. The set of integers,  with multiplication, is a monoid. With addition,  is also a monoid.
c. The set of  matrices over the integers,   with matrix multiplication, is a monoid. This follows from the

fact that matrix multiplication is associative and has an identity,  This is an example of a noncommutative monoid since
there are matrices,  and  for which 

d.  is a monoid with identity 1.
e. Let  be a nonempty set. The set of all functions from  into  often denoted  is a monoid over function

composition. In Chapter 7, we saw that function composition is associative. The function  defined by 
is the identity element for this system. If  is greater than 1 then it is a noncommutative monoid. If  is finite, 

 . For example, if  The functions  defined by the graphs in Figure 
, are the elements of  . This monoid is not a group. Do you know why? 

One reason why  is noncommutative is that  because  while 

Figure : The functions on 

Virtually all of the group concepts that were discussed in Chapter 11 are applicable to monoids. When we introduced subsystems,
we saw that a submonoid of monoid  is a subset of  that is, it is a monoid with the operation of  To prove that a subset is a
submonoid, you can apply the following theorem.

Assume  is a monoid and  is a nonempty subset of  Then  is a submonoid of  if and only if the following two
conditions are met.

If  then.  i. e.,  is closed with under 
The identity of  belongs to 

Definition : Monoid13.1.1

M ∗

∗ ∀a, b, c ∈ M , (a∗ b) ∗ c = a∗ (b ∗ c)
∗ M : ∃e ∈ M ∀a ∈ M , a∗ e = e∗ a = a

Note 13.1.1

Example : Some Monoids13.1.1

Z, Z

n×n (Z),Mn n ≥ 2,
.In

A B, AB ≠ BA.
[ ; ] ,n ⩾ 2,Zn ×n

X X X, ,XX

i : X → X i(a) = a

|X| X

= |X∣∣XX ∣∣ ||X| B = {0, 1}, = 4.∣∣BB∣∣ z, u, i,  and t,
13.1.1 BB

BB t ∘ z ≠ z∘ t (t ∘ z)(0) = t(z(0)) = t(0) = 1
(z∘ t)(0) = z(t(0)) = z(1) = 0.

13.1.1 B2

M M ; M .

Theorem : Submonoid Test13.1.1

[M ; ∗] K M . K M

a, b ∈ K, a∗ b ∈ K; K ∗.
M K.
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Often we will want to discuss the smallest submonoid that includes a certain subset  of a monoid  This submonoid can be
defined recursively by the following definition.

If  is a subset of monoid  the submonoid generated by   is defined by:.

a. (Basis) The identity of  belongs to  and 
b. (Recursion) 

If  we write  in place of 

a. One example of a submonoid of  is 
b. The power set of   over union is a monoid with identity  If  then  is the power set of 

 If  then  is the set of finite subsets of the integers.

As you might expect, two monoids are isomorphic if and only if there exists a translation rule between them so that any true
proposition in one monoid is translated to a true proposition in the other.

 is isomorphic to  where the operation in  is componentwise mod 2 multiplication. A
translation rule is that if  then it is translated to  where

Two cases of how this translation rule works are:

A more precise definition of a monoid isomorphism is identical to the definition of a group isomorphism, Definition 11.7.2.

13.1.1: Exercises

For each of the subsets of the indicated monoid, determine whether the subset is a submonoid.

a.  and  in 
b.  and  in the monoid 
c.  in 

Answer
1.  is not a submonoid since the identity of  which is 1, is not in   is a submonoid since  and  is

closed under multiplication; that is, for all   is in 
2. The identity of  is the identity function  defined by   If   thus the

identity of  is in  However, the image of 1 under any function in  is 2, and thus the identity of  is not in 
so  is not a submonoid. The composition of any two functions in   and  will be a function in  

S M .

Definition : Submonoid Generated by a Set13.1.2

S [M ; ∗], S, ⟨S⟩,

M ⟨S⟩; a ∈ S ⇒ a ∈ ⟨S⟩.
a, b ∈ ⟨S⟩ ⇒ a∗ b ∈ ⟨S⟩.

Note 13.1.2

S = { , , … , } ,a1 a2 an ⟨ , , … , ⟩a1 a2 an ⟨{ , , … , }⟩ .a1 a2 an

Example : Some Submonoids13.1.2

[Z; +] ⟨2⟩ = {0, 2, 4, 6, 8, …}.
Z, P(Z), ∅. S = {{1}, {2}, {3}}, ⟨S⟩

{1, 2, 3}. S = {{n} : n ∈ Z}, ⟨S⟩

Example 13.1.3

M = [P{1, 2, 3}; ∩] = [ ; ⋅] ,M2 Z3
2 M2

A ⊆ {1, 2, 3}, ( , , )d1 d2 d3

= {di
1

0

 if i ∈ A

 if i ∉ A

.

{1, 2, 3}  is the identity for M1

↕

(1, 1, 1)  is the identity for M2

{1, 2} ∩ {2, 3} = {2}

↕

(1, 1, 0) ⋅ (0, 1, 1) = (0, 1, 0)

Exercise 13.1.1

= {0, 2, 4, 6}S1 = {1, 3, 5, 7}S2 [ ; ].Z8 ×8

{f ∈ : f(n) ⩽ n, ∀n ∈ N}NN {f ∈ : f(1) = 2}NN [ ; ∘].NN

{A ⊆ Z ∣ A is finite} and{A ⊆ Z ∣  is finite}Ac [P(Z); ∪].

S1 [ ; ] ,Z8 ×8 .S1 S2 1 ∈ S2 S2

a, b ∈ ,S2 a b×8 .S2

N
N i : N → N i(a) = a, ∀a ∈ N. a ∈ N, i(a) = a ≤ a,

N
N .S1 S2 N

N ,S2

S2 ,S1 f g, :S1
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and the two conditions of a submonoid are satisfied and  is a submonoid of 

3. The first set is a submonoid, but the second is not since the null set has a non-finite complement.

For each subset, describe the submonoid that it generates.

a.  in 
b. 
c. the set of prime numbers in 
d. 

 matrix of real numbers is called stochastic if and only if each entry is nonnegative and the sum of entries in each
column is 1. Prove that the set of stochastic matrices is a monoid over matrix multiplication.

Answer

The set of  real matrices is a monoid under matrix multiplication. This follows from the laws of matrix algebra in
Chapter 5. To prove that the set of stochastic matrices is a monoid over matrix multiplication, we need only show that the
identity matrix is stochastic (this is obvious) and that the set of stochastic matrices is closed under matrix multiplication.
Let  and  be  stochastic matrices.

The sum of the  column is

A semigroup is an algebraic system  with the only axiom that  be associative on  Prove that if  is a finite set, then
there must exist an idempotent element, that is, an  such that 

Let  be a Boolean algebra and  the set of all Boolean functions on  Let  be defined on  by 
 Prove that  is a monoid. Construct the operation table of  for the case of 

Answer

(f ∘ g)(n) = f(g(n)) ≤ g(n) since f  is in S1

≤ n since g is in  ⇒ f ∘ g ∈S1 S1

S1 .N
N

Exercise 13.1.2

{3} [ ; ]Z12 ×12

{5} in [ ; ]Z25 ×25

[P; ⋅]
{3, 5} in [N; +]

Exercise 13.1.3

n×n

n×n

A B n×n

(AB =)ij ∑
k=1

n

aikbkj

jth

(AB∑
j=1

n

)ij = + +⋯ +∑
k=1

n

a1kbkj ∑
k=1

n

a1kbkj ∑
k=1

n

ankbkj

= ( + +⋯ + )∑
k=1

n

a1kbkj a1kbkj ankbkj

= ( + +⋯ + )∑
k=1

n

bkj a1k a1k ank

=  since A is stochastic∑
k=1

n

bkj

= 1  since B is stochastic

Exercise 13.1.4

[S; ∗] ∗ S. S

a ∈ S a∗ a = a.

Exercise 13.1.5

B M B. ∗ M

(f ∗ g)(a) = f(a) ∧ g(a). [M ; ∗] [M ; ∗] B = .B2
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Let , and .

Therefore  and  is associative.

The identity for  is the function  where  the “one” of . If , 
. Therefore . Similarly, .

There are  functions in  for . These four functions are named in the text. See Figure . The table for 
 is

This page titled 13.1: Monoids is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Al Doerr & Ken
Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

f , g, h ∈ M a ∈ B

((f ∗ g) ∗ h)(a) = (f ∗ g)(a) ∧h(a)
= (f(a) ∧ g(a)) ∧h(a)

= f(a) ∧ (g(a) ∧h(a))

= f(a) ∧ (g∗ h)(a)

= (f ∗ (g∗ h))(a)

(f ∗ g) ∗ h = f ∗ (g∗ h) ∗

∗ u ∈ M u(a) = 1 = B a ∈ B

(f ∗ u)(a) = f(a) ∧u(a) = f(a) ∧ 1 = f(a) f ∗ u = f u ∗ f = f

= 422 M B = B2 13.1.1
∗

∗

z

i

t

u

z

z

z

z

z

i

z

i

z

i

t

z

z

t

t

u

z

i

t

u
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13.2: Free Monoids and Languages
In this section, we will introduce the concept of a language. Languages are subsets of a certain type of monoid, the free monoid
over an alphabet. After defining a free monoid, we will discuss languages and some of the basic problems relating to them. We will
also discuss the common ways in which languages are defined.

Let  be a nonempty set, which we will call an alphabet. Our primary interest will be in the case where  is finite; however, 
could be infinite for most of the situations that we will describe. The elements of  are called letters or symbols. Among the
alphabets that we will use are  and the set of ASCII (American Standard Code for Information Interchange) characters,
which we symbolize as 

A string of length   over alphabet  is a sequence of  letters from   The null string,  is defined as the
string of length zero containing no letters. The set of strings of length  over  is denoted by  The set of all strings over 
is denoted 

a. If the length of string  is  we write 
b. The null string is not the same as the empty set, although they are similar in many ways. 
c.  that is,  is a partition of 
d. An element of  can appear any number of times in a string.

If  is countable, then  is countable.

Proof

Case 1. Given the alphabet  we can define a bijection from the positive integers into  Each positive integer
has a binary expansion  where each  is 0 or 1 and  If  has such a binary expansion, then 

 We define  by  where  Every one of
the  strings of length  are the images of exactly one of the integers between  From its definition,  is
clearly a bijection; therefore,  is countable.

Case 2:  is Finite. We will describe how this case is handled with an example first and then give the general proof. If 
 then we can code the letters in  into strings from  One of the coding schemes (there are many) is 

 Now every string in  corresponds to a different string in  for
example,  would correspond with  The cardinality of  is equal to the cardinality of the set of strings that
can be obtained from this encoding system. The possible coded strings must be countable, since they are a subset of a
countable set,  Therefore,  is countable.

If  then the letters in  can be coded using a set of fixed-length strings from  If  then there
are at least as many strings of length  in  as there are letters in  Now we can associate each letter in  with with a
different element of  Then any string in  corresponds to a string in  By the same reasoning as in the example
above,  is countable.

Case 3:  is Countably Infinite. We will leave this case as an exercise.

Let  and  be strings of length  and  respectively. The concatenation of  with   is
the string  of length 

There are several symbols that are used for concatenation. We chose to use the one that is also used in Python and SageMath.

A A A

A

B = {0, 1},
ASCII.

Definition : Strings over an Alphabet13.2.1

n, n ⩾ 1 A n A: … .a1a2 an λ,
n A .An A

.A∗

Note 13.2.1

s n, |s| = n.
= {λ}.A0

= ∪ ∪ ∪ ∪ ⋯  and if i ≠ j, ∩ = ∅;A∗ A0 A1 A2 A3 Ai Aj { , , , , …}A0 A1 A2 A3 .A∗

A

Theorem 13.2.1

A A∗

B = {0, 1}, .B∗

⋯ ,dkdk−1 d1d0 dj = 1.dk n

≤ n ≤ .2k 2k+1 f : P → B∗ f(n) = f ( ⋯ ) = ⋯ ,dkdk−1 d1d0 dk−1 d1d0 f(1) = λ.

2k k  and  −1.2k 2k+1 f

B∗

A

A = {a, b, c, d, e}, A .B3

a ↔ 000, b ↔ 001, c ↔ 010, d ↔ 011,  and e ↔ 100. A∗ ;B∗

ace. 000010100. A∗

.B∗ A∗

|A| = m, A .B∗ < m ≤ ,2k−1 2k

k Bk A. A

.Bk .A∗ .B∗

A∗

A

Definition : Concatenation13.2.2

a = ⋯a1a2 am b = ⋯b1b2 bn m n, a b, a+b,
⋯ ⋯a1a2 amb1b2 bn m+n.
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The set of strings over any alphabet is a monoid under concatenation.

a. The null string is the identity element of  Henceforth, we will denote the monoid of strings over  by 
b. Concatenation is noncommutative, provided 
c. If  then the monoids  and  are isomorphic. An isomorphism can be defined using any bijection 

 If   defines a bijection from  into  We will
leave it to the reader to prove that for all 

The languages of the world, English, German, Russian, Chinese, and so forth, are called natural languages. In order to
communicate in writing in any one of them, you must first know the letters of the alphabet and then know how to combine the
letters in meaningful ways. A formal language is an abstraction of this situation.

If  is an alphabet, a formal language over  is a subset of 

a. English can be thought of as a language over of letters  both upper and lower case, and other special symbols,
such as punctuation marks and the blank. Exactly what subset of the strings over this alphabet defines the English language
is difficult to pin down exactly. This is a characteristic of natural languages that we try to avoid with formal languages.

b. The set of all ASCII stream files can be defined in terms of a language over ASCII. An ASCII stream file is a sequence of
zero or more lines followed by an end-of-file symbol. A line is defined as a sequence of ASCII characters that ends with the
a “new line” character. The end-of-file symbol is system-dependent.

c. The set of all syntactically correct expressions in any computer language is a language over the set of ASCII strings.
d. A few languages over  are

 = the submonoid of  generated by 

The generation and recognition problems are basic to computer programming. Given a language,  the programmer must
know how to write (or generate) a syntactically correct program that solves a problem. On the other hand, the compiler must be
written to recognize whether a program contains any syntax errors.

Given a formal language over alphabet  the Recognition Problem is to design an algorithm that determines the truth of 
 in a finite number of steps for all  Any such algorithm is called a recognition algorithm.

A language is recursive if there exists a recognition algorithm for it.

a. The language of syntactically correct propositions over set of propositional variables expressions is recursive.

1 'good'+'bye'

Note 13.2.2

[ ; +].A∗ A .A∗

|A| > 1.
| | = | |,A1 A2 A∗

1 A∗
2

f : → .A1 A2 a = ⋯ ∈ ,a1a2 an A∗
1 (a) = (f( )f( ) ⋯ f( ))f ∗ a1 a2 an A∗

1 .A∗
2

a, b, ∈ , (a+b) = (a) + (b).A∗
1 f ∗ f ∗ f ∗

Definition : Formal Language13.2.3

A A .A∗

Example : Some Formal Languages13.2.1

A,B, ⋯Z,

B

= {s ∈ ∣ s has exactly as many 1's as it has 0's}L1 B∗

= {1 +s+0 ∣ s ∈ }L2 B∗

= ⟨0, 01⟩L3 B∗ {0, 01}.

Investigation : Two Fundamental Problems: Recognition and Generation13.2.1

L,

Problem : The Recognition Problem13.2.1

A,
s ∈ L s ∈ .A∗

Definition : Recursive Language13.2.4

Example : Some Recursive Languages13.2.2
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b. The three languages in 7(d) are all recursive. Recognition algorithms for  and  should be easy for you to imagine. The
reason a recognition algorithm for  might not be obvious is that the definition of  is more cryptic. It doesn't tell us
what belongs to  just what can be used to create strings in  This is how many languages are defined. With a second
description of  we can easily design a recognition algorithm. You can prove that 

Design an algorithm that generates or produces any string in  Here we presume that  is either finite or countably infinite;
hence,  is countable by Theorem , and  must be countable. Therefore, the generation of  amounts to creating
a list of strings in  The list may be either finite or infinite, and you must be able to show that every string in  appears
somewhere in the list.

a. If  is countable, then there exists a generating algorithm for 
b. If  is a recursive language over a countable alphabet, then there exists a generating algorithm for 

Proof

Part (a) follows from the fact that  is countable; therefore, there exists a complete list of strings in 

To generate all strings of  start with a list of all strings in  and an empty list,  of strings in  For each string  use
a recognition algorithm (one exists since  is recursive) to determine whether  If  add it to  otherwise
“throw it out.” Then go to the next string in the list of 

Since all of the languages in 7(d) are recursive, they must have generating algorithms. The one given in the proof of Theorem 
 is not usually the most efficient. You could probably design more efficient generating algorithms for  and 

however, a better generating algorithm for  is not quite so obvious.

The recognition and generation problems can vary in difficulty depending on how a language is defined and what sort of algorithms
we allow ourselves to use. This is not to say that the means by which a language is defined determines whether it is recursive. It
just means that the truth of the statement “  is recursive” may be more difficult to determine with one definition than with another.
We will close this section with a discussion of grammars, which are standard forms of definition for a language. When we restrict
ourselves to only certain types of algorithms, we can affect our ability to determine whether  is true. In defining a recursive
language, we do not restrict ourselves in any way in regard to the type of algorithm that will be used. In the next section, we will
consider machines called finite automata, which can only perform simple algorithms.

One common way of defining a language is by means of a phrase structure grammar (or grammar, for short). The set of strings
that can be produced using set of grammar rules is called a phrase structure language.

We can define the set of all strings over  for which all 0's precede all 1's as follows. Define the starting symbol  and
establish rules that  can be replaced with any of the following:   or  These replacement rules are usually called
production rules. They are usually written in the format   and  Now define  to be the set of all
strings that can be produced by starting with  and applying the production rules until  no longer appears. The strings in 
are exactly the ones that are described above.

L1 L2

L3 L3

,L3 .L3

,L3

= {s ∈ ∣ s = λ or s starts with a 0 and has no consecutive 1's}.L3 B∗

Problem : The Generation Problem13.2.2

L. A

A∗ 13.2.1 L ⊆ A∗ L

L. L

Theorem : Recursive Implies Generating13.2.2

A .A∗

L L.

A∗ .A∗

L, A∗ W , L. s,
L s ∈ L. s ∈ L, W ;

.A∗

Example 13.2.3

13.2.2 L2 ;L3

L1

L

s ∈ L

Example : Zeros Before Ones13.2.4

B S

S λ, 0S, S1.
S → λ, S → 0S, S → S1. L

S S L
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A phrase structure grammar consists of four components:

1. A nonempty finite set of terminal characters,  If the grammar is defining a language over   is a subset of 
2. A finite set of nonterminal characters, 
3. A starting symbol, 
4. A finite set of production rules, each of the form  where  and  are strings over  such that  and 

contains at least one nonterminal symbol.

If  is a phrase structure grammar,  is the set of strings that can be produced by starting with  and applying the
production rules a finite number of times until no nonterminal characters remain. If a language can be defined by a phrase
structure grammar, then it is called a phrase structure language.

The language over  consisting of strings of alternating 0's and 1's is a phrase structure language. It can be defined by the
following grammar:

1. Terminal characters:   and 
2. Nonterminal characters:   and 
3. Starting symbol: 
4. Production rules: 

These rules can be visualized with a graph:

Figure : Production rules for the language of alternating 0's and
1's

We can verify that a string such as 10101 belongs to the language by starting with  and producing 10101 using the production
rules a finite number of times: 

Definition : Phase Structure Grammar13.2.5

T . A, T .A∗

N .
S ∈ N .

X → Y , X Y A∪N X ≠ Y X

G L(G) S

Example : Alternating Bits Language13.2.5

B

λ, 0, 1
S, T , U

S

S → T

S → 0

S → 0T

T → 10T

U → 01U

S → U S → λ

S → 1

S → 1U

T → 10

U → 01

13.2.1

S

S → 1U → 101U → 10101.
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Let  be the grammar with components:

1. Terminal symbols = all letters of the alphabet (both upper and lower case), digits 0 through 9, and underscore
2. Nonterminal symbols: 
3. Starting symbol: 
4. Production rules:  where  is any letter,  for any letter   for any letter, digit or

underscore,  and  for any letter, digit or underscore,  There are a total of  production
rules for this grammar. The language  consists of all valid SageMath variable names.

Backus-Naur form (BNF) is a popular alternate form of defining the production rules in a grammar. If the production rules 
 are part of a grammar, they would be written in BNF as  The

symbol  in BNF is read as “or” while the  is read as “is defined as.” Additional notations of BNF are that  represents
zero or more repetitions of  and  means that  is optional.

A BNF version of the production rules for a SageMath variable,  is

An arithmetic expression can be defined in BNF. For simplicity, we will consider only expressions obtained using addition and
multiplication of integers. The terminal symbols are ( , ) , + , * , - , and the digits 0 through 9. The nonterminal
symbols are  (for expression),  (term),  (factor), and  (number). The starting symbol is  Production rules are

One particularly simple type of phrase structure grammar is the regular grammar.

A regular (right-hand form) grammar is a grammar whose production rules are all of the form  and  where 
and  are nonterminal and  is terminal. A left-hand form grammar allows only  and  A language that has a
regular phrase structure language is called a regular language.

a. The set of Sage variable names is a regular language since the grammar by which we defined the set is a regular grammar.
b. The language of all strings for which all 0's precede all 1's (Example ) is regular; however, the grammar by which we

defined this set is not regular. Can you define these strings with a regular grammar?
c. The language of arithmetic expressions is not regular.

Example : Valid SageMath Variables13.2.6

G

{I,X},
I

I → α, α I → α+X α, X → X+β

β, X → β β. 52 +52 +63 +63 = 230
L(G)

Example : Backus-Naur Form13.2.7

A → ,A → , …A →B1 B2 Bn A ::= ∣ ∣ ⋯ ∣ .B1 B2 Bn

∣ ::= {x},
x [y] y

I,

letter ::= a ∣ b ∣ c ∣ ⋯ ∣ z ∣ A ∣ B ∣ ⋯ ∣ Z

digit ::= 0 ∣ 1 ∣ ⋯ ∣ 9

I ::= letter{letter ∣ digit ∣ _}

Example : The Language of Simple Arithmetic Expressions13.2.8

E T F N E.

.

E: := E+T ∣ T

T ::= T ∗F ∣ F

F ::= (E) ∣ N

N ::= [−]digit{digit}

Definition : Regular Grammar13.2.6

A → t A → tB, A

B t A → t A → Bt.

Example 13.2.9

13.2.4
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13.2.1: Exercises

a. If a computer is being designed to operate with a character set of 350 symbols, how many bits must be reserved for each
character? Assume each character will use the same number of bits.

b. Do the same for 3,500 symbols.

Answer
a. For a character set of 350 symbols, the number of bits needed for each character is the smallest  such that  is greater

than or equal to 350. Since  9 bits are needed,
b.  therefore, 12 bits are needed.

It was pointed out in the text that the null string and the null set are different. The former is a string and the latter is a set, two
different kinds of objects. Discuss how the two are similar.

What sets of strings are defined by the following grammar?

a. Terminal symbols:  , 0 and 1
b. Nonterminal symbols:  and 
c. Starting symbol: 
d. Production rules: 

Answer

This grammar defines the set of all strings over  for which each string is a palindrome (same string if read forward or
backward).

What sets of strings are defined by the following grammar?

a. Terminal symbols:    and 
b. Nonterminal symbols: 
c. Starting symbol: 
d. Production rules:

Define the following languages over  with phrase structure grammars. Which of these languages are regular?

a. The strings with an odd number of characters.
b. The strings of length 4 or less.
c. The palindromes, strings that are the same backwards as forwards.

Answer
a. Terminal symbols: The null string, 0, and 1. Nonterminal symbols:   Starting symbol:  Production rules: 

       This is a regular grammar.

Exercise 13.2.1

n 2n

= 512 > 350 > ,29 28

= 4096 > 3500 > ;212 211

Exercise 13.2.2

Exercise 13.2.3

λ

S E

S

S → 0S0,S → 1S1,S → E,E → λ,E → 0,E → 1

B

Exercise 13.2.4

λ, a, b, c

S,T ,U  and E
S

S → aS

T → U

S → T

U → cU

E → λ

T → bT

U → E

Exercise 13.2.5

B

S, E. S.
S → 00S, S → 01S, S → 10S, S → 11S, S → E, E → 0, E → 1
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b. Terminal symbols: The null string, 0, and 1. Nonterminal symbols:     Starting symbol:  Production rules: 
   ,          This

is a regular grammar.
c. See Exercise . This language is not regular.

Define the following languages over  with phrase structure grammars. Which of these languages are regular?

a. The strings with more 0's than 1's.
b. The strings with an even number of 1's.
c. The strings for which all 0's precede all 1's.

Prove that if a language over  is recursive, then its complement is also recursive.

Answer

If  is in  and  is recursive, we can answer the question “Is s in ” by negating the answer to “Is  in ”

Use BNF to define the grammars in Exercises  and .

a. Prove that if is a countable sequence of countable sets, the union of these sets,  is countable.

b. Using the fact that the countable union of countable sets is countable, prove that if  is countable, then  is countable.

Answer
a. List the elements of each set  in a sequence . Then draw arrows as shown below and list the elements

of the union in order established by this pattern: , , , , , , , , , , ,
b. Each of the sets , ,  are countable and  is the union of these sets; hence  is countable.

Figure : Exercise 

This page titled 13.2: Free Monoids and Languages is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Al
Doerr & Ken Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

S, A, B, C S

S → 0A, S → 1A, S → λ A → 0B, A → 1B, A → λ, B → 0C, B → 1C, B → A, C → 0, C → 1, C → λ

13.2.3

Exercise 13.2.6

B

Exercise 13.2.7

A

s A∗ L ?Lc s L?

Exercise 13.2.8

13.2.3 13.2.4

Exercise 13.2.9

, , …X1 X2 ∪
∞

i=1
Xi

A A∗

Xi , , ⋯xi1 xi2 xi3
x11 x21 x12 x13 x22 x31 x41 x32 x23 x14 ⋯x15

A1 A2 , ⋯ ,A3 A∗ A∗
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13.3: Automata, Finite-State Machines
In this section, we will introduce the concept of an abstract machine. The machines we will examine will (in theory) be capable of
performing many of the tasks associated with digital computers. One such task is solving the recognition problem for a language.
We will concentrate on one class of machines, finite-state machines (finite automata). And we will see that they are precisely the
machines that are capable of recognizing strings in a regular grammar.

Given an alphabet  we will imagine a string in  to be encoded on a tape that we will call an input tape. When we refer to a
tape, we might imagine a strip of material that is divided into segments, each of which can contain either a letter or a blank.

The typical abstract machine includes an input device, the read head, which is capable of reading the symbol from the segment of
the input tape that is currently in the read head. Some more advanced machines have a read/write head that can also write symbols
onto the tape. The movement of the input tape after reading a symbol depends on the machine. With a finite-state machine, the next
segment of the input tape is always moved into the read head after a symbol has been read. Most machines (including finite-state
machines) also have a separate output tape that is written on with a write head. The output symbols come from an output alphabet, 

 that may or may not be equal to the input alphabet. The most significant component of an abstract machine is its memory
structure. This structure can range from a finite number of bits of memory (as in a finite-state machine) to an infinite amount of
memory that can be stored in the form of a tape that can be read from and written on (as in a Turing machine).

A finite-state machine is defined by a quintet  where

1.  is the state set, a finite set that corresponds to the set of memory configurations that the machine can
have at any time.

2.  is the input alphabet.
3.  is the output alphabet.
4.  is the output function, which specifies which output symbol  is written onto the output tape

when the machine is in state  and the input symbol  is read.
5.  is the next-state (or transition) function, which specifies which state  the machine should enter

when it is in state  and it reads the symbol 

Many mechanical devices, such as simple vending machines, can be thought of as finite-state machines. For simplicity, assume
that a vending machine dispenses packets of gum, spearmint (S), peppermint (P), and bubble (B), for  cents each. We can
define the input alphabet to be

and the state set to be  where the deposit of a quarter unlocks the release mechanism of the machine and
allows you to select a flavor of gum. We will leave it to the reader to imagine what the output alphabet, output function, and
next-state function would be. You are also invited to let your imagination run wild and include such features as a coin-return
lever and change maker.

The following machine is called a parity checker. It recognizes whether or not a string in  contains an even number of 1s.
The memory structure of this machine reflects the fact that in order to check the parity of a string, we need only keep track of
whether an odd or even number of 1's has been detected.

The input alphabet is  and the output alphabet is also  The state set is  The following table defines
the output and next-state functions.

X, X∗

Z,

Definition : Finite-State Machine13.3.1

(S,X,Z,w, t)

S = { , , … , }s1 s2 sr

X = { , , … , }x1 x2 xm
Z = { , , … , }z1 z2 zn
w : X×S → Z w(x, s) ∈ Z

s x

t : X×S → S t(x, s) ∈ S

s x.

Example : Vending Machine as a Finite-State Machine13.3.1

25

{deposit 25 cents, press S, press P, press B}

{Locked,  Select},

Example : A Parity Checking Machine13.3.2

B∗

B = {0, 1} B. {even, odd}.
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Note how the value of the most recent output at any time is an indication of the current state of the machine. Therefore, if we
start in the even state and read any finite input tape, the last output corresponds to the final state of the parity checker and tells
us the parity of the string on the input tape. For example, if the string 11001010 is read from left to right, the output tape, also
from left to right, will be 10001100. Since the last character is a 0, we know that the input string has even parity.

An alternate method for defining a finite-state machine is with a transition diagram. A transition diagram is a directed graph that
contains a node for each state and edges that indicate the transition and output functions. An edge  that is labeled 
indicates that in state  the input  results in an output of  and the next state is  That is,  and  The
transition diagram for the parity checker appears in Figure . In later examples, we will see that if there are different inputs, 
and  while in the same state resulting in the same transitions and outputs, we label a single edge  instead of drawing
two edges with labels  and 

Figure : Transition Diagram for a Parity Checker

One of the most significant features of a finite-state machine is that it retains no information about its past states that can be
accessed by the machine itself. For example, after we input a tape encoded with the symbols 01101010 into the parity checker, the
current state will be even, but we have no indication within the machine whether or not it has always been in even state. Note how
the output tape is not considered part of the machine's memory. In this case, the output tape does contain a “history” of the parity
checker's past states. We assume that the finite-state machine has no way of recovering the output sequence for later use.

Consider the following simplified version of the game of baseball. To be precise, this machine describes one half-inning of a
simplified baseball game. Suppose that in addition to home plate, there is only one base instead of the usual three bases. Also,
assume that there are only two outs per inning instead of the usual three. Our input alphabet will consist of the types of hits that
the batter could have: out (O), double play (DP), single (S), and home run (HR). The input DP is meant to represent a batted
ball that would result in a double play (two outs), if possible. The input DP can then occur at any time. The output alphabet is
the numbers 0, 1, and 2 for the number of runs that can be scored as a result of any input. The state set contains the current
situation in the inning, the number of outs, and whether a base runner is currently on the base. The list of possible states is then
00 (for 0 outs and 0 runners), 01, 10, 11, and end (when the half-inning is over). The transition diagram for this machine
appears in Figure 

x

0

0

1

1

s

 even

 odd

 even

 odd

w(x, s)

0

1

1

0

t(x, s)

 even

 odd

 odd

 even

( , )si sj x/z

si x z .sj w (x, ) = zsi t (x, ) = .si sj
13.3.1 xi

,xj , / zxi xj
/ zxi / z.xj

13.3.1

Example : A Baseball Machine13.3.3

13.3.2
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Figure : Transition Diagram for a Simplified Game of Baseball

Let's concentrate on one state. If the current state is 01, 0 outs and 1 runner on base, each input results in a different
combination of output and next-state. If the batter hits the ball poorly (a double play) the output is zero runs and the inning is
over (the limit of two outs has been made). A simple out also results in an output of 0 runs and the next state is 11, one out and
one runner on base. If the batter hits a single, one run scores (output = 1) while the state remains 01. If a home run is hit, two
runs are scored (output = 2) and the next state is 00. If we had allowed three outs per inning, this graph would only be
marginally more complicated. The usual game with three bases would be quite a bit more complicated, however.

As we mentioned at the outset of this section, finite-state machines can recognize strings in a regular language. Consider the
language  over  that contains the strings of positive length in which each  is followed by  and each  is followed
by  One such string is  This language is regular. A grammar for the language would be nonterminal symbols 

 with starting symbol  and production rules       A finite-
state machine (Figure ) that recognizes this language can be constructed with one state for each nonterminal symbol and
an additional state (Reject) that is entered if any invalid production takes place. At the end of an input tape that encodes a string
in  we will know when the string belongs to  based on the final output. If the final output is 1, the string belongs to 

 and if it is 0, the string does not belong to  In addition, recognition can be accomplished by examining the final state of the
machine. The input string belongs to the language if and only if the final state is 

13.3.2

Example : Recognition in Regular Languages13.3.4

L {a, b, c} a b b

c. bccabcbc.

{A,B,C} C A → bB, B → cC, C → aA, C → bB, C → cC, C → c.

13.3.3

{a, b, c ,}∗ L

L L.

C.
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Figure 

The construction of this machine is quite easy: note how each production rule translates into an edge between states other than
Reject. For example,  indicates that in State  an input of  places the machine into State  Not all sets of
production rules can be as easily translated to a finite-state machine. Another set of production rules for  is  

    and  Techniques for constructing finite-state machines from production rules
is not our objective here. Hence we will only expect you to experiment with production rules until appropriate ones are found.

A finite-state machine can be designed to add positive integers of any size. Given two integers in binary form, 
 and  the machine take as its input sequence the corresponding bits of  and 

reading from right to left with a “parity bit” added

Notice the special input 111 at the end. All possible inputs except the last one must even parity (contain an even number of
ones). The output sequence is the sum of  and  starting with the units digit, and comes from the set  The transition
diagram for this machine appears in Figure .

Figure : Transition Diagram for a binary adder

13.3.1: 14.3.1: Exercises

13.3.3

C → bB C, b B.

L A → aB,

B → bC, C → cA, C → cB, C → cC C → c.

Example : A Binary Adder13.3.5

a = ⋯anan−1 a1a0 b = ⋯ ,bnbn−1 b1b0 a b

( ) , ( ) … , ( ) , 111a0b0 a0 +2 b0 a1b1 a1 +2 b1 anbn an +2 bn

a b, {0, 1,λ}.

13.3.4

13.3.4
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Draw a transition diagram for the vending machine described in Example .

Answer

Figure : Vending Machine Transitions

Construct finite-state machines that recognize the regular languages that you identified in Section 14.2.

What is the input set for the binary adding machine in Example ?

Answer

What input sequence would be used to compute the sum of 1101 and 0111 (binary integers)? What would the output sequence
be?

Exercise 13.3.1

13.3.1

x

 Deposit25 c/

 Deposit25 c/

 PressS

 PressS

 PressP

 PressP

 PressB

 PressB

s

 Locked

 Select

 Locked

 Select

 Locked

 Select

 Locked

 Select

Z(x, s)

 Nothing

 Return25 c/

 Nothing

 DispenseS

 Nothing

 DispenseP

 Nothing

 DispenseB

t(x, s)

 Select

 Select

 Locked

 Locked

 Locked

 Locked

 Locked

 Locked

13.3.5

Exercise 13.3.2

Exercise 13.3.3

13.3.5

{000, 011, 101, 110, 111}

Exercise 13.3.4
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The Gray Code Decoder. The finite-state machine defined by the following figure has an interesting connection with the Gray
Code.

Figure : Gray Code Decoder

Given a string  we may ask where  appears in  Starting in Copy state, the input string  will result
in an output string  which is the binary form of the position of  in  Recall that positions are numbered from 0 to 

a. In what positions  do 10110, 00100, and 11111 appear in 
b. Prove that the Gray Code Decoder always works.

Answer
a.  

Input: 10110, Output: 11011  10110 is in position 27
Input: 00100, Output: 00111  00100 is in position 7
Input:11111, Output: 10101  11111 is in position 21

b. Let  and recall that for   where  is the reverse of  To prove that the

Gray Code Decoder always works, let  be the proposition “Starting in Copy state, 's output is the position of  in 
 and starting in Complement state, 's output is the position of  in ” That p(1) is true is easy to verify for both

possible values of  0 and 1. Now assume that for some   is true and consider  
If  's output is a zero followed by the output for  starting in Copy state. By the induction
hypothesis, this is zero followed by the position of  in  which is the position of  in  by the
definition of  
If  's output is a one followed by the output for  starting in Complement state. By the
induction hypothesis, this is one followed by the position of  in  which is the position of  in 
by the definition of  

This page titled 13.3: Automata, Finite-State Machines is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Al Doerr & Ken Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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⇒

⇒

⇒

x = …x1x2 xn n ≥ 1, =( ) ,Gn+1
0Gn

1Gr
n

Gr
n .Gn

p(n) x x

;Gn x x .Gr
n

x, n ≥ 1, p(n) x = … .x1x2 xnxn+1

= 0,x1 x ( … )x2 xnxn+1

( … )x2 xnxn+1 ,Gn x ,Gn+1

G.

= 1,x1 x ( … )x2 xnxn+1

( … )x2 xnxn+1 ,Gr
n x ,Gn+1
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13.4: The Monoid of a Finite-State Machine
In this section, we will see how every finite-state machine has a monoid associated with it. For any finite-state machine, the
elements of its associated monoid correspond to certain input sequences. Because only a finite number of combinations of states
and inputs is possible for a finite-state machine there is only a finite number of input sequences that summarize the machine. This
idea is illustrated best with a few examples.

Consider the parity checker. The following table summarizes the effect on the parity checker of strings in  and  The row
labeled “Even” contains the final state and final output as a result of each input string in  and  when the machine starts in the
even state. Similarly, the row labeled “Odd” contains the same information for input sequences when the machine starts in the odd
state.

Note how, as indicated in the last row, the strings in  have the same effect as certain strings in  For this reason, we can
summarize the machine in terms of how it is affected by strings of length 1. The actual monoid that we will now describe consists
of a set of functions, and the operation on the functions will be based on the concatenation operation.

Let  be the final effect (state and output) on the parity checker of the input 0. Similarly,  is defined as the final effect on the
parity checker of the input 1. More precisely,

while

In general, we define the operation on a set of such functions as follows: if   are input sequences and  and  are functions as
above, then  that is, the result of the function that summarizes the effect on the machine by the concatenation of 
with  Since, for example, 01 has the same effect on the parity checker as 1,  We don't stop our calculation at 

 because we want to use the shortest string of inputs to describe the final result. A complete table for the monoid of the parity

checker is 

What is the identity of this monoid? The monoid of the parity checker is isomorphic to the monoid 

This operation may remind you of the composition operation on functions, but there are two principal differences. The domain of 
 is not the codomain of  and the functions are read from left to right unlike in composition, where they are normally read from

right to left.

You may have noticed that the output of the parity checker echoes the state of the machine and that we could have looked only at
the effect on the machine as the final state. The following example has the same property, hence we will only consider the final
state.

The transition diagram for the machine that recognizes strings in  that have no consecutive 1's appears in Figure .
Note how it is similar to the graph in Figure 9.1.1. Only a “reject state” has been added, for the case when an input of 1 occurs
while in State  We construct a similar table to the one in the previous example to study the effect of certain strings on this
machine. This time, we must include strings of length 3 before we recognize that no “new effects” can be found.

B
1 .B

2

B
1

B
2

 Input String

 Even

 Odd

 Same Effect as

0

( Even, 0)

( Odd, 1)

1

( Odd, 1)

( Even, 1)

00

( Even, 0)

( Odd, 1)

0

01

( Odd, 1)

( Even, 1)

1

10

( Odd, 1)

( Even, 0)

1

11

( Even, 0)

( Odd, 1)

0

B
2 .B

1

T0 T1

( even) = ( even, 0) and ( odd) = ( odd, 1),T0 T0

( even) = ( odd, 1) and ( odd) = ( even, 0).T1 T1

s, t Ts ,Tt

∗ = ,Ts Tt Tst s

t. ∗ = = .T0 T1 T01 T1

T01

∗

T0

T1

T0 T1

T0

T1

T1

T0

[ ; ] .Z2 +2

Ts Tt

Example 13.4.1

B∗ 13.4.1

a.
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Figure : No Consecutive Ones Monoid

The following table summarizes how combinations of the strings  affect this machine.

All the results in this table can be obtained using the previous table. For example,

Note that none of the elements that we have listed in this table serves as the identity for our operation. This problem can always
be remedied by including the function that corresponds to the input of the null string,  Since the null string is the identity
for concatenation of strings,  for all input strings 

A finite-state machine called the unit-time delay machine does not echo its current state, but prints its previous state. For this
reason, when we find the monoid of the unit-time delay machine, we must consider both state and output. The transition
diagram of this machine appears in Figure .

Figure 

13.4.1

 Inputs

s

a

b

r

 Same as

0

b

b

b

r

1

a

r

a

r

00

b

b

b

r

0

01

a

a

a

r

10

b

r

b

r

11

r

r

r

r

000

b

b

b

r

0

001

a

a

a

r

01

010

b

b

b

r

0

011

r

r

r

r

11

100

b

r

b

r

10

101

a

r

a

r

1

110

r

r

r

r

11

111

r

r

r

r

11

0, 1, 01, 10,  and 11

∗

T0

T1

T01

T10

T11

T0 T1 T01 T10 T11

T0

T10

T0

T10

T11

T1

T11

T11

T1

T11

T01

T1

T01

T1

T11

T10

T11

T11

T10

T11

T11

T11

T11

T11

T11

∗ = = ∗ = ∗ = =T10 T01 T1001 T100 T1 T10 T1 T101 T1

 and

∗ = = = =T01 T01 T0101 T010T1 T0T1 T01

.Tλ

= =TsTλ TλTs Ts s.

Example : The Unit-Time Delay Machine13.4.2

13.4.2

13.4.2

 Input

0

1

 Same as

0 1 00  01   10  11 100 or000  101 or001 110 or101 111 or011

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(0, 0)

(0, 0)

(1, 0)

(1, 0)

(0, 1)

(0, 1)

(1, 1)

(1, 1)

(0, 0)

(0, 0)

00

(1, 0)

(1, 0)

01

(0, 1)

(0, 1)

10

(1, 1)

(1, 1)

11
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Again, since no new outcomes were obtained from strings of length 3, only strings of length 2 or less contribute to the monoid
of the machine. The table for the strings of positive length shows that we must add  to obtain a monoid.

13.4.1: 14.4.1: Exercises

For each of the transition diagrams in Figure , write out tables for their associated monoids. Identify the identity in terms
of a string of positive length, if possible.

Figure : Exercise 

Hint

Where the output echoes the current state, the output can be ignored.

Answer

a.  

 

We can see that , etc. Therefore, we have the following monoid: 

 
Notice that  is the identity of this monoid.

Tλ

.

∗

T0

T1

T00

T01

T10

T11

T0 T1 T00 T01 T10 T11

T00

T10

T00

T10

T00

T10

T01

T11

T01

T11

T01

T11

T00

T00

T00

T00

T00

T00

T01

T01

T01

T01

T01

T01

T10

T10

T10

T10

T10

T10

T11

T11

T11

T11

T11

T11

Exercise 13.4.1

13.4.3

13.4.3 13.4.3

 Input String

1

2

3

a

(a, 1)

(a, 2)

(c, 3)

b

(a, 2)

(a, 1)

(c, 3)

c

(c, 3)

(c, 3)

(c, 3)

aa

(a, 1)

(a, 2)

(c, 3)

ab

(a, 2)

(a, 1)

(c, 3)

ac

(c, 3)

(c, 3)

(c, 3)

 Input String

1

2

3

ba

(a, 2)

(a, 1)

(c, 3)

bb

(a, 1)

(a, 2)

(c, 3)

bc

(c, 3)

(c, 3)

(c, 3)

ca

(c, 3)

(c, 3)

(c, 3)

cb

(c, 3)

(c, 3)

(c, 3)

cc

(c, 3)

(c, 3)

(c, 3)

= = , = =TaTa Taa Ta TaTb Tab Tb

Ta

Tb

Tc

Ta Tb Tb

Ta

Tb

Tc

Tb

Ta

Tc

Tc

Tc

Tc

Ta
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b.  

 

We have the following monoid: 

 
Notice that  is the identity of this monoid.

What common monoids are isomorphic to the monoids obtained in the previous exercise?

Can two finite-state machines with nonisomorphic transition diagrams have isomorphic monoids?

Answer

Yes, just consider the unit time delay machine of Figure . Its monoid is described by the table at the end of Section
14.4 where the  row and  column are omitted. Next consider the machine in Figure 14.5.3. The monoid of this
machine is:

Hence both of these machines have the same monoid, however, their transition diagrams are nonisomorphic since the first
has two vertices and the second has seven.

This page titled 13.4: The Monoid of a Finite-State Machine is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or
curated by Al Doerr & Ken Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.

Input String

A

B

C

D

1

C

D

A

B

2

B

A

D

C

11

A

B

C

D

12

D

C

B

A

21

D

C

B

A

22

A

B

C

D

Input String

A

B

C

D

111

C

D

B

B

112

B

A

C

C

121

B

A

C

C

122

C

D

B

B

211

B

A

C

C

212

C

D

B

B

221

C

D

B

B

222

B

A

C

C

T1

T2

T11

T12

T1 T2 T11 T12

T11

Tb

T1

T2

T12

T11

T2

T1

T1

T2

T11

T12

T2

T1

T12

T11

T11

Exercise 13.4.2

Exercise 13.4.3

13.4.2
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T0

T00

T10

T00
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T10

T1

T1

T01

T11

T01

T11

T01

T11

T00

T00

T00

T00

T00

T00

T00

T00

T01

T01

T01

T01

T01

T01

T01

T01

T10

T10
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T10
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T10

T11
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T11

T11
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13.5: The Machine of a Monoid
Any finite monoid  can be represented in the form of a finite-state machine with input and state sets equal to  The output
of the machine will be ignored here, since it would echo the current state of the machine. Machines of this type are called state
machines. It can be shown that whatever can be done with a finite-state machine can be done with a state machine; however, there
is a trade-off. Usually, state machines that perform a specific function are more complex than general finite-state machines.

If  is a finite monoid, then the machine of  denoted  is the state machine with state set  input set  and
next-state function  defined by 

We will construct the machine of the monoid  As mentioned above, the state set and the input set are both  The
next state function is defined by  The transition diagram for  appears in Figure . Note how it is
identical to the transition diagram of the parity checker, which has an associated monoid that was isomorphic to 

Figure : The machine of 

The transition diagram of the monoids  and  appear in Figure .

Figure : The machines of  and 

Let  be the monoid that we obtained from the unit-time delay machine (Example 14.4.2). We have seen that the machine of
the monoid of the parity checker is essentially the parity checker. Will we obtain a unit-time delay machine when we construct
the machine of  We can't expect to get exactly the same machine because the unit-time delay machine is not a state machine
and the machine of a monoid is a state machine. However, we will see that our new machine is capable of telling us what input
was received in the previous time period. The operation table for the monoid serves as a table to define the transition function
for the machine. The row headings are the state values, while the column headings are the inputs. If we were to draw a
transition diagram with all possible inputs, the diagram would be too difficult to read. Since  is generated by the two
elements,  and  we will include only those inputs. Suppose that we wanted to read the transition function for the input 

 Since  in any state  The transition diagram appears in Figure .

[M ; ∗] M .

Definition : Machine of a Monoid13.5.1

[M ; ∗] M , m(M), M , M ,

t : M ×M → M t(s, x) = s ∗ x.

Example 13.5.1

[ ; ] .Z2 +2 .Z2

t(s, x) = s x.+2 m ( )Z2 13.5.1

[ ; ] .Z2 +2

13.5.1 [ ; ]Z2 +2

Example 13.5.2

[ ; ]Z2 ×2 [ ; ]Z3 ×3 13.5.2

13.5.2 [ ; ]Z2 ×2 ; ]Z3 ×3

Example 13.5.3

U

U?

U

T0 ,T1

.T01 = ,T01 T0T1 s, t (s, ) = t (t (s, ) , ) .T01 T0 T1 13.5.3
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Figure : Copy and Paste Caption here. (Copyright; author
via source)

If we start reading a string of 0's and 1's while in state  and are in state  at any one time, the input from the previous time
period (not the input that sent us into  the one before that) is  In states  and  no previous input exists.

13.5.1: 14.5.1: Exercises

Draw the transition diagrams for the machines of the following monoids:

a. 
b. The direct product of  with itself.

Answer

Figure : (a)

13.5.3

Tλ Tab

,Tab a. ,Tλ T0 ,T1

Exercise 13.5.1

[ ; ]Z4 +4

[ ; ]Z2 ×2

13.5.4
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Figure : (b)

Even though a monoid may be infinite, we can visualize it as an infinite-state machine provided that it is generated by a finite
number of elements. For example, the monoid  is generated by 0 and 1. A section of its transition diagram can be obtained
by allowing input only from the generating set. The monoid of integers under addition is generated by the set  The
transition diagram for this monoid can be visualized by drawing a small portion of it, as in Figure . The same is true for
the additive monoid of integers, as seen in Figure .

Figure : An infinite machine 

Figure : An infinite machine 

a. Draw a transition diagram for 
b. Draw a transition diagram for 
c. Draw a transition diagram for  with generating set 

This page titled 13.5: The Machine of a Monoid is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Al
Doerr & Ken Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

13.5.5

Exercise 13.5.2

B
∗

{−1, 1}.

13.5.6
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13.5.6 B∗
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{a, b, c}

[Z×Z; componentwise addition].

[Z; +] {5, −2}.
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CHAPTER OVERVIEW

14: Group Theory and Applications

alternating group

 objects are ordered, and you 
Switch consecutive pairs two by two. 
All reorders you get 
Will comprise a new set 
Called an alternating group when you're through.

Chris Doyle, The Omnificent English Dictionary in Limerick Form

In Chapter 11, we introduced groups as a typical algebraic system. The associated concepts of subgroup, group isomorphism, and
direct products of groups were also introduced. Groups were chosen for that chapter because they are among the simplest types of
algebraic systems. Despite this simplicity, group theory abounds with interesting applications. In this chapter we will introduce
some more important concepts in elementary group theory, and some of their applications.

14.1: Cyclic Groups
14.2: Cosets and Factor Groups
14.3: Permutation Groups
14.4: Normal Subgroups and Group Homomorphisms
14.5: Coding Theory, Group Codes

This page titled 14: Group Theory and Applications is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Al
Doerr & Ken Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.
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14.1: Cyclic Groups
Groups are classified according to their size and structure. A group's structure is revealed by a study of its subgroups and other
properties (e.g., whether it is abelian) that might give an overview of it. Cyclic groups have the simplest structure of all groups.

Group  is cyclic if there exists  such that the cyclic subgroup generated by   equals all of  That is, 
 in which case  is called a generator of  The reader should note that additive notation is used for 

 where  is addition modulo 12, is a cyclic group. To verify this statement, all we need to do is
demonstrate that some element of  is a generator. One such element is 5; that is,  One more obvious generator is
1. In fact, 1 is a generator of every  The reader is asked to prove that if an element is a generator, then its inverse is
also a generator. Thus,  and  are the other generators of  The remaining eight elements of the group are
not generators.

Figure : Copy and Paste Caption here. (Copyright; author via
source)

Figure (a) is an example of “string art” that illustrates how 5 generates  Twelve tacks are placed evenly around a
circle and numbered 0 through 11. A string is tied to tack 0, and is then looped around every fifth tack. As a result, the numbers
of the tacks that are reached are exactly the ordered multiples of 5 modulo 12: 5, 10, 3, ... , 7, 0. Note that if every seventh tack
were used, the same artwork would be produced. If every third tack were connected, as in Figure (b), the resulting loop
would only use four tacks; thus 3 does not generate 

The additive group of integers,  is cyclic:

This observation does not mean that every integer is the product of an integer times 1. It means that

If  is cyclic, then it is abelian.

Proof

Let  be any generator of  and let  By the definition of the generator of a group, there exist integers  and 
such that  and  Thus, using Theorem 11.3.9,

Definition : Cyclic Group14.1.1

G a ∈ G a, ⟨a⟩, G.

G= {na|n ∈ Z}, a G. G.

Example : A Finite Cyclic Group14.1.1

= [ ; ],Z12 Z12 +12 +12

Z12 ⟨5⟩ = .Z12

[ ; ].Zn +n

−5 = 7 −1 = 11 .Z12

14.1.1

14.1.1 .Z12

14.1.1

.Z12

Example : The Group of Integers is Cyclic14.1.2

[Z; +],

Z = ⟨1⟩ = {n ⋅ 1|n ∈ Z}

Z = {0} ∪ { ∣ n ∈ P} ∪ { ∣ n ∈ P}1 +1 +⋯ +1
  

n terms

(−1) +(−1) +⋯ +(−1)
  

n terms

Theorem : Cyclic Implies Abelian14.1.1

[G; ∗]

a G b, c ∈ G. m n

b = ma c = na.
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One of the first steps in proving a property of cyclic groups is to use the fact that there exists a generator. Then every element of the
group can be expressed as some multiple of the generator. Take special note of how this is used in theorems of this section.

Up to now we have used only additive notation to discuss cyclic groups. Theorem  actually justifies this practice since it is
customary to use additive notation when discussing abelian groups. Of course, some concrete groups for which we employ
multiplicative notation are cyclic. If one of its elements,  is a generator,

The group of positive integers modulo 11 with modulo 11 multiplication,  is cyclic. One of its generators is 6: 
   ,  and  the identity of the group.

The real numbers with addition,  is a noncyclic group. The proof of this statement requires a bit more generality since we
are saying that for all   is a proper subset of  If  is nonzero, the multiples of  are distributed over the real line, as
in Figure . It is clear then that there are many real numbers, like  that are not in 

Figure : Elements of 

The next two proofs make use of the Theorem 11.4.1.

The following theorem shows that a cyclic group can never be very complicated.

If  is a cyclic group, then  is either finite or countably infinite. If  is finite and  it is isomorphic to  If 
is infinite, it is isomorphic to 

Proof

Case 1:  If  is a generator of  and  define  by  for all 

Since  is finite, we can use the fact that the elements of  are the first  nonnegative multiples of  From this
observation, we see that  is a surjection. A surjection between finite sets of the same cardinality must be a bijection.
Finally, if 

Therefore  is an isomorphism.

Case 2:  We will leave this case as an exercise.

b ∗ c = (ma) ∗ (na)

= (m+n)a

= (n+m)a

= (na) ∗ (ma)

= c ∗ b

14.1.1

a,

⟨a⟩ = { ∣ n ∈ Z}an

Example : A Cyclic Multiplicative Group14.1.3

[ ; ],Z∗
11 ×11

= 6,61 = 3,62 = 7,63 … = 2,69 = 1,610

Example : A Non-Cyclic Group14.1.4

[R; +]

r ∈ R, ⟨r⟩ R. r r

14.1.2 r/2, ⟨r⟩.

14.1.2 ⟨r⟩, r > 0

Theorem : Possible Cyclic Group Structures14.1.2

G G G |G| = n, [ ; ].Zn +n G

[Z; +].

|G| < ∞. a G |G| = n, ϕ : → GZn ϕ(k) = ka k ∈ .Zn

⟨a⟩ ⟨a⟩ n a.

ϕ

p, q ∈ ,Zn

ϕ(p) +ϕ(q) = pa+qa

= (p+q)a

= (p q)a  see exercise 15.1.10+n

= ϕ(p q)+n

ϕ

|G| = ∞.
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Every subgroup of a cyclic group is cyclic.

Proof

Let  be cyclic with generator  and let  If   has  as a generator. We may now assume that 
and  Let  be the least positive integer such that  belongs to  This is the key step. It lets us get our hands on a
generator of  We will now show that  generates  Certainly,  but suppose that  Then there
exists  such that  Now, since  is in  there exists  such that  We now apply the division
property and divide  by   where  We note that  cannot be zero for
otherwise we would have  Therefore,  This contradicts our choice
of  because 

The only proper subgroups of  are  and  They are both cyclic:  while 
 The generators of  are 1, 3, 7, and 9.

With the exception of  all subgroups of  are isomorphic to  If  then  is the cyclic subgroup generated by the
least positive element of  It is infinite and so by Theorem  it is isomorphic to 

We now cite a useful theorem for computing the order of cyclic subgroups of a cyclic group:

If  is a cyclic group of order  and  is a generator of  the order of  is  where  is the greatest common divisor of 
 and 

Proof

The proof of this theorem is left to the reader.

To compute the order of  in  we first observe that 1 is a generator of  and  The greatest common
divisor of 18 and 30 is 6. Hence, the order of  is 30/6, or 5.

At this point, we will introduce the idea of a fast adder, a relatively modern application (Winograd, 1965) of an ancient theorem,
the Chinese Remainder Theorem. We will present only an overview of the theory and rely primarily on examples.

Out of necessity, integer addition with a computer is addition modulo  for  some larger number. Consider the case where  is
small, like 64. Then addition involves the addition of six-digit binary numbers. Consider the process of adding 31 and 1. Assume
the computer's adder takes as input two bit strings  and  and outputs 

 the sum of  and  Then, if  and   will be (0, 0, 0,
0, 0, 1), or 32. The output  cannot be determined until all other outputs have been determined. If addition is done with a
finite-state machine, as in Example 14.3.5, the time required to get  will be six time units, where one time unit is the time it takes
to get one output from the machine. In general, the time required to obtain  will be proportional to the number of bits.
Theoretically, this time can be decreased, but the explanation would require a long digression and our relative results would not
change that much. We will use the rule that the number of time units needed to perform addition modulo  is proportional to 

Now we will introduce a hypothetical problem that we will use to illustrate the idea of a fast adder. Suppose that we had to add
1,000 numbers modulo  By the rule above, since  each addition would take 15 time

Theorem : Subgroups of Cyclic Groups14.1.3

G a H ≤ G. H = {e}, H e |H| ≥ 2

a ≠ e. m ma H.

H. c = ma H. ⟨c⟩ ⊆ H, ⟨c⟩ ≠ H.

b ∈ H b ∉ ⟨c⟩. b G, n ∈ Z b = na.

n m. b = na = (qm+r)a = (qm)a+ra, 0 ≤ r < m. r

b = na = q(ma) = qc ∈ ⟨c⟩. ra = na−(qm)a ∈ H.

m 0 < r < m.

Example : All Subgroups of 14.1.5 Z10

Z10 = {0, 5}H1 = {0, 2, 4, 6, 8}.H2 = ⟨5⟩,H1

= ⟨2⟩ = ⟨4⟩ = ⟨6⟩ = ⟨8⟩.H2 Z10

Example : All Subgroups of 14.1.6 Z

{0}, Z Z. H ≤Z, H

H. 14.1.3 Z.

Theorem : The Order of Elements of a Finite Cyclic Group14.1.4

G n a G, ka n/d, d

n k.

Example : Computation of an Order in a Cyclic Group14.1.7

⟨18⟩ ,Z30 Z30 18 = 18(1).

⟨18⟩

n, n n

a = { , , , , , }a0 a1 a2 a3 a4 a5 b = { , , , , , }b0 b1 b2 b3 b4 b5

s = { , , , , , } ,s0 s1 s2 s3 s4 s5 a b. a = 31 = (1, 1, 1, 1, 1, 0) b = 1 = (1, 0, 0, 0, 0, 0), s

= 1s

s

s

n

⌈ n⌉ .log2

27720 = 8 ⋅ 9 ⋅ 5 ⋅ 7 ⋅ 11. < 27720 < ,214 215
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units. If the sum is initialized to zero, 1,000 additions would be needed; thus, 15,000 time units would be needed to do the
additions. We can improve this time dramatically by applying the Chinese Remainder Theorem.

Let     be integers that have no common factor greater than one between any pair of them; i. e., they are relatively
prime. Let  Define

by

where for   and  Then  is an isomorphism from  into 

The Chinese Remainder Theorem can be stated in several different forms, and its proof can be found in many abstract algebra texts.

As we saw in Chapter 11,  is isomorphic to  . This is the smallest case to which the CRT can be applied. An
isomorphism between  and  is

Let's consider a somewhat larger case. We start by selecting a modulus that can be factored into a product of relatively prime
integers:  In this case the factors are   and  They need not be powers of primes,
but it is easy to break the factors into this form to assure relatively prime numbers. To add in  we need  time
units. Let  The CRT gives us an isomorphism between  and  The basic idea behind the fast adder,
illustrated in Figure , is to make use of this isomorphism. The notation x += a  is interpreted as the instruction to add the
value of a  to the variable x .

Figure : Fast Adder Scheme

Assume we have several integers  to be added. Here, we assume  We compute the sum s  to compare our
result with this true sum.

Although our sum is an integer calculation, we will put our calculation in the context of the integers modulo 21600. The
isomophism from  into  is defined in Sage as theta . In addition we demonstrate that the
operations in these groups are preserved by theta .

Theorem : Chinese Remainder Theorem (CRT)14.1.5

,n1 ,n2 … , np

n = ⋯ .n1n2 np

θ : → × ×⋯ ×Zn Zn1 Zn2 Znp

θ(k) = ( , , … , )k1 k2 kp

1 ≤ i ≤ p, 0 ≤ <ki ni k ≡ (mod  ) .ki ni θ Zn × ×⋯ × .Zn1 Zn2 Znp

Z6 ×Z2 Z3

Z6 ×Z2 Z3

θ(0) = (0, 0)

θ(1) = (1, 1)

θ(2) = (0, 2)

θ(3) = (1, 0)

θ(4) = (0, 1)

θ(5) = (1, 2)

n = 21, 600 = .253352 = 32,25 = 27,33 = 25.52

,Zn ⌈ n⌉ = 15log2

G= × × .Z32 Z27 Z25 Z21600 G.

14.1.3

14.1.3

, … ,a1 am m = 20.

1 a=[1878,1384,84,2021,784,1509,1740,1201,2363,1774,
2    1865,33,1477,894,690,520,198,1349,1278,650]
3 s =0
4 for t in a:
5     s+=t
6 s

Z21600 G= × ×Z32 Z27 Z25

1 G=cartesian_product([Integers(32),Integers(27),Integers(25)])
2 def theta(x):
3     return G((x%32,x%27,x%25))
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We initialize the sums in each factor of the range of theta  to zero and decompose each summand  into a triple 

Addition in  can be done in parallel so that each new subtotal in the form of the triple  takes only as long to compute
as it takes to add in the largest modulus,  time units, if calculations are done in parallel. By the time rule that we have
established, the addition of 20 numbers can be done in  time units, as opposed to  time units if we do the
calculations in  However the result is a triple in  The function that performs the inverse of theta  is built into most
mathematics programs, including Sage. In Sage the function is crt . We use this function to compute the inverse of our triple,
which is an element of  The result isn't the true sum because the modulus 21600 is not large enough. However, we verify
that our result is congruent to the true sum modulo 21600.

In order to get the true sum from our scheme, the modulus would need to be increased by moving from 21600 to, for example, 
 Mapping into the new group,  will take slightly longer, as will the inversion

process with crt , but adding the summands that are in the form of quadruples can be done with no additional time.

The computation of  that is done by the Sage function crt  can be accomplished in a variety of ways. All of them
ultimately are simplified by the fact that  is also an isomorphism. One approach is to use the isomorphism property to realize
that the value of  is  The arithmetic in this expression is in the
domain of  and is more time consuming, but it need only be done once. This is why the fast adder is only practical in situations
where many additions must be performed to get a single sum.

The inverse images of the “unit vectors” can be computed ahead of time.

The result we computed earlier can be computed directly by in the larger modulus.

To further illustrate the potential of fast adders, consider increasing the modulus to 
 Each addition using the usual modulo  addition with

full adders would take 72 time units. By decomposing each summand into 15-tuples according to the CRT, the time is reduced to 
 time units per addition.

14.1.1: Exercises

What generators besides 1 does  have?

Answer

The only other generator is 

4 [theta(1878)+theta(1384),theta(1878+1384)]

t

θ(t) = ( , , ) ∈ G.t1 t2 t3

1 sum=G((0,0,0))
2 for t in a:
3     sum+=theta(t)
4 sum

G ( , , )s1 s2 s3

32 = 5log2

20 ⋅ 5 = 100 20 ⋅ 15 = 300

.Z21600 G.

.Z21600

1 isum=crt([12,13,17],[32,27,25])
2 [isum,(s-isum)%(21600)]

21600 ∗ 23 = 496800. G= × × ×Z32 Z27 Z25 Z23

( , , )θ−1 s1 s2 s3

θ−1

( , , )θ−1 s1 s2 s3 (1, 0, 0) + (0, 1, 0) + (0, 0, 1).s1θ
−1 s2θ

−1 s3θ
−1

θ

1 u=[crt([1,0,0],[32,27,25]),
2    crt([0,1,0],[32,27,25]),crt([0,0,1],[32,27,25])]
3 u

1 (7425*12 + 6400*13+ 7776* 17)%21600

n = 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 29 ⋅ 31 ⋅ 37 ⋅ 41 ⋅ 43 ⋅ 47 ≈ 3.1 × .25335272 1021 n

⌈ 49⌉ = 6log2

Exercise 14.1.1

[Z; +]

−1.
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Suppose  is a cyclic group with generator  If you build a graph of with vertices from the elements of  and edge set 
 what would the graph look like? If  is a group of even order, what would a graph with edge set 
 look like?

Prove that if  and  is cyclic,  has at least two generators.

Answer

If   and  then    ,  are distinct elements of  Furthermore, 
 If   generates 

Similarly, if  is infinite and  then  generates 

If you wanted to list the generators of  you would only have to test the first  positive integers. Why?

Which of the following groups are cyclic? Explain.

a. 
b. 
c.  where 
d. 
e. 

Answer
a. No. Assume that  generates  Then  But this gives us at most integer multiples of  not

every element in 
b. No. Similar reasoning to part a.
c. Yes. 6 is a generator of 
d. No.
e. Yes,  is a generator of the group.

For each group and element, determine the order of the cyclic subgroup generated by the element:

a.  , 15
b.  ,  (apply Exercise )
c.  , 2

Exercise 14.1.2

[G; ∗] g. G

E = {(a, g∗ a) ∣ a ∈ G}, G

= {(a, ∗ a) ∣ a ∈ G}E ′ g2

Exercise 14.1.3

|G| > 2 G G

|G| = m, m > 2, G= ⟨a⟩, a, , … ,a2 am−1 = eam G.

= ≠ a,a−1 am−1 1 ≤ k ≤ m, a−1 :ak

( )a−1 m−k
= ( )am−1 m−k

= a −m−mk+km2

= ∗( )am m−k−1 ak

= e∗ =ak ak

G G= ⟨a⟩, a−1 G.

Exercise 14.1.4

Zn n/2

Exercise 14.1.5

[Q; +]

[ ; ⋅]R
+

[6Z; +] 6Z = {6n|n ∈ Z}

Z×Z

× ×Z2 Z3 Z25

q ∈ Q Q. ⟨q⟩ = {nq : n ∈ Z}. q,

Q.

6Z.

(1, 1, 1)

Exercise 14.1.6

Z25

×Z4 Z9 (2, 6) 14.1.8

Z64
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How can Theorem  be applied to list the generators of  What are the generators of  Of 

Answer

Theorem  implies that  generates  if and only if the greatest common divisor of  and  is 1. Therefore the list of
generators of  are the integers in  that are relatively prime to  The generators of  are all of the nonzero elements
except 5, 10, 15, and 20. The generators of  are the odd integers in  since 256 is 

Prove that if the greatest common divisor of  and  is 1, then (1, 1) is a generator of  and hence,  is
isomorphic to 

a. Illustrate how the fast adder can be used to add the numbers 21, 5, 7, and 15 using the isomorphism between  and 

b. If the same isomorphism is used to add the numbers 25, 26, and 40, what would the result be, why would it be incorrect,
and how would the answer differ from the answer in part a?

Answer
a.  maps the given integers as follows: 

 
The final sum, 48, is obtained by using the facts that  and  

b. Using the same isomorphism: 

 

 
The actual sum is 91. Our result is incorrect, since 91 is not in  Notice that 91 and 14 differ by 77. Any error that
we get using this technique will be a multiple of 77.

Exercise 14.1.7

14.1.4 ?Zn ?Z25 ?Z256

14.1.4 a Zn n a

Zn Zn n. Z25

Z256 Z256 .28

Exercise 14.1.8

n m × ,Zn Zm ×Zn Zm

.Znm

Exercise 14.1.9

Z77

× .Z7 Z11

θ : → ×Z77 Z7 Z11

21

5

7

15

 sum = 48

→

→

→

→

←

(0, 10)

(5, 5)

(0, 7)

(1, 4)
– ––––

(6, 4) =  sum

(1, 0) = 22θ−1 (0, 1) = 56θ−1

.

(6, 4) = 6 (1, 0) +4 (0, 1)θ−1 ×77 θ
−1 ×77 θ

−1

= 6 22 4 56×77 +77 ×77

= 55 70+77

= 48

25

26

40

→

→

→

(4, 3)

(5, 4)

(5, 7)

 sum = (0, 3)

.

(0, 3)θ−1 = 3 (0, 1)×77 θ
−1

= 3 56×77

= 14

.Z77
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Prove that if  is a cyclic group of order  with generator  and  then 

This page titled 14.1: Cyclic Groups is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Al Doerr & Ken
Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

Exercise 14.1.10

G n a, p, q ∈ {0, 1, … ,n−1}, (p+q)a = (p q)a.+n
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14.2: Cosets and Factor Groups
Consider the group  As we saw in the previous section, we can picture its cyclic properties with the string art of Figure
15.1.1. Here we will be interested in the non-generators, like 3. The solid lines in Figure  show that only one-third of the
tacks have been reached by starting at zero and jumping to every third tack. The numbers of these tacks correspond to 

Figure : "String art" cosets

What happens if you start at one of the unused tacks and again jump to every third tack? The two broken paths on Figure 
 show that identical squares are produced. The tacks are thus partitioned into very similar subsets. The subsets of  that

they correspond to are   and  These subsets are called cosets. In particular, they are called
cosets of the subgroup  We will see that under certain conditions, cosets of a subgroup can form a group of their own.
Before pursuing this example any further we will examine the general situation.

If  is a group,  and  the left coset of  generated by  is

and the right coset of  generated by  is

a.  itself is both a left and right coset since 
b. If  is abelian,  and the left-right distinction for cosets can be dropped. We will normally use left coset

notation in that situation.

Any element of a coset is called a representative of that coset.

One might wonder whether  is in any way a special representative of  since it seems to define the coset. It is not, as we shall
see.

[ ; ] .Z12 +12

14.2.1

⟨3⟩ = {0, 3, 6, 9}.

14.2.1

14.2.1 Z12

{0, 3, 6, 9},{1, 4, 7, 10}, {2, 5, 8, 11}.

{0, 3, 6, 9}.

Definition : Coset14.2.1

[G; ∗] H ≤ G a ∈ G, H a

a∗H = {a∗ h|h ∈ H}

H a

H ∗ a = {h ∗ a|h ∈ H}.

Note 14.2.1

H e∗H = H ∗ e = H.

G a∗H = H ∗ a

Definition : Cost Representative14.2.2

a a∗H
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A duality principle can be formulated concerning cosets because left and right cosets are defined in such similar ways. Any
theorem about left and right cosets will yield a second theorem when “left” and “right” are exchanged for “right” and “left.”

If  then  and if  then 

Proof

In light of the remark above, we need only prove the first part of this theorem. Suppose that  We need only find
a way of expressing  as “  times an element of ” Then we will have proven that  By the definition of 

 since  and  are in  there exist  and  in  such that  and  Given these two
equations,  and

Since   and we are done with this part of the proof. In order to show that  one
can follow essentially the same steps, which we will let the reader fill in.

In Figure , you can start at either 1 or 7 and obtain the same path by taking jumps of three tacks in each step. Thus,

The set of left (or right) cosets of a subgroup partition a group in a special way:

If  is a group and  the set of left cosets of  is a partition of  In addition, all of the left cosets of  have the
same cardinality. The same is true for right cosets.

Proof

That every element of  belongs to a left coset is clear because  for all  If  and  are left cosets,
we will prove that they are either equal or disjoint. If  and  are not disjoint,  is nonempty and
some element  belongs to the intersection. Then by Theorem ,  and 

 Hence 

We complete the proof by showing that each left coset has the same cardinality as  To do this, we simply observe that if 
  defined by  is a bijection and hence  We will leave the proof of this

statement to the reader.

The function  has a nice interpretation in terms of our opening example. If  the graph of  is rotated  to
coincide with one of the three cosets of 

If  and  the number of distinct left cosets of  equals  For this reason we use  to denote the set of

left cosets of  in 

Proof

This follows from the partitioning of  into equal sized sets, one of which is 

Remark : A Duality Principle14.2.1

Theorem 14.2.1

b ∈ a∗H, a∗H = b ∗H, b ∈ H ∗ a, H ∗ a = H ∗ b.

x ∈ a∗H.

x b H. a∗H ⊆ b ∗H.

a∗H, b x a∗H, h1 h2 H b = a∗ h1 x = a∗ .h2

a = bh−1
1

x = a∗ = (b ∗ ) ∗ = b ∗ ( ∗ )h2 h−1
1 h2 h−1

1 h2

, ∈ H,h1 h2 ∗ ∈ H,h−1
1 h2 b ∗H ⊆ a∗H,

Example 14.2.1

14.2.1

1 {0, 3, 6, 9} = 7 {0, 3, 6, 9} = {1, 4, 7, 10}.+12 +12

Theorem : Cosets Partition a Group14.2.2

[G; ∗] H ≤ G, H G. H

G a ∈ a∗H a ∈ G. a∗H b ∗H

a∗H b ∗H a∗H ∩ b ∗H

c ∈ G 14.2.1 c ∈ a∗H ⇒ a∗H = c ∗H

c ∈ b ∗H ⇒ b ∗H = c ∗H. a∗H = b ∗H.

H.

a ∈ G, ρ : H → a∗H ρ(h) = a∗ h |H| = |a∗H|.

ρ a ∈ ,Z12 {0, 3, 6, 9} (30a)∘

{0, 3, 6, 9}.

Corollary : A Coset Counting Formula14.2.1

|G| < ∞ H ≤ G, H .
|G|

|H|
G/H

H G

G H.
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The set of integer multiples of four,  is a subgroup of  Four distinct cosets of  partition the integers. They are  
  and  where, for example,   can also be written 

Although we have seen that any representative can describe a coset, it is often convenient to select a distinguished
representative from each coset. The advantage to doing this is that there is a unique name for each coset in terms of its
distinguished representative. In numeric examples such as the one above, the distinguished representative is usually the
smallest nonnegative representative. Remember, this is purely a convenience and there is absolutely nothing wrong in writing 

  or  in place of  because 

Before completing the main thrust of this section, we will make note of a significant implication of Theorem . Since a finite
group is divided into cosets of a common size by any subgroup, we can conclude:

The order of a subgroup of a finite group must divide the order of the group.

One immediate implication of Lagrange's Theorem is that if  is prime,  has no proper subgroups.

We will now describe the operation on cosets which will, under certain circumstances, result in a group. For most of this section,
we will assume that  is an abelian group. This is one sufficient (but not necessary) condition that guarantees that the set of left
cosets will form a group.

Let  and  be left cosets of  a subgroup of  with representatives  and  respectively. Then

The operation  is called the operation induced on left cosets by 

In Theorem , later in this section, we will prove that if  is an abelian group,  is indeed an operation. In practice, if the
group  is an additive group, the symbol  is replaced by  as in the following example.

Consider the cosets described in Example . For brevity, we rename    and  with the
symbols    and  Let's do a typical calculation,  We will see that the result is always going to be  , no matter what
representatives we select. For example,   and  Our choice of the representatives  and  were
completely arbitrary.

In general,  can be computed in many ways, and so it is necessary to show that the choice of representatives does not affect
the result. When the result we get for  is always independent of our choice of representatives, we say that “  is well
defined.” Addition of cosets is a well-defined operation on the left cosets of 4  and is summarized in the following table. Do you
notice anything familiar?

Example 14.2.2

4Z, [Z; +]. 4Z 4Z,

1 +4Z, 2 +4Z, 3 +4Z, 1 +4Z = {1 +4k|k ∈ Z}. 4Z 0 +4Z.

Convention : Distinguished Representatives14.2.1

−203 +4Z, 5 +4Z, 621 +4Z 1 +4Z −203, 5, 621 ∈ 1 +4Z.

14.2.2

Theorem : Lagrange's Theorem14.2.3

p Zp

G

Definition : Operation on Cosets14.2.3

C D H, G c d,

C ⊗D = (c ∗H) ⊗(d ∗H) = (c ∗ d) ∗H

⊗ ∗.

14.2.4 G ⊗

G ⊗ +,

Example : Computing with Cosets of 14.2.3 4Z

14.2.2 0 +4Z, 1 +4Z, 2 +4Z, 3 +4Z

,0̄ ,1̄ ,2̄ .3̄ + .1̄ 3̄ 0̄

9 ∈ ,1̄ 7 ∈ ,3̄ 9 +7 = 16 ∈ .0̄ 1̄ 3̄

C ⊗D

C ⊗D ⊗

Z

⊗

0̄

1̄

2̄

3̄

0̄

0̄

1̄

2̄

3̄

1̄

1̄

2̄

3̄

0̄

2̄

2̄

3̄

0̄

1̄

3̄

3̄

0̄

1̄

2̄
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Consider the group of real numbers,  and its subgroup of integers,  Every element of  has the same cardinality as 
 Let   if  can be written  for some  Hence  and  belong to the same coset if they differ by

an integer. (See Exercise  for a generalization of this fact.)

Now consider the coset  Real numbers that differ by an integer from 0.25 are  and 
 If any real number is selected, there exists a representative of its coset that is greater than or equal

to 0 and less than 1. We will call that representative the distinguished representative of the coset. For example, 43.125 belongs
to the coset represented by 0.125;  has 0.618 as its distinguished representative. The operation on  is
commonly called addition modulo 1. A few typical calculations in  are

Consider  where  Since  is of order 8, each element of  is a coset
containing two ordered pairs. We will leave it to the reader to verify that the four distinct cosets are   

 and  The reader can also verify that  is isomorphic to  , since  is cyclic. An educated guess
should give you a generator.

Consider the group  . Let  be  the cyclic subgroup of  generate by (1,0,1,0).
Since

the order of  is 2 and ,  has  elements. A typical coset is

Note that since   the identity for the operation on  The orders of non-
identity elements of this factor group are all 2, and it can be shown that the factor group is isomorphic to 

If  is an abelian group, and  the operation induced on cosets of  by the operation of  is well defined.

Proof

Suppose that   and   are two choices for representatives of cosets  and  That is to say that  
 We will show that  and  are representatives of the same coset. Theorem  implies that 

 and  thus we have  and  Then there exists  such that 
and  and so

by various group properties and the assumption that  is abelian, which lets us reverse the order in which  and  appear
in the chain of equalities. This last expression for  implies that  since  because  is
a subgroup of  Thus, we get the same coset for both pairs of representatives.

Example : Cosets of the Integers in the Group of Real Numbers14.2.4

[R; +], Z. R/Z

Z. s, t ∈ R. s ∈ t+Z s t+n n ∈ Z. s t

14.2.6

0.25 +Z. 1.25, 2.25, 3.25, …

−0.75, −1.75, −2.75, … .

−6.382 +Z R/Z

R/Z

.

(0.1 +Z) +(0.48 +Z) = 0.58 +Z

(0.7 +Z) +(0.31 +Z) = 0.01 +Z

−(0.41 +Z) = −0.41 +Z = 0.59 +Z

and in general,  −(a+Z) = (1 −a) +Z

Example : Cosets in a Direct Product14.2.5

F = ( × )/H,Z4 Z2 H = {(0, 0), (0, 1)}. ×Z4 Z2 F

(0, 0) +H, (1, 0) +H,

(2, 0) +H (3, 0) +H. F Z4 F

Example 14.2.6

= × × ×Z2
4

Z2 Z2 Z2 Z2 H ⟨(1, 0, 1, 0)⟩, Z2
4

(1, 0, 1, 0) +(1, 0, 1, 0) = (1 1, 0 0, 1 1, 0 0) = (0, 0, 0, 0)+2 +2 +2 +2

H /HZ2
4 | /H| = = = 8Z

4
2

| |Z
4
2

|H|
16
2

C = (0, 1, 1, 1) +H = {(0, 1, 1, 1), (1, 1, 0, 1)}

2(0, 1, 1, 1) = (0, 0, 0, 0),2C = C ⊗C = H, /H.Z2
4

.Z2
3

Theorem : Coset Operation is Well-Defined (Abelian Case)14.2.4

G H ≤ G, H G

a, b, ,a′ .b′ C D. a, ∈ C,a′

b, ∈ D.b′ a∗ b ∗a′ b′ 14.2.1

C = a∗H D = b ∗H, ∈ a∗Ha′ ∈ b ∗H.b′ , ∈ Hh1 h2 = a∗a′ h1

= b ∗b′ h2

∗ = (a∗ ) ∗ (b ∗ ) = (a∗ b) ∗ ( ∗ )a′ b′ h1 h2 h1 h2

G b h1

∗a′ b′ ∗ ∈ (a∗ b) ∗Ha′ b′ ∗ ∈ Hh1 h2 H

G.
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Let  be a group and  If the operation induced on left cosets of  by the operation of  is well defined, then the set of
left cosets forms a group under that operation.

Proof

Let  and  be the left cosets with representatives   and  respectively. The values of  and 
 are determined by  and  respectively. By the associativity of  in  these

two group elements are equal and so the two coset expressions must be equal. Therefore, the induced operation is
associative. As for the identity and inverse properties, there is no surprise. The identity coset is  or  the coset that
contains 's identity. If  is a coset with representative  that is, if  then  is 

Let  be a group and  If the set of left cosets of  forms a group, then that group is called the factor group of “
modulo ” It is denoted 

If  is abelian, then every subgroup of  yields a factor group. We will delay further consideration of the non-abelian case to
Section 15.4.

It is customary to use the same symbol for the operation of  as for the operation on  The reason we used distinct
symbols in this section was to make the distinction clear between the two operations.

14.2.1: Exercises

Consider  and the subsets of   and  Why is the operation induced on these subsets by
modulo 10 addition not well defined?

Answer

An example of a valid correct answer: Call the subsets  and  respectively. If we choose  and  we get 
 On the other hand, if we choose  and  we get  Therefore, the induced

operation is not well defined on 

Can you think of a group  with a subgroup  such that  and  Is your answer unique?

For each group and subgroup, what is  isomorphic to?

a.  and  Compare to Example .
b.  and 
c.  =  and 

Answer

Theorem 14.2.5

G H ≤ G. H G

C1 , ,C2 C3 ,r1 ,r2 ,r3 ⊗( ⊗ )C1 C2 C3

(   ⊗ ) ⊗C1 C2 C3 ∗ ( ∗ )r1 r2 r3 ( ∗ ) ∗ ,r1 r2 r3 ∗ G,

H, e∗H,

G C a; C = a∗H, C−1 ∗H.a−1

(a∗H) ⊗( ∗H) = (a∗ )∗H = e∗H =  identity coset.a−1 a−1

Definition : Factor Group14.2.4

G H ≤ G. H G

H. G/H.

Note 14.2.2

G G

Remark : On Notation14.2.2

G/H G.

Exercise 14.2.1

Z10 ,Z10 {0, 1, 2, 3, 4} {5, 6, 7, 8, 9}.

A B 0 ∈ A 5 ∈ B

0 5 = 5 ∈ B.+10 3 ∈ A 8 ∈ B, 3 8 = 1 ∈ A.+10

{A,B}.

Exercise 14.2.2

G, H |H| = 6 |G/H| = 6?

Exercise 14.2.3

G/H

G= ×Z4 Z2 H = ⟨(2, 0)⟩. 14.2.5

G= [C; +] H =R.

G Z20 H = ⟨8⟩.
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a. The four distinct cosets in  are   
and  None of these cosets generates  therefore  is not cyclic. Hence 
must be isomorphic to 

b. The factor group is isomorphic to  Each coset of  is a line in the complex plane that is parallel to the x-axis: 
 where  is an isomorphism.

c.   The four cosets are:    and  1 generates all four cosets. The factor group
is isomorphic to  because  is a generator.

For each group and subgroup, what is  isomorphic to?

a.  and 
b.  and 
c.  and 

Assume that  is a group,  and  Prove that  if and only if 

Answer

a. Real addition modulo   can be described as the operation induced on cosets of  by ordinary addition. Describe a
system of distinguished representatives for the elements of 

b. Consider the trigonometric function sine. Given that  for all  and  show how the
distinguished representatives of  can be useful in developing an algorithm for calculating the sine of a number.

Complete the proof of Theorem  by proving that if   defined by  is a bijection.

This page titled 14.2: Cosets and Factor Groups is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Al
Doerr & Ken Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

G/H H = {(0, 0), (2, 0)},(1, 0) +H = {(1, 0), (3, 0)}, (0, 1) +H = {(0, 1), (2, 1)},

(1, 1) +H = {(1, 1), (3, 1)}. G/H; G/H G/H

× .Z2 Z2

[R; +]. R

τ : C/R →R, T ({a+bi ∣ a ∈ R}) = b

⟨8⟩ = {0, 4, 8, 12, 16}⇒ | /⟨8⟩| = 4.Z20 ,0̄ ,1̄ ,2̄ .3̄

[ ; ]Z4 +4 1̄

Exercise 14.2.4

G/H

G=Z×Z H = {(a, a)|a ∈ Z}.

G= [ ; ⋅]R
∗ H = {1, −1}.

G=Z2
5 H = ⟨(1, 1, 1, 1, 1)⟩.

Exercise 14.2.5

G H ≤ G, a, b ∈ G. a∗H = b ∗H ∗ a ∈ H.b−1

a∗H = b ∗H ⇔ a ∈ bH

⇔ a = b ∗ h for some h ∈ H

⇔ ∗ a = h for some h ∈ Hb−1

⇔ ∗ a ∈ Hb−1

Exercise 14.2.6

r, r > 0, ⟨r⟩

R/⟨r⟩.

sin(x+2πk) = sinx x ∈ R k ∈ Z,

R/⟨2π⟩

Exercise 14.2.7

14.2.2 a ∈ G, ρ : H → a∗H ρ(h) = a∗ h
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14.3: Permutation Groups

14.3.1: Symmetric Groups

At the risk of boggling the reader's mind, we will now examine groups whose elements are functions. Recall that a permutation on
a set  is a bijection from  into  Suppose that  There are  different permutations on  We will call the
set of all 6 permutations  They are listed in the following table. The matrix form for describing a function on a finite set is to list
the domain across the top row and the image of each element directly below it. For example 

Table : Elements of 

The operation that will give  a group structure is function composition. Consider the “product” 

The images of 1, 2, and 3 under  and  are identical. Thus, by the definition of equality for functions, we can say 
 . The complete table for the operation of function composition is given in Table .

Table : Operation Table for 

We don't even need the table to verify that we have a group. Based on the following observations, the set of all permutations on
any finite set will be a group.

1. Function composition is always associative.
2. The identity for the group is  If  is any one of the permutations on  and  

 
Therefore 

3. A permutation, by definition, is a bijection. In Chapter 7 we proved that this implies that it must have an inverse and the
inverse itself is a bijection and hence a permutation. Hence all elements of  have an inverse in  If a permutation is
displayed in matrix form, its inverse can be obtained by exchanging the two rows and rearranging the columns so that the
top row is in order. The first step is actually sufficient to obtain the inverse, but the sorting of the top row makes it easier to
recognize the inverse. 

For example, let's consider a typical permutation on   

A A A. A = {1, 2, 3}. 3! = 6 A.

.S3

(1) = 2.r1

14.3.1 S3

i = ( )
1

1

2

2

3

3
= ( )r1

1

2

2

3

3

1
= ( )r2

1

3

2

1

3

2

= ( )f1
1

1

2

3

3

2
= ( )f2

1

3

2

2

3

1
= ( )f3

1

2

2

1

3

3

{i, , , , , }r1 r2 f1 f2 f3 ∘ :r1 f3

.

∘ (1) = ( (1)) = (2) = 3r1 f3 r1 f3 r1

∘ (2) = ( (2)) = (1) = 2r1 f3 r1 f3 r1

∘ (3) = ( (3)) = (3) = 1r1 f3 r1 f3 r1

∘r1 f3 f2

∘ =r1 f3 f2 14.3.2

14.3.2 S3

∘

i

r1

r2

f1

f2

f3

i

i

r1

r2

f1

f2

f3

r1

r1

r2

i

f2

f3

f1

r2

r2

i

r1

f3

f1

f2

f1

f1

f3

f2

i

r2

r1

f2

f2

f1

f3

r1

i

r2

f3

f3

f2

f1

r2

r1

i

List 14.3.1

i. g A x ∈ A,

(g ∘ i)(x) = g(i(x)) = g(x) (i ∘ g)(x) = i(g(x)) = g(x)

g ∘ i = i ∘ g = g.

S3 .S3

{1, 2, 3, 4, 5},f =( ) .
1

5

2

3

3

2

4

1

5

4

=( ) =( ) .f −1 5

1

3

2

2

3

1

4

4

5

1

4

2

3

3

2

4

5

5

1
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From Table , we can see that  is non-abelian. Remember, non-abelian is the negation of abelian. The existence of two
elements that don't commute is sufficient to make a group non-abelian. In this group,  and  is one such pair: 
while  so  Caution: Don't take this to mean that every pair of elements has to have this property.
There are several pairs of elements in  that do commute. In fact, the identity,  must commute with everything. Also every
element must commute with its inverse.

Let  be a nonempty set. The set of all permutations on  with the operation of function composition is called the symmetric
group on  denoted 

The cardinality of a finite set  is more significant than the elements, and we will denote by  the symmetric group on any
set of cardinality  

Our opening example,  is the smallest non-abelian group. For that reason, all of its proper subgroups are abelian: in fact,
they are all cyclic. Figure  shows the Hasse diagram for the subgroups of 

Figure : Lattice diagram of subgroups of 

The only abelian symmetric groups are  and  , with 1 and 2 elements, respectively. The elements of  are 

and   is isomorphic to 

For   and for   is non-abelian.

Proof

The first part of the theorem follows from the extended rule of products (see Chapter 2). We leave the details of proof of the
second part to the reader after the following hint. Consider  in  where    and  for

 Therefore the cycle representation of  is  Now define  in a similar manner so that when you
compare  and  you get different results.

14.3.2: Cycle Notation
A second way of describing a permutation is by means of cycles, which we will introduce first with an example. Consider 
defined using the now-familiar matrix notation:

Note 14.3.1

14.3.2 S3

r1 f3 ∘ =r1 f3 f2

∘ = ,f3 r1 f1 ∘ ≠ ∘ .r1 f3 f3 r1

S3 i,

Definition : Symmetric Group14.3.1

A A

A, .SA

A Sn

n, n ≥ 1.

Example : The Significance of 14.3.1 S3

,S3

14.3.1 .S3

14.3.1 S3

Example : Smallest Symmetric Groups14.3.2

S1 S2 S2 i =( )
1

1

2

2

α =( ) .
1

2

2

1
S2 .Z2

Theorem 14.3.1

n ≥ 1, | | = n!Sn n ≥ 3, Sn

f Sn f(1) = 2, f(2) = 3, f(3) = 1, f(j) = j

3 < j ≤ n. f (1, 2, 3). g

f(g(1)) g(f(1))

f ∈ S8
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Consider the images of 1 when  is applied repeatedly. The images    are  In
Figure (a), this situation is represented by a graph with vertices 1, 8, 3, and 7 and shows that the values that you get by
repeatedly applying  cycle through those values. This is why we refer to this part of  as a cycle of length 4. Of course starting at
8, 3, or 7 also produces the same cycle with only the starting value changing.

Figure : Representations of a cycle of length 4

Figure (a) illustrates how the cycle can be represented in a visual manner, but it is a bit awkward to write. Part (b) of the
figure presents a more universally recognized way to write a cycle. In (b), a cycle is represented by a list where the image of any
number in the list is its successor. In addition, the last number in the list has as its image the first number.

The other elements of the domain of  are never reached if you start in the cycle  and so looking at the images of these
other numbers will produce numbers that are disjoint from the set  The other disjoint cycles of  are (2), (4, 6), and (5).
We can express  as a product of disjoint cycles:  or  where the absence of 2 and 5
implies that  and 

We say that two cycles are disjoint if no number appears in both cycles, as is the case in our expressions for  above. Disjoint
cycles can be written in any order. Thus, we could also say that 

We will now consider the composition of permutations written in cyclic form by an example. Suppose that 
 and  are elements of  To calculate  we start with simple concatenation:

Although this is a valid expression for  our goal is to express the composition as a product of disjoint cycles as  and 
were individually written. We will start by determining the cycle that contains 1. When combining any number of cycles, they
are always read from right to left, as with all functions. The first cycle in  does not contain 1; thus we move on to the
second. The image of 1 under that cycle is 5. Now we move on to the next cycle, looking for 5, which doesn't appear. The
fourth cycle does not contain a 5 either; so 

At this point, we would have written “ ” on paper. We repeat the steps to determine  This time the second
cycle of  moves 5 to 6 and then the third cycle moves 6 to 4. Therefore,  We continue until the cycle (1,
5, 4, 3) is completed by determining that  The process is then repeated starting with any number that does not
appear in the cycle(s) that have already been completed.

The final result for our example is  Since  and   and we need not
include the one-cycle (2) in the final result, although it can be included.

f =( )
1

8

2

2

3

7

4

6

5

5

6

4

7

1

8

3

f f(1), f(f(1)), f(f(f(1))), … 8, 3, 7, 1, 8, 3, 7, … .

14.3.2

f f

14.3.2

14.3.2

f (1, 8, 3, 7),

{1, 8, 3, 7}. f

f f = (1, 8, 3, 7)(2)(4, 6)(5) f = (1, 8, 3, 7)(4, 6),

f(2) = 2 f(5) = 5.

Note : Disjoint Cycles14.3.2

f

f = (4, 6)(1, 8, 3, 7).

Note : Composition of Permutations14.3.3

f = (1, 8, 3, 7)(4, 6) g = (1, 5, 6)(8, 3, 7, 4) .S8 f ∘ g,

f ∘ g = (1, 8, 3, 7)(4, 6)(1, 5, 6)(8, 3, 7, 4) (14.3.1)

f ∘ g, f g

(14.3.1)

f ∘ g(1) = 5.

f ∘ g = (1, 5 f ∘ g(5).

(14.3.1) f ∘ g(5) = 4.

f ∘ g(3) = 1.

f ∘ g = (1, 5, 4, 3)(6, 8, 7). f(2) = 2 g(2) = 2, f ∘ g(2) = 2
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a. 
b. 

Notice that cyclic notation does not indicate the set which is being permuted. The examples above could be in  where the
image of 5 is 5. This ambiguity is usually overcome by making the context clear at the start of a discussion.

A transposition is a cycle of length 2.

 and  are transpositions in  However,  and  are not transpositions;
thus, the set of transpositions is not closed under composition. Since  and  are both equal to the identity
permutation,  and  are their own inverses. In fact, every transposition is its own inverse.

Every cycle of length greater than 2 can be expressed as a product of transpositions.

Proof

We need only indicate how the product of transpositions can be obtained. It is easy to verify that a cycle of length  
 is equal to the following product of  transpositions:

Of course, a product of cycles can be written as a product of transpositions just as easily by applying the rule above to each cycle.
For example,

Unlike the situation with disjoint cycles, we are not free to change the order of these transpositions.

14.3.3: Parity of Permutations and the Alternating Group
A decomposition of permutations into transpositions makes it possible to classify then and identify an important family of groups.

The proofs of the following theorem appears in many abstract algebra texts.

Every permutation on a finite set can be expressed as the product of an even number of transpositions or an odd number of
transpositions, but not both.

Theorem  suggests that  can be partitioned into its “even” and “odd” elements. For example, the even permutations of 
are   and  They form a subgroup,  of 

In general:

Let  The set of even permutations in  is a proper subgroup of  called the alternating group on 
denoted 

We justify our statement that  is a group:

Example : Some Compositions14.3.3

(1, 2, 3, 4)(1, 2, 3, 4) = (1, 3)(2, 4)

(1, 4)(1, 3)(1, 2) = (1, 2, 3, 4).

,S5

Definition : Transposition14.3.2

Observation : About Transpositions14.3.1

f = (1, 4) g = (4, 5) .S5 f ∘ g = (1, 4, 5) g ∘ f = (1, 5, 4)

= f ∘ ff 2 = g ∘ gg2

f g

Theorem : Decomposition into Cycles14.3.2

k,

( , , , … , ) ,a1 a2 a3 ak k −1

( , ) ⋯ ( , ) ( , )a1 ak a1 a3 a1 a2

(1, 3, 5, 7)(2, 4, 6) = (1, 7)(1, 5)(1, 3)(2, 6)(2, 4)

Theorem 14.3.3

14.3.3 Sn S3

i, = (1, 2, 3) = (1, 3)(1, 2)r1 = (1, 3, 2) = (1, 2)(1, 3).r2 {i, , }r1 r2 .S3

Definition : The Alternating Group14.3.3

n ≥ 2. Sn Sn {1, 2, … , n},

.An

An
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Let  The alternating group is indeed a group and has order 

Proof

In this proof, the symbols  and  stand for transpositions and   are even nonnegative integers. If  we can
write the two permutations as products of even numbers of transpositions,  and  Then

Since  is even,  and  is closed with respect to function composition. With this, we have proven that 
is a subgroup of  by Theorem 11.5.2.

To prove the final assertion, let  be the set of odd permutations and let  Define  by 
 Suppose that  Then  and by the right cancellation law,  Hence,  is an

injection. Next we show that  is also a surjection. If   is the image of an element of  Specifically,  is the
image of 

Since  is a bijection, 

Consider the sliding-tile puzzles pictured in Figure . Each numbered square is a tile and the dark square is a gap. Any
tile that is adjacent to the gap can slide into the gap. In most versions of this puzzle, the tiles are locked into a frame so that
they can be moved only in the manner described above. The object of the puzzle is to arrange the tiles as they appear in
Configuration (a). Configurations (b) and (c) are typical starting points. We propose to show why the puzzle can be solved
starting with (b), but not with (c).

Figure : Configurations of the sliding tile puzzle

We will associate a change in the configuration of the puzzle with an element of  Imagine that a tile numbered 16 fills in
the gap. For any configuration of the puzzle, the identity  is the function that leave the configurate “as is.” In general, if 

 and   is the position to which the tile in position  is moved by  that appears in the position of  in
configuration (a). If we call the functions that, starting with configuration (a), result in configurations (b) and (c) by the names 

 and  respectively,

and

How can we interpret the movement of one tile as a permutation? Consider what happens when the 12 tile of  slides into the
gap. The result is a configuration that we would interpret as  a single transposition. Now if we slide the 8 tile into the
12 position, the result is or  Hence, by “exchanging” the tiles 8 and 16, we have implemented the function 

Theorem 14.3.4

n ≥ 2. .n!
2

si ti p, q f , g ∈ ,An

f = ⋯s1s2 sp g = ⋯ .t1t2 tq

f ∘ g = ⋯ ⋯s1s2 spt1t2 tq

p +q f ∘ g ∈ ,An An An

Sn

Bn τ = (1, 2). θ : →An Bn

θ(f) = f ∘ τ . θ(f) = θ(g). f ∘ τ = g ∘ τ f = g. θ

θ h ∈ ,Bn h .An h

h ∘ τ .

θ(h ∘ τ) = (h ∘ τ) ∘ τ

= h ∘ (τ ∘ τ)  Why?

= h ∘ i  Why?

= h

θ | | = | | = .An Bn
n!
2

Example : The Sliding Tile Puzzle14.3.4

14.3.3

14.3.3

.S16

i,

f ∈ ,S16 1 ≤ k ≤ 16, f(k) k f k

f1 ,f2

= (1, 5, 3, 7)(2, 6, 4, 8)(9, 10)(11, 14, 13, 12)(15)(16)f1

= (1, 5, 3, 7, 15)(2, 6, 4, 8)(9, 10)(11, 14, 13, 12)(16).f2

i

(12, 16),

(8, 16, 12).

(8, 12)(12, 16) = (8, 12, 16).
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Figure : The configuration 

Every time you slide a tile into the gap, the new permutation is a transposition composed with the old permutation. Now
observe that to start with initial configuration and terminate after a finite number of moves with the gap in its original position,
you must make an even number of moves. Thus, configuration corresponding any permutation that leaves 16 fixed cannot be
solved if the permutation is odd. Note that  is an odd permutation; thus, Puzzle (c) can't be solved. The proof that all even
permutations, such as  can be solved is left to the interested reader to pursue.

14.3.4: Dihedral Groups

By now we've seen several instances where a group can appear through an isomorphic copy of itself in various settings. The
simplest such example is the cyclic group of order 2. When this group is mentioned, we might naturally think of the group 

 but the groups  and  are isomorphic to it. None of these groups are necessarily more natural or
important than the others. Which one you use depends on the situation you are in and all are referred to as realizations of the
cyclic group of order 2. The next family of groups we will study, the dihedral groups, has two natural realizations, first as
permutations and second as geometric symmetries.

The family of dihedral groups is indexed by the positive integers greater than or equal to 3. For   will have  elements.
We first describe the elements and the operation on them using geometry.

We can describe  in terms of symmetries of a regular -gon (  equilateral triangle,  square,  regular
pentagon, ). Here we will only concentrate on the case of  If a square is fixed in space, there are several motions of the square
that will, at the end of the motion, not change the apparent position of the square. The actual changes in position can be seen if the
corners of the square are labeled. In Figure , the initial labeling scheme is shown, along with the four axes of symmetry of
the square.

14.3.4 (8, 12, 16)

f2

,f1

Observation : Realization of Groups14.3.2

[ ; ] ,Z2 +2 [{−1, 1}; ⋅] [ ; ∘]S2

k ≥ 3, Dk 2k

Dn n n = 3: n = 4: n = 5:

… .D4

14.3.5

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86193?pdf


14.3.7 https://math.libretexts.org/@go/page/86193

Figure : Axes of symmetry of the square

It might be worthwhile making a square like this with a sheet of paper. Be careful to label the back so that the numbers match the
front. Two motions of the square will be considered equivalent if the square is in the same position after performing either motion.
There are eight distinct motions. The first four are    and  clockwise rotations of the square, and the other four are
the  flips along the axes    and  We will call the rotations   and  respectively, and the flips    and 

 respectively. Figure  illustrates  and  For future reference, we also include the permutations to which they
correspond.

14.3.5

0 ,∘ 90 ,∘ 180 ,∘ 270∘

180∘ ,l1 ,l2 ,l3 .l4 i, ,r1 ,r2 ,r3 ,f1 ,f2 ,f3

,f4 14.3.6 r1 .f1
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Figure : Two elements of 

What is the operation on this set of symmetries? We will call the operation “followed by” and use the symbol  to represent it. The
operation will be to combine motions, applying motions from right to left, as with functions. We will illustrate how  is computed
by finding  Starting with the initial configuration, if you perform the  motion, and then immediately perform  on the
result, we get the same configuration as if we just performed  which is to flip the square along the line  Therefore, 

 An important observation is that  meaning that this group is nonabelian. The reader is encouraged to
verify this on their own.

We can also realize the dihedral groups as permutations. For any symmetric motion of the square we can associate with it a
permutation. In the case of  the images of each of the numbers 1 through 4 are the positions on the square that each of the
corners 1 through 4 are moved to. For example, since corner 4 moves to position 1 when you perform  the corresponding
function will map 4 to 1. In addition, 1 gets mapped to 2, 2 to 3 and 3 to 4. Therefore,  is the cycle  . The flip 
transposes two pairs of corners and corresponds to  If we want to combine these two permutations, using the same
names as with motions, we get

Notice that this permutation corresponds with the flip 

Although  isn't cyclic (since it isn't abelian), it can be generated from the two elements  and 

It is quite easy to describe any of the dihedral groups in a similar fashion. Here is the formal definition

14.3.6 D4

∗

∗

∗ .r1 f1 f1 r1

,f4 .l4

∗ = .r1 f1 f4 ∗ ≠ ,f1 r1 f4

,D4

,r1

r1 (1, 2, 3, 4) f1

(1, 4)(2, 3).

∘ = (1, 2, 3, 4) ∘ (1, 4)(2, 3) = (1)(2, 4)(3) = (2, 4)r1 f1

.f4

D4 r1 :f1

= ⟨ , ⟩ = {i, , , , , ∘ , ∘ , ∘ }D4 r1 f1 r1 r1
2 r1

3 f1 r1 f1 r1
2 f1 r1

3 f1
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Let  be a positive integer greater than or equal to 3. If  an -cycle, and  Then

is the th dihedral group.

You might notice that we use a script   for the dihedral groups. Occasionally you might see an ordinary  in other
sources for the dihedral groups. Don't confuse it with the set of divisors of  which we denote by  Normally the context of
the discussion should make the meaning of  clear.

An application of  is in the design of a letter-facing machine. Imagine letters entering a conveyor belt to be postmarked.
They are placed on the conveyor belt at random so that two sides are parallel to the belt. Suppose that a postmarker can
recognize a stamp in the top right corner of the envelope, on the side facing up. In Figure , a sequence of machines is
shown that will recognize a stamp on any letter, no matter what position in which the letter starts. The letter  stands for a
postmarker. The letters  and  stand for rotating and flipping machines that perform the motions of  and 

Figure : A letter facer

The arrows pointing up indicate that if a letter is postmarked, it is taken off the conveyor belt for delivery. If a letter reaches the
end, it must not have a stamp. Letter-facing machines like this have been designed (see [16]). One economic consideration is
that -machines tend to cost more than -machines. -machines also tend to damage more letters. Taking these facts into
consideration, the reader is invited to design a better letter-facing machine. Assume that -machines cost  and -
machines cost  Be sure that all corners of incoming letters will be examined as they go down the conveyor belt.

14.3.5: Exercises

Given   and  compute

a. 
b. 
c. 
d. 
e. 
f. 
g. 

Answer

a. 

b. 

Definition : Dihedral Group14.3.4

n r = (1, 2, … , n), n f = (1, n)(2, n −1) …

= ⟨r, f⟩ = {i, r, , … , , f , r ∘ f , ∘ f , … , ∘ f}Dn r2 rn−1 r2 rn−1

n

Note : Caution14.3.4

D, D, D

n, .Dn

Dn

Example : A Letter-Facing Machine14.3.5

D4

14.3.7

P

R F r1 .f1

14.3.7

R F R

R $800 F

$500.

Exercise 14.3.1

f =( ) ,
1

2

2

1

3

4

4

3
g =( ) ,

1

2

2

3

3

4

4

1
h =( ) ,

1

3

2

2

3

4

4

1

f ∘ g

g ∘ h

(f ∘ g) ∘ h

f ∘ (g ∘ h)

h−1

∘ g ∘ hh−1

f −1

( )
1

1

2

4

3

3

4

2

( )
1

4

2

3

3

1

4

2
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c. 

d. 

e. 

f. 

g. 

Write   and  from Exercise  as products of disjoint cycles and determine whether each is odd or even.

Do the left cosets of  over  form a group under the induced operation on left cosets of  What about the
left cosets of 

Answer

 is a group of order two. The operation on left cosets of  is not well defined and so a group cannot be
formed from left cosets of 

In its realization as permutations, the dihedral group  is equal to  Can you give a geometric explanation why? Why isn't 
 equal to 

a. Complete the list of elements of  and write out a table for the group in its realization as symmetries.
b. List the subgroups of  in a lattice diagram. Are they all cyclic? To what simpler groups are the subgroups of 

isomorphic?

Answer

 Where  is the identity function,  and

The operation table for the group is

( )
1

3

2

4

3

2

4

1

( )
1

3

2

4

3

2

4

1

( )
1

4

2

2

3

1

4

3

( )
1

3

2

1

3

4

4

2

( )
1

2

2

1

3

4

4

3

Exercise 14.3.2

f , g, h 14.3.1

Exercise 14.3.3

= {i, , }A3 r1 r2 S3 ?A3

⟨ ⟩?f1

/S3 A3 H = ⟨ ⟩f1

H.

Exercise 14.3.4

D3 .S3

D4 ?S4

Exercise 14.3.5

D4

D4 D4

= {i, r, , , , , , }D4 r2 r3 f1 f2 f3 f4 i r =( ) ,
1

2

2

3

3

4

4

1

=( )f1
1

4

2

3

3

2

4

1

=( )f3
1

3

2

2

3

1

4

4

=( )f2
1

2

2

1

3

4

4

3

=( )f4
1

1

2

4

3

3

4

2
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A lattice diagram of its subgroups is

Figure : Subgroups of 

All proper subgroups are cyclic except and  Each 2-element subgroup is isomorphic to  ; 
 is isomorphic to  ; and and  are isomorphic to 

Design a better letter-facing machine (see Example ). How can you verify that a letter-facing machine does indeed check
every corner of a letter? Can it be done on paper without actually sending letters through it?

Prove by induction that if  and each  is a transposition, then 

Answer

One solution is to cite Exercise 11.3.3 at the end of Section 11.3. It can be directly applied to this problem. An induction
proof of the problem at hand would be almost identical to the proof of the more general statement. 

How many elements are there in  ? Describe them geometrically.

∘

i

r

r2

r3

f1

f2

f3

f4

  i r r2 r3 f1 f2 f3 f4

i

r

r2

r3

f1

f2

f3

f4

r

r2

r3

i

f3

f4

f2

f1

r2

r3

i

r

f2

f1

f4

f3

r3

i

r

r2

f4

f3

f1

f2

f1

f4

f2

f3

i

r2

r3

r

f2

f3

f1

f4

r2

i

r

r3

f3

f1

f4

f2

r

r3

i

r2

f4

f2

f3

f1

r3

r

r2

i

14.3.8 D4

{i, , , }r2 f1 f2    {i, , , } .r2 f3 f4 Z2

{i, r, , }r2 r3
Z4 {i, , , }r2 f1 f2    {i, , , }r2 f3 f4 × .Z2 Z2

Exercise 14.3.6

14.3.5

Exercise 14.3.7

r ≥ 1 ,ti ( ∘ ∘ ⋯ ∘ ) = ∘ ⋯ ∘ ∘t1 t2 tr
−1 tr t2 t1

( ⋯ ) = ⋯  by Exercise 11.3.3 of Section 11.3t1t2 tr
−1 tr

−1 t2
−1t1

−1

= ⋯   since each transposition inverts itself.  ■tr t2t1

Exercise 14.3.8

D5
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Complete the proof of Theorem .

Answer

Part I: That  follows from the Rule of Products.

Part II: Let  be the function defined on  by    and  for  and
let  be defined by    and  for  Note that  and  are elements of 
Next,  while  hence  and  is non-
abelian for any 

How many left cosets does   have?

Prove that  in 

a. Prove that the tile puzzles corresponding to  are solvable.
b. If  how can you determine whether 's puzzle is solvable?

a. Prove that  is isomorphic to  the group of  rook matrices (see Section 11.2 exercises).
b. Prove that for each   is isomorphic to 

Answer

a. Both groups are non-abelian and of order 6; so they must be isomorphic, since only one
such group exists up to isomorphism. The function  defined by 

 is an isomorphism,

b. Recall that since every function is a relation, it is natural to translate functions to Boolean matrices. Suppose that 
 We will define its image,  by 

 
That  is a bijection follows from the existence of  If  is a rook matrix, 

 
For  

Exercise 14.3.9

14.3.1

| | = k!Sk

f {1, 2,  ..., n} f(1) = 2, f(2) = 3, f(3) = 1, f(j) = j 4 ≤ j ≤ n;

g g(1) = 1, g(2) = 3, g(3) = 2, g(j) = j 4 ≤ j ≤ n. f g .Sn

(f ∘ g)(1) = f(g(1)) = f(1) = 2, (g ∘ f)(1) = g(f(1)) = g(2) = 3, f ∘ g ≠ g ∘ f Sn

n ≥ 3.

Exercise 14.3.10

,An n ≥ 2

Exercise 14.3.11

f ∘ r = ∘ frn−1 .Dn

Exercise 14.3.12

∩ {f ∈ | f(16) = 16}A16 S16

f(16) ≠ 16, f

Exercise 14.3.13

S3 ,R3 3 ×3

n ≥ 2, Rn .Sn

θ : →S3 R3

θ(i) = I

θ ( ) =r1 R1

θ ( ) =r2 R2

θ ( ) =f1 F1

θ ( ) =f2 F2

θ ( ) =f3 F3

f ∈ .Sn θ(f),

θ(f = 1  ⇔  f(j) = k)kj

θ .θ−1 A

(A)(j) = kθ−1 ⇔  The 1 in column j of A appears in row k

⇔ = 1Akj

f , g ∈ ,Sn

θ(f ∘ g = 1)kj ⇔  (f ∘ g)(j) = k

⇔ ∃l such that g(j) = l and f(l) = k

⇔ ∃l such that θ(g = 1 and θ(f = 1)lj )kl

⇔ (θ(f)θ(g) = 1)kj
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Therefore,  is an isomorphism.
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14.4: Normal Subgroups and Group Homomorphisms
Our goal in this section is to answer an open question from earlier in this chapter and introduce a related concept. The question is:
When are left cosets of a subgroup a group under the induced operation? This question is open for non-abelian groups. Now that
we have some examples to work with, we can try a few experiments.

14.4.1: Normal Subgroups

We have seen that  is a subgroup of  and its left cosets are  itself and  Whether 
 is a group boils down to determining whether the induced operation is well defined. Consider the operation table for 

 in Figure .

Figure : Operation table for 

We have shaded in all occurrences of the elements of  in gray. We will call these elements the gray elements and the
elements of  the white ones.

Now consider the process of computing the coset product  The “product” is obtained by selecting one white element
and one gray element. Note that white “times” gray is always gray. Thus,  is well defined. Similarly, the other three
possible products are well defined. The table for the factor group  is

Clearly,  is isomorphic to  Notice that  and  are also the right cosets of  This is significant.

Now let's try the left cosets of  in  There are three of them. Will we get a complicated version of  The left cosets are
  and 

The reader might be expecting something to go wrong eventually, and here it is. To determine  we can choose from
four pairs of representatives:

Example : Cosets of 14.4.1 A3

= {i, , }A3 r1 r2 ,S3 A3 = { , , } .B3 f1 f2 f3

{ , }A3 B3

S3 14.4.1

14.4.1 S3

B3

A3

∘ .A3 B3

∘A3 B3

/S3 A3

∘

A3

B3

A3 B3

A3

B3

B3

A3

/S3 A3 .Z2 A3 B3 .A3

Example : Cosets of Another Subgroup of 14.4.2 S3

⟨ ⟩f1 .S3 ?Z3

= ⟨ ⟩ ,C0 f1 = ⟨ ⟩= { , } ,C1 r1 f1 r1 f3 = ⟨ ⟩= { , } .C2 r2 f1 r2 f2

∘C1 C2
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This time, we don't get the same coset for each pair of representatives. Therefore, the induced operation is not well defined and
no factor group is produced.

This last example changes our course of action. If we had gotten a factor group from  we might have hoped to
prove that every collection of left cosets forms a group. Now our question is: How can we determine whether we will get a
factor group? Of course, this question is equivalent to: When is the induced operation well defined? There was only one step in
the proof of Theorem 15.2.4, where we used the fact that  was abelian. We repeat the equations here:

since  was abelian.

The last step was made possible by the fact that  As the proof continued, we used the fact that  was in 
 and so  is  for some  in  All that we really needed in the “abelian step” was that 

 Then, since  is closed under 's operation,  is an element of  The
consequence of this observation is that we define a certain kind of subgroup that guarantees that the inducted operation is well-
defined.

If  is a group,  then  is a normal subgroup of  denoted  if and only if every left coset of  is a right coset
of  i. e. 

If  then the operation induced on left cosets of  by the operation of  is well defined if and only if any one of the
following conditions is true:

a.  is a normal subgroup of 
b. If   then there exists  such that 
c. If   then 

Proof

We leave the proof of this theorem to the reader.

Be careful, the following corollary is not an “...if and only if...” statement.

If  then the operation induced on left cosets of  by the operation of  is well defined if either of the following two
conditions is true.

a.  is abelian.
b. 

∈ , ∈ ⟶ ∘ = i ∈r1 C1 r2 C2 r1 r2 C0

∈ , ∈ ⟶ ∘ = f ∈r1 C1 f2 C2 r1 f2 C0

∈ , ∈ ⟶ ∘ = ∈f3 C1 r2 C2 f3 r2 f2 C2

∈ , ∈ ⟶ ∘ = ∈f3 C1 f2 C2 f3 f2 r2 C2

Observation 14.4.1

{ , , } ,C0 C1 C2

G

∗ = (a∗ ) ∗ (b ∗ ) = (a∗ b) ∗ ( ∗ )a′ b′ h1 h2 h1 h2

G

∗ b = b ∗ .h1 h1 ∗h1 h2

H ∗a′ b′ (a∗ b) ∗ h h H.

∗ b = b ∗ (something in H) = b ∗ .h1 h3 H G ∗h3 h2 H.

Definition : Normal Subgroup14.4.1

G H ≤ G, H G, H ◃G, H

H; a∗H = H ∗ a ∀a ∈ G

Theorem 14.4.1

H ≤ G, H G

H G.

h ∈ H, a ∈ G, ∈ Hh′ h ∗ a = a∗ .h′

h ∈ H, a ∈ G, ∗ h ∗ a ∈ H.a−1

Corollary 14.4.1

H ≤ G, H G

G

|H| = .
|G|

2
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The right cosets of  are   and  These are not the same as the left cosets of  In addition,
 Thus,  is not normal.

The improper subgroups  and  of any group  are normal subgroups.  is isomorphic to  All other normal subgroups
of a group, if they exist, are called proper normal subgroups.

By Condition b of Corollary ,  is a normal subgroup of  and  is isomorphic to 

 a group in its own right with 60 elements, has many proper subgroups, but none are normal. Although this could be done
by brute force, the number of elements in the group would make the process tedious. A far more elegant way to approach the
verification of this statement is to use the following fact about the cycle structure of permutations. If  is a permutation
with a certain cycle structure,  where the length of  is  then for any   which is the
conjugate of  by  will have a cycle structure with exactly the same cycle lengths. For example if we take 

 and conjugate by 

Notice that the condition for normality of a subgroup  of  is that the conjugate of any element of  by an element of 
must be remain in 

To verify that  has no proper normal subgroups, you can start by cataloging the different cycle structures that occur in 
and how many elements have those structures. Then consider what happens when you conjugate these different cycle structures
with elements of  An outline of the process is in the exercises.

Let  be the set of two by two invertible matrices of real numbers. That is,

We saw in Chapter 11 that  is a group with matrix multiplication.

This group has many subgroups, but consider just two:  and  It is

fairly simple to apply one of the conditions we have observed for normallity that  a normal subgroup of  while  is not
normal in 

14.4.2: Homomorphisms
Think of the word isomorphism. Chances are, one of the first images that comes to mind is an equation something like

An isomorphism must be a bijection, but the equation above is the algebraic property of an isomorphism. Here we will examine
functions that satisfy equations of this type.

Let  and  be groups.  is a homomorphism if  for all 

Example : A Non-Normal Subgroup14.4.3

⟨ ⟩≤f1 S3 {i, } ,f1 { } ,r1f2 { , } .r2 f3 ⟨ ⟩ .f1

= = ∉ ⟨ ⟩ .f2
−1f1f2 f2f1f2 f3 f1 ⟨ ⟩f1

{e} G G G/{e} G.

Example 14.4.4

14.4.1 An Sn /Sn An .Z2

Example : Subgroups of 14.4.5 A5

,A5

f ∈ Sn

⋯ ,σ1σ2 σk σi ,ℓi g ∈ ,Sn ∘ f ∘ g,g−1

f g,

f = (1, 2, 3, 4)(5, 6)(7, 8, 9) ∈ S9 g = (1, 3, 5, 7, 9),

∘ f ∘ gg−1 = (1, 9, 7, 5, 3) ∘ (1, 2, 3, 4)(5, 6)(7, 8, 9) ∘ (1, 3, 5, 7, 9)

= (1, 4, 9, 2)(3, 6)(5, 8, 7)

H G H G

H.

A5 A5

.A5

Example 14.4.6

G

G={( ) ∣ a, b, c, d ∈ R, ad−bc ≠ 0}
a

c

b

d

G

={( ) a ≠ 0}H1
a

0

0

a

∣

∣
∣ ={( ) ad ≠ 0} .H2

a

0

0

d

∣

∣
∣

H1 G, H2

G.

θ(x ∗ y) = θ(x) ⋄ θ(y)

Definition : Homomorphism14.4.2

[G; ∗] [ ; ⋄]G′ θ : G→ G′ θ(x ∗ y) = θ(x) ⋄ θ(y) x, y ∈ G.
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Many homomorphisms are useful since they point out similarities between the two groups (or, on the universal level, two algebraic
systems) involved.

Define  by  Therefore,      and
 If  We could actually show that  is a homomorphism by checking all  different cases for the

formula

but we will use a line of reasoning that generalizes. We have already encountered the Chinese Remainder Theorem, which
implies that the function  defined by  We need only observe that equating the
first coordinates of both sides of the equation

gives us precisely the homomorphism property.

If  is a homomorphism, then:

a. 
b.  for all 
c. If  then 

Proof

a. Let  be any element of  Then  

 
By cancellation, 

b. Again, let   Hence, by the uniqueness of inverses, 

c. Let  Then there exists  such that   Recall that a compact necessary
and sufficient condition for  is that  for all  Now we apply the same condition in  

 
since  and so we can conclude that 

Since a homomorphism need not be a surjection and part (c) of Theorem  is true for the case of  the range of  
 is a subgroup of 

Example : Decreasing Modularity14.4.7

α : →Z6 Z3 α(n) = n mod 3. α(0) = 0, α(1) = 1, α(2) = 2, α(3) = 1 +1 +1 = 0, α(4) = 1,

α(5) = 2. n,m ∈ .Z6 α = 3662

α(n m) = α(n) α(m)+6 +3 (14.4.1)

β : → ×Z6 Z3 Z2 β(n) = (n mod 3,n mod 2).

β(n m) = β(n) +β(m)+6 (14.4.2)

Theorem : Group Homomorphism Properties14.4.2

θ : G→ G′

θ(e) = θ(the identity of G) = the identity of  = .G′ e′

θ( ) = θ(aa−1 )−1 a ∈ G.

H ≤ G, θ(H) = {θ(h)|h ∈ H} ≤ .G′

a G. θ(a) ∈ .G′

θ(a) ⋄ e′ = θ(a)  by the definition of e′

= θ(a∗ e)  by the definition of e

= θ(a) ⋄ θ(e)  by the fact that θ is a homomorphism

= θ(e).e′

a ∈ G. = θ(e) = θ(a∗ ) = θ(a) ⋄ θ( ) .e′ a−1 a−1

θ(a = θ( ) .)−1 a−1

, ∈ θ(H).b1 b2 , ∈ Ha1 a2 θ ( ) = ,a1 b1 θ ( ) = .a2 b2

H ≤ G x ∗ ∈ Hy−1 x, y ∈ H. :G′

⋄b1 b2
−1 = θ ( ) ⋄ θ ( )a1 a2

−1

= θ ( ) ⋄ θ( )a1 a2
−1

= θ( ∗ ) ∈ θ(H)a1 a2
−1

∗ ∈ H,a1 a2
−1 θ(H) ≤ .G′

Corollary 14.4.2

14.4.2 H = G, θ,

θ(G), G′
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If we define  by  then  is a homomorphism. The image of the subgroup  is the single coset 
 the identity of the factor group. Homomorphisms of this type are called natural homomorphisms. The following

theorems will verify that  is a homomorphism and also show the connection between homomorphisms and normal subgroups.
The reader can find more detail and proofs in most abstract algebra texts.

If  then the function  defined by  is a homomorphism.

Proof

We leave the proof of this theorem to the reader.

If  then the function  defined by  is called the natural homomorphism.

Based on Theorem , every normal subgroup gives us a homomorphism. Next, we see that the converse is true.

Let  be a homomorphism, and let  and  be the identities of  and  respectively. The kernel of  is the set 

Let  be a homomorphism from  into  . The kernel of  is a normal subgroup of 

Proof

Let  We can see that  is a subgroup of  by letting  and verify that  by computing 
 To prove normality, we let  be any element of  and  We compute 

 to verify that 

Based on this most recent theorem, every homomorphism gives us a normal subgroup.

Let  be a homomorphism. Then  is isomorphic to 

Define  by  The three previous theorems imply the following:

 defined by  is a homomorphism.

 is isomorphic to 

Example 14.4.8

π : Z → Z/4Z π(n) = n+4Z, π 4Z

0 +4Z,

π

Theorem 14.4.3

H ◃G, π : G→ G/H π(a) = aH

Definition : Natural Homomorphism14.4.3

H ◃G, π : G→ G/H π(a) = aH

14.4.3

Definition : Kernel of a Homomorphism14.4.4

θ : G→ G′ e e′ G ,G′ θ

kerθ = {a ∈ G ∣ θ(a) = }e′

Theorem 14.4.4

θ : G→ G′ G G′ θ G.

K = ker θ. K G a, b ∈ K a∗ ∈ Kb−1

θ(a∗ ) = θ(a) ∗ θ(b = ∗ = .b−1 )−1 e′ e′−1 e′ g G k ∈ K.

θ(g∗ k ∗ )g−1 g∗ k ∗ ∈ K.g−1

θ(g∗ k ∗ )g−1 = θ(g) ∗ θ(k) ∗ θ( )g−1

= θ(g) ∗ θ(k) ∗ θ(g)−1

= θ(g) ∗ ∗ θ(ge′ )−1

= θ(g) ∗ θ(g)−1

= e′

Theorem : Fundamental Theorem of Group Homomorphisms14.4.5

θ : G→ G′ θ(G) G/ kerθ.

Example 14.4.9

θ : Z → Z10 θ(n) = n mod 10.

π : Z → Z/10Z π(n) = n+10Z

{n ∈ Z|θ(n) = 0} = {10n ∣ n ∈ Z} = 10Z ◃Z.

Z/10Z .Z10
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Let  be the same group of two by two invertible real matrices as in Example . Define  by 
 We will let the reader verify that  is a homomorphism. The theorems above imply the following.

 This verifies our statement in Example . As in

that example, let 
 is isomorphic to 

 defined, naturally, by  is a homomorphism.

For the remainder of this section, we will be examining certain kinds of homomorphisms that will play a part in our major
application to homomorphisms, coding theory.

Consider  defined by  If 

Since  implies that  and  the kernel of  is  By previous theorems, 
 is isomorphic to 

We can generalize the previous example as follows: If  and  is an  matrix of 0's and 1's (elements of ), then 
 defined by

is a homomorphism. This is true because matrix multiplication is distributive over addition. The only new idea here is that
computation is done in  If  and   is true by basic matrix laws.
Therefore, 

14.4.3: Exercises

Which of the following functions are homomorphisms? What are the kernels of those functions that are homomorphisms?

a.  defined by 

b.  where 

c.  where 
d.  defined by 

Answer
a. Yes, the kernel is 
b. No, since  but  

A follow-up might be to ask what happens if 5 is replaced with some other positive integer in this part.
c. Yes, the kernel is 
d. No. A counterexample, among many, would be to consider the two transpositions  and  Compare

 and 

Example 14.4.10

G 14.4.6 Φ : G→ G

Φ(A) = .A

|det A|√
Φ

ker Φ = {A ∈ G|Φ(A) = I} ={( ) ∣ a ∈ R, a ≠ 0} ◃G.
a

0

0

a
14.4.6

ker Φ = .H1

G/H1 {A ∈ G ∣ detA = 1}.

π : G→ G/H1 π(A) = AH1

Example 14.4.11

Φ : →Z2
2 Z2

3 Φ(a, b) = (a, b, a b) .+2 ( , ) , ( , ) ∈ ,a1 b1 a2 b2 Z2
2

Φ (( , ) +( , ))a1 b1 a2 b2 = Φ ( , )a1 +2 a2 b1 +2 b2

= ( , , )a1 +2 a2 b1 +2 b2 a1 +2 a2 +2 b1 +2 b2

= ( , , ) +( , , )a1 b1 a1 +2 b1 a2 b2 a2 +2 b2

= Φ ( , ) +Φ ( , )a1 b1 a2 b2

Φ(a, b)=(0, 0, 0) a = 0 b = 0, Φ {(0, 0)}.

Φ ( ) = {(0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0)}Z2
2 .Z2

2

n,m ≥ 1 A m×n Z2

Φ : →Z2
m

Z2
n

Φ ( , , . . . , ) = ( , , . . . , )Aa1 a2 am a1 a2 am

.Z2 a = ( , , . . . , )a1 a2 am b = ( , , . . . , ) ,b1 b2 bm (a+b)A = aA+bA

Φ(a+b) = Φ(a) +Φ(b).

Exercise 14.4.1

: →θ1 R
∗

R
+ (a) = |a| .θ1

: →θ2 Z5 Z2 (n) ={ .θ2
0

1

 if n is even

 if n is odd
: R×R → R,θ3 (a, b) = a+b.θ3

: →θ4 S4 S4 (f) = f ∘ f = .θ4 f 2

{1, −1}

(2 4) = (1) = 1,θ2 +5 θ2 (2) (4) = 0 0 = 0θ2 +2 θ2 +2

{(a, −a)|a ∈ R}

= (1, 3)t1 = (1, 2).t2

( ∘ )θ4 t1 t2 ( ) ∘ ( ).θ4 t1 θ4 t2
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Which of the following functions are homomorphisms? What are the kernels of those functions that are homomorphisms?

a.  defined by 
b.  defined by 
c.  where 
d.  defined by 

Show that  has one proper normal subgroup, but that  is not normal.

Answer

 is a normal subgroup of  To see you could use the table given in the solution of Exercise 15.3.5 of
Section 15.3 and verify that  for all  and  A more efficient approach is to prove the general
theorem that if  is a subgroup  with exactly two distinct left cosets, than  is normal.  is not a normal subgroup of 

  and if we choose  and  then 

Prove that the function  in Example  is a homomorphism.

Define the two functions  and  by  and 
 Describe the function  Is it a homomorphism?

Answer

 and so  is the trivial homomorphism, but a homomorphism nevertheless.

Express  in Example  in matrix form.

Prove that if  is an abelian group, then  defines a homomorphism from  into  Is  ever an isomorphism?

Answer

Let 

Hence,  is a homomorphism. In order for  to be an isomorphism, it must be the case that no element other than the
identity is its own inverse.

Exercise 14.4.2

: (R) → R,α1 M2×2 (A) = + .α1 A11A22 A12A21

: →α2 ( )R
∗ 2

R
∗ (a, b) = ab.α2

: {A ∈ (R)| detA ≠ 0} → ,α3 M2×2 R
∗ (A) = detA.α3

: →α4 S4 S4 (f) = .α4 f−1

Exercise 14.4.3

D4 ⟨(1, 4)(2, 3)⟩

⟨r⟩= {i, r, , }r2 r3 .D4

ha ∈ ⟨r⟩a−1 a ∈ D4 h ∈ ⟨r⟩.

H G H ⟨ ⟩f1

.D4 ⟨ ⟩= {i, }f1 f1 a = r h = f1 ha = r = ∉ ⟨ ⟩a−1 r3f1 f2 f1

Exercise 14.4.4

Φ 14.4.10

Exercise 14.4.5

α : →Z2
3

Z2
4 β : →Z2

4
Z2 α ( , , ) = ( , , , ) ,a1 a2 a3 a1 a2 a3 a1 +2 a2 +2 a3

β ( , , , ) = + + +b1 b2 b3 b4 b1 b2 b3 b4 β ∘α.

(β ∘α) ( , , ) = 0a1 a2 a3 β ∘α

Exercise 14.4.6

Φ 14.4.10

Exercise 14.4.7

G q(x) = x2 G G. q

x, y ∈ G.

q(x ∗ y) = (x ∗ y)2

= x ∗ y ∗ x ∗ y

= x ∗ x ∗ y ∗ y  since G is abelian

= ∗x2 y2

= q(x) ∗ q(y)

q q

x ∈ Ker(q) ⇔ q(x) = e

⇔ x ∗ x = e

⇔ = xx−1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86194?pdf
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Applied_Discrete_Structures_(Doerr_and_Levasseur)/15%3A_Group_Theory_and_Applications/15.03%3A_Permutation_Groups#Exercise+%5C(%5CPageIndex%7B5%7D%5C)
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Applied_Discrete_Structures_(Doerr_and_Levasseur)/15%3A_Group_Theory_and_Applications/15.03%3A_Permutation_Groups


14.4.8 https://math.libretexts.org/@go/page/86194

Prove that if  is a homomorphism, and  then  Is it also true that 

Prove that if  is a homomorphism, and  then 

Answer

Proof: Recall that the inverse image of  under  is 

Closure: Let  then  Since  is a subgroup of 

Identity: By Theorem (a), 

Inverse: Let  . Then  and by Theorem (b),  and so 

Following up on Example , prove that  is a simple group; i. e., it has no proper normal subgroups.

a. Make a list of the different cycle structures that occur in  and how many elements have those structures.
b. Within each set of permutations with different cycle structures, identify which subsets are closed with respect to the

conjugation operation. With this you will have a partition of  into conjugate classes where for each class,   if
and only if  such that 

c. Use the fact that a normal subgroup of  needs to be a union of conjugate classes and verify that no such union exists.

This page titled 14.4: Normal Subgroups and Group Homomorphisms is shared under a CC BY-NC-SA 3.0 license and was authored, remixed,
and/or curated by Al Doerr & Ken Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.

Exercise 14.4.8

θ : G→ G′ H ◃G, θ(H)◃ θ(G). θ(H)◃ ?G′

Exercise 14.4.9

θ : G→ G′ ≤ θ(G),H ′ ( ) = {a ∈ G|θ(a) ∈ } ≤ G.θ−1 H ′ H ′

H ′ θ ( ) = {g ∈ G|θ(g) ∈ }.θ−1 H ′ H ′

, ∈ ( ),g1 g2 θ−1 H ′ θ ( ) , θ ( ) ∈ .g1 g2 H ′ H ′ ,G′

θ ( ) ⋄ θ ( ) = θ ( ∗ ) ∈ ⇒ ∗ ∈ ( )g1 g2 g1 g2 H ′ g1 g2 θ−1 H ′

14.4.2 e ∈ ( ).θ−1 H ′

a ∈ ( )θ−1 H ′ θ(a) ∈ H ′ 14.4.2 θ(a = θ( ) ∈)−1 a−1 H ′ ∈ ( ).a−1 θ−1 H ′

Exercise 14.4.10

14.4.5 A5

A5

A5 C, f , g ∈ C

∃ϕ ∈ A5 ∘ f ∘ϕ = g.ϕ−1

A5
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14.5: Coding Theory, Group Codes

14.5.1: Transmission Problem

In this section, we will introduce the basic ideas involved in coding theory and consider solutions of a coding problem by means of
group codes.

Imagine a situation in which information is being transmitted between two points. The information takes the form of high and low
pulses (for example, radio waves or electric currents), which we will label 1 and 0, respectively. As these pulses are sent and
received, they are grouped together in blocks of fixed length. The length determines how much information can be contained in one
block. If the length is  there are  different values that a block can have. If the information being sent takes the form of text, each
block might be a character. In that case, the length of a block may be seven, so that  block values can represent letters
(both upper and lower case), digits, punctuation, and so on. During the transmission of data, noise can alter the signal so that what
is received differs from what is sent. Figure  illustrates the problem that can be encountered if information is transmitted
between two points.

Figure : A noisy transmission

Noise is a fact of life for anyone who tries to transmit information. Fortunately, in most situations, we could expect a high
percentage of the pulses that are sent to be received properly. However, when large numbers of pulses are transmitted, there are
usually some errors due to noise. For the remainder of the discussion, we will make assumptions about the nature of the noise and
the message that we want to send. Henceforth, we will refer to the pulses as bits.

We will assume that our information is being sent along a binary symmetric channel. By this, we mean that any single bit that is
transmitted will be received improperly with a certain fixed probability,  independent of the bit value. The magnitude of  is
usually quite small. To illustrate the process, we will assume that  which, in the real world, would be considered
somewhat large. Since  we can expect  of all bits to be properly received.

Suppose that our message consists of 3,000 bits of information, to be sent in blocks of three bits each. Two factors will be
considered in evaluating a method of transmission. The first is the probability that the message is received with no errors. The
second is the number of bits that will be transmitted in order to send the message. This quantity is called the rate of transmission:

As you might expect, as we devise methods to improve the probability of success, the rate will decrease.

Suppose that we ignore the noise and transmit the message without any coding. The probability of success is 
 Therefore we only successfully receive the message in a totally correct form less than  of the time. The

rate of  certainly doesn't offset this poor probability.

Our strategy for improving our chances of success will be to send an encoded message across the binary symmetric channel. The
encoding will be done in such a way that small errors can be identified and corrected. This idea is illustrated in Figure .

Figure : The Coding Process
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In our examples, the functions that will correspond to our encoding and decoding devices will all be homomorphisms between
Cartesian products of 

14.5.2: Error Detection
Suppose that each block of three bits  is encoded with the function  where

When the encoded block is received, the four bits will probably all be correct (they are correct approximately  of the time),
but the added bit that is sent will make it possible to detect single errors in the block. Note that when  is transmitted, the sum
of its components is  since  in 

If any single bit is garbled by noise, the sum of the received bits will be 1. The last bit of  is called the parity bit. A parity error
occurs if the sum of the received bits is 1. Since more than one error is unlikely when  is small, a high percentage of all errors can
be detected.

At the receiving end, the decoding function acts on the four-bit block  with the function  where

The fourth bit is called the parity-check bit. If no parity error occurs, the first three bits are recorded as part of the message. If a
parity error occurs, we will assume that a retransmission of that block can be requested. This request can take the form of
automatically having the parity-check bit of  sent back to the source. If 1 is received, the previous block is retransmitted; if 0 is
received, the next block is sent. This assumption of two-way communication is significant, but it is desirable to make this coding
system useful. It is reasonable to expect that the probability of a transmission error in the opposite direction is also 0.001. Without
going into the details, we will report that the probability of success is approximately 0.990 and the rate is approximately 3/5. The
rate includes the transmission of the parity-check bit to the source.

14.5.3: Error Correction
Next, we will consider a coding process that can correct errors at the receiving end so that only one-way communication is needed.
Before we begin, recall that every element of   is its own inverse; that is,  Therefore, 

Noisy three-bit message blocks are difficult to transmit because they are so similar to one another. If  and  are in  their
difference,  can be thought of as a measure of how close they are. If  and  differ in only one bit position, one error can
change one into the other. The encoding that we will introduce takes a block  and produces a block of length 6
called the code word of  The code words are selected so that they are farther from one another than the messages are. In fact,
each code word will differ from each other code word by at least three bits. As a result, any single error will not push a code word
close enough to another code word to cause confusion. Now for the details.

Let  We call  the generator matrix for the code, and let  be our message.

Define  by

where

Notice that  is a homomorphism. Also, if  and  are distinct elements of  then  has at least one coordinate equal to
1. Now consider the difference between  and 
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Whether  has 1, 2, or 3 ones,  must have at least three ones. This can be seen by considering the three cases separately. For
example, if  has a single one, two of the parity bits are also 1. Therefore,  and  differ in at least three bits.

Now consider the problem of decoding the code words. Imagine that a code word,  is transmitted, and 
 is received. At the receiving end, we know the formula for  and if no error has occurred in

transmission,

The three equations on the right are called parity-check equations. If any of them are not true, an error has occurred. This error
checking can be described in matrix form.

Let

 is called the parity-check matrix for this code. Now define  by  We call  the syndrome of the
received block. For example,  and 

Note that  is also a homomorphism. If the syndrome of a block is  we can be almost certain that the message block is 

Next we turn to the method of correcting errors. Despite the fact that there are only eight code words, one for each three-bit block
value, the set of possible received blocks is  with 64 elements. Suppose that  is not a code word, but that it differs from a code
word by exactly one bit. In other words, it is the result of a single error in transmission. Suppose that  is the code word that  is
closest to and that they differ in the first bit. Then  and

Note that we haven't specified  or  only that they differ in the first bit. Therefore, if  is received, there was probably an error in
the first bit and  the transmitted code word was probably  and the message block was 

 The same analysis can be done if  and  differ in any of the other five bits.

This process can be described in terms of cosets. Let  be the set of code words; that is,  Since  is a
homomorphism,  is a subgroup of  Consider the factor group 

Suppose that  and  are representatives of the same coset. Then  for some  in  Therefore,

and so  and  have the same syndrome.
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Finally, suppose that  and  are distinct and both have only a single coordinate equal to 1. Then  has exactly two ones.
Note that the identity of   must be in  Since  differs from the identity by two bits, 
Hence  and  belong to distinct cosets. The reasoning above serves as a proof of the following theorem.

There is a system of distinguished representatives of  such that each of the six-bit blocks having a single 1 is a
distinguished representative of its own coset.

Now we can describe the error-correcting process. First match each of the blocks with a single 1 with its syndrome. In addition,
match the identity of  with the syndrome  as in the table below. Since there are eight cosets of  select any
representative of the eighth coset to be distinguished. This is the coset with syndrome 

When block  is received, you need only compute the syndrome,  and add to  the error correction that matches 

We will conclude this example by computing the probability of success for our hypothetical situation. It is 
 The rate for this code is 

Consider the linear code with generator matrix

Since  is  this code encodes three bits into five bits. The natural question to ask is what detection or correction does it
afford? We can answer this question by constructing the parity check matrix. We observe that if  the encoding
function is

where addition is mod 2 addition. If we receive five bits  and no error has occurred, the following two
equations would be true.

Notice that in general, the number of parity check equations is equal to the number of extra bits that are added by the encoding
function. These equations are equivalent to the single matrix equation  where

d1 d2 +d1 d2

,Z2
6 (0, 0, 0, 0, 0, 0), W . +d1 d2 + ∉ W .d1 d2

d1 d2
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Example : Another Linear Code14.5.1
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At a glance, we can see that this code will not correct most single bit errors. Suppose an error  is added
in the transmission of the five bits. Specifically, suppose that 1 is added (mod 2) in position  where  and the other
coordinates of  are 0. Then when we compute the syndrome of our received transmission, we see that

But  is the  row of  If the syndrome is  we know that the error occurred in position 1 and we can correct it.
However, if the error is in any other position we can't pinpoint its location. If the syndrome is  then the error could have
occurred in either position 2 or position 3. This code does detect all single bit errors but only corrects one fifth of them.

14.5.4: Exercises

If the error-detecting code is being used, how would you act on the following received blocks?

a. 
b. 
c. 

Answer
a. Error detected, since an odd number of 1's was received; ask for retransmission.
b. No error detected; accept this block.
c. No error detected; accept this block.

Express the encoding and decoding functions for the error-detecting code using matrices.

If the error-correcting code from this section is being used, how would you decode the following blocks? Expect an error that
cannot be fixed with one of these.

a. 
b. 
c. 
d. 
e. 
f. 

Answer
a. Syndrome =  Corrected coded message is  and original message was 
b. Syndrome =  Corrected coded message is  and original message was 
c. Syndrome =  No error, coded message is  and original message was 
d. Syndrome =  Corrected coded message is  and original message was 
e. Syndrome =  This syndrome occurs only if two bits have been switched. No reliable correction is possible.
f. Syndrome =  Corrected coded message is  and original message was 

Consider the linear code defined by the generator matrix

= ( , , , , )e ⃗  e1 e2 e3 e4 e5

j, 1 ≤ j≤ 5
e ⃗ 

H = ( G+ )H = ( G)H + H = H.c ⃗  b ⃗  e ⃗  b ⃗  e ⃗  e ⃗ 

He ⃗  jth H. (1, 1)
(1, 0),

Exercise 14.5.1

(1, 0, 1, 1)
(1, 1, 1, 1)
(0, 0, 0, 0)

Exercise 14.5.2

Exercise 14.5.3

(1, 0, 0, 0, 1, 1)
(1, 0, 1, 0, 1, 1)
(0, 1, 1, 1, 1, 0)
(0, 0, 0, 1, 1, 0)
(1, 0, 0, 0, 0, 1)
(1, 0, 0, 1, 0, 0)

(1, 0, 1). (1, 1, 0, 0, 1, 1) (1, 1, 0).
(1, 1, 0). (0, 0, 1, 0, 1, 1) (0, 0, 1).
(0, 0, 0). (0, 1, 1, 1, 1, 0) (0, 1, 1).
(1, 1, 0). (1, 0, 0, 1, 1, 0) (1, 0, 0).
(1, 1, 1).
(0, 1, 0). (1, 0, 0, 1, 1, 0) (1, 0, 0).
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a. What size blocks does this code encode and what is the length of the code words?
b. What are the code words for this code?
c. With this code, can you detect single bit errors? Can you correct all, some, or no single bit errors?

Answer

Let  be the  matrix obtained by augmenting the  . The function  defined by  will
allow us to detect single errors, since  will always have an even number of ones.

To build a rectangular code, you partition your message into blocks of length  and then factor  into  and arrange the
bits in a  rectangular array as in the figure below. Then you add parity bits along the right side and bottom of the rows
and columns. The code word is then read row by row.

For example, if  is 4, then our only choice is a 2 by 2 array. The message 1101 would be encoded as

and the code word is the string 11001110.

a. Suppose that you were sent four bit messages using this code and you received the following strings. What were the
messages, assuming no more than one error in the transmission of coded data?

i. 11011000
ii. 01110010

iii. 10001111
b. If you encoded  bits in this manner, what would be the rate of the code?
c. Rectangular codes are linear codes. For the 3 by 2 rectangular code, what are the generator and parity check matrices?

Suppose that the code in Example  is expanded to add the column

to the generator matrix  can all single bit errors be corrected? Explain your answer.

Answer

Yes, you can correct all single bit errors because the parity check matrix for the expanded code is

G 9 ×10 9 ×9 e : →Z2
9

Z2
10 e(a) = aG

e(a)

Exercise : Rectangular Codes14.5.6
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Since each possible syndrome of single bit errors is unique we can correct any error.

This page titled 14.5: Coding Theory, Group Codes is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Al
Doerr & Ken Levasseur via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

H = .

⎛

⎝

⎜
⎜⎜⎜
⎜⎜
⎜⎜

1
1
1
0
0
0

1
0
0
1
1
0

0
0
1
0
1
1

⎞

⎠

⎟
⎟⎟⎟
⎟⎟
⎟⎟

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86195?pdf
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/14%3A_Group_Theory_and_Applications/14.05%3A_Coding_Theory_Group_Codes
https://creativecommons.org/licenses/by-nc-sa/3.0
https://faculty.uml.edu//klevasseur/
https://discretemath.org/ads/ads.html


1 https://math.libretexts.org/@go/page/87142

Index
A
absolute value

3.4: Using Cases in Proofs 
additive principle

11.1: Additive and Multiplicative Principles 

B
Biconditional Statement

2.1: Statements and Logical Operators 
bijection

6.3: Injections, Surjections, and Bijections 
binomial coefficients

11.2: Binomial Coefficients 
bipartite graphs

10.6: Matching in Bipartite Graphs 

C
Cantor’s theorem

9.3: Uncountable Sets 
cardinality

5.1: Sets and Operations on Sets 
9.1: Finite Sets 

Cartesian plane
5.4: Cartesian Products 

Cartesian Products
5.4: Cartesian Products 

cases
3.4: Using Cases in Proofs 

closure
1.1: Statements and Conditional Statements 

codomain
6.1: Introduction to Functions 

Combinations
11.3: Combinations and Permutations 

common divisor
8.1: The Greatest Common Divisor 

composite function
6.4: Composition of Functions 

composite number
8.2: Prime Numbers and Prime Factorizations 

composition of functions
6.4: Composition of Functions 

compound statements
2.1: Statements and Logical Operators 

conditional statement
1.1: Statements and Conditional Statements 

Congruence
3.1: Direct Proofs 
3.5: The Division Algorithm and Congruence 

Congruence Classes
7.3: Equivalence Classes 
7.4: Modular Arithmetic 

congruence modulo n
7.2: Equivalence Relations 

Convex polygons
6.2: More about Functions 

countable sets
9.2: Countable Sets 

D
De Morgan's Laws

2.2: Logically Equivalent Statements 
5.3: Properties of Set Operations 
5.5: Indexed Families of Sets 

Decomposing Functions
6.4: Composition of Functions 

definition by recursion
4.3: Induction and Recursion 

denumerable set
9.2: Countable Sets 

derangement
11.6: Advanced Counting Using PIE 

diagonal
6.2: More about Functions 

Diophantine Equations
8.3: Linear Diophantine Equations 

Direct Proofs
3.1: Direct Proofs 

disjoint
11.1: Additive and Multiplicative Principles 

Disjoint Sets
5.2: Proving Set Relationships 

division algorithm
3.5: The Division Algorithm and Congruence 

E
Equivalence Classes

7.3: Equivalence Classes 
Equivalence Relations

7: Equivalence Relations 
7.2: Equivalence Relations 

Euclid’s Lemma
8.2: Prime Numbers and Prime Factorizations 

Euclidean algorithm
8.1: The Greatest Common Divisor 

Euler circuit
10.5: Euler Paths and Circuits 

Euler Paths
10.5: Euler Paths and Circuits 

F
factorial

4.2: Other Forms of Mathematical Induction 
11.3: Combinations and Permutations 

Fibonacci Numbers
4.3: Induction and Recursion 

Finite Sets
9.1: Finite Sets 

four color theorem
10.4: Coloring 

function
6.1: Introduction to Functions 

G
Geometric Sequences

4.3: Induction and Recursion 
geometric series

4.3: Induction and Recursion 
greatest common divisor

8.1: The Greatest Common Divisor 

H
Hamilton paths

10.5: Euler Paths and Circuits 

I
indexing set

5.5: Indexed Families of Sets 
Induction

4.1: The Principle of Mathematical Induction 
inductive assumption

4.1: The Principle of Mathematical Induction 
inductive hypothesis

4.1: The Principle of Mathematical Induction 
injection

6.3: Injections, Surjections, and Bijections 
integer lattice

11.2: Binomial Coefficients 
Intersection

5.1: Sets and Operations on Sets 
inverse function

6.5: Inverse Functions 

L
lattice path

11.2: Binomial Coefficients 
LOGICAL EQUIVALENCY

3.4: Using Cases in Proofs 

M
Modular arithmetic

7.4: Modular Arithmetic 
monoids

13.1: Monoids 

N
number theory

8: Topics in Number Theory 

O
Open Sentences

2.3: Open Sentences and Sets 
ordered pairs

6.5: Inverse Functions 

P
Pascal's Triangle

11.2: Binomial Coefficients 
11.4: Combinatorial Proofs 

perfect square
2.4: Quantifiers and Negations 

permutations
11.3: Combinations and Permutations 

Pigeonhole Principle
9.1: Finite Sets 

polygon
6.2: More about Functions 

Polyhedra
10.3: Planar Graphs 

power set
5.1: Sets and Operations on Sets 

https://libretexts.org/
https://math.libretexts.org/@go/page/87142?pdf
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/zz%3A_Back_Matter/10%3A_Index
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/03%3A_Constructing_and_Writing_Proofs_in_Mathematics/3.04%3A_Using_Cases_in_Proofs
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/11%3A_Counting/11.01%3A_Additive_and_Multiplicative_Principles
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/02%3A_Logical_Reasoning/2.01%3A_Statements_and_Logical_Operators
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.03%3A_Injections_Surjections_and_Bijections
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/11%3A_Counting/11.02%3A_Binomial_Coefficients
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/10%3A_Graph_Theory/10.06%3A_Matching_in_Bipartite_Graphs
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/09%3A_Finite_and_Infinite_Sets/9.03%3A_Uncountable_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/05%3A_Set_Theory/5.01%3A_Sets_and_Operations_on_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/09%3A_Finite_and_Infinite_Sets/9.01%3A_Finite_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/05%3A_Set_Theory/5.04%3A_Cartesian_Products
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/05%3A_Set_Theory/5.04%3A_Cartesian_Products
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/03%3A_Constructing_and_Writing_Proofs_in_Mathematics/3.04%3A_Using_Cases_in_Proofs
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/01%3A_Introduction_to_Writing_Proofs_in_Mathematics/1.01%3A_Statements_and_Conditional_Statements
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.01%3A_Introduction_to_Functions
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/11%3A_Counting/11.03%3A_Combinations_and_Permutations
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/08%3A_Topics_in_Number_Theory/8.01%3A_The_Greatest_Common_Divisor
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.04%3A_Composition_of_Functions
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/08%3A_Topics_in_Number_Theory/8.02%3A_Prime_Numbers_and_Prime_Factorizations
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.04%3A_Composition_of_Functions
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/02%3A_Logical_Reasoning/2.01%3A_Statements_and_Logical_Operators
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/01%3A_Introduction_to_Writing_Proofs_in_Mathematics/1.01%3A_Statements_and_Conditional_Statements
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/03%3A_Constructing_and_Writing_Proofs_in_Mathematics/3.01%3A_Direct_Proofs
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/03%3A_Constructing_and_Writing_Proofs_in_Mathematics/3.05%3A_The_Division_Algorithm_and_Congruence
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/07%3A_Equivalence_Relations/7.03%3A_Equivalence_Classes
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/07%3A_Equivalence_Relations/7.04%3A_Modular_Arithmetic
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/07%3A_Equivalence_Relations/7.02%3A_Equivalence_Relations
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.02%3A_More_about_Functions
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/09%3A_Finite_and_Infinite_Sets/9.02%3A_Countable_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/02%3A_Logical_Reasoning/2.02%3A_Logically_Equivalent_Statements
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/05%3A_Set_Theory/5.03%3A_Properties_of_Set_Operations
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/05%3A_Set_Theory/5.05%3A_Indexed_Families_of_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.04%3A_Composition_of_Functions
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/04%3A_Mathematical_Induction/4.03%3A_Induction_and_Recursion
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/09%3A_Finite_and_Infinite_Sets/9.02%3A_Countable_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/11%3A_Counting/11.06%3A_Advanced_Counting_Using_PIE
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.02%3A_More_about_Functions
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/08%3A_Topics_in_Number_Theory/8.03%3A_Linear_Diophantine_Equations
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/03%3A_Constructing_and_Writing_Proofs_in_Mathematics/3.01%3A_Direct_Proofs
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/11%3A_Counting/11.01%3A_Additive_and_Multiplicative_Principles
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/05%3A_Set_Theory/5.02%3A_Proving_Set_Relationships
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/03%3A_Constructing_and_Writing_Proofs_in_Mathematics/3.05%3A_The_Division_Algorithm_and_Congruence
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/07%3A_Equivalence_Relations/7.03%3A_Equivalence_Classes
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/07%3A_Equivalence_Relations
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/07%3A_Equivalence_Relations/7.02%3A_Equivalence_Relations
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/08%3A_Topics_in_Number_Theory/8.02%3A_Prime_Numbers_and_Prime_Factorizations
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/08%3A_Topics_in_Number_Theory/8.01%3A_The_Greatest_Common_Divisor
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/10%3A_Graph_Theory/10.05%3A_Euler_Paths_and_Circuits
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/10%3A_Graph_Theory/10.05%3A_Euler_Paths_and_Circuits
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/04%3A_Mathematical_Induction/4.02%3A_Other_Forms_of_Mathematical_Induction
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/11%3A_Counting/11.03%3A_Combinations_and_Permutations
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/04%3A_Mathematical_Induction/4.03%3A_Induction_and_Recursion
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/09%3A_Finite_and_Infinite_Sets/9.01%3A_Finite_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/10%3A_Graph_Theory/10.04%3A_Coloring
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.01%3A_Introduction_to_Functions
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/04%3A_Mathematical_Induction/4.03%3A_Induction_and_Recursion
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/04%3A_Mathematical_Induction/4.03%3A_Induction_and_Recursion
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/08%3A_Topics_in_Number_Theory/8.01%3A_The_Greatest_Common_Divisor
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/10%3A_Graph_Theory/10.05%3A_Euler_Paths_and_Circuits
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/05%3A_Set_Theory/5.05%3A_Indexed_Families_of_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/04%3A_Mathematical_Induction/4.01%3A_The_Principle_of_Mathematical_Induction
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/04%3A_Mathematical_Induction/4.01%3A_The_Principle_of_Mathematical_Induction
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/04%3A_Mathematical_Induction/4.01%3A_The_Principle_of_Mathematical_Induction
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.03%3A_Injections_Surjections_and_Bijections
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/11%3A_Counting/11.02%3A_Binomial_Coefficients
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/05%3A_Set_Theory/5.01%3A_Sets_and_Operations_on_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.05%3A_Inverse_Functions
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/11%3A_Counting/11.02%3A_Binomial_Coefficients
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/03%3A_Constructing_and_Writing_Proofs_in_Mathematics/3.04%3A_Using_Cases_in_Proofs
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/07%3A_Equivalence_Relations/7.04%3A_Modular_Arithmetic
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/13%3A_Monoids_and_Automata/13.01%3A_Monoids
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/08%3A_Topics_in_Number_Theory
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/02%3A_Logical_Reasoning/2.03%3A_Open_Sentences_and_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.05%3A_Inverse_Functions
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/11%3A_Counting/11.02%3A_Binomial_Coefficients
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/11%3A_Counting/11.04%3A_Combinatorial_Proofs
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/02%3A_Logical_Reasoning/2.04%3A_Quantifiers_and_Negations
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/11%3A_Counting/11.03%3A_Combinations_and_Permutations
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/09%3A_Finite_and_Infinite_Sets/9.01%3A_Finite_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.02%3A_More_about_Functions
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/10%3A_Graph_Theory/10.03%3A_Planar_Graphs
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/05%3A_Set_Theory/5.01%3A_Sets_and_Operations_on_Sets


2 https://math.libretexts.org/@go/page/87142

Prime Factorizations
8.2: Prime Numbers and Prime Factorizations 

prime numbers
8.2: Prime Numbers and Prime Factorizations 

Principle of Inclusion/Exclusion (PIE)
11.6: Advanced Counting Using PIE 

proper subset
5.1: Sets and Operations on Sets 

proposition
1.1: Statements and Conditional Statements 

propositional function
2.3: Open Sentences and Sets 

R
range

6.1: Introduction to Functions 
Recursion

4.3: Induction and Recursion 
regular polygon

6.2: More about Functions 
Relations

7.1: Relations 
Relatively Prime Integers

8.2: Prime Numbers and Prime Factorizations 

roster method
2.3: Open Sentences and Sets 

S
semigroup

13.1: Monoids 
sequence

4.3: Induction and Recursion 
6.2: More about Functions 

sequences
6.2: More about Functions 

set notation
2.3: Open Sentences and Sets 

Set Operations
5.1: Sets and Operations on Sets 

set theory
5: Set Theory 

Sets
2.3: Open Sentences and Sets 
5.1: Sets and Operations on Sets 

Seven Bridges of Konigsberg
10.1: Prelude to Graph Theory 

stochastic matrices
13.1: Monoids 

Surjection
6.3: Injections, Surjections, and Bijections 

T
triangle inequality

3.4: Using Cases in Proofs 
Truth Table

2.1: Statements and Logical Operators 
Twin Prime Conjecture

8.2: Prime Numbers and Prime Factorizations 

U
union

5.5: Indexed Families of Sets 
universal set

2.3: Open Sentences and Sets 

V
Venn diagram

5.1: Sets and Operations on Sets 
Vizing's Theorem

10.4: Coloring 

https://libretexts.org/
https://math.libretexts.org/@go/page/87142?pdf
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/08%3A_Topics_in_Number_Theory/8.02%3A_Prime_Numbers_and_Prime_Factorizations
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/08%3A_Topics_in_Number_Theory/8.02%3A_Prime_Numbers_and_Prime_Factorizations
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/11%3A_Counting/11.06%3A_Advanced_Counting_Using_PIE
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/05%3A_Set_Theory/5.01%3A_Sets_and_Operations_on_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/01%3A_Introduction_to_Writing_Proofs_in_Mathematics/1.01%3A_Statements_and_Conditional_Statements
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/02%3A_Logical_Reasoning/2.03%3A_Open_Sentences_and_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.01%3A_Introduction_to_Functions
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/04%3A_Mathematical_Induction/4.03%3A_Induction_and_Recursion
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.02%3A_More_about_Functions
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/07%3A_Equivalence_Relations/7.01%3A_Relations
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/08%3A_Topics_in_Number_Theory/8.02%3A_Prime_Numbers_and_Prime_Factorizations
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/02%3A_Logical_Reasoning/2.03%3A_Open_Sentences_and_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/13%3A_Monoids_and_Automata/13.01%3A_Monoids
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/04%3A_Mathematical_Induction/4.03%3A_Induction_and_Recursion
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.02%3A_More_about_Functions
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.02%3A_More_about_Functions
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/02%3A_Logical_Reasoning/2.03%3A_Open_Sentences_and_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/05%3A_Set_Theory/5.01%3A_Sets_and_Operations_on_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/05%3A_Set_Theory
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/02%3A_Logical_Reasoning/2.03%3A_Open_Sentences_and_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/05%3A_Set_Theory/5.01%3A_Sets_and_Operations_on_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/10%3A_Graph_Theory/10.01%3A_Prelude_to_Graph_Theory
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/13%3A_Monoids_and_Automata/13.01%3A_Monoids
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/06%3A_Functions/6.03%3A_Injections_Surjections_and_Bijections
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/03%3A_Constructing_and_Writing_Proofs_in_Mathematics/3.04%3A_Using_Cases_in_Proofs
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/02%3A_Logical_Reasoning/2.01%3A_Statements_and_Logical_Operators
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/08%3A_Topics_in_Number_Theory/8.02%3A_Prime_Numbers_and_Prime_Factorizations
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/05%3A_Set_Theory/5.05%3A_Indexed_Families_of_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/02%3A_Logical_Reasoning/2.03%3A_Open_Sentences_and_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/05%3A_Set_Theory/5.01%3A_Sets_and_Operations_on_Sets
https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Discrete_Structures/10%3A_Graph_Theory/10.04%3A_Coloring


1 https://math.libretexts.org/@go/page/87143

Glossary
Antisymmetric | A relation R on a set A is an
antisymmetric relation provided that for all x,y∈Ax, if
x R y and y R x, then x=y.

Biconditional | P if and only if Q

Bijection | A function f:A -> B such that f is both an
injection and a surjection

Bipartite graph | A graph for which it is possible
to divide the vertices into two disjoint sets such that
there are no edges between any two vertices in the
same set

Boolean algebra | a lattice that contains a least
element and a greatest element and that is both
complemented and distributive. The notation
[B;∨,∧,¯] is used to denote the boolean algebra with
operations join, meet and complementation.

Cardinality | The number of elements in a set

Chromatic number | The minimum number of
colors required in a proper vertex coloring of the graph

Complement of a set | Let U be the universal set.
A  ={x in U, x is not in A}

Complete graph | A graph in which every pair of
vertices is adjacent

Conditional Statement | If P then Q. P is the
antecedent (hypothesis) and Q is the consequent
(conclusion)

Congruent | Two integers are congruent mod n (n a
positive integer) if the integers leave the same
remainder upon division by n

Conjecture | a guess in mathematics

Conjunction | P and Q

Contrapositive | Of the conditional, if not Q then
not P, logically equivalent to if P then Q

Converse | Of the conditional, if Q then P

Countably infinite | A set that can be put into one-
to-one correspondence with the set of natural numbers

Cyclic group | Group G is cyclic if there exists
a∈G such that the cyclic subgroup generated by a, ⟨a⟩
equals all of G. That is, G={na|n∈Z} in which case a
is called a generator of G. The reader should note that
additive notation is used for G

Digraph | A directed graph

Direct Proof | Argument that is based on "If P then
Q" and "P" implies Q

Disjunction | P and Q

Division algorithm | Let m and d be integers with
d>0. Then, there exists unique integers q and r with
0<=r < d such that m = dq+r

Equivalence class |  
For each a∈A, the equivalence class of aa determined
by ∼ is the subset of A, denoted by [a], consisting of
all the elements of A that are equivalent to a

Equivalence relation | A relation that is reflexive,
symmetric and transitive

Euclidean algorithm | Let a and b be integers
with a≠0 and b>0. Then gcd(a, b) is the only natural
number d such that (a) d divides a and d divides b, and 
(b) if k is an integer that divides both a and b, then k
divides d

Euler circuit | An Euler path which starts and stops
at the same vertex

Euler path | A walk which uses each edge exactly
once

Existential operator | There exists

Formal Language | If A is an alphabet, a formal
language over A is a subset of A .

Graph | an ordered pair G=(V,E) consisting of a
nonempty set V (called the vertices) and a set E (called
the edges) of two-element subsets of V

Greatest common divisor |  
The largest natural number that divides both a and b is
called the greatest common divisor of a and b

Hasse diagram | an illustration of a poset

Homomorphism | Let [G;∗] and [G′;⋄]be groups.
θ:G→G′ is a homomorphism if θ(x∗y)=θ(x)⋄θ(y) for
all x,y∈G

Indirect Proof | Argument based upon the
contrapositive

Injection | A function f:A->B is an injection, if for
every a and b in the domain of f, f(a)=f(b) implies a =
b.

Intersection of two sets | Let U be the universal
set. A intersect B = {x in U, x is in A and x is in B}

Inverse | Of the conditional, if not P then not Q

Isomorphism |  
between two graphs G1 and G2 is a bijection
f:V1→V2 between the vertices of the graphs such that
if {a,b} is an edge in G1 then {f(a),f(b)} is an edge in
G2

Lattice | a poset (L,⪯)for which every pair of
elements has a greatest lower bound and least upper
bound

Logical equivalence | Two expressions are
logically equivalent provided that they have the same
truth value for all possible combinations of truth
values for all variables appearing in the two
expressions

Monoid | a set M together with a binary operation
∗∗ with the properties

∗∗ is associative: ∀a,b,c∈M,
(a∗b)∗c=a∗(b∗c) and
∗∗ has an identity in M:M:
∃e∈Msuch that ∀a∈M, a∗e=e∗a=a

Negation | not P

Partial order | Let ⪯⪯ be a relation on a set L.L.
We say that ⪯⪯ is a partial ordering on LL if it is
reflexive , antisymmetric , and transitive . That is:

1. ⪯ is reflexive : a⪯a∀a∈L
2. ⪯ is antisymmetric : a⪯b and

a≠b⇒b⋠a∀a,b∈L
3. ⪯ is transitive : a⪯b and

b⪯c⇒a⪯c∀a,b,c∈L

The set together with the relation (L,⪯) is
called a poset.
Principle of Mathematical Induction | A
technique of proof whereby If T is a subset of N such
that

1. 1∈T, and
2. For every k∈N, if k∈T, then

(k+1)∈T.

Then T=N.
Proof by Contradiction | Given "If P then Q"
assume "P and not Q" to arrive at "P and not P"

Reflexive |  
The relation R is reflexive on A provided that for each
x∈A, x R x or, equivalently, (x,x)∈R

Relation | Let A and B be sets. A relation R from the
set A to the set B is a subset of A×B

Set | A well-defined collection of objects

Statement | a declarative sentence that is either true
or false but not both

String |  
A string of length n, n⩾1 over alphabet A is a
sequence of nn letters from A: a a …a The set of all
strings over A is A .

Subgraph | We say that G1=(V1,E1) is a subgraph
of G2=(V2,E2) provided V1⊆V2 and E1⊆E2

Surjection | A function f:A ->B is a surjection if for
every b in B there exists an a in A such that f(a)=b.

Symmetric | The relation R is symmetric provided
that for every x,y∈A, if x R y, then y R x or,
equivalently, for every x,y∈Ax, if (x,y)∈R, then
(y,x)∈R

Symmetric group |  
Let A be a nonempty set . The set of all permutations
on A with the operation of function composition is
called the symmetric group on A, denoted S .

The Well-Ordering Principle | for the natural
numbers states that any nonempty set of natural
numbers must contain a least element equivalent to the
Principle of Mathematical Induction

Transitive | The relation R is transitive provided that
for every x,y,z∈A, if x R y and y R z, then x R z or,
equivalently, for every x,y,z∈A, if (x,y)∈R and
(y,z)∈R, then (x,z)∈R

Tree | A (connected) graph with no cycles. (A non-
connected graph with no cycles is called a forest.) The
vertices in a tree with degree 1 are called leaves

Truth table | a summary of all the truth values of a
statement

Uncountably infinite | An infinite set for which
there does not exist a one to one correspondence with
the natural numbers

Union of two sets | Let U be the universal set. A U
B ={x in U, such that x is in A or x is in B}

Universal operator | For all or for every

Vertex coloring | An assignment of colors to each
of the vertices of a graph. A vertex coloring is proper
if adjacent vertices are always colored differently

c

∗
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Appendix A: Guidelines for Writing Mathematical Proofs
One of the most important forms of mathematical writing is writing mathematical proofs. The writing of mathematical proofs is an
acquired skill and takes a lot of practice. Throughout the textbook, we have introduced various guidelines for writing proofs. These
guidelines are in Sections 1.1, 1.2, 3.1, 3.2, 3.3, and 4.1.

Following is a summary of all the writing guidelines introduced in the text. This summary contains some standard conventions that
are usually followed when writing a mathematical proof.

1. Know your audience. Every writer should have a clear idea of the intended audience for a piece of writing. In that way, the
writer can give the right amount of information at the proper level of sophistication to communicate effectively. This is
especially true for mathematical writing. For example, if a mathematician is writing a solution to a textbook problem for a
solutions manual for instructors, the writing would be brief with many details omitted. However, if the writing was for a
students’ solution manual, more details would be included.

2. As an example, an exercise in a text might read, “Prove that if  is an odd integer, then  is an odd integer.” This could be
started as follows:

Theorem. If  is an odd integer, then  is an odd integer. 
Proof: We assume that  is an odd integer ....

3. Begin the proof with a statement of your assumptions. Follow the statement of your assumptions with a statement of what
you will prove.

Proof. We assume that  and  are odd integers and will prove that  is an odd integer.

4. Use the pronoun “we.” If a pronoun is used in a proof, the usual convention is to use “we” instead of “I.” The idea is to stress
that you and the reader are doing the mathematics together. It will help encourage the reader to continue working through the
mathematics. Notice that we started the proof of Theorem 1.8 with “We assume that... .”

5. Use italics for variables when using a word processor. When using a word processor to write mathematics, the word
processor needs to be capable of producing the appropriate mathematical symbols and equations. The mathematics that is
written with a word processor should look like typeset mathematics. This means that variables need to be italicized, boldface is
used for vectors, and regular font is used for mathematical terms such as the names of the trigonometric functions and
logarithmic functions.

For example, we do not write sin x or . The proper way to typeset this is sin .

6. Do not use  for multiplication or ˆ for exponents. Leave this type of notation for writing computer code. The use of this
notation makes it difficult for humans to read. In addition, avoid using / for division when using a complex fraction. 
For example, it is very difficult to read ; the fraction 

 
is much easier to read.

7. Use complete sentences and proper paragraph structure. Good grammar is an important part of any writing. Therefore,
conform to the accepted rules of grammar. Pay careful attention to the structure of sentences. Write proofs using complete
sentences but avoid run-on sentences. Also, do not forget punctuation, and always use a spell checker when using a word
processor.

8. Keep the reader informed. Sometimes a theorem is proven by proving the contrapositive or by using a proof by contradiction.
If either proof method is used, this should be indicated within the first few lines of the proof. This also applies if the result is
going to be proven using mathematical induction.

x x2

x x2

x

x y x ⋅ y

sin x x

∗

( −3 +1/2)/(2x/3 −7)x3 x2

−3 +x3 x2 1

2

−7
2x

3
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We will prove this result by proving the contrapositive of the statement.
We will prove this statement using a proof by contradiction.
We willassume to the contrary that... .
We will use mathematical induction to prove this result.

In addition, make sure the reader knows the status of every assertion that is made. That is, make sure it is clearly stated whether
an assertion is an assumption of the theorem, a previously proven result, a well-known result, or something from the reader’s
mathematical background.

9. Display important equations and mathematical expressions. Equations and manipulations are often an integral part of the
exposition. Do not write equations, algebraic manipulations, or formulas in one column with reasons given in another column
(as is often done in geometry texts). Important equations and manipulations should be displayed. This means that they should be
centered with blank lines before and after the equation or manipulations, and if one side of an equation does not change, it
should not be repeated. For example,

Using algebra, we obtain 

 
Since  and  are integers, we conclude that ... .

10. Equation numbering guidelines. If it is necessary to refer to an equation later in a proof, that equation should be centered and
displayed, and it should be given a number. The number for the equation should be written in paren- theses on the same line as
the equation at the right-hand margin.

Since  is an odd integer, there exists an integer  such that 

Later in the proof, there may be a line such as

Then, using the result in equation (A.3), we obtain ... .

Please note that we should only number those equations we will be referring to later in the proof. Also, note that the word
“equation” is not capitalized when we are referring to an equation by number. Although it may be appropriate to use a capital
“E,” the usual convention in mathematics is not to capitalize.

11. Do not use a mathematical symbol at the beginning of a sentence. 
For example, we should not write, “Let  be an integer.  is an odd integer provided that ... .” Many people find this hard to
read and often have to reread it to understand it. It would be better to write, “An integer  is an odd integer provided that ... .”

12. Use English and minimize the use of cumbersome notation. Do not use the special symbols for quantifiers  (for all),  (there
exists),  (such that), or  (therefore) in formal mathematical writing. It is often easier to write, and usually easier to read, if the
English words are used instead of the symbols. For example, why make the reader interpret 

 
where it is possible to write 
 
For each real number , there exists a real number  such that , or more succinctly (if appropriate)

Every real number has an additive inverse.

 Example

x ⋅ y =

=

=

(2m +1)(2n +1)

4mn +2m +2n +1

2(2mn +m +n) +1.

(Appendix A.2)

m n

 Example

x n

x = 2n +1 (Appendix A.3)

n n

n

∀ ∃

∍ ∴

(∀x ∈ R)(∃y ∈ R)(x +y = 0) (Appendix A.4)

x y x +y = 0
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13. Tell the reader when the proof has been completed. Perhaps the best way to do this is to say outright that, “This completes
the proof.” Although it may seem repetitive, a good alternative is to finish a proof with a sentence that states precisely what has
been proven. In any case, it is usually good practice to use some “end of proof symbol” such as .

14. Keep it simple. It is often difficult to understand a mathematical argument no matter how well it is written. Do not let your
writing help make it more difficult for the reader. Use simple, declarative sentences and short paragraphs, each with a simple
point.

15. Write a first draft of your proof and then revise it. Remember that a proof is written so that readers are able to read and
understand the reasoning in the proof. Be clear and concise. Include details but do not ramble. Do not be satisfied with the first
draft of a proof. Read it over and refine it. Just like any worthwhile activity, learning to write mathematics well takes practice
and hard work. This can be frustrating. Everyone can be sure that there will be some proofs that are difficult to construct, but
remember that proofs are a very important part of mathematics. So work hard and have fun.

Appendix A: Guidelines for Writing Mathematical Proofs by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source:
https://scholarworks.gvsu.edu/books/7.
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Appendix B: Answers for the Progress Checks
Section 1.1

Progress Check 1.2

1. This proposition is false. A counterexample is  and . For these values,  and .
2. This proposition is true, as we can see by using  and . We could also use  and . There are many other possible choices for 

 and .
3. This proposition appears to be true. Anytime we use an example where  is an even integer, the number  is an even integer. However, we cannot

claim that this is true based on examples since we cannot list all of the examples where  is an even integer.
4. This proposition appears to be true. Anytime we use an example where  and  are both integers, the number  is an odd integer. However, we

cannot claim that this is true based on examples since we cannot list all of the examples where both x and y are odd integers.

Progress Check 1.4

1. (a) This does not mean the conditional statement is false since when , the hypothesis is false, and the only time a conditional statement is
false is when the hypothesis is true and the conclusion is false. 
(b) This does not mean the conditional statement is true since we have not checked all positive real numbers, only the one where . 
(c) All examples should indicate that the conditional statement is true.

2. The number ( ) will be a prime number for all examples of \(n\) that are less than 41. However, when , we get 

 
So in the case where , the hypothesis is true (41 is a positive integer) and the conclusion is false (  is not prime). Therefore, 41 is a
counterexample that shows the conditional statement is false. There are other counterexamples (such as , , and ), but only one
counterexample is needed to prove that the statement is false.

Progress Check 1.5

1. We can conclude that this function is continuous at 0.
2. We can make no conclusion about this function from the theorem.
3. We can make no conclusion about this function from the theorem.
4. We can conclude that this function is not differentiable at 0.

Progress Check 1.7

1. The set of rational numbers is closed under addition since .

2. The set of integers is not closed under division. For example,  is not an integer.

3. The set of rational numbers is closed under subtraction since .

Section 1.2

Progress Check 1.10

All examples should indicate the proposition is true. Following is a proof.

Proof. We assume that  is an odd integer and will prove that ( ). Since  is an odd integer, there exists an integer  such that 
. Substituting this into the expression ( ) and using algebra, we obtain

Progress Check 1.11

Proof. We let  be a real number and assume that , , and  are the lengths of the three sides of a right triangle. We will use the
Pythagorean Theorem to prove that . Since the hypotenuse is the longest of the three sides, the Pythagorean Theorem implies that 

. We will now use algebra to rewrite both sides of this equation as follows:

The last equation is a quadratic equation. To solve for , we rewrite the equation in standard form and then factor the left side. This gives

a = 2 b = 1 (a+b = 9)2 + = 5a2 b2

x = 3 y = 7 x = −2 y = 9
x y

x x2

x

x y x ⋅ y

x = −3

x = 4

n2 −n+41 n = 41

−n+41n2

−n+41n2

=

=

−41 +41412

412
(Appendix B.1)

n = 41 412

n = 42 n = 45 n = 50

+ =
a

b

c

d

ad+bc

bd
2

3

− =
a

b

c

d

ad−bc

bd

m 3 +4m+6m2 m k

mD = 2k+1 3 +4m+6m2

3 +4m+6m2 =

=

=

=

=

3(2k+1 +4(2k+1) +6)2

(12 +12k+3) +(8k+4) +6k2

12 +20k+13k2

12 +20k+12 +1k2

2(6 +10k+6) +1k2

m m m+1 m+2
m = 3

+(m+1 = (m+2m2 )2 )2

+( +2m+1)m2 m2

2 +2m+1m2

=

=

+4m+4m2

+4m+4m2

m
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The two solutions of this equation are  and . However, since  is the length of a side of a right triangle,  must be positive and we
conclude that . This proves that if , , and  are the lengths of the three sides of a right triangle, then .

Section 2.1

Progress Check 2.1

1. Whenever a quadrilateral is a square, it is a rectangle, or a quadrilateral is a rectangle whenever it is a square.
2. A quadrilateral is a square only if it is a rectangle.
3. Being a rectangle is necessary for a quadrilateral to be a square.
4. Being a square is sufficient for a quadrilateral to be a rectangle.

Progress Check 2.2

T T F F F F

T F T T F T

F T F T F T

F F F T T T

Statements (2) and (4) have the same truth table.

Progress Check 2.4

T F T F

F T T F

T T T T

T F T T

F T T T

F F F T

Section 2.2

Progress Check 2.7

1. Starting with the suggested equivalency, we obtain 

2. For this, let  be,“3 is a factor of ,” let  be, “is a factor of ,” and let  be, “3 is a factor of .” Then the stated proposition is written in the
form . Since this is logically equivalent to , if we prove that 
 
if 3 is a factor of  and 3 is not a factor of , then 3 is a factor of , then we have proven the original proposition.

Section 2.3

Progress Check 2.9

1. , , , , 
2. 

Progress Check 2.11

1. (a) Two values of  for which  is false are  and . 
(b) The set of all  for which  is true is the set {-2, -1, 0, 1, 2}.

−2m−3m2

(m−3)(m+1)

=

=

0

0

m = 3 m = −1 m m

m = 3 m m+1 m+2 m = 3

P Q P ∧ ┐Q ┐(P ∧ Q) ┐P ∧ ┐Q ┐P ∨ ┐Q

P ┐P P ∨ ┐P P ∧ ┐P

P Q P ∨ Q P → (P ∨ Q)

(P ∧ ┐Q) → R ≡

≡

≡

≡

┐(P ∧ ┐Q) ∨R

(┐P ∨ ┐(┐Q)) ∨R

┐P ∨ (Q∨R)

P → (Q∨R)

(Appendix B.2)

P a ⋅ b Q a R b

P → (Q∨R) (P ∧ ┐Q) → R

a ⋅ b a b

10 ∈ A 22 ∈ A 13 ∉ A 0 ∈ A −12 ∉ A

A = B,A ⊆ B,B ⊆ A,A ⊆ C,A ⊆ D,B ⊆ C,B ⊆ D

x P (x) x = 3 x = −4
x P (x)
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2. (a) Two examples for which  is false are:  and , , . 
(b) Two examples for which  is true are:  and .

Progress Check 2.13

1. The truth set is the set of all real numbers whose square is less than or equal to 9. The truth set is .
2. The truth set is the set of all integers whose square is less than or equal to 9. The truth set is {-3, -2, -1, 0, 1, 2, 3}.
3. The truth sets in Parts (1) and (2) equal are not equal. One purpose of this progress check is to show that the truth set of a predicate depends on the

predicate and on the universal set.

Progress Check 2.15

\(B = \{-2n\ |\ \text{  is a nonnegative integer\}.\)

Section 2.4

Progress Check 2.18

1.  For each real number , . 
  
 There exists a real number  such that .

2.  For each real number , sin (2 ) = 2(sin )(cos ). 
  (sin (2 )  2 (sin ) (cos )). 
 There exists a real number  such that sin (2 )  2 (sin ) (cos ).

3.  For each real number , . 
 . 
 There exists a real number  such that .

4.  There exists a rational number  such that . 
  
 For each rational number , .

5.  There exists a real number  such that . 
 
 For each real number , .

Progress Check 2.19

1. A counterexample is  since , and 21 is not prime.

2. A counterexample is  since  is positive and  and .

Progress Check 2.20

1. An integer  is a multiple of 3 provided that . 
4. An integer  is not a multiple of 3 provided that . 
5. An integer  is not a multiple of 3 provided that for every integer , .

Progress Check 2.21

.
There exist integers  and  such that .

Section 3.1

Progress Check 3.2

2. For each example in Part (1), the integer  divides the sum .
3. Conjecture: For all integers , , and  with , if  divides  and  divides , then  divides .
4. A Know-show table for a proof of the conjecture in Part (3).

Step Know Reason

 and Hypothesis

1 Definition of "divides"

2 Substituting for  and 

3 Distributive property

R(x, y, z) x = 1, y = 1, z = 1 x = 3 y = −1 z = 5
R(x, y, z) x = 3, y = 4, z = 5 x = 5, y = 12, z = 13

{x ∈ R |  ≤ 9} = {x ∈ R |  −3 ≤ x ≤ 3}x2

A = {4n−3 | n ∈ N} = {x ∈ N | x = 4n−3 for some natural number n}.

n

C = {(  | m ∈ N} = {(  | n is an odd natural number}.2
–

√ )2m−1 2
–

√ )n

D = {  | n is a nonnegative integer}.3n

∙ a a+0 = a

∙ (∃a ∈ R)(a+0 ≠ a).
∙ a a+0 ≠ a

∙ x x x x

∙ (∃x ∈ R) x ≠ x x

∙ x x ≠ x x

∙ x x+1 = xtan2 sec2

∙ (∃x ∈ R)( x+1 ≠ x)tan2 sec2

∙ x x+1 ≠ xtan2 sec2

∙ x −3x−7 = 0x2

∙ (∀x ∈ Q)( −3x−7 ≠ 0).x2

∙ x −3x−7 ≠ 0x2

∙ x +1 = 0x2

∙ (∀x ∈ R)( +1 ≠ 0).x2

∙ x +1 ≠ 0x2

n = 4 +4 +1 = 2142

x =
1

4

1

4
2( =

1

4
)2 1

8
≤

1

8

1

4

n ∃k ∈ Z)(n = 3k)
n ∀k ∈ Z)(n ≠ 3k)
n k n ≠ 3k

(∃x ∈ Z)(∃y ∈ Z)(x+y ≠ 0)
x y x+y ≠ 0

a b+c

a b c a ≠ 0 a b a c a b+c

P a | b a | c

P
(∃s ∈ Z)(b = a ⋅ s)

(∃t ∈ Z)(c = a ⋅ t)

P b+ c = as+ at b c

P b+ c = a(s+ t)
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1  is an integer  is closed under addition

Definition of "divides"

Step Show Reason

Progress Check 3.3

A counterexample for this statement will be values of a and b for which 5 divides  or 5 divides , and 5 does not divide . One counterexample
for the statement is  and . For these values, the hypothesis is true since 5 divides a and the conclusion is false since  and 5 does
not divide 26.

Progress Check 3.4

1. Some integers that are congruent to 5 modulo 8 are -11, -3, 5, 13, and 21.
2. \(\{x \in \mathbb{Z}\ |\ x \equiv 5\text{ (mod 8)\} = \{..., -19, -11, -3, 5, 13, 21, 29, ...\}\).
3. For example, -3 + 5 = 2, -11 + 29 = 18, 13 + 21 = 34.
4. If we subtract 2 from any of the sums obtained in Part (3), the result will be a multiple of 8. This means that the sum is congruent to 2 modulo 8. For

example, , , .

Progress Check 3.6

1. To prove that 8 divides , we can prove that there exists an integer  such that ( ).
2. Since 8 divides ( ) and ( ), there exist integers  and  such that  and .
3.  and .
4. .
5. Proof. Let a and b be integers and assume that  (mod 8) and  (mod 8). We will prove that  (mod 8\). Since 8 divides 

and , there exist integers  and  such that  and . We then see that 
\[\begin{array} {a + b - 2} &= & {(5 + 8k) + (5 + 8m) - 2] \\ {} &= & {8 + 8k + 8m} \\ {} &= & {8(1 + k + m)} \end{array}\] 
By the closure properties of the integers,  is an integer and so the last equation proves that 8 divides ( ) and hence, 

 (mod 8). This proves that if  (mod 8) and  (mod 8), then  (mod 8).

Section 3.2

Progress Check 3.8

1. For all real numbers  and , if , then  or .
2. For all real numbers  and , if  and , 
3. This gives 

 
We now use the associative property on the left side of this equation and simplify both sides of the equation to obtain 

 
Therefore,  and this completes the proof of a statement that is logically equivalent to the contrapositive. Hence, we have proved the
proposition.

Section 3.3

Progress Check 3.15

1. There exists a real number  such that  is irrational and  is rational.
2. There exists a real number  such that  is rational and  is rational.
3. There exist integers  and  such that 5 divides  and 5 does not divide  and 5 does not divide .

4. There exist real numbers  and  such that  and  and .

Progress Check 3.16

1. Some integers that are congruent to 2 modulo 4 are -6. -2, 2, 6, 10, and some integers that are congruent to 3 modulo 6 are: -9, -3, 3, 9, 15. There are
no integers that are in both of the lists.

2. For this proposition, it is reasonable to try a proof by contradiction since the conclusion is stated as a negation.

Q s+ t Z

Q a | (b+ c)

a b 5a+b

a = 5 b = 1 5a+b = 26

2 −2 = 0 18 −2 = 16 34 −2 = 32

(a+b−2) q a+b−2 = 8q
a−5 b−5 k m a−5 −8k b−5 = 8m

a = 5 +8k b = 5 +8m
a+b−2 = (5 +8k) +5 +8m) −2 = 8 +8k+8m = 8(1 +k+m)

a ≡ 5 b ≡ 5 (a+b) ≡ 2 (a−5)
(b−5) k m a−5 = 8k b−5 = 8m

(1 +k+m) a+b−2
(a+b) ≡ 2 a ≡ 5 b ≡ 5 (a+b) ≡ 2

a b ab = 0 a = 0 b = 0
a b ab = 0 a ≠ 0 b = 0

(ab) = ⋅ 0.
1

a

1

a
(Appendix B.3)

( ⋅ a)b
1

a

1 ⋅ b

b

=

=

=

0

0

0

(Appendix B.4)

b = 0

x x x−−√3

x x+ 2
–

√ (−x+ )2
–

√
a b ab a b

a b a > 0 b > 0 + =
2

a

2

b

4

a+b
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3. Proof. We will use a proof by contradiction. Let  and assume that  (mod 4) and that  (mod 6). Since  (mod 4), we know that
4 divides . Hence, there exists an integer  such that 

We can also use the assumption that  (mod 6) to conclude that 6 divides  and that there exists an integer  such that 

 
If we now solve equations (B.5) and (B.6) for n and set the two expressions equal to each other, we obtain 

 
However, this equation can be rewritten as 

 
Since  is an integer and  is an integer, this last equation is a contradiction since the left side is an even integer and the right side is an
odd integer. Hence, we have proven that if  (mod 4), then  (mod 6).

Progress Check 3.18

1. 
2. Using algebra to rewrite the last equation, we obtain 

 
If we divide both sides of this equation by 2, we see that  or  

 
However, the left side of the last equation is an odd integer and the right side is an even integer. This is a contradiction, and so we have proved that
for all integers  and , if  and  are odd integers, then there does not exist an integer  such that .

Section 3.4

Progress Check 3.21

Proposition. For each integer ,  is an odd integer.

Proof. Let  be an integer. We will prove that  is an odd integer by examining the case where  is even and the case where  is odd.

In the case where  is even, there exists an integer m such that . So in this case,

Since ( ) is an integer, the last equation shows that if  is even, then  is odd.

In the case where  is odd, there exists an integer  such that . So in this case,

Since ( ) is an integer, the last equation shows that if  is odd, then  is odd. Hence, by using these two cases, we have shown
that for each integer ,  is an odd integer.

Progress Check 3.24

1. |4.3| = 4.3 and |- | = 
2. (a)  or  

(b)  or . So  or . 

(c)  or . So  or . 

(d)  or . So  or .

Section 3.5

n ∈ Z n ≡ 2 n ≡ 3 n ≡ 2
n−2 k

n−2 = 4k. (Appendix B.5)

n ≡ 3 n−3 m

n−3 = 6m. (Appendix B.6)

4k+2 = 6m+3. (Appendix B.7)

2(2k+1) = 2(3m+1) +1. (Appendix B.8)

2k+1 3m+1
n ≡ 2 n ≡ 3

+ = (2m+1 +(2n+1 = 2(2 +2m+2 +2n+1).x2 y2 )2 )2 m2 n2

4 +4m+4 +4n+2 = 4 .m2 n2 k2 (Appendix B.9)

2 +2m+2 +2n+1 = 2m2 n2 k2

2( +m+ +n) +1 = 2 .m2 n2 k2 (Appendix B.10)

x y x y z + =x2 y2 z2

n −5n+7n2

n −5n+7n2 n n

n n = 2m

−5n+7n2 =

=

=

(2 ) −5(2m) +7m2

4 −10m+6 +1m2

2(2 −5m+3) +1.m2

2 −5m+3m2 n −5n+7n2

n m n = 2m+1

−5n+7n2 =

=

=

(2m+1 −5(2m+1) +7)2

4 −14m+3m2

2(2 −7m+1) +1.m2

2 −7m+1m2 n −5n+7n2

n −5n+7n2

π π

t = 12 t = −12
t+3 = 5 t+3 = −5 t = 2 t = −8

t−4 =
1

5
t−4 = −

1

5
t =

21

5
t =

19

5

3t−4 = 8 3t−4 = −8 t = 4 t = −
4

3

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86198?pdf


Appendix B.6 https://math.libretexts.org/@go/page/86198

Progress Check 3.26

1. (a) The possible remainders are 0, 1, 2, and 3. 
(b) The possible remainders are 0, 1, 2, 3, 4, 5, 6, 7, and 8. 
 
(a)  
(b)  
(c)  
(d)  
(e)  
(f) 

Progress Check 3.29

Proof. Let  be a natural number and let  and  be integers.We assume that  (mod ) and  (mod ) and will prove that 
 (mod ). Since  (mod ) and  (mod ),  divides  and  and so there exist integers  and  such that 

 and . We can then write  and  and obtain

By subtracting  from both sides of the last equation, we see that

Since  is an integer, this proves that  divides , and hence, we can conclude that  (mod ).

Progress Check 3.34

Case 2. (  (mod 5)). In this case, we use Theorem 3.28 to conclude that

 (mod 5) or  (mod 5).

This proves that if  (mod 5), then  (mod 5).

Case 3. (  (mod 5)). In this case, we use Theorem 3.28 to conclude that

 (mod 5) or  (mod 5).

We also know that  (mod 5). So we have  (mod 5) and  (mod 5), and we can now use the transitive property of congruence (Theorem
3.30) to conclude that  (mod 5). This proves that if  (mod 5), then  (mod 5).

Section 4.1

Progress Check 4.1

1. It is not possible to tell if  and .
2. True.
3. True. The contrapositive is, "If , then ," which is true.
4. True.
5. False. If , then .
6. True, since "k \notin t\) OR " is logically equivalent to "If , then ."
7. It is not possible to tell if this is true. It is the converse of the conditional statement, “For each integer , if , then ."
8. True. This is the contrapositive of the conditional statement, “For each integer , if , then ."

Progress Check 4.3

Proof. Let  be the predicate, " ." For basis step, notice that the equation  shows that  is true.

Now let  be a natural number an assume that  is true. That is, assume that

We now need to prove that  is true or that

By adding  to both sides of equation (B.11), we see that

17 = 5 ⋅ 3 +2
−17 = (−6) ⋅ 3 +1
73 = 10 ⋅ 7 +3
−73 = (−11) ⋅ 7 +4
436 = 16 ⋅ 27 +4
539 = 4 ⋅ 110 +99

n a, b, c d a ≡ b n c ≡ d n

(a+c) ≡ (b+d) n a ≡ b n c ≡ d n n a−b c−d k q

a−b = nk c−d = nq a = b+nk c = d+nq

.
a+c =

=

(b+nk) +(d+nq)

(b+d) +n(k+q)

(b+d)

(a+c) −(b+d) = n(k+q).

(k+q) n (a+c) −(b+d) (a+c) ≡ (b+d) n

a ≡ 2

≡a2 22 ≡ 4a2

a ≡ 2 ≡ 4a2

a ≡ 3

≡a2 32 ≡ 9a2

9 ≡ 4 ≡ 9a2 9 ≡ 4
≡ 4a2 a ≡ 3 ≡ 4a2

1 ∈ T 5 ∈ T

2 ∈ T 5 ∈ T

k ∈ T k+1 ∈ T

k+1 ∈ T k ∈ T k+1 ∈ T

k k ∈ T k+1 ∈ T

k k ∈ T k+1 ∈ T

P (n) 1 +2 +3 +⋅ ⋅ ⋅ +n =
n(n+1)

2
1 =

1(1 +1)

2
P (1)

k P (k)

1 +2 +3 +⋅ ⋅ ⋅ +k = .
k(k+1)

2
(Appendix B.11)

P (k+1)

1 +2 +3 +⋅ ⋅ ⋅ +k+(k+1) = .
(k+1)(k+2)

2
(Appendix B.12)

(k+1)
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By comparing the last equation to equation (2), we see that we have proved that if  is true, then  is true, and the inductive step has been

established. Hence, by the Principle of Mathematical Induction, we have proved that for each integer , .

Progress Check 4.5

For the inductive step, let  be a natural number and assume that  is true. That is, assume that  (mod 4).

1. To prove that  is true, we must prove  (mod 4).
2. Since , we multiply both sides of the congruence  (mod 4) by 5 and obtain 

3. Since  (mod 4) and we know that  (mod 4), we can use the transitive property of congruence to obtain  (mod 4). This proves
that if  is true, then  is true, and hence, by the Principle of Mathematical Induction, we have proved that for each natural number , 

 (mod 4).

Section 4.2

Progress Check 4.8

1. For each natural number , if , then .
2. For each natural number , if , then .

3. For each natural number , if , then .

Progress Check 4.10

Construct the following table and use it to answer the first two questions. The table shows that , , and  are true. We can also see that 
, , and  are false. It also appears that if  and , then  is true.

0 1 2 3 4 0 1 2 0 1 1

0 0 0 0 0 1 1 1 2 2 3

0 3 6 9 12 5 8 11 10 13 18

The following proposition provides answers for Problems (3) and (4).

Proposition 4.11. For all natural numbers  with , there exist non-negative integers  and  such that .

Proof. (by mathematical induction) Let , and for each natural number , let  be, "there exist  such that 
."

Basis Step: Using the table above, we see that , , and  are true.

Inductive Step: Let  with . assume that , , ...,  are true. Now, notice that

Since , we can conclude that  and hence  is true. Therefore, there exist non-negative integers  and  such that 
. Using this equation, we see that

Hence, we can conclude that  is true. This proves that if , , ...,  are true, then  is true. Hence, by the Second Principle
of Mathematical Induction, for all natural numbers  with , there exist nonnegative integers  and  such that .

Section 4.3

Progress Check 4.12

Proof. We will use a proof by induction. For each natural number , we let  be,

 is an even natural number.

Since , we see that  is true and this proves the basis step.

1 +2 +3 +⋅ ⋅ ⋅ +k+(k+1) =

=

=

=

+(k+1)
k(k+1)

2
k(k+1) +2(k+1)

2
+3k+2k2

2

.
(k+1)(k+2)

2

P (k) P (k+1)

n 1 +2 +3 +⋅ ⋅ ⋅ +n =
n(n+1)

2

k P (k) ≡ 15k

P (k+1) ≡ 15k+1

= 5 ⋅5k+1 5k ≡ 15k

5 ⋅ ≡ 5 ⋅ 1 (mod 4) or         ≡ 5 (mod 4).5k 5k+1 (Appendix B.13)

≡ 55k+1 5 ≡ 1 ≡ 15k+1

P (k) P (k+1) n

≡ 15n

n n ≥ 3 > 1 +3n 2n

n n ≥ 6 > (n+12n )2

n n ≥ 6 (1 + > 2.5
1

n
)n

P (3) P (5) P (6)
P (2) P (4) P (7) n ∈ N n ≥ 8 P (n)

x

y

3x +5y

n n ≥ 8 x y n = 3x+5y

= {x ∈ Z | x ≥ 0}Z∗ n P (n) x, y ∈ Z∗

n = 3x+5y

P (8) P (9) P (10)

k ∈ N k ≥ 13 P (8) P (9) P (k)

k+1 = 3 +(k−2).

k ≥ 10 k−2 ≥ 8 P (k−2) u v

k−2 = (3u+5v)

=

=

3 +(3u+5v)

3(1 +u) +5v.

P (k+1) P (8) P (9) P (k) P (k+1)
n n ≥ 8 x y n = 3x+5y

n P (n)

f3n

= 2f3 P (1)
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For the inductive step, we let  be a natural number and assume that  is true. That is, assume that  is an even natural number. This means that
there exists an integer m such that

We need to prove that  is true or that  is even. Notice that  and, hence, \(f_{3(k + 1) = f_{3k + 3}\). We can now use
the recursion formula for the Fibonacci numbers to conclude that

.

Using the recursion formula again, we get . Putting this all together, we see that

We now substitute the expression for  in equation (B.14) into equation (B.15). This gives

This preceding equation shows that  is even. Hence it has been proved that if  is true, then  is true and the inductive step has been
established. By the Principle of Mathematical Induction, this proves that for each natural number , the Fibonacci number  is an even natural
number.

Section 5.1

Progress Check 5.3

Progress Check 5.4

1.  
Using the standard Venn diagram for three sets shown above: 
 
(a) For the set , region 5 is shaded. 
(b) For the set , the regions 2, 4, 5, 6, 7 are shaded. 
(c) For the set , the regions 2, 3, 5, 6, 7, 8 are shaded. 
(d) For the set , the regions 3, 6, 7 are shaded.

2. 

3. 

Section 5.2

Progress Check 5.8

 and 

1. The set  is a subset of . To prove this, we let . Then there exists an integer  such that , which can be written as 

k P (k) f3k

= 2m.f3k (Appendix B.14)

P (k+1) f3(k+1) 3(k+1) = 3k+3

= +f3k+3 f3k+2 f3k+1

= +f3k+2 f3k+1 f3k

f3(k+1) =

=

=

=

f3k+3

+f3k+2 f3k+1

( + ) +f3k+1 f3k f3k+1

2 + .f3k+1 f3k

(Appendix B.15)

f3k

f3(k+1)

f3(k+1)

=

=

2 +2mf3k+1

2( +m)f3k+1
(Appendix B.16)

f3(k+1) P (k) P (k+1)

n f3n

(A∩B) ∩C

(A∩B) ∪C

( ∪B)Ac

( ∩ (B∪C))Ac

A = {x ∈ Z | x is multiple of 9} B = {x ∈ Z | x is a multiple of 3}.

A B x ∈ A m x = 9m

x = 3(3m). (Appendix B.17)
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Since , the last equation proves that  is a multiple of 3 and so . Therefore, .

2. The set  is not equal to the set . We note that  but . Therefore,  and, hence, .

Progress Check 5.9

Step Know Reason

Hypothesis

1 Let . Choose an arbitrary element of .

2 If , then . Definition of "subset"

3 If , then . Contrapositive

4 If , then . Step 3 and definition of “complement”

2 The element  is in . Step 1 and 4

1 Every element of  is an element of . The choose-an-element method with Steps 1 and 2.

Definition of "subset"

Progress Check 5.12

Proof. Let  and  be subsets of some universal set. We will prove that  by proving that each set is a subset of the other set. We will
first prove that . Let . We then know that  and . However,  implies that . Hence,  and 

, which means that . This proves that .

To prove that , we let . This means that  and , and hence,  and . Therefore,  and this
proves that . Since we have proved that each set is a subset of the other set, we have proved that .

Progress Check 5.15

Proof. Let  and . We will use a proof by contradiction to prove that . So we
assume that  and let . We can then conclude that  and that  (mod 8). This means that there exist integers 
and  such that

 and .

By equating these two expressions for , we obtain , and this equation can be rewritten as . This is a contradiction
since 1 is an odd integer and  is an even integer. We have therefore proved that .

Section 5.3

Progress Check 5.19

1. In our standard configuration for a Venn diagram with three sets, regions 1, 2, 4, 5, and 6 are the shaded regions for both  and 
.

2. Based on the Venn diagrams in Part (1), it appears that .

Progress Check 5.21

1. Using our standard configuration for a Venn diagram with three sets, regions 1, 2, and 3 are the regions that are shaded for both  and 
.

2. 

Section 5.4

Progress Check 5.23

1. Let , , , and . 
 
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  

3m ∈ Z x x ∈ B A ⊆ B

A B 3 ∈ B 3 ∉ A B ⊈ A A ≠ B

P A ⊆ B

P x ∈ Bc Bc

P x ∈ A x ∈ B

P x ∉ B x ∉ A

P x ∈ Bc x ∈ Ac P

Q x Ac P P

Q Bc Ac P Q

Q ⊆Bc Ac

A B A−B = A∩Bc

A−B ⊆ A∩Bc x ∈ A−B x ∈ A x ∉ B x ∉ B x ∈ Bc x ∈ A

x ∈ Bc x ∈ A∩Bc A−B ⊆ A∩Bc

A∩ ⊆ A−BBc y ∈ A∩Bc y ∈ A y ∈ Bc y ∈ A y ∉ B y ∈ A−B

A∩ ⊆ A−BBc A−B = A∩Bc

A = {x ∈ Z | x ≡ 3 (mod 12)} B = {y ∈ Z | y ≡ 2 (mod 8)} A∩B = ∅
A∩B ≠ ∅ x ∈ A∩B x ≡ 3 (mod 12) x ≡ 2 m

n

x = 3 +12m x = 2 +8n

x 3 +12m = 2 +8n 1 = 8n−12m
8n−12m A∩B = ∅

A∪ (B∩C)
(A∪B) ∩ (A∪C)

A∪ (B∩C) = (A∪B) ∩ (A∪C)

(A∪B) −C

(A−C) ∪ (B−C)
(A∪B) −C =

=

=

=

=

(A∪B) ∩C c

∩ (A∪B)C c

( ∩A) ∪ ( ∩B)C c C c

(A∩ ) ∪ (B∩ )C c C c

(A−C) ∪ (B−C)

(Theorem 5.20)

(Commutative Property)

(Distributive Property)

(Commutative Property)

(Theorem 5.20)

A = {1, 2, 3} T = {1, 2} B = {a, b} C = {a, c}

A×B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}
T ×B = {(1, a), (1, b), (2, a), (2, b)}
A×C = {(1, a), (1, c), (2, a), (2, c), (3, a), (3, c)}
A×(B∩C) = {(1, a), (2, a), (3, a)}
(A×B) ∩ (A×C) = {(1, a), (2, a), (3, a)}
A×(B∪C) = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3, b), (3, c)}
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(g)  
(h)  
(i)  
(j) 

2. 

Progress Check 5.24

1. (a)  
(b)  
(c)  
(d)  
(e)  
(f)  
(g)  
(h)  
(i)  
(j) 

2.  
 
 

Section 5.5

Progress Check 5.26

1. 
2. 
3. 
4. 
5. 
6. 

Progress Check 5.27

1. , , , .
2. The statement is false. For example,  and .
3. The statement is false. For example,  and .

Progress Check 5.29

1. Since , .
2. .
3. Since , .
4. .

Progress Check 5.32

All three families of sets ( , , and  are disjoint families of sets. One the family  is a pairwise disjoint family of sets.

Section 6.1

Progress Check 6.1

1.  

2. 
3. {-1, 6}
4. {-1, 6}

5. 

6. 

Progress Check 6.2

1. (a) The domain of the function  is the set of all people. 
(b) A codomain for the function  is the set of all days in a leap year. 

(A×B) ∪ (A×C) = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3, b), (3, c)}
A×(B−C) = {(1, b), (2, b), (3, b)}
(A×B) −(A×C) = {(1, b), (2, b), (3, b)}
B×A = {(a, 1), (b, 1), (a, 2), (b, 2), (a, 3), (b, 3)}

T ×B ⊆ A×B

A×(B∩C) = (A×B) ∩ (A×C)

A×(B∪C) = (A×B) ∪ (A×C)

A×(B−C) = (A×B) −(A×C)

A×B = {(x, y) ∈ R ×R | 0 ≤ x ≤ 2 and 2 ≤ y < 4}
T ×B = {(x, y) ∈ R ×R | 1 < x < 2 and 2 ≤ y < 4}
A×C = {(x, y) ∈ R ×R | 0 ≤ x ≤ 2 and 3 < y ≤ 6}
A×(B∩C) = {(x, y) ∈ R ×R | 0 ≤ x ≤ 2 and 3 < y < 4}
(A×B) ∩ (A×C) = {(x, y) ∈ R ×R | 0 ≤ x ≤ 2 and 3 < y < 4}
A×(B∪C) = {(x, y) ∈ R ×R | 0 ≤ x ≤ 2 and 2 ≤ y ≤ 5}
(A×B) ∪ (A×C) = {(x, y) ∈ R ×R | 0 ≤ x ≤ 2 and 2 ≤ y ≤ 5}
A×(B−C) = {(x, y) ∈ R ×R | 0 ≤ x ≤ 2 and 2 ≤ y ≤ 3}
(A×B) −(A×C) = {(x, y) ∈ R ×R | 0 ≤ x ≤ 2 and 2 ≤ y ≤ 3}
B×A = {(x, y) ∈ R ×R | 2 ≤ x < 4 and 0 ≤ y ≤ 2}

T ×B ⊆ A×B

A×(B∩C) = (A×C) ∩ (A×C)
A×(B∪C) = (A×C) ∪ (A×C)
A×(B−C) = (A×C) −(A×C)

= {1, 2, 3, 4, 5, 6, 9, 16, 25, 36}⋃6
j=1 Aj

= {1}⋂6
j=1 Aj

= {3, 4, 5, 6, 9, 16, 25, 36}⋃6
j=3 Aj

= {1}⋂
6
j=3 Aj

= N⋃∞
j=1 Aj

= {1}⋂
∞
j=1 Aj

= {7, 14}A1 = {10, 12}A2 = {10, 12}A3 = {8, 14}A4

2 ≠ 3 =A2 A3

1 ≠ −1 =B1 B−1

= (−1, ∞)⋃α∈R+ Aα ( = (−∞, 1]⋃α∈R+ Aα)c

= (−∞, −1]⋂α∈R+ Ac
α

= (−1, 0]⋂α∈R+ Aα ( = (−∞, 1] ∪ (0, ∞)⋂α∈R+ Aα)c

= (−∞, −1] ∪ (0, ∞)⋃α∈R+ Ac
α

A B C A

f(−3) = 24
f( ) = 8 −58

–
√ 8

–
√

g(2) = −6, g(−2) = 14

{ , }
5 + 33

−−
√

2

5 − 33
−−

√

2
∅

f

f

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86198?pdf


Appendix B.11 https://math.libretexts.org/@go/page/86198

(c) This means that the range of the function  is equal to its codomain.
2. (a) The domain of the function  is the set of natural numbers. 

(b) A codomain for the function  is the set of natural numbers. 
(c) This means that the range of  is not equal to the set o natural numbers.

Progress Check 6.3

1.  and .
2. Values of  for which  are approximately -2.8, -1.9, 0.3, 1.2, and 3.5.
3. The range of  appears to be the closed interval [-3.2, 3.2] or .

Progress Check 6.4

Only the arrow diagram in Figure (a) can be used to represent a function from  to . The range of this function is the set .

Section 6.2

Progress Check 6.5

1. , , , , .
2. , , , , .

Progress Check 6.6

 and 

Progress Check 6.7

1. 3.5
2. 4.02
3. \(\dfrac{\pi + \sqrt{2}{4}\)
4. The process of finding the average of a finite set of real numbers can be thought of as a function from  to . So the domain is , the

codomain is , and we can define a function avg:  as follows: If  and , then ave

.

Progress Check 6.8

1. The sixth terms is  and the tenth term is .

2. The sixth terms is  and the tenth term is .

3. The sixth terms is 1 and the tenth term is 1.

Progress Check 6.9

1. ; ; ; .
2. 
3. 

Section 6.3

Progress Check 6.10

The functions , , and  are injections. The functions  and  are not injections.

Progress Check 6.11

The functions  and  are surjections. The functions  and  are not surjections.

Progress Check 6.15

The function  is an injection but not a surjection. To see that it is an injection, let  and assume that . This implies that .
Now use the natural logarithm function to prove that . Since  for each real number , there is no  such that . So  is not
a surjection.

The function  is an injection and is a surjection. The proof that g is an injection is basically the same as the proof that  is an injection. To prove that g
is a surjection, let . To construct the real number a such that g.a/ D b, solve the equation  for . The solution is . It can then be
verified that .

Progress Check 6.16

1. There are several ordered pairs  such that . For example, , , and .
2. For each , .
3. Part (1) implies that the function  is not an injection. Part (2) implies that the function  is a surjection since for each , ( ) is in the domain

of  and .

f

s

s

s

f(−1) ≈ −3 f(2) ≈ −2.5
x f(x) = 2

f {y ∈ R |  −3.2 ≤ y ≤ 3.2}

A B {a, b}

f(0) = 0 f(1) = 1 f(2) = 1 f(3) = 1 f(4) = 1
g(0) = 0 g(1) = 1 g(2) = 2 g(3) = 3 g(4) = 4

≠ fIZ5 = gIZ5

F (R) R F (R)
R F (R) → R A ∈ F (R) A = { , , . . . , }a1 a2 an

(A) =
+ +⋅ ⋅ ⋅a1 a2 an

n

1

18

1

30
1

36

1

100

g(0, 3) = −3 g(3, −2) = 11 g(−3, −2) = 11 g(7, −1) = 50
{(m,n) ∈ Z ×Z | n = }m2

{(m,n) ∈ Z ×Z | n = −5}m2

k F s f h

f s k F

f a, b ∈ R f(a) = f(b) =e−a e−b

a = b > 0e−x x x ∈ R f(x) = −1 f

g f

b ∈ R+ = be−a a a = −lnb
g(a) = b

(a, b) ∈ R ×R g(a, b) = 2 g(0, 2) = 2 g(−1, 4) = 2 g(2, −2) = 2
z ∈ R g(0, z) = z

g g z ∈ R 0, z
g g(0, z) = z
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Section 6.4

Progress Check 6.17

The arrow diagram for  should show the following:

The arrow diagram for  should show the following:

Progress Check 6.18

1. , where  by , and  by .
2. , where  by , and  by .
3. , where  by , and  by .

4. , where  by , and  by .

Progress Check 6.19

For the examples that are constructed:

1.  should be an injection.
2.  should be a surjection.
3.  should be a bijection.

Section 6.5

Progress Check 6.23

Neither set can be used to define a function.

1. The set  does not satisfy the first condition of Theorem 6.22. 
2. The set  does not satisfy the second condition of Theorem 6.22.

Progress Check 6.24

2.  
 

3. (a)  is a function from  to . 
(b)  is not a function from  to  since  and . 
(c)  is not a function from  to  since  and .

5. In order for the inverse of a function  to be a function from  to , the function  must be a bijection.

Section 6.6

Progress Check 6.30

1. 
2. 
3. 
4. 

Progress Check 6.32

1.     
   

2. (a)   
 

3. (a)   
So in this case, . 
(b)   

g∘ f : A → B

(g∘ f)(a)

(g∘ f)(c)

=

=

=

=

g(f(a))

g(2) = 1

g(f(c))

g(1) = 3

(g∘ f)(b)

(g∘ f)(d)

=

=

=

=

g(f(b))

g(3) = 2

g(f(d))

g(2) = 1

g∘ g : B → B

(g∘ f)(1)

(g∘ g)(3)

=

=

=

=

g(g(1))

g(3) = 2

g(g(3))

g(2) = 1

(g∘ g)(2) =

=

g(g(2))

g(1) = 3

g(f(d))

F = g∘ f f : R → R f(x) = +3x2 g : R → R g(x) = x3

G= h ∘ f f : R → R+ f(x) = +3x2 h : → RR+ h(x) = Inx
f = g∘ k k : R → R k(x) = −3x2 g : R → R g(x) = |x|

g = h ∘ f f : R → R f(x) =
2x−3

+1x2
h : R → R h(x) = cosx

g∘ f
g∘ f
g∘ f

F

G

= {(r, a), (p, b), (q, c)}f−1

= {(p, a), (q, b), (r, c), (q, d)}h−1

= {(p, a), (q, b), (p, c)}g−1

f−1 C A

g−1 C A (p, a) ∈ g−1 (p, c) ∈ g−1

h−1 C B (q, b) ∈ h−1 (q, d) ∈ h−1

F : S → T T S F

f(A) = {s, t}
f(B) = {f(x) | x ∈ b} = {x}

(C) = {x ∈ S | f(x) ∈ C} = {a, b, c, d}f−1

(D) = {x ∈ S | f(x) ∈ D} = {a, d}f−1

f(0) = 2 f(2) = 6 f(4) = 2 f(6) = 6
f(1) = 3 f(3) = 3 f(5) = 3 f(7) = 3

f(A) = {2, 3, 6} (C) = {0, 1, 3, 4, 5, 7}f−1

f(B) = {2, 3, 6} (D) = {1, 3, 5, 7}f−1

f(A) ∩ f(B) = {2} f(A) ∩ f(B) = {2, 3, 6}
f(A∩B) ⊆ f(A) ∩ f(B)

f(A) ∪ f(B) = {2, 3, 6} f(A∪B) = {2, 3, 6}
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So in this case, . 
(c) . So in this case, . 
(d) . So in this case, .

4. . Hence, . So in this case, .

Section 7.1

Progress Check 7.2

1. (a)  is a relation on  since  is a subset of . 
(b) Solve the equation . This gives . 
Solve the equation . There are no real number solutions. So there does not exist an  such that . 
(c) dom  range  
(d) The graph is a circle of radius 8 whose center is at the origin.

2. (a)  is a relation on  since  is a subset of . 
(b) If we assume that each state except Hawaii has a land border in common with itself, then the domain and range of  are the set of all states
except Hawaii. If we do not make this assumption, then the domain and range are the set of all states except Hawaii and Alaska. 
(c) The first statement is true. If x has a land border with y, then y has a land border with x. The second statement is false. Following is a
counterexample: (Michigan, Indiana) , (Indiana, Illinois) , but (Michigan, Illinois) .

Progress Check 7.3

1. The domain of the divides relation is the set of all nonzero integers. The range of the divides relation is the set of all integers.
2. (a) This statement is true since for each , . 

(b) This statement is false: For example, 2 divides 4 but 4 does not divide 2. 
(c) This statement is true by Theorem 3.1 on page 88.

Progress Check 7.4

1. Each element in the set  is an ordered pair of the form  where .
2. (a)  

(b)  
(c)  
(d) 

3. The graph of  is a parabola with vertex at the origin that is concave up.

Progress Check 7.5

The directed graph for Part (a) is on the left and the directed graph for Part (b) is on the right.

Section 7.2

Progress Check 7.7

The relation :

Is not reflexive since  and .
Is symmetric.
Is not transitive. For example, , , but .

Progress Check 7.9

Proof that the relation  is symmetric: Let  and assume that . This means that . Therefore,  and this means
that , and hence, .
Proof that the relation  is transitive: Let and assume that  and . This means that  and that . Therefore, 

 and this means that , and hence, .

Progress Check 7.11

The relation  is reflexive on  since for all , card(  )= card( ).

f(A∩B) ⊆ f(A∪B)
(C) ∩ (D) = (C ∩D) = {1, 3, 5, 7}f−1 f−1 f−1 (C ∩D) = (C) ∩ (D)f−1 f−1 f−1

(C) ∪ (D) = (C ∪D) = {0, 1, 3, 4, 5, 7}f−1 f−1 f−1 (C ∪D) = (C) ∪ (D)f−1 f−1 f−1

f(A) = {2, 3, 6} (f(A)) = {0, 1, 2, 3, 4, 5, 6, 7}f−1 A ⊆ (f(A))f−1

T R S R ×R
+ = 64x2 42 x = ± 84

–
√

+ = 64x2 92 x ∈ R (x, 9) ∈ S

(T ) = {x ∈ R |  −8 ≤ x ≤ 8} (T ) = {y ∈ R |  −8 ≤ y ≤ 8}

R A R A×A

R

∈ R ∈ R ∉ R

a ∈ Z a = a ⋅ 1

F (x, y) y = x2

A = {−2, 2}
B = {− , }10

−−
√ 10

−−
√

C = {25}
D = {9}

y = x2

R

(c, c) ∉ R (d, d) ∉ R

(c, a) ∈ R (a, c) ∈ R (c, c) ∉ R

∼ a, b ∈ Q a ∼ b a−b ∈ Z −(a−b) ∈ Z
b−a ∈ Z b ∼ a

∼ a, b, c ∈ Q a ∼ b b ∼ c a−b ∈ Z b−c ∈ Z
((a−b) +(b−c)) ∈ Z a−c ∈ Z a ∼ c

≈ P(U) A ∈ P(U) A A
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The relation  is symmetric since for all , if card( ) = card( ), then using the fact that equality on  is symmetric, we conclude that
card( ) = card( ). That is, if  has the same number of elements as , then  has the same number of elements as .

The relation  is transitive since for all , if card( ) = card( ) and card( ) = card( ), then using the fact that equality on  is
transitive, we conclude that card( ) = card( ). That is, if  and  have the same number of elements and  and  have the same number of elements,
then  and  have the same number of elements.

Therefore, the relation  is an equivalence relation on .

Section 7.3

Progress Check 7.12

The distinct equivalence classes for the relation  are:  and .

Progress Check 7.13

The distinct congruence classes for congruence modulo 4 are

[0] = {..., -12, -8, -4, 0, 4, 8, 12, ...} [1] = {..., -11, -7, -3, 1, 5, 9, 13, ...} 
[2] = {..., -10, -6, -2, 2, 6, 10, 14, ...} [1] = {..., -9, -5, -1, 3, 7, 11, 15, ...}

Progress Check 7.15

1. [5] = [-5] = {-5, 5} [ ] = [- ] = {- , }  
[10] = [-10] = {-10, 10}

2. [0] = {0}
3. [ ] = {- , }

Section 7.4

Progress Check 7.2

1. 

2. 
3. For all , if  and , then .
4. The statement in (a) is true and the statement in (b) is false. For example, in , .

Section 8.1

Progress Check 8.2

1. The remainder is 8.
2. gcd(12, 8) = 4
3.  and gcd( , ) = gcd(8, 4) = 4.

Progress Check 8.4

1. Original Pair Equation from Division Algorithm New Pair

(180, 126) (126, 54)

(126, 54) (54, 18)

(54, 18)  

Consequently, gcd(180, 126) = 18.

2. Original Pair Equation from Division Algorithm New Pair

(4208, 288) (288, 176)

(288, 176) (176, 112)

(176, 112) (112, 64)

(112, 64) (64, 48)

(64, 48) (48, 16)

≈ A,B ∈ P(U) A B Z
B A A B B A

≈ A,B,C ∈ P(U) A B B C Z
A C A B B C

A C

≈ P(U)

R {a, b, e} {c, d}

π π π π

a a a

a, b ∈ Z a ≠ 0 b ≠ 0 ab ≠ 0
Z6 [2] ⊙[3] = [0]

12 = 8 ⋅ 1 +4 r r2

180 = 126 ⋅ 1 + 54

126 = 54 ⋅ 2 + 18

54 = 18 ⋅ 3 + 0

4208 = 288 ⋅ 14 + 176

288 = 126 ⋅ 1 + 112

176 = 112 ⋅ 1 + 64

112 = 64 ⋅ 1 + 48

64 = 48 ⋅ 1 + 16
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(48, 16)  

Consequently, gcd(4208. 288) = 16.

Progress Check 8.7

1. From Progress Check 8.4, gcd(180, 126) = 18. 

 
So gcd(180, 126) = 18, and .

2. From Progress Check 8.4, gcd(4208. 288) = 16. 

 
So gcd(4208. 288) = 16, and .

Section 8.2

Progress Check 8.10

1. If ,  is prime, and  divides , then gcd( , ) = .
2. If ,  is prime, and  does not divide , then gcd( , ) = 1.
3. Three examples are gcd(4, 9) = 1, gcd(15, 16) = 1, gcd(8, 25) = 1.

Progress Check 8.13

Theorem 8.12. Let , , and  be integers. If  and  are relatively prime and . We will prove that  divides .

Proof. Let , , and  be integers. Assume that  and  are relatively prime and . We will prove that  divides .

Since  divides , there exists an integer  such that

In addition, we are assuming that  and  are relatively prime and hence gcd( , ) = 1. So by Theorem 8.9, there exist integers  and  such that

We now multiply both sides of equation (B.21) by . This gives

We can now use equation (B.20) to substitute  in equation (B.22) and obtain

If we now factor the left side of this last equation, we see that . Since ( ) is an integer, this proves that  divides . Hence, we
have proven that if a and b are relatively prime and , then .

Section 8.3

Progress Check 8.20

2.  and , where  can be any integer. Again, this does not prove that these are the only solutions.

Progress Check 8.21

One of the Diophantine equations in Preview Activity 2 was . We were able to write the solutions of this Diophantine equation in the
form

 and ,

where  is an integer. Notice that  and  is a solution of this equation. If we consider this equation to be in the form , then we see
that , , and . Solutions for this equation can be written in the form

 and ,

48 = 16 ⋅ 3 + 0

18 =

=

=

126 −54 ⋅ 2

126 −(180 −126) ⋅ 2

126 ⋅ 3 +180 ⋅ (−2)

(Appendix B.18)

18 = 126 ⋅ 3 +180 ⋅ (−2)

16 =

=

=

=

=

64 −48

64 −(112 −64) = 64 ⋅ 2 −112

(176 −112) ⋅ 2 −112 = 176 ⋅ 2 −112 ⋅ 3

(4208 −288 ⋅ 14) ⋅ 5 −288 ⋅ 3

4208 ⋅ 5 +288 ⋅ (−73)

= 176 ⋅ 2 −(288 −176) ⋅ 3 = 176 ⋅ 5 −288 ⋅ 3 (Appendix B.19)

16 = 4208 ⋅ 5 +288 ⋅ (−73)

a, p ∈ Z p p a a p p

a, p ∈ Z p p a a p

a b c a b a | (bc) a c

a b c a b a | (bc) a c

a bc k

bc = ak. (Appendix B.20)

a b a b m n

am+bn = 1. (Appendix B.21)

c

(am+bn)c

acm+bcn

=

=

1 ⋅ c

c
(Appendix B.22)

bc = ak

acm+akn = c.

a(cm+kn) = c cm+kn a c

a | (bc) a | c

x = 2 +3k y = 0 −2k k

3x+5y = 11

x = 2 +5k y = 1 −3k

k x = 2 y = 1 ax+by = c

a = 3 b = 5 c = 11

x = 2 +bk y = 1 −ak

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86198?pdf


Appendix B.16 https://math.libretexts.org/@go/page/86198

where  is an integer.

The other equation was . So in this case, , , and . Also notice that . We note that  and  is
one solution of this Diophantine equation and solutions can be written in the form

 and ,

where  is an integer. Using the values of , , and  given above, we see that the solutions can be written in the form

 and ,

where  is an integer.

Progress Check 8.24

1. Since 21 does not divide 40, Theorem 8.22 tells us that the Diophantine equation  has no solutions. Remember that this means
there is no ordered pair of integers ( , ) such that . However, if we allow  and  to be real numbers, then there are real number
solutions. In fact, we can graph the straight line whose equation is  in the Cartesian plane. From the fact that there is no pair of
integers ,  such that , we can conclude that there is no point on the graph of this line in which both coordinates are integers.

2. To write formulas that will generate all the solutions, we first need to find one solution for . This can sometimes be done by trial
and error, but there is a systematic way to find a solution. The first step is to use the Euclidean Algorithm in reverse to write gcd(144, 225) as a
linear combination of 144 and 225. See Section 8.1 to review how to do this. The result from using the Euclidean Algorithm in reverse for this
situation is 

 
If we multiply both sides of this equation by 3, we obtain 

 
This means that ,  is a solution of the linear Diophantine equation . We can now use Theorem 8.22 to conclude
that all solutions of this Diophantine equation can be written in the form 

 
where . 
We check this general solution as follows: Let . Then 

Section 9.1

Progress Check 9.2

1. We first prove that  is an injection. So let  and assume that . Then  and we can conclude that 
. Hence,  is an injection. To prove that  is a surjection, let . Then  and hence,  and so 

. In addtion, . This proves that  is a surjection, Hence, the function  is a bijection, and so, 
.

2. If  and  are even integers and , then  and, hence, . Therefore,  is an injection.  
To prove that  is a surjection, let . This means that  is an odd integer and, hence,  is an even integer. In addition,  

 
Therefore,  is a surjection and hence,  is a bijection. We conclude that .

3. Let  and assume that . Then  and, thence, . Therefore,  is an injection. 

To prove that  is a surjection, let . Since , we conclude that  and that  

 
Therefore,  is a surjection and hence  is a bijection. Thus, .

Section 9.2

k

4x+6y = 16 a = 4 b = 6 c = 16 d = gcd(4, 6) = 2 x = 4 y = 0

x = 4 +3k y = 0 −2k

k a b d

x = 2 + k
b

d
y = 0 −

a

d

k

63x+336y = 40
x y 63x+336y = 40 x y

63x+336y = 40
x y 63x+336y = 40

144x+225y = 27

144 ⋅ 11 +225 ⋅ (−7) = 9. (Appendix B.23)

144 ⋅ 33 +225 ⋅ (−21) = 27. (Appendix B.24)

= 33x0 = −21y0 144x+225y = 27

x = 33 + k         y = −21 − k,
225

9

144

9
(Appendix B.25)

k ∈ Z
k ∈ Z

144x+225y =

=

=

144(33 +25k) +225(−21 −16k)

(4752 +3600k) +(−4725 −3600k)

27.

(Appendix B.26)

f : A → B x, y ∈ A f(x) = f(y) x+350 = y+350
x = y f f b ∈ B 351 ≤ b ≤ 450 1 ≤ b−350 ≤ 100
b−350 ∈ A f(b−350) = (b−350) +350 = b f f

A ≈ B

x t F (x) = F (t) x+1 = t+1 x = t F

F y ∈ D y y−1

F (y−1) = (y−1 +1 = y. (Appendix B.27)

F F E ≈ D

x, t ∈ (0, 1) f(x) = f(t) bx = bt x = t f

f y ∈ (0, b) 0 < y < b 0 < < 1
y

b

f( ) −b( \) = y.
y

b

y

b
(Appendix B.28)

f f (0, 1) ≈ (0, b)
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Progress Check 9.11

1. The set of natural numbers  is a subset of , , and . Since  is an infinite set, we can use Part (2) of Theorem 9.10 to conclude that , , and 
 are infinite sets.

2. Use Part (1) of Theorem 9.10.
3. Prove that  and use Part (1) of Theorem 9.10.

Progress Check 9.12

1. Use the definition of a countably infinite set.
2. Since , we can conclude that card .
3. One function that can be used is  defined by  for all .

Progress Check 9.23

Player Two has a winning strategy. On the th turn, whatever symbol Player One puts in the th position of the th row, Player Two must put the other
symbol in the th position of his or her row. This guarantees that the row of symbols produced by Player Two will be different that any of the rows
produced by Player One.

This is the same idea used in Cantor’s Diagonal Argument. Once we have a “list” of real numbers in normalized form, we create a real number that is
not in the list by making sure that its th decimal place is different than the th decimal place for the th number in the list. The one complication is
that we must make sure that our new real number does not have a decimal expression that ends in all 9’s. This was done by using only 3’s and 5’s.

Progress Check 9.25

1. Proof. In order to find a bijection , we will use the linear function through the points  and . The slope is  and
the -intercept is . So define  by 

 
Now, if  and , then 

 
This implies that , and since , e can conclude that . Therefore,  is an injection. 

To prove that  is a surjection, we let . If , then 

 
This proves that  is a surjection. Hence,  is a bijection and . Therefore,  is uncountable and has cardinality .

2. Now, if  are real number with  and , then we know that  

 
Since  is an equivalence relation, we can conclude that .

Appendix B: Answers for the Progress Checks by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

N Z Q R N Z Q
R

≈ NE+

≈ NE+ ( ) =E+ ℵ0

f : S → N f(m) = m−−√ m ∈ S

k k k

k

k k k

f : (0, 1) → (a, b) (0, a) (1, b) (b−a)
y (0, a) f : (0, 1) → (a, b)

f(x) = (b−a)x+a, for each x ∈ (0, 1). (Appendix B.29)

x, t ∈ (0, 1) f(x) = f(t)

(b−a)x+a = (b−a)t+a. (Appendix B.30)

(b−a)x = (b−a)t b−a ≠ 0 x = t f

f y ∈ (a, b) x =
y−a

b−a

\begin{array} {rcl} {f(x)} &= & {f(\dfrac{y - a}{b - a})} \\ {} &= & {(b - a) (\dfrac{y - a}{b - a}) + a} \\ {} &= & {(y - a) + a} \\ {} &= & {y} \begin{array}

f f (0, 1) ≈ (a, b) (a, b) c

a, b, c, d a < b c < d

(a, b) ≈ (0, 1) and (c, d) ≈ (0, 1). (Appendix B.31)

≈ (a, b) ≈ (c, d)
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Appendix C: Answers and Hints for Selected Exercises
Section 1.1

1. Sentences (a), (c),(e), (f), (j) and (k) are statements. Sentence (h) is a statement if we are assuming that  is a prime number
means that  is an integer.

2.  Hypothesis Conclusion

a.  is a prime number.  has three positive divisors.

b.  is an irrational number and  is an irrational
number.

 is an irrational number.

c.  is a prime number.  or  is an odd number.

d.  is a prime number and .  is an odd number.

3. Statements (a), (c), and (d) are true.
4. (a) True when . (b) True when .

6. (a) This function has a maximum value when . 

(c) No conclusion can be made about this function.

9. (a) The set of rational numbers is not closed under division. 
(b) The set of rational number sis not closed undre division since division by zero is not defined. 
(c) The set of nonzero rational numbers is closed under division. 
(d) The set of positive rational numbers is closed under division. 
(e) The set of positive real numbers is not closed under subtraction. 
(f)The set of negative rational numbers is not closed under division. 
(g)The set of negative integers is closed under addition.

Section 1.2

1. (a)

Step Know Reason

 is an even integer. Hypothesis

1 There exists an integers  such that . Definition of an even integer

2 Algebra

1 There exists an integer  such that 
.

Substitution of 

 is an odd integer. Definition of an odd integer

2. (c) We assume that  and  are odd integers and will prove that  is an even integer. Since  and  are odd, there exist
integers  and  such that  and . Then 

 
Since the integers are closed under addition,  is an integer, and hence the last equation shows that  is even.
Therefore, we have proven that if  and  are odd integers, then  is an even integer.

3. (b) Use Part (a) to prove this.

6. (a) Prove that their difference is equal to zero or prove that they are not zero and their quotient is equal to 1. 
(d) Provethattwoofthesideshavethesamelength.Provethatthetriangle has two congruent angles. Prove that an altitude of the triangle

n

n

n n2

a b
a ⋅ b

p p = 2 p

p p ≠ 2 p

a ≠ 3 a = 3

x =
5

16

P m

P k m = 2k

P m+ 1 = 2k+ 1

Q
q

m+ 1 = 2q+ 1
k = q

Q m+ 1

x y x+y x y

m n x = 2m+1 y = 2n+1

x+y =

=

=

(2m+1) +(2n+1)

2m+2n+2

2(m+n+1).

(Appendix C.1)

(m+n+1) x+y

x y x+y
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is a perpendicular bisector of a side of the triangle.

9. (a) Some examples of type 1 integers are -5, -2, 1, 4, 7, 10. 
(c) All example should indicate the proposition is true.

10. (a) Let a and b be integers and assume that a and b are both type 1 integers. Then, there exist integers  and  such that 
 and . Now show that

The closure properties of the integers imply that  is an integer. Therefore, the last equation tells us that  is a type 2
integer. Hence, we have proved that if  and  are both type 1 integers, then  is a type 2 integer.

Section 2.1

1. The statement was true. When the hypothesis is false, the conditional statement is true.

2. (a)  is false .  
(b)  is false. 
(c)  is false.

4. (c) Cannot tell if  is true or false.

5. Statements (a) and (d) have the same truth table. Statements (b) and (c) have the same truth tables.

7. The two statements have the same truth table.

9. (c) The integer  is even only if  is even. 
(d) The integer  is even is necessary for  to be even.

Section 2.2

1. (a) Converse: If , then . Contrapositive: If , then . 
(b) Converse: If Laura is playing golf, then it is not raining. Contrapositive: If Laura is not playing golf, then it is raining.

2. (a) Disjunction:  or . Negation:  and . 
(b) Disjunction: It is raining or Laura is playing golf. Negation: It is not raining and Laura is not playing golf.

3. (a) We will not win the first game or we will not win the second game. 
(c) You mow the lawn and I will not pay you $20. 
(f) You graduate from college, and you will not get a job and you will not go to graduate school.

7. (a) In this case, it may be better to work with the right side first.

10. Statements (c) and (d) are logically equivalent to the given conditional statement. Statement (f) is the negation of the given
conditional statement.

11. (d) This is the contrapositive of the given statement and hence, it is logically equivalent to the given statement.

Section 2.3

1. (a)  

(d) | 
(e) 

2.  

3. The sets in (b) and (c) are equal to the given set.

m n

a = 3m+1 b = 3n+1

a+b = 3(m+n) +2.

m+n a+b

a b a+b

P

P ∧Q

P ∨Q

P ∧R

x x2

x2 x

= 25a2 a = 5 ≠ 25a2 a ≠ 5

a ≠ 5 = 25a2 a = 5 = 25a2

(P → R) ∨ (Q → R) ≡

≡

≡

≡

(┐R∨R) ∨ (┐Q∨R)

(┐R∨ ┐Q) ∨ (R∨R)

(┐R∨ ┐Q) ∨R

(P ∧Q) → R.

≡ ┐(P ∨Q) ∨R

, −2}
1

2
{1, 2, 3, 4}
{0.5, 4.5}

A = {  | n ∈ Nn2

D = {4n | nis a nonnegative integer and 0 ≤ n ≤ 25}
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5. (a)  
(e) \(\{x \in \mathbb{R]\ |\ x^2 > 10\}\)

Section 2.4

1. (a) There exists a rational number x such that . This statement is false since the solutions of the equation are 

, which are irrational numbers.

2. (b)  is a counterexample. The negation is: There exists a real number  such that . 

(g)  is a counterexample. The negation is: There exists a real number  such that .

3. (a) There exists a rational number  such that . 
The negation is , which is, For each rational number , .

(c) For each integer ,  is even or  is odd. 
The negation is  (  is odd and  is even), which is, There exists an integer  such that  is odd and  is even.

(e) For each integer , if  is odd, then  is odd. 
The negation is  (  is odd and  is even), which is, There exists an integer  such that  is odd and  is even. 
(h) There exists a real number  such that cos(2 ) = 2 (cos ). 
The negation is  (cos(2 )  2(cos )), which is, For each real number , cos(2 )  2(cos ).

4. (a) There exist integers  and  such that . 
(c) There exists an integer  such that for each ineger , .

5. (a) . 
For all inetgers  and , . 
(e) . 
For each integer , there exists an integer  such that .

10. (a) A function  with domain  is strictly increasing provided that .

Section 3.1

1. (a) Remember that to prove that , you need to prove that there exists an integer  such that . 
(b) What do you need to do in order to prove that  is odd? Notice that ifn is an odd integer, then there exists an integer  such
that . Remember that to prove that  is an odd integer, you need to prove that there exists an integer  such that 

.  
Or you can approach this as follows: If  is odd, then by Theorem 1.8,  is odd. Now use the fact that . 
(c) If 4 divides , then there exists an integer  such that . Write  and then use algebra to rewrite 

.

3. (e) Make sure you first try some examples. How do you prove that an integer is an odd integer? 
(f) The following algebra may be useful.

4. (a) If , then  and  are both divisors of 1, and the only divisors of 1 are -1 and 1.| 
(b) Part (a) is useful in proving this.

3. Let . For , you need to prove that if  (mod ), then  (mod ). Remember that for , 
(mod ) if and only if .

5. Another hint: .

8. (a) Assuming  and  are both congruent to 2 modulo 3, there exist integers  and  such that  and .
Then show that

12. The assumptions mean that  and that . Use these divisibility relations to obtain an expression that is equal
to a and to obtain an expression that is equal to c. Then use algebra to rewrite the resulting expressions for  and .

{x ∈ Z | x ≤ 5}

−3x−7 = 0x2

x =
3 ± 37

−−
√

2

x = 0 x ≤ 0x2

x =
π

2
x x+1 ≠ xtan2 sec2

x x > 2
–

√
(∀x ∈ Q)(x ≤ )2

–
√ x x ≤ 2

–
√

x x x

(∃x ∈ Z x x x x x

x x2 x

(∃x ∈ Z x2 x x x2 x

x x x

(∀x ∈ R x ≠ x x x ≠ x

m n m > n

n m > nm2

(∀m)(∀n)(m ≤ n)
m n m ≤ n

(∀n)(∃m)( ≤ n)m2

n m ≤ nm2

f R (∀x, y ∈ R)[(x < y) → (f(x) < f(y))]

a | (b−c) q b−c = a ⋅ q
n3 k

n = 2k+1 n3 q

= 2q+1n3

n n2 = n ⋅n3 n2

(a−1) k a−1 = 4k a = 4k+1
( −1)a2

4(2m+1 +7(2m+1) +6 = 6 +30m+17.)2 m2

xy = 1 x y

n ∈ N a, b ∈ Z a ≡ b n b ≡ a n x, y ∈ Z x ≡ y

n n | (x−y)

(4n+3) −2(2n+1) = 1

a b m n a = 3m+2 b = 3n+2

a+b = 3(m+n+1) +1

n | (a−b) n | (c−d)
a+c a ⋅ c
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Section 3.2

1. (a) Let  be an even integer. Since  is even, there exists an integer  such that . Now use this to prove that  must be
even. 
(b) Prove the contrapositive. 
(c) Explain why Parts (a) and (b) prove this. 
(d) Explain why Parts (a) and (b) prove this.

2. (a) The contrapositive is, For all integers  and , if  (mod 6), then  (mod 6) or  (mod 6).

4. (a) If  (mod 5), then there exists an integer  such that . Then . This means
that .

6. One of the two conditional statements is true and one is false.

8. Prove both of the conditional statements: (1) If the area of the right triangle is , then the right triangle is an isosceles
triangle. (2) If the right triangle is an isosceles triange, then the area of the right triangle is .

9. Prove the contrapositive.

10. Remember that there are two conditional statements associated with this biconditional statement. Be willing to consider the
contrapositive of one of these conditional statements.

15. Define an appropriate function and use the Intermediate Value Theorem.

17. (b) Since 4 divides , there exist an integer  such that . Using this, we see that . This means that b3 is even
and hence by Exercise (1),  is even. So there exists an integer  such that . Use this to prove that  must be even and
hence by Exercise (1),  is even.

18. It may be necessary to factor a sum cubes. Recall that

Section 3.3

1. (a) 

3. (a) Let  be a real number such that . We will prove that  is irrational using a proof by contradiction. So we assume that 
 is a rational number. 

(b) Do not attempt to mimic the proof that the square root of 2 is irrational (Theorem 3.20). You should still use the definition of a
rational number but then use the fact that .

5. In each part, what is the contrapositive of the proposition? Why does it seem like the contrapositive will not be a good approach?
For each statement, try a proof by contradiction.

6. Two of the propositions are true and the other two are false.

11. Recall that  is the real number  such that . That is,  means that . If we assume that  is

rational, then there exist integers  and , with , such that .

12. Hint: The only factors of 7 are -1, 1, -7, and 7.

13. (a) What happens if you expand (sin  + cos ) ? Don’tforgetyourtrigono- metric identities.

14. Hint: Three consecutive natural numbers can be represented by , , and , where , or three consecutive natural
numbers can be represented by ,  and , where .

Section 3.4

1. Use the fact that .

2. Do not use the quadratic formula. Try a proof by contradiction. Hint: If there exists a solution of the equation that is an integer,
then we can conclude that there exists an integer  such that .

3. First write  for some integer . The integer  can be even or odd.

5. (c) For all integers , , and  with , if  divides the product , then  divides  or  divdes .

n n k n = 2k n3

a b ab ≡ 0 a ≡ 0 b ≡ 0

a ≡ 2 k a−2 = 5k = (2 +5k = 4 +20k+25a2 )2 k2

−4 = 5(4k+5 )a2 k2

/4c2

/4c2

a n a = 4n = 16b3 n2

b m b = 2m m3

m

+ = (u+v)( −uv+ ).u3 v3 u2 v2

P ∨C

r = 18r2 r

r

= = = 318
−−

√ 9 ⋅ 2
− −−

√ 9
–

√ 2
–

√ 2
–

√

32log2 a = 322a a = 32log2 = 322a a

m n n ≠ 0 a =
m

n

θ θ 2

n n+1 n+2 n ∈ N
m−1 m m+1 m ∈ N

+n = n(n+1)n2

n +n−u = 0n2

n = 2m+1 m m

a b d d ≠ 0 d ab d a d b
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8. Try a proof by contradiction with two cases:  is even or  is odd.

10. (a) One way is to use three cases: (i) ; (ii) ; and . For the first case,  and .

11. (a) For each real number ,  if and only if  or .

Section 3.5

2. (b) Factor . 
(c) Consider using cases based on congruence modulo 6.

3. Let . For , you need to prove that if  (mod ), then  (mod ). Remember that for , if 
(mod ), then . So there exists an integer  such that .

4. (a) Use the definition of congruence. 
(b) Let . Corollary 3.32 tell us that if  (mod 3), then  (mod 3) or  (mod 3). 
(c) For one of the conditional statements, Part (b) tells us we can use a proof by cases using the following two cases: (1) 
(mod 3); (2)  (mod 3).

6. The result in Part (c) of Exercise (4) may be helpful in a proof by contradiction.

8. (a) Remember that  if and only if  (mod 3).

9. (a) Use a proof similar to the proof of Theorem 3.20. The result of Exercise (8) may be helpful.

12. (a) Use the results in Theorem 3.28 to prove that the remainder must be 1.

Section 4.1

1. The sets in Parts (a) and (b) are inductive.

2. A finite nonempty set is not inductive (why?) but the empty set is inductive (why?).

3. (a) For each , let  be,  Verify that  is true. The key to the inductive

step is that if  is true, then

Now use algebra to show that the last expression can be rewritten as  and then explain why this completes the

proof that if  is true, then  is true.

6. The conjecture is that for each , . The key to the inductive step is that

8. (a) The key to the inductive step is that if , then , which implies that

13. Let  be a natural number. If  (mod ), then since we are also assuming that  (mod ), we can use Part (2) of
Theorem 3 to conclude that  (mod ).

14. Three consecutive natural numbers maybe represent by , , and , where  is a natural number. For the inductive
step, think before you try to do a lot of algebra. You should be able to complete a proof of the inductive step by expanding the cube
of only one expression.

Section 4.2

1. (a) If  is true, then . Multiplying both sides of this inequality by 3 gives

a a

x > 0 x = 0 x < 0 −x < 0 | −x| = −(−x) = x = |x|

x |x| ≥ a x ≥ a x ≤ −a

−nn3

n ∈ N a, b ∈ Z a ≡ b n b ≡ a n a, b ∈ Z a ≡ b

n n | (a−b) k a−b = nk

a ∈ Z a ≢ 0 a ≡ 1 a ≡ 2
a ≡ 1

a ≡ 2

3 | k k ≡ 0

n ∈ N P (n) 2 +5 +8 +⋅ ⋅ ⋅ +(3n−1) = .
n(3n+1)

2
P (1)

P (k)

2 +5 +8 +⋅ ⋅ ⋅ +(3k−1) +[3(k+1) −1] =

=

(2 +5 +8 +⋅ ⋅ ⋅ +(3k−1)) +(3k+2)

+(3k+2).
3k(k+1)

2

(k+1)(3k+4)

2
P (k) P (k+1)

n ∈ N (2j−1) =∑n
j=1 n2

(2j−1)∑k+1
j=1 =

=

(2j−1) +[2(k+1) −1]∑k
j=1

(2j−1) +[2k+1].∑k

j=1

= 1 +3m4k ⋅ 4 = 4(1 +3m)4k

−1 = 3(1 +4m).4k+1

k ≡ak bk n a ≡ b n

a ⋅ ≡ b ⋅ak bk n

n n+1 n+2 n

P (k) > 1 +3k 2k

> 3 +3 ⋅3k+1 2k
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Now, since  and , we see that  and hence, . Thus, if  is ture, then 
 is true.

2. If , then . For the inductive step, we assume that  and that . With these assumptions, prove that

Now use the assumption that  to prove that  and combine this with the assumption that .

5. Let  be the predicate, " ." Verify that , , , and  are true. For the inductive step, the following
fact about factorials may be useful:

8. Let  be, "The natural number  can be written as a sum of natural numbers, each of which is a 2 or a 3.” Verify that , 
, , and  are true.

To use the Second Principle of Mathematical Induction, assume that ,  and that , , ...  are true. Then
notice that

Since , we have assume that  is true. Use this to complete the inductive step.

12. Let  be, “Any set with  elements has  2-element subsets.”  is true since any set with only one element has

no 2-element subsets. Let  and assume that  is true. This means that any set with  elements has  2-element

subsets. Let  be a set with  elements, and let . Now use the inductive hypothesis on the set , and determine
how the 2-element subsets of  are related to the set .

16. (a) Use Theorem 4.9 
(b) Assume  and consider two cases: (i) ; (ii) .

Section 4.3

1. For the inductive step, if , then

2. (a) Let  be, "  is a multiple of 3." Since ,  is true. If  is true, then there exists an integer  such that 
. Use the following:

(c) Let  be, " ." Since ,  is true. For , if , if  is true, then 
. Then

This proves that if  is true, then  is true.

(f) Let  be, " ." For the inductive step, use

3 > 1 3 ⋅ >2k 2k+1 3 +3 ⋅ > 1 +2k 2k+1 > 1 +3k+1 2k+1 P (k)
P (k+1)

n ≥ 5 <n2 2n <k2 2k k ≥ 5

(k+1 = +2k+1 < +2k+1.)2 k2 2k

k > 4 2k+1 < k2 <k2 2k

P (n)  | (4n)!8n P (0) P (1) P (2) P (3)

[4(k+1)]! =

=

(4k+4)!

(4k+4)(4k+3)(4k+2)(4k+1)(4k)!.

P (n) n P (4)
P (5) P (6) P (7)

k ∈ N k ≥ 5 P (4) P (5) P (k)

k+1 = (k−1) +2.

k−1 ≤ 4 P (k−1)

P (n) n
n(n−1)

2
P (1)

k ∈ N P (k) k
k(k−1)

2
A k+1 x ∈ A A−{x}

A A−{x}

k ≠ q k < q k > q

= k!ak

ak+1 =

=

=

(k+1)ak

(k+1)k!

(k+1)!.

P (n) f4n = 3f4 P (1) P (k) m

= 3mf4k

f4(k+1) =

=

=

=

=

f4k+4

+f4k+3 f4k+2

( + ) +( + )f4k+2 f4k+1 f4k+1 f4k

+2 +f4k+2 f4k+1 f4k

( + ) +2 + .f4k+1 f4k f4k+1 f4k

P (n) + +⋅ ⋅ ⋅ + = −1f1 f2 fn−1 fn+1 = −1f1 f3 P (2) k ≥ 2 k ≥ 2 P (k)
+ +⋅ ⋅ ⋅ + = −1f1 f2 fk−1 fk+1

+ +⋅ ⋅ ⋅ + ) +f1 f2 fk−1 fk =

=

=

( −1) +fk+1 fk

( + ) −1fk+1 fk

−1.fk+2

P (k) P (k+1)

P (n) + +⋅ ⋅ ⋅ + =f 2
1 f 2

2 f 2
n fnfn+1
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6. For the inductive step, if , then

8. For the inductive step, use the assumption that \(S_{k} = a(\dfrac{1 - r^{k}{1 - r})\) and the recursive definition to write 
.

9. (a) , , , , . 
(b) One possibility is: For each , .

12. (a) , , , ,  
(b) Let  be, " ." Since ,  is true. For , if  is true, then . Now

Since , this implies that  and hence, . This proves that if  is true, then  is true.

13. (a) , , ,  
(b) Think in terms of powers of 2.

14. (a) , , , 

16. (b)    
   
  

18. (a) Let  be, " ." First, verify that  and  are true. Now let  be a natural number with  and
assume that , , ...,  are all true. Since  and  are both assumed to be true, we can use them to help
prove that  must then be true as follows:

(b) Let  be, " ." First, verify that  and  are true. Now let  be a natural number with  and
assume that , , ...,  are all true. Since  and  are both assumed to be true, we can use them to help
prove that  must then be true as follows:

.

Section 5.1

1. (a)  (c)  (e)  
(b)  (d) 

2. In both cases, the two sets have preceisely the same elements.

3. 

 

( + +⋅ ⋅ ⋅ + ) +f 2
1 f 2

2 f 2
k f 2

k+1

+ +⋅ ⋅ ⋅ + +f 2
1 f 2

2 f 2
k f 2

k+1

=

=

=

+fkfk+1 f 2
k+1

( + )fk+1 fk fk+1

.fk+1fk+2

= a ⋅ak rk−1

ak+1 =

=

=

r ⋅ ak
r(a ⋅ )rk−1

a ⋅ .rk

= a+r ⋅Sk+1 Sk

= 7a2 = 12a3 = 17a4 = 22a5 = 27a6

n ∈ N = 2 +5(n−1)an

=a2 6
–

√ = ≈ 2.729a3 +56
–

√
− −−−−−

√ ≈ 2.780a4 ≈ 2.789a5 ≈ 2.791a6

P (n) < 3an = 1a1 P (1) k ∈ N P (k) < 3ak

= .ak+1 5 +ak
− −−−−

√

< 3ak <ak+1 8
–√ < 3ak+1 P (k) P (k+1)

= 7a3 = 15a4 = 31a5 = 63a6

=a3
3

2
=a4

7

4
=a5

37

24
=a6

451

336

= 5a2 = 719a2 = 362879a8

= 23a3 = 5039a2 = 3628799a9

= 119a4 = 40319a2 = 39916799a10

P (n) = 2 −Ln fn+1 fn P (1) P (2) k k ≥ 2
P (1) P (2) P (k) P (k) P (k−1)

P (k+1)

Lk+1 =

=

=

=

+Lk Lk−1

(2 − ) +(2 − )fk+1 fk fk fk−1

2( + ) −( +fk+1 fk fk fk−1

2 − .fk+2 fk+1

P (n) 5 = +fn Ln−1 Ln+1 P (2) P (3) k k ≥ 3
P (2) P (3) P (k) P (k) P (k−1)

P (k+1)

5fk+1 =

=

=

=

5 +fk 5k−1

( + ) +( +Lk)Lk−1 Lk+1 Lk−2

( + ) −( + )Lk−1 Lk−2 Lk Lk+1

+ .Lk Lk+2

A = B C ≠ D A ⊈ D

A ⊆ B C ⊆ D

A

5

|A|

⊂, ⊆, ≠

∈

=

B∅

C{5}

|D|A

⊂, ⊆, ≠

⊂, ⊆, ≠

∈

A

C

P(b)
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5. (a) The set  is a not a subset of  since  and .

7. (c)  (h)  
(d)  (n)  
(e) 

9. (b) There exists an  such that  and . This can be written as, There exists an  such that 
, , and  or .

10. (a) The given statement is a conditional statement. We can rewrite the subset relations in terms of conditional sentences: 
means, "For all , if , then ," and  means, "For all , if , then ."

Section 5.2

1. (a) The set  is a subset of . A proof is required. The idea is that if , then . Since , we conclude that 
. 

(b) The set  is not a subset of . Give an example of a real number that is in  but not in .

3. (b)  

7. (a) Start by letting  be an element of . 
(b) Start by letting  be an element of . 
(e) By Theorem 5.1, . By Part (a), . Therefore, .

12. (a) Let . Then  and . Since we are assuming that , we see that  and . This proves
that .

15. (a) "If , then " is Proposition 5.14. To prove the other conditional statement, start with, "Let ." Then
use the assumption that  to prove that  must be in . 
(b) To prove "If , then ," first note that if , then  and, hence, . Now let 

 and note that since , if , then . Use this to argue that under the assumption that , 
.

Tp prove "If , then ," start with, Let  and use this asusmption to prove that  must be an element of .

Section 5.3

1. (a) Let . Then , which means . Hence, . Now prove that . 
(c) Let . Then  and so . Therefore, . Also, since every set we deal with is a subset of the universal set, 

.

2. We will first prove that . Let . Then  and . So we will
use two cases: (1) ; (2) . In Case (1),  and, hence . In Case (2),  and,
hence, . This proves that .

Now prove that .

4. (a) . 
(c) Using the algebra of sets, we obtain

9. (a) Use a proof by contradiction. Assume the sets are not disjoint and let . Then  and , which
implies that .

Section 5.4

1, (a)  
(b)  
(c) 

{a, b} {a, c, d, e} b ∈ {a, b} b ∈ {a, c, d, e}

(A∪B = {2, 8, 10})c (A∩C) ∪ (B∩C) = {3, 6, 9}
∩ = {2, 8, 10}Ac Bc (A∪B) −D = {1, 3, 5, 7, 9}

(A∪B) ∩C = {3, 6, 9}

x ∈ U x ∈ (P −Q) x ∉ (R∩S) x ∈ U

x ∈ P x ∉ Q x ∉ R x ∉ S

A ⊆ B

x ∈ U x ∈ A x ∈ B ⊆Bc Ac x ∈ U x ∈ Bc x ∈ Ac

A B x ∈ A −2 < x < 2 x < 2
x ∈ B

B A B A

A ⊆ B B ⊈ A

x A∩B

x A

∅ ⊆ A∩ ∅ A∩ ∅ ⊆ ∅ A∩ ∅ = ∅

x ∈ A∩C x ∈ A x ∈ C A ⊆ B x ∈ B x ∈ C

A∩C ⊆ B∩C

A ⊆ B A∩ = ∅Bc x ∈ A

A∩ = ∅Bc x B

AsubseteqB A∪B = B x ∈ B x ∈ A∪B B ⊆ A∪B

x ∈ A∪B A ⊆ B x ∈ A x ∈ B A ⊆ B

A∪B ⊆ B

A∪B = B A ⊆ B x ∈ A x B

x ∈ (Ac)c x ∉ Ac x ∈ A ( ⊆ AAc)c A ⊆ (Ac)c

x ∈ U x ∉ ∅ x ∈ ∅c U ⊆ ∅c

⊆ U∅c

A∩ (B∪C) ⊆ (A∩B) ∪ (A∩C) x ∈ A∩ (B∪C) x ∈ A x ∈ B∪C

x ∈ B x ∈ C x ∈ A∩B x ∈ (A∩B) ∪ (A∩C) x ∈ A∩C

x ∈ (A∩B) ∪ (A∩C) A∩ (B∪C) ⊆ (A∩B) ∪ (A∩C)

(A∩B) ∪ (A∩C) ⊆ A∩ (B∪C)

A−(B∪C) = (A−B) ∩ (A−C)

(A−B) ∩ (A−C) =

=

=

=

(A∩ ) ∩ (A∩ )Bc C c

(A∩A) ∩ ( ∩ )Bc C c

A∩ (B∪C)c

A−(B∪C).

x ∈ A∩ (B−A) x ∈ A x ∈ B−A

x ∉ A

A×B = {(1, a), (1, b), (1, c), (1, d), (2, a), (2, b), (2, c), (2, d)}
B×A = {(a, 1), (b, 1), (c, 1), (d, 1), (a, 2), (b, 2), (c, 2), (d, 2)}
A×(B∩C) = {(1, a), (1, b), (2, a), (2, b)}
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3. Start of proof that : 
Let . Then there exists  and there exists  such that . Since , we know that 

 and . So we have

, where  and . This means that . 
, where  and . This means that .

4. Start of proof that :

let . Then there exists  and there exists  such that . Since , we know that 
 or .

Section 5.5

1. (a) {3, 4} 
(d) {3, 4, 5, 6, 7, 8, 9, 10}

2. (a) {5, 6, 7, ...} 
(c)  
(d) {1, 2, 3, 4} 
(f) 

3. (a)  
(b) 

4. (a) We let  and let . Then , for at lest one  and, hence, . This proves that 
.

5. (a) We first let . Then  and . This means that there exists an  such that .
Hence, , which implies that . This prove that , and we still
need to prove that .

8. (a) Let . For each ,  and, hence, . This means that for each ,  and, hence, 
. Therefore, 

12. (a) We first rewrite the set difference and then use a distributive law.

Section 6.1

1. (a) , , , . 

(b) The set of preimages of 0 is {0, 2}. The set of preimages of 4 is { }. (Use the quadratic formula.) 

(d) range .

4. (b) The set of preimages of 5 is {2}. There set of preimages of 4 is . 
(c) The range of the function  is the set of all odd integers. 
(d) The graph of the function  consists of an infinite set of discrete points.

5. (b) dom , range  

(d) dom , 
range

6. (a) , , , , ,  
(c) The only natural numbers  such that  are the prime numbers. The set of preimages of the natural number 2 is the set
of prime numbers. 
(e) , , ,  
(f) The divisors of  are , , , ..., , .

A×(B∩C) ⊆ (A×B) ∩ (A×C)
u ∈ A×(B∩C) x ∈ A y ∈ B∩C u = (x, y) y ∈ B∩C

y ∈ B y ∈ C

u = (x, y) x ∈ A y ∈ B u ∈ A×B

u = (x, y) x ∈ A y ∈ C u ∈ A×C

(A∪B) ×C ⊆ (A×C) ∪ (B×C)

u ∈ (A∪B) ×C x ∈ A∪B y ∈ C u = (x, y) x ∈ A∪B

x ∈ A x ∈ B

∅

∅

{x ∈ R |  −100 ≤ x ≤ 100}
{x ∈ R |  −1 ≤ x ≤ 1}

β ∈ Λ x ∈ Aβ x ∈ Aα α ∈ Λ x ∈⋃α∈Λ Aα

⊆Aβ ⋃α∈Λ Aα

x ∈ B∩ ( )⋃α∈Λ Aα x ∈ B x ∈⋃α∈Λ Aα α ∈ Λ x ∈ Aα

x ∈ B∩Aα x ∈ (B∩ )⋃α∈Λ Aα B∩ ( ) ⊆ (B∩ )⋃α∈Λ Aα ⋃α∈Λ Aα

(B∩ ) ⊆ B∩ ( )⋃α∈Λ Aα ⋃α∈Λ Aα

x ∈ B α ∈ Λ B ⊆ Aα x ∈ Aα α ∈ Λ x ∈ Aα

x ∈⋂α∈Λ Aα B ⊆⋂α∈Λ Aα

( ) −B⋃α∈Λ Aα =

=

=

( ) ∩⋃α∈Λ Aα Bc

( ∩ )⋃α∈Λ Aα Bc

( −B)⋃α∈Λ Aα

f(−3) = 15 f(−1) = 3 f(1) = −1 f(3) = 3

,
2 − 20

−−
√

2

2 + 20
−−

√

2
(f) = {y ∈ R | y ≥ −1}

∅
f

f

(F ) = {x ∈ R | x > }
1

2
(F ) = R

(g) = {x ∈ R | x ≠ 2 and x ≠ −2}
(g) = {y ∈ R | y > 0} ∪ {y ∈ R | y ≤ −1}

d(1) = 1 d(2) = 2 d(3) = 2 d(4) = 3 d(8) = 4 d(9) = 3
n d(n) = 2

d( ) = 120 d( ) = 221 d( ) = 322 d( ) = 423

2n 20 21 22 2n−1 2n
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7. (a) The domain of  is . The power set of ,  can be the codomain. The rule for determining outputs is that for each 
,  is the set of all distinct natural number factors of . 

(b) For example, , . 
(c) For example, , , .

Section 6.2

1. (a) , , , ,  
(b) , , , ,  
(c) The two functions are equal.

2. (c) The two functions are not equal. For example,  and .

4. (a) , where  for each . The domain is , and {-1, 1} can be the codomain. This sequence is equal to the
sequence in Part (c).

5. (a) , , , , ,  
(c) range , range

6. Start of the inductive step: Let  be “A convex polygon with  sides has  diagonals.” Let  and assume that 

 is true, that is, a convex polygon with  sides has  diagonals. Now let  be convex polygon with  sides. Let

v be one of the  vertices of  and let  and  be the two vertices adjacent to . By drawing the line segment from  to 
and omitting the vertex v, we form a convex polygon with  sides. Now complete the inductive step.

7. (a) ,  
(b) 

9. (a) det  = -17, det  = 7, and det  = 10.

Section 6.3

2. (a) The function  is not an injection and is not a surjection. 
(c) The function  is an injection and is a surjection.

3. (a) The function  is an injection and is not a surjection. 
(b) The function  is an injection and is a surjection.

4. (a) Let  be defined by  for all . Let  and assume that . Then 
. Show that this implies that  and, hence,  is an injection. 

Now let . Then . Prove that . Thus,  is a sujection and hence  is a bijection. 

(b) Notice that for each ,  (mod 5). Now explain why  is not a surjection.

7. The birthday function is not an injection since there are two different people with the same birthday. The birthday function is a
surjection since for each day of the year, there is a person that was born on that day.

9. (a) The function  is an injection and a surjection. 
(b) The function  is an injection and is not a surjection.

Section 6.4

3. (a) , ,  
(b) , , 

4. (a) For each . . Therefore, .

5. (a) ; 

6. Start of a proof: Let , , and  be nonempty sets and let  and . Assume that  and  are both injections.
Let  and assume that .

S N N [P(N)]
n ∈ N S(n) n

S(8) = {1, 2, 4, 8} S(15) = {1, 3, 5, 15}
S(2) = {1, 2} S(3) = {1, 3} S(31) = {1, 31}

f(0) = 4 f(1) = 0 f(2) = 3 f(3) = 3 f(4) = 0
g(0) = 4 g(1) = 0 g(2) = 3 g(3) = 3 g(4) = 0

f(1) = 5 g(1) = 4

⟨ ⟩an = cos(nπ)an n ∈ N N

(1, x) = 1p1 (1, y) = 1p1 (1, z) = 1p1 (2, x) = 2p1 (2, y) = 2p1 (2, z) = 2p1

( ) = Ap1 ( ) = Bp2

P (n) n
n(n−3)

2
k ∈ D

P (k) k
k(k−3)

2
Q (k+1)

(k+1) Q u w v u w

k

f(−3, 4) = 9 f(−2, −7) = −23
{(m,n) ∈ Z ×Z | m = 4 −3n}

[ ]
3

4

5

1
[ ]

1

0

0

7
[ ]

3

5

−2

0

f

F

f

F

F : R → R F (x) = 5x+3 x ∈ R , ∈ Rx1 x2 F ( ) = F ( )x1 x2

5 +3 = 5 +3x1 x2 =x1 x2 F

y ∈ R ∈ R
y−3

5
F ( ) = y

y−3

5
F F

x ∈ Z G(x) ≡ 3 G

f

g

F (x) = (g∘ f)(x) f(x) = ex g(x) = cosx
G(x) = (g∘ f)(x) f(x) = cosx g(x) = ex

x ∈ A (f ∘ )(x) = f( (x)) = f(x)IA IA f ∘ = fIA

[(h ∘ g) ∘ f ](x) = sin( )x2− −−−−−
√3 [h ∘ (g∘ f)](x) sin( )x2− −−−−−

√3

A B C f : A → B g : B → C f g

x, y ∈ A (g∘ f)(x) = (g∘ f)(y)
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7. (a)  by ,  by . The function  is a surjection, but  is not a surjection. 
(f) By Part (1) of Theorem 6.21, this is not possible since if  is an injection, then  is an injection.

Section 6.5

2. (b)  
(d) . This illustrates Corollary 6.28.

4. Using the notation from Corollary 6.28, if  and , then

6. (a) Let  and assume that . Apply  to both sides of this equation to prove that .
Since , this impliies that  and hence that  is an injection. 
(b) Start by assuming that , and then let . You need to prove there exists an  such that . 

(d)  by 

7. The inverse of  is not a function and the inverse of  is a function.

Section 6.6

1. (a) There exists an  such that . 
(d) There exists an  such that  or there exists a  such that . 
(f)  
(h)  or .

2. (b) .
(e)  
(d)  
(f) 

3. (a)  
(b) 

4. (a) range

5. To prove , start by letting . This means that there exists an  in  such that 
. How do you prove that ?

6. To prove that , let . Then . How do you prove that 
?

9. Statement (a) is true and Statement (b) is false.

Section 7.1

1. (a) The set  contains nine ordered pairs. The set  is a relation from  to  since  is a subset of . 
(b) The set  is a relation from  to  since . 
(c) dom , range  
(d) 

2. Only the statement in Part (b) is true.

3. (a) The domain of  consists of the female citizens of the United States whose mother is a female citizen of the United States. 
(b) The range of  consists of those female citizens of the United States who have a daughter that is a female citizen of the United
States.

4. (a)  means that . 
(b) The domain of the subset relation is . 
(c) The range of the subsetr elation is . 

f : R → R f(x) = x g : R → R g(x) = x2 f g∘ f
g∘ f f

= {(c, a), (b, b), (d, c), (a, d)}f−1

( ∘ f)(x) = x = (f ∘ )(x)f−1 f−1

y = f(x) x = (y)f−1

(f ∘ (y)f−1 =

=

=

f( (y))f−1

f(x)

y

x, y ∈ A f(x) = f(y) g (g∘ f)(x) = (g∘ f)(y)
g∘ f = IA x = y f

f ∘ g = IB y ∈ B x ∈ A f(x) = y

g : → RR+ g(y) = (Iny+1)
1

2

f g

x ∈ A∩B f(x) = y

a ∈ A f(a) = y b ∈ B f(b) = y

f(x) ∈ C ∪D

f(x) ∈ C f(x) ∈ D

(f(A)) = [2, 5]f−1

f(A∩B) = [−5, −3]
f( (C)) = [−2, 3]f−1

f(A) ∩ f(B) = [−5, −3]

g(A×A) = {6, 12, 18, 24, 36, 54, 72, 108, 216}
(C) = {(1, 1), (2, 1), (1, 2)}g−1

(F ) = F (S) = {1, 4, 9, 16}

f(A∪B) ⊆ f(A) ∪ f(B) y ∈ f(A∪B) x A∪B

f(x) = y y ∈ f(A) ∪ f(B)

(C ∩D) ⊆ (C) ∩ (D)f−1 f−1 f−1 x ∈ (C ∩D)f−1 f(x) ∈ C ∩D

x ∈ (C) ∩ (D)f−1 f−1

A×B A×B A B A×B A×B

R A B R ⊆ A×B

(R) = A (R) = {p, q}
= {(p, a), (q, b), (p, c), (q, a)}R−1

D

D

(S,T ) ∈ R S ⊆ T

P(U)
P(U)
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(d) . 
(e) The relation  is not a function from  to  since any proper subset of  is a subset of more than one subset of .

6. (a)  
 

(b) The domain and range of  is the closed interval [-10, 10]. 
(d) The relation  is not a function from  to .

9. (a)  
(b) dom  and range

Section 7.2

1. The relation  is not reflexive on  and is not symmetric. However, it is transitive since the conditional statement "For all 
, if  and , then " is a true conditional statement.

4. The relation  is not reflexive on , is symmetric, and is not transitive.

6. (a) The relation  is an equivalence relation. 
(b) 

10. The relation  is an equivalence relation and the relation  is not an equivalence relation.

15. (c) The set  is a circle of radius 5 with center at the origin.

Section 7.3

1. ; ; 

2. ; ; 

3. The equivalence classes are {0, 1, 2, ..., 9}, {10, 11, 12, ..., 99}, {100, 101, 102, ..., 999}, {1000}.

4. The congruence classes for the relation of congruence modulo 5 on the set of integers are

  
 
 

5. (a) The distinct equivalence classes are {0, 3, 6}, {1, 8}, {2, 7}, and {4, 5}.

6. (a) Let . Then , which means that there is an integer  such that , or . This proves

that  and, hence, that . We still need to prove that 

9. (a) To prove the relation is symmetric, note that if , then . This implies that  and, hence, 
 

(c) 

Section 7.4

= {(T ,S) ∈ P(U) ×P(U) | S ⊆ T}R−1

R P(U) P(U) U U

{x ∈ R | (x, 6) ∈ S} = {−8, 8}
{x ∈ R | (x, 9) ∈ S} = {− , }19

−−
√ 19

−−
√

S

S R R

R = {(a, b) ∈ Z ×Z | |a−b| ≤ 2}
(R) = Z (R) = Z

R A

x, y, z ∈ A x R y y R z x R z

R A

∼
C = {−5, 5}

∼ ≈

C

[a] = [b] = {a, b} [c] = {c} [d] = [e] = {d, e}

[a] = [b] = [d] = {a, b, d} [c] = {c} [e] = [f ] = {e, f}

[0] = {5n | n ∈ Z [3] = {5n+3 | n ∈ Z
[1] = {5n+1 | n ∈ Z
[2] = {5n+2 | n ∈ Z [4] = {5n+4 | n ∈ Z

x ∈ [ ]
5

7
x− ∈ Z

5

7
m x− = m

5

7
x = +m

5

7

x ∈ {m+  | m ∈ Z}
5

7
[ ] ⊆ {m+  | m ∈ Z}
5

7

5

7
{m+  | m ∈ Z} ⊆ [ ]

5

7

5

7

(a, b) ≈ (c, d) ad = bc cb = da

(c, d) ≈ (a, b)
3a = 2b
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1. (a)  

(b)

2. (a)  or 
(e)  or  
(g) The equation has no solution.

3. The statement in (a) is false. The statement in (b) is true.

5. (a) The proof consists of the following computations:

17. (a) Prove the contrapostive by calculating  for all nonzero  and  in .

Section 8.1

1. (a) gcd(21, 28) = 7 
(b) gcd(-21, 28) = 7 
(c) gcd(58, 63) = 1 
(d) gcd(0, 12) = 12

2. (a) Hint: Prove that .

4. (a)  is the largest natural number that divides 0 and . 
(b) The integers  and  have the same divisors. Therefore, .

5. (a) gcd(36, 60) = 12  
(a) gcd(901, 935) = 17  
(a) gcd(901, -935) = 17 

7. (a)  

(b) 

Section 8.2

1. The only natural number divisors of a prime number  are 1 and .

2. Use cases: (1)  divides ; (2) p does not divide . In this case, use the fact that gcd( , ) = 1 to write the number 1 as a linear
combination of  and .

3. A hint for the inductive step: Write . Then look at two cases: (1) ; (2)  does not divide .

[x] = [1] [x] = [3]
[x] = [2] [x] = [3]

[1 = [1]]1

[2 = [4]]1
[3 = [9] = [4]]1

[4 = [16] = [1].]1

[a +[b]2 ]2 [a] [b] Z3

k | [(a+1) −a]

|b| b

b −b gcd(a, −b) = gcd(a, b)

12 = 36 ⋅ 2 +60 ⋅ (−1)
17 = 901 ⋅ 27 +935 ⋅ (−26)
17 = 901 ⋅ 27 +(−935) ⋅ (26)

11 ⋅ (−3) +17 ⋅ 2 = 1

+ =
m

11

n

17

17m+11n

187

p p

p a a a p

a p

p | ( ⋅ ⋅ ⋅ )a1a2 am am+1 p | am+1 p am+1
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4. (a) gcd( , ) = 1. Why? 
(b) gcd( , ) = 1 or gcd( , ) = 1=2. Why?

7. (a) gcd(16, 28) = 4. Also, , , and gcd(4, 7) = 1.

9. Part (b) of Exercise (8) can be helpful.

11. The statement is true. Start of a proof: If gcd( , ) = 1 and , then there exist integers  and  such that 
and there exists an integer m such that .

Section 8.3

3. (a)  
(b)  
(c) No solution 
(d) 

4. There are several possible solutions to this problem, each of which can be generated from the solutions of the Diophantine
equation .

5. This problem can be solved by finding all solutions of a linear Diophantine equation in  and , where both  and  are positive.
The minimum number of people attending the banquet is 66.

6. (a) ,  
(c) , 

Section 9.1

2. Use  by , for all .

4. Notice that . Use Theorem 9.6 to conclude that  is finte. Then use Lemma 9.4.

5. (a) Since , if  is finite, then Theorem 9.6 implies that  is finte.

7. (a) Remember that two ordered pairs are equal if and only if their corresponding coordinates are equal. So if 
, then . We can then conclude that  and .

8. (a) If we define the function  by , , , , and , then we can use , ,
and . The function  is an injection.

Section 9.2

1. All except Part (d) are true.

2. (e) Either define an appropriate bijection or use Corollary 9.20 to conclude that  is countable. Prove that 
 cannot be finite. 

(f) 

5. For each , let  be "If card( ) = , then  is a countably infinte set."

Note that if card  and , then card . Apply the inductive assumption to .

6. Notice that if , then since  and  are disjoint, either  and  are both in  or are both in .

Also, if , then there are only two cases to consider:  or .

8. Since , the set  is countable. Now assume  is finte and show that this leads to a contradiction.

Section 9.3

1. (a)  by  for all  
(b)  by  for all . The function  is a bijection and so . Then use Part
(a).

2. Show that the assumption that the set of irrational numbers is countable leads to a contradiction.

a b

a b a b

= 4
16

4
= 7

28

4

a b c | (a+b) x y ax+by = 1
a+b = cm

x = −3 +14k, y = 2 −9k
x = −1 +11k, y = 1 +9k

x = 2 +3k, y = −2 −4k

27x+50y = 25

x y x y

y = 12 +16k = −1 −3kx3

= y+3nx1 = −y+4nx2

f : A×{x} → A f(a, x) = a (a, x) ∈ A×{x}

A = (A−{x}) ∪ {x} A−{x}

A∩B ⊆ A A A∩B

h( , ) = h( , )a1 c1 a2 c2 (f( ), g( )) = (f( ), g( ))a1 c1 a2 c2 f( ) = f( )a1 a2 g( ) = g( )c1 c2

f f(1) = a f(2) = b f(3) = c f(4) = a f(5) = b g(a) = 1 g(b) = 1
g(3) = c g

N −{4, 5, 6}
N −{4, 5, 6}

{m ∈ Z | m ≡ 2 (mod 3)} = {3k+2 | k ∈ Z}

n ∈ N P (n) B n A∪B

(B) = k+1 x ∈ B (B−{x}) = k B−{x}

h(n) = h(m) A B h(n) h(m) A B

y ∈ A∪B y ∈ A y ∈ B

A−B ⊆ A A−B A−B

f : (0, ∞) → R f(x) = Inx x ∈ (0, ∞)
g : (0, ∞) → (a, ∞) g(x) = x+a x ∈ (0, ∞) g (0, ∞) ≈ (a, ∞)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/86199?pdf


Appendix C.15 https://math.libretexts.org/@go/page/86199

3. Use Corollary 9.20.

Appendix C: Answers and Hints for Selected Exercises by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source:
https://scholarworks.gvsu.edu/books/7.
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Appendix D: List of Symbols

Symbol Meaning

Conditional statement

set of real numbers

set of rational numbers

set of integers

set of natural numbers

 is an element of 

 is not an element of 

{ | } set builder notation

universal quantifier

existential quantifier

the empty set

conjunction

disjunction

negation

biconditional statement

logically equivalent

 divides 

 (mod )  is congruent to  modulo 

the absolute value of 

 equals  (set equality)

 is a subset of 

 is not a subset of 

 is a proper subset of 

power set of 

cardinality of a finite set 

intersection of  and 

complement of 

set difference of  and 

Cartesian product of  and 

ordered pair

Cartesian plane

Cartesian plane

\(\bigcup_{X \in \mathcal{C} X\) union of a family of sets

\(\bigcap_{X \in \mathcal{C} X\) intersection of a finite family of sets

union of a finite family of sets

intersection of a finite family of sets

→

R

Q

Z

N

y ∈ A y A

z ∉ A z A

∀

∃

∅

∧

vee

┐

↔

≡

m | n m n

a ≡ b n a b n

|x| x

A = B A B

A ⊆ B A B

A ⊈ B A B

A ⊂ B A B

P(A) A

|A| A

A ∩ B A B

Ac A

A −B A B

A ×B A B

(a,b)

R × R

R2

⋃
n
j=1 Aj

⋂
n
j=1 Aj
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union of an infinite family of sets

intersection of a infinite family of sets

indexed family of sets

union of an indexed family of sets

intersection of an indexed family of sets

 factorial

Fibonacci numbers

sum of the divisors of 

function from  to 

dom( ) domain of the function 

codom( ) codmain of the function 

inage of  under 

range( ) range of the function 

number of divisors of 

identity function on the set 

projection functions

det determinant of 

transpose of 

det: determinant function

composition of function  and 

the inverse of the function 

Sin the restricted sine function

Sin the inverse sine function

dom( ) domain of the relation 

range( ) range of the relation 

 is related to 

 is not related to 

 is related to 

 is not related to 

the inverse of the relation 

equivalence class of 

congruence class of 

the integers modulo 

addition in 

multiplication in 

gcd( , ) greatest common divisor of  and 

image of  under the function 

pre-image of  under the funtion 

⋃
∞
j=1 Bj

⋂
∞
j=1 Bj

{  | α ∈ Λ}Aα

⋃α∈Λ Aα

⋂α∈Λ Aα

n! n

, , ,...f1 f2 f3

s(n) n

f : A → B A B

f f

f f

f(x) x f

f f

d(n) n

IA A

,p1 p2

(A) A

AT A

→ RM2,2

g∘ f : A → C f g

f−1 f

−1

R R

R R

x R y x y

x y

x ∼ y x y

x ≁ y x y

R−1 R

[a] a

[a] a

Zn n

[a] ⊕ [c] Zn

[a] ⊙ [c] Zn

a b a b

f(A) A f

(C)f−1 C f
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 is equivalent to  
 and  have the same cardinality

card cardinality of  is 

cardinality of 

cardinal number of the continuum

Appendix D: List of Symbols by Ted Sundstrom is licensed CC BY-NC-SA 3.0. Original source: https://scholarworks.gvsu.edu/books/7.

A ≈ B
A B

A B

Nk = {1,2,...,k}Nk

(A) = k A k

aleph0 N

c
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