
8.4 Inertance and the Linearized Euler Equation

Just as we did with the calculation of the compliance of a small lumped element in Sect. 8.2.3, we will
begin our calculation of the inertance of a small lumped element by linearizing the relevant hydrody-
namic equation. In this case, we ignore viscous and gravitational forces in Eq. (7.34) and begin with the
Euler equation (7.42), reproduced below.

Dv
!

Dt
¼ ∂ v

!

∂t
þ v

! �∇!
� �

v
! ¼ �∇

!
p
ρ

ð8:33Þ

8.4.1 The Venturi Tube

Some students find the convective contribution to the acceleration term, v
!
•∇
!� �

v
!
, in the total

derivative, Dv
!
=Dt , of Eq. (8.8) and the Euler equation (8.33), to be a bit mysterious. This mystery

might be cleared up if we look at a situation where ∂v/∂t ¼ 0 everywhere in the fluid, but the fluid’s
acceleration is non-zero. The Venturi tube flow meter,7 shown schematically in Fig. 8.6, is a simple
case that will be easy to analyze [5].

If we assume the drawing in Fig. 8.6 depicts a rectangular duct of constant width but the linearly
varying cross-section between x ¼ 0 and x ¼ L, reducing the cross-sectional area by a factor of two,
which is filled with an incompressible fluid, (∂ρ/∂t ¼ 0), then conservation of mass (7.32) guarantees
that the velocity, v!, must increase linearly within the constriction between x ¼ 0 and x ¼ L.

Fig. 8.6 An incompressible fluid flowing through the Venturi must accelerate from a lower velocity at the left of the
constriction to a higher velocity at the right of the constriction. Although it is obvious that the fluid must be accelerating,
the time derivative of the velocity at any fixed location within the fluid is zero. The height of the fluid in the two
standpipes will be different because the pressure at the left must be higher than the pressure at the right to create the
fluid’s acceleration required by the Euler equation (8.33) under our assumption of the fluid’s incompressibility

7 Named after Italian physicist Giovanni Battista Venturi (1746–1822)
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v
!

xð Þ ¼ vleft 1þ x
L

� �bex for 0 � x � L ð8:34Þ

As a function of time, ∂ v
!

tð Þ=∂t ¼ 0, but since the velocity depends upon position, the convective
acceleration is non-zero.

v
! �∇!

� �
v
! ¼ vx

∂vx
∂x

bex þ vy
∂vy
∂y

bey þ vz
∂vz
∂z

bez ð8:35Þ

Since v
!

along the center line is only a function of x, only the first term on the right-hand side of

Eq. (8.35) is non-zero. This convective acceleration can be related to the pressure gradient, ∇
!
p ffi

pleft � pright
� �

=L, by substitution into the Euler equation (8.33).

ρ vx
∂vx
∂x

� �
¼ �∂p

∂x
ð8:36Þ

The above version can be integrated to produce the pressure difference, Δp ¼ pleft – pright, that would
lead to a height difference, Δh ¼ Δp/ρg, in the two standpipes shown at x < 0 and x > L in Fig. 8.6.

�
ðright
left

dp ¼ ρ

ðright
left

vx dvx ) Δp ¼ ρ
2

v2right � v2left

� �
ð8:37Þ

This result is a manifestation of the Bernoulli equation that is very important in nonlinear acoustics for
understanding radiation pressure [6] and acoustical levitation [8]. For our purposes here, it illustrates
that there can be accelerations and pressure gradients in fluids where ∂ v

!
tð Þ=∂t ¼ 0 everywhere within

the fluid.

8.4.2 The Linearized Euler Equation

The convective term in the acceleration is manifestly second order (in the absence of steady flow) since
it is proportional to the product of two first-order quantities, v!1 � v

!
1. We can use the same technique

of harmonic analysis as used previously in Eq. (8.19), this time to determine the conditions that justify
neglect of the convective acceleration term, using sound speed, c ¼ ω/k.

v
! �∇!

� �
v
!

∂ v
!
=∂t

������
������ ¼ jkbv2

jωbv
���� ���� ¼ bvj j

c
) bvj j

c
¼ Mac << 1 ð8:38Þ

We can neglect the second-order term in Eq. (8.33), v
! �∇!

� �
v
!
, compared to the first-order term,

∂ v
!
=∂t, if the velocity amplitudes are within the acoustic approximation: Mac � 1.
As before, when we eject a particular term from the fundamental governing equations, it takes along

with it many interesting phenomena. In this case, the loss of the convective acceleration term,

v
! �∇!

� �
v
! , removes our ability to understand the formation of shock waves and sonic booms. It

also eliminates any non-zero time-averaged acoustic forces that are related to the Bernoulli pressure,
hp2it ¼ (ρm/2)v

2 [7]. These forces include radiation pressure [6], the levitation of solid objects in
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intense standing wave fields,8 and the manipulation of such levitated objects to cause rotations
(acoustic torques) and vibrations [8].

To linearize the part of the Euler equation that remains after removal of the convective acceleration,
the density can be expanded into its mean value, ρm, plus the first-order variation, ρ1, as shown in
Eq. (8.2).

∂ v
!

1

∂t
¼ � ∇

!
p1

ρm 1þ ρ1=ρmð Þ ð8:39Þ

The acoustic approximation guarantees that ρ1/ρm ¼ Mac � 1, so it can also be removed from
Eqs. (8.33) and (8.39) to produce the linearized Euler equation that we will use to derive an expression
for the lumped inertance of the small fluid element with all dimensions much less than the wavelength
of sound.

∂ v
!
1

∂t
¼ �∇

!
p1

ρm
ð8:40Þ

Before doing so, we can interpret Eq. (8.40) again using the Eulerian fluid particle shown in
Fig. 8.7.

The force exerted on the left side of the differential volume, dV, is p(x)dy dz. The force exerted on
the right side is p(x + dx)dy dz. The net force, Fnet, is their difference.

Fnet ¼ p xð Þ � p xþ dxð Þ½ 
 dy dz ð8:41Þ
p (x + dx) can be expanded in a Taylor series about x, as indicated by the subscript on the partial
derivative.

p xþ dxð Þ ¼ p xð Þ þ ∂p
∂x

� �
dx ð8:42Þ

Using this result, the net force on the Eulerian volume element can be expressed in terms of the
pressure gradient in the x-direction: ∇x p ¼ (∂p/∂x).

Fnet ¼ p xð Þ � p xþ dxð Þ½ 
 dydz ¼ � ∂p
∂x

� �
dxdydz ¼ � ∂p

∂x

� �
dV ð8:43Þ

Fig. 8.7 A Eulerian
volume element in a
Cartesian coordinate
system in the presence of a
pressure gradient

8 A nice acoustic levitation chamber video demonstration is available on YouTube, http://www.youtube.com/watch?
v¼94KzmB2bI7s. In a truly bizarre application, Wenjun Xie, at a university in Xi’an, China, used acoustics to levitate
live insects, spiders, and fish as shown in Fig. 15.19.
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Newton’s Second Law of Motion states that this net force must be equal to the mass of fluid
contained within dV times its acceleration. Since we have assumed a pressure gradient only in the
x direction, we will again express the vector velocity in Cartesian components:

ρdVð Þ∂u
∂t

¼ � ∂p
∂x

� �
dV ) ρ

∂u
∂t

¼ � ∂p
∂x

� �
ð8:44Þ

This is just the one-dimensional version of the linearized Euler equation that was derived in
Eq. (8.40) from the hydrodynamic equation (8.33).

8.4.3 Acoustical Inertance

Consider a short pipe of constant cross-sectional area, A, filled with an incompressible fluid. For
oscillations at a single frequency, we again let bU be the complex amplitude of the oscillatory volume
velocity through the element as shown in Fig. 8.8. We can apply the one-dimensional linearized Euler
equation (8.44) to the element, assume time-harmonic variables, and make a finite-difference approxi-
mation to the one-dimensional pressure gradient, ∇xp ffi �Δℜe bpejω t½ 
=Δx.

jω
bU
A
¼ 1

ρm

Δbp
Δx ð8:45Þ

The inertance, L, can be obtained by rearranging Eq. (8.45) to take the form of an acoustical
impedance, Zac, as was done previously for acoustical compliance, C, in Eq. (8.25).

Zac � ΔbpbU ¼ jωρm
Δx
A

ð8:46Þ

As with our derivation of the acoustical compliance, the acoustical inertance can be identified by
analogy to the inductive reactance of AC circuit theory: XL ¼ ωL.

L ¼ ρmΔx
A

ð8:47Þ

Just as with the compliance, C, the inertance, L, can be represented by an electrical circuit element
(inductor) as shown in Fig. 8.9.

Fig. 8.8 As in Fig. 8.3, this figure depicts a fluid element that is a short section of pipe with length, Δx� λ, and cross-
sectional area, A, corresponding to a diameter, d ¼ (4A/π)1/2 � λ. Fluid enters the pipe at the left with a volume velocity

amplitude, bU ¼ buA, at a pressure amplitude, bp. Since the fluid is assumed incompressible, it also exits at the right with

volume velocity amplitude, bU, but at a different pressure amplitude, bp� Δbp, due to the fluid’s inertia
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8.4.4 Acoustical Mass

As with the equivalent gas stiffness, Kgas, of an acoustical compliance expressed in Eq. (8.28), we can
interpret our expression for acoustical inertance in Eq. (8.47) as the inertial mass of incompressible
fluid, oscillating within the inertance element, due to the time-harmonic pressure gradient across it. We
use Newton’s Second Law of Motion since it represents the dynamical equivalent of the fluid-
mechanical Euler equation: F¼ ma. The mass of fluid, m, contained within the short inertance element
is the incompressible fluid’s density times the volume,m¼ ρm (Δx A), and its acceleration amplitude isba ¼ jωbU=A� �

.

bF ¼ ΔbpA ¼ ρmΔxAð Þ jωbU
A

) bpbU ¼
bF=A� �
bU � jωL ¼ ρmΔxAð Þ jω

A2 ) L ¼ ρmΔx
A

ð8:48Þ

At this point, it could be legitimate to complain that we were able to obtain expressions for the
acoustical inertance, L, and the acoustical compliance, C, of a “lumped element” directly from
Newton’s Second Law and the Adiabatic Gas Law. Why were we forced to spend so much time
working through the hydrodynamic equations? Of course, the answer is that the goal of the hydrody-
namic derivations of both L and C was to familiarize you with those equations, as well as to define
parameters that will be useful in acoustical network analyses, since they will be applied throughout this
textbook to a variety of acoustical problems.

Nondissipative, linearized lumped-element analysis was only our first and our simplest application
of hydrodynamics. Their utility will now be demonstrated in the analysis of Helmholtz resonators,
which are important in a variety of applications (e.g., noise control, musical acoustics, and optimiza-
tion of loudspeaker enclosure performance).

8.5 The Helmholtz Resonance Frequency

Having derived expressions (in two different ways!) for the acoustical inertance and acoustical
compliance of elements whose dimensions are all small compared to the wavelength of sound, we
are now in a position to join those “lumped elements” together to form an acoustical network. To do so,
we need to know the joining conditions. What are the quantities that are continuous at the interface
between any two elements?

In this case, the answer will be simple because the variables, p andU, were chosen in our definitions
of the acoustical inertance of Eq. (8.47) and the acoustical compliance of Eq. (8.26), specifically to
make it easy to join the elements of differing cross-sectional areas to each other. We know that p is

Fig. 8.9 An equivalent circuit diagram of the lumped inertance shown in Fig. 8.8. The volume velocity amplitude,bU ¼ buA , is a “current” passing through the element, and the pressure difference between the ends (like a potential
difference, analogous to a voltage drop across the inductor) is responsible for the acceleration of the incompressible fluid
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continuous across an interface, both because of Pascal’s law and because the linearized Euler equation
(8.40) would lead to infinite accelerations if there were non-zero pressure differences across the
interfacial boundary of infinitesimal thickness.

The continuity equation requires that fluid cannot accumulate at the interface between elements
(which has no volume), therefore the mass flux must also be continuous. As before, the mass flux and
the volume velocity are intimately related, _m ¼ ρU, so an equivalent requirement is that the volume
velocity also be continuous across the interface if the density is continuous, which usually implies that
the temperature is the same on both sides of the interface (Fig. 8.10).

Our first application of this “lumped-element” model will be to an acoustical network that has both
historical and contemporary significance: the Helmholtz resonator. It was introduced by
H. L. F. Helmholtz (1821–1894) in his classic book On the Sensations of Tone, published in 1862,
in Chapter III, titled “Analysis of Musical Tones by Sympathetic Resonance.”

If we examine Fig. 8.11, it is clear that continuity of volume velocity, U, is quite different from
continuity of particle velocity, v. To conserve mass, the velocity of fluid flow in the neck of the
Helmholtz resonator, vneck, will be much larger than the velocities of the fluid near the neck either
inside the volume, vvolume, of the resonator or in front of the neck. The streamlines for the flow
transition will be bent [9], but if the amplitude of the oscillation is sufficiently small, the transition will
be smooth.9 At higher amplitudes, there could be all kinds of turbulent effects, such as vortex shedding
and jetting, which will be irreversible and thus dissipative. These effects can be very important in high-
amplitude resonators, but for the present linearized analyses, we are restricting our attention to

Fig. 8.10 Excerpt from On the Sensation of Tones (Dover, 1954), showing the (apparently glass) resonator developed
by Helmholtz for frequency analysis. (a) is the neck of the resonator and (b) is a funnel-shaped tube that is intended for
insertion into the ear canal

9 The “smallness” criterion for the amplitude of oscillation is somewhat arbitrary, depending upon the desired accuracy of
any particular calculation, but a reasonable rule of thumb is to require that the peak-to-peak displacement of the gas in the

neck, 2 bξ��� ���, is at least ten times smaller than the length of the neck: 2 bξ��� ��� ¼ 2 bU��� ���=A� �
=ω < Δxneck=10ð Þ.
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acoustical networks that oscillate by an infinitesimal amount away from their equilibrium state. At this
point in our investigations, if such high-amplitude effects occur, then we would just simply decrease
the excitation amplitude until they disappear.

In the days before the advent of electroacoustic transducers and amplifiers that could convert
sound waves into electrical signals whose frequency content could be determined by electronic filters,
spectrum analyzers, and FFT signal analyzers, acousticians could use Helmholtz resonators placed in
their ears to determine the frequency of sounds. (Another option was to compare the observed
tone to the frequencies of a set of tuning forks, like those shown in Fig. 5.11). Figure 8.12 shows a
set of Helmholtz resonators that were used in an acoustic laboratory near the end of the nineteenth
century.

As long as 12,000 years ago, Helmholtz resonators were used as musical instruments (e.g.,
ocarinas) in Asia and Mesoamerica [11]. Another early use of the Helmholtz resonator was as whistles,
one version of such a whistle is shown in Fig. 8.13. Peruvian whistling bottles were made in
pre-Columbian Peru from 500 BCE (Salinar and Gallinazo cultures along Peru’s North Coast) until
the Spanish conquest of the Incas (1150 AD) [12]. Today, Helmholtz resonators are used extensively
as sound absorbers in architectural applications and as tuned “sound traps” in recording studios, ducts,
and engine mufflers. A hollow brick that is used as a resonant absorber in rooms is shown in
Fig. 8.14 [13].

Fig. 8.11 Schematic
representation of a
gas-filled Helmholtz
resonator consisting of a
neck (inertance) of cross-
sectional area, A, and
length, Δxneck, connected to
volume, V (compliance),
that is assumed to have
perfectly rigid walls

Fig. 8.12 This very large set of 22 Helmholtz resonators is in the Garland Collection of Classic Physics Apparatus at
Vanderbilt University. They were purchased to outfit the Vanderbilt physics department for the opening of the university
in 1875. The tiny funnel-shaped tubes emerging from the tops of the spheres were placed in the experimentalist’s ear
canal; they are not the “necks” of the resonators. The necks of the resonators fit over wooden pegs in the wooden base that
supports the collection
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Fig. 8.13 (Left) Photograph of a double-chambered Peruvian whistling bottle. (Right) Cross-sectional diagram of that
bottle [11]. The whistle, enclosed within the bird’s head, is made from the Helmholtz resonator (A). The bridge handle (B)
joins the body and the neck. The function of the larger volumes (C) is still a matter of controversy after 2500 years. Some
say the larger volumes were intended for the storage of fluids, and others claim the vessels were used exclusively as
whistles for ceremonial purposes, possibly in conjunction with psychotropic drugs [10]

Fig. 8.14 Photographs of two hollow bricks used as low-frequency “tuned absorbers” for reverberation control in
buildings. The top of each brick has been removed and replaced with a transparent cover. (Left) The brick is being driven
at its Helmholtz frequency, fo ¼ 210 Hz. The uniformly spaced striations of the cork dust indicate that the gas is
oscillating within the neck with uniform velocity amplitude. (Right) The brick is driven at a frequency corresponding to
the first open-open standing wave mode of the neck, f1¼ 1240 Hz. The absence of striations around the center of the neck
indicates that it is the location of a velocity node, while the striations near the neck’s ends indicate velocity anti-nodes at
those ends [13]
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8.5.1 Helmholtz Resonator Network Analysis

We can analyze the response of our Helmholtz resonator by drawing the equivalent circuit shown
schematically in Fig. 8.15. For this analysis, we will assume that the resonator is placed in an externally
generated sound field with pressure amplitude, bpj j, and with angular frequency, ω, so that outside the
neck of the resonator, p tð Þ ¼ ℜe bpejω t½ 
. Since the end of the compliance that is not joined to the neck
is sealed, that pressure can only be applied to the compliance through the neck (inertance). For that
reason, the “high” end of the voltage generator, representing the externally imposed pressure, is
connected to the one end of the neck but is “grounded” to the closed end of the compliance (compare
Fig. 8.11 with Fig. 8.15).

The volume velocity that is able to enter the compliance through the resonator’s neck represents the
resonator’s response to the oscillating pressure imposed beyond the neck. Before calculating the
amplitude and phase of the (complex) amplitude of the volume velocity as a function of the frequency,bU ωð Þ , it is useful to consider the limits of the response at frequencies well above and below the
resonance frequency of the resonator, ωo, where the impedance of the inertance, ZL ¼ jωL, and the
impedance of the compliance, ZC ¼ 1/jωC, exactly cancel each other.

From DC to frequencies less than ωo, the gas flows easily through the neck into the compliance, and
the volume velocity amplitude, bU, is controlled by the compliance, in accordance with the definition of
compliance in Eq. (8.26): bU ω < ωoð Þ ffi jωCbp. In this case, because the reactance of the inertance,
XL ¼ ωL, is much smaller than that of the reactance of the compliance, XC ¼ (ωC)�1, the amplitude of
the pressure difference between the ends of the neck, Δbp (see Figs. 8.11 and 8.15), is negligible for
small ω and bpj j � bpcavj j.

At frequencies above resonance, ωo, the inertance of the neck controls how much gas can flow into
the compliance: bU ω > ωoð Þ ffi bp= jωLð Þ. At sufficiently high frequencies, the neck blocks flow into the
compliance so bpcav ω � ωoð Þj j � bpj j, as long as the frequency is still well below that for excitation of
the first standing wave mode of the neck, ω1, shown on the right-hand side of Fig. 8.14, or the
resonance frequencies of the volume (see Chap. 13 and particularly Sect. 13.4 if the volume is
spherical).

Fig. 8.15 This is an electrical equivalent circuit diagram of the Helmholtz resonator shown in Fig. 8.11. The volume

velocity amplitude, bU ¼ buA, is a “current” passing through the neck (inertance) and into the cavity (compliance). That
current is driven by an oscillating pressure, p tð Þ ¼ ℜe bpejωt½ 
, imposed on the end of the neck that is not joined to the
cavity (compliance) and is represented by a voltage generator. The voltage that appears at the junction of the inertance
and compliance represents the pressure amplitude inside the compliance, bpcav . As long as the wavelength of sound is
small compared to the characteristic dimensions of the volume, V1/3� λ, then bpcavwill be uniform within the compliance
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With those frequency limits in mind, we can write down the general expression for the amplitude of
the volume velocity that enters the compliance through the neck: bU ωð Þ ¼ bp=Z ωð Þ. With L and C “in
series,” the total acoustical impedance, Z(ω), is just the sum of the neck’s acoustical impedance, jωL,
and the volume’s acoustical impedance, jωC.

Z ωð Þ ¼ ZL þ ZC ¼ jωLþ 1
jωC

ð8:49Þ

The acoustical impedance, as written in Eq. (8.25), determines the amplitude of the oscillating
component of the pressure, bpcav, inside the compliance, based on the control of the amplitude of the
volume velocity, bU ωð Þ, that is imposed by the acoustical impedance in Eq. (8.49).

bpcav ¼ bU
jωC

¼ 1
jωC

bp
jωLþ jωCð Þ�1

" #
ð8:50Þ

The term within the square brackets in Eq. (8.50) incorporates the substitution bU ωð Þ ¼ bp=Z ωð Þ. When
the denominator within the square brackets vanishes, the theory (in its current dissipationless form!)
predicts that the pressure inside the compliance will become infinite, since Z (ωo)¼ 0 at the Helmholtz
resonance frequency.

ωo ¼ 1ffiffiffiffiffiffi
LC

p ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

VΔxneck

r
ð8:51Þ

The divergence of bpcavj j as ω approaches ωo will be eliminated when we add dissipation to our
lumped-element model using DELTAEC in Sects. 8.6.7 and 8.6.8 and in the analyses provided in Sect.
9.4.4 that apply the thermoviscous boundary layer losses. The acoustic pressure amplitude in the
compliance is “amplified” by the resonance near ωo and attenuated far above ωo.

bpcavbp ffi ZC

ZC þ ZL
¼ ω2

o

ω2
o � ω2 if ω 6¼ ωo ð8:52Þ

It is also important to consider the phase of bpcav=bp at low and at high frequencies compared to ωo,
based on the right-hand term in Eq. (8.50). At ω� ωo, fluid easily enters the compliance, and both p (t)
and pcav (t) are in-phase; when the pressure outside the volume is high, the pressure inside the volume
is high also. For ω � ωo, the sign in the denominator in Eq. (8.50) becomes negative indicating that
p (t) and pcav (t) are 180 degrees (π radians) out-of-phase. That phase reversal is exploited to invert the
phase of the radiation from the rear of a loudspeaker cone in a bass-reflex loudspeaker enclosure so it
will add to the pressure produced by the front of the loudspeaker, as discussed in Sect. 8.7. In that case,
the Helmholtz resonator is used to enhance the low-frequency output of a loudspeaker.

8.5.2 A 500-mL Boiling Flask

With Eq. (8.51), we are now in a position to calculate the frequency of a Helmholtz resonator and
compare measured results to the theory. Substitution of the resonator dimension and sound speed,
provided in the caption of Fig. 8.16, into Eq. (8.51) predicts fo ¼ ωo/2π ¼ 245.3 Hz. The experimen-
tally determined frequency is fexp ¼ 213.8 Hz. The measured frequency is nearly 13% lower than the
calculated result. That discrepancy is far greater than expected based on our ability to accurately
determine the flask’s physical dimensions or our ability to measure the resonance frequency (about
	1.5 Hz out of 214 Hz or approximately 	0.7%).
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As we will see later, this discrepancy is mostly a result of the fact that the oscillating gas flow does
not stop abruptly neither at the lip of the neck nor at the neck’s entrance into the spherical volume of the
boiling flask.10 The gradual transition of the flow from the oscillations within the neck to the stagnant
gas surrounding the exterior of the resonator and inside of the volume is usually represented by a
“radiation mass,” which we will calculate when we study the radiation from a baffled piston (e.g.,
loudspeaker) in Sect. 12.8.3 and an unbaffled piston in Sect. 12.9. That additional mass increases the
inertance of the neck and is usually incorporated into Eq. (8.51) by defining an “effective length,”
Δxeff > Δxneck, that is the sum of the physical length (in this case, Δxneck ¼ 49.2 mm) plus some
constant times the radius of the neck.11

Fig. 8.16 Photograph of a 500 ml boiling flask and a B&K 100 microphone (Type 4144; S/N 473976) mounted on a ring
stand. The resonance frequency was determined by blowing over the neck to excite the Helmholtz resonance and
measuring the frequency of the microphone signal using an HP 3561A Spectrum Analyzer. The nominal volume of the
flask is 500 � 10�6 m3. The diameter of the neck is Dneck ¼ 25.0 	 0.1 mm, so the neck’s cross-sectional area is
A ¼ π(Dneck)

2/4 ¼ 490.9 � 10�6 m2. The length of the neck, as measured from the top of the lip to the first flare into the
volume, isΔxneck¼ 49.2 mm. The temperature in the laboratory during measurements tabulated in Fig. 8.17 was 22.5 C,
corresponding to a speed of sound, c¼ 345 m/sec. To the right and left of the ring stand are the graduated cylinder and the
syringe used to measure the water added to the flask that varied the volume producing the data plotted in Fig. 8.17

10 The frequency is also lowered to a lesser degree by the fact that some of the gas in the spherical volume is being
compressed and expanded isothermally in regions close to the boundary and the viscous drag of the gas adjacent to the
walls of the neck increase its effective inertance. These effects will be included in the DELTAEC model in Sects. 8.6.10
and 8.6.11. The theory of these thermoviscous boundary layer effects is covered in Chap. 9 and calculated explicitly for a
Helmholtz resonator in Sects. 9.4.3 and 9.4.4.
11 As we will see, the standard “recommended effective length correction” improves the agreement between the
measurement and the theory of Eq. (8.51), although it is not exact, since the flow transition between the neck and
volume is somewhat shape-dependent as discussed by J. B. Mehl, “Greenspan acoustic viscometer: Numerical
calculations of fields and duct-end effects,” Journal of the Acoustical Society of America 106(1), 73–82 (1999).
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Although we are not ready to make a theoretical calculation of an effective length correction for the
neck in our example, we can use Eq. (8.51), and the measured frequency, to make an experimental
determination of the neck’s effective length based on the measured Helmholtz resonance frequency,
fexp.

Δxeff ¼ c
2π f exp

� �2
A
V

ð8:53Þ

Substitution of the measured value for ΔV ¼ 0 in Fig. 8.17 into Eq. (8.53) produces a value of
Δxeff ¼ 64.7 mm, corresponding to a length correction of Δxeff – Δxneck ¼ 15.5 mm ¼ 1.24a, where
a ¼ Dneck/2 is the radius of the neck.

In principle, the effective length is independent of the volume of the Helmholtz resonator, as long as
the flow contours representing the streamlines from the neck are not perturbed by interactions with the
closed end of the volume. We can test this assumption by changing the volume, V, of the resonator.
This can be accomplished by injecting measured quantities of water (assumed to be incompressible)
into the boiling flask using the apparatus in Fig. 8.16. Neither the sound speed, c, the neck area, A, nor
the neck length, Δxneck, would be affected by these incremental changes in volume, ΔVi.

Equation (8.51) can be rearranged to allow the square of the measured period, T2
i ¼ f�2

i , to be
plotted against the added volume of water, ΔVi.

c2

4π2
A

� �
T2
i ¼ Δxeff Vo � ΔVið Þ ð8:54Þ

The slope of the best-fit line in Fig. 8.17 will determine Δxeff. The empty volume of the resonator, Vo,
will also be determined by the fit: Vo ¼ �(intercept)/(slope).

It is visually apparent from the quality of the least-squares straight-line fit to the data in Fig. 8.17
that Eq. (8.51) and Eq. (8.54) do an excellent job of representing the behavior of the Helmholtz
resonator. The relative uncertainty in the slope can be related to the square of the correlation coefficient

ΔVi

(ml)

0

46

96

146

196

246

296

Freq.

(Hz)

213.8

225.6

236.8

252.3

273.0

301.7

333.6

Fig. 8.17 The data in the table at the left is plotted on the graph at the right based on the linearized least-squares
expression in Eq. (8.54). The scaled period squared, [c2A/4π2]�Ti2, is plotted against the added volume of water, ΔVi.
Based on the slope and intercept of the best-fit line (see Sect. 1.9), Δxeff ¼ 64.4 	 1.0 mm, and Vo ¼ 502.4 ml
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for the fit, R2 ¼ 0.9989 (see Sect. 1.9.2), producing a relative uncertainty in the effective length of
	1.5%. That is a little better than what would be predicted based on a relative uncertainty in the
resonant frequency measurement (	0.7%) and an estimate of the relative uncertainty in the volume
changes of about 1 ml � 50 ml ¼ 2%. It is also encouraging that the ratio of the intercept to the slope
produced an effective empty volume for the resonator of 502.4 ml.

8.6 DELTAEC Software

To this point, we have not yet exploited the power of digital computation beyond the generic
spreadsheet and curve-fitting programs provided by mass-marketed commercial software packages.
Several software packages have been developed specifically to serve the acoustic community. In
underwater acoustics, ray-tracing programs are very popular, as are commercial packages such as LMS
Sysnoise [14] used for modeling sound in three-dimensional spaces, BassBox Pro [15] for designing
loudspeaker enclosures, or X-OverPro for designing loudspeaker crossovers.

The program that has become an important tool for thermoacousticians [16] since 1985 is the
Design Environment for Low-amplitude Thermoacoustic Energy Conversion (DELTAEC). Drs. G. W.
Swift and W. W. Ward developed it at Los Alamos National Laboratory for design and analysis of
thermoacoustic engines, refrigerators, and gas mixture separators. It was updated in 2013 to provide an
improved user interface with the help of John Clark [17]. Although it has the capability to model heat
exchangers and porous media used in such thermoacoustic systems, DELTAEC is also well-suited to the
design and/or analysis of any quasi-one-dimensional acoustical network consisting of ducts, horns,
waveguides, compliances, branches, flow impedances, and loudspeakers in a variety of fluid media
bounded by a variety of solids.12

Its results have been tested extensively in laboratories worldwide, and it executes calculations very
quickly. This high computational speed is accomplished by using analytical results for the transverse
variation in the complex pressure and velocity fields. For example, in a CONE segment, solutions to
the Webster horn equation [18] provide the pressure as a function of position even through the cross-
sectional area is changing and there are non-zero radial components of the fluid’s velocity.

DELTAEC numerically integrates along one spatial dimension using a low-amplitude, acoustic
approximation13 assuming sinusoidal time dependence, e jωt. It simultaneously integrates the continu-
ity equation (7.32), the Navier-Stokes equation (7.34), and other equations, such as the energy
equation, in a geometry specified by the user’s choice of a sequence of “segments,” such as ducts,
compliances, transducers, heat exchangers, and thermoacoustic stacks or Stirling regenerators.
DELTAEC always assumes steady-state conditions and harmonic time dependence of all acoustic
variables.

We will use DELTAEC initially to revisit the 500 ml flask used as a Helmholtz resonator in the
example of Sect. 8.5.2. Since DELTAEC includes the dissipative effects that we have ignored thus far, it

12 The current version of DELTAEC includes the thermophysical properties of the following gases and liquids: nitrogen,
dry air, humid air, carbon dioxide, hydrogen, deuterium, helium, neon, He/Ar and He/Xe gas mixtures, natural gas
combustion products, liquid sodium, and sodium/potassium eutectic (NaK). Solids include an “ideal” solid with infinite
heat capacity and infinite thermal conductivity, copper, nickel, stainless steel, tungsten, molybdenum, Kapton®, Mylar®,
and Celcor® (a porous ceramic matrix). It also allows the user to create their own �.tpf file to represent the temperature
and pressure-varying thermophysical properties of user-specified fluids and solids.
13 DELTAEC also supports some nonlinear (i.e., high-amplitude) acoustical effect such as boundary layer turbulence,
“minor loss,” and amplitude-dependent interfacial discontinuities.
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will provide some additional performance information, as well as serve as a familiarization exercise for
the software.

8.6.1 Download DELTAEC

The latest version of DELTAEC is freely available on the web. Before downloading the software, the
DELTAEC User’s Guide, and sample DELTAEC files, it is a good idea to create a DELTAEC “folder” in
your computer’s main directory. The following link would take you close to the download site:

http://www.lanl.gov/thermoacoustics/DeltaEC.html
The DELTAEC software installer is also available at the Springer web site for this textbook and the
Springer site for Swift’s textbook Thermoacoustics: A Unifying Perspective for Some Engines and
Refrigerators. [21].

You will have to unzip (Mac) or execute (Windows) the file. That process also installs a copy of the
DELTAEC User’s Guide. The manual is in �.pdf format and contains searchable hyperlinked text. We
will only be concerned with the first four chapters of the Guide, but the Reference Sections (Chaps. 8,
9, 10, 11 and 12) are very useful once you have learned the basics. The Reference Sections also contain
the equations that are implemented in the software.

This textbook will employ a “two-pronged approach” to familiarize you with some of the elemen-
tary acoustical functions that are provided by DELTAEC. The primary sources of information are the
first four chapters of theUser’s Guide. The first chapter provides some background on the software and
how it functions. The second chapter introduces the user interface by modeling the 1992 Penn State
Championship Bottle both as a Helmholtz resonator and as an open-closed standing wave resonator of
variable cross-section (see Problem 6 at the end of this chapter). The plotting features of DELTAEC are
covered in the third chapter, and the reverse Polish notation (RPN) segment, which lets the user
perform customized calculations within a model, is covered in the fourth chapter and introduced here
(briefly) toward the end of Sect. 8.6.8.

Although the DELTAEC User’s Guide should be your primary reference for exploitation of DELTAEC
software, the Guide will be augmented in this textbook by providing several examples in the remainder
of this section and the next. These examples are directly related to acoustical networks that have
already been analyzed and will apply DELTAEC to model a standing wave resonator, the 500 ml
Helmholtz resonator from Sect. 8.5.1, three coupled Helmholtz resonators in Sect. 8.7, and a bass-
reflex loudspeaker enclosure based on the Helmholtz resonator model in Sect. 8.8.

8.6.2 Getting Started with DELTAEC (Thermophysical Properties)

After installing the DELTAEC software on all of your computers, a DELTAEC icon should appear on each
computer’s desktop near the lower left corner of the screen. You can open DELTAEC by double-
clicking on the icon. The design of that icon is motivated by the thermal core of a traveling-wave
thermoacoustic engine developed at Los Alamos National Laboratory [19].

DELTAEC usually requires the thermophysical properties of both the fluid supporting the wave and
the properties of the solid that contains the fluid in each segment to execute the integrations. We can
access this feature directly to have DELTAEC provide these data. When you open DELTAEC by clicking
on the icon (instead of opening an existing �.out file), you will be presented with a “window” that is
blank but has pull-down menus at the top. Under the “Help” menu, you can access the User’s Guide.
Under the “Tools”menu, you can access the ThemoPhys(ical) Prop(erties) window shown in Fig. 8.18.
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That window can also be opened from the keyboard by typing “t” when the computer’s attention is on
the main DELTAEC window.

As our first example, we’ll use the environmental conditions under which the algebraic results for
the 500 ml Helmholtz resonator (Figs. 8.16 and 8.17) were calculated to provide the equilibrium fluid
parameters for the air inside that resonator. In the Thermophysical Properties window, modify the gas
type to be “air” using the pull-down arrow, the frequency to be 245.3 Hz, and the pressure to be
standard atmospheric pressure of 101,325 Pa. Since DELTAEC variables are specified exclusively in
MKS units, the temperature must be input in absolute [kelvin] units. The data for our 500 ml example
was taken at 22.5 C, so input the absolute temperature, Tm ¼ (22.5 + 273.15) K ¼ 295.65 K, into the
“Temp(K)” window.

With all of those values appearing in their appropriate location, use your mouse to click on “Show.”
This should instantly generate the requested thermophysical properties of air under the specified
conditions as shown in Fig. 8.19.

The thermophysical property file header in Fig. 8.19 includes the fluid type (air), the mean
temperature (Tm ¼ 295.65 K), and the mean pressure ( pm ¼ 101,325 Pa). The second line contains
the frequency-independent fluid properties and their associated units. The first four parameters in the
top line are the ratio of specific heats “gamma,” sound speed “a(m/s),”14 density “rho(kg/m^3),”
and specific heat at constant pressure “cp (J/kg/K).” These parameters should already be familiar.

The subsequent transport parameters will be discussed in Chap. 9, where the dissipative terms in
Eqs. (7.34) and (7.43) are analyzed. The isobaric coefficient of thermal expansion, βp ¼ � (1/ρ) (∂ρ/
∂T )p, “beta (1/K),” is just the reciprocal of the absolute temperature, Tm, for an ideal gas. In our
case, βp¼ (1/Tm)¼ 0.33824� 10�2 K�1, agreeing with the DELTAEC output to the five decimal places
displayed. Next in line are the thermal conductivity, “k(W/m/K)”; the dimensionless Prandtl number
(see Sect. 9.5.4), “Prandtl”; and the shear viscosity, “mu(kg/s/m).”

The bottom data line in Fig. 8.19 lists the frequency, “frequency¼,” and two frequency-
dependent results: the viscous boundary layer thickness, “delta_nu¼,” also known as the viscous

Fig. 8.18 Screenshot of the DELTAEC Thermophysical Properties window. The default material parameters are for 1 bar
(100,000 Pa) helium gas at 300 K and an acoustic excitation at 100.0 Hz

Fig. 8.19 Screenshot of the thermophysical values for the air used in the 500 ml Helmholtz resonator of the example in
Sect. 8.5.2

14 The Los Alamos Thermoacoustics Group uses Rayleigh’s traditional notation for sound speed, a, instead of the more
contemporary choice of c to represent sound speed. This is because c is used quite frequently in thermoacoustics to
designate specific heats.
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penetration depth, δν, and the thermal boundary layer thickness, “delta_kappa¼,” aka the thermal
penetration depth, δκ, which will be derived and discussed thoroughly in Chap. 9.

8.6.3 Creating planewave.out

There are several ways to create a DELTAEC model of an acoustical network. The result of such a model
is a �.out file that consists of a sequence of segments like those shown in Fig. 8.21. One can start “from
scratch,” but I generally prefer to modify an existing file using the file editing commands in DELTAEC.

We will start by creating a file “from scratch” that represents a simple plane wave resonator of
constant cross-section that is shown schematically in Fig. 8.22 and will result in the DELTAEC model
shown in Figs. 8.20 and 8.21. Once we gain some experience with the way DELTAEC expects you to
insert segments and input the parameters contained within each segment, we will modify planewave.
out to create a DELTAEC model of the Helmholtz resonator example based on the 500 mL boiling flask
in Sect. 8.5.2. To begin creating “planewave.out,” you should have already downloaded DELTAEC
from the Los Alamos Lab’s “Thermoacoustics Home Page.”

If DELTAEC is still open (because you were working on the thermophysical example), you can go to
the “File” pull-down menu tab, and click “New.” That action will produce a file with a single BEGIN
segment and title the model “NewModel.” Next to “NewModel” is “ ” in a font.
By double-clicking on an item in a font, you are able to change it. Double-click on “Change Me”
and type in “Planewave Resonator.” There will also be a box that will let you add comments, but we
won’t put in any comments, so just click the “OK” button.

Before going further, now would be a good time to save the file. This is done by going to the “File”
drop-down menu and selecting “Save As.” Chose the directory in your computer where you would like
to save this file (a convenient choice is the same folder that holds the DELTAEC program), and then title
the file “planewave.out.” You will see that the “tab” at the top of the DELTAEC model will change its
name from “NewModel” to “planewave.” As we add segments, it is a good idea to “Save” the file at
regular intervals or before quitting.

BEGIN Segment. All DELTAEC models start with a BEGIN segment that specifies the “global”
features of the model, like the gas or liquid type (e.g., helium, air, humid air, sodium, etc.); the mean
fluid pressure, pm; the mean temperature of the fluid at the start of the model, Tm; and the acoustic
frequency, f. You can see these parameters when you click on the “+” sign at the left of BEGIN. This
will “unpack” the segment and let you see the parameters it specifies. For very long models, being able
to unpack individual segments with the “+” or “compact” with the “�” can be convenient.

In the unpacked form, you see seven parameters in font that we are free to modify. For this
example, we’ll accept the default values for (0a) ¼ Mean P ¼ 100 kPa, (0b) ¼ Freq ¼ 100 Hz, and
the beginning temperature, (0c) ¼ TBeg ¼ 300 K. We’ll also accept the default Gas Type as

. We can ignore the “Optional Parameters” for now. The use of the segment number and

Fig. 8.20 Screenshot of the file “planewave(1).out” is shown before the individual segments are expanded. At the left
are the line numbers that you will notice are not consecutive. That is because several lines are suppressed and only the
segment numbers and their titles are shown
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parameter in parentheses is a convenient way to identify parameters in the model. Notice again that all
parameters are specified in MKS units.

Our intention will be to drive this resonator with a sinusoidally varying volume velocity. We’ll set
the initial volume velocity magnitude, (0f) ¼ |U| ¼ 0.010 m3/s, by clicking on the blue in the
(0f) position. Doing so should bring up the “Parameter Edit: 0f |U|” window. Type 0.01 into the
“Value” line and then click “OK.” That should assign m3/s as the value for (0f). By

Fig. 8.21 Screenshot of the fully expanded file “planewave(1).out” before running the program. Since the file has not
yet run, all of the results contained in the right-hand column are . These “results,” which are designated with capital
letters, contain only zeros. The highlighted “Gues(ses)” on lines 0d and 0e indicate the pressure magnitude, and
phase, |p| and Ph(p), are the “guesses.” Their values are also because the program has not yet modified those
guesses to satisfy the “targets.” The highlighted “Targ(ets)” on line (4a) and line (4b) indicate that those values are
“targets.” DELTAEC will attempt to adjust the values of the guesses to meet the targets when the program is run

8.6 DELTAEC Software 385

www.dbooks.org

https://www.dbooks.org/


leaving (0 g) ¼ Ph (U) ¼ 0, we define all other phases in the model with respect to the phase of the
driving volume velocity.

Since we are specifying the volume velocity that will drive the resonator, we will rely on DELTAEC
to calculate the resulting acoustic pressure magnitude, |p|, and the phase of that pressure, Ph (p),
with respect to Ph (U) ¼ 0 deg. at any frequency, Freq ¼ (0b). To impose this choice, we can
double-click on that is the default value in (0d) to open the “Parameter Edit: 0d |p|” window. Type
in 1000 for the Value, check the “Set as Guess” box, and click “OK.” This brings up a Gues label to the
left of (0d) to remind us that DELTAEC will be allowed to modify this value of bpj j to satisfy the model
and its boundary conditions. It also puts our guess for pressure in font to warn us that its value is
not based on a solution of the model: (0d) ¼ |p| ¼ Pa. Since we don’t know the phase of the
pressure with respect to volume velocity, we also need to make (0e) ¼ Ph (p) a guess. Just click on
the default value to bring up the “Parameter Edit: 0e Ph(p),” check the “Set as Guess” box, and
click “OK.”

This indicates that the values are only “guesses” and DELTAEC’S “shooting method” has been given
“permission” to change those values to satisfy constraints placed on the model by the quantities that
have been designated “targets.” In this file, those “targets” will be the rigid (infinite) impedances
specified in the final HARDEND segment, (4a) and (4b). That completes the BEGIN segment.

SURFACE Segment. Now we can specify the area of the “piston” that will produce the volume
velocity we specified in (0f). Although we could just let the BEGIN segment produce that volume
velocity, since the end of the resonator has some surface area, including a SURFACE segment after the
BEGIN segment will mean that any dissipation on that “end cap,” acting as a piston, will be included in
our model. To add this next segment, just “right click” in the model, and an “Append” option will
appear with a list of possible segments listed alphabetically. You may have to use the arrow to scroll
down to see SURFACE. When it appears, just click on it, and DELTAEC will add the new SURFACE
segment to your model.

It is useful to name the segment, so click on “ ” that is to the right of SURFACE,
type in “Piston Face,” and then click “OK.” Again, we will not include any comments. SURFACE has
only one parameter and we’ll set it to (1a) ¼ Area ¼ 0.01 m2. Just click on to bring up the
“Parameter Edit: 1a Area” window, enter a “Value” of 0.01, and then click “OK.” SURFACE is a
solid, so the segment allows specification of “Solid Type.” Accept the default value of “ .”
“Ideal” just means that we want DELTAEC to assume the solid has infinite heat capacity and infinite
thermal conductivity, resulting in a surface that holds the gas isothermal at the gas-solid interface.15 If
you double-click on “ ,” it will bring up the menu of other built-in solid materials (e.g.,
stainless steel, copper, mylar, etc.). All physical segments in DELTAEC require specification of the
gas type and/or solid type.

Unlike the BEGIN segment, the SURFACE segment has a list of six “Results,” from (0A)¼ |p| to
(0F) ¼ Edot, at the right-hand side of the segment. All of the numerical results are in font to warn
us that the model has not run and that the current values are only placeholders. After the program has
run successfully, all of the results that are currently shown in will change to , indicating the
upgrade in the model status to actual “results.”

The results will be discussed once the model is complete and has run successfully in Sect. 8.6.4.
Now might be a good time to “Save” the file to include the newest segment either by using the “File”

15 The ability of a solid to hold the temperature of the gas constant at the solid-gas interface is quantified by the
εs parameter discussed in G. W. Swift, “Thermoacoustic engines,” Journal of the Acoustical Society of America 84(4),
1145–1180 (1988), Eq. (59). For most solids in contact with ideal gases at “ordinary” pressures, εs ffi 0, although if a
sound wave is propagating through a liquid metal it is impossible to specify any solid material with sufficient heat
capacity and thermal conductivity to hold the liquid isothermal at the liquid-solid interface.

386 8 Nondissipative Lumped Elements



drop-down menu or by simply clicking on the “floppy disk” icon on the banner beneath the drop-down
menus.

DUCT Segment. We now add the resonator, a tube of circular cross-section. “Right click” in the
model to activate the “Append” option and choose DUCT. Click on “ ” that is to the
right of DUCT, name this segment “Resonator Body,” and then click “OK.” To specify the DUCT’s
cross-sectional area (2a), click on the default value to bring up the “Parameter Edit: 2a Area” window.
This time we will not enter a value but instead click on the “SameAs” button. Since the only other
parameter in our model with units of area is (1a), DELTAEC has guessed that (1a) might be a good
choice. This is correct, so just click “OK.” That will make the area of the DUCT the same as the area of
the SURFACE (piston) segment. Choosing to link those areas makes it easy to change the cross-
sectional area of the entire model by just changing the cross-sectional area of the piston.

DELTAEC has also chosen to make a “Master-Slave” linkage. It automatically chose the DUCT’s
Perimeter (2b) to be equal to 0.35449 m. DELTAEC guessed that our DUCT was circular and made
the Perimeter, Π ¼ ffiffiffiffiffiffiffiffi

4πA
p

. It also placed a notice to the right of (2a) and (2b) to remind us of that
link with “Mstr 2a” to indicate that the value of (2a) is controlling the value of (2b). Again, if we
chose to modify the cross-sectional area of the DUCT, then that Master-Slave link would keep the
DUCT’s cross-section circular. To accommodate ducts of different shape, the perimeter of the duct
(2b) can be specified independently from its area (2a). You can see that choice if you double-click on
Master-Slave Links to bring up the dialog box that has made the default choice: “Maintain constant
perimeter as area changes.” Double-click on the Length (2c) and make the length of the DUCT be
5.00 m.

Although DELTAEC claims to work for “low-amplitude” acoustics, there are features that allow
models to incorporate some nonlinear fluid dynamics to accommodate higher amplitudes. Double-
click on the to open a dialog box that will let you choose
low-amplitude (laminar) flow or high-amplitude (turbulent) flow. Click on the “Laminar” button.
For turbulent flow, you would also have to specify a surface roughness factor.

SURFACE Segment. Append another SURFACE segment to represent the other end of the resona-
tor. Name that segment “End Cap,” then double-click on the Area, and make it “SameAs” (2a).

HARDEND Segment. The final HARDEND segment is a “logical” segment that is required to
complete the file. It is one of only two possible choices, the other being SOFTEND. Use “Append” to
add the final HARDEND segment and rename it as “Rigid Termination.”

In a SOFTEND segment, the real and imaginary parts of the impedance are specified by the user. If
the SOFTEND is infinitely “soft,” then both the real part of the impedance, R (4a), and the imaginary
part, I (4b), are zero. Of course, there are other choices that would make sense in other situations. For
example, the real part of the SOFTEND impedance could be made equal to ρmc/A for a duct to create an
anechoic termination that would make the solution a traveling wave instead of a standing wave, as
discussed in Sect. 3.6.3 for a string with a resistive termination.

For an ideal HARDEND, the impedance is infinite. Since 1 is a difficult concept for a computer,
HARDEND requires specification of the real and imaginary parts of the complex admittance, which is
the (complex) reciprocal of the impedance. For an infinitely rigid and lossless HARDEND condition,
ℜe [1/z] ¼ ℑm [1/z] ¼ , as shown in lines (4a) and (4b) of Fig. 8.21.

We will make each of those rigid boundary conditions a “Target” that DELTAEC will attempt to
satisfy. This is done by double-clicking on “ .” That will bring up a dialog
box that allows us to select the first two of three possible targets. Check the box next to (4a) to make the
real (i.e., dissipative) part of the admittance a target, R(1/z) ¼ 0, and check the second box (4b) to
make the imaginary (i.e., reactive) part of the admittance, I(1/z) ¼ 0, also a target. To the left of
both of those entries is “Targ.” If you double-click on zero in either (4a) or (4b), you will open the
dialog box that shows that the “Set Target” box has been checked. This now designates the values
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specified in (4a) and (4b) as “targets” that DELTAEC’s “shooting method” will try to make the results in
4G and 4H equal to those targets by modifying the values of guesses, 0d and 0e.

At this point, you should be sure to “Save” the model and then compare it to the screenshot in
Fig. 8.21. If you click the “⊞/⊟” icon in the banner, the entire model should collapse to just the segment
titles as shown in the screenshot in Fig. 8.20. Click on that icon again and all of the segments for the
entire model should “unpack.”

Figure 8.22 provides a schematic diagram of the physical resonator’s parts that are modeled in the
planewave.out file shown above the “schematic” generated by DELTAEC’s “View Schematic” function
available under the “Display” pull-down menu. I like to check the schematic view since it is drawn to
scale. If I’ve entered a geometrical parameter incorrectly (e.g., a length in centimeters instead of
meters), then the schematic view will look incorrect.

8.6.4 Running planewave.out

There are two ways to run DELTAEC. One way is to just let the program integrate its way through a file
starting at the BEGIN statement. If complex bp and bU are specified in the BEGIN segment, then
DELTAEC just integrates its way through the model, matching the complex values (both magnitude and
phase) of bp and bU at the interfaces between segments of the model. I find that I rarely use that mode
because most models have constraints that are not specified in the BEGIN segment and those
constraints determine the values of bp and bU in all of the segments, including BEGIN, as was the
case with the HARDEND condition in segment (#4) that dictated the complex pressure in the BEGIN
segment (#0), given the amplitude of the excitation by the assumed volume velocity of magnitude, |
U| ¼ 0.01 m3/s, in (0f).

Most of the time, I use the “equation solver” mode that lets DELTAEC adjust the “guesses” in an
attempt to achieve the “targeted” values. The “shooting method” requires that there be an equal number
of guesses and targets.16 They can be viewed at any time by going to the “Display” pull-down menu
and selecting “Guesses Targets.” You can also access this display from the keyboard by typing “g”
while the computer’s focus is on the main DELTAEC window.

BEGIN 0
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Fig. 8.22 (Above) A schematic diagram (not to scale) of the helium-filled plane-wave resonator modeled by planewave.
out. The cross-sectional areas of the two SURFACE segments and the DUCT are all 0.010 m2. (Below) This drawing is
generated by DELTAEC’s “View Schematic” function available under the “Display” pull-down menu. It preserves the
physical shape of this long, slender resonator. The numbers in the drawing generated by DELTAEC correspond to the
segment numbers in the model displayed in Fig. 8.20 (collapsed) and Fig. 8.21 (expanded)

16 In using DELTAEC, choosing the guesses and targets will require that the user have a reasonably good understanding of
the network that is being modeled. For example, targeting the frequency while guessing the pressure would make no
sense, since the sound speed of an ideal gas is pressure-independent, as demonstrated in Sect. 10.3.2.
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The particular choice of targets and guesses shown in Fig. 8.23 implies that we will be asking
DELTAEC to determine the response of the modeled system to a volume velocity of m3/s imposed
on one end of the resonator at a frequency of Hz.

The time has come to run planewave.out. The run starts either (i) by clicking on the run
arrowhead at the top of the DELTAEC window, (ii) by going to the “Tools” pull-down menu and
selecting run, or (iii) by typing “r.” DELTAEC responds by generating a “Run Monitor” window that is
shown in Fig. 8.24. We can view the Guesses Targets window again and see how the guesses have
changed. We see that under the specified conditions (|U| ¼ m3/sec and Freq. ¼ Hz), the
pressure at the piston location (0d) is Pa and the phase difference between bU and bp at that
location is .

Looking back at the expanded planewave.out file, we see that all of the results in the right-hand
column and both guesses, (0d) and (0e), have changed from to indicating that the solver has
found a self-consistent solution.

8.6.5 Finding the Resonance Frequencies of planewave.out

As we might imagine, there is nothing special about operation at 100 Hz. We could ask DELTAEC’s
solver to find the fundamental half-wavelength, λ/2, resonance frequency, f1. Before doing so, let’s run

Fig. 8.23 Screenshot of the “Guesses and Targets” window shows the current choices of guesses that the solver will
modify to reach the targets. The targeted values are in , but the guesses and the results are still in , since the
program has not yet been run. The values of |p| and Ph(p) are the values that were input to the file. Since these are
designated “guesses,” DELTAEC will change them in an attempt to force the real part of the admittance, R(1/z) in (4a),
and the imaginary part, I(1/z) in (4b), to both simultaneously be zero

Fig. 8.24 Screenshot of the Run Monitor window after running planewave.out once. The Run Monitor says that a
successful result was achieved after 18 iterations in the span of only 10 milliseconds. The “error” ¼ 0.0000 is a measure
of how close to the targeted values the program was able to reach by adjusting the guesses. (The “error” is the length of a
vector that DELTAEC creates to represent the distance between the results and the targets. The user is free to provide
weights for the components of the error vector that may differ from the DELTAEC defaults)
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Thermophysical Properties to get the speed of sound under the current conditions within the resonator:
c (or a) ¼ 1019.2 m/s. Simple nondissipative acoustical theory suggests that the fundamental
frequency, f1 ¼ c/2 L ¼ 101.92 Hz, much like the fundamental frequency of the fixed-fixed string in
Sect. 3.3.1. If we remove the phase of the pressure (0e) from the guess vector and instead make
frequency (0b) a guess, we can have DELTAEC’s solver find the resonance frequency. By setting the
phase of the pressure (0e) to be the same as the phase of the volume velocity (0 g), the power
delivered to the resonator from the piston is maximized. This is exactly the same result that
determined the resonance of the damped, driven simple harmonic oscillator in Sect. 2.5.

We make the changes suggested above by returning to the “Guesses Targets” window or the
expanded planewave.out file, clicking on the BEGIN:Ph(p) entry, then pressing the “Delete” button,
and confirming the choice by pressing the “Yes” button in the “Clear Guess” window. Now we must
add frequency as a guess. This is done by clicking the “Add Guess” button command and responding
with 0b, the address of frequency in the BEGIN segment. We must also make the pressure be in-phase
with the volume velocity by forcing 0e ¼ . This is easily accomplished by simply clicking on the
value of 0e in the planewave.out file and changing its value from  to .

Alternatively, the previous changes to the guesses and the reset of pressure phase (0e) to zero could
have been accomplished by going directly to the expanded version of the BEGIN segment (#0) and
double-clicking on , which will bring up a “Parameter Edit: 0e Ph(p)” dialog box. Typing “0”
into the value and unchecking “Set as Guess” will have the same effect as the procedure using the
“Guesses Targets” window. Double-clicking on the frequency will again bring up the “Parameter Edit:
0b Freq” dialog box, and clicking on “Set as Guess” will make (0b) the second “Guess.”

Now run the program again. This time the Run Monitor tells us that DELTAEC made 10 runs in
10 msec. The frequency (0b) has changed to Hz (just a bit lower than our estimate of
101.92 Hz, because our half-wavelength calculation ignored dissipation), and |p| has increased to

Pa from 3853.2 Pa, which was its value when we were near resonance at 100 Hz, but not at
resonance.

To demonstrate the versatility of the DELTAEC solver, let’s change the frequency back to 100 Hz,
and ask DELTAEC to “tune” the length of the resonator to put the fundamental resonance exactly at
100 Hz at the specified value of the mean gas temperature. We return to the “Guesses Targets”window
to “Delete” (0b) from the guess vector and make its value 100.0 Hz. This time, click on the value of the
duct length (2c). When the Parameter Edit window opens, you will have the option of checking a box
which says “Set as Guess.” Check the box. If you look at the “Guesses Targets” window, you will see
that the DUCT: Length (2c) is now a guess.

Run the program again to now calculate the length that the DUCT segment would be required to
make 100.0 Hz the resonance frequency. As expected, to lower the frequency by just under 1%, the
length has grown by just under 1% to m.

In a lossless plane wave resonator with rigid ends and uniform cross-sectional area, the higher
resonances corresponding to integer numbers of half-wavelengths fitting between the ends to produce a
harmonic series of resonance frequencies, fn ¼ nf1, where n ¼ 1, 2, 3, . . .1, just as we observed with
the fixed-fixed string in Sect. 3.3.1. To have DELTAEC calculate a few of these overtones, remove
DUCT: Length (2c) from the guesses, replace it with BEGIN: Freq (0b) as the “guess,” and then
change the value of (0b) in the file to Hz. If you run again, DELTAEC finds f2 ¼ Hz.
Modify frequency (0b) again to be Hz to look for f3 ¼ Hz. The reason the sequence of
harmonics is not exactly in integer ratios is that there is dissipation and dispersion within the resonator.
We will be able to understand (calculate!) these effects from the acoustic solutions of the hydrody-
namic equations once dissipation has been introduced in Chap. 9 and the plane wave solutions to those
equations are covered in Chap. 10.
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8.6.6 State Variable Plots (�.sp)

We can convince ourselves that DELTAEC has found the fundamental resonance frequency by using
another valuable feature of the software. DELTAEC will display plots of the acoustic variables
throughout the model by selecting “Plot SP file” from the “Display” pull-down menu. To improve
the resolution of those plots, click on “Edit,” and choose “Options” from the drop-down menu.
Increase the number of Runge-Kutta steps in the “Nint” box from 10 to 50 and click “OK.” Now
“run” again and select “Plot SP file” from the “Display” drop-down menu. In the “header” shown in
Fig. 8.25, uncheck Im[p] and check Im[U] to display the acoustic pressure and acoustic volume
velocity for the n¼ 3 mode of this plane wave resonator. As expected, there are three half-wavelengths
with the volume velocity being zero at both ends and the acoustic pressure being maximum at both
ends.

Figure 8.25 shows that the real component of pressure, Re[p]; the imaginary component of the
volume velocity, Im[U]; and acoustic power flow, Edot, have been selected for plotting. Figure 8.26
shows the plots of those selected variables for both the fundamental (half-wavelength) with
f1 ¼ 100 Hz and the second mode (two half-wavelengths) with f2 ¼ 200.8 Hz.

Fig. 8.25 Screenshot of the state variable plot variable selection window that allows the user to specify which variables
should be plotted, as well as the color and line type (e.g., solid, dashed). For the state variable plots shown in Fig. 8.26, I
have chosen to plot the real part of the pressure, ℜe[p]; the imaginary part of the volume velocity, ℑm[U]; and the
magnitude of the acoustic power flow, Edot, by clicking the corresponding boxes. The x axis of the graph is selected as
the x position along the resonator. Since all plots share a common vertical axis, DELTAEC has plotted the pressure in units
of 10kilo(Pa), the volume velocity unscaled (m3/sec), and the power in hecto(W). Other choices could have been
made with the pull-down menus, and other variables could have been plotted by checking other boxes (e.g., Tm, Re[Z],
etc.)

Fig. 8.26 Screenshot of the state variable plots for the fundamental (left) f1 ¼ 100.0 Hz and second harmonic (Right)
f2 ¼ 200.8 Hz modes of the helium-filled resonator of length 5.0453 m. Since the pressure and volume velocity in a
standing wave are approximately 90 out-of-phase, I have plotted ℜe[p] (black solid line) and ℑm[U]
( ), as well as the power ( ) vs. position along the resonator from the source
(x ¼ 0) to the rigid end (x ¼ 5.0453 m). To allow all of my chosen variables to be clearly visible on a single plot,
DELTAEC has scaled those variables. In the above plots, the pressure has been divided by 10,000 and plotted in unit of
10 kPa, the volume velocity is plotted as [m3/s], and the power has been divided by 100 and plotted as hectowatts
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8.6.7 Modifying planewave.out to Create Flask500.out

Wewill modify planewave.out to represent the Helmholtz resonator of Sect. 8.5.2 by removing the two
SURFACE segments, changing the gas from helium to air, changing the dimensions of the DUCT to
represent the length and cross-sectional area of the neck of the 500 ml flask in Fig. 8.16, and placing a
COMPLIANCE segment between the DUCT and the HARDEND to represent the boiling flask’s
500 ml volume.

Start by clicking on the title above the BEGIN statement and changing it to
“ ” After changing the title, select “Save As”
from the “Edit” pull-down menu, and save the file as “500mlFlask.out.”

Under the “Edit” pull-down menu, select “Kill Segment,” then select “1 SURFACE,” and watch it
disappear from the file. Now that the first SURFACE is gone, DUCT becomes Segment #1. Double-click
on the value of area (1a), change it to m2, and then click “OK.” The neck cross-section is
circular, so the perimeter should be Π ¼ 2(πAduct)

½ ¼ m. The Master-Slave link should have
done that for you. We will use the physical length of the neck as our DUCT length (1c) ¼ m.
Finally, click on the title of the segment DUCT and change it to “ ” It might be a good idea to
save your changes at this point. There is a save icon near the top left of the model.

Some of the variables in the BEGIN Segment #0 also need modification. Again, by clicking on
can be selected from the menu of gases. Modify Mean P (0a) to be the standard value of

Pa and the beginning temperature TBeg (0c) ¼ K. Based on the analysis in Sect.
8.5.2, the Helmholtz frequency is expected to be about Hz, so modify (0b) to reflect that. In the
schematic representation of Fig. 8.15, we let the flask be pressure-driven at the open end of the neck.
Modify (0d) to be Pa,17 and uncheck the “Set as Guess” box. Set the magnitude of the volume
velocity, |U| at (0f), as a guess, after clearing (0d) from the guess vector. Put |U| “in the correct
ballpark” by modifying (0f) to be m3/sec.

Now all that is left is to “Kill” the other SURFACE that is now in Segment #2, and then insert a
COMPLIANCE ahead of HARDEND, which became Segment #2 after the last SURFACE was
deleted from the file. Under the “Edit” pull-down menu, select “Insert,” use the dialog box pull-
down to select COMPLIANCE, and place it before Segment #2 HARDEND.

Renaming the COMPLIANCE from “ ” to “ ” would be an appro-
priate choice. Since the 500 ml volume is spherical, the surface area is Asphere ¼ 4π 3V=4πð Þ2=3
¼ 3.0465 � 10�2 m2. We should really also subtract the neck area, since that part of the sphere has

no surface, so put m2 in “2a.” The volume is 500 ml¼ m3. The solid type can remain
“ .”

Segment #3 can be left as HARDEND, since we do not want any gas to flow out of the end of the
volume that is opposite the neck represented by the DUCT in segment #1. Before going further, it
would be wise to save this file again. Look over the file to see if you have made any obvious data entry
errors (e.g., volume should be 5e-4 and not 5e4), and then hit the “Run” arrow.

8.6.8 Interpreting the �.out File

The results of running 500mlFlask.out are shown in Fig. 8.27. In the BEGIN segment (#0), the inputs
that were “guesses” have been changed to the values that produced the best agreement with the

17 Since this is a linear system, the frequency will be amplitude-independent. By choosing the pressure amplitude to be
unity at the entrance to the neck (0d), the numerical value of the pressure amplitude at resonance in the Helmholtz
resonator’s volume will correspond to the quality factor of the resonance as expressed in Eq. C.1.
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“targets.”We see that the resonance frequency, defined as the frequency where bU and bpwere in-phase
(specified by 0e ¼ 0 g ¼ ), is Hz. This is close to the result of fo ¼ 245.3 Hz calculated
previously using Eq. (8.51).18 At resonance, the magnitude of the volume velocity (0f) that enters the
neck, driven by a 1.0 Pa (peak) pressure amplitude in front of the neck, is given in (0d) as cm3/s.

The first four results in the right-hand column of the next three segments will always be the complex
pressure and volume velocity at the exit from the segment. At the exit of Segment #1 (where it joins the
COMPLIANCE), the magnitude of the pressure is |p|¼ Pa. It retains that value throughout the

Fig. 8.27 Screenshot of the output file for 500mlFlask.out. Input parameters are displayed in the left-hand INPUT
column in with the results in . Calculated results show up in the right-hand “OUTPUT” column, also in

. The source (in the BEGIN segment) delivers 203.9 μW (1E), and only 29.9 μW leaves the neck (1F), indicating
that the neck dissipated 174 μW. The power that left the neck was dissipated by thermal relaxation effects at the surface of
the COMPLIANCE (see Sect. 9.3.2 and Fig. 9.10)

18 The fact that the resonance frequency found by DELTAEC is lower than the calculation based on Eq. (8.51) reflects the
fact that DELTAEC includes the additional inertance of the fluid in the viscous boundary layer “attached” to the surface of
the resonator’s neck and the isothermal compressibility of the gas in the thermal boundary layer on the surface of the
cavity. These dissipative boundary layer effects will be the focus of Chap. 9.
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remaining two segments. This is a new result that we could not obtain from our nondissipative analysis
of this network in Sect. 8.5.1, and it is important!

In our nondissipative analysis of Eq. (8.52), the ratio of the pressure in the cavity to that in front of
the neck diverged at resonance: bpcav=bpj j ¼ 1. Since DELTAEC includes the viscous dissipation caused
by the drag of the oscillatory air flow within the neck, and the thermal relaxation losses due to thermal
conduction between gases undergoing adiabatic temperature changes, derived in Eq. (7.25), within the
volume, the pressure amplitude is now finite. In fact, the “gain” is the quality factor of the Helmholtz
resonator, Q ¼ bpcav=bpj j ¼ (2A)/(0d) ffi 74 (or + 37.4 dB). This pressure increase over a narrow
frequency band is just what Helmholtz sought by “plugging” the resonators that share his name into his
own ear.

The amplitude of the gas displacement in the neck, ξ1, can be determined by “integrating” the

volume velocity divided by the product of the neck area times the angular frequency: bξ��� ��� ¼bU��� ���= 2πfAneckð Þ ¼ 0:547 mm. That is about 1.1% of the total neck length, so our assumption of a

1.0 Pa excitation in (0d) was well within our assumption of linear behavior.9

8.6.9 The RPN Segment

One of the most powerful features of DELTAEC is its ability to perform user-defined calculations within
any model using the variable values calculated by the program. Such calculations can be done
automatically within the program using the RPN segment available in DELTAEC. The serious student
is referred to the DELTAEC User’s Guide for a detailed discussion of the RPN segment, including tables
that summarize the wide variety of accessible variables, convenient variable abbreviations for
thermophysical properties and state variables (e.g., frequency, mean temperature, power flows,
pressure, volume velocity, etc.) included in Table 11.2 of the User’s Manual, and executable
mathematical functions (e.g., square roots and other real and complex algebraic operations, circular
and hyperbolic trigonometric functions, Bessel functions, logs, and exponentials) also included in
Tables 11.3 through 11.7 of the User’s Manual.

To illustrate, an RPN segment has been added to 500mlFlask.out and the file saved as 500mlRPN.
out. That RPN segment, shown in Fig. 8.28, automatically calculates the peak-to-peak displacement,

Fig. 8.28 Screenshot of a modified version of 500 mlFlask.out, shown in Fig. 8.27, which now includes an RPN
segment (#3) that calculates the peak-to-peak gas displacement in the neck of the 500 ml boiling flask automatically and
reports the result (3A) in millimeters
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2 bξ��� ���, of the gas in the resonator’s neck. To eliminate the need for parentheses, the RPN segment uses

Reverse Polish Notation:19 variables are “declared,” and then an operation on the variable (e.g., taking
the cosine of an angle) is executed. If an operation requires two variables (e.g., multiplying one
variable by another), then both variables appear before the operation.20

For example, the magnitude of the volume velocity entering the neck, bU��� ���, that is provided in (0f),

must be divided by the cross-sectional area of the neck in (1a), to obtain the average gas velocity in the
neck. That velocity then needs to be integrated, so that peak gas velocity must be by divided by ω to

obtain the peak gas displacement, bξ��� ���. Since the desired result is the peak-to-peak displacement, 2 bξ��� ���,
the result of the integration must be multiplied by two. In algebraic notation, 2ξ ¼ 2�(0f)/
[w �(1a)].21 If the result is to be displayed in millimeters, the entire expression must be multiplied
by 1000.

In RPN, that same calculation is written, 2ξ¼ 2(0f)�(1a)/w/1000 � or 2ξ¼ 2000 0f � 1a /
w /, to provide the result in millimeters. In the first version, the number “2” and (0f) are multiplied (�),
and then (1a) divides (/) the previous result. The RPN abbreviation for ω, which is “w,” divides (/) that
result, followed by “1000” and a multiplication (�). For that RPN segment shown in Fig. 8.28,
“ ” has been replaced by “ ,” representing millimeters in the “units” column as a
reminder that the result is given in (3A) as millimeters.

That RPN segment (#3) is shown along with the other “collapsed” segments of the model in

Fig. 8.28. The RPN segment result (3A) is exactly twice what was calculated for bξ��� ��� “by hand” from the

results in the �.out file in Fig. 8.27.

19 Reverse Polish notation (RPN) is a system where the “operator” follows the variable(s). The “Polish” designation is in
honor of its inventor, Jan Łukasiewicz (1878–1956). That form of data entry and calculation was used in the scientific
calculators made by Hewlett-Packard since the introduction the HP-35 in 1972, the first handheld scientific calculator.
RPN is used in HP calculators to the present day. It is preferred by most scientists and engineers of my generation because
it takes fewer key strokes and because operations are unambiguous without requiring parentheses.
20 If you prefer parentheses, DELTAEC can display an RPN formula in that notation. Double-click on the RPN result, and
then click “List Linkages” to show the formula using parentheses.
21 DELTAEC will show an RPN result using “algebraic notation,” using parentheses if you click on the RPN result then
choose “List Linkages.”
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8.6.10 Power Flow and Dissipation in the 500 Ml Boiling Flask

The magnitude of the volume velocity, bU��� ��� , that leaves the neck (1C ¼ cm3/s) is slightly

reduced from the value that entered the neck (1f ¼ cm3/s) due to the compliance of the gas in
the neck itself. It is worth noticing that in the compliance, bU and bpcav are almost exactly 90 out-of-
phase (1B), as they should be for a compliance described in Eq. (8.25). Of course, the volume velocity

exiting the compliance is zero ( bU��� ��� < m3/s) to satisfy the HARDEND condition in

Segment #3 of Fig. 8.27 and Segment #4 in Fig. 8.28.
The next two results shown in Fig. 8.27 are Htot (1E) and Edot (1F). Edot is the acoustic

(mechanical) power that exits the segment, and Htot is the total power (effectively the sum of the
acoustical power plus thermal power converted from acoustical power by dissipation) leaving the
segment.22 Following Sect. 1.5.4, the acoustic power is one-half of the product of the acoustic pressure

magnitude, bpj j, times the volume velocity magnitude, bU��� ���, times the cosine of the phase angle between

those quantities. Since bU and bp are in-phase, the input acoustical power is Πinh it ¼ bpj j bU��� ���=2¼ (0d)�
(0f)/2 ¼ 203.88 μW. Energy is conserved so the total power, Htot, that moves through our
resonator is fixed, hence (1E) ¼ (2E) ¼ (3E) ¼ μW. That total power cannot exit the model,
but at the end of the model has been converted entirely to heat by thermoviscous dissipative processes.

The power dissipated in the neck is the difference between the acoustic power that entered from the
BEGIN segment (1E ¼ μW) and what exited from the neck (1F ¼ μW) and entered
the COMPLIANCE. Therefore, those viscous losses in the neck dissipated 173.96 μW, and that power
was deposited on the neck as heat and/or swept away and dumped elsewhere by thermoacoustic
boundary layer processes [20], which are beyond the scope of this textbook. Since the walls of the neck
are “ideal” and have infinite heat capacity, the temperature of the neck did not increase.
Thermoacoustic heat transport can actually cause portions of the duct to cool even in the presence of
viscous heating [21].

The thermal relaxation dissipation in the compliance can be determined by subtracting Edot that
leaves the compliance (2F) from Edot that enters (1F): μW – W¼ 29.919 μW.
That heat is deposited on the walls of the COMPLIANCE.

Apparently, for this Helmholtz resonator, 85% of the dissipation in the model is due to the viscous
losses produced by the oscillatory gas motion in the neck. At this point, radiation losses from the neck
of the resonator have not been calculated.23

8.6.11 An “Effective Length” Correction

At this point, you should be able to try a few things with DELTAEC on your own (or with the few
prompts that follow). Let’s have DELTAEC adjust the length of the neck so that the resonance frequency
becomes the measured value, fexp ¼ 213.8 Hz. This can be accomplished by opening 500mlFlask.out,

22 See G. W. Swift, Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators, 2nd edn. (Springer/
Acoust. Soc. Am., 2017); ISBN 978-3-319-66932-8, Chapter 5.2, for a discussion of the difference between total power
and acoustic power.
23 The radiation efficiency will be calculated later in this textbook (see Sect. 12.2.1). For those who can’t wait,

Πradh it ¼ πρm f 2=2c
� � bU��� ���2 . DELTAEC could have calculated those automatically, as well, if a PISTBRANCH or

OPNBRANCH segment were placed before the neck that models a flanged open end or unflanged open end.

396 8 Nondissipative Lumped Elements



then inserting another DUCT of zero length ahead of the existing DUCT segment representing the
neck, and naming that new segment “ .” It would also be a good time
to rename the title of the model (Line #1) as “ .”
Use “SaveAs” in the “File” drop-down menu to save the file as “FlaskEffLength.out.”

As a convenience, DELTAEC will add a “Master-Slave Link” to the relationship between area and
perimeter to keep the shape of the inserted duct circular. We do not want that link because we do not
want the “effective length duct” to add any thermoviscous dissipation. To sever the link, just click on

and select “none.”24

In the new file, make the new effective length DUCT’s area (1a) be “ ” by double-
clicking on the value of (1a). This will bring up the “Parameter Edit” window for (1a). Click on the
“SameAs” button and place “2a” in the window. The “SameAs” feature is very convenient, since
various segments of a model whose dimension should be linked can be changed by changing only one
variable in one segment. Set the perimeter to an arbitrarily small value, (1b) ¼ m, since the
effective length correction is not a “physical” duct that would introduce additional thermoviscous
loss.25 Change the value of frequency in (0b) to Hz, and remove frequency (0b) from the guess
vector. Let the length of the “effective length” duct (1c) be a “guess.” Just double-click on the value of
(1c) and check the “Set as Guess” box when the “Parameter Edit” window opens. Figure 8.29 shows
the �.out file produced after that model has run successfully.

The resulting effective length correction, (1c) ¼ 13.54 mm, slightly less than the value (15.5 mm)
obtained when we used the expression in Eq. (8.53), which ignored dissipation. Again, less “effective
length” was required to obtain the experimentally measured frequency since some of the necessary
frequency reduction was provided by gas compliance and viscous dissipation in the neck and thermal-
relaxation effects within the 500 ml volume. We will calculate the effective length correction in Sects.
12.8 and 12.9.

8.6.12 Incremental Plotting and the �.ip File

Our initial exploration of DELTAEC’s capabilities will conclude by using the software to create a plot of
the pressure magnitude and phase within the 500 ml volume as a function of frequency. DELTAEC
produces two types of plots: One is the “State Plot,” introduced in Sect. 8.6.6, that allows all of the
different results for an individual run to be plotted, usually as a function of position along the apparatus
(e.g., real and imaginary pressure magnitude, Edot, etc.). The State Plot is particularly useful for
models that are complicated and contain branching and thermoacoustic elements, such as heat
exchangers, that change energy flows and temperatures throughout the apparatus being modeled.
They also provide essential confirmation of the normal mode shapes for standing waves in complex
networks (see Fig. 8.26).

The other plot type is the “Incremental Plot.” An incremental plot lets the user to choose two
variables (called the “outer” and “inner” plotting variables) that can be incremented or decremented
over a range of equally spaced values. One choice might be a range of static pressures (outer plot

24 As with many items in this section, DELTAEC supports a lot more capabilities that we have space to explore in an
introduction. If you want to know more about Master-Slave links or any other feature, you are referred to the User’s
Guide.
25 There is also some dissipation due to the fluid shear which accompanies the divergence of the streamlines at both ends
of the neck. A detailed analysis of this dissipation mechanism and the effective length correction is provided in K. A.
Gillis, J. B. Mehl, and M. R. Moldover, “Theory of the Greenspan viscometer,” Journal of the Acoustical Society of
America 114(1), 166–173 (2003).
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variable) that are used to generate plots over a specified range of frequencies (inner plot variable) for
each pressure. In the following example, only one (outer) plot variable, the frequency (0b), will be
incremented (or decremented) to generate a resonance response curve similar to Fig. 2.12 for the
damped simple harmonic oscillator.

The magnitude (2A) and phase (2B) of the pressure inside the compliance of the 500mlFlask.out file
in Fig. 8.27 will now be set up to be plotted as a function of frequency (0b). The magnitude of the
pressure in front of the neck (0d) will remain constant at 1.0 Pa as the frequency is being swept below
and above the resonance frequency. Since the resonance occurs around 240 Hz, the plot will be set up
to go from 230 Hz to 250 Hz, placing the Helmholtz resonance frequency roughly in the middle of the
plotting range.

It is a good idea to have a model that is converged at the starting point before attempting an
incremental plot. Since the plot will start at 230 Hz, click on (0b) and set it to 230 Hz and be sure it is
not designated as a “Guess.” The phase could be positive or negative or any phase value that is modulo
an integer multiple of 360, but the phase, though correct, may be inconvenient for display of the
plotting results. To avoid phases that exceed +360 or are less than �360, click on (0 g), and set it to

Fig. 8.29 Screenshot of the output file for “FlaskEffLength.out.” DELTAEC has adjusted the length of an additional duct
so that the frequency (0b) is the measured value, fexp ¼ 213.8 Hz, taken from Fig. 8.17. Notice that the quality factor,
based on the magnitude of the pressure in the COMPLIANCE, |p| ¼ (1A), has increased to produce Q ¼ 85.8, which is
larger than Q¼ 74.4, in Fig. 8.27. This increase is due to the additional stored kinetic energy produced by the velocity of
the flow in the effective length correction, which introduced no additional dissipation, since the “perimeter” of that duct
(1b) was set to be negligibly tiny
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zero degrees. Then run the model to be sure that it converges at the starting point (230 Hz) for the plot.
Seeing that the model converged and produced an initial phase between the pressure in front of the
neck and the volume velocity at the neck’s entrance of about , the model is ready to begin
plotting.

To set up the plot, make the magnitude (0f) and phase (0 g) of the volume velocity “guesses.” Then
double-click on the Hz (0b). In the “Parameter Edit” window, check the “Incr Plot” box. That
choice will launch the “Incr(emental) Plot Editor” window. Since the last run of the model was at
230 Hz, DELTAEC will assume that the initial value of the frequency plotting range is 230 Hz, so that
frequency will automatically appear in the “From” window. To set the plotting range between 230 Hz
and 250 Hz, put 250 Hz in the “To”window, and then set the number of plotting points (#Points) to 81.
By specifying 81 points, a step size of 0.25 Hz/point is automatically displayed. An “OPlt” designator
will appear to the right of (0b) in the �.out file to indicate that frequency is now an independent (outer)
plotting variable. Save this new model as 500 mlFlask(Plot).out to distinguish it from previous models.

DELTAEC will automatically include the guesses in the plot file and will tabulate the results in a text
file that will be automatically designated 500 mlFlask(Plot).ip. In this case, those guesses are the
magnitude (0f) and phase (0 g) of the volume velocity driven through the neck by the externally
applied 1.0 Pa pressure. Since we want to plot the magnitude (2A) and phase (2B) of the pressure
within the compliance, we click on those results, and check the “Plot(Dependent)” box in the “O(uter)
Par(ameter) edit” dialog box. This should produce a “P” to the left of (2A) and (2B) indicating that
these results will now also be contained in the incremental plot file.

To check the plotting setup, go to the “Display” pull-down menu, and select “Incremental Plot Sum
(mary).” That will produce the Incremental Plot Summary window reproduced in Fig. 8.30.

When you click on the run arrow, DELTAEC will run itself 81 times in about one-half second, ending
at 250 Hz, and will have created a new incremental plot file and named it 500mlFlask(Plot).ip. You can
examine the content of this plot file in a variety of ways. It can be “opened” in your favorite
commercial plotting program (e.g., Excel™) or text editor (e.g., WordPad or NotePad), or it can be
examined within DELTAEC using the native DELTAEC plotting software by clicking on “Display” and
selecting the “Plot IP file” from the pull-down menu. Figure 8.31 shows a portion of the �.ip file,
opened with a text editor, containing the first 13 results between 230 and 233 Hz.

If you repeat the plot or if you have plotted the file previously, DELTAEC will provide the option of
“overwriting” the existing �.ip file, or you can choose to “append” this new run to the previous file
(a useful option if you are spanning a large frequency range that you have broken up into shorter runs).
If you want to keep the original file, DELTAEC will provide the option to “Rename” the new file.

Fig. 8.30 Screenshot of the Incremental Plot Summary window shows that we have selected frequency (0b) as our
independent plotting variable and that variable will range from 230 Hz to 250 Hz in 81 steps of 0.25 Hz. It will generate a
plot file (�.ip) that will contain the independent plotting variable (0b) and the dependent “guess” variables, |U| (0f) and
Ph (U) (0 g), as well as the pressure magnitude, |p| (2A), and phase, Ph(p) (2B), in the COMPLIANCE
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Checking the file using DELTAEC’s built-in plotter is convenient, since it is a faster way to
examine the plot than to export the file to another spreadsheet or mathematics software package. I
always check the plotted data with DELTAEC’s indigenous plotting function to make sure that I have
plotted the data that I wanted over my range of interest. A DELTAEC-generated incremental plot from
the example just run is shown in Fig. 8.32. That incremental plotting window lists the plot variables
that can be selected for plotting by checking the desired boxes. In this example, BEGIN:Freq@0b has
been selected as the x axis for the plot. COMPL|p|@2A and COMP:Ph(p)@2B are chosen as the
y axis variables.

The “windows” below the variables provide a variety of options for scaling the plot. In all three
cases, the variable values in Fig. 8.32 are not scaled, hence the “_” symbol in that window. The
window below the y axis variables allows selection of the shape, the size, and the color of the plotted
points, as well as the options for a line to connect the points. The line color and style (e.g., solid,
dashed, dotted, dash-dot) and line width can also be selected by the user. Under the “Options”
drop-down menu, “Enable Legend” has been selected to produce the legend in the upper-right corner
of the plot in Fig. 8.32. The legend identifies the plotted dependent variables as well as their units and
scaling.

Since DELTAEC automatically includes thermoviscous dissipation, the 180 phase shift from below
to above the resonance frequency is no longer discontinuous as predicted by the nondissipative result
in Eq. (8.52). As shown in Fig. 8.32, the phase changes smoothly through resonance with the largest
rate of change of phase as a function of frequency occurring at the resonance frequency. This is
demonstrated in Fig. 8.33, where the phase of the plotted frequency closest to the resonance
(241.75 Hz) and the phases of the two adjacent frequencies calculated in 500mlFlask(Plot).ip are fit
to a straight line.

Agreement between the quality factor based on the amplitude gain and the quality factor based on
the slope of the phase vs. frequency would be improved if smaller frequency increments around
resonance were selected in the DELTAEC plotting file.

Fig. 8.31 Screenshot of the first 13 results produced by DELTAEC’s incremental plotting function and placed in the �.ip
file, for the response of the 500 ml boiling flask, is shown using a simple text editor. The file also includes a “header”with
the “variable” (e.g., BEGIN: Freq), its units (e.g., Hz), and its “address” in the model (e.g., 0b)
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8.6.13 So Much More Utility in DELTAEC

DELTAEC is a very versatile and powerful (and free!) computational tool that is provided with extensive
documentation. This introduction could not really demonstrate the full power of the software, but it
should have provided the minimum background for its further exploitation in this textbook and in your
careers as acousticians. Students are encouraged to download and print parts of DELTAEC User’s
Guide, such as the Reference Section, which describes the use of the various segments and the section
on the RPN Segment (User’s Guide Chap. 4).

The RPN segment permitted the user great flexibility in calculating quantities of interest automati-
cally within a DELTAEC model every time it is run. It also produces potential targets (e.g., phase
differences) that might be more appropriate targets for the solver to use in making the model conform
more closely to the behavior of the physical apparatus.

The next two sections will use DELTAEC to analyze two more “lumped-element” networks. They
were chosen because they employ inertances and compliances and because they would be rather
tedious to analyze without the assistance of DELTAEC.

Fig. 8.32 Screenshot of the output window generated by DELTAEC for the incremental plot file 500mlFlask(Plot).ip. The
pressure magnitude (2A) ( ) and phase (2B) ( ) in the COMPLIANCE segment were selected
for plotting against frequency. The label for the x axis was also generated by DELTAEC. The legend is generated
automatically and shows that the units for pressure are [Pa] and for phase is [deg]
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8.7 Coupled Helmholtz Resonators

The Helmholtz resonator is the fluid analogy of the mass-spring simple harmonic oscillator. The mass
of the gas in the neck (see Sect. 8.4.4) is acted upon by the gas in the volume which provides a restoring
force as a gas spring (see Sect. 8.2.4). After treating single degree-of-freedom harmonic oscillators in
Chap. 2, we went on to analyze coupled oscillators with jmasses connected to j + 1 springs in Sect. 2.6.
We can do the same with coupled Helmholtz resonators. A simple physical example, built by Anthony
Atchley, that has three necks (masses) and four volumes (gas springs) is shown in Fig. 8.34.

To obtain an approximate idea of what frequencies to expect, we can analyze a double-Helmholtz
resonator that is created when one neck is connected to two identical volumes [22, 23]. That network is
equivalent to a single (gas) mass restored by two mechanically parallel (gas) springs (see Sect. 2.2.1).
Since two springs of equal stiffness provide a stiffness that is twice that of each individual spring,
Eq. (8.51) can be modified to calculate the resonance frequency, ωDouble.

ωDouble ¼ 1ffiffiffiffiffiffi
LC

p ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A

ΔxneckV

r
ð8:55Þ

Using parameter values taken from the caption below Fig. 8.34, the volume of a single compliance is
V ¼ 2.04 � 10�5 m3. The neck has a length, Δxneck ¼ 19 mm, and cross-sectional area,
A ¼ 4.6 � 10�5 m2. If the air temperature is 23 C, then c ¼ 345 m/s, and fDouble ¼ ωDouble/
2π ¼ 846 Hz.

With three necks and four gas springs, the triple-Helmholtz resonator has three degrees of freedom
and therefore will possess three lumped-element normal mode frequencies. The DELTAEC model,

Fig. 8.33 The rate of change of phase around the resonance frequency of the 500 ml boiling flask is fit by a straight line
with the slope, dθ=dfð Þ f o

¼ �34:6

=Hz. That slope is related to the quality factor,Q, of the resonance. The relation from

Eq. 2.76 is reproduced as Q ¼ π f o
360


dϕ
df

���
f o

���� ���� ¼ f o
114:6


dϕ
df

���
f o

���� ���� The slope suggests that Q ¼ 72.1, in reasonable agreement

withQ¼ |pcav/p1|¼ 74.3 calculated at resonance in Fig. 8.27, since the slope of the best-fit line is necessarily less than the
slope evaluated exactly at fo.
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shown in “Schematic View” in Fig. 8.34, can be run to determine the three resonance frequencies, and
three �.sp. files (see Sect. 8.6.6) can be generated showing the gas’s volume velocity magnitudes
corresponding to the three normal modes. Those normal modes are shown in Fig. 8.35, along with the
analogous displacements of three discrete masses connected together by strings.

Although the second normal mode is similar to two double-Helmholtz resonators, oscillating 180

out-of-phase, with the gas in the central neck at rest, examination of the �.sp. file for that mode, in
Fig. 8.36, shows that in such a small network, with a high ratio of surface area to volume, the
thermoviscous losses are significant. The previous lossless analysis of the double-Helmholtz resonator
shows that in such a network, the normal mode frequency should be 846 Hz. The DELTAEC model

Fig. 8.34 Coupled Helmholtz resonators made from copper tubing (necks) and PVC plumbing caps (volumes), built by
Anthony Atchley. (Top) An assembly of three necks and four volumes that create a table-top triple-Helmholtz resonator.
Each neck is 19 mm long with an inner diameter of 7.6 mm. Each volume is 4.0 cm long with an inner diameter of
25.4 mm. (Middle) DELTAEC’s “Schematic View” of TripleHelmholtz.out. As shown, it is possible to place a “phasor
gauge” in any (or all) segment to show the relative phase of the pressure and volume velocity. To activate this feature, it is
necessary to hold down the “alt” button and click your mouse on the segment of interest. In this illustration, the schematic
view was produced for the third normal mode at 1010.9 Hz. In DUCT 1, acoustic pressure and volume velocity are nearly
in-phase indicating that there is a large component of energy in the traveling wave near the BEGIN segment of the model.
By the end of the model, the pressure and volume velocity in DUCT 5, DUCT 6, and DUCT 7 are nearly 90 out-of-
phase, indicating that the energy is primarily due to the standing wave. (Bottom) A small loudspeaker is located at the end
of the first volume, and a small microphone is located at the end of the fourth volume. The PVC volumes and necks are
also disassembled for visual inspection
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places that normal mode resonance frequency at 671 Hz. It is clear from this state variable plot in
Fig. 8.36 that the gas in the central neck is not at rest and the pressure on opposite ends of the left pair of
volumes, which would be equal and opposite for the lossless case, is unequal in magnitude
(28.8 Pa vs. 22.5 Pa). The same is true for the right pair of volumes (21.0 Pa vs. 18.2 Pa).

Fig. 8.35 Mode shapes for the three normal modes of the triple-Helmholtz resonator are plotted vs. position for the
network shown in Fig. 8.34. Normal mode frequencies, determined from the DELTAEC model, are 231.4 Hz for the mode
at the top, 670.8 Hz for the mode at the middle, and 1010.9 Hz for the mode at the bottom. The left column represents the
displacements of the modes if discrete masses (circles) were mounted on a string, as discussed in Sect. 2.7.7, with the
dashed lines representing the analogous normal modes for a continuous fixed-fixed string. The right column represents
the magnitude of the volume velocity of the gas as it moves through the triple-Helmholtz resonator as plotted by three
DELTAEC �.sp. files (see Sect. 8.6.6). For the lowest-frequency mode (231.4 Hz), all of the gas is moving in the same
direction during any phase of the cycle. The highest velocity occurs in the central neck. In the second normal mode
(670.8 Hz), the gas in the central neck is nearly stationary. Further detail for this mode is provided in Fig. 8.36. The
highest-frequency mode has the gas motion of adjacent necks vibrating 180 degrees out-of-phase
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8.8 The Bass-Reflex Loudspeaker Enclosure

As will be shown in greater detail later (see Sect. 12.5.1), a moving-coil electrodynamic loudspeaker is
a very inefficient source of sound at low frequencies if it is not surrounded by a rigid enclosure. Such
an enclosure allows only the front surface of the speaker’s cone to radiate into the listening space and
suppresses the out-of-phase volume velocity produced by the rear of the speaker that would otherwise
have cancelled the volume velocity created by the front of the speaker. This strategy is illustrated on
the left-hand side of Fig. 8.37. One unfortunate consequence of such strategies is that the volume
velocity produced by the back of the loudspeaker, though just as large as that produced by the front, is
“wasted.”

The phase reversal produced when a Helmholtz resonator is driven above its resonance frequency,
ωo, shown in Eq. (8.52) and plotted in Fig. 8.32, can productively utilize the volume velocity produced
by the back of the loudspeaker. Such a bass-reflex loudspeaker enclosure, shown on the right-hand
side of Fig. 8.37, exploits this phase reversal by taking the volume velocity generated from the rear of
the loudspeaker’s cone and inverting its phase, so the motion of the gas oscillating in the port (i.e., the
neck of the Helmholtz resonator) adds (nearly in-phase) to the gas being driven by the front of the
loudspeaker cone. At low frequencies, the separation of the cone’s center and the vent is much less than
one-half wavelength, so the volume velocity exiting the port will combine (using vector algebra to
incorporate the phase differences) with the volume velocity produced by the front of the speaker to

Fig. 8.36 State variable plot for the second normal mode of the triple-Helmholtz resonator shown in Fig. 8.34, with a
resonance frequency of 670.8 Hz. The dash-dot line represents the gas-filled cross-sectional area for the model
(in cm2). The black solid line represents the real component of the pressure (in Pa), ℜe[p]. The dashed line
represents the imaginary component of the volume velocity (in cm3/s), ℑm[U]. The dotted line represents the
2.83 mW of acoustic power that flows from the loudspeaker and is entirely dissipated when it reaches the end of the
fourth volume, as it must, for a system in steady-state operation. This result differs from the approximation that assumes
that the mode is equivalent to two lossless double-Helmholtz resonators oscillating 180 degrees out-of-phase with a
resonance frequency of 846 Hz. It is clear from this state variable plot that the gas in the central neck is not at rest and the
pressure on opposite ends of the left pair of volumes, which would be equal and opposite for the lossless double-
Helmholtz case, is unequal in magnitude (28.8 Pa vs. 22.5 Pa). The same is true for the right pair of volumes
(21.0 Pa vs. 18.2 Pa)
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produce the net volume velocity magnitude, |Unet|, that can exceed the volume velocity produced by
the front of the loudspeaker.

There are several other technical issues that need to be considered for successful design of a bass-
reflex loudspeaker enclosure that will not be addressed here. For example, the free-cone resonance of
the speaker is strongly coupled to the Helmholtz resonance, and inclusion of damping material in the
port can be useful in smoothing the overall response. (DELTAEC will automatically incorporate those
effects for us if we specify the flow resistance of the damping material in the port as shown in Segment
#3 of Fig. 8.39.) Since the volume velocity through the port can be substantial at frequencies close to
the (strongly coupled) Helmholtz resonance frequency, flow noise generated by turbulence in the port
and jetting caused by the high-speed gas flow in the port can be annoying. That flow noise is referred to
by audio component manufacturers as the “port noise complaint” [24].

8.8.1 Beranek’s Box Driven by a Constant Volume Velocity

It will be worthwhile to pursue this application a little further because it is an example of a Helmholtz
resonator that is driven in a way that is different from the external pressure drive of our first example,
shown schematically in Fig. 8.15 and modeled by DELTAEC in Figs. 8.27 and 8.29. A schematic
diagram of a Helmholtz resonator being driven by a volume velocity source feeding the interior of the
compliance is shown in Fig. 8.38. This configuration places the compliance of the volume and the
inertance of the port acoustically in parallel. The volume velocity, |U |, provided by the rear of the
speaker cone, goes simultaneously toward compressing the gas in the volume and driving gas through
the neck (port).

To illustrate a Helmholtz resonator driven by a volume velocity source located within the compli-
ance, a crude DELTAEC model of the bass-reflex enclosure is developed to represent the example in

loudspeaker
with an infinite
baffle

loudspeaker
with an
enclosure

Acoustic
absorber

Tune port
to f0

Speaker
has free
cone
resonant
frequency f0

Fig. 8.37 The two sketches at the left show a loudspeaker mounted in an infinite baffle and in a sealed enclosure. Both
strategies prevent the sound radiated from the back surface of the loudspeaker cone from cancelling the sound radiated
from the front. At the right, the speaker is mounted in a Helmholtz resonator, with volume, V, which is commonly called a
bass-reflex enclosure or a vented box enclosure. The “vent” (or port) is shown as an inertance of length, L, and cross-
sectional area, A. The “acoustic absorber” is a porous medium (e.g., fiberglass) that is intended to attenuate standing
waves within the rectangular enclosure (see Sect. 13.1.1)

406 8 Nondissipative Lumped Elements



Beranek’s Acoustics textbook [25]. It’s crude because it assumes that the loudspeaker produces a
constant volume velocity of 0.040 m3/s, which is independent of frequency. In fact, the volume
velocity of the loudspeaker is frequency-dependent, due to the mass, stiffness, and damping (mechani-
cal impedance) of the loudspeaker (see Sect. 2.5.5). The frequency dependence of the complex input
electrical impedance of the loudspeaker’s voice coil and associated magnet structure also modifies the
current, hence the resulting force, if the coil is driven by a source of constant voltage. These effects will
be ignored initially to demonstrate the phase-inversion effect of the bass-reflex approach. In the next
section, a real loudspeaker (JBL 2242 PHL, S/N: J033N-51645), easily modeled using DELTAEC, will
be used to excite the same enclosure in a more realistic way from a “constant voltage” source.

This example will also ignore any damping material (e.g., fiberglass) that might be used to line the
interior surface of the compliance. Such material is designated in Fig. 8.37 (Right) as “acoustic
absorber.” That material is used to suppress standing waves within the enclosure (see Sect. 13.1),
which occur at frequencies much higher than those which we consider here for the bass-reflex
enclosure’s behavior.

Beranek’s speaker example has an effective piston area, Acone ¼ 8.03 � 10�2 m2, and his enclosure
has an internal volume, V¼ 0.31 m3 (3000 � 3500 � 1800). The surface area of this acoustical compliance
is 2.86 m2. (This surface area could be increased in a DELTAEC model to represent the “acoustic
absorber” that is included to suppress standing waves within the enclosure that occur at frequencies
that are much higher than those of interest in the analysis of the bass-reflex behavior.) Beranek’s port
area, Sp ¼ 0.055 m2, corresponding to a port diameter of about 8 cm (3.1400). The port has a length of
0.25 m (9.800), neglecting any end corrections. An acoustic flow resistance of 500 Pa-s/m3 (see
Segment #3) has been added to the port to control the behavior at resonance.26 These parameter
choices are reflected by the output file, BeranekBox(U-drive).out, shown in Fig. 8.39.

Care must be taken to understand the phase differences between the volume velocity of the source
(set at 0 in BEGIN), bUdrive , and the volume velocity produced by the front of the loudspeaker. The
front of the loudspeaker is moving in the direction opposite that of the back side that produces bUdrive.
The net volume velocity, Unet, must be the vector sum of the volume velocity from the front of the
loudspeaker plus the volume velocity of the gas moving through the port. The magnitude of the net
velocity can be calculated using the Law of Cosines.

Fig. 8.38 This equivalent circuit diagram of a Helmholtz resonator driven by a current source (overlapped circles)

represents the volume velocity magnitude, bU��� ��� ¼ ωAcone
bξ��� ���, created by the motion of the rear of a loudspeaker’s cone,

having an area, Acone, moving sinusoidally with peak displacement amplitude, bξ��� ���. Part of that volume velocity amplitude,

ΔbU, goes into compressing the air in the enclosure of compliance, C; the remainder, bU� ΔbU, exits the port that has an
inertance, L

26 Using these box parameters and neglecting damping, the Helmholtz frequency for the box containing air with a sound
speed of 347 m/sec is 43.6 Hz, using Eq. (8.51) and adding one flanged end correction to create an effective length for the
port, Leff ¼ 28.4 cm.
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c2 ¼ a2 þ b2 � 2ab cosϕ ) U2
net ¼ U2

drive þ U2
port � 2 Udrivej j Uport

�� �� cosϕ ð8:56Þ

To calculate the phase of the volume velocity through the port, Uport, relative to the volume velocity
from the front of the loudspeaker, Uspeaker¼�Udrive, it is helpful to recognize that Udrive and Uport will
be in-phase at frequencies well below ωo. Therefore, the phase difference between Uspeaker and Uport at
any frequency, ϕ( f ) ¼ ϕdrive + 180 – ϕport ¼ 180 – ϕport, since ϕdrive ¼ 0, by definition in the
BEGIN segment (0 g). The full calculation is executed by DELTAEC from the file BeranekBox
(U-source).out, shown in Fig. 8.39. The results of those calculations are plotted in Fig. 8.40.

Fig. 8.39 Screenshot of the DELTAEC model of Beranek’s bass-reflex loudspeaker enclosure that is driven by a constant

amplitude volume velocity source (0f) located in the compliance that produces bUdrive

��� ��� ¼ 4.0 � 10�4 m3/s. Segment #3

places some damping material (e.g., fiberglass) in the port to control the amplitude at resonance. Segment #5 is an RPN
target that calculates the phase difference between the volume velocity from the front of the loudspeaker (180 - 1e) and
within the port (2D), to calculate the net volume velocity (5A) using Eq. (8.56). Note the RPN Segment #5 calculates and
displays two quantities, |Unet| and ϕ. The graph in Fig. 8.40 is based on this file. The blue highlight of the drive frequency
(0b) and the result of the vector sum (5A) and (5B) indicates that the frequency, |Unet|, and ϕ will appear in the
“Highlighted Parameters” window available under the “Display” pull-down menu
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The enhancement of the bass response, shown by the fact that net volume velocity exceeds the
volume velocity from the front of the speaker’s cone at frequencies above about 35 Hz, helps
compensate for the decrease in the sensitivity of human hearing at low frequencies (see Fig. 10.5).

8.8.2 Loudspeaker-Driven Bass-Reflex Enclosure*

It will be worthwhile to place a real loudspeaker in Beranek’s bass-reflex loudspeaker enclosure as the
last example in this chapter. Techniques for measurement of electrodynamic loudspeaker parameters
were demonstrated in Sect. 2.5.5. DELTAEC provides a selection of segments that easily incorporate a
loudspeaker into a DELTAEC model. The resulting combination of an electromechanical harmonic
oscillator and a fluidic Helmholtz resonator presents challenges if approached algebraically. We will
see that incorporation of a loudspeaker in a Helmholtz resonator within DELTAEC is no more difficulty
than the model of Beranek’s bass-reflex enclosure that was run with a constant amplitude volume
velocity source in the BEGIN statement of the model shown in Fig. 8.39. Although the use of such a
DELTAEC model for optimization of the system’s performance can be more complicated, just “plugging
in” the appropriate DELTAEC segment to represent the loudspeaker is simple.
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Fig. 8.40 Plot of the response of Beranek’s bass-reflex loudspeaker enclosure, driven by a constant volume velocity

source, bUdrive

��� ��� ¼ 4.0 x 10�4 m3/s, located in the compliance. If a loudspeaker were producing that volume velocity, its

motion would be 180 degrees out-of-phase with the volume velocity source. The phase difference between the volume
velocity generated by a loudspeaker and the volume velocity through the port, ϕ( f ), is represented by the dotted line
whose value should be read from the right-hand axis labeled “Phase (degrees).” The magnitude of the volume velocity
through the port, |Uport|, is shown as the dashed line and is referenced to the left-hand axis labeled “Volume Velocity
(m3/s).” The magnitude of the vector sum of the port velocity and the loudspeaker velocity, |Unet|, is shown by the solid
line that is also scaled by the left axis. At low frequencies, the magnitude of the net volume velocity, |Unet|, is less than the
volume velocity of the source, |Udrive|, due to phase cancellation, and approaches zero as the frequency goes to zero. Note
that above 32.5 Hz, the net volume velocity is larger than the volume velocity source, |Udrive|. For that reason, it is very
rare to see small loudspeaker enclosures that do not use the bass-reflex (Helmholtz resonator) approach to enhance their
low-frequency output
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In this example, the measured parameters of a JBL Model 2242 PHL (S/N: J033N-51645) will
characterize the loudspeaker in the VSPEAKER segment that is included in BarenekBox-VSpeaker.
out, shown in Fig. 8.41. Because modern solid-state audio amplifiers produce a nearly constant voltage
replica of the audio signal (at least until the current limit is exceeded), a VSPEAKER segment is used
to represent the speaker and amplifier combination. As shown in Fig. 8.41, the loudspeaker is specified
entirely by the parametric inputs to Segment #1.27 The user must provide the radiating area of the

Fig. 8.41 Screenshot of the output file for a JBL 2242 PHL electrodynamic loudspeaker driving Beranek’s bass-reflex
enclosure modeled in Fig. 8.40. In this DELTAEC file, the enclosure is driven by a constant voltage source of amplitude
10.0 Vpk (0h) corresponding to a root-mean-squared voltage of 7.07 Vrms applied across the speaker’s voice coil. An RPN
segment (#2) has been added to calculate the magnitude of the driver’s electrical input impedance, Zel¼ V/I¼ (1G)/(1H).
All of the collapsed segments are identical to those in Fig. 8.39

27 The particular choice of parameters used in the DELTAEC electrodynamic speaker specification is not unique. Within
the loudspeaker design community, the Thiele-Small parameters are far more common, especially in catalog descriptions
of commercial drivers (see Fig. 2.42), although the DELTAEC parameter choice is more general, since DELTAEC must
accommodate a variety of gases, pressures, and temperatures.
Of course, there is a one-to-one correspondence between the parameters required by DELTAEC and the Thiele-Small

parameters [A. N. Thiele, “Loudspeakers in vented boxes,” J. Audio Eng. Soc. 19, 382–392 (May 1971) and 471–483
(June 1971)]. For example, instead of specifying K, m, and Rm, the stiffness, K, will be expressed as the equivalent
volume stiffness of air, VAS [m

3], if the speaker’s radiating area, SD [m2], is known (see Fig. 7.5). The moving mass, m,
can be extracted from the free-cone resonance frequency, fs [Hz], and the mechanical damping, Rm [kg/s], will be related
to the dimensionless mechanical quality factor, QMS.
K¼ γ pm SD

2/VAS

m ¼ K/4π2fs
2

Rm ¼ 2π fs m/QMS
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speaker (1a), the DC resistance of the voice coil (1b), the inductance of the voice coil (1c), and the
force factor, also known as the Bℓ-product (1d). The moving mass of the cone plus voice coil plus
suspension surround and spider (1e) is also required, along with the suspension stiffness (1f) and the
mechanical resistance (1g), as well as the amplitude of the driving voltage (1h). Of course, all of the
input parameters must be provided to DELTAEC in SI units.

Figure 8.42 provides a graph that includes the speaker’s input electrical impedance (2A) and the
magnitude of the volume velocity produced by the front side of the speaker’s cone (1C) when driven
by an input voltage of 7.07 Vrms applied to the voice coil that is independent of frequency. The net
volume velocity, |Unet|, is produced by the vector sum of the speaker’s cone and the gas oscillating
within the enclosure’s port.

The loudspeaker’s mechanical (free-cone) resonance frequency, f s ¼
ffiffiffiffiffiffiffiffiffiffi
K=m

p
=2π ffi 36:6 Hz, if it

were measured in a vacuum. The Helmholtz resonance of the enclosure without the loudspeaker
( fo ¼ 43.6 Hz) can be determined from BeranekBox(U-source).out in Fig. 8.39. A first approximation
to a bass-reflex loudspeaker enclosure design usually makes the Helmholtz frequency of the enclosure
(with the loudspeaker immobilized) roughly equal to the speaker’s free-cone resonance frequency. No
attempt was made to “tune” the enclosure, possibly bymodifying the port’s dimensions or its damping, to

Fig. 8.42 Screenshot of the frequency response of the JBL 2242 PHL driving Beranek’s bass-reflex enclosure that is
modeled in Fig. 8.41. This graph shows the magnitudes of the speaker’s input electrical impedance
( ), the volume velocity of the air oscillating in the port ( ), the magni-
tude of the volume velocity produced by the loudspeaker cone ( ), and the magnitude of the net volume
velocity produced by the vector sum of the volume velocities, |Unet|, produced by the port and the loudspeaker (black
solid line). At frequencies above 33 Hz, the net volume velocity (black solid line) exceeds the volume velocity from the
front of the loudspeaker alone ( ), demonstrating the enhancement provided by the Helmholtz
resonance as a consequence of its ability to invert phase above resonance
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enhance the loudspeaker’s performance, but it is obvious from inspection of Fig. 8.42 that above 33 Hz,
the net volume velocity produced by the speaker/enclosure combination is greater than that produced
by the front radiating surface of the loudspeaker only, without any (conscious) optimization effort.

The dash-dotted curve in Fig. 8.42, representing the magnitude of the input electrical impedance, |
Zin|, of the loudspeaker’s voice coil, shows two peaks corresponding to the two normal mode
frequencies of a two degree-of-freedom coupled harmonic oscillator (see Sect. 2.7). The two indepen-
dent resonance frequencies of the Helmholtz resonator alone, fo, and the free-cone resonance frequency
of loudspeaker alone, fs, differ by Δf independent ¼ |fo – fs| ¼ |43.6–36.6| Hz ¼ 7.0 Hz. The separation of
the two peaks in the electrical impedance of the loudspeaker, Δfcoupled¼ (62–27) Hz¼ 35 Hz. This is a
clear manifestation of the “level repulsion” exhibited by two strongly coupled harmonic oscillators that
was discussed in Sect. 2.7.6.

The peak in the magnitude of the volume velocity through the port, which occurs at about 45 Hz,
corresponds to the dip in the volume velocity provided by the front surface of the loudspeaker,
demonstrating that the energy dissipated in the port produces a perceptible additional load on the
loudspeaker’s motor mechanism. This loading, of course, was not evident in the DELTAEC model of
Fig. 8.39, which assumed a constant value for the driver’s volume velocity.

8.9 Lumped Elements

This (rather long) chapter was intended to accomplish two major goals: First, it provided the initial
application of the equations of hydrodynamics to acoustical problems of interest by linearizing the
continuity equation and linearizing the Euler equation to produce the acoustical compliance and
acoustical inertance of small acoustical elements. The decision to define acoustical impedance as the
ratio of the acoustic pressure to volume velocity facilitated the combination of inertances and
compliances, since volume velocity is continuous across the junction between lumped elements that
typically can have different cross-sectional areas. Though it is true that these elements were small
compared to the acoustic wavelength, at the frequencies of interest, as was demonstrated at the end of
Chap. 2, combinations of many such elements provide a logical transition to wave motion in distributed
systems with dimensions comparable to (or greater than) the wavelength of sound (see Fig. 10.1). Of
course, the lumped elements have significant utility within their own domain of applicability.

Second, this chapter also introduced DELTAEC software that could be used to predict the behavior of
network of such “lumped elements,” focusing first on the combination of an inertance and a compliance
to produce a Helmholtz resonator, driven by external oscillating pressure or by an internal source of
volume velocity. DELTAEC provided a computational structure that could be applied to networks of
lumped elements and included the effects of thermoviscous dissipation on the surfaces of those elements.
Application of DELTAEC to a 500 ml boiling flask provided a “benchmark” problem that we will be able
to use to test the hydrodynamic models for dissipative process that will be the subject of the next chapter.

The comparison between our nondissipative model, which produced an expression for a Helmholtz
resonator’s resonance frequency, and some simple (but sufficiently accurate) measurements of that
frequency exposed a substantial discrepancy between theory and experiment. That discrepancy was
removed by postulating an “effective length correction,” since the dependence of the frequency on the
volume of the resonator seemed to follow the behavior dictated by the simple nondissipative network
calculation. Only “hand-waving” plausibility arguments, appealing to effects of flow adjacent to the
resonator’s neck, were provided as “justification.” That is not science! We will need to create a
legitimate theory that produces a quantitative “end correction” that can be related to the neck’s radius
and the specific geometrical constraints on the flow of fluid into and out of the neck in the vicinity of
the neck’s openings. Such a theory will be forthcoming when the radiation from circular pistons is
developed in Chap. 12.
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Talk like an Acoustician

Lumped element Fluid particle or fluid parcel
Acoustical compliance Lagrangian description
Acoustical inertance Eulerian volume
Helmholtz resonator Nonlinear effect
Harmonic analysis Streaming
Isotropic fluid Adiabatic sound speed
Mean value Acoustical impedance
Instantaneous value Capacitive reactance
Acoustic approximation Atmospheric lapse rate
Acoustic Mach number Inductive reactance
Fourier’s theorem Acoustical network
Laboratory frame of reference Joining conditions
Eulerian coordinate system Bass-reflex loudspeaker enclosure

Exercises
1. Atmospheric lapse rate. Commercial jet aircraft typically cruise at altitudes around 36,000 feet.

(a) Temperature. What would be the temperature of air at that altitude if we assume a dry adiabatic
gas and a sea-level pressure of 100 kPa and sea-level temperature of 15 C?

(b) Density. Assuming an isothermal atmosphere with a temperature that is the average of 15 C
and the temperature calculated in part (a), what would be the density and pressure of the air at
cruising altitude?

2. Bobbing Hydrophone. Suppose a hydrophone is suspended some distance below a buoy that is
floating at the surface of a body of water as shown in Fig. 8.43. If there are waves on the surface that

Fig. 8.43 Hydrophone
suspended from a
floating buoy
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cause the buoy to move in the vertical direction by an amount, z tð Þ ¼ ℜe bAejωth i
, where bA��� ��� ¼

0:20 m, determine the amplitude of the pressure signal detected by the hydrophone at the same
frequency, ω, if we assume that the separation between the hydrophone and the buoy is constant and
the water is incompressible.

3. Up, up, and away.A thin rigid spherical shell that is 1.00 m in diameter has a mass of 0.50 kg when
evacuated. At “sea level” (h ¼ 0) on the surface of the Earth, under typical atmospheric conditions
(T¼ 15.0 C, P¼ 101,325 Pa), such a sphere would displace 0.641 kg of air; therefore it is buoyant
and would rise. If we assume conditions specified by the 1976 Standard US Atmosphere [4], then
the density of air, ρ(h), would decay exponentially, as described in Eq. (8.31), as a function of
height, h, above the Earth’s surface. The density of air at sea level is ρo ¼ 1.225 Kg/m3. The
characteristic exponential decay length, μ � ℜT/gM ¼ 8435 m.
(a) Altitude. What is the equilibrium height above the Earth, ho, to which the hollow sphere will

rise?
(b) Väisälä-Brunt frequency. Since the equilibrium is stable, if the sphere is displaced from its

equilibrium position, its height will oscillate about equilibrium. The effective mass of the
oscillating sphere will include a contribution from the motion of the surrounding air. That
additional “hydrodynamic mass” is equal to one-half of the mass of air that the sphere
displaces (see Sect. 12.5.1) [26]. Assuming negligible damping, what is the period of free
oscillation of the sphere when it is displaced (vertically) from its equilibrium position and
released if the additional “hydrodynamic mass” of the surrounding fluid is added to the mass of
the sphere? The acceleration due to gravity at the equilibrium position can be taken as 9.8 m/s2.

(c) Damping. The drag force on a sphere in a viscous fluid is given (at low Reynolds numbers) by
Fvis ¼ 6πηrv, where r is the radius of the sphere, v is its velocity, and η ¼ 1.72 � 10�5 N-sec/
m2 is the viscosity of air at the equilibrium height. Determine the decay time, τ, for the
oscillations of the sphere to decay to 1/e of their initial amplitude.

(d) Spherical shell strength. The spherical shell is not really rigid. It is made of a carbon fiber
composite with density, ρ ¼ 1.6 gm/cm3; Young’s modulus, E ¼ 70 GPa; Poisson’s ratio,
ν ¼ 0.1; and ultimate compressive strength of 500 MPa. Can such a shell survive at sea level
without imploding? If so, what change in radius occurs as it goes from sea-level pressure to the
pressure calculated at the equilibrium height calculated in part (a)?

4. Pistonphone microphone calibrator. A pistonphone is a handheld instrument commonly used to
calibrate microphone systems. As shown in Fig. 8.44, it is essentially a rigid-walled cavity driven at
a single frequency by two horizontally opposed pistons that ride on a rotating cam so that each

Cam Disc

Pistons
841206/4e

Retaining
Spring

Coupler
Cavity

Ruby
Bushing

Fig. 8.44 Pistonphone
microphone calibrator.
(Drawing courtesy of Brüel
and Kjær)
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piston has known displacement amplitude. The dimensions of the cavity are all much smaller than
the wavelength of sound at the operating frequency. For the purpose of this problem, assume the
cavity is cylindrical with a height of 1.50 cm and a radius of 1.80 cm. Let the volume of the cavity
be 3.8 cm3, and ignore the space taken by the piston-cam system. Assume the mean pressure in the
cavity, pm ¼ 101 kPa, cair ¼ 343 m/sec, and that γair ¼ 1.403.
(a) Piston volume velocity. Treating the cavity as a lossless compliance, what must be the

magnitude of the peak (not effective) volume velocity produced by the pistons for the peak
sound pressure within the cavity to be 44.8 Papeak (equivalent to a sound pressure level of
124 dBSPL re: 20 μParms) when driven at 250 Hz?

(b) Phase. What is the approximate (to within 	5) phase difference between the pressure in the
cavity and the volume velocity of the piston?

(c) Piston motion. What is the peak-to-peak displacement of each piston if there are two pistons
(as shown in Fig. 8.44) and each piston has a diameter of 3 mm, assuming that both pistons
have the same displacement amplitudes?

5. 1.0 liter flask. In Sect. 8.5.2, we used Eq. (8.54) to determine the empty resonator volume, Vo, and
the effective neck length, Δxeff, by adding known amounts of water to a flask and measuring the
corresponding resonance frequency using a microphone inside the flask. [Note: The mic volume
was 6 cm3.] Now you can enjoy doing this on your own for this larger flask with the data provided in
Table 8.1. The diameter of the neck is 33.85 mm and its physical length is 85 mm.
(a) Effective length. Calculate Vo and Δxeff.
(b) Effective length correction. Calculate the additional length that had to be added to the physical

length to produce Δxeff, and also express this length in terms of the radius of the neck.
(c) Water compressibility. Is the compressibility of the water in the flask negligible in comparison

to the compressibility of the air? Assume the flask contains 400 mL of water for your
calculations.

6. The Penn State commemorative bottle. The bottle shown in Fig. 8.45 can be modeled in
DELTAEC with a DUCT as a neck, a CONE as the transition between the neck and the volume,
and another DUCT that has the volume of the end of the bottle closed with a SURFACE segment
followed by a HARDEND segment.
(a) Helmholtz resonance frequency. Determine the resonance frequency of the resonator in

Fig. 8.45 if the bottle is filled with air at 101,325 Pa at a temperature of 20 C.
(b) Quality factor. Use the results of the DELTAEC model to find the Q of the Helmholtz resonance

(neglecting radiation losses).
(c) Standing waves. Use your DELTAEC model to calculate the frequencies of the three lowest-

frequency standing wave resonances of the bottle.
(d) �.sp plots. Plot the cross-sectional area, GasA; the in-phase pressure magnitude, ℜe [p]; and

the out-of-phase volume velocity, ℑm [U], for the Helmholtz mode and the two lowest-
frequency standing wave modes.

Table 8.1 Resonance frequencies for the 1.0 liter flask

Injection (Hz) Frequency (ml)

6 149.1
106 156.8
206 165.5
306 175.8
406 188.2
506 203.1
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7. Double-Helmholtz resonator. The double-Helmholtz resonator shown in Fig. 8.46 was used as a
thermoacoustic refrigerator [27].
(a) Density. The resonator is pressurized with 88% helium and 12% xenon at 3.0 MPa and is at a

temperature of 20 C. Calculate the mean atomic weight of the noble gas mixture, Mmix ¼ x
MXe + (1 � x) MHe, were x is the xenon concentration. Use the mean atomic weight to
determine the mixture’s density. [Note: You must provide your calculation, but you are
welcome to check your answer using the DELTAEC ThermoPhysical Properties.]

(b) Resonance frequency. As a double-Helmholtz resonator with unequal volume compliances,
calculate the resonance frequency of the resonator in Fig. 8.46 that is filled with an 88/12
mixture of helium and xenon at 3.0 MPa.

Fig. 8.46 This double-Helmholtz resonator is about 2.0 m long and contains a moving-magnet electrodynamic
loudspeaker in the left-hand volume that can produce as much as 6 kW of acoustical power at an electroacoustic
efficiency, ηac ffi 90% [28]. The loudspeaker and part of the resonator are shown in the photograph in Fig. 4.21 (Right).
The left-hand volume, Vleft¼ 0.145 m3, and the right-hand volume, Vright¼ 0.125 m3. These volumes include the conical
transitions. The neck that connects the two volumes is 0.711 m long and has an inner radius of 9.68 cm

Fig. 8.45 The neck length
for this bottle is 17.8 mm
and its inner radius is
8.26 mm. The volume is a
cylinder that is 12.7 cm
long with an inner radius of
24.4 mm. The length of the
conical section that joins
the neck to the volume is
10.0 cm
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(c) Gas velocity. In this resonator, the pressure ratio, bpj j=pm, in the right-hand volume was 5.5%.
What is the amplitude of the particle velocity of the gas in the neck? Also report that velocity
amplitude in miles per hour and as a percentage of the sound speed.

(d) DELTAEC model. Make a DELTAEC model of this double-Helmholtz resonator that is driven by
a piston in the left-hand volume with volume velocity 0.010 m3/sec. The surface areas of the
compliances are Aleft ¼ 2.3 m2 and Aright ¼ 1.6 m2. [Note: The imposed volume velocity will
not produce the full 6 kW mentioned in the caption to Fig. 8.46.]

8. Helmholtz resonator. In Sect. 8.5.2, the effective length correction for the neck of a Helmholtz
resonator and the volume of the resonator were determined by measured variations in the
resonator’s volume, a procedure that you were asked to repeat in Problem 5. In this problem, you
will do the same, but by substitution of differing necks with carefully measured physical lengths.
Figure 8.47 shows a Helmholtz resonator that is constructed from plumbing fixtures that include 600

(nominal) Schedule-40 PVC pipe and a 600 PVC 90 elbow. One end of the resonator is closed with a
¼00 thick PVC plate, and the base is medium-density fiberboard (MDF). The inside diameter of the
pipe (1.500 nominal) used for the necks is Dneck ¼ 40.8 mm. Assume a room temperature sound
speed of 343 m/s.
(a) Enclosure volume and effective length correction. Using the data in Table 8.2, determine the

volume of the Helmholtz resonator’s compliance and the effective length correction and their
relative uncertainties.

Fig. 8.47 (Left) PVC Helmholtz resonator that includes a piston that can be removed rapidly from the neck to excite a
free-decay of the Helmholtz resonance. At the bottom of the enclosure is a BNC connector that provides access to a
microphone built into the enclosure volume. (Right) Several necks of different lengths can be inserted into the fixture near
the MDF base of the Helmholtz resonator. Individual necks have lengths of 47.3 mm, 79.0 mm, 116.7 mm, 160.7 mm,
and 213.9 mm as listed in Table 8.2. Also visible is a cap to seal the necks and the piston

Table 8.2 The neck lengths and measured free-decay periods in
milliseconds, Ti, for the five necks shown in Fig. 8.47 when they are
inserted into the volume produced by the 6” PVC pipe and 90 elbow

Neck (mm) Period (ms)

47.3 14.98
79.0 17.29
116.7 19.65
160.7 21.85
213.9 24.50
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(b) Quality factor. Based on the peak-to-peak values of the free-decay amplitudes given in
Table 8.3 for each half-cycle of vibration, determine the Q of the resonance.
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In the previous chapter, the resonance frequency, ωo, of a Helmholtz resonator was calculated. When
driven at that frequency, the predicted pressure amplitude inside the resonator’s volume (compliance)
became infinite. This was because the theory used to model that inertance and compliance network in
Figs. 8.11 and 8.15, and in Eq. (8.50), did not include any dissipation. By introducing DELTAEC, we
were able to calculate the amount of power dissipated in the neck (inertance) and volume (compliance)
of a 500 ml boiling flask. In this chapter, those losses will be calculated from hydrodynamic “first
principles.”

Just as we used lumped acoustical elements in Chap. 8 to begin our exploration of the linearized,
nondissipative forms of the hydrodynamic equations, we will again use lumped elements to introduce
thermal and viscous dissipative effects, restricting our attention (temporarily) to thermoviscous effects
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at solid-fluid boundaries. Later, in Chap. 14, those dissipative mechanisms will be generalized to
include dissipative effects (attenuation), with the addition of molecular relaxation effects (see Sect.
4.4), which will be incorporated by the introduction of a “bulk viscosity,” to account for dissipation of
sound waves propagating in spaces that are far from any boundaries.

9.1 The Loss of Time Reversal Invariance

There are certain phenomena that can be “played backward” in a movie or video that do not look
different than when played forward. If we took a video of a wavelike pulse propagating on a string or a
slinky, like the Gaussian pulses in Figs. 3.2, 3.3, and 3.4, it would be very difficult to tell whether the
video was being played forward or backward. This indifference to the “arrow-of-time” is called time
reversal invariance.

On the other hand, there are certain things that do not look right played backward. An egg dropping
to the floor and cracking does not make sense played backward—a yellow slimy mess that self-
organizes into an unbroken shell and then levitates. The murder at the start of Memento [1] shows the
bullet case reentering the gun and a Polaroid™ photo fading out and then reentering its camera.

When dissipation is included in our hydrodynamic equations, time reversal invariance must be
abandoned. This can be demonstrated mathematically by focusing on a traveling wave moving to the
right, along the x axis, as described in Eq. (1.9), which represented complex exponential form.

p x, tð Þ ¼ pm þℜe bpe j ω t�kxð Þ
h i

ð9:1Þ

The complex amplitude of the wave, bp, can introduce an additional phase factor to compensate for
some arbitrary choice of the time origin, t ¼ 0. If we reverse the sign of the time, the phase factor
changes from j(ωt � kx) to �j(ωt + kx), which is the equivalent of making the wave propagate in the
negative x direction. When we change the direction of time, the sign of the velocity also changes
(Figs. 9.1 and 9.2).

Fig. 9.1 Sketches of pulses in a nondissipative medium showing the (transverse) pulse amplitude propagating reversibly
in time along one dimension. We could assume that the pulse started at t ¼ 0, as the single lump shown on the left, and
then became two pulses of the same width and shape having amplitudes equal to half the original pulse height, traveling
in opposite directions. We could also assume that the arrows showing the direction of motion for the two pulses at the
right could be reversed. Then the pulses are moving toward each other; they superimpose to form the larger pulse on the
left and then pass through each other to become the two pulses shown at the right with their arrows (as drawn) again
showing the direction of their subsequent motion after they had passed through each other
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In the continuity equation (7.32), the reversal of time changes the sign of the time derivative, ∂ρ/∂t.

The term that includes the divergence, ∇ • ρ v
!� �

, also has its sign reversed because the velocity

changes sign. Both terms on both sides of the continuity equation are thus “negated” by the time
reversal so the equation is unaffected; just multiply the whole equation by (�1) and we are back where
we started.

This is not the case for the Navier-Stokes equation (7.34), even in its linearized form that discards

the convective term, v
!
•∇

� �
v
!
, and ignores gravity.

ρ
∂ v
!

x
!, t

� �
∂t

¼ �∇
!
p x

!, t
� �

þ μ∇2 v
!

x
!, t

� �
ð9:2Þ

Since both the velocity and the time change sign, the derivative, ∂ v
!
=∂t, does not change sign. On the

right-hand side of Eq. (9.2), the pressure, p x
!, t

� �
, is a thermodynamic variable and therefore a

Galilean invariant; its value is a property of the medium that is not a function of the reversal of time
or of uniform motion of the coordinate system.

We’d be in fine shape with both the time derivative and the gradient of the pressure, since the sign of
neither changes under time reversal (i.e., the Euler equation is time reversal invariant). But the
Laplacian operator, ∇2, that is multiplied the shear viscosity, μ, operates on the velocity, which does
change sign when time is reversed. The Navier-Stokes equation, as written in Eq. (9.2), is therefore not
time reversal invariant. Neither is the linearized entropy equation, as written in Eq. (7.43), even if the
viscous entropy generation term is neglected and we assume that the thermal conductivity, κ, is
independent of position, where s is the specific entropy (per unit mass) [J/K � kg] ¼ [m2/s2 � K].

ρT
∂s x

!
, t

� �
∂t

¼ κ∇2T x
!
, t

� �
ð9:3Þ

Here again, both s x
!
, t

� �
and T x

!
, t

� �
are Galilean invariant thermodynamic properties of the fluid

that do not change under time reversal. The sign of ∂s/∂t does change since the sign of the time is
reversed. Equation (9.3) can be transformed into the Fourier Diffusion Equation after substituting the

t

Fig. 9.2 Unlike Fig. 9.1, the time evolution of the pulse at the left can only proceed in the direction indicated by the
arrow. The progression of the pulse is determined by a diffusion equation like Eq. (9.4). If the pulse at the left represents
an initial temperature distribution in a fluid, over time the temperature would diffuse as shown due to the thermal
conductivity of the medium. If the pulse represented the injection of dye into a stagnant fluid, the diffusion of the dye
would be represented by the subsequent pulse shapes. The most diffuse pulse, shown at the right, would never
spontaneously self-focus into the more concentrated temperature or dye distribution shown at the left
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relation between changes in heat per unit mass, dq, and changes in entropy per unit mass, ds. We have
dq ¼ T ds, from Eq. (7.5), and the relation between the addition of heat and the change in temperature
at constant pressure, dq ¼ ρcp dT, for a polytropic substance, from Eq. (7.14).

∂T x
!, t

� �
∂t

¼ κ
ρcP

∇2T x
!, t

� �
ð9:4Þ

Equations that have the form of Eq. (9.2) and Eq. (9.4) are diffusion equations. They produce
dissipation and they violate time reversal invariance. If those irreversible effects are present, then
energy will be dissipated. We can clearly see a difference if the video is played forward or backward in
the presence of dissipation.

9.2 Ohm’s Law and Electrical Resistivity

We will start our investigation of dissipative hydrodynamics with thermal conduction. To do so, we
will make an analogy to dissipation in direct current (dc) electrical circuit theory, since most students
who go on to careers in engineering and science learn Ohm’s law in high school.

Our previous representation of ideal compliances and inertances were analogous to ideal capacitors
and inductors; energy could be stored as compressive (elastic) potential energy in a compliance or as
kinetic energy in an inertance, but it would not be dissipated, as it could in an electrical circuit where
the current flows through an electrical resistance, Rdc. The relationship between the current flowing
through the resistance, I, and the voltage difference, ΔV, across the resistance is known as Ohm’s law:
I ¼ ΔV/Rdc. The electrical resistance is a (mathematically) real quantity (usually considered to be a
constant that is independent of current1), so that the current and the voltage are in-phase; hence, ϕ¼ 0.

The time-averaged electrical power, hΠelit, dissipated in the resistor is a positive-definite function of
either the current or the voltage.

Πelh it ¼
I ΔV
2

cosϕ ¼ I2Rdc

2
¼ ΔVð Þ2

2Rdc
ð9:5Þ

As we have done with our acoustical variables, ΔV and I are designated by their peak values, not the
root-mean-squared values that would be displayed by an ac voltmeter. The phase angle between I (t)
and ΔV (t) is ϕ, but since I (t) is in-phase with ΔV (t), cos ϕ¼ 1. It does not matter whether the current
is flowing to the right or to the left; power will be dissipated in a resistor and entropy will be created by
an irreversible process. This electrical power dissipation in a resistor is usually called Joule heating,
after James Prescott Joule (1818–1889).

Considering a material, shown schematically in Fig. 9.3, having a constant electrical conductivity,
σ, with units of [(Ω � m)�1],2 the electrical resistance measured across its length, Rdc, will depend

1William Hewlett, an electrical engineering student at Stanford University, used a current-dependent resistance
(a flashlight bulb) to stabilize the amplitude of an audio oscillator circuit as his master’s thesis. That oscillator
subsequently became the HP-200. It was the first product developed commercially by the original Silicon Valley start-
up: Hewlett-Packard. The first five of their “production”models were purchased byWalt Disney to produce sound effects
in the animated feature film, Fantasia.
2 Before the French-dominated Le Système International d’Unités was adopted, the unit of conductance was the mho
(ohm spelled backward). They re-named the unit of electrical conductance the siemens [S]. These are the same folks,
who, in their collective wisdom, re-named the unit of frequency from the obscure cycles-per-second (cps) to the
hertz [Hz].
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directly upon its length, L, and inversely upon its cross-sectional area, A. For that resistor, the current
passing through the resistor, I, and the voltage difference, ΔV, across the resistor are related by the
direct current (dc) version of Ohm’s law.

I ¼ ΔV
Rdc

¼ σA
L

Vin � Voutð Þ ð9:6Þ

If two identical pieces of the same material, like that shown in Fig. 9.3, were put side-by-side
(in parallel), their areas would add, and the resistance would be cut in half. If ΔV ¼ Vin � Vout remains
constant, the current would double. If two pieces were placed end-to-end (in series), their lengths
would add without changing their areas, and the resistance would be doubled. Again, if ΔV remained
constant, the current would be reduced by half, relative to the single sample.

9.3 Thermal Conductivity and Newton’s Law of Cooling

Newton’s Law of Cooling has exactly the same form as Ohm’s law, as written in Eq. (9.6), where we
recognize I as the rate of electrical charge flow, with units of amperes [A] or coulombs/second
[C/s]. By analogy, the rate of heat flow, _Q[J/s], is linearly related to the temperature difference, ΔT,
across the length, L, of the sample. It is also proportional to the thermal conductivity of the material, κ,
having units of [W/K-m] or [W/�C-m].

_Q ¼ ΔT
Rth

¼ κA
L

Tin � Toutð Þ ¼ κA
ΔT
L

ð9:7Þ

The SI units of heat flow are watts [W] or joules/second [J/s]. As expressed in the right-hand term of
Eq. (9.7), the heat flow (thermal power flow) is proportional to the temperature gradient, ΔT/L
(Fig. 9.4).

As shown in Fig. 9.5, analysis of the heat flow, _Q, through a sample like that in Fig. 9.4, but with
length, dx, converts Newton’s Law of Cooling in Eq. (9.7) into the Fourier Diffusion Equation (9.4).
The heat flux, _qin, with units of heat (energy) per unit area per unit time [W/m2], enters the slab at x, and
_qout exits at x + dx.

The thermal power, _Qnet, that is deposited in the slab results in an increase in the temperature of the
slab with time. If we assume that the differential element of length, dx, has cross-sectional area, A, and
the material has a specific heat per unit mass, cp, that is independent of temperature, then the heat
capacity of the differential element is the mass of the element, ρA dx, times the specific heat (per unit
mass). By Eq. (9.8), this net input of thermal power must result in a change in the temperature of the
slab with time.

Fig. 9.3 Electrical current,
I, flows through a conductor
with electrical conductivity,
σ, from a higher electrical
potential, Vin, to a lower
electrical potential, Vout.
The electrical resistance,
Rdc, of the resistor of length,
L, and cross-sectional area,
A, is Rdc ¼ L/σA
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_Qnet ¼ ρcpAdx
dT
dt

¼ _Q xð Þ � _Q xþ dxð Þ ¼ A _q xð Þ � _q xþ dxð Þ½ � ð9:8Þ

Since the heat flows in response to a temperature gradient, as expressed by Newton’s Law of Cooling
(9.7), and Eq. (9.8) produces the net heat transport in terms of the (one-dimensional) temperature
gradients, ∂T/∂x, evaluated at x and x + dx.

ρcpAdx
dT
dt

¼ A �κ
∂T
∂x

� �
x

þ κ
∂T
∂x

� �
xþdx

� �
ð9:9Þ

At this point, we are only one Taylor series expansion away from Fourier’s Diffusion Equation.

∂T
∂x

� �
xþdx

ffi ∂T
∂x

� �
x

þ ∂
∂x

∂T
∂x

� �
x

dxþ . . .

) ∂T
∂x

� �
xþdx

� ∂T
∂x

� �
x

ffi ∂2T
∂x2

� �
x

dx

ð9:10Þ

Since dx is a small quantity (compared to what?), we can neglect the terms containing higher powers
(dx)n of dx and combine Eq. (9.9) and Eq. (9.10), while bringing the thermal conductivity, κ, outside
the derivative, assuming that it is spatially uniform.

∂T
∂t

¼ κ
ρcp

∂2T
∂x2

¼ κ
ρcp

∇2T ¼ α∇2T ð9:11Þ

The earlier expression is identical to the Fourier Heat Diffusion Equation that we derived from our
linearization of the entropy equation (7.43) under the same assumption of a constant temperature-

Fig. 9.4 Heat power, _Q, flows through a thermal conductor made from a material with constant thermal conductivity, κ,
from a higher temperature, Tin, to a lower temperature, Tout. The thermal resistance, Rth, of the sample of length, L, and
cross-sectional area, A, is Rth ¼ L/κA

x

qin qout

x + dx

· ·

Fig. 9.5 A different heat flux, _qin, flows into a differential “slab” of thickness, dx, and area, A, than flows out, _qout , at
x + dx. As a result, the heat that remains within the differential element, _Qnet , causes the temperature of that element to
change in accordance with the definition of heat capacity, CP ¼ (∂Q/∂T)P, where we assume the sample is held at
constant pressure
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independent thermal conductivity. The new constant introduced in the right-hand term of (9.11), α¼ κ/
ρcp, is the thermal diffusivity.3 Energy and temperature units cancel in this ratio, so α has units of
length-squared divided by time [m2/s] [2].

The thermal diffusivity is useful because it is a measure of the ability of a material to conduct
thermal energy relative to its ability to store thermal energy. Materials with a large α will respond
quickly to changes in their thermal environment, while materials with small α will respond more
sluggishly, taking longer to reach a new equilibrium condition if the temperature of the surroundings is
changed. The thermal diffusivity of most metallic solids and gases (near room temperature) is
α ffi 10�5 m2/s, while for insulating solids and many liquids, α ffi 10�8 to 10�7 m2/s. Of course, if
the fluid is in motion, the convective heat transport (e.g., “wind chill”) can dominate conductive heat
transport [3].

9.3.1 The Thermal Boundary Layer

As acousticians, we are interested in the acoustical solutions to Eq. (9.11) that involve time-harmonic
temperature deviations, T(t) ¼ Ts cos (ωt), typically at a single frequency, ω, from some mean
temperature, Tm. As claimed before, harmonic analysis is the acoustician’s most powerful mathemati-
cal tool. We will begin by applying Eq. (9.11) to a semi-infinite wall defining a plane surface at x ¼ 0
that has an oscillating temperature, T(0, t)¼ Tm + Ts cos (ωt). By letting Ts be a scalar, we are defining
the phase of the temperature response with respect to the oscillating temperature of the boundary. The
wall is in contact with a fluid that has a thermal diffusivity, α ¼ κ/ρcp, as diagrammed in Fig. 9.6.

We will assume that the space-time behavior of the fluid at x � 0 is that of a wave traveling to the

right, Tfluid x, tð Þ ¼ Tm þℜe bTe j ω t�kxð Þ
h i

, and substitute this expression into the one-dimensional

version of Eq. (9.11) to convert the differential equation into an algebraic equation.

jωbT ¼ �αk2bT ð9:12Þ

Fig. 9.6 A semi-infinite solid with an oscillatory surface temperature, Tsolid(0, t) ¼ Tm + Ts cos (ωt), is in contact at the
plane x¼ 0 with a fluid at the same mean temperature, Tm. Since there is only fluid at x� 0, we will assume a right-going

wavelike space and time dependence for the oscillating component of the fluid’s temperature, Tfluid x, tð Þ ¼
Tm þℜe bTe j ω t�kxð Þ

h i

3 This material parameter is also sometimes called the thermometric conductivity and abbreviated as χ. For instance see,
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Butterworth-Heinemann, 1987); ISBN 0 7506 2767 0. See
§50.

9.3 Thermal Conductivity and Newton’s Law of Cooling 427



Cancelling the bTs and dividing both sides by –α, Eq. (9.12) becomes k2 ¼ � jω/α ¼ ω/jα. Taking the
square root4 of k2 (see Sect. 1.5.2), we find that k is a complex number, having real and imaginary parts
of equal magnitude.

k ¼
ffiffiffiffi
ω
jα

r
¼ 1� jffiffiffi

2
p

ffiffiffiffi
ω
α

r
¼ 1� jð Þ

ffiffiffiffiffiffi
ω
2α

r
� 1� j

δκ
ð9:13Þ

It is convenient to define a real scalar physical length, δκ, based on the reciprocal wavenumber that is
the (exponential) thickness of the oscillatory thermal boundary layer. The scale length of thermal
diffusion, δκ, is very important in acoustics (see “delta_kappa” in Fig. 8.19) and is called the
thermal penetration depth.

δκ �
ffiffiffiffiffiffiffiffiffiffi
2κ

ρcpω

r
¼

ffiffiffiffiffiffi
2α
ω

r
¼

ffiffiffiffiffi
α
πf

r
ð9:14Þ

The complex wave number, k, has equal real and imaginary parts. In electromagnetism, this similar
behavior occurs when an electromagnetic wave impinges on an electrically conducting (usually
metallic) solid or the surface of an ionic solution (e.g., seawater). In that case, the equivalent to
Eq. (9.14) is known as the “skin depth” (see Sect. 9.4.2).

This behavior is different from that which occurs at the interface between two optically transparent
media when the angle of incidence exceeds the critical angle5 or at the interface between two acoustical
media with different specific acoustical impedances (see Sect. 11.2.1). For the case of total internal
reflection, the wavenumber within the excluded medium is entirely imaginary and the disturbance is
known as an evanescent wave.

The complex wavenumber, k, in Eq. (9.13) still has the units of reciprocal length

[m�1]. Substitution of k from (9.13) back into the assumed solution, Tfluid x, tð Þ ¼ Tm þ
ℜe bTe j ω t�kxð Þ

h i
, shown in Fig. 9.6, and application of the boundary condition at x ¼ 0, provides an

explicit expression for the spatial distribution of temperature oscillations within the fluid.

T1 x, tð Þ ¼ ℜe bTs e
�x=δκe j ω t�x=δκð Þ

h i
for x � 0 ð9:15Þ

Expanding Eq. (9.15) in terms of real trigonometric functions, Euler’s formula in Eq. (1.53) will
facilitate plotting of the real and imaginary parts of the spatial dependence of T1 (x), shown in Fig. 9.7.

4 To take the square root of –j¼ j�1, it is sometimes useful to draw a diagram on the complex plane by expressing j�1 as –
j, drawn vertically downward at �90� from the positive real axis. The square root operation divides that angle by two,
resulting in a unit vector rotated only �45� away from the real axis having a projection of (2)–½ along the real axis and –
(2)–½ along the imaginary axis demonstrating that one root of √–j is (1–j)/√2. Regarding �90� as +270�, and again
dividing by two, yields the other root, ( j–1)/√2.
5 Evolution has found these waves useful for the control of light reaching the optic nerve of insects with compound eyes.
Did you ever notice that it is hard to swat a fly under a wide range of lighting conditions? How can you control the light
levels when your eye has a thousand lenses? One iris for each lens is clearly out of the question, since each lens has a
diameter of only about 30 μm. The mechanism employed by insects to control light levels makes each lens the entrance to
an optical waveguide (called an ommatidium by the entomologists), much like an optical fiber used in telecommu-
nications, that channels light from the lens down to the optic nerve (see Fig. 11.6). In bright light, a chemical change in
the fluid surrounding the waveguides causes a precipitate to form that scatters the wave decaying (exponentially) beyond
the waveguide into the fluid. Scattering of this diffusion wave reduces the light that makes it down the waveguide to the
optic nerve. For further information on the physics of insect vision and some relevant graphics, see R. P. Feynman,
Lectures on Physics, Vol. I (Addison-Wesley 1963), §36-4.

428 9 Dissipative Hydrodynamics

www.dbooks.org

https://doi.org/10.1007/978-3-030-44787-8_1#Equ53
https://www.dbooks.org/


T1 xð Þ ¼ Tse
�x=δκ cos

x
δκ

� �
� j sin

x
δκ

� �� �
for x � 0 ð9:16Þ

It is clear from Fig. 9.7 that Eq. (9.15) and Eq. (9.16) satisfy the boundary condition requiring that
the temperatures of the solid and the fluid, at their plane-of-contact, x ¼ 0, are exactly equal, ℜe
[T1(0, t)]¼ Ts, and in-phase, ℑm[T1(0, t)]¼ 0, at all times. If the adjacent temperatures were not equal,
then the discontinuity would require Eq. (9.11) to produce infinite heat flows. The temperature
disturbance in the fluid is localized quite near the wall. At distances greater than x ¼ 4δκ, the effects
of the wall’s oscillating temperature correspond to temperature oscillations in the fluid that are less than
2% of those at the interface between the wall and the fluid.

The situation encountered more commonly in acoustical systems is that the temperature of the fluid
is oscillating while the wall temperature remains constant, typically due to the solid’s higher thermal
conductivity and heat capacity per unit volume. For example, in an ideal gas, the amplitude of adiabatic
temperature oscillations, T1,adiab, far from any solid boundaries, were given by Eq. (7.25):
T1, adiab ¼ Tm γ � 1ð Þ=γ½ � bpj j=pmð Þ. Typically, a solid boundary will keep an ideal gas’s temperature
constant on the solid-gas interface plane, which is defined as x ¼ 0 in Fig. 9.6. In that case, the
boundary condition is that T1 (0, t) ¼ 0.

T1 x, tð Þ ¼ T1, adiabℜe ejω t 1� e� 1þjð Þx=δκ
� �h i

for x � 0 ð9:17Þ

Fig. 9.7 The real (solid) and imaginary (dashed) components of the oscillatory portion of the temperature near a wall
that has an oscillating temperature at its surface. The y axis is normalized so that Ts ¼ 1. The x axis is scaled by the
thermal penetration depth, δκ. The real part of Eq. (9.16) is in-phase with the temperature oscillations at the surface of the
solid and is equal to the magnitude of those oscillations, thus satisfying the boundary condition at x ¼ 0: Tfluid(0,
t) ¼ Tsolid(0, t) at all times. At a distance of 0.7854δκ from the wall, the amplitudes of the real and imaginary parts have
equal magnitude
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The real and imaginary parts of that solution, provided in Eq. (9.18), are plotted in Fig. 9.8.6

T1 x, tð Þ ¼ T1, adiabℜe ejω t 1� e�x=δκ cos
x
δκ

� �
þ j e�x=δκ sin

x
δκ

� �� �	 
� �
for x � 0 ð9:18Þ

9.3.2 Adiabatic Compression Within a Bounded Volume

At various places in Chaps. 7 and 8, I have claimed that the acoustic compressions and expansions of
an ideal gas take place adiabatically. Having produced an acoustical solution the Fourier Heat
Diffusion Equation (9.11), and having defined the thermal penetration depth, δκ, in Eq. (9.14), we
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Fig. 9.8 The real (solid line) and imaginary (dashed line) parts of the oscillatory portion of the temperature near an
isothermal surface are plotted for the situation where the fluid far from the wall has a normalized oscillating temperature
magnitude, |T1(x/δκ � 1)| ¼ 1, that might be caused by adiabatic expansion and compression of an ideal gas given by
Eq. (7.25). The x axis is again scaled by the thermal penetration depth, δκ. The isothermal surface at x ¼ 0 requires that
both the real and imaginary parts of Eq. (9.18) vanish at the interface: Ts(0, t) ¼ 0. The thermal influence of the wall
extends only a distance of about four thermal penetration depths into the fluid

6 It is difficult for most people to visualize the spatial and temporal dependence of the temperature based only on plots of
the real and imaginary parts of the solution as a function of position, such as those provided in Figs. 9.7 and 9.8. An
animation of the temperature variation for an ideal gas near a solid (isothermal) wall is available at the Los Alamos
National Laboratory Thermoacoustics Home Page: http://www.lanl.gov/thermoacoustics/Book/index.html. In the second
paragraph on the page at that site, you have the option to download a zipped animation file. You can “unzip” the file and
then run the DOS-executable animation THERMAL.EXE. The animation starts with the pressure and velocity in a
standing wave and then zooms into the solid boundary to animate the temperature in the fluid as a function of space and
time. The animation goes further to calculate the work done by an imaginary piston moving with the fluid to demonstrate
that power is dissipated during the transition from adiabatic compressions far from the wall to isothermal compressions at
the fluid-solid boundary.
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are now equipped to determine the circumstances that are necessary so that acoustic compressions and
expansions occur nearly isothermally in the vicinity of solid surfaces.

Before addressing this question of adiabatic vs. isothermal in a more formal context, it might be
useful to examine the effects of thermal conduction in an acoustical compliance, such as the air-filled
500 ml volume of the Helmholtz resonator, shown in the photograph of Fig. 8.16. As shown in
Fig. 8.27, the resonance frequency of the empty resonator was (0b) ¼ 241.7 Hz. Figure 9.9 shows the
DELTAEC Thermophysical Property output for that case. The value of the thermal penetration depth is
visible at the lower right-hand corner: delta_kappa ¼ δκ ¼ 168.62 μm.

The radius of the 500 ml spherical volume, R¼ (3 V/4π)1/3 ¼ 4.92 cm. At the interface between the
glass and the air, the gas must remain isothermal. The exaggerated boundary layer’s thickness is shown
schematically by the dashed spherical surface in Fig. 9.10.

At a distance of 2δκ from the glass, the magnitude of the temperature oscillations of the gas (9.18) is
86.5% of their value far from that boundary, based on Eq. (9.18) as determined by the magnitude of the
pressure oscillations within the volume, pcav, according to Eq. (7.25). We can “split the difference” and
approximate the effect of the wall by considering the gas a distance, δκ, or less from the glass as being
compressed and expanded isothermally and the gas farther than δκ from the wall undergoing adiabatic
compressions and expansions. The “isothermal region” of the 500 ml sphere has the volume of a
spherical shell, Visothermal¼ 4πδκ R2, with the shell radius, R¼ 4.92 cm, and a thickness, δκ¼ 168.6 μm,
for the conditions specified in Fig. 9.9. The ratio of the “isothermal” volume to the “adiabatic” volume
can be calculated.

Visothermal

Vadiabatic
ffi 4πR2δκ

4π=3ð ÞR3 ¼
3δκ
R

if R >> δκ ð9:19Þ

Fig. 9.9 Screenshot of the thermophysical properties of dry air at Tm ¼ 295.65 ¼ 22.5 �C for the 500 ml boiling flask
analyzed in Sect. 8.5.2 and modeled in DELTAEC in Fig. 8.27

Fig. 9.10 Schematic
representation of the
spherical volume of radius,
R, that forms the acoustical
compliance of the
Helmholtz resonator
depicted in Fig. 8.16.
Within a spherical shell of
thickness, δκ, adjacent to
the glass, the pressure
oscillations of the gas are
nearly isothermal.
Throughout the remaining
volume, the compressions
and expansions of the gas
are adiabatic
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For our case, δκ /R¼ 3.43	 10�3, so the volumetric ratio in Eq. (9.19) is 1.0%. This shows that use
of γ in the expression for the compliance of the volume, C ¼ V/γpm, in Eq. (8.26), was justified. Since
γair ffi 7/5 ¼ 1.40, the isothermal compliance (γiso � 1) is 40% larger than its adiabatic value, so we
would expect the resonance frequency predicted by Eq. (8.51) to be lower by about 0.2%, due to the
increased compressibility of the gas within the isothermal boundary layer.

9.3.3 Energy Loss in the Thermal Boundary Layer*

Heat is transferred from the compressed (hence, hotter) gas to the solid (isothermal) substrate during
one-half of the acoustic cycle and is transferred from the solid substrate back to the expanded (hence,
cooler) gas during the other half of the acoustic cycle. The entropy lost during these two heat transfers
is non-zero even though the amount of heat transferred is nearly identical. The reason is that the change
in entropy is related to the ratio of the heat transfer, dQ, to the absolute temperature at which that heat
transfer takes place, T. Since the heat transferred from the substrate to the gas occurs at a lower average
temperature, approximately Tm � (T1/2), than the heat transfer from the gas to the substrate, taking
place at approximately Tm + (T1/2), where T1 is the adiabatic temperature change far from the
substrate’s surface, derived previously in Sects. 1.1.3 and 7.1.3, there will be a net increase in the
total entropy, (ΔS)net > 0, during the complete cycle.

Although an exact calculation of this acoustic energy loss per unit surface area per unit time, _eth ,
occurring in the thermal boundary layer requires an integral over a complete cycle, that derivation is
somewhat more complicated than the analogous calculation of the energy loss due to viscous shear
stresses in the fluid, _evis, provided in Sect. 9.4.3. Instead of the exact calculation, we can use Newton’s
Law of Cooling to estimate the heat transferred per unit surface area during each half-cycle assuming a
square-wave pressure change, 
p1, rather than a sinusoidal variation of pressure.

The heat transferred from the gas to the substrate, dQ+½, per unit area, A, during one-half of an
acoustic period, (2f )�1, can be approximated, assuming T1 is constant during the transfer and ∂T/
∂x ffi T1/δκ. The heat transfer from the substrate to the gas is dQ-½.

dQ
½

A
ffi 
κ

2
T1

f δκ
/ 
κ

2f δκ

bpj j
pm

� �
ð9:20Þ

The entropy change, dS
½, for each half-cycle depends upon the temperature at which each heat
transfer, dQ
½, takes place.

dS
½

A
ffi dQ
½

A
1

Tm 
 T1=2ð Þ
� �

¼ 
κ
2fTmδκ

T1

1
 T1=2Tmð Þ
� �

ð9:21Þ

The net increase in entropy, (ΔS)net ¼ dS+½ � dS-½, can be approximated by a binomial expansion of
the factor in parentheses in Eq. (9.21), since T1/2Tm � 1.

ΔSð Þnet
A

/ κ
f δκ

T1

2Tm

1
1� T1=2Tmð Þ

� �
� 1

1þ T1=2Tmð Þ
� �� �

/ T1

Tm

� �2

/ bpj j
pm

� �2

ð9:22Þ

The conversion of this net entropy increase into a net energy dissipation per cycle per unit area
simply requires multiplication by Tm. It should be clear that the thermal boundary layer’s acoustic
energy dissipation per unit area, per unit time, _eth, is both positive-definite and proportional to bpj j2. An
exact calculation [4], assuming the proper time averaging over a sinusoidal modulation of the acoustic
pressure, is analogous to the calculation for _evis that will result in Eq. (9.37).
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_eth ¼ � γ � 1ð Þ
4γ

bpj j2
pm

δκω ð9:23Þ

As expected, _eth vanishes for an isothermal process where γ ¼ 1.

9.3.4 Adiabatic vs. Isothermal Propagation in an Ideal Gas

Having introduced the thermal penetration depth as the real (exponential) length that characterizes the
thickness of oscillatory thermal boundary layer, we can use δκ to show that sound waves in ideal gases
are very nearly adiabatic. To do this, let us start with the assumption that sound propagation is adiabatic
and calculate the frequency above which that assumption breaks down.

If we refer to the sinusoidal waves shown in Fig. 3.5, the crests (displacement maxima) correspond
to a temperature, T1, that is higher than Tm by the amount specified in Eq. (7.25): T1 ¼ Tm[(γ � 1)/γ]
( p1/pm). Similarly, the temperature of the gas at the troughs (pressure minima) is lower than Tm by –T1.
The crests and troughs are separated in space by one-half wavelength, λ/2. Can heat diffuse between
the warmer crests and the cooler troughs during a half-cycle? The diffusion distance is given by the
thermal penetration depth. At 345 Hz, λ/2¼ 0.50 m in air. At the same frequency, δκ ¼ 141 μm. During
one half-cycle, T/2¼ 1.45 ms, heat cannot diffuse far enough to equalize the temperatures of the peaks
and troughs of the wave.

The above argument can be made more general by setting the wavenumber, k ¼ ω/c, for the
adiabatic sound wave equal to the wavenumber for thermal diffusion, δ�1

κ , and solving for the
frequency, ωcrit, at which those two are equal. This is also equivalent to setting the adiabatic sound
speed, cs ¼ (∂p/∂ρ)s ¼ ω/k, equal to the “speed of heat,” cth ¼ ωδκ.

ωcrit ¼ ρmcpc
2

2κ
ð9:24Þ

For air at 300 K and standard pressure, the critical frequency, ωcrit¼ 2.72	 109 rad/s, or fcrit¼ ωcrit

/2π ¼ 432 MHz. At that frequency, the wavelength of sound is less than one micron, so our assumption
of adiabatic sound propagation is quite good for all frequencies of interest in gases.7

At fcrit for air, the half-wavelength of sound corresponds to only 11 times the average distance
between molecules. At these frequencies, our hydrodynamical approach, which assumes that fluids can
be represented as a continuum, is starting to break down and corpuscular effects start to become
important.

Of course, at lower pressures, this effect occurs at lower frequencies, so our analysis has to
transition from hydrodynamical to ballistic, where the individual particle collisions dominate the
propagation.8 It has recently been shown that ballistic propagation should be considered in the study

7 In liquids, ωcrit is even higher. In water, fcrit ¼ 1210 GHz, although this is less significant because the difference
between the adiabatic and isothermal sound speeds are so small due to the smaller thermal expansion coefficient. At 4 �C,
the density of water reaches its maximum value, so the thermal expansion coefficient vanishes and the isothermal and
adiabatic sound speeds are equal. The existence of life on this planet probably owes much to the fact that ice is less dense
than water.
8 This transition from hydrodynamic to ballistic propagation is known as the “Knudsen limit.” In that regime, the real and
imaginary components of the wavenumber become equal. Based on M. Greenspan, “Propagation of Sound in Five
Monatomic Gases,” J. Acoust. Soc. Am. 28(4), 644–648 (1956), the hydrodynamic results should not be used for
frequencies above ωffi c2/10α. An excellent review article by Greenspan appears in Physical Acoustics, Vol. II A, edited
by W. P. Mason and R. N. Thurston (Academic Press, 1964), pp. 1–45.
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of sound propagation high in the Earth’s atmosphere and in the atmospheres other planets in our solar
system [5].

9.4 Viscosity

The irreversibility in the Navier-Stokes equation (7.34) arises from the term proportional to the shear
viscosity, μ∇2 v

!. The fundamental difference between a solid and a fluid (liquid or gas) is that shear
deformations of a solid are restored elastically (see Sect. 4.2.3), while fluids cannot sustain a state of
static shear indefinitely. Figure 9.11 depicts two parallel plates separated by a distance, d, that are in
relative motion at a velocity, vx, and contain a viscous fluid in between.

A “no-slip” boundary condition is applied to the viscous fluid at the interface between the fluid and
the solid surface. The force, Fx, per unit area, Ay, of the plate, is given by the equivalent of Ohm’s law
for the relevant component of the shear stress, τxy, as a function of the velocity gradient.

τxy ¼ Fx

Ay
¼ μ

∂vx
∂y

ð9:25Þ

We can take Eq. (9.25) to be our definition of the shear viscosity, μ, which has the units of [Pa-s].
This differs slightly from Ohm’s law (9.6) and Newton’s Law of Cooling (9.7) because the

electrical potential difference (voltage) and the temperature difference are both real scalars. Velocity
is a vector, so the shear stress, τ↔, is a tensor. If the shear viscosity, μ, is not a function of the shear rate,
then fluids that obey Eq. (9.25) are known as Newtonian fluids.9

Fig. 9.11 Two-dimensional representation of a fluid that is being sheared by the relative motion of two parallel plates.
The lower plate is shown as stationary and the upper plate is moving in the x direction at a uniform speed, vx. The
outlined arrow ()) represents the constant force, Fx, that is required to overcome the fluid’s frictional drag. That force is
applied in the x direction, on the plate with area, Ay, normal to the y axis. Due to the non-slip boundary condition at the
interface between the viscous fluid and the plates, the velocity of the fluid is the same as that of the plates over the planes
where the substrates and fluid are in contact

9 The entire field of rheology is dedicated to the study of non-Newtonian fluids and plastic flows. Non-drip paints are
thixotropic fluids; their viscosities decrease with increasing strain rate. You want a paint that has a low viscosity when it
is being applied to reduce drag on the paint brush (and wrist of the painter), but a high viscosity once it is applied to a
surface to keep it from dripping. Viscoelastic fluids like Silly Putty™ are also non-Newtonian fluids. A detailed
discussion of viscosity and of non-Newtonian flow is provided by R. B. Bird, W. E. Steward, and E. N. Lightfoot,
Transport Phenomena (J. Wiley & Sons, 1960); ISBN 0-471-07392-X, in Chapter 1.
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The shear viscosity, μ, is also sometimes called the dynamic viscosity or absolute viscosity to
distinguish it from the kinematic viscosity, ν � μ/ρ. We will see in the next sub-section that the
kinematic viscosity plays the same role for viscous flow as the thermal diffusivity, α, plays for heat
transfer. Both ν and α are diffusion constants and have the SI units of [m2/s].

9.4.1 Poiseuille Flow in a Pipe of Circular Cross-Section

When one plate moves parallel to a stationary plate, as shown in Fig. 9.11, the velocity of the fluid
varies linearly across the gap (as symbolized by the arrows of different length) and the y component of
the gradient of the velocity, ∇yvx ¼ ∂vx/∂y, is a constant. We can calculate the velocity profile for
steady-state flow (i.e., ∂vx /∂t ¼ 0) in a tube of circular cross-section, with radius, a, by solving the
Navier-Stokes equation (7.34). Due to the cylindrical symmetry of the problem, the x component of the
Navier-Stokes equation for a Newtonian fluid can be expressed in cylindrical coordinates [6]:10

ρ
∂vx
∂t

þ vr
∂vx
∂r

þ vθ
r
∂vx
∂θ

þ vx
∂vx
∂x

� �
¼

�∂p
∂x

þ μ
1
r
∂
∂r

r
∂vx
∂r

� �
þ 1
r2
∂2vx
∂θ2

þ ∂2vx
∂x2

� �
þ ρgx

ð9:26Þ

Although Eq. (9.26) looks rather intimidating,11 in most applications many of the terms vanish. In
the case of steady-state flow in a pipe, only two terms from Eq. (9.26) survive in Eq. (9.27).

μ
r

∂
∂r

r
∂vx
∂r

� �
¼ ∂p

∂x
¼ Δp

L
ð9:27Þ

The last term on the right-hand side of Eq. (9.27) assumes that the flow is in response to a pressure
difference, Δp, in a pipe of length, L. The equation can be integrated twice to produce an expression for
the velocity as a function of radius, vx(r).

vx rð Þ ¼ Δp
4μL

r2 þ C1 ln r½ � þ C2 ð9:28Þ

C1 and C2 are constants of integration. Since vx (0) must remain finite, C1 ¼ 0. (For flow in the annular
space between two pipes, C1 becomes useful for matching the boundary condition at the inner
radius.12) The constant C2 is determined from the non-slip boundary condition that requires vx (a)¼ 0.

vx rð Þ ¼ Δp
4μL

a2 � r2
� � ð9:29Þ

10 Any book on hydrodynamics or vector calculus will provide expressions for differential vector operators in at least
cylindrical and spherical coordinates. Some examples are mentioned in Refs. [2, 3, 6], at the end of in this chapter, as well
as most books on engineering mathematics.
11 There are two more of these for the (radial) r component and the (azimuthal) θ component of Eq. (9.26) that are just as
ugly!
12 See Ref. [6], for solutions in tubes of other cross-sections, in §17, pp. 53–54 for (Problem 1) annular, (Problem 2)
elliptical, and (Problem 3) triangular ducts.
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The pipe’s “discharge” (i.e., mass flow, _m , or volume velocity, U ¼ _m=ρ ) can be calculated by
integrating the parabolic velocity profile of Eq. (9.29), shown in Fig. 9.12, over the pipe’s cross-
sectional area.

_m ¼ ρU ¼ 2πρ
ða
0
vx rð Þr dr ¼ πρa4

8μ
Δp
L

ð9:30Þ

This result, known as Poiseuille’s formula, is valid as long as the parabolic profile has been
established13 and the flow velocity in the pipe is slow enough that the flow remains laminar (like
Fig. 9.12) and does not become turbulent.14

9.4.2 The Viscous Boundary Layer

Just as we used a surface with a time-dependent temperature in contact with a stagnant fluid to derive an
expression for the thermal penetration depth, δκ, in Eq. (9.14), we can assume transverse oscillations of a
solid surface, as shown in Fig. 9.13, to derive an expression for the oscillatory viscous boundary layer.

We will assume that the space-time behavior of the fluid for x � 0 is that of a wave traveling to the
right, vy x, tð Þ ¼ ℜe bvy e j ω t�k xð Þ �

. We assume that the fluid is otherwise at rest so there is no mean

flow: v
!

m ¼ 0. Since the transverse motion of the wall does not compress any fluid, the pressure is

constant throughout the fluid, allowing us to ignore the ∇
!
p term in Eq. (9.2).

Fig. 9.12 Schematic representation of the velocity vectors for steady flow through a pipe of cylindrical cross-section
with radius, a. The velocity profile, given in Eq. (9.29), is parabolic. This flow behavior is known as “Poiseuille flow.”
(Jean Léonard Marie Poiseuille (1797–1869) was a French physicist and physiologist who first published this result, in
1840, during his investigation of blood flow in narrow capillaries. The CGS unit of viscosity, the poise, was named in his
honor.) When looking at this two-dimensional representation, it is important to keep its cylindrical symmetry in mind.
Imagine the entire sketch rotated about the dashed centerline

13When flow enters a smaller tube from a larger reservoir, it must travel some distance before the flow becomes
“organized” into the parabolic profile shown in Figure 9.12. This distance is known as the “entrance length,” L, and is
usually expressed in terms of the tube’s inner diameter, D, and the Reynolds number, Re (see the next footnote): L/
D ffi 0.06 Re.
14 The criterion for the transition to turbulence in smooth-walled round pipes is usually given in terms of the nondimen-
sional Reynolds number, Re ¼ ρ < v > D/μ, where <v> is the flow velocity averaged over the pipe’s area, πD2/4. The
transition from laminar (Fig. 9.12) to turbulent flow is usually taken to occur at a Reynolds number greater than
2200 
 100 in circular pipes with a “smooth” surface finish. Further details regarding the transition to turbulence are
given in most fluid dynamics textbooks, such as Refs. [2, 3, 6], and presented as a “Moody chart,” where the
nondimensional drag is plotted vs. Reynolds number for various values of surface roughness.
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ρ
∂vy x, tð Þ

∂t
¼ μ∇2vy x, tð Þ ð9:31Þ

We can substitute the wavelike expression into the two remaining terms in this one-dimensional
version of the linearized Navier-Stokes equation to again obtain the required relationship between ω
and k:

jωbvy ¼ � μ
ρ
k2bvy ¼ �νk2bvy ð9:32Þ

We have again utilized ν, called the kinematic viscosity, which has the units of [m2/s], just like the
thermal diffusivity, α, which was introduced in Eq. (9.11). As before, we have solved Eq. (9.31) for the
complex wavenumber, k, and introduce a viscous penetration depth, δν, to characterize the shear wave
within the fluid.

k ¼
ffiffiffiffiffiffiffiffiffi
�jω
ν

r
¼ 1� jffiffiffi

2
p

ffiffiffiffi
ω
ν

r
¼ 1� jð Þ

ffiffiffiffiffi
ω
2ν

r
� 1� j

δν
) δν ¼

ffiffiffiffiffiffiffi
2μ
ρω

r
¼

ffiffiffiffiffi
2ν
ω

r
ð9:33Þ

From this point on, the results for vy (x,t) in the viscous fluid are identical to those already presented
for T1 (x,t).15 Figure 9.7 would describe the velocity field in front of the transversely oscillating
boundary of Fig. 9.13 if the x axis were scaled by δν instead of by δκ. Similarly, if the boundary were
stationary and the fluid far from the boundary were moving with an oscillatory velocity amplitude, vy,
then Fig. 9.8 would describe the motion of the fluid if the x axis were scaled by δν instead of δκ.

16

Fig. 9.13 A semi-infinite solid surface oscillates in the y direction with a transverse oscillatory velocity, vs cos (ωt). The
surface is in contact with a fluid along the x ¼ 0 plane. At that interface, the fluid moves with the same velocity as the
solid due to the non-slip boundary condition at x ¼ 0. Since there is only fluid at x � 0, we will assume a right-going
wavelike space and time dependence for the oscillating component of the fluid velocity, vy(x, t), as we did for temperature
oscillations in Fig. 9.6

15Mathematicians would call the Fourier Heat Diffusion equation (9.11) and the Navier-Stokes equation (9.2) “isomor-
phic.” The fact that T is the variable in Eq. (9.11) and vy is the variable in Eq. (9.31) only bores most mathematicians. The
forms of the solutions to both equations must be identical.
16 For an animated visualization of the fluid in the oscillatory viscous boundary layer, we can again turn to the Los
Alamos Thermoacoustics Home Page and run OSCWALL.EXE to see exactly the situation (rotated by 90�) that is
diagrammed in Fig. 9.13. The reverse case of a stationary wall and fluid moving uniformly far from the wall is animated
in VISCOUS.EXE. In that animation, a vibrating piston sets up the fundamental λ/2¼ L standing wave in a tube and then
focuses in on a portion of the resonator’s wall at the velocity anti-node near the center of the tube.
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The solutions would be identical for Maxwell’s equations governing the electric field, E
!
, due to an

electromagnetic wave impinging on an electrically conducting medium.

∂E
!

∂t
¼ 1

σμ
∇2E

! ð9:34Þ

In that case, δ ¼ (2/σμω)1/2 is known as the electromagnetic “skin depth.” Here μ is the magnetic
permeability (not viscosity), and σ is the same electrical conductivity as introduced earlier in Ohm’s
law (9.6).

9.4.3 Viscous Drag in the Neck of a Helmholtz Resonator

We now return once again to the example of our 500 ml flask in Fig. 8.16 and calculate the effects of
viscosity on the flow through the neck of our Helmholtz resonator. From Fig. 9.9, we see that the
viscous penetration depth for that example is δν ¼ 141.9 μm. Since the radius of the neck, a ¼ Dneck/
2 ¼ 12.5 mm, the ratio, δν/a ¼ 0.0114 << 1, so the effect of the non-slip boundary condition at the
stationary neck surface does not extend very far into the air that fills the neck. In that limit, we describe
the motion of the fluid in the neck as plug flow that is diagrammed schematically in Fig. 9.14.

The relevant component of the shear stress on the surface of the neck, τxy, is determined by
Eq. (9.25). In this case, the fluid near the neck’s axis is moving with speed, vx, in the axial direction,
and the fluid in contact with the neck must be stationary to satisfy the non-slip boundary condition.
Since |k| / |1/δν|, it is easy to evaluate the velocity gradient, ∂vx/∂y / vx/δν, where vx is the peak fluid
velocity in the neck far from surface of the neck and y is the radial direction normal to the surface of the
neck.

τxy ¼ Fx

Ay
¼ μ

∂vx y, tð Þ
∂y

¼ μ
bvxj j
δν

/ μ
vx
δν

ð9:35Þ

Fig. 9.14 Schematic representation of oscillatory “plug flow” in the cylindrical neck of a Helmholtz resonator with
radius, a� δν. In the region far from the walls, the velocity is independent of the radial distance from the central axis of
the neck. The velocity decays exponentially over a characteristic exponential distance, δν, to zero at the walls where it
must vanish to satisfy the non-slip boundary condition for a viscous fluid. When looking at this drawing, it is important to
keep the cylindrical symmetry in mind. Imagine the entire sketch rotated about the dashed centerline
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In this application, Ay is the surface area on the inside of the neck. The wall and the fluid are in
relative motion since the wall is stationery and the fluid is oscillating. Since the physical neck length,
L ¼ 49.2 mm, and the diameter, Dneck ¼ 25.0 mm, Ay ¼ πDneckL ¼ 3.864 x 10�3 m2. The time-
averaged power dissipated, hΠvisit, per unit area by the viscous shear stress, _evis ¼ Πvish it=Ay , is
one-half the time average of the product of the peak stress, τxy, times the peak velocity, vx, where
T ¼ f�1 is the period.

_evis ¼ Πvish it
Ay

¼ 1
T

ðT
0
τxy � vx tð Þ �

dt / μ
T

ðT
0

v2x tð Þ
δν

dt ð9:36Þ

The oscillatory flow velocity, vx (r, t), through the neck of the resonator is uniform (except in the thin
viscous boundary layer). The sinusoidal time dependence of the velocity can be represented as
vx(t) ¼ vx cos (ω t).

_evis ¼ Πvish it
Ay

/ μ
2
v2x
δν

¼ ρm
4

bU
Ay

����
����
2

δνω ð9:37Þ

The far right expression for _evis is obtained by using the definition of the viscous penetration depth
in Eq. (9.33) to substitute for the shear viscosity, μ ¼ δ2νρmω

� �
=2, and by letting <vx> ¼ |<U1>|/A. As

with any dissipative mechanism, like Joule heating in Eq. (9.5), _evis is positive-definite and independent
of the sign (direction) of vx or U.

Although the result for _evis in Eq. (9.37) is correct, the use of proportionalities instead of equalities
was motivated by the fact that the actual expression for the viscous stress tensor is not the one provided
in Eq. (9.35) but a complex phasor, bτxy, that lags bv by 45� in time.17

bτxy�� �� ¼ ffiffiffi
2

p
μvx
δν

e�y=δν ð9:38Þ

By examining the DELTAEC model of the 500 ml flask shown in Fig. 8.27, we can calculate the
average value of <vx> ¼ |<U1>|/A based on input (2a), the cross-sectional area of the neck,
A ¼ 4.909 	 10�4 m2. The volume velocity entering the neck is given in Segment #0, where
(0f) gives |U1| ¼ 4.0777 	 10�4 m3/s at the open end of the neck. The volume velocity leaving the
neck and entering the compliance is given in Segment #1, where result (1C) gives
|U1| ¼ 3.9806 	 10�4 m3/s for an average volume velocity |<U1>| ¼ 4.0292 	 10�4 m3/s, so <vx> ¼ |
<U1>|/A ¼ 0.8208 m/s. Using the viscosity from Fig. 9.9, μ ¼ 1.835 	 10�5 Pa�s, and δν ¼ 141.9 μm,
Eq. (9.37) yields an average viscous power dissipation per unit area of _evis ¼ Πvish it=A ¼ 42.0 mW/m2.

The surface area of the neck Ay ¼ π Dneck L ¼ 3.86 	 10�3 m2, so the time-averaged power
dissipated in the neck due to viscous drag in the oscillatory boundary layer <Πvis>t ¼ _evis πDneckLð Þ
¼ 167.4 μW. This is quite close to the value in the DELTAEC model that provides for the dissipation in

the neck (1E)–(1F)¼ 174 μW. The small discrepancy (about 3.7%) arises from the fact that we took an
average of the flow velocity that was not weighted (i.e., integrated) to accommodate the vx

2 depen-
dence of _evis in Eq. (9.37). DELTAEC is correct. Using the same results from the DELTAEC model of
Fig. 8.27, to calculate the average of the squared velocity, v2x

� � ¼ 0.6818 m2/s2, so
<Πvis>t ¼ _evis πDneckLð Þ ¼ 170.2 μW. This result is even closer to the correct DELTAEC result. We

17A more rigorous general derivation of the viscous boundary layer dissipation and of the acoustic power is provided by
Swift in his textbook, Thermoacoustics [10]. See §4.4.2 and Chap. 5.
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have avoided evaluation of any integrals, but in the process have developed a fundamental under-
standing of dissipation in the viscous boundary layer.

Although we have not derived the corresponding power dissipation per unit area due to thermal
conduction, _eth , the strategy was presented in Sect. 9.3.3 and is illustrated in the THERMAL.EXE
animation.18

_e ¼ _evis þ _eth ¼ � ρm
4

bU
A

����
����
2

δνω� γ � 1ð Þ
4γ

bpj j2
pm

δκω ð9:39Þ

The second term in Eq. (9.39) can be applied to the 500 ml Helmholtz resonator of Fig. 8.16 to
calculate the power dissipated by the irreversible thermal conduction between the (isothermal) walls of
the compliance and the gas undergoing adiabatic expansions and compressions far from the walls.

Using Fig. 8.27, the DELTAEC result (2A) ¼ (3A) gives |pcav| ¼ 74.355 Pa. Figure 9.9 provides the
air’s thermal conductivity, κ ¼ 2.59	 10�2 W/K-m, and the thermal penetration depth, δκ ¼ 168.6 μm,
resulting in _eth ¼ 9.98 mW/m2. The surface area of the spherical compliance is input (2a):
Asphere ¼ 2.9974 	 10�2 m2. The product gives the time-averaged power dissipated in on the surface
of the spherical volume due to thermal relaxation loss in the oscillatory boundary layer Πthh it ¼
_ethAsphere ¼ 29.91 μW. This is exactly the value that the DELTAEC model provides as (1F)–
(2F) ¼ 29.92 μW.

9.4.4 Quality Factors for a Helmholtz Resonator

Having expressions for thermoviscous boundary layer dissipation, we can calculate the quality factor,
Q, of the Helmholtz resonator shown in Fig. 8.16. Q is a dimensionless measure of the sharpness of the
resonance (see Appendix B). Without dissipation, Q ¼ 1, as seen in Eq. (8.52). Based on the
DELTAEC model in Fig. 8.28 and Eq. (C.1), the Q ¼ |pcav/p| ¼ result (3A)/input (0d) ¼ 74.355.

Figure 8.32 displays the incremental plot file, .ip, for the same resonator providing that amplitude
and phase of pcav ( f ). We can approximate the derivative of the phase with respect to frequency at
resonance by fitting the three phases (the one closest to resonance and the two above and below
it) vs. frequency for an approximate value of ∂θ=∂fð Þ f o

ffi 34.6�/Hz. Substitution into Eq. (B.4) gives
Q ffi 73.6. Running DELTAEC over a finer frequency step size around fo should produce a slightly
greater value for the slope of the phase vs. frequency.

It will be instructive to calculate the Q for both the viscous and thermal losses individually since the
final results will be simple and rather intuitively satisfying. To begin, recall the definition ofQ based on
the ratio of the energy stored in the system, Estored, to the energy dissipated in one cycle, Edissipated/

cycle ¼ hΠdisitT ¼ hΠdisit/f. From Eq. (B.2),

Q ¼ 2π
Estored

Edissipated=cycle
¼ ωEstored

Πdissipated

� �
t

ð9:40Þ

For our Helmholtz resonator, the quality factors for each dissipative process will be calculated
individually. Since the energy dissipation is additive, the total quality factor,Qtot, will be the reciprocal
of the sum of the reciprocals of the quality factors for the viscous dissipation, Qvis, for thermal

18 A derivation of Eq. (9.39) is provided in G. W. Swift, Thermoacoustics: A unifying perspective for some engines and
refrigerators, 2nd ed. (Acoust. Soc. Am., 2017); ISBN 978-3-319-66932-8, Chapter 5.1.
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conduction, Qth, and for radiation of sound, Qrad (actually, an “accounting loss” as discussed in Sect.
3.7 for a string).

1
Qtot

¼ 1
Qvis

þ 1
Qth

þ 1
Qrad

ð9:41Þ

Like any single-degree-of-freedom simple harmonic oscillator, the stored energy oscillates between
its kinetic and potential forms with the sum being constant at steady state. As in Eq. (2.18), the
maximum kinetic energy, (KE)max, can be used to represent the value of the stored energy. For the
Helmholtz resonator, the kinetic energy is determined by the velocity of the fluid in the resonator’s
neck, with cross-sectional area, A ¼ πa2. Because the viscous penetration depth is much less that the
radius of the neck, δν � a, we will assume “plug flow,” as shown schematically in Fig. 9.14, and
approximate the moving mass of the gas in the neck of our Helmholtz resonator to be all of the mass,m,
of the gas within the neck, as was done in Sect. 8.4.4.

m ¼ ρmALneck ¼ ρm πa2
� �

Lneck ð9:42Þ

Just as the thin viscous boundary layer was neglected in the calculation of the moving mass, the gas
velocity, v1 ¼ |U1|/Aneck, will be assumed to be independent of the radial distance from the neck’s
center line (i.e., plug flow).

Estored ¼ KEð Þmax ¼
1
2
mv21 ¼

ρmAneckLneck
2

bU
πa2

����
����
2

ð9:43Þ

Since our results will be compared to the DELTAEC model of the 500 ml flask in Fig. 8.27, we will
neglect the kinetic energy of the gas beyond the ends of the neck that produced the effective length
correction necessary to match the theoretically calculated and experimentally determined resonance
frequencies.

To calculate the energy dissipated by viscous shear on the surface of the neck of the resonator
having surface area, Aneck¼ 2πaLneck, and cross-sectional area, πa2, the power dissipation per unit area,
_evis, given in Eq. (9.37), will be used.

Edis=cycle ¼ _evisAneck

f o
¼ ρm

4 f o

bU
πa2

����
����
2

δνωoAneck ¼ π
2

bU
πa2

����
����
2

ρmδν2πaLneck ð9:44Þ

When we take the ratio of Eq. (9.43) to Eq. (9.44) to calculate Q, using Eq. (9.40), the amplitude of
the oscillation squared, proportional to |U1/Aneck|

2, will cancel. This must be the case, since we are
considering a linear system and linearity demands that the quality factor must be amplitude
independent.

Qvis ¼ 2π
Estored

Edis=cycle
¼ 2π

ρmπa
2Lneckð Þ=2

π=2ð Þδν2πaLneck ¼
2πa2Lneck
δν2πaLneck

¼ a
δν

ð9:45Þ

This is a wonderfully simple and intuitively satisfying result: Qvis ¼ a/δν. The quality factor due to
viscous dissipation at the surface of the neck of a Helmholtz resonator is simply the dimensionless ratio
of the neck’s radius to the viscous penetration depth in the gas.

A numerical calculation for Qvis in a cylindrical duct involves the integration of the flow field using
a Jo Bessel function with a complex argument, ( j�1)r/δν, to represent the velocity, resulting in an
approximation that is valid to within 0.3% for a/δν > 3 [7].
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Qvis ffi a
δν

þ δν
5a

� 3
4

for
a
δν

� 3 ð9:46Þ

The same approach can be used to calculate the quality factor for thermal dissipation on the surface
of the Helmholtz resonator’s volume (i.e., compliance). Since the amplitude of the pressure oscillations
within the volume is proportional to p1, as shown in Eq. (9.39), it will be convenient to convert |U1/πa2|
in Eq. (9.43) to a pressure amplitude, since the quality factor for thermal losses, Qth, must also be
amplitude independent in the linear acoustics limit. From Eq. (8.25), the adiabatic compliance of a

volume, V, can be used to relate pressure amplitude, bpj j, to the volume velocity amplitude, bU��� ���.
bp ¼ 1

jω
γpm
V

bU ) Estored ¼ KEð Þmax ¼
ρmLneck
2Aneck

ω2
oV

2

γ2
bpj j2
p2m

ð9:47Þ

Substitution of _eth from Eq. (9.39), times the surface area of the spherical compliance, SVol ¼ 4πR2,
into Eq. (9.40) produces the expression for the thermal contribution to the quality factor, Qth.

Qth ¼
2π

ρmLneck
2Aneck

ω2
oV

2

γ2
bpj j2
p2m

γ � 1ð Þ
4γ f o

bpj j2
pm

SVolδκωo

¼ ω2
o
ρm
γpm

LneckV
Aneck

� �
2 4π=3ð ÞR3

γ � 1ð Þδκ4πR2
ð9:48Þ

The Helmholtz resonance frequency, ωo, is given in Eq. (8.51), and c2 ¼ γpm /ρm, so the term in
Eq. (9.48) contained within the square brackets is just unity, proving again that “substitution is the
most powerful technique in mathematics” (see Sect. 1.1).

Qth ¼ 2
3 γ � 1ð Þ

R
δκ

ð9:49Þ

As expected, the thermal quality factor becomes infinite (i.e., lossless) if the expansions and
compressions of the gas within the entire volume of the Helmholtz resonator are isothermal, γiso ¼ 1.
We also see again that the quality factor is proportional to the ratio of a length characterizing the size of
the spherical volume, R, and the thermal penetration depth, δκ.

The results for Qvis in Eq. (9.45) and Qth in Eq. (9.49) can be used to estimate the quality factor for
the 500 ml boiling flask example that was used to create the DELTAEC file in Fig. 8.27, using the
penetration depths at fo¼ 241.73 Hz, provided in Fig. 9.9, when combined as shown in Eq. (9.41). This
results in a Qvis ¼ 88, and a Qth ¼ 482, for Qtot ¼ 74.4. The DELTAEC model also gives Q ¼ 74.4.

Although the time-averaged radiated power, hΠradit, will not be derived until Chap. 12 (see
Eq. 12.18), it was mentioned in Footnote 24 in Chap. 8.

Πradh it ¼ π
ρm f

2

2c
bU��� ���2 ð9:50Þ

The dependence upon |U1|
2 means that it is easy to calculate a contribution to the quality factor from

the radiation “loss” using Eq. (9.43) to express the stored energy.

Qrad ¼ 2π

ρmπa
2Lneck
2

bU
πa2

��� ���2
π ρm f o

2c
bU��� ���2 ¼ 2

λLneckð Þ
πa2

ð9:51Þ
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The expression on the far right in Eq. (9.51) uses c¼ λf to express the quality factor as proportional
to the ratio of two areas. For the 500 ml flask DELTAEC model in Fig. 8.27, where λ ¼ 1.426 m at
resonance, Qrad ¼ 286. This is more than three times greater than Qvis, reinforcing the earlier result
from the DELTAEC model that showed that viscous loss in the neck was the dominant loss mechanism
in that example.

9.5 Kinetic Theory of Thermal and Viscous Transport

Thus far, in this chapter, we have taken a phenomenological approach to describe the dissipation
caused by thermal conduction and viscous shear. Those mechanisms have been characterized by
diffusion equations that introduced two phenomenological constants: the thermal conductivity, κ, and
the shear viscosity, μ. Those constants are properties of the fluid that might depend upon pressure
and/or temperature. By introducing a simple microscopic model for these diffusive processes, we can
gain additional insight into the relationship between these constants and the microscopic properties of
ideal gases.

The same microscopic model that was used in Chap. 7 to derive the Ideal Gas Law and to introduce
the mean squared particle velocity and the Equipartition Theorem in Eq. (7.2) can be resurrected to
calculate κ and μ for an ideal gas by adding the concept of a mean free path, ℓ , characterizing an
average distance that an atom or molecule in a gas will travel before colliding with another of its own
kind.19

For the following calculations, we assume that the gas is “dilute” [8]. This means that we will
assume that each particle spends a relatively large fraction of its time at distances far from other
particles so that the time between collisions is much greater than the time involved in a collision. We
also assume that the probability of a simultaneous collision between more than two particles can be
neglected. Finally, we assume de Broglie wavelength, λB ¼ h/mv, for the particles with momentum,
mv, is much shorter than the separation between particles so quantum-mechanical effects can be
ignored: λB � ℓ.

9.5.1 Mean Free Path

If we assume that our “point particles” have a mass, m, and an effective hard sphere diameter, D, then
two identical particles in the gas will collide if their centers are separated by a distance that is less than
or equal to D. We focus our attention on a single particle that is moving with a mean velocity, v0 ,
determined by the Equipartition Theorem, as applied in Eq. (7.26), v2

� �½ � v0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBT=m

p
. This

mean thermal velocity is designated v0 to remind us that we have assumed that all other particles are not
moving. Assuming (temporarily) that all other particles are stationary, then the moving particle sweeps
out a cylindrical volume, VSwept ¼ πD2v0t, in a time, t.

The number of (stationary) particles within that swept volume depends upon the (number) density
of the gas, n¼ ρ/m, where m is the mass of an individual particle. During the time interval, t, there will
be W ¼ nVSwept stationary gas particles within that cylinder. The collision rate, _n ¼ W=tð Þ ¼ πD2v0n.
The mean free path, ℓ, is the distance the particle travels between collisions that take place, on average,
every τ ¼ _n�1 seconds.

19 A more detailed and systematic discussion of these concepts is given by E. H. Kennard in his classic textbook, Kinetic
Theory of Gases with an Introduction to Statistical Mechanics (McGraw-Hill, 1938).
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Of course, all the other particles are not stationary but are moving with the same mean (thermal)
velocity, v0, so the actual velocity that we need in our expression for the mean free path is the mean
relative particle velocity, vrel � v . If two particles are traveling in exactly the same direction, their
mean relative velocity would be zero. If they are moving directly toward each other, their mean relative
velocity would be 2v0 . Integration over all possible directions could determine the average relative
velocity, but it is easier to utilized the “reduced mass,” μ¼m1m2/(m1 +m2), to determine mean relative
velocity. Placing the reduced mass into the Equipartition Theorem produces the mean relative velocity
in the same way the reduced mass was used to determine the antisymmetric frequency of two otherwise
free particles that were joined by a spring, as discussed in Sect. 4.3.1, then applied to the Tonpilz
transducer.

Since the particles are assumed to be identical, μ ¼ m/2, so the value of the relative velocities of the
particles,vrel, is given by the Equipartition Theorem.

v2rel
� �½ � v ¼ 3kBT=μð Þ½ ¼ 6kBT=mð Þ½ ¼ v0

ffiffiffi
2

p
ð9:52Þ

That result can be used to calculate the mean free path as introduced when we initially assumed that the
other particles were stationary.

ℓ ¼ v
πD2v0n

¼ 1

π
ffiffiffi
2

p
D2n

ð9:53Þ

It is useful to recognize that the mean free path is independent of v or v0 and therefore independent of
temperature. At higher temperatures, the particles are moving faster, but VSwept is correspondingly
larger.

Near room temperature, for air at atmospheric pressure, the number density can be calculated from
the Ideal Gas Law or from the molar volume and Avogadro’s number: n¼ ρ/m¼ pm/kBTffi 2.5	 1025

particles/m3 ffi NA/(22.4 	 10�3 m3). For air, a typical molecular diameter, Dair ffi 2	 10�10 m¼ 2 Å,
so πD2 ffi 1.3 	 10�19 m2, making ℓffi 2.2 	 10�7 m ¼ 0.22 microns. Using the same values, the time
between collisions is ℓ=v ffi 6 	 10�10 seconds, or the collision rate, _n, is 2 	 109/second ¼ 2 GHz.
Each molecule of air at atmospheric pressure and room temperature experiences about two billion
collisions each second.

9.5.2 Thermal Conductivity of an Ideal Gas

With our understanding of the mean free path, we are now able to determine a value of the thermal
conductivity of an ideal gas from the microscopic model. If we assume a linear temperature gradient in
a gas, then the thermal energy that is transported by a gas particle will be based on the temperature that
particle had at the position where it suffered its last collision. Figure 9.15 provides a suitable geometry
for such a calculation by assuming that the temperature gradient, ∂T/∂z 6¼ 0, exists in the z direction.

The number of particles crossing a unit area per unit time (i.e., the particle flux) in the z direction is
determined by the particle density, n, and the mean particle velocity, v0. If there are n particles per unit
volume, roughly one-third of them have velocities in the z direction and half of those, or n/6 particles
per unit volume, have mean velocities in the (�z) direction.

Particles which cross the dashed line in Fig. 9.15 from below have, on average, experienced the last
collision at a distance, ℓ, below that plane. But the mean energy per particle, ε, is a function of T and,
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since T ¼ T(z), the mean energy is also a function of z, ε zð Þ. The particles crossing from below carry
with them a mean energy, ε z� ℓ

� �
, and the ones above experienced the last collision at a distance, ℓ,

above that plane, ε zþ ℓ
� �

. Each “free particle,” which has three degrees of freedom, carries an average
kinetic energy of ε ¼ 3kBT=2, corresponding to a heat capacity of 3kB/2 per particle (see Sect. 7.2.1).

∂Q
∂t

� �
above

¼ 1
6
nv0ε zþ ℓ

� � ¼ nv0

6

� �
3kB
2

T þ ℓ
∂T
∂z

� �� �
ð9:54Þ

Similarly, the heat flux going in the opposite direction from below, _qbelow , is determined by the last
collision that took place at a slightly lower temperature.

∂Q
∂t

� �
below

¼ 1
6
nv0ε z� ℓ

� � ¼ nv0

6

� �
3kB
2

T � ℓ
∂T
∂z

� �� �
ð9:55Þ

The net energy flux, _qnet , from hot to cold, is given by the difference of the fluxes calculated in
Eqs. (9.54) and (9.55).

∂Q
∂t

� �
net

¼ ∂Q
∂t

� �
below

� ∂Q
∂t

� �
above

¼ � nv0ℓkB
2

� �
∂T
∂z

ð9:56Þ

As indicated in Fig. 9.15, the thermal conductivity of a gas, κgas, can be expressed in terms of the result
in Eq. (9.56).

∂Q
∂t

¼ �κ
∂T
∂z

) κgas ¼ 1
2
nv0ℓkB ð9:57Þ

A more rigorous kinetic theory for thermal conductivity of inert gases at low pressures was
developed by Chapman in England and Enskog in Sweden. Their approach calculates the numerical
pre-factor in Eq. (9.57) to be 0.37, rather than 0.5, since the particles that are not going straight up or
down along the z direction experienced their last collision at a distance less thanℓ [9]. Their calculations
also describe the thermal conductivity of polyatomic molecules quite accurately.

Using the Equipartition Theorem to let v2
� �½ � v0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3kBT=m
p

provides a microscopic expression
for the thermal conductivity of an ideal gas, κgas.

Fig. 9.15 Coordinate
system for the calculation
of the thermal conductivity,
κ, of an ideal gas. The heat
flux, represented by the
arrows, is determined by
number of particles
crossing the line per unit
time and the temperature of
the particles that was
determined by the last
collision they suffered
before crossing the line
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κgas ¼ 0:37
nkBv0

π
ffiffiffi
2

p
D2n

¼ 0:37
kB

2πD2

ffiffiffiffiffiffiffiffiffiffi
3kBT
m

r
ffi 0:1

D2

k3=2B

m½

ffiffiffiffi
T

p
ð9:58Þ

Our application of a microscopic model, based on the collision of hard spheres, demonstrates that
the thermal conductivity of an ideal gas is independent of the pressure or density of the gas (at least as
long as the dimensions of the system are much larger than the mean free path) for most gases at
pressures below 1 MPa and is inversely proportional to the square root of the particle’s mass and
inversely proportional to the particle’s cross-sectional area.

The model also predicts that the thermal conductivity will be proportional to the square root of the
absolute temperature,

ffiffiffiffi
T

p
. For real gases, the observed temperature dependence of the thermal

conductivity of ideal gases is closer to T0.7 [10], due to the fact that the gas particles are not “hard
spheres” but interact through a molecular force field like the Lennard-Jones potential shown in
Fig. 2.39.

9.5.3 Viscosity of an Ideal Gas

A microscopic determination of the viscosity can be obtained in exactly the same way using the
momentum transported by a particle of mass, m, across a plane. We can use an approach similar to that
expressed in the geometry of Fig. 9.15. As before, we assume that the density of the gas is sufficiently
low that the mean free path is much greater than the particle diameter but much less than the typical
dimensions of the system (e.g., the spacing between the moving plates in Fig. 9.11 or the diameter of
the tube in Figs. 9.12 and 9.14).

The mean shear velocity, vx, is again determined by the last collision the particle suffered prior to
crossing the plane from above or from below, and the momentum in the x direction transported by each
particle is mvx. The particle density can be used to calculate the momentum transported per unit area,
per unit time, P.

Pabove ¼ nvm
6

vx þ ∂vx
∂z

ℓ

� �
and Pbelow ¼ nvm

6
vx � ∂vx

∂z
ℓ

� �
ð9:59Þ

The net momentum change per unit area is the difference of the two expressions in Eq. (9.59).

Pabove � Pbelow ¼ τxz ¼ nv0mℓ
3

∂vx
∂z

� �
ð9:60Þ

Comparison of Eq. (9.60) to the phenomenological expression for one component of shear stress,
τxy, in Eq. (9.25), produces a microscopic expression for the shear viscosity of an ideal gas, μgas.

μgas ¼ nv0mℓ
3

¼ ρv0ℓ
3

¼ 1
πD2

mkBT
6

� �½

¼ 0:13
D2 k½Bm

½T½ ð9:61Þ

Just like the thermal conductivity of an ideal gas, this estimate of the shear viscosity is independent of
the pressure or density and proportional to the square root of the absolute temperature and to the square
root of the particle mass. Like the ideal gas thermal conductivity, the actual temperature dependence of
the viscosity for real gases is also closer to T0.7 [10].
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9.5.4 Prandtl Number of an Ideal Gas and Binary Gas Mixtures*

The relative importance of thermal conductivity and viscosity can be expressed in a dimensionless
ratio that is known as the Prandtl number, Pr ¼ μcP/κ, where cP is the specific heat (per unit mass) at
constant pressure. This ratio is particularly important for convective heat transfer where the viscosity
determines the energy dissipation from imposed flow and the thermal conductivity determines the heat
transport. Liquid metals, like mercury or sodium-potassium eutectic (NaK), have a very small Prandtl
number because of their low viscosity (hence, the popular designation as “quicksilver,” in the case of
mercury) and high thermal conductivity, due to the efficient heat transport provided by the conduction
electrons. On the other hand, viscous fluids with low thermal conductivity, like molasses, have large
Prandtl numbers.

For monatomic ideal gases, the isobaric heat capacity per particle (see Sect. 7.2.1) is (5kB/2) so the
isobaric specific heat per particle is (5kB/2m). In combination with the ideal gas viscosity in Eq. (9.61)
and thermal conductivity in Eq. (9.58), it is easy to demonstrate that the Prandtl number for ideal gases
should be a constant.

Prgas �
μgascP
κgas

¼ δ2ν
δ2κ

¼ 0:13
0:37

5kB
2m

D2

D2

k½Bm
½T½

k3=2B T½=m½
ffi 0:9 ð9:62Þ

Measured values for the Prandtl number of monoatomic gases are not 0.9 but closer to 2=3. For other
polyatomic gases, the Prandtl numbers are also constant and range from about 0.7 to 0.9 [11]. This is
due to the fact that it is those “hard spheres” that are responsible for both the heat and the momentum
transport.

A similar result, known as the Wiedemann-Franz Law [12], shows that the ratio of the thermal
conductivity, κ, and the electrical conductivity, σ, of metallic solids is a constant, independent of the
particular metal, that depends only upon temperature.

L � κ
σT

¼ π2

3
kB
e

� �2

ð9:63Þ

L is the Lorenz number and depends only upon fundamental constants (the charge on the electron, e,
and Boltzmann’s constant, kB). Again, this is due to the fact that it is the electrons in metals that provide
both heat transport and electrical conductivity.

For ideal gases, a more rigorous calculation was made by Eucken [13] that related the thermal
conductivity of gases to their viscosity.

κgas ¼ cP þ 5ℜ
4M

� �
μgas ) Prgas ¼ cP

cP þ 1:25 ℜ=Mð Þ ð9:64Þ

Eucken’s formula gives the correct result for monatomic (noble) gases using the universal gas constant,
ℜ � 8.314462 J/mol-K, and is a very good approximation for most polyatomic gases.

Although the Prandtl number for ideal gases is a constant, it is possible to reduce the Prandtl number
for gas mixtures. In a mixture of a light and heavy gas, the light species can dominate the heat transfer
while the heavier species dominates the momentum transfer. Swift has demonstrated this by a simple
calculation for inert gas mixtures based on the results from the microscopic model, using the subscripts
“1” and “2” to designate two different gases.
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These proportions can be used to form the ratio of a mixture’s Prandtl number, Prmix, to the pure gas
Prandtl number, Prgas, in terms of the molar concentration of species “1,” x1 ¼ n1/(n1 + n2), and to the
square root of their mass ratio, β ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1=m2

p
.
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Figure 9.16 plots the gas mixture Prandtl number as a function of the mole fraction of helium, x1, for
helium-argon mixtures with βHe/Ar ¼ 0.316 and helium-xenon mixtures with βHe/Xe ¼ 0.175. For pure
gases (i.e., x1 ¼ 0% or x1 ¼ 100%), Prmix ¼ 2/3, but a mixture of a light and a heavy gas can produce
lower Prandtl numbers. The results in Fig. 9.16 demonstrate that the Prandtl number of a helium-argon
mixture can be reduced to a minimum value of PrHe/Ar¼ 0.37 and a helium-xenon mixture can produce
a minimum Prandtl number as low as PrHe/Xe ¼ 0.20. The lowest inert gas Prandtl number would be
achieved with a mixture of 3He and radon, PrHe/Rn ¼ 0.14, although such a mixture would be highly
radioactive. A more detailed kinetic theory calculation produces nearly identical results [14].

The use of gas mixtures that reduce Prandtl number have been shown to improve the performance of
thermoacoustic engines and refrigerators [15], although it has also been shown that such high-
amplitude sound waves can also introduce concentration gradients in mixtures [16].

Fig. 9.16 The Prandtl
number of inert gas
mixtures as a function of
the mole fraction of helium.
The dashed line represents
helium-argon mixtures and
the solid line represents
helium-xenon mixtures
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9.6 Not a Total Loss

Just as we had examined the lossless equations of hydrodynamics in Chap. 8 by applying them to
simple “lumped elements,” this chapter has introduced the diffusion equations that govern dissipation
in fluidic acoustical systems (thermal conduction also contributes to dissipation in solids) by applying
them to a Helmholtz resonator that had been modeled by DELTAEC in the previous chapter. In doing so,
two new length scales were introduced: the thermal and viscous penetration depths, δκ and δν. Those
length scales play the same critical role that wavelength and wavenumber played in the nondissipative
equations. Comparison of the thermal penetration depth to the wavelength provided quantitative
justification for the assumption we will exploit in the following chapter where sound waves are treated
as being adiabatic oscillatory excursions away from equilibrium.

As in Chap. 7, the microscopic models and the phenomenological models of dissipative processes
in ideal gases provided complementary insights into the behavior of the phenomenological constants, κ
and μ, with respect to changes in density and temperature, as well as supplying an intuitive picture of
the processes by which heat and momentum are transported. The simple kinetic theory, based on a
“hard sphere” collision assumption, introduced an additional important length scale: the mean free
path, ℓ. When ℓ� λ, our continuum model of diffusive processes provides an appropriate description.

With the thermodynamic, hydrodynamic, and microscopic analyses introduced in this chapter and
in Chap. 7, the fundamentals necessary to understand wave propagation in fluids, and particularly in
ideal gases, will be put to use in the remainder of this textbook.

Talk Like an Acoustician

Time reversal invariance Ballistic propagation
Shear viscosity Newtonian fluids
Dynamic (or absolute) viscosity Diffusion constant
Fourier Diffusion Equation Non-slip boundary condition
Ohm’s law Shear (or dynamic or absolute) viscosity
Joule heating Kinematic viscosity
Newton’s Law of Cooling Poiseuille’s formula
Thermal diffusivity Oscillatory plug flow
Thermometric conductivity Viscous penetration depth
Thermal penetration depth Entrance length
Skin depth Thermal velocity
Instantaneous value Mean free path
Acoustic approximation Prandtl number

Exercises
1. Moon free path. Atmospheric pressure on the moon is about 10�13 atm. ¼ 10�8 Pa. Assume that

the moon’s atmosphere has the same chemical composition as Earth’s and calculate the mean free
path for molecules in our moon’s atmosphere. Is the concept of pressure meaningful for such a long
mean free path? Why or why not?

2. Vacuum insulation. As long as the characteristic dimensions of a gas-filled space are much greater
than the mean free path of the gas particles, the thermal conductivity is independent of gas pressure.
To reduce thermal conduction through a gas, the vacuum space gap, g, must be less than the mean
free path, ℓ, of the gas molecules trapped in the vacuum insulation space.
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The inverse relationship between number density, n, and mean free path, ℓ, illustrated in Eq. (9.53),
is no longer valid when ℓ becomes larger than g. Beyond that point, the thermal resistance of the
insulation space will increase linearly in proportion to increase of the mean free path because there
are fewer gas particles to transport heat and those particles are more likely to collide with the walls
than they are to collide with each other.
How low must the gas pressure in the insulation space be so that the thermal resistance of the
vacuum space is ten times smaller than the thermal resistance when g �ℓif g ¼ 10 mm, assuming
that the vacuum space contains some air?

3. Relaxation frequency for a capacitive microphone. The volume inside a condenser microphone
that is behind the diaphragm (see Fig. 6.14) must be isolated from the acoustical pressure variations
which drive the motion of the microphone’s diaphragm. Because the microphone diaphragm must
be able to withstand slow changes in pressure encountered during transportation (e.g., shipping by
air), a capillary tube is provided so that changes in ambient gas pressure, pm, can be relieved, but
acoustical pressure variations at the frequencies of interest are not allowed to influence the gas
pressure within the microphone’s back volume.
(a) Poiseuille resistance. Use Eq. (9.30) to write an expression for the acoustic flow resistance,

Rac ¼ Δp/U, appropriate to steady gas flow in the Poiseuille regime.
(b) Relaxation time. Using the result from part (a), write an expression for the exponential

relaxation time, τ ¼ RacC, where the compliance, C, given in Eq. (8.26), is determined by
the microphone’s back volume, Vback, assuming that the compressions and expansions of the
gas within that volume are adiabatic. Discuss whether or not the adiabatic assumption is valid.

(c) Viscous penetration depth. For audio applications, the low-frequency cut-off is usually taken
to be 20 Hz, corresponding to the nominal lower limit of human hearing [17]. Determine the
viscous penetration depth at that frequency in air at 20 �C with pm ¼ 100 kPa.

(d) 0.01000 diameter capillary. If the back volume of the microphone is Vback ¼ 674 mm3 and it is
connected to a capillary tube that has an inside diameter of 250 microns, and a length of
10.0 mm, determine the exponential relaxation time, τ, for pressure equilibration and
corresponding cut-off frequency, f-3dB ¼ (2πτ)�1.

4. Viscous damping of an oscillating spar buoy. The spar buoy shown in Fig. 2.33 has a diameter of
25 cm. The bottom 3.0 m of the buoy is submerged. Its vertical oscillations have a period of
3.6 seconds. The buoy’s effective moving mass, mo ¼ 154 kg.
(a) Viscous penetration depth. If the water has a density, ρH2O ¼ 1026 kg/m3, and a shear

viscosity, μH2O ¼ 1.07 	 10�3 Pa-s, how large is the viscous penetration depth at the
buoy’s natural frequency of vertical oscillations?

(b) Viscously entrained mass. What is the additional mass of water trapped in the viscous
boundary layer if we assume that mass is the mass of water within one viscous penetration
depth? (The circular bottom of the buoy can be ignored since it is not applying any shear
stresses on the water.)

(c) Viscous damping. Determine the mechanical resistance, Rm, by calculating the viscous drag of
the water on the buoy. Use your value of Rm to determine the exponential relaxation time,
τ ¼ 2mo/ Rm, if the only source of damping is the viscous drag provided by the surrounding
water.

5. Greenspan viscometer. Shown in Fig. 9.17 is a schematic cross-section of a cylindrically symmet-
ric (about the “Duct” axis) double-Helmholtz resonator that has been used by the National Institute
of Standards and Technology (formerly, the Bureau of Standards) to make an acoustical determi-
nation of the viscosity of gases [18]. Both volumes, V, are identical and A is the total surface area of
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each volume. “S” and “D” are PZT stacks that act as the excitation and detection transducers that are
covered by a “Diaphragm” which can be considered perfectly rigid.
For this problem, assume that the viscometer is filled with neon gas at a mean pressure,
pm ¼ 1.0 MPa. Both compliances have the same volume, V ¼ 29 cm3, and the same surface area,
A¼ 55 cm2. The duct length, Ld¼ 3.1 cm, and the radius of the duct, rd ¼ 2.3 mm. This viscometer
produced measurements of viscosity that differed from published results obtained by other methods
by less than 
0.5% and sound speeds that differed by less than 
0.2% [18].
(a) Helmholtz resonance frequency. Assuming that the neon gas is lossless, calculate the reso-

nance frequency of this dual Helmholtz resonator using a sound speed in neon of cNe
(20 �C) ¼ 449 m/s.

(b) Gas displacement in the duct. If the amplitude of the acoustic pressure in either volume is
10.0 Pa, what is the peak-to-peak displacement of the gas in the duct?

(c) Viscous penetration depth. Based on the resonance frequency, calculate the viscous penetra-
tion depth if the neon has a density, ρNe (20 �C) ¼ 8.28 kg/m3, and a viscosity, μNe
(20 �C) ¼ 3.13 	 10�5 Pa-s.

(d) Quality factor. Calculate the quality factor, Q, for this Helmholtz resonance.
(e) Viscosity. In the limit that δν � rd, express the gas viscosity, μ, in terms of the Helmholtz

resonance frequency, fo, the gas density, ρ, and the resonance quality factor, Q.
(f) Thermal relaxation. Investigate how negligible the thermal boundary layer losses are in the

compliances.
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Having already invested in understanding both the equation of state in Chap. 7 and in the hydrody-
namic equations in Chap. 8, only straightforward algebraic manipulations will be required to derive the
wave equation, justify its solutions, calculate the speed of sound in fluids, and derive the expressions
for acoustic intensity and the acoustic kinetic and potential energy densities. The “machinery”
developed to describe waves on strings will be sufficient to describe one-dimensional sound propaga-
tion in fluids, even though the waves on the string were transverse and the one-dimensional waves in
fluids are longitudinal.

Most treatments of one-dimensional propagation in acoustics courses start their discussion of waves
in fluids at this point (possibly treating lumped-element systems later), but with our understanding of
the fundamental phenomenological equations already established for lumped elements, we will be able
to take a more rigorous approach that will also allow incorporation of other effects that can be
combined with the dissipative effects introduced in Chap. 9, particularly for calculation of the
attenuation of sound in Chap. 14. Also, having examined combinations of inertances and compliances,
the transition from lumped fluid elements to waves in fluids is philosophically identical to the transition
from coupled simple harmonic oscillators to waves on strings.

10.1 The Transition from Lumped Elements to Waves in Fluids

The equation of state, as exemplified by the adiabatic gas law of Eq. (7.20), and the linearized versions
of the continuity equation combined with the adiabatic gas law in Eq. (8.23) were used to create
lumped compliances in Sect. 8.2.3. The linearized version of the Euler Eq. (8.40) was used to create
lumped inertances, and then both inertance and compliance were applied to fluid elements that were
small compared to the wavelength of sound in Sect. 8.4.3. Those equations can now be extended to
continuous fluid media in systems that are substantial fractions of a wavelength or larger.

Since the lumped-element model was linear, we are free to combine solutions. Although the neck of
our Helmholtz resonator in Sect. 8.5.2 was represented entirely by its inertance (gas mass) and the
spherical volume was represented entirely by its compliance (gas stiffness), in general, a single
“lumped” element could simultaneously exhibit both properties by linear superposition. If there are
changes in the volume velocity of the fluid entering and leaving the element, ΔU, as well as a pressure
difference, Δp, across an element, like those diagrammed schematically in Figs. 8.3 and 8.8, then the
element would exhibit both inertance (due to Δp) and compliance (due to ΔU ).

In this chapter, we will expand our focus to include acoustical systems with characteristic
dimensions comparable to, or longer than, the wavelength of sound in the fluid. These can also be
modeled using lumped parameters, if we employ enough elements. For instance, a resonator with
diameter that is a small fraction of the wavelength, but a length that is equal to one-half of the
wavelength of sound, can be modeled as a sequence of compliances and inertances as depicted
schematically in Fig. 10.1.

As demonstrated in Sect. 2.7.7, the behavior of standing waves on strings can be approximated by
identical discrete masses coupled by identical lengths of a massless string under uniform tension. The
fundamental mode of nine such coupled oscillators is shown in Fig. 2.30 to be a good approximation to
the half-sinewave mode of a string, like that shown in Fig. 3.6. This approach has some significant
utility if you are interested in studying systems with changing cross-section. As shown in Fig. 10.2, a
horn of finite length, analyzed in Sect. 10.9.3, can be approximated by a series of stepped ducts of
increasing cross-section.

The broadband, omnidirectional sound source shown in Fig. 10.3 was designed to radiate sound
uniformly in all directions and to give reproducible and reliable results for evaluation of building
acoustics with a sufficient overall sound pressure level to provide adequate signal-to-noise ratios. The
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Fig. 10.1 A half-wavelength resonator (above) of constant cross-sectional area with rigid ends is approximated as a
series of seven lumped compliances and six lumped inertances. The elements near the ends contribute primarily
compliance since the longitudinal motion of the fluid must vanish at the boundary (velocity nodes). Most of the energy
stored near the ends is compressive (potential). The central elements contribute mostly inertance since the fluid velocity at
the center is largest (near the velocity anti-node). Most of the energy within the central pair of inertances is kinetic. In fact,
the approximation is nearly as good if the central compliance is removed from the model (but only for the fundamental
half-wavelength mode!). The two pairs of elements that are intermediate between the two end elements and the central
elements must provide both significant inertance and compliance

Fig. 10.2 A stepwise approximation to a horn. The number of elements is chosen so the area change between elements
is small [1]

Fig. 10.3 The Brüel &
Kjær Type 4295 sound
source was “carefully
engineered to radiate sound
evenly in all directions” by
Dr. Jean-Dominique
Polack. The source was
designed to conform to the
standard 1/3-octave band
sound level and
directionality requirements
by using a resonator
coupled to an
electrodynamic
loudspeaker. Although a
resonator is about as far
from a “broadband” sound
source as one might
possibly imagine, it does
satisfy the standards as
written
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International Organization for Standardization (ISO) has published two standards for broadband sound
sources that are used for architectural acoustical evaluations in buildings [2]. The standards require
uniform levels, within a frequency-dependent number of decibels (see Sect. 10.5.1) in each of twenty-
one 1/3-octave frequency bands (ISO 3382). The source must also radiate sound uniformly in all
directions (ISO 140).

A very clever acoustician, Jean-Dominique Polack,1 realized that he could design a very simple
source consisting of a single loudspeaker radiating out of a small aperture (to ensure omnidirec-
tionality, as shown in Fig. 12.32a) that would be very compact and efficient by making a resonator and
“tuning” the resonances within each 1/3-octave band (though not necessarily at the band center
frequency). He did this by writing a finite element code that incorporated 28 lumped elements and
then adjusted those elements to place the resonances within the 1/3-octave bands specified by ISO
3382.2

At some point, it makes sense to model the entire resonator as a continuum just as it did in our
transition from coupled simple harmonic oscillators to strings. We do that by specifying a continuous
function that describes the pressure and fluid velocity at each point in space and time—a wave
function.

10.2 The Wave Equation

Our study of the fundamental equations of hydrodynamics has provided us with a set of three
Eqs. (7.32), (7.34), and (7.42) that describe the motion of any homogeneous, viscous, thermally
conducting, and isotropic, single-component fluid. We supplemented those hydrodynamic equations
by equations of state (7.49) and (7.50) that provide relationships among the mechanical variables
( p and ρ) and thermodynamic variables (T and s) that appear in the hydrodynamic equations.

The linearized, one-dimensional, nondissipative versions of those equations are first-order partial
differential equations that define relationships among different variables. For example, the continuity
equation or mass conservation Eq. (8.17) relates changes in density to the divergence of the fluid
velocity or mass flux. Similarly, the linearized one-dimensional Euler Eq. (8.40) relates changes in the
velocity to gradients in the pressure. An equation of state, for example, (7.19), can relate changes in
pressure to changes in density.

It is possible to combine those first-order partial differential equations to create a second-order
partial differential equation for a single variable. To illustrate this process, let us start with a
one-dimensional version of the linearized continuity Eq. (8.17), where we let vx ¼ u ¼ v1,

∂ρ1 x, tð Þ
∂t

þ ρm
∂v1 x, tð Þ

∂x
¼ 0, ð10:1Þ

and the linearized one-dimensional Euler equation, where again vx ¼ u ¼ v1,

1 Prof. Polack was on the faculty at the Danish Technical University (less than a 10 min drive from Lyngby to the Brüel &
Kjær Headquarters in Nærum, Denmark) when he made this design. He is currently a professor at Université Pierre et
Marie Curie and the Head of Doctoral School of Mechanics, Acoustics, Electronics and Robotics (SMAER, ED 391).
2 The resultant resonator was conical. It can be modeled easily in DELTAEC as a single CONE element (plus an
electrodynamic driver VESPEAKER at one end and an OPNBRANCH radiation condition at the other end). This is a
lot easier than 28 lumped elements once you accept that a cone will solve the problem.
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∂v1 x, tð Þ
∂t

þ 1
ρm

∂p1 x, tð Þ
∂x

¼ 0: ð10:2Þ

That set of two first-order coupled differential equations contains three (potentially complex) variables:
ρ1, v1, and p1. To “close” the system, we need one additional equation to eliminate either p1 or ρ1.
Closure can be achieved by invoking an equation of state. In this case, we will choose to express
density in terms of pressure, ρ ¼ ρ ( p), which can be expanded in a Taylor series to eliminate ρ1 in
favor of p1 in Eq. (10.1).

ρ1 ¼ ∂ρ
∂p

� �
s

p1 þ ∂2ρ
∂p2

� �
s

p1ð Þ2
2!

þ ∂3ρ
∂p3

� �
s

p1ð Þ3
3!

� � � ð10:3Þ

As was demonstrated in Sect. 9.3.4, at nearly all frequencies of interest in gases or liquids, sound
propagation is adiabatic. For that reason, we have taken the derivatives of the density with respect to
pressure in Eq. (10.3) while holding entropy per unit mass constant, as indicated by the subscript, s, on
the partial derivatives. Since we are interested in the linearized result, we retain only the first term in the
Taylor series of Eq. (10.3). As we will see shortly, it is convenient to name that derivative3 the
reciprocal of the square of the speed of sound, c�2.

1
c2

¼ ∂ρ
∂p

� �
s

ð10:4Þ

Substituting Eq. (10.4) into Eq. (10.1), we obtain,

1
c2

∂p1 x, tð Þ
∂t

þ ρm
∂v1 x, tð Þ

∂x
¼ 0 ð10:5Þ

Now Eqs. (10.2) and (10.5) constitute a pair of homogeneous first-order coupled differential
equations in two variables. Those equations can be combined to eliminate either p1 or v1. Let us
start by eliminating v1. That can be accomplished by multiplying the linearized Euler Eq. (10.2) by ρm
and taking its derivative with respect to x.4

ρm
∂2v1 x, tð Þ
∂x∂t

þ ∂2p1 x, tð Þ
∂x2

¼ 0 ð10:6Þ

We can then take the time derivative of the linearized continuity Eq. (10.5).

1
c2

∂2p1 x, tð Þ
∂t2

þ ρm
∂2v1 x, tð Þ
∂t∂x

¼ 0 ð10:7Þ

Since the order of differentiation is irrelevant, when Eq. (10.6) is subtracted from Eq. (10.7), we are left
with a second-order, homogeneous, partial differential equation in only one variable.

3 Some say thermodynamics is the field where every partial derivative has its own name.
4We assume that ρm is independent of x throughout most of this book. Many thermoacoustic phenomena, including
engines and refrigerators, rely on the x dependence of Tm and ρm, so the fundamental equations of thermoacoustics are
more complicated [8].
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∂2p1 x, tð Þ
∂t2

� c2
∂2p1 x, tð Þ

∂x2
¼ 0 ð10:8Þ

The result in Eq. (10.8) is the well-known one-dimensional wave equation. It provides us with an
expression that can relate the time and space dependence of p1(x, t). Since pressure and density
deviations from equilibrium are related by the square of the sound speed, then we would obtain the
same wave equation for ρ1.

∂2ρ1 x, tð Þ
∂t2

� c2
∂2ρ1 x, tð Þ

∂x2
¼ 0 ð10:9Þ

If the combination process is reversed by taking the spatial derivative of the linearized continuity
Eq. (10.5), we obtain,

∂2p1 x, tð Þ
∂x∂t

þ ρmc
2 ∂

2v1 x, tð Þ
∂x2

¼ 0 ð10:10Þ

Similarly, the linearized Euler Eq. (10.2) can be multiplied by ρm, and then the time derivative can be
taken.

ρm
∂2v1 x, tð Þ

∂t2
þ ∂2p1 x, tð Þ

∂t∂x
¼ 0 ð10:11Þ

Once again, ignoring the order of differentiation, subtraction of Eq. (10.10) from Eq. (10.11) produces
the wave equation for the linear contribution to the x component of the acoustic particle velocity, v1.

∂2v1 x, tð Þ
∂t2

� c2
∂2v1 x, tð Þ

∂x2
¼ 0 ð10:12Þ

10.2.1 General Solutions to the Wave Equation

The wave equation, as written in Eq. (10.8) or Eq. (10.12), is a second-order partial differential
equation. As such, it must have two linearly independent solutions: ya and yb. Of course, any
one-dimensional, linear, wave equation will be isomorphic to the version that appeared first as the
equation for propagation of transverse waves on a string in Eq. (3.4).

As was demonstrated in Sect. 3.1, it is not difficult to show that any arbitrary function having
(ct � x) in its argument is a solution. Whether c is the speed of sound in a fluid, or the speed of
transverse waves on a string, f (ct � x) are the solutions to Eq. (3.4) as well as Eqs. (10.8), (10.9), and
(10.12). If we choose pressure as the variable that characterizes the amplitude of the sound wave, then
the excess acoustic pressure due to the sound wave, p1(x, t), can be expressed as the superposition of
the right-going and left-going waves.

p1 x, tð Þ ¼ pright1 ct � xð Þ þ pleft1 ct þ xð Þ ð10:13Þ

As with our solutions for waves on strings, for purposes of computational convenience and
conformity with physical reality for most acoustical systems, we employ the trigonometric functions,
or complex exponential functions, or combinations of those functions as our solutions of choice for
single-frequency waves, as we did for traveling waves.
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p1 x
!, t
� �

¼ ℜe bplefte j ωtþk
!� x!

� �
þ bprighte j ωt�k

!� x!
� �� 	

ð10:14Þ

Standing waves can be represented as the superposition of a right- and left-going traveling waves of

equal amplitudes. Letting bpleft ¼ Ae�j ϕtþϕxð Þ=2 and bpright ¼ Ae�j ϕt�ϕxð Þ=2 , with k
! � x! ¼ kx , and

making ℑm[A] ¼ ℑm[ϕt] ¼ ℑm[ϕx] ¼ 0, Eq. (10.14) becomes,

p1 x, tð Þ ¼ A cos kx� ϕxð Þ cos ω t � ϕtð Þ ð10:15Þ
As before, the scaling of time by angular frequency, ω, and position by wavenumber, k, is a

particularly useful choice that makes the argument of the functions dimensionless.
The same functions could just as well have been written for the linear variations in the density, ρ1

(x, t), from its equilibrium value, ρm, or the variation in the particle velocity, v1 (x, t), where we have
assumed vm ¼ 0.

10.3 The Dispersion Relation (Phase Speed)

Once we have used the wave equation to demonstrate that the solutions for each variable that
characterizes its linear deviation from equilibrium have wave-like space and time behavior, the
wave equation does not provide any immediate additional utility. To demonstrate this fact, we can
return to the coupled first-order linearized continuity Eq. (10.1) and Euler Eq. (10.2).

By using the complex notation of Eq. (10.14) with bpleft ¼ 0 to describe a single-frequency right-
going propagating wave, differentiation with respect to time corresponds to a simple multiplication
of p1 by +jω and differentiation with respect to position corresponds to a simple multiplication of p1
by –jk. Application of this convenience (aka complex) transformation (harmonic analysis) to the
linearized continuity Eq. (10.5) yields,

jωbpright
c2

� jkρmbvright ¼ 0: ð10:16Þ

Similarly, the linearized Euler Eq. (10.2) becomes,

jωbvright � jkbpright
ρm

¼ 0: ð10:17Þ

This pair of linear coupled algebraic equations, (10.16) and (10.17), will only have a nontrivial solution
if the determinant of their coefficients vanishes.

þjω
c2

�jkρm

�jk
ρm

þjω
















 ¼ 0 ð10:18Þ

Evaluation of the determinant specified in Eq. (10.18) produces a relationship between ω and k that is
known as a dispersion relation.

k2 � ω2

c2
¼ 0 ð10:19Þ
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This result provides the definition of the phase speed, c � ω /k, thus justifying the concepts of
wavenumber, k; wavelength, λ; frequency, f ; and period, T, that we have been using since Chap. 3:
c ¼ fλ ¼ ω/k.

10.3.1 Speed of Sound in Liquids

The square of the adiabatic speed of sound is expressed as the thermodynamic derivative of pressure
with respect to density in Eq. (10.4). For fluids, that result is related to another thermodynamic
derivative; the adiabatic bulk modulus, Bs, has the same units as pressure:

Bs ¼ �V
∂p
∂V

� �
s

¼ � 1
ρ

∂p
∂ 1=ρ
� � !

s

¼ ρ
∂p
∂ρ

� �
s

ð10:20Þ

In Sect. 4.2.1, the previous derivation for the bulk modulus in solids did not specify whether the
modulus was evaluated under isothermal or adiabatic conditions since there is very little difference
between those values for solids.

The adiabatic bulk modulus is the reciprocal of the adiabatic compressibility. By comparison of
Eq. (10.20) to Eq. (10.4), we see that the adiabatic sound speed in a fluid can be expressed in terms of
the adiabatic bulk modulus and the fluid’s mass density.

c ¼
ffiffiffiffiffiffi
Bs

ρm

r
ð10:21Þ

The form of Eq. (10.21) is typical of sound propagation speeds because it shows that the speed is
determined by the ratio of a restoring “stiffness” to an inertial mass density.

The bulk modulus is an intensive material property. For most liquids, it is usually found in
handbooks and can be a complicated function of both pressure and temperature. The expression for
the speed of sound in seawater, given in Eq. (11.26), includes terms that are a function of salinity, as
well as pressure [3]. Even a simple cryogenic liquid, such as liquid nitrogen (LN2), exhibits compli-
cated pressure dependence of its sound speed:

c LN2ð Þ ¼ 854:1þ 0:8370p� 0:9072� 10�3p2

þ 0:9697� 10�6p3 � 0:4904� 10�9p4

where c is in [m/s] and p is in atmospheres (1 atm � 101,325 Pa) [4].

10.3.2 Speed of Sound in Ideal Gases and Gas Mixtures

For an ideal gas, the form of the sound speed is particularly simple and universal. Logarithmic
differentiation of the ideal gas adiabatic equation of state, pρ�γ ¼ constant, immediately produces
an expression for the speed of sound in an ideal gas, based on Eq. (10.4):

dp
pm

¼ γ
dρ
ρm

) c ¼ ∂p
∂ρ

� �1=2

s

¼
ffiffiffiffiffiffiffiffi
γpm
ρm

r
ð10:22Þ

The Ideal Gas Law (7.4) allows Eq. (10.22) to be expressed in terms of the molecular (or atomic) mass
of the gas, M; its absolute [kelvin] temperature, T; and the universal gas constant, ℜ:
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c2 ¼ γℜT
M

ð10:23Þ

It is worthwhile to reflect on the adiabatic sound speed for ideal gases as expressed in Eq. (10.23) for
several reasons: First, it demonstrates that the sound speed in an ideal gas is not a function of pressure.
This is not obvious from Eq. (10.22), which could (naïvely) be interpreted to imply that the sound
speed increases with the square root of pressure. This is incorrect, because the ratio of pressure to
density depends only upon absolute [kelvin] temperature, polytropic coefficient, and molecular weight.

Equation (10.23) also highlights the fact that the sound speed is proportional to the square root of
absolute [kelvin] temperature. As of 20 May 2019, the international standard absolute temperature
scale is based on sound speed measurements [5], just as the exact value of Boltzmann’s constant,
kB� 1.380649� 10�23J/K, and the universal gas constant,ℜ� kBNA� 8.314462 J/mole-K, has been
tied to sound speed measurements since the mid-1980s [6].

The third reason that Eq. (10.23) is important is that it provides a means of calculating the speed of
sound in gas mixtures. If we have a binary mixture of ideal gases with a concentration, x, of one species
with molecular mass, M1, and concentration, (1 – x), of the second species with molecular mass, M2,
then the mean molecular mass of the gas mixture, Mmix, is simply their concentration-weighted
average:

Mmix ¼ xM1 þ 1� xð ÞM2 ð10:24Þ
This expression can be generalized to mixtures, such as air, with more than two constituents (see
Table 10.1).

Since the polytropic coefficient, γ ¼ cp/cV, also known as the ratio of specific heats, is an intensive
quantity, it is not correct to calculate γmix as a weighted average of the individual polytropic
coefficients, although it is not too bad an approximation in some circumstances [7], since the range
of γ is limited: 1 < γ � 5/3. To calculate γmix correctly, the heat capacities are averaged:

γmix xð Þ ¼ cp
cV

¼ xcp,1 þ 1� xð Þcp,2
xcV ,1 þ 1� xð ÞcV ,2 ð10:25Þ

This result can be written in another form if the concentration weighting is applied to the reciprocals of
(γ – 1) [8].

1
γmix � 1

¼ x
γ1 � 1

þ 1� x
γ2 � 1

ð10:26Þ

A similar approach can be used to estimate the transport coefficients in gas mixtures: thermal
conductivity, viscosity, and Prandtl number, as was done in Sect. 9.5.4 [9].

Since the sound speed is independent of pressure and the temperature dependence can be easily
compensated, being proportional to the square root of absolute temperature,5 it is possible to build
sonic gas analyzers that determine the concentration of a contaminant quickly, accurately, and
inexpensively [12, 13]. The helium contamination alarm, shown schematically in Fig. 10.4, uses the
variation in sound speed to detect leakage of air into a helium gas recovery system [14]. Other more
sophisticated systems have been developed that allow flow-through measurement with differential
processing to increase common-mode rejection of flow and environmental noise [12, 15].

5 Analog Devices, Inc. sells a wonderful temperature sensing integrated circuit (AD 592) that sources one microampere of
current for each degree of absolute temperature, making electronic temperature compensation nearly trivial.
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Table 10.1 Properties of the constituents of standard dry air at Tm ¼ 0 �C [10] which produce a sound speed of
331.44 m/s [11]

Constituent
Molar mass
[gm/mol] Mole fraction

Contribution
[gm/mol]

cp
[kJ/kg-K] γ ¼ cp/cv

N2 28.013 4 0.780 84 21.873 983 1.0404 1.400
O2 31.998 8 0.209 476 6.702 981 0.09187 1.395
Ar 39.948 0.009 34 0.373 114 0.5216 1.667
CO2 44.009095 0.000 314 0.013 819 0.8460 1.289
Ne 20.183 1.818E-05 0.000 367 1.0299 1.667
Kr 83.80 1.14E-06 0.000 096 0.2480 1.667
CH4 16.043 03 2.0E-06 0.000 032 2.2193 1.304
He 4.002 6 5.24E-06 0.000 021 5.1931 1.667
N2O 44.012 8 2.70E-07 0.000 012 0.8721 1.27
Xe 131.30 8.7E-08 0.000 011 0.1583 1.667
CO 28.01 1.9E-07 0.000 006 1.0420 1.40
H2 2.015 94 5.0E-07 0.000 001 14.3020 1.405
H2O 18.015 34 0 0 1.8624 1.32

Fig. 10.4 The cylindrical plane wave resonator in the upper left corner of this block diagram is closed at each end by
electret (12 μm thick aluminized Teflon®) transducers (see Sect. 6.3.3) [16]. One electret transducer is used as a
microphone and the other as a speaker. A slot at the resonator’s midplane allows the resonator to sample the helium
gas flowing through the recovery line without degrading the resonator’s quality factor. The system is maintained at its
fundamental resonance frequency by applying the amplified microphone output to the speaker through an inductor tuned
to the electret speaker’s electrical capacitance. (In a public address system, this would be considered feedback squeal.) A
37 m coil of #44 copper wire (RT ffi 350 Ω) is epoxied to the resonator and is used as a thermometer. A frequency-to-
voltage conversion (tachometer) chip [17] produces a dc voltage proportional to the resonance frequency that is summed
with the temperature-dependent voltage produced by RT along with an offset voltage that is adjusted when pure helium
gas is in the recovery line. If air enters the recovery line, the frequency decreases, and an alarm is activated and the
recovery valve is closed [14]
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10.4 Harmonic Plane Waves and Characteristic Impedance

The linearized first-order Euler Eq. (10.2) can be solved to relate the acoustic fluid (particle) velocity,
v1, to the acoustic pressure, p1. For a harmonic, one-dimensional plane traveling wave, expressed in
Eq. (10.14), the ratio of pressure to particle velocity is z, remembering that c ¼ ω /k.

z � p1
v1





 



 ¼ ρmc ð10:27Þ

This property of a fluid is sufficiently important to be given its own name: the specific acoustic
impedance or the characteristic impedance. The units of specific acoustic impedance are Pa-s/m, also
called the rayl (sometimes the MKS rayl to distinguish it from the cgs rayl), in honor of the third Lord
Rayleigh (J. W. Strutt, 1842–1919).

Another short digression regarding the three impedances used in acoustics is beneficial at this point.
We have previously encountered an impedance that we called the acoustic impedance. It was defined
as the ratio of the pressure to the volume velocity at one location: Zac ¼ bp=bU. That impedance was
particularly useful for describing systems that join elements with differing cross-sectional areas (e.g.,
Helmholtz resonator) to ensure the continuity of mass flow. We will also see that another version, the
acoustic transfer impedance, Ztr, will be very useful in problems that involve acoustic radiation and
transduction (see Sect. 10.7). The acoustic transfer impedance is given by the pressure at one location
(the receiver) divided by the volume velocity produced at the source of sound.

In Eq. (10.27), we have just defined a specific acoustic impedance, the ratio of pressure to particle
velocity, which is a property of the acoustic medium and is independent of geometry. It is especially
useful in the description of plane waves, particularly when they impinge on boundaries between media
with different properties, as will be addressed in detail in Chap. 11. The third impedance is the
mechanical impedance, Zmech ¼ bF=bv . The mechanical impedance is useful for determining the
steady-state response of a vibro-mechanical network.

Frequently in acoustics, and particularly for problems involving transduction, these different
complex impedances (as well as the electrical impedance, Zel ¼ bV=bI) need to be combined to couple
an electromechanical system to an acoustical medium. It is easy to relate the three impedances for a
system with a characteristic cross-sectional area, A.

Zac ¼ bpbU ¼ bp
Abv ¼

bF=A
Abv ¼ Zmech

A2 and Zacj j ¼ z
A

ð10:28Þ

In Eq. (10.28), the pressure amplitude, bp ; volume velocity amplitude, bU ; and particle velocity
amplitude, bv , were all complex phasors to emphasize the fact that impedance is a concept that is
based on linear acoustics and the assumption of a single-frequency wave-like disturbance from
equilibrium.

The specific acoustic impedance, z ¼ ρmc, is convenient for representing the space and time
dependence of the acoustic fluid (particle) velocity, v1(x, t), for a traveling wave moving in the positive
x direction. Below, Eq. (10.29) has �ρmc in the denominator to remind us that a wave traveling in the
minus x direction would have a negative specific acoustic impedance.

v1 x
!, t
� �

¼
p1 x

!, t
� �
�ρmc

¼ ℜe
bp

�ρmc
e j ω t
k

!� x!
� �� 	

ð10:29Þ
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The continuity equation can be used to relate density variations, ρ1(x, t), to the particle velocity,
v1(x, t), of a plane wave with the final version restricted to a single-frequency wave.

ρ1 x
!, t
� �

¼ ρm
v1 x

!, t
� �
c

¼ 1
c2

ℜe bpe j ω t
k
!� x!

� �� 	
ð10:30Þ

The dot product that appears in the spatial dependence within the argument of the exponential
functions in Eqs. (10.14) and (10.29) can be expanded into its Cartesian components for an arbitrary
choice of directions with respect to the Cartesian axes.

p1 x
!
, t

� �
¼ ℜe bpe j ωt�kxx�kyy�kzzð Þh i

where
ω
c

� �2
¼ k2x þ k2y þ k2z ð10:31Þ

Normally, if a plane wave is propagating in an arbitrary direction, it is easier to re-orient the
coordinate axes so that one axis is along the direction of propagation and the one-dimensional

expressions will suffice. In an isotropic medium, the wave vector, k
!
, defines a direction that is

perpendicular to the wave’s planes of constant phase.

10.5 Acoustic Energy Density and Intensity

Since our hydrodynamic equations provide a complete description of the fluid, there should be no need
to introduce any additional equations to account for the energy density of the fluid or for the acoustical
energy transported by the waves. For the nondissipative case, that fact can be demonstrated by
combining the continuity equation and the Euler equation in another way.

We start by writing the linearized three-dimensional vector form of the continuity Eq. (8.9),
augmented by the equation of state (10.4), as expressed in the one-dimensional version in Eq. (10.5).

∂ρ1
∂t

þ ρm∇ � v
!
1 ¼ 1

c2
∂p1
∂t

þ ρm∇ � v
!

1 ¼ 0 ð10:32Þ

The continuity equation can be combined with the linearized three-dimensional vector form of the
Euler equation.

ρm
∂ v
!
1

∂t
þ∇

!
p1 ¼ 0 ð10:33Þ

If we take the dot product of v
!
1 with Eq. (10.33) and multiply Eq. (10.32) by p1 and add the two

equations together, we can collect terms if we notice that the product rule (see Sect. 1.1.2) produces the
following identities:

v
!
1 � ∂v

!
1

∂t
¼ 1

2
∂v21
∂t

and p1
∂p1
∂t

¼ 1
2
∂p21
∂t

ð10:34Þ

We can also exploit the vector version of the product rule for differentiation (see Sect. 1.1.2).

∇ � p1 v
!
1

� �
¼ p1∇ � v

!
1 þ v

!
1 � ∇

!
p1 ð10:35Þ

The combination can be expressed as a conservation equation for acoustic energy.
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∂
∂t

1
2
ρmv

2
1 þ

1
2

p21
ρmc2

� 	
þ∇ � p1 v

!
1

� �
¼ 0 ð10:36Þ

As was established in Sect. 7.3.1, when the continuity Eq. (7.32) was first introduced, Eq. (10.36) has
the form of a conservation equation: it is the time derivative of a density plus the divergence of a flux. It
is easy to identify the ½ð Þρmv21 term in Eq. (10.36) as the kinetic energy density of the sound wave;
therefore ½ð Þp21=ρmc2 must be the potential energy density. In this case, the corresponding flux is the
acoustic intensity, I.

I
! ¼ p1 v

!
1 ð10:37Þ

The energy densities and the intensity are quadratic combinations of first-order acoustic variables.
The two energy densities within the square brackets in Eq. (10.36) are positive-definite quantities. Why
do we not neglect these second-order quantities when, up to this point, we have discarded all second-
order quantities? In this case, this second-order quantity is the leading-order contribution. When we
linearized other equations, there were linear terms that dominated second-order terms, typically by a
factor of Mac, for example, in Eqs. (8.18) and (8.19). For energetic variables (e.g., energy density,
intensity, enthalpy flux), there are no first-order contributions in the absence of steady flow.

In the presence of dissipation, the acoustical energy is not conserved, and Eq. (10.36) would no
longer be homogeneous, although it would have the same form:

∂
∂t

E þ∇ � I
! ¼ �D ð10:38Þ

In Eq. (10.38), E is the energy density, I
!
is the (vector) intensity, and D is a dissipation factor [18].
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The (irreversible) dissipation created by the shear viscosity, μ, and the thermal conductivity, κ, should
be familiar from the expressions for boundary-layer losses provided in Eq. (9.34). The first term in
Eq. (10.39) introduces a new “viscosity,” ζ, which is called a “bulk viscosity” (or also called “second
viscosity”). As will be discussed in Sect. 14.5, the bulk viscosity has been added to account for
relaxation absorption (e.g., the fact that it takes some non-zero time for the Equipartition Theorem to
distribute energy equitably between translational and rotational degrees of freedom) [19]. The second
term in Eq. (10.39), proportional to the thermal conductivity, κ, is obviously thermal loss, since it
contains (γ � 1)/γ as a coefficient and is proportional to the square of the acoustic pressure. The final
term arises from (rotational) flow with non-zero curl, such as the shear produced in the viscous
boundary layer that was calculated in Sect. 9.4.3.

10.5.1 Decibel Scales

The Bell Telephone Laboratories developed much of the “modern” (twentieth-century) science of
acoustics and its implementation in engineering practice. For almost a century, Bell Telephone
(renamed AT&T in 1899) enjoyed a telecommunications monopoly within the United States. This
allowed the company to recoup its investment in equipment and capital improvements like buildings,
poles, purchased right-of-way, etc. Eventually (1913), the US Government put a cap on Bell’s profits,
limiting them to 10% after taxes. To operate under this lower margin, Bell invested “excess profits” by
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spending them on research and development within two of its subsidiaries: Bell Laboratories and
Western Electric. Despite this cap on profits, Bell became one of the most successful companies in the
history of the world. It was the largest US corporation until a forced divestiture was imposed by the US
Congress in 1984.

Most of us are more familiar with the later Nobel Prize winning research accomplishments of Bell
Labs. The best-known of these is the invention of the transistor (Bardeen, Brittan, and Shockley, 1947)
and the invention of the laser (Schawlow and Townes, 1948). Also credited to Bell Lab scientists are
the discovery of local electronic states in solids (Anderson Localization, 1977) and the discovery of the
4 K residual cosmic black-body background radiation left over from the “Big Bang” (Penzias and
Wilson, 1978), as well as acoustical engineering advances that did not receive the Nobel, such as the
electret microphone (Sessler and West 1964). More recent Nobel Prizes include optical trapping (Chu
1997)6 and the quantum Hall effect (Stormer 1998).

During the interval between the two world wars, many of the engineering concepts we use today
evolved from research at Bell Labs that were directed toward the commercialization of a worldwide
telecommunication network. The later research involved major advances in digital electronics includ-
ing the “sampling theorem” of Claude Shannon (1948), the concept of digital filters introduced by
R. W. Hamming (1977), and the fast Fourier transform by John Tukey (1965), along with the
development of the UNIX operating system (1971). Before the advent of digital electronics, Bell
Labs did the systems engineering that started with the characterization of vocalization and auditory
perception (Fletcher and Munson, see Fig. 10.5) and carried through with the competition between
transmission loss and amplification7 required to transmit human voices around the world. The focus on
the competition between amplifier gain and transmission loss led to the introduction of the decibel.

The decibel (abbreviated dB) was introduced by Bell Labs engineers to quantify the reduction in
audio level over a 1-mile length of standard telephone cable. It was originally called the transmission
unit, or TU, but was renamed in 1923 or 1924 in honor of the laboratory’s founder and telecommu-
nications pioneer, A. G. Bell. Before the days of hand-held electronic calculators, it was easier to add
or subtract logarithms than it was to multiply long strings of gain and loss factors.

Although there are periodic debates about whether or not to dispose of the decibel, in acoustics it is
unlikely that the decibel will disappear during the span of your career [20]. One reason for the decibel’s
persistence into the age of digital electronics is physiological. The dynamic range of human hearing
covers about 14 orders of magnitude in intensity. In some sense, sound pressure levels expressed in
decibels provide a “centigrade scale” for sound levels that nicely matches human auditory experience;
0 dBSPL is about the quietest sound a human can detect, and 100 dBSPL is about as loud a sound as we
can tolerate.

By far, the most important feature of the decibel is that the decibel is always a base-10 logarithmic
measure of a ratio, never a ratio itself.

The intensity level, IL, is expressed in decibels.

6 In acoustics, the equivalent of “optical trapping” is acoustical levitation superstability (see Sect. 15.4.7): M. Barmatz
and S. L. Garrett, “Stabilization and oscillation of an acoustically levitated object,” US Pat. No. 4,773,266 (Sept.
27, 1988).
7 In my estimation, one of the most significant engineering breakthroughs of the twentieth century was the invention, by
Harold S. Black (1989–1983) at Bell Labs, of the negative feedback amplifier in 1928. In Black’s own words, “Our patent
application was treated in the same manner as one for a perpetual-motion machine. In a climate where more gain was
better, the concept that one would throw away gain to improve stability, bandwidth, etc., was inconceivable before that
time.”

466 10 One-Dimensional Propagation

www.dbooks.org

https://www.dbooks.org/


IL ¼ 10 log 10
I
Iref

� �
ð10:40Þ

The time-averaged acoustic intensity, I ¼ <p1v1 > t, is defined by the energy conservation Eq. (10.36).
The time-averaged reference intensity, Iref, used to define IL in Eq. (10.40), will depend upon the
situation. For sound in air, Iref � 10�12 W/m2 ¼ 1 pW/m2. Using our definition of specific acoustic
impedance for plane waves in Eq. (10.27), the value of the specific acoustic impedance in dry air is z¼
ρmc ¼ 413.3 Pa-sec/m (rayls) at 20 �C, so Iref can also be expressed in terms of the root-mean-squared
pressure, prms, of sound.

I ¼ p1v1h itime ¼
1
2
p1

p1
ρmc

¼ p2rms
ρmc

ð10:41Þ

In Eq. (10.41), we let prms ¼ p1=
ffiffiffi
2

p
by assuming that the pressure was varying sinusoidally in time.8 If

that is the case, then Iref corresponds to a root-mean-squared pressure amplitude, prms ¼ 20.33 μParms.
For convenience, the reference sound pressure in air is defined as Pref � 20 μParms.

Fig. 10.5 The equal-loudness contours, known as the Fletcher-Munson curves, are taken from [21]. The solid lines
correspond to the intensity of sound in air, in dB re: 1 pW/m2, which is required to produce a perceived loudness equal to
that of a 1.0 kHz tone with the same intensity level. That “loudness level” is called the “phon.” To produce a loudness
level of 60 phon, at 1.0 kHz, the sound pressure level would be 60 dBSPL. The “0 dB” curve is often called the “threshold
of hearing,” and the “120 dB” curve is called the “the threshold of feeling”

8 The “true” definition of a root-mean-squared (rms) amplitude is always tied to the power associated with that amplitude.
To account for non-sinusoidal waveforms, engineers introduce a dimensionless “crest factor,” CF, that is defined as the
ratio of the peak value of a waveform to its rms value. For a sine waveform, CF (sine) ¼ ffiffiffi

2
p

, for a triangular waveform,
CF (triangle) ¼ ffiffiffi

3
p

, and for a half-wave rectified sinewave, CF (half-wave rectified) ¼ 2. Most instruments that claim to
measure the “true rms” value of a parameter (e.g., voltage) will exhibit an accuracy that decreases with increasing crest
factor. For measurement of Gaussian noise, instruments that tolerate 3 < CF < 5 are usually adequate.
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The concept of sound pressure level, expressed in decibels, appeared in Chap. 7 to describe the
amplitude of a dangerously loud sound: 115 dBSPL.

dBSPL ¼ 20 log 10
prms
Pref

� �
ð10:42Þ

The fact that the base-ten logarithm in Eq. (10.42) is multiplied by 20 instead of 10, as in Eq. (10.40),
reflects the definition of the decibel as the base-10 logarithm of a power or intensity ratio, even when
its value is determined by the ratio of amplitudes.

If the decibel is used to express an amplitude-independent ratio (like the gain of an amplifier or the
attenuation of a filter), then a reference level is not required, but the ratio must still be the logarithm of a
power or energy ratio. For example, if the voltage gain of an amplifier is ten, then that gain can be
expressed as 20log10(10) ¼ þ 20 dB.

When a decibel refers to an absolute measurement, then it is important to include the reference
along with the reported value. That can be accomplished in several ways. One is the subscript used for
115 dBSPL that implied that Pref ¼ 20 μParms for sound pressure levels (SPL). The preferred method is
always to explicitly include the reference: 115 dB re: 20 μParms.

There are several frequency-weighting schemes that are used to produce a dB level that reflects the
(amplitude-dependent!) frequency response of human hearing that will be addressed in Sect. 10.5.3.9

For example, an A-weighted sound pressure level (LA) can be expressed as 115 dB(A) or 115 dBA.

10.5.2 Superposition of Sound Levels (Rule for Adding Decibels)

As just mentioned, the decibel was introduced to turn a multiplicative string of gains and losses into an
arithmetic sum. When it comes to the superposition of sound fields, the decibel must be employed with
extreme care!

If we add two sound sources, each with a sound pressure level of 60 dBSPL, the result is either
63 dBSPL if the sources are incoherent, since their powers add, or as much as 66 dBSPL if the sources
are coherent (having the same frequency) and in-phase, since their pressures would add. If the sources
are coherent and out-of-phase, there may be no sound at all. In no case will the sum of two 60 dBSPL

sources ever result in 120 dBSPL!

10.5.3 Anthropomorphic Frequency Weighting of Sound Levels

It is common to assert that healthy humans can detect sound with frequencies ranging from 20 Hz to
20 kHz, but the sensitivity of human hearing is very dependent upon both frequency and amplitude, as
well as on the listener’s age, health, and prior exposure to loud sounds. The frequency dependence of
human hearing is represented by equal-loudness contours that were first measured by Fletcher and
Munson at Bell Labs in 1933 [21]. Subsequent determinations were made to produce equal-loudness
contours that specified the auditory acuity of different age groups [22], and consensus contours have
been codified in an international standard [23]. For our present purposes, the Fletcher-Munson curves,
shown in Fig. 10.5, provide an illustration of the amplitude dependence of the normal frequency
dependence of human hearing, although more recent determinations exist [24].

9 The weighting of A, B, C, and D (no weighting) levels are specified in several international standards, for example, the
International Standards Organization (ISO) 3746:2010, and are plotted in Fig. 10.6.
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Examination of Fig. 10.5 suggests that “normal” human hearing is most sensitive at frequencies
between 3 kHz and 4 kHz (near the λ/4 resonance of the ear canal10) and that sensitivity degrades at
higher and lower frequencies. The curves also demonstrate that there is less frequency dependence at
higher sound levels. We are nearly 60 dB less sensitive to a tone at 40 Hz as we are to a tone of the
same intensity at 1 kHz near the threshold of hearing, but our sensitivity is nearly frequency indepen-
dent between 20 Hz and 1.0 kHz if the intensity of the tone is 100 dB re: 20 μParms.

The contours (i.e., solid lines) in Fig. 10.5 are labeled with the sound pressure level of a 1.0 kHz
tone. Those contours define a loudness level with the unit of “phons.” A 1.0 kHz tone with a sound
pressure level of 60 dB re: 20 μParms would be perceived as having a loudness equal to a 40 Hz tone
with a sound pressure level of 80 dB re: 20 μParms; both would have a loudness of 60 phons.

When attempting to quantify the perceived loudness of a tone, it would be convenient to have a way
to express the loudness of a tone that takes human perception into account. Early attempts to create a
metric that includes that frequency dependence, shown in Fig. 10.5, introduced three frequency-
weighting schemes to simulate hearing acuity at three different levels. These weighting schemes
were called A-weighted for levels below 55 dBSPL, B-weighted for sounds greater than 55 dBSPL

but less than 85 dBSPL, and C-weighted sound pressure levels for sounds with intensities in excess of
85 dBSPL. These filter functions were standardized for the design of sound level meters [25] and are
shown in Fig. 10.6.

The frequency-weighting standard [25] also includes tolerances for the levels that must be met by a
Type-0 (laboratory quality), a Type-1 (field measurement), and a Type-2 (general purpose) sound level
meter, as well as three exponential integration intervals: fast (τ ¼ 125 ms), slow (τ ¼ 1.0 s), and
impulse (rise time, τ" ¼ 35 ms and release time constant, τ# ¼ 1.5 s.) As a practical matter, the standard
also provides an implementation of the frequency weighting using passive R-C filter networks.

Such frequency-weighted metrics are usually designated dB(A) or dBA and dB(C) or dBC. Over
time, the use of B-weighting has fallen out of favor, and frequently A-weighting is used regardless of

Fig. 10.6 Frequency-
weighting factors for
specification of sound level
meter responses to simulate
human loudness perception
as specified in ANSI 1.4-
1983. [25] The
A-weighting was intended
for sounds with intensities
lower than 55 dBSPL and
the C-weighting for sounds
with intensities above
85 dBSPL. The B-weighting
was intended for levels
between the A and C limits
but has been utilized very
rarely

10 The transfer function for sound pressure at the eardrum to the sound pressure presented to the outer ear is above 14 dB
of gain from 2.5 to 3.2 kHz as shown in Table 2 of the ANSI-ASA S3.4 Standard.
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the intensity of the sound being measured. In some instances, particularly with measurement of airport
noise [26], the difference between the dB(A) and dB(C) levels are used to quantify the presence of
low-frequency signals.

The frequency-weighting scheme used for sound level meters was just the first attempt to relate
physical measurements to human auditory perception. In many cases, that metric is used to predict the
level of annoyance produced by unwanted sounds (noise) [27] or the reduction in speech intelligibility
in the presence of background noise [28]. Many other metrics have been established to correlate
annoyance to the sound amplitude, frequency, and intermittency of noise sources, but almost all
involve measurement of A-weighted levels. Sounds that may not be annoying during the day or at
work might produce stress and interrupt sleep if they occur during the evening or nighttime. Various
metrics provide algorithms for combining levels measured as a function of time.

Several metrics, in addition to the A-weighted level, have been adopted by the US Environmental
Protection Agency (EPA) for annoyance assessment. The Equivalent Sound Level, Leq, is just the time
averaged, A-weighted sound pressure, pA, using Pref ¼ 20 μParms.

Leq ¼ 10 log 10
1
T

ðT
0

p2A
P2
ref

dt

" #
ð10:43Þ

The time interval, T, for calculation of this average is not specified. For the Day-Night Sound Level,
Ldn, the calculation period is 24 h, and an additional 10 dB is added to the measured Leq for hours
between 10:00 pm (22h00) and 7:00 am (07h00), to calculate Ldn.

Ldn ¼ 10 log 10
1
24

15 10Ld=10
� �h i

þ 9 10 Lnþ10ð Þ=10½ �
� �h in o

ð10:44Þ

A further refinement, which attempts to better predict the community response to noise [26], introduces
a 5 dB boost to A-weighted levels measured in the evening between 7:00 pm (19 h00) and 10:00 pm
(22 h00), resulting in a sum similar to Eq. (10.44) that produces the Community Noise Equivalent
Level (CNEL), also known as the Day Evening Night Sound Level, Lden. For a continuous sound level
of 60 dBA, Leq ¼ 60 dB, Ldn ¼ 64.4 dB, and Lden ¼ 66.7 dB.

A detailed investigation of such annoyance metrics is beyond the scope of this textbook, but an
understanding of these frequency-weighted sound levels forms the basis for understanding most other
metrics.

10.6 Standing Waves in Rigidly Terminated Tubes

Based on our experience describing standing waves on strings with idealized boundary conditions in
Sect. 3.3.1, it is easy to calculate the standing wave modal frequencies for a tube of length, L, and
cross-sectional area, A, if (A)½ � λ. Under such circumstances, all of the fluid motion within the tube
will be longitudinal, thus parallel to the tube’s axis.11 When more than one of an enclosure’s
dimensions is comparable to the wavelength of sound, λ, then the sound within such an enclosure

11When we include thermoviscous dissipation on the walls of the tube, the velocity will not be constant throughout the
tube’s cross-section, since the no-slip boundary condition for a viscous fluid requires that the longitudinal velocity vanish
at the tube’s walls. In many cases, the ratio of the viscous penetration depth, δν, to the tube’s radius, a, is small, δν � a, so
the flow velocity is nearly uniform throughout most of the tube’s cross-section. The thermal effects near the wall increase
the compressibility of the gas (see Sect. 9.3.2), so they also create a small velocity perpendicular to the wall.
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can no longer be considered “one-dimensional.” Such three-dimensional enclosures will be analyzed
systematically in Chap. 13.

For simplicity, this section will focus on a rigid tube that is circular in cross-section, so that A¼ πa2,
where a is the circular tube’s radius. If the tube has rigid end caps at both ends, x ¼ 0 and x ¼ L, then
the fluid cannot penetrate the ends so v1(0, t) ¼ v1(L, t)¼ 0 for all times, t. Since v1 (x, t) will obey the
wave Eq. (10.12), a standing wave solution, like that for p1(x, t)in Eq. (10.15), can be written which
automatically satisfies the boundary condition at x ¼ 0.

v1 x, tð Þ ¼ ℜe bv sin kxð Þejω t
�  ð10:45Þ

Repeating our experience with the fixed-fixed string in Sect. 3.1.1, the acceptable values for the
wavenumber, kn, are quantized by imposition of the boundary condition at x ¼ L.

sin knLð Þ ¼ 0 ) knL ¼ nπ for n ¼ 1, 2, 3, . . . ð10:46Þ
The frequencies of the standing wave (normal) modes in the tube are therefore also restricted to
discrete values, fn ¼ n(c/2 L ).

2π f n ¼ ωn ¼ knc ¼ nπc
L

) λn ¼ 2L
n

or L ¼ n
λn
2

� �
ð10:47Þ

The physical interpretation of this result is identical to the one provided for the modes of a fixed-
fixed string: the normal mode shapes correspond to placing n sinusoidal half-wavelengths within the
overall length of the tube, L. Substitution of these normal mode frequencies, ωn, and wavenumbers, kn,
into the functional form of Eq. (10.45) provides the description of the shapes,bvn xð Þ, for each of the
normal modes.

bvn xð Þ ¼ Cn sin n
πx
L

� �
; n ¼ 1, 2, 3, . . . ð10:48Þ

In this form, Cn is a real scalar velocity amplitude for each mode that will be determined by the
amplitude of excitation for that mode. (We could let the Cn be complex if we are considering the
superposition of several modes, each having its own time phase.)

Having the explicit solution of Eq. (10.48) for the space and time distribution of the longitudinal
particle velocity of the fluid, the pressure distribution, p1(x, t), can be determined from Euler’s
equation.

∇
!
p1 ¼ ∂p1

∂x
¼ �ρm

∂v1
∂t

) ∂bpn
∂x

¼ �jρmωnCn sin knxð Þ ð10:49Þ

Integrating both sides of Eq. (10.49) over x produces the expressions for the distribution of pressure
within the rigidly terminated tube.ð

∂bpn
∂x

dx ¼ bpn xð Þ ¼ �jρmωnCn

ð
sin knxð Þdx

¼ jρmωnCn

kn
cos knxð Þ ) bpn xð Þ ¼ j ρmcð ÞCn cos knxð Þ

ð10:50Þ

The appearance of cos (kn x) in this result for bpn xð Þ indicates that there will be pressure maxima
(anti-nodes) at both boundaries. The “j” indicates that the acoustic pressure will be 90� out of phase
with the velocity, so that when the pressure reaches its maximum, the velocity will everywhere be zero,
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and vice versa; when the fluid’s longitudinal particle velocity is the greatest, the acoustic pressure
throughout the resonator will be zero.

For a tube that is open on both ends, the solutions to the wave equation produce resonance
frequencies, fn, that are identical to those for longitudinal waves in a free-free bar presented in
Eq. (5.13), except it is p1 (0, t) ¼ p1 (L, t) ¼ 0.

bvn xð Þ ¼ Cn cos knxð Þ with kn ¼ nπ
L

) f n ¼ n
c
2L

; n ¼ 1, 2, 3, . . .bpn xð Þ ¼ j ρmcð ÞCn sin knxð Þ
ð10:51Þ

In reality, the open-end condition is not exactly “pressure released.” Thinking back to our
investigations of the natural frequency of a Helmholtz resonator in Sect. 8.5, we needed to add an
“effective length” to the open end of a tube. The same will be true for standing waves in narrow tubes
for which a � λ. That effective length correction will be discussed in Sects. 12.8 and 12.9. For the
moment, we could use a correction that extends the length of an open tube by 0.613a, as given in
Eq. (12.133), if there are no other constraints on the flows in, out, or around the “open end.”

10.6.1 Quality Factor in a Standing Wave Resonator

Using the definitions of kinetic and potential energy density produced by the energy conservation
Eq. (10.36), when the acoustic pressure is zero throughout the resonator, all of the energy will be
kinetic, and when the velocity is zero everywhere, all the energy will be potential. The sum of the
kinetic and potential energies at any instant will be constant. These facts can be exploited to calculate
the quality factors, Qn, for the nth plane wave mode of a resonator, based on the expression for
thermoviscous boundary layer losses in Eq. (9.38).

The sum of the kinetic and potential energies, Etot, at any instant will be constant:
Etot ¼ (KE)max ¼ (PE)max. To evaluate the Q due to viscous losses along the cylindrical surface of
the resonator, it is convenient to calculate the maximum kinetic energy by integrating the maximum
kinetic energy density throughout the volume of the resonator using the expression for the acoustic
fluid velocity in Eq. (10.48).

KEð Þmax ¼
ρmC

2
nπa

2

2

ðL
0
sin 2 n

πx
L

� �
dx ¼ πa2LρmC

2
n

4
ð10:52Þ

From Eq. (9.37), the power dissipated by viscous shear at the resonator’s walls, with surface area,
S ¼ 2πaL, will also be given by an integral of the fluid’s particle velocity from Eq. (10.48).

Πvish it ¼
ρmδνω

4
2πaC2

n

ðL
0
sin 2 n

πx
L

� �
dx ¼ ρmδνω

4
πaLC2

n ð10:53Þ

The viscous contribution to the quality factor, Qvis, will just be the radian frequency, ω, times the
ratio of the stored energy, given in Eq. (10.52), to the time-averaged power dissipation in Eq. (10.53),
as expressed in Eq. (B.2).

Qvis ¼ ωEStored

Πvish it
¼ ω

πa2LρmC
2
n

4

� �
ρmδνω

4
πaLC2

n

� ��1

¼ a
δν

ð10:54Þ

As expected for a linear system, the excitation amplitude of the modes, Cn, cancels, and we are left with
a very simple expression that is identical to the result for Qvis due to viscous shear in the neck of a
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Helmholtz resonator, given in Eq. (9.44). Based on the definition of the viscous penetration depth,
δν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ=ρmω

p
, in Eq. (9.33), the viscous quality factor will increase with the square root of the

modal frequency, fn ¼ ωn/2π.
The calculation can be repeated for the thermal relaxation losses on the resonator’s surface.

Assuming the resonator is made from a material that has a much higher “accessible” heat capacity
than the ideal gas which fills it, Eq. (9.23) can be used to calculate the time-averaged thermal power
dissipation on the resonator’s cylindrical surface,hΠthit.

Πthh it ¼
γ � 1ð Þ
4γ

δκω
ρmcð Þ2C2

n

pm
2πað Þ

ðL
0
cos 2 n

πx
L

� �
dx

¼ γ � 1ð Þ
4γ

ρmcð Þ2C2
n

pm
δκωπaL ¼ γ � 1ð Þ

4
ρmδκωC

2
nπaL

ð10:55Þ

The final version in Eq. (10.55) makes use of the fact that for adiabatic sound waves in ideal gases,
c2 ¼ γpm/ρm. The expression for Etot ¼ (KE)max from Eq. (10.52) will serve nicely here for calculation
of Qth.

Qth ¼ ωEStored

Πthh it
¼ ω

πa2LρmC
2
n

4

� �
γ�1ð Þ
4 ρmδκωC

2
nπaL

� � ¼ 1
γ � 1ð Þ

a
δκ

ð10:56Þ

Although there is no viscous shear on the resonator’s rigid end caps, since the fluid’s particle
velocity is normal to their surfaces, there are still thermal relaxation losses since both rigid ends are
always pressure anti-nodes where the fluid will experience the maximum adiabatic temperature
variations. The calculation for Qends is identical to Eq. (10.54) except that the pressure does not
have to be averaged along the x direction.

Πthh iends ¼ 2
γ � 1ð Þ
4γ

δκω
ρmcð Þ2C2

n

pm
πa2
� � ¼ γ � 1ð Þ

2
ρmδκωC

2
n πa2
� � ð10:57Þ

Qends ¼ ω
πa2LρmC

2
n

4

� �
γ � 1ð Þ
2

ρmδκωC
2
n πa2
� �� ��1

¼ 1
2 γ � 1ð Þ

L
δκ

ð10:58Þ

Since the dissipation is additive, the total quality factor,Qtot, will require the parallel combination of
the three individual contributions to the quality factor.

1
Qtot

¼ 1
Qvis

þ 1
Qth

þ 1
Qends

ð10:59Þ

In this derivation, it is assumed that the resonator’s walls and end caps are made of a material that
holds those surfaces strictly isothermal. The dimensionless ratio, εs ¼ ρmcpδκ /ρscsδs, determines how
close the resonator’s boundaries are to enforcing isothermality at the solid-fluid interface where ρs, cs,
and δs are the density, specific heat, and thermal penetration depths for the solid. If εs � 1, then the
solid-fluid interface remains isothermal. If not, then the quality factor must include εs [29].

1
Q
¼ δν

a
þ γ � 1ð Þ

1þ εsð Þ
δκ
a
þ γ � 1ð Þ

1þ εsð Þ
2δκ
L

ð10:60Þ
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10.6.2 Resonance Frequency in Closed-Open Tubes

The resonance frequencies of a closed-open tube are analogous to those of the fixed-free string of
Sect. 3.3.1. Again, ignoring the need to apply an effective length correction to the open end of the tube,
the expression for the standing wave solutions is identical to Eq. (3.24) and results in successive modes
corresponding to an odd-integer number of quarter wavelengths equal to the length of the resonator,
L, if we assume that the rigid end of the resonator is located at x ¼ 0 and the open end is at x ¼ L.

bvn xð Þ ¼ Cn sin knxð Þ
bpn xð Þ ¼ j ρmcð ÞCn cos knxð Þ

kn ¼ 2n� 1ð Þπ
2L

) f n ¼ 2n� 1ð Þ c
4L

; n ¼ 1, 2, 3, . . .

ð10:61Þ

For the closed-open tube, the expression for the quality factor in Eq. (10.59) requires an additional
term to account for radiation losses (see footnote 24 in Chap. 8), Qrad, and thermal relaxation loss only
occurs at the closed end, Qend.

1
Qtot

¼ 1
Qvis

þ 1
Qth

þ 1
Qend

þ 1
Qrad

ð10:62Þ

10.7 Driven Plane Wave Resonators

As we have done throughout this textbook, after the normal modes have been calculated, our attention
has shifted to the excitation of those modes. Once again, the steady-state response will be determined
by an impedance. In this case, the appropriate impedance will be the acoustic transfer impedance,
Ztr ¼ bpM=bUS. The acoustic impedance, Zac ¼ bp=bU, was introduced in Chap. 8 during our investiga-
tion of lumped elements and the Helmholtz resonator because pressure and volume velocity were
continuous across the junctions between lumped elements, even if their cross-sectional areas were
different. The acoustic transfer impedance, Ztr, simply relates the pressure at one location (labeled the
microphone location), bpM , presumably a place where a microphone or other pressure transducer is
located, to the volume velocity, bUS, produced at a different (source) location, typically where the sound
is being generated.

For a plane wave resonator of constant cross-sectional area, the acoustic transfer impedance at
resonance can be calculated directly from the definition of the quality factor,Qn, of the nthmode, given
in Appendix B, used earlier in Eq. (10.54) and reproduced below.

Q ¼ 2π
Estored

Edissipated=cycle
¼ ωEstored

Πdissipated
� �

t

ð10:63Þ

At steady state, the time-averaged power dissipation must be equal to the power produced by the
driver. For simplicity, we will treat the driver as a source of volume velocity, located at x¼ L, as shown
in Fig. 10.9, bUS Lð Þ ¼ b_x Lð ÞApist ¼ bv Lð ÞApist, where we have assumed that the volume velocity source is
a rigid piston located at x¼ L, having area, Apist, with the longitudinal speed, _x Lð Þ, of that piston being
everywhere uniform at its surface.

As before, at resonance, the phase angle, ϕ, between bpM andbUS, will be zero, so the power produced

by the piston working against the acoustic pressure is simply Πh it ¼ ½ð Þ bpMj j bUS




 


, remembering that
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bpM and bUS are peak amplitudes and that a sinusoidal time dependence has been assumed for both
variables.12

The potential energy stored in the plane wave resonator can be calculated in the same way as the
stored kinetic energy was calculated in Eq. (10.52), but in this case, we integrate the potential energy
density, ½ð Þ bp xð Þj j2= ρmc

2ð Þ, based on Eq. (10.36), over the resonator’s volume, Vres. For simplicity, we
will assume a cylindrical resonator with constant radius, a, and overall length, L.

PEð Þmax ¼
πa2

2ρmc2
bpMj j2

ðL
0
cos 2 n

πx
L

� �
dx ¼ πa2L

4ρmc2
bpMj j2 ¼ Vres

4γpm
bpMj j2 ð10:64Þ

Substituting bpMj j ¼ bpnj j ¼ ρmcð ÞCn shows that Eq. (10.64) and Eq. (10.52) are identical, illustrating
the fact that all of the energy stored in a standing wave changes back and forth between kinetic energy
and potential energy.

The rightmost term in Eq. (10.64) assumes the resonator, having an internal volume, Vres ¼ πa2L, is
filled with an ideal gas, so that c2 ¼ γ pm/ρm. Substitution into Eq. (10.63) produces an expression for
the acoustic impedance at the driven end of the resonator at plane wave resonance frequencies, fn, with
quality factors, Qn.

Qn ¼ ωVres bpMj j2

4γpm ½ð Þ bpMj j bUS




 


 ) Ztr � bpMbUS

¼ � Qn

π f n

γpm
Vres

ð10:65Þ

The “�” in the right-hand version of Eq. (10.65) accounts for the fact that the phase difference betweenbpM and bUS alternates by 180� between odd and even modes if the source and receiver are not located at
the same end of the resonator.

For reasonably high values of Qn, the acoustic pressure amplitudes, bpM , based on Eq. (10.50), at
both ends of a plane wave resonator with rigid terminations (i.e., closed-closed) are equal: bp 0ð Þj j ¼bp Lð Þj j ¼ bpMj j . In that case, the acoustic transfer impedance and the acoustic impedance are equal:
Zac ¼ Ztr. Equation (10.65) allows us to express the pressure at the ends of the resonator and, by
Eq. (10.50), the pressure anywhere in the resonator, in terms of the volume velocity created by the
source, bUS Lð Þ.

bp 0ð Þj j ¼ bp Lð Þj j ¼ bpMj j ¼ Qn

π f n

γpm
Vres

bUS Lð Þ



 


 for Qn  1 ð10:66Þ

It is possible to measure both the resonance frequencies, fn, predicted by Eq. (10.47), and the quality
factors, Qn, predicted by Eq. (10.59), in conjunction with Eqs. (10.54) and (10.58), if the sound source
and receiver are both fairly rigid themselves. Aluminized Teflon™ electret material (typically 6–12
microns thick) placed against a rigid backplate provides an excellent approximation to the rigid end
conditions that were assumed in the calculations of Sect. 10.6. Such an electret transducer pair was
used for measurement of air contamination in a helium recovery line that is shown in Fig. 10.4 [14], as
well as a version used to detect the isotopic ratio of 3He to 4He [7]. Both of those resonators provided
an almost ideal realization of a rigidly capped cylinder that incorporates an electret transducer (see
Sect. 6.3.3) that functions as a volume velocity source (electrostatic loudspeaker) on one end and as a
receiver (electret microphone) on the other.

12 For simplicity, we can assume that the source and microphone are both located at the same end of the resonator. If they
were at opposite ends, then their relative phase would shift by 180� degrees in going from an odd to an even mode of the
resonator.
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10.7.1 Electroacoustic Transducer Sensitivities

We can go one step further by introducing the transducer sensitivities that will allow us to model a
resonator with its electroacoustic transducers as an electrical “black box” that can be represented as the
linear passive four-pole networks shown schematically in Fig. 10.7.

Following MacLean [30], we can choose the following definitions for the microphone sensitivities,
M, and the source strengths, S, for those electroacoustic transducers. These source strength and
sensitivities are expressed as complex numbers because there can be frequency-dependent phase
differences between the acoustic and electrical variables.

Mo ¼ ∂V
∂p

� �
i¼ 0

¼ Open circuit mic output voltage
Pressure at the mic

ð10:67Þ

Ms ¼ ∂i
∂p

� �
V¼ 0

¼ Short circuit mic output current
Pressure at the mic

ð10:68Þ

So ¼ ∂p
∂i

� �
¼ Pressure produced at the mic

Current supplied to the source
ð10:69Þ

Ss ¼ ∂p
∂V

� �
¼ Pressure produced at the mic

Voltage applied to the source
ð10:70Þ

The subscripts “o” and “s” on those microphone sensitivities refer to the transducer terminals being
left open (infinite load electrical impedance) or short-circuited (zero load electrical impedance). Using
those definitions, it is possible to write the transfer function, H ( f ), that provides the microphone’s
output voltage, bV2, in terms of the voltage applied across the speaker, bV1.

bV2 ¼ Mo SsbV1

� �
) H fð Þ ¼ bV2bV1

¼ MoSs ð10:71Þ

Alternatively, the electrical transfer impedance, Zel ( f ), could be written to relate the current into the
source to the microphone’s open-circuit output voltage.

bV2 ¼ Mo Sobi1� �
) Zel fð Þ ¼ bV2bi1 ¼ MoSo ð10:72Þ

Either expression might be useful in the design of an electronic circuit, like the feedback circuit of
Fig. 10.4 or a phase-locked-loop frequency tracker that was described in Sect. 2.5.3. Although

Fig. 10.7 (Left) The dashed box indicates an acoustic network that contains an electroacoustic source, S, and a
microphone, M, that are coupled together through an acoustic medium that can be characterized by an acoustic transfer
impedance, Ztr. Although this looks physically similar to a plane wave resonator, this schematic representation is generic
and could represent any combination of a loudspeaker and a microphone that are coupled by an acoustical medium in an
arbitrary geometry (see, e.g., Fig. 10.25). (Right) A generic linear, passive, four-pole electrical network that represents the
transducers coupled by the acoustic medium with four matrix elements: a, b, c, and d, as represented in Eq. (10.73)
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Eq. (10.65) provides a useful expression for a plane wave resonator’s acoustic transfer impedance, Ztr,
one would also need to know the sensitivities of the transducers for such a design.

Fortunately, the formalism that has just been introduced, using the electroacoustic networks
diagrammed schematically in Fig. 10.7, provides a technique for obtaining the electroacoustic
transducer’s sensitivities from purely electrical measurements, if we know the acoustic transfer
impedance of the medium coupling the source and the receiver and the boundary conditions.

10.7.2 The Principle of Reciprocity

The Principle of Reciprocity was first introduced into acoustics by Lord Rayleigh, in 1873, when he
derived the reciprocity relation for a system of linear equations and gave “a few examples [to] promote
the comprehension of a theorem which, on account of its extreme generality, may appear vague.” [31]
He cited physical examples in acoustics, optics, and electricity and then credited Helmholtz with a
derivation of the result in a uniform, inviscid fluid in which may be immersed any number of rigid,
fixed solids, pointing out the principle “will not be interfered with” even in the presence of damping.

The consequences of the reciprocity principle for the absolute calibration of microphones, without
requiring the use of a “primary pressure standard,” were not appreciated until 1940, when MacLean
[30], and independently Cook [32], showed it was possible to determine the absolute sensitivity of an
electroacoustic transducer by making only electrical measurements. Since that time, the reciprocity
calibration method has been universally adopted by standards organizations worldwide as the method
of choice for absolute determination of the sensitivity of microphones [33] and hydrophones [34].

The reciprocity calibration technique can be applied to any electroacoustic transducer that is
reversible (i.e., can be operated as either a speaker or as a microphone in gas or as hydrophone or
projector in liquid), linear, and passive. Passivity implies that the transducer does not contain an
independent internal power source, amplifier, etc.

The four-pole electrical network shown in Fig. 10.7 (right) can be represented by two coupled linear
algebraic equations. To simplify the following derivation, we will treat the constants as well as the
electrical currents and voltages to be real scalars,

V1 ¼ ai1 þ bi2
V2 ¼ ci1 þ di2

ð10:73Þ

The reciprocity principle dictates that if a stimulus is applied on the left side of the network, producing
a response on the right side, then when the same stimulus is applied to the right side, the response on
the left side must be identical to the response when the situation was reversed.13

Reciprocity can be illustrated using the network in Fig. 10.7 with the corresponding representation
as the coupled linear Eqs. (10.73): Driving the left side,①, with a voltage, V¼ V1, while an ammeter is
attached across the terminals on the network’s right side,②, creating a “short circuit” (i.e., V2¼ 0), the
ammeter would read a current, i2. When the situation is reversed and the ammeter shorts the left side
terminals,①, so V1¼ 0, the same voltage is impressed across the network’s right-side terminals,②, so
V ¼ V2. Then the reciprocity principle requires that i2 produced in the first case is equal to i1 produced
in the second.

13 The reciprocity principle also applies in vector form. If we applied a vector force at some location, ①, on a flexible
structure, and the vector displacement is measured at some other location, ②, we would observe the same vector
displacement at ① if the same vector force were applied at ②.
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This reciprocal behavior imposes a constraint on the coefficients (matrix elements) of Eq. (10.73),
which all have the units of electrical impedance. This constraint can be demonstrated by implementing
the sequence described in the previous paragraph using primed variables to indicate the “reversed”
situation.

Shorting 2 : V2 ¼ 0 ¼ ci1 þ di2 ) i1 ¼ �d
c

i2

Shorting 1 : V1 ¼ 0 ¼ ai1
0 þ bi2

0 ) i2
0 ¼ �a

b
i1
0

ð10:74Þ

Using these conditions, it is possible to calculate the voltages that appear across the terminals of the
driven side of the network.

Driving 1 : V ¼ � ad
c
i2 þ bi2 ) V ¼ b� ad

c

� �
i2

Driving 2 : V ¼ ci1
0 � da

b
i1
0 ) V ¼ c� ad

b

� �
i1
0

ð10:75Þ

Since we have driven the network with V on both sides, the reciprocity principle demands that the
observed short circuit currents also be equal in both cases: i2 ¼ i1’. Equating the two expressions for
voltage in Eq. (10.75), the reciprocity principle requires that b ¼ c.

b� ad
c

¼ c� ad
b

ð10:76Þ

These linear equations obey the reciprocity principle if the off-diagonal terms are equal: b ¼ c [35].
There has been a common misconception in most textbooks regarding the application of the

reciprocity relations to electrodynamic transducers and others that incorporate magnetic fields (e.g.,
variable reluctance, magnetostrictive) [36]. This arises from the fact that the “reversibility” require-
ment must be applied to both the transducer and the coupling medium. For example, in the presence of
steady flow, a volume velocity source at location ① will produce an acoustic pressure at location ②

when that same volume velocity source was applied at location ② to produce acoustic pressure at
location ① only if the steady flow was reversed. Since magnetic fields are the result of electrical
currents (including the microscopic electrical currents in permanent magnetic materials [37]), those
currents must be reversed, resulting in a sign change for the magnetic fields.

Starting in 1950 [38], this reversibility requirement was disguised by designating transducers that
used magnets as “anti-reciprocal” making the off-diagonal terms have opposite signs in those cases:
b ¼ �c [39]. Hunt’s perspective has been perpetuated [40].

10.7.3 In Situ Reciprocity Calibration

If the first transducer in Fig. 10.7 (left) is driven, then using expressions like Eqs. (10.71) and (10.72),
the voltage and current output of the second transducer can be calculated. If we reverse the roles, and
drive the second transducer to calculate the voltage and current output of the first transducer, it is
possible to show that the ratio of a transducer’s strength as a source to its sensitivity as a microphone is
entirely determined by the acoustic transfer impedance and is independent of the particular transducer
or its transduction mechanism (e.g., electrodynamic, electrostatic, or piezoelectric), as long as the
transducers are linear, passive, and reciprocal [30]. Let subscript 1 indicate the first case, and let
subscript 2 indicate the role reversal.
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So, 1

Mo, 1
=

So, 2

Mo, 2
=

Ss, 1

Ms, 1
=

Ss, 2

Ms, 2
=Ztr ¼ bp1bU2

¼ bp2bU1

ð10:77Þ

Using relationships in Eq. (10.77) to eliminate M in favor of S or vice versa in Eq. (10.71) or
Eq. (10.72), it is possible determine the sensitivities of two identical, reversible, electroacoustic
transducers.

bV2 ¼ MoSobi1 ¼ M2
oZtr
bi1 ¼ S2o

Ztr

bi1 ) Mo ¼
ffiffiffiffiffiffiffiffiffiffibV2bi1Ztr

s
and So ¼

ffiffiffiffiffiffiffiffiffiffiffiffibV2Ztrbi1
s

ð10:78Þ

Although we will show how this can be applied if the two transducers are not identical and if only one
is reversible, it is impossible to overestimate the importance of the result of Eq. (10.78) for the progress
of electroacoustics and for acoustic measurement and instrumentation in general. Equation (10.78)
establishes the fact that the sensitivity of a transducer can be determined by knowing the properties of
the acoustic medium (e.g., ρm and c) and its boundaries, calculating Ztr and then making purely
electrical measurements without the necessity of a primary pressure standard.14

We now need to remove the restriction that the two reversible transducers were identical that was
imposed above to quickly move from Eq. (10.77) to Eq. (10.78) and demonstrate the plausibility of an
absolute transducer calibration based only on electrical measurements. This is easily accomplished by
introducing a third transducer that need not be reversible but that can act as a “signal strength monitor.”
In fact, only one transducer needs be reversible for the following procedure to produce absolute
calibrations of all three transducers.

Once again, we will assume that we are placing all three transducers in a rigidly terminated standing
wave resonator filled with an ideal gas so we can let Eq. (10.65) be used to provide the required Ztr. We
also assume that the transducers are themselves sufficiently rigid that their presence in the resonator
does not alter the sound field.15

Figure 10.8 is a schematic representation of such a resonator that has a source, S, at one end; a
reversible transducer, R, at the opposite end; and an auxiliary microphone, M, also located at one end.

14 The primary calibration of voltage is simpler (in principle, although it requires temperatures near absolute zero for the
Josephson junction) since it is possible to relate the dc voltage across a superconducting Josephson junction to the
resulting oscillation frequency, f, since their ratio is determined by Planck’s constant, h, and the charge on an electron, e:
V � nhf /2e, where n is an integer. 2e/h ¼ (483.5978) MHz/μV.
15 This is equivalent to saying that the transducers are non-compliant in much the same way that the “constant
displacement drive” for a string does not “feel” the load of the string and preserves the “fixed” boundary condition.
For reciprocity calibration of transducers that behave as an ultracompliant driver (i.e., a constant force drive equivalent),
see [43].

Fig. 10.8 Schematic representation of a gas-filled plane wave resonator that has a reversible transducer, R, at one end
and a sound source, S, at the other end. A third transducer that functions only as a microphone, M, can be located at either
end of the resonator
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Although M and S could be reversible, it is not required for execution of the following procedure. An
actual physical realization of this configuration is shown in Fig. 10.25, where both S and R are
reversible but M can only function as a microphone. This procedure exploits the fact that all
transducers are assumed to exhibit linear behavior and results in an absolute reciprocity calibration
of R and a calibration relative to R for both S and M:

(a) We start by driving the reversible transducer with a current, i2, and then measuring the output
voltage, Vm, of the microphone, M.

(b) The source, S, is then driven with a current, i1, that is sufficient to make the output of
microphone, M, return to Vm. This recreates the sound field in the resonator produced when R
was driven by i2 in step (a).

(c) Having reproduced the sound field that the reversible transducer created in step (a), the reversible
transducer’s open-circuit output voltage, V2, is measured.

These three measurements are now sufficient to calibrate all three transducers without requiring that
any be “identical.”

Since the first (reversible) transducer is obviously identical to itself, Eq. (10.78) can be used to
determine its open-circuit sensitivity as a microphone, Mo, and its source strength, So, since we know
Ztr from Eq. (10.65). For the remainder of this sub-section, we will let the sinusoidal voltages and
currents be represented their rms values.

Moj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
V2

i2 Ztrj j
r

and Soj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 Ztrj j

i2

r
ð10:79Þ

Knowing the reversible microphone’s sensitivity, the pressure at either end of the resonator is
determined: p1 ¼ V2/|Mo|. Since that is the pressure that also appears at M, its sensitivity, Mo,aux, is
determined by its voltage output, Vm.

Mo,auxj j ¼ Moj jVm

V2
ð10:80Þ

Finally, the source strength of transducer S is determined, again because p1 is known when i1 was
applied to S.

So,sourcej j ¼ V2

Moj ji1 ð10:81Þ

Since the linearity of the transducers’ response is required, it is not necessary to readjust the
amplitude of the drive to re-create the sound field originally produced when the reversible transducer
was used as the sound source. It would be equally valid to simply use the ratio of the voltage produced
by the auxiliary microphone when the reversible transducer, R, was driven, VM,1, in step (a) and the
corresponding auxiliary microphone output voltage, VM,2, when the source, S, was driven. The result
for the reversible transducer’s open-circuit sensitivity, Mo, is given in Eq. (10.82) for calibration at a
resonance frequency, fn, with the corresponding quality factor, Qn.

Mo,1 f nð Þj j ¼ πVres

γpm

� �1=2
V2

i2

VM,1

VM,2

f n
Qn

� 	1=2
ð10:82Þ

Historically, other authors have referred to the reciprocal of the acoustic transfer impedance as the
“reciprocity factor,” J¼ (Ztr)

�1, but I see no reason to obscure the origin of this “factor” by giving it a
separate designation. In fact, I contend that the reciprocity calibration method was limited to only small
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“couplers” (see Fig. 10.27) or free-field geometries until Rudnick’s classic paper on reciprocity
calibration in “unconventional geometries” appeared in 1978 [41].

The fact that an absolute calibration could be made in any electroacoustical system for which the
acoustic transfer impedance could be calculated made it possible to perform in situ transducer
calibrations in almost any apparatus and under actual conditions of use. One extreme example of the
utility of this approach is demonstrated by the reciprocity calibration of electret microphones used to
make an absolute determination of the sound pressures generated by resonant mode conversion in
superfluid helium at temperatures within one degree of absolute zero (1 K ¼ �272 �C ¼ �458 �F)
[42]. Not only was the sensitivity of such a transducer different from the same transducer calibrated in
air, but the sensitivity could change after the apparatus was brought back to room temperature and then
submerged again in liquid helium.

The reciprocity method was extended to force-driven transduction by Swift and Garrett in 1987 to
allow reciprocity calibration of magnetohydrodynamic sound sources [43]. Such “ultracompliant”
sources and receivers are the equivalent of what we called a “constant force” driver, which were
contrasted to “constant displacement” or “constant velocity” drive mechanisms that were used to excite
finite or semi-infinite strings in our investigations of the driven string in Sects. 3.7 and 3.8.

10.7.4 Reciprocity Calibration in Other Geometries

Most reciprocity calibrations for either hydrophones [44] or microphones [45] are executed in a
coupler (cavity) that is small compared to the wavelength of sound at the calibration frequencies
(see Fig. 10.24), or under free-field conditions, usually within an anechoic chamber (see Fig. 12.41)
[46]. As before, the only requirement for such calibrations is knowledge of the appropriate acoustic
transfer impedance. Until the radiation produced by small sources that create spherically spreading
pressure waves in unbounded media are discussed Chap. 12, we will not be able to calculate the
acoustic transfer function for free-field conditions. The acoustic transfer impedance for that case is
included here for the reader’s convenience. The distance separating the “acoustic centers”16 of the
source and the receiver is d.

Free‐field : Ztrj j ¼ ρmc
2dλ

ð10:83Þ

Free-field reciprocity calibrations of microphones in air have been demonstrated to frequencies as high
as 100 kHz in 1948 [47] and more recently up to 150 kHz [48].

For a coupler with internal volume, V, and all internal dimensions much smaller than the wave-
length, V1/3 � λ, the acoustic transfer impedance is given by the cavity’s compliance in Eq. (8.26).

Coupler : Ztr ¼ ρmc
2

jωV
¼ γpm

jωV
ð10:84Þ

A schematic diagram of a typical commercial coupler used for reciprocity calibration systems, like the
Brüel & Kjær Type 4143, is shown in Fig. 10.24 that is provided with two coupler volumes with
nominal internal volume of 20 cm3 and 3.4 cm3 [49]. To perform a reciprocity calibration to high
frequencies, the coupler must be rather small. In that case, it is sometimes necessary to modify the
cavity’s compliance to include the compliance of the transducers’ diaphragms. Alternatively, higher-

16 The acoustic center of a reversible microphone or a sound source under free-field conditions is defined as the
extrapolated center of the spherically diverging wave field (see Problem 4 in Chap. 12).

10.7 Driven Plane Wave Resonators 481

https://doi.org/10.1007/978-3-030-44787-8_8#Equ26


frequency calibrations can be made by filling the coupler with a gas such as He or H2 that have
significantly higher sound speeds. Also, to reach the highest levels of precision, it may be necessary to
determine an effective polytropic coefficient (i.e., ratio of specific heats), γeff, to take into account that
the gas near the coupler’s and the microphone’s surfaces has an isothermal compressibility as
discussed in Sect. 9.3.2. Since the coupler volume tends to be minimized to allow calibration at higher
frequencies, the surface-to-volume ratio can introduce a significant correction to the coupler’s compli-
ance (i.e., acoustic transfer impedance), particularly at lower frequencies where the thermal penetration
depth is longer and, hence, the isothermal volume is a larger fraction of the coupler’s volume.

Recently, a reciprocity calibration was made using a coupler with a volume of 1.5 m3 that included
two 1000 sub-woofers as the reversible transducers and produced reciprocity calibrations of infrasound
sensors used for monitoring compliance with the Comprehensive Nuclear-Test-Ban Treaty [50] for
frequencies between 0.005 Hz � f � 10 Hz [51].

For a double Helmholtz resonator, like that shown in Fig. 9.18, having equal volumes, V, on either
side, joined by a duct of cross-sectional area, A¼ πrd2, with length, Ld, the transfer impedance depends
upon the resonance frequency, ωo ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=LdV

p
, and the quality factor, Q.

Double Helmholtz resonator : Ztrj j ¼ ρmcQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8AV=Ld

p ð10:85Þ

A plane wave tube of cross-sectional area, A, that may include an echoic termination to guarantee
unidirectional wave propagation can also be a useful geometry for reciprocity calibrations, as long as
the plane wave propagation is ensured by requiring that A½ � λ.

Planewave tube : Ζtrj j ¼ ρmc
A

ð10:86Þ

The result for a plane wave resonator from Eq. (10.65) of volume, Vres, operating in its nth mode,
with resonance frequency, fn, and quality factor, Qn, filled with an ideal gas, is repeated below.

Planewave resonator gas‐filledð Þ : Ztrj j ¼ Qn

π f n

γpm
Vres

ð10:87Þ

10.7.5 Resonator-Transducer Interaction

The coupling of two or more systems that possess their own individual resonance frequencies has been
one focus of this textbook since coupled simple harmonic oscillators were introduced in Sect. 2.7. The
topic of this section of Chap. 10 is the driven plane wave resonator, so it is natural that the coupling of
an electrodynamic loudspeaker to such a resonator be examined. As introduced in Eq. (2.55) for a
forced simple harmonic oscillator, we start by writing down Newton’s Second Law of Motion to
account for the net force, in this case being the force on the speaker’s piston, which has an instanta-
neous velocity, _ξ1 tð Þ, with positive ξ toward the left in Fig. 10.9.

mo
d2ξ1
dt2

þ Rm
dξ1
dt

þ Kξ1 ¼ f � Apistp tð Þ ð10:88Þ

The speaker’s moving mass, mo; suspension stiffness, K; and mechanical resistance, Rm, were
discussed in Sect. 2.5.5, as was the force, f(t) ¼ (Bℓ)I(t), that the magnet and voice coil (i.e., motor
mechanism) exert on the piston of area, Apist. The situation is diagrammed schematically in Fig. 10.9.
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In addition to Newton’s Second Law in Eq. (10.88), the fluid in the resonator that is in contact with
the piston must have the same volume velocity as that of the piston, U1 Lð Þ ¼ �Apist

_ξ1. Under steady-
state conditions for a single-frequency excitation, the reaction force, Apistbp, on the piston produced by
the acoustic pressure at its surface, Apistbp Lð Þ, can be expressed in terms of the acoustical impedance
presented by the resonator. By placing the rigid end of the resonator at x¼ 0, Eq. (10.45) can be used to
express the velocity of the gas, while Euler’s equation determines the gas pressure as a function of
position and time, (temporarily) neglecting any resonator dissipation.

Zac � bpbU ¼ jρmcbv cos kxð Þ
Aresbv sin kxð Þ ¼ j

ρmc
Ares

cot kxð Þ

) bp Lð Þ ¼ �Zac Lð ÞApist
b_ξ ð10:89Þ

If dissipation in the resonator is represented by an exponential decay constant, α, so the amplitude of a
traveling plane wave decays in proportion to e�αx, and using Eq. (B.5) the quality factor of a plane
wave resonance is Q ¼ (½) k/α ¼ π/(αλ), then the acoustic impedance has a slightly more complicated
dependence upon (kL), which reduces to Eq. (10.89) in the limit that (αL) � 1 [52].

Zac kLð Þ ¼ ρmc
Ares

αL� j cos kLð Þ sin kLð Þ
sin 2 kLð Þ þ αLð Þ2 cos 2 kLð Þ ð10:90Þ

The motor mechanism (voice coil and magnet) must supply the force that displaces the piston’s mass,
damping, and stiffness and must also supply the force that the piston exerts on the fluid. However, we
can easily investigate the resonance frequencies analytically by neglecting all dissipation (i.e., both Rm

and α) and realizing that no external force is needed to maintain an oscillation on resonance with no
dissipation. (The dissipative terms will be included in the DELTAEC model of Fig. 10.11.) Then, the

moving mass of the speaker is just bouncing on the sum of the two elastic forces: �jωb_ξK from the
speaker’s suspension and Apistbp from the gas pressure oscillations. Since the fluid’s effect is
represented by the acoustic impedance, Ztr � bp=bU , in Eq. (10.89) or (10.90), and the speaker’s
components are represented by a mechanical impedance, Zmech ¼ bF=bv, we can convert both to the
mechanical domain using Eq. (10.28).

Fig. 10.9 Schematic representation of a plane wave resonator of uniform cross-sectional area, Ares, that is driven by an
electrodynamic loudspeaker with a piston of area, Apist, located at x ¼ L. The zig-zag lines connecting the piston to the
resonator at x¼ L represent some flexure seal (e.g., the “surround” of the speaker shown in Fig. 2.16 right or the bellows
in Fig. 4.14 and in Fig. 4.21 right). The piston’s effective area, Apist, will include some contribution from the flexure seal.
In general, Apist 6¼ Ares
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j moω� K
ω

� �
¼ jA2

pist
ρmc
Ares

cot kLð Þ ð10:91Þ

The plotting of this equation is simplified if the driver parameters are nondimensionalized by taking the
ratio of the speaker’s moving mass, mo, to the mass of gas contained within the resonator, mgas.

m� ¼ mo

mgas
¼ mo

ρmAresL
) mo ¼ m�ρmAresL ð10:92Þ

The speaker’s stiffness can be normalized by taking its ratio with respect to the zero-frequency stiffness
of the gas as given in Eq. (8.28).

K� ¼ K
Kgas

¼ KV
ρmc2A

2
res

¼ KAresL

ρmc2A
2
res

¼ KL
ρmc2Ares

) K ¼ K�ρmc2Ares

L
ð10:93Þ

Equation (10.91) can be re-written as a function of the speaker’s nondimensionalized parameters, m�

and K�, and (kL), where the “k” in the parentheses is the wavenumber. The ratio of the piston area to the
resonator area is A� ¼ Apist/Ares.

m� ω
c
ρmLAres � K�ρmcAres

ωL
¼ ρm

A2
pist

Ares
cot kLð Þ

m� kLð Þ � K�

kLð Þ ¼ A�ð Þ2 cot kLð Þ
ð10:94Þ

The driver-resonator interaction can be illustrated by coupling the speaker we evaluated in Chap. 2,
Prob. 19, that was characterized using the techniques of Sect. 2.5.5, to a rigidly terminated cylindrical
resonator. That speaker had a free-cone resonance frequency, fo ¼ 55 Hz, and an effective piston area,
Apist ¼ 125 cm2. For computational simplicity, let’s connect that speaker to a 1.0-meter-long, air-filled
cylinder with an inside diameter, D¼ (4Apist/π)½, so A� ¼ 1, and terminated at the other end, x¼ 0, by
a rigid end cap. If the air is dry and at a mean pressure, pm ¼ 101,325 Pa, and temperature,
Tm ¼ 20 �C ¼ 293 K, the speed of sound, c ¼ 343.2 m/s. Using the results of Eq. (10.51) for such a
resonator with both ends rigid, f1 ¼ c/2 L ¼ 171.6 Hz, with the subsequent harmonic series of
longitudinal standing wave modes at fn ¼ nf1, if both ends were rigid.

Using those speaker parameters, while neglecting dissipation in the speaker and the resonator,
m� ffi¾ and K� ffi¾. Letting A� ¼ 1, the graphical solution to Eq. (10.94) is shown in Fig. 10.10, where
the solid line represents cot (kL) for the resonator and the short-dashed line represents the frequency
dependence of the speaker’s mechanical impedance. The lowest-frequency intersection at
(koL ) ¼ 0.397π is close to the speaker’s free-cone resonance. Subsequent intersections correspond
fairly closely to the closed-closed resonances of the resonator, (knL ) ¼ nπ, for n � 1.

If the rear of the loudspeaker is enclosed by a rigid hemisphere, the additional gas stiffness,
approximated in Eq. (10.95), raises the speaker’s nondimensionalized stiffness, K� ffi 23. That case
corresponds to the long-dashed line in Fig. 10.10. Now the speaker’s resonance frequency corresponds
to (koL ) ¼ 1.654π, placing it above the resonator’s rigid-rigid n ¼ 1 mode, as well as the free-cone
resonance, and below the n ¼ 2 mode. In both cases, the speaker’s mechanical resonance “repels” the
isolated resonator’s harmonic standing wave modes. This level repulsion is also illustrated in
Table 10.2.

To include dissipation in the speaker and the resonator, it is easier to model such a resonator and
driver using the ISPEAKER segment in DELTAEC, as shown in Fig. 10.11. Segment #1 provides the
values of the essential loudspeaker parameters in MKS units: Apist (1a); voice coil resistance, Rdc (1b);
voice coil inductance, L (1c); Bℓ-product (1d); moving mass, mo (1e); suspension stiffness, K (1f); and
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mechanical resistance, Rm (1f). The choice of drive current, I (1 h), is arbitrary but reasonable. The
DELTAEC model lets us plot the coupled speaker-resonator response as a function of frequency,
including dissipation in both the resonator and the driver, as shown in Fig. 10.12. Several interesting
features can be seen clearly.

For reference, the dashed line represents the standing wave solutions for an isolated closed-closed
resonator, fn ¼ nf1, based on the results of Eq. (10.51). The spectrum for the coupled systems shows an
additional resonance at about 68 Hz corresponding to the mechanical resonance of the speaker as
already calculated for the lossless case in Table 10.2. At that frequency, the resonator is shorter than a
half-wavelength so the “load” presented by the resonator behaves as a gas stiffness, Kgas, that adds to
the speaker’s mechanical suspension stiffness, K, raising the speaker’s resonance frequency above its
free-cone value, fo ¼ 55 Hz. The frequency of the speaker’s resonance and those of the first five
standing wave modes of the resonator that are produced by the DELTAEC model are listed in
Table 10.3.

Fig. 10.10 Graphical method of solution to the transcendental Eq. (10.94) with A� ¼ 1. The solid curves represent the
right-hand side of that equation, and the dashed curves are the left-hand side. The values for the horizontal axis are (kL)/π.
The short dashes represent the mechanical parameters (m� ffi ¾ and K� ffi ¾) of loudspeaker from Chap. 2, Prob. 19, that
are included in the DELTAEC screenshot of Fig. 10.11. The long dashes represent the same loudspeaker but with the rear
of the speaker enclosed by a hemispherical enclosure (see Fig. 10.13) that provides additional gas stiffness and makes
K� ffi 23

Table 10.2 Solutions to Eq. (10.94) for m� ¼ ¾ with the speaker’s mechanical resonance at 55 Hz

Mode

K� ¼ 3=4 fn K� ¼ 23 fn
(kL)/π [Hz] (kL)/π [Hz]

0 0.39718 68.2 1.65441 283.9
1 1.12399 192.9 0.94316 161.8
2 2.06602 354.5 2.16703 371.9
3 3.04457 522.4 3.06495 525.9
4 4.03358 692.2 4.04106 693.4

The left column corresponds to K� ¼ ¾, and the right column corresponds to K� ¼ 23 and a speaker with enclosure
resonance of 299 Hz. In both cases, the speaker’s resonance “repels” the standing wave solutions for an ideal rigid-rigid
plane wave resonator which would have (knL ) ¼ nπ for n � 1. Frequencies are based on f1 ¼ c/2 L ¼ 171.6 Hz
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Figure 10.13 shows a DELTAEC model that uses the IESPEAKER segment to incorporate an
enclosure behind the speaker that is a hemisphere with the same diameter as the piston that produced
the K� ¼ 23 case. The acoustic pressure generated by that combination is shown in Fig. 10.14, and the
frequencies of the peak are included in Table 10.3.

Fig. 10.11 Screenshot of a DELTAEC model with the ISPEAKER (#1) and the RPN (#2) segments expanded. The RPN
calculates the magnitude of the speaker’s electrical impedance and the ISPEAKER segment provides the speaker
parameters in MKS units

Fig. 10.12 The solid line represents the frequency response of the coupled speaker-resonator system that was generated
by the DELTAEC model in Fig. 10.11 with m� ¼ ¾ and K� ¼ ¾. The dashed line is the frequency response created with
rigid terminations at both ends and a boundary that excites the modes with a constant volume velocity. The lowest-
frequency peak represents the resonance of the loudspeaker. The standing wave modes are shifted to higher frequencies
due to the complex mechanical impedance of the loudspeaker

486 10 One-Dimensional Propagation

www.dbooks.org

https://www.dbooks.org/


The enclosure’s small back volume contributes significantly more gas stiffness, Kgas, to the
speaker’s suspension than the speaker’s own mechanical stiffness, K. Since the enclosure’s dimensions
are all much smaller than the wavelength of the sound at that frequency, the expression for gas stiffness
in Eq. (8.28) can be employed to approximate the enclosed speaker’s resonance frequency.

Kgas ¼ γpm
A2
pist

V
¼ 39, 400 N=m ) f o ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kþ Kgas

mo

r
¼ 299 Hz ð10:95Þ

Table 10.3 Summary of the frequencies of the speaker’s mechanical resonance (n ¼ 0) and the frequencies of the first
five modes of the resonator, fn, that include dissipation

Mode Rigid fo ¼ 55 Hz Enclosed

0 — 68 269
1 171 192 159
2 343 354 366
3 517 524 527
4 693 699 700
5 869 874 874

The modes of the closed-closed resonator (Rigid), given by Eq. (10.51), are provided for reference. These frequencies are
in excellent agreement with the results of the nondissipative calculations summarized in Table 10.2

Fig. 10.13 Screenshot of the DELTAEC model with the “enclosed speaker” IESPEAKER (#2) segment expanded and the
“enclosure back volume” COMPLIANCE (#1) segment expanded
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This value is 30 Hz higher than the result in Table 10.2 because the “load,” produced by the gas, on the
front surface of the loudspeaker’s piston is not included in the calculation of Eq. (10.95).

10.7.6 Electrodynamic Source Coupling Optimization*

In many applications where an electrodynamic loudspeaker is coupled with a resonator, it is advanta-
geous to optimize the electroacoustic efficiency of the coupling. If it is assumed that the acoustical
properties of the resonator have been determined by the application, then it is possible to demonstrate
that the efficiency of the driver’s excitation of that resonance will depend upon the area of the driver’s
piston, Apist.

There are two sources of dissipation in an electrodynamic driver. One is related to the driver’s

mechanical damping, Rm, that is proportional to the square of the driver’s piston velocity, bvdj j2 ¼b_ξ


 


2 ¼ bU


 


=Apist

� �2
.

Πmh it ¼
Rm

2
bvdj j2 ¼ Rm

2

bU


 


2
A2
pist

� a
bU


 


2
A2
pist

ð10:96Þ

The other loss mechanism is due to the time-averaged electrical dissipation (i.e., Joule heating), hΠdcit,
produced by the driving current’s passage through the driver’s voice coil, bI , that has an electrical

Fig. 10.14 The solid line represents the frequency response of the coupled “enclosed” speaker-resonator system that
was generated by the DELTAEC model in Fig. 10.13 with m� ¼ ¾ and K� ¼ 23. The dashed line represents the frequency
response created with a rigid termination at both ends and a boundary that provides a constant volume velocity, as it was
in Fig. 10.12. The frequency peak produced by the mechanical resonance of the loudspeaker now appears between the
n¼ 1 and the n¼ 2 standing wave resonances. The frequencies of the standing wave modes are “repelled” by the coupled
loudspeaker resonance exhibiting the same “level repulsion” that appeared first when coupled harmonic oscillators were
introduced in Sect. 2.7.6 and was also demonstrated in the bass-reflex loudspeaker enclosure’s response in Fig. 8.42
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resistance, Rdc. The force, bF , that the driver must produce is related to the product of the acoustic
pressure on the driver’s face, bp, and the piston’s area, Apist.

bF bI� � ¼ bpApist ¼ Bℓð ÞbI ) bI ¼ bpApist

Bℓð Þ ð10:97Þ

At resonance, the pressure on the face of the piston, bp , and the volume velocity that the piston
produces, bU, will be in-phase. Furthermore, since the resonant load is specified, their ratio must be the
acoustical impedance of the resonator at the piston’s location: Zac ¼ bp=bU.

Πdch it ¼
Rdc

2
bI


 


2 ¼ Rdc

2
bpApist

Bℓð Þ
� �2

¼ Rdc

2
ZacbUApist

Bℓð Þ

 !2

� bA2
pist
bU


 


2 ð10:98Þ

Inspection of Eqs. (10.96) and (10.98) reveals that those two dissipation mechanisms have a
reciprocal dependence upon the square of the piston’s area. As the area of the piston decreases, the
piston’s velocity must increase to provide the same amount of volume velocity. On the other hand, as
the area of the piston increases, the force required to move the piston, hence the required current flow
through the voice coil, must increase with the area of the piston.

The total time-averaged driver dissipation, hΠdriverit, is the sum of Eq. (10.96) and Eq. (10.98).
Since the volume velocity is common to both terms (and dictated by the power requirement of the
application), the optimum piston area, Aopt, can be obtained by differentiating the total driver dissipa-
tion with respect to the piston’s area.

Πdriverh ibU


 


2 ¼ a

A2
pist

þ bA2
pist )

∂ Πdriverh ibU

 

2
 !
∂Apist

¼ � 2a
A3
opt

þ 2bAopt ¼ 0 ð10:99Þ

Since both the acoustical impedance of the resonator at resonance, given by Eq. (10.65), and the
mechanical resistance of the driver are real constants, they can be represented by a dimensionless
constant, s, that relates the real component of the acoustical impedance times the resonator’s cross-
sectional area, Ares, to the mechanical resistance of the driver: A2

res Zacj j ¼ sRm.
For optimum efficiency, the driver must be operated at its mechanical resonance frequency, ωo,

makingXm(ωo)¼ j(ωomo�K/ωo)¼ 0, so that none of the electrodynamic force is wasted accelerating
the driver’s mass, mo, at ω > ωo or deflecting the driver’s suspension stiffness, K, at ω < ωo. Also, by
the maximum power transfer theorem, “load matching” requires that s ¼ 1.

Aopt

Ares

� �4

¼ Rm Bℓð Þ2
RdcZ2

acA
4
res

¼ Rm Bℓð Þ2
RdcR2

m

¼ Bℓð Þ2
RmRdc

� 	
� β ð10:100Þ

The quantity in square brackets is a dimensionless number, β, known as the Wakeland number, that
depends only upon the driver’s parameters.

Aopt

Ares
¼ β1=4 ffi ffiffiffi

σ
p ð10:101Þ

In some cases, it may not be possible or practical to use this optimum piston area since there may be
other constraints that limit the piston’s excursion or the goal may be to deliver the maximum power to
the load at some lower efficiency.
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Amore detailed analysis is provided byWakeland who shows that the maximum efficiency, ηmax, is
related to that dimensionless driver parameter, β � (Bℓ)2/(RmRdc), and introduces σ ¼ ffiffiffiffiffiffiffiffiffiffiffi

β þ 1
p

[53]. Wakeland’s more accurate determination of σ approaches the simpler result of Eq. (10.101) as
the value of β increases. Typical values of β for high-power, high-efficiency electrodynamic drivers are
usually above 5 and less than 200.

ηmax ¼ β
β þ 2

ffiffiffiffiffiffiffiffiffiffiffi
β þ 1

p þ 2
¼ σ � 1

σ þ 1
ð10:102Þ

A summary of the optimum efficiencies for several electrodynamic loudspeakers is given in Table 10.4
[53]. For the MW-142 in Problem 19 of Chap. 2, β ¼ 5.8 and ηmax ¼ 44%. For a 10 kW moving-
magnet electrodynamic driver, shown in Fig. 4.21, β ¼ 175 and ηmax ¼ 86%.

10.8 Junctions, Branches, and Filters

We now change our focus from one-dimensional plane wave resonators to one-dimensional traveling
plane waves in tubes with diameters, D, that are again small compared to the wavelength, D ffiffiffiffi
A

p � λ. The behavior of such traveling waves will be examined when they impinge on a junction
between tubes that have an abrupt change in cross-sectional area, A. The reflection and transmission of
energy at such a junction will be determined by the discontinuity in the acoustical impedance
(or acoustical admittance) on either side of such a junction that could be due to changes in mean
density, ρm, times sound speed, c, in addition to changes in cross-sectional area. The analysis will be
extended to branches that join one tube to several others or to other acoustical networks (e.g., to a
Helmholtz resonator). In all of these cases, we will again impose continuity of mass flow (i.e., volume
velocity) across the junction and where the pressure at the junction is necessarily single-valued.

10.8.1 Abrupt Discontinuities and the Acoustic Admittance

By this time, continuity of mass flow suggests that the tubes should be characterized by an acoustic
impedance, although as we are about to demonstrate, the reciprocal of the acoustic impedance, known

Table 10.4 Motor parameters for various electrodynamic drivers that have been used by thermoacoustics
researchers [54]

Driver

(Bℓ) Rdc Rm

σ

ηmax Πelectric

[N/A] [Ω] [kg/s] [%] [W]

MW-142 [55] 7.5 5.1 1.9 2.6 44 150
JBL 2206H [56] 18.1 5.3 9.5 2.7 47 300
Altec 290-16 K [57] 21.5 10.6 2.8 4.1 61 10
STAR [58] 15.3 8.2 1.8 4.1 61 20
SETAC [59] 18 1.7 2.2 9.4 81 200
Bose LM-1 [60] 18.36 1.36 2.34 10.34 82.4 100
B-300 [61] 8.0 0.05 15 9.3 81 300
C-2 [61] 41 0.24 48 12 85 2000
C10 [61] 85 0.52 80 13 86 10,000

The first three entries are “off-the-shelf” commercial loudspeakers. The STAR and SETAC drivers are custom-designed
and built moving-coil devices. The last four drivers are moving-magnet devices. The last three were designed for single-
frequency transduction at high efficiency and high power by Q-Drive, located in Troy, NY

490 10 One-Dimensional Propagation

www.dbooks.org

https://www.dbooks.org/


as the acoustic admittance, Yac, will provide a more convenient characterization. For the case of the
right-going wave that encounters a discontinuity in cross-sectional area, as diagrammed in Fig. 10.15
(left), the boundary conditions at x ¼ 0 can be expressed by forming the ratio of volume velocity to
pressure.

bpi þ bpr ¼ bpt and bUi þ bUr ¼ bUt ) bUi þ bUrbpi þ bpr ¼ bUtbpt ð10:103Þ

Since all three waves are traveling waves, Yac ¼ Z2 1
ac � bU=bp� �

¼ �A=ρmc, with the minus sign for

the reflected wave because it will be traveling to the left. The continuity of volume velocity and the fact
that the pressure at the junction is single-valued, shown in Eq. (10.103), can be expressed in terms of
Yac, which are real numbers.

Yi bpi � bprð Þ ¼ Ytbpt ¼ Yt bpi þ bprð Þ ) Yi
bpi � bprbpi þ bpr ¼ Yt ð10:104Þ

Equation (10.104) can be solved for the amplitude reflection coefficient, R � bprj j= bpij j , and the
amplitude transmission coefficient, T � bptj j=bpi.

R � bprj jbpij j ¼
Yi � Yt

Yi þ Yt
and T � bptj jbpij j ¼

2Yi

Yi þ Yt
ð10:105Þ

These results seem sensible. If the properties of the tube do not change at x ¼ 0, then Yi ¼ Yt, so
R ¼ 0 and T ¼ 1; the wave just keeps moving to the right, as it should through a uniform tube in the
absence of dissipation. On the other hand, if At � Ai, and the same fluid medium fills both sections,
then Yi  Yt, so the incident and reflected wave amplitudes are identical and the transmitted pressure,
pt, is doubled, though the volume flow rate moving past the junction is much smaller.

If the situation is reversed so if At  Ai, and the same fluid medium fills both sections, then Yi� Yt,
so the incident and reflected waves have opposite phases since R ffi �1, and the transmitted pressure is
very small, T � 1. This would be the case if the incident tube opened up to the atmosphere (i.e.,
Yt ¼1). In that case, the volume flow rate would be unrestricted, but the transmitted acoustic pressure
amplitude, bptj j, would be very small since the cincident tube is effectively attached to an infinite fluid
pressure reservoir.

Based on the intensities of the three waves, it is also possible to calculate a power reflection
coefficient, RΠ, and power transmission coefficient, TΠ, that will be proportional to the squares of the
pressures times the acoustic admittance, Πh it ¼ bpj j2Y=2.

Fig. 10.15 (Left) Single-frequency traveling wave with amplitude, bpi , is incident on a junction between tubes of
different cross-sectional areas. Some energy is transmitted and some reflected. (Right) Traveling wave impinges from a
single tube on a junction with two tubes, all with different cross-sectional areas
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RΠ ¼ bprj j2bpij j2
¼ Yi � Ytð Þ2

Yi þ Ytð Þ2 and TΠ ¼ Yt

Yi

bptj j2bpij j2
¼ 4YiYt

Yi þ Ytð Þ2 ð10:106Þ

Energy conservation is confirmed by the fact that RΠ þ TΠ ¼ 1; any power that is not reflected must be
transmitted. If the admittances are closely matched, so Y2/Y1 ffi 1, and then there is almost perfect
transmission of the energy since the reflected portion is roughly (¼)(Y2/Y1 � 1)2. This result provides
justification for the stepwise approximation to a horn in Fig. 10.2, where the number of elements is
chosen so the area change between adjacent elements is small so that reflections from the
discontinuities can be ignored and the propagation can be considered to remain unidirectional.

Having identified the acoustic admittance as the physical quantity that determines the distribution of
the incident, reflected, and transmitted energy, it is not difficult to generalize the previous results for a
tube that branches into many tubes of differing acoustic admittance at the junction, such as the system
diagrammed in Fig. 10.15 (right).

Yi bpi � bprð Þ ¼
XN
n¼1

Yn

 !bpt where Yn ¼ An

ρncn

and bpt ¼ bpi þ bpr ¼ bp1 ¼ bp2 ¼ . . . ¼ bpn
ð10:107Þ

The amplitude reflection and transmission coefficients are the corresponding generalizations of
Eq. (10.105).

R ¼ bprbpi ¼
Yi �

PN
n¼1

Yn

Yi þ
PN
n¼1

Yn

and T ¼ bptbpi ¼ 2Yi

Yi þ
PN
n¼1

Yn

ð10:108Þ

The power transmission coefficients must be different for different outlet tubes. For the nth outlet

tube, Πt,nh it ¼ ½ð Þℜe bpnbU�
n

h i
¼ ½ð ÞYn ptj j2. Meanwhile, Πih it ¼ ½ð ÞYi bpij j2. We can use T ¼ bpt=bpi

in Eq. (10.108) to write the power transmission coefficient into the nth tube:

TΠ,n ¼ Πnh it
Πih it

¼ Yn

Yi

bpnj j2bpij j2
¼ 4YiYn

Yi þ
PN
n¼1

Yn

� �2 ð10:109Þ

By using Eqs. (10.108) and (10.109), one can verify that energy is conserved to exhibit the
reassuring result:

RΠ þ
XN
n¼1

TΠ,n ¼ R2 þ
XN
n¼1

TΠ,n ¼ 1 ð10:110Þ

An interesting application of the pressures in branching systems to the human cardiovascular
system, in particular the iliac bifurcation of the aorta, is discussed by Lighthill [1].

10.8.2 Tuned Band-Stop Filter

Based on the diagrams in Fig. 10.15, it appears that our interest is focused on the junction between
semi-infinite pipes where we expect unidirectional propagation in the +x direction and an acoustic
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admittance for right-going traveling waves, as expressed in Eq. (10.86) or Eq. (10.107), so that Yn¼ A/
ρmc for all n � 1. There is no such restriction on Yn. In the following application, we will use the
formalism of Eq. (10.109) to calculate the transmission coefficient for sound that propagates along a
duct that uses a Helmholtz resonator as a side branch to produce a band-stop filter that is shown
schematically in Fig. 10.16.

The lumped element approach of Chap. 8 can be exploited to analyze this band-stop filter, also
known as a “trap,” that can be useful for suppression of a single frequency in ducts, like those produced
by a fan’s blade-passage frequency.

As calculated in Sect. 8.5.1, the series combination of an inertance and a compliance can have a
vanishingly small input acoustical impedance when XC and XL cancel each other at the Helmholtz
frequency, ωo. If a Helmholtz resonator is attached to a duct as a side branch, shown schematically in
Fig. 10.16, all of the incident volume velocity is diverted to the branch leaving nothing to produce a
transmitted pressure at the Helmholtz frequency through the duct beyond the branch to the right of the
junction.

As shown in Fig. 10.16, a Helmholtz resonator that combines a compliance with internal volume, V,
and a neck of cross-sectional area, AH, with an effective length (see Sect. 8.5.2), Leff, is connected to
a duct of otherwise uniform cross-sectional area, A. This situation can be incorporated into
Eq. (10.109) by letting N ¼ 2, with Yi ¼ Y1 ¼ Yt ¼ R�1

ac ¼ A=ρmc and Y2 ¼ 1/jXH

whereXH ¼ XL þ XC ¼ ωL � (1/ωC) and ωo ¼ 1=
ffiffiffiffiffiffi
LC

p
.

XH ¼ ωL� 1
ωC

¼ ωL 1� ω2
o

ω2

� �
¼ ωoL

ω
ωo

� ωo

ω

� �
ð10:111Þ

Substitution into Eq. (10.109) provides the power transmission coefficient.

TΠ,1 ¼ 4YiY1

Yi þ Y1 þ Y2j j2 ¼
4Y2

i

2Yi þ 1
jXH




 


2
¼ 1

1þ
ac
R

4X2
H

¼ 1

1þ 1

4ω2
oL

2

R2
ac

ω
ωo

� ωo

ω

� �2

ð10:112Þ

Introduction of an exponential time constant, τL/R¼ L/Rac, can simplify and symmetrize the expression
for the transmission coefficient.

Fig. 10.16 Helmholtz
resonator as a side branch
on a duct of uniform cross-
sectional area, A. The
intrusion of the “neck” into
the duct and into the
volume represents the
effective length of the neck,
Leff, which is greater than its
physical length, as observed
in Sect. 8.5.2
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TΠ,1 ¼ 1

1þ 1

2ωoτL=Rð Þ2
ω
ωo

� ωo
ω

� ��2 ¼
2ωoτL=R
� �2 ω

ωo
� ωo

ω

� �2
2ωoτL=R
� �2 ω

ωo
� ωo

ω

� �2
þ 1

ð10:113Þ

This transmission coefficient is plotted for three values of the dimensionless product of twice the
Helmholtz resonance frequency times the exponential time constant, 0.5 � (2ωoτL/R) � 4.0, in
Fig. 10.17, as a function of the frequency ratio, f/fo, on a logarithmic axis.

If the frequency is either much lower or much higher than the Helmholtz frequency, then the
squared frequency ratio difference term in Eq. (10.113), [(ω/ωo) � (ωo/ω)]

2, dominates, and nearly all
of the power is transmitted past the branch: TΠffi 1. If ω¼ωo, then the frequency term in the numerator
is zero, so no power is transmitted in the limit that the dissipation in the Helmholtz resonator can be
neglected.

At the Helmholtz frequency, ωo, the energy conservation condition in Eq. (10.110) requires that all
of the power be reflected. With the admittance of the Helmholtz resonator at resonance being infinite
(in the absence of dissipation), the phase-inverted reflection from the junction is what would be
expected since, from the left, the situation would be indistinguishable from the case where At  Ai

in Eq. (10.105).

10.8.3 Stub Tuning

One final high-pass filter application can be very useful if steady flow needs to be removed from
acoustic propagation through the duct. Sirens can have very high efficiency [62], but they require
steady gas flow. That steady flow can be diverted from a duct while allowing the high-amplitude

Fig. 10.17 Power transmission coefficient, TΠ,1, for a duct with a Helmholtz resonator as a side branch. The solid line
corresponds to(2ωoτL/R) ¼ 1.0, with the dashed line for (2ωoτL/R) ¼ 0.5 and the dotted line for (2ωoτL/R) ¼ 4.0
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acoustic pressure wave to be transmitted through the duct if a thin membrane is placed across the duct
and a vent tube that is one-quarter wavelength long is placed between the siren and the membrane.

If the membrane is sufficiently thin and flexible, the sound will pass through nearly unattenuated
(see Sect. 11.1.1). If the “stub” is one-quarter wavelength long, at the siren’s frequency, then it will act
as a 1:�1 transformer (see Sect. 3.8.1 and Fig. 3.10), so the nearly zero low-frequency acoustical
impedance of the open end will present a nearly infinite acoustical impedance at the duct end for sound
at the siren’s frequency; all the sound goes down the duct, and all the siren’s gas flow goes out the stub.

10.9 Quasi-One-Dimensional Propagation (Horns)

Thus far, this chapter has examined propagating plane waves in ducts and standing plane waves in
resonators, both having constant cross-sectional areas, A, that are assumed to have linear dimensions
that are much smaller that the wavelength of sound,

ffiffiffi
A

p � λ. The spatial dependence of such waves
has been specified by a single coordinate. In all cases, the evolution of the waves depended only upon
the x coordinate, and all of the wave’s acoustic variables (i.e., pressure, density, temperature, and
particle velocity) have been uniform over planes that are perpendicular to the x axis. This geometry is
responsible for the term “plane wave” that we use to designate such behavior.

In fact, the dependence on a single spatial coordinate is not unique to one-dimensional propagation.
In Chap. 12, when the radiation of sound in a three-dimensional unbounded fluid medium is analyzed,
spherically diverging sound waves are also characterized by a single spatial coordinate, the radial
distance, r, from the omnidirectional source’s acoustic center. In the nondissipative limit, energy is
conserved so that the pressure amplitude at a distance, r, is inversely proportional to that distance. The
integral of the time-averaged intensity, hIit ¼ h[p2(r, t)]it/2ρmc, over any spherical surface of area, A
(r) ¼ 4πr2, centered on the source, remains constant.

For such spherically symmetric wave propagation, all fluid particle motion is radial. There would be
no fluid motion that would cross the boundary of any cone with its apex centered at the source. For that
reason, any conical horn of infinite length, with rigid surfaces, would support identical wave motion
within its constant apex angle.17 This argument should be reminiscent of the analysis of nodes of
standing waves on pendula in Sect. 3.6.2, as well as arguments regarding membrane mode shapes that
exploited nodal lines and nodal circles to calculate the behavior of those modes in Sect. 6.2.4 and Prob.
2 in Chap. 6 for membrane shapes that are not bounded by a rectangle or circle.

10.9.1 Semi-infinite Exponential Horns

Bolstered by such arguments, it is attractive to extend the analysis of one-dimensional propagation in a
duct of uniform cross-sectional area to horns that have a monotonic change in cross-sectional area with
distance, A(x), which is a function of only the x coordinate, if we assume that the area changes slowly
over distances comparable to the wavelength of the sound wave propagating through the horn.

Long before the development of electroacoustics and before an acoustical theory for horns existed,
horns were recognized as an apparatus for concentrating sound energy and for improving the coupling
between vibrating surfaces to the surrounding fluid medium. Several (amusing?) historical
implementations are shown in Fig. 10.18. In the early days of electroacoustics, when the power

17Within the cone, the pressure amplitudes would be larger than those of a spherically spreading wave if the source’s
volume velocity was the same in both cases. If the cone subtends a solid angle, Ω, then the pressures would be enhanced
by a factor of 4π/Ω, assuming the additional load would not reduce the source’s volume velocity.
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available using vacuum tube audio amplifiers was limited and motion pictures added sound tracks,
horns were required to increase the efficiency of loudspeakers to ensonify the large volumes of theaters
and auditoria [64].

To formulate a quasi-one-dimensional model of horns, it is necessary to modify the linearized
one-dimensional continuity Eq. (10.1) that was derived in Sect. 8.2.1, based on the geometry specified
in Fig. 8.2. In analogy with Eqs. (8.10)–(8.12), the change in the mass of fluid within a differential slab
of volume, dV ¼ A(x) dx, will be due to the difference in mass of fluid that enters A(x) with velocity
along the x direction of u(x) and the mass that exits through an area, A(xþ dx), with velocity, u(xþ dx),
as shown in Fig. 10.19.

_m ¼ ρmuAð Þx � ρmuAð Þxþdx ¼ � ∂ ρmuAð Þ
∂x

� �
x

dx

∂ρ1
∂t

þ ρm
A xð Þ

∂ u1Að Þ
∂x

� �
¼ ∂ρ1

∂t
þ ρmu1

A xð Þ
∂A
∂x

� �
þ ρm

∂u1
∂x

� �
¼ 0

ð10:114Þ

The linearized Euler Eq. (10.2) remains unchanged. The linearized equation of state (10.4) still relates
adiabatic pressure and density changes, but the square of the sound speed here will now be subscripted,

Fig. 10.18 (Top left) Two horns from the author’s personal collection. The “Triumph” straight horn, located behind the
Edison Standard Phonograph, has a 2400 (61 cm) diameter opening that reduces to a ½” (1.3 cm) diameter at the apex for
an area ratio of 2300:1. That horn is 3600 (91 cm) long. Placed on that phonograph is a very small solid stepped
exponential horn that is 1¾00 (5.5 cm) long that was used by Prof. W. L. Nyborg to concentrate ultrasonic energy for
streaming [63] and cellular (biological) cavitation experiments in fluids (courtesy of Prof. Richard Packard, a former
Nyborg master’s student). (Bottom left) Two curved Edison phonograph horns. (Top right) A horn-based aircraft
detection and localization system used by the Imperial Japanese Army in 1936, known as the “Wartuba.” (Center
right) Another aircraft system used for stereo localization, photographed at Bolling Air Force Base, near Washington,
DC, in 1921. (Bottom right) Personal listening device worn by German soldiers in 1917 that is combined with binoculars
so that the aircraft can be seen as well as heard
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co, to remind us that it is the equilibrium thermodynamic sound speed, c2o ¼ ∂p=∂ρð Þs, as distinguished
from the phase speed, cph¼ ω /k, since those two speeds will not be the same, as they were for the truly
one-dimensional problem in Eq. (10.19).

ρm
∂u
∂t

þ ∂p
∂x

¼ ρm
∂u
∂t

þ c2o
∂ρ
∂x

¼ 0 ð10:115Þ

The second term in the continuity Eq. (10.114) involves the derivative, (1/A)(∂A/∂x)¼ ∂ ln (A)/∂x
(see Sect. 1.1.3), suggesting that a particularly simple solution to these coupled first-order differential
equations might exist if the cross-sectional area of the horn varied as an exponential function of
distance, x, along the horn’s axis.

A xð Þ ¼ Aoe
2x=h ð10:116Þ

A flare constant, h, has been introduced to scale the rate of change in area from its initial area, Ao � A
(0). Using the same nondissipative argument for energy conservation made in the previous discussion
of the conical horn, the amplitude of the acoustic pressure variation along the horn’s axis must also
decrease exponentially since the product, p2(x)A(x), must remain constant. Since the horn is semi-
infinite, we need only to consider wave motion that propagates in the + x direction.

p1 x, tð Þ ¼ ℜe bpoe�x=he j ωt�κxð Þ
h i

andρ1 x, tð Þ ¼ ℜe
bpo
c2o

e�x=he j ωt�κxð Þ
� 	

ð10:117Þ

Our symbol for the wavenumber, κ, is chosen to remind ourselves that it has yet to be determined. The
initial acoustic pressure phasor at the throat of the horn is bpo.

Substitution of Eqs. (10.116) and (10.117) into the coupled differential Eqs. (10.114) and (10.115)
allows them to be converted to coupled algebraic equations.

jωρmbu� c2o
1
h
þ jκ

� �bρ ¼ 0

ρm
2
h
� 1
h
� jκ

h ibuþ jωbρ ¼ 0
ð10:118Þ

As before, when seeking the dispersion relation, like that in Eq. (10.19), the determinant of the coefficients
of the acoustic field variables, bρ andbu, must vanish if nontrivial solutions to Eq. (10.118) exist.

jωρm � c2o
h

1þ jκhð Þ
ρm
h

1� jκhð Þ jω
















 ¼ 0 ð10:119Þ

We now can construct the necessary dispersion relation between wavenumber, κ, and frequency, ω.

Fig. 10.19 This geometry
can be used for the
derivation of a continuity
equation that applies to a
duct of continuously
varying cross-sectional
area, A(x). To conserve
volume velocity, the x-
component of the fluid
particle velocity, u(x), must
decrease as the cross-
sectional area of the horn
increases
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ω2 ¼ c2o
h2

þ c2oκ
2 ) κ ¼ � ω

co

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2o

ωhð Þ2
s

) cph ¼ ω
κ
¼ coffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� o
c

ωhð Þ2
q ð10:120Þ

It is clear from Eq. (10.120) that the solution no longer corresponds to wave motion for frequencies
below a cut-off frequency, ωco ¼ 2πfco ¼ co/h. The phase speed, cph, can be re-written in terms of the
ratio of that cut-off frequency, ωco, to the drive frequency, ω.

cph � ω
κ
¼ coffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ω2
co

ω2

q ¼ coffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2co

f 2

q with ωco ¼ 2π f co ¼ co
h

ð10:121Þ

When κ becomes imaginary, the acoustic pressure in Eq. (10.117) decays exponentially, and the
disturbance becomes more localized at the apex (throat) of the horn as the frequency decreases below
ωco. For an infinite exponential horn in air that changes its diameter by a factor of e ¼ 2.72 over 1 m
(i.e., h ¼ 1.0 m), the cut-off frequency, fco ffi 55 Hz.

We also neglected dissipation, so the transmitted power is independent of distance. That constant
transmitted power can be calculated at the horn’s apex by using Euler’s Eq. (10.115) and Eq. (10.117)
to calculate the gas particle velocity, bu 0ð Þ, and the associated volume velocity, bU 0ð Þ ¼ A 0ð Þbu 0ð Þ.

bU 0ð Þ ¼ buAo ¼ Ao

ρmc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f co

f

� �2
s

� j
f co
f

� �24 35bp 0ð Þ if f > f co ð10:122Þ

The transmitted power, hΠit, depends on the time-averaged product of pressure and volume velocity
(see Sect. 1.5.4).

Πh it ¼
1
2
ℜe bp 0ð ÞbU�

0ð Þ
h i

¼ bp 0ð Þ
2

A 0ð Þbp 0ð Þ
ρmco

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f co

f

� �2
s

for f > f co ð10:123Þ

Using Eq. (10.122), the magnitude of the volume velocity at the apex, bU 0ð Þ



 


, can be used to simplify

Eq. (10.123) and compare the time-averaged power radiated down the horn to the power radiated by a
simple source generating a spherically spreading wave due to a volume velocity at the surface of a
spherical-pulsating source, bU að Þ, given in Eq. 12.24.

bU 0ð Þ



 


 ¼ bp 0ð ÞA 0ð Þ

ρmco

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2co

f 2
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þ f 2co
f 2

� �2
24 35½

¼ bp 0ð ÞA 0ð Þ
ρmco

ð10:124Þ

Πh it ¼
1
2
ρmco
A 0ð Þ

bU 0ð Þ



 


2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2co

f 2

s
ð10:125Þ

For a spherical source radiating in an infinite three-dimensional fluid, the time-averaged power can be
expressed in a similar form that excludes the frequency dependence in the square root and
substitutesλ2/π for the horn’s cross-sectional area at its apex, A(0).

Πh it ¼
1
2

ρmco
λ2=π
� � U að Þj j2 ð10:126Þ

This result shows that the horn can act as a transformer to increase the power radiated by a
physically compact source of volume velocity above ωco since A(0) � λ2/π. This is the reason that
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horns are used routinely to improve the radiation efficiency of pistons with diameters that are much
smaller than the wavelength of the sound they must produce. Since the propagation is reversible, it is
also the reason that the horns, like those shown in Fig. 10.22 (right), were used to concentrate sound
energy and deliver it to the ear of a hearing-impaired listener with increased amplitude (i.e., the “ear
trumpet”).

The power transmitted by a piston down a duct, Πducth it ¼ ½ð Þρmco bU 0ð Þ



 


2, with the same cross-

sectional area as the piston’s effective area, Apist, can be compared to the power transmitted down an
infinitely long exponential horn with the same initial area, Apist ¼ A(0). As shown in Fig. 10.23, that
ratio approaches unity monotonically for frequencies above cut-off (Fig. 10.20).

These results assume that a one-dimensional description of the horn used to derive the continuity
Eq. (10.114) provides a sufficiently good approximation to the acoustic behavior of the medium
exhibiting the wave-like behavior within the horn. Thus far, the conditions under which such an
approximation might be valid have not been addressed. The surfaces of constant phase for a geometry
like that depicted in Fig. 10.22 must intersect the horn’s surface at a right angle. If the horn’s cross-
sectional area changes too rapidly, then the wave fronts will not “cling” to the horn’s surface [65]. For
an infinite horn, the only physical parameters that characterize its geometry are the initial area, A(0),
and its flare constant, h. For this quasi-one-dimensional analysis to be accurate, ro ffi

ffiffiffiffiffiffiffiffiffiffi
A 0ð Þp � h,

where ro is the effective radius of the horn’s throat at x ¼ 0.

10.9.2 Salmon Horns*

As shown in Sect. 10.2, it is also possible to combine the first-order continuity and Euler equations
with the equation of state to produce a wave equation for a horn in the quasi-one-dimensional limit that
is a homogeneous second-order partial differential equation.

1
A

∂
∂x

A
∂p x, tð Þ
∂x

� �
� 1
c2o

∂2p x, tð Þ
∂t2

¼ 0 ð10:127Þ

Our investigation of the exponential horn was motivated by the fact that (1/A)(∂A/∂x) ¼ ∂ ln (A)/∂x
equaled a constant for the exponential change in cross-section that was assumed in Eq. (10.116).

Fig. 10.20 The relative
power transmission
coefficient for infinitely
long exponential (solid) and
catenoidal (dashed) horns.
Πhorn is compared to the
power transmitted through
a duct, Πduct, of the same
initial cross-sectional area,
A(0)¼ Apist, as a function of
the ratio of the source’s
frequency to the cut-off
frequency of the horn, f/fco
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A more general family of solutions was suggested by Salmon [66] who required that the entire
dependence of Eq. (10.127) on area be a positive constant.18

∂2 p
ffiffiffi
A

p� �
∂x2

� ω
co

� �2

1� β2
� �

p
ffiffiffi
A

p� �
¼ 0 where β2 ¼ 1� ωco

ω

� �2
ð10:128Þ

Solutions to this time-independent Helmholtz equation are parameterized by two constants: the flare
constant, h, and the constant, C, which controls the superposition of the two solutions to that second-
order differential equation.

A xð Þ ¼ A 0ð Þ cosh
x
h

� �
þ C sinh

x
h

� �h i2
and p1 x, tð Þ / ℜe

bp 0ð Þffiffiffiffiffiffiffiffiffi
A xð Þp e j ω t�κxð Þ

" # ð10:129Þ

As for any linear solution, the amplitude, bp 0ð Þ, is arbitrary until the initial conditions at x ¼ 0 are
specified. For C ¼ 1, the exponential horn is recovered. With C ¼ 0, the horn’s shape is catenoidal. In
the limit that h !1 and C ¼ (h/xo), the horn’s shape is conical with an apex angle, ϕ ¼ tan�1(ro/xo),
for the apex of the cone located at x ¼ 0 < xo and an initial area, A 0ð Þ ¼ πr2o, assuming the cone has
circular cross-sections. For 0 < C <

ffiffiffi
2

p
, the relative transmission coefficient, Πhorn/Πduct, plotted in

Fig. 10.23, has a maximum at ( f/fco)max. Under that condition, with ( f/fco) > ( f/fco)max, the relative
power transmission coefficient asymptotically approaches Πhorn/Πduct ¼ 1.
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ffiffiffi
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f
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1� C2

1� 2C2

r
ð10:130Þ

For C ¼ 0.5, (Πhorn/Πduct)max¼ 1.15 at ( f/fco)max ¼ 1.22, providing fairly uniform transmission above
the cut-off frequency.

10.9.3 Horns of Finite Length*

Our analyses of horns of infinite length (i.e., no reflected wave) have introduced several useful
concepts, particularly the existence of the low-frequency cut-off, ωco, but real horns are never infinitely
long. Finite-length horns fall into two general categories: (i) The horns that terminate musical
instruments depend on reflection from the “bell” to define the standing wave that determines the
instrument’s pitch. (ii) The horns used to couple sources to the surrounding space try to avoid
resonances that reduce the uniformity of radiated sound as a function of frequency above cut-off.19

Horns of finite length will exhibit resonances at frequencies above cut-off, at least until the radiation
impedance at the bell is sufficient to couple most of the energy out of the horn, thus nearly eliminating

18 If β 2 is negative, then there is a family of sinusoidal horn shapes (e.g., a globe terminated in a cusp) that describe the
shape of the bell of the flute commonly associated with Indian snake charmers or the English horn, first used in the by
Rossini, in 1829, in the opera, William Tell. [See B. N. Nagarkar and R. D. Finch, “Sinusoidal horns,” J. Acoust. Soc.
Am. 50(1) 23–31 (1971).]
19 A nonuniform power transmission coefficient does not necessarily reduce the value of guided-wave enhancement of
the coupling to an electrodynamic transducer, since human perception of low-frequency musical content is not particu-
larly sensitive to such a nonuniform response. The best example of such a psycho-acoustic tolerance may be the success
of the Bose Wave™ radio that employs a long serpentine duct that is driven by the rear of the forward-radiating speakers
as shown in US Pat. No. 6,278,789 (Aug. 21, 2001).
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the back-reflected wave from the bell. Although an exact calculation will be postponed until Sect.
12.8.3, a reasonable rule-of-thumb is that the resonances will be suppressed once the circumference of
the bell exceeds the wavelength of the sound.

At reasonably high frequencies, horn-coupled loudspeakers can both be efficient and provide fairly
uniform radiation over a significant range of frequencies. Above 1.0 kHz, λ < 35 cm, so the bell of a
horn that is only 10 cm in diameter will provide acceptable performance (see Problem 17). The
engineering design of such horn-coupled electrodynamic loudspeakers (commonly called compression
drivers) is beyond the scope of this treatment and can involve considerations of directionality,
the compliance of the space between the driver’s diaphragm and the start of the horn, as well as the
nonlinear distortion [67, 68] that can be produced due to the very high acoustic pressures near
the throat. Several textbooks with a greater focus on audio engineering provide detailed guidance
[69, 70].

Resonances in horns are particularly pronounced at low frequencies. The lowest note on a double
bass or an electric bass guitar is usually E1 ¼ 41.2 Hz, based on A4 ¼ 440 Hz. The corner horn shown
in Fig. 10.21 has a catenoidal shape with a flare constant, h ¼ 1.37 m, selected to make fco ¼ co/
2πh ¼ 40 Hz. It is driven by an Axon Model 6S3 direct radiator loudspeaker. The front of that speaker
radiates midrange frequencies, and the rear of the speaker drives the horn.

Also shown in Fig. 10.21 (right) is a tweeter for high frequencies with a passive cross-over network
attached to the triangular top of the horn. The resonance frequencies and corresponding mode shapes
were calculated using a DELTAEC model, shown in Fig. 10.22, that represent the catenoidal horn as
eight CONE segments driven at constant voltage by the electrodynamic speaker with parameters listed
in the VSPEAKER segment (#1). The bell of the horn is terminated with an OPNBRANCH segment
(#11) that simulates radiation loading.

Talk Like an Acoustician

Wave equation Equal-loudness contours
Dispersion relation Fletcher-Munson curves
Bulk modulus Sound level meter
Adiabatic compressibility Crest factor
Specific acoustic impedance Acoustic transfer impedance
Characteristic impedance Principle of reciprocity
Acoustical impedance Reciprocity calibration
Mechanical impedance Level repulsion
Rayl Wakeland number
Acoustic intensity Acoustic admittance
Reference intensity Amplitude reflection coefficient
Reference sound pressure Amplitude transmission coefficient
Coherent sound sources Power transmission coefficient
Linearized Euler equation Band-stop filter
Linearized Continuity equation Low-pass filter
Homogeneous High-pass filter
Isotropic Exponential horn
Conservation equation Catenoidal horn

Flare constant
Cut-off frequency
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Exercises

1. Traveling wave acoustic field variables. Express the space and time dependence, as well as the

amplitudes, for the following acoustic field variables if p1 x, tð Þ ¼ ℜe bpe j ω t�kxð Þ� 
.

(a) Acoustic density, ρ1(x, t)

Fig. 10.21 (Right) Corner horn (this horn design, suggested by I. Rudnick, is particularly simple because it involves
cutting a single sheet of plywood with a hand-held circular saw that has its blade set at 45�, creating a smooth cut that will
produce a leak-tight seal against the walls of a room. Even though the plywood is fairly thin (3/800 ffi 9.5 mm), it produces
a rigid boundary since it is curved initially along one axis making it very stiff against bending along an orthogonal
direction. The plywood is held against the walls with a single turnbuckle anchored in the corner. The place where the
turnbuckle should be attached to the plywood is found by applying force to one location that pushes the plywood
smoothly against the wall. A horizontal “stringer” is then screwed and glued to the plywood to accept the hook. The
stringer’s position is visible in Fig. 10.21 due to the six flat-head screws that can be seen forming a line about one-sixth of
the way above the bell.) created by a single sheet of plywood that is cut to produce a catenoidal change in cross-sectional
area from 173 cm2 at the top to 0.152 m2 at the opening over a length of 80 ffi 2.4 m. (Left) Plots of the acoustic pressure
(solid black line) that is in-phase with the volume velocity (dashed blue line) within the horn created when the speaker, at
the throat, is driven with an electrical input of 10 Vpk ¼ 7.07 Vac. At x¼ 0, the volume velocity is equal to that produced
by the rear of the loudspeaker. From top to bottom: f1 ¼ 77 Hz, f2 ¼ 139 Hz, f3 ¼ 204 Hz, and f8 ¼ 618 Hz
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Fig. 10.22 Screenshot of a DELTAEC model for the corner horn shown in Fig. 10.21 (right) that calculated the resonance
frequencies and produced the mode shapes in Fig. 10.21 (left). The resonance condition was imposed by the RPN target
(Seg. #2) that seeks a condition where the volume velocity and pressure are in-phase at the horn’s throat
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(b) Acoustic particle velocity, v1(x, t)
(c) Kinetic energy density, (KE)
(d) Potential energy density, (PE)
(e) Time-averaged intensity, hIit

2. Standing wave acoustic field variables. Express the space and time dependence, as well as the
amplitudes, for the following acoustic field variables ifp1 x, tð Þ ¼ ℜe bp cos kxð Þejω t½ �.
(a) Acoustic density, ρ1(x, t)
(b) Acoustic particle velocity, v1(x, t)
(c) Kinetic energy density, (KE)
(d) Potential energy density, (PE)
(e) Time-averaged intensity,hIit

3. Concert A4. A sound wave in dry air at Tm ¼ 20 �C, with frequency, f ¼ 440 Hz, has a sound
pressure level of 76.0 dB, re: 20 μParms. Determine the following characteristics of that tone.
(a) Time-averaged intensity, hIit
(b) Intensity level, re: 1.0 x 10�12 W/m2

(c) Peak particle speed, v1
(d) Peak-to-peak particle displacement, 2x1
(e) Peak acoustic temperature change, T1

4. Speed of shallow water gravity waves (surf). The Euler and continuity equations for an
incompressible fluid (ρ ¼ constant), with a free surface in a gravitational field, having a gravita-
tional acceleration, g, are provided below. (For this problem, let g ¼ 9.8 m/s2.) The equilibrium

depth of the fluid is ho. Consider small-amplitude traveling surface waves bh


 


� ho
� �

propagating

in the +x direction:h x, tð Þ ¼ ho þ bh


 


 sin ω t � kxð Þ.

∂h1 x, tð Þ
∂t

þ ho
∂v1 x, tð Þ

∂x
¼ 0 ð10:131Þ

∂v1 x, tð Þ
∂t

¼ � 1
ρm

∂
∂x

ρmgh1 x, tð Þ½ � ¼ �g
∂h1 x, tð Þ

∂x
ð10:132Þ

(a) Which equation is which? One of the above equations is the linearized continuity equation for
this system, and the other is the linearized Euler equation. Identify which equation represents
continuity and which is Euler.

(b) Propagation speed. Use Eqs. (10.131) and (10.132) to derive an expression for the propaga-
tion speed (not the horizontal particle velocity v1) of a small-amplitude surface wave. Does
this agree with the results based on similitude that were calculated in Chap. 1, Problem 8d?

(c) Small-amplitude approximation. Under what conditions is the vertical velocity of the surface,
dh1/dt, small compared to the horizontal particle speed, v1? What is required so that (dh1/dt)/
v1 � 1?

(d) The Boxing Day tsunami. On 26 December 2004, at 00:58:53 UTC, there was a magnitude
9.0 earthquake off of the west coast of Northern Sumatra (3.29 N 95.94E) which launched a
tsunami (tidal wave). Seven hours later, the wave reached the shores of Somalia (2.03 N
45.35E), a distance of approximately 5600 km across the Indian Ocean from the deadly
quake’s epicenter. Assuming that the tsunami was a “shallow water gravity wave” (which it
was!), determine the average depth of the Indian Ocean along the nearly equatorial path from
the epicenter to the coast of Somalia.
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5. Addition of three incoherent sound sources. At a particular position in a shop, three machines
produce individual sound pressure levels of 90, 93, and 95 dBSPL, all referenced to 20 μParms.
Determine the total sound pressure level if all of the machines are running simultaneously. Assume
each noise source is statistically independent of all of the others so that their powers (not pressures)
are combined. Report your result in dB re: 20 μParms.

6. dB addition.A noise is generated by 80 pure tones of different frequencies but identical power. At
locations equidistant from all sources, each individual tone has a sound pressure level of 60 dB re:
20 μParms. Determine the sound pressure level at that location if all 80 sources are radiating
simultaneously.

7. Underwater sound intensity reference level. The sound pressure reference level currently used
for sound in water is Rref (H2O) ¼ 1.0 μParms. What would be the corresponding sound intensity
reference level in water, Iref (H2O)?

8. Cavitation threshold. The motion of the face of an underwater (SONAR) transducer toward the
water causes a local compression, and when it moves away a half-cycle later, it creates local
suction. If the suction pressure creates a tension in the fluid that exceeds the cavitation threshold, it
“tears” a hole in the medium, producing bubbles.
(a) Hydrostatic pressure. If the transducer is located 50 m below the surface, what is the static

water pressure, pm, remembering that the pressure on the surface is one atmosphere,
po ¼ 101.3 kPa.

(b) Cavitation level. What is the intensity level, re: 1 μParms, of a pressure wave that would create
a peak negative pressure, �bpj j ¼ pm, and cause an instantaneous rupture in the water?

9. Climate change. Table 10.1 shows standard dry air having a CO2 mole fraction of 314 ppm. As of
June 2020, the mole fraction was found to have increased to 415 ppm [71]. How much does this
change the sound speed in dry air?
(a) Approximate sound speed change. Get an approximate result by ignoring the change in γ.
(b) Polytropic coefficient. Use γair ¼ 1.4 and γCO2 ¼ 1.3. Will the change in sound speed due to

the change in γmix have the same sign as that due to the change in Mmix?
(c) Sound speed change. Use Eq. (10.25) to calculate the change in γ, and use that result to obtain

a more accurate result for the change in sound speed.
10. Schlagwetter-pfeife. The presence of methane in mines presents a significant hazard due to the

possibility of underground explosions. In the late-1800s, one of the world’s most famous industrial
chemists, Fritz Haber,20 invented the “methane whistle” to determine the presence of hydrogen or
methane in air extracted from underground mines [72]. By 1888, these methane whistles also
began to appear in the United Kingdom [73]. Air was pumped from the mine out through one
whistle, and fresh air was pumped through the other. Assume the whistles were identical and in
good thermal contact, so both surface air and the sub-surface air passing through the whistles were
at the same temperature. Determine the concentration (mole fraction) of methane (CH4) in the
mine air if the air whistle had a frequency of 440 Hz and the pair of whistles produced 10 beats per
second at 20 �C.

11. Sonic hydrogen detector design. Hydrogen gas is very flammable in air with the flammability
ranging between mole fractions of 4% and 74%. With the possible future advent of hydrogen-
powered vehicles, the National Transportation Safety Board has asked you to design an acoustic
resonator that will use the change in frequency caused by a change in sound speed to alert
occupants of a home if the concentration of hydrogen gas in their garage exceeds a mole fraction

20 Fritz Haber was also one of the world’s most infamous chemists, having developed the gas that was used to murder
prisoners in the Nazi death camps.
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of 1.5%. For the purposes of this problem, you may take the mean molecular mass of air to be
Mair ¼ 29.0 gm/mole and the mean molecular mass of hydrogen to be Mhydrogen ¼ 2.0 gm/mole.
Both gases can be treated as consisting primarily of diatomic molecules, and the temperature in the
garage can be taken as 10 �C.
(a) Frequency shift. What is the relative change in frequency, δf/fo, in percent, that would

correspond to the addition of 1.5% of hydrogen to previously pure dry air, assuming that
the resonator’s frequency was fo before the hydrogen was injected into the resonator?

(b) Temperature effects. How much must the temperature of the garage be increased to raise the
resonator’s frequency by the same amount as you calculated in part (a) if there were no
hydrogen gas present in the air?

12. Bulk modulus. Eq. (10.20) expresses the adiabatic bulk modulus, Bs � � V(∂p/∂V)s, in terms of
the square of the adiabatic sound speed, c2 ¼ (∂p/∂ρ)s. Show that Eq. (10.133) is correct.

1
ρ

∂p
∂ 1=ρ
� � !

s

¼ �ρ
∂p
∂ρ

� �
s

ð10:133Þ

13. Slow waves in a water-filled pipe. Sound speed is determined by a medium’s compressibility and
its inertia. In this problem, water will provide the inertia, but if the water is contained within a pipe,
the distensibility of the pipe will generally produce an increased compressibility since the pipe’s
walls will stretch.
(a) Bulk modulus of water. If the density of water is ρ Water ¼ 1000 kg/m3 and the sound speed in

the water is cWater ¼ 1500 m/s, what is the value of the bulk modulus of water?
(b) Effective bulk modulus of a PVC pipe. Consider a PVC pipe with a mean radius, a ¼ 8.0 cm,

and a wall thickness, t ¼ 7.0 mm. Simple elasticity theory relates the change in the pipe
radius, Δr, to the increase of pressure, Δp, within the pipe.

Δr ¼ a2

tE
Δp ð10:134Þ

For PVC, the Young’s modulus, EPVC ¼ 3.40 x 109 Pa. Consider a short length of this pipe,
and calculate the effective bulk modulus by calculating the change in volume,ΔV, of the pipe
due to a change in the internal pressure, Δp, within the pipe.

(c) Wave propagation speed in a water-filled PVC pipe. If we assume that the water is
incompressible (i.e., the bulk modulus of the water is infinite) in comparison to the effective
bulk modulus of the PVC pipe, what is the speed of sound propagation for a pressure wave
traveling in the water contained within the PVC pipe?

(d) Effect of the water’s compressibility. In part (a) of this problem, you calculated the bulk
modulus of water, and your result should have been substantially less than infinity. Will the
water’s compressibility increase or decrease the sound propagation speed you calculated in
part (c)?

(e) Effect of the water’s compressibility. Calculate the sound propagation speed due to the
water’s density and the combined bulk modulus of both the pipe and the water. [Hint:
Think of the two moduli as “springs” and ask yourself if those springs add in series or
parallel.]

14. Thermophone [74]. An array of three sheets of carbon nanotubes are stretched between two
electrically conducting wires as shown in Fig. 10.23 [75]. For the purpose of this problem, we can
assume that the nanotubes act as an electrical resistance and have neither heat capacity nor volume.
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To test this device, it will be placed in a gas-tight cylindrical cavity with a volume of 2.5
liters¼ 2.5� 10�3 m3. Assume the mean pressure in the cavity pm¼ 101 kPa, the mean temperature
is Tm ¼ 300 K, so that cair ¼ 347 m/s and γair ¼ 1.403. Under those conditions, ρair ¼ 1.173 kg/m3,
the specific heat of the air is cp ¼ 1005 J/kg-K, the viscosity of air is μ ¼ 1.85 � 10�5 Pa-sec, the
air’s thermal expansion coefficient at constant pressure is βp ¼ (Tm)–

1 ¼ 3.33� 10�3 K�1, and the
air’s thermal conductivity is κ ¼ 2.62 � 10�2 W/m-K.
(a) Thermal penetration depth. An AC electrical current is passed through the carbon nanotube

sheets that cause them to be heated at a frequency of 120 Hz. What is the thermal penetration
depth, δκ, in air at that frequency?

(b) Gas temperature change near the sheets. The total surface area of the three sheets, including
both the back and front surfaces of the sheets, Atot ¼ 15 cm2. If the instantaneous total power,
Π (t), delivered to the sheets can be expressed as Π(t) ¼ 2.0 W[1 � cos (240π t)], and if all
of that heat is deposited in a volume equal to the product of the total surface area of the sheets,
Atot, and the thermal penetration depth δκ, what is the amplitude, T1, of the oscillating change
in the temperature of the gas within that volume that is varying harmonically as
T(t) ¼ Tm þ T1[1 � cos (240π t)]?

(c) Thermally induced volume change. During one-quarter of a cycle, the temperature of the gas
changes by T1, as calculated in part (b) of this problem. The coefficient of thermal expansion
of an ideal gas at constant pressure, βp, is provided in Eq. (10.135).

β ¼ 1
Tm

¼ 1
V

∂V
∂T

� �
p

ð10:135Þ

What is the change in the volume of the gas, δV, caused by its heating during one-quarter cycle?
(d) Thermally induced pressure change. The wavelength of sound at 120 Hz is approximately λ¼ cair

/f≌ 2.9 m, which is much larger than any dimension of the sealed cylindrical enclosure d≌ V1/3 ≌
0.14 m. Using the change in volume, δV, calculated in part (c), and the adiabatic gas law or the
acoustical impedance of a small cavity provided in Eq. (8.25), determine the corresponding change
in pressure, δp, caused by the periodic heating within the 2.5 liter, air-filled cylinder.

15. Reciprocity calibration coupler transfer impedance. Shown in Fig. 10.24 is a schematic
representation of an apparatus, taken from [45], that is used to calibrate a condenser microphone
by the reciprocity method. That method requires that the acoustic transfer impedance of the cavity
(shown as the “Closed Air Volume”) is known.

Fig. 10.23 Carbon
nanotube sheets that act as
an electrical resistance
heating element
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Assuming that the two microphones can be treated as rigid caps and that all dimensions of the
“Closed Air Volume” are much smaller than the acoustic wavelength, write an expression for the

acoustic transfer impedance Ztr ¼ bpR=bUT , where bpR is the complex pressure amplitude at the

“Receiver Microphone,” bUT is the volume velocity produced by the “Transmitter Microphone,”
and the volume of the “Closed Air Volume” is V.

16. Reciprocity calibration in a plane wave resonator. The apparatus shown in Fig. 10.25 is used to
produce a reciprocity calibration of the two reversible electroacoustic transducers shown in

Fig. 10.25 A standing wave resonator used for reciprocity calibration is capped at each end with the small, reversible,
electrodynamic transducers shown in Fig. 10.26. Two ½ inch (1.27 cm) compression fittings are located very close to the
ends of the resonator. An Extech™ Model 407736, Type-2 sound level meter is placed in one fitting, and the other is
plugged with a solid rod. The small tube at the center allows gases other than air to be used as the calibration medium. At
the top of the photo is a custom switch box that allows the swept-sine signal produced by a dynamic signal analyzer to be
routed to either reversible transducer #1 or #2 after it has been passed through a precision 1.000 ohm current-sensing
resistor

Coupler

Generator

uR

iT
uC

Cref

Closed Air
Volume

Receiver
Microphone

Transmitter
Microphone

Fig. 10.24 A small cavity
is created in the space
between two reversible
condenser microphones

508 10 One-Dimensional Propagation

www.dbooks.org

https://www.dbooks.org/


Fig. 10.29. The resonator tube has an inside diameter of 34.37 mm, and its length is 70.12 cm.
Assume the calibration procedure took place in dry air at 20 �C and at a mean pressure,
pm ¼ 98 kPa.
The data presented in Table 10.4 were produced at the resonance frequency of the second plane
wave resonance, f2, by first driving Transducer #1 with current, i1, and measuring Transducer #2’s
open voltage, V2, along with the C-weighted output of the sound level meter, Vm,1, while also
measuring Q2,1. The second data set in that table was obtained when Transducer #2 was driven.
Using the dimensions of the resonator, the thermophysical properties of the air and the data in
Table 10.5 make the following calculations:
(a) Acoustic transfer impedance. Calculate the value of the acoustic transfer impedance for the

second standing wave mode of the resonator.
(b) Transducer #1 open-circuit microphone sensitivity. Using the appropriate measurements

from Table 10.5, calculate the open-circuit sensitivity, M1, of Transducer #1 and the
sensitivity of the sound level meter by comparison to M1.

(c) Transducer #2 open-circuit microphone sensitivity. Using the appropriate measurements
from Table 10.5, calculate the open-circuit sensitivity, M2, of Transducer #2 and the
sensitivity of the sound level meter by comparison to M2. What is the relative difference in
the sensitivity of the sound level meter based on the two independent reciprocity calibrations?

17. Tweeter horn. A commercial horn with a 100 (2.5 cm) diameter throat is 1000 (25 cm) long and
opens to a bell with a diameter of 400 (10 cm).

Table 10.5 Summary of measured results for the reciprocity calibration of the two transducers shown in Fig. 10.26
produced using the resonator shown in Fig. 10.25

Driving transducer #1
f2 [HZ] Q2,1 i1 [mAac] V2[μVac] Level [dBC] Vm,1 [mVac]
485.83 71.2 3.62 292.4 111.8 81.48
Driving transducer #2
f2 [Hz] Q2,2 i2 [mAac] V1[μVac] Level [dBC] Vm,2 [mVac]
485.83 70.9 9.647 781.3 102.3 27.02

Fig. 10.26 The two small
reversible electrodynamic
transducers that are used for
the reciprocity calibration.
The US penny is shown as a
size comparison. Each
reversible transducer is
mounted on a plate that
matches the flanges at the
ends of the waveguide. The
free-cone resonance
frequency of the larger
transducer is about 2.8 kHz,
and that of the smaller one
is about 1.7 kHz. Each
transducer is mounted on a
flange that attaches to the
end of the resonator shown
in Fig. 10.25
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(a) Flare constant. If the horn has a cross-sectional area that grows exponentially, determine the
flare constant, h.

(b) Cut-off frequency. If the horn were infinitely long, what would be its cut-off frequency?
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In Chap. 10, we transitioned from a lumped-element perspective to a formalism which treated fluids as
continuous media that include the effects of both compressibility and inertia throughout. We described
disturbances from equilibrium using a wave equation and focused attention on planewaves that could
be described as propagating along one spatial dimension. In this chapter, we will examine the behavior
of such one-dimensional waves propagating through media that are not homogeneous. We start with an
examination of the behavior of planewaves impinging on a planar interface between two fluid media
with different properties and then extend that analysis to multiple interfaces and to waves that impinge
on the interface from an angle that is not perpendicular to that surface. This exploration concludes with
consideration of wave propagation through a medium whose properties change slowly and continu-
ously through space.

What does “slowly” mean in the previous sentence? To answer that question, we will break down
the general problem of propagation through an inhomogeneous medium into two limiting cases. As
before, such limiting cases suggest appropriate (usually simple) analytical approaches that will develop
useful intuition for understanding cases that may be intermediate between the simpler limits. In this
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chapter, the interesting limits depend on the scale of the medium’s inhomogeneity relative to the
wavelength of the sound that impinges on it (from afar, since we consider only planewaves). If a wave
encounters a deviate region with a size that is on the order of its own wavelength or smaller, and that
region has a different density, a different compressibility, or both, then we treat the inhomogeneous
region as a “scatterer.” Those cases will be examined in Chap. 12 when the problem of radiation in
three dimensions is analyzed and the scattering body will be driven by the impinging sound wave
causing the ensonified region to behave as a radiating “source.” That “scattered” sound field will be
superimposed on the incident sound field.

In this chapter, we will consider the opposite limit, where the size of the boundary that separates
regions with different acoustical properties is much larger than the wavelength of the sound. In fact,
many cases to be examined here will assume that the extent of the boundary is infinite. In those cases,
the problem is treated as one where the wave incident on such an interface will be both reflected back
into the medium from which it originated and be transmitted into the second medium on the other side
of the interface.

For the case where the interface is not discontinuous, what we will mean by requiring that the
medium’s properties (e.g., sound speed and density) “are varying slowly” will again be related to the
rate at which the property changes in space relative to the wavelength of the sound. For example, if we
specify the change in sound speed with position,dc/dz� g, then g will have the units m/s per m, which
is equivalent to a frequency. The wave also has a characteristic frequency, f¼ c/λ, that is the ratio of the
sound speed to the wavelength. If g � f, then any significant change in sound speed will occur over a
very large number of wavelengths.

11.1 Normal Incidence

All of us are familiar with echoes, whether produced by a handclap reflected from a large building;
a loud “hello” shouted from a precipice and reflected from a bluff, as diagrammed in Fig. 11.1;
or a “flutter echo” produced by some impulsive sound source reverberating between long parallel
walls. In those cases, a sound wave in air impinges on a rigid solid surface. The air’s particle velocity
that accompanies the pressure wave (via the Euler equation) cannot penetrate the solid. To satisfy this
rigid boundary condition, we can imagine a sound wave of equal amplitude, but propagating in the
opposite direction, coming from within the solid toward the interface, just as was done when
examining the reflection of a pulse propagating along a string in Sect. 3.2. As justified in Sect.
12.4.1, the superposition of the two waves cancels the velocity at the interface, satisfying the condition
that the interface is impenetrable to the gas, while doubling the acoustic pressure amplitude on that
surface.

To compare how a real wave reflects in the “rigid boundary” case (and to determine how “rigidly”
the boundary behaves), let’s say the magnitude of the incident planewave, bpij j , approaching the
boundary is 94 dBSPL ) bpij j ¼ ffiffiffi

2
p

Pa ¼ 1:0 Parms . Again, we focus on a single-frequency wave
and indicate the incident wave’s amplitude and phase by the complex phasor, bpi. The time-averaged
intensity of a 94 dBSPL planewave in air is Iairh it ¼ bpij j2= 2ρcð Þair ¼ 10 94=10ð Þ � 10�12W=m2 ffi
2:5 mW=m2. (If this is not instantaneously obvious, you need to review Sect. 10.5.1.)

Let’s also say the wave was reflected from a concrete wall. Since the pressure amplitude at the wall
is double that of the sound wave far from the wall, and that the pressure is continuous across the
interface, we can calculate the intensity of the sound that entered the wall. The density of concrete is
about 2600 kg/m3 and the speed of compressional waves in concrete is about 3100 m/s, so
(ρc)concrete ¼ 8.06 MPa-s/m. Since the pressure at the wall is twice that of the wave in air, bptj j ¼
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2 bpij j ¼ 2
ffiffiffi
2

p
Pa, the time-averaged intensity of the sound penetrating the concrete is Iconcreteh it ¼bptj j2= 2ρcð Þconcrete ¼ 0:5μW=m2, less than 0.02% of the intensity of the sound in air.

The equations developed in this chapter can be used to show that the amplitude of a wave in air that
is reflected from a concrete wall is nearly the same as the incident wave, but not quite. Our assumption
that the echo had the same amplitude as the incident sound wave was just as solid as the concrete.

We can also compare the particle velocity of the sound in air with that of the compressional wave
within the concrete. In dry air, a 94 dBSPL sound wave would have a particle velocity amplitude
of bvij j ¼ bpij j= ρcð Þair ¼ 3:3 mm=s. In the concrete, the pressure of the transmitted wave is twice that in
air (far from the wall), but bvtj j ¼ 2 bpij j= ρcð Þconcrete ¼ 0:35 μm=s. Again, we see that our assumption of
a rigid and immobile boundary was good to about one part in ten thousand (0.01%). We can check our
intensity results using Eq. (10.36), since we also know Ih it ¼ bptj j bvtj j=2, since bpt and bvt are in-phase for
our assumed traveling wave. In dry air at one atmosphere, pm ¼ 101,325 Pa, and letting Tm ¼ 7 �C,
(ρc)air ¼ 423 Pa-s/m. This gives hIairit ¼ 2.4 mW/m2 and in the concrete hIconcreteit ¼ 0.5 μW/m2, in
good agreement with the earlier calculation, as must be the case.

Using Eq. (9.38), the power dissipated per unit area due to the thermal relaxation losses at the
interface can be calculated and compared to the incident intensity, since the concrete wall will behave
as an isothermal boundary.1 Since this loss mechanism is frequency dependent, let’s do the calculation
for f ¼ 1 kHz. From the DELTAEC Thermophysical Properties of air at 300 K and 1 bar ¼ 105 Pa,

Fig. 11.1 The sound produced by this person is nearly a planewave (wave fronts shown in blue), characterized by the

wavenumber, k
!
i, when it is reflected by a large flat rigid surface. The duration of the sound pulse is sufficiently short that

the reflected wave, characterized by k
!
r, and the incident wave only interact near the surface. To satisfy the condition that

no fluid can enter or leave the solid interface, we imagine another planewave of equal amplitude traveling back (with
wave fronts shown in red) toward the source. Where the incident and reflected wave superimpose at the rigid surface, the
pressure is doubled, but the slope of the pressure, (dp/dx)x ¼ 0, evaluated at the interface, is zero. By Euler’s equation, the
total acoustic particle velocity normal to the surface vanishes, as required

1 To determine if the concrete wall forces the air that it contacts to behave isothermally, we can calculate the heat capacity
per unit area that is contained within a layer of the material that is one thermal penetration depth thick, ρ cPδκ. Using the
thermophysical properties available in DELTAEC, (ρ cPδκ)air ¼ 0.10 J/m2-�C. Approximate values for concrete are
ρ ¼ 2600 kg/m3, cP ¼ 880 J/kg-�C, and κ ¼ 0.29 W/m-�C, so at 1 kHz, δκ ¼ 6.35 μm and (ρ cPδκ)Concrete ¼ 14.5 J/
m2-oC� (ρ cPδκ)air ¼ 0.10 J/m2-�C. For a more detailed discussion, see Eq. (59) for εs in G. W. Swift, “Thermoacoustic
engines,” J. Acoust. Soc. Am. 84(4), 1145–1180 (1988).
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δκ ¼ 84.6 μm, corresponding to a thermal absorption of 0.76 μW/m2. This is a miniscule loss (0.03%),
although thermal relaxation at the interface is responsible for a slightly larger decrease in the reflected
amplitude, at this frequency, than the intensity of the sound that enters the concrete. Why do we not
need to calculate the viscous boundary layer dissipation?

Now that we have the behavior of a common reflection situation “under our belts,” we can start our
formal investigation of reflection and transmission of planewaves impinging normally on an interface
between any two dissimilar media. For these calculations, keep in mind a very simple case of two
immiscible liquids in a uniform gravitational field. Let’s assume that we have a sea of oil floating on a
sea of water, as shown in Fig. 11.2, with the “up” direction beingþy and y¼ 0 at the interface between
the two liquids. The mass density of the oil, ρoil, is less than the density of water. To simplify the
specification of variables on either side of the interface, we will designate parameters of the wave and
of the medium above the interface (y > 0) with the subscript, i (incident), and those below the interface
(y < 0) with the subscript, t (transmitted).

Let’s imagine that a single-frequency plane sound wave originates far above the interface and is
propagating in the –y direction. That wave excites the interface with a pressure amplitude, bpij j. We can
express the pressure amplitude as a function of y and t above the interface

pi y, tð Þ ¼ ℜe bpie j ω tþkiyð Þ
h i

for y > 0: ð11:1Þ

That incident plane pressure wave also has an associated fluid particle velocity, bvi, that is related to the
pressure by the Euler equation.

vi y, tð Þ ¼ ℜe
bpi
ρici

e j ω tþkiyð Þ
� �

¼ ℜe
bpi
zi
e j ω tþkiyð Þ

� �
for y > 0 ð11:2Þ

In the right-hand term of Eq. (11.2), zi is the specific acoustic impedance of the oil. Using our generic
expression, Eq. (10.21), for the sound speed, c, in a fluid with an adiabatic bulk modulus, Bs, c �ffiffiffiffiffiffiffiffiffiffi

Bs=ρ
p

, we see that the specific acoustic impedance is a combination of the fluid’s density and
compressibility,z ¼ ρc ¼ ffiffiffiffiffiffiffi

ρBs
p

.

Fig. 11.2 Coordinate system for two fluids that can be thought of as oil floating on water. The dashed line is normal to
the plane interface between the two fluids at y ¼ 0. In this diagram, it is assumed that the sound originates from the oil
which has a specific acoustic impedance of zi ¼ ρici. A wave will be transmitted across the interface into a second
medium (water) with a specific acoustic impedance zt ¼ ρtct
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As for the echo case, there will be a wave that is reflected at the interface that will travel in a
direction opposite to that of the incident wave.

pr y, tð Þ ¼ ℜe bpre j ω t�kiyð Þ
h i

for y > 0 ð11:3Þ

The presence of the incident wave will excite motion in that interface which will also generate a
wave propagating into the water as well as the wave that is reflected back into the oil. To demonstrate
the necessity for the simultaneous existence of the incident, reflected, and transmitted waves, we need
to consider the properties of the interface between the two media.

Since we will treat these media and the waves they contain as a linear system, we can guarantee that
the reflected and transmittedwaves both have the same frequency as the incidentwave:ω¼ωi¼ωr¼ωt.
As we have seen for the simple harmonic oscillator, at steady state, the forced linear system can only
respond at the forcing frequency. It is the incident wave that is forcing the motion of the interface.
Since the frequencies of all of the waves must be the same, and the sound speeds in the two media
might differ, the wavelength of the sound in the water will be different than that in the oil:
λt ¼ ct/f ¼ 2π/kt.

pt y, tð Þ ¼ ℜe bpte j ω tþktyð Þ
h i

for y < 0 ð11:4Þ

Our second requirement at the interface is that the two fluids always remain in contact. There are
cases where the amplitude of the incident wave is sufficiently large to produce a vapor cavity at the
interface, but we will limit our attention here to wave amplitudes that are insufficient to create such
cavitation effects [1]. In most practical cases, the boundaries do not separate, so the normal velocities
of the two fluids must match at the interface for all times.

vi 0, tð Þ þ vr 0, tð Þ ¼ vt 0, tð Þ ð11:5Þ
Our final requirement is dictated by the fact that the interface, y ¼ 0, is only a mathematical

construct—it has no mass. Since that interface is massless, Newton’s Second Law of Motion would
guarantee that any pressure difference across the interface would produce a non-zero force that would
create infinite fluid accelerations. To guarantee that does not happen, we require that the pressure be
continuous across that interface for all time.

pi 0, tð Þ þ pr 0, tð Þ ¼ pt 0, tð Þ ð11:6Þ
Those three conditions are sufficient to completely determine the behavior of the waves at the

interface when we recognize that vt(y, t) is related to pt(y, t) by the specific acoustic impedance of the
water, zt. Taking the ratio of Eq. (11.6) to Eq. (11.5), the amplitude ratio of the reflected and transmitted
waves to the amplitude of the incident wave can be calculated.

pi 0, tð Þ þ pr 0, tð Þ
vi 0, tð Þ þ vr 0, tð Þ ¼

pt 0, tð Þ
vt 0, tð Þ ¼ zt ð11:7Þ

Recognizing that the incident and reflected waves are both in the oil, but are traveling in opposite
directions, the magnitude of the specific acoustic impedance, |zi|, is the same for both waves, but their
signs are opposite. This leads to the further simplification of Eq. (11.7).

zi
pi 0, tð Þ þ pr 0, tð Þ
pi 0, tð Þ � pr 0, tð Þ ¼ �zt ð11:8Þ
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Again, because we are limiting ourselves to linear acoustics, it is only the ratios of the amplitudes
that have any significance. If we double the amplitude of the incident wave, the amplitudes of the
reflected and transmitted waves must also double. It is therefore reasonable to define a pressure
reflection coefficient, R � bpr=bpi, as we did in Eq. (10.105). With that definition and a little algebraic
manipulation, Eq. (11.8) can be re-written in a compact form to represent the magnitude of the pressure
reflection coefficient, R.

R � bprbpi ¼ zt � zi
zt þ zi

¼ z=zi

� �� 1
zt=zi

� �þ 1
ð11:9Þ

This result makes sense and is reminiscent of Eq. (10.105). If the two media have the same specific
acoustic impedances, there is no reflection. Plugging in the specific acoustic impedances for air and
concrete produces the same result as we obtained for the “echo” example that began this treatment and
produced nearly perfect reflection: R ¼ 0.9999.

In the case of oil over water, as shown in Fig. 11.2, then zi < zt so R is positive and the phase of the
reflected wave will be the same as the incident wave, although their amplitudes will differ, similar to
the in-phase pulse reflection in Fig. 3.4. If the situation were reversed so that the incident wave
originated in the water, then zi > zt so R is negative and the phase of the reflected wave will be inverted,
as shown for the pulses in Fig. 3.3.

Defining the pressure transmission coefficient in a similar way, T � bpt=bpi, the pressure continuity
boundary condition of Eq. (11.6) can now be written as 1 þ R ¼ T.

T � bptbpi ¼ 2zt
zt þ zi

¼ 2 z=zi

� �
zt=zi

� �þ 1
ð11:10Þ

The factor of two is reassuring, since we expected pressure doubling at the interface in the echo
example where zt � zi, and we saw the same factor of two in Eq. (10.105).

For oil above water, we can use ρoil ¼ 950 kg/m3, coil ¼ 1540 m/s, zoil ¼ (ρc)oil ¼ 1.463 � 106

Pa ‐ s/m, and ρwater ¼ 998 kg/m3, cwater ¼ 1481 m/s, and zwater ¼ (ρc)water ¼ 1.478 � 106 Pa-s/m. The
specific acoustic impedance of these two liquids is very close, so for a planewave originating in the oil,
R ¼ 0.005 and T ¼ 1.005. If the planewave originated in the water, R ¼ �0.005 and T ¼ 0.995. The
fact that R is negative for sound traveling from water into oil indicates that the wave reflected back into
the water from the interface is reflected with a 180� phase shift with respect to the incident wave.

If Fig. 11.2 represented air over water, as on a lake, then the impedance contrast would be similar
to the echo example, if we assume dry air at one atmosphere, pm ¼ 101,325 Pa, and Tm ¼ 20 �C, then
(ρc) air¼ 413 Pa-s/m. If the wave originated in the air, the results would be similar to the echo example.
If the wave originated in the water, R ¼ �0.9994, so again the reflection is almost perfect, but the
reflected wave is 180� out-of-phase with incident wave. The pressure transmission coefficient is
T ¼ 0.00056, so we call that interface, in such a situation (i.e., the wave originating in the medium
of higher specific acoustic impedance), a pressure release boundary.

11.2 Three Media

If we had two gases in contact, then we would need a membrane to keep them from diffusing into each
other. Similarly, we might be interested in the transmission of sound between two living spaces
separated by a wall. There is no reason why we could not extend the same style of argument just
employed with one interface between two media. We would need five waves instead of three since the
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central region, with specific acoustic impedance, zc, can support both waves moving up and moving
down, as shown in Fig. 11.3.

pup y, tð Þ ¼ ℜe bpupe j ω t�kcyð Þ
h i

and pdown y, tð Þ ¼ ℜe bpdowne j ω tþkcyð Þ
h i

ð11:11Þ

Again, linearity guarantees that these two new waves also have a frequency ω ¼ ωup ¼ ωdown,
so their wavelengths and wavenumbers depend upon the speed of sound in the central medium:

λc ¼ cc=f ¼ 2π= k
!
c

��� ���. We would need to impose the continuity of normal particle velocity (11.5) and

the continuity of pressure (11.6) on two planes, y¼ 0 and y¼ L, if the central medium has thickness, L.
We are again only interested in the amplitude ratios (i.e., specification of the incident amplitude, bpi ,
is still arbitrary) and can calculate the complex pressure reflection coefficient, R.

R ¼ 1� z=ztð Þ cos kcLð Þ þ j zc=zt � zi=zc

� �
sin kcLð Þ

1þ zi=zt

� �
cos kcLð Þ þ j zc=zt þ zi=zc

� �
sin kcLð Þ ð11:12Þ

The power transmission coefficient will be a scalar, as it was in Eq. (10.109), and will be related to
the reflection coefficient through energy conservation, as it was in Eq. (10.110).

TΠ ¼ 4

2þ z=zi
þ zi=zt

� �
cos 2 kcLð Þ þ z2c=ztzi þ ztzi=z2c

� 	
sin 2 kcLð Þ

ð11:13Þ

In many cases, the incident and transmitted media are the same, zi ¼ zt, simplifying the power
transmission coefficient.

TΠ ¼ 1þ ¼ð Þ zc=zi � zi=zc

� �2
sin 2 kcLð Þ

h i�1
if zi ¼ zt ð11:14Þ

Fig. 11.3 For a planewave that propagates through three media, bounded by two parallel interfaces, two additional
waves need to be included for propagation through the central region. In this diagram, two waves are “trapped” inside the
central medium, between y ¼ 0 and y ¼ L, that has a specific acoustic impedance of zc ¼ ρccc. The wavevector of the

incident planewave, k
!
i, and the reflected wavevector, k

!
r , are both in the upper medium with zi ¼ ρici. The transmitted

wave represented by the wavevector, k
!
t , is in the lower medium, with specific acoustic impedance zt ¼ ρtct. All wave

vectors are colinear and normal to both interfaces
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11.2.1 A Limp Diaphragm Separating Two Gases

If we apply Eq. (11.12) to the case of two different gases separated by a membrane with zc � zi and
zc � zt, which is so thin (i.e., L � λc) that (zc/zt) sin (kcL ) � 1and cos(kcL ) ffi 1, then the pressure
amplitude reflection coefficient is the same as (11.9), so R ffi (zt � zi)/(zt þ zi), making the diaphragm
effectively transparent and the pressure reflection coefficient dependent only upon the relative specific
acoustic impedances of the gases.

Let us consider a limp latex diaphragm, having a thickness of 0.00600 ¼ 150 μm, separating air from
molecular hydrogen, H2. At 1.0 kHz, with clatex ≌ 1000 m/s, (kcL ) ¼ ωL/clatex ffi 0.001. Using (ρc)latex
ffi 50 kPa-s/m, (zc/zt) sin (kcL )ffi 0.1� 1, the simplified reflection coefficient of Eq. (11.9) will provide
a decent approximation.

For ideal gases, ρcð Þgas ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γpmρm

p
. Since the diaphragm is assumed to be limp, the pressures of the

gases on either side must be identical (otherwise the limp membrane would bulge and then burst),
so zt=zið Þgas ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mt=Mi

p
, whereM is the molecular mass of each gas. For air and hydrogen, the ratio of

specific acoustic impedances is about
ffiffiffiffiffi
15

p
, or its reciprocal, if the planewave originates on the air side,

making R¼	0.59, with the sign dependent upon whether the planewave originates on the air side (þ)
or the H2 side (�).

11.2.2 An Impedance Matching Antireflective Layer

An important special case covered by Eq. (11.12) occurs when the thickness of the intermediate layer is
one-quarter of a wavelength to create a perfectly transmitting condition that repeats for integer
multiples of half-wavelengths being added to the original quarter wavelength, resulting in an
odd-integer multiple of one-quarter of the wavelength of sound, L ¼ (2n � 1)λc/4; n ¼ 1, 2, 3, . . .;
hence, (kc L ) ¼ (n�½)π. In that case, cos(kcL ) ffi 0 and sin(kcL ) ¼ 1. In addition, if zc ¼ ffiffiffiffiffiffiffi

zizt
p

,
then R¼ 0 for frequencies near f¼ (n� ½)cc/2L, and the intermediate medium is known as a quarter-
wavelength impedance matching layer.

In high-quality optics, like camera lenses, this effect is used to make antireflective coatings that
optimize the transmission of light through the lens. Since this effect is wavelength-dependent, those
optical coatings look magenta when they are optimized for transmission of green light (520 nm ≲
λgreen ≲ 570 nm), since red (620 nm ≲ λred ≲ 740 nm) and blue (450 nm ≲ λblue ≲ 495 nm) will have
non-zero optical reflection coefficients.

Impedance matching layers are very useful for ultrasonic transducers used in medical imaging to
optimize the transmission from the transducer material (typically a piezoelectric ceramic) to flesh and
to maximize the return signal’s excitation of the transducer during detection.

11.2.3 The “Mass Law” for Sound Transmission Through Walls

If we consider a solid wall separating two rooms, both containing air, then zc� zi¼ zt. In that case, the
power transmission coefficient of Eq. (11.14) is further simplified.

TΠ ffi 2zi
zc sin kcLð Þ

� �2
if zc � zi ¼ zt ð11:15Þ

For reasonably small wall thicknesses, L � λc ¼ cc/f, sin(kcL ) ffi kcL, so the reduction of sound
intensity transmission through the wall depends upon the surface mass density of the wall, ρS ¼ ρcL.
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TΠ ffi 2
kcL

zi
zc


 �2

ffi zi
πf ρcLð Þ

� �2
if kcL � 1 ð11:16Þ

For this reason, in architectural acoustics, this result is known as the “mass law” and is particularly
important for multi-occupant dwellings (e.g., apartment buildings) because the transmission of sound
depends inversely on the square of both the surface mass density of the wall and of the frequency of the
sound.2 [2] This inverse-square dependence upon frequency explains why the bass from a neighbor’s
stereo in an adjoining apartment is more annoying than conversation.

11.2.4 Duct Constriction/Expansion Low-Pass Filters

We can exploit Eq. (11.14) for the power transmission coefficient to analyze the one-dimensional
propagation through a duct that has an expansion chamber or constriction as shown in Fig. 11.4.
Following the analysis in Sect. 10.8, and recognizing that such a system has the same sound speed and
fluid density throughout, we can copy the five-wave procedure used in Sect. 11.2, but require the
continuity of volume velocity, instead of particle velocity, to produce the analog of Eq. (11.14) where
A replaces zi ¼ zt and Ac replaces zc [3].

TΠ ¼ 1

1þ Ac=Að Þ� A=Acð Þ½ 
2
4 sin 2 kLð Þ

ð11:17Þ

It is worthwhile to notice that this coefficient for the power transmission is symmetric with respect
to the area ratio, Ac/A, and its reciprocal, A/Ac. That means that the result does not depend upon whether
the area change is produced by an expansion chamber, Ac/A > 1, shown in Fig. 11.4 (left), or by a
constriction, A/Ac > 1, shown in Fig. 11.4 (right).

Fig. 11.4 (Left) A compliance with volume, V¼ AcL, is placed in a tube of otherwise uniform cross-sectional area, A, to
create a low-pass filter. (Right) A constriction with cross-sectional area, Ac < A, is placed in a tube of otherwise uniform
cross-sectional area, A, to produce a low-pass filter

2 It is important to remember that this “mass law” is a low-frequency result, as indicated in Eq. (11.16). At higher
frequencies, other effects can become significant.
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If we start by examining the limit where L� λ or kL� 1, we see that either the expansion chamber
or the constriction acts as a low-pass filter as shown in Fig. 11.5 for Ac/A¼ 2, Ac/A¼ 5, and Ac/A¼ 10.

TΠ ¼ 1þ π2L2

c2
Ac=Að Þ � A=Ac

� �� 2
f 2

� ��1

for kL � 1 ð11:18Þ

As expected from Eq. (11.18), the transmission for kL < 1 is reduced by 20 dB/decade, in
accordance with the f �2 frequency dependence. It is clear from Fig. 11.5 that the frequency at
which the transmission is reduced by 3 dB is dependent upon the area ratio. For Ac/A ¼ 2 or 0.5,
f �-3dB ¼ 0.665; for Ac/A ¼ 5 or 0.2, f �-3dB ¼ 0.208; and for Ac/A ¼ 10 or 0.1, f �-3dB ¼ 0.101.

As frequency increases, the requirement that kL < 1 will be violated. In Fig. 11.5, that means that
f � � ½. This restriction indicates that the frequency bandwidth of the expansion/constriction strategy
is rather limited as a low-pass filter. From Eq. (11.17), we see that the transmission coefficient becomes
one (i.e., 0 dB, no attenuation), when kL ¼ π or f � ¼ π/2, and returns to one for all successive kL ¼ nπ
as shown in Fig. 11.6. The maximum transmission loss, (TΠ)max, occurs when L is equal to an odd
multiple of quarter wavelength, (2n � 1)λ/4, making f ¼ (2n � 1)c/4L.

TΠð Þmax ffi �10 log 10 ¼ð Þ Ac

A
þ A
Ac


 �2
" #

ð11:19Þ

For Ac/A ¼ 5 or 0.2, (TΠ)max¼ � 8.3 dB; and for Ac/A ¼ 10 or 0.1, (TΠ)max¼ � 14.1 dB.

Fig. 11.5 The expansion/constriction duct transmission loss, TΠ, for small kL, in dB ¼ 10log10TΠ for area ratios of
Ac/A¼ 2 or 0.5 (solid line), Ac/A¼ 5 or 0.2 (dotted line), and Ac/A¼ 10 or 0.1 (dashed line) plotted against a normalized
frequency, f�, that is scaled by the length of the length of the expansion or constriction, L, and the sound speed, c:
f � ¼ πf L/c, which is also f � ¼ πL/λ ¼ kL/2
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As will be shown in Sect. 13.5.4, for frequencies above f1,1 ¼ 0.578 c/a, where a ¼ ffiffiffiffiffiffiffiffi
A=π

p
is the

radius of the circular duct, the planewave nature of propagation in the duct can no longer be
guaranteed. That further limits the utility of such a strategy. Despite these limitations, elaborate
combinations of expansion chambers and constrictions are used to attenuate sound in automotive
exhaust mufflers using techniques that go well beyond those discussed here [4].

11.3 Snell’s Law and Fermat’s Principle

The previous results for planewaves normally incident on an interface between two media can be
extended to planewaves that impinge on the interface from some arbitrary angle, θi, with respect to the
normal direction that characterized the surface. The incident wavevector will now have two

components, k
!
i ¼ kybey þ kxbex, where bey and bex are unit vectors in the +y and þ x directions.

pi x, y, tð Þ ¼ ℜe bpi exp j ωt þ k
!
i

��� ���y cos θi � k
!
i

��� ���x sin θi� 	h i
pr x, y, tð Þ ¼ ℜe bpr exp j ωt � k

!
i

��� ���y cos θr � k
!
i

��� ���x sin θr� 	h i
pt x, y, tð Þ ¼ ℜe bpt exp j ωt þ k

!
t

��� ���y cos θi � k
!
t

��� ���x sin θt� 	h i ð11:20Þ

We can make a simple geometrical argument regarding the directions of the reflected and transmit-
ted planewaves by adopting a perspective that was introduced by the Dutch physicist, Christiaan

Fig. 11.6 The expansion/constriction duct transmission loss, TΠ, in dB ¼ 10log10TΠ. Shown are area ratios of Ac/A¼ 2
or 0.5 (solid line), Ac/A ¼ 5 or 0.2 (dotted line), and Ac/A ¼ 10 or 0.1 (dashed line) plotted against a normalized
frequency, 0 � kL ¼ (2πL/λ) � π. This behavior repeats for integer multiples of π with no loss for kL ¼ 0 or π and
maximum loss for kL ¼ π/2
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Huygens, in 1678,3 that makes a simple argument which matches boundary conditions at the interface.

Figure 11.7 shows the incident wavevector, k
!

i , with lines normal to k
!
i , indicating the planes of

constant pressure phase. We will imagine those lines represent the pressure maxima of the waves
propagating toward the interface. Those wave fronts impinge on the interface, and we will consider
each intersection of those incident wave fronts and the interface to be a source of pressure maxima for
both the reflected and transmitted planewaves.

The spacing between those maxima along the interface, which we will call the trace wavelength,
λtrace, is easy to calculate from trigonometry and Garrett’s First Law of Geometry4: sin θi ¼ λi/λtrace.
For normally incident planewaves, the trace velocity ctrace¼ fλtrace¼1, since the wave fronts of equal
phase intersect the interface so that the phase of the pressure on the interface is the same at all locations
at every instant. Since λtrace is the same for both the reflected and transmitted waves, the sound speeds

Fig. 11.7 Diagram showing an incident wave with wavevector, k
!

i, intersecting a plane interface at an angle, θi, relative
to the normal to the interface. Wave fronts of equal phase are shown perpendicular to the wavevector spaced by one
wavelength of the incident sound, λi. That incident wave excites a reflected wave (green) and a transmitted wave (red).
Successive maxima of pressure along the interface are separated by the “trace wavelength,” λtrace, that is common to all
three waves. Based on the wavelengths in this figure, the sound speed in the lower medium, ct, is greater than the sound

speed in the upper medium, ci < ct. When the incident angle equals the critical angle, θi ¼ θcrit, then the direction of k
!

t is
along the interface (i.e., θt ¼ 90�), and we have total internal reflection for all θi  θcrit, so no energy is transmitted

3 C. Huygens, Traitė de la Lumiere (completed in 1678, published in Leyden in 1690).
4
“Angles that look alike are alike.”

524 11 Reflection, Transmission, and Refraction

www.dbooks.org

https://www.dbooks.org/


in the two media will determine the angle that the reflected planewave, θr, and the angle transmitted
planewave, θt, make with the direction of the normal to the interface.5

λtrace ¼ λi
sin θi

¼ λr
sin θr

¼ λt
sin θt

ð11:21Þ

The sound speed, ci, is the same for both the incident and reflected planewaves, so θr¼ θi; the angle
of incidence equals the angle of reflection. This case is called specular reflection. If the interface has a
surface roughness that is characterized by random assortments of “bumps” that are all much smaller in
height and extent than the wavelength of sound, the reflection will be diffuse.

Again, in a linear system, the frequency, ω, with which the incident planewave drives the interface,
must also be the frequency of the driven reflected and transmitted planewaves. Since λ ¼ c/f, we can
invert Eq. (11.21) to produce a result known as Snell’s law.6

sin θi
ci

¼ sin θr
ci

¼ sin θt
ct

ð11:22Þ

Before moving on to calculation of the pressure reflection and transmission coefficients, it worth
noticing that Snell’s law could have been derived by insisting that propagation time from one location
in the upper medium to some other location in the lower medium is minimized by the same condition
on the angles that is expressed in Eq. (11.22). This approach utilizes Fermat’s principle (1622)7: “The
actual path between two points taken by a [wave] is the one that is traversed in the least time.”

For the actual path to be an extremum of the total transit time, a neighboring path must take the same
time; their time difference being at most second order in the deviation of the alternate path from the
path of least time. Figure 11.8 provides a diagram of the path of least time (ACB) and a nearby path
(AXB).

In the upper medium of Fig. 11.5, the perpendicular XE makes CE the reduction in distance traveled
by the nearby path AX. The time savings by traveling via AC is therefore ti ¼ CE/ci. Similarly, in the
lower medium, the perpendicular CF makes XF the additional distance traveled by the nearby path
XB. The excess time in the lower medium is therefore tt ¼ XF/ct. Since ∡EXC ¼ θi and ∡FCX ¼ θt,
we can express the two transit times for the nearby path in terms of the common length XC using
simple trigonometry.

ti ¼ EC
ci

¼ XC sin θi
ci

¼ tt ¼ XF
ct

¼ XC sin θt
ct

ð11:23Þ

Equation (11.23) also yields Snell’s law after dividing through by XC.

5 Since the trace wavelength is constant, its reciprocal, the trace wavenumber, 2π/λtrace, is also constant. In the underwater
acoustic propagation community, this is commonly called “conservation of the horizontal wavenumber” [12]. Since I
associate the term “conservation” with quantities that obey equations like (10.35), I prefer to consider the horizontal
wavenumber to be an invariant, like the trace wavelength.
6 Snell’s law is known as Descartes’ law in France. Willebrord Snellius (1580–1626) was not the first to produce that
result. The law was first accurately described by the Persian scientist, Ibn Sahl, in Baghdad, where in 984, he used the law
to derive lens shapes that focus light with no geometric aberrations as described in the manuscript On Burning Mirrors
and Lenses.
7 The principle of least time was actually first applied to reflections from a mirror much earlier, by Hero of Alexandria,
around 60 CE. Since the reflected light propagates at the same speed as the incident light, this is equivalent to the path that
is also the shortest geometrical distance.
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11.3.1 Total Internal Reflection

In passing from a faster medium into a slower medium, ci > ct, the angle that the transmitted
wavevector makes with respect to the normal at the interface, θt, is smaller than the incident angle,
θi, also measured from the normal. If the incident medium has a slower sound speed than the
transmission medium, ci < ct, then it is possible that the angle of transmission, θt, dictated by Snell’s
law, could become a complex number. In that case, we can define a critical angle, θcrit, where θt ¼ 90�

(i.e., the transmitted wave travels along the interface but not into the second medium).

sin θcrit ¼ ci
ct
; if ci < ct ð11:24Þ

This is a consequence of the fact that the minimum trace velocity, ctrace¼ fλtrace, shown in Fig. 11.7,
in the lower medium, is limited to ct, which equals ctrace when θt ¼ 90

�
. Using the fact that

cos2θ þ sin2θ ¼ 1, the angle of transmission can be expressed in terms of the angle of incidence
and the sound speed ratio.

cos θt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 2θt

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ct=ci

� �2
sin 2θi

q
¼ �j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ct=ci

� �2
sin 2θi � 1

q
ð11:25Þ

If ct > ci, the first term under the square root becomes imaginary, which is expressed explicitly in the
final term at the right of Eq. (11.25).

Substitution of Eq. (11.25) into the expression for the transmitted pressure in Eq. (11.20) produces
an exponential decay of the sound with increasing distance away from the interface, for incident angles
that exceed the critical angle, producing an inverse characteristic depth, (1/δ).

Fig. 11.8 Three paths from point A in the upper medium to point B in the lower medium. In this diagram, it is assumed
that the propagation speed of the wave in the lower medium, ct, is slower than the propagation speed in the upper
medium, ci > ct. The path AB (blue) is the shortest distance, and the path ACB (red) takes the least time. The angles θi
and θt can be determined by calculating the additional travel time beyond that required for ACB when going along the
path through AXB (green) and setting that excess equal to zero [5]
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kz ¼ 1
δ
¼ k

!
t

��� ��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ct=cið Þ2 sin 2θi � 1

q
ð11:26Þ

pt x, z, tð Þ ¼ ℜe bpteþ y=δð Þe j ω t� k
!

i

�� ��x sin θi� � �
; for y � 0 ð11:27Þ

This solution is a wave that is localized just below the interface. For angles of incidence, θi < θcrit, the
transmitted wave fills the half-space of the lower medium, as shown in the lower half of Fig. 11.7.
When θi ¼ θcrit, all of that outgoing energy collapses to the surface in a layer with exponential
thickness, δ. The thickness of that layer decreases monotonically as θi increases beyond θcrit.

If we apply the Euler equation to Eq. (11.27) to determine the velocity, vt, normal to the surface, we
find bvt ¼ jbpt ωρδð Þ, so the pressure and particle velocity are 90� out-of-phase. The intensity leaving the
interface is zero since there is no in-phase component of pressure and velocity. That does not mean that
the layer contains no energy, just that none of the energy is propagating. If there were some scattering
centers (i.e., defects, voids, inclusions of material with some compressibility, and/or density contrast),
the energy trapped in that layer could be reradiated (i.e., scattered; see Sect. 12.6) and escape.

The concept of total internal reflectionwas first recognized in optics. One application of total internal
reflection that I find particularly inspiring occurs in the compound eyes of insects and other arthropods.
With thousands of lenses, the use of an equal number of irises, like those in avian and mammalian eyes, is
not particularly efficient. In the arthropod’s compound eye, each lens is connected to the optic nerve by a
transparent tube that contains the light by total internal reflection, due to the difference between the index
of refraction (i.e., the optical equivalent of our specific acoustic impedance) between the tube and the
surrounding fluid. The way that insects control the amount of light that reaches the optic nerve is by a
chemical reaction in the fluid that surrounds the tube. Under bright lighting, the fluid will produce a
precipitate with small particles that scatters light out of the trapped layer, thereby reducing the amount of
light reaching the optic nerve. The physical structure of the compound insect eye is shown in Fig. 11.9.

Proof of this system’s efficacy is the fly’s ability to avoid getting swatted outdoors in broad daylight
and indoors in a darkened room. (We should now pause briefly out of respect for Darwin and the power

Fig. 11.9 (Left) The compound eyes of the blue bottle fly. (Right) Each of the “tubes” is optical fibers, called an
ommatidium. They guide light from the lens to the optic nerve endings (4 and 5) using total internal reflection to regulate
the transmission of the light. Ant eyes have about six ommatidia and dragonfly eyes have as many as 25,000. This
anatomical drawing of a compound eye shows the corneal lens (1) and the crystalline cone (2) which combine to form the
dioptric apparatus. At the base is the light-sensitive rhabdom (5 and 6). The space between the tubes (3) contains the
pigment cells that will form a precipitate that scatters some of the optical energy out of the trapped layer at the interface if
the light is too bright, effectively reducing the field of view (known in optics as the “numerical aperture” of the lens).
(Photo and diagram taken from Wikipedia)
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of natural selection.) I would be most interested in finding a similar system for controlling the sound
amplitude that reaches the auditory nerve in any animal, although the ability to focus sound seems
ubiquitous in marine mammals, as shown for the Cuvier’s beaked whale in Fig. 11.18.

11.3.2 The Rayleigh Reflection Coefficient

Although we have calculated the angles of reflection and transmission for planewaves of sound
impinging on a planar interface from an arbitrary direction, we have yet to calculate the amplitude
reflection coefficient in terms of the specific acoustic impedances, as we did for the case of normal
incidence at the interface between two media in Eq. (11.9). To produce the equivalent of Eq. (11.9) for
oblique incidence (i.e., θi 6¼ 0�), we need to generalize the velocity boundary condition of Eq. (11.5),
since it is only the normal component of the velocity that needs to be continuous across the boundary to
avoid cavitation at the interface.8

bvij j cos θi þ bvrj j cos θr ¼ bvtj j cos θt ð11:28Þ
Pressure continuity, expressed in Eq. (11.6), is unchanged since pressure is a scalar quantity.

Forming the ratio of those boundary conditions, as we did in Eq. (11.7), leads to the desired result
for the ratio of the reflected pressure to the incident pressure R � bpr=bpi.

R � bprbpi ¼
z

cos θt
� zi

cos θi
zt

cos θt
þ zi

cos θi

ð11:29Þ

Once again, we are confronted with an expression for the reflection coefficient that can vanish,
providing perfect transmission, if the numerator of Eq. (11.29) is zero.

cos θt
cos θi

¼ zt
zi

ð11:30Þ

Using Snell’s law to eliminate θt, this angle, called the angle of intromission, θintro, can be expressed in
terms of both the impedance and sound speed or mass density ratios.

sin 2 θintroð Þ ¼ zt=zið Þ2 � 1

zt=zið Þ2 � ct=cið Þ2 ¼
1� zi=ztð Þ2
1� ρ1=ρ2ð Þ2 ð11:31Þ

Not every combination of media will have an angle of intromission that depends upon both sound
speed and density ratios. For θintro to be real, both the numerator and denominator of Eq. (11.31) must
have the same sign.

There are four combinations of impedance and sound speed ratios:

(i) No θcrit and no θintro If both zt/zi < 1 and ct/ci < 1, there is no critical angle, so 0 < R <�1 for all θi.
For this case, θi > θt, so (cosθt/ cos θi) > 1 and zt/zi < 1, so there can be no angle of intromission.

8 If we were treating the interface between two viscous liquids or between a viscous liquid and a solid surface, then we
would need to impose a “no-slip” boundary condition on the transverse components of particle velocity. This is
particularly important for the fluid-solid boundary since the viscous stress on the interface can couple to shear waves
into the solid and vice versa. The coupling of shear waves in the solid to viscous waves in liquids has been used to
measure fluid density and viscosity.
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(ii) Real θcrit but no θintro If both zt/zi > 1 and ct/ci > zt/zi, then there will be a critical angle above
which there will be total internal reflection so R¼ 1 if θi > θcrit. Since ct/ci > zt/zi, the numerator of
Eq. (11.31) will be positive, but the denominator will be negative, so there can be no θintro.

(iii) Real θintro but no θcrit If zt/zi > 1 and ct/ci < 1, then there will be no critical angle, so 0� R < 1 for
all θi. Since ct/ci < zt/zi, both the numerator and the denominator of Eq. (11.31) will be positive, so
there will be an angle of intromission, θi ¼ θintro < 90

�
.

(iv) Real θintro and real θcrit If ct/ci > 1 and zt/zi < 1, then there will be both a critical angle, θcrit < 90�,
above which there will be total internal reflection so R¼ 1 if θi > θcrit, and both the numerator and
the denominator of Eq. (11.31) will be negative, so there will be an angle of intromission
θi ¼ θintro < θcrit < 90

�
.

Total transmission at the angle of intromission has been observed in high-porosity marine
sediments, like silty clays, which exhibit a sound speed through its bulk which is lower than that of
the interstitial fluid within its pores. When high-porosity sediment is at the water/sediment interface,
there can be total transmission of sound into the seafloor. Measurements of the angle of intromission in
coastal regions around Italy indicate that the properties of the high-porosity sediments are surprisingly
uniform over large areas [6].

11.4 Constant Sound Speed Gradients

To this point in our discussion of the refraction of sound, we have only considered plane boundaries that
separate media with a discontinuity in their sound speed, density, and/or specific acoustic impedance.
There are many situations of interest where the refraction (or bending) of a planewave of sound can create
interesting and significant effects resulting from a gradual change in the acoustical properties of the
medium. These effects are easily calculable in the limit that such sound speed changes are a linear function
of position when those changes occur over a distance that extends over very many acoustic wavelengths.

Figure 11.10 shows two examples of sound refraction in air that supports a temperature gradient that
depends upon the time of day. As expressed by the quadratic dependence of sound speed on the mean
temperature of an ideal gas in Eq. (10.23), the change in sound speed, Δc, with height, z, above the
ground is related to the changes in the absolute temperature, T.

dc
dz

¼ dc
dT


 �
dT
dz


 �
¼ c

2T
dT
dz


 �
ð11:32Þ

Similar refractive effects occur in the ocean where the speed of sound in seawater is a complicated
function of temperature, salinity, and depth (pressure).

c ¼ 1493:0þ 3 t � 10ð Þ � 0:006 t � 10ð Þ2 � 0:04 t � 18ð Þ2
þ 1:2 S� 35ð Þ � 0:01 t � 18ð Þ S� 35ð Þ þ D=61

ð11:33Þ

In Eq. (11.33), the sound speed, c in m/s, is a function of the temperature, t, in degrees Celsius. The
salinity, S, is measured in grams of salt per kilogram of water, and D is the depth below the surface
measured in meters [8]. That formula is valid within 	0.2 m/s for �2 �C � t � +24.5 �C,
0.030 � S � 0.042, and 0 � D � 1000 m.

Figure 11.11 shows the sound speed variation with depth that was measured over 9 years in the
ocean 15 miles (24 km) south-east of Bermuda. Although significant sound speed variation over the
9 years is apparent within roughly 2 km of the surface, it is possible to represent the change in sound
speed with depth using a piecewise-linear approximation.

11.4 Constant Sound Speed Gradients 529

https://doi.org/10.1007/978-3-030-44787-8_10#Equ23


Fig. 11.10 (Left) During the day, the temperature of the atmosphere generally decreases with altitude above the ground
causing sound waves to refract upward since the speed of sound is proportional to

ffiffiffiffi
T

p
. (Right) The opposite conditions

can occur at night when the temperature of the air in contact with the ground is colder that than the air above it
(a “temperature inversion”). This causes sound to be refracted downward. If there is wind, it can also cause the sound
speed to vary with height above the ground. (Figures courtesy of T. B. Gabrielson [7])

Fig. 11.11 (Left) These deep-ocean sound speed profiles were taken every 2 weeks over a 9-year period at a location
24 km SE of Bermuda. [9] The solid curve is the average and the dashed curves show the extremes. This typical deep-sea
profile may be divided into a number of layers having different properties. At the top, the diurnal layer shows day-night
variability and responds to weather changes. Below it, down to the depth of about 300 m, lays the seasonal thermocline
that is above the main thermocline, which exhibits the strongest sound speed gradient. Below the thermocline, beneath
1200 m, the deep isothermal layer has a constant temperature of þ4 �C. There, the sound speed’s increase with depth is
dominated by the increasing pressure. (Right) The measured sound speed profile is replaced by a piecewise-linear
approximation that provides a constant sound speed gradient for each layer, as indicated by the embedded table. At a
depth of approximately 3700 m, the sound speed is the same as it is at a depth of approximately 560 m. Between those
two depths, sound can be trapped in the “deep sound channel” in the same way that light is trapped in an optical fiber,
except the core of an optical fiber that is about 10 μm and the sound channel that is about 1 km, a height ratio of about 108
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11.4.1 Constant Gradient’s Equivalence to Solid Body Rotation

The goal in this sub-section is to develop a simple formalism that will permit calculation of the path of
planewaves in a medium with a sound speed that is a linear function of height or depth. Furthermore,
we would like to be able to track the trajectory of the sound (i.e., follow the direction of the
wavevector) through regions of changing sound speed gradient, a process known as ray tracing. To
do this, we must first recognize that the propagation of sound through a region of constant sound speed
gradient is isomorphic to the solid body rotation of a disk, since the tangential velocity, v!tan, of any
point on the rotating disk is proportional to its (linear) distance, r

!�� ��, from the axis of rotation.

v
!
tan ¼ r

! � ω
! ð11:34Þ

Since this equation refers to a rotating disk, the use of the cross-product might seem to be pedantic
excess, but it is intended to remind you of your study of solid body rotational dynamics during your
freshman physics course.

If we limit ourselves to linear changes in sound speed with height or depth, then the sound speed
gradient is a constant: dc/dz � g. In analogy with a rotating disk of radius, R, as diagrammed in
Fig. 11.12, we can equate sound speed, c, with the tangential velocity of a point on the rim of the disk,
v
!
rim, and integrate our above definition; it is easy to see that g plays the same role as ω (and has the

same units) in Eq. (11.34). ðvrim
0

dc ¼ g

ðR
0
dz ) R ¼ v

!
rim

�� ��
g

ð11:35Þ

I like to think of the refraction (bending) of the sound wave’s trajectory in a constant sound
speed gradient by picturing the advance of the planewave fronts as represented schematically in
Fig. 11.13.

Fig. 11.12 Shown at the
right is a disk that is
rotating. The dashed,
colored arrows indicate the
tangential velocity that
increases linearly with
distance from the axis of
rotation. Such a velocity
distribution in space is
identical to the assumed
constant sound speed
gradient that will control
the refraction of sound
waves
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To introduce this “disk rotation” approach to analysis of the propagation of planewaves through a
medium with constant speed gradients, let’s consider the measurement of road noise during the day,
when the temperature of the air is decreasing with increasing altitude, as shown in Fig. 11.10 (left).

Assume that you are asked to determine the sound pressure level created by traffic on a highway at a
proposed housing location that is 150 m from the highway. By measuring the average temperature at a
height of 0.5 m and at 5 m, you determine that the sound speed at 0.5 m is 342.8 m/s and at 5.0 m is
341.3 m/s. How high must your microphone be above the ground, at a distance of 150 m from the
source, to ensure that you intercept sound that leaves the highway in an initially horizontal direction?

To begin, let’s calculate the sound speed gradient, dc/dz ¼ g ≌ Δc/Δz ¼ (2.8–1.3 m/s)/
4.5 m ¼ 0.333 s�1. Since the sound speed decreases with height, we know that the wave will be
refracted upward, as shown in Fig. 11.10 (left). We’ll assume that the noise is generated at the
intersection of the tire and the road at z ¼ 0, where co ¼ 343.0 m/s (extrapolating down to the surface
from the lowest measurement at 0.5 m above the ground).

We now need to calculate the radius, |R|, of this limiting ray’s circular path.

Rj j ¼ co
g
¼ 1029 m ð11:36Þ

A simple trigonometry identity can be used to determine the height, h¼ 11.0 m, above the ground that
a microphone must be placed to receive the sound radiated by the tires. For me, drawing a sketch, like
in Fig. 11.14, is always crucial.

sin θ ¼ 150
1029

¼ 0:146 ) θ ¼ 0:146rad ¼ 8:38
�

h ¼ Rj j � Rj j cos θ ¼ Rj j 1� cos θð Þ ffi Rj j θ
2

2
¼ 11:0 m

ð11:37Þ

The final expression above made use of the small-angle expansion of cosine in Eq. (1.6).
Although the refractive process was not understood until the twentieth century [7], reports of the

existence of an acoustic “shadow zone” appeared much earlier. Below is the account of R. G. H. Kean
as he watched the Battle of Gaines’s Mill during the American Civil War [10]:

Fig. 11.13 A conceptual sketch of planewave fronts moving through a medium with the velocity gradient shown at the
left. The arrows at the top of the wave fronts are always longer than the arrows at the bottom. This turns the wave front
downward until the wave front is nearly horizontal. Once horizontal, both ends of the wave front will move with the same
speed, and the wave will continue downward without changing direction
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I distinctly saw the musket-fire of both lines . . . I saw batteries of artillery on both sides come into action and
fire rapidly. Yet looking for near two hours, from about 5 to 7 P.M. on a midsummer afternoon, at a battle in which
at least 50,000 men were actually engaged, and doubtless at least 100 pieces of field-artillery . . . not a single
sound of the battle was audible to General Randolph and myself . . . [However, the] cannonade of that very battle
was distinctly heard at Amhurst Court-house, 100 miles west of Richmond, as I have been most credibly
informed.

The process of refraction in a sound speed gradient, as illustrated in a particularly simple form in
Fig. 11.14, is entirely reversible. If we were to say that we had a sound source directed 8.4� below the
horizontal direction, located 11.0 m above the ground, then we could just as easily say that it would
intersect the ground 150 m away, based on Fig. 11.14 and the results of Eq. (11.37).

Since much of the interest in the propagation of sound in a sound speed gradient (linear or
otherwise) tends to concern sound waves that are nearly grazing the horizontal axis, the grazing
angle is more commonly used in Snell’s law than the angle measured with respect to the normal to the
surface, which was our previous choice for discussion of reflection and transmission from a plane
surface of discontinuity. If we now use the grazing angle, then we can rewrite Eq. (11.22) by letting θ
be the angle below the horizontal and co be the sound speed at a location where the sound waves are
propagating horizontally (i.e., cos 0� ¼ 1).

c
cos θ

¼ co ð11:38Þ

Let’s apply the above version of Snell’s law to the example in Fig. 11.14. That ray is horizontal at
h ¼ 0, where co ¼ 343.0 m/s. Assuming, as before, a constant sound speed gradient, at the “source
height” of 11.0 m, c ¼ 339.3 m/s. Plugging directly into Eq. (11.38), cos θ ¼ c/co, so θ ¼ 0.147
radians ¼ 8.4�. Of course, we could have used Eq. (11.37) to calculate the sound speed 11.0 m above
the surface, since we already knew that θ ¼ 8.4�.

Fig. 11.14 Sketch (not to scale) of the ray path of the sound generated by the tire noise on a road surface. The
observation point is 150 m from the sound source. Between the ground and the circular arc is a “shadow zone” that is
created by the upward refraction of the sound produced by the sound speed gradient, dc/dz ¼ 0.333 s�1, which was used
to calculate the radius, |R|¼ 1029 m, applying Eq. (11.36). A microphone must be placed at least a distance, h, above the
ground to intercept the tire noise. At the surface (h ¼ 0), the sound speed is co ¼ 343.0 m/s. At h ¼ 11.0 m above the
surface, the sound speed is 339.3 m/s
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11.4.2 Sound Channels

We will now apply this formalism to a particularly interesting case that occurs in a sound speed profile
like the one shown in Fig. 11.11, describing the deep ocean off of Bermuda, which we have
approximated by a series of contiguous line segments with constant (but different) sound speed
gradients. There is a sound speed minimum of cmin ¼ 1486 m/s, at a depth of 1112 m, between the
main thermocline and the deep isothermal layer. As evident from Fig. 11.13, in such a constant
gradient (i.e., linear sound speed profile), the sound will “go to the slow,” and therefore, we expect that
some sound will become trapped around that sound speed minimum in a sound channel.

In this sub-section, we will trace several rays from a submerged source to develop an understanding
of the channel’s propagation characteristics. Assume that there is a sound source at a depth of 800 m,
where the sound speed (by interpolation) is 1507 m/s. We start by calculating the upward angle from
the source that will result in a horizontal ray at the top of the upper gradient, z ¼ 560 m, where the
sound speed is cmax ¼ 1523 m/s. By Snell’s law, as expressed in terms of the grazing angles in
Eq. (11.38), θ1 ¼ cos�1(1507/1523) ¼ 0.145; hence, θ1 ¼ 8.31�. The radius of the circular path of the
ray, |R1| ¼ co/g ¼ (1523 m/s � 0.067 s�1) ¼ 22.73 km. Based on the diagram in Fig. 11.15, the sound
ray intersects the top of the channel at a horizontal distance that is r1 ¼ |R1|sin θ1 ¼ 3.3 km from the
source.

From the top of the channel (z ¼ 560 m), the ray will return to the channel axis along the same
circular path and will intersect the axis (z ¼ 1112 m) at θ2 ¼ cos�1 (1486/1523), so
θ2 ¼ 0.221 rad ¼ 12.66�. The horizontal distance, r2 – r1 ¼ |R1| sin θ2 ¼ 5.0 km.

The ray enters the deep isothermal layer where |R2| ¼ (1486 m/s � 0.0143 s�1) ¼ 103.9 km. (The
center of that circle is only a geometrical “construction point,” so the fact that it is located above the
stratosphere should not be a cause for our concern.) Since we have defined the bottom of the channel as
the location where the sound speed in the deep isothermal layer equals the sound speed at the top of the

Fig. 11.15 The diagram of the sound speed vs. depth at the left is based on the piecewise-linear approximation of
Fig. 11.11. There is a sound speed minimum at a depth of z ¼ 1112 m that is the axis of a sound channel shown by the
horizontal blue line. The velocity maxima are shown by the horizontal green lines at depths of 560 m and 3700 m,
corresponding to cmax ¼ 1523 m/s. The ray paths, ranges, depths, and especially the ray path radii, |R1| and |R2|, are not
drawn to scale. The limiting ray paths for a sound source located at a depth of 800 m, and horizontal distance, r ¼ 0, are
shown in red , launched at an angle of θ1 ¼ 8.31� above the horizontal. The turning point for the ray in the upper layer
occurs at a horizontal distance from the source of r1, while the turning point for the ray in the lower layer occurs at a
horizontal distance from the source of r3. The ray crosses the channel axis at r2 and enters the lower layer at an angle
θ2 below the horizontal
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main thermocline, cmax ¼ 1523 m/s, Snell’s law will guarantee that it will reach that depth with a ray
that is again horizontal, after traveling a horizontal distance, r3 – r2 ¼ |R2| sin θ2 ¼ 22.8 km.
From that point at horizontal distance from the source, r3, the path should repeat indefinitely
with the cycle distance from the top of the channel back to the top of the channel being 2(r3 –

r1) ¼ 55.6 km.
To calculate the angular width of the sound radiated by our source located at z ¼ 800 m below the

surface, which will be trapped in the channel, we need to follow a ray that leaves the source at an angle
below horizontal, θ�1, that will also take it to the depth (z ¼ 3700 m) where the sound speed is again
cmax. That initially downward-directed ray will also have to cross the sound channel axis at θ2¼ 12.66�

if it is to become horizontal at z ¼ 3700 m. Again, Snell’s law guarantees that (1507 m/s � cos
θ�1) ¼ (1486 m/s � cos θ2) ¼ 1523 m/s, so | θ�1| ¼ | θ1| ¼ 8.31�. That result is easy to visualize since
we can imagine a “virtual source” that is located 2r1 away from the original source, where the ray
makes an angle of� 8.31� with respect to the horizontal. Any ray that leaves the source within	 8.31�

will be trapped in the sound channel created by the two sound speed gradients.
Again, Snell’s law makes it easy to see that an initially horizontal ray leaving our source at a depth

of z ¼ 800 m will go up and down in the channel from a depth of z ¼ 800 m to a depth of z ¼ 2581 m,
where the sound speed will again be 1507 m/s and the rays will again be horizontal. Figure 11.16
diagrams ray paths from a more complicated sound channel for a source located on the channel
axis [11].

The results illustrated in the previous example can be generalized by defining a maximum angle
	θmax (above or below the horizontal) that will result in the trapping of a wave launched at the channel
axis, in terms of the minimum sound speed at the axis, cmin, and the maximum sound speed, cmax, at the
bottom and top of the channel.

Fig. 11.16 Ray diagram for transmission paths in the deep sound channel for a source located on the channel axis.
Depth is in fathoms (1 fathom¼ 6 feet¼ 1.829 m), range is in miles (1 mi¼ 1.609 km), and sound speed is in feet/second
(1 fps ¼ 30.48 cm/s), as a function of depth is provided at the right side of the graph. For angles θ > θmax ¼ 12.2�, waves
escaping the channel are reflected from the air-water interface [11]
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cos θmax ¼ cmin

cmax
ð11:39Þ

Expanding cos θmax for small angles and defining Δc ¼ cmax � cmin, Eq. (11.39) can be approximated
as θmax ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dc=cmax

p
. When the source is above or below the height or depth of the channel by a

distance, zo, in a layer D thick, Snell’s law, and the requirement that a trapped ray at the channel
boundary is horizontal, provides the range of trapping angles, θ	1 ¼ 	θmax

ffiffiffiffiffiffiffiffiffiffi
zo=D

p
, when the source is

not located on the sound channel’s axis. Along the channel axis, zo ¼ D. At the extremes, zo ¼ 0, only
the horizontal ray is trapped. The long-range transmission ability of the deep sound channel was used
during World War II to rescue aviators that crashed at sea.9 A downed pilot would drop a small
explosive charge that was rigged to detonate near the depth of the sound channel axis. If the sound were
detected with two or more hydrophones, also located at the axis depth, the reception times could be
used to localize the search by triangulation. Successful rescues were made this way using hydrophones
connected to shore stations that were thousands of miles from the aircraft impacts. More recently, the
same ability to make localizations at sea has been used for missile-impact location [12], and measure-
ment of the time delays has been used to measure the mean temperature of the deep ocean [13].

11.4.3 Propagation Delay*

It is interesting to calculate the difference in the propagation times for sound traveling along different
paths to reach the same horizontal distance from the source. Although the path along the axis is the
shortest, it is also going through the medium with the minimum sound speed. The longer (curved)
paths travel through water that has a faster sound speed. Does the shorter path beat the faster path?

Let’s first consider the ray that is generated on the sound channel axis and travels along a circular
path to the top of the channel. The initial angle of such a ray above the horizontal is θmax ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Dc=cmax
p

, as already shown. The transit time, Tupper, for that ray can be calculated if we integrate
from θ ¼ 0� to θ ¼ θmax, where the sound speed depends upon angle, c (θ ) ¼ cmax cos θ.

Tupper ¼
ðθmax

0

Rj jdθ
c θð Þ ¼

ðθmax

0

Rj jdθ
cmax cos θ

¼ Rj j
cmax

ðθmax

0

dθ
cos θ

ð11:40Þ

There is an analytical solution for the above definite integral, but simply writing the answer provides
no useful physical insight.ðθmax

0

dθ
cos θ

¼
ðθmax

0
sec θ dθ ¼ ln cscθ � cot θ½ 
θmax

0 ð11:41Þ

In these problems, the angles are generally small, so the series expansion of the sine and cosine
functions and the binomial expansion can both be employed to simplify the integration and its
interpretation. ðθmax

0

dθ
cos θ

ffi
ðθmax

0

dθ

1� θ

2

� � ffi ðθmax

0
1þ θ2

2


 �
dθ ¼ θmax þ θ3max

6
ð11:42Þ

The transit time for the axial ray, Taxial, that goes the same horizontal distance, r ¼ |R| sin θmax, is just
Taxial ¼ r/cmin. Since cmin ¼ cmax cos θmax, the same approach can be used.

9 In this context, the channel was known as the SOFAR channel, which stood for sound fixing and ranging.
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Taxial ¼ Rj j sin θmax

cmax cos θmax
ffi Rj j

cmax

θmax �
max
θ
6

� 	
1� θ2max

2

� 	 ffi Rj j
cmax

θmax � θ3max

6


 �
1þ θ2max

2


 �
ð11:43Þ

We have to be vigilant at this point to be sure we are evaluating Eq. (11.43) to the same level of
approximation as we had in Eq. (11.42), which is correct to third order in θmax. The product of the two
binomials includes a term that is linear in θmax as well as two terms that are third order.

Taxial ¼ Rj j
cmax

θmax � θ3max

6
þ θ3max

2


 �
¼ Rj j

cmax
θmax þ θ3max

3


 �
ð11:44Þ

These calculations demonstrate that the (longer) curved path is traversed in less time than the shorter
(axial) path. We can use Eq. (11.44) with Eqs. (11.40) and (11.42) to approximate the travel time
difference, ΔT.

ΔT ¼ Taxial � Tupper ffi Rj j
cmax

θmax þ θ3max

3


 �
� θmax þ θ3max

6


 �� �
¼ Rj j

cmax

θ3max

6
ð11:45Þ

11.4.4 Under Ice Propagation

Sound propagation under Arctic ice provides an interesting variation on the sound channel, since
sound can be reflected specularly (i.e., θr ¼ θi) from the ice sheet and the speed of sound under the ice
increases monotonically with depth. The lack of solar heating at the surface causes the main thermo-
cline, shown in Fig. 11.11, to be absent under Arctic ice. Typical ray paths under Arctic ice are shown
in Fig. 11.17.

Fig. 11.17 Typical sound speed profile (right) and ray paths (left) under Arctic ice. Depth is in fathoms
(1 fathom ¼ 6 feet ¼ 1.829 m), range is in kiloyards (1 kyd ¼ 0.9144 km), and sound speed is in feet/second
(1 fps ¼ 30.48 cm/s) [14]
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11.4.5 Sound Focusing

A final illustration of these refractive processes in constant sound speed gradients, at a much different
scale than the global sound propagation in the deep sound channel, comes from the evolution of marine
mammals. The Cuvier’s beaked whale (Ziphius cavirostris) is a member of the Ziphiidae family of
toothed whales. It relies on echolocation, but in an aqueous environment, the excessive hydrodynamic
drag and turbulence noise that would be produced by external “ears” (i.e., pinna), like those found on
land mammals, is unacceptable. In this whale, the “ear” is located internally behind the jaw (in green),
as shown in Fig. 11.18.

Figure 11.19 demonstrates that this region acts like a lens. Parallel rays that enter the “channel” are
focused to a single point (see Fig. 11.20). As we have done many times now, we can represent the
distribution of sound speeds in the whale’s mandible using a piecewise-linear approximation. In this

Fig. 11.19 A simplified approximation to the sound channel (i.e., lens) created by the mandibular fat body that assumes
that the sound speed gradient is constant, with its minimum value (1340 m/s) along the axis, and its maximum value
(1400 m/s) at the upper and lower extremes, 6.0 cm above and below the sound channel axis

Fig. 11.18 The sound-sensing organ of the Cuvier’s beaked whale is shown by the small green area in the drawing of
the whale’s head at the right. At the left is a tomographic slice through the mandibular fat body which acts as a sound
channel (i.e., lens) to focus sounds from the water to the whale’s sound-sensing organ. The sound speed of the
mandibular fat body (in yellow at the right) shows the sound speed as a function of location (red corresponding to

1700 m/s and light blue corresponding to 1300 m/s). Diagrams from Soldervilla, et al. [15]
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case, the sound speed gradient g ¼ 60 m/s � 0.06 m ¼ 1000 s�1; hence, |R| ¼ co/g ¼ 1.4 m. Using
Snell’s law, cos θmax ¼ 0.957; hence, θmax ¼ 16.8�. This makes the “focal length” of the whale’s
acoustic lens, dfocal ¼ |R| sin θmax ¼ 40.5 cm, just about the extent of the mandibular fat bodies.

The strategy of using a propagation speed profile to act as a lens is very popular in fiber-optic
telecommunication systems and fiber-optic sensors. As shown in Fig. 11.20, this application is
intended to capture light from an LED or solid-state laser and focus that light into the core of single-
mode optical fibers that typically have waveguide (core) diameters on the order of 10 microns or less.
In sensor applications [16–18], it usually is used to spread the light from an optical fiber over the
surface of some sensing element after which a second GRIN lens injects the modulated light back into
the optical fiber.

The graded-index lens was patented by Nippon Sheet Glass in 1968 and given the trademark
SELFOC®. According to the accepted evolutionary timeline [19], marine mammals had produced the
acoustical equivalent of GRIN lenses for at least 32 million years before the NSG patent was issued.

Talk Like an Acoustician

Cavitation effects Fermat’s principle
Pressure reflection coefficient Critical angle
Pressure transmission coefficient Total internal reflection
Pressure release boundary Angle of intromission
Impedance matching layer Refraction
Antireflective coating Piecewise-linear approximation
Trace wavelength Ray tracing
Specific acoustic impedance Grazing angle
Specular reflection Sound channel
Diffuse reflection SOFAR channel
Snell’s law

Exercises
1. Air-water interface. A 1.0 kHz planewave in water with pressure amplitude, bpj j ¼ 100 Pa, is

normally incident on the air-water interface (i.e., the propagation direction is at a right angle to the
air-water surface; hence, θi ¼ 0�). You may assume the speed of sound in water is 1500 m/s and the
speed of sound in air is 343 m/s. The density of water can be taken as 1000 kg/m3 and of air to be
1.19 kg/m3.
(a) Transmitted amplitude. What is the amplitude of the pressure that is transmitted into the air?
(b) Trace velocity. What is the “trace velocity” of the waves along the interface?

Fig. 11.20 (Left) Ray paths for an ordinary lens. (Right) Ray paths for a graded-index (GRIN) lens. In both cases,
parallel rays enter the lens and are focused to a single point
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(c) Intensities. What is the intensity of the incident wave in the water and the transmitted wave in
air?

(d) Transmission loss. Express the reduction in the intensity of the wave when it crosses the
interface from the water into the air in decibels.

(e) Oblique incidence. If the angle of incidence is increased to 45�, what is the amplitude of the
pressure transmitted into the air?

(f) Trace velocity. What is the “trace velocity” of the waves along the interface?
(g) Transmitted pressure. If the planewave originates in that air and makes an angle of 45� to the

normal, what is the magnitude of the acoustic pressure of the sound in the water?
2. Matching layer. What is the density and sound speed required for a 1.0-cm-thick layer of material

that produces complete transmission of sound from water into steel if the frequency of the sound
wave is 20 kHz? Let ρwater ¼ 1000 kg/m3 and cwater ¼ 1500 m/s, ρFe ¼ 7700 kg/m3, and
cFe ¼ 6100 m/s.

3. Alcohol on water. An acoustics experiment is performed in an aquarium partially filled with water
(c ¼ 1500 m/s and ρm ¼ 1000 kg/m3). At the bottom of the aquarium, an ultrasonic transducer
shoots a narrow beam of sound up to the surface of the water at an angle of 45�, and the sound beam
reflects back down to the bottom of the aquarium where it hits a distance along the bottom that is
16.0 cm from the transducer. This situation is diagrammed in the upper portion of Fig. 11.21. You
may assume the bottom of the aquarium is perfectly absorbing, so the beam does not bounce back
up again and that the problem is entirely two dimensional.
After making the required measurement, the experimenter comes back from lunch and finds that a
layer of ethyl alcohol (c ¼ 1150 m/s and ρm ¼ 790 kg/m3) has carefully been poured on top of the
water in the aquarium. (Good grief!) Now a second beam of sound comes down and hits the bottom
at a distance of 22.0 cm from the ultrasonic transducer, as diagrammed in the lower portion of
Fig. 11.21. How thick is the layer of alcohol on top of the water, assuming that the two liquids do
not mix?

4. Oblique incidence at a water-sediment boundary. A sinusoidal planewave with effective pres-
sure prms ¼ 100 Pa is incident at 45� on a silt bottom with ρsilt ¼ 2000 kg/m3 and csilt ¼ 2000 m/s.
(a) Angle of refraction. What angle does the planewave make with respect to the normal once it

enters the silt bottom?
(b) Transmitted pressure. What is the effective pressure of the wave in the silt bottom?
(c) Angle of intromission. At what angle does the planewave have to approach the silt from the

water so that there is 100% transmission into the silt and no wave reflected back into the water?

Fig. 11.21 (Above) The
sound beam of an ultrasonic
transducer bounces of the
free surface of a water-filled
aquarium. (Below) the
beam is displaced after a
layer of alcohol is added to
the surface
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5. Critical ray and skip distance in a “mixed layer.” The sound speed at the water’s surface is
1490 m/s and increases linearly to co ¼ 1491.5 m/s with depth to the bottom of the mixed layer at
D ¼ 100 m. Below that depth, there is a constant negative sound speed gradient g2 ¼ �0.045 s�1.
For an underwater sound source (projector) at a depth, zs ¼ 60.0 m, determine the critical (grazing)
angle, θo, for the limiting ray that remains trapped in the mixed layer and the “skip distance,” rs,
between the successive locations where the critical ray intersects the surface.

6. Arctic refraction. The water in the Arctic is nearly isothermal. Sound speed increases with depth
because of the pressure effect. Assume the surface temperature is 0 �C, the salinity is 35 ppt, and the
sound speed, in meters/second, as a function of depth, is given by the Eq. (11.46), where z is the
depth below the surface expressed in meters [20].

c zð Þ ¼ 1449þ 0:016z ð11:46Þ

The turning depth of the ray is 2.0 km where the sound speed is c(2 km) ¼ 1481 m/s.

(a) Initial grazing angle. What is the initial angle that ray makes with the water-ice interface? Report
the angle which the ray makes with the water’s surface, not the angle with respect to the normal to
the surface.

(b) Return to the surface. What is the distance along the surface at which the ray returns to the
ice-water interface?
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At this point, we have made a rather extensive investigation into the sounds that excite Helmholtz
resonators as well as the departures from equilibrium that propagate as plane waves through uniform or
inhomogeneous media. We have not, as yet, dealt with how those sounds are actually produced in
fluids. Our experience tells us that sound can be generated by vibrating objects (e.g., loudspeaker
cones, stringed musical instruments, drums, bells), by modulated or unstable flows (e.g., jet engine
exhaust, whistles, fog horns, speech), by electrical discharges in the atmosphere (i.e., thunder), or by
optical absorption (e.g., modulated laser beams). In this chapter, we will develop the perspective and
tools that will be used for the calculation of the radiation efficiency of various sources and
combinations of sources, like the sound reinforcement system shown in Fig. 12.1.

Only sound sources that behave in accordance with linear acoustics will be examined (until
Chap. 15). We will find that the entire problem of both radiation and of scattering from small discrete
objects can be reduced to understanding the properties of a compact source of sound that is small
compared to the wavelength of the sound it is radiating.

“Superposition is the compensation we receive for enduring the limitations of linearity.” Blair Kinsman [2]

We will then combine many of these radiation units, called monopoles, in various ways, including the
option of having different units in different locations with different relative phases. Through superpo-
sition, this will permit construction of other convenient radiators that range from transversely vibrating
incompressible objects (represented by two closely spaced monopoles that are radiating 180� out-of-
phase) to arrays of discrete radiators (e.g., line arrays of various sizes like those shown in Fig. 12.1).
Integration over infinitesimal monopole sound sources will allow modeling of extended vibrating
objects (i.e., continuous, rather than discrete) such as loudspeaker cones, lightning bolts, and laser
beams.

For convenience, our initial vision of a compact source will be assumed to be a pulsating sphere
with radius, a � λ. That pulsating sphere produces a sinusoidally varying volume velocity,

U1 a, tð Þ ¼ ℜe bU að Þejω t
h i

. To generate such a volume velocity, we will let the radius of that sphere,

Fig. 12.1 Photograph of the sound reinforcement system used by the Grateful Dead [1]. Nearly the entire stage is
occupied with discrete vertical line arrays of loudspeakers to radiate the full-frequency spectrum of their music toward the
audience with minimal leakage toward the ceiling where there would be excessive reverberation that would degrade the
intelligibility
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r, oscillates harmonically with a single frequency, ω¼ 2πf. Those radial oscillations can be represented
as r tð Þ ¼ ℜe aþ bξejω t

h i
; hence U1 a, tð Þj j ¼ 4πa2ω bξ��� ��� , where we have made the assumption that

a � bξ��� ���, so that the surface that applies force to the surrounding fluid can be treated as a spherical shell.
As will be demonstrated, an ordinary loudspeaker enclosure, like the one shown in Fig. 12.2, can be

treated as a “compact source,” or monopole, if its characteristic physical dimensions are small
compared to the wavelength of sound produced. If the loudspeaker enclosures were approximated
by a rectangular parallelepiped with volume, V, then “compactness” would require that V1/3 � λ.

The oscillatory motion of the loudspeaker cone will be the source of the oscillatory volume velocity
in the surrounding fluid. If the cone’s effective piston area is Apist, located at x ¼ 0, and its linear

position as a function of time is x1 0, tð Þ ¼ ℜe bxejω t½ �, then bU 0, tð Þ
��� ��� ¼ ω bxj jApist cos ω t þ ϕð Þ.

As long as the compactness criterion is satisfied, it is theoretically impossible to remotely determine
the physical shape of a compact source—if the radiation from a source is that of a monopole, then it is
only the source’s volume velocity, U1(a, t), that is related to the sound pressure, p1(R,t), detected at
distances, R � a, beyond the maximum physical extent of the source.1

Within the constraint of compactness, it does not matter if bU að Þ
��� ��� ¼ 4πa2ω bξ��� ��� or bU 0ð Þ

��� ��� ¼ Apistω bxj j,
the sound radiated into the far field will be identical. Given that realization, then for a compact source,
dimensional analysis guarantees that the solution of the steady-state radiation problem reduces to
calculation of the acoustic transfer impedance, Ztr ¼ bp Rð Þ=bU að Þ, with units that are the same as those
for the acoustic impedances we have studied in our investigation of lumped elements: |Ztr| / ρmc/A,

Fig. 12.2 The loudspeaker
enclosure at the right has an
irregular shape and
provides a total enclosed
volume, V. To be treated as
a “compact source,” we
require V1/3 � λ ¼ c/
f ¼ 2πc/ω. The loudspeaker
cone, visible at the top of
the enclosure, has an
effective piston area, Apist

1 The inability to remotely determine the shape of a sound source that is smaller than the wavelength of the sound it is
radiating is known in both acoustics and in optics as the Rayleigh resolution criterion. See Sect. 12.8.1.
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where ρm is the mean density of the medium, c is its sound speed, and A is a constant with the dimensions
of area [m2]. The transfer impedances for several systems were provided in Sect. 10.7.4 since they were
required to make reciprocity calibrations of electroacoustic transducers.

12.1 Sound Radiation and the “Causality Sphere”

Light travels at the speed of light; sound travels at the speed of sound. Although those statements seem
simplistic, if not tautological, they have calculable consequences that are significant. If a disturbance
has a duration, Δt, then those speeds guarantee that the consequences of that event can initially only
have influence within a distance, d ¼ cΔt, from the source of that disturbance. The term causality
sphere was introduced in Einstein’s Theory of General Relativity as the boundary in spacetime beyond
which events cannot affect an outside observer. Although most commonly associated with cosmologi-
cal issues and black holes, the concept is directly relevant to every form of energy that can only move
through space with a finite propagation speed.

Before attempting a direct calculation of the acoustic pressure radiated by a compact source that is
pulsating in an unbounded fluid medium, it will be instructive to make a simple estimate of the acoustic
transfer impedance between an oscillating source of fluid located at the origin of some coordinate
system and the pressure at some remote location, a distance, R, from the origin, using only the adiabatic
gas law derived in Sect. 7.1.3: pV γ ¼ constant. Before making such a calculation for a source of sound
radiating spherically in three dimensions, it will be reassuring to use the same procedure to reproduce a
result that we have derived earlier by other means.

If we consider a close-fitting piston at the end of an infinite tube of uniform cross-section,2 so that
both the tube and the piston have a cross-sectional area, A, then that piston can launch a sound wave

down the tube. If the piston produces a volume velocity, U 0, tð Þ ¼ ℜe bU 0ð Þejω t
h i

, then the acoustic

transfer impedance, Ztr, of such a tube, provided in Eq. (10.85) or in Eq. (10.106), can be used to
calculate the steady-state acoustic pressure of the traveling wave produced by the piston’s oscillations.

bp ¼ ZtrbU 0ð Þ ¼ ρmc
A
bU 0ð Þ and p1 x, tð Þ ¼ ℜe bpe j ω t�kxð Þ

h i
ð12:1Þ

This result describes a plane wave that propagates down the tube with magnitude, bpj j, while assuming
that thermoviscous dissipation on the tube walls is negligible.

Let’s now calculate this same result in another way. If we consider an interval during which the
piston moves between its extreme positions, the piston will sweep out a volume in one-half of a period,

δV ¼ bU 0ð Þ
��� ��� T=2ð Þ ¼ bU 0ð Þ

��� ���=2f , where T ¼ f�1 ¼ 2π/ω is the period of the piston’s oscillations. In

that time, the piston can “influence” a volume of the fluid within the tube, V ¼ (Aλ/2) ¼ (AcT/2), since
the sound could travel a distance equal to one-half wavelength. Substitution of δV and V into the
adiabatic gas law produces a corresponding δp.

2Making the tube infinitely long is just a computational convenience. Any tube long enough that any reflections from the
end of the tube return to the region of interest long after the interval of interest would suffice. Alternatively, a tube that
had an anechoic termination (e.g., absorbing wedge) or had a matching resistive termination, Rac ¼ ρmc/A, would also
behave as though it were infinitely long.
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pV γ ¼ const: ) δp
pm

¼ �γ
δV
V

) δp ¼ p1 ¼ �γpm
δV
V

bpj j ¼ �γpm
T
2

bU 0ð Þ
Ac T=2ð Þ

�����
����� ¼ γpm bU 0ð Þ

��� ���
Ac

¼ ρmc
2

Ac
bU 0ð Þ
��� ��� ¼ ρmc

A
bU 0ð Þ
��� ��� ð12:2Þ

The result for bpj j is identical to the previous result from Eq. (12.1).
The situation diagrammed in Fig. 12.3 assumes that there is a compact sphere of radius, a, at the

origin of a coordinate system, R ¼ 0. The radius of that sphere oscillates sinusoidally with a radial

displacement magnitude, bξ��� ���. The surface area of that sphere is 4πa2, so if bξ��� ���� a, then when the

sphere goes from its equilibrium value, a, to its maximum radius, aþ bξ��� ���, it will sweep out a volume

change, δV ¼ 4πa2 bξ��� ���. The time it takes to sweep that volume change is one-quarter of the acoustic

period, T/4 ¼ (4f )�1.
Since the speed of sound is c, any “disturbance” created by the source during that quarter period can

only influence the fluid out to a distance, Rλ/4 ¼ c(T/4) from the source. Let’s assume we are making a
video that starts when the spherical source goes through its equilibrium radius, r ¼ a, then continues

Fig. 12.3 The “Sphere of Causality.” This diagram represents two concentric spheres. The inner sphere has a radius, a.

That radius oscillates sinusoidally at a frequency, f ¼ ω/2π, with an amplitude, bξ��� ���. The radius of the inner sphere goes
from its equilibrium value, r ¼ a, to its maximum displacement, r ¼ aþ bξ��� ��� , in one-quarter of an acoustic period:

T/4 ¼ (4f )�1. During that time, the effects of that displacement of fluid volume, δV ¼ 4πa2 bξ��� ���, can only propagate a

distance of one-quarter wavelength from the origin, Rλ/4 ¼ λ/4 ¼ c/4f. That distance is the radius of the causality sphere
since information carried by sound can only propagate at the speed of sound, c. The volume enclosed by that “causality
sphere,” indicated by the dashed circle in two dimensions, is Vλ/4 ¼ (π/48)λ3
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expanding for one-quarter of an acoustic period, T/4. During that time interval, the source changes its
volume by δV ¼ U1(a)/ω, since the radius is changing sinusoidally with time, pushing fluid out ahead
of it. Once again, as in Eq. (12.2), logarithmic differentiation of the adiabatic gas law will relate the
average pressure change, <p1(R)>s, within the causality sphere of volume, Vλ/4 ¼ (4π/3)R3 ¼ (π/48)λ3,
to δV.

p1h is
pm

¼ γ
δV
V λ=4

) p1h is ¼ γpm

bU að Þ
��� ���
ωVλ=4

¼ ρmc
2
bU að Þ
��� ���
ωV λ=4

ð12:3Þ

The final version at the right of Eq. (12.3) again uses the fact that the square of the sound speed in
an ideal gas is given by c2 ¼ γpm/ρm. We can solve for the average acoustic transfer impedance
<Ztr>s ¼ <p1(R)/U1(a)>s between the volume velocity at the surface of the source, U1(a), and the
average pressure, <p1(R)>s, at an observation point just inside the causality sphere at R ¼ λ/4.

Ztrh is ¼
p1 Rð Þh is
U1 að Þ ¼ 6

π2
ρmc
Rλ

ffi 0:61
ρmc
Rλ

ð12:4Þ

As we will see when we solve the exact hydrodynamic equations, this approximate result is close to the
exact result, which produces a numerical pre-factor for Eq. (12.4) that is 0.50 instead of 0.61.

This result is only approximate since the actual acoustic pressure within the “causality sphere” is a
function of the distance from the source. We would have obtained a different result for the numerical
pre-factor in Eq. (12.4) had we let the “event” last one-half period so that the source went from its

minimum radius, a� bξ��� ��� , to its maximum radius, aþ bξ��� ��� . That change in volume, δV, would be

doubled, but the volume of the “causality sphere”would have increased by a factor of eight. Under that
scenario, the numerical pre-factor in Eq. (12.4) would have decreased from 0.61 to 0.15.

This variability is due to the fact that the pressure within the causality sphere is not uniform. We
expect wavelike motion, not simple hydrostatic compression, as assumed by the use of the adiabatic
gas law in Eq. (12.2) to produce δp. This was not an issue in the causality calculation for the duct where
p1 was uniform throughout for a traveling wave in one dimension, since the “average” and the
amplitude were identical. For the three-dimensional case, acoustic pressure amplitude is a function
of distance from the source.

The purpose of such a crude calculation was to demonstrate that the earlier concepts introduced to
produce an equation of state, describe sound in lumped-element networks, or for one-dimensional
propagation are just as relevant to understanding the process of sound radiation. In the next section, the
exact result will be derived when the wave equation is solved exactly for a spherically symmetric wave
expanding in three dimensions.

12.2 Spherically Diverging Sound Waves

The exact result for the acoustic transfer impedance, Ztr, which provides the acoustic pressure at every
remote location, p1(R), in terms of the volume velocity created at the source, U1(a), can be obtained if
we solve the wave equation in spherical coordinates. The Euler equation, also expressed in spherical
coordinates, can be used to match the radial velocity of the fluid to the radial velocity of the compact
spherical source, bvr að Þ, remembering that the representation of the volume velocity of the source as a
pulsating sphere is only a mathematical convenience. The result will be applicable to any compact
source, independent of its shape.
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When the wave equation was derived in Cartesian coordinates in Sect. 10.2, the result was
generalized by expressing the wave equation in vector form by introducing the Laplacian operator,
∇2 ¼ ∂2/∂x2 þ ∂2/∂y2 þ ∂2/∂z2. For the compact source in an unbounded medium, a spherical
coordinate system would be appropriate (and convenient) since all directions are equivalent; we expect
no variation in the sound field with either polar angle, 90� � θ � �90�, or azimuthal angle
0� 	 φ < 360�. In spherical coordinates, the Laplacian can be written in terms of r, θ, and φ [3].

∇2 ¼ 1
r2

∂
∂r

r2
∂
∂r

� �� �
þ 1
r2 sin θ

∂
∂θ

sin θ
∂
∂θ

� �
þ 1
r2 sin 2θ

∂2

∂φ2 ð12:5Þ

Since the space surrounding our source is assumed to be isotropic, hence spherically symmetric, p1(R)
does not depend upon θ or φ, so derivatives with respect to those variables must vanish. Equation
(12.5) can be substituted into the linearized wave equation.

∇2p ¼ 1
r2

∂
∂r

r2
∂p
∂r

� �� �
¼ 1

c2
∂2p
∂t2

ð12:6Þ

The “product rule” for differentiation can be used to demonstrate that Eq. (12.6) is equivalent to
Eq. (12.7).

∂2 rpð Þ
∂r2

¼ 1
c2

∂2 rpð Þ
∂t2

ð12:7Þ

This is just a new single parameter (i.e., quasi-one-dimensional) wave equation that describes the
space and time evolution of the product of radial distance from the origin and the acoustic pressure at

that distance, (rp); hence the solution to Eq. (12.7) is prð Þ ¼ ℜe bCe j ω t
krð Þ
h i

, where bC is a constant

(phasor) that may be complex to account for any required phase shift and an arbitrary designation of
the time we chose to make t¼ 0. We will specify that complex (phasor) amplitude, bC, by matching this
solution to the volume velocity of the source at its surface, r ¼ a. The two solutions to Eq. (12.7)
correspond to outgoing (ωt – kr) or incoming (ωt þ kr) spherical waves, also referred to as divergent
and convergent waves, respectively. Since we are considering radiation from a sound source in a
homogeneous, isotropic, unbounded medium (i.e., no reflections), we will now focus only on the
outgoing solution.

p1 r, tð Þ ¼ ℜe
bC
r
e j ω t�krð Þ

� �
ð12:8Þ

The magnitude of the acoustic pressure decreases with distance from the source. As will be
demonstrated in the derivation of Eq. (12.18), the total radiated power, Πrad, is independent of distance
from the source’s acoustic center (i.e., the origin of our spherical coordinate system) if dissipation is
ignored.

To match the velocity of the fluid to the velocity of the source at its surface, r¼ a, Eq. (12.8) can be
substituted into the linearized Euler equation.

ρm
∂v
!

∂t
¼ �∇

!
p ð12:9Þ

The gradient operator, ∇
!
, can also be expressed in spherical coordinates [3].
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∇
!
p r, θ,φð Þ ¼ ∂p r, θ,φð Þ

∂r
br þ 1

r
∂p r, θ,φð Þ

∂θ
bθ þ 1

r sin θ
∂p r, θ,φð Þ

∂φ
bφ ð12:10Þ

Again, for our spherically symmetric case, p1(r, t) is independent of θ and φ, so only the first term
on the right-hand side of Eq. (12.10) is required to calculate the radial component of the wave velocity,
vr (r, t). The application of the product rule generates two terms.

ρm
∂vr
∂t

¼� ∂
∂r

bC
r
e j ω t�krð Þ

� �
¼ bC
r2
e j ω t�krð Þ þ jk

bC
r
e j ω t�krð Þ ¼ bC

r
e j ω t�krð Þ 1

r
þ jk

h i ð12:11Þ

Since we have assumed single-frequency harmonic time dependence, the time derivative in Eq. (12.11)
can be replaced by jω while recalling that c ¼ ω/k.

vr r, tð Þ ¼ ℜe
p1 r, tð Þ
jωρm

1
r
þ jk

� �� �
¼ ℜe

p1 r, tð Þ
ρmc

1þ 1
jkr

� �� �
ð12:12Þ

12.2.1 Compact Monopole Radiation Impedance

Equation (12.12) can be rewritten to provide the specific acoustic impedance, zsp ¼ bp=bvr , for
propagation of outgoing (diverging) spherical waves. As with plane waves, the sign of the specific
acoustic impedance is reversed for incoming (convergent) spherical waves.

zsp � bpbvr ¼ ρmc

1þ 1=jkr
	 
 ¼ ρmc

krð Þ2
1þ krð Þ2 þ jρmc

kr

1þ krð Þ2 ¼ ρmc cosϕe
jϕ ð12:13Þ

All three versions of Eq. (12.13) are useful, although in different contexts. The rightmost version
suggests a geometric interpretation based on Fig. 12.4.

For very large values of kr, the curvature of the spherical wave fronts is slight, and the wave fronts
(locally) are approximately planar. For kr ¼ 2πr/λ � 1, zsp ¼ bp=bvr ffi ρmc , for the propagation of
outgoing (diverging) spherical waves, as shown by the solid line in Figs. 12.5 and 12.6 that approaches
that constant value as ka increases. The specific acoustic impedance becomes a real number, and the
acoustic pressure, bp, and the radial component of the fluid’s acoustic particle velocity, bvr , are very
nearly in-phase, ϕ ≌ 0�.

Fig. 12.4 Geometric interpretation of Eq. (12.13) representing the phase, ϕ, of the (complex) specific acoustic
impedance, zsp, for an outgoing spherical wave. The phase angle, ϕ, between the acoustic pressure, bp, and the radial
component of the acoustic particle velocity, bvr, is ϕ ¼ cot�1(kr)
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It is instructive to reproduce Fig. 12.5, but with a logarithmic ka axis as shown in Fig. 12.6. The
similarity between the shape of the real and imaginary portions of the radiation impedance and the real
and imaginary parts of the elastic modulus in Fig. 4.25 and Fig. 5.20, or the sound speed and
attenuation in fluorine gas in Fig. 14.4, is not coincidental. It is a consequence of any linear response
theory that is constrained by causality, as specified in the Kramers-Kronig relations of Eqs. (4.77) and
(4.78), discussed in Sect. 4.4.4. Just as in those examples, the real and imaginary parts of the radiation
impedance are not independent [4].

Fig. 12.5 The complex
radiation impedance of a
monopolar sound source,
zsp, divided by the fluid
medium’s characteristic
impedance, ρmc, from
Eq. (12.13). The solid line
is the real part of the
radiation impedance, and
the dashed line is the
imaginary part. For small
ka, the slope of the
imaginary part is initially
proportional to frequency,
indicating mass-like
behavior of the fluid at the
monopole’s surface

Fig. 12.6 The complex
radiation impedance of a
monopolar sound source,
zsp, divided by the fluid
medium’s characteristic
impedance, ρmc, from
Eq. (12.13), except that the
horizontal axis is now
logarithmic. The solid line
is the real part of the
radiation impedance, and
the dashed line is the
imaginary part. Plotted this
way, the similarity to
Fig. 4.25 and Fig. 5.20, for
the real and imaginary
elastic modulus of a
viscoelastic solid, and
Fig. 14.3 or Fig. 14.4, for
the sound speed and
attenuation in F2, is
apparent

12.2 Spherically Diverging Sound Waves 551

https://doi.org/10.1007/978-3-030-44787-8_4#Equ77
https://doi.org/10.1007/978-3-030-44787-8_4#Equ78


In the opposite limit, at ka¼ 2πa/λ� 1,3 on the surface of the radially pulsating source, the specific
acoustic impedance is almost purely imaginary, as shown by the dashed line in Figs. 12.5 and 12.6.

lim
ka!0

zsp að Þ� � ffi jρmcka ¼ jωρma ð12:14Þ

Recalling our experience with the simple harmonic oscillator, Eq. (12.14) suggests that the fluid

surrounding the source is behaving like an effective mass. The magnitude of the force, bF að Þ
��� ���, acting on

the pulsating sphere can be obtained by integrating the pressure, bp að Þ, over the surface of the sphere to
produce the mechanical reactance, xrad(a) ¼ ℑm[Zmech(a)], that the pulsating sphere “feels” at its
surface.

ℑm Zmech½ � ¼ℑm
bF að Þbvr að Þ

" #
¼ 4πa2 ρmωað Þ

¼ωρm 4πa3
	 
 ¼ 3ωρm

4π
3
a3

� �
for ka � 1

ð12:15Þ

The volume of the spherical source is V ¼ (4π/3)a3, so the effective (inertial) hydrodynamic mass of
the fluid surrounding the spherical source is equal to three times the mass of the fluid displaced by the
source radiating sound in the small ka limit.

This is critical for the design of sound sources that operate in dense fluids (i.e., liquids rather than
gases) since the source has to provide sufficient power to accelerate and decelerate the surrounding
fluid as it pulsates. We generally represent this load as a radiation reactance, xrad. As will be discussed
shortly, in Sect. 12.3, for a spherical gas bubble in a liquid, this effective mass is the dominant source of
inertia for simple harmonic bubble oscillations.

Although the largest component of the specific acoustic impedance at the surface of the sphere is
imaginary (i.e., mass reactance), the real (i.e., resistive) component must be non-zero, because
radiation of sound is the mechanism by which energy from the source is propagated into the
surrounding fluid. The second version of zsp in Eq. (12.13) is useful here since it provides the real
and imaginary contributions individually.

ℜe lim
ka!0

zsp að Þ� � �
� rrad ffi ρmc kað Þ2 ð12:16Þ

It is worthwhile pointing out that real impedances are commonly associated with dissipative
processes that convert acoustical or vibrational energy to heat. In the case of radiation, power is
removed from the source, but our calculations have been lossless (i.e., we have been using the Euler
equation, not the Navier-Stokes equation). The real component of the radiation impedance is an
“accounting loss” rather than an irreversible increase in entropy. For radiation, the energy propagates
away; it is not absorbed, its expelled.

The total, time-averaged radiated acoustic power, hΠradit, is the rate at which the source does
“p�dV” work on the surrounding fluid for the in-phase components of the acoustic pressure, bp að Þ, and
the (radial) acoustic particle velocity, bvr að Þ, at the source’s surface.

3 A convenient way to express the compactness criterion, ka � 1, for a compact spherical source is to say that the
equatorial circumference of the source, 2πa, is much less than the wavelength: 2πa � λ.
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Πradh it ¼
1
T

ðT
0

bF að Þ  bvr að Þdt dS ¼ 1
T

ðT
0
bp að Þj j dV að Þ

dt

���� ���� cosϕdt
¼ 1
T

ðT
0
bp að Þj j bU að Þ

��� ��� cosϕdt

ð12:17Þ

The component of bp að Þ that is in-phase with bvr að Þ can be expressed in terms of the radiation resistance,
rrad, which is the real part of the specific acoustic impedance, zsp(a), on the surface of the sphere. Since

ℜe bp að Þ½ � ¼ rrad bvr að Þj j and bU að Þ
��� ��� ¼ 4πa2 bvr að Þj j , we can express Eq. (12.17) in terms of rrad andbvr að Þ.

Using the expression for rrad in Eq. (12.16) and expressing bvr að Þ in terms of the magnitude of the

source strength, bU að Þ
��� ���, provide a compact expression for the time-averaged power, hΠradit, radiated

from the source based on the real component of the specific acoustic impedance at the source’s surface,
ℜe[zsp(a)] � rrad.

Πradh it ¼
π
2
ρmc

λ2
bU að Þ
��� ���2 ¼ π

2
ρm
c

f 2 bU að Þ
��� ���2 ð12:18Þ

The right-hand version of this result demonstrates why it is more difficult to radiate low frequencies.
Either the velocity of the surface needs to be increased, which frequently causes distortion, or the
loudspeaker’s area must be increased, assuming that (ka)2 � 1. This is why the enclosures for
reproduction of bass utilize loudspeakers of large diameter to provide adequate source strength,bU að Þ
��� ���, as suggested in Fig. 12.1.

12.2.2 Compact Monopole Acoustic Transfer Impedance

To determine the amplitude constant, bC, in Eq. (12.8), we can consider our pulsating sphere of mean
radius, a, and radial velocity, bvr að Þ ¼ jωbξ, and evaluate Eq. (12.12) at r ¼ a.

vr a, tð Þ ¼ ℜe jωbξejω t
h i

¼ ℜe
bC

aρmc
e j ω t�kað Þ 1þ 1

jka

� �� �
ð12:19Þ

The compactness requirement guarantees that ka � 1, so e�jka ffi 1 and [1 þ (1/jka)] ≌ (1/jka).

Substituting these near-field limits into Eq. (12.19), along with the fact that bU að Þ
��� ��� ¼ 4πa2 bvr að Þj j ,

uniquely determines the complex (phasor) pressure amplitude constant, bC.
bC ¼ ωρmcbξka2 ¼ ρmck

4π
bU að Þ ð12:20Þ

Substitution of bC back into Eq. (12.8) provides the exact solution for the acoustic pressure, p1(r,t),

in terms of the magnitude of the source’s volume velocity, bU að Þ
��� ��� , and the wavelength of sound,

λ ¼ (2π/k).

p1 r, tð Þ ¼ ρmck
4πr

bU að Þ
��� ���ℜe e j ω t�krð Þ

h i
¼ ρmc

2rλ
bU að Þ
��� ���ℜe e j ω t�krð Þ

h i
ð12:21Þ

12.2 Spherically Diverging Sound Waves 553



The exact solution for the acoustic transfer impedance, Ztr, can be calculated from Eq. (12.21),
providing the solution to this steady-state radiation problem.

Ztrj j � bp Rð ÞbU að Þ

�����
����� ¼ ρmc

2Rλ
¼ 0:50

ρmc
Rλ

ð12:22Þ

This result compares closely to the “causality sphere” approximation of Eq. (12.4) that was based on
the adiabatic gas law but ignored the wavelike variation in pressure with position that is expressed
exactly in Eq. (12.8).

The acoustic transfer impedance will now let us express the acoustic pressure, bp Rð Þ, at some remote
point in the far field (kR � 1), a distance, R, from the sound source’s acoustic center, R ¼ 0. This
compact sound source of source strength, |U1(a)|, radiates sound with a wavelength, λ ¼ c/f ¼ 2πc/ω.
At that location in the far field, we can assume that bp Rð Þ is in-phase with bvr Rð Þ, based on Eq. (12.13),
and that their ratio is given by the progressive plane wave value of the characteristic impedance zsp
(R) ¼ ρmc. This simplifies the calculation of the far-field time-averaged intensity of the sound,

I
!

Rð Þ
D E

t
, using Eq. (10.36).

I
!

Rð Þ
D E

t
¼ ½ð Þℜe bp Rð Þbv�r Rð Þ� � ¼ bp Rð Þj j2

2ρmc

¼ 1
2ρmc

ρmc
2Rλ

bU að Þ
��� ���� �2

¼ ρmc

8R2λ2
bU að Þ
��� ���2 ð12:23Þ

The time-averaged acoustic intensity is inversely proportional to the square of the distance from the
sound source, but the time-averaged total radiated power, hΠradit, is independent of distance, since all
forms of dissipation have been neglected.

Πradh it ¼ 4πR2 I Rð Þh it ¼
π
2
ρmc

λ2
bU að Þ
��� ���2 ð12:24Þ

Of course, in the absence of any dissipation in the surrounding fluid, this is the same radiated power we
calculated “locally” by using the radiation resistance “felt” by the source, rrad (a), on its surface (i.e., in
the near field), expressed in Eq. (12.18).

12.2.3 General Multipole Expansion*

Since the monopole is such a significant concept for our understanding of radiation and scattering, it is
worthwhile to review the assumptions and processes that led to the results of Eqs. (12.13), (12.15),
(12.18), (12.19), (12.21), (12.22), and (12.23). Fundamentally, the three-dimensional problem of
Eq. (12.5) was transformed to the quasi-one-dimensional problem of Eq. (12.6) based on a claim of
spherical symmetry (i.e., isotropy) and the assertion that the shape of the pulsating source of volume
velocity was irrelevant (and unknowable based on the far-field radiation pattern),1 so that only the

source strength, bU að Þ
��� ���, was significant for determination of the radiated sound field.

That assertion of source-shape independence was not proven, since it would be necessary to solve
the full three-dimensional problem, then determine under what circumstances the higher-order multi-
polar contributions are negligible. The solution to the full three-dimensional problem, using the
Laplacian of Eq. (12.5) in the wave equation, is a product of spherical Bessel functions, jn (kr), and
the associated Legendre polynomials, Pm

l cos θð Þ.
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p r, θ, ϑ; tð Þ ¼ ℜe
XbCn,m,le

jω t jn krð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1
2π

l� mð Þ!
lþ mð Þ!

s
Pm
l cos θð Þ cos mφð Þ

sin mφð Þ

 �" #
ð12:25Þ

The constants, bCn,m,l, are determined in the same way as we determined bC in Eq. (12.8); by matching
the velocity components of the wave (using Euler’s equation) to the velocity distribution on the surface
of the source. The complete set of functions provided in the infinite summation of Eq. (12.25) can be fit
to a source of any shape where the various parts of the surface are moving in any direction and with any
relative phase, although the result is still restricted to a single frequency [5]. Our solution of Eq. (12.8)
corresponds to the spherically symmetric n¼ 0 spherical Bessel function, j0 (kr)¼ sin (kr)/(kr), which
forces m ¼ l ¼ 0, so that there is no angular dependence.4

Our analysis, based on a compact spherical source, produced results that are applicable to sound
sources that have no resemblance to a sphere, for example, a circular piston executing simple harmonic
oscillations mounted in an enclosure that is a rectangular parallelepiped or the body of a dog (e.g.,

Fig. 12.2). The results obtained only depend upon specification of the source strength, bU að Þ
��� ���, and our

ability to enclose the source within a spherical shell having a circumference much less than the
wavelength (i.e., ka � 1) that is pulsating with a complex radial oscillation amplitude, bξ , making

the source strength magnitude, bU að Þ
��� ��� ¼ 4πa2ω bξ��� ���.

After using hydrodynamic mass to calculate the resonance frequency of a bubble in the next section,
we will continue to avoid dealing with the complete mathematical solution of Eq. (12.25) by using the
principle of superposition to sum the acoustic fields of simple monopole sources. This will facilitate
calculation of the behavior of more complex sources that lack spherical symmetry and produce a
significant angular dependence of their radiated sound fields.

12.3 Bubble Resonance

Having calculated the hydrodynamic mass associated with the radial oscillations of a compact
spherical source in Eq. (12.15), this concept can be applied to an interesting and important lumped-
element fluidic resonator for which the hydrodynamic mass makes the entire inertial contribution.
A gas bubble in a liquid will have an equilibrium radius, a, that is determined by the competition
between the surface tension that will cause the bubble to collapse and the gas pressure inside the bubble
that will resist the external force of the liquid pressure and of the surface tension.

The static pressure difference, pin – pout, across a curved interface is given by Laplace’s formula that
can be expressed in terms of the principle radii of curvature and the surface tension, α [6].

pin � pout ¼ α
1
R1

þ 1
R2

� �
ð12:26Þ

For a spherical bubble, R1 ¼ R2 ¼ a, where a is the radius of the bubble, so the pressure difference
caused by the surface tension is 2α/a. If the gas inside the bubble is the vapor of the surrounding liquid,
then there will be a minimum bubble radius, Rmin, determined when the vapor pressure and Laplace

4 Solutions to the full three-dimensional wave equation are available in most textbooks on advanced engineering
mathematics or mathematical physics. This version was taken from E. Butkov, Mathematical Physics (Addison-
Wesley, 1968).
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pressures are equal. In the case where a < Rmin, the bubble is unstable and will collapse by squeezing
the vapor back into the liquid state.

For a “clean” air-water interface at 20 �C, the surface tension, α ¼ 72.5 � 10�3 N/m, and
Pvap ¼ 2.3 kPa, so Rmin ¼ 0.063 mm ¼ 63 μm. As we will see, our interests are concentrated on
larger bubbles, many of which may contain a non-condensable gas (e.g., air) that stabilizes the bubbles
against collapse.

The gas pressure, pin, within a stable bubble surrounded by water, is usually determined by the
depth of the bubble below the water’s surface. Since pin ¼ po þ ρmg z, where po is atmospheric
pressure, g is the acceleration due to gravity, ρm is the mass density of the water (not the gas!), and z is
the distance below the free surface, as discussed in Sect. 8.3. If the mean radius of the bubble, a, is

displaced from equilibrium by an amount, bξ��� ���, while maintaining its spherical shape, the excess force,

δF bξ� �, that the pressure applies to the bubble’s surface can be determined from the adiabatic gas law,

if we assume that a > δκ, so the compressions and expansions are nearly adiabatic, again using
Eq. (12.2).

δpin ¼ �γpin
δV
V

¼ �γpin
4πa2 bξ��� ���

4π=3ð Þa3 ¼ �3γpin

bξ��� ���
a

ð12:27Þ

Integrated over the surface area of the bubble, this excess pressure, δpin ¼ bpj j, produces an excess

force, δF bξ� � , which is proportional to the amplitude of the oscillatory change in radius, bξ , and
motivates an expression that is equivalent to Hooke’s law:

δF ¼ 4πa2
	 


δpin ¼ �12πaγpin bξ��� ��� ) Keff ¼ 12πaγpin ð12:28Þ

The minus signs in Eqs. (12.27) and (12.28) arise because the pressure increases when bξ��� ��� decreases.
By analogy with Hooke’s law, the effective stiffness constant, Keff, is just the magnitude of the
coefficient of such displacements, bξ.

The only inertial mass of any significance is the hydrodynamic mass, meff, of the fluid that must
accelerated in and out radially as the bubble’s radius changes. This hydrodynamic mass can be
calculated using Eq. (12.15).

meff ¼ 3ρmV ¼ 4πa3ρm ð12:29Þ

That effective mass can be combined with the effective gas stiffness of Eq. (12.28) to create a simple
harmonic oscillator with a resonance frequency, fo ¼ ωo/2π.

ωo ¼
ffiffiffiffiffiffiffiffi
Keff

meff

s
¼ 1

a

ffiffiffiffiffiffiffiffiffiffi
3γpin
ρm

r
ð12:30Þ

Here, it is important to remind ourselves that pin is the gas pressure but ρm is the density of the
surrounding water. If the restoring force due to surface tension is included, Eq. (12.30) can be modified
to incorporate that additional restoring force (stiffness) [7].

ωo ¼ 1
a
ffiffiffiffiffiffi
ρm

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3γpin � 2α

a

r
ð12:31Þ
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Although the addition of the surface tension appears to decrease the resonance frequency in
Eq. (12.31), the surface tension increases the frequency since pin also would now include the Laplace
pressure of Eq. (12.26). In applying either Eq. (12.30) or Eq. (12.31) to evaluate ωo, it is important to
remember that pin is the pressure of the gas inside the bubble, with γ being determined by the gas, but
ρm is the density of the surrounding fluid since it is the dominant source of inertance (i.e., kinetic
energy storage).

Equations (12.30) and (12.31) were first derived by Minnaert in 1933 [7]. Although his frequency
was calculated under adiabatic conditions for spherical bubbles, Strasberg has shown that even for
spheroidal bubbles with a ratio of major-to-minor axes of a factor of two, the oscillation frequency
differs from the Minnaert result by only 2%5 [8]. Figure 12.7 shows some recent table-top laboratory
measurements of bubble resonance frequencies vs. bubble radius which agree with Eq. (12.30) to
within experimental error [9].

12.3.1 Damping of Bubble Oscillations

The damping of the bubble resonances is a consequence of losses due to radiation and due to boundary
layer thermal relaxation at the air-water interface (as it was for the spherical compliance of a Helmholtz
resonator calculated in Sect. 9.4.4). The reciprocal of the quality factor that characterizes each of these
dissipative effects can then be summed, as in Eq. (9.40) or Eqs. (10.58) and (10.61), to determine Qtotal

in the adiabatic limit where a � δκ.

1
Qtotal

¼ 1
Qth

þ 1
Qrad

ð12:32Þ

Using Eq. (9.38), the time-averaged power dissipation per unit area due to thermal relaxation, _eth, is
quadratic in the amplitude of the oscillating pressure within the bubble, bpj j2 , and the total, time-
averaged power dissipation, hΠthit, will be _eth times the surface area of the bubble.

Fig. 12.7 Resonance
frequencies of millimeter-
sized bubbles whose
resonance frequency was
measured acoustically in a
desktop aquarium [9]. At a
frequency of 1.5 kHz,
δκ ¼ 68 μm � a, placing
these measurements well
within the adiabatic limit
(see Fig. 12.9). The solid
line represents the full
theory of Commander and
Prosperetti [10], which is
very nearly the same as the
Minnaert theory from
Eq. (12.30) in this limit

5 This insensitivity of resonance frequency to shape is a consequence of adiabatic invariance as demonstrated in the
discussion of enclosures that cannot be modeled by separable coordinate systems, in Sect. 13.3.5.
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_eth ¼ γ � 1
4γ

bpj j2
pm

ωδκ ) Πthh it ¼ 4πa2 _eth ¼ γ � 1
γ

πa2ωδκ
bpj j2
pm

ð12:33Þ

The total energy stored in the bubble oscillation is equal to the maximum potential energy density,
(P.E./Vol.)max, times the volume of the bubble, (4π/3)a3. The potential energy density was calculated in
Eq. (10.35).

P:E:
V

� �
max

¼ 1
2
bpj j2
ρmc2

¼ 1
2
bpj j2
γpin

) Estored ¼ 2πa3
3

bpj j2
γpin

ð12:34Þ

The quality factor due to thermal relaxation losses on at the spherical gas-water interface can be
expressed using Eq. (B.2).

Qth ¼ ωEstored

Πthh it
¼ 2

3 γ � 1ð Þ
a
δκ

for a > δκ ð12:35Þ

Note that this result is identical to the result for Qth calculated for thermal relaxation loss on the
surface of the spherical volume with radius, R, of a Helmholtz resonator in Eq. (9.48). From Eq. (9.14),
δκ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ=ρmcPω

p
, so δκ is proportional to ω�½. From Eq. (12.30), a is proportional to ω�1, so the

thermal quality factor,Qth, is proportional to ω
�½. In the adiabatic limit, the thermal damping, which is

proportional to the reciprocal of the Qth, increases with the square root of frequency, as shown in
Fig. 12.8.

Fig. 12.8 The damping
constant for an air-filled
bubble in water that is
shown on the vertical axis is
the reciprocal of the quality
factors of Eqs. (12.35) and
(12.37). The observed peak
in the thermal damping and
in the total damping occurs
where the behavior of the
gas inside the bubble is
transitioning between
adiabatic at lower
frequencies to isothermal at
higher frequencies. This is
shown explicitly in
Fig. 12.9. The viscous
damping, unimportant
below 500 kHz, is due to
shear stresses at the
air-water interface [11].
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The time-averaged power lost to acoustic radiation is given by Eqs. (12.18) and (12.24). The

bubble’s source strength, bU að Þ
��� ���, is related to the internal gas pressure oscillation amplitude, bpj j, by the

adiabatic gas law in the form that appears in Eq. (12.2).

bpj j ¼ γpinð Þ δV
V

¼ γpinð Þ
bU að Þ
��� ���
ω V

) bU að Þ
��� ��� ¼ ω V

γpin
bpj j ð12:36Þ

Substitution of Eq. (12.36) into the expression for quality factor used in Eq. (12.35) determines the
quality factor due to the power radiated by the bubble, Qrad. This reduces to another even simpler form
after various substitutions.

Qrad ¼ ωEstored

Πrad
¼ cH2O

ffiffiffiffiffiffiffiffiffiffiffiffi
3ρH2O

γpin

s
ð12:37Þ

The radiation quality factor, Qrad, as well as its reciprocal, corresponding to the radiative loss, is
frequency independent, so by Eq. (12.30), it is also independent of the resonant bubble’s radius. This
behavior is illustrated in Fig. 12.8, taken from Devin [11].

The peak in the dissipation due to thermal relaxation on the air-water interface visible in Fig. 12.8
corresponds to the behavior of the gas changing over from adiabatic for larger bubbles at lower
resonance frequencies to isothermal for smaller bubbles at higher frequencies. Such behavior is
characteristic of a single relaxation time process like that shown in Fig. 4.25. This adiabatic-to-
isothermal transition is shown explicitly in Fig. 12.9, also from Devin [11], which plots the thermal
damping and the gas stiffness as a function of the ratio of the bubble’s diameter, 2a, to the thermal
penetration depth, δκ.

To develop some appreciation for these results, consider an air-filled bubble with a diameter of
1.0 mm (a¼ 5� 10�4 m) that is located 10 meters below the surface of the water, so that pin ¼ 1.0MPa.
Since 3γpin ffi 4.2 MPa� 2α/a¼ 290 Pa, Eq. (12.30) can be used to calculate the Minnaert frequency,
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Fig. 12.9 (Left) The thermal damping factor is plotted as a function of the ratio of bubble diameter, 2a, to the thermal
penetration depth, δκ: 2ϕ1¼ 2/δκ, or 2ϕ1Ro¼ 2a/δκ. The damping has its peak at about affi (5/2) δk. (Right) The transition
of the stiffness of the gas within the bubble from adiabatic behavior for large bubbles to isothermal for small bubbles is
also plotted in terms of 2ϕ1Ro ¼ 2a/δκ [11]
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fo ¼ ωo/2π ¼ 20.6 kHz. At that frequency, the thermal penetration depth in air, δκ, is 5.9 microns.
Using Eq. (12.35), Qth ¼ 144, and using Eq. (12.37), Qrad ¼ 70, making Qtotal ¼ 47.

12.4 Two In-Phase Monopoles

Armed with our understanding of the radiation from a compact source (monopole) in an unbounded
homogeneous isotropic fluid medium, we can begin our investigation of more complex radiators, like
the line arrays filling the stage in Fig. 12.1 and the piston source (woofer) of Fig. 12.2. We will start by
consideration of just two monopole sources that are oscillating in-phase,6 with equal amplitudes, at
some frequency, f ¼ ω/2π, which have their acoustic centers separated by a distance, d, as shown in
Fig. 12.10.

To calculate the radiated sound field of that pair of in-phase sources (sometime called a bipole), we
will use the principle of superposition to combine the pressures produced by the two monopoles that
are treated individually. There is an interesting philosophical point implicit in that approach, since the
behavior of the individual monopoles was predicated on their radiation pattern being spherically
symmetric. Clearly that symmetry has been broken for the case of two compact sources radiating
simultaneously. The reason that we can use the superposition of spherically symmetric sources to
produce a non-spherically symmetric radiation pattern is (again) the fact that we are restricting
ourselves to “linear acoustics.”

We are assuming that the radiation from one source does not change either the properties of the
medium or the radiation behavior of the other source. There are cases where this assumption is
violated, sometimes with disastrous consequences [12]. The understanding of the inter-element
interactions in high-amplitude SONAR array applications became important in the late 1950s when

Fig. 12.10 Two compact (monopole) sound sources separated by a distance, d, that are radiating in-phase (as indicated
by their “+” signs). The line through their centers (red) defines a unique direction. The plane (green) is the perpendicular
bisector of the line joining the centers of the two sources. The vector, r! (blue), is the distance from the intersection of the
line and plane to an observation point that makes an angle, θ, with that symmetry plane. Due to the rotational symmetry
about the line, the radiated sound field is independent of the azimuthal angle, φ

6 It is probably worthwhile mentioning that a requirement for the existence of a constant phase relationship between two
oscillators is that they must be oscillating at the same frequency. If they were oscillating at different frequencies, their
relative phases would be changing linearly with time.
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high-powered search SONAR arrays were developed using the then newly available lead-zirconate-
titanate piezoelectric ceramic materials [13, 14].

We will restrict ourselves to the case where superposition is valid and add the pressure fields of the
two monopole sources. Before calculating the pressure field by this method, we can examine a few
simple cases. If the separation of the two sources is much closer than a wavelength, d � λ, then we
have essentially doubled the source strength, and our expression for the acoustic transfer impedance of
a monopole in Eq. (12.22) tells us that we have doubled the acoustic pressure and quadrupled the
radiated acoustic power, based on Eq. (12.18) or Eq. (12.24).

If the separation of the two sources is exactly one-half wavelength, d ¼ λ/2, then when the sound
produced by the first source reaches the location of the second source, the two sources will be radiating
180� out-of-phase. Along the direction of the line joining the two sources, known by those who
specialize in array design as the end-fire direction (θ ¼ �90�), the radiated pressure will be zero if
the strengths of the two individual monopole sources are identical. Along the equatorial plane (θ ¼ 0

�
),

shown in Fig. 12.10, the distance to either source is identical so the pressure on that plane is doubled.
Those who specialize in array design call the direction defined by that plane as the broadside direction.

To calculate the sound field of the bipole produced at any observation point a distance, r
!�� ��, from the

midpoint of the line joining the sources at an angle, θ, above the equatorial plane, as shown in
Figs. 12.10 and 12.11, we can simply sum the spherically symmetric radiation produced by the
individual sources, given by Eq. (12.21), paying particular attention to their relative phases in the far
field.

Fig. 12.11 Coordinate system for superposition of the two in-phase compact sources separated by a distance, d. The
distance from the center of the two sources to the observation point is indicated by r

!, which makes an angle, θ, with the
plane that is the perpendicular bisector of the line joining the two sources. The distance from the upper source is r2, and
the distance from the lower source is r1. The dashed perpendicular lines show the difference in path lengths between the
two sources and the vector r!. In this diagram, the upper sources are closer than r by a distance, Δr2 ffi (d/2) sin θ. The
lower source is farther by a distance, Δr1 ffi (d/2) sin θ
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p r
!�� ��, θ; t� �

¼ ℜe
bC1

��� ���
r
!
1

�� �� e j ωt�k1 r
!

1j jþϕð Þ þ
bC2

��� ���
r
!
2

�� �� e j ωt�k2 r
!

2j j�ϕ2ð Þ
24 35 ð12:38Þ

For the bipole, we can let ϕ1 ¼ ϕ2 ¼ 0, since the sources are in-phase and let k1 ¼ k2 ¼ k ¼ ω/c, since
the only way they can maintain a fixed phase relation is if they have the same frequency, ω1 ¼ ω2 ¼ ω.
We are assuming the source strengths are identical, having included their relative phases explicitly

allowing their amplitudes to be represented by a scalar, C ¼ bC1

��� ��� ¼ bC2

��� ��� ¼ ρmck bU að Þ
��� ���=4π, according

to Eq. (12.20).
The two distances between the observation point and the individual sources can be expressed in

terms of the path length differences, Δr, that are indicated in Fig. 12.10 by the lines to the dashed
perpendiculars to r

!
.

The sum expressed in Eq. (12.38) can be re-written to incorporate the bipole assumptions and the
geometry of Fig. 12.10.

p r
!�� ��, θ; t� �

¼ ℜe
e�jkΔr1

1þ Δr1= r
!j j

� �þ eþjkΔr2

1� Δr2= r
!j j

� �
24 35 C

r
!�� �� e j ω t�k r

!j jð Þ
8<:

9=; ð12:39Þ

The factor at the far right of Eq. (12.39) has the form of an ordinary diverging spherical wave. The
terms in square brackets require an interpretation that will become most transparent if we consider an
observation point that is far from the two sources, in terms of their separation, r

!�� ��� d. In that case,

Δr1 ffi Δr2 � r
!�� ��.

In the far field, r
!�� ��� d, we can neglect the small differences created by Δr in the denominators of

the terms in the square brackets of Eq. (12.39), since those involve the ratio, Δr= r
!�� ��� 1. Since

Δr appears within the arguments of exponentials, we will interpret their effects by expressing the
path length differences applying simple trigonometry in Fig. 12.11 and Garrett’s First Law of
Geometry.

Δr1 ffi Δr2 ffi d
2
sin θ ð12:40Þ

Substitution of this far-field (i.e., r
!�� ��� d) result into Eq. (12.39) produces a pressure distribution,

p(r, θ, t), with a directional component involving the angle, θ. Given a source strength, the ampli-
tude depends only upon the separation of the sources, d, and the wavelength of the radiated sound,
λ ¼ 2π/k.

p r
!�� ��, θ; t� �

ffi ℜe e�jkΔr1 þ eþjkΔr2
� � C

r
!�� �� e j ωt�k r

!j jð Þ
( )

¼ ℜe e�jkd2 sin θ þ ejk
d
2 sin θ

h i C

r
!�� �� e j ωt�k r

!j jð Þ
( ) ð12:41Þ

The trigonometric identity, cos θ ¼ 1=2ð Þ e j θ þ e�j θ
	 


, allows expression of the final result in terms of

a product of the axial pressure along the equatorial plane, θ ¼ 0�, pax r
!�� ��� �

¼ p r
!�� ��, θ ¼ 0

�
� �

, and a

directionality factor, H(θ).
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p r
!�� ��, θ; t� �

¼ pax r
!�� ��; t� �

H θð Þ ¼ ℜe
2Ce j ω t�k r

!j jð Þ
r
!�� ��

( )
cos

kd
2

sin θ

� �� �
ð12:42Þ

First, let’s check that pax r
!�� ��� �

H θð Þ in Eq. (12.42) produces the intuitive results with which this

investigation was initiated.

H θð Þ ¼ cos
kd
2

sin θ

� �
ð12:43Þ

If d� λ and ϕ ¼ 0�, then kd/2 ¼ πd/λ� 1; hence H (θ) ≌ cos 0� ¼ 1 for all θ, demonstrating that the
combination of two sources behaves as a single source with twice the source strength, since

pax r
!�� ��� �

¼ 2C= r
!�� �� . If d ¼ λ/2, then kd/2 ¼ π/2, so when sin θ ¼ �1, H(θ) ¼ cos (�π/2) ¼ 0;

hence, we observe no sound radiated along the direction of the line joining the centers of the two
monopole sources (θ ¼ �90�), again, as expected.

With some confidence in Eqs. (12.42) and (12.43), we can now explore arrangements of the two
sources that produce sound fields that may not be as intuitively obvious. From Eq. (12.43), it is easy to
see that H(θ) ¼ 1 anytime that (kd/2) sin θn ¼ nπ, where n ¼ 0, 1, 2, . . . There will be n directions, θn,
where the sound radiated by the bipole will be maximum when sin θn ¼ 2nπ/kd ¼ nλ/d with n 	 d/λ.
Similarly,H(θ)¼ 0 if (kd/2) sin θ¼ (2mþ 1)π/2, wherem¼ 0, 1, 2, . . . There will bem directions, θm,
where the sound radiated by the bipole will be zero when sin θm¼ (2mþ 1)π/kd¼ (2mþ 1)λ/2d, with
(2 m þ 1) 	 2d/λ.

Figure 12.12 shows the resulting beam pattern in two and three dimensions for d/λ ¼ 3/2, or
kd¼ 3π. There will be two nodal directions: m¼ 0, so sin θm ¼ 0 ¼ 1/3 and θm ¼ 0¼ 19.5�, and m¼ 1,
so sin θm ¼ 1 ¼ 3/3 and θm ¼ 1 ¼ 90�. Note that if m¼ 2, (2 mþ 1)π/kd¼ 5π/3π > 1. There will also be
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Fig. 12.12 Two representations of the directionality factor, H(θ), of the sound field radiated by a pair of in-phase
compact simple sources of equal amplitude that are separated by d ¼ 3λ/2, corresponding to kd ¼ 3π. (Left) The
two-dimensional representation of H (θ) provided in Eq. (12.43) that exploits the rotational symmetry about the axis
joining the two sources to illustrate the essential structure of the directionality for that two-element array. (Right) The
body of revolution formed by H(θ) is three-dimensional surface. This figure is rotated from the orientation at the left to
provide a better view of the node that occurs along the polar directions. [Directionality plots courtesy of Randall Ali]
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two maximal (i.e., anti-nodal) directions. With n ¼ 0, sin θn ¼ 0 ¼ 0, so θn ¼ 0 ¼ 0�. With n ¼ 1, sin
θn ¼ 1 ¼ 2/3, so θn ¼ 1 ¼ 41.8�.

Recall that the axial symmetry guarantees that these directional nodes (i.e., zero pressure directions
for sources of identical source strength) and anti-nodes (i.e., directions of maximum sound pressure)
define cones in three dimensions, as shown in Fig. 12.12 (right).

12.4.1 The Method of Images

A more important feature of H(θ), as given in Eq. (12.43) for the bipole configurations shown in
Figs. 12.10 and 12.11, is that along the equatorial plane (θ ¼ 0�), H(θ) always exhibits a local
maximum: dH(0)/dθ ¼ 0. Based on the Euler equation, expressed in spherical coordinates in
Eqs. (12.9) and (12.10),7 the particle velocity vθ(θ ¼ 0�), that is everywhere normal to the equatorial
plane (θ ¼ 0�), must vanish. Since no fluid passes through that plane, the radiation field of the bipole
would be unchanged if the equatorial plane was replaced by an infinite rigid boundary. This fact
provides a rigorous motivation for incorporation of boundaries by the “method of images” that allows
us to place “phantom” sources outside the fluid volume of interest to satisfy a boundary condition; in
this case, the division of an infinite space into a semi-infinite “half-space” through the introduction of a
rigid, impenetrable boundary. This result demonstrates that if a single monopole were placed a
distance, d/2, in front of a rigid, impenetrable surface, the fact that the component of the fluid’s
acoustical particle velocity that is normal to that surface vanishes allows us to satisfy that boundary
condition as long as we remain aware that the half-space behind the boundary is not a legitimate
domain for the solution.

To initiate the discussion of the reflection of plane waves in Chap. 11, we considered the case of an
echo bouncing off a large rigid surface depicted in Fig. 11.1. There, to satisfy the boundary condition,
we postulated a counter-propagating wave to cancel the fluid particle velocity created by the incoming
wave. Now we have shown explicitly that such a wave could be created by an “image source” that
would also satisfy the boundary condition. In addition, the method of images has provided a solution
that is not restricted to plane waves, although it contains the plane wave solution in the limit that d/
2 � λ. The image solution also reinforces the fact that the acoustic pressure on the boundary is twice
that which would have been produced by the same source radiating into an infinite (rather than semi-
infinite) medium.

Figure 12.13 is a two-dimensional projection of an example where a spherical source of sound is
located a distance of five wavelengths from a rigid reflector. An image source, an equal distance behind
the reflector, is oscillating in-phase with the source to guarantee that the normal particle velocity at the
rigid reflector will be zero. The resultant sound field within the fluid provides the classic “two-slit”
interference pattern that was discovered by Thomas Young in 1803 for light waves [15]. Figure 12.13
is Young’s original diagram that shows the same result as shown for a single light source in front of a
rigid boundary. Young first discovered interference effects when he heard the “beats” produces by two
sound sources radiating with slightly different frequencies.

Why did we not observe these interference effects when we investigated the reflection and
refraction of plane waves in Chap. 11? The answer is simple: we did not look! In Chap. 11, we
assumed that the plane waves consisted of pulses that were of sufficiently short duration that they
interfered at the boundary but did not overlap far from the boundary, as shown in Fig. 11.1. The current

7Note that the definition of the polar component of the velocity vθ, given in Eqs. (8.7) and (8.8), is vθ ¼ ( jω rρm)
�1(∂p/

∂θ) so vθ would diverge at r ¼ 0. This is not a problem because r has its minimum value at r ¼ a.
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treatment of a spherical source of sound adjacent to a rigid impenetrable boundary assumed continuous
waves. If we return to Fig. 11.1, we see the incident plane wave fronts (blue) and the reflected plane
wave fronts (green) produce pressure doubling where they intersect and silence half-way between.

The method of images has allowed us to solve the rather challenging problem of the sound field of a
spherically radiating sound source in the proximity of a rigid boundary for an arbitrary separation
between the source and the boundary. If we examine the opposite limit from that shown in Fig. 12.13
(or Fig. 12.14 for light) and consider a source that is much closer to the boundary than the wavelength
of the sound it is radiating, d/2� λ or kd� 1, then we see that the source produces everywhere twice

Fig. 12.14 Diagram representing the superposition of two in-phase light sources located at points A and B, separated by
nine wavelengths, from the original paper by Thomas Young [15]. Amplitude doubling is apparent along the line starting
at the left from the midpoint between A and B to the right of the diagram between D and E. This result is known as the
“Young’s double-slit experiment” and was central to the debate about the wavelike vs. the corpuscular nature of
light [16].

Fig. 12.13 The compact spherical source at the left (black) is placed a distance of five wavelengths, d/2 ¼ 5λ, from a
rigid boundary indicated by the hatched black line. The condition that the normal components of velocity at the boundary
vanish is satisfied by placing an image source (red), oscillating in-phase with the real source (black), at the same distance
behind the boundary. In this figure, the two sources are separated by ten wavelengths so kd¼ 2πd/λ¼ 20π. We visualize
the resulting sound field with green circles, representing pressure maxima, separated by one wavelength, emanating from
the real source and orange circles emanating from the image source. Behind the boundary, the circles are shown as
dashed since there is no actual sound in that region. Within the fluid, any place where green and orange circles touch, the
pressure will be doubled. Midway between those intersections, there will always be silence
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the pressure it would have if the boundary were not present. This case is commonly referred to as a
baffled source, the “baffle” being the rigid boundary.

Since the acoustic pressure and the associated acoustic particle velocity are both doubled, the
intensity of the sound is increased by a factor of four, although the radiated power is only doubled,
since we can now only integrate the radiated intensity over a hemisphere. How is it possible that the
same source can produce twice the acoustic pressure and radiate twice the acoustic power just by
placing it very near a rigid boundary?

The answer is built into our assumptions regarding the behavior of the source. Throughout this
discussion of radiation, we have assumed that the volume velocity of the source is independent of the
load that it “feels” from the surrounding fluid, that is, we have assumed a “constant current” source.8

The presence of the boundary doubled the pressure at the source (and elsewhere), so the specific
acoustic impedance of the fluid at the source’s surface, as expressed in Eq. (12.13), zsp að Þ ¼bp að Þ=bvr að Þ, is doubled. It is possible that this increase in radiative resistance (though not hydrody-
namic mass which depends upon the equilibrium fluid mass density) could reduce the volume velocity
of a real source.

We can play the same trick again if we want to calculate the sound pressure radiated by a compact
source of constant source strength that is located in a corner, as shown schematically in Fig. 12.15. If
again we assume that d/2 � λ or kd � 1, then we see that the source produces everywhere four times
the pressure it would have if the boundaries were not present, again assuming the real source provides a
constant volume velocity.9 The intensity is now 16 times as large as that radiated by the same source in

Fig. 12.15 Schematic representation of a compact spherical source located near the intersection of two rigid impene-
trable plane surfaces indicated by the hatched black lines. In this case the source (black) creates three image sources (red).
The upper left and bottom right image sources cannot create the zero normal acoustic particle velocity on the two
orthogonal rigid surfaces without the third image source at the bottom left to provide a symmetrical quartet that ensures
the orthogonal cancellation

8 For discussion of “constant force” acoustic sources (e.g., magnetohydrodynamic transducers), see G. W. Swift and S. L.
Garrett, “Resonance reciprocity calibration of an ultracompliant transducer,” J. Acoust. Soc. Am. 81(5), 1619–1623
(1987).
9 This is the reason that the user’s manual for the Bose “SoundLink Mini” recommends that those small speakers be
placed near a wall or in a corner to enhance their bass response.
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the absence of the two orthogonal boundary planes, but the radiated power is only 4 times as large since
the intensity is now integrated only over one quadrant of a sphere.

This approach can be repeated to create a sound field for a source near the intersection of three
rigid, orthogonal, impenetrable planes by reflecting the arrangement in Fig. 12.15 about the third
orthogonal plane, creating a total of eight sources (i.e., seven image sources). This results in 8 times the
pressure, 64 times the intensity, and 8 times the radiated power (by integration over the octet of a
sphere).

Needless to say, the effects of rigid impenetrable walls are very important for sound reinforcement
applications in rooms, both for enhancement of bass response when kd < 19 and for variation in the
sound field amplitude with position for higher frequencies when kd > 1. The interference effects
diagrammed in Figs. 12.13 and 12.14 produce significant variability in the acoustic intensity for
different frequencies in different locations. Such variation is highly undesirable in a critical listening
environment such as a recording studio (and its control booth) or a concert venue. We will revisit this
problem from a different perspective (i.e., “normal modes”) when we analyze the sound in three-
dimensional enclosures and waveguides in Chap. 13 of this textbook.

As we could see by going from one perfectly reflecting plane to two and then to three orthogonal
reflecting planes, the application of the method of images can start to become complicated. If fact, if we
considered only two parallel planes with a single source located in between, an infinite number of image
sources would be required, since each image source would generate another behind the opposite
boundary and so on ad infinitum [17]. The method has been applied successfully to more complex
problems, like sound in a wedge-shaped region [18], similar to a gently sloping beach, or curved surfaces
[19], and is popular for solving boundary-value problems in other fields, such as electrostatics (i.e., image
charges) near conducting or dielectric interfaces and in magnetostatics due to image current loops [20].

12.5 Two Out-Of-Phase Compact Sources (Dipoles)

We can repeat the previous analysis for two out-of-phase monopoles, separated by a distance, d, using
the same analytical approaches that produced our bipole results in Eq. (12.42). This out-of-phase
combination of two compact monopoles is known as a dipole. The results for the dipole will be useful,
important, and dramatically different, since the out-of-phase superposition leads to cancellation of
the radiated acoustic pressure in the limit that the separation of the two out-of-phase sources becomes
very small compared to the wavelength of sound, kd � 1.

If we designate the upper source in Fig. 12.11 as having a phase ϕ2 ¼ 180� ¼ π radians with
ϕ1 ¼ 0�, but retain our other assumptions, k1 ¼ k2 ¼ k ¼ ω/c, ω1 ¼ ω2 ¼ ω, and let bC1 ¼ �bC2 and

C ¼ bC1

��� ��� ¼ ρmck bU að Þ
��� ���=4π, then we can proceed by changing the sign of one term within the square

brackets in Eq. (12.39).

p r
!�� ��, θ; t� �

¼ ℜe
e�jkΔr1

1þ Δr1= r
!j j

� �� eþjkΔr2

1� Δr2= r
!j j

� �
24 35 C

r
!�� �� e j ωt�k r

!j jð Þ
8<:

9=; ð12:44Þ

Using the trigonometric relation of Eq. (12.40) to again represent the path length differences, the
far-field pressure of the dipole can be expressed in analogy with the bipole result of Eq. (12.41).

p r
!�� ��, θ; t� �

ffi ℜe e�jkd2 sin θ � ejk
d
2 sin θ

h i C

r
!�� �� e j ωt�k r

!j jð Þ
( )

ð12:45Þ
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The trigonometric identity sinθ ¼ (2j)�1(e j θ � e�j θ) allows the final result to be expressed in terms of

a product of the maximum pressure along the axial direction θ ¼ 90�, pax r
!�� ��� �

¼ p r
!�� ��, 90�

� �
, and a

directionality factor, Hdipole(θ).

p r
!�� ��, θ� �

¼ pax r
!�� ��� �

Hdipole θð Þ ¼ ℜe �j
2C

r
!�� �� e�jkr sin

kd
2

sin θ

� �� �( )

¼ℜe �j
ρmck

2π r
!�� �� e�jkr bU að Þ

��� ��� sin
kd
2

sin θ

� �� �( )

¼ℜe �j
ρmc

r
!�� ��λ e�jkr bU að Þ

��� ���Hdipole θð Þ
( ) ð12:46Þ

Comparison of the final expression in Eq. (12.46) to the expression for the pressure produced by a

monopole in Eq. (12.21) shows that pax r
!�� ��� �

is twice the pressure produced by a single monopole.

This is as expected. If the two anti-phase sources are separated by odd-integer multiples of the half-
wavelength, d ¼ (2n þ 1)λ/2, then the pressure along the line joining their centers will be twice that of

a single monopole with source strength, bU að Þ
��� ���. Unlike the bipole, the directionality factor, Hdipole(θ),

suppresses acoustic pressure along the equatorial plane, θ ¼ 0� for kd � 1. The dipolar radiation
patterns are shown in Fig. 12.16 for kd � 1 and in Fig. 12.16 for kd ¼ 3π.

If d � λ, then kd/2 ¼ πd/λ � 1; hence we can use the small-angle Taylor series approximation of
sin x ≌ x to express Hdipole(θ) ≌ (kd/2) sin θ, which has a maximum value of (kd/2) at θ ¼ 90� and at
θ ¼ 0� is zero. This is what we would expect; the path lengths to both sources are always equal for any
observation point on the equatorial plane, and the anti-phased sources will always sum to zero pressure
along that direction. In the small kd limit, the maximum pressure is always smaller than that of a
monopole of equal source strength by a factor of (kd).

bpdipole=bpmonopole / kd for kd � 1 ð12:47Þ

A compact dipole source is always a less efficient radiator than a monopole of equivalent source
strength (i.e., volume velocity).

It is worthwhile pointing out that the reduction in radiated pressure, symbolized by Eq. (12.46), is
the reason that all loudspeakers intended for radiation of low-frequency sound are placed in some kind
of enclosure so that the source strength due to the oscillations of the speaker’s diaphragm that are
produced by the back surface of the speaker cone does not cancel the volume velocity generated by the
cone’s front surface.10

Just as we used the bipole to produce the sound field of a source at an arbitrary distance from a rigid
boundary, the dipole produces a “pressure release surface” along the entire equatorial plane. This is a
convenient way to satisfy the boundary condition for a source submerged below the air-water interface.
If we imagine the situation depicted in Fig. 12.13, but let the black and red simple sources be 180�

out-of-phase, then the plane bisecting the line connecting the two sources will support oscillatory fluid
flow perpendicular to the plane but no oscillatory pressure. The cancellation of the acoustic pressure
along that plane is clearly seen in Fig. 12.12 if the green circles radiating from the black source

10 There are schemes, such as the bass-reflex enclosure, analyzed in Sect. 8.8, that use an acoustical network, like a
Helmholtz resonator or transmission line, to allow the back-side volume velocity to add to that from the front side in a
way that they are more nearly in-phase over the frequencies of interest.
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represent pressure maxima and the orange circles radiating from the red source represent pressure
minima. Where those circles intersect the pressure sums to zero.

If the separation of the two anti-phase sources is greater than a half-wavelength (i.e., kd � π), then
the dipole will generate a directional pattern with multiple nodal surfaces (again, those surfaces are
cones in three dimensions) and multiple maxima, as shown in Fig. 12.17. This is just what we saw for
the bipole in that limit, shown in Fig. 12.11, which also set kd ¼ 3π.

From Eq. (12.46), it is easy to see that Hdipole(θ)¼ 0 anytime that (kd/2) sin θm ¼ mπ, where m¼ 0,
1, 2, . . . There will be m directions, θm, where the sound radiated by the dipole will be zero when sin
θm ¼ 2mπ/kd ¼ mλ/d where m 	 d/λ. Similarly, Hdipole(θ) ¼ 1 if (kd/2) sin θn ¼ (2n þ 1)π/2 where
n¼ 0, 1, 2, . . . There will be n directions, θn, where the sound radiated by the dipole will be maximum
when sin θn ¼ (2n þ 1)π/kd ¼ (2n þ 1)λ/2d where (2n þ 1) 	 2d/λ.

Figure 12.18 shows the beam pattern for d/λ ¼ 2, or kd ¼ 4π. There will be three nodal directions,
m ¼ 0, so sin θm ¼ 0 ¼ 0� and sin θm ¼ 1 ¼ 1/2 so θm ¼ 1 ¼ 30� and sin θm ¼ 2 ¼ 2/2 and θm ¼ 2 ¼ 90�.
Note that if m ¼ 3, (2 m þ 1)π/kd ¼ 7π/4π > 1. There will be two maximal directions. With n ¼ 0, sin
θn ¼ 0 ¼ ¼, so θn ¼ 0 ¼ 14.5�. With n ¼ 1, sin θn¼1 ¼ 3=4, so θn ¼ 1 ¼ 48.6�.
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Fig. 12.16 Dipole directional pattern, H(θ), for two compact spherical sources separated by a distance, d, that is
significantly less than one wavelength of sound: kd � 1. (Left) The radiation is bi-directional as shown by this
two-dimensional plot. It is important to recognize that the directionality function in Eq. (12.46) dictates that the two
lobes are out-of-phase with respect to each other. (Right) Body of revolution formed by H(θ) is a three-dimensional
representation of the dipole’s directivity, viewed along the equatorial plane, to show the null. [Directionality plots
courtesy of Randall Ali]
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Fig. 12.17 Two representations of the directionality, H(θ), produced by the sound field radiated by a pair of compact
simple sources of equal amplitude which are 180� out-of-phase (i.e., a dipole) that are separated by 3λ/2, corresponding to
kd ¼ 3π. (Left) The two-dimensional representation of Hdipole(θ), provided in Eq. (12.46), that exploits the rotational
symmetry about the axis joining the two sources to provide the essential structure of the directionality for that
two-element array. (Right) The body of revolution formed by H(θ) is three-dimensional. This figure is tilted slightly
from the orientation at the left to provide a better view of the anti-node that occurs along the polar directions. Comparison
of this figure to Fig. 12.12 shows that they are identical, differing only in the reversal of the nodes and anti-nodes along
polar and equatorial directions. [Directionality plots courtesy of Randall Ali]
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Fig. 12.18 Two representations of the directionality, H(θ), for the sound field radiated by a pair of compact simple
sources of equal amplitude which are 180� out-of-phase (i.e., a dipole) that are separated by 2λ corresponding to kd¼ 4π.
(Left) A two-dimensional representation that shows the nodal directions are θnull ¼ 0�, 30�, and 90�. The maxima occur
for θmax ¼ 14.5� and 48.6�. (Right) Body of revolution formed by H(θ) is a three-dimensional representation of the
directionality of the sound field that is rotated to show both the nodal surface that is the equatorial plane (θnull ¼ 0�) and
the two conical lobes above and below the equatorial plane. [Directionality plots courtesy of Randall Ali]
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12.5.1 Dipole Radiation

The compact monopole and the compact dipole play a central role in our understanding of both the
radiation and the scattering of sound by objects placed in an otherwise uniform medium. In Chap. 10,
the speed of sound was interpreted as being determined by the complementary (and independent)
influences of the compressibility and the inertia of the medium. If an object that is much smaller than
the wavelength of sound has a compressibility that differs from the surrounding medium, then the
incident sound’s pressure will cause that object to compress more or compress less than the
surrounding medium. If we think of a bubble in a fluid, then the incident sound will cause the bubble
to be compressed and expanded more than the surrounding fluid. That forced oscillatory change in the
bubble’s volume is equivalent to the generation of a volume velocity that will be the source of a
spherically spreading sound wave producing an acoustic pressure described in Eq. (12.21) and
radiating sound power to the far field as described in Eqs. (12.18) and (12.24), within an otherwise
unbounded medium.

Since we still chose to limit our attention to amplitudes that are small enough that linear superposi-
tion holds, the scattered wave and the original disturbance that excited the bubble’s oscillations will
interfere. In case of a bubble, if the frequency of excitation produced by an incident sound wave is
close to the Minnaert frequency of Eq. (12.30), the scattered pressure can even exceed the incident
pressure.11 If the scattering object is less compressible than the surrounding medium, then the less
compressible object can be represented as producing a volume velocity that is out-of-phase with the
incident pressure wave as a means of satisfying the boundary conditions at the surface of that less
compressible object.

The characteristic of the medium that is complementary to the compressibility for determining
sound speed is the medium’s mass density. If a compact object has the same density as the surrounding
medium, then the object will experience the same acoustic velocity as that induced in the surrounding
medium by the incident sound wave. If the compact object is denser than the surrounding medium,
then the object’s velocity will be less than that created by the incident sound wave in the surrounding
medium and will thus produce relative motion between the object and the medium. For an object that is
less dense, a bubble, for example, then its induced motion will be greater than the surrounding fluid’s
motion, again producing relative motion between the object and the surrounding medium but with
opposite sign. In both cases, the relative motion will produce dipole radiation.

This previous discussion was intended to motivate the need to produce a description of
dipole radiation that is as complete and detailed as the description of monopole radiation provided
in Sect. 12.2. The solution of most other problems in radiation and scattering can be expressed in
terms of the superposition of compact monopoles and compact dipoles. For monopoles, the compact-
ness criterion was expressed in terms of the equivalent radius, a, of the monopole, and the
wavenumber, k ¼ 2π/λ, such that ka � 1.3 For a dipole, the compactness criterion is expressed in
terms of the separation, d, as depicted in Figs. 12.10 and 12.11, of the two out-of-phase sources of
volume velocity, kd � 1.

As before, our expression for the pressure radiated by a dipole, in Eq. (12.46), can be used to
produce the corresponding fluid velocity using the Euler equation.

11 A similar effect can be observed by bringing a Helmholtz resonator close to an unbaffled loudspeaker driven at a
frequency close to the resonator’s natural frequency. When the resonator is close to the speaker, the sound level increases.
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p r
!�� ��, θ� �

¼ ℜe �j
ρmc

λ r
!�� �� bU að Þ
��� ���kd sin θ

( )

¼ ℜe �jk2
ρmc

4π r
!�� �� d

!bU að Þ
��� ��� cos θp

( )
if kd � 1

ð12:48Þ

In this expression, the magnitude of the product of the source strength and the separation of the two

out-of-phase monopoles has been combined, d
!bU að Þ
��� ��� . That combination is known as the dipole

strength and is sometimes given a different symbol.
I like to leave the dipole strength in the format of Eq. (12.48) to remind myself that there is now a

unique direction, d
!
, associated with the dipole strength. It is also important to remember that bU að Þ

��� ��� is
the volume velocity of one of those two monopoles, just as it was throughout the derivation that
resulted in Eq. (12.46).

The appearance of the unique direction, d
!
, breaks the spherical symmetry exploited to derive the

monopole radiation, although azimuthal symmetry is still preserved (i.e., rotation about the d
!
-axis has

no physical significance). Since Eqs. (12.46) and (12.48) depend upon the angle, θ, measured with

respect to the elevation above the plane, which is the perpendicular bisector of the d
!
, as shown in

Figs. 12.10 and 12.11, the right-hand version of Eq. (12.48) introduces the polar angle, θp, that is
measured from line joining the two out-of-phase monopoles. The amplitude of the particle velocity will
also have a polar component, bvθ, as well as a radial component, bvr. This is dictated by the expression
for the pressure gradient in spherical coordinates that was provided in Eq. (12.10).

To capture both the near- and far-field behavior, the pressure produced by the compact dipole can be
expanded in a Taylor series by taking the gradient of the monopole pressure and multiplying that

gradient by the separation, d
!
.

pdipole r
!�� ��, θ, t� �

¼ ℜe �k2
ρmc d

!bU að Þ
��� ���
4π r

!�� �� cos θp 1þ j

k r
!�� ��

 !
e j ω t�k r

!j jð Þ
8<:

9=; ð12:49Þ

In the far field, for kr � 1, Eq. (12.49) reduces to Eq. (12.48). As with the monopole, the dipole
pressure field varies inversely with distance, r

!�� ��, from the dipole. Use of the Euler equation and the
expression for the pressure gradient in Eq. (12.10) provides expressions for the radial and polar
components of the particle velocity produced by dipole radiation.

bvr ¼ �k2
d
!bU að Þ
��� ���
4π r

!�� �� cos θp 1þ 2j

k r
!�� ��� 2

k r
!�� ��� �2

0B@
1CAe j ω t�k r

!j jð Þ ð12:50Þ

bvθ ¼ �jk
d
!bU að Þ
��� ���
4π r

!�� ��2 sin θp 1þ j

k r
!�� ��

 !
e j ω t�k r

!j jð Þ ð12:51Þ

The existence of a polar component to the velocity field should not be surprising. If we think of the
dipole as one monopole expelling fluid during one-half of the acoustic cycle that is ingested by the
other monopole, followed by a role reversal during the next half-cycle, there has to be a component of
the fluid’s velocity, at least close to the two out-of-phase monopoles, that has a polar contribution, in
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addition to the radial contribution. The fluid must shuttle back and forth, as illustrated by the
streamlines in Fig. 12.22.

The radial component of the time-averaged radiated intensity is proportional to the in-phase product
of pressure and particle velocity.

Irh it ¼ ρmc
k2 d

!bU að Þ
��� ���
4π r

!�� ��
0@ 1A2

cos 2θp for ka � 1 ð12:52Þ

There are no components of the intensity vector, I
!
, in either the polar or azimuthal directions: Iθp ¼

Iϕ ¼ 0. The total radiated power, hΠdipoleit, is just the integral of Eq. (12.52) over all directions, but
hIrit / r�2, so the radiated power will be independent of distance, as it was for monopoles, since
dissipation is still being neglected.

Πdipole

� �
t
¼ 2πr2

ðπ
0
Irh it sin θp dθp ¼ ρmc

4π2

3λ4
d
!bU að Þ
��� ���2 ¼ ρmω

4

12πc3 d
!bU að Þ
��� ���2 ð12:53Þ

This result has made use of the following definite integral:ðπ
0
cos 2θp sin θp dθp ¼ 2

3
ð12:54Þ

The pressure and velocity can be used to calculate the compact dipole’s mechanical impedance,
Zdipole, of the compact dipole, r ¼ a.

Zdipole að Þ ¼ ρmc πa2ð Þ
3

kað Þ4 þ jω
2

ρm
4πa3
3

� �
1þ kað Þ2

2

� �
ð12:55Þ

As with the monopole result in Eq. (12.16), the dipole’s radiation resistance is the real part of
Eq. (12.55). For the compact monopole, the radiation resistance is proportional to (ka)2, while for
the compact dipole, it is proportional to (ka)4. Higher-order combinations have radiation resistances
that are proportional to even higher powers of (ka). For a quadrupole, rrad / (ka)6, as addressed in
Problem 10 and in Eq. (12.136).

Again, as in the case of the monopole’s mechanical impedance in Eq. (12.15), the imaginary
contribution is reminiscent of the mass reactance. In the dipole case, the effective mass,meff, is one-half
the mass of the fluid that is displaced in the limit that (ka) � 1. When applied to two out-of-phase
monopoles, this additional mass has to be accelerated and decelerated. As will be seen in Sect. 12.6,
this is also the hydrodynamic mass that must be added to a rigid sphere executing oscillatory motion in
a fluid, as it was in Chap. 8, Problem 3 [21].

In general, the hydrodynamic mass is proportional to the “order,” m, of the monopoles that are
combined to create the compact source [22].

meff

ρm
4πa3
3

	 
 ¼ 3
mþ 1ð Þ  1  3  5    2mþ 1ð Þ½ � ð12:56Þ

For a monopole, m¼ 0 so the ratio is 3, as calculated in Eq. (12.15). For the dipole, m¼ 1, so the ratio
is ½, as calculated in Eq. (12.55). For a quadrupole, m ¼ 2 so that ratio would be 1/15.
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12.5.2 Cardioid (Unidirectional) Radiation Pattern

The assumption behind our calculation of radiation from a compact spherical source was that its
radiation pattern was omnidirectional. Our solution for the dipole source resulted in patterns that were
bi-directional for two identical anti-phased sources that were separated by less than one-half wave-
length, as shown in Fig. 12.16. In some applications, we seek a source (or receiver) that is unidirec-
tional [23]. One way to achieve this goal is by combining a compact (ka � 1) omnidirectional
(spherical) source and a compact (kd � 1) dipole.

The fact that the two lobes of the compact dipole’s directional pattern are 180� out-of-phase with
each other means that when a dipole is added to an omnidirectional source, their fields will add in one
direction but will subtract in the opposite direction. If the far-field pressure amplitude of the omnidi-
rectional source and the dipole are equal, then the sound field in one direction will be twice that of the
omnidirectional source operating in isolation, but in the opposite direction, the omnidirectional source
and the dipole will exactly cancel, and no sound will be radiated along that direction.

Such a superposition of a dipole and an omnidirectional source produces a cardioid directionality
pattern, shown in Fig. 12.19, which appears to be heart-shaped in its two-dimensional representation.
Although our definition of angle, θ, was based on elevation above the plane normal to the line
connecting the source pair, as shown in Figs. 12.10 and 12.11, a more common choice is the polar
angle measured from the line joining the two sources. To avoid confusion, the polar angle will be
subscripted, θp, in this section as it was when it was introduced in the previous section.

Hdipole θp
	 
 ¼ cos θp if kd � 1 ð12:57Þ

Equation (12.47) demonstrates that the ratio of the far-field radiated sound pressure from a dipole
source to that from an omnidirectional compact spherical sound source is frequency dependent. Since
the spacing, d, between the sources that produce the dipole is usually fixed, it is necessary to provide a
frequency-dependent attenuation to the omnidirectional source if the cardioid pattern is to be
maintained over a range of frequencies. This can be accomplished by high-pass filtering the signal
that drives the omnidirectional source. The sum will produce a constant directional pattern as long as
kd < 1, although the amplitude of the signal will grow linearly with frequency from low frequencies up

Fig. 12.19 The
superposition of an
omnidirectional source and
a compact dipole produces
the cardioid directional
pattern shown in a
two-dimensional
representation. The pattern
is called a cardioid because
it resembles a heart-shaped
♥ pattern. The amplitude
is twice that of the
omnidirectional source
for θp ¼ 90� and is zero
for θp ¼ �90�.
[Directionality plot
courtesy of Randall Ali]
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to the frequency where kd ≌ 1. If the amplitude of the dipole and monopole contributions are equal,
their sum produces a cardioid directional function, Hcardioid (θp).

Hcardioid θp
	 
 ¼ 1þ cos θp ð12:58Þ

12.5.3 Pressure Gradient Microphones

It is more common to produce a cardioid pattern for microphones than for sound sources. One obvious
method would be to use two closely spaced omnidirectional microphone cartridges. The sum of their
signals would provide an omnidirectional output that could be high-pass filtered (electronically), while
their difference would provide the dipole signal that could be combined with the filtered “omni” signal
to produce a properly frequency-weighted sum.

More clever systems can exploit acoustical networks that allow the sound pressure to access both
sides of a single diaphragm. This approach was patented by Benjamin Bauer [24] and was the basis of
the Shure Model 55S “Unidyne®” microphone, shown in Fig. 2.20 (right). That iconic microphone
celebrated the 75th anniversary of its initial production in 2014 [25].

Bauer’s approach is shown schematically in Fig. 2.19 (left). In that diagram, the front of the
diaphragm is exposed directly to the sound pressure, bpfront . The rear of the diaphragm is facing a
volume (compliance) that is exposed to the same sound wave, though at a slightly different position,
through a flow resistance, frequently provided by fabric, a mesh screen, or a combination of both.
Figure 12.20 is a simplification of the microphone in Fig. 2.19 (left) that eliminates the transduction
mechanism and shows only the diaphragm (without its suspension) and a rear-access port filled with a
porous medium acting as a flow resistance, Rflow, providing access to the volume (compliance), V,
where the internal pressure within that volume, bpback, applies a force to the rear of the diaphragm.

In Fig. 12.20, the microphone is shown in two different orientations with respect to a propagating
plane wave that is assumed to be approaching from the left. Before determining the values of Rflow and
V that would produce a cardioid directional pattern from the resulting motion of a single diaphragm, it
will be useful to consider the case where Rflow ¼ 0, so that the pressure at the port is applied directly to
the rear of the diaphragm.

If Rflow ¼ 0, then the lower orientation (θp ¼ �90�), shown in Fig. 12.20, will have bpfront ¼bpback ¼ bprear, so that there will be no net force on the diaphragm of area, Apist. For the upper orientation
(θp ¼ 0�), the sound that reaches the port must propagate an additional effective distance, Δℓ, before
reaching the port.12 The net force, bFnet, caused by the pressure difference across the diaphragm, will
depend upon the area of the diaphragm, Apist, and the pressure gradient in the direction of propagation,
∂p/∂x, produced by the plane wave as well as the orientation of the normal to the microphone’s
diaphragm with respect to the wave’s direction of propagation, θp.

Since it is assumed that the presence of the microphone does not distort the sound field of the
incoming plane wave, the pressure at the port, bprear, can be expressed in terms of the pressure on the
diaphragm, bpfront. The pressure of a traveling plane wave can be expressed as a complex exponential,
as in Eq. (10.14), to simplify calculation of the gradient.

12 Although it is clear that the “effective distance,” Δℓ, will depend upon the diameter of the enclosure, calculation of the
pressure distribution and phase shift between the sound impinging on the diaphragm and the sound reaching the port is
complicated, even for a spherical enclosure, requiring expansion of the sound field into a superposition of Legendre
polynomials. See Ref [4], §VII.27.
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bprear ¼ bpfront þ ∂ bpfronte�jkx
	 


∂x
Δℓ ¼ bpfront 1� jk Δℓð Þ cos θp

� � ð12:59Þ

The net force across the diaphragm is proportional to the pressure difference, since Rflow has been
temporarily set to zero and access to the rear of the diaphragm is unimpeded.

bFnet ¼ Apist bpfront � bprearð Þ ¼ jkbpfrontApist Δℓð Þ cos θp ð12:60Þ

Since k ¼ ω/c, and jωbv is proportional to the pressure gradient through the Euler equation, these
pressure gradient microphones are also called velocity microphones.

For the case where Rflow¼ 0, the diaphragm in an enclosure like those shown in Fig. 12.20 will have
a bi-directional sensitivity pattern like that for a compact dipole, as shown in Fig. 12.16, if the
diaphragm’s motion is converted to some electrical signal by an appropriate transduction mechanism.

A popular implementation of such a pressure gradient microphone in studio recording applications
[23] is the ribbon microphone [26]. It that case, the “diaphragm” is a very thin corrugated metal strip
placed in a magnetic field. The acoustically induced pressure difference on either side of the “ribbon”
causes it to vibrate and generate an electrical voltage that is proportional to its velocity [27].

Fig. 12.20 Schematic representation of two microphone enclosures that omits any transduction mechanism, like the
electrodynamic scheme shown in Fig. 2.19 (left). Sound pressure impinging on either the upper or lower enclosure
applies a force directly on the “front” of the diaphragm (grey rectangle). Sound can also cause air flow through the flow
resistance at the rear of the enclosure (parallel lines) that will create pressure within the volume (compliance) and thus
apply a force to the rear of the diaphragm. Assume that a plane wave is traveling to the right and that the presence of
enclosures does not perturb that wave. (Upper) In the orientation shown (θp ¼ 0�), the sound must travel an additional
distance, Δℓ, before it reaches the port containing the resistance. (Lower) In this orientation (θp ¼ �90�), the wave
excites both the diaphragm and the resistance port at the same time (i.e., in-phase) so that Δℓ ¼ 0
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If Rflow 6¼ 0, then the combination of Rflow and the compliance of the microphone’s enclosure
volume, V, can be characterized by a time constant, τRC, that produces a low-pass filter between the
acoustic pressure felt by the back of the diaphragm, bpback, and the acoustic pressure at the entrance to
the port, bprear, as expressed in Eq. (12.59).

τRC ¼ RflowC ¼ RflowV
γpm

ð12:61Þ

The net force on the diaphragm of the pressure gradient microphone, shown in Fig. 12.20, can be
determined by using the equivalent circuit of Fig. 12.21. The acoustical impedance of the diaphragm,
Zdia, represents the stiffness, moving mass, and mechanical damping of the microphone’s diaphragm.
The compliance of the volume is C, and the flow resistance of the rear port is Rflow.

bpfront ¼ bUfront Zdia þ 1
jωC

� �
� bUback

jωC

bprear ¼ bUfront

jωC
� bUfrontRflow 1þ 1

jωRflowC

� � ð12:62Þ

The pressure difference, Δbp , across the diaphragm, can be found by combining Eq. (12.59) with
Eq. (12.62).

Δbpbpfront ¼
ZdiaRflow 1þ Δℓð Þ

cτRC
cos θp

h i
ZdiaRflow � j RflowþZdia

ωC

h i ¼ D 1þ B cos θp
	 
 ð12:63Þ

Two constants have been introduced for the right-hand version of Eq. (12.63). B ¼ τΔℓ/τRC is the ratio
of the front-to-back propagation delay, τΔℓ ¼ (Δℓ)/c, and the filter’s time constant, τRC. D involves the
physical properties of the diaphragm and its suspension, the enclosure’s volume, and the flow
resistance of the port.

B ¼ Δℓð Þ
cRflowC

¼ τΔℓ
τRC

and D ¼ Zdia

Zdia þ RflowþZdia

jωτRC

h i ð12:64Þ

By making the propagation delay equal to the filter time constant, B ¼ 1, the cardioid directionality
pattern of Fig. 12.19 is produced. If Rflow ¼ 1, so that the port is blocked, B ¼ 0 and the pattern is
omnidirectional (i.e., monopolar). In the first case, where Rflow ¼ 0, τRC ¼ 0, so B ¼1 and the dipole
directionality of Fig. 12.16 is obtained.

Fig. 12.21 Equivalent circuit representation of the pressure gradient microphone in Fig. 12.20. The diaphragm
will respond to the pressure difference, Δbp ¼ bpfront � bpback . The relationship between bpfront and bprear is provided in
Eq. (12.59)
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12.5.4 The DIFAR Directional Sonobuoy

The ability to produce a directional sensor that was demonstrated in Sect. 12.5.1 and a commercially
viable implementation that produces unidirectional (cardioid) sensitivity in air was described in
Sect. 12.5.3. In underwater acoustic applications, it is often advantageous to have a hydrophone
system that can determine the direction of a submerged sound source. In principle, if two such systems
were deployed, then the location of the source could be determined by triangulation.

The most widely used such directional hydrophone system is the US Navy’s AN/SSQ-53 DIFAR
sonobuoy. During the Cold War, submarine surveillance aircraft used to eject these sonobuoys, when
flying close to the ocean surface, to locate submarines. This practice was so widespread that there are
sections of the ocean floor at strategically significant geographical locations (known to sailors as
“choke points”) that are literally covered with such sonobuoys that would be programmed to sink after
a pre-determined interval after deployment, usually ranging for 30 min to 8 h. Today, such directional
sonobuoys are still manufactured by a number of vendors, and smaller numbers of such sonobuoys are
now used for studying marine mammals, as well as for military purposes.

The Directional Frequency Analysis and Recording (DIFAR) sonobuoy combines two orthogonal
dipole sensors, usually called the N–S and the E–W dipole, with an omnidirectional hydrophone.
In addition, the DIFAR system would also have an electronic magnetic compass [28] to determine the
free-floating directional hydrophone’s orientation and a radio-frequency transmitter that could send
the hydrophone and compass information over a user-selectable choice of 96 different channels that
would broadcast over a range of radio frequencies between 136.0 MHz and 173.5 MHz. Before
ejection, a unique channel would be chosen for each DIFAR to allow multiple hydrophones to operate
simultaneously in adjacent areas without interference.

Just as before, the N–S dipole could be summed with the omnidirectional hydrophone to produce a
northward listening cardioid, or the N–S dipole could be subtracted from the omnidirectional hydro-
phone to produce as southward listening cardioid. A similar east-west directionality could be
synthesized, all with reference to the orientation established by the internal magnetic compass. By
comparing the magnitude of the received signals in each direction, the direction to the source could be
determined. The use of frequency-selective signal processing could simultaneously determine the
direction to different sources if their radiated sound signature had unique frequency content.

A more efficient method that uses only three dipole sensors, with axes that are separated by 120�, to
obtain the desired directional information and avoid the possibility that a source could be oriented
along a detection node has been described and demonstrated [29]. The function relies upon the
trigonometric sum of the signals being a constant [30].

XN
k¼0

cos 2 ϕþ 2πk
N

� �
¼ N

2
ð12:65Þ

This is the generalization of the better-known trigonometric identity, cos2ϕ þ sin2ϕ ¼ 1.

12.6 Translational Oscillations of an Incompressible Sphere

As we have shown, sound sources that displace fluid by changing their volume periodically in time will
behave as simple (compact) spherically symmetric radiators if ka � 1. On the other hand, two such
sources in close proximity with oscillations that are 180� out-of-phase will produce a dipolar radiation
field. As expressed in Eq. (12.58), the radiation efficiency of the compact dipole (kd � 1) is less than

578 12 Radiation and Scattering

www.dbooks.org

https://www.dbooks.org/


the monopole (simple source) having the same source strength. In effect, the fluid volume ejected by
one of the dipole’s pair of sources is ingested by the other during one-half of the cycle, and their roles
reverse during the following half-cycle, so there is no net production of volume velocity. It is only the
phase difference produced by the displacement of their centers which results in non-zero radiated
sound pressure. This dipole behavior can therefore be produced by a rigid object of constant volume
that simple oscillates (translationally) back and forth and consequently produces no net periodic
change in fluid volume.

A loudspeaker that is not placed in an enclosure behaves as a rigid disk that is oscillating back and
forth. The amount of fluid that is displaced in one direction by the motion of one side of disk (i.e.,
speaker cone) is the same as the fluid that is pulled in the opposite direction by the other side of the
disk. There is no net periodic change in fluid volume. Similarly, the incompressible sphere that
experiences oscillatory translational motion, as shown by the streamlines in Fig. 12.22, pushes fluid
ahead while it sucks the same amount of fluid from behind.

The equivalence of the sound radiated by a rigid sphere undergoing translational oscillations to a
dipole can be established again by expressing the velocity of the sphere’s surface in Hankel functions
and Legendre polynomials [31]. If the center of the sphere has a time-dependent velocity, u tð Þ ¼
ℜe buoejω t½ � , and ka � 1, then its equivalent dipole strength, d

!bU að Þ
��� ���

sphere
, can be expressed by

equating the time-averaged power, hΠradit, calculated in Eq. (12.53), with the same result for the
oscillating compact rigid sphere of volume, Vsphere ¼ 4πa3/3 [32].

Fig. 12.22 The translational oscillatory excursions of solid objects produce fluid flow that is identical to that of two out-
of-phase simple (monopole) sources, if the dimensions of the objects are small compared to the wavelength of sound at
the frequency of the oscillations. The flow pattern for an incompressible sphere, shown here by the fluid’s streamlines, is
the same as that produced by a dipole. As the sphere moves upward, it displaces fluid that is then collected below the
sphere. Since the sphere is assumed to be incompressible, the amount of fluid pushed away by the upward motion must be
the same as that pulled in behind the sphere [31]
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d
!bU að Þ
��� ���

sphere
¼ 3 buoj j

2
ffiffiffi
2

p Vsphere ffi 1:06 buoj jVsphere ð12:66Þ

I like to interpret this equivalence by considering a cylinder of radius, a, having the same volume of
the sphere of that radius, making the height, h, of such a cylinder equal to 4a/3. In that picture, the

volume velocity, bU að Þ
��� ���, generated by the disk that forms one end of the cylinder, with area, Apist¼ πa2,

is simply U að Þj j ¼ Apist buoj j . If the separation of the ends is set equal to d
!��� ��� ¼ h ¼ 4a=3, then the

source strength of the “equivalent’ cylinder is the same as that of the sphere to within 6% (0.5 dB):

d
!bU að Þ
��� ���

sphere
¼ 1:06 d

!bU að Þ
��� ���

cylinder
.

12.6.1 Scattering from a Compact Density Contrast

Having expressed the dipole strength of an incompressible sphere executing translational oscillations
in Eq. (12.66), the scattering produced by such a compact inhomogeneity, due to its presence in a
sound field, can be calculated by determining the relative motion of the fluid and the center of the
sphere.13 If we assume a plane wave, then the free-field complex pressure amplitude at the sphere’s
location in the absence of the rigid sphere would be bpff. The complex amplitude of the net translational

force,
b
F
!
, will be the integral of that pressure over the surface of the sphere in the direction determined

by the gradient of the pressure where bn ¼ k
!
= k

!��� ��� is the unit vector in the same direction as the plane

wave’s propagation and bv ¼ bpff=ρmc is the free-field fluid particle velocity amplitude [33].

b
F
! ¼

þ
S
bpffdS!  bn ¼ jωρmVspherebv 3

sin kað Þ � ka cos kað Þ
kað Þ3

 !
b
F
! ¼ jωρm Vspherebv 1� βð Þ where β ffi kað Þ2

10
� kað Þ4

280
þ   

ð12:67Þ

For a compact source, ka � 1, so β can usually be neglected.
The complex velocity amplitude of the sphere, buo, that appears in Eq. (12.66), is determined by the

one-dimensional linearized Euler equation.

�
∂ bpffe j ω t�k r

!j jð Þ� �
∂ r

!�� �� ¼ ρm
∂ bve j ω t�k r

!j jð Þ� �
∂t

¼ jωρmbuoe j ω t�k r
!j jð Þ ð12:68Þ

The net force can then be approximated by the product of the free-field pressure gradient and the
volume of the rigid sphere.

bF ffi �
∂ bpffe j ω t�k r

!j jð Þ� �
∂ r

!�� ��
0@ 1AVsphere ¼ jωρmbuoVspheree

j ω t�k r
!j jð Þ if β ¼ 0 ð12:69Þ

If there are no other external forces on the sphere’s surface (possibly produced by the some elastic
suspension system like that shown in Fig. 12.23) and no other contributions to fluid flow (possibly

13 In this treatment, the fluid is assumed to be inviscid so that there are no shear forces involved in the scattering process.
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produced by the sphere being subjected to a steady current), then it is possible to determine the ratio of
the sphere’s velocity amplitude, buo , to the free-field fluid particle velocity, bv, in the absence of the
sphere [34].

buobv
���� ���� ¼ 3ρm

ρm þ 2ρs
where ρs ¼

msphere

Vsphere
ð12:70Þ

This result demonstrates that the velocity of a spherical volume which has a non-zero density contrast
with the surrounding fluid will move at a velocity that is not the same as the surrounding fluid.

This result is plausible in the limit of a neutrally buoyant sphere that has the same effective density
as the surrounding fluid, ρs ¼ ρm, since such an inhomogeneity must move with the fluid. Also, an
immobile rigid sphere that is somehow constrained would have an infinite effective density, ρs ¼ 1,
thus producing buoj j ¼ 0, based on Eq. (12.70), as implied by its assumed immobility.

The more interesting consequence of Eq. (12.70) is that an object that is less dense than the
surrounding medium (e.g., a bubble) “moves ahead” of the fluid (see Problem 14). For a very low
effective density object, like a gas bubble in a liquid, ρs � ρm, buo ¼ �3bv. In the case of scattering of
sound by a bubble, this increase in translational velocity is not nearly as important as the fact that such
a compressible object will radiate as a monopole when driven by bpff . For the case of a fish with a
gas-filled swim bladder, the tripling of the bladder’s velocity makes it a much more sensitive detector
of the acoustically induced motion of the surrounding fluid motion (see Problem 5).

Since a neutrally buoyant object with ρs ¼ ρm moves with the surrounding fluid, it is possible to
make a dipole sensor by instrumenting the object with some inertial vibration sensor, like an
accelerometer or a geophone (see Sect. 2.6). One advantage of such a dipole sensor over the
subtraction of two monopole (omnidirectional) sensors is that there is no requirement that the two
omnidirectional sensors have exactly the same sensitivity and frequency response to guarantee that
resulting minimum in the directional pattern has zero sensitivity. A laboratory version of such a
velocity sensor that incorporates a geophone as the motion sensor is shown in Fig. 12.23. A high-
sensitivity, low-noise, two-axis fiber-optic interferometric accelerometer [35] in a neutrally buoyant
case could also serve as a two-axis velocity sensor [36].

Having an expression that relates the translational velocity of a solid object driven by an externally
imposed sound field to the velocity of the surrounding fluid makes it possible to use Eq. (12.49) to
calculate the relative velocity amplitude, bvrel , of the rigid sphere with respect to the fluid’s velocity,bv ¼ bpff= ρmcð Þ.

Fig. 12.23 Neutrally
buoyant fluid particle
velocity sensor and its
suspension system. The
four white plastic loops
provide the elastic
suspension system for the
neutrally buoyant geophone
(see Sect. 2.6 and Figs. 2.22
and 2.23) at the center
which is 8 cm long and
3.5 cm in diameter [33]
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bvrel ¼ buo � bv ¼ 2 ρm � ρsð Þ
ρm þ 2ρsð Þbv ¼ 2 ρm � ρsð Þ

ρm þ 2ρsð Þ
bpff
ρmc

ð12:71Þ

For the infinitely dense sphere (i.e., fixed and rigid), bvrel ¼ �bv; the relative velocity is the negative of

the fluid’s velocity. The equivalent dipole scattering strength, d
!bU að Þ
��� ���

sphere
, is given by Eq. (12.66) in

terms of the relative velocities of the sphere and the fluid.

d
!bU að Þ
��� ���

sphere
¼ 3Vsphereffiffiffi

2
p ρm � ρsð Þ

ρm þ 2ρsð Þ
bpff
ρmc

ð12:72Þ

Substitution into the expression for the dipole’s far-field pressure in Eq. (12.48) provides the scattered

acoustic pressure, pscat r
!�� ��, θd� �

, in terms of the incident acoustic pressure, bpff .
pscat r

!�� ��, θp� �
¼ℜe �jk2bpffe j ω t�k r

!j jð Þ 3Vsphere

4π
ffiffiffi
2

p 1

r
!�� �� ρm � ρs

ρm þ 2ρs

� �
cos θp

( )

¼ℜe
�j kað Þ2ffiffiffi

2
p bpffe j ω t�k r

!j jð Þ a

r
!�� ��

 !
ρm � ρs
ρm þ 2ρs

� �
cos θp

( ) ð12:73Þ

The second expression assumes that the scattering volume is spherical. Although this treatment ignores
the viscous forces on the rigid sphere, it can be shown, using the results of Sect. 9.4, that such forces are
usually negligible in the limit that ka � 1 [33].

The far-field intensity is proportional to the square of the acoustic pressure, as given by Eq. (10.40),
so the ratio of the time-averaged scattered intensity, hIscatit, to the free-field time-averaged incident
intensity, hIffit, is proportional to (ka)4.

Iscath it
Iff
� �

t

�����
����� ¼ p r

!�� ��, θp� �
bpffj j

0@ 1A2

¼ kað Þ4
2

a

r
!�� ��

 !2
ρm � ρs
ρm þ 2ρs

� �2

cos 2θp ð12:74Þ

The dependence of the scattered intensity has the same ω4 frequency dependence as the scattering of
light, known as Rayleigh scattering, which accounts for the blue color of the sky [37, 38]. In the case of
light scattering from molecules, the cause is different: the electromagnetic wave induces a fluctuating
dipole moment and that oscillating dipole radiates the scattered electromagnetic wave.

For the description of a scattering object’s ability to produce scattered energy, it is convenient to
express the ratio of the scattered power to the incident intensity in terms of a differential scattering
cross section, dσ/dΩ, with units of [m2/steradian]. It is the ratio of the time-averaged power scattered
into a given solid angle element, dΩ ¼ sin θ dθ dφ, to the mean energy flux density of the incident
wave (i.e., the intensity). The integral of dσ/dΩ over all solid angle is the total scattering cross section,
σ. Again, using the definite integral of Eq. (12.54), the total scattering cross-section for the rigid sphere
of effective density, ρs, can be calculated.

σ ¼ πa2
	 


kað Þ4 28
9

ρm � ρs
ρm þ 2ρs

� �2

for ka � 1 ð12:75Þ

In the above form, it is clear that an incompressible (i.e., rigid) spherical region with a density that is
different from the surrounding medium scatters far less power than the incident plane wave intensity
times the contrast region’s physical cross-sectional area, πa2. The density contrast factor is also limited to
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a small range: 1� [(ρm� ρs)/(ρmþ 2ρs)]
2� 0. If the sphere is immobilized (i.e., ρs¼1), then σ ¼ (7/9)

(πa2)(ka)4. A similar result for a thin disk of radius, adisk, is σdisk ¼ 16=27ð Þ πa2disk
	 


kadiskð Þ4 [39].

12.6.2 Scattering from a Compact Compressibility Contrast

The same strategy can be employed to determine the scattered pressure field due to a plane wave that
impinges on a compact region that has a different compressibility than the surrounding medium. The
adiabatic compressibility, Ks, of the surrounding medium is the reciprocal of its adiabatic bulk
modulus, Bs, so by Eq. (10.21), Ks ¼ B�1

s ¼ ρmc
2ð Þ�1

. Again, for a compact scatterer, the shape of
the scattering body is irrelevant.5 For convenience, the compact compressibility contrast region will be
treated as a sphere with volume, Vsphere ¼ 4πa3/3.

The radius of the sphere, a, will be modulated by the amplitude of the incident pressure wave, bpff ,
that is assumed to arise due to a traveling plane wave. The volume change of that scatterer is related to
the bulk modulus of the fluid in that compact region by Eq. (10.20).

δV ¼ 3Vsphere
δa
a

¼ 3Vsphere

bξ��� ���
a

¼ �Vsphere
bpffj j
Bs

¼ �Vsphere
bpffj j
ρsc2s

ð12:76Þ

In this case, ρs is the density of the fluid in the compact scattering region, and cs
2 is the square of the

sound speed of that contrasting fluid.
Just as the relative velocity of the fluid and the sphere in Eq. (12.71) was used to calculate the dipole

strength in Eq. (12.72), the induced volume change, δV, in Eq. (12.76), must be compared to the
change in the equilibrium volume of a region with equal volume if the medium were uniformly
compressible. That difference between the volume change in the region with the compressibility
contrast and the volume change that would have occurred can be used to calculate the amplitude of
the equivalent scattering volume velocity, bUscat að Þ.

bUscat að Þ ¼ �ωbpff Vsphere

ρsc2s
1� ρsc

2
s

ρmc2

� �
ð12:77Þ

If the compressibility of the scattering region is the same as that of the surrounding fluid, thenbUscat að Þ
��� ��� ¼ 0 , as it must, so that there is no scattered wave if there is no inhomogeneity. If the

scattering region is much more compressible than the surrounding fluid (e.g., a gas-filled bubble in
water), then the more compressible medium dominates the induced volume velocity; hencebUscat að Þ
��� ��� ¼ ω δV , where δV is given by Eq. (12.76).

A particularly interesting case is the incompressible sphere, where ρsc
2
s � ρmc

2. For a steel sphere,
ρscs

2 ffi 290 GPa, and for water, ρmc
2
H2O ffi 2.25 GPa. For air under standard conditions,

ρmc
2 ¼ γpm ffi 142 kPa. In that case, bUscat að Þ is determined by the compressibility of the medium

(not the sphere), ρmc
2, thus producing a scattered wave that satisfies the rigid boundary condition at the

sphere, δV ¼ 0 and δa ¼ bξ��� ��� ¼ 0, when combined with the incident wave.

The source strength in Eq. (12.77) will produce isotropic spherical acoustic pressure waves, p r
!�� ��� �

,

with an amplitude determined by Eq. (12.21), where the contrasting compressible region is again
represented by a sphere of volume, Vsphere ¼ 4πa3/3.
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p r
!�� ��� �
bpffj j ¼ kað Þ2

3
a

r
!�� ��

 !
ρmc

2

ρsc2s
� 1

� �
ð12:78Þ

The far-field intensity is proportional to the square of the acoustic pressure, as given by Eq. (10.40), so
the ratio of the time-averaged scattered intensity, hIscatit, to the time-averaged free-field incident
intensity, hIffit, is proportional to (ka)4, as it was for the rigid sphere in Eq. (12.74). Integration over
all solid angle to obtain the total scattering cross-section is simplified, since this scattered sound field is
isotropic.

σ ¼ 4
9

πa2
	 


kað Þ4 ρmc
2

ρsc2s
� 1

� �2

for ka � 1 ð12:79Þ

Again, the total scattering cross-section, σ, will be smaller than the geometrical cross-section, πa2,
by a factor of (ka)4, as it was in Eq. (12.75), except the density contrast factor, ρmc

2=ρsc
2
s

	 
� 1
� �2

, can

be very large. For air trapped near the water surface, ρH2Oc
2
H2O=ρairc

2
air

� �
� 1

h i2
¼ 2.5 � 108. Under

such circumstances, the total scattering cross-section can be much larger than the physical cross
section. For the case of a bubble being driven at frequencies near its Minnaert frequency, it can be
even larger.

12.6.3 Scattering from a Single Bubble or a Swim Bladder

The results of the previous section are correct as long as the sound field driving the compressions and
expansions of the compressibility contrast region occur at frequencies below the Minnaert frequency in
Eq. (12.30). Although that frequency was calculated in Sect. 12.3, as it applied to a stable spherical
gas-filled bubble in a liquid, the result is generally applicable to any compressible region regardless of
the shape, as long as that region is compact [8].

Any periodic change in volume of that region requires that the surrounding fluid be accelerated. The
acceleration of the surrounding fluid is conveniently represented by an effective (hydrodynamic) mass,
calculated in Eq. (12.15), that is equal to three times the mass of the fluid displaced by the compressible
region’s volume. The competition between the compressibility of the contrast region and the inertia of
the surrounding fluid will drive quasi-one-dimensional harmonic oscillations with the variation in the

radius of the bubble, ξ1 tð Þ ¼ ℜe bξe j ω tð Þ
h i

¼ ℜe bξ��� ���e j ωtþΘð Þ
h i

, where the phase, Θ, has been included

explicitly to emphasize the fact that the response of the bubble’s radius to the varying pressure
produced by the incident wave will not necessarily be in-phase with the acoustic pressure that is
driving the bubble, as would be the case for any driven simple harmonic oscillator (see Sect. 2.5.1).

Recall that if the forcing function is applied at a frequency, ω, below the natural frequency, ωo,
which would be the Minnaert frequency of Eq. (12.30) or Eq. (12.31), then the driven system is
stiffness-controlled. In the case of the bubble, this means that the bubble’s radius, a þ ξ1(t), will
decrease when the acoustic pressure due to the incident sound wave increases. With ω < ωo, the inertia
of the surrounding fluid is not important in determining the bubble’s response, and the expression for
the resultant volume velocity, bUscat að Þ, given in Eq. (12.77), will provide an accurate representation of
the spherically symmetric scattered sound field when substituted into the monopolar transfer imped-
ance of Eq. (12.22).

If the incident wave has a frequency that is larger than the Minnaert frequency, the bubble’s
behavior is mass controlled and therefore dominated by the inertia of the surrounding fluid. In this
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limit, there are two interesting differences. The first is that above resonance, the phase will shift by
nearly 180�. This fact was exploited to extend the low-frequency performance of a bass-reflex
loudspeaker enclosure in Sect. 8.8. The radius of the bubble will grow when the acoustic pressure of
the incident wave is positive. Also, as the frequency increases above ωo, the radial velocity of the
bubble’s surface will decrease.

If the incident sound field is oscillating at a frequency very close the bubble’s natural frequency,
ω ffi ωo, then the bubble’s motion will be resistance-controlled so that the amplitude of the bubble’s
radial velocity will be determined by its quality factor, calculated in Sect. 12.3.1.

Treating the bubble as a quasi-one-dimensional simple harmonic oscillator, the force is determined
by the free-field pressure amplitude of the incident wave, bpff , times the mean surface area of the
bubble, 4πa2, assuming that ka � 1, so that bpff is uniform over the bubble’s surface. The bubble’s

radial velocity, _ξ1 tð Þ ¼ ℜe jωbξejω t
h i

, in response to the pressure’s driving force, is given by the

mechanical impedance in Eq. (2.62).

bUscat að Þ
��� ��� ¼ 4πa2 _ξ1 ¼ 4πa2

	 
2 bpffj j
Zmechj j ¼

12πa
ρmωo

bpffj j
ω
ωo

� ωo
ω

� �2
þ 1

Q2

� �½ ð12:80Þ

The acoustic transfer impedance of Eq. (12.22), Ztr, relates the isotropically scattered pressure, p(r), to
the complex incident acoustic pressure amplitude, bpff .

p r
!�� ��� �

¼ Ztr bUscat að Þ
��� ��� )

p r
!�� ��� �
bpffj j ¼ 3

a

r
!�� ��

 !
ω
ωo

� �
ω
ωo

� ωo

ω

� �2

þ 1
Q2

" #‐½
ð12:81Þ

In the limit of low frequencies, ω < ωo, Eq. (12.81) recovers the (ka)
2 dependence of the radiated

pressure from Eq. (12.78).

lim
ω!0

p r
!�� ��� �
bpffj j

24 35 ¼ 3
a

r
!�� ��

 !
ω
ωo

� �2

/ kað Þ2 ð12:82Þ

At frequencies above the Minnaert frequency, the radiated pressure is independent of the driving
frequency.

As before, the scattered pressure in Eq. (12.81) can be used to calculate the total scattering cross-
section for a resonant bubble as a function of the driving frequency [40].

σ ¼ 4πa2ð Þ ω=ωoð Þ2
ω
ωo

� ωo
ω

� �2
þ 1

Q2

� � ð12:83Þ

Using the 1.0 mm diameter air-filled bubble at a depth of 10 m, which was the example at the end of
Sect. 12.3.1, we can evaluate Eq. (12.83) at fo ¼ 20.6 kHz with Qtotal ¼ 47. With cH2O ¼ 1500 m/s,
(ka) ¼ 0.043 � 1. Figure 12.24 plots the ratio of the total scattering cross-section to the bubble’s
geometric cross-section, 4πa2, as a function of frequency. At resonance, the bubble’s scattering cross-
section is Q2 ¼ 2210 times larger than its geometrical cross-section. Resonant scattering from bubbles
or other gas-filled density contrast regions, like fish swim bladders, shown in Fig. 12.23, can be
significant.
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12.6.4 Multiple Scattering in the “Effective Medium” Approximation

Multiple scattering of sound from a large number of small objects can require rather complicated
computations. Like many topics addressed in this textbook, there are limiting cases that can be solved
quite easily and which are both important and illustrate an approach with more general utility. If the
scatterers are identical and if they are spaced in a regular lattice, then those regularly spaced identical
inhomogeneities will behave as a diffraction grating, and there will be specific directions that will
experience large scattered wave amplitudes at certain frequencies. The formalism that can address that
case for a regular one-dimensional array of identical scattering object will be the focus of Sect. 12.7.

Another interesting and important case is that of a medium that has a dispersion of scattering
particles that are positioned randomly and have a variety of different sizes. Such a medium might be a
“bubble cloud” if the scatters were gas bubbles of different sizes in a fluid medium or a fog consisting
of liquid droplets dispersed within a gaseous medium. For both the bubble cloud and the fog, if the
kað Þ � 1, for the effective average scatterer radius, a, and if there is a high number density of compact
scattering regions, then an approach known as the mean field approximation can create a useful
representation of multiple scattering.

In the long wavelength limit at frequencies much lower than the lowest bubble resonance frequency
of the largest bubble, a bubble cloud will have an effective density that is close to that of the liquid, but
its compressibility will be dramatically larger than the liquid, even if the gaseous fraction is small. This
can result in a sound speed within the bubble cloud that is slower than the speed of sound in either the
surrounding liquid or the gas that fills the bubbles. In a fog, the sound speed will be close to that of the
speed in the pure gas since the presence of fluid droplets produces only a small increase in both the
mean bulk modulus and the mean density.

Fig. 12.24 Ratio of the scattering cross-section, σ, for a 1 millimeter diameter air-filled bubble, 10 m below the surface,
to the bubble’s geometric cross-sectional area, 4πa2. That bubble’s Minnaert frequency is fo ¼ 20.6 kHz and its quality
factor is Qtotal ¼ 47
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Such a mean field approximation can be developed by considering the volume fraction of each
component.14 For a bubble cloud, the minority species is the gas phase that occupies a volume fraction,
x. The liquid phase occupies the remaining volume, (1� x). The effective density of the mixture can be
approximated by the mass density weighted fraction of the individual components’ mass densities.

ρmean ¼ xρgas þ 1� xð Þρliquid ð12:84Þ

The mean field bulk modulus, Bmean, can be calculated by remembering that the stiffness of two springs
that are placed in series is the parallel combination of their individual stiffnesses (see Sect. 2.2.1).

Bmean ¼ x
Bgas

� �
þ 1� xð Þ

Bliquid

� ��1

ð12:85Þ

Using the definition of the sound speed in Eq. (10.21), Eqs. (12.84) and (12.85) can be combined to
produce an effective sound speed, ceff, for the mixture.

1
c2eff

¼ ρmean
Bmean

¼ xρgas þ 1� xð Þρliquid
� � x

Bgas

� �
þ 1� xð Þ

Bliquid

� �
ð12:86Þ

Figure 12.25 is a plot of that effective sound speed for a bubble cloud with air at atmospheric
pressure (ρgas ¼ 1.21 kg/m3, Bgas ¼ 142 kPa) and water (ρliquid ¼ 1000 kg/m3, Bliquid ¼ 2.25 GPa). As
required, the effective sound speed is equal to the speed of sound in pure water, cH2O ¼ 1500 m/s, if
there are no bubbles (x ¼ 0), and the speed of sound in air, cAir ¼ 344 m/s, when there is no water
(x ¼ 1). There is also a substantial range of gas volume fractions (sometime called void fractions)

Fig. 12.25 Effective sound speed in a bubble cloud as a function of gas volume fraction if the dispersion of bubbles with
various radii contains air near atmospheric pressure and the surrounding liquid is water. It is assumed that all the bubbles
are small enough that kað Þ � 1, and the frequencies of interest are all well below the lowest bubble resonance frequency.
At zero void fraction, the speed is just that in pure water

14 In this simplified treatment, it is assumed that the gas in the bubbles is not condensable so that the evaporation and
condensation of the liquid’s vapor can be ignored. A more complete theory that incorporates evaporation and condensa-
tion for both bubbles and for fogs is given in Ref. [3], §64, Problems 1 (bubbles) and 2 (fog).
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where the sound speed is much less than the sound speed in air. For 0.01 < x < 0.99, ceff < 100 m/s and
for 0.06 < x < 0.94, ceff < 50 m/s, with a broad minimum effective sound speed of 24 m/s around
x ¼ 0.50 [41]15

The very low value of ceff for a bubbly liquid can be observed if cocoa powder is placed in a mug
that is then filled with hot water. The air trapped in the powder will form bubbles that will rise and
coalesce over the span of less than a minute. If the mug is tapped with a spoon, the frequency of the
sound will change with time, rising in pitch as the bubbles move to the surface. In some cases, the
frequency change can be more than three octaves. This rise in pitch is commonly known as “the hot
chocolate effect” [42].

The same effect can also be observed when a glass is filled with hot tap water, particularly if the tap is
partially throttled. The water will be cloudy due to the formation of small bubbles that will coalesce and
rise causing the pitch of the quarter wavelength standing wave resonance (assuming the bottom is rigid
and the top is a pressure-released surface) that is excited in the bubbly liquid to increase in frequency.

The sound speed reduction due to the introduction of bubbles in a solvent has developed into a
technique for the analysis of transient dissolution processes for chemical compounds that is known as
Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS) [43]. Various extensions of this
approach have been developed to study other effects like wettability of pharmaceutical powers [44].

The effect on sound speed is not nearly as dramatic for a fog of small liquid droplets suspended in a
gaseous medium. For small droplet concentrations, the stiffness of the gas is increased slightly because
the relatively incompressible liquid droplets exclude some of the more compressible gas volume. That
effect is overwhelmed by the increase in the medium’s effective mass density, although at typical
droplet volume fractions, the reduction in the effective sound speed is small.

12.7 N-Element Discrete Line Array

The same procedure we applied to the superposition of two compact sources of equal source strength
and frequency in Sect. 12.4 can be applied to any number, N, of such sources that are separated by a
uniform distance, d, between adjacent sources along a line. Figure 12.26 provides a coordinate system
where we measure the angle, θ, above the plane normal to the line joining the sources, with r

!�� �� as
distance from the central source to the observation point. As before, there will be no azimuthal
dependence to sound field due to the rotational symmetry about the axis joining the sources.

As before, we can sum the contribution of each simple source at the observation point a distance, rn,
from the nth element, where n ¼ 0, 1, 2, . . . (N � 1).

p r, tð Þ ¼ ℜe
XN�1

n¼0

bCn

rn
e j ω t�krnþϕnð Þ

" #
ð12:87Þ

Each straight-line path from each source to the observation point has a different length. In the far-field
approximation (kr � 1), these path length differences, Δrn, have little effect on the relative pressure
amplitude radiated to the observation point but can produce a significant difference in the summation
through their associated phase differences. Using the geometry of Fig. 12.26, the dashed blue line is
drawn perpendicular to each propagation path providing the difference in the propagation distance that

15 This result is known as “Wood’s equation.” In the first edition of A. B. Wood, A Textbook of Sound (MacMillan,
New York, 1930), Wood quotes Mallock’s result from [40], but in the second edition, there is no mention of Mallock.
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is proportional to the n-index of each source and to the inter-element separation, d, between adjacent
sources.

Δrn ¼ nd sin θ � nΔ ð12:88Þ

Considering sources of equal amplitude, bCn ¼ C, that are all oscillating in-phase, ϕn¼ ϕ¼ 0�, then
both Cn and rn ≌ r can be brought out in front of the summation of Eq. (12.87).

p r
!�� ��, θ, t� �

¼ C

r
!�� ��ℜe e j ω t�k r

!j jð ÞXN�1

n¼0

e�j nkΔð Þ
" #

ð12:89Þ

The summation has been transformed to a geometric series that can be evaluated by standard
techniques [45].

Xn
k¼1

aqk�1 ¼ a 1� qnð Þ
1� q

; q 6¼ 1 ð12:90Þ

Application of Eq. (12.90) to Eq. (12.89) results in the geometric series where q � e�jkΔ.

XN�1

n¼0

qn ¼ 1� e�jkNΔ

1� e�jkΔ ¼ sin kNΔ=2ð Þ
sin kΔ=2ð Þ

� �
ð12:91Þ

We are left with the desired directionality, H(θ), with an axial pressure that is N times the amplitude of
each individual source [46].

H θð Þ ¼ sin N kd
2 sin θ

	 

N sin kd

2 sin θ
	 
�����

����� ð12:92Þ

To appreciate the discrete line array’s directionality, H(θ), it is useful to plot both the numerator and
denominator of Eq. (12.92) separately. Figure 12.27 provides such a graph, as well as the absolute
value of the ratio, for the case where kd ¼ 8 (so d ¼ 8λ/2π ¼ 1.273λ) and N ¼ 5, with all sources
radiating in phase (ϕn ¼ 0�).

Fig. 12.26 Coordinate
system for the
superposition of N ¼ 5
compact sources that are
separated from each other
by a uniform distance, d.
The resultant sound field
will be symmetric about the
line joining the sources so
that there will be no
azimuthal variation. The
dashed black lines illustrate
the path length differences
between the observation
point a distance, r1, from
the top source and the
individual paths
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At the origin (sin θ ¼ 0), the value of the ratio is unity, as can be shown if you expand both sine
functions in a power series and keep only the leading (first-order) terms. The directionality has local
maxima when there is a path length difference of one wavelength between adjacent sources. For that
case, the denominator vanishes at (kd/2) sin θ ¼ nπ; n ¼ 0, 1, 2, . . . Since N is an integer, the
numerator also goes to zero.

When the total length of the array, L¼ (N� 1) d, is much less than a wavelength, the array behaves
like an omnidirectional simple source with a source strength that is N-times greater than the individual
(identical) elements. As the separation increases, the radiated pressure in the polar direction (θ ¼ 90�)
decreases until d ¼ λ/2, which produces a minimum at θ ¼ 90� if N is an even number, while the
angular width of the major lobe becomes narrower with increasing N.

The directional pattern of Eq. (12.92) has nulls in directions determined by(Nkd/2) sin θ ¼ mπ,
where m ¼ 0, 1, 2, . . ., Nd/λ. For the central beam (θ ¼ 0�), the nulls occur at sin θ ¼ �λ/Nd. For large

Fig. 12.27 (Above) Plot of the numerator and denominator of Eq. (12.92) for kd ¼ 8 (so d ¼ 8λ/2π ¼ 1.273λ) and
N ¼ 5 vs. (kd/2) sin θ. (Below) Absolute value of the numerator divided by the denominator. A polar plot is provided in
Fig. 12.28

590 12 Radiation and Scattering

www.dbooks.org

https://www.dbooks.org/


values of N, the full width16 of the central maximum is 2θ ¼ 2λ/Nd≌ 2λ/L. The beam pattern becomes
more “focused” as the length of the array increases. This fact is responsible for the tall line arrays that
are visible on stage in Fig. 12.1.

12.7.1 Beam Steering and Shading

A discrete line array can produce a narrow beam. Since the previous analysis sets the relative phases of
all of the monopole sources to zero, the main lobe was always aligned with the plane that is the
perpendicular bisector of the line, as seen in Fig. 12.28. There are applications where the main-lobe
directionality of a line array of sources or sensors would be more useful if the main lobe could be
steered toward other orientations. This can be accomplished introducing progressive times delays, τn,
to each element in the line array such that τn ¼ (n � 1)τ1, for n ¼ 2, 3, 4, . . . Those delays would
produce phase shifts, ϕn ¼ (n � 1)ϕ1 ¼ (n � 1)ωτ1, that can be included in the exponential factor for
each term in the summation of Eq. (12.87). Such delays would be equivalent to increasing or
decreasing the path length differences, Δrn, that were calculated in Eq. (12.88).

Referring to Fig. 12.26, if the signal sent to the n ¼ 2 element was delayed by the travel time from
n¼ 2 to n¼ 1, τ2¼ d/c, then the signal from n¼ 2 would be in-phase with the signal from n¼ 1 when
it arrived at element 1 and those two signals would add constructively in the direction along their
common axis. Similarly, if the n ¼ 3 element was delayed by twice that amount, τ3 ¼ 2τ2, the signal
from n ¼ 3 would add in-phase to both the delayed n ¼ 2 signal and the n ¼ 1 signal, and their
superposition would make the amplitude of the signal be three times as large in the direction along their
common axis. Such an arrangement is called an end-fire array since the strongest signal radiates from
the end of the array along the direction of array’s axis.

Fig. 12.28 Two-
dimensional polar plot of
the directionality of a five-
element (N ¼ 5) discrete
array of in-phase
(ϕn ¼ ϕ ¼ 0�) simple
sources that are separated
by d ¼ 8/k (so d ¼ 8λ/
2π ¼ 1.273 λ). It is
important to remember that
the three-dimensional
radiation pattern has
azimuthal symmetry so that
the actual radiation pattern
is obtained if this
two-dimensional plot is
rotated about the polar
(90� – 270�) axis

16 Definitions of “beam width” vary. Above we have defined the width as the angular separation of adjacent nulls. Other
common designations of broadside beam width are angular separation of the beam pattern that are �3 dB, �6 dB,
�10 dB or � 20 dB from the maximum at θ ¼ 0�.
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In general, the direction of the main lobe, θτ, will be determined by the delay time, τ1, between each
radiating element (monopole).

sin θτ ¼ cτ1=d ð12:93Þ
If there is no time delay, τ1 ¼ 0, then the axis of the main lobe is on the plane that is the perpendicular
bisector of the line joining the N-elements of the array and θτ ¼ 0�. If τ1 ¼ �d/c, as in the initial
discussion, then θτ ¼ �90�, producing the end-fire condition. Introduction of the non-zero phase
delays, ϕn, in Eq. (12.87), produces the expected modification to the zero delay directionality result in
Eq. (12.92).

H θð Þ ¼ sin N kd
2 sin θ � sin θτð Þ� �

N sin kd
2 sin θ � sin θτð Þ� ������

����� ð12:94Þ

As shown in Fig. 12.29, an undesirable consequence of the beam steering is the broadening of the main
lobe as the steering angle increases from broadside (θτ ¼ 0�) to end-fire (θτ ¼ 90�).

The use of modern digital electronics makes the insertion of the individual element time delays both
simple and accurate. Long ago, in the era of vacuum tube analog electronics, a low-frequency end-fire
array was constructed to produce a directional sound reinforcement system for the Hollywood Bowl in
Los Angeles, CA. The Bowl is an outdoor venue with a band shell over the stage area. Since
low-frequency sound travels great distances (see Chap. 14), there were complaints from homeowners
in the surrounding neighborhood of Griffith Park who were bothered by those sounds.

To produce a directional low-frequency array that would concentrate the reinforcement in the
direction of the audience and limit the spreading to the surrounding communities, an analog delay
system was constructed that consisted of one loudspeaker at one end of a long tube. The other end of
the tube was terminated by an anechoic wedge absorber to eliminate reflections. All along the length of
that tube, microphones were inserted, and their delayed signals were amplified to drive individual bass
enclosures at the microphone locations. The propagation delay of the sound in the tube was exactly that
required to satisfy the end-fire condition, θτ ¼ 90�.

Fig. 12.29 Directionality
of an N ¼ 10 element line
array that is 8.1
wavelengths long. The
solid line represents
broadside directivity
(θτ ¼ 0�) and produces a
-3 dB full width,
Δθ�3dB ¼ 2.8�. The dotted
line represents end-fire
directivity (θτ ¼ 90�) and
produces a �3 dB full
width, Δθ�3dB ¼ 36.2�.
Also shown are two
intermediate cases with
θτ ¼ 30� (shorter dashed
line) having Δθ�3dB ¼ 6.6�

and θτ ¼ 60� (longer
dashed line) having
Δθ�3dB ¼ 11.5�
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As a final comment regarding the practical implementation of line arrays, it is worthwhile to
remember that the directionality of a line array is scaled by the ratio of the array’s overall length, L,
to the wavelength of the radiated sound, λ. For sound reinforcement systems that are used to enhance
musical performances, the range of wavelengths is very large. For that reason, in Fig. 12.1, it is easy to
see that the longest arrays are for projection of bass, and the shortest arrays were for treble, with
intermediate-length arrays dedicated to the mid-frequencies. Such large sound reinforcement systems
are not economically justified for smaller venues.

One common approach to keep the directivity of a line array fairly constant over a significant
frequency range is to provide passive cross-over circuits that apply the lowest frequency material to all
the speakers in the line array but to provide progressive attenuation to the outer elements for higher
frequencies in an attempt to keep the effective length of the array more constant with respect to the
wavelength of the radiated sound.

The adjustment of the individual amplitude coefficients, Cn, that appear in Eq. (12.87) in a discrete
line array, produces a shaded array. Various shading strategies are also adopted to suppress side lobes,
although they always reduce the directionality of the main lobe since they make the effective overall
length of the array less than its physical length. Of course, that was the objective of the shading scheme
to increase the frequency range of a single array while trying to maintain a more constant directivity.
For large numbers of individual elements in an array, combination of delays and shading allow
adaptive steering of both beams and nulls. This can be very useful when trying to find quiet targets
in environments cluttered by discrete noise sources.

12.7.2 Continuous Line Array

There are line sources that can be considered a continuous distribution of source strength. One example
is the ionization path of lightning, and another is the tire noise that is radiated continuously from the
surface of a highway. Instead of considering the superposition of discrete sources, as we did in the
previous section, in this section we will assume that there is a continuous distribution of volume
velocity along a straight line of total length, L, as diagrammed in Fig. 12.30, where we have assumed
that the source is aligned with the z axis and is centered at the x-y plane.

If each differential element of volume velocity, d bU að Þ
��� ��� ¼ 2πa bvr að Þj jdz, where bvr að Þ is the radial

velocity of the cylindrical line source at its surface, is treated as a differential source of acoustic

pressure, dp1 R
!��� ���� �

, then the total pressure is given by the integral from –L/2 to +L/2 over all the

differential source strength elements. That integral can be evaluated by using the expression for the
pressure radiated by a simple source in Eq. (12.21).

p1 R
!��� ���, θ, t� �

¼ℜe

ðL=2
�L=2

dp1 ¼ jρmcck
4π

ðL=2
�L=2

e j ω t�k R
!�� ��	 


R
!��� ��� d bU að Þ

264
375

¼ℜe
jρmckabvr að Þ

2

ðL=2
�L=2

e j ω t�k R
!�� ��	 


R
!��� ��� dz

264
375

ð12:95Þ

In the far-field limit, r
!�� ��� L, the numerator of the term within the integral of Eq. (12.95) can be

approximated by R
!��� ��� ffi r

!�� �� sin θ.
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p1 r
!�� ��, θ, t� �

ffi ℜe j
ρmckabvr að Þ

2
e j ω t�k r

!j jð Þ
r
!�� ��

ðL=2
�L=2

ejkz sin θ dz

" #
ð12:96Þ

The integral can be evaluated since its argument is an exponential.ðL=2
�L=2

ejkz sin θdz ¼ ejkz sin θ

jk sin θ

����L=2
�L=2

¼ e jkL2 sin θ � e�jkL2 sin θ

jk sin θ
¼ 2 sin kL

2 sin θ
	 


k sin θ
ð12:97Þ

Expression of this result can be simplified by use of the “sinc” function: sinc(x) � (sin x)/x, which
is plotted in Fig. 12.31.17

H θð Þ ¼ sinc
kL
2

sin θ

� ����� ���� ð12:98Þ

The far-field acoustic pressure along the equatorial plane is related to the total source strength,bU að Þ
��� ��� ¼ 2πa bvrj jL.

pax r
!�� ��� �

¼ ρmc bvrj jkLa
2 r

!�� �� ¼ ρmc

2 r
!�� ��λ bU að Þ

��� ��� ð12:99Þ

Once again, we see that the amplitude of the axial pressure field, pax, is given by our earlier expression
for the monopolar acoustic transfer impedance, Ztr, of Eq. (12.22).

Fig. 12.30 A schematic
representation of a
continuous line source of
length, L, is assumed to
produce a volume velocity

amplitude of bU að Þ
��� ��� by a

harmonic change in its
radius, a, that is uniform
along its full length. Each
differential element of
volume velocity along the
length of the cylindrical line
source of length, dz,
produces a differential

source strength, d bU að Þ
��� ��� ¼

2πa bvr að Þj jdz, where bvr að Þ
is the amplitude of the
radial velocity of the
cylindrical line source at its
surface

17 The sinc function is also known as a zeroth-order spherical Bessel function of the first kind: jo(z) ¼ (sinz)/z. For
example, see M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, National Bureau of Standards, Applied Mathematics Series #55, pg. 438.
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12.8 Baffled Piston

The most ubiquitous man-made electroacoustic source of sound is the baffled piston.18 As will be
demonstrated in this section, the radiation from a circular piston of radius, a, has a frequency
dependence which will produce a uniform sound power that is fairly constant over a broad range of
frequencies if the source of volume velocity (e.g., created by an electrodynamic loudspeaker) is
operating in its mass-controlled region. The radiated sound is also reasonably omnidirectional if the
circumference of the piston is less than the radiated wavelength (i.e., 2πa ≲ λ or ka ≲ 1).

As with the analysis of the continuous line array in Sect. 12.7, each differential surface element of a
baffled piston can be treated as a differential pressure source to be summed by integration over the
surface of the piston to produce the total radiation field produced by that piston. As demonstrated in the
case of a simple source in the proximity of a rigid boundary, the differential source element on the
surface of the baffled piston produces twice the far-field pressure of an equivalent source radiating
omnidirectionally in an unbounded medium. If it is assumed that the amplitude and phase of the normal
surface velocity of the piston, bv⊥j j � v⊥ , is uniform over the entire piston,19 then the differential
element of volume velocity that corresponds to a differential element of the piston’s area, dS, can be

written as d bU��� ��� ¼ v⊥dS.

Fig. 12.31 Plot of sinc(ν) ¼ sin (ν)/ν over the interval � 25 	 ν 	 +25. For application to a continuous line source of
length L, where ν ¼ (kL/2) sin θ

18 The moving-coil electrodynamic loudspeaker was invented by two Danish engineers, Peter Laurits Jensen and Edwin
S. Pridham, in 1915.
19 Since no piston is infinitely rigid, there will be some frequency above which the piston will no longer have a uniform
perpendicular velocity, v⊥, over the entire surface of the piston. Loudspeaker designers refer to this behavior as “cone
breakup.” In some clever designs that have the loudspeaker’s “dust cap” bonded directly to the voice coil former (i.e., the
hollow cylinder around which the coil is wound), the breakup of the cone at radii greater than the dust cap’s radius is used
to make the oscillation of the dust cap the primary sound source, since the cone breakup results in waves propagating
along the cone which produces no net (integrated) volume velocity. For radiation from flexing disks, see M. Greenspan,
“Piston radiator: Some extensions to the theory,” J. Acoust. Soc. Am. 65(3), 608–621 (1979).
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As shown in Fig. 12.32, the differential element of piston area is chosen to be a strip of height, dx,
and width, 2a sin (ϕ), so dS ¼ 2a sin (ϕ) dx. The pressure radiated to the far field (kr � 1) by that

differential strip is related to the differential volume velocity, d bU ϕð Þ
��� ���, that strip imparts to the adjacent

fluid medium.

p R
!��� ���, θ, t� �

¼ ℜe j
ρmckv⊥
2π

ð
S

e j ω t�k R
!�� ��	 


R
!��� ��� dS

264
375 ð12:100Þ

To evaluate this integral, an expression for the vector, R
!
, that connects a point on the surface of the

piston to an observation point, p r
!�� ��, θ, t� �

, in the far field is required.

R
! ¼ r

!�� �� sin θ � x
� �bex þ r

!�� �� cos θ bey ¼ r
!�� �� sin θ � a cosϕ

� �bex þ r
!�� �� cos θ bey ð12:101Þ

bex is the unit vector in the x direction andbey is the unit vector in the y direction. The magnitude of R
!��� ��� in

the far field can be expressed as the Pythagorean sum.

R
!��� ��� ¼ r

!�� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin θ � a

r
!�� �� cosϕ

 !2

þ cos 2θ

vuut
¼ r

!�� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a

r
!�� �� sin θ cosϕ� a

r
!�� ��

 !2

cos 2ϕ

vuut ð12:102Þ

In the far field, that distance can be approximated by the binomial expansion which is valid for a/r� 1.

Fig. 12.32 Geometry used
for calculation of the
far-field pressure,

p r
!�� ��, θ, t� �

, produced by

the vibration of a rigid
piston of radius, a, that is
oscillating with a velocity,bv⊥j j, in an infinite baffle
represented by the x-y plane
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R
!��� ��� ffi r

!�� �� 1� a

r
!�� ��

 !
sin θ cosϕ

" #
¼ r

!�� ��� a sin θ cosϕ ð12:103Þ

As usual, in the far field, we will ignore the effects of the variation in r
!�� �� for the amplitude of the

spherical spreading but include it for the superposition of phases. Combining Eq. (12.103) with the
expression for the differential element of area, dS ¼ 2a sin (ϕ) dx, Eq. (12.100) can be re-written as an
integral over dx.

p r
!�� ��, θ, t� �

¼ ℜe j
ρmckav⊥

π
e j ω t�k r

!j jð Þ
r
!�� ��

ða
�a

ejka sin θ cosϕ sinϕ dϕ

24 35 ð12:104Þ

The integral can be re-cast into a “standard form” by substituting the integration variable, dx¼ a sin (ϕ)
dϕ, and changing the corresponding limits of integration.

p r
!�� ��, θ, t� �

¼ ℜe j
ρmcka

2v⊥
π

e j ω t�k r
!j jð Þ

r
!�� ��

ðπ
0

ejka sin θ cosϕ sin 2ϕdϕ

24 35 ð12:105Þ

The complex exponential in the argument of the integral can be expressed as the sum of trigonometric
functions: e jx ¼ cos (x) þ j sin (x). That integration over the imaginary component vanishes by
symmetry leaving an integral definition of the J1 Bessel function of the first kind [47]. The first three of
these Bessel and Neumann functions were plotted in Figs. 6.8 and 6.9.

Jν zð Þ ¼ z=2ð Þν
π1=2Γ νþ 1=2ð Þ

ðπ
0
cos z cosϕð Þ sin 2νϕdϕ ð12:106Þ

The Gamma function, Γ(ν þ ½), is a generalization of the factorial for non-integers, z! ¼ Γ(z þ 1). It
can be evaluated by use of Euler’s integral.

Γ zð Þ ¼
ð1
0
tz�1e�t dt ð12:107Þ

For ν¼ 1 and z¼ 1.5, 2 Γ(1.5)¼ ffiffiffi
π

p
. Equations (12.106) and (12.107) produce an integral expression

for J1(z).

J1 zð Þ ¼ z
π

ðπ
0
cos z cosϕð Þ sin 2ϕdϕ ð12:108Þ

Comparing Eq. (12.108) with Eq. (12.105), the magnitude of the far-field pressure of a baffled

oscillating rigid piston can be expressed as the product of an axial pressure, pax r
!�� ��� �

, and the

directionality, H(θ), in terms of the piston’s volume velocity, bU��� ��� ¼ Apistv⊥.

p r
!�� ��, θ� �

¼ pax r
!�� ��� �

H θð Þ ¼ ρmcka
2v⊥

2 r
!�� �� 2J1 ka sin θð Þ

ka sin θ

� �
¼ ρmc

r
!�� ��λ bU

��� ��� 2J1 vð Þ
v

���� ���� for ν ¼ kað Þ sin θ
ð12:109Þ

The final expression demonstrates again that the monopole’s acoustic transfer impedance, Ztr,
provides the magnitude of the axial (maximum) far-field pressure in terms of the volume velocity of the
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source, although the expression is twice that of Eq. (12.22) since the source is baffled and therefore
radiates into a semi-infinite half-space. Several directional patterns, |H(θ)| ¼ 2 J1(v)/v, for various
values of 1 	 (ka) 	 10, where v ¼ ka sinθ, are plotted in Fig. 12.33.

The relative amplitudes of the lobes are determined by the values of the maxima of |H(θ)|¼ 2 J1(v)/v.
Fortunately, the derivative of J1(v)/v is related to J2(v) [48].

1
z
d
dz

� �k

z�νJν zð Þf g ¼ �1ð Þkz�ν�kJνþk zð Þ; k ¼ 0, 1, 2 . . .

) d
dz

J1 zð Þ
z

� �
¼ � J2 zð Þ

z

ð12:110Þ

Fig. 12.33 Beam patterns for a baffled, rigid, circular piston as a function of ka ¼ 2πa/λ from ka ¼ 1 (nearly
omnidirectional) to ka ¼ 10. The relative strength of the first side lobe, 31� from the polar axis, for ka ¼ 10, is
�17.6 dB. The angle that the first nodal cone makes with the polar axis for ka¼ 10 is θ1¼ 22.5�. The directivity,D, is the
reciprocal of H2(θ) integrated over all solid angles (see Sect. 12.8.2). The directivity index, (DI), is 10 log10(D). The
arrows in (c) through ( f ) show one direction of DI ¼ 0 [49]

598 12 Radiation and Scattering

www.dbooks.org

https://www.dbooks.org/


The first minor lobe (i.e., θ 6¼ 0�) will occur for values of J2 ( j2,n) ¼ 0. This extremum occurs at
j2,1 ¼ 5.13562, where 2J1 ( j2,1)/j2,1 ≌ 0.132. That first minor lobe will occur in the direction where
ka sin θ¼ j2,1¼ 5.13562. Since the Taylor series expansion of J1(z) about the origin is J1(z)¼ z/2þ z3/
16 – . . ., the value of 2J1(0)/0 ¼ z/z ¼ 1. Therefore, the ratio of the amplitude of the main lobe to the
amplitude of the first minor lobe is 20 log10 (0.132) ¼ �17.6 dB.

For a baffled rigid piston operating at a frequency such that ka ¼ 10 as shown in Fig. 12.33( f ), the
first side lobe will be directed along θn ¼ 1 ¼ sin�1 (5.136/ka) ¼ 31�, and the first null will occur at
θm ¼ 1 ¼ sin�1 (3.83/ka) ¼ 22.5�. The second null visible in Fig. 12.33( f ) for the case of ka ¼ 10
occurs at θm ¼ 2 ¼ sin�1 (7.016/ka) ¼ 44.6�. Since j1,3 ¼ 10.17347, the apparent null at 90� in
Fig. 12.32( f ) for the ka ¼ 10 example is not exactly zero. The second side lobe for ka ¼ 10 occurs at
j2,2 ¼ 8.417 so θn ¼ 2 ¼ sin�1 (8.417/ka) ¼ 57.3�.

12.8.1 Rayleigh Resolution Criterion

To reiterate the results of the previous section, the peaks and nulls of the directionality can be
determined in the same way as was done for the discrete line array and continuous line source, except
that the values of the arguments, j1,m, of the J1( j1,m) Bessel function corresponding to the nulls and
extrema are not simply integer multiples of π or π/2. The nulls occur for directions, θm, where ka sin
θm ¼ j1,m. Values of j1,m are available in mathematical tables [50], and some for small values of n and
m are provided in Appendix C. The first null occurs for j1,1 ¼ 3.83171. Subsequent zero crossings
occur at j1,2 ¼ 7.01559, j1,3 ¼ 10.17347, j1,4 ¼ 13.32369, etc.

sin θ1 ¼ 3:83
ka

¼ 3:83
2π

λ
a

� �
¼ 0:61

λ
a

� �
¼ 1:22

λ
D

� �
ð12:111Þ

The result at the far-right expression in Eq. (12.111) is known in optics as the Rayleigh resolution
criterion. It is used as the minimum observable diffraction-limited angular separation between two
objects viewed through an aperture of diameter D ¼ 2a.20 We can consider two sound sources located
in the far field that are separated by some angle, θ, with one source located at +θ/2 and the other at �θ/
2. If the “piston” is the baffled diaphragm of a microphone, then the argument of the |H(θ)| is
determined by v ¼ ka sinθ, when substituted into Eq. (12.109). The ability to resolve two sources of
equal amplitudes that are separated by some angle, θ, is illustrated in Fig. 12.34.

12.8.2 Directionality and Directivity

It is possible to quantify the directivity of an extended source by comparing the axial pressure at some
distance, r, in the far field, with a simple source that radiates the same time-averaged power
omnidirectionally. That ratio is called the directivity, D.

20 In Rayleigh’s own words, “This rule is convenient on account of its simplicity and it is sufficiently accurate in view of
the necessary uncertainty as to what exactly is meant by resolution.” J. W. Strutt (Lord Rayleigh), “Investigations in
optics, with special reference to the spectroscope,” Phil. Mag. 8(49), 261–274 (1879). See §1. Resolving, or Separating,
Power of Optical Instruments; also Collected Works (Dover, New York, 1963), Vol. I, pp. 415–418.
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D ¼ Iax rð Þh it
Iomni rð Þh it

¼ bpax rð Þj j2bpomni rð Þj j2
ð12:112Þ

The total power radiated by the directional source requires the integration of the H2(θ) over all solid
angle, dΩ.

dΩ � dS
r2

ð12:113Þ

This is similar to the two-dimensional definition of angle as the arc length divided by the radius
which, though dimensionless, is given the unit “radian.” Solid angle is also dimensionless and its unit
is the steradian. If Eq. (12.113) is integrated over the entire surface of a sphere of any radius, the solid
angle has its maximum value of 4π steradians.

The total time-averaged power, hΠit, radiated by a sound source can be obtained by integrating the
square of the far-field pressure over all solid angle.

Fig. 12.34 Illustration of the “Rayleigh resolution criterion” showing the image of two sources that have different
angular separation. The dotted and dashed lines represent the received amplitude of individual signals located at
�θ ¼ sin�1(ν/ka) as function of ν ¼ (ka) sin θ. The solid line is the sum of their signals. (Above) These two peaks are
not resolved. For ν ¼ 1.616, the two peaks cross at their �3 dB points, and for ν ¼ 2.215, the two peaks cross at their
�6 dB points. Those appear as a single object although the apparent angular width has been increased over the width of
the individual sources. (Below) These two peaks are resolved. For ν¼ 2.732, the two peaks cross at their �10 dB points,
and for ν ¼ 3.83, the two peaks cross where both have zero amplitude
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Πh it ¼
1

2ρmc

ð
4π
p21 r, θ,ϕð Þ r2dΩ ¼ r2 pax rð Þj j2

2ρmc

ð
4π
H2 θ,ϕð ÞdΩ ð12:114Þ

For a compact omnidirectional source, Homni(θ) ¼ 1, so that the total time-averaged radiated
power, Πomnih it ¼ 4πr2 bpomnij j2=2ρmc . The ratio of the on-axis time-averaged intensity, hIax(r)it, as
expressed in Eq. (12.112), to the on-axis time-averaged intensity of an monopole with equivalent
source strength, hIomni(r)it, produces an expression that relates the square of the directionality,H2(θ), to
the directivity, D.

D ¼ bpax rð Þj j2bpomni rð Þj j2
¼ 4πÐ

4πH
2 θ,ϕð ÞdΩ ð12:115Þ

This integral can be evaluated for a continuous line source of directionality, |H(θ)|, given by
Eq. (12.98), if the integration variable is changed from dΩ to dv ¼ (½)kL cos (θ)dθ.

Dline ¼ kL=2ð ÞÐ kL=2
0

sin v
v

	 
2
dv

ð12:116Þ

If the line array is very long (i.e., kL� 1), then the limit of integration can be taken to infinity since
v2 in the denominator of the integral will limit the result since |sin v| 	 1. The definite integral is
available in standard integral tables [51].ð1

0

sin 2ax
x2

dx ¼ aπ
2

ð12:117Þ

For long line arrays, substitution of Eq. (12.117) into Eq. (12.116) produces an approximate direction-
ality for a long line array.

lim
kL!1

Dline ¼ kL
π ¼ 2L

λ
ð12:118Þ

For a rigid circular piston in a baffle, substitution of |H(θ)| from Eq. (12.109) into Eq. (12.115)
produces an integral that is similar to Eq. (12.116).

Dpiston ¼ 4πÐ π=2
0

2J1 ka sin θð Þ
ka sin θ

h i2
2π sin θ dθ

¼ kað Þ2
1� J1 2kað Þ

ka

ð12:119Þ

The low-frequency directionality of the baffled piston can be obtained from the series expansion of
J1(x) ¼ (x/2) þ (x3/16) þ . . .

lim
ka!0

Dpiston

� � ¼ 2 ð12:120Þ

This result for a baffled piston in the low-frequency limit is reasonable because we have assumed
that the baffle restricts radiation only into a semi-infinite half-space. Because of the oscillatory
behavior of J1(2ka) and the fact that |J1(x)| < 0.582, the high-frequency limit of the piston’s direction-
ality can be calculated directly from Eq. (12.119).

lim
ka!1

Dpiston

� � ¼ kað Þ2 ð12:121Þ
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For many applications, it is useful to express the directivity as a directivity index, DI, that is often
also referred to as the array gain.

DI ¼ 10 log 10D ð12:122Þ
The polar plots of piston directionality in Fig. 12.33 also include the directivity index reported in
decibels.

12.8.3 Radiation Impedance of a Baffled Circular Piston

At the surface of the baffled rigid piston, the fluid exerts a force that has components that are both
in-phase with the piston’s velocity (manifested as a mechanical radiation resistance) and that are
in-phase with the piston’s acceleration (manifested as hydrodynamic mass loading). It was fairly easy
to derive the hydrodynamic mass for a compact spherical source resulting in Eq. (12.15) and the
radiation resistance in Eq. (12.16), and somewhat more difficult to do the same for a dipole to obtain
the results in Eq. (12.55). The equivalent calculations for a baffled rigid piston are more complicated,
since Bessel functions are required, [52], but result in an expression for the resistive component that is
proportional to a function, R1(2ka), and for the reactive component that is proportional to another
function, X1(2ka). The mechanical impedance, Zmech, is evaluated at the surface of the oscillating
piston.

Zmech � bFbv⊥ ¼ ρmcπa
2 R1 þ jX1½ � ð12:123Þ

The resistive coefficient of the mechanical reactance, R1, is related to the J1 Bessel function.

R1 2kað Þ ¼ 1� 2J1 2kað Þ
2ka

for all values of 2kað Þ

ffi 2kað Þ2
2  4 � 2kað Þ4

2  42  6þ
2kað Þ6

2  42  62  8    for 2kað Þ < 2
ð12:124Þ

For small values of 2ka, R1 (2ka� 1) ¼ (ka)2/2. At high frequencies, R1 (ka� 1) approaches one, as
shown by the solid line in Fig. 12.34, so the piston radiates plane waves, as expected.

The quadratic dependence of the radiation resistance on frequency, R1 / ω2, for small values of 2ka,
is responsible for the large frequency bandwidth of direct-radiating loudspeakers. Electrodynamic
speakers are typically operated at frequencies above their natural (free-cone) resonance frequency and
are therefore operated in their mass-controlled regime. As such, their acceleration is constant, but the
velocity of their speaker cone, v⊥, is decreasing linearly with frequency: bv⊥j j / ω�1 . Since the time-
averaged radiated power is proportional to the square of that velocity, Πradh i ¼ ½ð Þ ρmcπa2ð ÞR1 bv⊥j j2,
hΠradit it is frequency independent, as long as the piston remains rigid at those frequencies and 2ka	 1.

The reactive function can be expressed as an integral that is related to the first-order Struve function,
H1(2ka) [53].

X1 2kað Þ ¼ 2H1 2kað Þ
2kað Þ ¼ 4

π

ðπ=2
0

sin 2ka cos αð Þ sin 2α dα

ffi 2
π� J0 2kað Þ þ 16

π � 5

� �
sin 2kað Þ
2ka

þ 12� 36
π

� �
1� cos 2kað Þ

2kað Þ2

ffi 4
π

2ka
3

� 2kað Þ3
32  5 þ 2kað Þ5

32  52  7�   
� �

for 2kað Þ < 2

ð12:125Þ
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The middle version is valid to within about�½% for all values of (2 ka) [54]. The frequency variation of
both components of the baffled piston’s radiation impedance functions,R1 and X1, is plotted in Fig. 12.35.

For small values of 2 ka, X1(2ka � 1) ¼ 8(ka)/3π. As before, we expect the reactive part of the
mechanical radiation impedance, ρmcπa2X1, to represent the baffled piston’s (near-field) hydrodynamic
mass loading. From Eqs. (12.123) and (12.125), the force corresponding to this mass reactance can be
written in terms of the fluid density times a cylindrical volume of fluid that has the same area as the
piston, πa2, and a height, ℓBaffled ¼ (8a/3π)ffi 0.85 a, if we let ω¼ ck. As shown below, for the baffled
piston, meff ¼ ρm(8/3)a

3 when (2ka) < 1.

lim
2ka!0

FReactive½ � ¼jℑm Zmechv⊥½ � ¼ jρmcπa
2 8
3π kað Þ

¼jω ρmπa2  8a3π
� �

¼ jωmeff ¼ jωρm
8
3
a3

� � ð12:126Þ

That hydrodynamic mass was added to the head mass of the Tonpilz transducer in Sect. 4.3.1. We
postulated an effective mass correction (without proof!), in Sect. 8.5.2, when we added an empirical
“effective length” correction, Leff ¼ Lþ 1.24a from Eq. (8.53), to the physical length, L, of the neck of
our 500 mL Helmholtz resonators.

According to the results of Eq. (12.126), 0.85a of the empirical correction, 1.24a, was due to the
effective mass of the fluid that leaves the neck and enters the compliance (volume) if that junction can
be modeled as a “baffled piston.” That leaves 0.39a that would be the effective mass for the fluid in the
other end of the neck.

That total correction was about 15% smaller in Sect. 8.6.11 where we used DELTAEC to produce the
necessary neck length correction because DELTAEC included the frequency reduction due to
thermoviscous effects in the neck and the compliance: Leff ¼ L þ 1.08 a.

Fig. 12.35 Functional dependence of the real (resistive) mechanical reactance, R1(2ka), as a solid line, and imaginary
(reactive), X1(2ka), as a dotted line, plotted as a function of 2(ka), for a rigid, baffled piston. For small values of 2(ka), the
initial slope of R1(2ka) is proportional to (2ka)2, and the initial slope of X1(2ka) is proportional to 2(ka)
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It is a good idea to compare the results for the radiation impedance of the baffled piston plotted in
Fig. 12.35 with those of the simple spherical source (monopole) that were plotted in Figs. 12.5 and
12.6. Both exhibit an initially quadratic increase in the real part and an initially linear increase in the
imaginary part. Both have the imaginary part decreasing toward zero, and both have the real part
approaching one for large ka.

Because the spherical source can only produce radial fluid velocities, there is no “waviness” in
either R1 of X1 at higher values of ka in Figs. 12.5 and 12.6. For the baffled piston, at larger values of
ka, pressure created by the motion of one portion of the piston can interfere with other parts, thus
producing the oscillations of R1 of X1 seen in Fig. 12.35.

12.8.4 Radiation Impedance of a Baffled Rectangular Piston*

A similar derivation for the radiation impedance of a rigid baffled rectangular piston can be made by
integrating the differential element of volume velocity that corresponds to a differential element of the

piston’s area, dS, written as d bU��� ��� ¼ v⊥dS, using the geometry of Fig. 12.32, but for a region of width,

w, and height, h. If w and h are not too different, the radiation resistance and reactance can be written
for such a rectangular piston [55].

R1 þ jX1 ¼
k2

16
w2 þ h2
	 
þ j

8k
9π

w2 þ whþ h2

wþ h
for kw � 1 and kh � 1

1þ j
8

πk wþ hð Þ for kw � 1 and kh � 1

8>><>>: ð12:127Þ

As with the baffled circular piston, for large kw and kh, the radiation resistance is just that for plane
waves, as it was in Eq. (12.124) for the circular piston. Also, if we consider a square piston with w¼ h,
then in the small kh limit, in analogy with Eq. (12.123), meff ¼ ρm(4h/3π)Apist for the square piston
which is almost equal to meff ¼ ρm(8a/3π)Apist for the circular piston since equal values of Apist would
make h ¼ a

ffiffiffi
π

p ffi 1:77a for the square piston.

12.8.5 On-Axis Near-Field Pressure from a Circular Baffled Piston*

This exploration of radiation from a baffled, rigid piston will conclude with an examination of the
boundary between the near and far fields. Based on the earlier investigations of extended sources with
dimensions that are larger than the wavelength of sound, we expect interference effects. These are also
observed with piston sources when the frequency of sound corresponds to ka > 2π.

We can estimate the distance along the axis of the piston where the transition is observed from near-
field (interference) to the far-field (spherical spreading) behavior. In the far field, a smooth monotonic
decrease in the acoustic pressure amplitude is expected that varies inversely with distance from the
surface of the piston according to pax(r) in Eq. (12.109).

Figure 12.36 provides a diagram of a piston with the arc of a circle centered at a point a distance, R,
from the surface of the piston. If we have chosen R such that the distance from the edge of the piston to
the point at R is R þ λ, then we can think of the piston as being separated into a central disk where the
path length differences, Δ, are less than or equal to λ/2 and an outer ring with λ/2 	 Δ 	 λ. The radius
of the inner disk can be set to b¼ a/√2. If the surface areas of the ring, Aring ¼ π(a2 – b2), and the disk,
Adisk ¼ πb2, are roughly equal (they are exactly equal if b¼ a/√2), then the pressure generated at R due
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to the volume velocity created by the inner disk will cancel the pressure generated at R due to the
volume velocity created by the outer ring.

From the geometry of Fig. 12.36, the value of R beyond which there can be no further interference,
Rmin, can be calculated using the right triangle of height a, base R, and hypotenuse, R þ λ.

Rþ λð Þ2 ¼ R2 þ a2 ð12:128Þ
Expansion of the binomial and cancellation of R2, common to both sides, produces the required

value of Rmin.

2Rmin

λ
¼ a2

λ2
� 1 ) Rmin ¼ a2

2λ
� λ
2

ð12:129Þ

Destructive interference along the axis can only occur for pistons with ka ¼ 2πa/λ > 2π. The
distance, Rmin, which determines the farthest axial null is r1 ffi a2/2λ ¼ a(ka)/4π. Examination of
Fig. 12.36 shows that this approximation becomes more accurate as ka increases in accordance with
Eq. (12.129).

As we move away from the piston, past R, we initially expect the axial pressure amplitude to
increase then eventually decrease due to the 1/r behavior of pax(r) in the far field, as described in
Eq. (12.109). A more detailed calculation gives the location, r1, of the peak in the axial response
beyond R [56].

r1 ¼ a2

λ
� λ
4

) r1
a
¼ kað Þ

2π
� π
2 kað Þ ð12:130Þ

Figure 12.37 provides plots of the axial pressure, pax(r), for three values of 2π 	 ka 	 8π, and the
caption provides the corresponding values for r1. Depending upon the accuracy required for prediction
of the far-field behavior, it is generally a good policy to make the start of the far field twice r1, although
some choose to define r1 as the start of the far field. Figure 12.37 provides the same representation for

Fig. 12.36 A simple
geometric construction that
can be used to estimate the
distance from the surface of
a piston where we expect
the last destructive
interference to occur on the
axis of the piston. The rigid,
baffled piston has a radius,
a, that is significant when
compared to the
wavelengths of sound
radiated by the piston. The
inner radius, b, is chosen so
that the areas of the inner
disk and outer ring are
equal. The radius of the
orange arc is R
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the variation in axial pressure in the near field but uses a logarithmic representation of the x axis so that
the rapid oscillations of the axial pressure near the piston for large ka can be resolved. In both figures,
the number of maxima in the near field axial interference pattern is roughly equal to the number of
wavelengths required to span one piston radius.

A good approximation of the peak pressure amplitude from the surface of the piston out to the far
field which removes the interference effects is provided below and is shown in Fig. 12.38 as the dotted
line labeled “MM” [57].

pax rð Þj j ¼ pax 0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r=að Þ2

q ð12:131Þ

The dotted line labeled “M” in Fig. 12.37 is represented by a similar expression [58].

pax rð Þj j ¼ 2pax 0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r=að Þ2

q ð12:132Þ

2

Far-Field Approximation

Axial Response of a Baffled Circular Piston
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Fig. 12.37 On-axis pressure for three rigid, baffled pistons with 2π 	 ka 	 8π. As the radius of the piston, a, becomes
larger than the wavelength of sound. λ ¼ 2π/k, there are more opportunities for constructive and destructive interference
from various parts of the piston to modulate the sound pressure amplitude along the axis at distances smaller than R≌ a2/
λ. According to Eq. (12.129), for ka¼ 2π, r1¼ 3a/4, for ka¼ 4π, r1¼ 7a/4, and for ka¼ 8π, r1¼ 15a/4. The smooth line
shows the far-field pressure that varies inversely with distance, r, from the piston. [Graphs courtesy of A. A. Atchley]

606 12 Radiation and Scattering

www.dbooks.org

https://www.dbooks.org/


These approximations have been useful in the design of nonlinear underwater sound sources (see Sect.
15.3.3), where a significant amount of nonlinear mixing takes place in the near field.

12.9 Radiation Impedance of an Unbaffled Piston

The “effective mass” added to the surface of a circular baffled piston due to the fluid loading was
calculated exactly in Sect. 12.8.3 and produced a hydrodynamic load that was equivalent to the mass of
fluid contained in a cylindrical volume that had the same area as the piston, πa2, and a height of
ℓBaffle ¼ (8a/3π) ffi 0.85 a, if ka � 1. That correction was not enough to account for the experimental
result in Sect. 8.5.2 that required ℓFlask ¼ 1.24 a, as expected, because there was additional kinetic
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Fig. 12.38 Plot of the log of the amplitude of the on-axis pressure from a rigid, baffled piston vs. the log of the distance
from the surface of the piston scaled by the radius of the piston, Ro ¼ a. In this figure, the distance is plotted on a
logarithmic axis to make the spacing of the interference pattern appears roughly constant. In this log-log representation,
the far-field asymptote is the straight (dashed) line with slope� 1. The upper plot is for ka¼ 10π (a/λ¼ 5), and the lower
plot is for ka ¼ 20π (a/λ ¼ 10). The dotted lines, “M” and “MM,” are useful for approximation of the near-field pressure
amplitudes [59]
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energy due to the entrained flow at both ends of the Helmholtz resonator’s neck. The end of the neck
that enters the compliance should have a flow field that is similar to that of the baffled piston but the
other end is unbaffled; the entrained gas that oscillates at that open end can have a component that
moves “backward” without the constraint imposed by the baffle.

It turns out that the exact solution for the radiation impedance of an unbaffled circular piston is
considerably more difficult than the solution for the baffled piston, and an exact result for radiation
from the end of a tube of infinite length with thin, rigid walls was not obtained until 1948 [60].21

lim
ka!0

h
a

� �
¼ 1

π

ð1
0

1
x2

ln
1

2I1 xð ÞK1 xð Þ dx ¼ 0:6133

) ℓL&S ¼ 0:6133a if ka � 1
ð12:133Þ

I1(x) and K1(x) are the modified Bessel functions (of complex argument) that were plotted in Fig. 6.20.
The variation in ℓ/a as a function of (ka) for the unbaffled piston is plotted in Fig. 12.40. Until then, the
unbaffled end correction was based on experimental measurements on closed-open pipes, as illustrated
schematically in Fig. 12.39. Rayleigh found ℓ/a ffi 0.6 using organ pipes with and without a
flange [61].22

Rather than attempt an exact derivation of the result in Eq. (12.133) for the unbaffled piston, it will
be easier to argue that the radiation from the unbaffled piston, at small values of ka, should be similar to
the radiation from the spherical source (i.e., a compact monopole), analyzed in Sect. 12.2.1, since the
body of the closed-open resonator in Fig. 12.39 does not exclude much volume from the infinite space
surrounding the piston.

Since it is the volume velocity produced by the unbaffled piston that determines the sound radiation,
we can ask what should be the radius, b, of the “equivalent” spherical source to provide the same
radiating area as the piston of radius, a: Apist ¼ πa2 ¼ Asphere ¼ 4πb2. This equivalence requires that
b ¼ a/2 resulting in an equivalent hydrodynamic mass, meff, for the monopole equivalent.

meff ¼ 3ρmVsphere ¼ 3ρm 4π=3ð Þ a=2ð Þ3 ¼ ½ð Þa πa2
	 
 ¼ a=2ð ÞApist ð12:134Þ

By that argument, for an unbaffled piston, the effective length correction is ℓUnbaffledffi 0.5a. That result
is 18% less than the exact result in Eq. (12.133), and both results are less than ℓBaffled ¼ 0.85a for the
baffled circular piston.

Fig. 12.39 Schematic representation of a closed-open pipe. Motion of the fluid oscillating at the open is represented by

the piston shown as the dotted rectangle that produces a sinusoidal volume velocity, bUejω t

21 The solution was sufficiently difficult that one of the authors was the theoretical physicist, Julian Schwinger
(1918–1994), who shared the 1965 Nobel Prize in Physics for quantum electrodynamics with Sin-Itiro Tomonaga and
Richard Feynman. The other, Harold Lavine, continued his career as a mathematics professor at Stanford University,
specializing in integral equations.
22 Rayleigh also reports a “careful experimental determination” made by Blaikley [Phil. Mag. 7, 339, (1879)] that used a
brass tube of 5.3 cm diameter that had one end submerged in water to produce the adjustable distance for the closed end
and five tuning forks for frequencies between 254 Hz and 707 Hz. The length of the tube above the water was adjusted to
be co-resonant with the forks and resulted in an experimental effective length at the open end of ℓ ¼ (0.576 � 0.014) a.
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Before leaving this topic, it is worthwhile mentioning the calculation of the unflanged end
correction made by Lev Gutin a decade before the publication of the Levine and Schwinger result.
Gutin used the superposition two oppositely phased baffled pistons plus the translational oscillations of
a rigid disk to produce the flow field of an unbaffled piston as shown schematically in Fig. 12.41 [62].

Gutin’s calculation resulted in an effective length correction in the small ka limit of ℓGutin¼ 0.636 a.
This is only 3.7% larger than today’s accepted value of ℓL & S ¼ 0.6133 a.

Bringing this back to the measured effective length for the 500 ml boiling flask used to study the
frequency of a Helmholtz resonator in Sect. 8.5.2, we see that simply adding a baffled correction to one
end of the resonator’s neck and an unbaffled correction to the other end produces a “theoretical”
correction of ℓ ¼ [(8/3π) þ 0.6133]a ffi 1.462a. That is greater than the measured value of ℓ ¼ 1.24a,
even in the absence of the resonance frequency reduction due to the inclusion of thermoviscous losses
in the DELTAEC model of Fig. 8.27, which resulted in a correction of only ℓDeltaEC ¼ 1.07 a. Those
frequency measurements in Fig. 8.17 were clearly within the small ka limit: ka ffi 0.05 � 1.

Fig. 12.41 The flow field from an unbaffled piston is constructed from the superposition of two anti-phase baffled
pistons in (a) plus the field of a rigid disk oscillating along its axis in (b) to produce the required flow in (c), since disk’s
oscillations cancel the rearward piston and doubles the forward piston’s flow. (Figure courtesy of D. A. Brown)
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Fig. 12.40 Plot of the end
correction for radiation
from an unbaffled pipe in
terms of the pipe’s radius:
ℓ/a for 0 � ka < 4 from
Levine and Schwinger [60]
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In conclusion, it is fair to say that the kinetic energy of the gas oscillations at the end of a duct that is
either baffled or unbaffled requires the addition of some hydrodynamic mass to account for the flow at
the exits of such ducts. It is also fair to say that the effective length correction required to incorporate
the entrained flow is sensitive to the actual circumstances that influence those entrained flows. James
Mehl studied the duct end correction using a boundary-integral equation and examined the effects of
the rounding of duct edges and the effects of finite chamber size and provides an extensive list of
references to articles that have studied such end corrections [63].

12.10 Linear Superposition

Chapter 12 is the longest chapter in this textbook. Although its title is “Radiation and Scattering,” it
could easily have been entitled “Multiple Applications of Linear Superposition.” It started by examin-
ing the sound radiated by a “compact” source of oscillatory volume velocity in an approximate model
that demonstrated that the periodic insertion and removal of fluid could only affect the acoustic
pressure variations within a “causality sphere” whose volume was limited by the speed of sound.
Going beyond that perspective, it was possible to obtain an exact solution for the spherically symmetric
waves produced such a sound source by solving the wave equation in an infinite, homogeneous, and
isotropic three-dimensional fluid medium and assuming that the volume velocity was produced by a
sphere whose radius underwent a harmonic variation as a function of time.

The solution for a compact monopole source also permitted the calculation of the complex radiation
impedance at the source’s surface. We used the imaginary component of that radiation impedance to
demonstrate that it was necessary for the source to overcome the inertia of the surrounding fluid.
Quantifying that fluid inertia facilitated the calculation of the simple harmonic oscillations of a gas
bubble in a liquid. The real component of that radiation impedance was used to calculate the time-
averaged acoustical power that such a simple monopole source would radiate.

Armed with the behavior of a compact monopole, we used linear superposition to examine the
behavior of various collections of such monopoles, both discrete (e.g., to examine sources near
reflecting surfaces and linear arrays) and continuous (e.g., to integrate the effects of infinitesimal
sources over the surface area of a pulsating tube or the surface of an oscillating piston).

The most significant superposition was that of two sources that were separated by a small fraction of
a wavelength, kd � 1, and were 180� out-of-phase, thus producing a “compact dipole.” That
significance was due to the fact that the flow produced by such a dipole was equivalent to the flow
produced when a rigid sphere (or other solid object) makes translational oscillatory excursions through
an otherwise stagnant fluid.

The compact monopole and the compact dipole provided a basis for the calculation of sound that is
scattered by inhomogeneities in a fluid that are small compared to the wavelengths of the sound
scattered by such inhomogeneities. Sound waves in fluids are a consequence of the competition
between the fluid’s compressibility and mass density. Monopoles let us calculate the sound scattered
from compressibility contrasts, and dipoles did the same for scattering from density contrasts.

As was the case so many times in this textbook, very simple systems examined in limits that
permitted calculation of their acoustical behavior have provided models that can guide our intuition
and create a vocabulary for the understanding of a much greater range of systems. A stage with
hundreds of loudspeakers in dozens of clusters, as shown in Fig. 12.1, can make perfect sense from the
right perspective.
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Talk Like an Acoustician

Causality sphere
Monopole Directivity index
Compact source Dipole
Compactness criterion Dipole strength
Rayleigh resolution criterion Pressure gradient microphone
Acoustic transfer impedance Ribbon microphone
Specific acoustic impedance Cardioid directionality
Characteristic impedance Semi-infinite half-space
Radiation reactance Minor lobe
Radiation resistance Solid angle
Effective mass Steradian
Hydrodynamic mass Density contrast
End correction Compressibility contrast
Laplace’s formula Differential scattering cross section
Source strength Total scattering cross section
Far field Rayleigh scattering
Near field Mean field approximation
Bipole Void fraction
End-fire direction Array gain
Broadside direction Beam steering
Directionality factor End-fire array
Baffled source Shaded array
Directivity End corrections

Exercises
1. Big sphere at high frequency. A pulsating sphere operates at a frequency such that ka � 1 with a

radius, r tð Þ ¼ ℜe bξejω t
h i

, so the amplitude of the radial velocity at the surface of the sphere is

bvrj j ¼ ω bξ��� ��� and bξ��� ���� a . Calculate (a) the radiated pressure amplitude, (b) particle velocity

amplitude, and (c) the time-averaged intensity as a function of the distance from the center of the
sphere, along with (d ) the total time-averaged radiated power.

2. Spherical (monopole) source in air. A compact source in air radiates 10 mW of time-averaged
acoustical power at 400 Hz in air at 20 �C with pm¼ 100 kPa. At a distance of 0.5 m from the center
of the source, calculate (a) the radiated time-averaged intensity, (b) the amplitude of the acoustic
pressure, (c) the amplitude of the particle speed and its phase relative to the acoustic pressure, and
(d ) the peak-to-peak particle displacement of the air.

3. Radiation from a point source. A spherical point source is radiating sinusoidally in air; the resultant
radiation propagates through free space. The acoustic power of this source is 1000 W at 1000 Hz.
(a) Amplitude. Calculate the time-averaged intensity, the sound pressure amplitude, and the

acoustic particle velocity at 1.0 and 10.0 meters from the center of the source.
(b) Phase. Calculate the phase angle (in degrees) between the sound pressure and particle velocity

at distances of 0.5, 1.0, and 10.0 meters from the source.
4. Spherical spreading. You are assigned to check the quality of a new anechoic room that has been

built by your employer. You decide to test the room by making a measurement of the pressure
detected by a microphone as a function of the separation between the microphone and the sound
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source that is an ordinary loudspeaker in a room as shown in Fig. 12.42. You do not have a priori
knowledge of the distances between the acoustic centers of the microphone and speaker and the
points on those two transducers between which you are measuring their physical separation, d.
To compensate for this uncertainty, you define the effective acoustic separation, dac ¼ d þ a, to be
the measured physical separation, d, plus some (possibly frequency-dependent) length, a, that may
be positive or negative.
If the room is truly anechoic, then the decrease in microphone output voltage, V(d ), as a function of
source-receiver physical separation, d þ a, should exhibit spherical spreading, indicated by
Eq. (12.135), where B is a constant and a is an adjustable parameter that accounts for the fact
that the measured distance and the distance between the acoustic centers of the source and receiver
might be different from their physical separation, d.

V dð Þ ¼ B
d þ a

ð12:135Þ

Transform this equation so that the data can be plotted in a way that represents the spherical
spreading as a straight line vs. the measured (physical) separation, d, between the source and
microphone, to produce a value of a that can be determined from the slope of the line, its intercept,
or both the slope and the intercept. Write an expression for a in terms of the slope and/or intercept of
your transformed equation.

5. Swim bladder resonance. Many fish species use an air-filled sac, known as a “swim bladder,” to
control their buoyancy. Fish also use “constrictor muscles,” shown schematically in Fig. 12.43, to
excite motion of that organ to generate sound, usually consisting of a train of repetitive pulses that
are typically in the frequency range of 100 Hz to 1.0 kHz, and also to receive sounds, since
Eq. (12.77) demonstrates that the air-filled bladder will compress much more than the surrounding
water in response to an impinging sound wave [64].
If such a fish is swimming at a depth of 5 m below the water’s surface, what would have to be the
volume of the swim bladder, Vswim, so that it would be resonant at 500 Hz? To simplify the
calculation, it is reasonable to assume that the mass density of fish flesh is roughly equivalent to that

Fig. 12.42 Sound source
(loudspeaker) and
microphone located in an
anechoic chamber

612 12 Radiation and Scattering

www.dbooks.org

https://www.dbooks.org/


of the surrounding water, so the hydrodynamic mass loading would be approximately the same as
assumed for a bubble in Eq. (12.29). Although the swim bladder is not spherical, its equivalent
radius, aeff ¼ (3Vswim/4π)1/3, still makes (kaeff) � 1, so its approximately prolate spheroidal shape
will not create a substantial difference between the resonance frequency of the bladder and an
equivalent spherical volume [8].

6. Train in the tunnel. A train traveling at 60 mph enters a long tunnel with the same cross-sectional
area and frontal shape as the train. Assume both gas leakage around the train and friction between
the train and tunnel walls are negligible. Estimate the amplitude of the pressure wave created in the
tunnel. [Hint: One approach might be to think about the speed of the wave front and the speed of the
train (piston), then apply that trusty adiabatic gas law.]

Fig. 12.43 Swim bladder
anatomy
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Fig. 12.44 Directional
pattern for two sound
sources of equal amplitude
separated by a distance, d,
between their centers
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7. Far-field radiation pattern. The far-field radiation pattern, shown in Fig. 12.44, was created by
two simple (compact) sound sources of equal source strength separated by a distance, d. The two
sources are aligned along the vertical axis (the 90� – 270� axis) of the figure and radiate with equal
amplitude.
(a) Bipole or Dipole. What is the phase difference between the two sources in degrees?
(b) Separation. What is the value of kd for this pair of sources?

8. Four-element line array. The far-field radiation pattern shown in Fig. 12.45 was created by four
simple (compact) sound sources that are oscillating in-phase and are separated by a distance, d,
along a straight line. The total length of the array is L ¼ 3d. What is the value of d, expressed in
terms of the wavelength of sound that is being radiated?

9. Continuous line source. One quadrant of the far-field directional radiation pattern produced by a
uniform line source is shown in Fig. 12.46. The uniform line array is oriented along the 90�– 270�

axis. Nodal cones are shown making angles with the vertical axis (i.e., θ p ¼ 0�) of approximately
15�, 32�, and 52�.

Fig. 12.45 Directional
pattern for a four-element
line array

Fig. 12.46 Directional
pattern of a continuous line
array
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Determine the dimensionless length of the line array, 2πL/λ ¼ kL, where L is the physical length of
the array and λ is the wavelength of the sound radiated by the uniform line source.

10. Quadratic quadrupole radiation impedance.23 A quadratic quadrupole is a compact collection
of four simple sources. As shown in Fig. 12.47, one pair are in-phase (ϕ ¼ 0�) as indicated by the
� symbol, and the other pair have ϕ ¼ 180� out-of-phase with the first pair as indicated by the⊝
symbol. The radius of each simple source is a. The radiation impedance for such a quadrupole is
given in Eq. (12.136) for ka < 1.

Zquad ¼ ρmc
4πa2 kað Þ6

1215
� jωρm

4πa3
45

1þ kað Þ2
9

þ 4 kað Þ4
81

þ   
� �

ð12:136Þ

(a) Impedances. There are three types of impedances that are commonly used in acoustics. Is the
impedance in Eq. (12.136) a characteristic, mechanical, or acoustical impedance?

(b) Effective radiation mass. In the limit of sources whose circumference is significantly smaller than
one wavelength (i.e., 2πa� λ), express the “effective mass” of that collection of four oscillating
simple sources in terms of mass of the fluid displaced by one spherical source with radius, a.

11. Long line array. A line array of simple sources is designed so that kL ¼ 50.
(a) Major lobes. How many maxima does it produce for 0� 	 θ 	 90�?
(b) Nodal lines. How many nodal lines (in the two-dimensional representation) are there within

the same angular interval?
(c) Beam width. Find the full angular beam width, Δθ, of the lobe centered at θ ¼ 0� if the full

beam width is defined as the angle between the nodal directions that limit the central lobe.
(d) Other beam width definitions. What is the angular width of the beam if that beam width

corresponds to a ratio of the main lobe amplitude to the down 3 dB, 6 dB, 10 dB, and 20 dB
full angular widths: Δθ�3dB, Δθ�6dB, Δθ�10dB, and Δθ�20dB.

Fig. 12.47 Quadratic
quadrapole

23 There are also “linear quadrupoles” that consist of a double-strength source at the center and two sources with phase
opposite to the central source, all arranged in a straight line:

⊝ �� ⊝.
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(e) Lobe amplitude ratio. What is the ratio of the amplitude of the peak of the first side lobe to
the peak of the central lobe? Report that ratio in dB.

12. Piston angular null. A baffled circular piston of radius, a, radiates sound at frequency, ω.
What is the smallest angle, θ1, with respect to the piston’s axis, at which the radiated sound
pressure is zero. Express your answer in terms of the wavenumber, k ¼ ω/c, and the radius of the
piston.

13. “Flat” frequency range for an electrodynamic loudspeaker. The speaker shown in Fig. 12.48
(rsight) has a moving mass mo ¼ 11.8 g, a suspension stiffness, K ¼ 1440 N/m, a mechanical
resistance, Rm¼ 1.9 kg/s, and a force factor, (Bℓ)¼ 7.1 N/A. The effective diameter of the piston
is 2a ¼ 11.0 cm. Assume it is mounted in an infinite baffle like that shown in Fig. 8.37.
(a) Free-cone resonance. Calculate the free-cone resonance frequency, fo, of this speaker.
(b) Forced motion. Assume the speaker is mounted in an infinite baffle and it is driven by a

sinusoidal current, I(t) ¼ 1.41 cos (ω t) amperes. The force on the piston produced by this
current flowing through the speaker’s voice coil is F(t) ¼ (Bℓ)I(t). Plot the magnitude and

phase (with respect to the driving current) of the volume velocity, bU fð Þ , created by the
piston from 10 Hz to 3500 Hz. Use logarithmic axes for both frequency and volume velocity
but plot phase angle on a linear scale, preferably on the same graph. You may neglect any

Fig. 12.48 (Left) Cross-section of a conventional moving-coil direct radiator type loudspeaker showing the suspension
(CS), the spider (SP), speaker cone (PC), dust cap (DC), and voice coil (VC). The radial magnetic field (B) is produced by
the permanent magnetic material (PM) with north (N) and south (S) magnetic polarity, the central pole piece (PP), the
backplate (BP), and the front pole piece (CP). Figure from Hunt [65]. (Right) Catalog listing a 5”Morel model MW-142
loudspeaker
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fluid loading of the piston (e.g., effective hydrodynamic mass) in all parts of these
calculations.

(c) Effective air mass.What is the hydrodynamic mass of the air that is being accelerated by the
front face of the piston for ka < 1 if pm¼ 100 kPa and c¼ 20 �C.24 Compare this result to the
speaker’s moving mass, mo.

(d) Radiated power. The (mechanical) radiation resistance, ρmcπa2R1(2ka), can be used to
convert the volume velocity calculated in part (b) to the time-averaged radiated power,

Πradh it ¼ ½ð Þℜe Zmech½ � bU=Apist

��� ���2. Plot the radiated power in dB re: 1 watt vs. the log of

frequency from 10 Hz to 3500 Hz.
(e) “Flat” region of the speaker’s far-field radiation. Over what range of frequencies is the

speaker’s time-averaged radiated power constant to within �2 dB? Provide the limiting
frequencies, fmin and fmax, as well as the �2 dB frequency bandwidth, Δf �2dB ¼ fmax � fmin.

14. Party balloon. A young child is in the back seat of an automobile that is initially at rest will all of
the windows closed. In the hand of the child’s outstretched arm is a string that is attached to a
helium-filled balloon. If the car accelerates forward, does the balloon get closer to the child or to
the driver? Is your answer consistent with Eq. (12.71) and with the Equivalence Principle of
Einstein’s Theory of General Relativity?

15. Thermoacoustic sound source suspension and dipole radiation. The device shown in
Fig. 12.49 represents the DELTAEC model (segments numbered 1 through 11) of a nuclear-
powered thermoacoustic engine (resonator) [66]. It is only free to move in the vertical direction as
it is suspended between two identical springs, each with stiffness, K. The resonator is a rigid body
with a total mass of 0.35 kg. Heat produced by nuclear fission of enriched 235U maintains a
standing acoustic wave within the resonator that causes the gas mixture (80% helium, 20%
argon), at a mean pressure of pm ¼ 2.0 MPa, to oscillate back and forth within the resonator. The
gas resonance occurs at the fundamental, half-wavelength, frequency, f1 ¼ 1588 Hz.
(a) Resonator length. If the mean temperature of the gas mixture in the resonator is 30 �C, what

is the length of the resonator?
(b) Force. The oscillatory motion of the gas causes a reaction force on the ends of the resonator.

(Think of the gas in the resonator bouncing back and forth between the resonator end caps of
segments #1 and #11.) If the moving gas has an effective mass, m¼ 6� 10�4 kg, according
to the DELTAEC model, the effective (peak) velocity of that effective mass is 16 m/s. What is
the magnitude of the peak force that the oscillatory gas applies to the resonator?

(c) Static deflection. If the total mass of the resonator is 0.35 kg, what is the stiffness of one of
the two identical springs, K, so that the resonator’s weight in a gravitational field of
acceleration, g ¼ 9.8 m/s2, causes the resonator to drop by only 1.0 mm?

(d) Suspension resonance frequency. Using the stiffness calculated above in part (c), what is the
natural frequency of the mass-spring system (ignoring the gas motion), remembering that
both springs contribute to the restoring force?

(e) Resonator displacement. Using the force calculated in part (a), what is the resonator’s peak-
to-peak oscillatory displacement?

(f) Radiated dipole power. Using the displacement calculated in part (e) and the resonator’s
length calculated in part (a), what is the acoustic power radiated by the oscillatory

24With the loudspeaker mounted in an infinite baffle, there would also be an equal hydrodynamic mass due to the sound
radiated into the space on the other side of the baffle. With the same speaker mounted in a sealed box, the rear of the cone
would feel the stiffness of the gas within the box. For this problem, we will ignore that rear radiation.
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displacement of the cylindrical resonator if each of the resonator’s end caps has an area,
Aend ¼ 2.8 cm2, and the surrounding fluid is water?
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In this chapter, solutions to the wave equation that satisfies the boundary conditions within three-
dimensional enclosures of different shapes are derived. This treatment is very similar to the
two-dimensional solutions for waves on a membrane of Chap. 6. Many of the concepts introduced
in Sect. 6.1 for rectangular membranes and Sect. 6.2 for circular membranes are repeated here with
only slight modifications. These concepts include separation of variables, normal modes, modal
degeneracy, and density of modes, as well as adiabatic invariance and the splitting of degenerate
modes by perturbations. Throughout this chapter, familiarity with the results of Chap. 6 will be

# The Author(s) 2020
S. L. Garrett, Understanding Acoustics, Graduate Texts in Physics,
https://doi.org/10.1007/978-3-030-44787-8_13

621

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44787-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-44787-8_13#DOI


assumed. The similarities between the standing-wave solutions within enclosures of different shapes
are stressed. At high enough frequencies, where the individual modes overlap significantly, statistical
energy analysis will be introduced to describe the diffuse (reverberant) sound field.

The formalism developed for three-dimensional enclosures also provides the description for sound
propagation in waveguides, since a waveguide can be treated as a three-dimensional enclosure where
one of the dimensions is extended to infinity.

13.1 Separation of Variables in Cartesian Coordinates

The linearized wave equation for the acoustic pressure, p, can be written in a vector form that is
independent of any particular coordinate system.

∇2p1 x
!, t

� �
¼ 1

c2

∂2p1 x
!, t

� �
∂t2

ð13:1Þ

The expression of the Laplacian operator, ∇2, in terms of partial derivatives, depends upon the choice
of coordinate system. The simplest coordinate system is Cartesian. We will continue to assume that
pressure is time-harmonic, p1 x, y, z, tð Þ ¼ ℜe bp x, y, zð Þejω t½ �. Since k¼ ω /c, Eq. (13.1) can be written in
the time-independent form known as the Helmholtz equation.

∇2p1 ¼ ∂2p1
∂x2

þ ∂2p1
∂y2

þ ∂2p1
∂z2

¼ �k2p1 ð13:2Þ

The Helmholtz equation is a partial differential equation. In Cartesian coordinates, it can be
separated into three ordinary differential equations by assuming that variation of the pressure in each
spatial coordinate is independent of the other coordinates1 [1].

p1 x, y, z, tð Þ � ℜe X xð ÞY yð ÞZ zð Þejω t
� � ð13:3Þ

Substitution of Eq. (13.3) into Eq. (13.2) produces an equation where the partial derivatives become
ordinary derivatives. Since each function now depends only upon a single coordinate, it is no longer
necessary to use partial derivatives.

YZ
d2X

dx2
þ XZ

d2Y

dy2
þ XY

d2Z

dz2
þ k2XYZ ¼ 0 ð13:4Þ

Dividing through by XYZ makes each term independent of the others.

1
X
d2X

dx2
þ 1
Y
d2Y

dy2
þ 1
Z
d2Z

dz2
þ k2 ¼ 0 ð13:5Þ

Since each term in the separated Helmholtz equation (13.5) depends upon a different coordinate, and
their sum is equal to a constant,�k2, each term must be separately equal to a constant. This is the same
as the “separation condition” imposed in the two-dimensional case in Eq. (6.8).

1 The three-dimensional Helmholtz equation can be separated in 11 coordinate systems. With the exception of confocal
paraboloidal coordinates, all are particular cases of the confocal ellipsoidal system: Cartesian, confocal ellipsoidal,
confocal paraboloidal, conical, cylindrical, elliptic cylindrical, oblate spheroidal, paraboloidal, parabolic cylindrical,
prolate spheroidal, and spherical coordinates. http://mathworld.wolfram.com/HelmholtzDifferentialEquation.html
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k2 ¼ ω2

c2
¼ k2x þ k2y þ k2z ð13:6Þ

Each term then generates a simple harmonic oscillator equation.

d2X

dx2
þ k2xX ¼ 0 ð13:7Þ

By this time, we are quite familiar with the solutions to the above ordinary, second-order,
homogeneous differential equation. Instead of both sine and cosine functions, in the following, only
cosine functions will be chosen (for reasons that will become apparent once rigid boundary conditions
are imposed), and three phase factors will be included to retain the generality of the solution.

p1 x, y, z, tð Þ ¼ ℜe bp cos kxxþ ϕxð Þ cos kyyþ ϕy

� �
cos kzzþ ϕz

� �
ejω t

� � ð13:8Þ

To emphasize that this is could be a traveling plane wave (before imposition of boundary conditions),
the solution can be written as a product of complex exponentials.

p1 x, y, z, tð Þ ¼ ℜe bpj je j ω tþϕð Þe j �kxxþkyyþkzzð Þh i
ð13:9Þ

13.1.1 Rigid-Walled Rectangular Room

If we consider a fluid confined in a rectangular room with rigid impenetrable walls, then we can impose
the six boundary conditions on the normal component of the fluid velocity at each of the six planes that
define the interior of the room. From the Euler equation, we see that this condition is equivalent to
requiring that the slope of the pressure normal to the boundary vanishes.

∂ux 0ð Þ
∂t

¼ 0 ¼ � 1
ρm

∂p1
∂x

� 	
x¼0

) ∂p1
∂x

� 	
x¼0

¼ 0 ð13:10Þ

At the planes which pass through the origin of coordinates, we can eliminate all of the phases in
Eq. (13.8), ϕi, since the cosine terms all have zero slope at x¼ y¼ z¼ 0. If we introduce the lengths of
the enclosure’s edges as Lx, Ly, and Lz, then the solutions (eigenvalues) are quantized in a way that
satisfies the remaining three (zero slope) boundary conditions of Eq. (13.10) at x ¼ Lx, y ¼ Ly, and
z ¼ Lz.

kx ¼ nxπ
Lx

; ky ¼ nyπ
Ly

; kz ¼ nzπ
Lz

; n ¼ 0, 1, 2, . . . ð13:11Þ

The modal frequencies, fijk, are then designated by three integers: i ¼ nx, j ¼ ny, and k ¼ nz.

f ijk ¼
ωijk

2π
¼ c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx
Lx

� 	2

þ ny
Ly

� 	2

þ nz
Lz

� 	2
s

ð13:12Þ

Each mode can then be written as the product expressed in Eq. (13.3) and repeated in Eq. (13.13),
where the complex (phasor) amplitude of each mode, bAijk , is dependent upon the source impedance
(i.e., a volume velocity source or a pressure source or something in between), its amplitude, and the
location of the source within the standing wave field.
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pijk x, y, z, tð Þ ¼ ℜe bAijk cos kxxð Þ cos kyy
� �

cos kzzð Þe jωijk t
h i

ð13:13Þ

Of course, there are other possible boundary conditions. The other extreme is a perfectly pressure-
released boundary condition. One such example might be approximated by a fish tank or swimming
pool shown schematically in Fig. 13.1, where the thickness of the boundaries is intended to emphasize
the rigidity of the five planes that contain the liquid. (Note that it is very difficult to produce a container
that behaves as a rigid boundary since water is very nearly incompressible.)

At the free surface of the water (i.e., the water-air interface), the normal component of the fluid
velocity, uz, is unrestricted, and the acoustic pressure amplitude, p1(Lz), is zero (but not the slope!). On
the x-y plane at z¼ 0, we have the original “rigid” boundary condition, so the form of the solution is the
same as in the rigid enclosure case Eq. (13.13), but at z¼ Lz, p1(x, y, z¼ 0, t) must vanish for all times.
If we impose the pressure-released boundary condition at z ¼ Lz (the air-water interface), then the
quantization condition on kz changes to that for a closed-open pipe (see Sect. 10.6.2).

kx ¼ nxπ
Lx

; ky ¼ nyπ
Ly

; kz ¼ 2nz � 1ð Þπ
2Lz

;
nx, ny ¼ 0, 1, 2, . . .

nz ¼ 1, 2, 3, . . .

�
ð13:14Þ

The nz¼ 0 solution does not exist since constant pressure in the z direction is not an option that satisfies
the boundary conditions at z ¼ Lz and z ¼ 0 simultaneously.

13.1.2 Mode Characterization

For the rigid-walled rectangular enclosure, the modes can be classified into three categories:

• Axial: only one mode number is non-zero.
• Tangential: only one mode number is zero.
• Oblique: no mode number is zero.

Each mode is unique and has a complex amplitude, bAijk, which is a function of how and where it is
excited, although the frequencies of the individual modes may not be unique. Depending upon the

excitation, some values of bAijk

��� ���may be zero. As discussed in Sect. 6.1.2, when two or more different

modes share the same frequency, they are called degenerate modes.

Fig. 13.1 Representation
of a rigid-walled enclosure
containing a liquid with a
pressure-released free
surface at the plane, z ¼ Lz
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If the enclosure is cubical (i.e., Lx¼ Ly¼ Lz), then there will be many degenerate modes. Even if the
dimensions of the room are not identical, there can be “accidental degeneracies.” The normalized
modal frequencies, (2Lxfijk)/c, for a cubical room with Lx ¼ Ly ¼ Lz and for a rectangular room with
Ly ¼ Lx

ffiffiffi
2

p
, and Lz ¼ Lx=

ffiffiffi
2

p
, are given in Table 13.1 [2]. For the cubical room, there are 28 distinct

modes but only 8 unique normalized frequencies less than or equal to 2Lxf3, 0, 0/c ¼ 3.00. For the
rectangular room, there are 27 distinct modes but 17 unique normalized frequencies less than or equal
to 2Lxf3, 0, 0/c ¼ 3.00.

The volumes of both rooms are the same as are the total number of modes, to within a single mode.
The number of degenerate modes is larger for the cubical room, but the rectangular room also has
several degenerate modes, even though the ratios of the boundary lengths are irrational numbers.

13.1.3 Mode Excitation

As with any linear model, the amplitude coefficients of the individual modes described by Eq. (13.13),bAijk , are undetermined until the method of excitation is specified. If we assume that a mode will be
excited by a volume velocity source, like a loudspeaker, and that the volume velocity produced by the

Table 13.1 Modes of a cubical room with Lx ¼ Ly ¼ Lz and a rectangular room where Ly ¼ Lx
ffiffiffi
2

p
and Lz ¼ Lx=

ffiffiffi
2

p

Cubical room Rectangular room

2Lxfijk/c nx ny nz 2Lxfijk/c nx ny nz
1.000 1 0 0 0.707 0 1 0

0 1 0 1.000 1 0 0
0 0 1 1.225 1 1 0

1.414 1 1 0 1.414 0 0 1
1 0 1 0 2 0
0 1 1 1581 0 1 1

1.732 1 1 1 1.732 1 0 1
2.000 2 0 0 1 2 0

0 2 0 1.871 1 1 1
0 0 2 2.000 2 0 0

2.236 2 1 0 0 2 1
1 2 0 2.121 2 1 0
2 0 1 0 3 0
1 0 2 2.236 1 2 1
0 2 1 2.345 1 3 0
0 1 2 2.449 2 0 1

2.449 2 1 1 2 2 0
1 2 1 2.550 2 1 1
1 1 2 0 3 1

2.828 2 2 0 2.739 1 3 1
2 0 2 2.828 0 0 2
0 2 2 0 4 0

3.000 3 0 0 2.915 0 1 2
0 3 0 2 3 0
0 0 3 3.000 1 0 2
2 2 1 3 0 0
2 1 2 1 4 0
1 2 2
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source is independent of the acoustic load (i.e., a “constant current” source), then the amplitude of a
given mode will depend upon the local value of the fluid’s impedance. In any corner of a rectangular
room, the pressure is a maximum for all modes, and the fluid’s particle velocity must vanish. This
makes the impedance (theoretically) infinite at those eight locations so a constant volume velocity
source would produce infinite acoustic pressure amplitudes. In reality, the magnitude of the impedance
will depend upon the damping of the mode, as reflected in the quality factor of the mode, Qijk. We have
done this calculation to relate |Zac| to Qn for a one-dimensional resonator in Eq. (10.64).

When the loudspeaker is located in the corner of a rigid-walled room, all of the modes can be
excited. Of course, which specific mode might be excited will depend upon the frequencies produced
by the loudspeaker. If the same speaker were moved from the corner to an edge where two walls
intersect and was half-way between the other two walls, then only one-half as many modes could be

excited. For example, if the speaker were placed at x¼ Lx/2 with y¼ 0 and z¼ 0, then bAijk

��� ���could only
be non-zero if i were an odd integer, so pijk (Lx/2, 0 0) 6¼ 0. If i is an even number, then the speaker is
located at an acoustic pressure node, and the impedance would be zero.

If the speaker is then moved away from the edge to the center of one wall, another half of the modes
could not be excited in that position; only one-quarter of the modes could be excited. Now if the
speaker were lifted off of that wall and placed in the exact center of the room, another half of the modes
would be excluded and only one-eighth of the modes could be excited.

Equation (13.13) describes the pressure field in a rectangular, rigid-walled enclosure. If a volume

velocity source is located at a pressure node for any mode, that mode cannot be excited and bAijk

��� ��� for
that mode would be zero.

13.1.4 Density of Modes

In a one-dimensional resonator (e.g., a rigid tube with rigid ends), the normal modes were equally
spaced in frequency, and only one integer index, n (the mode number), was required to specify each
modal frequency.

f n ¼ n
c
2L

) n ¼ 2 f nL
c

ð13:15Þ

The density of modes is the number of modes within a frequency band that is Δf wide. For the
one-dimensional case, dn/df is a constant,

dn
df

¼ 2L
c

) Δn ¼ 2L
c
Δf ð13:16Þ

We can visualize the results of Eqs. (13.15) and (13.16) by looking at the modes as points on the
one-dimensional kx-axis shown in Fig. 13.2.

Fig. 13.2 A graphical representation of the modes in a one-dimensional closed-closed resonator. Each mode is
represented as a discrete point on the (wavenumber) kx-axis. Since the spacing between adjacent modes is uniform, the
density of modes is also a constant
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Constant spacing in one-dimensional k-space corresponds to a linearly increasing number of modes
with increasing frequency (bandwidth) and a constant density of modes.

In higher-dimensional spaces, the density of modes is a function of frequency. For a
two-dimensional system, like the rectangular membranes in Sect. 6.1 and the circular membrane in
Sect. 6.2, the number of modes with frequencies below some maximum frequency, fmax, increased with
the square of that frequency. In that two-dimensional case, the number of modes was approximated by

the k-space reciprocal area, 8, contained within the quadrant of a circle that had a radius, k
!��� ��� ¼

2π fmax=c. This geometrical construction for a two-dimensional system is illustrated in Fig. 6.5.
In three-dimensional enclosures, the density of modes is also a function of frequency. The number

of modes, N, with frequency less than fmax, is equal to the number of points representing individual
modes contained within the volume of an octet of a k-space sphere (i.e., only positive values of k) in
wavenumber space or k-space with a radius kmax ¼ ωmax /c ¼ 2πfmax/c. The volume of a “unit cell” in
k-space is π3/(LxLyLz). In analogy with Eq. (6.15), the number of modes can be approximated by the
volume of the octet of the sphere divided by the volume of the unit cell.

N ¼ Octet Volume
Unit Cell

ffi π=6ð Þk3max

π3= LxLyLz
� � ¼ 4π f 3maxV

3c3
ð13:17Þ

To obtain the density of modes, we differentiate Eq. (13.17) as we did in two dimensions in
Eq. (6.19).

dN
df

ffi 4π f 2V
c3

ð13:18Þ

A more accurate result can be obtained if we include points in k-space representing the axial modes
(on the 12 edges of total length, L ) and points in k-space representing tangential modes (on the six
planes of total area A).

dN
df

ffi 4π f 2V
c3

þ πfA
2c2

þ L
8c

ð13:19Þ

This result should be compared with the similar two-dimensional result for a rectangular membrane in
Eq. (6.19) or the circular membrane in Eq. (6.34).

To determine when our analysis should transition between the discrete modal picture we have just
developed and the statistical approach we are about to introduce, we need to understand the concept of
reverberation time.

13.2 Statistical Energy Analysis

We would like to know when it is reasonable to calculate the sound level in an enclosure using a modal
model and when it would be more fruitful to ignore the enclosure’s modal structure and apply
statistical energy analysis to determine sound levels by writing an energy balance equation to calculate
the rate of change of the sound level in an enclosure.

Time-averaged acoustic power, hΠit, enters the enclosure from a source (e.g., a loudspeaker or an
orchestra) and power “leaves” by passing through the boundary (through a window?), converting to
heat due to thermoviscous absorptive processes at the boundaries (see Eq. (9.38)) or at the surface of
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objects in the room (e.g., upholstered seats, people’s clothing) or due to attenuation within the fluid
itself (see Sects. 14.3 and 14.5.1). Figure 13.3 illustrates a “bucket” analogy that, though crude,
accurately represents the energy balance approach.

The energy balance approach to calculation of the sound pressure in a diffuse sound field within
an enclosure is analogous to a bucket that is filled with “sound droplets” by some source represented
schematically in Fig. 13.3 by a loudspeaker. Droplets (energy) leak out of the bucket through a
hole that provides some flow resistance. Steady state is achieved when the level of the fluid in the
bucket (analogous to the average sound level) is sufficient to force fluid through the resistance at the
same rate at which fluid is entering the bucket. If the resistance of the leak is large (representing very
little absorption, thus making it difficult for the sound to leave), then the steady-state level will be
high, and it will take more time to reach that level since the power of the sound source is constant
(analogous to the number of droplets per second). If the resistance is small, then it is easy for the sound
to leave the enclosure (by being absorbed and turned into heat and/or escaping through a door or
window). The level then will reach its steady-state value that is lower and the time to reach steady state
is shorter.

Instead of treating modes individually, the problem can be approached from another direction. Let’s
assume that the density of modes is so high, and individual modes are so closely spaced, both in
frequency and in wave-vector direction, and that the acoustic energy in the room distributes itself
uniformly among the available modes (as we did by invoking the Equipartition Theorem for the
distribution of thermal energy when calculating heat capacities of ideal gases in Sect. 7.1.1). We have
previously derived a conservation equation (10.35), for both the kinetic and potential energy density of
sound waves.

∂
∂t

1
2
ρmv

2
1 þ

1
2

p21
ρmc2

 �
þ∇ • p1 v

!
1

� �
¼ 0 ð13:20Þ

Since the total energy density is the sum of the instantaneous kinetic and potential energy densities,
and the time-averaged value of both energy densities are equal (by the virial theorem in Sect. 2.3.1), we
can choose to express the total as the maximum value of either. For this analysis, we chose the potential
energy density, ε, since we are normally interested in sound pressure.

Fig. 13.3 The steady-state sound level in an enclosure is analogous to filling a leaky bucket. Sound energy (droplets)
enters the bucket representing the sound source. Fluid leaves the bucket through a leak representing absorption by the
walls and the contents of the enclosure. The leakage rate is proportional to the depth of the fluid. When the amount that
enters and the amount that leaves are equal, the liquid level, analogous to the sound level, achieves steady state
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ε ¼ PE
V

¼ p2r
ρmc2

ð13:21Þ

The square of the acoustic pressure, pr
2, is the mean square pressure based on the incoherent sum of

all of the pressures of all of the modes averaged over all angles. As a more operational definition,
the square root,

ffiffiffiffiffi
p2r

p � prms, provides the root-mean-squared pressure that would be measured by an
omnidirectional microphone. If the sound field within the enclosure is truly a diffuse sound field, we
can make the further claim that pr

2 is independent of location within the enclosure and incident from all
angles.

Sound energy leaves the enclosure by converting to heat through absorption within the medium or
by thermal or viscous interactions with the boundaries. For development of this model, it is customary
to ignore the attenuation within the medium and define an absorption coefficient that designates the
fraction of energy that is not reflected at the wall. The “bulk” losses for frequencies below about 5 kHz
and enclosures with volumes less than 106 ft3 (30,000 m3) will usually be insignificant compared to the
surface absorption, besides, it is easy to put the bulk losses back into the equation later, as in
Eq. (13.30).

Assuming that the sound that impinges on a wall does so with equal probability from all angles,
the time-averaged intensity (power impinging per unit area) of the sound can be calculated by
examination of an infinitesimal volume, dV, containing the energy, ε (dV ), coming toward from a
wall from all directions at the speed of sound, c. The energy will reach a “patch” of the wall having an
area, dS, and be partially reflected and partially absorbed during an infinitesimal time, dt, as shown in
Fig. 13.4.

The area of the “patch” will depend upon the viewing angle. Energy arriving from a direction
normal to the patch will see an area of dS, but sound that is nearly perpendicular to the patch will see
nearly zero area. That is, the effective area of the patch, dSeff ¼ dS cos θ, where θ is the angle with
respect to the normal to the patch. Also, an incoming ray arriving at the patch from an angle, θ , must be
within a distance, c dt sin θ, to arrive in a time, dt. Combining these two orientational effects with the
fact that half of the energy is traveling away from the patch, we can calculate the energy that impinges
on our patch during a time, dt, by integrating over the arrival angle, θ.

Fig. 13.4 The geometry
used to calculate the time-
averaged incident energy
flux (intensity) impinging
on a differential element of
area, dS, at the enclosure
boundary (wall), from a
diffuse sound field
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dE
dS

¼ ε cdtð Þ
2

ðπ=2
0

sin θ cos θdθ ¼ εc
4
dt ð13:22Þ

This result is exactly the same as was derived in the kinetic theory calculations in Sect. 9.5.2.
How much sound gets absorbed by the walls? The amount of absorbed energy will vary depending

upon the nature of the surface (e.g., rigid concrete or porous carpet). In keeping with our statistical
treatment, if there are n different surface treatments, each with area, Ai, and absorption coefficient, αi,
the average absorption coefficient (or effective absorptive area) for the entire enclosure, <A>, is the
properly weighted sum over all of the enclosure’s surfaces.

Ah i ¼
Xn
i¼1

αiAi ð13:23Þ

These surfaces are not limited to the walls, but could include seats and their occupants, over-garments,
wall treatments (e.g., drapes), etc.

We are now in a position to write the energy balance equation.

d εVð Þ
dt

þ Ah i cε
4
¼ Πh it ð13:24Þ

The solution to such a first-order differential equation is well known.

ε tð Þ ¼ p2eff
ρmc2

¼ 4 Πh it
c Ah i 1� e�t=τE

� �
ð13:25Þ

The exponential time, τE¼ 4 V/c < A>, represents the time required for the energy in the diffuse field to
reach 63.2%¼ 1� e�1 of its steady-state value after the source is turned on or to decay from its steady-
state value, ε (t ¼ 1), given in Eq. (13.27), by 63.2% after the source is turned off. It is useful to
remember that we have usually designated the exponential equilibration time, τ, to represent the
change in amplitude not energy. Since the energy is a quadratic function of the amplitude, τ ¼ 2τE.

If the absorption is small, then it takes a long time for the sound pressure to reach the steady-state
value corresponding to the steady-state energy density, ε(t ¼ 1).

ε t ¼ 1ð Þ ¼ 4 Πh it
c Ah i ¼ p2r t ¼ 1ð Þ

ρmc2
ð13:26Þ

Similarly, if the average absorptive area, <A>, is small, the enclosure will take more time to respond to
changes in source sound level.

13.2.1 The Sabine Equation

Wallace Clement Sabine (1868–1919) was a young physics professor at Harvard University when he
was asked, in 1885, by Charles Eliot, then president of the university, if he could do something about
the poor speech intelligibility in the lecture hall at the Fogg Art Museum on campus [3]. To determine
the origin of the problem, Sabine measured the time it took for sound to decay in various rooms on
campus, using only a “clapboard” to create an impulse, his hearing, and a stopwatch. On 30 October

630 13 Three-Dimensional Enclosures

www.dbooks.org

https://www.dbooks.org/


1898, he discovered a correlation between that decay time and the volume of the rooms and their
average absorptive area. The resulting relation is known as the Sabine equation.2

T60 ¼ τELn 106
� � ¼ 13:82τE ¼ 13:82

4V
c Ah i ¼ 0:16

V
Ah i ð13:27Þ

The numerical value in the rightmost term of Eq. (13.27) applies only to sound in air if both volume,
V, and average absorptive area, <A>, are measured in metric units. If the dimensions of the room are
measured in English units (feet), then the numerical factor in Eq. (13.27) becomes 0.047.

The reverberation time, T60, was chosen because it was approximately the time required for the
decaying sound Sabine was timing to become inaudible after the initial impulse. Today, T60
corresponds to the time it takes for sound to decay by 60 dB (for the time-averaged acoustic intensity3

to decay by a factor of one million). In terms of the exponential energy decay time, τE, T60 ¼ ln [106]
τE¼ 13.83τE. Today’s high-quality electroacoustics and digital recording and post-processing makes it
possible in many circumstances to obtain very precise determinations of the reverberation time, as
shown in Fig. 13.5.

Sabine’s success improving the acoustics at the Fogg Auditorium led him to a commission for the
design of Boston’s Symphony Hall, shown in Fig. 13.6, with a maximum seating of 2625, which
opened 15 October 1900. To this day, it is still considered one of the world’s best concert halls [4]. Its
successful opening ushered in a new era for the use of scientific methods in the design of musical
performance spaces.

The technology for determining the frequency-dependent, angle-averaged sound absorption of
surfaces based on measurements of their fundamental physical properties (e.g., average hydraulic
pore radius, porosity, and tortuosity) is not widely understood within the architectural community, and
the instrumentation for measurement of the fundamental properties (complex flow resistance and

7

60 dB

8 9
Time [s]

STE-007 RT60 estimate = 3.72 s

10 11 12

Fig. 13.5 Reverberation
decay record for a very
noisy (reverberant) dining
hall at the YMCA Camp
Fitch on the shore of Lake
Erie, in Pennsylvania. The
vertical axis displays the
received dB level. The
straight line (red) fit to the
data is equivalent to a
T60¼ 3.72 s. (Data courtesy
of Matthew E. Poese)

2 Tradition has it that when Sabine realized the inverse relationship between reverberation time and average absorptive
area, he ran downstairs from his study, shouting to his mother, “Mother, it’s a hyperbola!”
3 The interval selected for the time averaging of the sound pressure level measurement, τave, needs to be long enough to
integrate over the desired range of frequencies, Δω ffi τ�1

ave , yet short enough that it will not dominate the reverberant
decay: τave < τE.
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complex compressibility) are not widely available [6]. For that reason, the standard method for
measurement of absorption coefficients uses the measurement of change in reverberation time of an
enclosure with and without the absorptive sample present [7, 8].

as ¼ ao þ 0:16
V
Ss

1
Ts

� 1
To

� 	
ð13:28Þ

The average absorptivity of the empty test enclosure is ao. The reverberation time of the empty
enclosure, T60 ¼ To. The reverberation time within the same enclosure with an area, Ss, of absorbing
material is reduced to Ts.

To incorporate absorption within the medium, the Sabine equation (13.27) can be augmented with
an energy attenuation coefficient, m.

T60 ¼ 0:16 V
Ah i þ 4mV

ð13:29Þ

The expression in Eq. (13.29) is usually deemed adequate for architectural applications. A useful
correlation for the attenuation coefficient in air (in units of inverse meters), for frequencies between
1500 Hz � f � 10,000 Hz, and relative humidity, 20 � RH(%) � 70, is given in Eq. (13.31).

m ¼ 5:5� 10�4 50=RH%ð Þ f =1000ð Þ1:7 ð13:30Þ
The validity of this correlation is established in Chap. 14, Problem 1, using values taken from the
American National Standards Institute [9].

Fig. 13.6 View of Boston Symphony Hall from the back of the upper balcony facing the stage [4]. In addition to the
uniformity of the reverberation times shown in Table 13.2, the rectangular hall has many “sound scatterers” of different
shapes and sizes (statues, alcoves, proscenium arch, and balcony facings, along with other assorted “protuberances”) to
scatter sound of different wavelengths and thus encourage a uniform angular distribution among the reflections [5]

632 13 Three-Dimensional Enclosures

www.dbooks.org

https://www.dbooks.org/


13.2.2 Critical Distance and the Schroeder Frequency

The pressure radiated by a simple source (i.e., a compact monopole) can also be expressed in terms of
its time-averaged radiated power, hΠradit, using the expression for time-averaged intensity in
Eq. (12.24) and the fact that the monopole field is spherically symmetric.

Πradh it ¼ 4πR2 I
!D E

t

��� ��� ¼ 4πR2 p
2
1 Rð Þ
2ρmc

) p21 Rð Þ
2

¼ p2rms ¼
ρmc

4πR2 Πradh it ð13:31Þ

That radiated pressure can be equated to the steady-state pressure in the diffuse sound field, p2r t ¼ 1ð Þ,
that was calculated in Eq. (13.26), to determine the critical distance, rd, where the direct and diffuse
sound field energies would be equal.

p2r t ¼ 1ð Þ ¼ ρmc
4 Πradh it

Ah i ¼ ρmc
4πr2d

Πradh it ) rd ¼ 1
4

ffiffiffiffiffiffiffi
Ah i
π

r
ð13:32Þ

At distances from a source greater than rd, the diffuse field will dominate. At distances less than rd
from the source, the direct radiation will dominate. This is particularly important when considering sound
absorption in a factory situation. Adding absorption to the walls will not help reduce the noise a worker
will have to tolerate if (s)he is closer to the source (e.g., a punch press, band saw, grinder) than rd.

We have now analyzed the modes of a rectangular enclosure that is suited to the low-frequency
behavior of sound in the enclosure. We have also analyzed the behavior at high frequencies, when the
modes have sufficient overlap that the sound field can be treated as being both isotropic and homoge-
neous (i.e., diffuse). It is therefore imperative to identify a cross-over frequency between those two
regimes.

Ever since the discussion of the simple harmonic oscillator in Sect. 2.5.2, the “width” of a resonance
(mode) has been related to the bandwidth, Δf�3dB, over which the power in the resonance is within
3 dB of its peak value, or, equivalently, that the pressure amplitude is within

ffiffiffi
2

p
of the amplitude at

resonance, as indicated in Eq. (2.68). Using our multiple definitions for the quality factor, Q, in
Appendix B, our appreciation of the fact that the energy decay rate, τE, is one-half the exponential
amplitude decay rate, τ, and the fact that T60 ¼ 13.82τE in Eq. (13.27), it is possible to express the
�3 dB bandwidth, Δf�3dB, in terms of T60.

Q ¼ f
Δ f�3dB

¼ 1
2
ωτ ¼ πf τ ¼ 2πf τE ) Δ f �3dB ¼ 13:82

2πT60
ffi 2:2

T60
ð13:33Þ

Manfred Schroeder suggested that the cross-over frequency between modal behavior and the diffuse
sound field approach should correspond with the frequency where there are three modes within a
frequency bandwidth ofΔf�3dB.

4 Using the leading term in our approximation for the density of modes

4 The choice of three “available” modes within the �3 dB bandwidth is, of course, rather arbitrary. P. M. Morse in his
textbook, Vibration and Sound (McGraw-Hill, 1948), provides (in Eq. 34.8) a more detailed criterion that also
incorporates the spread in the frequency range radiated by the source.

fmin ¼ c3

4πV þ Δf þ 4=T60ð Þ½ �
� �1=2

Based on the acceptance by the architectural acoustics community of the Schroeder frequency, apparently Eq. (13.34)
is adequate for most applications.
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in Eq. (13.18), Schroeder’s “three mode overlap” criterion can be determined in terms of the enclosure
volume, V, and the reverberation time, T60.

dN
df

Δf ¼ 3 ¼ 2:2
T60

4πV
c3

f 2S ð13:34Þ

Solving for frequency, we obtain the cross-over frequency, known as the Schroeder frequency, fS,
where the third expression in Eq. (13.36) assumes a sound speed c ¼ 343 m/s [10].

f S ¼ c3

4 ln 10

� 	1=2
T60

V

� �1=2

¼ c
6
Ah i

� 	1=2

ffi 2000
T60

V

� �1=2

ð13:35Þ

For a room about the size of a typical classroom (10 m� 8 m� 4 m¼ 320 m3), with T60ffi 0.4 s, the
Schroeder frequency is fS ffi 70 Hz. The lowest-frequency normal mode in such a classroom would be
f1,0,0 ¼ c/2Lx ¼ 17 Hz, so there are about 2 octaves of mode-dominated behavior below 70 Hz.

As shown in Table 13.2, for Boston Symphony Hall (V¼ 26,900 m3), T60 ¼ 1.85 s at 500 Hz when
the hall is fully occupied. This corresponds to fS ffi 17 Hz, so a diffuse sound field model can be used
throughout the range of human hearing. Of course, in rooms with smaller volumes (<100 m3), the
response will exhibit substantial location dependence (i.e., the behavior will be modal) for frequencies
below 200 Hz [11].

It is worth noting that the Schroeder frequency and the critical distance are just two aspects of the
same phenomena that measure the dominance of the diffuse field relative to the sound that is radiated
directly by a source. Converting fS to a length by dividing c by λS, their equivalence becomes clear.

c
f S

¼ λS ffi 3rd ð13:36Þ

The primary purpose for our investigation into the properties of sound waves confined within a
rectangular enclosure was to illustrate the differences between three-dimensional resonators and
one-dimensional resonators. The following is a compilation of those differences:

• Three indices are required to specify a mode uniquely and the order of those indices is significant.
For example, if an enclosure is not cubical, f1,0,2 6¼ f2,0,1.

• The relationship among resonances is anharmonic, even for “ideal” boundary conditions. The ratio
of the frequencies of the overtones to that of the fundamental is not given by integer multiples, as it
for the modes of a one-dimensional resonator (or a guitar string).

• Different modes may be degenerate, having the same natural frequency but different mode shapes.
• Like other standing-wave systems, excitation of an individual mode by a source will depend upon

the location of the source in relation to the modal shape. It will also depend upon the source’s
impedance (i.e., whether the source produces a volume velocity that is independent of the room
impedance, or a pressure that is independent of the room impedance, or something in between those
limits).

Table 13.2 Average measured reverberation times, T60, in six consecutive one-octave bands of frequencies for the
unoccupied (empty) and occupied (full) concert hall [4].

Band center (Hz) 125 250 500 1000 2000 4000

T60-empty (seconds) 2.13 2.29 2.40 2.63 2.66 2.38
T60-full (seconds) 1.95 1.85 1.85 1.85 1.65 1.30

One of the reasons the hall, shown in Fig. 13.6, is so highly rated is that the reverberation times are amazingly uniform
across a broad range of frequencies
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• The number of modes within a given range of frequencies, Δf, (or the density of modes) is not a
constant, as it was for the one-dimensional resonator. The number of modes below a certain
frequency is cubic in that frequency and the density of modes is a quadratic function of the
frequency in three dimensions.

• When the modal density is large enough that the frequency spacing between successive modes is
smaller than the �3 dB bandwidth of the individual modes (i.e., f > fS), it is possible to describe the
sound field within the enclosure as “diffuse.” In that limit, it is useful to apply statistical energy
analysis by assuming that the power is distributed uniformly among all available modes (as we did
for the energy of individual particles in an ideal gas using the Equipartition Theorem). That
analytical approach can be used to predict both the steady-state, root-mean-square pressure of the
sound field in terms of the time-averaged acoustic power input to the room, hΠit, and also predict
the characteristic exponential time, τE, required for the room to achieve its steady-state pressure.

• In architectural applications, when τE is used to describe exponential the decay time of the sound
field after the sound source is abruptly terminated, it is commonly re-defined as a “reverberation
time,” T60 ¼ τE ln(10

6) ¼ 13.82 τE, that corresponds to the time which is required for the acoustic
energy to decay by a factor of one million.

13.3 Modes of a Cylindrical Enclosure

As we are about to discover, the techniques and results that were applied to the resonances of a
rectangular enclosure will serve us well again as we investigate the resonances within enclosures of
other shapes. Our first venture beyond the Cartesian world-view will be the analysis of a rigid-walled
cylindrical resonator like the one shown in Fig. 13.7. In physical and engineering acoustics, the
cylindrical resonator is more common than the rectangular enclosure that is nearly ubiquitous for
loudspeaker enclosures5 and in architectural analyses.

There are several reasons that cylindrical shapes are so common. For systems that are required to
contain substantial internal pressures (or to protect inhabitants from external pressures, such as in
submarines), the cylinder is a much more efficient shape to exploit the strength of the container’s
materials. (When was the last time you saw a rectangular bottle used for storage of compressed gases or
propane for bar-b-ques?) It is also useful because if the oscillatory motion of the fluid within the
resonator is purely radial, there will be no viscous “scrubbing losses” on the cylindrical surface.

13.3.1 Pressure Field Within a Rigid Cylinder and Normal Modes

As in Sect. 6.2.1, the solution to the Helmholtz equation (13.2) in cylindrical coordinates is more
complicated than the solution in Cartesian coordinates because the azimuthal and radial motions of the
oscillating fluid are not independent. As before, the rationale for our acceptance of this complication is
that it will be much simpler to impose the boundary conditions at r¼ a in cylindrical coordinates. If the

5A notable exception are the cylindrical speaker enclosures made in ACS 097S, a First Year Seminar at Penn State.
Those enclosures use PVC plumbing to provide the “pressure barrier” between the volume velocity produced by the front
and rear of the loudspeaker cone described in S. L. Garrett and J. F. Heake, “Hey kid! Wanna build a loudspeaker? The
first one’s free,” Audio Engineering Society Convention Paper #5882, 10–13 October 2003 or S. L. Garrett, “Two-Way
Loudspeaker Enclosure Assembly and Testing as a Freshman Seminar”, Proc. 17th Int. Cong. Sound & Vibration
(Curran Assoc., 2011); ISBN 97816617822551.

13.3 Modes of a Cylindrical Enclosure 635



Cartesian solution were retained, the rigidity of the cylindrical surface would be imposed by requiring
that the radial component of the velocity vanish and writing ur(x

2 þ y2 ¼ a2) ¼ 0. Specification of the
radial component of velocity (or the gradient of the pressure relative to the normal to the cylindrical
surface) would be even more challenging.

Faced with this difficulty, we abandon the Cartesian description and accept the fact that we will
have to introduce functions that are not superpositions of either simple trigonometric or simple
exponential functions as the price we have to pay for simplification in specification of the boundary
conditions. As before, we assume single-frequency harmonic time variation and start with the
linearized, time-independent Helmholtz equation, but this time we express the Laplacian operator,
∇2, in cylindrical coordinates.

∇2p1 ¼ ∂2p1
∂r2

þ 1
r
∂p1
∂r

þ 1
r2

∂2p1
∂θ2

þ ∂2p1
∂z2

¼ �k2p1 ð13:37Þ

The acoustic pressure, p1(r, θ, z), is then expressed using separation of variables,1 as a product of
functions, each of which depending only upon a single coordinate.

p1 r, θ, z, tð Þ ¼ ℜe R rð ÞΘ θð ÞZ zð Þejω t
� � ð13:38Þ

Substitution of Eq. (13.38) into the Helmholtz equation (13.37) produces the equivalent of Eq. (13.4).

ΘZ d2R

dr2
þ ΘZ

r
dR
dr

þ RZ
r2

d2Θ
dθ2

þ RΘ d2Z

dz2
þ k2RΘZ ¼ 0 ð13:39Þ

Fig. 13.7 Cylindrical
resonator made of stainless
steel used at the National
Bureau of Standards to
measure the speed of sound
at very low or very high
temperatures. This
versatility is facilitated by
using waveguides
terminated by metallic
diaphragms to allow the
sound source and
microphone to be far from
the resonator [12]
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In this case, multiplying through by r2/RΘZ generates three independent, second-order, ordinary
differential operators.

r2

R
d2R

dr2
þ r
R
dR
dr

þ 1
Θ

d2Θ
dθ2

þ r2

Z
d2Z

dz2
þ k2r2 ¼ 0 ð13:40Þ

As before, the only way Eq. (13.40) can be satisfied by three independent functions is for each
independent function of only one of the coordinates to be equal to a constant and that those constants
sum to �k2. The solution for Z(z) is identical with the one-dimensional resonator problem.

d2Z

dz2
þ k2z Z ¼ 0 ð13:41Þ

If the ends of the cylinder are rigid, so that uz (0) ¼ uz (Lz) ¼ 0, then the values of kz are quantized
exactly as they were in the analysis of the closed-closed one-dimensional resonator in Eq. (10.45).

kz ¼ nzπ
Lz

; nz ¼ 0, 1, 2, . . . ð13:42Þ

Here, the fact that nz ¼ 0 is an acceptable solution admits modes within the cylindrical enclosure that
might have variations of p1 with radius, r, and/or with azimuthal angle, θ, but which do not vary with
axial height, z.

With the exception of the axial modes that have only z dependence, for a cylindrical enclosure, it is
not possible to separate the modes into a form where the fluid motion has purely azimuthal motion that
is independent of the radial coordinate, r. For “sloshing modes” that have uθ 6¼ 0, the magnitude of uθ is
not independent of radius, r. The magnitude of the fluid velocity along the azimuthal direction, θ, is
greatest at the largest values of r, near the outer boundary, r¼ a, and must vanish near the origin, r¼ 0.
This coordinate coupling can be appreciated from the form of the azimuthal component of the
linearized Euler equation when expressed in cylindrical coordinates [13].

∂uθ
∂t

¼ � 1
ρmr

∂p1
∂θ

ð13:43Þ

This interdependence of the radial and azimuthal functions will become apparent when addressing the
solution for the angular azimuthal function, Θ(θ ).

d2Θ
dθ2

þ m2Θ ¼ 0 ð13:44Þ

Again, the solutions to this equation are simple and (by this time) well known. What is less familiar
may be the quantization of m by imposition of periodic boundary conditions that satisfy the require-
ment that the solution for the pressure be single-valued. The solutions for Θ(θ ) can be expressed as
complex exponentials or sine and cosine functions or, as before in Eq. (13.8), as cosine functions that
include a potentially mode-dependent phase factor, φm, n.

Θ θð Þ ¼ cos mθ þ φm,n

� � ð13:45Þ

At this moment, it will not be obvious why a double index was assigned to the phase factor, but it will
be fully justified shortly.

Since cylindrical coordinates have been chosen to specify each unique position within the resonator,
the physically realizable values of the azimuthal coordinate are limited to 0 � θ < 2π. If the value of θ
exceeds 2π, we have gone around the resonator more than once and therefore Θ(θ ) ¼ Θ(θ + 2nπ)
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where n ¼ 0, 1, 2, . . . It is easy to see from Fig. 13.8 that the only way for this “periodic boundary
condition” to be satisfied is if m is also an integer: m ¼ 0, 1, 2, . . . .

A more physical way to understand the integer quantization of the acoustic pressure for azimuthal
variations is to see that in a cylindrical geometry the boundary condition on the solution requires that
both the pressure and the slope of the pressure be continuous with angle where the ends of the wave
join. That condition cannot be satisfied if only a half-wavelength fits within the circumference, 2πa. As
can be seen in Fig. 13.8, the continuity of pressure and the slope of pressure requires that integer
numbers of wavelength fit within a circumference

With the solutions for Θ(θ ) in hand, we are now able to address the differential equation that
determines the radial function, R(r).

r2
d2R

dr2
þ r

dR
dr

þ k2r2 � m2
� �

R ¼ 0 ð13:46Þ

Before finding the solutions for R(r), the form of Eq. (13.46) is worthy of comment. Since we have
determined that m is an integer, Eq. (13.46) really represents an infinite number of second-order,
homogeneous, ordinary differential equations—one equation for each integer value of m. Also, this is
clearly not a simple harmonic oscillator equation, even if m ¼ 0.

As demonstrated previously in Sect. 6.2.1, Eq. (13.46) for R(r) is Bessel’s equation. Since it is a
second-order differential equation, it will have two linearly independent solutions for each integer
value ofm, but none of those functions will be sines or cosines. They are integer-order Bessel functions
of the first and second kinds, sometimes referred to as Bessel functions, Jm(kr), and Neumann
functions, Ym(kr). The first three of each of the functions were plotted in Figs. 6.8 and 6.9. The
subscript indicates the integer value of m that appears in Bessel’s equation (13.46).

The next step in this procedure is the imposition of radial boundary conditions that will quantize the
values of kr. For a rigid cylinder, we have only the condition that the boundary be impenetrable to the
fluid, so ur (a)¼ 0. This requirement can be implemented by way of the linearized Euler equation [16].

∇rR að Þ ¼ dR að Þ
dr

¼ d Jm kað Þ½ �
dr

¼ �ρm
∂ur að Þ
∂t

¼ 0 ð13:47Þ

Fig. 13.8 The imposition of a periodic boundary condition on the azimuthal modes of a cylindrical enclosure is similar
to the Bohr-Sommerfeld quantization condition for electron “orbits” around a hydrogen nucleus using figures taken from
two elementary textbooks on “modern physics.” At the left, one, two, and three wavelength disturbances (dashed lines)
along the circumferences (solid lines) are shown corresponding to them¼ 1,m¼ 2 andm¼ 3 modes [14]. At the right is
drawn the m¼ 6 mode where the equilibrium pressure is shown as the dashed line and six wavelengths, λ, are shown as a
solid line [15]
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What about the Neumann solutions? Those solutions cannot satisfy the boundary condition at r¼ 0
if we require that our solutions, R(r), remain finite at r¼ a because Ym(0)¼�1 for all values ofm (see
Fig. 6.9). If we were solving for the radial modes of an annulus, with outer radius, a, and inner radius,
b 6¼ 0 (see Sect. 13.3.3), then the Neumann solutions, Ym(kr), would have to be added to the Bessel
solutions to satisfy the inner and the outer boundary conditions simultaneously.

∇rR bð Þ ¼ dR bð Þ
dr

¼ d AYm kbð Þ þ BJm kbð Þ½ �
dr

¼ �ρm
∂ur bð Þ
∂t

¼ 0

∇rR að Þ ¼ dR að Þ
dr

¼ d AYm kað Þ þ BJm kað Þ½ �
dr

¼ �ρm
∂ur að Þ
∂t

¼ 0
ð13:48Þ

Since there are multiple solutions for R(r) that are coupled to the solutions for Θ(θ ), the
quantization of kθ and kr are coupled. For each value of m ¼ 0, 1, 2, . . ., there is a different function
that describes the radial pressure amplitude variation. For each value of those m functions, there are
n different values of krwhere the slope of Jm(ka) vanishes, corresponding to d[Jm(ka)]/dr� J’m(ka)¼ 0
in Eq. (13.47).

Although this boundary condition is analogous to the requirement that the slopes of the sine or
cosine functions vanish for the Z(z) solutions, the extrema of the Bessel functions are not simply related
to integer multiples of π. Fortunately, the arguments, αmn ¼ kmna, corresponding to the extrema of
Bessel and Neumann functions, are tabulated in many books on “special functions.” Some values taken
from Abramowitz and Stegun [17] are provided in Table 13.3 as well as in Appendix C.

Table 13.3 Values of the arguments, j’m,s¼ amn, of integer-order Bessel functions (0�m� 2) which make the slope of
the function vanish

Bessel functions of integer order

Zeros and associated values of Bessel functions and their derivatives

x j00,x J0 j00,x
� �

j01,x J1 j01,x
� �

j02,x J2 j02,x
� �

1 0.00000 00000 +1.00000 00000 1.84118 +0.58187 3.05424 +0.48650
2 3.83170 59702 �0.40275 93957 5.33144 �0.34613 6.70613 �0.31353
3 7.01558 66698 +0.30011 57525 8.53632 +0.27330 9.96947 +0.25474
4 10.17346 81351 �0.24970 48771 11.70600 �0.23330 13.17037 �0.22088
5 13.32369 19363 +0.21835 94072 14.86359 +0.20701 16.34752 +0.19794
6 16.47063 00509 �0.19646 53,715 18.01553 �0.18802 19.51291 �0.18101
7 19.61585 85105 +0.18006 33753 21.16437 +0.17346 22.67158 +0.16784
8 22.76008 43806 �0.16718 46005 24.31133 �0.16184 25.82604 �0.15720
9 25.90367 20876 +0.15672 49863 27.45705 +0.15228 28.97767 +0.14836
10 29.04682 85349 �0.14801 11100 30.60192 �0.14424 32.12733 �0.14088
11 32.18967 99110 +0.14060 57982 33.74618 +0.13736 35.27554 +0.13443
12 35.33230 75501 �0.13421 12403 36.88999 �0.13137 38.42265 �0.12879
13 38.47476 62348 +0.12861 66221 40.03344 +0.12611 41.56893 +0.12381
14 41.61709 42128 �0.12366 79608 43.17663 �0.12143 44.71455 �0.11937
13 44.75931 89977 +0.11924 98120 46.31960 +0.11724 47.85964 +0.11537
16 47.90146 08872 �0.11527 36941 49.46239 �0.11345 51.00430 �0.11176
17 51.04353 51836 +0.11167 04969 52.60504 +0.11001 54.14860 +0.10846
18 54.18555 36411 �0.10838 53489 55.74757 �0.10687 57.29260 �0.10544
19 57.32752 54379 +0.10537 40554 58.89000 +0.10397 60.43635 +0.10266
20 60.46945 78453 �0.10260 05671 62.03235 �0.10131 63.57989 �0.10008

Also tabulated are the values of the Bessel function at the associate extrema, Jm( j’m,s) [17]
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kmn ¼ αmn
a

where
d Jm αmnð Þ½ �

dx
¼ 0 ð13:49Þ

The form of kmn in Eq. (13.49) was chosen to emphasize the similarity to the quantization condition
for the axial solutions in Eq. (13.42), kz ¼ nzπ /Lz, derived initially. In this case, the numerical factor,
αnm, takes the place of nzπ, and the characteristic resonator dimension in this case is the radius, a,
instead of the height of the cylinder, Lz.

The frequencies of the modes within a rigid-walled cylindrical waveguide can now be written in
terms of the Pythagorean sum of kmn and kz, where the integer index, l ¼ nz.

f lmn ¼ c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nz
Lz

� 	2

þ αmn
πa

� �2

s
ð13:50Þ

The complete expression for the acoustic pressure, p1(r, θ, z, t), for each normal-mode standing wave
within the rigid-walled cylindrical enclosure is the product of the separate functions.

p1 r, θ, z, tð Þ ¼ ℜe bAlmn cos kzlzð ÞJm kmnrð Þ cos mθ þ φlm nð Þe jωl m nt
h i

ð13:51Þ

As before, each complex (phasor) modal amplitude, bAlmn , depends upon the excitation coupling. The
phase factor, φmn, is included to allow for the twofold degeneracy produced by the fact that the nodal
diameters for modes with m 	 1 can have an arbitrary angular orientation with respect to the chosen
coordinate axes in the absence of any features that might break the azimuthal symmetry (e.g., see
Fig. 13.15).

One obvious feature that would break azimuthal symmetry would be the inclusion of a speaker (e.g.,
a volume velocity source) at some specific angular location, θdrive, other than on the axis of the cylinder
(r ¼ 0). In that case, φmn would be chosen to lock the nodal diameters for modes with m 	 1 to the
transducer’s location.

Fig. 13.9 Cylindrical resonator of equal length and diameter, L ¼ 2a ¼ 5.00 cm. The circular end caps are reversible
electret condenser transducers (see Sect. 6.3.3) that have a slightly smaller diameter than the resonator cavity [18]
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The rigid-walled cylindrical resonator in Fig. 13.9 will be used to illustrate the application of the
solution for the normal mode frequencies in Eq. (13.50). That resonator was designed to measure the
isotopic ratio of 3He to 4He by measuring the speed of sound in such a gas mixture [18]. The
frequencies of the axial (height) modes are as easy to calculate as they were for the closed-closed
case of the one-dimensional resonator.

Since the resonator was used to measure sound speed in a helium isotopic mixture, the frequencies
in Table 13.4 and Eqs. (13.53) and (13.54) assume a sound speed, c ¼ 1000 m/s, corresponding to the
sound speed in pure 4He at about 289 K (16 
C).

f l,0,0 ¼ l
c
2Lz

� 	
¼ l • 10, 000 Hz; l ¼ 0, 1, 2, . . . ð13:52Þ

The Bessel mode frequencies (i.e., l¼ 0) are just as easy to calculate except that we will not be able
to use consecutive integers to relate the radius to the resonance frequency.

f 0,m,n ¼ αmn
c

2πa

� �
¼ αmn � 6, 366:2 Hz ð13:53Þ

The first three resonances of the three lowest-frequency Bessel modes for this example are
summarized in Table 13.4. That table also includes the ratios of the radii of the nodal circles to the
radius of the cylinder, r/a, as determined by the values of the zero crossings of the corresponding
Bessel functions. Two-dimensional representations of the mode shapes are provided in Fig. 13.10.

Figure 13.10 shows the nodal locations and the relative phases of the different parts of the resonator
for those modes. It does not reveal anything about the relative amplitudes as a function of mode
number. The tendency for the acoustic pressure to be localized nearer to r ¼ a as the non-axial mode
number increases is best illustrated in Fig. 13.11.

13.3.2 Modal Density Within a Rigid Cylinder

The order of the modes in Table 13.4 was determined by the mode number sequence. Inspection of
Table 13.4 shows that this does not place the modes in ascending order with respect to frequency.

Table 13.4 Summary of Bessel mode frequencies and location of nodal circles for the lowest-frequency m ¼ 1, 2, and
3 modes, assuming l ¼ 0.

nz m n αmn flmn (Hz)

Nodal circles

Node (r/a) Node (r/a) Node (r/a)

0 0 1 3.831706 24,393 0.6276
0 0 2 7.015587 44,663 0.3428 0.7868
0 0 3 10.17347 64,766 0.2364 0.5426 0.8506
0 1 1 1.84118 11,721 0
0 1 2 5.33144 33,941 0 0.7187
0 1 3 8.53632 54,344 0 0.4489 0.8219
0 2 1 3.05424 19,444 0
0 2 2 6.70613 42,693 0 0.7658
0 2 3 9.96947 63,468 0 0.5151 0.8443

The corresponding values of αmn appear in Table 13.3
The frequencies are based on a rigid-walled cylindrical resonator of radius, a ¼ 2.50 cm, and a sound speed near that of
helium gas at 16 
C: c ¼ 1000 m/s. The radial and azimuthal mode shapes are sketched in Fig. 13.10. The ratios of the
radius of the nodal circles to the radius of the cylinder, r/a, were determined by the values of the zero crossings of the
corresponding Bessel functions.
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Fig. 13.10 Nodal circles
and nodal diameters are
drawn to scale for the first
three m¼ 0, 1, and 2 modes
of a cylindrical resonator.
Black regions are 180
 out-
of-phase with white
regions. Under each
(triplet) mode number
designation is the value of
α ¼ ka for that mode

Fig. 13.11 Plots of Bessel functions of the first kind, Jm(x), as a function both of the argument, x, and of the function
index, p ¼ m. As p increases, more of the amplitude is localized near the perimeter of the cylinder [19]
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Using the previous expression for modal frequency in Eq. (13.50), and modifying it for this specific
example in Fig. 13.9, the frequencies of the individual modes can be calculated and placed in order of
ascending frequency, as shown in Table 13.5.

f lmn ¼ c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nz
Lz

� 	2

þ αmn
πa

� �2

s
¼ 500Hz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

0:05

� 	2

þ αmn
0:025π

� �2

s
ð13:54Þ

As was done for the rectangular enclosure in Eqs. (13.17) and (13.19), we can write an expression to
predict the number of modes below a maximum frequency, fmax.

N ffi 4π f 3maxV
3c3

þ π f 2maxA
4c2

þ fmaxL
8c

ð13:55Þ

For a cylindrical enclosure, V¼ πa2Lz and A¼ 2πa2 + 2πaLz, as expected, but the total effective “edge
length,” L ¼ 4πa þ 4Lz, has a form that could not have been easily anticipated [20]. For our example,
the polynomial approximation in Eq. (13.55) is plotted in Fig. 13.12, along with the cumulative mode
count for the modes having frequencies less than 1 Hz above the frequency of the pure axial modes up
to a maximum frequency, fmax ¼ f5,0,0 þ 1 ¼ 50,001 Hz.

From the excellent agreement illustrated in Fig. 13.12 between the modal frequencies in Table 13.5
and the k-space volume polynomial approximation of Eq. (13.55), it is clear that the approximation is
quite good for a resonator of modest aspect ratio (i.e., Lz ffi 2a), even when the mode indices are
fairly low.

Table 13.5 Lowest-frequency modes, rounded to integer frequencies, of the helium-filled resonator shown in Fig. 13.9

Order l m n flmn (Hz) Order l m n flmn (HZ)

1 1 0 0 10,000 22 2 4 1 39,319
2 0 1 1 11,721 23 2 1 2 39,395
3 1 1 1 15,407 24 4 0 0 40,000
4 0 2 1 19,444 25 3 3 1 40,191
5 2 0 0 20,000 26 4 1 1 41,682
6 1 2 1 21,865 27 1 5 1 42,049
7 2 1 1 23,182 28 0 2 2 42,693
8 0 0 1 24,393 29 1 2 1 43,848
9 1 0 1 26,364 30 4 2 1 44,475
10 0 3 1 26,746 31 0 0 2 44,663
11 2 2 1 27,894 32 3 4 1 45,233
12 1 3 1 28,554 33 3 1 2 45,299
13 3 0 0 30,000 34 2 5 1 45,477
14 2 0 1 31,544 35 1 0 2 45,768
15 3 1 1 32,209 36 4 0 1 46,851
16 2 3 1 33,397 37 2 2 2 47,145
17 0 1 2 33,941 38 4 3 1 48,118
18 1 4 1 35,299 39 1 6 1 48,790
19 1 1 2 35,383 40 2 0 2 48,936
20 3 2 1 35,750 41 5 0 0 50,000
21 3 0 1 38,666 42 3 5 1 50,677

The modes are listed in ascending order of their frequencies up to frequencies less than or equal to 50 kHz. The number of
modes with frequencies less than the first five axial mode frequencies is plotted in Fig. 13.12. This table is based on
Eq. (13.54) and assumes that c ¼ 1000 m/s
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13.3.3 Modes of a Rigid-Walled Toroidal Enclosure*

We ignored the Neumann solutions for the cylindrical enclosure because they became infinite at r¼ 0.
For a toroidal resonator, like the one shown in Fig. 13.13 (Right), we need the Neumann solutions to
simultaneously match the inner and outer radial boundary conditions. Since there is no fluid on the axis
of the torus, r ¼ 0, the fact that Nm(0) diverges does not present any difficulty.

The general solution for the pressure can be expressed in polar coordinates as before with the
azimuthal component expressed as a trigonometric function.

Fig. 13.12 Plot of the number of modes with frequencies less than the value on the x axis for the sample resonator
shown in Fig. 13.9. The diamonds represent the number of modes listed in Table 13.5. The line is the polynomial
approximation in Eq. (13.55)

Fig. 13.13 (Left) Plan view of an annular (toroidal) resonator with inner radius, a, and outer radius, b � (1 + δ ) a. The
resonator’s radial cross-section is rectangular. The height of the resonator is Lz, as before, and its width is b � a. (Right)
Cut-away view of a toroidal resonator mounted on a shaft for rotation [21]. The dotted material, labeled “A” in the toroid,
represents the annular duct of rectangular cross-section that contains the fluid. A transducer on the “roof” of the resonator
is indicated as “B” with lead wires attached
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p1 r, θð Þ ¼ AJm kmnrð Þ þ BNm kmnrð Þ½ � cos mθ þ φm,n

� � ð13:56Þ

From the Euler equation [16], the impenetrability of the walls requires that the radial pressure gradient
must vanish. This boundary condition leads to pair of equations.

∂p
∂r

� 	
r¼a

¼ 0 ) AJ 0m kmnað Þ þ BN 0
m kmnað Þ½ � ¼ 0

∂p
∂r

� 	
r¼b

¼ 0 ) AJ 0m kmnbð Þ þ BN 0
m kmnbð Þ½ � ¼ 0

ð13:57Þ

In Eq. (13.57), the prime symbol indicates differentiation of the functions with respect to the radius.
Setting the determinate of the coefficients to zero leads to a transcendental equation that can be solved
for the natural frequencies.

J 0m kmnað Þ � N 0
m kmnbð Þ � J 0m kmnbð Þ � N 0

m kmnað Þ ¼ 0 ð13:58Þ
Needless to say, the general solution is messy [22].

If we restrict our attention to the case where the difference between the outer and inner radii, (b� a),
is small compared to their average, (b þ a)/2, then there will be many azimuthal modes (m > 0) with
frequencies that are lower than the first radial or height modes. Assuming also that Lz � a, the first
height mode will occur at approximately f1,0,0 ¼ c/2Lz, and the first radial mode will occur at
approximately f0,0,1 ¼ c/2(b�a).

The lowest-frequency azimuthal mode, f0,1,0, will correspond to one complete wavelength fitting
within the effective circumference of the toroid as already shown schematically in Fig. 13.8. The fact
that the first mode corresponds to one full wavelength arises again from the requirement that the
azimuthal boundary condition is periodic and the function describing the amplitude of the acoustic
pressure, p1(r, θ, z, t), is single-valued. The ends of the wave must match in both pressure amplitude
and slope. (No “kinky” solutions are acceptable, although not on moral grounds.)

Subsequent azimuthal modes will be integer multiples of the fundamental azimuthal mode as long
as f0,m,0 is less than f0,0,1 or f1,0,0.

f 0,m,0 ¼ m
c

2πaeff

� 	
ð13:59Þ

The obvious choices for aeff would be some arithmetic or geometric average of the inner and outer
radii. To first order in δ � (b�a)/a, the average (a þ b)/2, the geometric mean, (ab)½, and the

Pythagorean average,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
� �

=2
q

, all give aeff ffi b(1�δ/2). Maynard has calculated the result

that is correct to second order in δ [23].

aeff ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δþ δ2=6

� �q
ð13:60Þ

The measured frequency response of a toroidal resonator is shown in the photograph of a spectrum
analyzer’s screen in Fig. 13.14. For this example, there are 24 equally spaced azimuthal modes with
frequencies provided by Eq. (13.59). Those modes are excited and detected by capacitive electret
transducers located on the “roof” of the resonator as shown in Fig. 13.13 (Right). Their amplitude
initially grows with increasing frequency as the half-wavelength of the modes approach the diameter of
the transducers. The amplitude decreases as the wavelength continues to decrease for successively
higher-frequency azimuthal modes, since some portions of the transducer’s diaphragm are being
driven out-of-phase with other portions.
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Above the 24th azimuthal mode, the amplitude of the signal jumps as the first height mode at
frequency, f1, 0, 0 ¼ (c/2Lz), is excited. The first height mode is followed by a succession of mixed
modes with frequencies, f1,m,0. Eleven such mixed modes are visible in Fig. 13.14 ( f1,1,0 through f1,11,0)
before the frequency limit of the spectrum analyzer display at 50 kHz is exceeded.

13.3.4 Modal Degeneracy and Mode Splitting

As demonstrated in the analysis of a rectangular room, the degeneracy of modes is related to the
symmetry of the enclosure. In Table 13.1, the cubical room had a larger fraction of degenerate modes
than the rectangular room. In a cylindrical enclosure, the rotational symmetry makes each azimuthal
(m 	 1) mode twofold degenerate. Since we can consider standing waves to be the superposition of
traveling waves (see Sect. 3.3.1), the degeneracy of azimuthal modes in a cylindrical enclosure can be
viewed from the standing wave perspective or from the traveling wave perspective. For example, when
viewed as a standing wave, the nodal diameter of the m ¼ 1 mode can be vertical or horizontal
(as shown in Fig. 13.15) or have any angular orientation with respect to the coordinate axes (as a
superposition of the horizontal and vertical components). This is an example of its twofold degeneracy.

That degeneracy can be “split” if there is some additional feature within the resonator that breaks
the azimuthal symmetry. For example, if an incompressible obstacle were placed in the resonator along
the circular boundary, as shown in Fig. 13.15, then the mode with the (pressure) nodal diameter
passing through the obstacle will have a lower frequency than the mode with the orthogonal nodal
diameter.

Fig. 13.14 Amplitude vs. frequency as measured by a Hewlett-Packard Model 3580A Spectrum Analyzer for a toroidal
resonator that has |a � b| � (a + b)/2. The modes are excited and detected by transducers mounted on the “roof” of a
resonator similar to the resonator depicted in Fig. 13.13 (Right). Above the 24th azimuthal mode, the amplitude of the
signal jumps as the first height mode is excited. The amplitude jump is due to the fact that the transducers on the roof
couple preferentially to height modes
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In the case where the obstacle is located on the (pressure) nodal line, there are no acoustic pressure
oscillations, and the fact that the obstacle is incompressible does not change the potential energy of the
mode. On the other hand, the nodal line is the location where the azimuthal component of the pressure
gradient, ∇θ p1, is greatest and therefore where the azimuthal component of the velocity, uθ, is greatest.
Since the obstacle is rigid, the fluid must accelerate to pass around the obstacle so the square of the
local fluid velocity is positive-definite and must increase, therefore increasing the kinetic energy of the
fluid. By Rayleigh’s method (see Sect. 3.3.2), this increase in kinetic energy will reduce the resonance
frequency for that mode since the potential energy is unchanged.

An alternative understanding that leads to the same result (a reduction in modal resonance
frequency) is to assume that the perimeter (hence, the azimuthal acoustic path-length) of the cylinder
has increased due to the obstacle. Since the frequency of the azimuthal mode depends upon the
circumference (which is more obvious if we consider the azimuthal solutions corresponding to integer
wavelengths fitting into an effective circumference, 2πaeff, for a toroidal enclosure), again, the modal
frequency is reduced.

When the nodal line is farthest from the obstacle, the acoustic pressure oscillations, p1, are the
largest at the location of the obstacle. Since the fluid has become less compressible in that region, the
potential energy must increase, as must the resonance frequency. Alternatively, we can imagine that
the obstacle could morph into a wedge of the same volume as that of the obstacle. This would reduce
the effective circumference and also result in an increase in the resonance frequency of the mode above
the degenerate frequency value in the absence of the obstacle.

Just as the modal degeneracy can be lifted by consideration of a standing wave interpretation, it is
also possible to split the degeneracy from the traveling wave viewpoint. Since the standing wave can
be constructed from two counter-propagating traveling waves, we can split the degeneracy in the
azimuthal modes by allowing the fluid within the cylindrical or toroidal enclosure to be rotating in
either the clockwise or counter-clockwise directions.

If the fluid is rotating in the clockwise direction, then the speed of sound for the clockwise
propagating wave will be increased, and the speed of the counter-clockwise wave will be decreased.
Again, picturing the azimuthal modes as consisting of integer numbers of wavelengths fitting within an
effective circumference, 2πaeff, the clockwise mode will have a higher frequency than the unperturbed
mode, and the counter-clockwise mode will have a lower frequency. Experimental results for the
“Doppler” splitting of an azimuthal mode due to fluid rotation are shown in Figs. 13.16 and
Fig. 13.25 [21].

Fig. 13.15 (Left) A cylindrical resonator is drawn with a rigid, incompressible object, shown as a gray circle, located
adjacent to the cylindrical boundary. If the 0,1,1 mode is excited, then the resonance frequency of the mode will depend
upon the orientation of the nodal diameter (shown as a dashed line) with respect to that obstacle. (Center) Since the
acoustic pressure along the node is zero, the frequency of the mode that has a nodal line that intersects the obstacle will be
lower than the degenerate mode (in the absence of the obstacle). (Right) The mode that has the nodal line that is farthest
away from the incompressible obstacle will have a frequency that is higher than the degenerate modes
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13.3.5 Modes in Non-separable Coordinate Geometries

Not all enclosures will have shapes that conform to the 11 coordinate systems in which the Helmholtz
equation is separable [1]. Although there is a proliferating variety numerical software package that can
solve the Helmholtz equation in arbitrary geometries by finite-element or boundary-element methods,
such programs do not (yet) provide any useful classification system for the resulting normal mode
shapes and frequencies. Also, if the solution is important, it is essential that an alternative analytical
approximation technique be available to check the accuracy of the numerical answers,6 especially if the
modal analysis is being made as part of the design process and a physical model of the system does not
yet exist to allow the numerical results can be tested experimentally.

The principle of adiabatic invariance was introduced first in Sect. 2.3.4, where it was applied to a
simple harmonic oscillator, then again for two-dimensional systems in Sect. 6.2.3, to address the
problem of non-separable geometries that described the boundaries of membranes. Adiabatic invari-
ance was then employed to approximate the frequencies and mode shapes of wedge-shaped
membranes in Sect. 6.2.4. The same approach will now be applied to a non-separable three-dimen-
sional enclosure. In this case, the enclosure is the cargo bay of the Space Shuttle, shown in plan view
and in cross-section in Fig. 13.17.

The cross-section of the Space Shuttle cargo bay is similar to a rigid-rigid cylinder, like those shown
in Figs. 13.1 and 13.9, except that the cross-section is not circular but is a hemi-ellipse that is joined to
a truncated portion of an irregular octagon. As with the application of adiabatic invariance to the
two-dimensional membranes, we will exploit the fact that the ratio of the energy of a mode, Elmn, to its
normal mode frequency, flmn, remains constant if the constraints on the system (i.e., the boundary

Fig. 13.16 The amplitude
of a degenerate azimuthal
resonance of a cylindrical
resonator (top) is shown
plotted vs. frequency. As
the fluid begins to rotate,
the mode “splits” into two
distinct resonances whose
frequency difference
increases with increasing
rotational velocity. Since
the frequency difference
between the two amplitude
peaks can be measured with
great accuracy [24], it is
possible to use the splitting
of the resonance to
accurately determine the
fluid’s rotational velocity

6
“A computer can provide the wrong answer with seven-digit accuracy thousands of times each second.”
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conditions) are deformed slowly when compared to the period of oscillation. Said differently, the
“adiabatic” portion of the principle requires that the deformation of the boundaries occurs over a time
that is many times greater than the period of oscillation, Tlmn ¼ f�1

lmn [25].

Elmn

f lmn

� 	
Adiabatic

¼ constantð Þlmn ð13:61Þ

As will be demonstrated in Sect. 15.4.4, the sound within an enclosure exerts a non-zero, time-
averaged radiation pressure on the boundaries that is proportional to the square of the sound amplitude,
expressed as either acoustic pressure or acoustic velocity. The energy of the system will be changed if
the boundaries move in a way that increases or decreases the energy of the mode by doing “pdV work”
against that radiation pressure. If that magnitude of the radiation pressure is fairly uniform at the
boundaries, and if the deformation results in no net change in the enclosure’s volume, Eq. (13.61)
requires that the modal frequency will remain constant.

If the length of the cargo bay remains constant, then the frequencies of the acoustic modes of the
cargo bay, flmn, will be the same as those of a cylindrical resonator of length, Lz, and radius, a, if the
cargo bay’s cross-sectional area is set equal to πa2. This approach was tested experimentally using a
scale model of the cargo bay, made from a transparent plastic, shown in Fig. 13.18.

The normal mode frequencies corresponding to each mode were determined by exciting the cavity
at a corner using a compression driver that was connected to a flexible tube, visible at the bottom right
in Fig. 13.18. Those measured frequencies are provided in Table 13.6. A small probe microphone that

Fig. 13.17 (Left) Plan view of the Space Shuttle and (Right) cross-section of the Shuttle’s cargo bay. The cargo bay’s
cross-section is a hemi-ellipse, which provides the cargo bay’s doors, above a truncated portion of an irregular octagon.
The hemi-ellipse has a semi-major axis of 9400 ¼ 2.39 m and a semi-minor axis of 88.300 ¼ 2.24 m. The bottom of the
octagonal section is 5300 ¼ 1.35 m, with the slanted side lengths of 88.400 ¼ 2.25 m and vertical side lengths of
47.600 ¼ 1.21 m
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penetrated the base of the model was then used to trace the pressure nodes by sliding the enclosure
along the base. The lines where the acoustic pressure had half the maximum value (measured at the
perimeter) were also traced. Both the nodal lines (solid) and half-amplitude lines (dashed) are shown
for the four lowest-frequency purely “azimuthal modes” in Fig. 13.19.

It is worth examining the nodal lines in Fig. 13.19 and comparing those nodal lines to the nodal
diameters for the corresponding azimuthal modes of cylindrical enclosures that are shown in
Fig. 13.10. Because the height of the model cavity, Lz, is very short, Lz � a, the lowest-frequency
“height mode” occurs at a frequency well above any of the purely azimuthal modes in Fig. 13.19: f1,
0, 0 ¼ c/2Lz  f0, m, 0. The similarity between the cylindrical nodal diameters and model’s nodal lines
provides confirmation that the mode number identification used for the modes of the cargo bay, based
on a cylindrical mode classification system, is justified and also provides a convenient nomenclature
that can be used to identify the individual modes.

The accuracy of normal mode frequency predictions are established in Table 13.6 by forming the
ratio of the measured mode frequencies, f0,m,n, to the lowest-frequency measured mode, f0,1,0. That
ratio is comparted to the same ratio for the cylindrical enclosure’s modes that are determined by
Eq. (13.50).

Fig. 13.18 Photograph of
a two-dimensional
transparent plastic model of
the Space Shuttle’s cargo
bay, shown Fig. 13.17. The
grid lines drawn on the top
of the model helped locate
the microphone used to plot
the equal acoustic pressure
contours presented in
Fig. 13.19

Table 13.6 The measured frequencies of the normal modes of the space shuttle cargo bay model are identified with the
corresponding mode numbers for a cylindrical enclosure

Mode Freq. (Hz) Ratio f0,m,n/f0,1,1 Cylinder f0,m,n/f0,1,1 Δ%
0,1,1 41.1 1.000 1.000 0
0,2,1 67.4 1.635 1.658 �1.4
0,0,1 85.3 2.076 2.082 �0.3
0,3,1 94.0 2.287 2.283 +0.2
0,4,1 114.5 2.782 2.891 �3.8

The percentage difference between the measured frequency ratios and the frequency ratios for a cylindrical enclosure,
Δ%, has an average of �1.3% � 1.8%
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13.4 Radial Modes of Spherical Resonators

Spherical enclosures have played an important role in high-precision acoustical measurements because
they can achieve high quality factors since there is no fluid shearing at the boundary for the radial
modes of a spherical resonator; therefore, there are no viscous losses associated with those modes. In
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Fig. 13.19 Measured acoustic pressure contours for the lowest-frequency azimuthal modes (0,m,0) using the plastic
quasi-two-dimensional mock-up in Fig. 13.18 of the Space Shuttle’s cargo bay. The lines shown in the contour maps are
pressure nodal lines or half-amplitude lines. Below each contour map is the corresponding pressure distribution for a
rigid-walled cylindrical resonator similar to those provided in Fig. 13.10
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Chap. 12, only the outgoing solution for three-dimensional spherical spreading in Eq. (12.8) was
investigated because that chapter’s focus was on radiation and scattering in an unbounded medium. In
a spherical resonator, there is a boundary that reflects the outgoing spherical wave and produces a
converging spherically symmetric wave that produces radial standing-wave modes when
superimposed on the outgoing wave, just as the addition of a right- and left-going plane waves created
standing waves in Eqs. (3.18) and (3.19).

The proper superposition of the diverging and converging spherical waves must eliminate the
infinite pressure that occurs at the origin, r ¼ 0. This divergence did not create any difficulty for the
radiation calculations in Chap. 12 because it was assumed that the radius, a, of the volume velocity
source was non-zero. To eliminate that unphysical infinity, the superposition of the outgoing and
converging spherical waves will be formed from their difference.

p1 r, tð Þ ¼ ℜe
bC
r
e j ω t�krð Þ � bC

r
e j ω tþkrð Þ

 �
¼ ℜe

�bCejω t

r
ejkr � e�jkr
� � �

¼ ℜe
2jbCejω t

r
sin krð Þ

 �
¼ C0

r
sin krð Þ cos ω t þ φð Þ

ð13:62Þ

At the origin, for r ¼ 0, Eq. (13.62) produces p1(0, t) ¼ kC' cos (ω t þ φ) when the small (kr)
expansion of sin (kr) is used to evaluate the radial acoustic pressure at r¼ 0. In the final expression, all
of the constants have been coalesced into a scalar amplitude, C0, to emphasize the similarity with other
standing-wave solutions like Eq. (10.44).

13.4.1 Pressure-Released Spherical Resonator

If the spherical boundary is pressure-released and located at a radial distance, a, from the center of the
sphere, then the radial modes are harmonic.

p1 að Þ ¼ 0 ¼ C0

a
sin krelease0,0,n a

� � ) krelease0,0,n ¼ nπ
a
; n ¼ 1, 2, 3, . . . ð13:63Þ

This is easy to implement for a water-filled thin-walled glass sphere. Since water is nearly incompressible,
the thin glass wall of the spherical vessel moves with the water. If additional precision is required, the
effective radius of such a spherical resonator can be increased by an amount determined by the mass
density of the thin glass in exactly the same way the thin gold layer created a density-weighted increase in
the effective length of a resonant bar for the analysis of the quartz micro-balance in Sect. 5.1.2.

Wilson and Leonard used a commercial round-bottom Pyrex™ boiling flask as a pressure-released
spherical resonator to contain the water so that very small sound absorption could be measured in a
laboratory over the range of frequencies between 50 kHz and 500 kHz [26]. The sphere was suspended
from a support using three 250-μm-diameter steel wires so that any loss due to sound transmission
through the supports was minimized. The sphere was placed in a vacuum chamber with the air pressure
reduced to less than 1.0 mmHg (133 Pa) to minimize radiation losses. In addition to the absence of any
viscous dissipation, the thermal relaxation losses at the boundary were also negligible because the
thermal expansion coefficient of water is so close to zero at room temperatures7 and the boundary was

7 The expansion coefficient vanishes at 4 
C where the density of water is a maximum. If ice were not less dense than
water, you would not be reading this footnote, since when water froze in the winter, it would sink to the bottom of the lake
and more ice would form at the surface and sink. The fact that ice floats insulates the water below. Since all animals
evolved from a watery origin, it is possible that there might be no animal life as we know it on this planet if ice were
denser than water.
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pressure-released. A similar pressure-released spherical resonator would correspond to a gas-filled
spherical balloon in a vacuum, like the Echo satellites, which were placed in low Earth orbit near the
beginning of the US space program in August 1960 (see Problem 11 and Fig. 13.34) [27]. Such a
pressure-released boundary condition for a spherical resonator has also been shown to be an accurate
representation of the modes of the liquid (aqueous humor) in the mammalian eyeball [28].

13.4.2 Rigid-Walled Spherical Resonator

If the boundary of the spherical resonator is rigid and impenetrable, then the Euler equation can be used
to relate the standing-wave pressure, p1(r), in Eq. (13.62), to the radial velocity of the fluid at the
boundary, ur(a).

∇rp1 að Þ / dp1 að Þ
dr

¼ C0 krigid0,0,n cos krð Þ
r

�
sin krigid0,0,nr

� �
r2

24 35
r¼a

/ �ρm
∂ur að Þ
∂t

¼ 0

krigid0,0,na
� �

cos krigid0,0,nr
� �

a
¼

sin krigid0,0,na
� �
a2

) tan krigid0,0,na
� �

¼ krigid0,0,na
� � ð13:64Þ

The values of krigid0,0,n are thus quantified by a simple transcendental equation whose solutions will be
familiar from earlier investigations of a mass-loaded string in Sect. 3.6. The values of (ka) that satisfy
Eq. (13.64) are provided in Table 13.7.

The frequencies of radial modes of a gas-filled spherical resonator were used by scientists at the US
National Bureau of Standards, in Gaithersburg, MD, to produce the most accurate value of
Boltzmann’s constant, kB, and the universal gas constant, ℜ [29]. The Bureau’s acoustical determina-
tion of these fundamental constants constituted a reduction in their uncertainty by a factor of 5 over
previous determinations and subsequently was made less than 1 ppm by using microwave resonance
frequencies and the speed of light (known to 1 ppb) to determine the sphere’s volume8 [30]. A cross-
sectional diagram of the resonator and its surrounding pressure vessel is provided in Fig. 13.20.

For large values of n, krigid0,0,na
� �

ffi nþ ½ð Þπ

Table 13.7 Solutions for the radial mode frequencies, f rigid0,0,n ¼ krigid0,0,na
� �

c= 2πað Þ, for a rigid, impenetrable spherical

resonator based on Eq. (13.64)

Radial mode (k0,0,na) (k0, 0, na)/π

1 4.49341 1.430
2 7.72525 2.459
3 10.90412 3.471
4 14.06619 4.477
5 17.22076 5.482
6 20.37130 6.484
7 23.51945 7.486

8 Boltzmann’s constant, kB, and the universal gas constant, ℜ, are the second least precisely known physical constants
after Newton’s Universal Gravitational Constant, G. As of 20 May 2019, the value of kB and ℜ are taken as being exact
(see Appendix A).
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13.5 Waveguides

The conceptual and mathematical apparatus that has just been developed to understand the sound field
in three-dimensional rectangular or cylindrical enclosures can easily be extended to describe sound
propagation in a waveguide. Waveguides can be man-made or can occur naturally.9 They are important
because sound waves that are contained within a waveguide do not suffer the 1/r decrease in sound

Fig. 13.20 Cross-
sectional diagram of the
spherical resonator and
pressure vessel that were
used by the US National
Bureau of Standards (now
known as the National
Institute for Standards and
Technology) to determine
the universal gas constant, ℜ
[29]. The transducer
assemblies are indicated as
“T,” and the locations of the
platinum resistance
thermometers are indicated
by “PRT.” The pressure
vessel was immersed in a
stirred liquid bath (not
shown) which maintained
the temperature of the
apparatus and the gas
within the sphere at a
constant temperature

9 The National Weather Service in Tallahassee, FL, felt obligated to issue a weather statement on 9 March 2011 in
response to “strange sounds being reported in their area explaining that the unusual sound that was observed was ‘caused
by thunder from a distant lightning strokes . . . bouncing off a very stable layer above the ground. This is called ducting
. . . and can allow sound to travel unusually long distances.”’
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pressure amplitude that accompanies three-dimensional spherical spreading. Such waveguides
have utility in the transmission of sound from the source to a receiver. One early waveguide is the
stethoscope invented in 1816 by the Parisian physician, René Laennec [31]. Waveguides (called
speaking tubes) were also used on sailing ships, at least as early as the 1780, to communicate
orders from the ship’s captain to sailors, and they were still in use on naval warships during World
War II.

13.5.1 Rectangular Waveguide

Consider the waveguide of rectangular cross-section shown in Fig. 13.21. Application of the
wavenumber quantization conditions for a rectangular enclosure in Eq. (13.11) will apply, but now
Lz ¼ 1.

As a consequence, kz is no longer restricted to only discrete values, but becomes a continuous
variable. The separation condition of Eq. (13.6) will now determine kz as a function of the frequency,
ω, at which the waveguide is being excited.

k2z ¼
ω
c

� �
� k2x � k2y where kx ¼ ℓπ

Lx
and ky ¼ mπ

Ly
; ℓ,m ¼ 0, 1, 2, 3, . . . ð13:65Þ

The corresponding sound field can be written as in Eq. (13.13) except that the option for boundary
conditions that are not all rigid and impenetrable will be retained by the choice of either sine or cosine
functional dependence (or their superposition) in the x and y directions, as indicated by the curly
brackets.

pℓm x, y, z; tð Þ ¼ ℜe bAlm
sin kxxð Þ
cos kxxð Þ

� �
sin kyy

� �
cos kyy

� �( )
e j ω t�kzzð Þ

" #
ð13:66Þ

Notice that the complex amplitude pre-factor (phasor), bAlm , has only two indices since the
z wavenumber, kz, is not quantized.

The quantized wavenumbers that satisfy the transverse boundary conditions for a waveguide of
rectangular cross-section can be combined into a single wavenumber with two subscripted indices,
where kx and ky are specified in Eq. (13.65), for a rigid-walled rectangular waveguide.

Fig. 13.21 Waveguide of rectangular cross-section that extends to infinity in the z direction
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k2ℓm � k2x þ k2y ) kz ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω
c

� �2
� k2ℓm

r
¼ � ω

c

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ωℓm

ω

� �2
r

ð13:67Þ

This wavenumber consolidation makes it possible to generalize the following results to rigid-walled
waveguides of circular cross-section later in Sect. 13.5.4, by letting kℓm ¼ αmn /a, where αmn is
quantized by Eq. (13.49).

The consequences for kz that arise from Eq. (13.67) are significant. For the plane wave mode, when
the wave fronts within the guide are normal to the z direction and there is no variation in the pressure or
particle velocity in the transverse plane (i.e., kx ¼ ky ¼ 0), then ℑm[kz] ¼ 0, and kz ¼ ω /c.10 On the
other hand, if kℓm > ω /c, then the real part of the wavenumber will vanish,ℜe[kz]¼ 0. Substitution of a
purely imaginary value of kz into the pressure field within the waveguide, as specified in Eq. (13.66),
creates a pressure field that decays exponentially with distance beyond the source of such a disturbance
within the waveguide. The characteristic exponential decay distance, δ ¼ ℑm k�1

z

� �
, for frequencies

well below cut-off for a particular higher-order mode, ω � ωℓm, will be determined by the height or
width or combination of the height and width of the waveguide, depending upon the mode.

lim
ω!0

δ½ � ¼ j
kℓm

¼ j
Lx
ℓπ

or j
Ly
mπ

or j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lx
ℓπ

� �2

þ Ly
mπ

� 	2
s

if ω < ωℓm ð13:68Þ

The frequency at which a non-plane wave mode with kx 6¼ 0 or ky 6¼ 0 or both kx and ky being
non-zero is known as the cut-off frequency, ωco ¼ 2πfco, for that mode. Such exponentially decaying
behavior was demonstrated for sound propagation in exponential horns in Sect. 10.9.1 for frequencies
below the cut-off determined by the horn’s flare constant. Each waveguide mode will have its unique
cut-off frequencies determined by kℓm: 2πfco ¼ ωco ¼ ckℓm.

13.5.2 Phase Speed and Group Speed

The phase speed for propagation down the waveguide is cph ¼ ω /kz. Below cut-off for any of the
higher-order modes of the waveguide, ω < ωco ¼ c kℓm, only plane waves will propagate down the
guide. In that case, kz ¼ ω /c, so cph ¼ c, as was the case for plane waves propagating in an unbounded
medium with a constant thermodynamic sound speed, c. At frequencies that are high enough that one
or more non-plane modes can be excited, ω > ωℓm, the phase speed becomes a function of frequency.

cph ¼ ω
kz

¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ωco

ω

� �2
r ð13:69Þ

This phase speed is plotted in Fig. 13.22 for the plane wave (0,0) mode and the next two highest-
frequency non-plane modes, (1,0) and (2,0), where it has been assumed that Lx  Ly so ω2,0 < ω0,1.

It is useful to make a geometrical interpretation of the variation of the phase speed in a waveguide
with the frequency of the sound, ω, that is propagating within. Just as the boundary conditions were
satisfied in a rigidly terminated resonator by the superposition of two counter-propagating traveling
waves, it is possible to extend that same model to a waveguide if we let the two traveling plane waves
propagate in different directions.

10 There will necessarily be some variation in the plane wave’s velocity in the z direction within the very thin
thermoviscous boundary layer specified in Eqs. (9.14) and (9.33). The attenuation and dispersion created by these
boundary layer effects will be calculated in Sect. 13.5.5.
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In Fig. 13.23 (Right), there are two plane waves indicated by equally spaced wave fronts and two

wavevectors, k
!
, that are perpendicular to their respective wave fronts. For one set of wave fronts, the

angle that k
!
makes with the z axis is θ. For the other set of wave fronts, the angle that k

!
makes with the

z axis is �θ. Using the diagram in Fig. 13.23 (Left) that projects k
!
onto kz and kℓm, the angle, θ, that k

!

Fig. 13.22 Phase speed, cph, relative to the thermodynamic sound speed, c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂p=∂ρð Þs

p
, as a function of frequency,

ω, relative to the cut-off frequency, ω1,0, of the first non-planar mode. The phase speed of the plane wave mode (0,0) is
the solid line. The short-dashed line is the relative phase speed of the (0,1) mode, and the long-dashed line is the relative
phase speed of the (2,0) mode. In this figure, it is assumed that Lx  Ly so ω2,0 < ω0,1

Fig. 13.23 (Left) The wavevector (bold arrow), k
!
, that characterizes the direction of the plane wave is projected on to

the z axis to produce kz and on to the y axis to produce the cut-off wavenumber, kℓm. In accordance with the separation

equation (13.65), the Pythagorean sum of kx and kℓm is length of k
!��� ���. (Right) The top and bottom boundaries of the

waveguide are shown as horizontal dotted lines. The wave fronts of the two traveling plane waves always overlap at both
boundaries indicating that those rigid surfaces correspond to the locations of the acoustic pressure amplitude maxima
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makes with the z axis can easily be written, and the phase speed, cph, can be expressed in terms of that
angle, as well.

cos θ ¼ kz

k
!��� ��� ) cph ¼ ω

kz
¼ ω

k
!��� ��� cos θ ¼ c

cos θ
ð13:70Þ

The top and bottom of the waveguide are represented by the horizontal dotted lines in Fig. 13.23
(Right). Inspection of that figure reveals that both sets of wave fronts, moving in different directions

determined by their respective wavevectors, k
!
, always intersect at the waveguide boundaries, making

that intersection a pressure maximum, as it must be if the boundary is rigid and impenetrable.
With this geometric interpretation in mind, the following picture emerges for the relationship

between phase speed; the wave’s frequency, ω; and the cut-off frequency, ωℓm. For a plane wave

mode with frequency, ω < ωℓm, that wavevector, k
!
, is aligned with the z axis and θ¼ 0
, so cph¼ c. If a

higher-order waveguide mode is excited, so ω > ωℓm, then at cut-off, the wavevector, k
!
, is parallel to

kℓm and kz ¼ 0. In that case, there is a simple standing wave created by the superposition of the two
plane waves traveling in opposite directions and θ¼ 90
. The wave fronts are parallel to the waveguide
boundaries, so the phase is identical at all times everywhere along the waveguide, assuming the sound
field within the waveguide has reached steady state. For the phase to (instantaneously) be the same
over any non-zero distance, the phase speed must be infinite. This infinite phase speed at the cut-off
frequency is apparent from Fig. 13.22, since the curves representing the phase speed of the non-plane
wave modes are asymptotic to the vertical lines that extend from each mode’s cut-off frequency.

At cut-off, the two traveling waves are moving up and down (i.e., θ ¼ 90
) in Fig. 13.23 (Right);
they are making no progress whatsoever in the z direction. If the sound energy is to travel down the
waveguide in the z direction, θ < 90
. For example, if tan θ ¼ 10 (so θ ¼ 84.3
), then the plane waves
move forward along the z axis by one-tenth as far as the wave fronts have moved going up and down
between the waveguide’s rigid boundaries during the same time interval. The speed at which the sound
energy moves forward along the +z axis, down the waveguide, is the group speed, cgr. Figure 13.23

(Left) can be used to express the group speed in terms of the angle, θ, that the wavevector, k
!
, makes

with the z axis.

cgr ¼ c cos θ ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ωℓm

ω

� �2
r

) cgrcph ¼ c2 ð13:71Þ

13.5.3 Driven Waveguide

As with any linear system, the complex (phasor) amplitude coefficient, bAlm, of the sound field within
the waveguide, as expressed in Eq. (13.66), depends upon the amplitude of the excitation and the
geometrical distribution of the sources that create the excitation. A two-dimensional Fourier decom-
position can be used to calculate the values of bAlm, just as the harmonic content of a plucked string was
calculated in terms of the string’s normal modes in Sect. 3.5. Rather than make such a calculation, it
will be instructive to exam the excitation of a waveguide by two rectangular pistons placed in the end
of a waveguide of square cross-section, illustrated in Fig. 13.24.

For a rigid-walled rectangular waveguide, like those shown in Figs. 13.21 and 13.24, the excitation
of a mode will depend upon the projection of the piston’s volume velocity complex amplitude
distribution, bU x, yð Þ, upon the basis functions defined by the wavenumbers in Eq. (13.65) that satisfy
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the boundary conditions. Since those cosine functions are all orthogonal (for the rigid waveguide, but
not necessarily for the functions that satisfy more general boundary conditions), a piston with a

uniform distribution of volume velocity, bU x, yð Þ
��� ��� ¼ constant, can only excite the plane wave (0,0)

mode at any frequency. That sound will propagate down the waveguide in the +z direction with
cph ¼ cgr ¼ c. This plane wave excitation is illustrated in Fig. 13.24 (Left).

If the piston’s volume velocity distribution has a non-zero projection onto the basis functions
that satisfy the waveguide’s boundary conditions in the x and y directions, then those modes will be
excited, as long as the excitation frequency, ω, equals or exceeds that mode’s cut-off frequency,
ω 	 ωℓm.

In Fig. 13.24 (Right), the upper piston moves forward while the lower piston moves backward. The
net volume velocity is zero so there will be no coupling to the plane wave mode. If the frequency of
vibration of those two transducer segments, ω, is less than the cut-off frequency for the (0,1) mode,
ω < ω0, 1 ¼ πc/b, where b ¼ Ly, then the fluid being pushed forward and pulled back by the two
transducer segments will just “slosh” between those segments, and all of the fluid’s motion will be
confined to a distance of about z � Lz ¼ b, as would be expected for an exponentially decaying mode
that decays with a distance, δ, given by Eq. (13.68).

If the drive frequency of the two out-of-phase transducers in Fig. 13.24 (Right) is higher than the
cut-off frequency for the (0,1) mode, ω > ω0, 1 ¼ πc/b, then the transducers will excite the (0,1) mode
that will propagate down the waveguide in the +z direction with the phase and group speeds
determined by Eqs. (13.69) and (13.71).

13.5.4 Cylindrical Waveguide

With the exception of rectangular ducts used for space heating and air conditioning inside buildings,
most acoustical waveguides have a circular cross-section. From the acoustical perspective, waveguides
of circular cross-section are preferred because cylindrical tubes deform much less than rectangular
tubes of equal wall thickness when subjected to a static or dynamic (acoustic) pressure difference
between the fluid inside and the medium surrounding the waveguide. They also have the minimum
perimeter for any cross-sectional area, so boundary layer thermoviscous dissipation is minimized (see
Sect. 13.5.5). Because we chose to specify the transverse composite wavenumber for the rectangular
waveguide as kℓm, all of the results for cut-off frequency, ωmn; phase speed, cph; and group speed, cgr,
will be identical to the rectangular case if kℓm ¼ αmn/a for the cylindrical waveguide, where αmn is
quantized by Eq. (13.49).

Oscillator Amplifier

Loudspeakers (0, 0) mode
(0, 1) mode

+

+

+ ++

–––

b

Fig. 13.24 (Left) A waveguide of square cross-section is driven by two identical rectangular pistons located that the end
of the waveguide, z ¼ 0. If both pistons are driven in-phase, then only the plane wave mode (0,0) can be excited. (Right)
If the two rectangular pistons are driven 180
 out-of-phase, so the net volume velocity is zero, then no plane wave is
generated. If the drive frequency, ω, is greater than the cut-off frequency, ω0,1, ¼ πc/b, then the (0,1) mode will be
excited [32]
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f co ¼ ωco

2π
¼ ωmn

2π
¼ c

kmn
2π

¼ c
αmn
2πa

cph ¼ ω
kz

¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ωco

ω

� �2
r and cgr ¼ c2

cph
ð13:72Þ

Of course, in Eq. (13.72), m is the azimuthal mode number and the order of the Bessel function
associated with that mode, and n indicates the number of nodal circles, as diagrammed in Fig. 13.10.

The excitation of a specific mode will depend upon the projection of the transducer’s volume
velocity distribution on the transverse basis functions, Jm(kmnr) and cos (mθ þ φmn), described in
Eq. (13.51). For a rigid-walled cylindrical waveguide with radius, a, Eq. (13.72) and Table 13.3 place
the cut-off frequency of the lowest-frequency non-plane wave mode at f1,1 ¼ α1,1(c/2πa) ffi 1.8412(c/
2πa) ¼ 0.293 c/a. The transverse pressure distribution of the (1,1) mode is shown in Fig. 13.10.

If the transducer produces a uniform volume velocity and is centered on the waveguide’s axis, then
the symmetry of such an excitation will not couple to the (1,1) mode because the (1,1) mode, as well as
any other azimuthal mode, m 	 1, presents a pressure that is equally positive and negative about any
diameter. In that case, the lowest-frequency purely radial mode would be the lowest-frequency
non-plane wave mode that could be excited at frequency, f0,1 > α0,1(c/2πa) ffi 3.8317(c/2πa) ffi 0.61
(c/a). That mode also has regions where the pressure at the perimeter is out-of-phase with the pressure
at the center. Table 13.4 indicates that the pressure at r 	 0.6276a will be out-of-phase with the
pressure in the central region.

To calculate the net pressure, the radial pressure variation given by the Bessel function, Jo(k0,1r),
must be integrated over the waveguide’s circular cross-section, as was done previously for circular
membranes in Sect. 6.2.5, to obtain the effective piston area, Aeff.

Aeff ¼
ZZ

S
Jo k0,1rð ÞdS ¼

ða
0
Jo k0,1rð Þ2πr dr ð13:73Þ

Using the identity in Eq. (C.27), the integral in Eq. (13.73) can be evaluated.

Aeff ¼ 1
k20,1

ðk0,1a
0

J0 xð Þ2πxdx ¼ 2π
k0,1a

k20,1
J1 k0,1 að Þ ¼ 2πa2

J1 α0,1ð Þ
α0,1

¼ 0 ð13:74Þ

A uniform piston with the same cross-sectional area as the waveguide will not excite the first radial
mode. If the goal was to preferentially excite the first radial mode, the piston’s volume velocity would
be non-zero for r < 0.6276a and zero for 0.6276a < r � a. Ideally, an annulus that would extend to the
perimeter, r¼ a, and have an inner radius, b¼ 0.6276a, that produces a volume velocity that was equal
and 180
 out-of-phase with the central disk would provide optimal coupling to the (0,1) mode. On the
other hand, a full area transducer, like that shown in Fig. 13.13, would excite the longitudinal modes
strongly while suppressing both the azimuthal modes and the first radial mode.

13.5.5 Attenuation from Thermoviscous Boundary Losses

The calculation of the attenuation of a plane wave propagating down a waveguide is straightforward
using the expression for thermoviscous losses provided in Eq. (9.38). That equation can be re-written
by using the Euler relation for plane waves from Eq. (10.26), bv ¼ bp= ρmcð Þ, and assuming that the fluid
within the waveguide is an ideal gas, γpm¼ ρmc

2. For simplicity, a cylindrical resonator is assumed, so
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the perimeter of the waveguide is 2πa and its cross-sectional area is πa2. For a rectangular waveguide,
the corresponding geometrical factors would be 2(Lx þ Ly) and LxLy.

2πa _etv ¼
_E
L
¼ Πh it

L
¼ � δν þ γ � 1

γ
δκ

� 	
2πaω bpj j2
4γpm

ð13:75Þ

That time-averaged power dissipation per unit length, hΠit/L, on the surface of the waveguide, can
be compared to the acoustic energy stored per unit length by expressing the total energy density as the
maximum potential energy density, provided in Eq. (10.35), multiplied by the waveguide’s cross-
sectional area (i.e., volume per unit length, L ).

Estored

L
¼ πa2 PEð Þmax ¼

πa2 bpj j2
2ρmc2

¼ πa2 bpj j2
2γpm

ð13:76Þ

The ratio of Eqs. (13.75) and (13.76) is a constant for any frequency, ω, as long as the waveguide is
excited in only its plane wave mode.

_E
E
¼ �

δν þ γ�1
γ δκ

� �
a

ω � �1
τtv

ð13:77Þ

This form is rather satisfying. The pre-factor is simply the ratio of a “blended” boundary layer
thickness, taking both the viscous and thermal dissipation into account, to the radius of the circular
waveguide. Of course, since the waveguide is a linear system, the acoustic amplitude, bpj j, has cancelled
out of that ratio. Since both δν and δκ are proportional to ω-½, _E=E / ffiffiffiffi

ω
p

.
When the rate of change of any variable is proportional to its value, then the variable will either

decay or grow exponentially. Since this ratio is negative in Eq. (13.77), the sound amplitude will decay
exponentially as the sound propagates down the waveguide. The corresponding thermoviscous
exponential decay time, τtv, is just the reciprocal of _E=E . The distance of travel and the travel time
are simply related by the sound speed, c, so the spatial attenuation coefficient, αtv ¼ (cτtv)

�1.

αtv ¼ 1
cτtv

¼ �
δν þ γ�1

γ δκ
� �

a
ω
c
/ ffiffiffiffi

ω
p ð13:78Þ

The resulting attenuation of the plane wave as a function of distance can be expressed in terms of the
product of the plane wave solution of Eq. (13.66) and a decaying exponential factor.

p0,0,k x, y, z, tð Þ ¼ ℜe bA0,0e
�αtvze j ω t�kzzð Þ

h i
ð13:79Þ

The thermoviscous boundary layer attenuation for higher-order waveguide modes can be related to
the plane wave attenuation by invoking the geometrical perspective developed with the aid of
Fig. 13.23. That perspective treats the higher-order waveguide modes as a combination of two
traveling waves with wavevectors which make an angle, �θ, with the z axis of the waveguide. From
that perspective, the higher-order modes travel a distance that is (cos θ)�1 longer than the plane wave
mode. That perspective produced a simple expression for group speed and can also determine the
attenuation constant for non-plane wave modes, α ¼ αtv/ cos θ.

The effect of the thermoviscous boundary layers also introduces some dispersion. Within the
thermal boundary layer, δκ, the compressibility of the gas transitions from its adiabatic value far
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from the walls to an isothermal compressibility at the wall. Also, within the viscous boundary layer
thickness, the effective density of the gas is increasing toward infinity since the no-slip boundary
condition at the wall makes the gas immobile. This small increase in compressibility and simultaneous
increase in the effective density both conspire to reduce the sound speed. Since both boundary layer
thicknesses are usually small compared to the waveguide’s radius, the resulting dispersion is generally
negligible in waveguides of large cross-section.

Talk Like an Acoustician

Eigenvalues Energy balance equation
Axial mode Critical distance
Tangential mode Schroeder frequency
Oblique mode Periodic boundary conditions
Degenerate modes Twofold degeneracy
Density of modes Adiabatic invariance
Wavenumber space Cut-off frequency
k-space Thermoviscous losses
Diffuse sound field

Exercises
For these problems, unless otherwise specified, assume the sound speed in air is 345 m/s, in water is
1500 m/s, and in liquid is 4He at 1.20 K and saturated vapor pressure is 237.4 m/s.
1. The Golden Temple. A rectangular room is Ly¼ 20 m wide, Lx ¼ 32.36 m deep, and Lz ¼ 12.36 m

high. Those dimensions are in the “golden ratio.”
(a) Modes. Calculate the frequencies of the 27 lowest-frequency modes of the room. Tabulate the

modes in ascending order of frequency (lowest to highest), indicating the mode numbers
corresponding to each frequency.

(b) Modal excitation and detection. Assume the modes are excited by a volume velocity source
located in a corner of the room. Indicate which of the 27 lowest-frequency modes listed above
would be detected by a microphone placed exactly in the center of the room (i.e., x ¼ Lx/2,
y ¼ Ly/2, and z ¼ Lz/2).

Unless otherwise indicated, you may assume that the walls of the temple are made of wood-
paneling (1/200 thick backed by a 300 deep air space). On each of the two long walls, are five pairs of
glass windows (windowpanes, one above the other) that are 3.0 m wide and 4.85 m tall (a total of
20 windows). The window pairs on each wall are separated by five 2.0-m-wide fiberglass panels (total
of 10 panels) that are 200 thick and mounted off of the wall by a 100 airspace that reaches from the floor to
the ceiling to help reduce reverberation time. The ceiling is covered entirely with acoustical plaster.
The floor has thick carpet laid directly over a concrete base. There are 192 upholstered (cloth covered)
seats.

Table 13.8 can be used to determine the sound absorption coefficients of the temple’s surfaces and
its contents for this problem, but the reader is cautioned to use a more comprehensive and authoritative
sources for design of actual venues. The most comprehensive compilation of such data for use in
reverberation time calculations that I have found is provided by Cyril Harris in Noise Control in
Buildings: A Practical Guide for Architects and Engineers [33].
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(c) Schroeder frequency. Calculate the room’s Schroeder frequency, fS, based on the average absorp-
tion, <A>, at 125 Hz. Using the approximate analytical expression for number of modes of the
room, estimate the number of modes in the room with frequencies less than fS.

(d) Reverberation time. Calculate reverberation times at 125 Hz, 500 Hz, and 2 kHz using the Sabine
Equation.

(e) The Eyring and Norris reverberation time. An alternative to the Sabine equation was proposed by
Carl Eyring, at Bell Labs, which is more accurate for more absorptive (“dead”) rooms and reduces
to the Sabine’s result in “live” rooms where the total surface area of the room is S and <A>/
S � 1 [34].

T60 ¼ 0:161 V
�S ln 1� Ah i=Sð Þ½ � ð13:80Þ

The use of the numerical pre-factor assumes that S, <A>, and V are all expressed in metric units.
Recalculate the reverberation times from part (d ) using the Eyring-Norris expression.

(f) Critical distance. Calculate the distance, rd, that a listener must be from a person speaking (assume
500 Hz), without electronic sound reinforcement, at the front of the room, so that the listener
receives equal amounts of direct and diffuse sound pressure.

(g) Steady-state diffuse sound pressure level. If a solo violinist produces a B4 note (at approximately
494 Hz) that radiates 2.0 mW of acoustic power into the room, what is the approximate sound
pressure level (in dB re: 20 μParms) observed in the diffuse sound field?

(h) Bulk absorption. Using the approximate expression for bulk absorption in Eq. (13.30), calculate
the importance of 4 mV/<A > relative to surface absorption at 125 Hz, 500 Hz, and 2 kHz, if the
relative humidity is 50%.

2. Hot tub modes. Calculate the ten lowest-frequency modes of a rigid-walled circular swimming
pool that is 5.0 m in diameter and is filled with water to a depth of 2.0 m. The surface above the
water is pressure-released by the water-air interface.

3. Toroidal resonator. Shown in Fig. 13.25 is the spectrum (amplitude vs. frequency) of a rigid-
walled toroidal resonator with inner, a, and outer, b, radii such that |a � b| � (a þ b)/2 and |
a � b| < Lz. The modes of the resonator are excited and detected using a speaker and microphone
mounted on the “roof” of the toroid. There are 25 azimuthal modes with frequencies less than the
first height mode.
(a) Effective radius. If Lz ¼ 1.00 cm, what is the mean radius, aeff, of the toroid if the fluid in the

toroid is liquid helium with a sound speed (non-rotating) of c1 ¼ 237.4 m/sec and the split
degenerate modes in Fig. 13.25 correspond to m ¼ 24?

(b) Doppler mode splitting. Shown in Fig. 13.25 is a degenerate pair of azimuthal modes that have
been split into two distinct modes by uniform rotation of the fluid within the toroid with an

Table 13.8 Representative average Sabine absorptivity for various surfaces

Octave-band center frequency (Hz) ! 125 250 500 1000 2000

Material Absorptivity

½
00
wood paneled walls w/3

00
air space 0.30 0.25 0.20 0.17 0.15

Windowpane glass 0.35 0.25 0.18 0.12 0.07
2
00
thick fiberglass w/1

00
air space 0.35 0.65 0.80 0.90 0.85

Acoustical plaster 0.07 0.17 0.40 0.55 0.65
Thick carpel 0.02 0.06 0.14 0.35 0.60
Upholstered (cloth covered) seats/seat 0.20 0.35 0.55 0.65 0.60
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azimuthal velocity, vθ, in the clockwise direction. Based on the frequencies of the split modes,
f+ ¼ 18,461 Hz and f� ¼ 18,374 Hz, what is the fluid’s speed of rotation?

4. Cylindrical resonator. A rigid-walled cylindrical resonator with diameter, D ¼ 2a, and length, L,
is shown in Fig. 13.26 in cross-section. It is driven by the small electrodynamic loudspeaker

Fig. 13.25 Degenerate
modes of a toroidal
resonator that are split due
to steady flow in the torus

Fig. 13.26 Cross-sectional diagram of a cylindrical resonator that is L long and has a diameter,D¼ 2a. It is driven by an
electrodynamic loudspeaker at the left end of the tube and three microphones are located as shown
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adjacent to one end at the intersection of one end cap and the cylindrical wall. The resonator
contains three microphones: Mend is located on the cylindrical wall at the rigid end opposite the
speaker,Mmiddle is also on the cylindrical wall but at the middle of the resonator, andMcenter is at the
center of the rigid end cap on the end of the resonator that is opposite the speaker.
Sketched in Fig. 13.27 is the resonance spectrum produced by driving by the loudspeaker and

detecting the sound pressure using Mend. The frequency of each peak in the spectrum is labeled.
(a) Sound speed. If L ¼ 40 cm, what is the speed of sound of the gas contained within the resonator?
(b) Resonator radius. What is the radius, a (in centimeters), of the resonator?
(c) Resonance detectability. Complete the table below by indicating which of the resonance peaks

would be observable at the middle microphone Mmiddle and at the microphone at the center of the
rigid end Mcenter by placing a YES in the space if the microphone detects the mode and a NO in
the space if that microphone does not detect the mode.

5. Pressure-released rectangular waveguide. The data for phase speed, cph vs. frequency, provided
in Table 13.9, was obtained for a rectangular, water-filled waveguide, with an anechoic termination,
that has a free surface (the air-water interface) and boundaries lined with highly compressible
closed-cell foam making all of the boundaries pressure-released. The acoustic pressure in the
waveguide was determined by inserting a small hydrophone below the free surface. The
hydrophone’s location was determined (�0.5 mm) from a scale attached to the top of the waveguide
over distance up to 3 m from the source. The phase speed was determined with an oscilloscope in
the x-y (Lissajous) mode, and the distance was recorded to determine the wavelength in the
z direction by measuring the distance between successive changes in phase of 360
 at precisely
known frequencies. Photographs of the waveguide and the anechoic termination are provided in
Fig. 13.28.

The phase speed can be expressed in terms of two parameters, the thermodynamic speed of
sound in the medium, co, and the cut-off frequency, fco. Transform Eqs. (1.117) or (13.69) so the
data in Table 13.9 can be plotted as a straight line and use a best-fit straight line to extract the values
for co and fco and their estimated statistical uncertainties.

Fig. 13.27 Sketch of the frequency response of the cylindrical resonator shown in Fig. 13.26. The frequency of each
resonance is indicated by the arrow, #, and is labeled by its frequency in hertz. The signal being displayed was acquired
by Mend, located at the intersection of the tube and the end cap opposite the loudspeaker
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6. Cylindrical waveguide. An air-filled (c ¼ 345 m/sec) semi-infinite rigid tube of circular cross-
section (radius, a¼ 2 cm) is driven at the closed end by a compact source located inside the (closed)
end-plane at an intersection of the plane and the tube (z ¼ 0), shown schematically in Fig. 13.29 as
the black circle.
(a) Number of modes. If the source is driven sinusoidally at a frequency, f ¼ 12.0 kHz, how many

propagating modes will be excited and what will be their phase speeds?

Table 13.9 Phase speed in a pressure-released waveguide

Frequency (Hz) Cphase (m/s)

16,000 1952
15,000 2064
14,000 2218
13,500 2330
12,500 2700
12,000 2986
11,500 3496
11,250 3890
11,000 4536
10,750 5870

Fig. 13.28 Waveguide and anechoic termination. (Left) The waveguide is filled with water to a depth of about 17 cm.
The three walls of the waveguide are lined with Styrofoam™ to provide a pressure-released surfaces. Note the millimeter
scale attached to the top-right edge of the guide. (Right) The anechoic termination, not visible at the left, is shown. It is
designed to provide a gently sloping beach of sound absorptive rubber “pyramids”

Fig. 13.29 Cylindrical waveguide with a source that is indicated by the solid black circle is located at an intersection of
a rigid end cap and the cylindrical waveguide wall
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(b) Excitation of modes. If the source is moved to the center of the end cap, which of the above
modes will no longer be excited?

7. Group speed. A 20-m-long piece of 600 (nominal) Schedule 40 PVC pipe (inner radius,
a ¼ 5.11 cm) [35] contains air (c ¼ 345 m/s) at atmospheric pressure and is closed at both ends
by rigid terminations. A 20.0-millisecond-long tone burst containing 100 cycles of a 5 kHz tone is
launched from one of the rigid ends at the intersection of the end and the pipe wall. (See the diagram
for Problem 6 in Fig. 13.29.) The pulse propagates to the other end where it is reflected and arrives
back at the first end. What is maximum difference in arrival times of the pulse that has been
“dispersed” by the fact that the group speed is different for acoustic energy that travels in the
different modes? [Hint: The first arrival will be the leading edge of the pulse that made the round trip
at the thermodynamic sound speed co: tfirst ¼ (40 m)/(345 m/s) ¼ 116 ms.]

8. Active noise cancellation in an air conditioning duct. Shown in Fig. 13.30 is the block diagram
for an active noise control system that injects sound with a loudspeaker that is intended to cancel the
sound produced by the “periodic primary source,” for example, a fan that is part of the ventilation
system [36]. If the rigid-walled duct has a square cross-section with inside dimension of 1.0 ft. �
1.0 ft., what is the highest-frequency component of the noise that can be cancelled if the control
algorithm can only process plane wave fronts traveling at the thermodynamic sound speed in air
(c ¼ 345 m/s)?

9. Paddle-driven rectangular waveguide. Shown below is the top view of a rigid-walled waveguide
that is being driven by a rigid paddle that oscillates sinusoidally at radian frequency, ω ¼ 1400 rad/
s, about a fixed axis with an amplitude, θo ¼ 0.20 radians, so that θ (t) ¼ 0.20 sin (ωt).

Fig. 13.30 Block diagram of an active noise cancellation system. The duct which contains the loudspeaker and the
microphone has a square cross-section that is 1.0 ft � 1.0 ft
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The width of the waveguide, W ¼ 40 cm, and the height of the waveguide is much less that its
width, H � W. The waveguide extends to infinity in the z direction and is filled with sulfur
hexafluoride gas (SF6) which has a sound speed c ¼ 151 m/s at room temperature (Fig. 13.31).
(a) Phase Speed. What is the phase speed, cph, of the only mode which the paddle is capable of

exciting that can propagate down the waveguide in the z direction?
(b) Group Speed. If the paddle creates a pulse with 17 cycles at the same frequency, ω ¼ 1400 rad/s,

by increasing the amplitude of its motion from 0 radians to 0.2 radians and back to 0 radians with
the sine-squared amplitude envelope shown in Fig. 13.32, how long does it take for the center of
the envelope to travel 100 meters down the waveguide?

10. Modes in a non-separable nuclear reactor coolant pool. Shown in Fig. 13.33 is the plan view
of a nuclear research reactor cooling pool [37]. It is filed with light (ordinary) water to a depth of
24 ft. ¼ 7.32 m. Other dimensions are included in the caption of Fig. 13.33.
(a) Transformed dimensions.What is the equivalent length of the pool, if it is transformed into a

uniform rectangular shape that is 4.27 m wide and the depth remains 7.32 m?
(b) Lowest-frequency modes. Assuming that the surface of the pool is pressure-released and all

the other five boundaries are rigid and impenetrable, determine the 20 lowest-frequency
modes and their corresponding mode numbers. Present your results in tabular form.

(c) Schroeder frequency and critical distance. The reverberation time measured at 1.6 kHz was
T60¼ 0.17 s. What are the values of the Schroeder frequency, fS, and the critical distance, rd?

(d) Number of modes below fS. Determine the approximate number of modes at frequencies
below fS.

Fig. 13.31 This waveguide is excited by the rotational oscillations of the paddle vibrating at angular frequency, ω

Fig. 13.32 Pulse train
generated by the oscillating
paddle in Fig. 13.31
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(e) Density of modes. What is the density of modes having frequencies below fS?
11. Echo satellite. A gas-filled balloon was launched into low Earth orbit on 12 Aug 1960 to act as a

reflector of radio waves used for communications. The balloon, shown symbolically on the
postage stamp in Fig. 13.34, had a diameter of 30.5 m, and the balloon’s material was 12.7-
micron-thick metalized PET (Mylar™) film [27]. The Echo I satellite re-entered the Earth’s
atmosphere and burnt up on 24 May 1968.

(a) Radial modes. The fundamental frequency of radial mode of the gas inside the balloon was f release0,0,1

¼ 3.6 Hz. What were the frequencies of the next three higher-frequency radial modes?
(b) Gas sound speed. What was the speed of sound of the gas contained within the balloon?

Fig. 13.33 Plan view of the two coupled pools in the Breazeale Nuclear Reactor. The depth of the water in both bays is
7.32 m (240). The “floor” of the South Bay is an irregular hemi-hexagon. The reactor’s core is usually located at about the
center of that hexagonal portion. For modal calculations, assume that the pool is acoustically equivalent to a rectangular
pool with the same planar area. The narrowest portion of the South Bay is 1.22 m wide, and the 14-ft.-wide rectangular
portion extends 3.82 m behind the dividing wall. That wall is 46 cm thick and has a 1.52-m-wide gap. Under that
adiabatic transformation, the “equivalent” reactor pool should be 4.27 m (140) wide. Your transformation should preserve
the volume of the water contained in both bays. The hemi-hexagonal South Bay has a volume, Vreactor ¼ 151 m3 ≌
40,000 gallons. The North Bay has a volume, Vstorage¼ 114 m3≌ 30,000 gallons. Your modal analysis will designate the
vertical direction as the z axis, the width as the x axis (horizontal in this figure), and the length as the y axis (vertical in this
figure)
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12. Modes of a rigid-walled spherical resonator. Determine the three lowest-frequency radial
resonance frequencies for the spherical resonator used by the US National Bureau of Standards,
shown in Fig. 13.20, to determine the universal gas constant, ℜ � 8.314462 J mol�1 K�1, if the
sphere was filled with argon at T¼ 273.16 K and standard atmospheric pressure, pm¼ 101,325 Pa.
The radius of the sphere is a ¼ 9.000 cm.

13. Effective radius of the Space Shuttle cargo bay model in Fig. 13.18. Assuming the plastic
model of the cargo bay contains air, what is the value of the cargo bay model’s effective radius, a,
and its uncertainty, based on the frequencies provided in Table 13.6?

14. Waveguide mode excitation. An air-filled waveguide is excited at z ¼ 0 with a transducer that is
diagrammed in Fig. 13.35. The waveguide and transducer both have Lx ¼ 15 cm and Ly ¼ 12 cm.
The phasing of the nine independent transducer segments is indicated by the + and – signs.
(a) Plane wave mode. Will the plane wave mode of the waveguide be excited if the amplitude of

all sections are the same?
(b) Lowest-frequency non-plane wave modes. What are the mode numbers and cut-off

frequencies of the three lowest-frequency non-plane wave modes that will be excited by
this transducer?

(c) Impulse excitation. If all of the transducer’s segments are excited by a single pulse of very
short duration, and the indicated phasing is maintained (e.g., the central segment moves
forward and the ones above and below it move backward), which mode will be detected first
by a microphone placed a great distance, z  Lx and z  Ly, from the transducer?
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There are four mechanisms that cause sound energy to be absorbed and sound waves to be attenuated
as they propagate in a single-component, homogeneous fluid:

• Viscous (shear) effects in bulk fluids
• Thermal conduction in bulk fluids
• Molecular absorption in bulk fluids
• Thermoviscous boundary layer losses

The decrease in the amplitude of acoustical disturbances or in the amplitude of vibrational motion (due
to dissipative mechanisms) has been a topic of interest throughout this textbook. In this chapter, we
will capitalize on our investment in such analyses to develop an understanding of the attenuation of
sound waves in fluids that are not influenced by proximity to solid surfaces. Such dissipation
mechanisms are particularly important at very high frequencies and short distances or very low
frequencies over geological distances.

The parallel addition of a mechanical resistance element to the stiffness and mass of a simple
harmonic oscillator led to an exponential decay in the amplitude of vibration with time in Sect. 2.4. The
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(mechanically) series combination of a stiffness element and a mechanical resistance in the Maxwell
model of Sect. 4.4.1, and in the Standard Linear Model of viscoelasticity in Sect. 4.4.2 introduced the
concept of a relaxation time, τR, that had significant effects on the elastic (in-phase) and dissipative
(quadrature) responses as a function of the nondimensional frequency, ωτR. Those response curves
were “universal” in the sense that causality linked the elastic and dissipative responses through the
Kramers-Kronig relations, as presented in Sect. 4.4.4.

That relaxation time perspective, along with its associated mathematical consequences, will be
essential to the development of expressions for attenuation of sound in media that can be characterized
by one or more relaxation times related to those internal degrees of freedom that make the equation of
state a function of frequency. Examples of these relaxation time effects include the rate of collisions
between different molecular species in a gas (e.g., nitrogen and water vapor in air), the pressure
dependence of ionic association-dissociation of dissolved salts in seawater (e.g., MgSO4 and H3BO3),
and evaporation-condensation effects when a fluid is oscillating about equilibrium with its vapor (e.g.,
fog droplets in air or gas bubbles in liquids).

The viscous drag on a fluid oscillating within the neck of a Helmholtz resonator, combined with the
thermal relaxation of adiabatic temperature changes at the (isothermal) surface of that resonator’s
compliance, led to energy dissipation in lumped-element fluidic oscillators in Sect. 9.4.4, producing
damping that limited the quality factor of those resonances in exactly the same way as mechanical
resistance limited the quality factor of a driven simple harmonic oscillator, which was first introduced
as a consequence of similitude (i.e., dimensional analysis) in Sect. 1.7.1.

The thermoviscous boundary layer dissipation, summarized in Eq. (9.38), was used to calculate the
attenuation of plane waves traveling in a waveguide in Sect. 13.5.5. As will be demonstrated explicitly
in this chapter, thermoviscous boundary layer losses provide the dominant dissipation mechanism at
low frequencies (i.e., lumped element systems and waveguides below cut-off) for most laboratory-
sized objects (including the laboratory itself when treated as a three-dimensional enclosure). For fluid
systems that are not dominated by dissipation on solid surfaces in close proximity to the fluids they
contain, the dissipation due to losses within the fluid itself (i.e., bulk losses) can be calculated directly
from the hydrodynamic equations of Sect. 7.3.

To reintroduce the concepts complex wavenumber or complex frequency that typically characterize
the attenuation of sound over space or time, a simple solution of the Navier-Stokes equation will first
be derived. That approach will not provide the correct results for attenuation of sound, even in the
absence of relaxation effects, because it does not properly take into account the relationship between
shear deformation and hydrostatic compression in fluids that are necessary to produce plane waves (see
Fig. 14.1). That relationship was used to relate the modulus of unilateral compression for isotropic
solids (aka the dilatational modulus) to other isotropic moduli in Sect. 4.2.2 and in Fig. 4.3. The
complete solution for bulk losses due to a fluid’s shear viscosity, μ; thermal conductivity, κ; and the
relaxation of internal degrees of freedom (i.e., “bulk viscosity), ζ, will follow that nearly correct
introductory treatment and will be based upon arguments related to entropy production, like the
analysis in Sect. 9.3.3.

14.1 An Almost Correct Expression for Viscous Attenuation

Because we started with a complete hydrodynamic description of homogeneous, isotropic, single-
component fluids using the Navier-Stokes equation, we are now well-prepared to investigate the
dissipation mechanisms that attenuate the amplitude of sound waves propagating far from the influence
of any solid boundaries. A one-dimensional linearized version of the Navier-Stokes equation (9.2) is
reproduced below:
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ρm
∂v1 x, tð Þ

∂t
þ ∂p1 x, tð Þ

∂x
� μ

∂2v1 x, tð Þ
∂x2

¼ 0 ð14:1Þ

The linearized, one-dimensional continuity equation (10.1) is not affected by the inclusion of viscosity
in the Navier-Stokes equation.

∂ρ1 x, tð Þ
∂t

þ ρm
∂v1 x, tð Þ

∂x
¼ 0 ð14:2Þ

Since the thermal conductivity of the fluid is ignored, κ ¼ 0, the linearized version of the adiabatic
equation of state can still be invoked to eliminate ρ1(x, t) in favor of p1(x, t), allowing expression of the
continuity equation in terms of the same variables used in Eq. (14.1).

ρ1 x, tð Þ ¼ ∂ρ
∂p

� �
s

p1 x, tð Þ ¼ p1 x, tð Þ
c2

) 1
ρmc2

∂p1 x, tð Þ
∂t

þ ∂v1 x, tð Þ
∂x

¼ 0

ð14:3Þ

As done so many times before, the dispersion relation, ω (k), will be calculated by assuming a right-
going traveling wave to convert the homogeneous partial differential equations (14.1) and (14.3) to
coupled algebraic equations.

Fig. 14.1 Schematic two-dimensional representation of the combination of shear and hydrostatic deformations neces-
sary to produce the unilateral compression of a fluid element, corresponding to a plane wave, shown at the upper left. If
the original fluid parcel at the upper left is a square, shown by the solid lines, then the compression accompanying a plane
wave does not change the upper and lower boundaries, but would require that the two vertical boundary lines contract to
the positions indicated by the two dashed lines. This deformation can be accomplished by first shearing the square fluid
element along one diagonal and then shearing it again along the other diagonal, as indicated by the arrows. Those two
deformations result in making the square into a rectangle. When the rectangle is subjected to a hydrostatic compression,
that rectangle is compressed into the required shape
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�jkp1 þ jωρm þ k2μ
� �

v1 ¼ 0

jω
p1
ρmc2

� jkv1 ¼ 0
ð14:4Þ

There are now both real and imaginary terms in the coupled algebraic equations, unlike their
nondissipative equivalents, such as Eqs. (10.16) and (10.17). The existence of a nontrivial solution
to Eq. (14.4) requires that the determinant of the coefficients vanish.

jω
ρmc2

�jk

�jk jωρm þ k2μ
� �

������
������ ¼ 0 ð14:5Þ

The evaluation of this determinant leads to the secular equation that will specify the complex
wavenumber, k, in terms of the angular frequency,1 ω.

ω
c

� �2
¼ k2 1þ jωμ

ρmc2

� �
ð14:6Þ

If ωμ/ρmc
2 < < 1, the binomial expansion can be used twice to approximate the spatial attenuation

coefficient, α.

k ffi ω
c
� j

ω2μ
2ρmc3

¼ k � jαalmost ð14:7Þ

To remind ourselves that this result is not completely correct, this spatial attenuation coefficient has
been designated αalmost ¼ ω2(μ/2ρmc

3). The form of this result, specifically the fact that the attenuation
is proportional to ω2/ρm, suggests that experimental results could be plotted as a function of the square
of frequency divided by mean pressure, as shown in Fig. 14.4.

It is also useful to notice that μ/ρmc
2 in Eq. (14.6) has the units of time, so the “small parameter” in

those binominal expansions of Eq. (14.6) is of the form jωτℓ. Equally important is the recognition that
such a relaxation time, τℓ, is on the order of the collision time in a gas, based on the mean free path, ℓ,
derived from simple kinetic theory of gases in Sect. 9.5.1 [1].

τℓ ¼
ℓ
c
ffi 3μgas

ρmc2
¼ 3

γ

μgas
pm

ð14:8Þ

This is different from the relaxation times, τR, which can characterize the time dependence of the
equation of state or the response of a viscoelastic medium described in Sect. 4.4, where ωτR ⪒ 1. At

frequencies above ωℓ ffi τℓ
� ��1

, the assumptions that underlie the hydrodynamic approach are no
longer valid (see Chap. 7, Problem 1). For air near room temperature and at atmospheric pressure, τℓ ffi
400 ps, so f ¼ ω /2π ffi 400 MHz. This is identical with the result obtained in Eq. (9.24) for the critical
frequency, ωcrit, at which sound propagation in air transitions from adiabatic at low frequencies to
isothermal at high frequencies. The regime where ωτℓ > 1 becomes questionable within the context of a
(phenomenological) hydrodynamic theory [1].

1 The decision to treat ω as a real number, thus forcing the wavenumber, k, to become a convenience (complex) number,
is arbitrary. It leads to a spatial attenuation coefficient that is related to the imaginary component of the wavenumber.
Treating the wavelength, λ¼ 2π/k, as a real number forces the frequency, ω, to be a convenience number, thus producing
a temporal attenuation coefficient. Of course, spatial-to-temporal conversions can be accomplished using the sound
speed, as shown in Eq. (14.10).
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Unlike the complex wavenumbers of exponentially decaying thermal and viscous waves near
boundaries, examined in Sects. 9.3.1 and 9.4.2, where ℜe[k] ¼ ℑm[k], most attenuation mechanisms
in bulk fluids far from boundaries have ℜe[k] � ℑm[k] or |k| � α. If k is substituted into the
expression for the pressure associated with a single-frequency one-dimensional plane wave traveling in
the +x direction, p1 (x, t), it is easy to see that α leads to an exponential decay in the amplitude with
propagation distance for the sound wave.

p1 x, tð Þ ¼ ℜe bpe j ω t�kxð Þ
h i

¼ ℜe bpe j ω t� k�jαð Þx½ �
h i

¼ e�αxℜe bpe j ω t�kxð Þ
h i

ð14:9Þ

Since space and time can be transformed by the sound speed, a real temporal attenuation coefficient
can be defined, β ¼ α c, to describe the rate at which the amplitude of the plane wave decays in time.

p1 x, tð Þ ¼ e�βtℜe bpe j ω t�kxð Þ
h i

where β ¼ αc ð14:10Þ

Although the result for αalmost is not exactly correct, it does exhibit a feature of the correct result for
the spatial attenuation coefficient that includes thermoviscous dissipation that is given by αclassical in
Eq. (14.31) where internal relaxation effects are discussed in Sect. 14.5.2

Unlike the spatial attenuation coefficient for dissipation of plane waves in a waveguide, given in
Eq. (13.78), which is proportional to

ffiffiffiffi
ω

p
, Eq. (14.7) shows that αalmost is proportional to the square of

the frequency, as is αclassical.

14.2 Bulk Thermoviscous Attenuation in Fluids

Although the previous results for αalmost are incomplete, it both has provided an introduction to the
complex wavenumber, k, that determines the attenuation distance and has introduced a relaxation time,
τℓ , that sets an upper limit to the frequencies above which the continuum model of a fluid is not
appropriate. One reason that previous result for the viscous attenuation is not complete is that we have
ignored the fact that the fluid deformation corresponding to the passage of a plane wave requires the
superposition of two shear deformations and a hydrostatic compression. This superposition of shear
strain and hydrostatic strain is illustrated schematically in Fig. 14.1. Of course, the result for the
attenuation coefficient, αalmost, in Sect. 14.1, also does not yet include the thermal conductivity, κ, of
the fluid.

To incorporate all of the dissipative effects in a fluid, it is necessary to start from the complete
expression for entropy production in a single-component homogeneous fluid. The mechanical energy
dissipation, Emech, is the maximum amount of work that can be done in going from a given
non-equilibrium state of energy, Eo, back to equilibrium, E(S), which occurs when the transition is
reversible (i.e., without a change in entropy) [2]. _Emech is the rate at which the mechanical energy is
dissipated by the periodic transitions from the non-equilibrium state to the equilibrium state as
orchestrated by the wave motion.

_Πmech ¼ � _E Sð Þ ¼ � ∂E
∂S

� �
_S ¼ Tm

_S ð14:11Þ

The right-most expression in Eq. (14.11) uses the fact that the derivative of the energy with respect
to the entropy is the equilibrium value of the mean absolute temperature, Tm. The entropy equation

2 Since inert gases have no internal degrees of freedom, αclassical provides their entire attenuation constant.
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(7.43) can be written so that the shear stresses and the hydrostatic stresses can be expressed symmetri-
cally in Cartesian components.3

ρT
∂s
∂t

þ v
! �∇!s

� �
¼ ∇ � κ∇

!
T

� �
þ 1
2
μ

∂vi
∂xk

þ ∂vk
∂xi

� 2
3
∂vi
∂xi

� �2

þ ζ ∇ � v!
� �2

ð14:12Þ

The two cross derivatives, (∂vi/∂xk) and (∂vk/∂xi), represent the two shear deformations with the
hydrostatic component removed: 2=3 ∂vi=∂xið Þ [3]. The square of the hydrostatic deformation is

represented by ∇ � v!
� �2

. The hydrostatic deformation is multiplied by a new positive scalar coeffi-

cient, ζ, that must have the same units as the shear viscosity [Pa-s].
Having the form of a conservation equation (see Sect. 10.5), the right-hand side of Eq. (14.12)

represents the rate of entropy production, _S, caused by thermal conduction, viscous shear, and some
possible entropy production mechanism (unspecified at this point but eventually related to the time
dependence of the equation of state) associated with the hydrostatic deformation. Using Eq. (14.12),
the dissipated mechanical power, Πmech, can be evaluated by integrating over a volume element that
includes the plane wave disturbance, dV.

Πmech ¼ � κ
Tm

ð
∇Tð Þ2dV � μ

2

ð
∂vi
∂xk

þ ∂vk
∂xi

� 2
3
∂vi
∂xi

� �2

dV � ζ

ð
∇ � v!
� �2

dV ð14:13Þ

Since we are still attempting a solution in the linear limit, the lowest-order contribution to the power
dissipation must be second order in the wave’s displacement from equilibrium; in this case,

T2
1 and v

!
1

�� ��2, hence it is positive definite (see Sect. 10.5). For that reason, the absolute temperature,
T, can be taken outside the integral and represented by Tm, since allowing for acoustical variation of
that temperature term would add a correction to the thermal conduction loss that is third order in
displacements from equilibrium.

For a plane wave propagating in the x direction, it is convenient to express vx ¼ v1 sin (ω t � kx),
setting vy ¼ vz ¼ 0. Substitution into the last two terms of Eq. (14.13) produces the (nonthermal)
mechanical dissipation.

� 4
3
μþ ζ

� � ð ∂v1
∂x

� �2

dV ¼ �k2
4
3
μþ ζ

� �
v21

ð
cos 2 ωt � kxð ÞdV ð14:14Þ

Since we are only interested in the time-averaged power dissipation, the contributions from the
nonthermal terms in Eq. (14.13) is� k2=2

� �
4μ=3ð Þ þ ζ½ �v21Vo , where Vo is the volume of the fluid

under consideration through which the plane wave is propagating.
It is worth comparing the appearance of the factor, 4/3, that multiplies the shear viscosity, μ, with

the corresponding expression for the modulus of unilateral compression, D (aka the dilatational
modulus), introduced in Sect. 4.2.2, to the shear modulus, G, and bulk modulus, B, in Table 4.1:
D ¼ (4G/3) þ B. Again, this is a direct consequence of the fact that the distortion produced by a plane
wave can be decomposed into two shears (related to G) and a hydrostatic compression (related to B).

The result in Eq. (14.14), without ζ, was first produced by Stokes who expressed the result as the
temporal attenuation coefficient [4]. The lack of agreement between his theoretical predictions and
experimental measurements provided the starting point for the modern attempts to account for

3 The component form assumes that the equation is summed over the repeated indices, i and k. This is known as the
“Einstein summation convention.”
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attenuation in terms of molecular relaxation [5]. The spatial attenuation coefficient, due to viscous
dissipation, was first introduced by Stefan in 18664 [6]. The first calculation to include both the effects
of thermal conductivity and shear viscosity on the absorption of sound was published by Kirchhoff in
1868 [7].

To evaluate the contribution of thermal conduction to the mechanical dissipation in Eq. (14.13), the
temperature change needs to be related to the pressure change to evaluate the one-dimensional
temperature gradient, (∂T/∂x). For an ideal gas, this relation should be familiar, having been derived
in Eqs. (1.21) and (7.25).

∂T
∂p

� �
s

¼ γ � 1
γ

� �
Tm

pm
ð14:15Þ

Since we seek an attenuation coefficient that would be applicable to all fluids, a more general
expression for (∂T/∂p)s needs to be calculated to evaluate (∂T/∂x).

∂T
∂x

� �
s

¼ ∂T
∂p

� �
s

∂p
∂v

� �
s

∂v
∂x

� �
s

¼ �ρmc
∂T
∂p

� �
s

kv1 cos ω t � kxð Þ ð14:16Þ

The derivative of pressure with respect to velocity for a nearly adiabatic plane wave is a direct
consequence of the Euler equation: p1 ¼ ρmcv1.

The derivative of temperature with respect to density can be evaluated using the enthalpy function,
H(S, p) ¼ U þ pV, that sums the internal energy, U, introduced in Sect. 7.1.2 to calculate heat
capacities, with the mechanical work,W¼ pV. From Eqs. (7.8, 7.9, and 7.10), the internal energy, U(S,
V), can be transformed into the enthalpy, H(S, p), using the product rule for differentiation. In
thermodynamics, this operation is known as a Legendre transformation [8].

dU ¼ TdS� pdV ¼ TdS� d pVð Þ þ Vdp

) d U þ pVð Þ � dH ¼ TdSþ Vdp
ð14:17Þ

The change in enthalpy, dH(S, p), can be expanded in a Taylor series, retaining only the linear terms.

dH ¼ ∂H
∂S

� �
p

dSþ ∂H
∂p

� �
S

dp ð14:18Þ

Comparison of Eqs. (14.17) and (14.18) can be used to evaluate those derivatives.

∂H
∂S

� �
p

¼ T and
∂H
∂p

� �
S

¼ V ð14:19Þ

Since the order of differentiation is irrelevant, the mixed partial derivatives must be equal.

∂2H
∂p∂S

¼ ∂2H
∂S∂p

) ∂T
∂p

� �
S

¼ ∂V
∂S

� �
p

ð14:20Þ

This result is one of several thermodynamic identities known as the Maxwell relations [9].

4 Stefan was the thesis advisor of Boltzmann, who was the advisor of Ehrenfest, who was the advisor of Uhlenbeck, who
was the advisor of Putterman, who was my advisor, along with Isadore Rudnick, when I was a graduate student at UCLA.
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∂V
∂S

� �
p

¼ ∂V
∂T

� �
p

∂T
∂S

� �
p

ð14:21Þ

The result in Eq. (14.21) can be expressed in terms of tabulated material properties [10] using the
definition of the (extensive) heat capacity at constant pressure, Cp, or the (intensive) specific heat (per
unit mass) at constant pressure, cp, from Eq. (7.14), and the definition of the isobaric (constant
pressure) volume coefficient of thermal expansion, βp.

Cp ¼ T
∂S
∂T

� �
p

or cp ¼ T
∂s
∂T

� �
p

and βp ¼ 1
V

∂V
∂T

� �
p

¼ � 1
ρm

∂ρ
∂T

� �
p

ð14:22Þ

These results can be combined to produce an expression for the temperature gradient required to
evaluate the thermal conduction integral in Eq. (14.13) using Eq. (14.16).

∂T
∂x

¼ c
βpTm

cp
∂v1
∂x

¼ �c
βpTm

cp
v1k cos ω t � kxð Þ ð14:23Þ

As before, our interest will be in the time-averaged value for evaluation of the thermal conduction term
in the integral expression for Πmech in Eq. (14.12).

� κ
Tm

ð
∇Tð Þ2dV


 �
t

¼ �κc2β2pv
2
1k

2

2c2p
Vo ð14:24Þ

This result can be evaluated in terms of the difference in the specific heats that was shown by
thermodynamic arguments to be CP � CV ¼ ℜ, in Eq. (7.14), for an ideal gas, or cp � cv ¼ ℜ/M,
where ℜ is the universal gas constant and M is the mean molecular or atomic mass of the ideal gas or
ideal gas mixture. By the same thermodynamic arguments, the general result for the specific heat
difference can be expressed in terms of the fluid parameters in Eq. (14.22) [11].

cp � cv ¼ Tβ2p
∂p
∂ρ

� �
T

¼ Tβ2p
cv
cp

� �
∂p
∂ρ

� �
s

¼ Tβ2pc
2 cv

cp

� �
ð14:25Þ

The relationship between the square of the isothermal sound speed, (∂p/∂ρ)T, and the square of the
adiabatic sound speed, (∂p/∂ρ)s ¼ c2, should be familiar since (cv/cp) � γ�1.

Substitution of Eq. (14.25) into Eq. (14.24) provides a compact expression for the time-averaged
power dissipation that is valid for ideal gases as well as for all other homogeneous fluids.

� κ
Tm

ð
∇Tð Þ2dV


 �
t

¼ � ½ð Þκk2v21Vo
1
cv

� 1
cp

� �
ð14:26Þ

Combining Eq. (14.26) with Eq. (14.14) provides an expression for the time-averaged mechanical
power dissipation due to all of the irreversible dissipation mechanisms.

Πmechh it ¼ � ½ð Þk2v21Vo
4
3
μþ ζ

� �
þ κ

1
cv

� 1
cp

� �� 
ð14:27Þ

The total energy, E, of the plane wave occupying the volume, Vo, can be expressed in terms of the
maximum kinetic energy density, (KE)max.
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E ¼ KEð ÞmaxVo ¼ ½ð Þρmv21Vo ð14:28Þ

Since the decay rate of the energy is twice that of the amplitude decay rate, the spatial attenuation
constant that reflects thermoviscous losses (and whatever ζ represents!), αT-V, can be written in terms of
the time-averaged power dissipation, hΠmechit, in Eq. (14.27), and the average total energy, E, in
Eq. (14.28).

αT�V ¼ Πmechh it
�� ��

2cE
¼ ω2

2ρmc3
4
3
μþ ζ

� �
þ κ

1
cv

� 1
cp

� �� 
ð14:29Þ

This final result for αT-V is valid for all fluids as long as the decrease in the sound wave’s amplitude
over the distance of a single wavelength is relatively small, αT �V λ � 1, since the stored energy was
calculated for an undamped sound wave.

We also see that this result is similar to the “almost correct” result, αalmost, calculated from the
Navier-Stokes equation in Sect. 14.1. The dependence on frequency, ω; mass density, ρm; and sound
speed, c, is identical, but the shear viscosity, μ, is no longer the only transport property of the medium
that contributes to attenuation of the sound wave; in Eq. (14.29), μ has been replaced by the term within
the square bracket.

As demonstrated earlier in Eq. (14.8), the expression for attenuation given in Eq. (14.29) will
always be valid for sound in gases, since the kinematic viscosity, νgas ¼ μgas/ρm, is on the order of the
product of the mean free path, ℓ, times the mean thermal velocity of the gas molecules or the sound
speed.

νgasω
c2

ffi ℓ
ω
c
ffi ℓ

λ
� 1 ð14:30Þ

14.3 Classical Thermoviscous Attenuation

Before the role of molecular relaxation was appreciated and the associated dissipative coefficient, ζ,
was introduced, attenuation of sound due to thermoviscous losses was calculated by Kirchhoff
[7]. That result is often called the classical absorption coefficient, αclassical.

αclassical ¼ ω2

2ρmc3
4
3
μþ κ

1
cv

� 1
cp

� �� 
¼ ω2

2c3
4
3

μ
ρm

þ κ
ρmcp

cp
cv

� 1

� �� 
ð14:31Þ

For an ideal gas, the classical attenuation coefficient can be expressed more transparently in terms of
the kinematic viscosity, ν ¼ μ/ρm; the polytropic coefficient, γ ¼ cp/cv; and the dimensionless ratio of
the thermal and viscous diffusion constants, known as the Prandtl number, Pr� (μ/cpκ)¼ (δν/δκ)

2, that
was introduced in Sect. 9.5.4.

αclassical ¼ ω2ν
2c3

4
3
þ γ � 1ð Þ

Pr

� 
) αclassical

f 2
¼ 2π2ν

c3
4
3
þ γ � 1ð Þ

Pr

� 
ð14:32Þ

Most single-component gases and many gas mixtures have Pr ffi 2/3. For air at atmospheric pressure
and 20 	C, ν ¼ 1.51 
10�5 m2/s, Pr ¼ 0.709, γ ¼ 1.402, and c ¼ 343.2 m/s. Under those conditions,
αclassical / f 2 ¼ 1.40 
 10�11 s2/m. The accepted value of α/f2 in the high-frequency limit is
1.84 
 10�11 s2/m. This discrepancy is due to the absence of ζ in Eq. (14.32) [12].
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Since the difference between the specific heats at constant pressure and constant volume is small for
liquids, the viscous contribution to the classical attenuation constant is dominant. For pure water at
280 K, νH2O ¼ 1.44 
 10�6 m2/s andPrH2O ¼ 10.4, [13] with cH2O ¼ 1500 m/s, making αclassical/f
2 ¼ 1.1 
 10�14 s2/m for freshwater. The accepted value of α/f2 in the high-frequency limit is
2.5 
 10�14 s2/m, again due to the absence of ζ in Eq. (14.32) [14].

14.4 The Time-Dependent Equation of State

The distortion of a fluid element caused by passage of a plane wave was decomposed into shear
deformations, which changed the shape of the element, and a hydrostatic deformation, which changed
the volume of the element, as diagrammed schematically in Fig. 14.1. Each of those deformations
introduced irreversibility that increased entropy as expressed in Eq. (14.12), leading to energy
dissipation as expressed in Eq. (14.13). Based on the discussion in Sect. 9.4, the shear viscosity, μ,
was introduced to relate the shear deformations to the dissipative shear stresses.

Another coefficient, ζ, was introduced to relate entropy production to the divergence of the fluid’s
velocity field, ∇ � v!. The continuity equation requires that when ∇ � v! 6¼ 0, the density of the fluid
must also be changing: (∂ρ/∂t) 6¼ 0. Why should a change in the fluid’s density be related to
irreversible entropy production?

When the phenomenological model was introduced, it was assumed that only five variables were
required to completely specify the state of a homogeneous, isotropic, single-component fluid: one
mechanical variable ( p or ρ) and one thermal variable (s or T ), along with the three components of
velocity (e.g., vx, vy, and vz). For a static fluid, |v|¼ 0, only two variables were required, resulting in the
laws of equilibrium thermodynamics (i.e., energy conservation and entropy increase) rather than the
laws of hydrodynamics (that also incorporate thermodynamics). The evolution of those variables was
determined by the imposition of five conservation equations (i.e., mass, entropy, and vector momen-
tum). That assertion included an implicit assumption that an equation of state existed and it could be
used to relate the thermodynamic variables (mechanical and thermal) to each other instantaneously.

For some fluids, the assumption of an instantaneous response of the density to changes in the
pressure is not valid. (Noble gases are one notable exception, since they do not have any rotational
degrees of freedom.) The microscopic models of gases that were based on the kinetic theory introduced
the concept of collision times between the constituent particles (atoms and/or molecules) and the
Equipartition Theorem in Eq. (7.2) that stated that through these collisions, an equilibrium could be
established that distributed the total thermal energy of the system equitably (on average) among all of
the available degrees of freedom.What has been neglected (to this point) was the fact that the collisions
take a non-zero time to establish this equilibrium; if the conditions of the fluid element are changing
during this time, the system might never reach equilibrium.

How did we get away with this “five-variable fraud” for so long? One answer is hidden in the
transition from adiabatic sound speed in an ideal gas to the isothermal sound speed. Equation (9.24)
defined a critical frequency, ωcrit, at which the speed of thermal diffusion was equal to the speed of
sound propagation. At that frequency, the wavelength of sound corresponded to a distance, which was
about 20 times the average spacing between particles, known as the mean free path between collisions,
ℓ. Since that collision frequency was so much higher than our frequencies of interest, the equilibration
between translational and rotational degrees of freedom in gases of polyatomic molecules occurred so
quickly that the equation of state appeared to act instantaneously [15]. Even though a vibrating object
couples to the translational degrees of freedom in a gas, the translational and rotational degrees of
freedom came into equilibrium in much less time than the period of the vibrating object’s oscillations.
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That “fraud”was obscured by our use of γ ¼ 7/5 in the expression for sound speed which treated the air
as instantly sharing energy between the internal translational and rotational degrees of freedom.

When there are other components in a gas or liquid, they may have relaxation times that are
sufficiently close to the acoustic periods of interest that their “equilibration” to the acoustically induced
changes cannot be considered to occur instantaneously. In air, for example, if there is water vapor
present, it will equilibrate with the O2 and N2 over times that are comparable to the periods of sound
waves of interest for human perception (i.e., 20 Hz ≲ f ≲ 20 kHz). Figure 14.2 shows the relaxation
frequencies as a function of the mole fraction, h, of H2O and also relative humidity as a percentage [16].

Those equilibration times are dependent upon the gas mixture’s temperature, pressure, and mixture
concentration (i.e., mole fraction of water vapor, h, or relative humidity, RH) [17]. It is apparent that
the relaxation frequencies in Fig. 14.2 are in the audio range for ordinary values of temperature and
humidity [17].

f rO ¼ pm
pref

24þ 4:04x104h
� �

0:02þ hð Þ
0:391þ h

� � �
f rN ¼ pm

pref

T
Tref

� ��½

9þ 280h exp �4:170
T
Tref

� ��1=3

� 1

" #( ) ! ð14:33Þ

Fig. 14.2 Relaxation
frequencies, fR ¼ (2πτR)21,
for equilibration between
O2 or N2 and water vapor
(H2O) as a function of the
mole fraction of water
vapor in air, h, at
pm ¼ 1 atmosphere. At the
top of the graph are scales
that can be used to relate the
mole fraction of H2O on the
x axis to the more popular
designation of percent
“relative humidity” at 5 	C
and 20 	C [16]
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The relaxation frequencies for water vapor and nitrogen, frN, and for water vapor and oxygen, frO,
assume a standard atmospheric composition with 78.1% nitrogen, 20.9% oxygen, and 314 ppm carbon
dioxide at a reference pressure, pref¼ 101,325 Pa, and reference temperature,Tref¼ 293.15K¼ 20.0 	C.
In Eq. (14.33), the molar concentration of water vapor, h, is expressed in percent. For ordinary
atmospheric conditions near sea level, 0.2% ≲ h ≲ 2.0%.

To relate RH to h (both in %), it is first necessary to calculate the saturated vapor pressure of water in
air, psat, relative to ambient pressure, pref ¼ 101.325 kPa, using the triple-point isotherm temperature,
T01 ¼ 273.16 K ¼ +0.01 	C.

psat
pref

¼ 10C; C ¼ �6:8346
T01

T

� �1:261
þ 4:6151 ð14:34Þ

The molar concentration of water vapor, h, in percent, can then be expressed in terms of the relative
humidity, RH, also in percent [17].

h ¼ RH
psat
pm

� �
ð14:35Þ

A similar effect is observed in seawater where boric acid, B(OH)3, and magnesium sulfate, MgSO4,
have relaxation frequencies of 1.18 kHz and 145 kHz, respectively, at 20 	C [18]. In the case of these
salts, the relaxation time represents the pressure-dependent association-dissociation reaction between
the dissolved salts and their ions.

14.5 Attenuation due to Internal Relaxation Times

“If a system is in stable equilibrium, then any spontaneous change of its parameters must bring about processes
which tend to restore the system to equilibrium.” H. L. Le Châtelier5

A new positive scalar coefficient, ζ, was introduced in the entropy conservation Eq. (14.12) to scale
the irreversibility of hydrostatic fluid deformations. It has the same units as the shear viscosity [Pa-s]6

and is usually of about the same magnitude. If the medium does not possess any additional internal
degrees of freedom that have to be brought into equilibrium, then its value can be identically zero.
That constant is zero for the noble gases (He, Ne, Ar, Kr, Xe, and Rn) that are intrinsically monatomic
with atoms that are spherically symmetrical, thus lacking rotational degrees of freedom (see Sect. 7.2).
On the other hand, as suggested in Fig. 14.2, if there are processes with relaxation times that are near
the frequencies of interest, the value of ζ can be orders of magnitude greater than μ near those
frequencies.

With acoustical compressions or expansions, as in any rapid change of state, the fluid cannot remain
in thermodynamic equilibrium. Following Le Châtlier’s Principle,5 the system will attempt to return to
a new equilibrium state that is consistent with the new parameter values that moved it away from its

5Henry Louis Le Châtelier (1850–1936) was a Parisian chemist. This principle is sometimes also attributed to German
physicist Karl Ferdinand Braun (1850–1918), the inventor of the cathode-ray tube and the oscilloscope.
6 Because ζ has the same units as shear viscosity, it is commonly called bulk viscosity or second viscosity, even though its
effects are entirely unrelated to shear strains. I find both terms misleading and attempt to avoid their use in this textbook,
although acousticians have to be aware that they represent the common nomenclature used to identify losses related to the
relaxation of internal degrees of freedom within fluids.
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previous state of equilibrium. In some cases, this equilibration takes place very quickly so that the
medium behaves as though it were in equilibrium at all times. In other cases, the equilibration is slow,
and the medium never catches up. In either case, the processes that attempt to reestablish equilibrium
are irreversible and therefore create entropy and dissipate energy.

If ξ represents some physical parameter of the fluid and ξo represents the value of ξ at equilibrium,
then if the fluid is not in equilibrium, ξ will vary with time. If the fluid is not too far from equilibrium,
so the difference, ξ� ξo, is small (i.e., |ξ� ξo|/ξo� 1), and then the rate of change of that parameter, _ξ,
can be expanded in a Taylor series retaining only the first term and recognizing that any zero-order
contribution to _ξ must vanish since ξ ¼ ξo at equilibrium.

_ξ ¼ � ξ� ξoð Þ
τR

ð14:36Þ

This suggests an exponential relaxation of the system toward its new equilibrium state. Le Châtelier’s
Principle requires that the rate must be negative and that the relaxation time, τR, must be positive.

For acoustically induced sinusoidal variations in the parameter, ξ, at frequency, ω, the sound speed
will depend upon the relative values of the period of the sound, T¼ 2π/ω, and the relaxation time, τR. If
the period of the disturbance is long compared to the exponential equilibration time, τR, so that
ωτR ¼ 2πτR/T � 1, then the fluid will remain nearly in equilibrium at all times during the acoustic
disturbance. In that limit, the sound speed will be the equilibrium sound speed, co. In the opposite limit,
ωτR ¼ 2πτR/T � 1, the medium’s sound speed, c1 > co, will be determined by the fluid’s elastic
response if the internal degrees of freedom cannot be excited by the disturbance. Said another way, the
internal degrees of freedom are “frozen out” in that limit; they simply do not have enough time to
participate before the state of the system has changed.

One way to think about this effect is to consider the sound speed in a gas of diatomic molecules that
possess three translational degrees of freedom and two rotational degrees of freedom. The specific
heats of monatomic and polyatomic gases were discussed in Sect. 7.2, and the relationship between the
sound speed in such gases and the specific heat ratio, γ ¼ cp/cv, is provided in Eq. (10.22). If the
rotational degrees of freedom are not excited, then the gas behaves as though it were monatomic,
so γ ¼ 5/3. If the rotational and translational degrees of freedom are always in equilibrium, then
γ ¼ 7/5 < 5/3, so c1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

25=21
p

co.
The mathematical “machinery” needed to represent the attenuation and dispersion of sound waves

in a homogeneous medium with an internal degree of freedom, or a “relaxing sixth variable,” has
already been developed to describe viscoelastic solids in Sect. 4.4.2. Figure 4.25 could just as well
describe the propagation speed (solid line) as a function of the nondimensional frequency, ωτR, with co
being the limiting sound speed for ωτR ¼ 2πτR/T � 1 and c1 being the sound speed for ωτR ¼ 2πτR/
T � 1. In addition, the Kramers-Kronig relations of Sect. 4.4.4 would still apply; the variation in
sound speed with frequency requires a frequency-dependent attenuation, shown in Fig. 4.25 as the
dashed line, and vice versa.

The transformation of the results derived for the stiffness and damping of a viscoelastic medium
simply requires that the sound speed is proportional to the square root of the elastic modulus (i.e.,
stiffness) as expressed in Eq. (10.21). That substitution allows Eq. (4.67) to produce the propagation
speed as a function of the nondimensional frequency, ωτR.

c2 ¼ c2o þ c21 � c2o
� � ωτRð Þ2

1þ ωτRð Þ2 ð14:37Þ

The same approach applied to Eq. (4.70) provides the attenuation per wavelength, αλ, as function of
the dimensionless frequency, ωτR.
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αλð Þ ¼ 2π
c21 � c2o
� �

ωτRð Þ
c2o 1þ ωτRð Þ2
h i

þ c21 � c2o
� �

ωτRð Þ2
ð14:38Þ

Following Eq. (4.71) or Eq. (4.89), the maximum value of attenuation per wavelength in Eq. (14.38)
will occur at a unique value of the nondimensional frequency, (ωτR)max.

ωτRð Þmax ¼
co
c1

and αλð Þmax ¼ π
c21 � c2o
� �

c1co
ð14:39Þ

The consequence of the Kramers-Kronig relations for such single relaxation time phenomena, as
emphasized in Sect. 4.4.2, is that the attenuation is entirely determined by the dispersion, and vice
versa.

Using these results, it is possible to write simple universal expressions for attenuation due to
excitation of internal degrees of freedom in terms of the relaxation frequency, fR ¼ (2πτR)�1.

αλ
αλð Þmax

¼ 2
f

f þ f
f R

) α fð Þ ¼ 2 αλð Þmax

cf R

� 
f 2

1þ f
f R

� �2 ð14:40Þ

The variation in the attenuation per wavelength, αλ, and the propagation speed, c, as a function of
nondimensional frequency, ωτR, is plotted in Fig. 14.3 and should be compared to the plot for a
viscoelastic solid in Fig. 4.25, which exhibits identical behavior. For relaxation frequencies, fR, that are
much higher than the frequency of interest, f, the attenuation constant’s quadratic frequency depen-
dence is recovered, as was derived in Eq. (14.7) for αalmost and in Eq. (14.29) for αT-V.

Fig. 14.3 The attenuation and dispersion for a fluid with c1 ¼ co
ffiffiffiffiffiffiffiffiffiffiffiffi
25=21

p
, where co ¼ 345 m/s, as a function of the

nondimensional frequency, ωτR. Values for the attenuation per wavelength (solid line), αλ, should be read from the left-
hand vertical axis, and the values of sound speed (dashed line) should be read from the right-hand axis. This behavior is
identical to that of a viscoelastic solid that is shown in Fig. 4.25 since the Kramers-Kronig relations dictate the
relationship between the real and imaginary parts of the linear response
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14.5.1 Relaxation Attenuation in Gases and Gas Mixtures

The first example of the effects of the relaxation of an internal degree of freedom on sound speed and
attenuation in gas is taken from the measurements of Shields in fluorine [19]. Halogen vapors (e.g.,
chlorine, fluorine, bromine, iodine) are unique in that they consist of homonuclear diatomic molecules
that have appreciable vibrational energy, EV ¼ (n þ 1/2) ħωV, at room temperature (see Sect. 7.2.2).
Because the diatomic molecules behave as simple (quantum mechanical) harmonic oscillators, that
internal degree of freedom can be characterized by a single relaxation time corresponding to the radian
period of their harmonic oscillations.

Figure 14.4 shows the measured values of attenuation per wavelength, αλ, and sound speed, c,
as a function of frequency (also normalized by pressure), in units of kHz/atm., for fluorine gas

Fig. 14.4 Measured data for attenuation per wavelength and dispersion (sound speed) in fluorine gas at 102 � 2 	C
[19]. The sound speed should be read from the left-hand vertical axis, and the attenuation per wavelength, αλ, should be
read from the right-hand axis that is labeled “Intensity Attenuation (Nepers/Wavelength).” Nepers is an archaic
dimensionless unit that was in common usage at the time this data was published to designate α in Np/m. It simply
refers to the spatial attenuation coefficient, named after John Napier, the inventor of logarithms. 1 Np ¼ 8.69 dB. The
solid lines are fits to the data points that are based on expressions like Eqs. (14.37) and (14.38)
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at 102 � 2 	C, after correction for boundary layer losses at the surface of the tube containing the
gas [20].

The vibrational relaxation time for diatomic fluorine at 102 	C is τR ¼ 10.7 μs, corresponding to a
relaxation frequency, fR ¼ (2πτR)�1 ¼ 14.9 kHz. Based on the fit to the sound speed, the limiting
speeds are co¼ 332 m/s and c1¼ 339 m/s. The peak in the attenuation per wavelength, (αλ)max¼ 0.13,
occurs at (ωτR)max ¼ 0.98, based on Eq. (14.39), in excellent agreement with the data in Fig. 14.4.

The relaxation attenuation in humid air is more complicated since the two relaxation frequencies for
equilibration of the water vapor with the nitrogen and with the oxygen are different, as expressed in
Eq. (14.33) and plotted in Fig. 14.2. Since energy loss is cumulative, it is possible to express the
attenuation constant, αtot, as the sum of the attenuation caused by the classical value, αclassical, and the
contributions from the two relaxation processes.

αtot ¼ αclassical þ αO2 þ αN2 ð14:41Þ
The pressure, frequency, and temperature dependence for the total attenuation coefficient is

provided in combination with the relaxation times of Eq. (14.33) and plotted as a function of the
frequency/pressure ratio for various values of the relative humidity in Fig. 14.5 [21].

αAir
f 2

¼ 1:84
 10�11 pm
pref

� ��1
T
Tref

� �½

þ T
Tref

� ��5=2


 0:01275 e�2,239=T f rO
f 2rO þ f 2

" #
þ 0:1068e�3,352=T f rN

f 2rN þ f 2

" #( ) ð14:42Þ

The difference between the classical attenuation constant and the total is clearly very large. At 2 kHz
and 1 atm., αclassical ¼ 0.02 dB/m, but with 10% relative humidity, the attenuation is αtot ¼ 0.80 dB/m.

Values for the attenuation in dB/km are tabulated in a standard for different values of temperature
from �25 	C to +50 	C and 10%� RH� 100% for pure tones with frequencies from 50 Hz to 10 kHz
in 1=3 -octave increments [17]. A small subset of that data are presented in Table 14.1.

14.5.2 Relaxation Attenuation in Fresh and Salt Water

As earlier noted in Sect. 14.3, the measured attenuation of sound in water is greater than αclassical /f
2

based on the shear viscosity by more than a factor of two. In the calculation of αclassical for water, the
thermal conductivity was neglected. It can be shown that neglect of the thermal conductivity is not the
cause of this discrepancy. Measurements of attenuation at 4 	C, where water has its density maximum
and the thermal expansion coefficient vanishes, mean that cp ¼ cv, so according to Eq. (14.25), there
are no temperature changes associated with the acoustical pressure changes [22].

The excess attenuation has been ascribed to a structural relaxation process wherein a molecular
rearrangement is caused by the acoustically produced pressure changes. During acoustic compression,
the water molecules are brought closer together and are rearranged by being repacked more closely.
This repacking takes a non-zero amount of time and leads to relaxational attenuation that makes ζ 6¼ 0
[23]. The relaxation time as a function of water temperature for this process, τR, is on the order of
picoseconds and is plotted as a function of temperature in Fig. 14.6.

At 4 	C, τR ffi 3.5 ps, corresponding to a relaxation frequency, fR ¼ (2πτR)�1 ¼ 45 GHz, well above
experimentally accessible frequencies. For that reason, there are no “relaxation bumps” in the
attenuation vs. frequency, as seen in Fig. 14.7. Nonetheless, this structural relaxation makes ζ > μ,
accounting for the excess attenuation in pure water.
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The attenuation of sound in seawater is similar to that in humid air where the relaxation frequencies
are within a frequency range of interest. In seawater, there are two pressure-dependent ionic associa-
tion-dissociation reactions due to the dissolved boric acid, B(OH)3, and the dissolved magnesium
sulfate, MgSO4. Their contributions to the attenuation have the generic form introduced in Eq. (14.40).

Fig. 14.5 Sound absorption coefficient per atmosphere in air at 20 	C. The parameter labeling the individual curves is
the relative humidity from 0% to 100%. [21] The additional attenuation for dry air (RH ¼ 0) is due to collisions between
N2 and CO2

14.5 Attenuation due to Internal Relaxation Times 689



MgSO4 þ H2O↔Mgþ3 þ SO�2
4 þ H2O; αMgSO4

ffi 4:6
 10�3 kHzð Þ2
4100þ kHzð Þ2

B OHð Þ3 þ OHð Þ�1↔B OHð Þ�1
4 ; αB OHð Þ3 ffi

1:2
 10�5 kHzð Þ2
1þ kHzð Þ2

ð14:43Þ

The approximate attenuation values, αMgSO4
and αB OHð Þ3, in Eq. (14.43) are in units of [m

�1] when the

frequency is expressed in kHz.
Those reactions that have relaxation frequencies that depend upon absolute temperature, T,

and salinity, S, that is expressed in parts per thousand, ‰, and those relaxation frequencies,
f rBH3O3

and f rMgSO4
, are in hertz [24, 25].

f rBH3O3
¼ 2, 800

ffiffiffiffiffiffiffiffiffiffi
S=35

p

 10 4� 1,245=Tð Þ½ �

f rMfSO4
¼ 8, 170
 10 8� 1,990=Tð Þ½ �

1þ 0:008 S� 35ð Þ
ð14:44Þ

For salinity, S ¼ 35‰, and T ¼ 293 K, f rB OHð Þ3 ¼ 1.58 kHz and f rMgSO4
¼ 132 kHz.

Fig. 14.6 Structural
relaxation time for the
repacking of water
molecules caused by
acoustical pressure
changes [23]

Table 14.1 (Left) Attenuation in dB/km for air at 20 	C with RH¼ 50%, as a function of frequency. (Right) Attenuation
in dB/km at 4.0 kHz, for air at 20 	C, in the relative humidity range of 20% � RH � 70% [17]

Freq. [kHz] [dB/km] RH(%) [dB/km]

1.60 7.37 20 74.4
2.00 9.85 30 48.5
2.50 13.7 40 36.1
3.15 19.8 50 29.4
4.00 29.4 60 25.4
5.00 44.4 70 22.9
6.30 67.8
8.00 104
10.00 159
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The attenuation coefficient has the expected form, based on Eq. (14.40), and is plotted as a function
of frequency in Fig. 14.7.

α

f 2
¼ AB OHð Þ3 f B OHð Þ3

f 2 þ f 2B OHð Þ3
þ PMgSO4

AMgSO4
fMgSO4

f 2 þ f 2MgSO4

þ AoPo ð14:45Þ

Fig. 14.7 Attenuation of sound in “standard” seawater [26] with salinity of 3.5% and pH ¼ 8.0 at 4 	C [18]. Below
1 MHz, relaxation attenuation due to association-dissociation of boric acid, B(OH)3, and magnesium sulfate, MgSO4,
dominates the “classical” contributions

14.5 Attenuation due to Internal Relaxation Times 691



Approximate expressions for the coefficients representing the relaxation strengths, A, and pressure
correction factors, P, are provided by Fisher and Simmons [18] with more accurate values provided by
François and Garrison [24, 25].

14.6 Transmission Loss

The fact that the bulk attenuation of sound in fluids is quadratic in the frequency has important
consequences for ultrasonics ( f > 20 kHz) and for long-range sound propagation. At the extremely low
frequencies, infrasound in the Earth’s atmosphere can propagate around the entire globe, and the sound
of breaking waves generated by a storm on the Pacific coast of the United States has been detected by a
low-frequency microphone at the Bureau of Standards in Washington, DC. An International Monitor-
ing System with 60 infrasound monitoring stations has been deployed globally to detect violations of
the Comprehensive Nuclear-Test-Ban Treaty [27].

14.6.1 Short and Very Short Wavelengths

As discussed in Sect. 12.8.1, the Rayleigh resolution criterion implies that the smallest feature that can
be resolved in an ultrasonic image will be limited by the wavelength of the sound used to produce the
image. Since many ultrasonic imaging systems are used in biomedical applications, we can assume a
speed of sound in biological tissue that is approximately equal to the speed of sound in water, cH2O ¼
1500 m/s [28]. To resolve an object that is about a millimeter would then require sound at a frequency,
f ¼ c/λ ffi 1.5 MHz. At that frequency, the attenuation of sound in liver tissue is over 2 dB/cm, so a
roundtrip transmission loss to go to a depth of 10 cm is 40 dB.

Because the speed of sound in liquids is typically 200,000 times slower than the speed of light, it is
possible to achieve optical wavelength resolution of about 5000 Å ¼ 0.5 μm using sound at a
frequency of 3 GHz. In addition, acoustical microscopy produces image “contrast” due to variation
in the acoustic absorption of the specimens and scattering that arises from the acoustic impedance
mismatch between the specimen and the surrounding material due density and compressibility
differences (see Sects. 12.6.1 and 12.6.2). Such sources of contrast will reveal completely different
information about a specimen than can be deduced due to changes in optical index of refraction or
optical reflectance. In addition, sound can penetrate an optically opaque object, and staining is not
required for contrast enhancement.7

As mentioned, acoustic microscopy is limited by the fact that attenuation is such a strong function of
frequency. At 1.0 GHz, the attenuation of sound in water is 200 dB/mm [29]. Despite the high
attenuation loss, acoustic microscopes can image red blood cells acoustically at 1.1 GHz with a
resolution equivalent to an oil-immersion optical microscope at a magnification of 1000 [30]. Subcel-
lular details as small as 0.1–0.2 μm (e.g., nuclei, nucleoli, mitochondria, and actin cables) have been
resolved due to the extraordinary contrast that can differentiate various cytoplasmic organelles [31].

The greatest resolution that has been achieved using acoustical microscopy has been accomplished
in superfluid helium at temperatures near absolute zero, which has a sound speed, c1 ffi 240 m/s, a
speed that is even lower than the speed of sound in air. Since the dynamics of liquid helium at
temperatures below Tλ ¼ 2.17 K are determined by quantum mechanics, the attenuation mechanisms

7 Encapsulated microbubbles are used occasionally to provide the ultrasonic image enhancement equivalent of “staining”
in optical imaging.
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are different than those for classical fluids, which also gives it a much smaller attenuation. At low
temperatures, T < 0.5 K, the phonon mean free path is controlled by scattering from “rotons,”which are
quantized collective excitation of the superfluid [32]. Sound wavelengths in liquid helium shorter than
2000 Å ¼ 0.2 μm, in a non-imaging experiment, at frequencies of 1.0 GHz, had been studied before
1970 by Imai and Rudnick [33].

14.6.2 Very Long Wavelengths

At the opposite extreme, at much lower frequencies, the absorption can be quite small. Although the
worldwide network of infrasound monitoring sites, using electronic pressure sensors and sophisticated
signal processing, that is being used to assure compliance with the Comprehensive Nuclear-Test-Ban
Treaty has already been mentioned [27], the most famous measurement of long-distance infrasound
propagation was made using barometers.

On 27 August 1883, the island of Krakatoa, in Indonesia east of Java, was destroyed by an immense
volcanic explosion. The resulting pressure wave was recorded for days afterward at more than
50 weather stations worldwide. Several of those stations recorded as many as seven passages of the
wave as it circled the globe:

“The barograph in Glasgow recorded seven passages: at 11 hours, 25 hours, 48 hours, 59 hours, 84 hours,
94 hours, and 121 hours (5 days) after the eruption.” [34]

About 4 h after the explosion, the pressure pulse appeared on a barograph in Calcutta. In 6 h, the pulse
reached Tokyo; in 10 h, Vienna; and in 15 h, New York. The period of the pulse was between 100 and
200 s corresponding to a fundamental frequency of about 7 mHz. Its propagation velocity was between
300 and 325 m/s [35]. Although that is close to the speed of sound in air near room temperature, the
wave was similar to a shallow water gravity wave in which the height of the atmosphere rose and fell
with the passage of the wave [36].

14.7 Quantum Mechanical Manifestations in Classical Mechanics

“The major role of microscopic theory is to derive phenomenological theory.” G. E. Uhlenbeck8

Although acoustics is justifiably identified as a field of classical phenomenology, there are many
acoustical effects that have their origin in the microscopic theory of atoms and therefore manifest
macroscopic behaviors that can only be explained in terms of quantum mechanics. The effects of these
“hidden variables” have been manifest throughout this textbook starting with the damping of simple
harmonic oscillators that connects the “system” to the environment, thus producing Brownian motion
[37], which was related to the more general theory coupling fluctuations and dissipation [38] in
Chap. 2.9

This theme recurred in Chap. 7 when the quantization of energy levels for molecular vibration and
rotation influenced the specific heat of gases and in Chap. 9 where a simple kinetic theory of gases was
used to determine the pressure and temperature variation of viscosity and thermal conductivity. Now
we see in this chapter how structural relaxations in water [23], like those in Fig. 5.23 for the four

8George Eugène Uhlenbeck (1900–1988) was a Dutch theoretical physicist who, with fellow Dutchman, Samuel
Goudsmit (1902–1978), first proposed quantized “spin” as the internal degree of freedom for electrons.
9 Lars Onsager (1903–1976) was the Norwegian-born physical chemist and theoretical physicist who received the Nobel
Prize in chemistry, in 1968, for the reciprocal relations between fluctuations and dissipation that are now referred to as
“Onsager reciprocity.”
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crystalline structures of plutonium [39], scattering of phonons and rotons in superfluids [32], or
molecular vibrations in F2 [19] and collision times in gas mixtures [15], or chemical reactions
[24, 25], manifest themselves in the attenuation of sound.

These internal relaxation effects have been incorporated into our phenomenological theory through
the introduction of an additional dissipative process that has been quantified by the introduction of a
frequency-dependent parameter, ζ, that shares the same units with the coefficient of shear viscosity, μ.
That coincidence has led to this new parameter being called the coefficient of “bulk viscosity”
(or sometimes “second viscosity”), even though it is independent of the shear deformation of the
fluid and is not the source of momentum transport.

Talk Like an Acoustician

Viscoelasticity Mean free path
Viscous drag Kinetic theory
Thermal relaxation Einstein summation convention
Thermoviscous boundary layer Bulk viscosity
Spatial attenuation coefficient Second viscosity
Temporal attenuation coefficient Le Châtelier’s principle
Shear strain Nondimensional frequency
Hydrostatic strain Vibrational relaxation time
Collision time Structural relaxation
Enthalpy function Association-dissociation reactions
Legendre transformation Kramers-Kronig relations
Maxwell relations
Relaxation time

Exercises
1. Bulk attenuation and reverberation time. An expression was provided in Eq. (13.29) to incorpo-

rate the attenuation in air contained within an enclosure into the expression for reverberation time. A
“useful correlation” was provided in Eq. (13.30) that was applicable for 1500 Hz � f � 10,000 Hz
and for relative humidity in the range 20% � RH � 70%.
(a) Average frequency dependence. Table 14.1 (left) provides the attenuation in dB/km from the

ANSI/ASA standard for the frequencies within the range specified at 20 	C for RH ¼ 50%
[17]. Plot the log10 of the spatial attenuation, α, in m

�1 vs. the log10 of frequency, f, in kHz, to
determine the power law dependence on frequency (see Sect. 1.9.3). Is your result proportional
to f1.7 to within the statistical uncertainty of your least-squares fit? Keep in mind that
attenuation expressed in [dB/m] must be multiplied by 0.1151 ffi [10log10(e

2)]�1 to convert
to m�1 (sometimes including the dimensionless “Nepers” to report results in Nepers/m).

(b) Humidity dependence. Table 14.1 (right) also includes the attenuation in dB/km at 4.0 kHz and
20 	C for 20% � RH � 70%. The “useful correlation” claims that the correction to frequency
dependence for variations in relative humidity should be linear in (50%/RH). How close is that
presumed humidity dependence to values in the table for variation in relative humidity at
4.0 kHz?

2. The mother of all PA systems. Shown in Fig. 14.8 is a loudspeaker that can produce 30,000 watts
of acoustic power by modulating a pressurized air stream (like a siren) using a cylindrical “valve”
mounted on a voice coil, like that used for an electrodynamic loudspeaker. That sound source,
located at the apex of the horn, is called a “modulated airstream loudspeaker.” [40]
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Such a public address system was developed to tell illiterate enemy combatants, in their native
language, to put down their weapons and surrender from a distance that is greater than the distance that
could be traversed by artillery shells. Although the bandwidth of telephone speech for very good
intelligibility is generally 300 Hz to 3.4 kHz, for this problem, we will focus on the propagation of a
1 kHz pure tone. Since this system was deployed in desert terrain, assume that RH ¼ 10%,
Tm ¼ þ50 	C ¼ 122 	F, and pm ¼ 100 kPa.

(a) Sound level at 100 m. Assuming hemispherical spreading and no sound absorption, what is
the root-mean-square acoustic pressure amplitude if the source produces 30 kW of acoustic
power and any nonlinear effects that might cause harmonic distortion (see Sect. 15.2.3) can
be neglected? Also neglect any refractive effects due to sound speed gradients caused by
temperature or wind as discussed in Sect. 11.3. Report your results as both in r.m.s. pressure
amplitude and in dB re: 20 μParms.

(b) Greater distances. Repeat part a, but determine the sound pressure at 1.0 km and 3.0 km,
again neglecting attenuation.

(c) Include attenuation. Determine the spatial attenuation coefficient under these conditions at
1.0 kHz and use it to reduce the sound pressure at 0.1 km, 1.0 km, and 3.0 km below that
obtained due only to hemispherical spreading.

3. Pump wave attenuation for a parametric array. The generation of highly directional sound
beams from the nonlinear acoustical interaction of two colinear high-frequency sound beams will
be discussed in Sect. 15.3.3. Calculate the exponential attenuation length, ℓ ¼ α�1, of a typical
40 kHz beam in dry air, RH ¼ 0%, and moist air with RH ¼ 60% using the graph in Fig. 14.5.

4. Siren. The siren shown in Fig. 14.9 consumed 2500 ft3/min of air at a pressure of 5 psi above
ambient to produce 50 horsepower of acoustic power at 500 Hz, and did so with 72%
efficiency [41].
(a) Hydraulic power. How much time-averaged power, hΠhyit ¼ (Δp)|U|, is available, in watts

and in horsepower, from the specified volume flow rate, U, and the available pressure drop,
Δp?

(b) Hemispherical spreading. Assuming the mean temperature during the measurement was
Tm ¼ 20 	C and pm ¼ 100 kPa, what would be the root-mean-square pressure a distance of

Fig. 14.8 A very large
horn loudspeaker mounted
on an 18-wheel tractor-
trailer. (Photo courtesy of
Wiley Labs)
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1000 ft. from the siren if it produced a sound power of 50 horsepower? Report your results
both in pressure and dB re: 20 μParms.

(c) Include attenuation. If RH ¼ 50%, how much additional loss, in dB, would be produced by
absorption at the same distance?

5. The SOFAR channel. One method for locating pilots who crash over the ocean is to drop an
explosive sound source that is set to detonate at a depth that is equal to the axis of the deep sound
channel that is created by a sound speed profile like the one shown in Fig. 11.8. In that figure, the
axis of the sound channel is 1112 m below the ocean’s surface. Sound that is trapped in that
channel will spread cylindrically, rather than spherically, beyond a transition distance that will be
assumed to be much shorter than the distance of interest, so the sound amplitude will decrease in

proportion to
ffiffiffi
R

p
, where R is the distance between the source and the receiver.

(a) Cylindrical spreading. What would be the loss, in dB, due to cylindrical spreading over
5000 km relative to the level 1 km from the source?

(b) Include attenuation. Using the results for seawater in Fig. 14.7, what would be the spatial
attenuation, in dB, that would have to multiply the cylindrical spreading loss over 5.0 km
calculated in part (a) for sound with a frequency of 100 Hz? Repeat for the loss due to
attenuation in seawater after 5000 km.

6. High-frequency relaxational attenuation constant for air and water.
(a) Limiting frequency dependence. Using Eq. (14.40), show that for frequencies well above the

highest relaxational frequency, fR, the attenuation of sound is independent of frequency.
(b) Relaxational attenuation constant (bulk viscosity) of air. In Eq. (14.42), the measured high-

frequency limit of the spatial attenuation constant in air is αair /f
2 ¼ 1.84 
 10�11 s2/m.

Calculate αclassical/f
2 for air at atmospheric pressure and 20 	C, and use both high-frequency

results (i.e., with and without relaxation effects) to determine the value for ζair in the high-
frequency limit.

(c) Relaxational attenuation constant (bulk viscosity) of pure water. The measured high-
frequency limit of the spatial attenuation constant in pure water at 4 	C is lim

f� f R
αH2O= f

2 ¼
2.5 
 10�14 s2/m. Based on αclassical / f

2 for pure water at atmospheric pressure and 4 	C,
determine the value for ζH2O in the high-frequency limit.

Fig. 14.9 (Left) Photograph of a 50-horsepower siren and compressor mounted on a truck. The intake filter and
compressor are on the near side, and the exponential horn is farther away. (Right) Equal loudness contours measured
throughout lower Manhattan when the siren was placed on the Manhattan Bridge facing toward the Financial District.
The siren’s directivity index was 11.8 dB at 500 Hz (see Sect. 12.8.2) [41]
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The goal of this chapter is to raise awareness of the limitation of linear analysis, not to create
professional expertise in nonlinear acoustics. A fundamental assumption of linear acoustics is that
the presence of a wave does not have an effect on the properties of the medium through which it
propagates. Under that assumption, two sound waves can be superimposed when they occupy the same
space at the same time, but one wave will have no effect on the other wave and once they part company
there will be no evidence of their previous interaction. This is illustrated in Fig. 15.1. By extension, the
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assumption of linearity also means that a waveform is stable since any individual wave does not
interact with itself.1

We already know that this assumption of the wave having no influence on the properties of the
propagation medium cannot be strictly correct. The wave imparts a small particle velocity, v1, to the
fluid that adds to the sound speed when that velocity is in the direction of propagation and subtracts
from the sound speed when the particle velocity is opposite to the direction of propagation. The local
value of the sound speed, c(x, t), will vary in time and space due to the wave’s convective contribution
so that coþ v1(x, t)� c(x, t)� co� v1(x, t), where co is the equilibrium (thermodynamic) sound speed:
co ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂p=∂ρð Þs

p
.

The wave also modulates the medium’s thermodynamic sound speed. For the case of an ideal
gas undergoing adiabatic compressions and expansions, there is an accompanying temperature change
of amplitude, T1, given by Eq. (7.25), that is related to the amplitude of the pressure change, p1(x, t):
(∂T/∂p)s ¼ [(γ � 1)/γ](Tm/pm). Since the sound speed in an ideal gas is dependent upon the
temperature of the gas through Eq. (10.23), this implies that the change in sound speed, δc, due to a
temperature change is given by (δc/co) ¼ ½(T1/Tm). In an ideal gas, the local sound speed is slightly
faster than co when the acoustic pressure is positive since the gas is warmer and slightly slower than co
when the acoustic pressure is negative since the gas is cooler.

As will be demonstrated, these small modifications in the sound speed due to wave-induced fluid
convection and to the wave’s effect on sound speed through the equation of state can lead to interesting
effects that could not be predicted within the limitations imposed by the assumption of linearity.
Although their influence on the sound speed may be small, those effects are cumulative. These are
called nonlinear effects because the magnitude of the nonlinearity’s influence is related to the square of
an individual wave’s amplitude (self-interaction) or the product of the amplitudes of two interacting
waves (intermodulation distortion).

An additional consequence of the inclusion of nonlinearity is that the time-average of an acousti-
cally induced disturbance may not be zero. In the linear case, the measure of a wave’s amplitude will be
equally positive and negative around its undisturbed equilibrium value, so that the time-average of the
wave’s influence will be zero. When the hydrodynamic equations and the equation of state were
linearized, the terms in those equations that were discarded could lead to non-zero time-averaged
effects. For the linearized continuity equation, the ρ1v1 term was discarded since Eq. (8.19)
demonstrated that it was smaller than the ρmv1 term for small values of the acoustic Mach number,
Mac� 1. A similar choice was made for the linearization of the Euler equation. The convective portion

of the total derivative, v
!
1 �∇

� �
v
!
1, was discarded when compared to ∂ v

!
1=∂tin Eq. (8.38) under the

Fig. 15.1 Two wave packets pass through each other. (Left) The two wave packets are approaching each other. (Center)
When those wave packets overlap, the disturbances superimpose. (Right) After their superposition, they continue their
propagation with no evidence of their previous interaction

1Although instability requires nonlinearity, nonlinearity does not necessarily always result in instability. Solitons are
waveforms that remain stable due to the compensatory influences of nonlinearity and dispersion.
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same assumption of small acoustic Mach number. To complete the overall linearization, the Taylor
series expansion of the equation of state in Eq. (10.3) was truncated after the first-derivative term.

In this chapter we will recover some of the interesting acoustical phenomena that were lost to the
linearization of the phenomenological equations that describe both the dynamics and the medium
itself.

15.1 Surf’s Up

When most people hear the term “wave,” it is likely that word will conjure mental images of surf
breaking along a beach. (It is a most pleasant image!) The breaking of waves in shallow water is a
dramatic nonlinear effect that is due to both the convective nonlinearity and the fact that the height of
the wave modulates the propagation speed of a shallow-water gravity wave. The speed of a shallow-
water gravity wave represents the competition between the water’s inertia and the restoring force of
gravity. Figure 15.2 is a schematic representation of one cycle of such a wave on a fluid of equilibrium
depth, ho, with a peak wave height of magnitude |h1| � ho.

The assumption that the fluid is “shallow” implies that the mean depth of the fluid, ho, is much
smaller than the wavelength of the disturbance, λ.

h1 x, tð Þ ¼ ℜe bhe j ω t�kxð Þ
h i

ð15:1Þ

Since there is a free surface, we will assume that the fluid is incompressible. It is much more
favorable (energetically) for the free surface to move up than it is for a pressure increase to increase the
fluid’s density. The continuity equation can be written by recognizing that the rate-of-change of the
fluid’s height, _h1 x, tð Þ, is determined by the difference in the amount of fluid that enters and leaves a
“slab” of infinitesimal thickness, dx, shown in Fig. 15.2.

∂h
∂t

þ ho
∂vx
∂x

¼ 0 ) _h1 ¼ jkhovx ) _h1
vx

���� ���� ¼ 2πho
λ

ð15:2Þ

For a shallow-water gravity wave, the fluid’s particle velocity in the direction of propagation, vx, is
greater than the rate-of-change of height of the free surface if ho � λ. This is an effect most of us have
experienced while frolicking in the surf near the ocean’s shore—it is usually the “surge” that knocks us
over, not _h1.

Since gravity (not compressibility) provides the restoring force, Euler’s Eq. (7.34) relates the fluid’s
velocity in the direction of propagation, vx, to the gravitational pressure gradient.

Fig. 15.2 Schematic
representation of a
sinusoidal disturbance on
the free surface of a liquid
that has a mean depth, ho.
The wave on the surface has
an amplitude, |h1|� ho, but
with a wavelength λ � ho
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∂vx
∂t

¼ � 1
ρ
∂ ρgh1ð Þ

∂x
¼ �g

∂h1
∂x

ð15:3Þ

The combination of Eqs. (15.2) and (15.3), with the assumption of a rightward traveling wave in
Eq. (15.1), leads to a dispersion relation that generates the equilibrium values for propagation speed,
cgrav, of a shallow-water gravity wave.2

þjω �jhok

�jgk þjω

���� ���� ¼ 0 ) cgrav ¼ ω
k
¼

ffiffiffiffiffiffiffi
gho

p
for kho � 1 ð15:4Þ

Logarithmic differentiation of Eq. (15.4) provides the relationship between the local wave speed
and the instantaneous depth of the fluid.

δcgrav
cgrav

¼ 1
2
δh
ho

) ∂cgrav
∂h

¼ 1
2
cgrav
ho

ð15:5Þ

We would like to combine the effects of changing depth on the sound speed with the convective
contribution to the local sound speed produced by vx. The continuity Eq. (15.2) provides that necessary
conversion.

jωh1 ¼ jkhovx ) h1
ho

¼ vx
cgrav

� Mac ) ∂h
∂vx

¼ ho
cgrav

ð15:6Þ

The convective contribution to the local wave speed, c(vx), can be combined with the change in
local wave speed due to the changing fluid depth.

c vxð Þ ¼ cgrav þ vx þ ∂cgrav
∂h

� �
∂h
∂vx

� �
vx ¼ cgrav þ 3vx

2
ð15:7Þ

Both convection and the speed’s change with depth conspire to increase the local wave speed when
h1(x, t) > 0 and reduce the local wave speed when h1(x, t) < 0. The wave’s crests travel faster than the
zero-crossings (i.e., h1(x, t) ¼ 0) and its troughs travel slower than the zero-crossings. Figure 15.3
shows the cumulative consequences of the wave’s influence on its own local propagation speed. As the
wave progresses, the crests will start to overtake the troughs.

In Fig. 15.3, the coordinate system was chosen to move with the equilibrium wave speed, cgrav, so
that the distortion becomes evident. At the instant captured in Fig. 15.3, the slope of the zero-crossing
has become vertical. To reach that condition, the crest of a sinusoidal waveform must have advanced
by one radian length toward the zero-crossing, k�1 ¼ λ/2π (see Prob. 1), and the trough must have
lagged behind by the same amount. The time, TS, it takes for the crest to advance by k

�1 is given by the
speed excess, 3vx/2, calculated in Eq. (15.7). The distance traveled by the wave once the slope first
becomes infinite is known as the shock inception distance, DS.

2 The exact result for the propagation speed at all depths reduces to cgrav in Eq. (15.4) in the limit that kho ! 0. Since this
result depends upon k, it is dispersive, so the phase speed, cgrav, will not be equal to the group speed except in the
“shallow water” kho ! 0 limit.

cgrav ¼ ω
k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
k
tanh kho

r
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DS ¼ cgravTS ¼ cgrav
λ=2π
3vx=2

¼ λ
3πMac

ð15:8Þ

For surf, the wave can continue beyond DS. Since surf has free surface, h1 can actually become
multivalued and will eventually “break,” sometimes with a spectacularly powerful display of sound
and foaminess. Stokes was the first to recognize in 1848 that viscosity is the physical mechanism that
prevents a sound wave from becoming multivalued. Stokes was also the first to draw a distorted
waveform, like the one in Fig. 15.3, which he did in that same paper where he talked about the essential
role of viscosity3 [1].

15.1.1 The Grüneisen Parameter

The principles introduced to describe waveform distortion and the creation of a shock front for
shallow-water gravity waves are common to all sound waves in fluids. A sound wave will influence
the propagation speed of the medium due to a combination of the convective contribution and the fact
that the wave’s amplitude also influences the propagation speed. Of course, the nature of that
contribution and the relative importance of the convective and equation of state contributions will be
differ depending upon the medium. The convenience of representing both contributions in terms of the
local fluid particle velocity was demonstrated in the analysis of surf that produced Eq. (15.7). The
strength of nonlinear distortion in any medium that supports a plane progressive wave will now be
generalized by the introduction of the Grüneisen parameter, Γ.

c vð Þ ¼ co þ 1þ ∂c
∂y

∂y
∂v

� 	
v � co þ Γv and DS ¼ λ

2πΓMac
ð15:9Þ

The Grüneisen parameter is a designation taken from solid-state physics where it represents the
nonlinearity of a solid’s elasticity that is responsible for the non-zero value of a solid’s thermal
expansion coefficient.4 The reader should be cautioned that calling this nonlinear distortion parameter

Fig. 15.3 The local propagation speed of a shallow-water gravity wave depends upon the amplitude, bh��� ��� � h1, of the

wave. As shown by arrows, an initially sinusoidal wave will change shape because the crests are moving faster than the
troughs. As shown, this distortion has made the slope at the zero-crossing infinite

3 An excellent history of the early development of nonlinear acoustics is provided by D. T. Blackstock, “History of
Nonlinear Acoustics: 1750s–1930s,” as Chap. 1 in Nonlinear Acoustics, 2nd ed. (Acoust. Soc. Am., 2008), M. F.
Hamilton and D. T. Blackstock, editors; ISBN 0–9,744,067–5-9.
4 If the elastic potential of a solid depended on only the parabolic potential energy contribution (see Sect. 1.2.1), then as a
solid heated up, the amplitude of the motion of the point particles (molecules) would increase, but their equilibrium
position would remain unchanged. If there is a cubic contribution to the interparticle potential energy, then as the
amplitude of the molecular vibrations increased (with increasing temperature), the equilibrium position would shift
causing thermal expansion or contraction of the solid.
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the “Grüneisen parameter” and designating it as Γ is not a common choice in other treatments of
nonlinear acoustics. For example, in a recent paper by Hamilton [2], Γ represents the Gol’dberg
number that is abbreviated as G in this textbook (see Sect. 15.1.4). In Eq. (15.9), the general amplitude
variable is simply written as “y,” and the equilibrium sound speed is designated co to distinguish it from
the local amplitude-dependent sound speed, c(v) ¼ co +Γv.

If a medium’s sound speed depended upon the density of the medium, ρ, which obeyed the linear
continuity equation, the Grüneisen parameter would be expressed in terms of the sound speed’s
variation with density.

∂ρ
∂t

þ∇ • ρvð Þ ¼ 0 ) ρ1
ρm

¼ v1
co

) Γ ¼ 1þ ∂c
∂ρ

∂ρ
∂v

¼ 1þ ρm
co

∂c
∂ρ

ð15:10Þ

For an ideal gas, the sound speed depends upon the mean absolute temperature, Tm. As before, δc
represents the change in the sound speed due to the change in local temperature.

c2o ¼
γℜTm

M
) δc

co
¼ 1

2
T1

Tm
) ∂c

∂T

� �
s

¼ 1
2

co
Tm

ð15:11Þ

The Grüneisen parameter for an ideal gas can be expressed in terms of the change in the speed of
sound with temperature, the change in temperature with pressure, and the particle velocity amplitude,
v1, associated with the acoustic pressure amplitude, p1, as related by the Euler equation for progressive
plane wave propagation: p1 ¼ (ρmco)v1.

c vð Þ ¼ co þ v1 þ ∂c
∂T

� �
s

∂T
∂p

� �
s

∂p
∂v

� �
s

v1 ð15:12Þ

Using the relationship between temperature and pressure for an adiabatic sound wave in Eq. (7.25),
the Grüneisen parameter for an ideal gas can be calculated.

Γgas ¼ 1þ γ � 1
2

� �
¼ 1þ γ

2
ð15:13Þ

For noble gases, γ¼ 5/3 so Γ¼ 4/3. For diatomic gases and primarily diatomic gas mixtures like air,
γ¼ 7/5, so Γair¼ 6/5. In both cases, it is the convective contribution that is most significant contributor
for nonlinear distortion in a gas.

To start developing intuition regarding the formation of a shock wave, consider a sound wave in air
that has an amplitude at the “threshold of feeling,” 120 dBSPL, so p1 ¼ 28 Pa. If the frequency of the
sound wave is 1.0 kHz and the mean gas pressure is 100 kPa, then the acoustic Mach number for such a
loud sound can be evaluated using the Euler equation.

Mac ¼ v1
co

¼ p1
ρmc2o

¼ p1
γpm

¼ 2�10�4 ¼ 200 ppm ð15:14Þ

When such a wave propagates down a duct of constant cross-section, the shock inception distance,
DS, can be expressed in terms of the wavelength of sound using Eq. (15.9).

DS ¼ λ
2πΓairMac

¼ 5λ
12πMac

ffi 460 m ð15:15Þ

At ten times that amplitude (140 dBSPL, the “threshold of pain”) and for a frequency of 10 kHz, the
shock inception distance would be 4.6 m. In the throat of the horn, for a horn-loaded compression
driver [3] or in a brass musical instrument (e.g., trumpet or trombone), the amplitude can be still larger
by a factor of ten [4].
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15.1.2 The Virial Expansion and B/2A

For the characterization of nonlinear behavior of sound waves in liquids, it is common to expand the
equation of state in a Taylor series, known as a virial expansion, in powers of the relative deviation of
the density from its equilibrium value, (δρ/ρm) ¼ (ρ � ρm)/ρm.

p ¼ pm þ A
δρ
ρm

� �
þ B
2!

δρ
ρm

� �2

þ C
3!

δρ
ρm

� �3

þ � � � ð15:16Þ

The coefficients in that expansion, A, B, C, etc. are called the virial coefficients and have the units of
pressure. For an adiabatic process, they can be expressed in terms of progressively higher-order
thermodynamic derivatives of pressure with respect to density.

A ¼ ρm
∂p
∂ρ

� �
s,ρm

¼ ρmc
2
o ð15:17Þ

B ¼ ρ2m
∂2p
∂ρ2

� �
s,ρm

¼ ρ2m
∂c2

∂ρ

� �
s,ρm

¼ 2ρ2mc
3
o

∂c
∂p

� �
s,ρm

or
B
A
¼ 2ρmco

∂c
∂p

� �
s,ρm

¼ 2ρmco
∂c
∂p

� �
T ,ρm

þ 2βpTmco
ρmcP

∂c
∂T

� �
pm,ρm

ð15:18Þ

It is useful to notice that B can be expressed in terms of the derivative of the sound speed with
respect to density, which was related to the non-convective contribution to the Grüneisen parameter in
Eq. (15.10). The final form for B/A follows from the expansion of the sound speed derivative with
respect to pressure, (∂c/∂p)s ¼ (∂c/∂p)T þ (∂T/∂p)s(∂c/∂T)p, and temperature, (∂p/∂T)s ¼ (∂ρ�1/
∂s)p ¼ (∂ρ�1/∂T)p/(∂s/∂T)p, along with the introduction of the isobaric coefficient of thermal
expansion, βp ¼ (1/V )(∂V/∂T)p ¼ ρm(∂ρ

�1/∂T)p, and the introduction of the specific heat at constant
pressure, cP ¼ (1/Tm)(∂s/∂T)p [5].

C ¼ ρ3m
∂3p
∂ρ2

� �
s,ρm

or
C
A
¼ 3

2
B
A

� �2

þ 2ρ2mc
3
o

∂2c
∂p2

� �
s,ρm

ð15:19Þ

The sound speed can also be expressed in terms of these virial coefficients [6].

c2

c2o
¼ 1

c2o

∂p
∂ρ

� �
s,ρm

¼ 1þ B
A

δρ
ρm

� �
þ C
2A

δρ
ρm

� �2

þ . . . ð15:20Þ

This result allows the Grüneisen parameter for liquids to be expressed in terms of B/A.

Γ ¼ 1þ B
2A

ð15:21Þ

Some representative values of B/A for different substances is provided in Table 15.1. The values of
B/A for liquids are generally greater than 2.0, which means that it is the equation of state’s nonlinearity
that dominates the convective nonlinearity. This is reasonable since Euler’s equation implies that the
particle velocity in a liquid is much less than that of a gas for equal pressure changes:
(ρmc)liquid � (ρmc)gas.
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15.1.3 Anomalous Distortion*

Before moving on, it is interesting to consider the role that a non-zero value of C implies for the
formation of shock waves. The behavior that is represented by the Grüneisen parameter causes the
sound speed to be increased when the amplitude of the wave is positive and decrease when the
amplitude is negative. The C coefficient makes a contribution that either always increases the sound
speed, irrespective of the sign of the wave’s amplitude, or always decreases the sound speed,
depending upon the sign of C.

Cormack and Hamilton have investigated shear waves with a cubic nonlinearity, C 6¼ 0, using
numerical simulations [8]. Figure 15.4 shows two plane waveforms that were initially sinusoidal
(dotted lines) that have produced both leading- and trailing-edge shocks (solid lines); two shock fronts
per wavelength, unlike Figs. 15.3 and 15.7, where only a quadratic nonlinearity was operative (e.g.,
1 þ B/2A 6¼ 0 but C/A ¼ 0).

A situation where both the quadratic and cubic nonlinearity play a role in superfluid helium sound
propagation near absolute zero was identified for shockwave formation of compressional plane waves
where the superfluid component velocity, vs, is non-zero, but the (viscous) normal fluid is immobilized,
vn ¼ 0. That sound wave mode in superfluids is known as 4th sound (see Fig. 15.5). This creates a
superfluid critical acoustic velocity amplitude, vd, which can be defined in terms of the virial

Table 15.1 Some representative values of B/A for different media [7]

Material T [


C] B/A

Monatomic gases (e.g., He, Ne, Ar, Kr, Xe, Rn) 0.667
Diatomic gases (e.g., O2, N2, HCl) 0.40
Distilled water 0 4.2

20 4.985 � 0.063
30 5.18 � 0.033
40 5.4
60 5.7

Sea water (3.5% NaCl) 20 5.25
Saturated marine sediment 20 12–19
Isotonic saline 20 5.540 � 0.032
Ethanol 20 10.52
Methanol 20 9.42
Acetone 20 9.23
Glycerol (4% in H2O) 25 8.58 � 0.34
Ethylene glycol 25 9.88 � 0.40
Carbon tetrachloride 25 7.85 � 0.31
Liquid argon –183.2 5.67
Liquid nitrogen –195.8 6.6
Liquid helium –271.4 4.5
Mercury 30 7.8
Sodium 110 2.7
Bovine serum albumin (20 g/100 mL H2O) 25 6.23 � 0.25
Bovine serum albumin (38.8 g/100 mL H2O) 30 6.68
Bovine whole blood 26 5.5
Bovine milk 26 5.1
Bovine liver 23 7.5–8.0
Bovine heart 30 5.5
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Fig. 15.4 Waveforms for an initially sinusoidal plane shear wave (dotted lines) in a medium that is dominated by a cubic
nonlinearity disturbance far from the sound source with C < 0. (From [8])
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Fig. 15.5 There are two
different sound speeds in
liquid 4He below the
superfluid transition
temperature, Tλffi 2.14 K, at
saturated vapor pressure.
The ordinary bulk
compressional wave speed,
known as “first sound,” is
fairly constant. The speed
of thermal waves, called
“second sound,” is
generally an order of
magnitude less than first
sound and is a strong
function of temperature,
vanishing above the
superfluid transition
temperature, Tλ. Fourth
sound is a compressional
sound wave in a porous
medium that immobilizes
the normal fluid so that only
the superfluid can oscillate
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coefficients, to be the velocity amplitude where the contribution made by the wave distortion due to the
(B/2A) term is equal to the influence of C/A [9].

vd
co

¼ 4þ 2 B=Að Þ
C=Að Þ þ B=Að Þ 1� B=Að Þ½ � ð15:22Þ

For negative values of C, the wave is slowed whether the amplitude of the wave is positive or
negative.

This double-shock behavior, caused by C 6¼ 0, is rather rare for compressional waves. Using values
for (B/A) and (C/A) for water [10], vd ¼ 1.2co, corresponding to acoustic pressure swings of 26,000
atmospheres, well over 100 times greater than the highest cavitation threshold ever measured for pure
water [11]. This double-shock behavior has been observed for sound propagating through a liquid near
its critical point [12].

In an ideal gas, the virial expansion can be expressed in terms of the ratio of specific heats, γ ¼ cP /
cV, also known as the polytropic coefficient.

p
pm

¼ 1þ γ
δρ
ρm

� �
þ γ γ � 1ð Þ

2
δρ
ρm

� �2

þ γ γ � 1ð Þ γ � 2ð Þ
6

δρ
ρm

� �3

þ � � � ð15:23Þ

For an ideal gas, (B/A) ¼ (γ�1) and (C/A) ¼ (γ�1) (γ �2) so the denominator of Eq. (15.22)
vanishes making vd/co ¼ 1; double shocks are an impossibility in gases.

Two other unusual results for the Grüneisen parameter arise from the propagation of sound in
superfluid helium [13]. Superfluids are analogous to superconductors in that superfluids can flow
without viscosity, just like electrical currents flowing without electrical resistance in superconductors.
In addition, the superfluid component has both an elastic and a thermal “restoring force” [14]. In
superfluid helium, there is a thermal sound mode, known as second sound, that is propagating, not
diffusive, like the response governed by the Fourier heat diffusion Eq. (9.4) for classical liquids (see
Sect. 9.3.1).5 The temperature dependence of both second sound and the ordinary compressional wave
speed (called first sound) are plotted in Fig. 15.5.

It is clear from the speed of second sound vs. temperature that there is a region where the second
sound speed decreases with increasing temperature, behavior that is opposite to that of an ideal gas in
Eq. (15.11). In that case, the convective contribution to the nonlinearity is opposite to the equation of
state’s contribution. At T ¼ 1.884 K, the two contributions cancel each other, and a large amplitude
second sound wave can propagate without distortion [15].

A final anomalous example is provided by third sound in superfluid helium. Because the superfluid
can flow without resistance, sound waves can propagate in adsorbed films as thin as two atomic layers
of helium.6 In very thin films, the dominant restoring force is the van der Waals attraction which varies
inversely with the fourth power of the distance: f ¼ α/h4. Substituting the van der Waals force for the
gravitational force in Eq. (15.4) and providing a correction for the thickness-averaged mass density of
the superfluid component, hρsi, unlike the surf, the speed of third sound, c3, is inversely proportional to
the film thickness, ho.

5 In 1962, Lev Landau won the Nobel Prize in Physics for his prediction of the temperature dependence of second sound
using his two-fluid theory of superfluid hydrodynamics after the speed of second sound was first measured by Pyotr
Kapitza. Kapitza won the Nobel Prize in Physics in 1978 for his measurement of the speed of second sound in superfluid
helium.
6 Prof. I. Rudnick has pointed out that superfluids are interesting because they obey the laws of hydrodynamics on the
microscopic scale and obey the laws of quantum mechanics on the macroscopic scale.
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c3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρsh i
ρ

fho

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρsh i
ρ

3α
h3o

s
ð15:24Þ

For superfluid films that are less than 10 Å ¼ 10�9 m thick or about three atomic layers of helium,
the equation of state produces troughs that travel faster than the crests so the waves distort backward, as
shown in Fig. 15.6, compared to ordinary distortion shown in Fig. 15.3.

15.1.4 The Gol’dberg Number

A wave of arbitrary amplitude will not necessarily form a shock. If the sound is attenuated, then the
amplitude will decrease with distance, and the tendency to distort will be reduced, since the distortion
is amplitude dependent. A dimensionless metric, known as the Gol’dberg number, G, compares the
shock inception distance, DS, to the exponential attenuation length, ℓ ¼ α�1, where α is the amplitude
exponential attenuation constant that was examined in Chap. 14 [16].

G ¼ ℓ
DS

¼ αDSð Þ�1 ð15:25Þ

As an example, the Gol’dberg number can be evaluated for a 2 kHz sound wave with pressure
amplitude of bpj j ¼ 900 Pa (150 dB re: 20 μParms) in dry air that propagates down a cylindrical
waveguide with an inside diameter of 10.0 cm. For dry air at mean pressure, pm ¼ 100 kPa
and Tm ¼ 23 
C, co ¼ 345 m/s with δν ¼ 50 μm and δκ ¼ 59 μm. Using Eq. (15.15), with Mac ¼bpj j=γpm ¼ 0:64% and λ ¼ 17.3 cm, DS ¼ 3.6 m. Using Eq. (13.78), the attenuation length in that
waveguide is ℓ ¼ αtv

�1 ¼ 20.6 m. The Gol’dberg number, given in Eq. (15.25), is G ¼ 5.7 > 1. In this
example, the wave will shock before the wave of that initial amplitude suffers sufficient attenuation.

For an initially sinusoidal plane wave in free space, far from any solid boundaries (i.e., not confined
within a 10 cm diameter waveguide!), the attenuation length due to classical thermoviscous dissipa-
tion, including “bulk viscosity,” at 2 kHz in dry air at one atmosphere would be about 1.2 dB/
km ffi 1.4 � 10�4m (see Fig. 14.5), resulting in an exponential attenuation distance of about 7 km
making G ffi 200. For a plane wave in free space with G ¼ 5.7, there would be significant distortion,
but a fully developed sawtooth shock would not be created. This is because the classical attenuation
coefficient is proportional to frequency squared (see Sect. 14.3), so the attenuation of the second
harmonic is four times that of the fundamental, rather than just

ffiffiffi
2

p
larger for the waveguide, where the

attenuation depends upon the square root of the frequency. Mark Hamilton has provided numerical

Fig. 15.6 Very thin films
of superfluid helium can
support surface waves that
are restored by the van der
Waals attraction between
the fluid and the substrate
on which the fluid is
adsorbed. For films less
than 10 Å thick (about three
atomic layers), the troughs
travel faster than the crests,
and the wave bends
backward
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simulations of the waveforms of such a plane progressive wave in free space forG¼ 5.7 that are shown
in Fig. 15.7.

The Gol’dberg number is a dimensionless measure of the importance of nonlinearity relative to
dissipation. In some circumstance, dissipation can be entirely ignored. For deepwater gravity waves,
the primary source of dissipation is viscosity, and the Gol’dberg number is on the order of one
million [17].

15.1.5 Stable Sawtooth Waveform Attenuation

For large values of the Gol’dberg number, an initially sinusoidal sound wave propagating in one
dimension (i.e., ignoring spherical spreading) will steepen and ultimately become a repeated sawtooth
waveform. At sufficiently high Gol’dberg numbers, even spherically spreading waveforms that are
initially sinusoidal can form shocks [2]. In fact, any periodic waveform will steepen and ultimately
form a repeated sawtooth shape, shown in Fig. 15.8, when the Gol’dberg number is sufficiently large
and the wave has propagated well past the shock inception distance.

Once the sawtooth waveform has developed, the shock front produces a gradient in the temperature,
particle velocity, and pressure that is very large. Such gradients produce large dissipation due to
thermal conduction across the shock front and viscous shear. The amplitude of the sawtooth waveform
must decrease due to the resulting energy dissipation. Calculation of the shock wave’s attenuation can
be made by expressing the discontinuity of the entropy across the shock that is cubic in the pressure
discontinuity [18]. For an ideal gas, the difference in entropy across the shock is expressed in terms of
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Fig. 15.7 Numerical simulation of an initially sinusoidal plane wave in free space with Gol’dberg number, G ¼ 5.7, is
shown as the blue sinusoid. As the wave progresses, nonlinear effects cause it to distort, and classical attenuation
mechanisms reduce its amplitude. A sawtooth waveform, shown in Fig. 15.8, is not produced. (Figure courtesy of Mark
Hamilton)
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the universal gas constant, ℜ, and the mean molecular mass of the gas, M, by use of the Rankine-
Hugoniot shock relations [19].

sþ � s� ¼ ℜ
M

γ þ 1ð Þ
12γ2

pþ � p�
p�

���� ����3 ð15:26Þ

Inspection of Fig. 15.8 suggests a simpler geometric approach [20]. If the particle velocity
amplitude for the sawtooth waveform is u, then by Eq. (15.9), each portion of the waveform must
advance, relative to the zero-crossing, by (Γu dt) during a time interval, dt. The coordinate system, as
shown in Fig. 15.8, moves with co, by making the x axis be (x – cot). In that frame of reference, the fact
that the back of the shock is a straight line, representing a linear increase in u, requires that the
unshocked portion of the waveform undergo solid body rotation, as indicated by the curved arrow in
Fig. 15.8.

Since the wave must remain single-valued, the shock front must dissipate sufficient energy to keep
the waveform from becoming multiple-valued. The two hashed triangles shown in Fig. 15.8 are similar
triangles by Garrett’s First Law of Geometry, so the ratio of their heights to their bases must be equal.

du
Γu dtð Þ ¼

u
λ=2

ð15:27Þ

Setting dt ¼ dx/co, Eq. (15.27) can be integrated from a reference location, xo, at which the acoustic
Mach number is Mo, out to some arbitrary distance, x, from that reference location.

co

ðu
uo

du
u2

¼ 2Γ
λ

ðx
xo

dx ) 1
M

� 1
Mo

¼ 2Γ x� xo
λ

ð15:28Þ

This result is both interesting and distinctly different from previous expressions for attenuation.
First, the amplitude of the shock does not decay exponentially with distance. Second, although the
dissipation is due to thermoviscous losses produced by the steep gradients across the shock front, the
attenuation is independent of both the fluid’s shear viscosity, μ, and its thermal conductivity, κ, and
depends instead upon the Grüneisen parameter.

This sawtooth waveform does not persist. Eventually, it “unshocks,” as shown in Fig. 15.30, as its
amplitude decreases to the level where classical attenuation mechanisms are dominant [21].

Fig. 15.8 Any periodic
wave of sufficient
Gol’dberg number will
distort into the sawtooth
waveform shown in a
coordinate system that is
moving along with the
wave at the thermodynamic
sound speed, co. The
“excess velocity” produced
by the Grüneisen parameter
is proportional to the
velocity amplitude, u, of the
wave. The sloping “back”
of the sawtooth must then
experience solid body
rotation since the excess
velocity is proportional to
the amplitude above its
zero-crossing
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15.2 Weak Shock Theory and Harmonic Distortion

In most fluids, the nonlinearity in the equation of state and the nonlinearity introduced by the
acoustically induced convection conspire to cause waves to distort. That distortion increases with
the propagation distance, if the amplitude of the wave is sufficient for such nonlinear effects to
dominate thermoviscous attenuation (i.e., G � 1). For waves of sufficiently large amplitude, this
process will turn any periodic wave into a sawtooth wave. In this section, the focus will be on the initial
stages of this distortion process.

If a wave is initially a sinusoidal “pure tone,” it will only contain a single Fourier component. That
fundamental frequency can be designated f1. The distortion will change the wave shape, but the wave
will still be periodic with a period, T ¼ ( f1)

�1. The description of the distorted waveform will
necessarily require additional Fourier components at harmonic multiples of the fundamental fre-
quency, fn ¼ nf1, with n ¼ 2, 3, 4, etc. This section will focus on the growth of those harmonic
components with distance and their dependence on the initial amplitude of the wave.

15.2.1 The Order Expansion

When linear acoustics was first developed in Chap. 8, the parameters that described the acoustic fields
were expressed as the sum of an equilibrium value plus a first-order deviation from equilibrium.

Equation (8.1) expressed the pressure as p x
!, t

� �
¼ pm x

!� �
þ p1 x

!, t
� �

. Similar expansions were

made for the mass density, ρ x
!, t

� �
, in Eq. (8.2), temperature, T x

!, t
� �

, in Eq. (8.3), and (specific)

entropy per unit mass, s x
!, t

� �
, in Eq. (8.4). In all cases, the first-order deviations from equilibrium

were assumed to be much smaller than the equilibrium values (e.g., p1 � pm).
This order expansion will now be extended to keep track of the effects of nonlinearity on

propagation. For example, the particle velocity will be represented as the sum of the fluid’s mean
equilibrium velocity, vm, and the deviations from equilibrium that are proportional to successively
higher powers of such deviations. These deviations will be subscripted to indicate their dependence on
the amplitude of the disturbance. A subscript of “1” will indicate a first-order contribution that is linear
in the amplitude of the disturbance. A subscript of “2” will indicate a second-order contribution that is
quadratic in the amplitude of the disturbance or is the product of two first-order contributions, possibly
produced by the interaction of two different waves.

v x, tð Þ ¼ vm xð Þ þ v1 x, tð Þ þ v2 x, tð Þ þ v3 x, tð Þ þ � � � ð15:29Þ
Since our attention will be focused on one-dimensional propagation, x does not need to be a vector

and because the fluids will not be subjected to any externally imposed mean flow, vm(x) ¼ 0. As was
the case for linear acoustics, the first-order contribution to the acoustical deviation from equilibrium,
v1(x, t), will be proportional to the amplitude of the disturbance from equilibrium. The second-order
contribution, v2(x, t), will be proportional to the square of the amplitude of the disturbance from
equilibrium or to the product of two first-order disturbances, etc.

It will also be assumed that these individual contributions are “well ordered,” in that each successive
higher-order contribution will be smaller than its lower-ordered neighbor. In the case of particle
velocity, all contributions will also be significantly smaller than the thermodynamic sound speed, co,
in the weak shock limit.

co � v1j j > v2j j > v3j j > � � � ð15:30Þ
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15.2.2 Trigonometric Expansion of the Earnshaw Solution

The analysis of the distortion of an initially sinusoidal sound wave can generate a second-order
correction by allowing the speed of sound to be dependent upon the amplitude of the disturbance.
This result was first exploited by Earnshaw (1805–1888) and was published in 1860 [22].

ϕ ¼ t � x� X ϕð Þ
Γu ϕð Þ � co

ð15:31Þ

Here, Earnshaw solved the for a wave launched by a piston located at x¼ 0 that has a displacement,
X(t), and velocity u(t) ¼ dX/dt. The parameter, ϕ, represents the time a given point on a waveform left
the piston’s face. Earnshaw was also the first to show that Γgas ¼ (γ þ 1)/2, for a sound wave in an gas
obeying the Adiabatic Gas Law, as we did in Eq. (15.13).

We can exploit Earnshaw’s insight to calculate the growth of the second harmonic by successive
approximation [23] if the initial disturbance is assumed to be a single-frequency, rightward traveling
wave with an initial particle velocity amplitude, v0.

v1 x, tð Þ ¼ v0 cos ωt � kxð Þ ¼ v0 cosω t � x
co

� �
ð15:32Þ

A second-order contribution will be generated by substitution of the “local” sound speed, as
expressed in Eq. (15.9), for the thermodynamic sound speed that appears in Eq. (15.32), as was
expressed by Earnshaw in Eq. (15.31).

v1 x, tð Þ þ v2 x, tð Þ ¼ v0 cosω t � x
co þ Γv1

� �
ð15:33Þ

In the weak shock limit,Mac¼ v1/co� 1, so the denominator of the argument of the cosine function
can be approximated by its binominal expansion.

v1 x, tð Þ þ v2 x, tð Þ ffi v0 cosω t � x
co

1� Γ v1
co

� �� 	
ð15:34Þ

The trigonometric identity for the cosine of the sum of two angles, a and b, is cosω
(a þ b) ¼ cos (ωa) cos (ωb) � sin (ωa) sin (ωb). That identity can be used to separate Eq. (15.34)
into two terms.

v1 x, tð Þ þ v2 x, tð Þ ffi v0 cosω t � x
co

� �
� Γxωv1

c2o
v0 sinω t � x

co

� �
ð15:35Þ

Since v1 (x, t) was defined in Eq. (15.32), the first-order terms on both sides of Eq. (15.35) can be
eliminated so that only the second-order contribution remains. The first-order contribution can also be
substituted into the second-order expression.

v2 x, tð Þ ¼ �Γxω
c2o

v0ð Þ2 sinω t � x
co

� �
cosω t � x

co

� �
ð15:36Þ

Using the double-angle sine identity, sin(2a) ¼ 2 sin (a) cos (a), it becomes clear that the
trigonometric product introduces a second harmonic component that grows linearly with distance, x,
scaled by the wavelength, λ, and is proportional to the square of the initial amplitude, (v’)2.
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v2 x, tð Þ ¼ �Γxω
2c2o

v0ð Þ2 sin 2ω t � x
co

� �
¼ �πΓMac

x
λ
v0 sin 2ω t � x

co

� �
ð15:37Þ

The assumption regarding the relative amplitude of the terms in the order expansion, as asserted in
Eq. (15.30), will be violated before |v2| ¼ |v1|. To determine the limit of this solution’s applicability,
those amplitudes can be equated to determine a distance, x1¼2, before which this assumption would be
violated.

x1¼2 ¼ λ
πΓMac

ð15:38Þ

It is not surprising that this approximation would fail at a distance that is less than twice the shock
inception distance, DS. It is also true that this solution assumes that energy is transferred to the second
harmonic with no reduction in the amplitude of the fundamental. That is clearly not possible, since the
energy that appears as the second harmonic contribution was provided by the energy in the fundamen-
tal. The subsequent analysis will correct that difficulty.

15.2.3 Higher Harmonic Generation

It would be possible to continue the successive approximation procedure to calculate successively
higher harmonics, but that procedure would quickly become algebraically messy. A simple and more
intuitive approach is to use Eq. (15.9) to incorporate the local sound speed to deform the wave, as was
done initially for shallow-water gravity waves in Fig. 15.3, and then simply use Fourier analysis to
extract the amplitudes of the harmonics [24].

An undistorted wave can be parameterized by making its amplitude, y, be a function of a parameter,
θ: y ¼ sin (θ). To distort the wave, the plotted position can be advanced by an amount related to the
propagation distance, d, scaled by the shock inception distance, DS.

σ ¼ d
DS

¼ 2πΓMac
d
λ
; 0  σ < 1 ð15:39Þ

In Fig. 15.9, one-half of a sine function has been plotted on the x axis at two different advanced
locations in Eq. (15.40).

x ¼ θ þ σ sin θ ð15:40Þ

There is no additional information provided by the negative half-cycle, so the harmonic content of
the distorted waveform can be Fourier analyzed between 0  θ < π.

The Fourier coefficients can be projected to obtain the amplitudes of the harmonics using the same
procedure as applied to vibrating strings in Sect. 3.5.

Cn ¼ 2
π

ðπ
o
y sin nxð Þdx ¼ 2

π

ðπ
0
sin θ sin n θ þ σ sin θð Þ½ � 1þ σ cos θð Þdθ ð15:41Þ

Using the integral definition of Bessel functions of the 1st kind in Eq. (C.26), Eq. (15.41) can be
expressed as the sum of four Bessel functions.
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Cn ¼ �1ð Þnþ1 Jn�1 nσð Þ � Jnþ1 nσð Þ � σ=2ð Þ Jn�2 nσð Þ � Jnþ2 nσð Þ½ �f g ð15:42Þ
Two successive applications of the recurrence relations in Eqs. (C.27) and (C.28) reduce the

expression for the harmonic amplitude coefficients, Cn, to the compact form in Eq. (15.43), which is
plotted in Fig. 15.10.

Fig. 15.9 One-half-cycle of nonlinear distortion. The solid line is the undistorted (sinusoidal) waveform. The dashed
line represents the waveform that has propagated to the shock inception distance, σ ¼ x/DS < 1. The dotted line represents
the waveform that has propagated to one-half the shock inception distance

Fig. 15.10 Fourier
coefficients for a
nonlinearly distorted
sinusoidal wave as a
function of the scaled
propagation distance, σ ¼ x/
DS. The solid line is the
amplitude of the
fundamental at f1 that
should be read from the left-
hand axis. The long-dashed
line is the second harmonic
amplitude, C2, at f2 ¼ 2f1,
the narrow-dashed line is
the third harmonic
amplitude, C3, at f3 ¼ 3f1,
and the dotted line is the
fourth harmonic amplitude,
C4, at f4 ¼ 4f1. All Cn for
n > 1 should be read from
the right-hand axis
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Cnj j ¼ 2
nσ

Jn nσð Þ for σ < 1 and n ¼ 1, 2, 3, . . . ð15:43Þ

This result was originally obtained using algebraic methods by Fubini-Ghiron in 1935 [25].
The initial growth rate of the harmonics with propagation distance can be appreciated by expansion

of the Bessel functions for small values of their arguments, nσ, as expressed in Eq. (C.12). As shown in
Eq. (C.14), the J1(x) Bessel function increases linearly with x¼ nσ. By Eq. (15.43), C1/ J1(σ)/(σ) so it
is initially independent of distance. One nice feature of this solution is that as the higher harmonic
amplitudes grow, the amplitude of the fundamental decreases. At d ¼ DS, the amplitude of the
fundamental is only 88% of its original value.

The first terms in the expansion of the higher-order Bessel functions, Jn (x), all are proportional to
xn. As per Eq. (15.43), each Bessel function is divided by x ¼ (nσ), so that each amplitude coefficient
increases in proportion to the (n�1) power of the scaled distance, σ ¼ x/DS. This behavior is evident in
Fig. 15.10. The second harmonic amplitude, C2, initially grows linearly with distance, just as predicted
by Airy [23] in the solution by successive approximation that led to Eq. (15.37). The third harmonic
amplitude, C3, has an initially quadratic dependence on distance, and the fourth harmonic amplitude,
C4, has an initially cubic dependence on the propagation distance.

A calculation by Fay [26] that included dissipation also produced an expression for the harmonic
amplitudes, Bn, that describe a stabilized waveform where the Gol’dberg number includes
thermoviscous attenuation, αT-V, in Eq. (14.29).

Bn ¼ 2
G sinh n 1þ σð Þ=G½ � for σ ¼ x

Ds
> 3 ð15:44Þ

Note that the Fay solution produces the (stable) sawtooth waveform of Fig. 15.8 for distances that
satisfy G � n(1 þ σ), where the hyperbolic sine function can be replaced by its argument to produce
the Fourier amplitude coefficients of a sawtooth waveform (see Fig. 1.22 and Chap. 1, Prob. 12),
Bsawtooth
n ¼ 2=n 1þ σð Þ. As shown by Blackstock [27], the Fay result for the harmonic amplitudes does

not reduce to those of Fubini in Eq. (15.43), in the limit of vanishing viscosity since the Fubini
coefficients are valid near the source, σ  1, and the Fay coefficients in Eq. (15.44) are valid in the
sawtooth region, σ � 3. Blackstock provides a solution that connects those two regimes in his paper
that has become known as the “Blackstock bridging function.”

15.3 The Phenomenological Model

Hydrodynamics provides a complete description of the propagation of sound in fluids. All of the
nonlinear behavior that has been introduced in this chapter thus far should be derivable from that
hydrodynamic description. As will be demonstrated now, the hydrodynamic approach will also
provide additional insights and motivate the description of additional nonlinear phenomena.

As discussed in Sect. 7.3, the dynamics of a single-component homogeneous fluid can be described
by two thermodynamic variables (e.g., ρ and s or p and T ) and the three components of the velocity
field.

v
! ¼ vxbex þ vybey þ vzbez ð15:45Þ

As before, vx is the x component of velocity, and bex is the unit vector in the x direction. The “system” is
“closed” if there are five independent conservation equations that relate the variables to each other.
Those equations should be familiar by now and are reproduced below:
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∂ρ
∂t

þ∇ � ρ v
!� �

¼ 0 ð15:46Þ

∂ ρsð Þ
∂t

þ∇ � ρs v
!� �

¼ κ
∇Tð Þ2
T

þ μΦþ ζ ∇ � v!
� �2

Φ ¼ 1
2

X
i¼x, y, z

X
j¼x, y, z

∂vi
∂x j

þ ∂v j

∂xi
� 2
3
δij∇ � v!

� �2 ð15:47Þ

∂ v
!

∂t
þ v

! �∇
� �

v
! ¼ �∇

!
p

ρ
þ μ∇2 v

! ð15:48Þ

The form of the entropy Eq. (15.47) is rather more general than will be required but includes the
square of the viscous shear tensor, Φ, and the bulk viscosity, ζ, along with thermal conductivity, κ, all
as potential sources of entropy production.

As before, those conservation laws contain both p and ρ as (mechanical) thermodynamic variables,
so that an equation of state, p ¼ p(ρ, s), describing each individual fluid’s properties, is required to
“close” the set. In the absence of dissipation (i.e., κ ¼ μ¼ ζ ¼ 0), the equation of state can be combined
with the continuity Eq. (15.46), and the entropy conservation Eq. (15.47) to demonstrate that the
entropy will be conserved.

Ds
Dt

¼ ∂s
∂t

þ v
! �∇!s ¼ 0 ð15:49Þ

This simplifies the expansion of the equation of state in terms of the density deviation, ρ0 ¼ ρ � ρm,
since all of the derivatives can be evaluated at constant entropy.

p ρð Þ ¼ ∂p
∂ρ

� �
s

ρ0 þ ∂2p
∂ρ2

� �
s

ρ02

2
þ � � � ð15:50Þ

15.3.1 The (Nondissipative) Nonlinear Wave Equation

As with Earnshaw’s solution and the calculation of the harmonic amplitude components in the weak
shock limit, this analysis will be restricted to one-dimensional propagation (i.e., vy¼ vz¼ 0), but at this
point, there is no penalty for retaining the vector velocity for evaluation of the hydrodynamic equations
and the equation of state up to terms of second-order in the deviation from equilibrium.

∂ρ1
∂t

þ ∂ρ2
∂t

þ ρm∇ � v!1 þ ρm∇ � v!2 þ ρ1∇ � v!1 þ v
!
1 �∇

!
ρ1 ¼ 0 ð15:51Þ

ρm
∂v
!

1

∂t
þ ρm

∂ v
!
2

∂t
þ ρ1

∂ v
!
1

∂t
þ ρm v

!
1 �∇

!� �
v
!
1 ¼ �∇

!
p1 �∇

!
p2 ð15:52Þ

p2 ¼ ∂p
∂ρ

� �
s

ρ2 þ ∂2p
∂ρ2

� �
s

ρ21
2

ð15:53Þ

The first-order wave equation is homogeneous.
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∂2ρ1
∂t2

þ ∂p
∂ρ

� �
s

∇2ρ1 ¼ 0 ð15:54Þ

The first-order terms from Sect. 7.2 that were combined to produce that linear wave equation can be
subtracted from the combination of Eqs. (15.51), (15.52), and (15.53) to leave a wave equation for the
space-time evolution of the second-order sound fields.7

∂2ρ2
∂t2

� c2o∇
2ρ2 ¼ ∇2 ρm v

!2
1 þ

∂2p
∂ρ2

� �
s

ρ21
2

� 	
ð15:55Þ

This wave equation for the second-order deviations of the density from equilibrium is not homoge-
neous; it has a source term that is driven by quadratic combinations of the first-order sound fields.
Using the Euler relation for the first-order fields and Eq. (15.10), this second-order wave equation can
be re-written in a more familiar form for plane progressive waves.

∂2ρ2
∂t2

� c2o∇
2ρ2 ¼

c2o
ρm

1þ ρm
co

∂c
∂ρ

� �
s

� 	
∇2ρ21 ¼ Γ

c2o
ρm

∇2ρ21 ð15:56Þ

Not surprisingly, the strength of this nonlinear source term is proportional to the Grüneisen
parameter, Γ.

15.3.2 Geometrical Resonance (Phase Matching)

The second-order wave equation should reproduce the results obtained for second harmonic distortion
in the weak shock limit that were generated by the trigonometric expansion of Earnshaw’s solution.
That result can be recaptured by squaring the right-going sinusoidal travelingwave, ρ1¼ρ0 cos (ωt� kx),
and then inserting it into the source term on the right-hand side of Eq. (15.56).

Γ
c2o
ρm

∇2ρ21 ¼ Γ
c2o
ρm

ρ02

2
∇2 1þ cos 2ωt � 2kxð Þ½ � ð15:57Þ

The constant will disappear upon operation by the Laplacian, but the cos2(ω t� kx) term will drive
the second-order wave equation. What is crucially important is the recognition that the phase speed of
the source term, cph ¼ 2ω/2k, is identical to the phase speed of the second-order density deviations, ρ2,
which propagates with speed, co ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂p=∂ρð Þs

p
.

This correspondence between the phase speed of the source and the phase speed of the disturbance it
creates is called geometric resonance. In this case, the wavevectors representing the first- and second-

order fields, k
!
1 and k

!
2, are colinear. Considering this process as the first-order wave’s interaction with

itself, the geometric resonance for these colinear propagation directions can be expressed as a
wavevector sum.

k
!
2 ¼ k

!
1 þ k

!
1 where k

!
2

��� ��� ¼ 2 k
!

1

��� ��� and ω2 ¼ 2ω1 ð15:58Þ

7 Do not confuse the wave equation for the second-order deviations from equilibrium with the fact that both the first- and
second-order wave equations are both second-order partial differential equations. For the classification of differential
equations, second-order refers to the highest-order derivative that appears in the equation.
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Each infinitesimal fluid volume that is excited by quadratic combinations of the first-order sound
fields can be considered a source for the second-order sound field. In Fig. 15.11, those fluid volumes
are represented by individual loudspeakers with amplitudes that are proportional to ρ02. Because the
phase velocity is also the thermodynamic sound speed, co, each of those “virtual loudspeakers”
produces sound that sums in just the same way as the discrete end-fire line array in Sect. 12.7.1.
When the sound radiated by the first virtual loudspeaker propagates to the position of the second, the
two will be in-phase, and their amplitudes will add coherently. The sum then propagates to the third
location and adds in-phase and so on. This coherent addition along the direction of propagation
produces the linear growth in the second harmonic’s amplitude that was described in Eqs. (15.37)
and (15.43), as well as in Fig. 15.10. It also demonstrates the corresponding quadratic dependence on
the amplitude of the first-order field at any location.

15.3.3 Intermodulation Distortion and the Parametric End-Fire Array

The distortion of a single, initially sinusoidal plane wave is due to the wave’s own influence on the
medium through which it is propagating. The formalism of Eq. (15.56) makes it convenient to consider
the nonlinear interaction of two plane waves propagating in the same direction but having different
frequencies, ω# and ω". For simplicity, let both sound waves have equal amplitudes, ρ1.

At the linear level, they create a sound field that is simply their superposition.

ρ0 x, tð Þ ¼ ρ1 cos ω#t � k#x

 �þ cos ω"t � k"x


 ��  ð15:59Þ

The nonlinear source term in Eq. (15.56) is driven by the square of that linear superposition. Letting
a ¼ (ω#t � k#x) and b ¼ (ω"t � k"x), the drive can be expressed as the sum of five contributions.

ρ02 ¼ ρ21=2

 �

2þ cos 2að Þ þ cos 2bð Þ þ cos aþ bð Þ þ cos a� bð Þ½ � ð15:60Þ

Again, the constant term in the square brackets will be eliminated from the driving term by the
Laplacian in Eq. (15.56). The (2a) and (2b) terms represent the second harmonic distortion of the
individual wave produced by their self-interaction. The sum and difference terms, cos(a þ b)
and cos (a � b), are called intermodulation distortion products and represent the effect that one
wave has on the medium that the other wave is passing through.

Having already analyzed the self-distortion that creates the second harmonic distortion, our interest
will now be focused on two interacting waves. Those interacting waves will be called the pump waves
or primary waves. We will assume that their frequencies are closely spaced: |ω" � ω#|� (ω" þ ω#)/2.
These two colinear waves, as well as the products of their nonlinear interactions, are still all in
geometric resonance.

Fig. 15.11 Conceptual representation of the linear growth of the amplitude of the second harmonic with distance
produced by the inhomogeneous source term that drives the wave equation for the second-order acoustic density
deviations expressed in Eq. (15.56). The original pump-wave source “loudspeaker” is shown in bold lines and bold
fonts at the far left of this figure
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cph ¼ ω"

k
!
"

��� ��� ¼ ω#

k
!

#
��� ��� ¼ 2ω"

2 k
!
"

��� ��� ¼ 2ω#

2 k
!
#

��� ��� ¼ ω" þ ω#

k
!
" þ k

!
#

��� ��� ¼
ω" � ω#
�� ��
k
!
" � k

!
#

��� ��� ¼ co ð15:61Þ

In the absence of dispersion, if the two waves are not colinear, then the phase matching that is the
consequence of geometrical resonance does not occur, and the interaction does not produce waves that
propagate beyond the interaction volume [28].

Since the two “pump” or “primary”waves are assumed to be close in frequency, they have about the
same thermoviscous spatial attenuation coefficient, αT-V, resulting in a characteristic exponential decay
distance, ℓ ¼ (αT-V)

�1, as identified before in Sect. 15.1.3 for definition of the Gol’dberg number. Since
the bulk attenuation coefficient is proportional to the square of the frequency, the two self-distorted
second harmonic components will suffer exponential decay over a distance that is only one-fourth of ℓ,
as will the wave that is produced by the nonlinear interaction that creates a wave at the sum of the two
pump frequencies. The exponential decay of either of the pump waves is represented symbolically in
Fig. 10.12 (Left). The growth and subsequent exponential decay of the second harmonics and sum
waves are represented symbolically in Fig. 10.12 (right).

Although the waveform instability caused by nonlinear distortion had been understood since the
time of the American Civil War, it was not until 1963 that Peter Westervelt recognized that highly
directional receivers and transmitters of sound may be constructed by use of the nonlinearity in the
equations of hydrodynamics8 [29]. Although it had been known, both theoretically [30] and experi-
mentally [31], that two plane waves of different frequencies propagating in the same direction generate
two new waves at the sum and difference frequencies, it was not until Westervelt’s paper that the
practical utility of that difference-frequency wave was recognized.

As we know from the analysis of the radiation from baffled circular pistons in Sect. 12.8, it is
impossible to produce a narrow (i.e., directional) sound beam if the circumference of the radiating
piston, 2πa, is on the order of the wavelength, λ, of the sound being radiated, or smaller. This makes it
impossible to produce a directional sound beam at low frequencies from small vibrating surfaces. On
the other hand, if 2πa � λ, then the radiated sound will be confined to a narrow beam as quantified in
Eq. (12.108). Westervelt recognized that it was possible to use nonlinear acoustics to create a narrow
low-frequency beam through the interaction of two narrow high-frequency, high-amplitude sound
beams of slightly different frequencies. If the high-frequency beams interacted over a distance that was
much longer than the difference frequency wavelength, λdiff ¼ 2πco/(ω" � ω#), then the virtual array,
like that depicted symbolically in Fig. 15.11, would produce a directional low-frequency sound beam.

As long as the attenuation distance for the pump waves is longer than the wavelength of the
difference frequency wave, the difference frequency will be produced by the end-fire linear array from
the nonlinear interaction of the two pump waves and will have the directionality characteristic of the
pump wave’s directionality (see Fig. 15.15). The growth of the difference frequency wave will initially
be linear with distance (as it was for the second harmonic distortion derived in Sect. 15.2.2), but due to
the attenuation of the higher-frequency pump waves, depicted symbolically in Fig. 15.12 (left), the
difference wave will reach some limiting amplitude as shown in Fig. 15.13.

An array consisting of 30 40 kHz piezoelectric transducers, shown in Fig. 15.14, was built to
demonstrate the directionality of the difference-frequency beam. Fifteen of the transducers were wired
electrically in parallel and driven at ω#/2π¼ 37.5 kHz, and the other 15 were wired in parallel and
driven at ω"/2π¼39.5 kHz to produce a parametric array that would create a difference wave at

8Westervelt first presented his parametric array at a meeting of the Acoustical Society of America in Providence, RI, in
1960, J. Acoust. Soc. Am. 32, 934 (1960). The abstract for that presentation included an expression for the radiated
intensity of the difference-frequency beam.
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(ω" � ω#)/2π¼ 2.0 kHz. These two sub-arrays were interlaced so that the nearest neighbors to any
transducers driven at one of the frequencies would radiate at the other frequency.

That array is shown in Fig. 15.14. It has a height, h¼ 5 cm, and width, w ¼ 21 cm. This produces a
circular-equivalent effective radius, aeff ¼ (h þ w)/π ffi 8 cm. At 40 kHz, the pump wavelength is
λpump ffi 0.9 cm, so kaeff ffi 60, making the pump waves very directional at that frequency. Using the
directionality for a baffled piston in Eq. (12.108), the pump wave’s major lobe is confined within about
�3.6
. Since the array is rectangular rather than circular, the 40 kHz beam will be wider than this
circular approximation in the vertical direction and narrower in the horizontal direction.

The attenuation of a 40 kHz sound wave in air is strongly dependent upon humidity (see Fig. 14.5).
In dry air, the exponential absorption length, ℓ (0% RH) ¼ 23 m, while for a relative humidity of 60%,
ℓ (60% RH)¼ 2 m. The pump amplitude, p1ffi 20 Pa, so by Eq. (15.15), the shock inception distance is
DS ¼ 8 m, assuming no spreading. A conservative estimate of the effective low-frequency end-fire
array length, deff, might be 2 m, making the virtual line array’s value of kdiff deff ffi 36 for the 2.0 kHz
difference-frequency wave.

Although the directionality that can be achieved by the parametric array in this example is
impressive, the electroacoustic energy conversion efficiency is very poor. The difference-frequency
acoustic pressure amplitude, measured at 4 m from the source, was p2¼ 0.14 Paffi 74 dB re: 20 μParms.

Fig. 15.12 (Left) Symbolic representation of the exponential decay of the one-dimensional pump wave due to
thermoviscous attenuation. (Right) Symbolic representation of the growth and subsequent decay of the second harmonic
and sum waves generated by nonlinear processes. Since the frequencies of the second harmonics and the sum wave are
approximately twice that of the pump waves, the decay of these nonlinear products takes place over a characteristic
exponential decay distance that is one-fourth of that for the pump waves

-0.2

0.5 1 1.5 2

0.2

0.4

-0.4

Fig. 15.13 A directional low-frequency “difference wave” can be created by the nonlinear interaction of two “pump”
waves of slightly different frequency, like the wave shown in Fig. 15.12 (left). Since the pump wave attenuates with
distance from the source, the difference-frequency wave amplitude initially increases linearly with distance from the
source but eventually reaches a maximum amplitude before attenuating or spreading at greater distances
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At that distance, the beam’s cross-section was about 1 m2. The intensity corresponding to p2 ¼ 0.14 Pa
is 22 μW/m2. The electrical input power to the array was about 18 watts, so the net electroacoustic
conversion efficiency is just about one-part-per-million or approximately 0.0001%.

This increase in difference-frequency directionality and the low conversion efficiency is illustrated
in the directionality plots in Fig. 15.15 for a parametric end-fire array operating at pump frequencies of
22 kHz and 27 kHz to produce a 5 kHz difference-frequency wave in water. The efficiency is better
than in air due to the higher value of Γ in water and the higher acoustic pressures that could be
produced, but the ratio of the amplitude of the difference-frequency to the pump is quite low, as
demonstrated when both the pump and the difference frequency waves are plotted together in
Fig. 15.15 (left). The smaller-amplitude difference-frequency wave’s directionality is plotted by itself
in Fig. 15.15 (right). Comparison of the two graphs shows that the difference-frequency beam is only
slightly wider than the pump frequency beams.

Fig. 15.15 (Left) The directionality of the pump and of the difference-frequency waves is plotted on the same scale.
(Right) When the directionality of the difference-frequency wave is plotted by itself, it is clear that the directionality of
the difference-frequency wave is only slightly broader than the directionality of the pump waves

Fig. 15.14 Photograph of an array of 30 small piezoelectric transducers that is 5 cm tall and 21 cm wide. The array was
wired as two interlaced 15-element sub-arrays. One sub-array was driven at ω#/2π¼ 37.5 kHz and the other at ω"/
2π¼39.5 kHz to produce a difference-frequency wave at (ω" � ω#)/2π¼ 2.0 kHz. [Transducer and photo courtesy of
T. B. Gabrielson]
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The low conversion efficiencies of the parametric array are deemed acceptable for some niche
applications. Parametric arrays for use in air are being produced commercially, but I have some
trepidation about the possibility of detrimental physiological effects due to the very high pump-
wave amplitudes at frequencies that are above the normal range of human hearing. I’m not of the
opinion that “what you can’t hear, can’t hurt you.”

The ubiquity of such commercially available parametric arrays that are used to produce directional
sound in air (i.e., “audio spotlights”) has renewed interest in the potentially detrimental health effects
of high-amplitude ultrasound exposure and led to the publication of a Special Issue of the Journal of
the Acoustical Society of America that is focused on this subject [32].

We are currently in the undesirable situation where a member of the public can purchase a $20 device that can be
used to expose another human to sound pressure levels that are > 50 dB in excess of the maximum permissible
levels for public exposure.

Concern has been exacerbated by reports of the “weaponization” of high-amplitude ultrasound that
may have been used to injure diplomats at the US Embassy in Havana, Cuba [33], and elsewhere [34].

When I make measurements near such an ultrasound source (e.g., Fig. 15.14), I wear ear plugs and
place sound-attenuating earmuffs over my plugged ears. Other experimentalists who have not taken
such precautions have exhibited symptoms like dizziness and nausea.

15.3.4 Resonant Mode Conversion

So far, the concept of geometrical resonance has restricted the evolution of harmonic distortion or the
production of sum and difference waves to media that do not exhibit significant dispersion, as indicated
by Eq. (15.61). If there is dispersion, so dco/df 6¼ 0, then the some portions of the virtual array will start
to become out-of-phase with other portions, and the uniform linear increase in amplitude with distance
will become instead a “beating” where the amplitude would start growing and then start diminishing,
possibly repeating that alternation if the interaction length were sufficiently long, as some portions of
the virtual array subtract from the growth produced by other portions.

In this sub-section, two beams that are not colinear are allowed to interact to produce another wave
that travels at a different speed. That beating is illustrated by the measurements made in a waveguide of
rectangular cross-section, made by Hamilton and TenCate [38], shown in Fig. 15.16.

Fig. 15.16 The difference
frequency amplitude
vs. distance along a
waveguide showing the
“beating” created by the
dispersion caused by the
waveguide’s frequency-
dependent phase speed
when the difference
frequency, f2 ¼ 165 Hz,
propagates as a plane wave
and the two pump waves,
at f1 ¼ 2900 Hz and
f� ¼ 2735 Hz, propagate in
the lowest-frequency
non-plane wave mode [38]
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If the propagation speed of the nonlinear product is greater than the propagation speed of the pumps
and if the pump wavevectors are not colinear, there can be geometrical resonance (i.e., phase matching)
at a unique interaction angle. I like to call this a “scissors effect.” If we assume that there are two waves
of the same frequency, ω" ¼ ω# ¼ ω, but their wavevectors make a relative angle, θ, with each other,
then the phase speed of the “sum” wave will be higher than the phase speed of either pump (primary)
wave. This simple geometry is illustrated in Fig. 15.17.

cph ¼ ω" þ ω#

k
!

" þ k
!
#

��� ��� ¼ 2ω

2 k
!��� ��� cos θ=2ð Þ

¼ co
cos θ=2ð Þ � co ð15:62Þ

This is similar to a scissors in that the speed of the intersection of the two blades moves faster than
the speed at which the tips of the blades approach each other.

As introduced in Sect. 5.1.1, the speed of longitudinal waves in bulk solids is cL ¼ ffiffiffiffiffiffiffiffiffi
D=ρ

p
, where

D is the dilatational modulus, also known as the modulus of unilateral compression (see Sect. 4.2.2).
Shear waves in bulk isotropic solids propagate at the shear wave speed, cS ¼

ffiffiffiffiffiffiffiffiffi
G=ρ

p
, where G is the

material’s shear modulus (see Sect. 4.2.3). The relationship between the moduli of any isotropic solid,
summarized in Table 4.1, allows the relationship between those two sound speeds to be expressed in
terms of the solid’s Poisson’s ratio, ν, and its Young’s modulus, E.

c2S ¼
G
ρ
¼ E

2ρ 1þ νð Þ < c2L ¼ D
ρ
¼ E 1� νð Þ

ρ 1þ νð Þ 1� 2νð Þ ð15:63Þ

The stability criterion discussed in Sect. 4.2.3 restricts positive values of Poisson’s ratio to ν < ½,
thus guaranteeing that cL > cS.

Based on the phase speed increase calculated for the interaction of two waves that are not colinear in
Eq. (15.62) and the fact that cL > cS, it would be possible to have two shear waves interact though
nonlinearity to produce the faster longitudinal wave where the mode-conversion interaction angle, θmc,
is determined by the Poisson’s ratio of the solid in which the two shear waves are interacting.

cos
θmc
2

� �
¼ cS

cL
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2νð Þ
2 1� νð Þ

s
< 1 ð15:64Þ

For polycrystalline aluminum, νAl ¼ 0.345 [35], so cos (θmc /2) ¼ 0.486. The required angle
between the two shear wavevectors in aluminum must be θmc ¼ 122
 to make the interaction phase
speed in Eq. (15.62) satisfies geometrical resonance for nonlinear mode conversion that couples two
shear waves, each at frequency, ω, to a longitudinal wave with frequency 2ω.

Fig. 15.17 Two pump
waves of the same
frequency interact at an
angle, θ. If θ 6¼ 0
, the
vector sum of their
wavevectors will be less
than the sums of their
wavenumbers

726 15 Nonlinear Acoustics



Resonant mode conversion in solids was first described theoretically by Jones and Kobett [36] and
observed experimentally shortly thereafter in aluminum, by Rollins, Taylor, and Todd, at the interac-
tion angle predicted in Eq. (15.64) [37].

Another opportunity for resonant mode conversion is afforded by inspection of Fig. 15.5. From 1 K
to 2 K, second (thermal) sound has a speed, c2, of about 20 m/s, while the speed of first (compressional)
sound, c1, is around 230 m/s. Two second sound waves that are almost anti-colinear could have an
interaction phase speed equal to that of first sound. Using the geometry of Fig. 15.16, the mode
conversion half-angle, at temperatures below Tλ ¼ 2.172 K, depends upon the velocity ratio.

cos
θmc
2

� �
¼ c2 Tð Þ

c1 Tð Þ  0:10 ð15:65Þ

This suggests that θmc will be close to 180
.
A waveguide of rectangular cross-section affords an ideal geometry to provide a long interaction

length while also affording precise control of the mode conversion angle for two plane waves of second
sound. In a waveguide, the interaction angle of the two traveling plane waves (see Fig. 13.23) is
controlled by the ratio of the drive frequency to the cut-off frequency. From Fig. 15.17 and Eq. (13.69),
the mode-conversion interaction half-angle, θmc/2, is related to the ratio of the second sound drive
frequency, ω, to the cut-off frequency of the waveguide’s first non-plane wave mode, ωco.

cos
θmc
2

� �
¼

k
!��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2z

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2

co

ω2

r
ð15:66Þ

As shown in Fig. 15.18, if the height of the waveguide is ℓz, then the cut-off frequency would
correspond to a single half-wavelength of second sound being equal to the waveguide’s height:
ωco ¼ πc2/ℓz. Substitution of Eq. (15.65) into Eq. (15.66) determines the ratio of the second sound
frequency necessary for resonant mode conversion, ωmc, to the waveguide’s cut-off frequency, ωco.

ωco

ωmc
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c22

c21

s
< 1 ð15:67Þ

Of course, it is necessary to do this experiment in superfluid helium at temperatures below Tλ, since
second sound provides the pump (primary) waves, as well as to have an adequate nonlinear interaction

Fig. 15.18 A waveguide can provide precise control of the interaction angle, θ, of the two second sound traveling plane
waves that satisfy the waveguide’s boundary conditions, since the ratio of the frequency to the cut-off frequency controls
the interaction angle
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length to observe this resonant mode conversion of second sound to first sound. Those two constraints
led to the use of a spiral waveguide shown in Fig. 15.18 (left). Sum and difference waves generated by
non-colinear waves in an air-filled waveguide of rectangular cross-section that were not geometrically
resonant are shown in Fig. 15.16 that were measured by Hamilton and TenCate [38].

Landau’s two-fluid description of superfluid helium requires eight variables [39]. In addition to the
two thermodynamic variables, two separate velocity fields are necessary to describe the motion of the
superfluid component and of the normal fluid component, v

!
s and v

!
n . This makes the second-order

wave equation for the nonlinear acoustic interactions more complicated than Eq. (15.56), but the
inhomogeneous form, which provides a wave Eq. (15.68) to describe the space-time evolution of the
second-order pressure, p2, is still driven by quadratic combinations of the first-order sound fields
produced by first sound (v21 and p21), second sound(T2

1 and w2
1), or their interaction ( p1T1) [15].

∂2p2
∂t2

� c21∇
2p2 ¼ c21

∂2

∂ri∂r j
ρviv j þ ρnρs

ρ
wiw j

� ��
� 1
2

∂2ρ
∂p2

� �
∂2p21
∂t2

� 1
2

∂2ρ

∂T2

� �
∂2T2

1

∂t2
� ∂2ρ

∂p∂T

� �
∂2 p1T1ð Þ

∂t2
� ∂ρ

∂w2

� �
∂2 w2ð Þ
∂t2

# ð15:68Þ

Since there are two velocity fields, Eq. (15.68) expresses the fluid’s motion in terms of the center-of-
mass velocity, v!, which is nearly zero for second sound and w! ¼ v

!
n � v

!
s, which is nearly zero for first

sound. Because w2 is a Galilean invariant (i.e., its value is not dependent on the motion of the
coordinate system), it is also a thermodynamic variable, as evidenced by the partial derivative in the
final term in Eq. (15.68).

Resonant mode conversion of second sound to first sound was observed experimentally from
1.15 K < Tm < 2.0 K using the spiral waveguide and heater shown in Fig. 15.19 (Right) [40].

Fig. 15.19 (Left) A spiral waveguide shown with the lid that housed the first and second sound sensors (microphones)
removed. The depth of the waveguide, Lz ¼ 14.73 mm, and the width, Ly ¼ 4.8 mm. The edge length of the square block
into which the spiral groove was cut is 12.7 cm. The total length of the spiral is 150 cm, and a wedge absorber, visible
near the waveguide’s center, occupies the final 60 cm. (Right) Second sound is generated by periodically heating the
superfluid. This heater consists of two individual NiCr resistance wire elements with a nearly sinusoidal profile to
optimize coupling to the first non-plane waveguide (height) mode. Due to the frequency doubling produced when the
heaters are driven with an AC current, the two heater halves were driven 90
 out-of-phase (electrically) at one-half the
mode conversion frequency
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15.4 Non-zero Time-Averaged Effects

Nonlinear acoustical effects are driven by quadratic combinations of first-order sound fields. When the
first-order sound field was squared to produce Eq. (15.57), the constant term was ignored because it
was operated upon by a Laplacian to produce the virtual sources that drove the inhomogeneous wave
equation for the propagation of the second-order sound field. In this sub-section, the effects of that
constant term will be explored, first with a focus on the square of the first-order particle velocity, v1,
initially restricting our analysis to one-dimensional propagating plane waves.

v21 x, tð Þ ¼ v02 cos 2 ω t � kxð Þ ¼ v02

2
1þ cos 2 ω t � kxð Þ½ � ð15:69Þ

Since the first-order acoustic fields have a sinusoidal time dependence, their time-averaged values
must vanish over times that are long compared to the periods of such disturbances, T � 2π/ω.

p1h it ¼
1
T

ðT
0
p1 dt ¼ 0 ð15:70Þ

The second-order terms, like the squared velocity in Eq. (15.69), that contain a constant term, will
produce time-averaged second-order pressures that will not vanish: hp2it 6¼ 0. These second-order
non-zero time-averaged pressures can produce substantial forces [41] and torques [42] on objects that
are within the sound field. As early as the 1940s, Hillary St. Clair was able to levitate copper pennies
(ρCu ¼ 8.9 gm/cm3) [43]. Using an intense sound field produced by a siren and a reflector, Allen and
Rudnick were able to repeat St. Clair’s demonstration:

“When a number of pennies are placed on a stretched silk screen, the parameters can be so adjusted that the
pennies do somersaults with “Rockette“-like precision; or so that a penny can be made to rise slowly to a vertical
position, appearing all the while to be supporting, acrobatically, another which finally assumes a horizontal
position above the first penny touching rim to rim. Also, coins resting on the silk screen can be flipped a distance
of a few feet by varying the frequency of the siren rapidly.” [44]

15.4.1 The Second-Order Pressure in an Adiabatic Compression

Nonlinear distortion, the generation of harmonics, and the “scattering of sound by sound” were
attributed to the fact that a wave will modify the properties of the medium through which it is
propagating. To start our investigation of non-zero time-averaged effects, it will be instructive to
consider the piston of area, Apist, in a close-fitted cylinder that is filled with an ideal gas at equilibrium
pressure, pm. With the piston in its equilibrium position, designated as x¼ 0, the equilibrium volume of
the gas in the cylinder will be Vo ¼ Apist L, where L is the length of the cylinder from the rigid end
located at x ¼ L to the piston’s equilibrium position. This arrangement is identical to that depicted
schematically in Fig. 8.5.

If the gas inside the cylinder obeys the Adiabatic Gas Law and if the motion of the piston is
sinusoidal, with the piston’s position given by x(t) ¼ x1 sin (ω t), then the pressure within the cylinder
will be uniform throughout and given by the Adiabatic Gas Law as long as

ffiffiffiffiffiffiffiffiffi
Apist

p � λ=2π ¼
co=ω and L � co=ω , so that the cylinder can be treated as a “lumped element,” where co ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂p=∂ρð Þs
p

is the speed of sound under equilibrium conditions.
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pV γ ¼ const: ) p1 tð Þ
pm

¼ �γ
δV
Vo

¼ �γ
�Apistx1 sin ω tð Þ

ApistL

) p1 tð Þ ¼ γpm
x1 sin ω tð Þ

L
� p1 sin ω tð Þ

ð15:71Þ

This is the familiar “linear” result; a sinusoidal variation in the piston’s position leads to a sinusoidal
variation of the pressure within the cylinder. Such a result assumes that x1/L� 1, so the motion of the
piston does not affect the volume, Vo, that appears in Eq. (15.71). Of course, that is not exactly true. As
the ratio of x1 to L increases, the importance of the piston’s instantaneous position on the value of the
volume of the gas becomes more influential. It is easy to take the change in the cylinder’s volume into
account. When the piston moves inward, it sweeps out a volume, δV(t) ¼ �Apist x(t), which should be
subtracted from the equilibrium volume, Vo.

p tð Þ ¼ �γpm
δV

Vo 1� δV
Vo

� � ffi �γpm
δV
Vo

1þ δV
Vo

� �
¼ �γpm

δV
Vo

þ δV
Vo

� �2
" #

ð15:72Þ

Taking the time-average of the pressure over a period, T, the linear term vanishes, but the quadratic
term produces a non-zero time-averaged pressure, hp2it, since sin2(ω t) ¼ ½[1 � sin (2ω t)].

p2h it ¼
γpm
2T

x1
L

� �2
ðT
0
1� cos 2ω tð Þ½ �dt ¼ γpm

2
x1
L

� �2
ð15:73Þ

The integral over the component oscillating at 2ω will vanish but the constant component will not.
That time-averaged excess pressure will tend to push the piston away from the closed end of the
cylinder. This effect produces “piston walk” in Stirling cycle machines.

This time-averaged pressure can be expressed in terms of the first-order pressure calculated in
Eq. (15.71): x1=L ¼ p1=γpm ¼ p1=ρmc

2
o, if the cylinder contains an ideal gas.

p2h it ¼
p21

2ρmc2o
ð15:74Þ

In this form, it is clear that the non-zero time-averaged pressure is quadratic in the first-order
pressure. It is also useful to recognize that this result is equal to the potential energy density as derived
from the energy conservation Eq. (10.35).

As with the results of weak shock theory in Sect. 15.2, it is the effects of the piston’s position on the
volume that appears in the Adiabatic Gas Law of Eq. (15.72) that produces corrections to the linear
result. The creation of a net second-order pressure is due to the asymmetry produced by the fact that the
average volume on compression of a piston is smaller than the average volume during expansion.

Application of this result to a one-dimensional standing wave resonator is straightforward. Within
the resonator, the first-order pressure can be written as p1 x, tð Þ ¼ ℜe bp cos nπx=Lð Þejω t½ �. Close to the
end at x¼ 0, the first-order acoustic pressure is nearly independent of position, just as it is in the piston
and cylinder example. By the Euler equation, the longitudinal particle velocity can be written as
v1 x, tð Þ ¼ ℜe j bp=ρmcoð Þ sin nπx=Lð Þejω t½ � � �v1 sin nπx=Lð Þ sin ω t þ φð Þ , so the particle velocity
goes linearly to zero as x goes to L, just as it does in the piston and cylinder example. This situation
near to the rigid end of the resonator (or close to any standing wave pressure anti-node) can be
represented by an imaginary line (i.e., a Lagrangian marker) that moves with the gas, acting as the
piston while neglecting the remaining gas in the resonator.

In a sealed resonator, the total mass of the gas cannot change. If the static pressure at the rigid ends
(as well as at any pressure anti-node for higher-order longitudinal modes of the resonator, n > 1)
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increases by the amount specified in Eq. (15.74), then the density of the gas must also increase in those
locations. For that to happen in a sealed system, the gas density (and pressure) must decrease
elsewhere.

In a standing wave, the amplitude of the gas particle velocity at a pressure node (velocity anti-node)
is v1 ¼ p1/ρmco, so if the total mass of the gas cannot change, then the non-zero, second-order, time-
averaged pressure at the first-order pressure node must be equal and opposite to the value in Eq. (15.74)
and can be re-written in terms of v1.

p2h it ¼ � p21
2ρmc2o

¼ � ½ð Þρmv21 at a pressure node ð15:75Þ

In this form, it is clear that the non-zero time-averaged pressure is quadratic in the first-order
velocity amplitude. It is also useful to recognize that this result is equal to the kinetic energy density at
the velocity anti-node as derived from the energy conservation Eq. (10.35). It also has the functional
form of the Bernoulli pressure.

The relationship between the second-order time-averaged pressure [45], also known as the radia-
tion pressure, and the kinetic and potential energy densities will be derived from the hydrodynamic
equations in Sect. 15.4.4 after examining a few examples of the acoustical consequences produced by
the Bernoulli pressure in the following sub-section and in Sect. 15.4.3.

15.4.2 The Bernoulli Pressure

The first introduction in this textbook to the Bernoulli pressure9 was provided in the analysis of the
Venturi tube (see Sect. 8.4.1) that was intended to aid in the understanding of the convective term in the
total hydrodynamic derivative in Eq. (8.33). This resulted in the introduction of a pressure gradient
produced in the tube that was driven by the square of the fluid’s velocity, v2.

p ¼ pm � 1
2
ρmv

2 ð15:76Þ

Since the Bernoulli pressure is proportional to the square of the fluid’s velocity, it is independent of
the direction of flow. For the oscillatory velocities that are produced by sound waves, this means that
the time-averaged Bernoulli pressure will be non-zero.

The effects of the Bernoulli pressure for oscillatory flows produced by sound waves were
recognized and understood by Lord Rayleigh. The Kundt’s tube was a popular piece of acoustic
apparatus that produced high-amplitude standing waves by stroking a rod that would excite longitudi-
nal vibrations and couple those vibrations to the air contained in a transparent glass tube [46]. Cork
dust or lycopodium seeds were commonly used to visualize the sound field by “decorating” velocity
anti-nodes. Figure 8.14 shows cork dust striations in the neck of a resonator that is excited in its
Helmholtz mode, fo ¼ 210 Hz (left), and at a frequency, f1 ¼ 1240 Hz, that excited a half-wavelength
standing wave in the neck (right) [47].

9 Daniel Bernoulli (1700–1782) was a Dutch physicist and mathematician who published Hydrodynamica in 1738 that
provided the basis of the kinetic theory of gases which he applied to explain Boyle’s law. He was also well known for
early development of elasticity theory with Leonard Euler, an effort recognized to this day by the fact that Eq. (5.36) is
called Euler-Bernoulli beam equation.
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Rayleigh recognized that two small particles of sufficient mass to remain stationary within the
oscillatory flow field, due to their inertia,10 would be attracted to each other because the oscillatory air
flow must accelerate as it passes between the constrictions produced by the adjacent particles. By
Eq. (15.76), the increased fluid velocity between the particles results in a lower pressure so that the
resultant pressure gradient would drive the particles together.

The figure taken from Rayleigh’s Theory of Sound that diagrams this attraction is shown in
Fig. 15.20 (center). This effect, known as acoustic agglomeration, has been used in several applications
where removal of larger clusters of smaller particles from a fluid is easier than the removal of smaller
individual particles [48]. More recently, “acoustic agglomeration” has been used for separation of
biological cells grown in bioreactors from their nutrient liquid [49].

Rayleigh makes a similar argument, as also illustrated in Fig. 15.20 (left), to explain the striations of
the dust particles agglomerated in planes that are normal to the oscillatory flow. When two particles
(or planes of particles) are separated along the direction of the oscillatory flow, the stagnation of the
fluid between them produces an increase in the time-averaged pressure that causes the particles
(or planes of particles) to repel each other, as clearly visible in the striations seen in Fig. 8.14.

Another interesting manifestation of the Bernoulli pressure was mentioned by Rayleigh in regard to
the forces on a Helmholtz resonator. The fluid’s velocity in the neck of a Helmholtz resonator is high.

Fig. 15.20 Three figures taken from Rayleigh’s Theory of Sound, Vol. II [50]. (Left) In Fig. 54b, two particles are
oriented along the direction of oscillatory flow indicated by the double-headed arrow. Since the flow is occluded between
the two spheres, the time-averaged pressure is greater between the particles causing them to repel. (Center) When the
same two particles are oriented normal to the oscillatory flow in Fig. 54c, the increase in the velocity between the two
produces a lower pressure that causes the two particles to attract each other. (Right) A rigid disk is placed at 45
 with
respect to the oscillatory flow

10 The motion of a small particle in a sound field will depend upon the competition between the particle’s inertia (mass),
which tends to make it remain stationary in the laboratory frame of reference, and the Stokes drag due to the viscosity of
the medium which tends to force the particle to move along with the acoustically oscillating fluid. The inertial force is
given by Newton’s Second Law, Finertia ¼ m (dv1/dt), and the Stokes drag force on a spherical particle of radius, a,
(at sufficiently low Reynolds number) is Fdrag ¼ 6πμav1. Their dimensionless ratio will determine if the particle moves
with the fluid or if the fluid moves around the particle. That ratio can be written for a spherical particle with mass density,
ρ, and sound with frequency, f.

Finertia

Fdrag
¼ 4π

9
a2f ρ
μ

For a particle with the density of water (ρ¼ 103 kg/m3), in air with μffi 1.8 x 10�5 Pa-s, and then at 100 Hz, that ratio is
one for a spherical particle with a radius of about 10 microns. A larger radius particle, like cork dust, coffee whitener, or a
seed, will remain nearly stationary in the laboratory frame, and the fluid will oscillate around it, while a much smaller
particle, like smoke, will move with the fluid.
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Based on Eq. (15.76), this suggests that the pressure in the neck must be reduced. Since the neck is in
direct contact with an effectively infinite reservoir of atmospheric pressure, the only means by which
the required pressure difference can be maintained is if the static time-averaged pressure within the
compliance (volume) of the Helmholtz resonator is greater than atmospheric pressure.

This second-order, acoustically induced pressure difference, hp2it, will lead to a net force on the
Helmholtz resonator since the pressure on the surfaces of the volume are unbalanced over the cross-
sectional area, πa2neck , of the neck:Fnet ¼ πa2neck p2 v2neck


 �� �
t.

“Among the phenomena of the second order which admit of a ready explanation, a prominent place must be
assigned to the repulsion of resonators discovered independently by Dvořák [51] and Meyer [52]. These observers
found that an air resonator of any kind when exposed to a powerful source experiences a force directed inwards
from the mouth, somewhat after the manner of a rocket. A combination of four light resonators, mounted
anemometer fashion upon a steel point, may be caused to revolve continuously.” [53]

Apparently, an acoustical demonstration of the nonlinear force on a resonator that resembles a lawn
sprinkler, shown in Fig. 15.21, from [52], was well known to RaylTheir dimensionless eigh.11 This
effect can be observed in a quantitative way by placing a Helmholtz resonator on a sensitive balance
and producing a large amplitude sound field in the vicinity using a loudspeaker driven at the Helmholtz
resonance frequency and then observing the increase in the resonator’s apparent weight to do “the
rocket.”

15.4.3 The Rayleigh Disk

The Bernoulli pressure of Eq. (15.76) can also exert torques, N v21

 �

, on an extended object placed in an
oscillatory flow field. Rayleigh’s diagram of such a disk that is aligned at about 45
 with respect to the

Fig. 15.21 Apparatus
drawing, taken from
Dvořák [52], showing “four
very light paper or glass
[Helmholtz] resonators
upon two wooden rods, o p,
q r, crossing at right angles,
and balanced on a glass cap;
all the openings of the
resonators fronting one side
in the direction of tangents.
The whole apparatus is
placed before the
opening, K, of the
resonating box and fork, in
the manner indicated”

11 Video demonstrations of several of the non-zero, time-averaged effects in this section were recorded at the 100th

meeting of the Acoustical Society of America held in Los Angeles, CA, in 1988. This video is included in the second disk
of the Collected Works of Distinguished Acousticians—Isadore Rudnick, compiled by J. D. Maynard and S. L. Garrett
(Acoust. Soc. Am., 2011); https://www.abdi-ecommerce10.com/ASA/p-230-collected-works-of-distinguished-
acousticians.aspx.
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flow field is shown in Fig. 15.20 (right). That figure captures the flow at an instant when it is moving
from right to left, as indicated by the arrows. The approaching flow stagnates between A and B where it
diverges, and the receding flow stagnates on the other side of the disk between C and Q where it
rejoins. On the inflow side of the desk, the flowmust accelerate along A-Q-C as the two flows converge
on the outflow side at P. The stagnant flow between A and B on the inflow side and between C and Q
on the outflow side has a higher pressure than the faster-moving flows at the same locations on the
opposite sides of the disk. This produces a net torque that tends to orient the disk perpendicular to the
flow, regardless of the flow direction.

An appreciation for the magnitude of this torque can be obtained by calculation of the moment of
the Bernoulli pressure in Eq. (15.76) over both sides of a disk having radius, a, assuming the presence
of the disk does not perturb the sound field.12 The circle in Fig. 4.11 that was used to calculate the
radius of gyration for beam flexure will provide the coordinate system for this integration.

N ¼
ða
0
p2h itr dS ¼ 4

ða
0

ρm v21
� �

t

2
h 2h cos θ½ � dh

¼ 4ρm v21
� �

t

ðπ=2
0

a sin θð Þ2a cos θ dθ ¼ 4
3
ρm v21

� �
t
a3

ð15:77Þ

If the disk is assumed to be suspended by a torsion fiber in the oscillatory flow, then the torque will
be zero when the surface of the disk is perpendicular to the flow or when the surface of the disk is
aligned with the flow. If the angle between the normal to the disk’s surface is designated θ, then the
torque will be zero when θ ¼ 0
 (occluding the flow) or when θ ¼ 90
 (aligned with the flow), except
that the θ ¼ 90
 orientation will be unstable. If the disk is aligned with the flow and its orientation
deviates slightly from θ ¼ 90
, then the torque will cause the disk to seek the θ ¼ 0
 orientation. If the
disk is in the θ ¼ 0
, any small deviation in θ will subject the disk to a torque that will tend to restore
the θ ¼ 0
 orientation.

Based on the magnitude of the torque in Eq. (15.77) and the previous stability argument, the torque
as a function of the square of the time-averaged oscillatory velocity amplitude, v21

� �
t
, and the orienta-

tion angle can be written in the form that appears in Theory of Sound, which Rayleigh attributes to
König [54].

N θð Þ ¼ 4
3
ρm v21

� �
ta

3 sin 2θ ð15:78Þ

Rayleigh recognized that “Upon this principle an instrument may be constructed for measuring the
intensities of aerial vibrations of selected pitch” and suggests that the disk be a mirror suspended by a
silk thread so a light beam could be used as an optical lever (see Sect. 2.4.4) to determine the disk’s
orientation [55].

Prior to the introduction of the reciprocity method for calibration of reversible transducers (see Sect.
10.7.2, 10.7.3 and 10.7.4), the Rayleigh disk was a primary technique for determination of acoustic
sound field amplitudes [56]. Due to its importance, a detailed analysis of the torque was made by King
to include corrections produced by the disk’s influence on the sound field [57]. The torque on a
Rayleigh disk located at a velocity anti-node in a standing wave field included wavelength-dependent

12 This assumption is not as bad as it seems since the Bernoulli pressure, as described in Eq. (15.76), is only valid along a
streamline. The streamlines in Fig. 15.20 (right) will follow the contours of the disk accounting for the fact that simple
results of Eqs. (15.77) and (15.78) are very nearly the correct result.
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corrections for the disk’s mass, m1, as well as the disk’s hydrodynamic (inertial) entrained mass,
mo ¼ (8/3)ρma

3, as calculated in Eq. (12.126).

Nanti�node θð Þ ¼ 4
3
ρm v21

� �
t
a3 sin 2θ

m1 1þ 2
5 kað Þ2 cos 22θ

h i
m1 þ mo 1þ 1

5 kað Þ2
h i

8<:
9=; ð15:79Þ

The indifference of the sign of the torque produced by flow in either direction was important in
establishing the physical reality of Landau’s two-fluid theory of superfluid hydrodynamics.5 As
mentioned briefly in Sects. 15.1.2 and 15.3.4, there are two velocity fields necessary to characterize
the dynamics of superfluid flow, v!s and v

!
n . In a thermally induced second sound wave, the

superfluid’s center-of-mass velocity is zero, but the counterflow of v!s and v
!
nis non-zero.

Since the Rayleigh disk responds to the torque of both flow fields without respect to their direction,
Pellam and Hanson were able to establish the physical existence of both velocity fields and make the
first mechanical measurement of second sound in superfluid helium [58]. Later, Koehler and Pellam
were also able to measure the superfluid fraction, ρs/ρ, as a function of temperature using their
Rayleigh disk [59]. Both measurements employed a mirror as the disk to detect the disk’s deflection
optically. Later measurements of torques in superfluids used a nonoptical method to determine the
Rayleigh disk’s orientation [60].

15.4.4 Radiation Pressure

Restricting attention to one dimension, the Bernoulli pressure can be derived from the Euler
Eq. (15.48).

∂v
∂t

þ v
∂v
∂x

¼ � 1
ρm

∂p
∂x

ð15:80Þ

The goal will be to express Eq. (15.80) entirely in terms of the gradient of a scalar, so it is useful to
introduce the specific enthalpy (heat) function (see Sect. 14.2), h ¼ ε þ pV, where ε is the fluid’s
internal energy per unit volume (see Sect. 7.1.2): dε ¼ dU/V.

dh ¼ dεþ p dV þ V dp ð15:81Þ
Using the definition of the internal energy from Eq. (7.10), dε ¼ T ds – p dV, the pressure gradient

can be expressed in terms of the specific enthalpy, dh ¼ dp/ρm, and the product rule can be invoked to
consolidate the convective contribution.

∂v
∂t

þ 1
2
∂v2

∂x
¼ �∂h

∂x
ð15:82Þ

Having started with the Euler equation, the effects of viscosity have already been eliminated, so the
Kelvin circulation theorem guarantees that the velocity field will be curl free; thus it can be expressed

as the gradient of a scalar, ϕ, known as the velocity potential: v! ¼ ∇
!
ϕ [61].

∂
∂x

∂ϕ
∂t

þ v2

2
þ h

� �
¼ 0 ð15:83Þ
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Since the argument within the gradient in Eq. (15.83) is equal to zero, the function within the
gradient must be a constant everywhere throughout the fluid.

∂ϕ
∂t

þ v2

2
þ h ¼ constant ð15:84Þ

This is the “strong” form of Bernoulli’s equation, since it is not restricted only to streamlines, as it
was for the version introduced in Eq. (15.76).

To retain accuracy to second-order, the specific enthalpy must also be expanded to second-order.

h ¼ ho þ ∂h
∂p

� �
s

p1 þ p2ð Þ þ ∂2h
∂p2

� �
s

p21
2

ð15:85Þ

These thermodynamic derivatives can be evaluated for adiabatic processes, dS ¼ 0, from the
differential form of the specific enthalpy: dh ¼ T dS � dp/ρm.

∂ϕ
∂t

þ v2

2
þ ho þ p1 þ p2ð Þ

ρm
� 1
2

p21
ρ2mc

2
o
¼ constant ð15:86Þ

In this sub-section, we are only interested in the parts of Eq. (15.86) which produce a non-zero time-
average. As in Eq. (15.70), the time-average of first-order variations will vanish: h∂ϕ/∂tit ¼ hp1it ¼ 0.

p2h it ¼
1
2

p21
ρmc2o

� 1
2
ρmv

2
1 þ constant ð15:87Þ

The second-order time-averaged pressure is the difference between the potential and kinetic energy
densities. In classical mechanics, that combination is known as the Lagrangian density [62].

For a collimated traveling wave of the usual form,13 p1(x, t) ¼ p1 cos (ω t � kx), the linearized
Euler’s equation provides the ubiquitous relationship between the first-order acoustic field variables:
p1 ¼ ρmcov1. That relationship can then be substituted into Eq. (15.87).

p2h it ¼
1
2

p21
ρmc2o

� 1
2

p21
ρmc2o

¼ 0 ð15:88Þ

This result is oddly both philosophically significant and trivially obvious. If there were an object in
the traveling-wave field, it would scatter some portion of the sound (see Sects. 12.6.1 and 12.6.2), and
the sum of the scattered and incident wave fields would produce a standing wave. If the field is entirely
a traveling wave, then that wave field cannot include an “object” which would feel the force of a time-
averaged second-order pressure based on the object’s density and/or compressibility contrast.

15.4.5 Acoustic Levitation in Standing Waves

The result for the time-averaged second-order pressure in Eq. (15.87) can also be evaluated for a
standing wave.

13 For a plane wave of infinite extent, the constant in Eq. (15.87) cannot be set to zero as it has to produce Eq. (15.88).
This is discussed in C. P. Lee and T. G. Wang, “Acoustic radiation pressure,” J. Acoust. Soc. Am. 94(2), 1099–1109
(1993).
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p1 x, tð Þ ¼ p0 cos kxð Þ cos ω tð Þ and v1 x, tð Þ ¼ p0

ρmco
sin kxð Þ cos ω tð Þ ð15:89Þ

Substitution of Eq. (15.89) into (15.87) produces the time-averaged second-order pressure distribu-
tion for a standing wave in an ideal gas where ρmc

2
o ¼ γpm.

p2 x, tð Þh it ¼
1
4

p02
ρmc2o

cos 2 kxð Þ � sin 2 kxð Þ�  ¼ 1
4

p02
γpm

cos 2kxð Þ ð15:90Þ

A standing wave produces a time-averaged (i.e., static) second-order pressure distribution. Due to
the spatial dependence on cos (2kx), there is a minimum in the second-order pressure at the location of
each pressure node, thus at each velocity anti-node and a maximum one-quarter wavelength from that
minimum. This is consistent with the second-order piston example used as an introduction to non-zero
time-averaged effects in Sect. 15.4.1.

This second-order time-averaged pressure distribution produces pressure gradients that are fixed in
space and time and will exert forces on solid objects of non-zero thickness. The force on an object at
either the maximum or the minimum in hp2it will be zero, but that equilibrium will be unstable at the
maximum. If a levitated object is displaced slightly from the maximum, it will be forced toward the
minimum in hp2it that occurs at a first-order velocity anti-node which has the lowest pressure, due to
Bernoulli.

The integrated pressure over a small sphere of radius, a� λ, will produce a force, Fsphere, that is, a
function of the sphere’s location in the standing wave field.

Fsphere ¼ 4πa2

3
p02

ρmc2o
kað Þ sin 2kxð Þ ¼ kV sphere

p0ð Þ2
2ρmc2o

sin 2kxð Þ ð15:91Þ

Rudnick provided a clever confirmation of this result in a simple standing wave tube that measured
the angle of displacement of small spheres suspended by “a hair” due to the standing wave [63]. The
integrated pressure over a small disk of thickness, t, and radius, a, will produce a force, Fdisk, that is, a
function of the disk’s location

Fdisk ¼ πa2

2
p02

ρmc2o
ktð Þ sin 2kxð Þ ¼ kVdisk

p0ð Þ2
2ρmc2o

sin 2kxð Þ ð15:92Þ

To levitate a small sphere made of a material with a mass density, ρsphere, against the force of
gravity, the weight of the sphere must be cancelled by the levitation force. This requires that the square
of the first-order standing wave pressure field amplitude, p02, exceed a minimum value, p02min.

p02min > γpmρsphere
gλ
π

ð15:93Þ

When this criterion is satisfied, then the position of the sphere will adjust itself within the (vertical)
standing wave field to make the net force on the sphere be zero at some location below a velocity anti-
node. The stability of that equilibrium will be the subject of Sect. 15.4.6.

Of course, the levitated object does not have to be either a sphere or a disk. As shown in Fig. 15.22,
almost any small object can be suspended against the force of gravity if the amplitude of the standing
wave sound field is sufficient.
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15.4.6 Adiabatic Invariance and the Levitation Force

In the previous sub-section, the influence of the object being levitated by the standing wave on the
response of the resonator was ignored. As will now be demonstrated, the perturbation of the
resonator’s normal mode frequency caused by an object will provide an alternative method to predict
the levitation force by use of adiabatic invariance and without the necessity of integrating the pressure
gradient around the object. In the subsequent sub-section, the feedback between the radiation force and
the object’s influence on the resonance frequency will also have significant impact on the stability of
the levitated object in a resonator that is driven at a constant frequency.

Throughout this text, the concept of adiabatic invariance [64] has been utilized when it was
convenient to relate changes in a system’s constraints (e.g., boundary conditions) to one or more of
that system’s normal mode frequencies. Now adiabatic invariance will be applied in the same way (i.e.,
the “variable constraint” being the position of the object in the sound field) to a one-dimensional
standing wave tube’s resonance frequencies that are perturbed by an incompressible obstacle that can
be placed anywhere within the resonator of length, L, and cross-sectional area, A.

It is assumed that the obstacle of volume, V, shown as a small cube in Fig. 15.23 (left), has
dimensions that are all much smaller than the wavelength, λn, of any normal mode of interest:ffiffiffiffi
V3

p � λn . Because the obstacle is located at a pressure anti-node (velocity node) in Fig. 15.23
(left), the excluded (incompressible) volume “stiffens” the gas springiness at that rigid end and raises
the unperturbed (empty resonator) frequency, f1, of the fundamental (n ¼ 1) mode:f1 ¼ co/2L.

To estimate the increase in frequency caused by the obstacle when it is near a pressure anti-node
(velocity node), we can use the same trick that simplified the calculation of the frequency shift caused
by the deposition of a thin layer of gold that lowered the fundamental frequency of a quartz microbal-
ance in Sect. 5.1.2 due to its additional mass loading. Let the cube be made of wax. If the wax were
melted with the tube in the vertical orientation, then the volume of wax would remain unchanged, but it
would be spread uniformly over the resonator’s endcap as shown in Fig. 15.23 (right). Since the slope
of the pressure at the endcap is zero, the cube and slab versions of the obstacle produce the same

Fig. 15.22 Clockwise
from the top left are shown
a ladybug, minnow, spider,
and ant being levitated by
intense standing waves in
air. [Courtesy of
Northwestern Polytechnical
University in Xi’an, China]
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stiffening of the gas (i.e., exclude the same amount of resonator volume). The perturbed frequency, f10,
is then that of the slightly shorter resonator shown in Fig. 15.23 (right): f1

0 ¼ co/2Leff.
If the same obstacle was moved to the center of the resonator, as shown in Fig. 15.24, then it would

lower the resonance frequency below the unperturbed frequency, f1. This is because the obstacle has
created a constriction in the resonator’s cross-sectional area, A, at a position within the fundamental
mode that is located at a velocity anti-node (pressure node). The high-speed gas near the resonator’s
midplane must accelerate to go around the obstacle, thus increasing the kinetic energy without
affecting the potential energy stored at the ends of the resonator (see Sect. 13.3.4).

By Rayleigh’s method (see Sect. 2.3.2), this means that the fundamental normal mode frequency
must be reduced. The amount of that frequency reduction is dependent upon the shape of the obstacle,
so it is not as easy to make a quantitative estimate of the frequency reduction as it was for the case
where the incompressible obstacle was located at a pressure anti-node (velocity node). Fortunately, the
use of adiabatic invariance provides a method to measure the effect of an obstacle of any shape and any
location within the standing wave then relate that frequency shift produced to the levitation force, as
described in the next sub-section.

For the resonator’s second mode (n ¼ 2), the obstacle is located at a pressure anti-node and thus
raises the resonance frequency of that mode. Again, since the resonator’s midplane contributes gas
stiffness in the second mode (along with the gas stiffnesses at both ends), the volume exclusion
produced by the obstacle increases the gas stiffness. The “melted wax” trick would work again by
symmetry, treating the resonator as two half-resonators, each shortened by the appropriate amount:
Leff/2 < L/2.

It is worthwhile to notice that when this obstacle is located at the center of the resonator, it has
ruined the harmonicity of the modes of the closed-closed resonator of uniform cross-section: fn 6¼ nf1.
All of the n ¼ odd modes will be “flattened” (b) (i.e., their normal mode frequencies will be lowered),
and all of the n ¼ even modes will be sharpened (#), as long as the

ffiffiffiffi
V3

p � λn constraint is satisfied so
the obstacle can be consider to be “small.” This strategy is regularly employed to suppress the
formation of shock waves in standing wave resonators that are used in high-amplitude applications
like thermoacoustic refrigerators [65] and sonic compressors [66].

Fig. 15.23 (Left) A small rigid obstacle (grey square) is placed adjacent to the rigid end of a one-dimensional standing
wave resonator of length, L. (Right) That obstacle has been “melted” so that its entire volume (grey rectangle) has been
preserved but is now distributed uniformly over the resonator’s cross-section, producing a decreased effective length, Leff

Fig. 15.24 The same obstacle that was shown in Fig. 15.23 is now located at the center of the resonator. In that position,
it lowers the frequency of the fundamental (n ¼ 1) normal mode but raises the frequency of the second normal mode
(n ¼ 2)
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In previous applications of adiabatic invariance, the work that was done against (or by) the radiation
pressure was used to estimate normal mode frequencies of resonators with shapes that did not conform
to the 11 separable geometries (see Sect. 13.1). It will now be easy, using Eq. (15.87), to demonstrate
the connection between frequency changes and work done against the radiation force. If the resonator,
shown schematically in Fig. 15.25, has an initial length, L, the standing wave pressure distribution is
related to the velocity distribution that satisfied the rigid (impenetrable) boundary conditions as
provided in Eq. (15.89). Here, we will focus on the fundamental mode, n ¼ 1.

The time-averaged energy in the first mode, E1, can be expressed as the time-average of the sum of
the kinetic and potential energies, or by the virial theorem (Sect. 2.3.1), as the maximum potential
energy,(PE)max, by integrating the potential energy density of Eq. (10.35) throughout the resonator’s
volume.

E1 ¼ PEmaxh it ¼
ðL
0

p0 cos πx=Lð Þ½ �2
2ρmc2o

A dx ¼ p0ð Þ2
4ρmc2o

AL ¼ p0ð Þ2
4γpm

AL ð15:94Þ

The rightmost result again assumes an ideal gas. The radiation force on the piston at the left of
Fig. 15.23 is given by Eq. (15.90). The work increment, dW, done by the piston against the radiation
force is just the force, Frad ¼ hp2itA, times the displacement, dx.

dW ¼ A p2h itdx ¼ A
p0ð Þ2
4γpm

dx ð15:95Þ

Adiabatic invariance requires that the ratio of the energy in a mode to its frequency remains constant
if the system’s constraints are changed slowly (i.e., we don’t “jerk” the piston).

En

f n
¼ const: ) δEn

En
¼ dW

E1
¼

A p0ð Þ2
4γpm

dx

p0ð Þ2
4γpm

AL
¼ dx

L
¼ δf

f 1
ð15:96Þ

This is exactly the frequency change that would be due to a decrease in the resonator’s length by an
amount, dx, based on the simplest result: f1 ¼ co/2 L. In fact, the triviality of this result can be
interpreted as a check on the expression (or a derivation) of the radiation pressure, hp2it, in Eqs. (15.87)
and (15.90).

It is now possible to combine adiabatic invariance and the normal mode frequency change, related
to the change in an obstacle’s position in a standing wave resonator, to calculate the levitation force
from an alternative perspective [67]. A DELTAEC model of a resonator is provided in Fig. 15.26. The
DELTAEC model makes use of a “Master-Slave Link” between Segments #2c and #6c that keeps the
total length of the resonator fixed as the constriction, produced by Segments #3, #4, and #5, is moved
from one end of the resonator to the other by changing the length of the DUCT in Seg. #2c from 0.0 m
to 0.97 m.

Fig. 15.25 A simple plane
wave resonator with an
adjustable left boundary
position (piston)
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The resonance frequencies of the first and second standing waves that are plotted in Fig. 15.27 as a
function of the constriction’s location were produced using DELTAEC’s incremental plotting function
(see Sect. 8.6.12). Plots of the normal mode frequency shifts, similar to those in Fig. 15.27, appeared in
the literature for the fundamental mode and for the n ¼ 2 mode [68], although it was not recognized at
that time that those shifts were related to the levitation forces by adiabatic invariance.

The mobile constriction in the DELTAEC model removes 40 cm3 of resonator’s unperturbed 10 liter
volume (10,000 cm3). This is approximately equivalent to a resonator of uniform cross-sectional area,

Fig. 15.26 Screenshot of a DELTAEC model of a resonator with cross-sectional area, A ¼ 1.0 x 10�3m2, and length,
L ¼ 1.0 m, filled with dry air at 300 K and pm ¼ 100 kPa. There is a constriction that reduces the cross-sectional area to
8.0� 10�3 m2 that is 1.0 cm long and two transitions using CONE segments, each 1.0 cm long. That combination of two
CONE segments and the constrictive DUCT (Seg. #4) can be positioned anywhere within the resonator. The “Master-
Slave Link” in Segments #2c and #6c maintain the total length as the position of the constriction is moved when the
DUCT length in Seg. #2c is changed. The “schematic view” at the top of this figure shows the center of the tapered
constriction positioned 31.5 cm from the driven end
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A ¼ 1.0 � 10�2 m2, that contains an incompressible sphere of radius, asphere ¼ 2.12 cm, or to a disk of
radius, adisk¼ 2.52 cm and thickness, t¼ 2.0 cm. Again, the DELTAEC model will not be exact because
the shift in the frequency due to a kinetic energy perturbation is shape dependent, even if the obstacle is
small compared to the wavelength. Although the constriction in the DELTAEC model is trapezoidal and
not a sphere or disk, it provides a plausible approximation of the change in the resonator’s cross-
sectional area that would be caused by the sphere or disk that provides the same volume exclusion.

Adiabatic invariance requires that the ratio of the modal energy to the modal frequency, En/fn, be a
constant as long as the motion of the obstacle is slow compared to the period of the standing wave,
Tn ¼ ( fn)

�1. As shown in Fig. 15.27, the resonance frequency is a function of the constriction’s
location within the resonator. The energy of the mode must also be a function of position so the
radiation force on the sphere, Fsphere, or an obstacle of some other shape must be equal to the gradient
in that energy (see Sect. 1.2.1).

F
!
sphere ¼ �∇

!
En ) Fsphere ¼ � dEn

dx
¼ � dEn

df n

df n
dx

ð15:97Þ

Adiabatic invariance guarantees that En/fn ¼ constant, so by log differentiation (Sect. 1.1.3),
dEn/dfn ¼ En/fn ¼ constant.

The value of dfn/dx will depend upon the obstacle’s position within the resonator. That slope will
have its maximum value at locations equidistant between the nodes and the anti-nodes of the first-order
standing wave fields. Using the results for the second standing wave mode produced by the DELTAEC
model and plotted in Fig. 15.25, the maximum slope is just π/2 times the difference between the
maximum frequency ( f2+ ¼ 348.4 Hz) and the minimum frequency ( f22 ¼ 345.09 Hz), divided by the
separation between the location of those two extrema, Δx ¼ 0.235 m: df2/dx ¼ 21.1 Hz/m.

Fig. 15.27 Resonance frequency of the resonator modeled by DELTAEC in Fig. 15.26 as a function of the position of a
constriction that could represent the location of an incompressible sphere or disk. The frequency of the fundamental
(n ¼ 1) mode is shown as the solid line with that frequency to be read from the left axis. The frequency of the second
harmonic mode (n ¼ 2) is shown as the dashed line to be read from the right axis
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For convenience, the constant, E2/f2, can be evaluated with the obstacle located at the driven end of
resonator (i.e., Seg. #2c ¼ 0.0 m), where E2 is given by Eq. (15.94), with p’ ¼ 2.0 kPa (Seg. #0d),
pm ¼ 100 kPa (Seg. #0a), γ ¼ (7/5), and (AL) ffi 0.01 m3. At that location, f2 ¼ f2+ ¼ 348.4 Hz, and
E2 ¼ 7.14 x 10�2 J, so E2/f2 ¼ 2.05 x 10�4 J/Hz. Substitution of these two results into Eq. (15.97)
provides the radiation force due to the constriction, Frad, at a position equidistant between the nodes
and the anti-nodes of the first-order standing wave fields, which is a consequence of adiabatic
invariance for a trapezoidal-shaped obstacle.

Frad ¼ 2:05� 10�4 J
Hz

� 21:1
Hz
m

¼ 4:3� 10�3N ð15:98Þ

This result can be compared to the radiation force at the same position for the n¼ 2 mode, under the
same conditions, if the pressure at either anti-node (i.e., rigid end) is set to p’ ¼ 2.0 kPa, equivalent to
157 dB re: 20 μParms, for a sphere, Fsphere, in Eq. (15.91), or a disk, Fdisk, in Eq. (15.92). To make a
reasonable comparison, the volume of the sphere is set equal to the volume excluded by the trapezoidal
constriction: V ¼ 40 cm3.

Fsphere ¼ V sphere
p0ð Þ2
γpm

π f 2
co

¼ 3:6� 10�3 N ð15:99Þ

From Eq. (15.92), the result would be the same for a disk of the same volume.
Our estimate of the levitation force based on the DELTAEC model and adiabatic invariance is

reasonably close to that result, given that the frequency shift computation was based on a constriction
rather than an obstruction.

At this point, the serious reader will pause to marvel at the elegance and beauty that adiabatic
invariance has demonstrated by its ability to circumvent the difficulties of integrals of second-order
pressure fields over objects of arbitrary shape in favor of a simple measurement of the resonant
frequency shift as a function of position of the object to be levitated within the resonator. Putterman
claims that adiabatic invariance is “the cornerstone of modern physics” [69]. Similar results can be
obtained for determination of the torque on a Rayleigh disk by measuring the shift in the resonance
frequency as a function of the disk’s orientation [60].

15.4.7 Levitation Superstability (“Acoustic Molasses”)

Most acoustic levitation systems are driven at a fixed frequency [70]. Since the position of the levitated
object can change, the ratio of the drive frequency to the resonator’s resonance frequency, ω/ωo, will
also change. That frequency shift at fixed drive frequency produces an effect referred to as “de-tuning”
that is illustrated in Fig. 15.27. The frequency shift causes the amplitude of the standing wave to
change resulting in a change in the radiation pressure acting on the levitated object. This modifies the
Hooke’s law “stiffness” of the radiation force acting on the object. If the object did not influence the
tuning, then the object would be levitated at the equilibrium position within the standing wave where
the radiation force and the gravitational force would be equal and opposite. The fact that the object’s
position also changes the tuning would change the trapping stiffness constant because its position
influences the amplitude of the sound in the resonator when driven at fixed frequency.

This change in stiffness can be understood by examining the three shifted response curves
illustrated in Fig. 15.28. All the resonance curves in Fig. 15.28 correspond to a quality factor of
Q ¼ 10. Assume that the resonator is driven at a fixed frequency that was 5% above the resonance
frequency of the empty resonator so that ω/ωo ¼ 1.05. The value of v1

2 would be 51.2% of the
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maximum that occurs at ω/ωo ¼ 1.00, if the resonator was empty. If the object moved up from its
equilibrium position (i.e., toward the closest velocity anti-node), then the resonator’s resonance
frequency would become lower, corresponding to the dotted resonance curve. The force on the object
would decrease because the acoustic standing wave amplitude would decrease, since the value of v1

2

would be 32.3% of the maximum that occurs at ω/ωo ¼ 1.00.
If the object moved down from its equilibrium position (i.e., toward the closest velocity node), then

the resonator’s resonance frequency would become higher, and the drive frequency would be closer to
the resonance frequency. The value of v1

2 in Fig. 15.28 would be 80.4% of the maximum that occurs at
ω/ωo¼ 1.00, if the resonator was empty. This corresponds to the dashed resonance curve in Fig. 15.28,
and the force on the object would increase because the acoustic standing wave amplitude would have
increased. The combined effect would be an increase in the stiffness.

If the empty resonator was initially tuned ω/ωo ¼ 0.95, then the effective stiffness would be less by
the same argument except that the object’s influence on the sound amplitude would be determined by
its “motion” along the vertical line in Fig. 15.28 above ω/ωo ¼ 0.95, instead of the previous discussion
that had the object’s motion causing changes to the acoustic amplitude represented by “motion” along
the vertical line above ω/ωo ¼ 1.05 in Fig. 15.28.

If this influence of the object’s position on the effective stiffness of its capture around its
equilibrium position in the standing wave occurred instantaneously in response to the object’s change
in position, then any displacement of the object would simply oscillate at a slightly different frequency
about the equilibrium position than it would if the de-tuning was neglected. Viscous effects (i.e.,

Fig. 15.28 The presence of the acoustically levitated object changes the resonance frequency of the resonator [68]. The
solid line is the normalized value of the square of the peak velocity amplitude, v1

2, produced when the resonator is driven
a frequency relative to the resonance frequency of the empty resonator, ω/ωo ¼ 1. The dotted line corresponds to the
resonator’s frequency response when the levitated object is located closer to a velocity anti-node. The dashed line
corresponds to the resonator’s frequency response when the levitated object is located closer to a velocity node (i.e., a
pressure anti-node)
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Stokes drag) would eventually damp those oscillations, corresponding to a mechanical resistance, Rm,
in the simple harmonic oscillator equation.

m
d2x

dt2
þ Rm

dx
dt

þ Kx ¼ 0 ð15:100Þ

Because we are considering the standing wave resonator as a driven resonant system withQ 6¼ 0, the
exponential relaxation time, τ, required for the resonator to achieve its steady-state response after its
tuning is changed is non-zero (see Sect. 2.5.4): Q ¼ (½)ωoτ. The resonator’s response time is much
longer than the period, T ¼ 2π/ωo, of the standing wave: τ ¼ (Q/π)T. That delay in the resonator’s
response to the position of the levitated object means that there will be a component of the force
modulated by the object’s position that will not be in-phase with the object’s position but that will be
in-phase or out-of-phase with the object’s velocity. The influence of the de-tuning will be retarded by a
time, τ, so the current radiation force acting on the object will depend upon the position of that object at
an earlier time, t � τ.

If this retardation produces a component of the excess (i.e., de-tuning) force that is out-of-phase
with the velocity of the object’s displacement from its equilibrium position, dx/dt, then this force will
behave like mechanical damping in addition viscous “Stokes drag,” in Eq. (15.100). If this retardation
produces a component of the excess (i.e., de-tuning) force that is in-phase with the velocity of the
object’s displacement from its equilibrium position, dx/dt, then this force will behave like a negative
mechanical resistance.

When the magnitude of that negative resistance is less than the ordinary viscous resistance, Rm, in
Eq. (15.100), then oscillations will take longer to damp out. If the magnitude of that negative resistance
is greater than Rm, then the amplitude of the object’s oscillations will grow exponentially with time
until some other effect limits the oscillation’s amplitude. In some important cases this de-tuning/de-
phasing instability will throw the levitated object out of the equilibrium position and possible propel
the object against the resonator’s boundaries [71].

The two possible scenarios are illustrated symbolically in Fig. 15.29. If the natural frequency of the
resonator is lower than the drive frequency, ω/ωo > 1 (sharp tuning), then motion of the levitated object

Fig. 15.29 The de-tuning/de-phasing instability (or superstability) for an acoustically levitated object depends upon
whether the resonance frequency of the resonator is above or below the frequency of the sound produced by the
loudspeaker. (Left) If the drive is tuned “sharp” (i.e., ω/ωo > 1), then small displacements from equilibrium will increase,
and the trapping will become unstable. (Right) If the drive is tuned “flat,” (i.e., ω/ωo < 1), then small displacements from
equilibrium will damp out faster than if only viscous drag was providing the mechanical resistance making the trapping
“superstable”
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toward a pressure anti-node (i.e., away from a velocity anti-node) will raise ωo and bring the drive
frequency closer to the resonance frequency. This will produce an excess force, Fexcess, that will be
increased, thus in-phase with the velocity of the object as it is moving up from its lowest position, since
the force will depend upon the previous position of the object at a time, τ, earlier. When the object
reaches its maximum vertical position, the natural frequency of the standing wave resonator will be
farther out-of-tune, and the radiation force is reduced, so gravity will provide an excess force. Again,
due to the delay, that excess force will be acting in the downward direction and is again in-phase with
the (now downward) velocity of the object. This scenario is depicted in Fig. 15.29 (left).

The net effect for the “sharp tuning” case has the excess force doing work on the object, thus
increasing the amplitude of its oscillations during each cycle. If the effect is sufficiently large, it can
overcome viscous damping making the amplitude of the object’s oscillations grow linearly with time
until some other effect limits the amplitude of the oscillations or the object is flung too far from the
equilibrium position that it is no longer trapped or bangs against the walls or ends of the resonator.

If the natural frequency of the resonator is higher than the drive frequency, ω/ωo < 1 (flat tuning),
then motion of the levitated object toward a pressure anti-node (i.e., away from a velocity anti-node)
will raise ωo and bring the drive frequency farther from the resonance frequency. This will reduce the
excess radiation force, Fexcess, making the influence of gravity more important. That will produce an
additional force that is out-of-phase with the velocity of the object as it is moving up from its lowest
position, since the force depends upon the previous position of the object at a time, τ, earlier.

When the object reaches its maximum vertical position, the natural frequency of the standing wave
resonator will be closer to the drive frequency, and the radiation force will be increased. Again, due to
the delay, that excess force will be acting in the upward direction and is again out-of-phase with the
velocity of the object which will be moving downward. This scenario is depicted in Fig. 15.29 (right).

The net effect for the “flat tuning” case has the excess force adding to the viscous resistance and thus
increases the damping. The amplitude of the object’s oscillations, if displaced from equilibrium, will
decay more quickly than it would if the damping was due only to the Stokes drag. This additional
damping causes superstability [72].

This same damping effect is observed in optics where it is known as “optical molasses” and was
responsible for Stephen Chu sharing the Nobel Prize in Physics in 1997 with Claude Cohen-Tannoudji
and William Phillips “for development of methods to cool and trap atoms with laser light” [73].

15.5 Beyond the Linear Approximation

Most ordinary acoustical phenomena can be analyzed from the linear perspective that has been the
focus of every other chapter of this textbook. Linear acoustics and vibrations provide many useful and
convenient simplifications. As we have seen, such simplifications are applicable to a large range of
interesting problems. That said, this chapter has introduced a few interesting and useful phenomena
that are not contained within a linear analysis. Waveform distortion, harmonic generation, shock wave
formation and dissipation, parametric end-fire arrays, and mode conversion all rely upon incorporation
of effects that a wave has on its propagation medium which are ignored in the linear limit. Inclusion of
nonlinear effects leads to an interesting “life cycle” for a large amplitude acoustic disturbance:
distortion ! shocking ! dissipation ! classical attenuation [21]. That evolution in an ordinary
fluid is depicted symbolically in Fig. 15.30.

By restricting the analysis to one-dimensional propagation of plane wave, many of the nonlinear
behaviors have been demonstrated while avoiding more complicated mathematics and still being able
to appreciate the cumulative influence of convection and of the medium’s own nonlinearity.
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The inclusion of nonlinear contributions also provided an introduction to the ability of a sound wave
to exert non-zero time-averaged forces and torques on objects that are exposed to high-amplitude
sound waves. Acoustic radiation forces are generally much larger than forces that can be exerted by
electromagnetic radiation used for trapping atoms [73]. Much of our understanding of these effects can
be attributed directly to the Bernoulli pressure that provides an intrinsically second-order contribution
to the linear (first-order) pressure field. Once again, exploitation of adiabatic invariance provided a
means of avoiding complicated mathematics while providing useful quantitative results.

Finally, it is important to recognize that this chapter was only the “tip of the iceberg.” Many
important nonlinear acoustical phenomena have not even been mentioned. Among the most significant
are thermoacoustic engines, refrigerators [74], pulse-tube cryocoolers, and sonic mixture separators
[75], as well as other important cases of acoustically driven mass streaming [76]. Another area that has
been entirely ignored is nonlinear bubble oscillations that can be so violent that they convert sound into
light by a process referred to as “sonoluminescence” [77]. The nonlinear distortion of pulses and the
propagation of N-waves [78], like those which produce a “sonic boom” [79], are other important
phenomena also worthy of investigation.

Topics in the area of nonlinear vibrations also abound. As mentioned in the beginning of this
textbook, the inclusion of non-Hookean elasticity leads to the violation of Galilean isochronous
independence of period and amplitude. Much like the harmonic distortion produced in high-amplitude
wave propagation, a driven nonlinear oscillator will respond at frequencies that are not just the driving
frequency. In fact, the response of a nonlinear oscillator can be at sub-harmonic frequencies or can
become entirely chaotic rather than deterministic [80].

The purpose of this chapter was to raise awareness of the limitation of linear analysis, not to create
professional expertise in nonlinear acoustics. If the reader can recognize the “symptoms” of nonlinear
behavior and understand how they arise, then the goals of this final chapter will have been realized.

Talk Like an Acoustician

Convective nonlinearity Phase matching
Self-interaction Resonant mode conversion
Intermodulation distortion Pump waves
Shock inception distance Primary waves
Grüneisen parameter Bernoulli pressure
Virial expansion Radiation pressure
Second sound Kundt’s tube
Gol’dberg number Internal energy
Order expansion Enthalpy
Blackstock bridging function Velocity potential
Geometric resonance Acoustic levitation
Intermodulation distortion De-tuning/de-phasing instability

Fig. 15.30 The simplified life cycle of an initially sinusoidal large amplitude acoustic disturbance propagating as a
plane wave in one dimension
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Exercises

1. Shock inception distance. The derivation of Eq. (15.8) used the fact that the crest of a plane
sinusoidal wave advances “by one radian length,” k�1, toward the zero-crossing when the slope of
the zero-crossing, dv/dx, becomes infinite. By using the excess velocity, Γv, defined in Eq. (15.9),
show this is true in the case where dissipation can be neglected, with an initial waveform,
v x, tð Þ ¼ bvj j sin ωt � kxð Þ. For the waveform to become the fully developed sawtooth shock, the
crest of the initially sinusoidal wave must advance by λ/4, placing the crest directly over the zero-
crossing (see Fig. 15.6). Express that distance, Dsaw, in terms of DS, again for the case where
dissipation can be neglected.

2. Waveform distortion. A 19.2 m long waveguide of circular cross-section with inside diameter,
D ¼ 5.21 cm, is shown in Fig. 15.31 and Fig. 15.32 (center). The waveguide is driven by two
compression drivers, shown in Fig. 15.32 (left), which can produce large amplitude sound waves.14

The waveguide is terminated by a porous anechoic cone.
Three ¼” microphones are flush-mounted at three locations using the fixture that joins smoothly

to the PVC pipe to eliminate reflections, shown in Fig. 15.32 (right). One microphone is located

Fig. 15.31 A U-shaped waveguide made from 200 diameter (nominal) Schedule 40 PVC pipe is suspended from the
ceiling to provide an overall propagation path of 19.2 m. At the far end are two compression drivers, and at the near end is
a 1.05 m long porous wedge absorber to eliminate reflections. [Waveguide courtesy of Lauren Falco]

Fig. 15.32 (Left) Two compression drivers. (Center) U-shaped waveguide turn-around section. (Right) Microphone
flush-mount holder

14 The use of two drivers not only increases the achievable amplitudes but also facilitates measurements of the interaction
of two waves of different frequencies.
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very close to the drivers at a position designated x ¼ 0. The second microphone is located at
x ¼ 3.17 m, and the third is located at x ¼ 17.9 m.
Assume that the waveguide contains dry air at pm ¼ 100 kPa with a sound speed, co ¼ 345 m/s, and

it is driven sinusoidally at f1 ¼ 880 Hz.
(a) Attenuation length. Using the expression in Eq. (13.78), determine the exponential

thermoviscous attenuation length, ℓ ¼ α�1
T�V , due to boundary layer dissipation at the

fundamental frequency, f1. Is that attenuation length shorter or longer for the higher
harmonics?

(b) Shock inception distance and Gol’dberg number. Determine the shock inception distance,
DS, and using the result of part (a), determine the Gol’dberg number, G, if p1(0) ¼ 100 Pa
(131 dB re: 20 μParms), p1(0) ¼ 300 Pa (140.5 dB re: 20 μParms), and p1(0) ¼ 1000 Pa
(151 dB re: 20 μParms).

(c) Harmonic distortion. Using Eq. (15.43) and neglecting attenuation, determine the amplitude
of the fundamental, f1 ¼ 880 Hz, second harmonic, f2 ¼ 1.76 kHz, third harmonic,
f3 ¼ 2.64 kHz, and forth harmonic, f4 ¼ 3.52 kHz, at x ¼ 3.17 m and at x ¼ 17.9 m,
assuming p1(0) ¼ 100 Pa.

(d) More harmonic distortion. Repeat part (c) assuming p1(0) ¼ 300 Pa.
3. Repeated shock. Determine the ratio of the amplitudes of the harmonics to the amplitude of the

fundamental, Cn/C1, for a fully developed shock wavelike that shown in Fig. 15.8.
4. Levitation demonstration resonator. A ground-based levitator (i.e., g ¼ 9.8 m/s2) is being

designed to demonstrate acoustic levitation by levitating the bottoms of Styrofoam coffee cups.
Those disks have a diameter of 5.0 cm and a thickness of 1.5 mm, and each has a mass,
mdisk ¼ 0.15 gm. Assume that resonator will be constructed from a 1.5 m long, 600 (nominal)
diameter, optically clear cast acrylic tube with inside diameter, Dtube ¼ 14.0 cm.
(a) Levitation force. If the resonator is operated in its n ¼ 3 standing wave mode, f3 ¼ 350 Hz.

Determine the pressure amplitude of the standing wave at the rigid end of the resonator so
that the levitation force on the disk is three times its weight.

(b) Equilibrium location. If the tube is oriented so that the speaker is at the bottom and the rigid
end is at the top (like those in Fig. 15.29), how far from the top end of the resonator will the
disk be levitated at its highest stable location if the standing wave amplitude is that
calculated in part (a)?

(c) DELTAEC model. Make a DELTAEC model of the resonator (without the levitated disk) to
determine the volume velocity of a piston that has the same diameter as the tube, Dtube,
which would be required to produce the standing wave pressure amplitude at the rigid end
calculated in part (a) for the n ¼ 3 mode. You may make a slight adjustment of the tube’s
length to force f3 ¼ 350 Hz. What are the frequencies of the f1, f2, and f4 modes?

(d) Adiabatic invariance. Use your DELTAEC model in part (a) to estimate the frequency as a
function of disk position by moving a constricted DUCT segment that is the same length as
the disk (1.5 mm) and has a cross-sectional area equal to that of the empty tube minus the
cross-sectional area of the disk. Move that constricted section from the rigid end to about
0.3 m from the driven end of the resonator. Plot f3 vs. position to produce a graph similar to
Fig. 15.27. Repeat for f2 vs. position.

(e) Advanced DELTAEC model. Repeat part (c) but explicitly includes the loudspeaker in
Fig. 2.43 using the following speaker parameters: mo ¼ 12.0 gm, K ¼ 1440 N/m,
Bℓ ¼ 7.1 N/A, Rdc ¼ 5.2 Ω, L ¼ 0.1 mH, Rm ¼ 1.9 kg/s, and Apist ¼ 98.5 cm2. The rear
of the speaker is enclosed (to protect your hearing!) in a cylindrical enclosure that has an
inside diameter of 600 (15.2 cm) and a length of 800 (20 cm). What is the electrical current that
must be supplied to the voice coil to produce the n ¼ 3 standing wave amplitude calculated
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in part (a) at f3 ¼ 350 Hz? What are the frequencies of the f1, f2, and f4 modes of the coupled
speaker-resonator system (see Sect. 10.7.5)?

Hints: The DELTAEC model of the bass-reflex loudspeaker enclosure in Fig. 8.41 might provide a
helpful starting point. An “enclosed current driven speaker” segment, IESPEAKER, will provide a
way to incorporate the rear enclosure with the electrodynamic speaker’s excitation of standing waves
in the tube.
(5) Rayleigh disk. The apparatus in Fig. 15.33 shows a rigid disk (e) suspended at the midplane of a

cylindrical resonator from a torsion fiber (b). The resonator has an electrodynamic dome tweeter
(g) at one end and an electret microphone (see Sect. 6.3.3) providing a rigid termination at the
other end (f). The disk’s angular orientation is detected with the coils surrounding the resonator
that incorporates a split-secondary astatic transformer [60]. A gearing system (a) and a coil (d ) and
magnet structure (n and s) from an analog meter movement can be used to adjust the equilibrium
orientation, θo, of the disk or excite a free-decay oscillation. The maximum occlusion of the
resonator occurs when θo ¼ 0
.
The resonator’s inside diameter is 3.0 cm and its length, L ¼ 12.0 cm. The diameter of the disk is
Ddisk ¼ 1.2 cm. The disk has a mass, m1 ¼ 0.80 gm and a moment of inertia of about its diameter
of Idisk ¼ 2.0 x 10�8 kg-m2

Assume the resonator contains dry air at 300 K with pm ¼ 100 kPa.

Fig. 15.33 Cross-
sectional view of a
“modern” Rayleigh disk
apparatus. [60]
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(a) Fundamental resonance frequency. What is the frequency of the fundamental half-wavelength
mode of the resonator?

(b) Torsional stiffness. If the frequency of disk oscillations is 1.1 Hz, what is the torsional stiffness of
the disk’s suspension?

(c) Standing wave pressure amplitude. The disk’s equilibrium position is adjusted so that θo ¼ 45
.
What is the acoustic pressure amplitude, p1, at the surface of the electret microphone if the
standing wave causes the disk equilibrium orientation to be θ ¼ 35
 and the corrections in the
curly brackets of Eq. (15.79) are ignored?

(d) Scattering corrections. How large is the correction provided by Eq. (15.79) relative to the simpler
expression for the torque in Eq. (15.78)? Express your result as Nantinode (35
)/N (35
).

(e) Electret microphone sensitivity. If the open-circuit output voltage of the electret microphone is
285 mVac under the conditions of part (b), what is the microphone’s open-circuit sensitivity?
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Appendices

Appendix A: Useful Physical Constants and Conversion Factors

ℜ ¼ kBNA 8.314462 J/mole-K
kB 1.380649 � 10�23 J/K ¼ 8.617333 � 10�5 eV/K
NA 6.02214076 � 1023 mol�1

Vmolar 22.4141 l/mol @ 273.15 K, 101,325 Pa
Mair 28.9644 g/mol
e 1.602176634 � 10�19 C
g 9.80665 m/s2

h 6.62607015 � 10�34 J-s ¼ 4.135667 � 10�15 eV-s
ħ ¼ h/2π 1.05457182 � 10�34 J-s
c ¼ (εo μo)

–½ 2.99792458 � 108 m/s
εo 8.8541878128 � 10�12 F�m�1

μo 4π � 10�7 H m�1

2e/h 483.5978484 MHz/μV
σ 5.6697 � 10�8 W/m2-K4 ¼ [kB

4π2/60ħ3c2]

As of 20 May 2019 (the 144th anniversary of the Metre Convention), the above values of kB, NA,
c, e, h, μo εo, and 2e/h are taken to be exact.

1 psi 6894.8 Pa ¼ 2.307 ft H2O 1 psf ¼ 47.88 Pa
1 torr 133.322 Pa ¼ 1.0 mm Hg
1 atm 101,325 Pa 100 H2O ¼ 249.1 Pa
1 bar 100 kPa
1 ft3 28.317 l
1 gal 3.785411784 l ¼ 231in3

1 gpm 63.088 cm3/s 1 cfm ¼ 4.72 � 10�4 m3/s
1 cal 4.184 J
1 W 3.413 BTU/h
1 ton 3517 W (� 12,000 BTU/h)
1 hp 746 W
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Appendix B: Resonator Quality Factor

“A man with one watch knows the time; a man with two is never sure.”

The quality factor (Q) of a resonator is a dimensionless measure of the “sharpness” of a resonance. One
of the greatest sources of its utility is that we have many equivalent ways of expressing the Q. This
variety allows us to connect the most convenient experimental method to the parameter of interest and
provides us with a “second watch” if we want to make a self-consistency check of our results, either
theoretically or experimentally.

Caution The results summarized below assume that the resonance under consideration is “isolated,”
so there are no other resonances that might be sufficiently close in frequency that they would affect the
amplitude or phase of the resonance being considered.

Q-Multiplier For a given force, F, or pressure, p, the magnitude of the response at the resonance
frequency of the ith mode, ωι, i ¼ 0, 1, 2, 3, . . .1, will be “amplified” by the quality factor Qi of that
mode.

Qi ¼ p ωið Þ
p ω ¼ 0ð Þ
���� ���� ðB:1Þ

Energy Storage-to-Dissipation Ratio The time-averaged power dissipated is written as hΠdissipatedit
below.

Q ¼ 2π Estored

Edissipated=cycle
¼ ωEstored

Πdissipated

� �
t

ðB:2Þ

Lumped-Element Storage-to-Loss Ratio For a mass-spring system with natural frequency, ωo;
mass, m; mechanical resistance, Rm; and stiffness K; or a similar electrical circuit with inductance,
L; resistance, Rdc; and capacitance, C; or an acoustical compliance, C, and acoustical inertance, L

Q ¼ ωom
Rm

¼ K
ωoRm

¼ 1
ωoRmC

¼ ωoL
Rdc

Half-Power Bandwidth If the frequencies of the –3 dB points are f+ and f�,, then the full –3 dB
bandwidth of the resonance, Δf ¼ f+ � f�, is related to the quality factor, Q, by the resonance
frequency, fo ¼ ( f+f�)

1/2 as written below.

Q ¼ f o
fþ � f�

¼ ωo

ωþ � ω�
where f o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
fþ f�

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþω�

p
2π ðB:3Þ

Rate of Phase Change with Frequency at Resonance If the phase shift between force (or pressure)
and velocity (or volume flow rate) is expressed as ϕ in radians, or θ in degrees, then

Q ¼ ωo

2
dϕ
dω

���
ωo

¼ f o
2
dϕ
df

����
f o

¼ f o
π

360
�
dθ
df

����
f o

ffi f o
114:6

�
dθ
df

����
f o

ðB:4Þ
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Free Decay Rate If the time required for the amplitude of the oscillations to decay to e�1 ffi 0.368 of
their value is τ ¼ β�1 ¼ (2 m)/Rm, then

Q ¼ 1
2
ωoτ ¼ πτ f o ¼ 1

2
k
α
¼ π

αλ
ðB:5Þ

The exponential spatial attenuation constant, α, is related to the temporal decay rate, τ, by the sound
speed, c, where k is the wavenumber and λ is the wavelength: α ¼ τ/c.

Similarly, the Q is expressed as 2π times the number of cycles required for the energy to decay by
e�1, or π times the number of cycles required for the amplitude to decay by e�1. More generally,

Q ¼ πN
ln x½ � ðB:6Þ

N is the number of cycles for the amplitude to decay by a factor of x.

Reflection Coefficient In a standing wave resonator, the standing wave can be represented as the
superposition of a right- and left-going traveling waves. If the left-going wave is reflected with an
amplitude that is R < 1 times the right-going wave amplitude, the coefficient of the right-going wave
would be given by the infinite geometric series 1 + R + R2 + R3 + . . ., and the left-going wave would
have an amplitude that is R times that infinite sum. The resulting quality factor, Qn, of the nth mode of
the resonator can be expressed in terms of the reflection coefficient R and the mode number n.

Qn ¼ nπ
ffiffiffi
R

p
1� R

ðB:7Þ

Pole-Zero Resonance Fit Many modern spectrum analyzers allow a resonance to be fit by a pole-zero
function. A single resonance will have two complex poles that are complex conjugates, a 	 jb. The
resonance frequency is f ¼ (a2 + b2)1/2 ffi b, if the damping is small (a 
 b).

Q ¼ �1
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
ffi �b

2a
ðB:8Þ

Loss Tangent and Damping Factor In the characterization of elastomers used as vibration isolators,
it is common to define a frequency-dependent, complex elastic modulus E�. The complex modulus has
a real part, E0, and an imaginary part, E00, such that E� ¼ E0 + jE00 ffi E (1 + jδ), where we choose to
define a “loss tangent,” tan δ, that is the inverse of the quality factor.1

Q ¼ 1
tan δ

¼ E0

E00 ¼
1
2ζ

ðB:9Þ

The damping factor, ζ, is the ratio of the mechanical resistance to the critical value of the
mechanical resistance, Rcrit

m ¼ 2 kmð Þ1=2 ¼ 2mωo.
2

1 For example, see J. C. Snowdon, Vibration and Shock in Damped Mechanical Systems (Wiley, 1968).
2W. T. Thomson, Theory of Vibration with Applications, 2nd edn. (Prentice-Hall, 1981); ISBN 0-13-914,523-0
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Appendix C: Bessel Functions of the First Kind

Bessel’s equation

d2Jm xð Þ
dx2

þ x
d Jm xð Þ
dx

þ x2 � m2
� �

Jm xð Þ ¼ 0 ðC:1Þ

1
x

d
dx

x
dJm xð Þ
dx

� 	
þ 1� m2

x2

� 	
Jm xð Þ ¼ 0 ðC:2Þ

Series expansions

Jm xð Þ ¼ 1
m!

x
2


 �m
� 1
1! mþ 1ð Þ!

x
2


 �mþ2
þ 1
2! mþ 2ð Þ!

x
2


 �mþ4
� � � � ðC:3Þ

J0 xð Þ ¼ 1� x2

22
þ x4

22 � 42 �
x6

22 � 42 � 62 þ � � � ðC:4Þ

J1 xð Þ ¼ x
2
� 2x3

2 � 42 þ
3x5

2 � 42 � 62 � � � � ðC:5Þ

J2 xð Þ ¼ x2

2 � 22 �
x4

2 � 3 � 24 þ
x6

2 � 3 � 4 � 26 � � � � ðC:6Þ

Asymptotic forms for large argument

lim
x!1 Jm xð Þ½ � ¼

ffiffiffiffiffi
2
πx

r
cos x� mπ

2
� π
4


 �
ðC:7Þ

Addition theorem

1 ¼ J0 xð Þ þ 2J2 xð Þ þ 2J4 xð Þ þ 2J6 xð Þ þ � � � ðC:8Þ
Relationships to trigonometric functions

sin x ¼ 2J1 xð Þ � 2J3 xð Þ þ 2J5 xð Þ � 2J7 xð Þ þ � � � ðC:9Þ

cos x ¼ J0 xð Þ � 2J2 xð Þ þ 2J4 xð Þ � 2J6 xð Þ þ � � � ðC:10Þ

cos x cos θð Þ ¼ J0 xð Þ þ 2
X1
k¼1

�1ð ÞkJ2k xð Þ cos 2kθð Þ ðC:11Þ

cos x sin θð Þ ¼ J0 xð Þ þ 2
X1
k¼1

J2k xð Þ cos 2kθð Þ ðC:12Þ

sin x sin θð Þ ¼ 2
X1
k¼0

J2kþ1 xð Þ sin 2k þ 1ð Þθ½ � ðC:13Þ

sin x cos θð Þ ¼ 2
X1
k¼1

�1ð ÞkJ2kþ1 xð Þ cos 2k þ 1ð Þθ½ � ðC:14Þ

Integral representations
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Jm xð Þ ¼ x=2ð Þmffiffiffi
π

p
Γ mþ ½ð Þ

ðπ
0
cos x cos θð Þ dθ ðC:15Þ

J0 xð Þ ¼ 1
π

ðπ
0
cos x sin θð Þ dθ ¼ 1

π

ðπ
0
cos x cos θð Þ dθ ðC:16Þ

Jm xð Þ ¼ 1
π

ðπ
0
cos x sin θ � mθð Þ dθ ðC:17Þ

Recurrence relations

Jm�1 xð Þ þ Jmþ1 ¼ 2m
x
Jm xð Þ ðC:18Þ

Jm�1 xð Þ � Jmþ1 xð Þ ¼ 2
dJm xð Þ
dx

ðC:19Þ

dJm xð Þ
dx

¼ Jm�1 xð Þ � m
x
Jm xð Þ ðC:20Þ

dJm xð Þ
dx

¼ �Jmþ1 xð Þ þ m
x
Jm xð Þ ðC:21Þ

Derivatives

dJm xð Þ
dx

¼ 1
2
Jm�1 xð Þ � Jmþ1 xð Þ½ � ðC:22Þ

dJ0 xð Þ
dx

¼ �J1 xð Þ ðC:23Þ

d
dx

xmJm xð Þ½ � ¼ xmJm�1 xð Þ ðC:24Þ

d
dx

x�mJm xð Þ½ � ¼ �x�mJmþ1 xð Þ ðC:25Þ

Integrals ð
J1 xð Þdx ¼ �J0 xð Þ ðC:26Þ

ð
xJ0 xð Þdx ¼ xJ1 xð Þ ðC:27Þ

ð
xpþ1Jp xð Þdx ¼ xpþ1Jpþ1 xð Þ ðC:28Þ

ð
J20 xð Þxdx ¼ x2

2
J20 xð Þ þ J21 xð Þ�  ðC:29Þ

ð
J2m xð Þxdx ¼ x2

2
J2m xð Þ � Jm�1 xð ÞJmþ1 xð Þ�  ðC:30Þ

ð
Jm axð ÞJm bxð Þxdx ¼ x

a2 � b2
bJm axð ÞJm�1 bxð Þ � aJm bxð ÞJm�1 axð Þ½ � ðC:31Þ
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Roots of Bessel Functions (15 Digits)

nth roots of Bessel functions,3 Jm(x) ¼ 0

nth roots of the derivatives of Bessel functions3 (dJm(x)/dx) ¼ 0

3 http://wwwal.kuicr.kyoto-u.ac.jp/www/accelerator/a4/besselroot.htmlx
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Appendix D: Trigonometric Functions

Euler’s formula

ejx ¼ cos xþ j sin x ðD:1Þ

cos x ¼ ejx þ e�jx

2
; sin x ¼ ejx � e�jx

2j
; tan x ¼ 1

j
ejx � e�jx

ejx þ e�jx ðD:2Þ

Addition and subtraction

cos α ¼ 	 sin α	 π
2


 �
; sin α ¼ 	 cos α� π

2


 �
ðD:3Þ

sin 2αþ cos 2α ¼ 1 ðD:4Þ
sin α	 βð Þ ¼ sin α cos β 	 cos α sin β ðD:5Þ
cos αþ βð Þ ¼ cos α cos β � sin α sin β ðD:6Þ

sin α	 sin β ¼ 2 sin
α	 β
2

� 	
cos

α� β
2

� 	
ðD:7Þ

cos αþ cos β ¼ 2 cos
αþ β
2

� 	
cos

α� β
2

� 	
ðD:8Þ

cos α� cos β ¼ �2 sin
αþ β
2

� 	
sin

α� β
2

� 	
ðD:9Þ

Products and powers

cos α cos β ¼ ½ cos α� βð Þ þ cos αþ βð Þ½ � ðD:10Þ
sin α sin β ¼ �½ cos αþ βð Þ � cos α� βð Þ½ � ðD:11Þ
sin α cos β ¼ ½ sin αþ βð Þ þ sin α� βð Þ½ � ðD:12Þ

sin 2α ¼ ½ 1� cos 2αð Þ ðD:13Þ

sin 3α ¼ 1
4

3 sin α� sin 3αð Þ ðD:14Þ

cos 2α ¼ ½ 1þ cos 2αð Þ ðD:15Þ

cos 3α ¼ 1
4

3 cos αþ cos 3αð Þ ðD:16Þ

Appendices 761



Appendix E: Hyperbolic Functions

ex ¼ cosh xþ j sinh x ðE:1Þ

cosh x ¼ ex þ e�x

2
; sinh x ¼ ex � e�x

2
ðE:2Þ

tanh x ¼ ex � e�x

ex þ e�x ¼
e2x � 1
e2x þ 1

; cothx ¼ 1
tanh x

ðE:3Þ

Series expansions

ex ¼ 1þ x
1!
þ x2

2!
þ x3

3!
þ . . . ðE:4Þ

sinh x ¼ xþ x3

3!
þ x5

5!
þ x7

7!
þ . . . ðE:5Þ

cosh x ¼ 1þ x2

2!
þ x4

4!
þ x6

6!
þ . . . ðE:6Þ

tanh x ¼ x� x3

3
þ 2x5

15
� 17x7

315
þ . . . x2 <

π2
4

� 	
ðE:7Þ

sinh �1x ¼ x� x3

2 � 3þ
1 � 3
2 � 4

x5

5
� 1 � 3 � 5
2 � 4 � 6

x7

7
þ . . . x2 < 1

� � ðE:8Þ

cosh �1x ¼ ln 2xð Þ � 1
2

1
2x2

� 1 � 3
2 � 4

1
4x4

� 1 � 3 � 5
2 � 4 � 6

1
6x6

� . . . x2 < 1
� � ðE:9Þ

tanh �1x ¼ xþ x3

3
þ x5

5
þ x7

7
þ . . . x2 < 1

� � ðE:10Þ

Addition and subtraction

cosh 2α� sinh 2α ¼ 1 ðE:11Þ
sinh α	 βð Þ ¼ sinh α cosh β 	 cosh α sinh β ðE:12Þ
cosh α	 βð Þ ¼ cosh α cosh β 	 sinh α sinh β ðE:13Þ

tanh α	 βð Þ ¼ 1þ tanh α tanh β
tanh αþ tanh β

¼ sinh 2α	 sinh 2β
cosh 2αþ cosh 2β

ðE:14Þ

sinh α	 sinh β ¼ 2 sinh
α	 β
2

� 	
cosh

α� β
2

� 	
ðE:15Þ

cosh αþ cosh β ¼ 2 cosh
αþ β
2

� 	
cosh

α� β
2

� 	
ðE:16Þ

cosh α� cosh β ¼ 2 sinh
αþ β
2

� 	
sinh

α� β
2

� 	
ðE:17Þ
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Products and powers

sinh α sinh β ¼ ½ cosh αþ βð Þ � cosh α� βð Þ½ � ðE:18Þ
cosh α cosh β ¼ ½ cosh αþ βð Þ þ cosh α� βð Þ½ � ðE:19Þ
sinh α cosh β ¼ ½ sinh αþ βð Þ þ sinh α� βð Þ½ � ðE:20Þ

sinh 2α ¼ 2 sinh α cosh α ðE:21Þ

sinh 3α ¼ 3 sinh αþ 4 sinh 3α ðE:22Þ

cosh 2α ¼ 2 cosh 2α� 1 ðE:23Þ

cosh 3α ¼ 4 cosh 3α� 3 cosh α ðE:24Þ

sinh 2α ¼ ½ cosh 2α� 1ð Þ ðE:25Þ

sinh 3α ¼ 1
4

sinh 3α� 3 sinh αð Þ ðE:26Þ

cosh 2α ¼ ½ cosh 2α� 1ð Þ ðE:27Þ

cosh 3α ¼ 1
4

cosh 3αþ 3 cosh αð Þ ðE:28Þ

Functions of complex arguments

sin jx ¼ cosh x sinh jx ¼ j sin x

sin x ¼ �j sinh jx sinh x ¼ �j sin jx
ðE:29Þ

cos jx ¼ cosh x cosh jx ¼ cos x

cos x ¼ cosh jx cosh x ¼ cos jx
ðE:30Þ

tan jx ¼ �j tanh jx tanh jx ¼ �j tan jx ðE:31Þ
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Index

A
Absolute (reciprocity) calibration, 476–482
Absolute temperature, 337
Absorption of sound

air (dry), 681–682
air (humid), 682–684
boundary layers, 396, 438–440
classical thermoviscous, 681–682
fresh water, 681–682, 688–692
Helmholtz resonator, 415–416, 440–443
narrow tubes, 435–436, 438–440, 660–662
relaxation in gases and gas mixtures, 687–688
room, 632, 694
seawater, 688–692
spatial, 674–677
surfaces and walls, 660–662
thermal conduction, 660–662, 677–681
temporal, 674–677
transmission loss, 692
viscosity, 660–662, 674–677, 681–682

Absorption graphs
air (dry and humid), 689
sea water, 691

Absorptivity (Sabine), 627–632
Accelerometer, 102–103, 231

compressional and shear piezoelectric, 188–190
Acoustic admittance (Y )

branch, 490–492
DELTAEC “softend”, 387
Helmholtz resonator, 492–494

Acoustic approximation, 359–361, 363–364, 370–371
Acoustic compliance, 366

gas spring, 366–367
Acoustic energy flux (intensity), 464–465

intensity level (IL), 466–467
Acoustic filters, 492–495
Acoustic impedance (Zac), 366
Acoustic inertance, 372–373
Acoustic intensity, 464–465
Acoustic levitation, 738–743
Acoustic Mach number (Mac), 364, 370, 704–705
Acoustic power (Πac), 396, 464–465
Acoustic power dissipation

in boundary layer, 396, 432–433, 438–440, 660–662

by chemical relaxation (sea water), 688–692
classical thermoviscous attenuation (αclassical),

681–682
in a Helmholtz resonator, 440–443
in plane wave resonator (quality factor), 472–473
by relaxation, 684–686
by thermal relaxation, 427–430, 432–433, 660–662,

677–680
by viscosity, 438–440, 674–660, 677–662, 681–682

Acoustic pressure, 359
Acoustic transfer impedance (Ztr)

coupler, 481–482
double Helmholtz resonator, 482
free-field, 481
planewave resonator, 474–475, 482
planewave tube, 482

Active noise cancellation, 667
Added (hydrodynamic) mass

baffled circular piston, 602–603
general multipole, 573
piston at the end of a tube, 607–610
pulsating sphere (monopole), 551–552
sphere executing translational oscillations (dipole),

573
Adiabatic compliance, 366
Adiabatic compression, 729–731
Adiabatic equation-of-state (ideal gas), 341–342
Adiabatic invariance

acoustic levitator, 738–743
enclosure, 648–651
membrane, 300–302
pendulum, 71–73
resonator obstacle, 738–743
Space Shuttle Cargo Bay, 648–651

Adiabatic sound speed (c)
ideal gas, 457
liquid, 460

Adiabatic temperature change
ideal gas, 5–6, 342–343
solid, 181

Adiabatic-to-isothermal transition (ωcrit), 433–434
African thumb piano (M’bira), 278
Air-concrete interface, 514–516
Altec 21-C microphone, 328
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American Society for Testing and Materials (ASTM)
significant figures, 37

Amplitude decay, 47, 73–76, 674–677
Amplitude reflection coefficient (R)

cross-sectional discontinuity, 490–492
fluid interface (normal incidence), 514–518
fluid interface (oblique incidence), 528–529
three media (normal incidence), 518–519

Amplitude shading (discrete line array), 591–593
Anechoic chamber (spherical spreading), 611–612
Angle

critical, 526–528
grazing, 533
incidence (Snell’s law), 523–526
intromission, 528–529
reflection (Snell’s law), 523–526
refraction (Snell’s law), 523–526
transmission (Snell’s law), 523–526

Angular frequency (radian frequency, ω), 61
Anisotropic elasticity, 225–227

auxetic materials, 186
physical constants, 225–227
polycrystalline materials, 227
stiffness matrix, 226–227

Anti-node, 143, 470–472
Antireflective coating, 520
Anthropomorphic frequency weighting, 468–470
Architectural acoustics

critical distance, 633
density of modes, 626–627
mode characterization, 624–625
reverberation time, 630–632
Schroeder frequency, 633–634

Argand plane, 18–19
Association-dissociation (chemical) relaxation

(salt water), 688–692
Atmospheric lapse rate, 367–368
Atmospheric pressure, 733
Atomic bomb blast wave, 52–53
Atomic mass unit, 337, 462
Attenuation

at boundaries, 396, 432–433, 438–440, 660–662
bubble, 557–560
bubble cloud, 586–588
classical thermoviscous attenuation, 681–682
in ducts, 435–436, 438–440
molecular effects, 684–686
nonlinear effects (sawtooth shock waves), 712–713
in planewave resonators, 472–473
by relaxation effects, 684–686
of sawtooth waveform, 712–713
in seawater, 688–692
by thermal conduction, 427–430, 432–433, 677–680
by viscosity, 438–440, 660–662, 674–677, 681–682

Auditory threshold, 467
Auxetic materials, 186
Average power, 21–22
Avogadro’s number, 337
A-weighted sound pressure level (dBA), 468–470
Axial modes, 624

B
Baffled piston

directionality, 595–599
far-field radiation, 604–607
first null and piston diameter, 597–599, 604–607
radiation impedance, 602–604
radiation mass, 603
radiation resistance, 602–604

Baffled rectangular piston, 604
Ballistic propagation, 433–435
Band-pass filter, 494–495
Band-stop filter, 492–494, 521–522
Bandwidth

equivalent noise bandwidth (ΔfEQNB), 81
half-power bandwidth (Δf-3 dB), 87–90

Bar (normal modes in flexure)
clamped-clamped, 253–254
clamped-free, 252–253
free-free and tuning fork, 254–256

Basis functions, 13–16, 107–108, 155–157
Bass-reflex speaker enclosure, 405–412
Beam steering, 591–593
Bending moment, 193–198
Bernoulli, Daniel, 297
Bernoulli pressure, 731–733

levitation force, 737–738
torque on a Rayleigh disk, 732, 734–735
Venturi tube, 369–370

Bessel, F.W., 297
Bessel functions

first kind, 295–298, 642
graphs, 298
identities, 679, 758–759
integrals, 759
modified, 321–322
power series solution, 295–298
recursion relations, 759
second kind (Neuman functions), 298
spherical, 554–555, 653
tables, 300, 639, 641, 760
zeros, 639, 757

Bessel’s differential equation, 295–298, 638
Binomial distribution, 32
Bipole, 560–564
Black, Harold S., 466
Blackstock’s bridging function, 718
Boltzmann distribution, 346
Boltzmann’s constant (kB), 76–82, 337, 653
Boric acid in seawater, 688–692
Bodine, Albert, 242–244
Boundary conditions

for bar, 250
for circular membrane, 294
for flexible string, 138–144, 158–160
no-slip (viscosity), 434
on normal velocity component, 514–518
on pressure, 514–518
at pressure-release surface, 518
for rectangular membrane, 286
for rectangular waveguide, 655
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for rigid-walled enclosure, 623, 645–636, 645, 652,
656

Boundary layer thickness
thermal (δκ), 427–430
viscous (δν), 436–438

Boyle’s law, 731
Broadside direction, 561
Brunt-Väisälä frequency, 414
Bubble in water

dissipation, 430–433, 557–560
multiple scattering from bubble cloud, 586–588
resonance (Minnaert) frequency, 555–557, 612–613
sound scattering, 584–586
surface tension (Laplace’s formula), 555–557
quality factor, 557–560

Buckingham Π-theorem, 23–29
Buckling

Euler force, 200–202
slenderness ratio (L/a), 200–201
transverse deflection, 200–201

Bulk modulus
adiabatic (Bs), 182–183, 460, 506
relation to other isotropic moduli, 187

Bulk viscosity (ζ)
air 677–679, 682–684, 696
water, 688–692

B-weighted sound pressure level (dBB), 468–470

C
Calibration of microphones, 476–482
Cantilever spring

uniform beam, 193–198
triangular (tapered) beam, 198–200

Capacitance microphone, see Condenser microphone
Capacitive reactance, 366
Capillary force (Laplace force), 50, 248, 555–557
Cardioid directionality, 574–575
Cardioid microphone, 575–577
Cartesian coordinate systems, 284–286, 291, 292, 294
Catenoidal horn, 499–500
Causality sphere, 526–548
Cavitation effects, 517, 710
Cavitation threshold, 710
Celerity, 115, 360
Central forces (virial theorem), 67–68
Characteristic equation (secular equation), 107, 676
Characteristic impedance (specific acoustic impedance),

463–464
air, 514–515
string, 164–166, 174

Characteristic modes of 3-D enclosures
cylindrical enclosure, 635–641
rectangular room, 623–625
Space Shuttle cargo bay, 648–651
spherical enclosure, 651–654
toroidal enclosure, 644–646

Chemical relaxation
fluorine, 687–688
sea water, 688–692

Chromatic scale (equal temperament), 146–147
Circular membrane, 294–302

adiabatic invariance, 300–302
annular membranes, 302–304
effective piston area, 304–306
kinetic energy, 327
Laplacian operator, 295
modal frequencies, 299–300
modal density, 300
musical instruments, 283, 294
power series solution (Frobenius method), 295–298
pressure-driven, 308–310
tympani, 306–308
wedges, 302–303

Circular piston in baffle
axial pressure field ( pax), 604–607
directionality and directivity, 599–602
near-field radiation (on-axis), 604–607
radiation impedance, 602–604

Circular plate vibration, 321–324
Climate change, 505
Closed tube resonance (rigid termination), 470–47

closed-open tube, 474
quality factor (Q), 472–473

Circular waveguide, 659–660
Cloud of bubbles, 586–588
Coefficient of nonlinearity

Grüneisen parameter (Γ ), 705–706
virial expansion (B/2A), 707–708

Coherent sound sources, 468
Coil spring

coupling stretch and twist (Wilberforce pendulum),
204–205

double-start helical, 206
stiffness, 203–204
twist and tilt, 205–206

Collision time (mean-free-path), 443–444
Compact scatterers, 580–584
Compact source, 544
Compactness criterion, 545
Complex conjugate, 21
Complex elastic moduli, 211–213
Complex exponential, 17, 21
Complex numbers, 16–22

algebraic operations, 19–21
Argand plane, 18–19
Euler’s formula, 18
imaginary number ( j), 17
phasor notation, 19
time-averaged power (multiplication), 21–22

Complex plane, 18–19
Complex roots, 20–21
Conductivity

electrical, 424–425
thermal, 425–427

Confounding variables, 40
Conical horn, 495
Condenser microphone

breakdown (ionization) bias voltage, 315–316
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Condenser microphone (cont.)
constant charge, 312–313
electret, 317–320
electret equivalent bias voltage, 319–320
electrical equivalent circuit, 312
electrostatic collapse, 316–317
electrostatic force, 316
lumped-element model, 327–328
MEMS device, 328–329
“1-inch” microphone diagram, 311
open-circuit sensitivity, 314–315
optimal backplate radius, 313–315
optimal sensitivity, 313–315
polarization voltage (Vbias), 312–313
pre-amplifier, 312
pressure-driven membrane, 308–310
pressure equilibration (relaxation time), 450, 451
typical “1-inch” microphone, 311

Conservation equation
energy, 464–465
entropy, 351–352
mass, 348, 350
momentum, 350

Conservative force, 8
Consonance and dissonance (musical), 144–147
Constant sound speed gradients

construction point, 534
piecewise linear approximation, 529
propagation delay, 536–537
refraction of sound, 529
solid body rotation, 531–532
sound channels, 534–536
sound focusing, 538–539
under Arctic propagation, 537

Continuity equation
energy, 464–465
fluid mass (mass conservation), 363
heat, 425–427
horn, 496–497
mass, 348, 350
momentum, 350
nonlinear, 719
surface gravity wave, 504, 703

Continuous line array, 593–595
Conservation equation, 348, 352
Convective derivative, 361
Convective nonlinearity, 370, 703
Conversion factors (units), 755
Corner horn, 502
Correlated/uncorrelated errors, 35–37
Correlation coefficient, 39–42
Coupled Helmholtz resonators, 402–405

DELTAEC model, 403
schematic view, 403

Coupled oscillators, 105–115
coupled algebraic equations, 106–107, 109–110,

113–115
coupled pendula, 126
identical masses and springs, 106–107, 112–115

level repulsion, 110–111
loudspeaker in a bass-reflex enclosure, 409–412
nearest-neighbor interactions, 112–115
normal coordinates, 107–108
speaker-resonator coupling, 482–488, 664–665,

749–750
Covariance, 35–37
Crest factor, 467
Critical angle, 526–528
Critical damping, 76
Critical distance, 633
Cross-sectional area change

branching, 491–492
constrictions and expansions, 521–523
horns, 495–501

Cutoff frequency
exponential horn, 495–499
waveguide, 655–656

C-weighted sound pressure level (dBC), 468–470
Cylindrical coordinates, 295
Cylindrical enclosure, 635–644

azimuthal functions, 637
Bessel functions (Jn), 295–298, 638–639, 758–759
mode shapes, 640, 642–643
Neumann solutions (Nn), 298, 644–646
nodal circles and diameters, 641–643
periodic boundary conditions, 637
radial functions, 642
speaker-driven resonator, 664–665

Cylindrical resonator, see Cylindrical enclosure
Cylindrical waveguide, 659–660, 666, 667

D
d’Alembertian operator, 136
Damping

critical damping, 76
equivalent noise bandwidth (ΔfEQND), 81
free-decay frequency, 75–76
frictional (Coulomb) damping, 82–83
mechanical resistance (Rm), 74
overdamped, 76
quality factor (Q), 25, 75–76, 87–90, 756–757
thermal equilibrium and thermal fluctuations, 77–81
underdamped, 76
viscous damping, 73–75

Dashpot, 73–75
Decay curve for sound in rooms, 630–632
Decibel, 465–468

addition, 468, 505
definition, 88
half-power, 88
history, 465–466

Decrement (logarithmic), 74
Deep isothermal layer (ocean), 530, 534
Deep sound channel (ocean), 534–536
Degenerate modes

enclosures, 624–625, 640, 646–648
membranes, 288–290

Degrees-of-freedom, 105, 108
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DELTAEC (Design Environment for Low-amplitude
Thermoacoustic Energy Conversion)

downloading, 382
incremental plotting (*.ip), 397–401
*.out files, 384–390, 392–394
reverse Polish notation (RPN) segments, 394–395
state variable plots (*.sp), 391
thermophysical properties, 382–384

Density
acoustic, 360
energy, 464–465
equilibrium, 360, 367–368
linear, 135
mass, 237, 337–338
surface, 285
volume, 337–338

Density of modes
three-dimensions, 626–627, 641–644
two-dimensions, 291–294

De-tuning/de-phasing instability, 743–746
DI (directionality index), 602
Dielectric constant, 311, 318–320
Dielectric breakdown, 315–316
DIFAR directional sonobuoy, 578
Differential, 4–5
Diaphragm

across a duct, 520
microphone, 310–311

Difference frequency wave, 721–725
Diffuse sound field, 633–634
Diffusion equation, 422–424
Dilatational modulus (a.k.a. Modulus of Unilateral

Compression), 183–185, 240
relation to other isotropic moduli, 187

Dimensional homogeneity, 22–23
Dimensionless groups, 25–26

Grüneisen parameter (Γ), 705–706
Gol’dberg number (G), 711–712
Mach number (Mac), 364, 370, 704–705
Prandtl number (Pr), 383, 447–448, 681
Reynolds number, 436
Strouhal number, 27
Wakeland number (β), 488–490

Dipole
dipole strength, 572–573, 580
directionality, 567–570
hydrodynamic mass, 573
near pressure-release boundary, 568
out-of-phase monopoles, 567–570
small incompressible body’s translational oscillations,

578–580
Dipole strength, 572–573, 580
Directivity, 599–602
Directivity index, 598, 602
Dispersion, 247–249, 684–686

capillary waves, 248
exponential horns, 498
flexural waves, 249–250
fluorine gas, 687–688
gravitational surface waves, 248
Kramers-Kronig relations, 213–216, 684–686

waveguide, 656–658
Dispersion relation, 459–462
Dissipation

dissipation function, 465
by internal relaxation, 684–692
at repeating (sawtooth) shock front, 712–713
by shear viscosity, 661–438, 662–439, 674–679
by thermal conduction, 432–433, 661–662, 679–681
See also Bulk viscosity (ζ)

Distortion (nonlinear), 714–720
Doppler mode splitting, 647–648, 663–664
Double Helmholtz resonator, 402, 416–417, 450–451
Double shock waves, 708–710
Driven circular membrane, 308–310
Driven systems

displacement-driven SHO, 100–102
electrodynamic microphone, 99–100
force-driven SHO, 83–86
mass-controlled response regime, 85
mechanical impedance, 84
moving-coil (electrodynamic) loudspeaker, 95–98,

126–128
Rayleigh line shape, 85–86
resistance-controlled response regime, 84
resonance bandwidth, 87–88
resonance tracking (phase-locked loop), 90–92
stiffness-controlled response regime, 85
transient response, 92–94
transmissibility, 102

Ducts
absorption at walls, 472–473, 660–662
coupling to loudspeakers, 482–490
with discontinuous cross-section, 490–492
guided modes in circular ducts, 659–660, 666–667
guided modes in rectangular ducts, 655–656,

658–659, 665–666
resonances in ducts, 470–475, 482–488
side-branch in ducts, 492–494
transient pulse propagation, 667–668

Dynamic loudspeaker, 95–98, 126–128
Dynamic microphone, 99–100
Dynamic range, 260
Dynamic (or absolute) viscosity (μ), 434

ideal gas (kinetic theory), 446
Dynamical equation, 334, 373

E
Earnshaw, Samuel, 715
Echo satellite, 669–670
Effective bandwidth

equivalent noise bandwidth (ΔfEQNB), 81
half-power bandwidth (Δf-3 dB), 87–90

Effective length
flanged piston, 602–604
Helmholtz resonator neck (DELTAEC), 396–397
Helmholtz resonator neck (experimental), 378–381
unflanged piston, 607–610

Effective mass, see Entrained mass
Effective modulus (rubber springs), 217–218
Efficiency

dipole radiation, 573
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Efficiency (cont.)
dipole scattering, 582
electroacoustic coupling, 488–490
monopole radiation, 553–554

Einstein, Albert, 335, 546, 617
Elastic suspension (thermoacoustic resonator), 617–618
Elasticity

Anisotropic (crystalline), 225–227
isotropic, 179–187

Elastic moduli
bulk (B), 182–183, 187
complex, 211–213
dilatational (D), 183–185, 187
effective modulus (rubberlike materials), 217–218
Lamé (λ), 187
Poisson’s ratio (ν), 181, 183, 184, 187
relations among isotropic moduli, 187
shear (G), 185–187, 262
unilateral compression (D), 183–185, 187
Young’s (E), 180–181, 260–262

Electret microphone, 317–320
Electrical impedance (Zel), 51
Electroacoustic reciprocity, 477–482
Electrodynamic loudspeaker, 95–98, 126–128
Electrodynamic microphone, 99–100
Electromagnetic cross-talk, 260
Electrostatic levitation oscillations, 123
Electrostatic potential energy, 316
Enclosure

bass-reflex loudspeaker, 405–412
cylindrical, 635–644
rectangular room, 623–635
spherical, 651–655
toroidal, 644–646, 663–664

End correction, see Effective length
End-fire array

discrete, 591–592
parametric, 721–725

End-fire direction, 561, 591
End-to-end calibration, 34
Energy

bar, 242–244, 264–265, 276
enthalpy, 679, 735–736
heavy chain, 154
internal (thermodynamic), 339–340, 344
kinetic, 66–67, 150, 337, 441, 472
kinetic energy density in fluids, 465
oscillator, 66–67
potential, 6–10, 150, 276, 475, 740
potential energy density in fluids, 465
string, 147–149, 157–158

Energy balance equation, 630
Energy density, 465
Enthalpy function, 679, 735–736
Entrained mass

for baffled piston, 603
for dipole, 573
for monopole, 552
for multipole source, 573

for piston at the end of a tube, 608
for pulsating sphere, 552
for quadrupole, 615
for translating sphere, 573

Entrance length (for Poiseuille flow), 436
Entropy, 339

production of, 350, 678
dissipation function, 465
flux, 348, 678
discontinuity at shock front, 713
production of, 350
wave (second sound in superfluids), 709

Equal-loudness contours (Fletcher-Munson curves),
467–468

Equal temperament (musical scale), 144–147
Equipartition theorem, 76–82

electrical noise (in resistors, Johnson noise), 82
ideal gas laws, 336–338
fluctuations, 80
thermal noise, 81, 88
thermal velocity, 80

Equivalent noise bandwidth (ΔfEQNB), 81, 88–90
Equation of state, 352

adiabatic fluid, 341–342
dynamic, 682, 684–686
isothermal gas, 338
virial expansion, 707

Ergodic hypothesis, 31
Error propagation, 35–37

covariance, 35–37
Eucken formula, 447
Euler-Bernoulli beam equation, 247
Euler equation, 349–350, 369

linearized, 370–372, 456–457, 464, 504, 549, 637,
638, 704

nonlinear, 719
Euler force (buckling), 202
Eulerian coordinate system, 350, 361
Eulerian volume (fluid element), 362, 371
Euler, Leonhard, 18, 297, 334
Euler’s formula, 18
Evanescent wave, 428
Experimental errors, 29–32

correlated or uncorrelated, 35–37
Exponential horn, 495–500
Extensive variables, 337, 461
Eyring-Norris equation, 663

F
Faraday’s law, 98
Far-field

axial pressure (baffled piston), 604–607
radiation pattern, 613–614

Fermat’s principle, 525–526
Ferroelectric ceramic, 188–189
Feynman, Richard P., 7, 325, 334
Field-effect transistor, 318
Fifth (musical interval), 144–147
Filter
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band-pass, 494–495
band-stop, 492–494, 521–522
high-pass (stub) filter, 494–495
low-pass (constriction or expansion), 521–523

Finite string
displacement driven, 167–169
efficient driver-load interaction, 170–171
force-driven, 170
mechanical impedance of mass, 169

First Law of Thermodynamics, 339–341
First sound (superfluid helium), 709, 728
Flare constant (horns), 497
Flat tuning (levitation superstability), 746
Fletcher-Munson curves, 467–468
Flexible string (wave equation), 134–135
Flexural modes (thin bar)

dispersion, 247–249
Euler-Bernoulli beam equation, 247
lowest-frequency mode, 262
mode shapes, 252–256
normal mode frequencies, 251–255
Rayleigh waves, 256
wave functions, 249–250

Flexural rigidity, 321
Flexural wave speed, 247
Fluid parcel/particle, 333, 348–350, 361
Focusing (sound)

by graded speed, 539
by marine mammals, 538

Force
drag due to viscosity, 434
due to potential gradients, 9, 742
on a sphere in a standing wave, 743

Force-driven fixed string, 175
Forced vibration, 83–87, 100–102
Fourth sound (superfluid helium), 709
Fourier analysis, 13–16
Fourier coefficient

harmonic distortion, 716–717
sawtooth wave, 53–54
square wave, 15–16
triangle wave, 16

Fourier diffusion equation, 423, 426
Fourier, Jean-Baptiste Joseph, 22, 297
Fourier’s theorem, 14
Fourier synthesis, 13–16
Fourth (musical interval), 145–147
Free boundary conditions, 138, 140, 166
Free decay frequency, 75–76
Frequency (angular), 14, 61
Frequency weighting (sound level meters), 468–470
Frictional (Coulomb) damping, 82–83
Frobenius, Ferdinand Georg, 296
Frozen sound speed, 685
Fubini-Ghiron solution (nonlinear wave distortion),

716–718
Fundamental frequency, 143
Fundamental Theorem of Calculus, 5, 8, 343

G
Gamma function, 597
Garrett’s First Law of Geometry, 22, 524, 713
Galilean invariance, 728
Galileo, 12, 121
Gas constant (Universal), 337, 713
Gases

adiabatic temperature change, 342–343
bulk viscosity (ζ), 678, 681–682
diatomic, 344–347
dry air (standard), 462
ideal, 336–338, 341–342, 354
internal degrees-of-freedom, 347, 684–686
molecular weight (mass), 338
monatomic, 344
polyatomic, 344–347
polytropic coefficient, 341–342, 355–356
sound speed, 383, 457, 460–461, 707
sound speed in gas mixtures, 460–462
specific-heat ratio, 341

Gas spring, 354–355, 366–367
Gas stiffness (Kgas), 354, 367
Gauge invariance, 9
Gaussian distribution, 32–33
Generalized susceptibility, 213
Geometric resonance, 720–725
Geophone, 102–104, 129
Gerber scale, 61, 64
Gibbs phenomena, 15, 16
Glass transition temperature, 218–220
Glockenspiel, 255
Gol’dberg number, 711–712
Gradient microphone, 575–577
Gradient operator, 8, 423, 549–550, 638–639, 653,

735–736, 742
Gravitational potential energy, 68–70
Grazing angle, 533
Greenspan viscometer, 450–451
Π-Groups, 25–29
Group speed, 658, 660, 667–668
Grüneisen parameter (Γ), 705–706
Guided waves, 654–662

H
Half-power beam width, 615
Half-width, 87
Half-wit, see Donald J. Trump
Hanging chain, 153–155
Harmonic analysis, 277, 359, 364
Harmonic distortion (nonlinear), 714–718
Harmonic series, 143–145, 158, 160
Heake, John, 206
Heat capacity (ideal gas)

constant pressure, 340–341
constant volume, 340, 344–347
isobaric, 340–341
isochoric, 340, 344–347
ratio, 346
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Helmholtz equation, 622
Helmholtz resonator, 358, 415, 416, 438–440, 557,

732, 733
High-pass (stub) filter, 494–495
Homogeneous media, 338
Hooke’s law, 61, 180
Horn

catenoidal, 499–500
conical, 495
corner, 502
exponential (semi-infinite), 495–499
finite length, 500–502
flare constant, 497
historical photos, 496
resonances, 502
Salmon, 499–500

Humidity, effects of, 632, 663, 683, 684, 688, 700, 723
Huygens principle, 523–524
Hydrodynamics

bulk viscosity (ζ), 422, 677–679, 682–684, 688–692
conservation equation, 348, 352
entropy equation, 350–351
equation of state, 352
equilibrium thermodynamics, 347
macroscopic models, 352
Navier-Stokes equation, 349–350, 358, 367, 423,

674–675
time reversal invariance, 422–424

Hydrophones, 481, 536, 578
Hydrostatic pressure, 367–368
Hydrostatic strain (volumetric strain), 182–183
Hyperbolic functions, 762–763

I
Ideal gas laws

adiabatic, 341–342
isothermal, 338

Images, method of, 564–567
Imaginary part, 21
Imaginary unit ( j), 17
Impedance, see Specific type
Impedance matching (antireflective) layer, 520
Impedance transformer, 168–169
Incoherence, 468
Incompressible sphere

dipole behavior, 579
equivalent cylinder (dipole strength), 580
multiple scattering, 586–588
scattering (compact density contrast), 580–583
translational oscillations, 579

Inductive reactance, 372
Inert (noble) gas, 345
Inertance, 372–373
Inertia coefficient, 150, 152, 154
Infrasound, 482, 692, 693
Inhomogeneous differential equation, 308–310, 719–720
Inhomogeneous media (scattering)

bubble cloud, 586–588
compressibility contrast, 583–584

density contrast, 580–583
single (resonant) bubble, 584–586

Initial conditions
for coupled harmonic oscillators, 108–109
for simple harmonic oscillator, 61–63
for string, 155–156

Instantaneous value, 359
Integration by parts, 5

See also Product rule
Intensity

Acoustic, 465
level (IL), 466–470
reference (Iref), 470–471

Intensive variables, 338
Interface between fluids, 514–519
Intermodulation distortion, 721–725
Internal energy, 339–340, 735
International Organization for Standards (ISO)

anthropomorphic level weighting, 468
broadband sound sources, 456
one-third octave band frequencies, 456

Interval (musical), 144–147
Intromission angle, 528–529
Isobaric heat capacity, 341
Isochoric heat capacity, 340
Isothermal boundary layer, 432
Isothermal equation of state (ideal gas), 338
Isothermal sound speed, 433–434
Isotropic, 338
Isotropic elasticity

bulk modulus (B), 182–183
dilatational modulus (D), 183–185
elastic constants, 187
elastic materials, 181
modulus of unilateral compression (D), 183–185
relationship between moduli, 187
shear modulus (G), 185–187
superposition, 13, 181–182, 610

Isotropic fluid, 348

J
Joining conditions, 373
Joule heating, 104, 128, 166, 424, 439, 488–490
Jug hustler, 129
Just intonation (musical scale), 145–147

K
Kepler’s third law (planetary motion), 68
Kettledrum (Tympani), 306–308, 327
Kinematic viscosity (ν), 437
Kinetic theory of gases, 336, 338, 353, 443, 676

mean free path, 443–444
microscopic model, 336–338, 443
Prandtl number, 447–448
quantum mechanical effects, 443
shear viscosity (μ), 443
thermal conductivity (κ), 444–446
viscosity (μ), 446–448
viscous shear, 443
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Kramers-Kronig relations
attenuation and dispersion in fluorine, 687–688
single relaxation time systems, 684–686
spring-damper systems, 213–216
Standard Linear Model (SLM), 210–211
viscoelastic materials, 206–207, 210–211

Kronecker delta, 14
k-space (Reciprocal space), 291–292
Kundt’s tube, 731

L
Laboratory frame-of-reference, 361
Laennec, René Théophile Hyacinthe, 655
Lagrangian coordinates, 361
Lagrangian density, 736
Lamé constant (λ), 187
Laplace’s formula (capillarity), 555–557
Laplacian operator, 286, 349, 549, 622, 636
Layered fluids (refraction), 515–516, 518–519, 529–530
Least-squares fitting, 37–38

adjustable parameters, 46–47
correlation coefficient, 39–42
error estimates, 42–43
linear correlation coefficient, 39–42
linearized least-squares fitting, 43–46
relative error in slope (δm/m), 42–43
more than two coefficients, 46–47

Le Châtelier’s Principle, 684
Lead zirconium titanate (PZT), 189, 193
Legendre transformation, 679
Lennard-Jones potential, 49, 50, 123, 446
Lenz’s law, 96
Le système international d’unités, 23
Level repulsion, 111, 412, 484–485
Levitation, acoustic, 737–746

superstability, 743–746
Linear array

continuous, 593–595, 614
discrete, 544, 588–591, 610
shaded, 593
steered, 591–592

Linear operator, 12–13
Linear relationship, 12
Linear response theory, 207–211, 213–216
Linear superposition, 13

compact monopole and dipole, 610
continuous line source, 614
four-element line array, 614

Linearity, 12
Linearized continuity equation, 363–366
Linearized Euler equation, 370–372
Loaded membrane (point mass), 290, 327
Loaded string (point mass), 152–153, 161–163, 169, 177
Logarithmic decrement (δ), 75
Logarithmic differentiation, 5–6
Long line array, 615
Longitudinal modes of a thin bar, 236–239, 278
Longitudinal waves in bulk solids, 240
Losses, see Absorption, Attenuation, and Dissipation

Loss factor/damping factor, 218–219
Loss modulus, 218–219
Loss tangent (tan δ), 218
Loudness, 467–470
Loudspeaker

in bass-reflex enclosure, 409–412
electrodynamic, 95–98, 126–128
enclosure (woofer), 545

Low-pass filter (constriction or expansion), 521–523
Lumped element approximation, 63–64, 358
Lyapunov stability, 6

M
Mach number (Mac), 364, 370, 704–705
Macroscopic variables, 334–335, 338
Magnitude (complex number), 19
Main thermocline (ocean), 530
Mass, 23
Mass conservation law, 348, 352
Mass controlled regime, 85
Mass law (for partitions), 520–521
Mass-loaded string, 121, 126, 161–163, 169, 177
Master curve, 269–270
M’bira, 278
Maxwell model (relaxation time), 207–210
Maxwell relations, 679–680
Mean field approximation, 586–588
Mean free path, 443–444, 449–450
Mean value, 30
Mechanical impedance, 83–85, 87, 92, 101
Mechanical reactance, 84, 552, 602–603
Mechanical resistance, 22, 73–74, 163–165, 207, 522,

602, 603
Medium density fiberboard (MDF), 417
Mersenne’s laws, 174
Membrane

annular, 302–304
circular, 294–300
effective piston area, 304–305
forced motion, 308–310
hexagonal, 302–303
rectangular, 284–294
tension per unit length, 285
triangular (equilateral), 302–303, 326

Method of images, 138–140, 564–568
Microphone

Altec 21-C, 328
cardioid, 574–577
condenser, 310–317
electret, 317–320
electrodynamic, 99–100
MEMS, 80, 328–329
moving-coil, 99–100

Microphone vibration isolator, 230–231
Microscopic models

atoms, 336, 337
Boltzmann’s constant (kB), 337
Equipartition theorem, 76–82, 336, 337

Mirrored galvanometer, 78–80
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MKS units, 23
Mixed layer (ocean), 530
Modal degeneracy, 284, 288–290
Modal density, see Density of modes
Modal excitation

cylindrical resonator, 664–667
driven waveguide (rectangular), 658–659, 667–668,

670
rectangular enclosure, 625–626

Mode splitting
cylindrical enclosure (Doppler), 647–648
cylindrical enclosure (incompressible obstacle),

646–647
square membrane (point mass), 290
toroidal enclosure (Doppler), 647–648, 663–664

Modes (thin bar)
elastic moduli (see Elastic moduli)
flexural waves (see Flexural modes)
harmonic analysis, 277
longitudinal waves (see Longitudinal modes)
torsional waves, 245–246
stiff string, 274–277

Modified Bessel functions (Im and Km), 321–324
Modulus, see Elastic moduli
Modulus of unilateral compression (D), 183–185

relation to other isotropic moduli, 187
Mole (unit), 23, 337, 344
Molecular relaxation

equation of state, 682–686
vibrational, 687–688

Monopole
compactness criterion, 544–545
hydrodynamic mass, 552
radiated power, 553
radiation impedance, 550–554

Motor parameters, 490
Multipole expansion, 554–555
Musical intervals, 144–145
Musical scales, 145–147

N
Navier-Stokes equation, 349–350, 358, 367, 423, 674
Near field (baffled piston), 604–607
Nearest neighbor interactions, 113–114
N-element discrete line array

beam steering and shading, 591–595
geometric series, 589
inter-element separation, 589
straight-line path, 588

Neper (unit), 687
Net force, 8–9
Neumann function (Nn), 298, 303
Neutral equilibrium, 7
Neutral plane, 194–195
Newtonian fluids, 434
Newton’s Law of Cooling, 424–425, 434
Newton’s Second Law of Motion, 66, 333, 336, 348, 372,

373, 517
Nodal circle, 299, 303

Nodal diameter, 297, 299
Nodal line, 287
Noise

community equivalent level (Leq), 470
day-night level (Ldn), 470
equivalent bandwidth (ΔfEQNB), 81, 88–90
thermal noise voltage (Johnson noise), 82
thermal noise, 76–81

Nondimensional frequency
flow (Strouhal number), 27–28
relaxation time (ωτ R), 207–211, 269–270, 684–686,

690
Nondissipative lumped elements

acoustical compliance, 366
acoustical inertance, 358, 372–373
acoustical mass, 373
double-Helmholtz resonator, 416–417
electrical circuit element, 358
gas spring, 366–367
Helmholtz resonator, 358
linearized continuity equation, 363–365
linearized Euler equation, 370–372
lumped elements, 412
oscillations about equilibrium, 359–361
pistonphone microphone calibrator, 414–415
pressure oscillations, 358

Nonlinear acoustics
anomalous distortion, 708–711
continuity equation, 703
convection (speed change), 704
convective nonlinearity, 703
Earnshaw solution, 715–716
equation of state, 702
Euler equation, 702
Gol’dberg number, 711–712
Grüneisen parameter, 704–705
harmonic distortion, 714
higher harmonic distortion, 716–718
hydrodynamic equations, 702
levitations superstability (acoustic molasses), 743–746
linear analysis, 701
linear approximation, 746–747
order expansion, 714
shallow-water gravity wave, 703–705
sinusoidal disturbance, 703
stable sawtooth waveform attenuation, 712–713
trigonometric expansion (2nd harmonic distortion),

715–716
virial expansion, 707
weak shock theory, 714

Nonlinear effect, 365, 702
Nonlinear wave equation, 719–720
Non-reflecting termination, 166
Non-slip boundary condition, 435
Non-separable coordinate geometries

adiabatic invariance, 648
azimuthal modes, 650–651
nuclear reactor coolant pool, 668–669
Space Shuttle cargo bay, 648–651
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Nonuniform string, 152–153, 176, 177
Non-zero time-averaged effects

acoustic levitation, 737–743
adiabatic compression, 729–731
adiabatic invariance, 738–743
Bernoulli pressure, 731–733
inhomogeneous wave equation, 729
levitation superstability, 743–746
radiation pressure, 735–736
Rayleigh disk, 734–735
second-order pressure, 729–731
standing waves, 737–738

Normal coordinates, 107–108
Normal modes

anti-nodes, 143
boundary conditions, 141–144
coupled oscillators, 107–108
fundamental frequency, 143
harmonic series, 143
standing waves, 143
“string of pearls,” 141
Wavenumber, 141–143

Norris-Eyring reverberation time, 663
Nuclear explosion wave, 52–53

O
Oblique modes, 624
Ohm’s law, 22, 424–425
“Old-age limit” of waveforms, 746–747
Omnidirectional source

causality sphere, 546–548
compact monopole, 550–553
monopolar acoustic transfer impedance, 553–554

One-dimensional propagation
abrupt discontinuities, 490–492, 514–523
acoustic energy, 464–465
cavitation effects, 517
characteristic impedance, 464
complex pressure reflection coefficient, 519
conservation equation, 465
continuity equation, 464
duct constriction/expansion low-pass filters, 521–522
energy densities, 465
Euler equation, 464
Fermat’s principle, 523–526
harmonic plane waves, 463–464
horns of finite length, 500–503
hydrodynamic equations, 464
impedance matching (anti-reflective) layer, 520
inhomogeneous medium, 513–514
intensity, 465
limp diaphragm, 520
lumped-element model, 454–456
mass law (for partitions), 520–521
planar interface, 513
planewave, 514, 515, 519
power transmission coefficient, 519
pressure release boundary, 518
Rayleigh reflection coefficient, 528–529

reflection, 516
Salmon horns, 499–500
semi-infinite exponential horns, 495–499
Snell’s law, 523–526
specific acoustic impedance, 464
stub tuning, 494–495
superposition of sound levels, 468
thermal relaxation losses, 515
total internal reflection, 526–528
transmission, 516, 518

One-dimensional wave equation, 136, 238, 245, 246,
457–458, 499, 720

Onsager reciprocity, xiv
Open-circuit microphone sensitivity, 315, 320,

328, 476, 480
Optimum efficiency, 489
Order expansion, 714
Orthogonal functions, 13, 155–156
Oscillator output impedance, 51
Oscillatory plug flow, 438
Outgoing (spherical) wave, 546–550
Overtones, 143

P
Packard, Richard E., 198
Paddle-driven rectangular waveguide, 667–668
Parametric arrays, 725
Particular solution, 307–309
Pascal’s law, 338, 374
Paschen’s law (breakdown voltage), 315–316
Parameter of nonlinearity

B/A coefficient, 707–708
C/A coefficient, 707
Grüneisen parameter (Γ ), 705–707

Pendulum
adiabatic invariance, 71–73
data analysis, 51–52
heavy chain, 153–155
simple pendulum, 10–11, 70–71

Penetration depth, see Boundary layer thickness
Period (T ), 14, 61, 142
Periodic boundary condition, 296, 637–638
Permittivity of free space (εo), 311, 755
Peruvian whistling bottles, 375–376
Phase-locked-loop (PLL), 91–92
Phase matching, 722
Phase speed (cph), 45, 248–249, 275, 459–460, 498, 656,

658, 660, 665, 668, 722, 726
Phasor, xix, 62, 74, 84, 87, 93, 95, 100–102, 165–167,

308–310, 363–367, 370, b372-373, 471–472, 475,
476, 479–480, 483, 488–489, 491–492, 497–498,
508, 514–519, 523, 528, 544–550, 552–556,
558–559, 562, 568, 575–585, 595–597, 600, 602,
660–661

Phasor notation, 19
Phenomenological models

adiabatic, 339
conservation laws, 338, 718–719
Einstein’s quotation, 335
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Phenomenological models (cont.)
entropy, 339, 340, 719
geometrical resonance (phase matching), 720–721
homogeneous and isotropic properties, 338
intermodulation distortion, 721–725
isobaric heat capacity (CP), 341
isochoric heat capacity (CV), 340
macroscopic variables, 338
single-component fluid, 339
thermodynamics, 338
thermodynamic temperature, 339

Phon, 467
Physical constants, 755
Piecewise linear approximation, 529–530, 534
Piezoelectric accelerometers, 118
Pi-Groups, 25–29
Piston angular null, 616
Pi-theorem (similitude), 23–26
Pixiphone, 255
Planck distribution, 346
Planck’s constant (h or), 276–277, 345–347, 755
Planck’s equation, 71, 111
Piano string (with stiffness), 276–277
Piston (circular) in an infinite baffle, 595–604
Pistonphone (calibrator), 414–415
Plane wave, 523
Point particles, 336
Point mass, 60, 112, 117
Point source, see Monopole
Poiseuille’s formula, 436
Poisson’s ratio (ν), 181

relation to other isotropic moduli, 187
Poisson, Simone Denis, 181
Polar coordinates, 294–295
Polar moment-of-inertia, 245, 246
Polarizing voltage (Vbias), 313–317, 319
Pole-zero fitting, 757
Polyatomic gases

ball-and-stick model, 344
Boltzmann factor, 346
bulk viscosity (ζ), 347
diatomic molecule, 344–345
Equipartition theorem, 344
heat capacity, 347
molar heat capacity, 346, 347
nitrogen (N2), 346
optical spectroscopy, 346
Planck’s constant (h or ), 345, 755
quadratic degrees-of-freedom, 345
vibrational degrees-of-freedom, 346
vibrational frequency, 346

Polyatomic molecules, 344–347
Polytropic coefficient (γ), 306, 308, 342
Potential (velocity), 735
Potential energy

and forces, 8
density (in fluids), 465, 736
gravitational, 7, 10, 69–70
Hooke’s law, 9

standing wave, 472, 740
Power transmission coefficient (T Π):

constriction or expansion chamber, 521–523
partition (mass law), 520–521

Power, time-averaged, 21–22
Prandtl number (Pr)

classical attenuation, 681
DELTAEC thermophysical properties, 383
ideal gas mixtures, 447–448

Precision, 29–30
Pressure

acoustic, 359
equilibrium ( pm), 359
instantaneous, 359
reference sound pressure level, 467–468

Pressure gradient microphone
Bauer’s approach, 575
electrical signal, 576
equivalent circuit, 577
front-to-back propagation delay, 577
popular implementation, 575
transduction mechanism, 576

Pressure reflection coefficient, 518, 528
Pressure release boundary, 568
Pressure transmission coefficient (T ), 518
Principle of reciprocity, 477–478
Principle of superposition, 13–16, 181–184, 289–290,

468, 560, 567, 588, 610
Product rule, 5, 44–45, 49
Proof mass, 188, 189
Propagation constant, see Wavenumber
Pulsating spherical source, 546–548, 553–554
Pump wave attenuation, 695
Pump waves, 721–722
Pythagorean scale (musical), 147

Q
Q (quality factor)

definitions (multiple), 75, 756–757
DELTAEC, 394, 402
driven plane wave resonator, 474–475, 482, 745
from similitude, 25
geophone, 104
Helmholtz resonator, 440–443, 451, 482
simple harmonic oscillator, 75–76, 86–89, 93–94, 118,

129
standing wave (cylindrical) resonator, 472–473

Quadratic degree-of-freedom, 77
Quadratic quadrupole radiation impedance, 615
Quadrature output, 268
Quadrupole, 615
Quarter-wavelength open tube, 474, 494–495
Quartic degree-of-freedom, 77
Quartz microbalance, 240–242
Quasi-static approximation, 63–66

R
Radian frequency (angular frequency, ω), 61
Radiation efficiency (monopole), 442, 553, 554
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Radiation force, 743
Radiation impedance, 166

baffled circular piston, 602–604
bipole, 560, 562, 563, 571–573
compact spherical source (monopole), 544, 550–553
dipole, 568–574
monopole, 544, 550–553
quadrupole, 573, 615
unbaffled piston, 607–610

Radiation mass, 192, 379
See also Radiation reactance

Radiation pressure, 735–736, 740
Radiation reactance

baffled circular piston, 602–603
baffled rectangular piston, 604
dipole, 573
general multipole, 573
monopole, 550–552
unbaffled circular piston, 607–608

Radiation resistance
baffled circular piston, 602–603
baffled rectangular piston, 604
dipole, 573
monopole, 550–553
semi-infinite string, 165, 166

Radius of curvature, 135, 194
Radius of gyration, 195
Random errors, 30
Rate of sound decay, see Reverberation
Rationalization (of a complex number), 20
Rayleigh disk, 734–735
Rayleigh resolution criterion, 599–600
Rayleigh scattering, 582
Rayleigh waves, 256
Rayleigh’s method, 68–69, 152–153, 263–266, 290, 739
Ray tracing, 531
Reactance, see Specific type
Real springs

buckling, 200–202
bulk material, 187–188
cantilevered beams, 193–194
coil (see Coil springs)
elastic energy, 187
flexure springs, 193–194
Hooke’s law, 187
reduced mass, 192
rubber springs (see Rubber springs)
solids as springs, 188–193
stiffness, 192–193
torsional springs, 202–203
triangularly tapered cantilevered beams, 198–200
vibration isolators, 188

Receivers, see Source
Reciprocal space (k-space), 291
Reciprocity

acoustic, 477
calibration, 507–509
coupler, 481
double Helmholtz resonator, 482

electroacoustic, 478–481
free-field, 481
planewave tube, 482
planewave resonator, 480, 482
reversibility, 477

Rectangular membrane, 284–294
Rectangular room

density of modes, 626–627
modal excitation, 625–626
modes, 623–625
reverberation time (T60), 630–632
separation of variables, 622–623
statistical energy analysis, 627–630

Rectangular waveguide
general solution, 655–656
group velocity (cgr), 656–658
mode excitation, 658–659
phase velocity (cph), 658

Recursion formulæ for Bessel functions, 760
Reduced frequency, 269
Reduced mass, 124, 193, 345
Reference

intensity level (in air), 467
sound pressure level (in air), 467
sensitivity, 315

Reflection coefficient
changing cross-section, 491–492
normal incidence, 518
oblique incidence, 528
three media, 519

Refraction, 523–526, 529–539
Relative humidity, 632, 663, 683–684, 689, 694, 723
Relative uncertainty, 30–32, 37, 43, 49, 97, 130, 262, 266,

279, 356, 417, 665
Relaxation attenuation

attenuation maximum (per wavelength), 686
chemical, 689–692
in fresh and salt water, 688–692
in gases and gas mixtures, 687–688
molecular, 443–444, 687–688
relaxation time (equation of state), 684–686
sound speed (vs. frequency), 685, 687
structural, 273, 688, 690
thermal, 430–433

Residual (statistical), 38
Resistance, see Specific type
Resistance controlled regime, 84, 98
Resonance

bubble, 555–557
double-Helmholtz resonator, 402, 416–417, 450–451
“down 3 dB” bandwidth (Δf-3 dB), 88
driven system, 83
equivalent noise bandwidth (ΔfEQNB), 89
Helmholtz resonator, 378, 380, 389–390, 415–417
loudspeaker’s frequencies, 96
mechanical resistance, (Rm), 84
phase vs. frequency, 91, 756
sharpness, 87
simple harmonic oscillator, 83–87
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Resonance (cont.)
standing wave in tube, 470–472, 474
standing wave on string, 141–144, 158–163, 167–169
3-dimensional enclosures, 623–624, 640–643, 645,

650, 653–654
Resonant mode conversion

beating, 725
geometrical resonance, 725
geometry, 727
mode-conversion interaction, 727
polycrystalline aluminum, 726
“scissors effect,” 726
shear waves, 726
solids, 726
superfluid helium, 727–728
thermodynamic variable (Galilean invariant), 728
two pump waves, 726
waveguide, 725, 727

Resonant ultrasound spectroscopy (RUS), 270–274
Resonator quality factor

driven planewave resonator (cylindrical), 474–475
Helmholtz resonator, 402, 440–443
open-closed planewave resonator (cylindrical), 474
planewave resonator (cylindrical), 472–473

Resonator-transducer interaction
Bass-reflex loudspeaker enclosure, 409–412
DELTAEC model, 484, 486
driver parameters, 484
driver-resonator interaction, 484
electrodynamic loudspeaker, 482
gas pressure oscillations, 483
ISPEAKER segment, 486, 487
isolated closed-closed resonator, 485
level repulsion, 412, 484–488
motor mechanism, 483
Newton’s Second Law of Motion, 482, 483
planewave resonator, 483
speaker’s mechanical resonance, 484–487
steady-state conditions, 483

Retarded time, 745
Reverberation, 631–632
Reverberation time

architectural design, 630–632, 662–663
Eyring-Norris equation, 663
humidity effect, 632, 694
Sabine equation, 630–632

Reverse Polish notation (RPN), 382, 394–395, 408, 410
Reversible transducer, 99, 478–481
Reynolds number, 436
Ribbon microphone, 576
Rigid-walled spherical resonators, 653–654, 670
Rigid-walled toroidal enclosure

azimuthal modes, 645–646
trigonometric functions, 644

Ring down, 43–44, 47, 75–76, 93
Roark’s Formulas for Stress and Strain, 196
Rooms

cylindrical, 635–644
non-separable geometry, 648–651

rectangular, 623–627
spherical, 652–654
toroidal, 644–646, 663–664

Root-mean-square (rms), 467–468
Rotational internal energy, 345
Rubber springs

damping, 216
effective modulus, 216–218
natural frequency (isolator), 216
Poisson’s ratio (ν), 217
rubber-to-glass transition, 218–220
shape factor (S), 217
transmissibility (Type I and Type II), 222
vibration isolation, 216
viscoelastic transition frequency, 225
viscoelastic transmissibility, 224

Rüchardt’s method (polytropic coefficient), 354

S
Sabine, Wallace C., 630–631
Sabine equation, 630–632
Salinity, 529, 690
Salmon horns, 499–500
Sawtooth waveform

attenuation (nonlinear), 712–713
Fourier components, 53–54

Scale of just intonation (musical), 146
Scaling laws, see Similitude
Scattering strength

single bubble or swim bladder, 584–586
compact compressibility contrast, 583–584
compact density contrast, 581–583

Schroeder frequency, 634, 663
Schlagwetter-pfeife, 505
Sea water

attenuation of sound, 689–692
speed of sound, 529

Second harmonic distortion, 715–718
Second Law of Thermodynamics, 339, 351, 678
Second-order correction, 714
Second-order wave equation, 719–720
Second sound, 709
Second viscosity (ζ), 347, 350, 351, 422, 465, 678,

680–681
See also Bulk viscosity

Secular equation, 107
Seismic mass, 188, 189
Seismometer, 103
Self-interaction (nonlinear), 720–723
Semi-infinite half-space, 564–567, 598, 601
Semitone (musical), 147
Separation condition, 287, 622–623
Separation-of-variables, 286, 295, 622–623, 636–637
Series approximation, 2–4, 48–49, 160, 296, 536–537,

714–716
Shaded array, 591–593
Shadow zone, 532–533
Shallow water gravity wave (surf), 504, 703–705
Shape factor (rubber springs), 217–218
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Shear (or dynamic or absolute) viscosity, 434–435,
443, 446

Shear modulus (G), 185–186, 245
relation to other isotropic moduli, 187

Shear strain, 185–186
Shear waves, 245–246
Shear wave speed, 245
Shock inception distance (DS), 704–706, 711, 716
Shock wave

attenuation, 712–713
equal-area rule, 713
formation, 711–712
thickness, 713

Shure microphones
Model 55 “Unidyne®, 100
Model SM58, 100, 575–577

Side branch
Helmholtz resonator, 492–494
stub, 494–495

Silly Putty®, 210
Similitude, 23–29, 50–51
Simple harmonic oscillator, 24–25, 60–61, 158–161
Simple pendulum, 10–11
Simple source, see Monopole
Single relaxation time model

chemical equilibrium, 688–692
equation-of-state (bulk viscosity), 684–686
fluorine gas, 687–688
structural (water), 690
viscoelastic solids, 207–211, 266–270

Siren, 494–495, 695–696
SI System of units, 22–23
Skin depth (electromagnetic), 438
Skip distance, 534–536
Slenderness ratio, 200–202
Slow waves (in a compliant waveguide), 506
Small signal approximation, 359–361, 715–716
Small-Thiel parameters (loudspeakers), 410
Smith, Robert W. M., 206
Snell’s law

grazing angle, 533–536
normal angle, 523–526

SOFAR channel, 536, 696
Solid angle (d Ω), 600–601
Solid body rotation, 531–533, 713
Solomongo, 325
Sonic gas analysis, 460–462, 505–506
“Sonic hammer,” 242–244
Sonic hydrogen detector design, 505–506
Sonoluminescence, 747
Sound absorption, see Attenuation and Dissipation
Sound channels, 534–536
Sound decay, see Reverberation
Sound level

A-weighted, 468–469
B-weighted, 469
C-weighted, 469
day-evening-night averaged (Lden), 470
day-night averaged (Ldn), 470

daytime average, 470
equivalent (Leq), 470
reference sound pressure level (SPL), 468

Sound level meter, 469
Sound radiation, 544–548
Sound speed profile

linear, 531–532
piecewise linear, 529–530

Sources and Receivers
Altec-Lansing Model 21C, 328
baffled piston, 595–607, 616
bipole, 560–564, 614
cardioid (unidirectional) microphone, 574–575
compact spherical, 544–554
condenser microphone, 310–317
continuous line, 593–595, 614
discrete line, 588–593, 614. 615
DIFAR sonobuoy, 578
dipole, 567–573, 578–580
electret condenser microphone, 317–320
electrodynamic loudspeaker, 95–98, 126–128,

616–617
electrodynamic microphone, 99–100
end-fire array, 591–593
line array, 588–595, 614, 615
MEMS microphone, 328–329
monopole, 544–554, 611
multipole, 554–555
parametric array, 721–725
point, 544–554, 611
pressure gradient, 575–577
quadrupole, 615
ribbon microphone, 576
Shure Model 55 (Unidyne®) and Model SM58, 100
spherical (pulsating), 544–554
spherical (translating), 578–580
thermoacoustic, 617–618
thermophone, 506–507
unbaffled piston (at end of a tube), 607–610
unidirectional (see cardioid)

Source strength, 553–555
Space Shuttle cargo bay, 230, 649, 650, 670
Spar buoy oscillations, 119–120
Spatial attenuation coefficient, 676
Speaking length (for piano strings), 276–277
Specific acoustic impedance, 463, 516–519, 527–529

See also Characteristic impedance
Specific heat ratio (ideal gas) (γ), 342
Specular reflection, 525
Speed of sound (c)

air, 462
DELTAEC, 382–384
gas mixtures, 460–462
ideal gas, 460–461
liquid nitrogen, 460
liquids, 460
local, 705–706
seawater, 529–530
thermodynamic, 460, 707
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Speed of transverse waves on a string, 135, 137, 161
Spherical coordinates, 549
Spherically diverging sound waves

acoustic impedance, 550
gradient operator, 549–550
harmonic bubble oscillations, 552
monopolar sound source, 551
monopole acoustic transfer impedance, 553–554
multipole expansion, 554–555
space and time evolution, 549
spherical source, 552

Spherical enclosure, 651–654
Spherical harmonics, 554–555
Spherical resonators

pressure-released, 652–653
rigid-walled, 653–654

Spherical sound waves, 548–550
Spherical spreading, 611–612
Springs

automotive valve spring, 227
cantilever, 121–122, 197–200, 229–230
coil, 10, 203–206
design, 187, 199, 202
flexure springs, 193–200
gas, 354–355, 366–367
hardening nonlinearity, 10
in parallel combinations, 65
potential energy, 65
rubber (see Rubber springs)
in series combinations, 64
softening nonlinearity, 10–11
strain transformer, 231
torsion spring, 229, 246
See also Real springs

Spring constant (K), 9, 227
Square membrane, 288–290
Square wave, 15–16
Stability coefficient, 150, 152, 154
Stable equilibrium, 6
Stagnation point, 732
Standard (dry) air, 462, 755
Standard deviation, 33, 36, 42
Standard linear model (SLM) of viscoelasticity, 210–211
Standing waves

annular membranes, 302–304
circular membranes, 299–300, 306–308
cylindrical enclosures, 635–644
non-separable geometries, 648–651
quality factor (Q), 472–473
rigid tubes, 470–472
rectangular membranes, 286–290
rectangular rooms, 623–624
speaker-driven resonator, 482–488
spherical enclosures, 651–654
strings, 141–144
thin bars (flexural), 250–256
thin bars (longitudinal), 236–239
thin bars (torsional), 245–246
toroidal enclosures, 644–646

Statistical energy analysis, 627–630
absorbed energy, 629–630
acoustic energy, 628–629
critical distance, 633
energy balance approach, 628
Sabine equation, 630–632
sound energy, 629
steady-state sound level, 628
time-averaged acoustic power, 627

Statistical fluctuations, 31, 76–82
Steady state

driven oscillator, 83–90
driven room, 625–626, 663

Steady-state radiation, 545
Steradian, 600–601
Stiff string, 274–277
Stiffness, 8–10

acoustic levitation, 738–743
coil spring, 203–204
cantilever beam, 198, 228–230
torsional, 202–203, 229, 245–246
triangular cantilever, 198–200, 228

Stiffness-controlled regime, 84–85
Stiffness-loaded string, 177
Stiffness matrix, 225–227
Stokes drag, 732
Storage modulus, 218–220
Strain (ε), 180–181
Strain transformer, 231
String vibrations

consonance and dissonance, 144–145
consonant triads and musical scales, 145–147
electrical stringed instruments, 283
Fourier series, 155
Gaussian pulse, 137
infinitesimal string segment, 135
imperfect boundary conditions, 173
initial conditions, 155–157
“lumped-element” model, 158, 160, 173
mass-loaded boundary conditions, 161–163
plucked string, 155
resistance-loaded boundary conditions, 163–165
struck string, 155
total modal energy, 157–158
transcendental equation, 159
vertical force, 138
whirling, 177

Strouhal number, 26–29
Struve function, 602–604
Streaming, 364–365
Stress (σ), 180–181
Stress tensor

crystalline, 225–227
viscous, 351–352

Structural relaxation
plutonium, 273
water, 690

Substitution (mathematical), 22
Superconducting quantum interferometer (SQUID), 239
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Superfluid helium, 711
Superposition

Fourier synthesis, 15–16
orthogonal functions, 13

Surface tension, 50, 555–556
Sum and difference frequencies (intermodulation),

721–725
Symmetric mode, 106, 110–111
Systematic (bias) error, 34–35

T
Taylor series, 2–4, 48–49, 707, 758, 762
Tangential modes, 624
Temperament (musical), 145–147
Temperature change (adiabatic) due to sound, 5–6,

342–343
Temporal absorption coefficient, 73–75, 677, 757
Thermal boundary layer

adiabatic compression, 430–432
adiabatic temperature oscillations, 429
adiabatic vs. isothermal propagation, 433–444
boundary condition, 429
bounded volume, 430–432
condenser microphone, 450
diffusion equations, 449
energy loss, 432–433, 660–662
evanescent wave, 429
Greenspan viscometer, 450–451
microscopic model, 449
mean-free-path, 443–444, 449–450
solid-gas interface, 429
thermal penetration depth (δκ), 428
vacuum insulation, 449–450

Thermal conductivity, 423
Thermal diffusion wave, 427–430
Thermal energy, 340
Thermal expansion coefficient, 383, 705
Thermal fluctuations, 77–79
Thermal penetration depth (δκ), 428
Thermal noise, 78–81
Thermal noise voltage (Johnson noise), 82
Thermocline (ocean), 530
Thermodynamics

Einstein quotation, 335
First law, 339
Second law, 339

Thermophone, 506–507
Thermoviscous boundary layer dissipation, 433, 439, 440,

660–662
Three-dimensional enclosures, see Enclosures
Thiel-Small parameters (loudspeakers), 410
Thin-plate model, 321–324
Time-averaged energy, 740
Time reversal invariance, 422–424
Tonpilz transducer (underwater projector), 191–193, 228
Toroidal resonator, 644–646, 663–664
Torsional (bar) modes

Fitzgerald effect, 258
polar moment-of-inertia, 245

stiffness-length product, 246
torsional wave speed, 246

Torsional rigidity, 246
Torsional stiffness, 202–203, 229
Torsional wave speed (thin bars), 245–246
Total internal reflection, 526–528
Trace velocity, 524–525
Trace wavelength, 524
Transducer

accelerometer, 103–104, 188–190
Altec-Lansing Model 21C, 328
bass-reflex loudspeaker, 405–412
calibration, 476–482
cardioid (unidirectional) microphone, 574–575
condenser microphone, 310–317
DIFAR sonobuoy, 578
dynamic, 99–100
electret condenser microphone, 317–320
electrodynamic loudspeaker, 95–98, 126–128,

616–617
electrodynamic microphone, 99–100
electrostatic, 311–320
end-fire array, 591–593
geophone, 103–104
line array, 588–595, 614, 615
horn, 495–501
loudspeaker, 95–98, 126–128, 616–617
MEMS microphone, 328–329
moving-coil, 99–100
piezoelectric, 188–193
pressure gradient, 575–577
reciprocal, 477–478
reversible, 477–478
ribbon microphone, 576
sensitivity, 476–477
Shure Model 55 (Unidyne®) and Model SM58, 100
thermoacoustic, 617–618
thermophone, 506–507
See also Sources and Receivers

Transient response, 92–94
Translating sphere (dipole radiation), 578–580
Translational internal energy, 337, 685–686
Transmissibility, 100–102, 220–225
Transcendental equations, 159, 163, 164, 169
Transmission coefficient

changing cross-section, 491–492
constriction/expansion low-pass filter, 521–522
Helmholtz side-branch, 492–494
Mass law (partition), 520–521
normal incidence, 518
three media, 519

Transmission loss
short and very short wavelengths, 692–693
very long wavelengths, 693

Transmission unit (TU), 466
Transverse wave speed (string), 135
Travel time, 536–537
Trial function (Rayleigh’s method), 149–155, 263, 365
Trigonometric functions, 4, 761
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Tsunami, 504
Tubes

area discontinuities, 521–523
driven and rigidly terminated, 482–488
end correction (unbaffled), 607–610
junctions, 490–492
rigidly terminated, 470–473

Tube wall boundary layer attenuation, 660–662
Tube wall boundary layer dissipation, 472–474
Tuning, 225, 278, 456, 743
Tuning fork, 255–256
Two degree-of-freedom oscillators, 105–111
Two in-phase monopoles

acoustic pressure, 566
axial symmetry, 564
bipole, 562
directionality factor, 563
equatorial plane, 561
image source, 567
interference effects, 565, 567
light sources (Young’s double-slit), 565
phantom sources, 564
pressure distribution, 562
SONAR array applications, 560
two-dimensional projection, 564
Young’s original diagram, 565
See also Bipole

Two out-of-phase compact sources
acoustic pressure, 568
anti-phase sources, 569
beam pattern, 569, 570
directionality, 569–570
Taylor series approximation, 568
See also Dipole

U
Ultrasound
Unbaffled piston, 607–610
Undamped harmonic oscillator, 60–63
Universal gas constant, 337, 341, 344, 755
Units, 22–23
Unstable equilibrium, 7–8
U. S. Environmental Protection Agency (EPA), 470
U. S. Standard Atmosphere, 334, 462
U-tube oscillations, 118

V
Väisälä-Brunt frequency, 414
Vapor pressure of water, 684
Variable constraint, 738
Vector identities, 464
Velocity of sound, see Speed of sound
Velocity potential, 735
Velocity profile (ocean), 529–530
Vibrating reed electrometer, 319–320
Vibrational internal energy, 346
Vibrational relaxation temperature, 346
Vibration isolation, 70, 100, 121

Vibration sensors, 102
accelerometer, 104
geophones, 103–104
piezoelectric accelerometers, 104
seismometers, 103
transduction mechanism, 102–103

Vibrations of thin plates
flexural vibration, 321
modified Bessel functions (Im and Km), 321–322
normal modes (clamped circular plate), 322–324
Poisson’s ratio (ν), 320

Virial expansion (equation-of-state), 707–708
Virial theorem, 67–68
Viscoelasticity

complex stiffnesses and moduli, 211–213
generalized susceptibility, 207
K-K relations (see Kramers-Kronig relations)
linear response theory, 207
Maxwell (relaxation time) model, 207–210
quasi-static approximation, 206
rubberlike materials, 206
single relaxation time model, 206–207
SLM (see Standard Linear Model)

Viscosity
absolute (μ), 435
boundary layer (oscillatory), 436–438
bulk (ζ),677–679, 682–684, 688–692, 696
dynamic viscosity (μ), 435
kinematic viscosity (ν), 435
Navier-Stokes equation, 434
Newtonian fluids, 434
Ohm’s law, 434
Poiseuille flow, 435–436
Quality factor (Qvis), 440–443
Second viscosity (see Bulk viscosity)
Shear viscosity (μ), 434

Viscous boundary layer (δν), 436–438
Viscous drag, 674
Viscous penetration depth (δν), 436–438
Viscous stress tensor, 351, 353
Void fraction, 587
Voigt notation, 226
Voltage-controlled oscillator (VCO), 267–268
Volume velocity, 363, 365, 366, 372, 377, 546–548,

553–555
Volumetric strain, 49, 183

W
Wakeland number, 489–490
Wall losses (thermoviscous), 661–662
Water vapor in air, 684
Wave equation

angular frequency (ω), 458
arbitrary function of (x � ct), 458
continuity equation, 456
equations of hydrodynamics, 456
first-order partial differential equations, 456–457
gases and liquids, 457
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linearized continuity, 458
“linear operator” form, 135
longitudinal waves in thin bars, 238
mass conservation, 456
one-dimensional, 135–136, 154, 238, 245, 274,

456–458, 499, 720
second-order partial differential equation, 458
speed of transverse waves, 135
three-dimensional wave equation, 549, 622, 636
time and space dependence, 458
transverse waves, 458
two-dimensional wave equation, 286, 295

Waveform distortion, 748–749
Waveguides

cylindrical (see Cylindrical waveguides)
driven, 658
phase speed (cph), 656–657
rectangular cross-section, 655
square cross-section, 659
wavenumber (k), 656
wavevector, 657

Wavelength (λ), 142
short and very short, 692–693
very long, 693

Wavenumber (k), 141–143, 165, 173
Wavenumber space (k-space), 291–294, 626–627

Weak shock theory, 703–705, 714–728
Weber bars, 239
Weighting network, 468–470
Whirling string, 177
Width of a resonance (Δf-3 dB), 87–90
Wiedemann-Franz law, 447
Wilberforce pendulum, 204–205
Williams-Lendel-Ferry (WLF) equation, 270
Work

and conservative force, 8
and energy, 8
evaluation (work done), 50

X
Xylophone, 255

Y
Young’s modulus, 180

constant of proportionality, 181
PZT, 192–193
relation to other isotropic moduli, 187
rubberlike materials, 217
steel, 192–193

Z
Zero crossings, 116, 150
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